
A generative approach to a virtual material testing laboratory

A generative approach to a virtual material testing laboratory

By

John McCutchan, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

© John McCutchan, September 2007

ii

MASTER OF SCIENCE (2007)

(Computer Science)

McMaster University

Hamilton, Ontario

TITLE: A generative approach to a virtual material testing laboratory

AUTHOR: John McCutchan, B.Sc. (McMaster University)

SUPERVISORS: Dr. Spencer Smith

NUMBER OF PAGES: x, 82

Abstract

This thesis presents a virtual material testing laboratory that is highly generic and flexi­

ble in terms of both the material behaviour and experiments that it supports. Generic and

flexible material behaviour was accomplished via symbolic computation, generative pro­

gramming techniques and an abstraction layer that effectively hides the material model

specific portions of the numerical algorithms. To specify a given member of the family of

material models a domain specific language (DSL) was created. A compiler, which uses

the Maple computer algebra system, transforms the DSL into an abstract material class.

Three different numerical algorithms, including a return map algorithm, are presented in

the thesis to illustrate the advantage of the abstract material model. To accomplish the goal

of generic and flexible experiments the finite element method was employed and an API

that supports both load and displacement controlled experiments, as well as the capability

for the experiments to modify their state over time, was developed. The virtual laboratory

provides a family of material models with the following behaviours: elastic, viscous, shear­

thinning, shear-thickening, strain hardening, viscoelastic, viscoplastic and plastic. As well,

the developed framework, by using the Ruby programming language, provides support for

a wide variety of programmable experiments, including: uniaxial, biaxial, multiaxial ex­

tension and compression, shear and triaxial.

Acknowledgements

I would like to sincerely thank my supervisor, Dr. Spencer Smith, for the endless amount

of effort he has exerted on my behalf in the form of guidance, ideas and encouragement

over the past three years that we have been working together. I would also like to thank

my great friend and roommate, Jeanine Campsall, for her tolerance and encouragement.

Finally, I would like to thank my family, the Campsalls and all my friends at McMaster and

elsewhere.

"Please accept my resignation. I don't want to belong to any club that will

accept me as a member."

Groucho Marx

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 Material Testing . 2

1.2 Material Modelling 4

1.2.1 Stress and Strain 5

1.2.2 Elasticity 6

1.2.3 Viscosity 7

1.2.4 Plasticity 8

1.2.5 Viscoplasticity 9

1.3 Advantages of a Virtual Laboratory . 10

1.4 Generative Programming 12

1.5 Purpose & Scope 13

Chapter 2. Background 15

vi Contents

2.1 Experimental Setup . 15

2.2 Governing Equations 17

2.2.1 Equilibrium Equation . 18

2.2.2 Constitutive Equation . 19

2.3 Numerical Algorithm 23

Chapter 3. High Level Design and Implementation 28

3.1 High Level Design of MatGen 28

3.2 High Level Design of MatCalc 29

3.2.1 Material Behaviour . 30

3.2.2 Experiment Control . 31

3.2.3 Data Table 31

3.2.4 Numerical Integrator 32

3.3 Implementation of MatGen . 33

3.4 Implementation of MatCalc . 33

3.4.1 Material Behaviour . 34

3.4.2 Experiment Control . 34

3.4.3 Numerical Integrator 34

Chapter 4. Programmer's Manual 35

4.1 Using Mat Calc 35

4.2 Using MatGen . 36

4.3 Adding an Experiment to MatCalc 40

4.4 Adding a Material Model to MatCalc . 46

4.5 Writing a Material Class by Hand .. 46

4.6 Writing a MatCalc Based Driver Program 49

Chapter 5. Verification and Case Studies 51

5.1 Verifying Symbolic Expressions 52

5.2 Verifying Numerical Results at a Low Level 52

BIBLIOGRAPHY vii

5.3 Unit and Regression Testing . 53

5.4 Verifying Case Studies . 53

5.4.1 Case Studies 54

5.4.1.1 Elastic Case Study 55

5.4.1.2 Viscoelastic Case Study 55

5.4.1.3 Power-Law Viscosity Case Study 57

5.4.2 Case Study Comparing Nonlso and MatCalc 58

Chapter 6. Conclusion 62

6.1 Contributions . 62

6.2 Future Work . 64

Chapter A. Numerical Algorithm Pseudo Code 67

A.1 Visoplastic Integration Algorithm . 67

A.2 Return Map Integration Algorithm . 70

Chapter B. MatGen DSL 75

Chapter C. Sample Derivation of He for a Material Model 77

Bibliography 82

List of Tables

3.1 Example data table . 32

4.1 Variables available to function F . 39

4.2 Variables available to function Q . 39

4.3 Variables available to function Kappa (K) 39

4.4 Variables available to function Phi (<p) • • . • 40

4.5 Macros available to material model functions 41

4.6 Types of function arguments to material class 48

5.1 Common material properties . 54

5.2 Common material properties for Nonlso vs. MatCalc case study 59

5.3 Relative difference for Nonlso vs. MatCalc case study 60

List of Figures

1.1 Material testing apparatus (Roell, 2007) 3

1.2 Test specimen undergoing uniaxial extension test 5

1.3 TYpical elastic stress vs. strain graphs E1 > E2 > E3 7

1.4 TYpical plastic stress vs. strain graphs showing: (1) perfectly plastic, (2)

elastic perfectly plastic and (3) strain hardening 8

1.5 TYpical viscoplastic stress vs. strain graphs where the relative relaxation

times are ordered ..\1 < ..\2 < ..\3 (constant strain rate test.) . 9

1.6 Spring and damper connected in series (Radi, 1998) . 10

2.1 Test specimen 18

2.2 Stress tensor . 19

2.3 Yield function and plastic potential . 22

3.1 Module interaction diagram . 30

4.1 MatCalc screenshot 36

4.2 MatGen screenshot 38

5.1 Linear Elasticity E1 > E2 > Ea 55

5.2 Viscoelasticity ..\1 < ..\2 < ..\3 56

5.3 Relaxation time experiment . 57

5.4 Power-law viscosity m 1 > m 2 > ma 58

5.5 Nonlso vs. MatCalc 60

X List of Figures

5.6 Nonlso vs. MatCalc (Geometry Update) 61

Chapter 1

Introduction

Modelling the response of different materials under various loading histories is of critical

importance to scientists and engineers. For example, a geotechnical engineer needs to

model the loading characteristics of soil to accurately predict the settlement of a building.

Without an accurate model of the soil, serious damage could occur and in extreme cases the

building may even collapse. As another example, designers of automobiles need to model

material behaviour so that they can predict how much mechanical energy a vehicle frame

can absorb during a collision. In this case an accurate material model is vital for passenger

safety. These are just two examples where understanding the response of materials under

loading is vital.

Modelling the response of materials is potentially complex and challenging. The rela­

tionship between the loading and the deformation of a material can rely on multiple non­

linear equations, which are potentially dependent on the entire history of the material's

deformation and temperature. In addition to the modelling challenge, another challenge

exists in constructing and performing the physical experiments needed to determine the

values of the model's parameters. Given the great importance of understanding material

behaviour, these modelling and experimental challenges need to be overcome. One ap­

proach to overcoming these challenges would be a tool to assist scientists in developing

new material models. This tool would be even more valuable if it could assist science and

1

2 CHAPTER 1. INTRODUCTION

engineering students in learning the complex field of material modelling and experimen­

tation. For instance, the tool could facilitate students gaining a deep understanding of the

differences between various materials by allowing them to perform many virtual experi­

ments with a wide variety of materials. This thesis presents such a tool, in the form of two

programs: MatGen and MatCalc. Together these programs provide a generic extensible

virtual laboratory for material testing and modelling.

The rest of this chapter is divided into several sections. The next section provides back­

ground information on material testing. A section on material modelling follows. There­

after the benefits of a virtual laboratory are discussed. To realize these benefits the tech­

niques of generative programming are utilized, so an overview of this field is provided in

the next section. The final section discusses the purpose and scope of the thesis and the

tool that was developed.

1.1 Material Testing

When testing materials, the results rely not only on the boundary conditions for the test,

but also on the loading and deformation history of the test specimen. For example, if a

steel rod is permanently stretched the internal structure of the steel rod has been changed.

This internal change will impact how the rod reacts to future loads or deformations. Tests

performed in a laboratory require elaborate equipment including a test apparatus and a test

specimen in a known state. An example material test apparatus is shown in Figure 1.1.

There are two types of tests: load controlled and displacement controlled. In the first

type, a load or force is applied to the test specimen and the resulting deformation or strain

is measured. This is called a load controlled experiment because one is controlling the

amount of force that the specimen experiences. As an example, an experiment might in­

volve applying a known force or sequence of forces, to a lead cylinder and observing how

the cylinder deforms over time. Contrary to load controlled experiments, displacement

controlled experiments apply a sequence of deformations to the test specimen and measure

John McCutchan

1.1. MATERIALTESTING 3

Figure 1.1: Material testing apparatus (Roell, 2007)

John McCutchan

4 CHAPTER 1. INTRODUCTION

the internal force or stress over time.

Within both load and displacement control experiments there is a variety of bound­

ary conditions that control how and where the load or displacement is applied to the test

specimen. The simplest is the uniaxial extension or compression test. In this test the test

specimen is held fixed at one end and the free end is pulled or pushed along the test speci­

men axis that is aligned between the two ends. Some example test specimens that are tested

in engineering practices include metal or plastic rods, concrete cylinders and soil samples.

Soil samples are typically tested using a triaxial test. In the triaxial test the soil is placed

within a cylindrical membrane and a confining pressure is applied, which is intended to

approximate the confining pressure the soil would experience in situ. The specimen then

has a load applied in the same direction as the length of the cylinder. While the loading is

applied the deformation history is measured.

1.2 Material Modelling

Material models provide a relationship between the stress (load) and the strain (deforma­

tion). These models are a mathematical approximation of real world material behaviour.

There exist many different models for various material behaviours. This thesis is mainly in­

terested in elastic, viscous and plastic material behaviour and combinations of these three

behaviours. In this section the differences between elastic, viscous and plastic material

behaviours will be presented along with common models of each. The models will be pre­

sented using a common experiment, the uniaxial extension of a rod, as shown in Figure 1.2.

The test specimen is a rectangular box with the original dimensions of L 0 x W0 x H0• A

force F is applied to the free end of the specimen so that it deforms to the new dimensions

of L x W x H. This experiment is lD and thus allows illustration of the important points,

without the need to introduce unnecessary details. Before describing the three material

behaviours, a brief introduction to the definition of stress and strain will be presented.

John McCutchan

1.2. MATERIAL MODELLING 5

y

Figure 1.2: Test specimen undergoing uniaxial extension test

1.2.1 Stress and Strain

Consider a uniaxial extension experiment, shown in Figure 1.2. Stress is defined as the

force (F) divided by the current (deformed) cross-sectional area (A = W H). Stress is

denoted by a.

(1.1)
F

(J' =-
A

A distinction should be made between true stress and engineering stress. The above

equation is for true stress, but a commonly used simplification is engineering stress (aE)

on the other hand, references the original undeformed configuration, as follows:

E F
(1.2) a = Ao

where A0 = W0H0 is the original cross-sectional area of the rod before loading. The true

stress definition takes into account that deformations will occur under loading and thus

change the area that the force is applied to. In a typical uniaxial extension experiment

deformation will lead to a significant decrease in the cross-sectional area of the member;

this phenomenon is known as "neck-in."

John McCutchan

6 CHAPTER 1. INTRODUCTION

Strain, which is used as a dimensionless measure of deformation, is denoted by E. It is

easier to define engineering strain before true strain, because of the latter's relative com­

plexity. Engineering strain, denoted here by EE is defined as the change in the length (~l)

of the rod over the original length (La). (i.e. relative change in length.)

(1.3) €E = ~:

Unlike engineering strain, true strain takes into account the history of length changes

not just La. The true strain is defined by first considering a small strain increment (dE),

which is defined as follows:

dL
(1.4) d€ = y

where dL is the current increment in the length and Lis the current rod length. By summing

all strain increments over the course of a given deformation the true strain is defined by the

following equation:

(1.5) € = ~Lo+~L dL = ln (La+ ~L) =In(~)
Lo L La La

where L in the last equation is the final length of the test specimen.

For very small deformations, which are the most common in practice, the approxima­

tion of engineering stress and strain are essentially equivalent to the true values and thus

remain physically meaningful and useful for most engineering purposes. For a more de­

tailed discussion on stress and strain see Beer and Johnston Jr. (1985).

1.2.2 Elasticity

Elastic materials are materials that deform when loaded and return to their original config­

uration after the load is removed. Elastic materials can be modelled as springs that follow

John McCutchan

1.2. MATERIAL MODELLING 7

E

Figure 1.3: Typical elastic stress vs. strain graphs E 1 > E2 > E3

Hooke's law. The stress in an elastic material is linearly related to the strain of the material,

as follows:

(1.6) ()" = EE

where E is known as Young's modulus. It is easy to see the connection with the spring

equation. F = kx. An elastic model is generally only accurate for small strains.

A graph of stress vs. strain for an elastic material with three different values of E can

be seen in Figure 1.3.

1.2.3 Viscosity

Viscosity describes the stress that develops in a material to resist a given rate of deforma­

tion. Viscosity is typically associated with fluids. A material with high viscosity such as

honey, resists a higher rate of deformation than a material with a low viscosity such as

water. The stress of a viscous material depends on the rate of strain, i., and the coefficient

John McCutchan

8 CHAPTER 1. INTRODUCTION

a
ayl~-------------------1
ay2 2

3

E

Figure 1.4: Typical plastic stress vs. strain graphs showing: (1) perfectly plastic, (2) elastic

perfectly plastic and (3) strain hardening

of viscosity, 'fJ, as follows:

(1.7) CJ = 2'f/€

1.2.4 Plasticity

Unlike elastic materials, when a plastic material is loaded it will deform permanently.

Elastoplastic materials begins deforming elastically until the material yields, after which

the deformation is permanent. Materials which can undergo large plastic deformations

without fracturing are described as ductile. In contrast, materials which fracture suddenly,

such as concrete, are called brittle materials. Some example plots of stress vs. strain for

plastic materials can be seen in Figure 1.4. Plastic deformation begins once the stresses

(CJ) have reach the yield point, this can be seen in Figure 1.4. Perfectly plastic materials

yield immediately and elastoplastic materials first exhibit elastic behaviour and then after

yielding, begin to behave plasticly. Strain hardening is the phenomenon of the yield stress

getting larger as the material undergoes strain.

John McCutchan

1.2. MATERIAL MODELLING 9

----A3

E

Figure 1.5: Typical viscoplastic stress vs. strain graphs where the relative relaxation times

are ordered >..1 < >..2 < >..3 (constant strain rate test.)

1.2.5 Viscoplasticity

Commonly, materials have behaviour that is a combination of elastic, viscous and plastic

material behaviours. These types of materials are labelled viscoplastic materials. These

materials include metals, soils, and molten polymers. The Maxwell model for viscoelastic

material can also describe viscoplastic materials. Maxwell's model can be thought of as a

viscoplastic damper connected in series with a purely elastic spring (Shown in Figure 1.6.)

A plot of a stress vs. strain for a viscoplastic material can be seen in Figure 1.5. The plot

includes three different relaxation times. Relaxation time is the measure of how quickly

the elastic stress relaxes. Low values of>.. correspond to the viscous behaviour discussed

in Section 1.2.3. In Figure 1.5 the smallest relaxation time (>..1) corresponds with a viscous

response under the constant rate of strain uniaxial extension experiment.

John McCutchan

10 CHAPTER 1. INTRODUCTION

Figure 1.6: Spring and damper connected in series (Radi, 1998)

1.3 Advantages of a Virtual Laboratory

Virtual laboratories are available in a wide variety of fields. For example, ViBE (Subrama­

nian and Marsic, 2001) is a virtual biology laboratory. Additional examples can be found

in a recent literature review of virtual laboratories (Ma and Nickerson, 2006). This review

gives evidence of virtual laboratories existing in such diverse fields as electrical engineer­

ing, telecommunications, and environmental sciences to name just a few. These virtual

laboratories are targeted not just at researchers but at students as well. Yaron et al. (2005)

discuss a virtual chemistry laboratory designed to aid students learning chemistry and to

assist their instructors in presenting the subject.

As in other fields, a virtual laboratory for material testing can provide many advan­

tages. Most of these benefits can be realized by providing a general framework where new

experiments and material behaviour models can be easily added.

A virtual material testing laboratory provides an ideal environment for developing an

understanding of a given material model. Testing models under a wide variety of situations

becomes trivial. Although real experiments are still required to find the parameters for

a given material, the virtual experiments provide a means for an in depth exploration of

John McCutchan

1.3. ADVANTAGES OF A VIRTUAL LABORATORY 11

material models. Typically experiments consist of a set of boundary conditions placed

on the test specimen. In a real laboratory these boundary conditions cannot be enforced

perfectly. Fortunately, this is not the case in a virtual laboratory. Also, potentially unwanted

natural phenomena such as friction and gravity do not interfere in a virtual laboratory. As

well, inevitable natural imperfections present in real test specimens cease to be a concern

in a virtual laboratory. Therefore, a virtual material testing laboratory can help researchers

gain insight into the parameters derived from real laboratory experiments.

A virtual laboratory can be a real boon for researchers modelling materials. Researchers

can easily add new material behaviour models to the system and immediately perform ex­

periments on their new models. Comparing their new models to previous models provides

insight into which model is best in a particular situation.

Students studying the material sciences can also benefit from a virtual laboratory. The

opportunity to easily perform experiments on a wide variety of material models, as they

study the models, without requiring them to use laboratory equipment, will aid the student

in understanding how different materials react under certain conditions. VizCore (Hashash

et al., 2002), is an existing tool which uses visualization techniques to help students evaluate

material models. VizCore does not offer the ability to develop or add new material models

or experiments to the system.

Virlab (Smith and Gao, 2005; Gao, 2004) was an earlier attempt at providing a virtual

laboratory for material testing, but it too was limited to a set of hard coded material be­

haviours and experiments. To extend Virlab with a new material behaviour an expert in

material sciences is required to perform complex mathematical derivations and then write

source code implementing the new material behaviour. Virlab failed to offer the kind of

framework necessary to truly see the benefits of a virtual material testing laboratory. Vir­

lab has no mechanism for adding new experiments independent of the material model. To

overcome this limitation, a virtual laboratory should make the experiments programmable.

Removing the need for a material sciences expert to add new material behaviour models to

the system is not as simple as adding programmable experiments. Generating a program

John McCutchan

12 CHAPTER 1. INTRODUCTION

based on a high level description of the material model is one way of meeting this need.

An earlier attempt using a generative approach can be found in Arnold and Tan (1989)

where symbolic derivation of portions of the material model were performed with a LISP

program. The program has only one function that is to symbolically differentiate parts of

the material model. By combining a virtual laboratory with a programmable experiment

system and using generative programming to make adding new material behaviour mod­

els easy, a virtual material testing laboratory can provide many benefits to experimenters,

researchers, and students.

1.4 Generative Programming

Generative programming is the practice of having one program write the source code for

another program. Typically the input to the first program is a simple description of the

generated program. As stated in the previous section, one of the negative aspects of Virlab

was the need for a material sciences expert to derive and code any new material behaviour

added to the system. Ideally the new code should be generated from a minimal amount

of user input. However, the problem of generating a new material behaviour model (Sec­

tion 3.1) is not trivial. For example, it requires taking second order gradients of functions

(Section 2.3) and writing source code to evaluate these expressions. The majority of com­

mercial material modelling tools, such as, FEMAP (Engineering, 2007) suffer from the

same limitation as VirLab. In particular, FEMAP and other finite element analysis pro­

grams require a material expert to derive and implement any material models. FEMAP

provides many robust material models and new material models can be added by experts

by deriving and coding the new material behaviour, but it does not provide a way for a non­

expert to add new materials to the system. One solution to this problem is to use generative

programming, which compiles a high level mathematical description of the material model

to a programming language. Generative programming is a solution because it removes

need of the user to perform work that is complex, tedious and error prone. In the generative

John McCutchan

1.5. PURPOSE & SCOPE 13

programming community the high level language that the material model is described in,

is termed a Domain-Specific Language (DSL). A DSL is a language that is tailored for the

problem domain. A literature survey of DSLs and generative programming can be found

in van Deursen et al. (2000). In the case of a virtual material testing laboratory, the DSL is

a language that can express material models so that they can be compiled to another high

level language, and the generated code can be added to the virtual laboratory.

1.5 Purpose & Scope

This thesis presents a virtual material testing laboratory consisting of two programs, Mat­

Calc and MatGen, which together provide a flexible, generic and easy to use virtual material

testing laboratory. MatCalc performs material experiments in 3D on elastic, viscous, and

viscoplastic isothermal material behaviour models. Experiments run by MatCalc are pro­

grammable using the Ruby programming language (Matsumoto, 2007) and allow for both

load and displacement controlled experiments. MatCalc can output the results from mate­

rial experiments to a file or visualize them with a GTK+ (GTK+, 2007) GUI. MatCalc is

written in C++ and can be used as a library in a larger material testing environment.

MatGen is a material behaviour model generator. It performs the duties of compiling a

simple, high level mathematical description of a material behaviour model to a C++ class,

which can then be used in MatCalc. MatGen uses Maple to perform symbolic computation

and generate the C expressions from symbolic mathematical expressions. MatGen is also

written in C++ (and Maple).

This thesis is divided into six chapters. Chapter 2 covers the theoretical physics back­

ground used in MatCalc, including the numerical algorithm used to model the material

tests. Chapter 3 discusses the implementation details of MatGen and MatCalc. Chapter

4 explains how to extend MatCalc with new material behaviours and experiments as well

as how to use MatCalc as a library in a larger material testing program. Following this,

Chapter 5 covers experimental results and explains how the results were verified. Finally,

John McCutchan

14 CHAPTER 1. INTRODUCTION

Chapter 6 presents concluding remarks and future work.

John McCutchan

Chapter 2

Background

This chapter introduces background information that is important in understanding the the­

oretical aspects of a virtual material laboratory. First, the experimental setup is presented.

Secondly, the governing equations of the physics are summarized. Finally, the numerical

algorithm used to simulate the experiments is detailed.

2.1 Experimental Setup

The virtual laboratory conducts simple experiments that have real world analogues in mate­

rials testing. Figure 2.1 shows the idealization of the test specimen that is used for all tests.

The initial configuration of the body is a rectangular brick, whose geometry can be de­

scribed by eight nodes. The specimen will have three degrees of freedom at each node; that

is, at node j the degrees of freedom will be the displacements ui, Vj and Wj, corresponding

to the x, y and z directions, respectively. Using the nodal displacements, the displacement

of any points within the body can be found using the interpolation (or shape) functions:

8

(2.1) u = LNjUj

j=l

15

16

8

(2.2) v = 2:.:.: NjVj

j=l

8

(2.3) w = 2:.:.: NjWj

j=I

CHAPTER2. BACKGROUND

To simplify the mathematics, locations are given using the dimensionless coordinates

r ,s and t. This coordinate system has the origin at the centroid of the test specimen and the

values of the coordinates range -1 to 1. Using the dimensionless coordinate systems, the

shape functions can be summarized as follows (Zienkiewicz et al., 2005):

where r, s and t are the interpolation parameters E [-1, 1]. A matrix N with dimensions 3

x 24 is constructed from the interpolation functions. The matrix N follows:

0 Ns 0 0

(2.5) N = 0 Ns 0

0 0 0 Ns

Equations 2.1, 2.2 and 2.3 can be rewritten in matrix form as the following:

u

(2.6) u = v = N a

w

where a is defined as the following:

(2.7) a = [UI VI WI ... Ug Vg Wg] T

In all experiments the three dimensional displacement field and the internal forces will

be changing over time. The specific types of the experiments are distinguished by the

John McCutchan

2.2. GOVERNING EQUATIONS 17

boundary conditions applied to the brick. These boundary conditions may be modified as

the experiment proceeds. For stability of the test specimen, each test will have the specimen

fixed so that it cannot move in certain directions, or for load controlled experiments the

specimen will be loaded in such a way to restrict movement. For instance, Figure 2.1 shows

a uniaxial tension experiment that fixes node 1, which is at the origin of the coordinate axes,

so that it cannot move. Other locations are potentially free to move in some directions, so

that a resisting force will not develop in the corresponding direction. For instance, for the

uniaxial experiment, node 8 is allowed to move in both the y and z directions, although it

is fixed so that it cannot move in the x direction.

The deformation of the specimen over time depends on the fixity of the nodes of the

brick and on the prescribed displacements or loads. In a displacement controlled exper­

iment certain nodes are required to move by a set amount, whereas for load controlled

experiments known forces are applied to the body. Using various combinations of fixity,

displacement and load control, it is possible to construct tests for uniaxial extension/com­

pression, biaxial extension/compression, multiaxial extension/compression, shear and tri­

axial experiments. Experiments are not restricted to a certain axis, they can be oriented

along any of the coordinate axes. For example, a uniaxial extension test could be done

in the x, y and z directions. Although it only allows linear interpolation, it is possible to

use an 8 noded brick element, since the simple tests to be performed the different stress

and strain values will be constant throughout the element. The strain for linear interpo­

lation is constant, since as shown later, the strain is calculated from the gradients of the

displacements.

2.2 Governing Equations

The notation used in this section and in the remainder of the paper is similar to the notation

often used in finite element analysis (Zienkiewicz et al., 2005). That is, symmetric second

order tensors, such as stress and strain, are represented as vectors and the equilibrium and

John McCutchan

18 CHAPTER2. BACKGROUND

y

z

Figure 2.1: Test specimen

constitutive equations are written in matrix form.

2.2.1 Equilibrium Equation

At every instant in time the test specimen (Figure 2.1) must satisfy the equilibrium equation.

If inertia, self-weight and other body forces are neglected, then the equilibrium equation

can be written as

(2.8) LT 0' = 0

where u is the state of stress, which is a generalization of the 1D concept presented in

Section 1.2.1. LT is the following differential operator:

0 0 0 0 0 0
ox oy oz

(2.9) LT = 0 0 0 0 0 0 oy ox oz

0 0 0 0 0 0
oz oy ox

The state of stress u at a point is summarized using vector notation by six independent

components acting on a small cube (Shown in Figure 2.2) centred at a point as follows:

(2.10) 0' = [O"xx O"yy O"zz O"xy O"yz O"xz] T

John McCutchan

2.2. GOVERNING EQUATIONS 19

X

Figure 2.2: Stress tensor

where the subscripts (x, y, and z) refer to the coordinate axes. The first three stress com­

ponents act normal to the faces of the cube, while the remaining three components are

shearing stresses that act across the faces of the cube. Only six components of stress are

needed because the remaining three: O'yx• O'zy and O'zx are equal to O'xy• O'yz and O'xz respec-

tively (Beer and Johnston Jr., 1985).

2.2.2 Constitutive Equation

To determine the deformation and forces within a test specimen requires using the equilib­

rium equation (Equation 2.8). This equation applies to all bodies regardless of the material

type. However, the equilibrium equation alone does not provide enough information to de­

termine the specimen's new configuration. A material specific equation, called the closure

or constitutive equation, is also needed. For a given material type, the constitutive equation

models the relationship between the current stress field and the thermal and deformation

history of the body. In the current virtual laboratory the body is assumed to be isothermal,

so thermal effects will be neglected. An overview of the theory of constitutive equations

John McCutchan

20 CHAPTER2. BACKGROUND

can be found in Malvern (1969) and Mase (1970).

In general the state of stress depends on the history of deformation, so a measure of

deformation must also be introduced. A commonly used measure is the strain tensor e,

which like stress can be generalized to a multidimensional case from the 1D example in

Section 1.2.1. In vector form the strain tensor is written as

(2.11) g = [Exx cyy Czz "'/xy "'/yz "'/xz]T

where the first three components are normal strains and the last three represent shear strains.

The strain tensor is related to the three-dimensional displacement field u as follows:

u(x,y,z)

(2.12) e = Lu = L v(x, y, z)

w(x,y, z)

where L comes from Equation 2.9.

Many different models for constitutive equations exist. One of the simplest, but still

very useful in engineering applications, is the linear elastic model. In this model the change

in stress !1u does not depend on the entire history of deformation, only on the most recent

change in the elastic strain !1ee:

(2.13) !1u = D !1ee

where D is known as the elastic constitutive matrix (Beer and Johnston Jr., 1985). D

comes from a generalization of Hooke's law. The definition for this matrix is as follows:

1-v v v 0 0 0

v 1-v v 0 0 0

v v 1-v 0 0 0
(2.14) D =X

(1-2v) 0 0 0 2 0 0

0 0 0 0 (1-2v) 0 2

0 0 0 0 0 (1-2v)
2

John McCutchan

2.2. GOVERNING EQUATIONS 21

where X = (I+v)f1_ 2v) with E as Young's Modulus and v as Poisson's ratio.

Another constitutive equation that has proven to be useful in practise is the one that

relates the stress and the rate of deformation. In this case the interest is often in the re­

lationship between the deviatoric stress tensor 8 (s = 0' - [am O"m O"m 0 0 O]T, O"m -

Haxx + O"yy + O"zz)) and the rate ofviscoplastic strain tensor evp

(2.15) gVP =AS

where s gives the direction for the strain and).. provides the magnitude. The strain is

termed viscoplastic because it is rate dependent (viscous) and the deformation is permanent

(plastic).

The goal of the virtual laboratory is to use a constitutive equation that can accommodate

both elastic and viscoplastic effects. One way that these effects are typically combined is

by evoking the additivity postulate:

where ~e is the total strain and ~t is the time step.

Equation 2.16 can be rearranged to solve for ~ee and combined with Equation 2.13 to

obtain the following:

A useful form of Equation 2.15 that allows modelling of a wide variety of material

behaviour is the form proposed by Perzyna (1966):

(2.18) evp =A~~ = "(< rp(F) > ~~

where 'Y is a fluidity parameter, F is the yield function, Q is the viscoplastic potential (also

referred to as the dynamic loading surface) and

(2.19) < rp(F) >= { rp(F) if
0 if

F>O

F~O

John McCutchan

22 CHAPTER2. BACKGROUND

Q 0

Figure 2.3: Yield function and plastic potential

with cp(F) some function of F.

Equation 2.18 is similar to Equation 2.15 in that the viscoplastic strain rate is separated

into a magnitude(>. = 'Y < cp(F) >)and a direction(~). The occurrence of the yield

function (F) in the Perzyna equation allows for the constitutive equation to accommodate

elastic, viscous, viscoplastic and viscoelastic effects. The equation F = 0 defines a surface

in 6 dimensional stress space, which can be visualized by considering the sketch shown

in Figure 2.3. Inside the surface gVP = 0, which means, as shown by Equation 2.17, the

material response will be purely elastic in this case.

When the material has yielded, which occurs when the stress path reaches the yield

surface, as shown in Figure 2.3, the yield surface may change shape. This change in shape

can be modelled as strain hardening (or softening) of the material. The new yield surface

is shown as a dashed line in Figure 2.3. This behaviour is mathematically represented

by having F = F(u, ~). where ~ is termed a hardening parameter. The parameter~

depends On the aCCUmUlated ViSCOplastiC Strain (~ = ~(gVP)). The addition Of~ allOWS

John McCutchan

2.3. NUMERICAL ALGORITHM 23

for expansion or contraction of the yield surface depending on the instantaneous value of

viscoplastic strains.

Figure 2.3 also shows a sketch of the surface Q, where Q is known as the potential

function (Owen and Hinton, 1980). The value of Q depends on the state of stress (Q =

Q(u)). The normal to this plastic potential surface gives the direction of the viscoplastic

strain increment. For many materials Q can be obtained from an isotropic expansion of the

quasistatic yield surface. In this case, the material is said to obey an associative flow rule.

The above description of the constitutive equation shows several generic terms that

need to be concretely specified before one can obtain the equations for a specific material.

Four functions need to be given to describe a specific material: F, Q, 1'1,, and rp. A constant

'Y must also be provided. The power of MatCalc and MatGen comes from postponing the

specification of this information. The numerical algorithm (Section 2.3) used to solve for

the deformation and stresses in the test specimen is derived using the generic forms, so that

specific materials can be added simply by specifying the concrete form.

2.3 Numerical Algorithm

MatCalc uses the finite element method (FEM) to simulate the experiments. This method

was selected because FEM naturally accommodates both displacement and load controlled

boundary conditions. With the same finite element algorithm, all potential material tests

can be simulated; all that changes between experiments is the input describing the boundary

conditions. This means that each step through the experiment will solve for 24 displace­

ment degrees of freedom, which will be stored in the vector a shown in Equation 2. 7.

Details of FEM can be found in Zienkiewicz et al. (2005).

The derivation of the finite element equations for the viscoplastic constitutive equation

follows the approach presented by Stolle (1991). To estimate the displacements for the

(i + l)th time step the residual for that time step (Wi+l) should be approximately zero, as

John McCutchan

24 CHAPTER2. BACKGROUND

shown below:

where ~ is the load vector, V is the volume of the body, B is a matrix defined as B = LN

such that 1:1e = Bai+I· The stress change over the time step may be written as

The value of !:1ui can be found using Equation 2.17, which shows that the change in stress

depends on the rate of viscoplastic straining. Since the numerical algorithm for MatCalc is

intended to be stable, the value used for the viscoplastic strain rate is the value at the end of

the time step. This makes the algorithm fully implicit and thus improves the stability, which

allows MatCalc to handle a large variety of experimental conditions and material types. In

particular, MatCalc will be able to handle constitutive equations with higher gradients in

stress than it could using an explicit algorithm. In the fully implicit version, Equation 2.18

becomes

where .Ai+l is the magnitude of the viscoplastic strain rate at the end of the time step. Using

a truncated Taylor's expansion of Ai+I and mathematical manipulation (Smith, 2001), it is

possible to derive the following linear system of equations that are solved to find the nodal

degrees of freedom (a):

with

(2 24) Dvp = D [1- !:1tC A'aQ (ap)T n] .A'= d.A
.

1 au au ' dF

(2.25) /:1uvp = /:1tC1.AD ~~

(2.26) C1 = [1 +.A' !:1t(He + Hp)t 1

John McCutchan

2.3. NUMERICAL ALGORITHM 25

(
aF)T aQ

(2.27) He= au D(au)

(2.28) H =-aF (ax;)T 8Q
p 8x; aevp au

where I is the identity matrix.

Solving for ai in Equation 2.23 provides a first estimate for the displacements. For

subsequent passes within an equilibrium iteration loop, the finite element equations, which

provide a correction .6.ai for ai, simplify to the usual elastic form (Zienkiewicz et al.,

2005):

The equilibrium iteration loops ceases when the relative changes in displacement be­

come small. This can be defined by the following convergence criterion:

li.6.aiii
(2.30) iiaiii <toler

where liaill represents the Euclidean norm of the vector ai.

After each iteration of solving for the displacements the local stresses and strains are

updated. Error can remain in the stress calculation at this point and the return map algo­

rithm (Zienkiewicz et al., 2005, Pages 103-104) is used to correct the stress value. This

corrected stress value is used in subsequent iterations of solving for a. The return map

algorithm solves the following system of nonlinear equations:

(From Equations 2.21 and 2.22)

(From Equation 2.18) The system of equations can be rewritten as a root finding problem:

aQ
(2.33) f 1(.6.u, A) = D.6.e- .6.u- .6.tAD au = 0

John McCutchan

26

A
(2.34) h(~u, A)= <p(F)-- = 0

'Y

CHAPTER2. BACKGROUND

Newton's method is used to find the root of the above system. This is formulated as follows:

J8x = -F(x)

Where x is the following 7D vector:

F is

(2.35) [fif2] T

J is the Jacobian ofF:

(2.36)

Which expands to:

[

a2Q -I - ~tAD :c2
(2.37) au

!!:!e. (aF)T
dF au

~tDaQ] au

-1
'Y

In which ~:~ has the following structure:

a2Q a2Q a2Q a2Q a2Q a2Q

au:u;Uxx auxxUyy auxxCTzz au.,.,Uxy auxxCTyz 8uxxCTxz
a2g_ a2g_ a2g_ a2Q 82Q a2Q

auyyUxx auyyCTyy auyyUzz auyyCTzy auyyCTyz 8CTyyCTxz

(2.38)

a2Q a2Q a2Q a2Q a2Q a2g_
au.,zCTxx au.,zCTyy au.,zCTzz au.,zCTxy au.,zCTyz 8CTxzCTxz

The convergence criterion is defined as follows:

ll~(~u)ll ~A
(2.39) max(ll~ull , T) ~toler

John McCutchan

2.3. NUMERICAL ALGORITHM 27

The increment in the viscoplastic strain is found using Equation 2.22 and the value of A

determined in the return map algorithm. Similarly, the increment in the stress determined

by the return map algorithm is used. After solving for the displacements for a given time

step the local stresses and strains are updated. Pseudo code for the numerical integration

algorithms can be found in Appendix A.

The equations given above are generic for many different viscoplastic material be­

haviours. F, Q, ,.,_are all used in a generic way. At this point a material modelling expert

would normally work out the various gradients by hand and then proceed to the implemen­

tation. These derivations are potentially time consuming and error prone and they require a

solid understanding of tensors, invariants and vector calculus. The goal of the current work

is to automatically go from the equations to the implementation. In the next Chapter we

will discuss in detail how this goal was accomplished.

John McCutchan

Chapter 3

High Level Design and Implementation

In this chapter the high level design of MatGen and MatCalc are presented. MatGen gen­

erates material models from a description of the material model, which is written using a

DSL. The new material model can be used by the more complex program MatCalc, which

combines together the following: material models, experiments, and numerical integra­

tion methods to simulate simple material experiments. This chapter first presents a high

level introduction to MatGen and MatCalc, followed by a more detailed description of the

implementation of both programs.

3.1 High Level Design of MatGen

MatGen is responsible for automatically generating source code that describes the new ma­

terial model, which can be used by MatCalc. Currently MatGen only outputs source code

implementing the interface expected by MatCalc, but this is not an inherent limitation of

MatGen. The generated interface could easily be modified to match the requirements of

another material model simulation program. A material model is defined by the four func­

tions F, Q, K, and cp but the numerical algorithms that are used to simulate the experiments,

as described in Chapter 2, require derivatives of these functions, such as ~~. So, a useful

material model not only includes the four functions but also all needed expressions which

28

3.2. IDGH LEVEL DESIGN OF MATCALC 29

are derived from the functions given by the user. The first and most important design goal

of MatGen was that the user not be required to compute all of the expressions needed for

a numerical simulation, MatGen should perform this tedious and error prone work for the

user. A language is needed which can represent both the functions and any derived ex­

pressions. A tool is also needed which can compute the needed derivatives. The second

design goal of MatGen was that user would not be required to write a program implement­

ing the material model. This meant that MatGen must output code, such as a C++ class

that provides numerical access methods describing the material model sufficiently for the

numerical integration algorithms. Another compiler is needed which can translate the ma­

terial model into source code form. By using a DSL and providing a compiler which can

go from the definitions of the four functions to working source code MatGen allows novice

material modellers to develop new material models.

3.2 High Level Design of MatCalc

MatCalc is responsible for simulating experiments on material models. MatCalc consists of

four main modules: material behaviour, experiment control, numerical integration and data

table. Each of these modules define an abstract interface that a concrete implementation

must satisfy. Because of the abstract nature of these modules, many different material

models, experiments and numerical integration methods can be used together. The first

module, the material behaviour module, provides concrete details of a material behaviour

model to the numerical integration algorithm. The second module, the experiment control

module, provides a set of constraints on the experimental specimen that the numerical

integration algorithm uses. The third module, the numerical integration module, simulates

the experiments forward in time using the material model and experiment control modules

to provide the necessary details. The final module is responsible for storing the output of

the numerical integration algorithms in the form of a table. Each row in the table stores

the simulation state for a given point in time. Figure 3.1 shows interaction between the

John McCutchan

30 CHAPTER 3. IDGH LEVEL DESIGN AND IMPLEMENTATION

,.
Data Table

Numerical Integrator

j '\.
Experiment Control Material Behaviour MatGen

+ '"
Ruby Maple

Figure 3.1: Module interaction diagram

modules (single headed arrow implies usage, double headed arrow indicates output from

MatGen.) The following subsections will provide more details for each of these modules.

Each module is summarized by giving its secret (Parnas et al., 1984) and then a more

detailed description.

3.2.1 Material Behaviour

Module Secret: Algorithms to assist with computing the material model's state.

Module Discussion: The material behaviour module offers high level access to material

specific terms found in the numerical integration algorithm. The interface was designed

by studying the numerical algorithm found in Section 2.3 and providing accessor functions

to material dependent expressions found therein. For example, the interface includes a

function that provides the numerical integration algorithm with the matrix nvp seen in

Equation 2.24. Similarly, other material model specific equations defined in Section 2.3 are

provided by the material behaviour interface. The main design goal was to make writing

the numerical integration algorithms as easy as possible, so instead of providing access to

low level expressions such as 8
8F the interface was designed to provide very high level u.,.,

John McCutchan

3.2. IDGH LEVEL DESIGN OF MATCALC 31

access to the sub expressions of the numerical algorithm, such as nvp. A consequence

of this decision is that it forces a very tight and fragile coupling between the needs of the

numerical algorithm and the material behaviour module generated by MatGen. However,

because of the generative nature of MatGen, it is relatively easy to add additional methods

to the material behaviour module, in the case that they are needed by a new integration

algorithm.

3.2.2 Experiment Control

Module Secret: Algorithm controlling the current constraints (boundary conditions) placed

on the test specimen.

Module Discussion: This module controls the state of the test specimen during the ex­

periment. Experiments can be load or displacement controlled. As well, the experiment

state is not necessarily static and can vary over time. For example, the test specimen might

be stretched 2 em over the first second and then 4 em for the rest of the experiment. Ex­

periments should provide the ability to control whether or not the test specimen geometry

is updated throughout the experiment. By allowing for geometry updates both the engi­

neering and true stress and strain (Section 1.2.1) can be output. Updating is done by

applying the predicted displacements to the corresponding coordinates. No updating leads

to the engineering values, while updating produces the true values. To be optimally use­

ful, experiments must be programmable. The experiment control interface was designed

in such a way that both displacement and load controlled experiments can be implemented

and the experiments can track time and dynamically modify the experiment's independent

variables.

3.2.3 Data Table

Module Secret: Data structure for storing the state history of the test specimen.

Module Discussion: The data table is a complete history of the state of the test specimen

John McCutchan

32 CHAPTER 3. IDGH LEVEL DESIGN AND IMPLEMENTATION

Time 0' roro ... eroro ...
0.01 0.0136 ... 0.001 ...
0.02 0.0454 ... 0.002 ...
0.03 0.0812 ... 0.003 ...
...
Table 3.1: Example data table

over the course of the experiment. The numerical integration algorithm fills in this table

as the experiment simulation progresses. Each row in the table represents a discrete point

in time and includes columns recording such state data as the stress (u) and strain (e). An

example data table can been seen in Table 3.1. Additionally, the real values assigned to

each constant used by the material model and experiment are stored in the data table.

3.2.4 Numerical Integrator

Module Secret: Algorithm for numerically integrating the experiment forward in time.

Module Discussion: The numerical integration is responsible for simulating the experi­

ment forward in time. It is responsible for the high level simulation control, relying on a

material behaviour model and experiment control model to provide the missing concrete

details. The numerical integration algorithm builds and maintains a data table (described

in Section 3.2.3) describing the history of stress and strain for the experiment specimen.

The numerical integration algorithm module is also an abstract interface; this gives the user

the ability to use custom numerical algorithms. Users typically would want to replace the

numerical algorithm when they know in advance certain characteristics about the material

model or experiment that they can exploit to gain performance or accuracy advantages.

John McCutchan

3.3. IMPLEMENTATION OF MATGEN 33

3.3 Implementation of MatGen

As stated in Section 3.1 a DSL and compiler are needed that together can represent mathe­

matical expressions, perform differentiation on the mathematical expressions, and compile

the expressions into a language used by MatCalc. The DSL accepted by MatGen is defined

in Appendix B. It is a very minimal subset of the language accepted by the Maple com­

puter algebra system. Maple acts as a compiler to perform the symbolic differentiation and

convert from the mathematical expressions into C expressions. Details of the output can be

found in Chapter 4.

MatGen itself is a C++ program that produces a C++ class which defines a material

model. The user provided definitions of F, Q, etc, are defined in the DSL. The needed

mathematical expressions are built inside Maple. Following this the mathematical expres­

sions are converted into C expressions using the Maple "CodeGeneration" function. These

C expressions are inlined into the generated C++ class defining the material model. This

C++ class is then compiled alongside MatCalc and used directly inside MatCalc when sim­

ulating experiments.

3.4 Implementation of MatCalc

In this section, details will be given on the implementation of MatCalc. MatCalc was

designed as a library that can be used by other programs needing material model simulation.

Using this library a simple GUI was developed to run experiments. There was a principle

design rationale for MatCalc, to be as generic as possible by supporting many different

experiments and material models with the same abstract interface. The rest of the section is

divided into subsections covering the implementation of the following high level modules

of MatCalc: Material Behaviour, Experiment Control and Numerical Integrator.

John McCutchan

34 CHAPTER 3. IDGH LEVEL DESIGN AND IMPLEMENTATION

3.4.1 Material Behaviour

Material behaviour model modules are C++ classes that provide the numerical integration

algorithm in MatCalc with concrete details of the material model being simulated. The

interface that these classes expose was derived from the needs of the numerical integration

algorithm defined in Section 2.3. MatGen can generate these C++ classes automatically or

a user could write them manually. The class interface for the material behaviour module is

summarized in Section 4.4.

3.4.2 Experiment Control

As stated earlier, the experiment control interface must be scriptable and capable of imple­

menting both displacement controlled and load controlled experiments. The Ruby scripting

language was chosen as the scripting language to implement experiments because of the

ease with which it can be embedded into an existing C++ program. An instance of the

Ruby interpreter is initialized by MatCalc and MatCalc communicates with an experiment

instance loaded inside the Ruby interpreter. An added benefit of this is that MatCalc does

not need to be recompiled when adding a new experiment. Details of the experiment control

can be found in Chapter 4.

3.4.3 Numerical Integrator

There are three numerical integration algorithms implemented in MatCalc: elastic, vis­

coplastic and the retummap algorithm. The first integrator, elastic, can only handle purely

elastic materials. The second integrator, viscoplastic, can handle viscoplastic materials but

does not correct the stresses back to the yield surface. The final integrator, the retummap,

is derived from the viscoplastic integrator but is fully implicit and it corrects the stresses

back to the yield surface. The numerical integration algorithm used is decided by the user.

A high level description of the viscoplastic and retummap integration algorithms is found

in Section 2.3 and pseudo code of the implementations can be found in Appendix A.

John McCutchan

Chapter 4

Programmer's Manual

This chapter is a manual that covers how to use MatCalc and Matgen, how to add new

experiments to MatCalc, how to add new material models to MatCalc, and how to use

MatCalc as a library in one's own programs.

4.1 Using MatCalc

MatCalc includes a GUI program that allows users to perform experiments, tune exper­

iment parameters, graph experimental data, and save experimental data so that it can be

analyzed later. This section covers using this program, a later section covers using the Mat­

Calc library. A screenshot of MatCalc is shown in Figure 4.1. In it, the user has selected a

uniaxial extension or compression along the X axis as their experiment. The user has also

selected the power law fluid (plfluid) material model. In the right pane the user can fill out

any constant values that the experiment or material model requires. The process of using

MatCalc to execute an experiment consists of the following steps:

1. Select experiment

2. Select material model

3. Fill in constants needed by experiment and material model

35

36

000
Eile Edit ~ew lielp

·Generar

Expertment: UnlaxlaiX

Yield Function= plfluld

Time: 4.3

CHAPTER 4. PROGRAMMER'S MANUAL

Mater ial Calculator

Constant Name Constant Value

v Experiment:

dlsplacement_x 0.001000

v Yield Function:

ElastlcE 30000.000000
Reset Run ElastlcNu

A

0.300000

0.002000

1.000000 m

Stress X vs. Strain X

Figure 4.1: MatCalc screenshot

4. Select how long the experiment should be run for

5. Click the "Run" button

Once the simulation is complete the right pane will be replaced with a table of all

experimental data, some of which can be graphed inside MatCalc. To graph experimental

data, the user selects the type of graph in the lower left of the MatCalc window.

4.2 Using MatGen

MatGen includes a GUI program that allows the user to easily generate new material be­

haviour models based on the input of the functions F, Q, K, <p and the constant I· A

John McCutchan

4.2. USING MATGEN 37

screenshot of MatGen can be seen in Figure 4.2. In the screenshot the user has provided

the name "ViscoElastic" for the material model name, the functions F and Q are both J2

(J2 is a macro which will be discussed below), K is 0.0 and cp is F, the constant gamma is

2~. At the bottom users can add any constants that the expressions defining the functions

rely on. ElasticE (E) and ElasticNu (v) are always defined because they are needed by all

material models. In this example eta (ry) is added. The process of using MatGen to generate

a new material behaviour model consists of the following steps:

1. Provide material behaviour name

2. Provide expressions for F, Q, K, cp, and 1

3. Add any constants that are present in the above expressions

4. Click the "Generate" button

After the material model has been generated, C++ source and header files will be writ­

ten with the file name of the material name followed by "_material." For instance, for

the example shown in Figure 4.2, the file names would be "ViscoElastic_material.cc" and

''ViscoElastic_material.h.''

NOTE: Each function must be written in the DSL defined in Appendix B.

NOTE: You must make sure that all constant names used in function definitions are added

to the list of constants or else the generated code will fail to compile.

Each function F,Q, etc receives different function arguments. Care must be taken that

variables are used only when available. Variables available to each function are listed in the

following tables: Table 4.1, Table 4.2, Table 4.3, Table 4.4 for F, Q, K and cp, respectively.

Usage of variables not included in a functions list can cause the generated code to fail to

compile.

John McCutchan

38 CHAPTER 4. PROGRAMMER'S MANUAL

0 Yield Function Generator

Elle l::l.elp

General

Class Name: lvtscoEiastlc
Function (F): I,...J2 _______ _

Function (Q): IJ2

Function (1() : ,...lo-.0-------

Functlon (PhiF): IF ;...._--====== Constant (gamma.>j (1 /(2*eta))

Legend

ox
ay

oz
Oxy

0 xz
oyz

Constants

Constant:J

slgmax
stgmay
slgmaz
slgmaxy
stgmaxz
slgmayz

Constant Name

Elastic£

ElastlcNu

eta

Generate)

~
I

Figure 4.2: MatGen screenshot

John McCutchan

4.2. USING MATGEN 39

Input Name Input Description

SigmaXX tJxx

SigmaYY tJyy

SigmaZZ tJzz

SigmaXY tJxy

SigmaYZ tJyz

SigmaXZ tJxz

Kappa /'i,

Table 4.1: Variables available to function F

Input Name Input Description

SigmaXX tJxx

SigmaYY tJyy

SigmaZZ tJzz

SigmaXY tJxy

SigmaYZ tJyz

SigmaXZ tJxz

Table 4.2: Variables available to function Q

Input Name Input Description

Epsilon VPXX E:vp
XX

Epsilon VPYY E:vp
yy

Epsilon VPZZ E:vp
zz

Epsilon VPXY E:vp
xy

Epsilon VPYZ E:vp
yz

Epsilon VPXZ E:vp
xz

Table 4.3: Variables available to function Kappa (K,)

John McCutchan

40 CHAPTER 4. PROGRAMMER'S MANUAL

Input Name Input Description

F F

Table 4.4: Variables available to function Phi {cp)

To simplify the notation, the DSL for MatGen also includes many macros, which get

expanded into expressions that rely on the simulation variables. The current macros are

summarized in Table 4.5. Again, care must be taken not to use a macro that includes

a variable that is not available to the function being defined. The included macros are

ones that have are used heavily in the field of continuum mechanics and are offered as a

convenience as it is common for writing on the subject to make use of them. Table 4.5 is

written using Maple syntax, the macro definitions in conventional mathematical notation

typically used in the domain can be found in Section 5.4.1. In addition, each function

has all of the user provided constants available as well. The C++ class interface that is

generated by MatGen is given in detail in Section 4.5.

4.3 Adding an Experiment to MatCalc

This section discusses what must be done to add a new experiment to MatCalc. Since ex­

periments in MatCalc are implemented by Ruby scripts adding an experiment consists of

developing a Ruby class. The experiment class provides a way for the numerical integration

algorithm to query which degrees of freedom are fixed and which are free, the prescribed

displacements assigned to each node and the loads at each node. The numerical integra­

tion algorithm also calls the "setup" function in the experiment class immediately before

beginning an experiment. At each discrete time point during the run of the simulation, the

function "tick" is called. Experiment classes must implement the following interface:

initialize: The initialize function is the constructor that all Ruby classes must imple­

ment.

John McCutchan

4.3. ADDING AN EXPERIMENT TO MATCALC 41

Macro Name Expansion

Sxx (SigmaXX- (l/3)*(SigmaXX + SigmaYY + SigmaZZ))

Syy (SigmaYY- (113)*(SigmaXX + SigmaYY + SigmaZZ))

Szz (SigmaZZ- (l/3)*(SigmaXX + SigmaYY + SigmaZZ))

Sxy (Sigma.XY)

Syz (SigmaYZ)

Sxz (Sigma.XZ)

Sm (113)*(SigmaXX + SigmaYY + SigmaZZ)

12 (112)*(Sxx"2 + Syy"2 + Szz"2 + 2 * (Sxy"2 + Sxz"2 + Syz"2))

J3 SigmaXX * SigmaYY * SigmaZZ- SigmaXX * SigmaYZ"2 + 2*Sig-

ma.XY *SigmaYZ *Sigma.XZ- Sigma.XY"2 * SigmaZZ- SigmaYY *

Sigma.XZ"2

q (3 * 12)"112)

EVPxx (Epsilon VPXX - (l/3)*(Epsilon VPXX + Epsilon VPYY + Epsilon-

VPZZ))

EVPyy (EpsilonVPYY - (1/3)*(EpsilonVPXX + EpsilonVPYY + Epsilon-

VPZZ))

EVPzz (Epsilon VPZZ - (1/3)*(Epsilon VPXX + Epsilon VPYY + Epsilon-

VPZZ))

EVPxy (Epsilon VPXY)

EVPyz (Epsilon VPYZ)

EVPxz (Epsilon VPXZ)

J2EVP (112) * (EVPxx"2 + EVPyy"2 + EVPzz"2 + 2 * (EVPxy"2 + EVPxz"2 +

EVPyz"2))

EqVP ((4/3) * J2EVP)"l/2)

Table 4.5: Macros available to material model functions

John McCutchan

42 CHAPTER 4. PROGRAMMER'S MANUAL

- setup (dataset): The setup method is called once right before the experiment is to

begin. This method takes a single argument pointing to the dataset (Section 3.2.3)

that will be used in the experiment about to be run. It has no return value.

tick(datset, dt, ct): The tick method is called once at the beginning of each discrete

time step during the simulation. The tick is used to facilitate experiments dynam­

ically modifying their state based on the amount of time that has passed since the

beginning of the experiment. This method takes three arguments: An instance of the

experiment dataset, the change in time and the current elapsed time of the experi­

ment. It has no return value.

geLconstraints (dataset, dt): The get_constraints method is called whenever the nu­

merical integration algorithm needs to check which nodal degree of freedom is free

or constrained. A constrained nodal degree of freedom implies that the displacement

value obtained from the get_displacements method must be used in the right hand

side of Equation 2.23. A 24D vector containing boolean values must be returned.

True is interpreted as constrained.

geLdisplacements (dataset, dt): The geLdisplacements method is called whenever

the numerical integration algorithm needs the nodal displacements of the constrained

degrees of freedom. It takes two arguments: An instance of the experiment dataset

and the change in time. A 24D vector must be returned with the displacement con­

straints that are applied to each nodal degree of freedom. In the case of a purely

force controlled experiment the zero vector can be returned because the prescribed

displacements are not used. Entries in this vector are used as the right hand side of

Equation 2.23.

get_forces (dataset): The get_forces method is called whenever the numerical inte­

gration algorithm needs the nodal force loads. It takes a single argument consisting

of an instance of the experiment dataset. A 24D vector must be returned with the

force load that is applied to each nodal degree of freedom. In the case of a purely

John McCutchan

4.3. ADDING AN EXPERIMENT TO MATCALC 43

displacement controlled experiment the zero vector must be returned so that the force

vector used by the numerical integration algorithm is zero.

geLconstants: The geLconstants method is called whenever there is a need for the

list of constant names that this experiment requires. The return value is an array

containing strings naming each required constant. The values assigned to the con­

stants are stored as a mapping between the names returned from this function and the

values assigned to them in the data table. The names are used for the GUI and for

consistency checking.

update_geometry (dataset): The update_geometry method returns true or false con­

trolling whether or not the numerical integration algorithm should update the test

specimen geometry at the end of each time step. When the numerical integrator up­

dates the test specimen geometry it is computing the true stress and strain values

because it is taking into consideration the current configuration of the test specimen

and not the original.

These methods define an interface that allows a wide variety of experiments to be im­

plemented. Including displacement controlled, load controlled, or a combination of the

two. Experiments can change their state over the course of time and control whether or

not the experiment subject geometry is updated. Using the Ruby programming language

allows experiments to be as complex as the user desires. An extreme example would be for

the virtual experiment to communicate with a real experiment and attempt to mimic the real

test specimen state. Example experiments include uniaxial extensions and compressions.

Many concrete examples can be found in the source code for MatCalc. As an example, the

uniaxial extension experiment follows:

class UniaxialX

def initialize

@Nodel = 0 # @NodeX is shorthand for referencing

@Node2 = 3 # a specific degree of freedom

John McCutchan

44 CHAPTER 4. PROGRAMMER'S MANUAL

@Node3 = 6

@Node4 = 9

@NodeS = 12

@Node6 = 15

@Node7 = 18

@NodeS = 21

@Xaxis = 0

@Yaxis = 1

@Zaxis = 2

end

def setup (ds)

end

def tick (ds , dt ' ct)

end

def geLdi s p 1 ac em en ts (ds, dt)

xyz = MVector. new 24

dx = ds. g eLcons tan t ("dis placemenLx")

for i in 0 .. 23

xyz[i] = 0.0;

end

xyz [@Node2 + @Xaxis] = dx * dt

xyz [@Node3 + @Xaxis] = dx * dt

xyz [@Node6 + @Xaxis] = dx * dt

xyz [@Node7 + @Xaxis] = dx * dt

return xyz

end

def geLconstraints (ds, dt)

constraints = Array .new(24)

for i in 0 .. 23

constraints [i] = true;

John McCutchan

4.3. ADDING AN EXPERIMENT TO MATCALC

end

end

#Node N3,N4,N7,N8 can move in the y

constraints [@Node3 + @Yaxis] = false

constraints [@Node4 + @Yaxis] = false

constraints [@Node7 + @Yaxis] = false

constraints [@Node8 + @Yaxis] = false

Node N5,N6,N7,N8 can move in the z
constraints [@Node5 + @Zaxis] = false

constraints [@Node6 + @Zaxis] = false

constraints [@Node? + @Zaxis] = false

constraints [@Node8 + @Zaxis] = false

return constraints

end

def geLforces (ds)

xyz = MV ector. new 24

for in 0 .. 23

xyz [i] = 0. 0;

end

return xyz

end

def geLconstants

constants = Array .new;

constants .push("displacemenLx")

return constants

end

def update_geometry (ds)

return false

end

John McCutchan

45

direction

direction

46 CHAPTER 4. PROGRAMMER'S MANUAL

4.4 Adding a Material Model to MatCalc

All material behaviour classes must be compiled and linked into MatCalc so the process

of adding a new material class is slightly more complex than that of adding an experiment.

Adding a new material class requires working with the build system used by MatCalc. Mat­

Calc uses Automak:e and Autoconf. Commonly referred together as Autotools or the GNU

Build Tools (FSF, 2007). What follows is a very limited set of instructions to add a new

material to the build system. Assuming that one has name_material.h and name_material.cc,

the following steps should be taken:

Step 1) Add your material class files to the build system:

Add name_material.h and name_material.cc to MATERIAL_CLASSES variable

in the source Mak:efile.am file

Step 2) Add your material class to the internal list:

In materiaLclassJ.ist.cc increment NUM_MATERIALS

Add the line ' { "name" name_material_generator } ,' to the default material array

4.5 Writing a Material Class by Hand

In some cases the user may want to write a material model class by hand instead of using

MatGen. A material class written by hand can be more efficient and handle some more

complex constitutive equations than MatGen can generate code for. The material class

interface includes the following functions:

- array of string geLconstants()

This function must return a vector of strings naming all the constants that this mate­

rial class needs to function. The names are used for the GUI and consistency checks.

- scalar KappaF (dataset, epsilon VP)

This function must return the scalar value obtained from evaluating the r;, function.

John McCutchan

4.5. WRITING A MATERIAL CLASS BY HAND 47

scalar F (dataset, stress, kappa)

This function must return the scalar value obtained from evaluating the F function.

scalar Q (dataset, stress)

This function must return the scalar value obtained from evaluating the Q function.

- scalar geLgamma (dataset)

This function must return the scalar value of gamma.

scalar PhiF (dataset, F)

This function must return the scalar value obtained from evaluating the cp function.

vector depsilonvp (dataset, dt, F, stress, kappa)

This function must return the vector value obtained from evaluating IJ..c vp. This

vector is defined in Equation 2.15.

vector depsilonvpNL (dataset, dt, F, stress, kappa, lambda)

This function must return the vector value obtained from evaluating !J..cVP. Takes a

numerical version of lambda.

- vector dstressvp (dataset, dt, F, stress, kappa, epsilon VP)

This function must return the vector value obtained from evaluating !J..O' vp. This

vector is defined in Equation 2.25.

vector dstressvpNL (dataset, dt, F, stress, kappa, epsilonVP, lambda)

This function must return the vector value obtained from evaluating !J..O' vp. This

vector is defined in Equation 2.25. Takes a numerical version of lambda.

matrix geLDe (dataset)

This function must return the 6D elastic matrix defined in Equation 2.13.

matrix geLDvp (dataset, dt, F, stress, kappa, epsilon VP)

This function must return the 6D Viscoplastic matrix defined in Equation 2.24.

John McCutchan

48 CHAPTER 4. PROGRAMMER'S MANUAL

Argument Name Type

dataset dataset

epsilonVP m_vector

stress m_vector

kappa scalar

dt scalar

F scalar

lambda scalar

dstress m_vector

dstrain m_vector

Table 4.6: Types of function arguments to material class

- matrix geLRMJ acobian (dataset, dt, F, kappa, stress, lambda, epsilon VP)

This function must return the Jacobian matrix used by the returnmap stress correction

algorithm. This matrix is defined in Equation 2.36.

vector geLRM__F (dataset, dt, F, stress, dstrain, dstress, lambda)

This function must return the F vector used by the returnmap stress correction algo­

rithm. This vector is defined in Equation 2.35.

The above interface was derived from the numerical integration algorithm presented in

Section 2.3. It does not provide accessor functions for low level derivatives of the input

functions such as 8
8F ; instead it provides high level access which makes implementing the u.,.,

numerical algorithm easier. The functions which have the postfix "NL'' (numerical lambda)

use a numerical version of the variable A provided by the numerical integration algorithm

instead of the equation A = 'Y < cp(F) >. This is needed for the Return Map integration

algorithm. The types of the function arguments are given in Table 4.6.

John McCutchan

4.6. WRITING A MATCALC BASED DRIVER PROGRAM 49

4.6 Writing a MatCalc Based Driver Program

MatCalc was designed as a library to be used through a driver program. Below is a minimal

driver program which illustrates how easy it is to incorporate into a larger program.

1 #include "brick_element. h"

2 #include "returnmap_in tegrator. h"

3 #include "dataset .h"

4 #include "experimenLlist .h"

5 #include "materiaLclass_list .h"

6

7 static rna teri aLe lass _list* mel = NUlL;

8 static experimenLlist* el =NUlL;

9

10 int

11 main (int argc, char ** argv)

12 {

13 mel =new materiaLclass_list ();

14 e 1 = new e x p e ri men L 1 i s t () ;

15 brick_element element;

16 m_ vector xyz = geLbrick_elemenLxyz (1. 0, 0. 25, 0. 25);

17 dataset r;

18 r. add_constant("ElasticE", 0.26);

19 r. add_constant("ElasticNu", 0.30);

20 experimenLrunner* experiment= el->geLinstance ("Experiment");

21 materiaLclass* material = mcl->geLinstance ("Material");

22 returnmap_integrator rmi;

23 rmi. integrate (r, xyz, material , element, experiment, time);

24 }

For a program using the MatCalc library to function usefully it needs a dataset, test

specimen, test specimen geometry, integrator, material class and an experiment. Lines 1

John McCutchan

50 CHAPTER 4. PROGRAMMER'S MANUAL

through 5 include the necessary header files: brick element, return map integration algo­

rithm, data table, list of experiments and list of material behaviour modules, respectively.

Lines 7 and 8 declare the lists of material classes and experiments and they are initialized

on lines 13 and 14. Lines 15 and 16 setup the test specimen and the test specimen ge­

ometry. Line 17 initializes the dataset and lines 18 and 19 assign values for the constants

"ElasticE" and "ElasticNu." An experiment runner (a class which handles communication

between ruby and C++) is initialized in line 20 by asking the experiment list for the ex­

periment named: "Experiment." Similarly the material model class is initialized in line

21 by asking the material model list for the material named: "Material." The numerical

integration algorithm is initialized in line 22 and it is run in line 23. As the sample driver

program illustrates it is straight forward to get an instance for most of these objects. Only

the material class and experiment require more work than simply defining some variables.

The recommended approach to obtain a material and experiment instance is to use their

respective lists. There are separate material class and experiment lists and you can get an

instance of any registered material class or experiment simply by passing the text name to

the geLinstance function. It is important to note that constants are stored in the dataset

prior to running the experiment (see lines 18 and 19).

John McCutchan

Chapter 5

Verification and Case Studies

This chapter will discuss the various methods used to verify both MatGen and MatCalc. As

well, it will discuss case studies developed with MatCalc. Multiple methods of verification

are needed to determine if MatGen and MatCalc are correct and performing adequately.

MatGen has symbolic expressions that need to be verified as well as the generated code,

which needs to be tested. MatCalc must be tested in a variety of ways as well. The low

level modules of MatCalc are tested and a variety of case studies are developed to show the

versatility as well as the accuracy of MatCalc. Sample experiments must be tested within

MatCalc to verify that the numerical algorithm is functioning correctly.

This chapter will discuss all of these verification methods and case studies in the coming

sections. First, verification of the symbolic mathematical expressions that MatGen gener­

ates will be discussed. Second, verifying the generated code at a unit level will be detailed.

Third, low level unit testing and regression testing of MatCalc will be presented. Finally,

case studies, which show the large variety of material models, that MatCalc can handle will

be summarized. The case studies will also demonstrate the accuracy of MatCalc when this

is possible, that is, when the true solution is known or when a separate program is available

whose output can be compared to the output of MatCalc.

51

52 CHAPTER 5. VERIFICATION AND CASE STUDIES

5.1 Verifying Symbolic Expressions

All of the symbolic processing is hidden from the user, thus we must be certain that it

is functioning correctly. If the symbolic results are incorrect the side effects will cascade

through MatGen and into MatCalc. The verification was performed by comparing symbolic

output from Maple to hand derived versions of the same expressions. When deriving the

expressions by hand many short cuts were taken by using the chain rule and invariants in

place of the fully expanded expression. In many cases Maple was able to simplify the final

expressions to be identical to the hand derived expressions. An example where this is the

case is the derivation of the He term for a sample material model, as shown in Appendix C.

In these cases it was trivial to verify that the symbolic computation was correct. In other

cases Maple was unable to simplify the expressions to be identical. In these cases the

expressions were found to be equivalent by verifying that they numerically agreed.

5.2 Verifying Numerical Results at a Low Level

MatGen generates C++ code that evaluates to the numeric result of the symbolic expres­

sions. The generated source code needs to be tested for correctness. This testing was done

by first developing a unit test fixture for the C++ unit testing framework (Robbins, 2007).

This test fixture compares the numerical output of each method of two different material

model classes. The list of methods checked can be found in Section 4.5. All the mathe-

matical expressions needed to implement a material model were derived by hand and then

a C++ class was written, also by hand. MatGen generated a class for the same material

model. The material model defined in Appendix C was used. The relative difference was

calculated using the following formula:

. . II Generated- ByHandll
(5.1) RelatweDifference = !IByHandll

Where II · II is the euclidean norm. All methods tested had a relative difference of

John McCutchan

5.3. UNIT AND REGRESSION TESTING 53

w-6 or less. These values are small enough that they can be considered irrelevant in most

contexts.

5.3 Unit and Regression Testing

As stated in the previous section, a unit test fixture was developed so that two different

material model class implementations can be compared with each other. This same test

fixture allows for regression testing to be performed between successive versions of Mat­

Gen. The version of the material model class generated by MatGen version N-1 can be

compared to the material model class generated by MatGen version N. This was used as a

safety check during the development of MatGen. The comparison is performed with ran­

dom input. Also, a unit test fixture was developed for performing unit tests and regression

testing on the low level matrix and vector classes. All public methods exposed by both

of those classes are tested (a distinct test case exists for each method) and compared with

"true" solutions found using MatLab.

5.4 Verifying Case Studies

As a final form of verification, case studies were developed as a means to both verify

that the numerical algorithm was working correctly and to demonstrate the large range of

material models that MatGen and MatCalc can handle. Some of the case studies in the

following subsections have known closed form solutions. For those case studies it was

found that the numerical algorithm used in MatCalc gave correct results. For those cases

studies where there is no known closed form solution two testing methodologies were used.

First, in some case studies the shape of the stress vs. strain graph is well known and this

shape can be used as a qualitative measure of correctness. Second, for remainder of the case

studies the output of a separate program, Nonlso, developed as part of Smith (2001), was

compared to MatCalc's output. Noniso is only capable of simulating one specific material

John McCutchan

54 CHAPTER 5. VERIFICATION AND CASE STUDIES

Name Value Meaning Units

L 0.100 Length of brick along x axis m

H 0.050 Length of brick along y axis m

w 0.050 Length of brick along z axis m

v 0.300 Poisson's Ratio -
D. X 0.001 Displacement per second along X axis !!!

8

ixx 0.01 Constant Strain Rate !
8

Table 5.1: Common material properties

model and does so in quasi 3 dimensions, but under the correct setup, that is both Nonlso

and MatCalc are simulating a uniaxial extension, the results from Nonlso and MatCalc are

comparable. Parallel testing was performed between MatCalc and Nonlso (more detail can

be found in Section 5.4.2).

5.4.1 Case Studies

A uniaxial extension along the x axis was performed for the following material models:

elastic, viscoelastic, power-law viscosity and strain hardening. A relaxation experiment

was also performed. All experiments were at a constant rate of strain, except for the relax­

ation test, which started at a constant rate of strain, but then held the specimen at its final

length without allowing further straining.

For each of the proceeding case studies the material definitions that are given as input to

MatGen, as well as the values assigned for the needed constants, are defined. For each case

study the graph obtained from MatCalc is given as well as a discussion of the results in more

detail. All the case studies share some material constants, dimensions and experimental

parameters. These common values are listed in Table 5.1.

John McCutchan

5.4. VERIFYING CASE STUDIES 55

260

200

0.004 0.005 0.006 0.007 0.008 0.009 0.01
Stmln-X(mhn)

Figure 5.1: Linear Elasticity E 1 > E2 > E3

5.4.1.1 Elastic Case Study

Figure 5.1 shows an elastic material model with three different values of E. So that yielding

will not occur, in the elastic case the yield stress is set very high; that is, F will remain

below zero for the entire test. The material constants used are E1 = 30000.0Pa, E2 =

20000.0Pa, and E 3 = lOOOO.OPa. The slope of stress vs. strain graph can be used to

verify the results. The true slope should be equal to E1, E2 and E3 and in all three cases

the relative error was zero; that is, there was perfect agreement with the true slope. This

perfect agreement is not surprising considering that the material behaviour is strictly linear.

5.4.1.2 Viscoelastic Case Study

Figure 5.2 shows viscoelastic material behaviour, with three different relaxation times(>.).

Relaxation time is the measure of how quickly the elastic stress relaxes. The smaller the

relaxation time the closer the material is to a true viscous fluid. The formula for >. is defined

as:
). = 2.07] = 6000.0

E E

The relaxation times used are >.1 = 0.2, >.2 = 2.0, and).3 = 20.0. To determine several Ai

values we assumed 7J as 3000.0 P a · s and then varied E.

John McCutchan

56 CHAPTER 5. VERIFICATION AND CASE STUDIES

oo.-~~=---~--~--~--~R~,-,
112-m-··--

50

········-·····················---···-------·-·····---···------
0.005 0.01 0.016 0.02 0.025 0.03 0.035

stmln-X(mhn)

Figure 5.2: Viscoelasticity .X1 < .X2 < .X3

The material model definition provided to MatGen is as follows:

cp=F

1
'Y = 2'f/

Where J2 is defined in Equation C.l. As the function F is greater than zero for any

stress, this material model yields immediately upon loading.

The true solution in this experiment is given by the following formula:

The relative error for the three experiments .X1, .X2 and .X3 was 0.53%, 0.23% and 0.04%

respectively.

A relaxation time experiment was also performed on this material model, where the

uniaxial extension test was performed for one second and then held still for the remainder

of the experiment time. The results can be seen in Figure 5.3. The relaxation time used

John McCutchan

5.4. VERIFYING CASE STUDIES 57

Figure 5.3: Relaxation time experiment

in this experiment was >. = 0.2. A true solution for the amount of time for the stresses to

relax is known and the relative error was found to be 1.68%.

5.4.1.3 Power-Law Viscosity Case Study

Figure 5.4 shows a Power-law viscous material behaviour with three different powers (m)

applied. The material definition provided to MatGen is as follows:

F = vfij;

Q = vfi];

r.p = pm

The material constants are as follows: A = 0.0002, m 1 = 1.4 (shear thinning), m 2 =

1.0 (Newtonian viscosity), and m3 = 0. 75 (shear thickening.) A true solution for the

asymptote of this material is known. The relative error between the experimental asymptote

and the true solution was computed. The relative error measured for the three cases (mi)

were 0.00% 0.00% 1.53% repsectively.

John McCutchan

58 CHAPTER 5. VERIFICATION AND CASE STUDIES

~--~--~--~--~--~~-~~
ntZ-

-·--·-···-···-········-.r:rG..-·····

///_----·--
18tl

160

""

!/

=t--
·~.--~ .. ~~~.= .. ,--~~~.--~n~~~n~m~~ •. ro~~n~

StraJn.X(m'm)

Figure 5.4: Power-law viscosity m 1 > m2 > m 3

5.4.2 Case Study Comparing Nonlso and MatCalc

This section consists of case studies that were run using both Nonlso and MatCalc. The

results are presented in the form of graphs where the results from both Nonlso and MatCalc

are graphed on the same axis. The material model includes a phenomenon known as strain

hardening. Strain hardening is where as the viscoplastic strain accumulates the material

becomes harder to deform. There is an analogue of strain softening in which the mate­

rial becomes easier to deform as the viscoplastic strain accumulates. The material model

definition given as input to MatGen follows:

1 ;;:;-;-!!! n-1
F =nAn v 3J2 n K--:;;:-

Q = y'3.h

cp=F

'Y = 1.0

Where cgP = (~J~vp) (~) (effective viscoplastic strain) and

1 J.evp = - (cevp2 + cevp2 + cevp2 + 2 (cevp2 + cevp2 + cevp2))
2 2 xx yy zz xy xz yz

John McCutchan

5.4. VERIFYING CASE STUDIES 59

Name Value Meaning Units

L 0.100 Length of brick along x axis m

H 0.500 Length of brick along y axis m

w 0.100 Length of brick along z axis m

l/ 0.300 Poisson's Ratio -

D. X 0.01 Displacement per second along X axis m
8

Exx 10.0 Constant Strain Rate 1
8

Table 5.2: Common material properties for Nonlso vs. MatCalc case study

Also,

The constant values for all experiments can be found Table 5.2.

Four different experiment runs are given. Two of the four runs do not update the test

specimen geometry (Section 3.2.2), and thus do not measure true stress and strain. The

other two do update the test specimen geometry, and thus do measure true stress and strain.

The value of n is also changed. The lower value of n was experimentally determined to

be 0.6. The graphs are given in Figures: 5.5 and 5.6. The results from Nonlso and Mat­

Calc are coincident in the graphs. A difference measurement is given for each experiment

by measuring the relative difference of the stress values over the entire experiment. The

relative difference was computed with the following formula:

John McCutchan

60 CHAPTER 5. VERIFICATION AND CASE STUDIES

Description Relative Difference (%)

n = 1.5 No Geometry Update 0.254

n = 0.6 No Geometry Update 0.295

n = 1.5 Geometry Update 0.302

n = 0.6 Geometry Update 0.285

Table 5.3: Relative difference for Nonlso vs. MatCalc case study

0.12

{
] 0.08

....

0.1 0.2 D.3 0.4
Slra!n-X(mlm)

Figure 5.5: Nonlso vs. MatCalc

R l
. E _ IIMatCalc- Non/soli 10001 e atwe rror- IINon/soll * lO

where, again, II · II is the euclidean norm. The relative errors are given in Table 5.3.

The relative difference between Nonlso and MatCalc is a result of two important differ­

ences between the programs. First, Nonlso is implemented in 2.5D, not 3D like MatCalc.

Second, they use two different numerical algorithms.

John McCutchan

5.4. VERIFYING CASE STUDIES 61

0.07

l 0.06

l 0.05

0.04

0.03

0.02

0.01

0.2 025 0.3 0.35 0.4 0.45 0.5

strafn..X{mlm)

Figure 5.6: Nonlso vs. MatCalc (Geometry Update)

John McCutchan

Chapter 6

Conclusion

This chapter is divided into two sections. The first section will summarize the work found in

this thesis as well as highlight key contributions therein. The second section will introduce

some potential items for future work.

6.1 Contributions

This thesis has presented two programs: MatGen and MatCalc. The programs together

offer a highly flexible, generic, scriptable virtual material testing laboratory that can be

employed by users who have a second year engineering mechanics background as opposed

to graduate level computational mechanics. This thesis has presented a generative approach

to virtual material testing. As stated, being able to model the response of different materials

under various loading histories is of critical importance to scientists and engineers. Scien­

tists and engineers rely on having an accurate understanding of how materials behave for

their work. A virtual laboratory, MatCalc, was developed to aid researchers in understand­

ing material behaviour. MatCalc allows researchers to quickly perform simple experiments

on a virtualized test specimen for a variety of material models. MatCalc can also be of ben­

efit to students studying material sciences by allowing them to perform experiments outside

of a real laboratory. This freedom can quicken the rate at which students develop an un-

62

6.1. CONTRIBUTIONS 63

derstanding of material behaviours. The numerical integration algorithms implemented in

MatCalc support the following material behaviours: elastic, viscous, shear-thinning, shear­

thickening, strain hardening, viscoelastic, viscoplastic and plastic. MatCalc also includes a

programmable experiment system, experiments are written in the Ruby programming lan­

guage and allow for experiments that can dynamically modify their state and can be both

load and displacement controlled. Although there are examples of virtual material testing

laboratories such as VizCore (Hashash et al., 2002) and VirLab (Smith and Gao, 2005), they

do not allow for new material models to be added to the system without reprogramming it.

To remove this limitation the numerical integration algorithms are written abstractly and

make use of an API to access concrete material model details when needed.

Even with the abstract material model, a material sciences expert is needed to derive

key expressions for the numerical simulation and write a program implementing these ex­

pressions. To alleviate this, MatGen was created, where MatGen is a tool that automatically

generates C++ source code for new material behaviours from simple material definitions

provided in a subset of Maple syntax. MatGen uses Maple to perform the symbolic com­

putation necessary and to generate C code from the symbolic expressions. MatCalc and

MatGen together provide an easy to use and flexible virtual material testing laboratory.

This is accomplished by using the power of symbolic computation and bridging a gap be­

tween three different programming languages (C++, Ruby and Maple). The flexibility and

accuracy of MatGen and MatCalc are demonstrated with the various case studies presented

in this thesis. A refined list of contributions that came from the development of these two

programs follows:

Generic material model abstract class specification - The abstract class interface that

MatCalc uses can simulate a large variety of material behaviours such as: elastic, vis­

cous, plastic, strain hardening, strain softening, shear thinning and shear thickening.

This interface can be used by other programs in the field.

Material model compiler- MatGen is a material model compiler which takes advan­

tage of Maple to perform both the symbolic differentiation of, and code generation

John McCutchan

64 CHAPTER 6. CONCLUSION

for the generic material model class.

Implementation of generic numerical integration algorithms - Generally numerical

algorithms implemented in this field are written for a particular material model. It

was necessary to develop the algorithm in terms of pseudo code that makes use of

the generic material model to simulate a wide variety of material models. These

algorithms can cover a large family of material models with no changes.

A domain specific language (DSL) capable of defining the variety of material models

- This DSL is sufficient to define all of the material models present in this thesis and

many more.

A generic framework for experiments via the finite element method - The use of a

single 8-noded finite element can use the same algorithm to accommodate all load

and displacement controlled experiments when the stress and the strain are constant

throughout the specimen.

A scriptable experiment control interface - This interface is capable of implementing

experiments that can dynamically modify their state as well as supporting both load

and displacement controlled experiments.

6.2 Future Work

There are many avenues for future work. Some of these will be discussed in the following

list.

Inconsistency checking Before an experiment is executed it can be checked for consis­

tency with the rules that govern the experiments. For example, if a nodal degree of

freedom is constrained to a particular displacement the load for the degree of free­

dom should be zero and vice versa. This would require adding an error checker with

domain specific knowledge to the experiment control code.

John McCutchan

6.2. FUTURE WORK 65

Investigate other numerical algorithms Other numerical algorithms should be investi­

gated and implemented alongside the three that are currently included in MatCalc.

Certain numerical algorithms can be advantageous for certain material models. It

should also be determined which models work best with which integration algo­

rithms.

Model fitting The material model could be fit to experimental data to help determine ma­

terial model parameters that match the experimental data.

Generate code for low level access to material model The numerical algorithms access

the material model at a high level. This makes the implementation of numerical al­

gorithms trivial but has some potentially negative side effects, which were discussed

in Section 3.2.1. The code generator could be extended to include more fine grained

access to the material model.

Generate code targeting other material simulation engines MatGen could be modified

so that it could generate code that targets material simulation engines other than

MatCalc. These simulation programs could be for general purpose engineering com­

putation and not just for simple laboratory experiments.

Temperature controlled experiments Experiments where the temperature is varied could

be added allowing for non isothermal material models.

Visualization and animation The visualization and animation of the test specimen in­

cluding its geometry, stresses, and strains could be added. Also, visualization and

animation of the numerical algorithm itself, including correcting stresses back to the

yield surface would be interesting.

New classes of material models Additional classes of material models could be added,

such as integral constitutive equations, differential constitutive equations and hyper­

elastic constitutive equations.

John McCutchan

66 CHAPTER 6. CONCLUSION

Develop DSL for simple experiments Develop a DSL which can describe simple experi­

ments. This DSL could be compiled into a Ruby script implementing the experiment.

Enhance symbolic differentation with Maple Currently symbolic differentation with Maple

is done in a brute-force fashion. More subtle and complex methods could be used.

Improve GUI usability Improve the usability of the GUI programs by performing usabil­

ity studies.

John McCutchan

Appendix A

Numerical Algorithm Pseudo Code

This appendix includes pseudo code for both the viscoplastic and return map numerical

integration algorithms discussed in Section 2.3.

A.l Visoplastic Integration Algorithm

This section shows detailed pseudo code for the viscoplastic algorithm.

ct = 0

De = material.geLDe()

R=O

0'=0

e=O

eVP =0

while ct + dt :::; T do

ct = ct + .D..t

O'TR = 0

.6.e = 0

.6.0' = 0

.D..a = 0

67

68 APPENDIX A. NUMERICAL ALGORITHM PSEUDO CODE

displacements = 0

constraints = 0

experiment.geLdisplacements(displacements)

experiment.geLconstraints(constraints)

K = f(BTDB)dV

internalF = j(BT u)dV

rhs = R- internalF

constrain K

constrain rhs using displacements

~a= K\rhs

~e =B~a

~u = D~e

uTR=u+~u

""= material.KappaF(ds, gVP)

F = material.F(ds, uTR, "")

ifF > 0.0 then

u 0 = u

~a=O

error =0

converged = false

implicitV P = true

repeat

if implicitV P then

displacements = 0

constraints = 0

Dvp = material.geLDvp(ds, dt, F, u, "")

John McCutchan

A.l. VISOPLASTIC INTEGRATION ALGORITHM

experiment.geLdisplacements(displacements)

experiment.get_constraints(constraints)

K = f(BT DvpB)dV

internalF = J(BT u)dV

!::J.uVP = material.dstressvp(F, u, ,.,;)

FVP = j(BT!::J.uVP)dV

rhs = R- internalF + FV P

constrain K

constrain r hs

implicitV P = false

else

displacements = 0

constraints = 0

experiment.get_constraints(constraints)

K = f(BT DeB)dV

internalF = J(BT u)dV

rhs = R - internalF

constrain K

constrain r hs with zero displacements

end if

d.Aa = K/rhs
ld.6.al error = l.6.al

converged=error < E

!:l.a = !:l.a + d!:l.a

!:l.e = Bda

>..=I* cp(F)

!:l.e v P = material. depsilon V P (F, u, kappa, >..)

!:l.u = D(!:l.e- !::J.eVP)

John McCutchan

69

70 APPENDIX A. NUMERICAL ALGORITHM PSEUDO CODE

~gVP = material.depsilonvp(F, u, kappa)

e = co+~c

gVP = c6p + ~gVP

u = uo + ~u
uTR=u

K = material.KappaF(ds,cvp)

F = material.F(ds, u, K)

until converged

else

c = c+ ~c

U = CI'TR

end if

end while

A.2 Return Map Integration Algorithm

This section shows detailed pseudo code for the return map algorithm.

ct = 0

De= material.geLDe()

R=O

u=O

c=O

gVP = 0

while ct + dt :::; T do

ct = ct + dt

CTTR = 0

~c=O

~u=O

John McCutchan

A.2. RETURN MAP INTEGRATION ALGORITHM

~a=O

displacements = 0

constraints = 0

experiment.geLdisplacements(displacements)

experiment.geLconstraints(constraints)

K = f(BTDB)dV

internalF = J(BT u)dV

rhs = R- internalF

constrain K

constrain r hs using displacements

~a= K\rhs

~e=B~a

~u=D~e

uTR = u+~u

K = material.KappaF(ds, gVP)

F = material.F(ds, uTR, K)

ifF > 0.0 then

Uo=U

~a=O

error= 0

converged = false

implicitV P = true

repeat

if implicitV P then

displacements = 0

constraints = 0

John McCutchan

71

72 APPENDIX A. NUMERICAL ALGORITHM PSEUDO CODE

Dvp = material.getJJvp(ds, dt, F, u, K)

experiment.geLdisplacements(displacements)

experiment.geLconstraints(constraints)

K = j(BTDvpB)dV

internalF = J (BTu)dV

,tj,uVP = material.dstressvp(F, u, K)

FV P = J(BT ,tj,uVP)dV

rhs = R- internalF + FV P

constrain K

constrain r hs

implicitV P = false

else

displacements = 0

constraints = 0

experiment.geLconstraints(constraints)

K = j(BT DeB)dV

internalF = J (BTu)dV

rhs = R - internalF

constrain K

constrain rhs with zero displacements

end if

d,{j,a= Kfrhs
ld.6.al

error = l.6.al

converged= error< E

,{j,a= ,{j,a+d,{j,a

,(j,e=B,{j,a

rm_converged = false

rm_error = 0.0

John McCutchan

A.2. RETURN MAP INTEGRATION ALGORITHM

>.. = 'Y * rp(F)

f::j.gVP = material.depsilonvp(F, u, kappa,>..)

1::1.u = D(l::1.e- f::1.eVP)

e =eo+ 1::1.e

f::1.eVP = material.depsilonvp(F, u, kappa,>..)

gVP = e6p + f::j.gVP

u = uo + 1::1.u

K = material.KappaF(ds, evP)

F = material.F(ds, sigma, K)

repeat

RMF = material.geLRM _F(dt, F, u, 1::1.e, >..)

RMJ = material.get_RM_Jacobian(dt, F, kappa, u, >..)

RMx=RMJ/(-RMF)

8u = RMx1 .. 6

8>.. = RMx7

1::1.u = 1::1.u + 8u

).. =).. + 8)..

f::1.eVP = material.depsilonvp(F, u, kappa,>..)

gVP = e6P + f::j.gVP

u = uo + 1::1.u

K = material.KappaF(ds, evP)

F = material.F(ds, u, K)

_MAX(18ul a>..) rmerrar - IAul ' T

Tfficonverged = rm_error < E

until rmconverged

until converged

else

e = e+l::1.e

John McCutchan

73

74

0' = O'TR

end if

end while

APPENDIX A. NUMERICAL ALGORITHM PSEUDO CODE

John McCutchan

Appendix B

MatGenDSL

This appendix details the DSL that MatGen accepts as user input when defining the func­

tions F, Q, y;,, cp and the constant 'Y· The DSL is presented in Backus-Naur form, extended

with some regular expression operations. Some of the simulation variables and simulation

variable macros are only available when used in a function that accepts them as arguments.

For example, F takes as arguments the u vector and the value of y;, so the expression given

for F should only expect the u and y;, derived variables and the user provided constants to

have meaningful values. For a more detailed explanation of which variables are available

to each function see Chapter 4. Each of the four functions is defined by a single expression.

(expression)-+(number) I

((expression)) I

(expression)"(expression) I

(expression)* (expression) I

(expression)/ (expression) I

(expression)+ (expression) I

(expression)- (expression) I

- (expression) I

sin((expression)) I arcsin((expression)) Ieos((expression)) I arccos((expression)) I

In((expression))!log((expression))I

75

76 APPENDIX B. MATGEN DSL

(simulation-variable) I (simulation-variable-macros) I (user-defined-constants)

(number)-+[(sign)] (digit)+[(decimal-point) (digit)+]

(sign)---++1-

(decimal-point)---+.

(string)---+ (character)+

(character)--+a ••• ziA ..• Z

(digit)--+Oili2I314ISI6I718I9

(simulation-variable)---+ (simulation-variable-F) I (simulation-variable-Q) I (simulation­

variable-Kappa) I (simulation-variable-Phi)

(simulation-variable-F)--+Kappal(simulation-variable-stress)l(simulation-variable­

stress-macros)

(simulation-variable-Q)---+ (simulation-variable-stress) I (simulation-variable-stress-

macros)

(simulation-variable-Kappa)--+(simulation-variable-vp-strain)j(simulation-variable­

vp-strain-macros)

(simulation-variable-Phi)--+F

(simulation-variable-stress)--+SigmaXXjSigmaYYjSigmaZZjSigmaXYjSigmaYZISigmaXZ

(simulation-variable-stress-macros)--+SxxiSyyjSzzjSxyjSyzjSxzjSmjJ2IJ3lq

(simulation-variable-vp-strain)---+ Epsilon VPXXIEpsilon VPYYjEpsilon VPZZjEpsilon VPXYI

Epsilon VPYZjEpsilonVPXZ

(simulation-variable-vp-strain-macros)--+EVPxxiEVPyyjEVPzziEVPxyiEVPyzjEVPxzjJ2EVPIE

(user -defined-constants)---+ (string)

Operators follow the following precedence: (), ", *• j, +. -.
The extended BNF syntax includes: [...] which denotes an optional portion of expression

and + which denotes one or more repetitions. Bold signifies a terminal token.

John McCutchan

Appendix C

Sample Derivation of He for a Material

Model

This appendix serves two purposes. The first is to show how much manual labour is in­

volved in deriving the necessary mathematical expressions needed to implement a numer­

ical integration algorithm for a single material model. The second is to show that the final

expression derived by an expert in the field using a variety of short cuts is (at least in some

cases) the same expression that MatGen produces. To demonstrate both of these points

the expression for He (See Equation 2.27) which is specific to the following material is

derived:

F=q

Q=q

<p=F

~=0

1
"(=-

2r]

Where q = ..f3J;, (effective stress), J2 = ~SijBij (second invariant of the deviatoric

stress tensor) and sij is (J'ij - ~(J'kk(J'ij (deviatoric stress tensor). The subscripts here follow

77

78 APPENDIX C. SAMPLE DERIVATION OF HE FOR A MATERIAL MODEL

the Einstein summation convention (Einsten, 1916). After some manipulation the expanded

form of J2 looks as follows:

The expanded form of sij are as follows:

1
(C.3) Syy = (ayy- 3(0"xx + O"yy + O"zz))

1
(C.4) Szz = (azz- 3(0"xx + O"yy + O"zz))

(C.5) Bxy = (axy)

(C.6) Sxz = (axz)

(C.7) Syz = (ayz)

In the later steps it will prove useful to recognize that, as the above shows,

(C.8) Bkk = Bxx + Syy + Szz = 0

The expression for the abstract version of He is (~~)T D(~). F and Q are part of the

material model provided above and Dis defined fully in Equation 2.13. Because F and Q

and thus ~~ and ~~ are identical, it is only necessary to derive ~~.

The first step in the derivation of He is to derive~~· Using the index form, the expres­

sion looks as follows:

8F 8q
aaij aaij

Using the chain rule the expression becomes:

John McCutchan

g~~ can be found by again using the chain rule:

--=----

Where 8ij is the Kronecker delta (8ij = 1 if i = j and 0 otherwise)

The term 8ip8jp is equivelant to 8ii (because in this case i = j = p) so,

But Skk = (sxx + Syy + Szz) = 0; therefore

Therefore,
aq v'3 3
-- = --Sij = -Sij
aO"ij 2vf]; 2q

Which written in vector form is,

aq 3 [
au = 2q Sxx Syy 8 zz 2sxy 2Syz 2Sxz] T

Therefore,

aQ aF 3 []r au = au = 2q Sxx Syy Szz 2Sxy 2Syz 2Sxz

79

Now that the subterms of He have been derived He can be constructed. To simplify the

derivation, first let

aQ
vee= D au

John McCutchan

80 APPENDIX C. SAMPLE DERIVATION OF HE FOR A MATERIAL MODEL

Performing the multiplication,

3E
vee= 2dq

(1- TJ)Bxx + 'f/Syy + 'f/Szz

'f/Sxx + (1- TJ)Syy + 'f/Szz

'f/Sxx + 'f/Syy + (1- TJ)Szz

(1 - 2ry)sxy

(1- 2ry)syz

(1 - 2ry)sxz

d = (1 + v)(1- 2v)

vee can be simplified using the following equations:

Szz = -(sxx + Syy)

Bxx = -(Syy + Szz)

Syy = -(sxx + Szz)

Substituting the above equations into vee yields:

3E [
vee= 2(1 + v)q Bxx

But the shear modulus, G = 2c1!v)
Therefore,

Vee= 3~ [Sxx Syy Szz Sxy Syz Sxz]T

(aF)T Now, He = au vee, therefore:

3 3G []T [He= 2q q Bxx Syy Szz 2Sxy 2Syz 2Sxz Sxx Syy Szz Sxy Syz Sxz] T

Which after performing the dot product becomes,

John McCutchan

3 3G (2 2 2 (2 2 2)) He=--- Sxx + Syy + Szz + 2 Sxy + Syz + Sxz 2q q

Given the definition of J2 in Equation C.l, He can be further simplified to,

He= 3J2 3G
q q

Using J2 = .f, He can be simplified further.

Finally,

H _ 3q2 3G
e- 3 q2

He=3G

81

As stated at the beginning of the appendix, the second purpose of this appendix is

to demonstrate that MatGen is also capable of deriving the same expression for He, but

without requiring the expert knowledge nor the necessary short cuts and short hand notation

that went into the above derivation. When MatGen is given a completely expanded form of

the above F and Q functions, it does indeed derive the same final expression for He.

John McCutchan

Bibliography

S. Arnold and H. Tan. Symbolic derivation of potential based constitutive equations. Com­

putational Mechanics, pages 237-246, 1989.

F. P. Beer and E. R. Johnston Jr. Mechanics of Materials. McGraw-Hill Higher Education,

si metric edition, 1985.

A. Einsten. The foundation of the general theory of relativity. Annalen der Physik, 1916.

TEAM Engineering. Femap, 2007.

FSF. Gnu Build System, 2007. URL www. gnu. org/software/autoconf/.

H. Gao. A framework for a virtual material testing laboratory. Master's thesis, McMaster

University, 2004.

GTK+. Gtk+ widget toolkit, 2007. URL http: I /www. gtk. org.

Y.M.A. Hashash, D. Wotring, J.I.-C. Yao, J.-S. Lee, and Q. Fu. Visual framework for devel­

opment and use of constitutive models. international journal for numerical and analytical

methods in geomechanics. 2002.

J. Ma and J. V. Nickerson. Hands-on, simulated, and remote laboratories: A compar­

ative literature review. ACM Comput. Surv., 38(3):7, 2006. ISSN 0360-0300. doi:

http://doi.acm.org/1 0.1145/1132960.1132961.

L. E. Malvern. Introduction to the Mechanics of Continuous Medium. Prentice Hall, 1969.

BffiLIOGRAPHY 83

G. E. Mase. Schaum's Outline of Theory and Problems of Continuum Mechanics. McGraw­

Hill Publishing Company, 1970.

Yukihiro Matsumoto. Ruby programming language, 2007. URL

http://www.ruby-lang.org.

D. R. J. Owen and E. Hinton. Finite Elements in Plasticity: Theory and Practice. 1980.

D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex systems.

In International Conference on Software Engineering, pages 408-419, 1984.

P. Perzyna. Fundamental problems in viscoplasticity. Advances in Applied Mechanics,

pages 243-377, 1966.

M. Radi. Image of spring and damper in series, 1998. URL

http://www.iue.tuwien.ac.at/phd/radi/diss.html.

S. Robbins. Cpp unit testing framework, 2007.

Z. Roell. Image of material testing apparatus, 2007. URL

http://www.zwick.co.uk.

W. S. Smith. Simulating the Cast Film Process Using an Updated Lagrangian Finite Ele­

ment Algorithm. PhD thesis, McMaster University, Hamilton, ON, Canada, 2001. URL

http://www.cas.mcmaster.ca/ smiths/PhDabstract.html.

W. S. Smith and H. Gao. A virtual laboratory for material testing. InN. Callaos, R. H.

Chavez, S. Pranger, R. Raut, and Z. He, editors, WMSCI 2005, The 9th World Multi­

Conference on Systemics, Cybernetics and Informatics, Volume VI, pages 273-278, Or­

lando, Florida, 2005.

D. F. E. Stolle. An interpretation of initial stress and strain methods and numerical stability.

International Journal for Numerical and Analytical Methods in Geomechanics, 15:399-

416, 1991.

John McCutchan

84 BffiLIOGRAPHY

R. Subramanian and I. Marsic. Vibe: virtual biology experiments. In WWW

'OJ: Proceedings of the lOth international conference on World Wide Web, pages

316-325, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-348-0. doi:

http://doi.acm.org/1 0.1145/371920.372076.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated bibliog­

raphy. ACM SIGPLAN Notice, 35(6):26-36, June 2000.

D. Yaron, K. L. Evans, and M. Karabinos. Virtual laboratories and scenes to support chem­

istry instruction. In About Invention and Impact: Building Excellence in Undergraduate

STEM (Science, Technology, Engineering, and Mathematics) Education, 2005.

0. C. Zienkiewicz, R. L Taylor, and J. Z. Zhu. The Finite Element Method Its Basis and

Fundamentals. Elsevier Butterworth-Heinemann, 6th edition, 2005.

John McCutchan

2705 27

