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Abstract 

This thesis presents a virtual material testing laboratory that is highly generic and flexi­

ble in terms of both the material behaviour and experiments that it supports. Generic and 

flexible material behaviour was accomplished via symbolic computation, generative pro­

gramming techniques and an abstraction layer that effectively hides the material model 

specific portions of the numerical algorithms. To specify a given member of the family of 

material models a domain specific language (DSL) was created. A compiler, which uses 

the Maple computer algebra system, transforms the DSL into an abstract material class. 

Three different numerical algorithms, including a return map algorithm, are presented in 

the thesis to illustrate the advantage of the abstract material model. To accomplish the goal 

of generic and flexible experiments the finite element method was employed and an API 

that supports both load and displacement controlled experiments, as well as the capability 

for the experiments to modify their state over time, was developed. The virtual laboratory 

provides a family of material models with the following behaviours: elastic, viscous, shear­

thinning, shear-thickening, strain hardening, viscoelastic, viscoplastic and plastic. As well, 

the developed framework, by using the Ruby programming language, provides support for 

a wide variety of programmable experiments, including: uniaxial, biaxial, multiaxial ex­

tension and compression, shear and triaxial. 
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Chapter 1 

Introduction 

Modelling the response of different materials under various loading histories is of critical 

importance to scientists and engineers. For example, a geotechnical engineer needs to 

model the loading characteristics of soil to accurately predict the settlement of a building. 

Without an accurate model of the soil, serious damage could occur and in extreme cases the 

building may even collapse. As another example, designers of automobiles need to model 

material behaviour so that they can predict how much mechanical energy a vehicle frame 

can absorb during a collision. In this case an accurate material model is vital for passenger 

safety. These are just two examples where understanding the response of materials under 

loading is vital. 

Modelling the response of materials is potentially complex and challenging. The rela­

tionship between the loading and the deformation of a material can rely on multiple non­

linear equations, which are potentially dependent on the entire history of the material's 

deformation and temperature. In addition to the modelling challenge, another challenge 

exists in constructing and performing the physical experiments needed to determine the 

values of the model's parameters. Given the great importance of understanding material 

behaviour, these modelling and experimental challenges need to be overcome. One ap­

proach to overcoming these challenges would be a tool to assist scientists in developing 

new material models. This tool would be even more valuable if it could assist science and 
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2 CHAPTER 1. INTRODUCTION 

engineering students in learning the complex field of material modelling and experimen­

tation. For instance, the tool could facilitate students gaining a deep understanding of the 

differences between various materials by allowing them to perform many virtual experi­

ments with a wide variety of materials. This thesis presents such a tool, in the form of two 

programs: MatGen and MatCalc. Together these programs provide a generic extensible 

virtual laboratory for material testing and modelling. 

The rest of this chapter is divided into several sections. The next section provides back­

ground information on material testing. A section on material modelling follows. There­

after the benefits of a virtual laboratory are discussed. To realize these benefits the tech­

niques of generative programming are utilized, so an overview of this field is provided in 

the next section. The final section discusses the purpose and scope of the thesis and the 

tool that was developed. 

1.1 Material Testing 

When testing materials, the results rely not only on the boundary conditions for the test, 

but also on the loading and deformation history of the test specimen. For example, if a 

steel rod is permanently stretched the internal structure of the steel rod has been changed. 

This internal change will impact how the rod reacts to future loads or deformations. Tests 

performed in a laboratory require elaborate equipment including a test apparatus and a test 

specimen in a known state. An example material test apparatus is shown in Figure 1.1. 

There are two types of tests: load controlled and displacement controlled. In the first 

type, a load or force is applied to the test specimen and the resulting deformation or strain 

is measured. This is called a load controlled experiment because one is controlling the 

amount of force that the specimen experiences. As an example, an experiment might in­

volve applying a known force or sequence of forces, to a lead cylinder and observing how 

the cylinder deforms over time. Contrary to load controlled experiments, displacement 

controlled experiments apply a sequence of deformations to the test specimen and measure 

John McCutchan 



1.1. MATERIALTESTING 3 

Figure 1.1: Material testing apparatus (Roell, 2007) 

John McCutchan 



4 CHAPTER 1. INTRODUCTION 

the internal force or stress over time. 

Within both load and displacement control experiments there is a variety of bound­

ary conditions that control how and where the load or displacement is applied to the test 

specimen. The simplest is the uniaxial extension or compression test. In this test the test 

specimen is held fixed at one end and the free end is pulled or pushed along the test speci­

men axis that is aligned between the two ends. Some example test specimens that are tested 

in engineering practices include metal or plastic rods, concrete cylinders and soil samples. 

Soil samples are typically tested using a triaxial test. In the triaxial test the soil is placed 

within a cylindrical membrane and a confining pressure is applied, which is intended to 

approximate the confining pressure the soil would experience in situ. The specimen then 

has a load applied in the same direction as the length of the cylinder. While the loading is 

applied the deformation history is measured. 

1.2 Material Modelling 

Material models provide a relationship between the stress (load) and the strain ( deforma­

tion). These models are a mathematical approximation of real world material behaviour. 

There exist many different models for various material behaviours. This thesis is mainly in­

terested in elastic, viscous and plastic material behaviour and combinations of these three 

behaviours. In this section the differences between elastic, viscous and plastic material 

behaviours will be presented along with common models of each. The models will be pre­

sented using a common experiment, the uniaxial extension of a rod, as shown in Figure 1.2. 

The test specimen is a rectangular box with the original dimensions of L 0 x W0 x H0• A 

force F is applied to the free end of the specimen so that it deforms to the new dimensions 

of L x W x H. This experiment is lD and thus allows illustration of the important points, 

without the need to introduce unnecessary details. Before describing the three material 

behaviours, a brief introduction to the definition of stress and strain will be presented. 

John McCutchan 



1.2. MATERIAL MODELLING 5 

y 

Figure 1.2: Test specimen undergoing uniaxial extension test 

1.2.1 Stress and Strain 

Consider a uniaxial extension experiment, shown in Figure 1.2. Stress is defined as the 

force (F) divided by the current (deformed) cross-sectional area (A = W H). Stress is 

denoted by a. 

(1.1) 
F 

(J' =-
A 

A distinction should be made between true stress and engineering stress. The above 

equation is for true stress, but a commonly used simplification is engineering stress (aE) 

on the other hand, references the original undeformed configuration, as follows: 

E F 
(1.2) a = Ao 

where A0 = W0H0 is the original cross-sectional area of the rod before loading. The true 

stress definition takes into account that deformations will occur under loading and thus 

change the area that the force is applied to. In a typical uniaxial extension experiment 

deformation will lead to a significant decrease in the cross-sectional area of the member; 

this phenomenon is known as "neck-in." 

John McCutchan 



6 CHAPTER 1. INTRODUCTION 

Strain, which is used as a dimensionless measure of deformation, is denoted by E. It is 

easier to define engineering strain before true strain, because of the latter's relative com­

plexity. Engineering strain, denoted here by EE is defined as the change in the length (~l) 

of the rod over the original length (La). (i.e. relative change in length.) 

(1.3) €E = ~: 

Unlike engineering strain, true strain takes into account the history of length changes 

not just La. The true strain is defined by first considering a small strain increment (dE), 

which is defined as follows: 

dL 
(1.4) d€ = y 

where dL is the current increment in the length and Lis the current rod length. By summing 

all strain increments over the course of a given deformation the true strain is defined by the 

following equation: 

(1.5) € = ~Lo+~L dL = ln (La+ ~L) =In(~) 
Lo L La La 

where L in the last equation is the final length of the test specimen. 

For very small deformations, which are the most common in practice, the approxima­

tion of engineering stress and strain are essentially equivalent to the true values and thus 

remain physically meaningful and useful for most engineering purposes. For a more de­

tailed discussion on stress and strain see Beer and Johnston Jr. (1985). 

1.2.2 Elasticity 

Elastic materials are materials that deform when loaded and return to their original config­

uration after the load is removed. Elastic materials can be modelled as springs that follow 

John McCutchan 
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E 

Figure 1.3: Typical elastic stress vs. strain graphs E 1 > E2 > E3 

Hooke's law. The stress in an elastic material is linearly related to the strain of the material, 

as follows: 

(1.6) ()" = EE 

where E is known as Young's modulus. It is easy to see the connection with the spring 

equation. F = kx. An elastic model is generally only accurate for small strains. 

A graph of stress vs. strain for an elastic material with three different values of E can 

be seen in Figure 1.3. 

1.2.3 Viscosity 

Viscosity describes the stress that develops in a material to resist a given rate of deforma­

tion. Viscosity is typically associated with fluids. A material with high viscosity such as 

honey, resists a higher rate of deformation than a material with a low viscosity such as 

water. The stress of a viscous material depends on the rate of strain, i., and the coefficient 

John McCutchan 



8 CHAPTER 1. INTRODUCTION 

a 
ayl~-------------------1 
ay2 2 

3 

E 

Figure 1.4: Typical plastic stress vs. strain graphs showing: (1) perfectly plastic, (2) elastic 

perfectly plastic and (3) strain hardening 

of viscosity, 'fJ, as follows: 

(1.7) CJ = 2'f/€ 

1.2.4 Plasticity 

Unlike elastic materials, when a plastic material is loaded it will deform permanently. 

Elastoplastic materials begins deforming elastically until the material yields, after which 

the deformation is permanent. Materials which can undergo large plastic deformations 

without fracturing are described as ductile. In contrast, materials which fracture suddenly, 

such as concrete, are called brittle materials. Some example plots of stress vs. strain for 

plastic materials can be seen in Figure 1.4. Plastic deformation begins once the stresses 

(CJ) have reach the yield point, this can be seen in Figure 1.4. Perfectly plastic materials 

yield immediately and elastoplastic materials first exhibit elastic behaviour and then after 

yielding, begin to behave plasticly. Strain hardening is the phenomenon of the yield stress 

getting larger as the material undergoes strain. 

John McCutchan 
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----A3 

E 

Figure 1.5: Typical viscoplastic stress vs. strain graphs where the relative relaxation times 

are ordered >..1 < >..2 < >..3 (constant strain rate test.) 

1.2.5 Viscoplasticity 

Commonly, materials have behaviour that is a combination of elastic, viscous and plastic 

material behaviours. These types of materials are labelled viscoplastic materials. These 

materials include metals, soils, and molten polymers. The Maxwell model for viscoelastic 

material can also describe viscoplastic materials. Maxwell's model can be thought of as a 

viscoplastic damper connected in series with a purely elastic spring (Shown in Figure 1.6.) 

A plot of a stress vs. strain for a viscoplastic material can be seen in Figure 1.5. The plot 

includes three different relaxation times. Relaxation time is the measure of how quickly 

the elastic stress relaxes. Low values of>.. correspond to the viscous behaviour discussed 

in Section 1.2.3. In Figure 1.5 the smallest relaxation time (>..1) corresponds with a viscous 

response under the constant rate of strain uniaxial extension experiment. 

John McCutchan 



10 CHAPTER 1. INTRODUCTION 

Figure 1.6: Spring and damper connected in series (Radi, 1998) 

1.3 Advantages of a Virtual Laboratory 

Virtual laboratories are available in a wide variety of fields. For example, ViBE (Subrama­

nian and Marsic, 2001) is a virtual biology laboratory. Additional examples can be found 

in a recent literature review of virtual laboratories (Ma and Nickerson, 2006). This review 

gives evidence of virtual laboratories existing in such diverse fields as electrical engineer­

ing, telecommunications, and environmental sciences to name just a few. These virtual 

laboratories are targeted not just at researchers but at students as well. Yaron et al. (2005) 

discuss a virtual chemistry laboratory designed to aid students learning chemistry and to 

assist their instructors in presenting the subject. 

As in other fields, a virtual laboratory for material testing can provide many advan­

tages. Most of these benefits can be realized by providing a general framework where new 

experiments and material behaviour models can be easily added. 

A virtual material testing laboratory provides an ideal environment for developing an 

understanding of a given material model. Testing models under a wide variety of situations 

becomes trivial. Although real experiments are still required to find the parameters for 

a given material, the virtual experiments provide a means for an in depth exploration of 

John McCutchan 



1.3. ADVANTAGES OF A VIRTUAL LABORATORY 11 

material models. Typically experiments consist of a set of boundary conditions placed 

on the test specimen. In a real laboratory these boundary conditions cannot be enforced 

perfectly. Fortunately, this is not the case in a virtual laboratory. Also, potentially unwanted 

natural phenomena such as friction and gravity do not interfere in a virtual laboratory. As 

well, inevitable natural imperfections present in real test specimens cease to be a concern 

in a virtual laboratory. Therefore, a virtual material testing laboratory can help researchers 

gain insight into the parameters derived from real laboratory experiments. 

A virtual laboratory can be a real boon for researchers modelling materials. Researchers 

can easily add new material behaviour models to the system and immediately perform ex­

periments on their new models. Comparing their new models to previous models provides 

insight into which model is best in a particular situation. 

Students studying the material sciences can also benefit from a virtual laboratory. The 

opportunity to easily perform experiments on a wide variety of material models, as they 

study the models, without requiring them to use laboratory equipment, will aid the student 

in understanding how different materials react under certain conditions. VizCore (Hashash 

et al., 2002), is an existing tool which uses visualization techniques to help students evaluate 

material models. VizCore does not offer the ability to develop or add new material models 

or experiments to the system. 

Virlab (Smith and Gao, 2005; Gao, 2004) was an earlier attempt at providing a virtual 

laboratory for material testing, but it too was limited to a set of hard coded material be­

haviours and experiments. To extend Virlab with a new material behaviour an expert in 

material sciences is required to perform complex mathematical derivations and then write 

source code implementing the new material behaviour. Virlab failed to offer the kind of 

framework necessary to truly see the benefits of a virtual material testing laboratory. Vir­

lab has no mechanism for adding new experiments independent of the material model. To 

overcome this limitation, a virtual laboratory should make the experiments programmable. 

Removing the need for a material sciences expert to add new material behaviour models to 

the system is not as simple as adding programmable experiments. Generating a program 

John McCutchan 



12 CHAPTER 1. INTRODUCTION 

based on a high level description of the material model is one way of meeting this need. 

An earlier attempt using a generative approach can be found in Arnold and Tan ( 1989) 

where symbolic derivation of portions of the material model were performed with a LISP 

program. The program has only one function that is to symbolically differentiate parts of 

the material model. By combining a virtual laboratory with a programmable experiment 

system and using generative programming to make adding new material behaviour mod­

els easy, a virtual material testing laboratory can provide many benefits to experimenters, 

researchers, and students. 

1.4 Generative Programming 

Generative programming is the practice of having one program write the source code for 

another program. Typically the input to the first program is a simple description of the 

generated program. As stated in the previous section, one of the negative aspects of Virlab 

was the need for a material sciences expert to derive and code any new material behaviour 

added to the system. Ideally the new code should be generated from a minimal amount 

of user input. However, the problem of generating a new material behaviour model (Sec­

tion 3.1) is not trivial. For example, it requires taking second order gradients of functions 

(Section 2.3) and writing source code to evaluate these expressions. The majority of com­

mercial material modelling tools, such as, FEMAP (Engineering, 2007) suffer from the 

same limitation as VirLab. In particular, FEMAP and other finite element analysis pro­

grams require a material expert to derive and implement any material models. FEMAP 

provides many robust material models and new material models can be added by experts 

by deriving and coding the new material behaviour, but it does not provide a way for a non­

expert to add new materials to the system. One solution to this problem is to use generative 

programming, which compiles a high level mathematical description of the material model 

to a programming language. Generative programming is a solution because it removes 

need of the user to perform work that is complex, tedious and error prone. In the generative 

John McCutchan 



1.5. PURPOSE & SCOPE 13 

programming community the high level language that the material model is described in, 

is termed a Domain-Specific Language (DSL). A DSL is a language that is tailored for the 

problem domain. A literature survey of DSLs and generative programming can be found 

in van Deursen et al. (2000). In the case of a virtual material testing laboratory, the DSL is 

a language that can express material models so that they can be compiled to another high 

level language, and the generated code can be added to the virtual laboratory. 

1.5 Purpose & Scope 

This thesis presents a virtual material testing laboratory consisting of two programs, Mat­

Calc and MatGen, which together provide a flexible, generic and easy to use virtual material 

testing laboratory. MatCalc performs material experiments in 3D on elastic, viscous, and 

viscoplastic isothermal material behaviour models. Experiments run by MatCalc are pro­

grammable using the Ruby programming language (Matsumoto, 2007) and allow for both 

load and displacement controlled experiments. MatCalc can output the results from mate­

rial experiments to a file or visualize them with a GTK+ (GTK+, 2007) GUI. MatCalc is 

written in C++ and can be used as a library in a larger material testing environment. 

MatGen is a material behaviour model generator. It performs the duties of compiling a 

simple, high level mathematical description of a material behaviour model to a C++ class, 

which can then be used in MatCalc. MatGen uses Maple to perform symbolic computation 

and generate the C expressions from symbolic mathematical expressions. MatGen is also 

written in C++ (and Maple). 

This thesis is divided into six chapters. Chapter 2 covers the theoretical physics back­

ground used in MatCalc, including the numerical algorithm used to model the material 

tests. Chapter 3 discusses the implementation details of MatGen and MatCalc. Chapter 

4 explains how to extend MatCalc with new material behaviours and experiments as well 

as how to use MatCalc as a library in a larger material testing program. Following this, 

Chapter 5 covers experimental results and explains how the results were verified. Finally, 
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14 CHAPTER 1. INTRODUCTION 

Chapter 6 presents concluding remarks and future work. 

John McCutchan 



Chapter 2 

Background 

This chapter introduces background information that is important in understanding the the­

oretical aspects of a virtual material laboratory. First, the experimental setup is presented. 

Secondly, the governing equations of the physics are summarized. Finally, the numerical 

algorithm used to simulate the experiments is detailed. 

2.1 Experimental Setup 

The virtual laboratory conducts simple experiments that have real world analogues in mate­

rials testing. Figure 2.1 shows the idealization of the test specimen that is used for all tests. 

The initial configuration of the body is a rectangular brick, whose geometry can be de­

scribed by eight nodes. The specimen will have three degrees of freedom at each node; that 

is, at node j the degrees of freedom will be the displacements ui, Vj and Wj, corresponding 

to the x, y and z directions, respectively. Using the nodal displacements, the displacement 

of any points within the body can be found using the interpolation (or shape) functions: 

8 

(2.1) u = LNjUj 

j=l 

15 
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8 

(2.2) v = 2:.:.: NjVj 

j=l 

8 

(2.3) w = 2:.:.: NjWj 

j=I 

CHAPTER2. BACKGROUND 

To simplify the mathematics, locations are given using the dimensionless coordinates 

r ,s and t. This coordinate system has the origin at the centroid of the test specimen and the 

values of the coordinates range -1 to 1. Using the dimensionless coordinate systems, the 

shape functions can be summarized as follows (Zienkiewicz et al., 2005): 

where r, s and t are the interpolation parameters E [ -1, 1]. A matrix N with dimensions 3 

x 24 is constructed from the interpolation functions. The matrix N follows: 

0 Ns 0 0 

(2.5) N = 0 Ns 0 

0 0 0 Ns 

Equations 2.1, 2.2 and 2.3 can be rewritten in matrix form as the following: 

u 

(2.6) u = v = N a 

w 

where a is defined as the following: 

(2.7) a = [ UI VI WI ... Ug Vg Wg ] T 

In all experiments the three dimensional displacement field and the internal forces will 

be changing over time. The specific types of the experiments are distinguished by the 

John McCutchan 



2.2. GOVERNING EQUATIONS 17 

boundary conditions applied to the brick. These boundary conditions may be modified as 

the experiment proceeds. For stability of the test specimen, each test will have the specimen 

fixed so that it cannot move in certain directions, or for load controlled experiments the 

specimen will be loaded in such a way to restrict movement. For instance, Figure 2.1 shows 

a uniaxial tension experiment that fixes node 1, which is at the origin of the coordinate axes, 

so that it cannot move. Other locations are potentially free to move in some directions, so 

that a resisting force will not develop in the corresponding direction. For instance, for the 

uniaxial experiment, node 8 is allowed to move in both the y and z directions, although it 

is fixed so that it cannot move in the x direction. 

The deformation of the specimen over time depends on the fixity of the nodes of the 

brick and on the prescribed displacements or loads. In a displacement controlled exper­

iment certain nodes are required to move by a set amount, whereas for load controlled 

experiments known forces are applied to the body. Using various combinations of fixity, 

displacement and load control, it is possible to construct tests for uniaxial extension/com­

pression, biaxial extension/compression, multiaxial extension/compression, shear and tri­

axial experiments. Experiments are not restricted to a certain axis, they can be oriented 

along any of the coordinate axes. For example, a uniaxial extension test could be done 

in the x, y and z directions. Although it only allows linear interpolation, it is possible to 

use an 8 noded brick element, since the simple tests to be performed the different stress 

and strain values will be constant throughout the element. The strain for linear interpo­

lation is constant, since as shown later, the strain is calculated from the gradients of the 

displacements. 

2.2 Governing Equations 

The notation used in this section and in the remainder of the paper is similar to the notation 

often used in finite element analysis (Zienkiewicz et al., 2005). That is, symmetric second 

order tensors, such as stress and strain, are represented as vectors and the equilibrium and 
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y 

z 

Figure 2.1: Test specimen 

constitutive equations are written in matrix form. 

2.2.1 Equilibrium Equation 

At every instant in time the test specimen (Figure 2.1) must satisfy the equilibrium equation. 

If inertia, self-weight and other body forces are neglected, then the equilibrium equation 

can be written as 

(2.8) LT 0' = 0 

where u is the state of stress, which is a generalization of the 1D concept presented in 

Section 1.2.1. LT is the following differential operator: 

0 0 0 0 0 0 
ox oy oz 

(2.9) LT = 0 0 0 0 0 0 oy ox oz 

0 0 0 0 0 0 
oz oy ox 

The state of stress u at a point is summarized using vector notation by six independent 

components acting on a small cube (Shown in Figure 2.2) centred at a point as follows: 

(2.10) 0' = [ O"xx O"yy O"zz O"xy O"yz O"xz ] T 
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X 

Figure 2.2: Stress tensor 

where the subscripts (x, y, and z) refer to the coordinate axes. The first three stress com­

ponents act normal to the faces of the cube, while the remaining three components are 

shearing stresses that act across the faces of the cube. Only six components of stress are 

needed because the remaining three: O'yx• O'zy and O'zx are equal to O'xy• O'yz and O'xz respec-

tively (Beer and Johnston Jr., 1985). 

2.2.2 Constitutive Equation 

To determine the deformation and forces within a test specimen requires using the equilib­

rium equation (Equation 2.8). This equation applies to all bodies regardless of the material 

type. However, the equilibrium equation alone does not provide enough information to de­

termine the specimen's new configuration. A material specific equation, called the closure 

or constitutive equation, is also needed. For a given material type, the constitutive equation 

models the relationship between the current stress field and the thermal and deformation 

history of the body. In the current virtual laboratory the body is assumed to be isothermal, 

so thermal effects will be neglected. An overview of the theory of constitutive equations 
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can be found in Malvern (1969) and Mase (1970). 

In general the state of stress depends on the history of deformation, so a measure of 

deformation must also be introduced. A commonly used measure is the strain tensor e, 

which like stress can be generalized to a multidimensional case from the 1D example in 

Section 1.2.1. In vector form the strain tensor is written as 

(2.11) g = [ Exx cyy Czz "'/xy "'/yz "'/xz ]T 

where the first three components are normal strains and the last three represent shear strains. 

The strain tensor is related to the three-dimensional displacement field u as follows: 

u(x,y,z) 

(2.12) e = Lu = L v(x, y, z) 

w(x,y, z) 

where L comes from Equation 2.9. 

Many different models for constitutive equations exist. One of the simplest, but still 

very useful in engineering applications, is the linear elastic model. In this model the change 

in stress !1u does not depend on the entire history of deformation, only on the most recent 

change in the elastic strain !1ee: 

(2.13) !1u = D !1ee 

where D is known as the elastic constitutive matrix (Beer and Johnston Jr., 1985). D 

comes from a generalization of Hooke's law. The definition for this matrix is as follows: 

1-v v v 0 0 0 

v 1-v v 0 0 0 

v v 1-v 0 0 0 
(2.14) D =X 

(1-2v) 0 0 0 2 0 0 

0 0 0 0 (1-2v) 0 2 

0 0 0 0 0 (1-2v) 
2 
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where X = (I+v)f1_ 2v) with E as Young's Modulus and v as Poisson's ratio. 

Another constitutive equation that has proven to be useful in practise is the one that 

relates the stress and the rate of deformation. In this case the interest is often in the re­

lationship between the deviatoric stress tensor 8 (s = 0' - [am O"m O"m 0 0 O]T, O"m -

Haxx + O"yy + O"zz)) and the rate ofviscoplastic strain tensor evp 

(2.15) gVP =AS 

where s gives the direction for the strain and ).. provides the magnitude. The strain is 

termed viscoplastic because it is rate dependent (viscous) and the deformation is permanent 

(plastic). 

The goal of the virtual laboratory is to use a constitutive equation that can accommodate 

both elastic and viscoplastic effects. One way that these effects are typically combined is 

by evoking the additivity postulate: 

where ~e is the total strain and ~t is the time step. 

Equation 2.16 can be rearranged to solve for ~ee and combined with Equation 2.13 to 

obtain the following: 

A useful form of Equation 2.15 that allows modelling of a wide variety of material 

behaviour is the form proposed by Perzyna (1966): 

(2.18) evp =A~~ = "( < rp(F) > ~~ 

where 'Y is a fluidity parameter, F is the yield function, Q is the viscoplastic potential (also 

referred to as the dynamic loading surface) and 

(2.19) < rp(F) >= { rp(F) if 
0 if 

F>O 

F~O 
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Q 0 

Figure 2.3: Yield function and plastic potential 

with cp(F) some function of F. 

Equation 2.18 is similar to Equation 2.15 in that the viscoplastic strain rate is separated 

into a magnitude(>. = 'Y < cp(F) >)and a direction(~). The occurrence of the yield 

function (F) in the Perzyna equation allows for the constitutive equation to accommodate 

elastic, viscous, viscoplastic and viscoelastic effects. The equation F = 0 defines a surface 

in 6 dimensional stress space, which can be visualized by considering the sketch shown 

in Figure 2.3. Inside the surface gVP = 0, which means, as shown by Equation 2.17, the 

material response will be purely elastic in this case. 

When the material has yielded, which occurs when the stress path reaches the yield 

surface, as shown in Figure 2.3, the yield surface may change shape. This change in shape 

can be modelled as strain hardening (or softening) of the material. The new yield surface 

is shown as a dashed line in Figure 2.3. This behaviour is mathematically represented 

by having F = F(u, ~). where ~ is termed a hardening parameter. The parameter~ 

depends On the aCCUmUlated ViSCOplastiC Strain (~ = ~(gVP)). The addition Of~ allOWS 
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for expansion or contraction of the yield surface depending on the instantaneous value of 

viscoplastic strains. 

Figure 2.3 also shows a sketch of the surface Q, where Q is known as the potential 

function (Owen and Hinton, 1980). The value of Q depends on the state of stress (Q = 

Q(u)). The normal to this plastic potential surface gives the direction of the viscoplastic 

strain increment. For many materials Q can be obtained from an isotropic expansion of the 

quasistatic yield surface. In this case, the material is said to obey an associative flow rule. 

The above description of the constitutive equation shows several generic terms that 

need to be concretely specified before one can obtain the equations for a specific material. 

Four functions need to be given to describe a specific material: F, Q, 1'1,, and rp. A constant 

'Y must also be provided. The power of MatCalc and MatGen comes from postponing the 

specification of this information. The numerical algorithm (Section 2.3) used to solve for 

the deformation and stresses in the test specimen is derived using the generic forms, so that 

specific materials can be added simply by specifying the concrete form. 

2.3 Numerical Algorithm 

MatCalc uses the finite element method (FEM) to simulate the experiments. This method 

was selected because FEM naturally accommodates both displacement and load controlled 

boundary conditions. With the same finite element algorithm, all potential material tests 

can be simulated; all that changes between experiments is the input describing the boundary 

conditions. This means that each step through the experiment will solve for 24 displace­

ment degrees of freedom, which will be stored in the vector a shown in Equation 2. 7. 

Details of FEM can be found in Zienkiewicz et al. (2005). 

The derivation of the finite element equations for the viscoplastic constitutive equation 

follows the approach presented by Stolle (1991). To estimate the displacements for the 

(i + l)th time step the residual for that time step (Wi+l) should be approximately zero, as 
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shown below: 

where ~ is the load vector, V is the volume of the body, B is a matrix defined as B = LN 

such that 1:1e = Bai+I· The stress change over the time step may be written as 

The value of !:1ui can be found using Equation 2.17, which shows that the change in stress 

depends on the rate of viscoplastic straining. Since the numerical algorithm for MatCalc is 

intended to be stable, the value used for the viscoplastic strain rate is the value at the end of 

the time step. This makes the algorithm fully implicit and thus improves the stability, which 

allows MatCalc to handle a large variety of experimental conditions and material types. In 

particular, MatCalc will be able to handle constitutive equations with higher gradients in 

stress than it could using an explicit algorithm. In the fully implicit version, Equation 2.18 

becomes 

where .Ai+l is the magnitude of the viscoplastic strain rate at the end of the time step. Using 

a truncated Taylor's expansion of Ai+I and mathematical manipulation (Smith, 2001), it is 

possible to derive the following linear system of equations that are solved to find the nodal 

degrees of freedom (a): 

with 

(2 24) Dvp = D [1- !:1tC A'aQ (ap)T n] .A'= d.A 
. 

1 au au ' dF 

(2.25) /:1uvp = /:1tC1.AD ~~ 

(2.26) C1 = [1 +.A' !:1t(He + Hp)t 1 
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(
aF)T aQ 

(2.27) He= au D(au) 

(2.28) H =-aF ( ax; )T 8Q 
p 8x; aevp au 

where I is the identity matrix. 

Solving for ai in Equation 2.23 provides a first estimate for the displacements. For 

subsequent passes within an equilibrium iteration loop, the finite element equations, which 

provide a correction .6.ai for ai, simplify to the usual elastic form (Zienkiewicz et al., 

2005): 

The equilibrium iteration loops ceases when the relative changes in displacement be­

come small. This can be defined by the following convergence criterion: 

li.6.aiii 
(2.30) iiaiii <toler 

where liaill represents the Euclidean norm of the vector ai. 

After each iteration of solving for the displacements the local stresses and strains are 

updated. Error can remain in the stress calculation at this point and the return map algo­

rithm (Zienkiewicz et al., 2005, Pages 103-104) is used to correct the stress value. This 

corrected stress value is used in subsequent iterations of solving for a. The return map 

algorithm solves the following system of nonlinear equations: 

(From Equations 2.21 and 2.22) 

(From Equation 2.18) The system of equations can be rewritten as a root finding problem: 

aQ 
(2.33) f 1(.6.u, A) = D.6.e- .6.u- .6.tAD au = 0 
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A 
(2.34) h(~u, A)= <p(F)-- = 0 

'Y 

CHAPTER2. BACKGROUND 

Newton's method is used to find the root of the above system. This is formulated as follows: 

J8x = -F(x) 

Where x is the following 7D vector: 

F is 

(2.35) [ fif2 ] T 

J is the Jacobian ofF: 

(2.36) 

Which expands to: 

[ 

a2Q -I - ~tAD :c2 
(2.37) au 

!!:!e. (aF)T 
dF au 

~tDaQ] au 

-1 
'Y 

In which ~:~ has the following structure: 

a2Q a2Q a2Q a2Q a2Q a2Q 

au:u;Uxx auxxUyy auxxCTzz au.,.,Uxy auxxCTyz 8uxxCTxz 
a2g_ a2g_ a2g_ a2Q 82Q a2Q 

auyyUxx auyyCTyy auyyUzz auyyCTzy auyyCTyz 8CTyyCTxz 

(2.38) 

a2Q a2Q a2Q a2Q a2Q a2g_ 
au.,zCTxx au.,zCTyy au.,zCTzz au.,zCTxy au.,zCTyz 8CTxzCTxz 

The convergence criterion is defined as follows: 

ll~(~u)ll ~A 
(2.39) max( ll~ull , T) ~toler 
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The increment in the viscoplastic strain is found using Equation 2.22 and the value of A 

determined in the return map algorithm. Similarly, the increment in the stress determined 

by the return map algorithm is used. After solving for the displacements for a given time 

step the local stresses and strains are updated. Pseudo code for the numerical integration 

algorithms can be found in Appendix A. 

The equations given above are generic for many different viscoplastic material be­

haviours. F, Q, ,.,_are all used in a generic way. At this point a material modelling expert 

would normally work out the various gradients by hand and then proceed to the implemen­

tation. These derivations are potentially time consuming and error prone and they require a 

solid understanding of tensors, invariants and vector calculus. The goal of the current work 

is to automatically go from the equations to the implementation. In the next Chapter we 

will discuss in detail how this goal was accomplished. 
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Chapter 3 

High Level Design and Implementation 

In this chapter the high level design of MatGen and MatCalc are presented. MatGen gen­

erates material models from a description of the material model, which is written using a 

DSL. The new material model can be used by the more complex program MatCalc, which 

combines together the following: material models, experiments, and numerical integra­

tion methods to simulate simple material experiments. This chapter first presents a high 

level introduction to MatGen and MatCalc, followed by a more detailed description of the 

implementation of both programs. 

3.1 High Level Design of MatGen 

MatGen is responsible for automatically generating source code that describes the new ma­

terial model, which can be used by MatCalc. Currently MatGen only outputs source code 

implementing the interface expected by MatCalc, but this is not an inherent limitation of 

MatGen. The generated interface could easily be modified to match the requirements of 

another material model simulation program. A material model is defined by the four func­

tions F, Q, K, and cp but the numerical algorithms that are used to simulate the experiments, 

as described in Chapter 2, require derivatives of these functions, such as ~~. So, a useful 

material model not only includes the four functions but also all needed expressions which 
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are derived from the functions given by the user. The first and most important design goal 

of MatGen was that the user not be required to compute all of the expressions needed for 

a numerical simulation, MatGen should perform this tedious and error prone work for the 

user. A language is needed which can represent both the functions and any derived ex­

pressions. A tool is also needed which can compute the needed derivatives. The second 

design goal of MatGen was that user would not be required to write a program implement­

ing the material model. This meant that MatGen must output code, such as a C++ class 

that provides numerical access methods describing the material model sufficiently for the 

numerical integration algorithms. Another compiler is needed which can translate the ma­

terial model into source code form. By using a DSL and providing a compiler which can 

go from the definitions of the four functions to working source code MatGen allows novice 

material modellers to develop new material models. 

3.2 High Level Design of MatCalc 

MatCalc is responsible for simulating experiments on material models. MatCalc consists of 

four main modules: material behaviour, experiment control, numerical integration and data 

table. Each of these modules define an abstract interface that a concrete implementation 

must satisfy. Because of the abstract nature of these modules, many different material 

models, experiments and numerical integration methods can be used together. The first 

module, the material behaviour module, provides concrete details of a material behaviour 

model to the numerical integration algorithm. The second module, the experiment control 

module, provides a set of constraints on the experimental specimen that the numerical 

integration algorithm uses. The third module, the numerical integration module, simulates 

the experiments forward in time using the material model and experiment control modules 

to provide the necessary details. The final module is responsible for storing the output of 

the numerical integration algorithms in the form of a table. Each row in the table stores 

the simulation state for a given point in time. Figure 3.1 shows interaction between the 
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,. 
Data Table 

Numerical Integrator 

j '\. 
Experiment Control Material Behaviour MatGen 

+ '" 
Ruby Maple 

Figure 3.1: Module interaction diagram 

modules (single headed arrow implies usage, double headed arrow indicates output from 

MatGen.) The following subsections will provide more details for each of these modules. 

Each module is summarized by giving its secret (Parnas et al., 1984) and then a more 

detailed description. 

3.2.1 Material Behaviour 

Module Secret: Algorithms to assist with computing the material model's state. 

Module Discussion: The material behaviour module offers high level access to material 

specific terms found in the numerical integration algorithm. The interface was designed 

by studying the numerical algorithm found in Section 2.3 and providing accessor functions 

to material dependent expressions found therein. For example, the interface includes a 

function that provides the numerical integration algorithm with the matrix nvp seen in 

Equation 2.24. Similarly, other material model specific equations defined in Section 2.3 are 

provided by the material behaviour interface. The main design goal was to make writing 

the numerical integration algorithms as easy as possible, so instead of providing access to 

low level expressions such as 8
8F the interface was designed to provide very high level u.,., 
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access to the sub expressions of the numerical algorithm, such as nvp. A consequence 

of this decision is that it forces a very tight and fragile coupling between the needs of the 

numerical algorithm and the material behaviour module generated by MatGen. However, 

because of the generative nature of MatGen, it is relatively easy to add additional methods 

to the material behaviour module, in the case that they are needed by a new integration 

algorithm. 

3.2.2 Experiment Control 

Module Secret: Algorithm controlling the current constraints (boundary conditions) placed 

on the test specimen. 

Module Discussion: This module controls the state of the test specimen during the ex­

periment. Experiments can be load or displacement controlled. As well, the experiment 

state is not necessarily static and can vary over time. For example, the test specimen might 

be stretched 2 em over the first second and then 4 em for the rest of the experiment. Ex­

periments should provide the ability to control whether or not the test specimen geometry 

is updated throughout the experiment. By allowing for geometry updates both the engi­

neering and true stress and strain ( Section 1.2.1 ) can be output. Updating is done by 

applying the predicted displacements to the corresponding coordinates. No updating leads 

to the engineering values, while updating produces the true values. To be optimally use­

ful, experiments must be programmable. The experiment control interface was designed 

in such a way that both displacement and load controlled experiments can be implemented 

and the experiments can track time and dynamically modify the experiment's independent 

variables. 

3.2.3 Data Table 

Module Secret: Data structure for storing the state history of the test specimen. 

Module Discussion: The data table is a complete history of the state of the test specimen 
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Time 0' roro ... eroro ... 
0.01 0.0136 ... 0.001 ... 
0.02 0.0454 ... 0.002 ... 
0.03 0.0812 ... 0.003 ... 
... ... ... . .. . .. 
Table 3.1: Example data table 

over the course of the experiment. The numerical integration algorithm fills in this table 

as the experiment simulation progresses. Each row in the table represents a discrete point 

in time and includes columns recording such state data as the stress (u) and strain (e). An 

example data table can been seen in Table 3.1. Additionally, the real values assigned to 

each constant used by the material model and experiment are stored in the data table. 

3.2.4 Numerical Integrator 

Module Secret: Algorithm for numerically integrating the experiment forward in time. 

Module Discussion: The numerical integration is responsible for simulating the experi­

ment forward in time. It is responsible for the high level simulation control, relying on a 

material behaviour model and experiment control model to provide the missing concrete 

details. The numerical integration algorithm builds and maintains a data table (described 

in Section 3.2.3) describing the history of stress and strain for the experiment specimen. 

The numerical integration algorithm module is also an abstract interface; this gives the user 

the ability to use custom numerical algorithms. Users typically would want to replace the 

numerical algorithm when they know in advance certain characteristics about the material 

model or experiment that they can exploit to gain performance or accuracy advantages. 
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3.3 Implementation of MatGen 

As stated in Section 3.1 a DSL and compiler are needed that together can represent mathe­

matical expressions, perform differentiation on the mathematical expressions, and compile 

the expressions into a language used by MatCalc. The DSL accepted by MatGen is defined 

in Appendix B. It is a very minimal subset of the language accepted by the Maple com­

puter algebra system. Maple acts as a compiler to perform the symbolic differentiation and 

convert from the mathematical expressions into C expressions. Details of the output can be 

found in Chapter 4. 

MatGen itself is a C++ program that produces a C++ class which defines a material 

model. The user provided definitions of F, Q, etc, are defined in the DSL. The needed 

mathematical expressions are built inside Maple. Following this the mathematical expres­

sions are converted into C expressions using the Maple "CodeGeneration" function. These 

C expressions are inlined into the generated C++ class defining the material model. This 

C++ class is then compiled alongside MatCalc and used directly inside MatCalc when sim­

ulating experiments. 

3.4 Implementation of MatCalc 

In this section, details will be given on the implementation of MatCalc. MatCalc was 

designed as a library that can be used by other programs needing material model simulation. 

Using this library a simple GUI was developed to run experiments. There was a principle 

design rationale for MatCalc, to be as generic as possible by supporting many different 

experiments and material models with the same abstract interface. The rest of the section is 

divided into subsections covering the implementation of the following high level modules 

of MatCalc: Material Behaviour, Experiment Control and Numerical Integrator. 
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3.4.1 Material Behaviour 

Material behaviour model modules are C++ classes that provide the numerical integration 

algorithm in MatCalc with concrete details of the material model being simulated. The 

interface that these classes expose was derived from the needs of the numerical integration 

algorithm defined in Section 2.3. MatGen can generate these C++ classes automatically or 

a user could write them manually. The class interface for the material behaviour module is 

summarized in Section 4.4. 

3.4.2 Experiment Control 

As stated earlier, the experiment control interface must be scriptable and capable of imple­

menting both displacement controlled and load controlled experiments. The Ruby scripting 

language was chosen as the scripting language to implement experiments because of the 

ease with which it can be embedded into an existing C++ program. An instance of the 

Ruby interpreter is initialized by MatCalc and MatCalc communicates with an experiment 

instance loaded inside the Ruby interpreter. An added benefit of this is that MatCalc does 

not need to be recompiled when adding a new experiment. Details of the experiment control 

can be found in Chapter 4. 

3.4.3 Numerical Integrator 

There are three numerical integration algorithms implemented in MatCalc: elastic, vis­

coplastic and the retummap algorithm. The first integrator, elastic, can only handle purely 

elastic materials. The second integrator, viscoplastic, can handle viscoplastic materials but 

does not correct the stresses back to the yield surface. The final integrator, the retummap, 

is derived from the viscoplastic integrator but is fully implicit and it corrects the stresses 

back to the yield surface. The numerical integration algorithm used is decided by the user. 

A high level description of the viscoplastic and retummap integration algorithms is found 

in Section 2.3 and pseudo code of the implementations can be found in Appendix A. 
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Programmer's Manual 

This chapter is a manual that covers how to use MatCalc and Matgen, how to add new 

experiments to MatCalc, how to add new material models to MatCalc, and how to use 

MatCalc as a library in one's own programs. 

4.1 Using MatCalc 

MatCalc includes a GUI program that allows users to perform experiments, tune exper­

iment parameters, graph experimental data, and save experimental data so that it can be 

analyzed later. This section covers using this program, a later section covers using the Mat­

Calc library. A screenshot of MatCalc is shown in Figure 4.1. In it, the user has selected a 

uniaxial extension or compression along the X axis as their experiment. The user has also 

selected the power law fluid (plfluid) material model. In the right pane the user can fill out 

any constant values that the experiment or material model requires. The process of using 

MatCalc to execute an experiment consists of the following steps: 

1. Select experiment 

2. Select material model 

3. Fill in constants needed by experiment and material model 
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Figure 4.1: MatCalc screenshot 

4. Select how long the experiment should be run for 

5. Click the "Run" button 

Once the simulation is complete the right pane will be replaced with a table of all 

experimental data, some of which can be graphed inside MatCalc. To graph experimental 

data, the user selects the type of graph in the lower left of the MatCalc window. 

4.2 Using MatGen 

MatGen includes a GUI program that allows the user to easily generate new material be­

haviour models based on the input of the functions F, Q, K, <p and the constant I· A 
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screenshot of MatGen can be seen in Figure 4.2. In the screenshot the user has provided 

the name "ViscoElastic" for the material model name, the functions F and Q are both J2 

(J2 is a macro which will be discussed below), K is 0.0 and cp is F, the constant gamma is 

2~. At the bottom users can add any constants that the expressions defining the functions 

rely on. ElasticE (E) and ElasticNu (v) are always defined because they are needed by all 

material models. In this example eta (ry) is added. The process of using MatGen to generate 

a new material behaviour model consists of the following steps: 

1. Provide material behaviour name 

2. Provide expressions for F, Q, K, cp, and 1 

3. Add any constants that are present in the above expressions 

4. Click the "Generate" button 

After the material model has been generated, C++ source and header files will be writ­

ten with the file name of the material name followed by "_material." For instance, for 

the example shown in Figure 4.2, the file names would be "ViscoElastic_material.cc" and 

''ViscoElastic_material.h.'' 

NOTE: Each function must be written in the DSL defined in Appendix B. 

NOTE: You must make sure that all constant names used in function definitions are added 

to the list of constants or else the generated code will fail to compile. 

Each function F,Q, etc receives different function arguments. Care must be taken that 

variables are used only when available. Variables available to each function are listed in the 

following tables: Table 4.1, Table 4.2, Table 4.3, Table 4.4 for F, Q, K and cp, respectively. 

Usage of variables not included in a functions list can cause the generated code to fail to 

compile. 
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Figure 4.2: MatGen screenshot 
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Input Name Input Description 

SigmaXX tJxx 

SigmaYY tJyy 

SigmaZZ tJzz 

SigmaXY tJxy 

SigmaYZ tJyz 

SigmaXZ tJxz 

Kappa /'i, 

Table 4.1: Variables available to function F 

Input Name Input Description 

SigmaXX tJxx 

SigmaYY tJyy 

SigmaZZ tJzz 

SigmaXY tJxy 

SigmaYZ tJyz 

SigmaXZ tJxz 

Table 4.2: Variables available to function Q 

Input Name Input Description 

Epsilon VPXX E:vp 
XX 

Epsilon VPYY E:vp 
yy 

Epsilon VPZZ E:vp 
zz 

Epsilon VPXY E:vp 
xy 

Epsilon VPYZ E:vp 
yz 

Epsilon VPXZ E:vp 
xz 

Table 4.3: Variables available to function Kappa (K,) 
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Input Name Input Description 

F F 

Table 4.4: Variables available to function Phi {cp) 

To simplify the notation, the DSL for MatGen also includes many macros, which get 

expanded into expressions that rely on the simulation variables. The current macros are 

summarized in Table 4.5. Again, care must be taken not to use a macro that includes 

a variable that is not available to the function being defined. The included macros are 

ones that have are used heavily in the field of continuum mechanics and are offered as a 

convenience as it is common for writing on the subject to make use of them. Table 4.5 is 

written using Maple syntax, the macro definitions in conventional mathematical notation 

typically used in the domain can be found in Section 5.4.1. In addition, each function 

has all of the user provided constants available as well. The C++ class interface that is 

generated by MatGen is given in detail in Section 4.5. 

4.3 Adding an Experiment to MatCalc 

This section discusses what must be done to add a new experiment to MatCalc. Since ex­

periments in MatCalc are implemented by Ruby scripts adding an experiment consists of 

developing a Ruby class. The experiment class provides a way for the numerical integration 

algorithm to query which degrees of freedom are fixed and which are free, the prescribed 

displacements assigned to each node and the loads at each node. The numerical integra­

tion algorithm also calls the "setup" function in the experiment class immediately before 

beginning an experiment. At each discrete time point during the run of the simulation, the 

function "tick" is called. Experiment classes must implement the following interface: 

initialize: The initialize function is the constructor that all Ruby classes must imple­

ment. 
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Macro Name Expansion 

Sxx (SigmaXX- (l/3)*(SigmaXX + SigmaYY + SigmaZZ)) 

Syy (SigmaYY- (113)*(SigmaXX + SigmaYY + SigmaZZ)) 

Szz (SigmaZZ- (l/3)*(SigmaXX + SigmaYY + SigmaZZ)) 

Sxy (Sigma.XY) 

Syz (SigmaYZ) 

Sxz (Sigma.XZ) 

Sm (113)*(SigmaXX + SigmaYY + SigmaZZ) 

12 (112)*(Sxx"2 + Syy"2 + Szz"2 + 2 * (Sxy"2 + Sxz"2 + Syz"2)) 

J3 SigmaXX * SigmaYY * SigmaZZ- SigmaXX * SigmaYZ"2 + 2*Sig-

ma.XY *SigmaYZ *Sigma.XZ- Sigma.XY"2 * SigmaZZ- SigmaYY * 

Sigma.XZ"2 

q (3 * 12)"112) 

EVPxx (Epsilon VPXX - (l/3)*(Epsilon VPXX + Epsilon VPYY + Epsilon-

VPZZ)) 

EVPyy (EpsilonVPYY - (1/3)*(EpsilonVPXX + EpsilonVPYY + Epsilon-

VPZZ)) 

EVPzz (Epsilon VPZZ - (1/3)*(Epsilon VPXX + Epsilon VPYY + Epsilon-

VPZZ)) 

EVPxy (Epsilon VPXY) 

EVPyz (Epsilon VPYZ) 

EVPxz (Epsilon VPXZ) 

J2EVP (112) * (EVPxx"2 + EVPyy"2 + EVPzz"2 + 2 * (EVPxy"2 + EVPxz"2 + 

EVPyz"2)) 

EqVP ((4/3) * J2EVP)"l/2) 

Table 4.5: Macros available to material model functions 
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- setup (dataset): The setup method is called once right before the experiment is to 

begin. This method takes a single argument pointing to the dataset (Section 3.2.3) 

that will be used in the experiment about to be run. It has no return value. 

tick(datset, dt, ct): The tick method is called once at the beginning of each discrete 

time step during the simulation. The tick is used to facilitate experiments dynam­

ically modifying their state based on the amount of time that has passed since the 

beginning of the experiment. This method takes three arguments: An instance of the 

experiment dataset, the change in time and the current elapsed time of the experi­

ment. It has no return value. 

geLconstraints (dataset, dt): The get_constraints method is called whenever the nu­

merical integration algorithm needs to check which nodal degree of freedom is free 

or constrained. A constrained nodal degree of freedom implies that the displacement 

value obtained from the get_displacements method must be used in the right hand 

side of Equation 2.23. A 24D vector containing boolean values must be returned. 

True is interpreted as constrained. 

geLdisplacements (dataset, dt): The geLdisplacements method is called whenever 

the numerical integration algorithm needs the nodal displacements of the constrained 

degrees of freedom. It takes two arguments: An instance of the experiment dataset 

and the change in time. A 24D vector must be returned with the displacement con­

straints that are applied to each nodal degree of freedom. In the case of a purely 

force controlled experiment the zero vector can be returned because the prescribed 

displacements are not used. Entries in this vector are used as the right hand side of 

Equation 2.23. 

get_forces (dataset): The get_forces method is called whenever the numerical inte­

gration algorithm needs the nodal force loads. It takes a single argument consisting 

of an instance of the experiment dataset. A 24D vector must be returned with the 

force load that is applied to each nodal degree of freedom. In the case of a purely 
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displacement controlled experiment the zero vector must be returned so that the force 

vector used by the numerical integration algorithm is zero. 

geLconstants: The geLconstants method is called whenever there is a need for the 

list of constant names that this experiment requires. The return value is an array 

containing strings naming each required constant. The values assigned to the con­

stants are stored as a mapping between the names returned from this function and the 

values assigned to them in the data table. The names are used for the GUI and for 

consistency checking. 

update_geometry (dataset): The update_geometry method returns true or false con­

trolling whether or not the numerical integration algorithm should update the test 

specimen geometry at the end of each time step. When the numerical integrator up­

dates the test specimen geometry it is computing the true stress and strain values 

because it is taking into consideration the current configuration of the test specimen 

and not the original. 

These methods define an interface that allows a wide variety of experiments to be im­

plemented. Including displacement controlled, load controlled, or a combination of the 

two. Experiments can change their state over the course of time and control whether or 

not the experiment subject geometry is updated. Using the Ruby programming language 

allows experiments to be as complex as the user desires. An extreme example would be for 

the virtual experiment to communicate with a real experiment and attempt to mimic the real 

test specimen state. Example experiments include uniaxial extensions and compressions. 

Many concrete examples can be found in the source code for MatCalc. As an example, the 

uniaxial extension experiment follows: 

class UniaxialX 

def initialize 

@Nodel = 0 # @NodeX is shorthand for referencing 

@Node2 = 3 # a specific degree of freedom 
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@Node3 = 6 

@Node4 = 9 

@NodeS = 12 

@Node6 = 15 

@Node7 = 18 

@NodeS = 21 

@Xaxis = 0 

@Yaxis = 1 

@Zaxis = 2 

end 

def setup (ds) 

end 

def tick ( ds , dt ' ct) 

end 

def geLdi s p 1 ac em en ts (ds, dt) 

xyz = MVector. new 24 

dx = ds. g eLcons tan t ("dis placemenLx") 

for i in 0 .. 23 

xyz[i] = 0.0; 

end 

xyz [ @Node2 + @Xaxis] = dx * dt 

xyz [ @Node3 + @Xaxis] = dx * dt 

xyz [ @Node6 + @Xaxis] = dx * dt 

xyz [ @Node7 + @Xaxis] = dx * dt 

return xyz 

end 

def geLconstraints ( ds, dt) 

constraints = Array .new(24) 

for i in 0 .. 23 

constraints [ i] = true; 
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end 

end 

#Node N3,N4,N7,N8 can move in the y 

constraints [ @Node3 + @Yaxis] = false 

constraints [@Node4 + @Yaxis] = false 

constraints [@Node7 + @Yaxis] = false 

constraints [ @Node8 + @Yaxis] = false 

# Node N5,N6,N7,N8 can move in the z 
constraints [ @Node5 + @Zaxis] = false 

constraints [ @Node6 + @Zaxis] = false 

constraints [@Node? + @Zaxis] = false 

constraints [@Node8 + @Zaxis] = false 

return constraints 

end 

def geLforces (ds) 

xyz = MV ector. new 24 

for in 0 .. 23 

xyz [ i ] = 0. 0; 

end 

return xyz 

end 

def geLconstants 

constants = Array .new; 

constants .push("displacemenLx") 

return constants 

end 

def update_geometry ( ds) 

return false 

end 
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4.4 Adding a Material Model to MatCalc 

All material behaviour classes must be compiled and linked into MatCalc so the process 

of adding a new material class is slightly more complex than that of adding an experiment. 

Adding a new material class requires working with the build system used by MatCalc. Mat­

Calc uses Automak:e and Autoconf. Commonly referred together as Autotools or the GNU 

Build Tools (FSF, 2007). What follows is a very limited set of instructions to add a new 

material to the build system. Assuming that one has name_material.h and name_material.cc, 

the following steps should be taken: 

Step 1) Add your material class files to the build system: 

Add name_material.h and name_material.cc to MATERIAL_CLASSES variable 

in the source Mak:efile.am file 

Step 2) Add your material class to the internal list: 

In materiaLclassJ.ist.cc increment NUM_MATERIALS 

Add the line ' { "name" name_material_generator } ,' to the default material array 

4.5 Writing a Material Class by Hand 

In some cases the user may want to write a material model class by hand instead of using 

MatGen. A material class written by hand can be more efficient and handle some more 

complex constitutive equations than MatGen can generate code for. The material class 

interface includes the following functions: 

- array of string geLconstants() 

This function must return a vector of strings naming all the constants that this mate­

rial class needs to function. The names are used for the GUI and consistency checks. 

- scalar KappaF (dataset, epsilon VP) 

This function must return the scalar value obtained from evaluating the r;, function. 
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scalar F (dataset, stress, kappa) 

This function must return the scalar value obtained from evaluating the F function. 

scalar Q (dataset, stress) 

This function must return the scalar value obtained from evaluating the Q function. 

- scalar geLgamma (dataset) 

This function must return the scalar value of gamma. 

scalar PhiF (dataset, F) 

This function must return the scalar value obtained from evaluating the cp function. 

vector depsilonvp (dataset, dt, F, stress, kappa) 

This function must return the vector value obtained from evaluating IJ..c vp. This 

vector is defined in Equation 2.15. 

vector depsilonvpNL (dataset, dt, F, stress, kappa, lambda) 

This function must return the vector value obtained from evaluating !J..cVP. Takes a 

numerical version of lambda. 

- vector dstressvp (dataset, dt, F, stress, kappa, epsilon VP) 

This function must return the vector value obtained from evaluating !J..O' vp. This 

vector is defined in Equation 2.25. 

vector dstressvpNL (dataset, dt, F, stress, kappa, epsilonVP, lambda) 

This function must return the vector value obtained from evaluating !J..O' vp. This 

vector is defined in Equation 2.25. Takes a numerical version of lambda. 

matrix geLDe (dataset) 

This function must return the 6D elastic matrix defined in Equation 2.13. 

matrix geLDvp (dataset, dt, F, stress, kappa, epsilon VP) 

This function must return the 6D Viscoplastic matrix defined in Equation 2.24. 
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Argument Name Type 

dataset dataset 

epsilonVP m_vector 

stress m_vector 

kappa scalar 

dt scalar 

F scalar 

lambda scalar 

dstress m_vector 

dstrain m_vector 

Table 4.6: Types of function arguments to material class 

- matrix geLRMJ acobian (dataset, dt, F, kappa, stress, lambda, epsilon VP) 

This function must return the Jacobian matrix used by the returnmap stress correction 

algorithm. This matrix is defined in Equation 2.36. 

vector geLRM__F (dataset, dt, F, stress, dstrain, dstress, lambda) 

This function must return the F vector used by the returnmap stress correction algo­

rithm. This vector is defined in Equation 2.35. 

The above interface was derived from the numerical integration algorithm presented in 

Section 2.3. It does not provide accessor functions for low level derivatives of the input 

functions such as 8
8F ; instead it provides high level access which makes implementing the u.,., 

numerical algorithm easier. The functions which have the postfix "NL'' (numerical lambda) 

use a numerical version of the variable A provided by the numerical integration algorithm 

instead of the equation A = 'Y < cp(F) >. This is needed for the Return Map integration 

algorithm. The types of the function arguments are given in Table 4.6. 
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4.6 Writing a MatCalc Based Driver Program 

MatCalc was designed as a library to be used through a driver program. Below is a minimal 

driver program which illustrates how easy it is to incorporate into a larger program. 

1 #include "brick_element. h" 

2 #include "returnmap_in tegrator. h" 

3 #include "dataset .h" 

4 #include "experimenLlist .h" 

5 #include "materiaLclass_list .h" 

6 

7 static rna teri aLe lass _list* mel = NUlL; 

8 static experimenLlist* el =NUlL; 

9 

10 int 

11 main ( int argc, char ** argv) 

12 { 

13 mel =new materiaLclass_list (); 

14 e 1 = new e x p e ri men L 1 i s t () ; 

15 brick_element element; 

16 m_ vector xyz = geLbrick_elemenLxyz (1. 0, 0. 25, 0. 25); 

17 dataset r; 

18 r. add_constant("ElasticE", 0.26); 

19 r. add_constant("ElasticNu", 0.30); 

20 experimenLrunner* experiment= el->geLinstance ("Experiment"); 

21 materiaLclass* material = mcl->geLinstance ("Material"); 

22 returnmap_integrator rmi; 

23 rmi. integrate (r, xyz, material , element, experiment, time); 

24 } 

For a program using the MatCalc library to function usefully it needs a dataset, test 

specimen, test specimen geometry, integrator, material class and an experiment. Lines 1 
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through 5 include the necessary header files: brick element, return map integration algo­

rithm, data table, list of experiments and list of material behaviour modules, respectively. 

Lines 7 and 8 declare the lists of material classes and experiments and they are initialized 

on lines 13 and 14. Lines 15 and 16 setup the test specimen and the test specimen ge­

ometry. Line 17 initializes the dataset and lines 18 and 19 assign values for the constants 

"ElasticE" and "ElasticNu." An experiment runner (a class which handles communication 

between ruby and C++) is initialized in line 20 by asking the experiment list for the ex­

periment named: "Experiment." Similarly the material model class is initialized in line 

21 by asking the material model list for the material named: "Material." The numerical 

integration algorithm is initialized in line 22 and it is run in line 23. As the sample driver 

program illustrates it is straight forward to get an instance for most of these objects. Only 

the material class and experiment require more work than simply defining some variables. 

The recommended approach to obtain a material and experiment instance is to use their 

respective lists. There are separate material class and experiment lists and you can get an 

instance of any registered material class or experiment simply by passing the text name to 

the geLinstance function. It is important to note that constants are stored in the dataset 

prior to running the experiment (see lines 18 and 19). 
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Verification and Case Studies 

This chapter will discuss the various methods used to verify both MatGen and MatCalc. As 

well, it will discuss case studies developed with MatCalc. Multiple methods of verification 

are needed to determine if MatGen and MatCalc are correct and performing adequately. 

MatGen has symbolic expressions that need to be verified as well as the generated code, 

which needs to be tested. MatCalc must be tested in a variety of ways as well. The low 

level modules of MatCalc are tested and a variety of case studies are developed to show the 

versatility as well as the accuracy of MatCalc. Sample experiments must be tested within 

MatCalc to verify that the numerical algorithm is functioning correctly. 

This chapter will discuss all of these verification methods and case studies in the coming 

sections. First, verification of the symbolic mathematical expressions that MatGen gener­

ates will be discussed. Second, verifying the generated code at a unit level will be detailed. 

Third, low level unit testing and regression testing of MatCalc will be presented. Finally, 

case studies, which show the large variety of material models, that MatCalc can handle will 

be summarized. The case studies will also demonstrate the accuracy of MatCalc when this 

is possible, that is, when the true solution is known or when a separate program is available 

whose output can be compared to the output of MatCalc. 
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5.1 Verifying Symbolic Expressions 

All of the symbolic processing is hidden from the user, thus we must be certain that it 

is functioning correctly. If the symbolic results are incorrect the side effects will cascade 

through MatGen and into MatCalc. The verification was performed by comparing symbolic 

output from Maple to hand derived versions of the same expressions. When deriving the 

expressions by hand many short cuts were taken by using the chain rule and invariants in 

place of the fully expanded expression. In many cases Maple was able to simplify the final 

expressions to be identical to the hand derived expressions. An example where this is the 

case is the derivation of the He term for a sample material model, as shown in Appendix C. 

In these cases it was trivial to verify that the symbolic computation was correct. In other 

cases Maple was unable to simplify the expressions to be identical. In these cases the 

expressions were found to be equivalent by verifying that they numerically agreed. 

5.2 Verifying Numerical Results at a Low Level 

MatGen generates C++ code that evaluates to the numeric result of the symbolic expres­

sions. The generated source code needs to be tested for correctness. This testing was done 

by first developing a unit test fixture for the C++ unit testing framework (Robbins, 2007). 

This test fixture compares the numerical output of each method of two different material 

model classes. The list of methods checked can be found in Section 4.5. All the mathe-

matical expressions needed to implement a material model were derived by hand and then 

a C++ class was written, also by hand. MatGen generated a class for the same material 

model. The material model defined in Appendix C was used. The relative difference was 

calculated using the following formula: 

. . II Generated- ByHandll 
(5.1) RelatweDifference = !IByHandll 

Where II · II is the euclidean norm. All methods tested had a relative difference of 
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w-6 or less. These values are small enough that they can be considered irrelevant in most 

contexts. 

5.3 Unit and Regression Testing 

As stated in the previous section, a unit test fixture was developed so that two different 

material model class implementations can be compared with each other. This same test 

fixture allows for regression testing to be performed between successive versions of Mat­

Gen. The version of the material model class generated by MatGen version N-1 can be 

compared to the material model class generated by MatGen version N. This was used as a 

safety check during the development of MatGen. The comparison is performed with ran­

dom input. Also, a unit test fixture was developed for performing unit tests and regression 

testing on the low level matrix and vector classes. All public methods exposed by both 

of those classes are tested (a distinct test case exists for each method) and compared with 

"true" solutions found using MatLab. 

5.4 Verifying Case Studies 

As a final form of verification, case studies were developed as a means to both verify 

that the numerical algorithm was working correctly and to demonstrate the large range of 

material models that MatGen and MatCalc can handle. Some of the case studies in the 

following subsections have known closed form solutions. For those case studies it was 

found that the numerical algorithm used in MatCalc gave correct results. For those cases 

studies where there is no known closed form solution two testing methodologies were used. 

First, in some case studies the shape of the stress vs. strain graph is well known and this 

shape can be used as a qualitative measure of correctness. Second, for remainder of the case 

studies the output of a separate program, Nonlso, developed as part of Smith (2001), was 

compared to MatCalc's output. Noniso is only capable of simulating one specific material 
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Name Value Meaning Units 

L 0.100 Length of brick along x axis m 

H 0.050 Length of brick along y axis m 

w 0.050 Length of brick along z axis m 

v 0.300 Poisson's Ratio -
D. X 0.001 Displacement per second along X axis !!! 

8 

ixx 0.01 Constant Strain Rate ! 
8 

Table 5.1: Common material properties 

model and does so in quasi 3 dimensions, but under the correct setup, that is both Nonlso 

and MatCalc are simulating a uniaxial extension, the results from Nonlso and MatCalc are 

comparable. Parallel testing was performed between MatCalc and Nonlso (more detail can 

be found in Section 5.4.2). 

5.4.1 Case Studies 

A uniaxial extension along the x axis was performed for the following material models: 

elastic, viscoelastic, power-law viscosity and strain hardening. A relaxation experiment 

was also performed. All experiments were at a constant rate of strain, except for the relax­

ation test, which started at a constant rate of strain, but then held the specimen at its final 

length without allowing further straining. 

For each of the proceeding case studies the material definitions that are given as input to 

MatGen, as well as the values assigned for the needed constants, are defined. For each case 

study the graph obtained from MatCalc is given as well as a discussion of the results in more 

detail. All the case studies share some material constants, dimensions and experimental 

parameters. These common values are listed in Table 5.1. 
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260 

200 

0.004 0.005 0.006 0.007 0.008 0.009 0.01 
Stmln-X(mhn) 

Figure 5.1: Linear Elasticity E 1 > E2 > E3 

5.4.1.1 Elastic Case Study 

Figure 5.1 shows an elastic material model with three different values of E. So that yielding 

will not occur, in the elastic case the yield stress is set very high; that is, F will remain 

below zero for the entire test. The material constants used are E1 = 30000.0Pa, E2 = 

20000.0Pa, and E 3 = lOOOO.OPa. The slope of stress vs. strain graph can be used to 

verify the results. The true slope should be equal to E1, E2 and E3 and in all three cases 

the relative error was zero; that is, there was perfect agreement with the true slope. This 

perfect agreement is not surprising considering that the material behaviour is strictly linear. 

5.4.1.2 Viscoelastic Case Study 

Figure 5.2 shows viscoelastic material behaviour, with three different relaxation times(>.). 

Relaxation time is the measure of how quickly the elastic stress relaxes. The smaller the 

relaxation time the closer the material is to a true viscous fluid. The formula for >. is defined 

as: 
). = 2.07] = 6000.0 

E E 

The relaxation times used are >.1 = 0.2, >.2 = 2.0, and ).3 = 20.0. To determine several Ai 

values we assumed 7J as 3000.0 P a · s and then varied E. 
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Figure 5.2: Viscoelasticity .X1 < .X2 < .X3 

The material model definition provided to MatGen is as follows: 

cp=F 

1 
'Y = 2'f/ 

Where J2 is defined in Equation C.l. As the function F is greater than zero for any 

stress, this material model yields immediately upon loading. 

The true solution in this experiment is given by the following formula: 

The relative error for the three experiments .X1, .X2 and .X3 was 0.53%, 0.23% and 0.04% 

respectively. 

A relaxation time experiment was also performed on this material model, where the 

uniaxial extension test was performed for one second and then held still for the remainder 

of the experiment time. The results can be seen in Figure 5.3. The relaxation time used 
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Figure 5.3: Relaxation time experiment 

in this experiment was >. = 0.2. A true solution for the amount of time for the stresses to 

relax is known and the relative error was found to be 1.68%. 

5.4.1.3 Power-Law Viscosity Case Study 

Figure 5.4 shows a Power-law viscous material behaviour with three different powers (m) 

applied. The material definition provided to MatGen is as follows: 

F = vfij; 

Q = vfi]; 

r.p = pm 

The material constants are as follows: A = 0.0002, m 1 = 1.4 (shear thinning), m 2 = 

1.0 (Newtonian viscosity), and m3 = 0. 75 (shear thickening.) A true solution for the 

asymptote of this material is known. The relative error between the experimental asymptote 

and the true solution was computed. The relative error measured for the three cases (mi) 

were 0.00% 0.00% 1.53% repsectively. 
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Figure 5.4: Power-law viscosity m 1 > m2 > m 3 

5.4.2 Case Study Comparing Nonlso and MatCalc 

This section consists of case studies that were run using both Nonlso and MatCalc. The 

results are presented in the form of graphs where the results from both Nonlso and MatCalc 

are graphed on the same axis. The material model includes a phenomenon known as strain 

hardening. Strain hardening is where as the viscoplastic strain accumulates the material 

becomes harder to deform. There is an analogue of strain softening in which the mate­

rial becomes easier to deform as the viscoplastic strain accumulates. The material model 

definition given as input to MatGen follows: 

1 ;;:;-;-!!! n-1 
F =nAn v 3J2 n K--:;;:-

Q = y'3.h 

cp=F 

'Y = 1.0 

Where cgP = (~J~vp) (~) (effective viscoplastic strain) and 

1 J.evp = - (cevp2 + cevp2 + cevp2 + 2 (cevp2 + cevp2 + cevp2)) 
2 2 xx yy zz xy xz yz 
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Name Value Meaning Units 

L 0.100 Length of brick along x axis m 

H 0.500 Length of brick along y axis m 

w 0.100 Length of brick along z axis m 

l/ 0.300 Poisson's Ratio -

D. X 0.01 Displacement per second along X axis m 
8 

Exx 10.0 Constant Strain Rate 1 
8 

Table 5.2: Common material properties for Nonlso vs. MatCalc case study 

Also, 

The constant values for all experiments can be found Table 5.2. 

Four different experiment runs are given. Two of the four runs do not update the test 

specimen geometry (Section 3.2.2), and thus do not measure true stress and strain. The 

other two do update the test specimen geometry, and thus do measure true stress and strain. 

The value of n is also changed. The lower value of n was experimentally determined to 

be 0.6. The graphs are given in Figures: 5.5 and 5.6. The results from Nonlso and Mat­

Calc are coincident in the graphs. A difference measurement is given for each experiment 

by measuring the relative difference of the stress values over the entire experiment. The 

relative difference was computed with the following formula: 
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Description Relative Difference (%) 

n = 1.5 No Geometry Update 0.254 

n = 0.6 No Geometry Update 0.295 

n = 1.5 Geometry Update 0.302 

n = 0.6 Geometry Update 0.285 

Table 5.3: Relative difference for Nonlso vs. MatCalc case study 

0.12 

{ ..... 
] 0.08 

.... 

0.1 0.2 D.3 0.4 ... ... 
Slra!n-X(mlm) 

Figure 5.5: Nonlso vs. MatCalc 

R l 
. E _ IIMatCalc- Non/soli 10001 e atwe rror- IINon/soll * lO 

where, again, II · II is the euclidean norm. The relative errors are given in Table 5.3. 

The relative difference between Nonlso and MatCalc is a result of two important differ­

ences between the programs. First, Nonlso is implemented in 2.5D, not 3D like MatCalc. 

Second, they use two different numerical algorithms. 
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Figure 5.6: Nonlso vs. MatCalc (Geometry Update) 
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Chapter 6 

Conclusion 

This chapter is divided into two sections. The first section will summarize the work found in 

this thesis as well as highlight key contributions therein. The second section will introduce 

some potential items for future work. 

6.1 Contributions 

This thesis has presented two programs: MatGen and MatCalc. The programs together 

offer a highly flexible, generic, scriptable virtual material testing laboratory that can be 

employed by users who have a second year engineering mechanics background as opposed 

to graduate level computational mechanics. This thesis has presented a generative approach 

to virtual material testing. As stated, being able to model the response of different materials 

under various loading histories is of critical importance to scientists and engineers. Scien­

tists and engineers rely on having an accurate understanding of how materials behave for 

their work. A virtual laboratory, MatCalc, was developed to aid researchers in understand­

ing material behaviour. MatCalc allows researchers to quickly perform simple experiments 

on a virtualized test specimen for a variety of material models. MatCalc can also be of ben­

efit to students studying material sciences by allowing them to perform experiments outside 

of a real laboratory. This freedom can quicken the rate at which students develop an un-
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derstanding of material behaviours. The numerical integration algorithms implemented in 

MatCalc support the following material behaviours: elastic, viscous, shear-thinning, shear­

thickening, strain hardening, viscoelastic, viscoplastic and plastic. MatCalc also includes a 

programmable experiment system, experiments are written in the Ruby programming lan­

guage and allow for experiments that can dynamically modify their state and can be both 

load and displacement controlled. Although there are examples of virtual material testing 

laboratories such as VizCore (Hashash et al., 2002) and VirLab (Smith and Gao, 2005), they 

do not allow for new material models to be added to the system without reprogramming it. 

To remove this limitation the numerical integration algorithms are written abstractly and 

make use of an API to access concrete material model details when needed. 

Even with the abstract material model, a material sciences expert is needed to derive 

key expressions for the numerical simulation and write a program implementing these ex­

pressions. To alleviate this, MatGen was created, where MatGen is a tool that automatically 

generates C++ source code for new material behaviours from simple material definitions 

provided in a subset of Maple syntax. MatGen uses Maple to perform the symbolic com­

putation necessary and to generate C code from the symbolic expressions. MatCalc and 

MatGen together provide an easy to use and flexible virtual material testing laboratory. 

This is accomplished by using the power of symbolic computation and bridging a gap be­

tween three different programming languages (C++, Ruby and Maple). The flexibility and 

accuracy of MatGen and MatCalc are demonstrated with the various case studies presented 

in this thesis. A refined list of contributions that came from the development of these two 

programs follows: 

Generic material model abstract class specification - The abstract class interface that 

MatCalc uses can simulate a large variety of material behaviours such as: elastic, vis­

cous, plastic, strain hardening, strain softening, shear thinning and shear thickening. 

This interface can be used by other programs in the field. 

Material model compiler- MatGen is a material model compiler which takes advan­

tage of Maple to perform both the symbolic differentiation of, and code generation 
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for the generic material model class. 

Implementation of generic numerical integration algorithms - Generally numerical 

algorithms implemented in this field are written for a particular material model. It 

was necessary to develop the algorithm in terms of pseudo code that makes use of 

the generic material model to simulate a wide variety of material models. These 

algorithms can cover a large family of material models with no changes. 

A domain specific language (DSL) capable of defining the variety of material models 

- This DSL is sufficient to define all of the material models present in this thesis and 

many more. 

A generic framework for experiments via the finite element method - The use of a 

single 8-noded finite element can use the same algorithm to accommodate all load 

and displacement controlled experiments when the stress and the strain are constant 

throughout the specimen. 

A scriptable experiment control interface - This interface is capable of implementing 

experiments that can dynamically modify their state as well as supporting both load 

and displacement controlled experiments. 

6.2 Future Work 

There are many avenues for future work. Some of these will be discussed in the following 

list. 

Inconsistency checking Before an experiment is executed it can be checked for consis­

tency with the rules that govern the experiments. For example, if a nodal degree of 

freedom is constrained to a particular displacement the load for the degree of free­

dom should be zero and vice versa. This would require adding an error checker with 

domain specific knowledge to the experiment control code. 
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Investigate other numerical algorithms Other numerical algorithms should be investi­

gated and implemented alongside the three that are currently included in MatCalc. 

Certain numerical algorithms can be advantageous for certain material models. It 

should also be determined which models work best with which integration algo­

rithms. 

Model fitting The material model could be fit to experimental data to help determine ma­

terial model parameters that match the experimental data. 

Generate code for low level access to material model The numerical algorithms access 

the material model at a high level. This makes the implementation of numerical al­

gorithms trivial but has some potentially negative side effects, which were discussed 

in Section 3.2.1. The code generator could be extended to include more fine grained 

access to the material model. 

Generate code targeting other material simulation engines MatGen could be modified 

so that it could generate code that targets material simulation engines other than 

MatCalc. These simulation programs could be for general purpose engineering com­

putation and not just for simple laboratory experiments. 

Temperature controlled experiments Experiments where the temperature is varied could 

be added allowing for non isothermal material models. 

Visualization and animation The visualization and animation of the test specimen in­

cluding its geometry, stresses, and strains could be added. Also, visualization and 

animation of the numerical algorithm itself, including correcting stresses back to the 

yield surface would be interesting. 

New classes of material models Additional classes of material models could be added, 

such as integral constitutive equations, differential constitutive equations and hyper­

elastic constitutive equations. 
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Develop DSL for simple experiments Develop a DSL which can describe simple experi­

ments. This DSL could be compiled into a Ruby script implementing the experiment. 

Enhance symbolic differentation with Maple Currently symbolic differentation with Maple 

is done in a brute-force fashion. More subtle and complex methods could be used. 

Improve GUI usability Improve the usability of the GUI programs by performing usabil­

ity studies. 
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Appendix A 

Numerical Algorithm Pseudo Code 

This appendix includes pseudo code for both the viscoplastic and return map numerical 

integration algorithms discussed in Section 2.3. 

A.l Visoplastic Integration Algorithm 

This section shows detailed pseudo code for the viscoplastic algorithm. 

ct = 0 

De = material.geLDe() 

R=O 

0'=0 

e=O 

eVP =0 

while ct + dt :::; T do 

ct = ct + .D..t 

O'TR = 0 

.6.e = 0 

.6.0' = 0 

.D..a = 0 
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displacements = 0 

constraints = 0 

experiment.geLdisplacements( displacements) 

experiment.geLconstraints( constraints) 

K = f(BTDB)dV 

internalF = j(BT u)dV 

rhs = R- internalF 

constrain K 

constrain rhs using displacements 

~a= K\rhs 

~e =B~a 

~u = D~e 

uTR=u+~u 

""= material.KappaF(ds, gVP) 

F = material.F(ds, uTR, "") 

ifF > 0.0 then 

u 0 = u 

~a=O 

error =0 

converged = false 

implicitV P = true 

repeat 

if implicitV P then 

displacements = 0 

constraints = 0 

Dvp = material.geLDvp(ds, dt, F, u, "") 
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A.l. VISOPLASTIC INTEGRATION ALGORITHM 

experiment.geLdisplacements( displacements) 

experiment.get_constraints( constraints) 

K = f(BT DvpB)dV 

internalF = J(BT u)dV 

!::J.uVP = material.dstressvp(F, u, ,.,;) 

FVP = j(BT!::J.uVP)dV 

rhs = R- internalF + FV P 

constrain K 

constrain r hs 

implicitV P = false 

else 

displacements = 0 

constraints = 0 

experiment.get_constraints( constraints) 

K = f(BT DeB)dV 

internalF = J(BT u)dV 

rhs = R - internalF 

constrain K 

constrain r hs with zero displacements 

end if 

d.Aa = K/rhs 
ld.6.al error = l.6.al 

converged=error < E 

!:l.a = !:l.a + d!:l.a 

!:l.e = Bda 

>..=I* cp(F) 

!:l.e v P = material. depsilon V P ( F, u, kappa, >..) 

!:l.u = D(!:l.e- !::J.eVP) 
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~gVP = material.depsilonvp(F, u, kappa) 

e = co+~c 

gVP = c6p + ~gVP 

u = uo + ~u 
uTR=u 

K = material.KappaF(ds,cvp) 

F = material.F(ds, u, K) 

until converged 

else 

c = c+ ~c 

U = CI'TR 

end if 

end while 

A.2 Return Map Integration Algorithm 

This section shows detailed pseudo code for the return map algorithm. 

ct = 0 

De= material.geLDe() 

R=O 

u=O 

c=O 

gVP = 0 

while ct + dt :::; T do 

ct = ct + dt 

CTTR = 0 

~c=O 

~u=O 
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A.2. RETURN MAP INTEGRATION ALGORITHM 

~a=O 

displacements = 0 

constraints = 0 

experiment.geLdisplacements( displacements) 

experiment.geLconstraints( constraints) 

K = f(BTDB)dV 

internalF = J(BT u)dV 

rhs = R- internalF 

constrain K 

constrain r hs using displacements 

~a= K\rhs 

~e=B~a 

~u=D~e 

uTR = u+~u 

K = material.KappaF(ds, gVP) 

F = material.F(ds, uTR, K) 

ifF > 0.0 then 

Uo=U 

~a=O 

error= 0 

converged = false 

implicitV P = true 

repeat 

if implicitV P then 

displacements = 0 

constraints = 0 

John McCutchan 
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Dvp = material.getJJvp(ds, dt, F, u, K) 

experiment.geLdisplacements( displacements) 

experiment.geLconstraints( constraints) 

K = j(BTDvpB)dV 

internalF = J (BTu )dV 

,tj,uVP = material.dstressvp(F, u, K) 

FV P = J(BT ,tj,uVP)dV 

rhs = R- internalF + FV P 

constrain K 

constrain r hs 

implicitV P = false 

else 

displacements = 0 

constraints = 0 

experiment.geLconstraints( constraints) 

K = j(BT DeB)dV 

internalF = J (BTu )dV 

rhs = R - internalF 

constrain K 

constrain rhs with zero displacements 

end if 

d,{j,a= Kfrhs 
ld.6.al 

error = l.6.al 

converged= error< E 

,{j,a= ,{j,a+d,{j,a 

,(j,e=B,{j,a 

rm_converged = false 

rm_error = 0.0 
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A.2. RETURN MAP INTEGRATION ALGORITHM 

>.. = 'Y * rp(F) 

f::j.gVP = material.depsilonvp(F, u, kappa,>..) 

1::1.u = D(l::1.e- f::1.eVP) 

e =eo+ 1::1.e 

f::1.eVP = material.depsilonvp(F, u, kappa,>..) 

gVP = e6p + f::j.gVP 

u = uo + 1::1.u 

K = material.KappaF(ds, evP) 

F = material.F(ds, sigma, K) 

repeat 

RMF = material.geLRM _F(dt, F, u, 1::1.e, >..) 

RMJ = material.get_RM_Jacobian(dt, F, kappa, u, >..) 

RMx=RMJ/(-RMF) 

8u = RMx1 .. 6 

8>.. = RMx7 

1::1.u = 1::1.u + 8u 

).. =).. + 8).. 

f::1.eVP = material.depsilonvp(F, u, kappa,>..) 

gVP = e6P + f::j.gVP 

u = uo + 1::1.u 

K = material.KappaF(ds, evP) 

F = material.F(ds, u, K) 

_MAX( 18ul a>..) rmerrar - IAul ' T 

Tfficonverged = rm_error < E 

until rmconverged 

until converged 

else 

e = e+l::1.e 

John McCutchan 

73 



74 

0' = O'TR 

end if 

end while 

APPENDIX A. NUMERICAL ALGORITHM PSEUDO CODE 
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Appendix B 

MatGenDSL 

This appendix details the DSL that MatGen accepts as user input when defining the func­

tions F, Q, y;,, cp and the constant 'Y· The DSL is presented in Backus-Naur form, extended 

with some regular expression operations. Some of the simulation variables and simulation 

variable macros are only available when used in a function that accepts them as arguments. 

For example, F takes as arguments the u vector and the value of y;, so the expression given 

for F should only expect the u and y;, derived variables and the user provided constants to 

have meaningful values. For a more detailed explanation of which variables are available 

to each function see Chapter 4. Each of the four functions is defined by a single expression. 

(expression)-+(number) I 

( (expression)) I 

(expression)"(expression) I 

(expression)* (expression) I 

(expression)/ (expression) I 

(expression)+ (expression) I 

(expression)- (expression) I 

- (expression) I 

sin( (expression)) I arcsin( (expression)) Ieos( (expression)) I arccos( (expression)) I 

In( (expression) )!log( (expression) )I 
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76 APPENDIX B. MATGEN DSL 

(simulation-variable) I (simulation-variable-macros) I (user-defined-constants) 

(number)-+[ (sign)] (digit)+[ (decimal-point) (digit)+] 

(sign)---++1-

(decimal-point)---+. 

(string)---+ (character)+ 

(character)--+a ••• ziA ..• Z 

(digit)--+Oili2I314ISI6I718I9 

(simulation-variable)---+ (simulation-variable-F) I (simulation-variable-Q) I (simulation­

variable-Kappa) I (simulation-variable-Phi) 

(simulation-variable-F)--+Kappal(simulation-variable-stress)l(simulation-variable­

stress-macros) 

(simulation-variable-Q)---+ (simulation-variable-stress) I (simulation-variable-stress-

macros) 

(simulation-variable-Kappa)--+(simulation-variable-vp-strain)j(simulation-variable­

vp-strain-macros) 

(simulation-variable-Phi)--+F 

(simulation-variable-stress)--+SigmaXXjSigmaYYjSigmaZZjSigmaXYjSigmaYZISigmaXZ 

(simulation-variable-stress-macros)--+SxxiSyyjSzzjSxyjSyzjSxzjSmjJ2IJ3lq 

(simulation-variable-vp-strain)---+ Epsilon VPXXIEpsilon VPYYjEpsilon VPZZjEpsilon VPXYI 

Epsilon VPYZjEpsilonVPXZ 

(simulation-variable-vp-strain-macros)--+EVPxxiEVPyyjEVPzziEVPxyiEVPyzjEVPxzjJ2EVPIE 

(user -defined-constants)---+ (string) 

Operators follow the following precedence: (), ", *• j, +. -. 
The extended BNF syntax includes: [ ... ] which denotes an optional portion of expression 

and + which denotes one or more repetitions. Bold signifies a terminal token. 
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Appendix C 

Sample Derivation of He for a Material 

Model 

This appendix serves two purposes. The first is to show how much manual labour is in­

volved in deriving the necessary mathematical expressions needed to implement a numer­

ical integration algorithm for a single material model. The second is to show that the final 

expression derived by an expert in the field using a variety of short cuts is (at least in some 

cases) the same expression that MatGen produces. To demonstrate both of these points 

the expression for He (See Equation 2.27) which is specific to the following material is 

derived: 

F=q 

Q=q 

<p=F 

~=0 

1 
"(=-

2r] 

Where q = ..f3J;, (effective stress), J2 = ~SijBij (second invariant of the deviatoric 

stress tensor) and sij is (J'ij - ~(J'kk(J'ij (deviatoric stress tensor). The subscripts here follow 
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78 APPENDIX C. SAMPLE DERIVATION OF HE FOR A MATERIAL MODEL 

the Einstein summation convention (Einsten, 1916). After some manipulation the expanded 

form of J2 looks as follows: 

The expanded form of sij are as follows: 

1 
(C.3) Syy = (ayy- 3(0"xx + O"yy + O"zz)) 

1 
(C.4) Szz = (azz- 3(0"xx + O"yy + O"zz)) 

(C.5) Bxy = (axy) 

(C.6) Sxz = (axz) 

(C.7) Syz = (ayz) 

In the later steps it will prove useful to recognize that, as the above shows, 

(C.8) Bkk = Bxx + Syy + Szz = 0 

The expression for the abstract version of He is (~~)T D(~). F and Q are part of the 

material model provided above and Dis defined fully in Equation 2.13. Because F and Q 

and thus ~~ and ~~ are identical, it is only necessary to derive ~~. 

The first step in the derivation of He is to derive~~· Using the index form, the expres­

sion looks as follows: 

8F 8q 
aaij aaij 

Using the chain rule the expression becomes: 
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g~~ can be found by again using the chain rule: 

--=----

Where 8ij is the Kronecker delta ( 8ij = 1 if i = j and 0 otherwise) 

The term 8ip8jp is equivelant to 8ii (because in this case i = j = p) so, 

But Skk = (sxx + Syy + Szz) = 0; therefore 

Therefore, 
aq v'3 3 
-- = --Sij = -Sij 
aO"ij 2vf]; 2q 

Which written in vector form is, 

aq 3 [ 
au = 2q Sxx Syy 8 zz 2sxy 2Syz 2Sxz ] T 

Therefore, 

aQ aF 3 [ ]r au = au = 2q Sxx Syy Szz 2Sxy 2Syz 2Sxz 

79 

Now that the subterms of He have been derived He can be constructed. To simplify the 

derivation, first let 

aQ 
vee= D au 
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Performing the multiplication, 

3E 
vee= 2dq 

(1- TJ)Bxx + 'f/Syy + 'f/Szz 

'f/Sxx + (1- TJ)Syy + 'f/Szz 

'f/Sxx + 'f/Syy + (1- TJ)Szz 

(1 - 2ry)sxy 

(1- 2ry)syz 

(1 - 2ry )sxz 

d = (1 + v)(1- 2v) 

vee can be simplified using the following equations: 

Szz = -(sxx + Syy) 

Bxx = -(Syy + Szz) 

Syy = -(sxx + Szz) 

Substituting the above equations into vee yields: 

3E [ 
vee= 2(1 + v)q Bxx 

But the shear modulus, G = 2c1!v) 
Therefore, 

Vee= 3~ [ Sxx Syy Szz Sxy Syz Sxz ]T 

(aF)T Now, He = au vee, therefore: 

3 3G [ ]T [ He= 2q q Bxx Syy Szz 2Sxy 2Syz 2Sxz Sxx Syy Szz Sxy Syz Sxz ] T 

Which after performing the dot product becomes, 
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3 3G ( 2 2 2 ( 2 2 2 ) ) He=--- Sxx + Syy + Szz + 2 Sxy + Syz + Sxz 2q q 

Given the definition of J2 in Equation C.l, He can be further simplified to, 

He= 3J2 3G 
q q 

Using J2 = .f, He can be simplified further. 

Finally, 

H _ 3q2 3G 
e- 3 q2 

He=3G 

81 

As stated at the beginning of the appendix, the second purpose of this appendix is 

to demonstrate that MatGen is also capable of deriving the same expression for He, but 

without requiring the expert knowledge nor the necessary short cuts and short hand notation 

that went into the above derivation. When MatGen is given a completely expanded form of 

the above F and Q functions, it does indeed derive the same final expression for He. 
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