HISC SYNTHESIS METHOD

SYNTHESIS METHOD FOR
HIERARCHICAL INTERFACE-BASED
SUPERVISORY CONTROL

By
PENGCHENG DAI, B.ENG.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software
McMaster University

© Copyright by Pengcheng Dai, April 2006

MASTER OF APPLIED SCIENCE(2006) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: Synthesis Method for
Hierarchical Interface-based Supervisory Control

AUTHOR: Pengcheng Dai, B.Eng.(Tianjin University)

SUPERVISOR: Dr. Ryan J. Leduc

NUMBER OF PAGES: viii, 209

i

Abstract

Hierarchical Interface-based Supervisory Control (HISC) decomposes a discrete-
event system (DES) into a high-level subsystem which communicates with n > 1
low-level subsystems, through separate interfaces which restrict the interaction of
the subsystems. It provides a set of local conditions that can be used to verify
global conditions such as nonblocking and controllability. As each clause of the
definition can be verified using a single subsystem, the complete system model
never needs to be stored in memory, offering potentially significant savings in
computational resources.

Currently, a designer must create the supervisors for a HISC system himself,
and then verify that they satisfy the HISC conditions. In this thesis, we develop
a synthesis method that respects the HISC hierarchical structure. We replace the
supervisor for each level by a corresponding specification DES. We then do a per
level synthesis to construct for each level a maximally permissive supervisor that
satisfies the corresponding HISC conditions.

We define a set of language based fixpoint operators and show that they com-
pute the required level-wise supremal languages. We then present algorithms that
implement the fixpoint operators. We present a complexity analysis for the al-
gorithms and show that they potentially offer significant improvement over the
monolithic approach.

A large manufacturing system example (estimated worst case state space on
the order of 10??) extended from the AIP example is discussed. A software tool for

synthesis and verification of HISC systems using our approach was also developed.

il

Acknowledgments

I am full of gratitude to my supervisor, Dr. R.J. Leduc. With his enthusiasm,
his inspiration, and his great efforts to explain complicated things clearly and
simply, he helped to make this work fun for me. Throughout my masters study
and research, he provided sound advice, good teaching and lots of good ideas. I
would have been lost without him and this work can never be done without his

full support and continuous encouragement.

v

Contents

Abstract iii
Acknowledgments iv
List of Figures viii
1 Introduction 1
1.1 Research Review 2
1.2 Thesis Overview 7
2 DES Overview 8
21 Language e 8
2.2 Automata 10
2.3 Supervisory Control L. 14
3 HISC Introduction 19
3.1 BasicSetting 19
3.2 Imterfaces 20
3.3 BasicNotation, 22
3.4 Interface Consistency Definition 24
3.5 Local Conditions for Global Nonblocking of the System 30
3.6 Local Conditions for Global Controllability of the System 31

4 Equivalence of HISC Definitions
4.1 Useful Propositions
4.2 Interface Consistency
4.3 Level-wise Nonblocking
4.4 Level-wise Controllability
4.5 Main Nonblocking and Controllability Results

5 HISC Synthesis Method
5.1 Synthesis Setting oo
5.2 High Level Synthesis
5.3 Low Level Synthesis

6 Algorithms
6.1 Common Data Structures and Algorithms
6.2 Verify Command-pair Interfaces
6.3 Level-wise Nonblocking and Controllable
6.4 Verify Interface Consistency
6.5 Interface Consistent Synthesis

7 AIP Example
7.1 Imtroduction

7.2 Modifying the AIP

8 Conclusions and Future Work
81 Conclusions

8.2 Future Work

Bibliography

vi

33
34
41
58
64
72

74
74
7
96

118
118
138
147
147
160

199
199
200

201

List of Figures

2.1 A Simple Recognizer L. 11
3.1 Imterface Block Diagram. 20
3.2 Two Tiered Structure of the System. 21
3.3 Example Interface. 22
3.4 Parallel Interface Block Diagram. 23
3.5 Two Tiered Structure of Parallel System 23
3.6 Plant and St}pervisor Subplant Decomposition 31
4.1 The Serial Systemn Extractions 43
6.1 Trie Illustration L 123
7.1 AIP System Structure ([30]) 186
7.2 Hierarchical Structure of AIP([30]) 187
7.3 Assembly Station Layout ([30]) 187
7.4 Transfer Unit Layout ([30]) 188
7.5 High Level DES List 190
7.6 PalletArvGateSenEL 2 AS3 ([30}) 190
7.7 QueryPalletAtTU.I ([30])) 190
7.8 ASStoreUpState 191
7.9 ManageTUL o 192
7.10 ManageTU2 193

vii

7.11 ManageTU3 e 194

712 EL3Cap 194
7.13 Interface for AS1 and AS2 195
7.14 DoRobotTasks.AS1 196
7.15 DoRobotTasks. AS2 197
7.16 Robot. AST 197
7.17 Robot. AS2 198

viii

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 1

Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify
that a composite system, based on a Cartesian product of subsystems, is (i) non-
blocking and (ii) controllable. The main obstacle to performing these tasks is the

combinatorial explosion of the product state space.

The Hierarchical Interface-based Supervisory Control(HISC) framework was
proposed by Leduc et al. in [30, 31, 32, 33, 29] to alleviate the state explosion
problem. The HISC approach decomposes a system into a high-level subsystem
which communicates with n > 1 parallel low-level subsystems through separate
interfaces that restrict the interaction of the subsystems. It provides a set of
local conditions that can be used to verify global conditions such as nonblocking
and controllability. As each clause of the definition can be verified using a single
subsystem, the complete system model never needs to be stored in memory, offering

potentially significant savings in computational resources.

Currently, a designer must create the supervisors for a HISC system himself,
and then verify that they satisfy the HISC conditions. If they do not, he must
modify them until they do satisfy the conditions. For a complex system, it may be

very non obvious how to achieve this. Also, the resulting supervisors may be more

1

Master’s Thesis - P. Dai McMaster - Computing and Software

restrictive than they need to be. In this thesis, we develop a synthesis method that
respects the HISC hierarchical structure. We replace the supervisor for each level
by a corresponding specification DES. We then do a per level synthesis to construct
for each level a maximally permissive supervisor that satisfies the corresponding
HISC conditions. We then develop a set of algorithms to implement these fixpoint
operators. As the synthesis will be done on a per level basis, the complete system
model never needs to be constructed. We thus expect to see similar savings in
computation as in the HISC verification method. This savings should be even more
pronounced as synthesis is an iterative process, thus typically requiring much more

computation.

1.1 Research Review

Researchers in supervisory control have recently begun to advocate interface based
architectural solutions to dealing with complexity [34, 35, 37, 20]." These ap-
proaches develop interfaces between components to provide structure that guaran-
tees global properties such as controllability [35, 37, 20] or nonblocking [34, 35, 37].
The most significant feature that distinguishes the HISC approach from [20] is the
results on nonblocking, although Endsley et al. later extended their work to include

a form of deadlock detection in [21].

In [19] interface automata are used to model software components and verify
their compatibility. This work has independently derived conditions for software
component interface compatibility that are similar to the HISC interface consis-
tency properties. In [19], automata representing component interfaces are directly
composed to produce the interface of the new composite component and a refine-
ment relation is developed to aid in refining a component interface specification

into an implementation. There is no explicit concept of control, though implic-

LThis literature review is based heavily upon the review in [32], with permission.

2

Master’s Thesis - P. Dai McMaster - Computing and Software

itly component inputs are considered uncontrollable and the component outputs
are effectively controllable. In contrast HISC uses an interface automaton that
mediates communication between the components in order to decompose the veri-
fication of global nonblocking and controllability into “local” checks on each of the

components and their interface.

Related work by Fabian et al. [23, 24] applied object-oriented concepts in the
design of DES control software, and extended supervisory control theory to the
nondeterministic supervisors which that approach required. Later, Shayman et
al. [53] introduced the concept of control and observation masks to encapsulate
process logic. These approaches have two disadvantages relative to interface based
supervisory control: (i) they do not address issues related to nonblocking and (ii)
they require a more complex mathematical setting than the deterministic automata
with synchronous product operator that is commonly employed in supervisory
control theory. By using interface DES to regulate subsystem interaction, we are

able to impose architecture without change to the standard DES setting.

One of the earliest and most useful methods designed to handle the combina-
torial explosion of the product state space that results from systems composed of
interacting subsystems is modular control [65, 18, 48, 56]. This method involves
designing multiple supervisors as opposed to a centralized supervisor, each super-
visor implementing a portion of the control specification. While the method scales
well in practice for the verification of controllability (see e.g. [3, 38]), verifying

nonblocking of the closed loop system is still a problem.

In Decentralized control [6, 40, 51, 52, 63, 66, 4], local supervisors, with only
partial observations of the plant, are designed as a group to implement a global
specification. While this is an effective method to design distributed controllers,
it still requires the computation of the synchronous product of all of the plant
subcomponents (the composite plant) and thus offers no computational savings

over a centralized solution.

Master’s Thesis - P. Dai McMaster - Computing and Software

One way to improve the scalability of modular and decentralized schemes is to
exploit the existing architecture of the system. In [61] the concept of a specifica-
tion that is separable over the component subsystems is introduced and shown to
be necessary and sufficient for a decentralized control scheme to exist that opti-
mally meets the specification. The work does not consider nonblocking supervision.
These results are extended to a more general architecture in [1] that deals with
nonblocking by detecting potential blocking states locally and then backtracking
globally to determine their reachability. The structure associated with the event
sets of subsystems is exploited in [48] to obtain a reduction in complexity for the
non-conflicting check of modular control. Similarly the standard controllability
definition has been refined and localized in [2] to check on a per subplant basis

ounly those uncontrollable events that can occur locally.

Another approach is embodied by Vector DES (VDES) [65, 15, 39] and Petri
Nets (PN) [44, 70, 71]. These state based methods make use of the algebraic
regularity inherent in certain systems. They are used when the state of the system
can be represented as a vector of integers, whose components are incremented or
decremented by events. These methods are primarily useful for systems with a
high degree of regularity that lend themselves to vector representation. However,
the VDES/PN models are not well adapted to the synthesis or verification of
nonblocking controllers without first converting the models to automata by means

of the reachability graph [58].

A promising approach is the development of a multi-level hierarchy. In order
to aid in classification, we make a distinction between structural multi-level hier-
archies with explicit mechanisms (modeling constructs) to facilitate hierarchy (e.g.
[9, 26, 60, 41]) as opposed to aggregate (bottom up) multi-level hierarchies which we
will discuss later. In structural multi-level hierarchies, plants and supervisors are
modeled as multi-level structures similar to automata, except that certain states

at a given level can be expanded into a more detailed lower level model. Although

4

Master’s Thesis - . Dai McMaster - Computing and Software

[60] allowed a system to be represented hierarchically using Cartesian products
(AND superstates) or disjoint unions (OR superstates), AND states had to be
converted to OR states using the synchronous product before computations could
be effectively performed. Similarly, [26] was restricted to using only OR states.
Both approaches could verify controllability, but did not address nonblocking. Re-
cently, these limitations have been overcome by Ma et al. [41, 42] who, with the
use of binary decision diagrams (BDDs) [10], has been able to verify controllability

and nonblocking for a system on the order of 10 states.

The next approach of interest is the model aggregation methods [5, 12, 14,
16, 22, 46, 47, 54, 69, 62, 57]. In these approaches, aggregate models are derived
from low level models by using either state-based or language-based aggregation
methods. Although this approach can be effective in constructing high level models

with reduced state spaces, they have some drawbacks:

e In hierarchical methods such as [69, 62, 46|, there is no direct connection
between control actions at the high level, and at lower levels. To create an
implementation, a control action at the high-level may need to be “inter-

preted” as equivalent control action(s) at the low level.

e Aggregate models must be constructed sequentially from the bottom up,
starting from the lowest level; thus a given level cannot be constructed and
verified in parallel with the levels below it, making a distributed design pro-

cess difficult.

e The DES methods provide necessary and sufficient conditions for checking
controllability, and in many cases nonblocking, using the aggregate models.
While this is desirable, it causes the individual levels to be tightly coupled,;
a change made to the lowest level may require that all aggregate models
and results have to be re-evaluated. In contrast, the sufficient conditions

of interface based supervisory control that we develop allow us to design

5

Master’s Thesis - P. Dai McMaster - Computing and Software

and verify levels independently, ensuring that a change to one level of the
hierarchy will not impact the others. This independence comes at the cost

of possible false negatives forcing an overly conservative design.

We also note the related work in hybrid systems of Moor et al. [45] who
have developed a multi-level aggregation approach inspired by [69, 62]. This new
approach is different as they use an input/output structure to represent both time
and event driven system dynamics, allowing them to verify both controllability

and nonblocking results.

In contrast to the majority of approaches which apply mathematical techniques
to produce aggregate models of an existing system, our method of restricting com-
ponent interaction to well defined interfaces provides a design heuristic to guarantee

scalability by construction.

The last approach we discuss is the use of symbolic methods to represent the
transition structures underlying DES [27]. Zhang et al. [67, 68] as well as Vahidi et
al [59] have developed algorithms that use integer decision diagrams (an extension
of BDDs) to verify centralized DES systems on the order of 10% states. That work
builds on results of symbolic model checking [11, 43] that have successfully used

BDDs to handle systems of similar size.

While this thesis was being written, research work on using binary decision
diagrams to verify HISC properties was carried on by Song [55] independently.
This built upon the work in this thesis, allowing the HISC method to be applied

to even larger systems.

Finally we note that the interface DES that support the HISC system ar-
chitecture differ from the “interface processes” employed in compositional model
checking [7]. In the latter, an interface process is an aggregate model that is used
as a replacement for a particular subsystem to produce a reduced state model that

facilitates verification. For example, let P;,i = 1,2 be subsystem models and ¥

6

Master’s Thesis - P. Dai McMaster - Computing and Software

be the temporal logic formula of interest. In order to verify that Py || Py =4 by
compositional model checking, Ps might be replaced by an aggregate “interface

process” Aj such that if Py || Ag =+ then Py || P2 | 4.

1.2 Thesis Overview

The thesis is organized as follows. Chapter 1 gives an introduction to the back-
ground of this work and outlines the structure of this thesis. Chapter 2 gives an
introduction to the basics of discrete event system and the supervisory control

theory.

Chapter 3 introduces the hierarchical interface-based supervisory control theory
and definitions. We discuss a new set of definitions, first introduced in [36], that
are more concise and easier to implement than the original ones. In Chapter 4, we

prove that these new definitions are equivalent to the original definitions given in

30, 32, 33).

Chapter 5 defines the synthesis method for high and low level subsystems, and
a set of fixpoint operators that implement the synthesis method. We prove they

compute the required level-wise supremal languages.

In Chapter 6, we present our algorithms to verify the interface consistency
properties, and implement the fixpoint operators for synthesis. For each algorithm

we perform a complexity analysis.

In Chapter 7, We rework the AIP example from [29, 30, 36] and apply our

software to it. Finally we conclude our work in Chapter 8.

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 2

DES Overview

RW supervisory control theory [49, 64, 65] provides a framework to model and
control the behavior of Discrete Event Systems, and it is the basis of this work. In
this chapter, we will give a brief introduction of the theory, including concepts of
languages, automata, supervisory control and a few common operators over DES

such as meet, sync and supcon.

2.1 Language

Let alphabet ¥ be a non-empty finite set of distinct symbols, such as o, 3, and
so on. A string is a finite symbol sequence over ¥, such as aaf. We denote the
empty string (a string with no symbols) as € and the set of all non-empty strings

over ¥ as ©F. We then extend this to include € as below
v ={cjuxt.

We say that L is a language over ¥ if L C X* and we denote the set of all
sublanguages of X* as Pwr(¥X*) We then have that (Pwr(2*), C) is a poset, i.e., the
relation C is reflexive, transitive and antisymmetric on Pwr(¥*). The operations

N and U of any two elements in Pwr(X*) always exists, thus (Pwr(3*),N,U) is a

8

Master’s Thesis - P. Dai McMaster - Computing and Software

lattice. When there always exists a greatest lower bound and least upper bound

for each subset in the lattice, we say the lattice is complete.

Let (X, <) be a poset. We say a function f : X — X is monotone if

(Vz,2' € X)z <2’ = f(z) < f(z)

We say an element x € X is a fizpoint of f if f(x) = x. Further, we say z is
the greatest fizrpoint of f if

We will also use the notation f*(z), 7 € {0,1,2,...}, to mean 7 applications of

f in a row with f°(z) := z. ie. fl(z) = f(z), f*(z) = f(f(z)) and so on.

Let t,s € X*. We say that ¢ is a prefiz of s and write t < s, if s = tu for some
" u € Y*. We also say that ¢ can be extended to s. We can now define the extension

operator.

Definition 2.1.1 For language L. C ¥*, we define the function Exty, : Pur(2*) —
Pwr(Z¥), for arbitrary K € Pwr(¥*) as follows:

Extr(K):={te€ L|s <t for some s € K}

In essence, Ext; (K) is the set of all strings in L that have prefixes in K. If we

have K C L, we would then have K C Ext;(K) as s < s.

The prefiz closure of language L, denoted L is the language consisting of all

prefixes of strings of L, and is defined as follows:
L = {t € =*|t < s for some s € L}

We say that L is closed if L = L.

Master’s Thesis - P. Dai McMaster - Computing and Software

An equivalence relation E C X x X is a binary relation over a non-empty set

X, such that is satisfies:

Reflexive :(Vx € X)zEx
Symmetric :(Va, 2’ € X)zEx = «'Ex

Transitive :(Vx, 2’ 2" € X e Ex' N £’ Ex" = v Ez”
2 b

For z € X, the coset of x with respect to equivalence relation F, denoted by [z],

is the set of all elements in X that are equivalent to x:
[z] := {2’ € X|z'Ex}

Two such cosets [z], [y] are either identical or disjoint.

Let L C ¥* be an arbitrary language, and let s,t € 3*. The Nerode equivalence

relation over ¥ on L is defined as:
s=ptif VueX)sue Lo tuel

We write ||L|| as the cardinality of the set of all cosets of the Nerode equivalence
relation on L. We say a language L is regular if ||L|| < co. All languages in this

report are regular unless otherwise stated.

Example 2.1.2 Let ¥ = {o,8}L,L = {ea}. Then we have cosets
{e}, {a}, {af{a, B}, B{e, B}*}, thus we have ||L| = 3. O

2.2 Automata

For a regular language L, since we have finite number of Nerode cosets, we can use

a finite state machine to represent this language. A recognizer over L is a 5-tuple

R= (X,E,C,:co,Xm)

10

Master’s Thesis - P. Dai McMaster - Computing and Software

in which X is the state set, z, is the initial state, X,, C X is the set of marker
states, and ¢ : X x ¥ — X is the transition function. The function (is extended
to

C: X x¥ =X
in the standard way by induction on string length.

The language L recognized by R is defined to be
L= {s e Z'|{2,,8) € Xy}

For string s € (X* — L), ((z,, s) leads to a dump state.

In a recognizer, we use a small circle to represent a state and we assign a name
for each state such s0. s1, and so on. The initial state has a thicker border and all
marker states are indicated by a gray filled circle. The dump state is marked with
a -+ sign. A transition is indicated by an arrow from its source state leading to its
target state, labelled by an event in ¥. If the arrow is labelled by multiple events,

then it represents a transition for each event.

Example 2.2.1 For language L given in example 2.1.2, the recognizer is shown
in Figure 2.1. In this recognizer, state sO is the initial state and states sO and sl

are marker states. State s2 is the dump state. O

Figure 2.1: A Simple Recognizer

When every state in the recognizer corresponds to a unique Nerode equivalent class

of L, we say such a recognizer is canonical.

11

Master’s Thesis - P. Dai McMaster - Computing and Software

Let L C ¥* be an arbitrary language. For a string s € L, the Fligy, () operator

is defined to be the set of events that can immediately follow s in L:

Elig; (s) = {o|so € L}

We will represent DES using generators. A generator G is a 5-tuple
G= (Y, 2,6, Yo, Ym)

where ¥ is the event sct, Y # 0 is the state sct, v, € Y is the initial state, ¥,, C Y
is set of marker states, and our transition function d : ¥ x ¥ — Y is a partial
function. We usc the notation d(y, o)! to mean that 6(y, o) is defined. We extend

4 to the partial function § : Y x 3* — Y in the standard way.

For a generator G, the language
Lin(G):={s € X" | §(yo, s)! N 6(yo,5) € Yy}

is called the marked behavior or marked language of G.

The language
L(G):={s € Z" | §(yo, s)!}

is called the closed behavior of G. L(G) contains all strings that G can generate.

A state is reachable if there is a path from y, to it. We say the state is
coreachable if there is a path from it to any marked state. We say a generator G
is reachable if all of its states are reachable. We say G is coreachable if all of its
states are coreachable. We say G is nonblocking if every reachable state of G is

coreachable. For a nonblocking generator, we have

If a generator is both reachable and coreachable, we say it’s ¢rim. A trim generator

is always nonblocking, but the reverse doesn’t always hold.

12

Master’s Thesis - P. Dai McMaster - Computing and Software

Let 3y C X. We define a natural projection P : £* — ¥} according to

Pe) = ¢
P(o) = ¢ if o ¢ ¥
P(o) =0 if o €%,
P(so) = P(s)P(0) seXoey

For any string s € ¥*, P(s) filters out all events that belong to ¥ —¥,. The inverse
image function of P is P~ : Pwr(Z}) — Pwr(Z*). For L C X}, we get

P~YL):={s€ Z*| P(s) € L}.

Let B, : ¥* — 37,7 = 1, 2, be natural projections. Let Ly C ¥, L, C ¥5. We

define the synchronous product of Ly, Ly, denoted L1|| Ly, according to
Li||Ly = Pr (L) 0 Py (o)

thus s € L1I|L2 iff pl(S) el A P2(S) € Ls.

Example 2.2.2 Let ¥ = {a, 3,7}, X1 = {a, 8}, 2 = {a,v}, B : ¥ —
i = 1,2, and Ly = {afB}, Ly = {av}. Then we have P[Y (L) =
{(v*ay* By}, Py (L) = {87 af™vB"}, and we get Li||Ly = {afy, a8}, 0

When we synchronize two generators, we get a new generator which has the
synchronized languages as its languages. For generators Gy = (Y1, X4, 01, Yo,1, Y1)
and Gg = (Y2, 2,02, Y02, Y 2), the synchronous product of the two DES, denoted
G = G4||Gy, is the reachable DES with the properties

L(G) =L(G1)|L(G>)
Lm(G) :LM(GI) “Lm(GZ)

and with event set ¥ = X, U X,.

13

Master’s Thesis - P. Dai McMaster - Computing and Software

When two generators has the same event set, the synchronous product op-
eration turns into the meet (intersection) operation. The TCT procedure meet
implements the meet operation on two generators. Let G = meet(G;, G3), we

then get a reachable DES with the properties

L(G) =L(Gy) N L(Gy)
Lin(G) =Ln(G1) N Lin(Ga)

For two arbitrary languages L, Lo, we say they are nonconflicting if

IiNnL, = LinL;

Example 2.2.3 Let £ = {o, 0,7}, L1 = {af}, Lo = {ay}. We have

LlnLg = ?)

#L_IQE = {e,a,aﬁ}ﬂ{e,a,a'y} :{6,04}

thus Ly and Ly are conflicting. O

2.3 Supervisory Control

In supervisory control theory, control action is achieved by disabling certain events
to prevent some unwanted events from happening. Events in an alphabet ¥ are
divided into two categories,

=3 U%X%,

where the disjoint subsets 2. and %, comprise respectively the controllable events
and the uncontrollable events. A controllable event works like a switch which
can be either turned on or off. An uncontrollable event can not be blocked from
happening, i.e., if an uncontrollable event is defined at a certain state, there is no

chance for us to stop it from happening if the current work flow reaches that state.

14

Master’s Thesis - P. Dai McMaster - Computing and Software

A control pattern is a subset of ¥ that contains all uncontrollable events. We

introduce the set of all control patterns:

['={yly € Pur(EZ) A%, C v}

A supervisory control for G is any map
V:L(G)->T

The pair (G, V) will be written as V/G, to suggest G under the supervision of
V’. The closed behavior of V/G is defined to be the language L(V/G) C L(G)

described as follows:

1. e€ L(V/G)
2. se L(V/G)Ao e V(s)Aso € L(G) = so € L(V/G)

3. No other strings belong to L(V/G).

The marked behavior of V/G is

Lm(v/G) = L(V/G) N Lm(G)

With respect to G, we say that V is nonblocking if

Lin(V/G) = L(V/G)

With G understood, we use the abbreviation NSC to refer to a nonblocking

supervisory control.

A useful generalization of a NSC is to allow the supervisory control to also
include marking. Let A C L,,(G). We define a marking nonblocking supervisory
control (MNSC) for the pair (M, G) as a map V : L(G) — I' as before, with the
difference that we now define the marked behavior of V/G as

La(V/G) = L(V/G)N M.

15

Master’s Thesis - IP. Dai McMaster - Computing and Software

A language K C X* is said to be controllable(with respect to G) if

(Vs.t)se K AteX, A stc L(G)=>stc K

For a more concise statement, we use the following notation. For S C ¥* and
Y, C %, let S%, denote the set of strings of form so with s € S and ¢ € ¥,. Then
K is controllable iff
KY,NL(G)C K

Let G be a plant DES defined over alphabet X, and S be a supervisor DES
defined over alphabet ¥g. We will use the following notation:
¥:=3%¢ U ¥g
Pe X" - Ep
Pg :3* — 5%
Le: = P5'(L(G))
Ls:= Pg'(L(S))

We say that a supervisor S is controllable for G if
(Vs € Lg N Lg)Elig; .(s) N, C Elig;(s) (2.1)
We define the closed loop behavior, denoted CL, of our system to be
CL := S||G

This is essentially the expected behavior of the plant under the control of our

supervisor.

It is clear that the empty set §, L(G) and X* are always controllable with
respect to G.

Let K C L C £*. We say the language K is L-Closed if K = K N L. The

following two theorems are from [65].

16

Master’s Thesis - P. Dai McMaster - Computing and Software

Theorem 1 Let K C L,(G),K # 0. There exists a nonblocking supervisory
control V' for G such that L,(V/G) = K iff

1. K s controllable with respect to G, and

2. K is Ly (G)-closed. 0
We now give the counterpart to Theorem 1 for MNSC.

Theorem 2 Let K C L,,,(G), K # 0. There exists a marking nonblocking super-
visory control V for (K, G) such that

La(V/G) = K

iff K is controllable with respect to G. O

In this thesis, we will only be dealing with marking nonblocking supervisory con-

trols.

In order to implement the supervision in the supervisory control framework,
one way is to design the supervisor directly. In this approach, the designer needs to
make sure the supervisor is controllable with respect to the plant and satisfies the
control specifications. The other way to do this is based on constructing specifica-
tion DES which are generally not controllable with respect to the plant, and use
software to automatically compute a controllable supervisor from the given DES
specifications and the plant model. Usually the specification DES are much easier
to design than supervisors, since the designer only needs to focus on specifying
what they want the system to do, instead of the details of how to make the system
do what they want.

Let G be a plant DES with ¥ = ¥.UX, and E C ¥* be a specification language
over X. We introduce the set of all sublanguages of E that are controllable with

respect to G:

C(E)={KCE

K is controllable with respect to G}

17

Master’s Thesis - P. Dai McMaster - Computing and Software

It is shown in [65] that the the supremal element, denoted supC(E), always

exists and equals :

supC(E) = U K
KeC(E)

TCT provides a procedure supcon to calculate the supremal controllable element
of a specification DES for given plant DES. It starts from the meet of the two DES
and trims off non-controllable and blocking states until the result is controllable
for the plant and nonblocking. Since we are dealing with regular languages and
finite state machines only, this process is guaranteed to stop after finite number of

iterations.

18

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 3

HISC Introduction

For a detailed introduction to HISC, we refer you to [30]. In this chapter, we will
introduce to you the primary definitions and notation, but will not go into depth
about their development and interpretation. In this thesis, we use use the HISC
definitions from [29], which are a slightly modified set of definitions from those of
[30]. In Chapter 4, we explain our rationale for this, and we present proofs that

these definitions are equivalent to the originals.

3.1 Basic Setting

In HISC there is a master-slave relationship.! A high level subsystem sends a
command to a particular low level subsystem, which then performs the indicated
task and returns an answer. Figure 3.1 shows conceptually the structure and
information flow of the system in the special case when there is only a single low
level system. Communication between the high level system and the low level
system occurs in a serial fashion. A request from the high level is followed by

an answer from the low level before the next request is issued to the low level

"Most of this chapter originally appeared as part of [36] and is reused with permission. Defi-
nition 3.4.2 and Lemuina | are new.

19

Master’s Thesis - P. Dai McMaster - Computing and Software

subsystem. This style of interaction is enforced by an interface that mediates
communication between the two subsystems. All system components, including
the interface, are modeled as automata as shown in Fig. 3.2 where our flat system
would be G := Ggl|G/||GL. By flat system we mean the equivalent DES if we

ignored the interface structure.

B

Interface
3 3
~R ~A

Figure 3.1: Interface Block Diagram.

In order to restrict information flow and decouple the subsystems, the event
set X is split into four disjoint alphabets: g, ¥, X g, and X 4. The events in Xy
are high level events and the events in X; low level events as these events appear
only in the high level and low level models, Gy and Gp, respectively. We then
have Gy defined over LgUTpUS 4 and G, defined over Z,UXpUS 4.

3.2 Interfaces

As the interface automaton Gy is only concerned with communication between the

two subsystems, it is defined over the events that are common to both levels of

20

Master’s Thesis - P. Dai McMaster - Computing and Software

the hierarchy, ¥ pUX 4, which are collectively known as the set of interface events,
denoted ¥;. The events in Yg, called request events, represent commands sent
from the high level subsystem to the low level subsystem. The events in X4 are
answer events and represent the low level subsystem'’s responses to the request
events. In order to enforce the serialization of requests and answers, we restrict

the interface to the subclass of command-pair interfaces defined below.

Definition 3.2.1 A DES G; = (X, EgUX4, £, T, X) is a command-pair in-

terface if:

(A) L(Gy) C (Sp2a), and

(B) Ln(Gr) = (Zr-Za)* N L(Gr)

High level

Low level
G

Figure 3.2: Two Tiered Structure of the System.

Condition (A) says that request events and answer events must alternate
(i.e. serialization of requests) while condition (B) states that every answered
request results in a marked state. An example command pair interface with

Yrpi={plt=1,2,3} and X4 := {ey|i = 1,..., 7} is shown in Fig. 3.3.

21

Master’s Thesis - P. Dai McMaster - Computing and Software

Figure 3.3: Example Interface.

3.3 Basic Notation

We now generalize the above “serial case” where there is a single low level system,
to the parallel case where there are n low level subsystems. In this case we say
that the system is an nth degree parallel system. Figure 3.4 shows conceptually
the structure and flow of information. The single high level subsystem, interacts
with n > 1 independent low level subsystems, communicating with each low level

subsystem in parallel through a separate interface.

As in the serial case, to restrict the flow of information at the interface, we
partition the system alphabet into pairwise disjoint alphabets:
%= S U | (80,085,084 (3.1)
j=lm
The high level subsystem is modeled by DES Gpg (defined over event set
YaUUjeqr...ny[(BR,UE4,])). For j € {1,...,n}, the 4% low level subsystem is
modeled by DES Gy, (defined over event set ¥z, UXp UX,,), and the 4t in-
terface by DES Gy, (defined over event set 2 R Ux A,)~ The overall system has
the structure shown in Fig. 3.5. Thus our flat system is G = Gyl|G||GL,]|
A NGLIGL,-

22

Master’s Thesis - P. Dai McMaster - Computing and Software

High Level ZH

Figure 3.4: Parallel Interface Block Diagram.

G, High level

Gll

Low Leyel ,
Gy,

Low Level |
GLn

Figure 3.5: Two Tiered Structure of Parallel System

23

Master’s Thesis - P. Dai McMaster - Computing and Software

To simplify notation in our exposition, we bring in the following event sets,
natural projections, and languages. For the remainder of this section, the index j
has range {1,...,n}.

E]j Z:ERjUEAj, P[].IE*—>ZZ_
EILj = ELJ- UE]J, PILj DI E?Lj
ZIH = EH U U Elk P]HIE*—'>2;H
M= Piy(L(Gr)), Mm = Pp(La(Gy)) CZ*
L; =P (L(GL)), Lm, = P, (Ln(Gy,)) € T
I = PLYI(GL)), Imy = P; N (Lm(Gy,)) € &°

3.4 Interface Consistency Definition

We now present the properties that the system must satisfy to ensure that it

interacts with the interfaces correctly.

Definition 3.4.1 The nth degree (n > 1) parallel interface system composed of
DES Gy,Gyp,, Gr,,..., Gy, Gy, is interface consistent with respect to the alpha-
bet partition given by (3.1), if for all 3 € {1,...,n}, the following conditions are
satisfied:

Multi-level Properties

1. The event set of Gy is ¥y, and the event set of Gr; is YrL,-

2. Gy, is a command-pair interface.

High Level Property

24

Master’s Thesis - P. Dai McMaster - Computing and Software

(vseHN () Z) Eligr,(s) N Ta, C Elig (s)
k:l,...,n anQjIk

Low Level Properties

4. (Vs € L;NT;) Eligr (s) N g, C Elig, (s)
5. (\V/S S Z*.ER]. N [:j an)
Elige, ng,(sX1,) N Ta, = Eligr (s) N T, where
Eligf.,-nfj(szz,) = U Eligﬁjmlj(‘Sl)
lexy
5 €Ly, = (dl e E’;J) sl € Ly, Ny,

The first two properties assert that the system has the required basic architecture,
with the high level and low level subsystems only sharing request and answer events
and the interaction between the levels mediated by interfaces. This provides a form
of information hiding as it restricts the high level subsystem from knowing (and

directly affecting) internal details of the low level subsystems and vice versa.

The High level property (3) asserts that when Gp is synchronized with all of
the other subsystem interfaces G, k # j, it must always accept an answer event if
the event is eligible in the interface Gy,. In other words, the high level subsystem
is forbidden to assume more about when an answer event can occur than what is
provided by the interface. Similarly, low level property (4) asserts that the low
level subsystem (G LJ) must always accept a request event if the event is eligible
in its interface G;;. We note that both (3) and (4) can be computed using the

standard algorithms for controllability.

Condition (5) states that immediately after a request event (some p € Xg;) has
occurred, and before it is followed by any low level events in Xy, there exist one

or more paths via strings in sz to each answer event that G, says can follow the

25

Master’s Thesis - P. Dai McMaster - Computing and Software

request event. Finally, (6) asserts that every string marked by the interface Gy,
and accepted by the low level subsystem, can be extended by a low level string to

a string marked by Gyp,.

We now give an equivalent definition for interface consistency that will be useful
later when we examine synthesis in the HISC setting. This new definition is only
used to make the definitions for synthesis easier and clearer. The only thing that
has changed is that point 5 is given in a new formulation. The new point 5 is
not exactly equal to the old one, but when used in conjunction with point 4, it is

equivalent to the original point 5.

Definition 3.4.2 The nth degree (n > 1) parallel interface system composed of
DES Gy, Gy, Gi,,..., Gy, Gy, is interface consistent with respect to the alpha-
bet partition given by (3.1), if for all j € {1,...,n}, the following conditions are
satisfied:

Multi-level Properties

1. The event set of Gy is Xy, and the event set of Gp; 1s ¥y,

2. Gy, is a command-pair interface.

High Level Property

(VseHN ﬂ 1y) Eligr,(s) N Xa; C Elig (s)
k=1,..,n HﬂijIk

Low Level Properties

4. (Ys € L;NTI;) Eligr (s) N Zg; C Elige (s)

5. (VS S Ej ﬂIJ)(Vp S ER])(VO(S ZA].)
spa € Z; = (A € X})spla € L;NT;

26

Master’s Thesis - P. Dai McMaster - Computing and Software

$€Im, = (A e€X]) sl €L NIy,

We now prove that Definition 3.4.1 and Definition 3.4.2 are equivalent.

Lemma 1 The nt? degree (n > 1) parallel interface system composed of DES
Gu, Gy, G,,...,Gy,, GL,, satisfies Definition 3.4.1 with respect to the alphabet
partition given by (3.1), if and only if the system satisfies Definition 3.4.2 with
respect to the alphabet partition given by (3.1).

Proof We will show that Definition 3.4.1 < Definition 3.4.2.

As the only difference between Definition 3.4.1 and Definition 3.4.2 is their
respective point 5, it is sufficient to show that each definition implies that point 5

of the other definition is satisfied.

Let j e {1,...,n}.

(T) Show Definition 3.4.1 = Definition 3.4.2.

We assume the parallel system satisfies Definition 3.4.1.

We will now show this implies the systern satisfies point 5 of Definition 3.4.2.

To show that point 5 of Definition 3.4.2 is satisfied, we need to show:
(Vs € L;NI;)(Vp € Zp)(Va € Ey,) spa€Z; = (A € X}) spla € LN

Let s € £L;NT;, p € Lk, and o € Yy, (1)
Assume spa € Z; (2)
We will now show this implies: (3 € £}) spla € £; NZ;

As we wish to apply point 5 of Definition 3.4.1, we need to show that sp € £;.

As we have spa € T; by (2), we can conclude that sp € Z; as Z; is closed.

27

Master’s Thesis - P, Dai McMaster - Computing and Software

= p € Eligg, (s)
= sp € L; by (1) and point 4 of Definition 3.4.1.

By point 5 of Definition 3.4.1, we can now conclude:

Eligs n7,(sp%7,) N Xa, = Eligy,(sp) N Xg,
= « € Bligg, n7,(spX,), by (2).
= (3l € £})spla € L N T, as required.

Part I complete.

(IT) Show Definition 3.4.2 = Definition 3.4.1.

We assume the parallel system satisfies Definition 3.4.2.

We will now show this implies the system satisfies point 5 of Definition 3.4.1.

To show that point 5 of Definition 3.4.1 is satisfied, we need to show:

(Vs € £*.Xg, N L;NI;) Elig, n7,(sE1,) N T4, = Eligg (s) N Ty,
Let s € E*.ER]. N ,Cj an.
We will now show that: Elig, 7 (s£7) N E4, = Eligg (s) N Ta,

As Blig, 7 (s¥])) = UleEZ] Elig; ~z,(sl), it is sufficient to show:

U Bligg,ng,(s)) N Sa, = Eligz (s) N X4,

les;
We will show: C and D.

(I1.a) We first show: Ues; Elige az,(st) N X4, € Eligy (s) N 24,
Let a € UleE*Lj Eligy z,(sl) N Ea,

28

(3)

(4)

Master’s Thesis - P. Dai McMaster - Computing and Software
= (A eX})sla € L;NI;
= sla € Ij

As Pj;(sla) = Pr,(sa) by definition of P, we can apply Proposition 20 Point (e)
of [30] and conclude:

sa €75
= o € Eligz (s) N T4, by (4), as required.
(IL.b) Show: Eligz (s) N X4, C UleE*Lj Elig, 7 (s) Ny,
Let o € Eligy (s) N Xy, (5)
= sa € Z; (6)
We will now show this implies: « € Ulezzj Elig; gz, (sl) N Zy,

We first note that s € £*.Xg, N L; NZ; by (3) implies:
(I €eT*)(peLg,) sp=s (7

= s'pa € Z; by (6), and s’ € L; NZ; as Z; is closed.

We can now conclude by (5) and point 5 of Definition 3.4.2, that:
(A exy)splae £;NI;

= (A € X})) sla € L;NT;, by (7).

=>a€ U,Ezz‘ Elig, 7 (sl) N Xa,, as required.
3

By Part Il.a and IL.b, we can conclude:
UZGE*L], Eligﬁamzj(sl) N 4, = Eligy, (5) N Ba,.

Part II complete.

Master’s Thesis - P. Dai McMaster - Computing and Software

By Part I and Part II, we can conclude:
Definition 3.4.1 < Definition 3.4.2

3.5 Local Conditions for Global Nonblocking of

the System

We now provide the conditions that the subsystems and their interface(s) must
satisfy in addition to the interface consistency properties, if the system G is to be

nounblocking.

Definition 3.5.1 The nth degree (n > 1) parallel interface system composed of
DES Gy, Gy, Gr,,...,Gy,, G, is said to be level-wise nonblocking if the fol-

lowing conditions are satisfied:

(1) nonblocking at the high level:

HnO () Zme=HN [] Tt

k=1,..n k=1,....,n
(II) nonblocking at the low level: for all j € {1,...,n},
Lo, NI, = L3NNI
The above definition can be paraphrased as saying that for each component sub-

system synchronized with its interface(s), every reachable state must have a path

to a state that is marked by both the subsystem and its interface(s).

30

Master’s Thesis - P. Dai McMaster - Computing and Software

3.6 Local Conditions for Global Controllability

of the System

The representation of the system given in Fig. 3.5 simplifies notation when veri-
fying nonblocking by ignoring the distinction between plants and supervisors. For
controllability, we need to split the subsystems into their plant and supervisor
components, as shown in Fig. 3.6 for the serial case. To do this, we define the high
level plant to be G%,, and the high level supervisor to be Sy (both defined over
event set Xyg). Similarly, the jth low level plant and supervisor are G’,’Jj and Sp,
(defined over ¥y,). The high level subsystem and the jth low level subsystem are
then Gy := G}||Sy and G, = G’inSLN respectively.

G, =G| S,
High level

G
>

Low level

G, S, ;

o= GpL H S,

Figure 3.6: Plant and Supervisor Subplant Decomposition

We can now define our flat supervisor and plant as well as some useful languages

31

Master’s Thesis - P. Dai McMaster - Computing and Software

as follows:

Plant := Gi||G] [|...[|GL, Sup:=S8gl[Sp,l...[ISt.lIGLIl. .-G,
M = Py (L(Gh)), Su = P (L(Sn)), €3
[’? = PI_Llj(L(GZv))a SL] = PI—Llj (L(SLJ'))’ cxr
For the controllability requirements at each level, we adopt the standard parti-
tion ¥ = ¥, U X, splitting our alphabet into uncontrollable and controllable events.

Note that this partition may, in general, be independent of the partition (3.1).

Definition 3.6.1 The nth degree (n > 1) parallel interface system composed of
DESGY, GY ,...,G] , Su, Si,,...,SL,., Gp, ..., Gy, is level-wise controllable
with respect to the alphabet partition given by (3.1), if for all j € {1,...,n} the

following conditions hold:

(I) The alphabet of G%; and Sy is Xyy, the alphabet of G’ij and Sg; is L1,
and the alphabet of Gy, is Ty,

(1) (Vs € LN S, N L) Bligrr(s) N Eu € Eligs, o, (s)

,,,,,
,,,,,

EligSH (S)

The above definition states that the system is level-wise controllable if, for the given
distributed supervisor, the high level supervisor is controllable for the high level
plant combined with all of the interfaces (by IIT) and that each low level supervisor
synchronized with the subsystem’s interface is controllable for the subsystem’s low

level plant (by II).

32

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 4

Equivalence of HISC Definitions

In the original Hierarchical Interface-based Supervisory Control definitions pre-
sented in [30], systems are divided into serial systems (single low level) and parallel
systems (n > 1 low levels), where a serial system is a special case of a parallel sys-
tem with degree n = 1. For each type of system, a set of interface conditions were
developed, with the parallel system definitions building upon the serial system

definitions.

In this thesis,! we use a slightly modified set of definitions, which no longer
treats serial systems (referred to as the “serial case”) and parallel systems (referred
to as the “parallel case”) differently. We present a single set of definitions (¢nterface
consistency from Section 3.4, level-wise nonblocking from Section 3.5, and level-
wise controllable from Section 3.6) for the parallel case that is expressed directly
in terms of the components of a parallel system. The new definitions introduced
in this work are more concise and clear as a result. The new definitions also make
it clear exactly what checks need to be performed, and on which component. In
this chapter, we will show that these new definitions are equivalent to the original

ones from [30].

!This chapter also appeared as part of [36], but is originally from this thesis.

33

Master’s Thesis - P. Dai McMaster - Computing and Software

In the following sections we will restate the original definitions for ease of
reference, adding “(ORIG)” to the titles that are the same as our new definitions to
prevent confusion. We will first present the interface consistency definitions, then
nonblocking, and finally controllability. We will then show that each is equivalent

to the corresponding new definition.

4.1 Useful Propositions

We start by introducing a few useful propositions for later proofs. However, we

first need to introduce the following definition:

Definition 4.1.1 For natural projection P, : ¥* — 3% for some ¥, C X, we say

that language L C X" is P,-invariant if P, }(P,(L)) = L.

In short, events in ¥ — %, (2 with the events of ¥, removed) have no affect on
membership in L. If L was the language generated by some DES G, then these

events would be selflooped at every state in G.

Our first proposition is for a nth degree (n > 1) parallel interface system
composed of DES Gy, Gy, Gi,, ..., Gy, Gr, as defined in Section 3.3. We first
need to define the natural projection, P; : £¥* — ¥'(j)*, where X is given by (3.1)
in Section 3.3, j € {1,...,n}, and X'(j) = £ — Ukeqr, ., (j=1), (j+1),...n} BL,- The
proposition below essentially states that the indicated languages are Pj-invariant,
a property that will be useful in the following proofs. The result follows from the
fact that the languages are inverse projections of closed and marked languages of

DES whose alphabets are subsets of ¥'(j).

Proposition 1 With H, Hy,, Iy, I, (k = {1...n}), £L;, and Ly,; as defined in

Section 3.3, we have:
(@) PUP(H)=H

34

Master’s Thesis - P. Dai McMaster - Computing and Software

B P (P(Hm)) = Hm
() P UP(T) =T k={1...n}
(@) PHP(Tm)) = T, b = {1...n}
() PTU(P(Ly) =Ly
(f) P7HP(Lm) = L,
Proof
Point (a): Show P;(Pj(H)) = H
By definition, H = Py;;(L(Gy)). It is thus sufficient to show:

P Py PRl(L(Gh)) = Pp(L(Gh))

We then note that Pry : X% — 57y, and ¥'(5) = X1 U Xy, by definition.
We thus have Sy C X'(5).

We can now apply Proposition 6 from [30] by taking ¥, = ¥;y and £, = ¥/(j),
and conclude:

P7t- Py Py = Pry
It follows immediately that: P;'- P; - Pr(L{Gy)) = Py (L(Gu))

Point (b)-(f):
Proofs are identical to Point (a) after appropriate substitutions.

O

Our next proposition develops some useful properties of P-invariant languages.
Point (a) essentially says that removing events from ¥ — ¥; does not affect mem-
bership in languages Ly, defined in the proposition. Point (b) says that the natural

projection P and set intersection commute for P-invariant languages. Point (c)

35

Master’s Thesis - P. Dai McMaster - Computing and Software

says that the intersection of P-invariant languages is also P-invariant. Point (d)

provides a useful relationship between strings P(s) and s for P-invariant languages.

Proposition 2 Let Xy C %, language Ly C X*, k= 1,2, ..., n, natural projection
P:¥* >33 If PYP(Ly)) = Ly, then

(a) P(Lg) C L;
(b) P(Li)NP(La)N...NP(Ly) = P(LyNLaN...N Ly);
() P HP(IiNLyN...NLy))=LiNLyN...NOL,.
(d) (Vs € *) P(s) € P(Ly) = s € Ly
Proof Assume P Y(P(L;)) = Li, k=1,2,...,n. (A.1)
Point (a): Show P(Li) C Ly.
Let s € P(Ly). Sufficient to show s € Ly.
s€ P(Ly) = s € X}
= P(s) = s thus P(s) € P(Ly).
s € P7YP(Lg)), by definition of P~1.

We then have s € P~Y(P(Lyg)) = Ly (by (A.1)) as required.

Point (b): Show P(L1) N P(L)N...NP(L,) = P(LiN LyN...N L)

We need to show:
(b.I) P(L)NnP(L)N...NP(L,) CP(L1NLyN...NL,) and
(b.II) P(L1NLyN...NL,) CP(L)NP(Ly)N..."P(Ly).

(b.I) Show P(Li)NP(L)N...NP(L,) CP(LiNLyN...NLy).

Let s € P(L1) N P(Ls) N ... N P(Ly). (A.2)

36

Master’s Thesis - P. Dai McMaster - Computing and Software
Must show implies s € P(Li N Ly N ... N Ly)
By Point (a), (A.1), and (A.2), we have s€ LiN Ly N...N Ly,
= P(s) e P(LiNLyN...NLy) (A.3)

Since s € P(L1) (by (A.2)), we have s € ¥} by definition of the natural projection
P.

We then have P(s) = s, and thus s € P(L1NL2N...NL,) (by (A.3)), as required.
(b.II) Show P(LyNLyN...NLy,) C P(L1)NP(L)N...NP(Ly).

Let s€e P(LiNLyNn...NLy). (A.4)
Must show implies s € P(L;) N P(Ly) N...N P(Ly,).

From (A.4), we know: (38’ € LiNLyN...NL,) P(s') =s (A.5)
We next note that s’ € Ly = P(s') € P(Lg), k=1,...,n.

= s=P(s') € P(Li)NP(L2)N...N P(L,) (by (A.5)), as required.

By Part (b.I) and Part (b.II), we can now conclude:

P(Li))NP(Ly)N...NP(Ly,) =P(L1iNLaN...NLy)

Point (c): Show P~ P(LiNLyN...NL,))=LiNLaN...N L,

We need to show:
(C.I) .[)_1(P(L1 N L2 n... ﬂLn)) - L1 N L2 n... an and
(chLinlyn...NnL, CPHP(LiNLyN...NLy)).

(c.I) Show P"YP(LinLyN...NL))YCLiNLyN...NL,.

Let s € PTY(P(LiNLyn...NLy,)) (A.6)

37

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show implies s € LiNLyN...N L,

From (A.6) and definition of P~!, we have:
P(S)EP(leLQHHLn)

= P(s) € P(11) N P(Ls)N...N P(L,), by Point (b).
=>$€P71P(Lk), k=1,...,n.
=s€Llyk=1,...,n, by (A.1).

=secLliNlyN...NL,, as required.

(c.Il) Show L1 NLyN...N Ly C PY(P(Li N Ly ...0 Ly)).

Let se Linlyn...NL,
Must show implies s € P71 (P(LyN Ly N ... N Ly)

From (A.7) and definition of P, we can conclude:

P(sye P(LiNLyn...NLy)

By definition of P!, we can conclude:

s€ PYP(LiNnLyn...NLy))

By Part (c.I) and Part (c.II), we can now conclude:
P Y PLiNLen...0NL)=L1nLyN...NL,

Point (d): Show (Vs € £*) P(s) € P(Ly) = s € Ly.
Let s € ¥* and assume P(s) € P(Lg).

= s € P7Y(P(Ly)), by definition of P!,

38

(A.7)

Master’s Thesis - P. Dai McMaster - Computing and Software

= s € Ly as P71 (P(Lx)) = Ly by (A.1).

The next proposition provides a useful result about the controllability defini-
tion. If, in the left side of the iff condition below, we equate ¥, with the set of
uncontrollable events, L, with the language of the plant, Ls; with the language
of the supervisor, and Ly = Ly N L3, we have the controllability definition. The
proposition essentially says that if Ly is P-invariant, controllability is not affected

by removing all events in ¥ — ¥,.

Proposition 3 For alphabet ¥, with event sets ¥y, C 3, C X, languages
Ly, Ly, Ly € ¥*, and natural projection P : £* — % of P7YP(Ly)) = Ly,
k=1,2,3, then

(Vs € Ln) Eligy,,(s) NXy C Eligr,,(s) < (Vs' € P(L1)) Eligp) (s") Ny C Eligpr,)(s')
Proof

Assume P-Y(P(Ly)) = Ly, k=1,2,3. (A.1)
By the definition of Elig() operator, it is sufficient to show:

[(Vs € L1)(Vo € &) so € Ly = so € L] & (A.2)
[(Vs' € P(Lh)){(Vo' € 3) s'0’ € P(Ly) = s'o’ € P(L3)] (A.3)
We must show: I) (A.2) = (A.3) and IT) (A.3) = (A.2).

(I) Show (A.2) = (A.3).

Assume (A.2).

Let s € P(Ly), 0’ € ¥, and assume s'c’ € P(Ly). (A.4)

39

Master’s Thesis - P. Dai McMaster - Computing and Software
Must show implies s'0’ € P(Ls).
By Proposition 2(a) and (A.1), we have P(L,) C L,
= s’ € Ly, by (A.4).
Similarly, we have s’ € Ls.
= s'o’ € L3, as, 0’ € Ly, and by (A.2)
= P(s'd’) € P(L3). (A.5)
By (A.4), s’ € P(L,) C 33, thus P(s') = s/, by definition of P.
= P(s'0’) = s'P(0') = s'0’, by definition of P, and fact £, C 3,.
= s'o € P(L3) (by (A.5)), as required.

Part (I) complete.

(II) Show (A.3) = (A.2).

Assume (A.3).

Let s € Ly, 0 € X3, and assume so € Ls. (A.6)
Must show implies so € Lg.

From (A.6), we have:
P(s) € P(L;) and, P(so) = P(s)o € P(Ly), by definition of P, and fact
Yy C 3.

= P(s)o € P(L3), by (A.3), after taking s’ = P(s) and o' = 0.

= P(so) € P(L3), as 0 € ¥y and 3, C X,.

40

Master’s Thesis - P. Dai McMaster - Computing and Software
= so € L3, by (A.1), and Proposition 2(d).

Part (II) complete.

By Parts (I) and (II), we have (A.2) < (A.3), as required.

4.2 Interface Consistency

In the original interface consistency definition, we first defined the serial interface
consistency definition for the serial system consisting of DES GY;, G, and G;.?
We then used the concept of serial system eztractions to extend the serial definition
to the parallel case. We will first define some notation for the serial case, restate
the original definitions, and then finally we will show that the original interface

consistency definition is equivalent to the new one.

We assume that the alphabet partition for a serial system is specified by
Y = ¥, US, Uk UX,, and then we introduce the following event sets, nat-

ural projections, and useful languages:

% = SRUS,, Prge s 5% — S

S = SyUSRUS e, Py : 5 — 58,

Y= S UNRUS,, P X - Y

H' = P (L(GY)), M, = Pry(Ln(Gh)) € "

L:=PHL(GL), Lm:=P(La(Gr)Cx"
T := P/ (L(G)), Im:= P (Ln(Gy)) C 2"

When a system contained only one low level (serial case), we used the serial

interface consistency definition given below.

41

Master’s Thesis - P. Dai McMaster - Computing and Software

Definition 4.2.1 The system composed of DES Gy, G and Gy, is serial inter-
face consistent with respect to the alphabet partition ¥/ := L US, USRUE,, of
the following properties hold,

Multi-level Properties

1. The event set of Gy is Xy, and the event set of G, is Xjp,.
H IH

2. Gy is a command-pair interface.
High Level Properties

3. (Vs e H'NZ) Elig;(s) N X4 C Eligyy(s)
Low Level Properties

4. (Vs € LNTI) Elig;(s) N ¥ C Elig,(s)

5. (Vs € 2*ErNLNT)
Elig; n7(s¥7) N X4 = Eligr(s) N 4 where
Eligrnz(sS]) = U Eligynz(sl)
lexy
6. (Vse LNT)

se€l,=QAex)sle LN,

It’s clear that for n = 1 and after appropriate relabeling, the interface consis-
tency definition (Definition 3.4.1) reduces to the serial interface consistency defini-
tion; thus any result (such as in [30]) using the serial interface consistency definition

would be immediately satisfied by Definition 3.4.1, with n = 1.

For the general case (n > 1 low levels), we need to extend our serial case
definitions to the parallel case. As the event set of each low level is disjoint from
the event sets of the other low levels, we can consider the parallel interface system

as n serial interface systems (referred to as serial system extractions) by choosing

42

Master’s Thesis - P. Dai McMaster - Computing and Software

one low level and ignoring the others. This is shown conceptually in Fig. 4.1. The

full definition is given below.

Definition 4.2.2 For the nth degree (n > 1) parallel interface system composed
of DES Gy, Gr,,..., GL,,Gq,, ..., Gr,, with alphabet partition given by (3.1), the
j th serial system extraction (subsystem form), denoted by system(j), is composed

of the following elements:

Gyu(i) = GullGpll.. |G, ,|IG1,, - IGL,
Gi(j) = G, Gi(j) =Gy

I = Ukeqr, o G=1), G4+1),onyBr, U g
() = B, Xr()=Xgr,, Za(j) = Za
() = Bp()UEL()UER(G)UZA()

= X — Ue(, ... G-1), (G+1), .o n} SLe

1" Serial System Extraction n" Serial System Extraction
Gy (D)

Gu ? GIZ fg G‘
: G, (1)
High level(1) G, oco| High level(n)
Low Level(1) Low Level(n)
] G, (n)
GLn

Figure 4.1: The Serial System Extractions

We are now ready to state the original interface consistency definition, for the

parallel case.

43

Master’s Thesis - P. Dai McMaster - Computing and Software

Definition 4.2.3 The nth degree (n > 1) parallel interface system composed of
DES Gy, Gi,,..., Gi.,, Gy, ..., Gy, is interface consistent (ORIG) with respect
to alphabet partition given by (3.1), if for all j € {1,...,n}, the jth serial system

extraction of the system is serial interface consistent.

Our next step is to introduce an intermediate form of the interface consistency
definition, created from unrolling the interface consistency (ORIG) definition by
applying the serial system extraction. This new form is easily obtainable from
Definition 4.2.3 and has the same structure as Definition 3.4.1. This will make
it easier to show that the two definitions are equivalent. To construct this new
form of the definition, we will equate the components of a serial extraction system
with the components of a serial system, and then interpret the notation of a serial

interface system in the obvious way.

Definition 4.2.4 The nth degree (n > 1) parallel interface system composed of
DES Gy, Gy, Gyr,,...,Gy,, GL,, is interface consistent (IntmORIG) with respect
to the alphabet partition given by (3.1), if for all j € {1,...,n}, the following

conditions are satisfied:

Multi-level Properties

1. The event set of Gy(j) is X, and the event set of G, is Xyp;.

2. Gy, is a command-pair interface.
High Level Property

3. (Vs € H'(5) NZ(5)) Eligz;y(s) N La, C Eligyy;(s)
Low Level Properties

4. (Vs € L(7) N I(7)) Eligr;)(s) N Lk, S Bligy;)(s)

44

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (Vs € B* g, N L) NI(H))
Elige ;) n1()(5%1,) N Ta, = Bligry(s) N Ba, where

Bligeieriy(5%i,) 1= U Bligog) (50)

6. (Vs € L(G)NZI())

s € In(j) = (A € 1)) sl € Lun(5) N Iin(4).

We will now show that the intermediate form is equivalent to the original form

of the interface consistency definition.

Proposition 4 The nth degree (n > 1) parallel interface system composed of DES
Gy, Gp,,..., G, Gy, ..., Gy, is interface consistent (IntmORIG) (Definition
4.2.4) with respect to alphabet partition given by (3.1), iff, the system is interface
consistent (ORIG) (Definition 4.2.3) with respect to alphabet partition given by

(3.1).

Proof

We will prove this by starting with Definition 4.2.3 and converting it into the form
of Definition 4.2.4.

If Definition 4.2.3 is satisfied, then for all j € {1,...,n}, the jth serial system

extraction (subsystem form), denoted by system(y), is serial interface consistent.

That means for all j € {1....,n}, the following conditions are satisfied: ~ (A.1)

1. The event set of G4 (j) is X754 (7), and the event set of G1(7) is Xi(y).
2. G((j) is a command-pair interface.

3. (Vs € H'(j) NZ(j)) Eligz;y(s) N Ta(s) C Eligyyy(s)

4. (Vs € L(7) NI(7)) Eligg;(s) N Lr(y) S Eligg;)(s)

45

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (Vs € B*(4).Zr(5) N L() N I(3))
Eligjynz()(SZ1(5)) N Ta(d) = Eligz;(s) N Za(j) where

EligL(j)ﬂI(j)(SEZ(j)) = U Eligﬁ(j)ﬂl(j)(SZ)
1€5; (7)

6. (Vs € L(7)NZ(5))
s € In(j) = (A € T3(7)) sl € Lin(5) N Im(5)

We next note the following facts:

e From Definition 4.2.2, we know that Gr(j) = Gr;, G1(3) = G, E1(3) = Zr;,
Yr(J) = Zr;, Ta(y) = B4, and T(J) = ¥ — Ureqr,..,(G-1),G+1), . n) BLs
(A.2)

e From Proposition 21 in [30], we know that that G, is defined over event set

i1, (A.3)

e From Proposition 23 in [30], we know that X}, (j) = X;g, and Xy(j) = Xyz,.
(A.4)

o We note that X*. X, NL(F)NI(F)) = X"*(5).Zr,NLGINI(F)) as "*(j).Zr, C

5 Er,, L(7) € () thus (5*.5p, - 2°(j)-Sr,) N L) = 0. (A.5)

Now, substituting the results of (A.2) - (A.5) into (A.1), we can conclude that,

for all j € {1,...,n}, the following conditions are satisfied:

1. The event set of G};(j) is £, and the event set of Gz, is ¥y .

o

. Gy, is a command-pair interface.

[N

. (Vs € H'(j) N 1(j)) Eligg;(s) N Ta, € Eligyy;)(s)

.

- (Vs € L(j) NZ(5)) Eligg;y(s) N Xg, € Eligg;)(s)

46

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (Vs € X*.Xg, N L(J) NZ(5))
Eligc(j)ﬂz(j)(sE’z]) N Xy = Eligz(j)(s) N X, where

Eligeyrz() (s31,) = U Elig.(;)nz(;) (s1)
€3y,

6. (Vs € L(7) NZ(5))
s €In(j) = (A € 7)) sl € Lin(5) N In(h)-
which is exactly equal to Definition 4.2.4, as required.

a

We conclude this section by presenting our theorem that shows that our new

definition of interface consistency is equivalent to the original.

Theorem 3 The nt! degree (n > 1) parallel interface system composed of DES
Gy, Gyr,,..., G.,,Gy,..., Gy, is interface consistent (Definition 3.4.1) with
respect to alphabet partition given by (3.1), iff, the system is interface consistent

(ORIG) (Definition 4.2.3) with respect to alphabet partition given by (3.1).

Proof

We first note that as Definition 4.2.4 is equivalent to Definition 4.2.3 by Proposition

4, it is sufficient to show:

Definition 3.4.1 < Definition 4.2.4

As the two definitions are almost exactly of the same form, we will prove this point

by point, for each of the six points of the two definitions.

1. For point (1), the two definitions are almost the same already, thus we only

have to account for the difference.

a) Assume Definition 4.2.4 is satisfied.

47

&

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 21 in [30], we can immediately conclude that the event set

of GH is Z]H.
b) Assume Definition 3.4.1 is satisfied.
Must show this implies the event set of G, (j) is Xyg.

By definition, G%4 () = Ggl||GL]|- .. ||G'1(j_1)HG1(|G,

ol

From point (1) of Definition 3.4.1, we know that the event set of Gy is Zrg.
From the command-pair interface definition, and point (1) of Definition

3.4.1, we know that the event set of Gy, is £, (k=1,...5—-1,7+1,...n).

We thus have the event set of G/, (j) is:

Y, () = Uke(t, ., -1), G+1), .o n}on, U X = Zirm

Point (2) is automatic.

For Point (3), we need to show:

(Definition 4.2.4) (Vs € H'(5) N Z(5)) Eligg(s) N Dy C
(Definition 3.4.1) (Vs € H N ., ,Zk) Eligg (s) N Ty, C Elig (s)

’Hl"thjIk

(A.2)

We will start by massaging (A.1) into the correct form so that we can apply

Proposition 3.

We first note that by Proposition I, the languages H and Zy (k = 1,...,n)

are Pj-invariant. That means that we can apply Proposition 2 to them.

48

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 23 of [30], we have:

H(G) = P(H)N N Pi(Ty)
k=1,...,(7-1),(G+1),...n
= Pj(H)mﬂPj(Zk)
k#j
= P(HN()Z), by Proposition 2(b) (A.3)
ki
() = Fi(Z) (A.4)
HNIG) = BMH)N(BT nB(I)
k#j
= Pi(HN ﬂ), by Proposition 2(b) (A.5)
k=1,..n

Substituting from (A.3)-(A.5) into (A.1), we have:

(Vs € PB(HN] Zi) Eligp,q,)(s) NEa4, C Eligp, i, 70 (5) (A.6)

.....

In other words, languages HN(;_, , Zx and KN, ,; Zr are Pj-invariant.
(A.T)

We next note that, by Proposition 1, we have Pj_l(Pj(Ij)) = 7, and by
definition, we have ¥4, C X"(j).

We now take Xy = X4, Bo = X™(y), P = P}, Ly = HN [,
L3 = HN(\yy; I, and we can conclude by Proposition 3, and (A.7) that:

Iy, Ly =1,

(Vs € P;(HN ﬂ) Eligpj(zj)(s) N¥y C Ethj(Hmnk#J Ik)(s)
ke{l,...,n}

& (vseMn [i) Eligg(s) N $a, C Eligypn, ,, 7,(5)
k=1,..n

We can now conclude by (A.8), that (A.1) & (A.2), as required.

49

Master’s Thesis - P. Dai McMaster - Computing and Software

4. For Point (4), we need to show:

(Definition 4.2.4) (Vs € L(5)NZ(5)) Eligz;,(s) N Xg; C Eligg;(s) &
(A.8)
(Definition 3.4.1) (Vs € £; N ;) Eligz (s) N Xg,; C Elig, (s) (A.9)

From Proposition 23 of [30], we have Z(j) = P;(Z;), and L(j) = P;(L;). We
also note that by Proposition 1, L; and Z; are Pj-invariant. (A.10)

= Pj(ﬁj) N P](Ij) = Pj([:j ﬂIj)), by Proposition Q(b)
Substituting this and (A.10) into (A.8), we get:

(VS S Pj(ﬁj ﬁIj)) Eth,(Ij)(s) N ERj g Eling(ﬁj)(s) (A].].)

By Proposition 1 and Proposition 2(c), we have:
PTUP(L;0T) = £;NT;
In other words, the language £; N Z; is Pj-invariant. (A.12)

We next note that, by definition, g, C X™(j).

We now take Eb = ERJ., Ea, = Z,*(j), L1 = [’j ﬂIj, L2 = Ij, L3 = ﬁj, and
we can conclude by Proposition 3, (A.10), and (A.12) that:

& (Vs€L;NI;) Eligy (s) N Zr, C Elig (s)
We can now conclude by (A.11), that (A.8) < (A.9), as required.

5. For Point (5), we need to show:

(Definition 4.2.4)

50

Master’s Thesis - P. Dai McMaster - Computing and Software
= (A.13)
leE*LJ_
(Definition 3.4.1) (Vs € X*.Xg,NL;NT;) Elig,, 7, (sX],) N T4, = Eligz,(s) N

Ty (A.14)

7

where Elig, 7 (sX7,) U Elig, .z, (sl)
lEE*

From Proposition 23 of [30], we have Z(j) = P;(Z;), and L(j) = P;(L;). We
also note that by Proposition 1, L; and Z; are Pj-invariant. (A.15)

Substituting into (A.13), we get:
(VS S 2*-21?]' N PJ(EJ) N P)J(IJ))
Eligp,(,)n e,z (T1,) N Xa; = Eligp,z,)(s) N B,
where Eligp, (z yp,z,)(s51,) := | Eligp,(z,)0p,(z,)(s0)
lexy
By the definition of Elig() operator, it is sufficient to show:
(VS € E*.ZR]. N PJ(CJ) N PJ(IJ))(VQ c EA]) (A.16)
[s¥7,aNP(L;) N Pi(Z;) # 0 < so € Fi(T;)] &
(Vs' € " Bg, NLNT) (Ve € Bp)) s8] o/ NL; NI # 0 & s'd € T
(A.17)

We first observe that: (A.18)
(Vi€ 27)) Pi(l) = 1, as Bp, € ¥'(j).
(Vo € X,) Pi(p) = p, as Zp, € ¥'(5).
(Vo € 24,) Pi(a) = a, as B4, € X'(j).

In order to prove (A.16) < (A.17), we need to show: (I) (A.16) = (A.17)
and (II) (A.17) = (A.16)

(I) Show (A.16) = (A.17).

Master’s Thesis - I’. Dai McMaster - Computing and Software

Assume (A.16). Must show implies (A.17).
Let s’ € E*.ERJ. N ,C]' ﬂIj and o € ZA]' (A.lg)

Must show: (L.a) s'E} &' NL; NZ; #0 = s'a’ € T; and (Ib) s'd’ € Z; =
s’ ’ija’ﬁﬁj N Ij # @

We first note that as s’ € X*.Xg, N L; NZ; (by (A.19)), it follows that:
Pj(s') S Pj(E*.ZR].) n Pj(ﬁj) N .P](IJ)

As Pj(X*Zg;) = X"(j).Xgr, (by (A.18) and definition of F;) and
£*(j).XR, C X* Xg, (by definition of X (j)), we have:
P(s) € 5 Sx, 0 B(£;) 1 B (T,) (A.20)

(L.a) Show s'¥] o' NL; NZ; # 0 = s'd € I,
Assume s'T] o' NL; N T; # 0 (A.21)
Must show implies s'a’ € T;

From (A.21), we can conclude:

(AeXj)stdel; NI
= P(s'la’) € Pi(L; N I;)
= P;i(s)lo/ € Pj(L;) N Py(Z;), by (A.15), (A.18), and Proposition 2(b).
= Fi(s)%7,0/ N F;(L;) N Py(Z5) # 0 (A.22)

By (A.20), (A.19), (A.22), and taking s = P;(s'), @ = o, we can apply
(A.16) and conclude:
Py(s")a’ € Py(T;).

= Py(s'') € By(Z,). by (A.18)

= s'a’ € T;, by (A.15), and Proposition 2(d).

I

52

Master’s Thesis - P. Dai McMaster - Computing and Software

Part (I.a) complete.

(Ib) Show s'a’ € I; = s'S7 o/ N L; N I; # 0.
Let s'a’ € T;. (A.23)
Must show (A € X7) s'la’ € £; N I;.

From (A.23), we can conclude:

P;(s'a’) € Pi(Z;)
= P,(s')o/ € P,(,), by (A.18). (A.24)

By (A.20), (A.19), (A.24), and taking s = P;(s'), @ = o/, we can apply
(A.186) and conclude:
@l e $,) B’ € (L) N B(T;)

= Pj(s'la’) € P;(L; N Z;), by (A.18), (A.15), and Proposition 2(b).
= s'lo’ € L; N Z;, by (A.15), and Proposition 2(c), (d).

Part (I.b) complete.

By Parts (I.a) and (I.b), we have (A.16) = (A.17).

Part (I) complete.

(II) Show (A.17) = (A.16).
Assume (A.17). Must show implies (A.186).
Let s € ¥*.Xg, N P(Ly) N Pi(Z;) and o € Xy, (A.25)

Must show: (ILa) sX anP;(L;) N PiZ;) # 0 = sa € Py(Z;) and (ILb)
s € P](I]) = ssza N PJ([:]) N PJ(I]) # 0.

-

53

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that by (A.25), we have:
s € Pj(L;) and s € P;(Z;)

= s € L;NZ; by (A.15) and Proposition 2(a).

= s € ¥*.Ng, NL; NI, by (A.25). (A.26)
(TLa) Show %5 an B(L,) N B(T;) £ = sa € Py(Ty)

Assume s¥3 a N Pi(L;) N Pi(Z;) # 0 (A.27)
Must show implies so € P;(Z;).

From (A.27), we can conclude:

(Ell S E*L]) sla € PJ(,CJ) N P](IJ)
= sla € L; NT;, by (A.15) and Proposition 2(a).
= sEzja N Ej n Ij 7é 0 (A.28)

By (A.25), (A.26), (A.28), and taking s’ = s and o = a, we can apply
(A.17) and conclude:

sa€1;
= Pj(sa) € P(I;) (A.29)
We first note that by (A.25), we have s € P;(L£;) € £™*(j)
= Pj(sa) = sa, by (A.18), and definition of P;.
= sa € Pj(Z;), by (A.29).

Part (IL.a) complete.
(ILb) Show sa € Py(Z;) = s&j a N P(L;) N Pi(Z;) # 0.

Assume sa € Pi(Z;). (A.30)

54

Master’s Thesis - P. Dai McMaster - Computing and Software
Must show (3 € £7) sla € Pi(L;) 0 Py(Z;).

From (A.15), (A.30), and Proposition 2(a), we can conclude: sa € I
(A.31)

By (A.26), (A.25), (A.31), and taking s’ = s and o/ = o, we can apply
(A.17) and conclude:
(e X,)slae L; NI (A.32)

= Pj(sla) € P;(L; N I)

= Pj(sla) € P;{(L;) N Py(Z;), by (A.15) and Proposition 2(b).
We next note that by (A.25), we have s € P;(L;) C £™(j)

= Pj(sla) = sla, by (A.18), (A.32), and definition of P;.

= sla € Pj(L;) N P(Z;), as required.

Part (IL.b) complete.

By Parts (II.a) and (II.b), we have (A.17) = (A.16).

Part (II) complete.

By Parts (I) and Part (IT), we have (A.16) < (A.17), as required.
. For Point (6), we need to show:

(Definition 4.2.4)
(Vs € LG)NL(7)) s € Tm(d) = (Bl € B})) sl € Ln(5)NTm() <
(A.33)

(Definition 3.4.1) (Vs' € £;NZL;)s" € I, = (' € X7)) 'I' € L, NIy,
(A.34)

[
ot

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 28 of [30], we have Z(j) = P;(Z;), L(7) = P;(L;), In(j) =
Pi(Zm,), and Ln(5) = P;(Lm,)- We also note that by Proposition 1, L;, I,
Lo, and I, are Pj-invariant. (A.35)

Substituting into (A.33), we get:
(s € P(L;) (1 PAT,)) s € Py(Tm)) = (31 € 53.) sl € Py(Ln,) N Pi(T)
(A.36)

It is thus sufficient to show (A.36) < (A.34).

To do this, we need to show: (I) (A.36) = (A.34) and (II) (A.34) =
(A.36).

(I) Show (A.36) = (A.34).

Assume (A.36). Must show implies (A.34).

Let 8" € L; NZ;. Assume s’ € Iy, (A.37)
We st show implics (31’ € 22]) S € Loy, N L.

From (A.37), we can conclude:

Pi(s') € Bj(£; 01;) and Fy(s') € F;(Tm))

= P;(s') € Pj(L;)NP;(Z;)) and P;(s") € P;j(Zn;) by (A.35), and Proposition
2(b).

We can now apply (A.36) by taking s = P;(s’), and conclude:
(A e x},) Pi(s) € Pi(Lwm;) N Pi(Zn,).

As X7, C Y'(j), and by (A.35), Proposition 2(b), and definition of P;, we
can conclude:

Pi(s') € Py(Lom; N I,)-

Master’s Thesis - P. Dai McMaster - Computing and Software

We can now conclude by (A.35), and Proposition 2(c), (d):

s'' € Lon; N Ipy,, as required.

Part (I) complete.

(II) Show (A.34) = (A.36).

Assume (A.34). Must show implies (A.36).

Let s € P;(£;) N P;(Z;), and assume s € Pj(Z,,). (A.38)
We must show implies (3 € X7) sl € Pj(Ly,) N Pj(Im,)-

From (A.38), we can conclude:

s € Pi(L;), s € Py(Z;), and s € Pj(Zy,)
= s € L;NZ; and s € I, by (A.35), and Proposition 2(a).

We can now apply (A.34) by taking s’ = s, and conclude:
(E]l c Ez]) Sl S Er,,,,j ﬂIm]

= Py(sl) € Py(Lom, N L))

= Pj(sl) € Pj(Lm,;) N Pj(Zm,;), by (A.35), and Proposition 2(b).
We next note that by (A.38), we have s € P;(L;) C *(j).

We thus have P;(sl) = sl as X7 C ¥”(j), and by definition of P;.
= sl € Pj(Ly,) N Pj(Zn,), as required.

Part (II) complete.

By Parts (I) and (II), we have (A.36) < (A.34), as required.

We have now shown that all six points of the two definitions are equivalent, and we

=

57

Master’s Thesis - P. Dai McMaster - Computing and Software

can thus conclude that the parallel system satisfies Definition 3.4.1 iff it satisfies
Definition 4.2.3.
a

4.3 Level-wise Nonblocking

In the original level-wise nonblocking definition, we first defined the serial level-
wise nonblocking definition for the serial system consisting of DES G%;, G, and
G;. We then used the concept of serial system extractions (Definition 4.2.2) to

extend the serial definition to the parallel case.

We now restate the serial level-wise nonblocking definition below. It’s clear that
for n = 1 and after appropriate relabeling, the level-wise nonblocking definition
(Definition 3.5.1) reduces to the serial level-wise nonblocking definition; thus any
result (such as in [30]) using the serial level-wise nonblocking definition would be

immediately satisfied by Definition 3.5.1, with n = 1.

Definition 4.3.1 The system composed of DES G, Gp, and Gy, s said to
be serial level-wise nonblocking with respect to the alphabet partition ¥ =

YL ULLUSRUE,, if the following conditions are satisfied:
() H A Tn=H NI
(ID) LT = LNT

We now define the original level-wise nonblocking definition by extending the

serial level-wise nonblocking definition to the parallel case, using Definition 4.2.2.

Definition 4.3.2 The nth degree (n > 1) parallel interface system composed of
DES Gy, Gr,,...,GL,, Gy, ..., Gy, is level-wise nonblocking (ORIG) with re-
spect to the alphabet partition given by (3.1), if for all j € {1,....n}, the jth

serial system extraction of the system is serial level-wise nonblocking.

58

Master’s Thesis - P. Dai McMaster - Computing and Software

Before we can prove the equivalence of our new level-wise nonblocking defini-
tion, we first need a useful corollary. In Section 4.2, we made extensive use of
Proposition 23 in [30]. However, this proposition required that the parallel system
be interface consistent (ORIG). However, for the parts of Proposition 23 in [30]
we need for our next theorem, a weaker condition is sufficient. The restriction on
the alphabet of the DES belonging to the parallel system that we use has always
been implicit in the level-wise nonblocking definitions; we are only make it explicit

so we can use it in the corollary below.

Corollary 1 If the nth degree (n > 1) parallel interface system composed of DES
Gu,GL,,-.., Gr,. Gr1,,...,Gp, with alphabet partition given by (3.1), is as defined
in Section 3.3 with respect to the alphabetls of the given DES, then for the j th serial

system extraction, system(j), the following is true:

(i) The following event sets are: () = By, L (j) = L, and Eyp(5) =
DT

)
(i5) The following inverse natural projections are: Prp(j)~' = P; - Pra,

Pr(g)™ = Py P, and () = P - Pt

(iti) The indicated languages satisfy the following statements:

H(G) = F(H) N [Nkequ. ., -, G+1), oy Fs (Z)]
H, (7)) = Pi(Hw) 0 [Mkeqr, .. G-1), G40, n} P Ty
L(j) = Pi(L))

Lon() = P (Lm;)

() = F(Ly)

In(j) = Pi(Im)

Proof Results follow immediately from the proofs of the corresponding parts of

Proposition 23 in [30].

Master’s Thesis - P. Dai McMaster - Computing and Software

We conclude this section by presenting our theorem that shows that our new

definition of level-wise nonblocking is equivalent to the original.

Theorem 4 The nt! degree (n > 1) parallel interface system composed of DES
Gu,GL,,..., GL,,Gr, ..., Gy, as defined in Section 3.3 with respect to the alpha-
bets of the given DES, is level-wise nonblocking (Definition 3.5.1) with respect to
alphabet partition given by (3.1), iff, the system is level-wise nonblocking (ORIG)
(Definition 4.3.2) with respect to alphabet partition given by (3.1).

Proof

Assume that the nth degree (n > 1) parallel interface system composed of DES
Gu,Gr,, ...,Gr,,Gp,,.... Gy, is defined as in Section 3.3 with respect to the
alphabets of the given DES. (A1)

We start by converting Definition 4.3.2 into a more useful form.

If Definition 4.3.2 is satisfied, then for all j € {1,...,n}, the jth serial system

extraction (subsystem form), denoted by system(), is serial level-wise nonblocking.

We thus have Definition 4.3.2 is equivalent to:
(V7 € {1,...,n}), system(j) satisfies: (A.2)

(@ M) NIn() = H'(G) NI{)
(1) Ln(7) NIn(i) = L) NT(5)
We can now apply Corollary 1 and conclude that H'(j) =
Pi(H) N0 (Nkeq,..,G-1). G+1),...ny B (Zk)], Hin(4) = Pi(Hm) N

[Mkeqt, .. G-1).G+1),my B)]s L) = Pi(Ly), La() = Pi(Lwy),

Substituting into (A.2) and simplifying, we find that Definition 4.3.2 is equivalent
to: (A'?’)

60

Master’s Thesis - P. Dai McMaster - Computing and Software

(I) for all 5 € {1,...,n}, PHn) 0 Veoy nPi@m,) = P(H) N

.....

(II) for all] S {1, A ,TL}, 13_7 (,Cm].) N Pj (Zm].) = Pj (L:J) N Pj (ZJ)
In order to prove the system satisfies Definition 4.3.2 iff it satisfies Definition 3.5.1,

it is thus sufficient to show (A.3) iff Definition 3.5.1.

As (A.3) and Definition 3.5.1 are of the same form, we will prove equivalence point

by point.

We first note that for all j € {1,...,n}, the languages H, Hy,, Zi, L (k €
{1...n}), L;, and L,,; are Pj-invariant, by Proposition I. (A.4)

(I) For Point I, we need to show:

(A-3) V5 € {1,....,n}, By (M) D Mier, o B (Zmi) = B3 () 0 M, i (Zi)
& (A.5)
(Definition 3.5.1) Hp N[iey 2 Zme = HN ey o Tk (A.6)

.....

To do this, we need to show: (I.a) (A.5) = (A.6) and (I.b) (A.6) = (A.5).
(I.a) Show (A.5) = (A.6).

Assume (A.5). Must show implies (A.6).

,,,,,

,,,,,

oLk (A.7)

.....

,,,,,

,,,,,

61

Master’s Thesis - P. Dai McMaster - Computing and Software

By (A.4) and Proposition 2(b), we have:
Pi(s) € B(H) 0 (Vgm0 Fi(Zn)

.....

.....

.....

.....

= 858" € M N (k=1 Dink» bY (A.4), and Proposition 2(c),(d).

=5 € Hm N[\i=1 . nLmy, as required.

Part (I.a) complete.

(I.b) Show (A.6) = (A.5).

Assume (A.6). Must show implies (A.5).

2eey =1,...;

,,,,,,,,,,

=1,

.....

62

(A.8)

Master’s Thesis - P. Dai McMaster - Computing and Software

.....

= Pi(s5)Pi(s") € Pj(Hm) N iey...n Fi(Zmy), as Pj is catenative.

As s € P;(H) € £'(j)* (by (A.8)), we have P;(s) = s (by definition of P;).

= 5P,(s)) € Py(Hon) O Vecr,.o B (Tony)

sl

8 € Pi(Hm) NV Ngey,..n £i(Zmy), as required.
Part (I.b) complete.

By Parts (I.a) and (I.b), we have (A.5) < (A.6), as required.

(IT) For Point II, and letting j € {1,...,n}, we need to show:

(Definition 3.5.1) L., NZ,, =L;NI; (A.10)

The proof here is identical to Part I, after appropriate relabelling.

By Parts I and II, we can conclude (A.3) iff Definition 3.5.1, as required.

63

Master’s Thesis - P. Dai McMaster - Computing and Software

4.4 Level-wise Controllability

In the original level-wise controllability definition, we first defined the serial level-
wise controllability definition for the serial system consisting of plant components
G’},', GY, supervisors S%, Sy, and interface G;. We then used the concept of
serial system extractions (Definition 4.4.2 below) to extend the serial definition to

the parallel case.

We assume that the alphabet partition for a serial system is specified by ¥’ :=

¥ USL UXg Uy, and then we introduce the following useful languages:

WP = PRL(GY), Spi= PpiL(Sy), Cxf

LP =Pl L(GL), Sp:=PpL(S), C¥

We now restate the serial level-wise controllability definition below. It’s clear
that for n = 1 and after appropriate relabelling, the level-wise controllability
definition (Definition 3.6.1) reduces to the serial level-wise controllability definition;
thus any result (such as in [30]) using the serial level-wise controllability definition

would be immediately satisfied by Definition 3.6.1, with n = 1.

Definition 4.4.1 The system composed of plant components G’I’{', GY, supervi-
sors Sy, Sp, and interface Gy, is said to be serial level-wise controllable with
respect to the alphabet partition X' := Xy UX, USRUX,, if the following condsi-

tions are satisfied:

(I) The alphabet of GY' and Sy is 1w, the alphabet of G} and Sy, is Zpp,
and the alphabet of Gy is Xj.

(II) (¥s € L2 NS, NT) Bliger(s) N % C Eligs, -z (s)
(III) (Vs € HP NI NS} Eligypqz(s) N T, C Eligs; (s)

64

Master’s Thesis - P. Dai McMaster - Computing and Software

We now restate the general form of the serial system extraction needed for the

controllability definition. We simply refer to the j th

serial system extraction, as
the type of the parallel system (general form or subsystem form) will make clear

which definition is intended.

Definition 4.4.2 For the nth degree (n > 1) parallel interface system composed
of DES G, GY,..., G}, Su, S1,,..., 81, Gy,..., Gy, with alphabet parti-
tion given by (3.1), the j th serial system extraction (general form), denoted by

system(j), is composed of the following elements:

GY'(5) = GHIGHII-- |G, _ylIG1 I IG1,
n(d) = Su, GL(j):=Gi, S.(j) =81, Gi()):=Gy,
YH() = Ukeqt, o -1, G4+1), o n} 21, U H
() = Zi, Zr() =T, Zaly) =Dy
() = Ep()VUELG)VERG)UZa()

= ¥ — Ure(r,..., (G-1), (1), 0} SLs

We are now ready to state the original level-wise controllability definition, for

the parallel case.

Definition 4.4.3 The nth degree (n > 1) parallel interface system composed of
DES G%, G’il, R G’Z", Sy, Stys--,810,., Gy, ..., Gp,. s level-wise controllable

(ORIG) with respect to alphabet partition given by (8.1), if for all j € {1,...,n},

the 7 th serial system extraction of the system is serial level-wise controllable.

We now need to provide a counterpart to Proposition 1 for languages of a
general form system. For j € {1,...,n}, the proposition below essentially states
that the indicated languages are Pj-invariant.

Proposition 5 With 'H?, Sy, E?, and Si; as defined in Section 3.6, we have:

65

Master’s Thesis - P. Dai McMaster - Computing and Software

(@) PUR0e) =1
®) P7HPi(SH) = Su
() PTHB(LY) = L7
(d) P7H(Pi(Si,)) =S,

Proof

Point (a)-(d) Proofs are identical to Point (a) of Proposition I after appropriate

substitutions.

d

We conclude this section by presenting our theorem that shows that our new

definition of level-wise controllability is equivalent to the original.

Theorem 5 The n'? degree (n > 1) parallel interface system composed of
DESGY, G} ,...,G] ,Su,St,,---,8L,, G1,,..-, Gr,, is level-wise controllable
(Definition 3.6.1) with respect to alphabet partition given by (3.1), iff, the system is
level-wise controllable (ORIG) (Definition 4.4.3) with respect to alphabet partition
given by (8.1).

Proof
We start by converting Definition 4.4.3 into a more useful form.

If Definition 4.4.3 is satisfied, then for all j € {1,...,n}, the jth serial system

extraction (general form), denoted by system(j), is serial level-wise controllable.

We thus have Definition 4.4.3 is equivalent to:
(V7 € {1,...,n}), system(j) satisfies: (A.1)

(I) The alphabet of GE'(j) and S4(j) is E1x(j), the alphabet of G%(j) and
Sr(7) is X1.(j), and the alphabet of G;(j) is £/(j).

66

Master’s Thesis - P. Dai McMaster - Computing and Software
(I1) (Vs € LP(5) N SL(5) NZ(5)) Eliggr(;y(s) N Zw C Eligg, (jnz(;)(5)
(IIT) (¥s € HP'(5) NZ(5) N Sg(5)) Eligyer(jynz(s)(s) N Eu C Eligsy (;5(s)

It is thus sufficient to show that system satisfies (A.1) iff it satisfies Definition
3.6.1.

As (A.1) and Definition 3.6.1 are of the same form, we will prove equivalence point

by point.
(I) For Point I, we must show:

(A.1) (Vj€{1,...,n}) the alphabet of G}'(j) and S (j) is Z1u(j), the (A.2)
alphabet of G% (j) and Sr(j) is £s1(j), and the alphabet of G;(j) is X;(j)

=4

(Defn. 3.6.1) (Vj € {1,...,n}) the alphabet of G¥, and Sy is £;y, the alphabet
of (A.3)
G’ij and Sy, is ¥z, and the alphabet of Gy, is ¥y,

(I.a) Show (A.2) = (A.3)

Assume (A.2). Must show implies (A.3).

This follows immediately from Proposition 28 of [30].
(I.b) Show (A.3) = (A.2)

Assume (A.3). Must show implies (A.2).

By definition, GZ'(j) = G4||Gy || |Gy, ,lIG1,. ll---IGL, Sk(s) = Sh,
GY(j) =G4, S.(j) = Si,, and G4(§) = Gy,. (A.4)

From Proposition 30 of [30], we can conclude:

Ein(d) = Ern, Yin(j) = L1z, and E4(5) = Xy,

67

Master’s Thesis - P. Dai McMaster - Computing and Software

Combining with (A.4) and substituting into (A.2), we can conclude that it is
sufficient to show that:

(Vi € {1,...,n}) the alphabet of G4||Gp]|...||G1,_, |G, Il - ||G1, and
Sy is X;g, the alphabet of G’ij and Sz, is ¥y, and the alphabet of Gy, is Xy,
(A.5)

All of this follows immediately from (A.3), except showing that the alphabet of
GII)-I,(]) = G119_1||G11 H s ||G1(]‘~1)||GI(J+1)|| e HGln is Xyp.

From the definition of the synchronous product and (A.3), we can conclude that
the alphabet of G,'(j) is:

EGI}’I’(j) = Uke(1, ..., (1), G+1)sony 21, UX1g = Yig

Part I.b complete.

By Parts I.a and L.b, we can conclude (A.2) & (A.3), as required.
(IT) For Point II, and j € {1,...,n}, we must show:

(A1) (Vs € LP(5) NS(7) NZ())) Bliger(;y(s) N X C Eligs, (j)nz(;)(5) <
(A.6)

(Defn. 3.6.1) (Vs € LINSy, NT)) Eligq(s) nx, € EligSLjﬂIj(s) (A.7)
We start by converting (A.6) into a more useful form.

From Proposition 30 of [30], we can conclude:

Lr(5) = Bi(L5), Su(d) = Pi(SL,). I() = Pi(Z;)

Substituting into (A.6), we find that (A.8) is equivalent to:
(Vs € P;(L5) N P;(Si,) N P;(Z;)) Eligp,(cr)(s)NZu € Eligp(s, np,(z,) (5) (A-8)

It is thus sufficient to show (A.8) < (A.7).

68

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that, by Propositions 1 and 5, languages C;’, Si;, and Z; are Pj-
invariant. (A.9)

= LT N Sp; NZ; and Sy, NI are Pj-invariant, by Proposition 2(c). (A.10)

By (A.9) and Proposition 2(b), we can also conclude:
Py(L5N S, NT;) = PULH)NF(S1,)NF(T;) and Py(S1,0T;) = Pi(S1,)NP5(Z;)
(A.11)

We next note that (A.7) and (A.8) are almost in the correct form to apply
Proposition 3. The only problem is that ¥, is not necessarily a subset of ¥/(j).

Claim 1:

(Vs € P5(£5) N P(S1,) 0 F5(Z;)) ()
Eth](,C;’)(S) N Eu g Ehgpj(SLj)ij(Ij)(s) &~ EligP](L?)(S) N (Zu N ZI(])) g

EligP] (S1;)NP;(Z;5) ()

Let s € Pj(LE) N Py(Sw,) N Pi(Z;)

We first note that P;(L%) C ¥'(j), by definition of P;.

= Eligpj(gf)(s) C 3'(4), by definition of the Elig operator.
= Eligp,(cr)(s) N 3'(j) = Eligp, (zr)(5)

The result follows immediately, thus (dagger) holds. Claim 1 complete.

Claim 2:

(Vs € LEN S, NT)) (1)

Eligﬁ?(s) N, ¢ EhgsL].nzj(S) < EligL?(s) N(E.NE()) C EligsijIj(S)

69

Master’s Thesis - P. Dai McMaster - Computing and Software
Let s € LYN Sy, NI (A.12)

(2.a) Show Eligﬁf(s) nx, C EligSLjan(s) = Eligﬁg_»(s) NE.NE(G) C

EligSLj ﬁIj (5)

This is automatic as Eligﬁg(s) N(E.NE(j)) < EligL?(s) Ny

(2.b) Show Eligs»(s) N (2, N Z'(j)) C Eligs, ng,(s) = Eligq»(s) ng, C
2 7

E]‘igSLj ﬂIj (S)
Assume Eligﬁgy(s) N, N3 () C Eligsbjmzj(s) (A.13)
Let o € Elig»(s) N X,,. (A.14)

Must show that implies o € EligSLj nz, (8)-

Sufficient to show that so € Sg; N T, by definition of Elig operator.
From (A.14), we have two possibilities: o € ¥'(j) N %, or o € &, — ¥'(j)
For case 0 € 3/(j) N %, the results follow immediately from (A.13).

For case 0 € X, — ¥/(j), we start by noting that this implies that P;(c) = ¢, by
definition of P; (A.15)

We next note that s € Sy, NZ; (by (A.12)) implies that:
Py(s) € Py(S1, N1I;)

= Pi(s)F;(0) € P;(S1, N1;), by (A.15).
= Pj(so) € Pj(S1, NZ;), as P; is catenative.
= so € Sp; NZ;, by (A.10) and Proposition 2(d).

Part 2.b complete.

70

Master’s Thesis - P. Dai McMaster - Computing and Software

By Parts 2.a and 2.b, we can conclude that () holds. Claim 2 complete.

By (A.11), Claims 1 and 2, we see that to prove (A.8) < (A.7), it is sufficient

to prove:

(Vs € (LN Sy, NTL;))Eligpery(s) N (Bu 0 X(5)) € Eligp,s, nz;)(s) <
(A.16)
(Vs € L2018, NZ;) Bligzs(s) N (S, N () € Bligs, g, (5) (A.17)

We can now take X, = ¥'(j), &p = E,NXE'(j), P = P}, L = EfﬂSL] NZ;,
Ly = L}, Lz = 81, NZ;, and conclude by (A.9), (A.10), and Proposition 3 that:
(A.16) & (A.17)

Part 11 complete.

(ITI) For Point III, we must show:

(A1) (Vs € H”(j) N Z(j) NSy(J)) Eligyer(jynz(s(s) N B C Eligs: (;)(s) <
(A.18)

»»»»»

Eligs, (s) (A.19)
We start by converting (A.18) into a more useful form.

From Proposition 80 of [30], we can conclude:
HP'(§) = PB(HP) 0 [Mkeqr, .. -1, G4, .y P (@TR)ls Su(d) = Fi(Sw), () =
P;(Z;)

Substituting into (A.18), we find that (A.18) is equivalent to:
(Vs € P;(H?) N [Nkeqr,...np P (Ze)] 0 Pi(Sh))
Eligr, (rryinic r,.. By @) (3) 0 2 & Bligp s, (5) (A.20)

,,,,,

71

Master’s Thesis - P. Dai McMaster - Computing and Software

It is thus sufficient to show (A.20) < (A.19).

We first note that, by Propositions I and 5, languages H?, Sy, and Iy (k= 1,...,n)
are Pj-invariant. (A.21)

.....

2(c)). (A.22)

By (A.21) and Proposition 2(b), we can also conclude:

..........

= B;(H") N [Mkequ...ny B5 (Th)] (A.23)
The remainder of the proof is identical to Part II, after suitable relabelling.

Part III complete.

We thus conclude by Points I, 11, and III, that Definition 3.6.1 is equivalent to
Definition 4.4.3, as required.
O

4.5 Main Nonblocking and Controllability Re-

sults

Now that we have shown that our new HISC definitions are equivalent to the
original ones from [30], we can apply the results from [30] to systems that satisfy

our new definitions.

We are now ready to present our nonblocking theorem for parallel interface
systems. It basically states that if the system is level-wise nonblocking and interface

consistent, then the flat system will be nonblocking.

72

Master’s Thesis - . Dai McMaster - Computing and Software

Theorem 6 If the nth degree (n > 1) parallel interface system composed of DES
Gu, Gy, Gu,,...,Gu, Gy, is level-wise nonblocking (Definition 3.5.1) and in-
terface consistent (Definition 8.4.1) with respect to the alphabet partition given by

(8.1), then L(G) = L(G), where G = Gul||G,||GL |- |GL|IGL,-

Proof Results follow immediately from Theorem 8 from [30], and Theorems 3,

and 4. O

‘We now present a sufficient condition for controllability of parallel interface sys-
tems. It states that if the system is level-wise controllable, then the flat supervisor

is controllable for the flat plant.3

Theorem 7 If the nth degree (n > 1) parallel interface system composed of
plant components G, G ..., Gl _, supervisors Sy, S, ...,8L,, and interfaces
Gi,..., Gy, is level-wise controllable (Definition 3.6.1) with respect to the alpha-
bet partition given by (3.1), then

(Vs € L(Plant) N L(Sup)) Eligypiant)(s) N Xe C Eligrsup)(5)

Proof Results follow immediately from Theorem 4 from [30], and Theorem 5.0

3At first glance, the controllability definition used below might seem slightly different than

the one given in Section 2.3, but this can be easily reconciled by noting that for Theorem 7,
Yo=Xsg =X
a 5 -

73

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 5

HISC Synthesis Method

In Chapter 3, we describe a nth degree (n > 1) interface system composed of plant
DES, supervisor DES | and interface DES. For this system, we showed how the
properties of interface consistency, level-wise nonblocking, and level-wise control-
lable could be used to verify that the flat system is nonblocking, and that the flat
supervisor is controllable for the flat plant. However, if the system fails one of
these conditions, we need a way to automatically modify the system so that it will
satisfy all three of the above conditions. We need a synthesis method that will

respect the HISC structure and provide a similar level of scalability.

5.1 Synthesis Setting

In Chapter 3, we referred to a system composed of plant DES G%, G ,...,
G’in, supervisor DES Sy, Sz,,,...,8;,, and interface DES Gy,,..., Gy, as a nth
degree interface system. When we specify a nth degree interface system and give
supervisors (as opposed to specifications), we will refer to such a system as a nth

degree supervisor interface system.
For a n'h degree supervisor interface system, we assume that we are given a

74

Master’s Thesis - P. Dai McMaster - Computing and Software

supervisor for the high-level, and one for each of the n low-levels, and that we are
verifying that the interface system satisfies the interface conditions. For synthesis,
we will assume that we are instead given a specification for each component. Our
goal will then be to synthesize a supervisor for each component that will satisfy
the corresponding HISC conditions by design, and will be maximally permissive

for its component.

For synthesis, we will replace supervisor Sy by specification DES Ey (defined
over Xyg), and for j € {1,...,n}, we will replace supervisor S L; by specification
DES E;; (defined over ¥;1;). We will refer to the system composed of plant
DES G4, G} ,..., G}, specification DES Eg, Er,...,EL,, and interface DES

Gr,...,Gy, as a nth degree specification interface system.

As a starting point for synthesis, we need to make sure that our specification
interface system meets certain basic requirements. These are portions of the HISC

conditions that we will not be able to correct for as part of our synthesis procedure.

Definition 5.1.1 The nt" degree specification interface system composed of plant
DES G%, GY ..., G , specification DES Ey, Ey,, ..., Ey,, and interface DES
Gp,....G

n

is HISC-valid with respect to alphabet partition given by (3.1), if for

all j € {1,...,n}, the following conditions are satisfied:

1. The event set of GY, and Eg is X1y, and the event set of G’L]_ and Ep; is
YL,

7

2. Gy, is a command-pair interface.

For the rest of this chapter, we will use ® to stand for the nth degree HISC-
valid specification interface system that respects the alphabet partition given
by (3.1) and is composed of plant DES G%, GY ,..., G} , specification DES
Ey, Eg,,...,EL,, and interface DES Gy, ..., Gy,, that we are considering. We

will also take 5 to be an index in the range {1,...,n}.

75

Master’s Thesis - P. Dai McMaster - Computing and Software

In Chapter 3, we introduced the languages HP, E;’, 7;, and Z,, .

introduce a few more useful languages.
My, = Pry(Lin(Gh))
€n = Py (L(En))
En,, = I_Hl(Lm(EH))
L7, = P, (Lm(GL)))
&1, = Prp,(L(EL))
€1,m = Piz,(Lm(Ex,))

To simplify proofs in the following chapters, we define languages’

I:ﬂzk

ke{l,...,n}
I = ﬂ Imk
ke{l,...n}

We will refer to the DES that represents the high level of ® as:

GuL = GY||Ex||GL]| .- |Gy,

We can now define the languages for Gyp, over 2* as follows:
Zy = PI_Hl(L(GHL)) =HPNEYNT
Z, = Prg(Ln(Gur)) = Hb, 0 Ep,, N T,

We will refer to the DES that represents the j** low level of ® as:

Gur, = G |[EL[IGy,

We can now define the languages for G, over ¥* as follows:

21, = PR (L(Gu,)) = LN €, N

J

ZLj,'m = PIE/IJ (L"l(GLLj)) = Li:’n, N SLJ,m N Imj

We now

"We also used Z and Z,,, in Chapter 4 to represent languages in the serial case. This should

not cause any confusion as when n = 1 (the serial case), they become equivalent.

76

Master’s Thesis - P. Dai McMaster - Computing and Software

5.2 High Level Synthesis

We start by examining how, give system ®, we can synthesize a supervisor for the
high level. Our first step is to capture the HISC properties that the supervisor’s

marked language must satisty.

Definition 5.2.1 Let Z C ¥*. For system ®, language Z is high level interface
controllable (HIC) if for all s € HP NI N Z, the following conditions are satisfied:
1. Eligypnz(s) N Xy C Eligz(s)

2. (Vj€{l,...,n}) Eligr (s) N La, C Elig (s)
Hmfnkg T
i

These conditions are essentially point 3 of Definition 3.6.1 and point 3 of Def-
inition 3.4.2, where we have substituted Z for any reference of the high level su-
pervisor’s closed behavior, Sg, and we have used the identity Gy := G%,||Sy for

the high level subsystem.

For an arbitrary language F C 3*, we now define the set of all sublanguages

of E that are high level interface controllable with respect to @ as

Cuy(F) :={Z C E| Z is HIC with respect to @}

It is easy to see that (Cy(F),C) is a poset. We will now show that the set

Cy(FE) is nonempty, and that the supremum always exists.

Proposition 6 Let £ C X*. For system @, Cy(E) is nonempty and is closed
under arbitrary union. In particular, Cy(E) contains a (unique) supremal element

that we will denote supCy(FE).
Proof
Let £ C X*.

77

Master’s Thesis - P. Dai McMaster - Computing and Software

We will break the proof into three parts: 1) show Cy(F) is nonempty, 2) show
Cr(E) is closed under arbitrary union. 3) show Cy(F) contains a (unique) supremal

element.

1) Show Cy(F) is nonempty.

Clearly, § C F and the empty set is HIC with respect to system ® and is thus in
Cu(E).

2) Show Cy(FE) is closed under arbitrary union.

Let Zg € Cy(FE) for all B € B, where B is an index set. Let Z = U{Zg| 8 € B}.
Sufficient to show that Z € Cy(FE).

Clearly, Z C E. All we still need to show is that Z is HIC with respect to system
D,

This means showing that for all s € HP NZ N Z, the following conditions are
satisfied:

1. Eligﬁpml'(s) N, C Ehg?(s)

2. (Vj€{l,...,n}) Eligs (s) N X4, C Elig (s)
’ HmkaQ Ty
j

Let se HPNINZ. (1)
We first note that this gives us s € Z

= (3 e¥)ss'e”Z

= (30 € B) ss’ € Zg, by definition of Z.

=s€ g

78

Master’s Thesis - P. Dai McMaster - Computing and Software
We thus have: s € H* NI N Zg, by (1). (2)

a) Show Elig;pz(s) N Sy C Eligy(s)

Sufficient to show (Vo € 8,)so0 € HPNT = so € Z

Let 0 € 2,. (3)
Assume soc € HPNZ (4)
Will now show this implies so € Z.

We immediately have: s € HPNZINZy, 0 € 5y, and so € HPNZ by (2), (3), and

(4).

As Zg € Cy(E) by definition and is thus HIC for ®, we can conclude:
SO € 75

= (Is" € Z¥) sos” € Zg
= sos” € Z, by definition of Z.
= so € Z, as required.
Part a complete.
b) Show (Vi € {1,...,n}) Eligz (s) N 34, C Elig (s) Let j €
! HPNZN Q Tk
k#3
{1,...,n}.
Sufficient to show: (Va € X4,) sa € T; = sa € HP N 701;';) 7
J

Let a € Xy, (5)

Assume sa € I; (6)

79

Master’s Thesis - P. Dai McMaster - Computing and Software
Will now show implies sa € HP N Z ﬂkQ Zy
J

We immediately have: s € HP NI N Zg, a € 4, and s € I; by (2), (5), and

(6)-

As Zj € Cy(E) by definition and is thus HIC for ®, we can conclude:
saEH”ﬂZ;ﬂ QIk (7)
k#73

= sa € Zg

= (Fue T*)sau € Zg

= sau € Z, by definition of Z.

=>sac’”Z

Combining with (7), we have sa € HP N Z ﬂijI;c, as required.

Part b complete.

From Parts a and b, we can conclude that Z is HIC with respect to system ®.
We can thus conclude that Z € Cy(FE), as required.

Part 2 complete.

3) Show Cy(FE) contains a (unique) supremal element.

Sufficient to show that supremal element exists, as uniqueness would thus folow.
Let supCy(E) = U{Z| Z € Cy(E)}

Claim: supCy(FE) is the supremal element.

From Part 2, we have: supCy(F) € Cy(FE)

80

Master’s Thesis - P. Dai McMaster - Computing and Software

Clearly, (VZ € Cy(E))Z C supCy(E), thus supCyx(FE) is an upper bound for
Cu(E).

All that remains is to show:

(VZ' € Cu(E)) (VZ € Cy(E)) Z C Z') = supCy(E) C Z'

Let Z' € Cy(E).

Assume (VZ € Cy(E)) Z C Z' (8)
Must show implies supCy(E) C Z’

Let s € supCy(I7). Must show implies s € Z'.

s esupCy(E) = (3Z € Cy(E)) s € Z, by definition of supCy(E).

= s e Z' by (8)

We thus conclude that supCy(F) is the supremal element.

Part 3 complete.
O

We now note that if we take language £ = Zy_, we can conclude that
supCy(Zy,,) = supCy(H?, N En,, N1Iy) exists. As supCy(Zy,,) C Zg,, by def-
inition, it follows that supCy(Zy,) N Zy, = supCy(Zy,,). This implies that
m C Zy as Zy,, € Zp and Zy is closed. This means that if we take
supCy(Zy,,) as the marked language of our high level supervisor, and supCy(Z2y,,)
as the supervisor's closed behavior, then the supervisor will represent the closed
loop behavior of the high level. It will thus follow that the high level will be

nonblocking, and thus point 1 of Definition 3.5.1 will automatically be satisfied.

81

Master’s Thesis - P. Dai McMaster - Computing and Software
5.2.1 High Level Fixpoint Operator

Now that we have shown that supCg(Zg,,) exists, we need a means to construct
it. We will do so by defining a fixpoint operator 2y, and show that our supremal
element is the greatest fixpoint of the operator. To do this, we need to first define

functions Qung and Qic.

Definition 5.2.2 For system ®, we define the high level nonblocking operator,
Qung : Pwr(¥*) — Pwr(X*), for arbitrary Z € Pwr(¥X*) as follows:

QHNB(Z) = Z M ZHm

The way we will be using Qpng, we would have Z C Zg and closed, thus Qung(Z)
would be the marked strings of the high level that remain in Z. Clearly, operator

Qung is monotone.

Definition 5.2.3 For systemn ®, we define the high level interface controllable

operator, Q¢ : Pur(¥*) — Pwr(X*), for arbitrary Z € Pwr(3*) as follows:
Quic(2) = Z — Extz(FailHIC(Z))
where
FailHIC(Z) := {s € H* NI N Z| ~[Eligyorz(s) N Z C Eligz(s)] V [(37 € {1,...,n})
ﬂ(Eling(s) N 4, C Elig (s)H]}

HPNZN Ty
k#j

We first note that FailHIC(Z) C Z and thus FailHIC(Z) C Exty(FailHIC(Z)) as
s < s, for all s € X*. The way we will be using Quic(Z), we would have Z C Zy,
and thus we would be removing from Z any string that has a prefix that would
cause Z to fail the HIC definition. The reason we also remove the extensions of

failing strings, is to ensure that we get a prefix closed language.

We first prove a proposition with a useful result.

82

Master’s Thesis - P. Dai McMaster - Computing and Software

Proposition 7 Let Z € Pwr(3*). For all X C Z, it is true that
Z — Exty(X) = Z — Extz(X)

Proof
Let (X C 2)
As m D Z — Ext,(X) is automatic, we only need to show C.
Let s € Z — Ext,(X) (1)
We will now show this implies: s € Z — Extz(X)
From (1), we have: (35’ € £*)ss’ € Z — Ext5(X)
= ss5' € Z A ss’ ¢ Extz(X) (2)
= ss' ¢ {t € Z|' <t for some t' € X}, by definition of the Ext operator.
Clearly ss’ ¢ Extz(X) = s ¢ Ext(X) or we would have a contradiction.
=sCZAs §§ Ext7(X) by (2) and fact that Z is closed.

= s € Z — Ext5(X)

Lemma 2 Let Z € Pwr(X*). For system ®, the operator Qyic always produces

a prefix closed language. te. Quic(Z) = Qgre(Z)

Proof
We first note that by definition, we have: Qgio(Z) = Z — Ext5(FailHIC(Z))

It is thus sufficient to show that:
7 — Eth(FailHIC(Z)) =7 - Ext»Z(FailHIC(7))

33

Master’s Thesis - I>. Dai McMaster - Computing and Software

We have FailHIC(Z) C Z by definition, so we can now apply Proposition 7 and
conclude: Z — Ext(FailHIC(Z)) = Z — Ext5(FailHIC(Z))

O

We now show that operator Q¢ is monotone.

Lemma 3 For system ®, the operator Qyjc is monotone. ie.
(VZ,Z' € Pur($) Z C Z' = Quie(Z) C Qpuie(Z2')

Proof
Let Z,Z' € Pwr(Z*)
Assume Z C Z' (1)
Let s € Qmc(Z). (2)
We will now show this implies: s € Quic(Z")
By Definition of Qe operator, it is sufficient to show:

s € Z' — Ext(FailHIC(Z"))
From (2), we have: s € Quc(Z)
= s € Z — Ext5(FailHIC(Z)), by definition of Quc.
=s€Z A s ¢ Extz(FailHIC(Z)) (3)
=>s€Z
=s¢€ 7 as Z C Z' (by (1)), and fact prefix closure preserves ordering. (4)

All that remains now is to show that: s & Ext(FailHIC(Z"))

This means showing: s ¢ {t € Z'|t' < t for some ¢’ € FailHIC(Z")}, by definition

of the Ext operator.

84

Master’s Thesis - P. Dai McMaster - Computing and Software
Thus sufficient to show that: (Vs' < s) s’ € FailHIC(Z')

Substituting for FailHIC(Z’), we see we must show:
(Vs' < s8)s' & {t € HP NI N Z'| =[Eligyprg (t) N T C Eligz(t)] V

(3 € {1,...,n})~(Bligz (1) N T4 CEig ()]}
HmZ'nijIk

Which means it’s sufficient to show:
(Vs' < s5)s' € HP NI NZ' = [Eligypnz(s’) N T, C Eligg(s)] A
(V7 e{l,... ,n})(Eling(s') N ¥, CElig (s")]
HPNZ'N Q Ty
k#j
Let s <s

Assume s e HPNINZ'

We will now show this implies:
[Eligypnz(s) Ny C Eligz(s')] A

(V5 € {1,...,n})(EligI_7(s’) N X4 CElig (s)]
anz'nkgjzk

We next note that we have s ¢ Extz(FailHIC(Z)) by (3).
= (Vs" <s)s”" €e HP NI N Z = [Eligyp7(s") N, C Eligy(s")] A

[(Vj e {1,...,n})(Eling(s") N X4, CElig (s"))]
Hmzmkgjzk

(6)

(7)

(8)

We now note that as s’ < s by (6), and s € Z by (3), it follows that s’ € Z as Z

is closed.
=s' e HPNINZ, by (7).

Using (8), we can now conclude:

[Eligﬂmz(sl) NY, C Eligz(s')] A

Master’s Thesis - P. Dai McMaster - Computing and Software

(V5 e {1,. ..,n})(Eling(s’) N X4, C Eligﬂm?n Q N (s)] (9)
ki

We next note that we have Z C 2/, as Z C Z' (by (1)) and fact prefix closure

preserves ordering. (10)

We will now show that f is satisfied in two parts.

A) Show Eligypr7(s’) N, C Eligi(s')

Sufficient to show: (Vo € &,)s'c € HPNZ = s'o € Z'
Let 0 € ¥, and assume s'c € H? N Z.

s'c € Z' follows immediately from (9) and (10).

B) Show (Vj € {1,...,n})(Elig (s') N X4, C Elig (s")
Hm’Z‘fth I
j

Sufficient, to show: (Vj € {1,...,n})(Va € B4,)da €L; => sac H*'NZ’ ﬂkg I
7
Let j € {1,...,n}, a € ¥4, and assume s’ € T;.

saeHPNZ ﬂkQ 7 follows immediately from (9) and (10).
j

By Part A and Part B, we can now conclude that § is satisfied.

We now are ready to define our fixpoint operator Qg.

Definition 5.2.4 For system ®, we define the high level fixpoint operator, Qg :
Pur(¥*) — Pwr(3*), for arbitrary Z € Pwr(Z*) as follows:

Qu(Z) = Qunp(Qu1c(2))

86

Master’s Thesis - P. Dai McMaster - Computing and Software

As operators Qe and Qunpe are monotone, it is easy to show that Qp so defined

is also monotone.

We next present two useful propositions before we give our main result for this

section.

Proposition 8 Let Z,Z' C ¥* be arbitrary languages. For system ®, the follow

properties are true:
1. ZC 2= (Vie{0,1,2,..))04(2) C (2
2. Qu(2)=7Z = Z cCy(Zy,)

3. The sequence {Q4(Zy),t = 0,1,2,...} is monotonically decreasing. ie.

QTN (Zh) € Q(2h)
Proof
1. Show Z C Z' = (Vi € {0,1,2,...}) Q4 (2) C Qi (2Z")

Assume Z C Z'. (1)
We now present a proof by induction.

Base Case: 1 =0

By definition, we get Q%(Z) = Z and Q%(2") = Z'.

= Qy(2) € Qy(Z) by (1).

Inductive step: Let i € {0,1,2,...}

Assume Q% (Z) C Q4,(2') (2)
We will now show this implies Q4 '(Z) C QL(Z')

As Qy is monotone, it follows from (2) that:

Qu((2)) C Qu(Q(2)

87

Master’s Thesis - P. Dai McMaster - Computing and Software
= OFY(Z) C QHY(Z"), as required.

We can now conclude by induction that:

(Vi € {0,1,2,...}) Q4 (Z) C QL (2).
2. Show QH(Z) =7 = Z¢€ CH(ZHm)~
Assume Qy(2) = Z. (3)
We will show this implies Z € Cy(Zy,,)

By definition of Cy, it is sufficient to show that Z C Zy _ and that Z is HIC with

respect to .

By (3) and the definition of Qy, we have: Z = Qunp(Qmc(2))

= 7 = (Z — Extz(FailHIC(Z))) N Zg,,

Which implies Z C Zy,, and Z C (Z — Exty(FailHIC(Z))). (4)
All that remains is to show that Z is HIC with respect to ¢.

To do this, we first need to show that FailHIC(Z) = (). We will do this using proof

by contradiction:

Assume FailHIC(Z) # 0.

= Js € FailHIC(Z) (5)
As FailHIC(Z) C Z by definition, we can conclude s € Z. (6)
= (3 eX¥)ss'€Z (7

We can also conclude by (5) and the definition of the Ext operator that:
s € Ext5(FailHIC(Z))

88

Master’s Thesis - P. Dai McMaster - Computing and Software

However, we have by (7) and (4) that:
ss' € Z — Extz(FailHIC(Z))

= s5' € Ext5(FailHIC(Z)) Ass' € Z
= (Vs” € FailHIC(Z)) ~(s" < ss')

Which contradicts (5).

We thus conclude that FailHIC(Z) = 0.
= (Vt € HP NI N Z') Eligynz(t) N Ty C Eligz(t)] A
[(Vj €{1,...,n})(Eligz,(t) N ¥4, CElig)]
HPOZ'N Q I

k#J

Which implies by Definition 5.2.1 that Z is HIC with respect to ®.

We thus have Z € Cy(Zpy,,), as required.

3. Show QU (Zy) C Q4 (Zy), fori=0,1,2,....

We will first show that Q}{(ZH) g Q(}[(ZH), i,e., QH(ZH) Q ZH.

By definition of g, we have:
Qu(Zy) = Qunve(Quic(Zr)) = Quic(Zr) N 2w, € Zh,, € Zy

We thus have Qg (Zy) C Zy.
This means we can take Z = Qg (2y), and Z' = Zy, and apply point 1.

We thus take ¢ € {0,1,2,...} and can conclude:
Qu (i (Zn)) € Uy (Zn)

= QPN Zy) C Q%4Y(Zy), as required.

89

Master’s Thesis - P. Dai McMaster - Computing and Software
Proposition 9 For system ®, supCy(Zg,,) is the greatest fizpoint of Qy.
Proof

To prove that supCy(Zg,,) is the greatest fixpoint of Qy, we need to show:

1. supCu(ZH,,) = Qn(supCu(ZH,,))
2. (VZ e Pwr(X*) Z =Qu(Z) = Z CsupCu(Zu,,)
The second part follows from Point 2 of Proposition 8. As every fixpoint is in

Cu(24,,), it follows that the fixpoint is C supCy(Zg,,) since supCy(Zy,,) is the

supremal element of Cy(Zy,,).
All that is left to show is that supCy(Zg,,) is a fixpoint of Qp.

We first note that by definition of 2;; we have:
Qu(supCh(Zn,,)) = Qmc(supCh(Zy,)) N Zn,. (1)

By definition of)¢ we have: (2)
Qu(supCu(Z2y,,)) = (supCu(Zn,,) — Extm—zm(FailHIC(supCH(ZHm)))) N
ZH,

We now note that as supCy(Zy,,) is HIC with respect to @, by definition.

By Definition 5.2.1, it thus follows that: FallHIC(supCy(Zy,,)) = 0

= Qmc(supCu(Zy,,)) = supCu(Zy,,) — 0 = supCu(Zpy,,), by definition of the Ext

operator.
= Qu(supC(Zn,,)) = supCx(Zn,) N Zn,,, by (1). (3)
We are now ready to show supCy(Zy,) = Qu(supCu(Zy,,))-

(I) Show supCu(Zy,,) C Qu(supCu(Zuy,,))

90

Master’s Thesis - P. Dai McMaster - Computing and Software
By (3), is its sufficient to show that supCy(Zy,) C supCu(Zu,.) N Zu,,
We first note that supCy(Zy,,) C m, by definition of prefix closure.
Also as supCy(Zpn,,) is in Cy(2y,,), we have supCy(Zy,.) € Zu,,.
= supCy(Zy,,) C supCy(Zn,.) N 2,
Part (I) complete.

(II) Show Qy(supCy(Zw,,)) C supC(Zy,,)

Let s € QH(supCH(ZHm))‘ (4)
We will now show this implies s € supCy(Zy,,)

From (4) and (2), we can conclude that:
s &€ (supCH(ZHm) -~ EXtm(F&llHIC(SUpCH(ZHm)))) N ZHm (5)

= [s € supCx(Zn,,)] A [s & Bxtgype,, (2, (FailHIC(supCh(Zg,,)] (6)
= (Vs' < s)s’ ¢ FaillHIC(supCu(Z4y,,)) by definition of the Ext operator.
= (Vs' € {s}) s’ ¢ FailHIC(supCy(Zy,,)) (7)

We next note that s € supCy(Zp,,) (by (6)) implies that s € Zy as Zp is closed

and supCy(Zs,,) C Zy,, € 2y, thus supCy(Zy,,) C Zg,, C Zy as prefix closure

respects ordering.

We thus have s € HP N Z by definition of Zy.

= se H"NZNsupCy(Zy,,)

= (Vs' € {s})s' € H? N T NsupCx(Zy,,) as all three languages are closed.

Combining with (7), we can conclude that for all s’ € {s}, the following is true:

91

Master’s Thesis - P. Dai McMaster - Computing and Software

1. & e H? NI NsupCu(Zn.)

2. Eligyprz(s’) N Zu C Eligsupe, iz, (5" (8)
3. (Vje{l,...,n}) Elig; (s) N X4, CElig (s (9)
’ Hpﬂgl‘,prH(ZHm)ﬂ Q ‘Ik
k#j
Let Z = supCy(Zg,,) U {s} (10)

We will now show that Z is in Cy(Zpy,,), which will imply Z C supCg(Z4y,,), giving

us the needed result.

We first note that by (10), we have:
supCy(Zuy,,) C Z

= supCy(Zy,,) C Z, as prefix closure preserves ordering. (11)

We next note that we have supCy(Zpy,,) € Zp,, by definition and by (5), we have

S & ZHm
We thus have Z C Zy_ .

To show that Z is in Cy(Zpy,,), all that now remains is to demonstrate that Z is

HIC with respect to system .
Let te HPNINZ (12)

We will now show that the following conditions are satisfied:

L. Eligypnz(t) N Ew C Eligz(t)

2. (Vj € {l,...,n}) Eligg ({) N B4, CElig (t)
Hm?mkg I
J

].) Show EligHmI(t) N Zu g Ehg?(t)

92

Master’s Thesis - P. Dai McMaster - Computing and Software
Let c € ¥,, and toc € HP N ZT.
Sufficient to show implies to € Z.
Ift e Z — {s}, we have t € supCy(Zg,,).-
As supCy(Zy,,) is HIC for ®, it follows that to € supCy(Zy,,).
=to € Z, by (11).

If t € {5}, it follows directly from (8) and (11).

2) Show (¥j € {1,...,n}) Eligz (t) N 4, C Elig (t)
! HPnanQ T
J

Let j € {1,...,n}, and a € Z4;.
Assume ta € ;.

Sufficient to show implics tae € HP N Z ka Iy
j

Ift € Z — {s}, we have t € supCp(Zy,,).-

As supCy(Zg,,) is HIC for @, it follows that ta € HP NsupCu(Zy,,) ka Iy
j

=te e HPNZN QI]“ by (11).
k#j

If t € {s}, it follows directly from (9) and (11).

By 1) and 2), Z is HIC with respect to system @ .

= Z CsupCy(Zy,,), as supCy(Zy,,) is the supremal element for Cy(Zy,,)
= s € supCy(Zy,,) (by (10)) , as required.

Part (II) complete.

93

Master’s Thesis - P. Dai McMaster - Computing and Software
By (I) and (II), we get supCy(Zn,,) = Qu(supCu(Zm,,)) as required.

We thus conclude that supCy (Zy,,) is the greatest fixpoint point of (4.

g

We will now show that if Qg(Zy) reaches a fixpoint after a finite number of

steps, then that fixpoint is our supremal element. In Chapter 6, we will give an

automata based algorithm that implements Qg (Zy). As the algorithm operates

by removing one or more states of Gy, which is assumed to have a finite state

space, we know it will complete in a finite number of steps (ie. it must stop when

we have no more states left to remove).

Theorem 8 For system ®, if there exists i € {0,1,2,...} such that Q4 (Zy) is a

fizpoint, then Uy (Zy) = supCy(Zg,,).

Proof

Assume i € {0,1,2,...}, such that Q(Q%(Zy)) = Q4 (Zy)
We first note that we have: supCy(Z2y,) C Zy,, C Zg

This allows us to apply Point 1 of Proposition 8 and conclude:
Qy (supCr(Zh,)) € Uy (Zn)

By Proposition 9, we know that supCy(Zy,) is the greatest fixpoint of Qp.

= O (supCy(Z2y,,)) = supCy(Zy,,)

Combine this with (3), and we can conclude:

supCy(Zn,,) € Oy (Zh)

(1)

(3)
(4)

(5)

As supCy(Zpy,,) is the greatest fixpoint of Qg (by (4)) and Q¥ (Zy) is a fixpoint,

it thus follows: Q% (Zg) C supCx(Zy,,)

94

Master’s Thesis - P. Dai McMaster - Computing and Software

By (5), we thus have Q% (Zy) = supCy(Zy,,) as required.
O

We now show that we can use supCy(Zg,) for our high level supervisor and
satisfy the relevant interface conditions. We will use Sy,, € £* to stand for the

marked language of the high level supervisor.

Corollary 2 For system ®, if there exists 1 € {0,1,2,...} such that Q% (Zy) is
a fizpoint, then system ® with Sy, = Qi (Zg) and Sy = Sy, satisfies Point 3 of
Definition 3.4.2, Point I of Definition 8.5.1 and Point III of Definition 3.6.1.

Proof

Assume 3 € {0,1,2,...}, such that Qy (0% (Zx)) = Q4 (Zx). (1)
Let Sy, = Q4 (Zy) and Sy = Sy,

By Theorem 8, Sy, = supCy(Z2y,,) is HIC with respect to ®. (2)

By Definition 5.2.1 and using the fact that Sy, = Su, we have for all s in H? N
SynIT
1. EligHPﬁI(s) NX, EhgsH(S) (3)

2. (Vj € {l,...,n}) Eligy (s) N T4, C Elig (s) (4)
HpﬂSHﬂkQ 'Zk
J

We note that Point (III) of Definition 3.6.1 follows immediately from (3).

Using the fact that H = HP N Sy, we can substitute into (4) and get for all s in
HNI
(¥j € {1,...,n}) Eligz (s) N T4, C Elig (s)

00

Point 3 of Definition 3.4.2 immediately follows.

95

Master’s Thesis - P. Dai McMaster - Computing and Software
All that remains is to show that Point I of Definition 3.5.1 is satisfied.
This means showing that H,, NZ,, = HNZ.
By (2), we have Sy,, = supCy(Zn,,).
= Sy, C 2y, as supCy (2,) C Zy,, by definition.
= Su,, € 2y, as 2y, C 2y
= E C Zy, as Zg is closed and prefix closure preserves ordering.
= Sy € Zy, by definition of Sy.

Substituting for Zg

m

in (5), we get Sy, CHE, NEy,, NIy,

Substituting for Zy in (6), we get Sy CHPNELNZ.

Using the fact that H,, = HE, N Sy,,, we get Hpn NI, =HE, NSy, NI,

= HnNZI, =Sy, by (7).
Using the fact that H = HP N Sy, we get HNZ =HPNSygNZ.

= H NI =Sy, by (8).

(5)

(6)
(7)
(8)

(9)

As Sy = Sy, by definition, it follows from (9) that H,,NZ, = HNZ, as

required.

5.3 Low Level Synthesis

O

We now exam how, given system ®, we can synthesize a supervisor for the 7% low
) & y) y p J

level. Our first step is to capture the HISC properties that the supervisor’s marked

96

Master’s Thesis - P. Dai McMaster - Computing and Software
language must satisfy.

Definition 5.3.1 Let Z C X*. For system ®, language Z is j** low level interface
controllable (LICj) if for all s € E? NZ;NZ, the following conditions are satisfied:
2. Eligr (s) N Zg, C Elz‘gﬁfnz(s)

3. (\V//J S ZRj)(Va (S EA])
spa € I = (dl € £) spla € L NZNIZ;
4. s€ly, = (3le E’ij) sle Ly, NZNT,,
These conditions are essentially point 2 of Definition 3.6.1, and points 4-6 of
Definition 3.4.2, where we have substituted Z for any reference of the j** low level
supervisor’s closed behavior (Si;), Z for any reference of the supervisor's marked

language, and we have used the identity G, := G’inS z, for the j% low level

subsystem.

For an arbitrary language E C ¥*, we now define the set of all sublanguages

of E that are j*" low level interface controllable with respect to ® as
Cp;(F) := {Z C E| Z is LICj with respect to ®}

It is easy to see that (Cp,(F),C) is a poset. We will now show that the set

Cr,(E) is nonempty, and that the supremum always exists.

Proposition 10 Let b C ¥*. For system ®, Cp,(E) is nonempty and is closed
under arbitrary union. In particular, C (E) contains a (unique) supremal element

that we will denote supCy,, (E).
Proof
Let F C ¥*.

97

Master’s Thesis - P. Dai McMaster - Computing and Software

We will break the proof into three parts: 1) show Cp,(E) is nonempty, 2) show
Cr,(E) is closed under arbitrary union. 3) show Cp (E) contains a (unique) supre-

mal element.

1) Show Cyr,(F) is nonempty.

Clearly, § C E and the empty set is LICj with respect to system ® and is thus in
Cr,(E).

2) Show Cp,(FE) is closed under arbitrary union.

Let Zg € Cp,(F) for all 8 € B, where B is an index set. Let Z = U{Zs| 8 € B}.
Clearly Zz C Z for each § € B.

= (VB € B)Zs C Z as prefix closure preserves ordering. (1)
Sufficient to show that Z € Cp, (E).

Clearly, Z C E. All we still need to show is that Z is LICj with respect to system
.

This means showing that for all s € LY NZ; N Z, the following conditions are

satisfied:

L. Eligﬁi(s) NXy C Eligzn, (5)
2. Bligr,(5) N S, C Bliganz(s)

3. (Vp S ER])(VOé € EAJ)
spa € I; = (3L € Tf) spla € LENZ NI,

4 s€Ly =@ en])sle Ll NZNT,,

Let s€ LiNT;NZ. (2)

98

Master’s Thesis - P. Dai McMaster - Computing and Software
We first note that this gives us s € Z
= (A €e*)ss' € Z
= (38 € B) ss’ € Zg, by definition of Z.
= s€Zg

We thus have: s € L£NTZ; N Zg, by (2). (3)

a) Show Eligﬁﬁg(s) Ny C Eligzg, (s)

Sufficient to show (Vo € £,) so € L] = so € Z N,

Let o0 € 3, (4)
Assume so € LY (5)
Will now show this implies so € Z N Z;.

We immediately have: s € L NZ; N Zg, 0 € By, and so € L] by (3), (4), and

(5).

As Zg € Cr;(E) by definition and is thus LICj for @, we can conclude:
so € ZgNI;

= so € ZNZ; (by(1)), as required.
Part a complete.

b) Show Eligz (s) N Xg, C Eligg;?m?(s)

Sufficient to show (Vp € X)) sp € T; = sp € LEN 4
Let p € Xp,. (6)
Assume sp € Z; (7)

99

Master’s Thesis - P. Dai McMaster - Computing and Software
Will now show this implies sp € £ N Z.

We immediately have: s € LY NZ; N Zg, p € Yg;, and sp € Z; by (3), (6), and

(7).

As Zg € Cp,(E) by definition and is thus LICj for ®, we can conclude:

so € LINZg
= s0 € LI N Z (by(1)), as required.
Part b complete.

c) Show (Vp € Zg,)(Va € Ly,) spa € I; = (A € ¥}) spla € L] NZNI;

LetpEER],aEZAj. (8)
Assume spa € Z; (9)
We will now show this implies (3 € X7) spla € LI N Z NI,

We immediately have: s € E? NZ;NZg, p € Yg;, o € Ly,, and spa € I; by (3),
(8), and (9).

As Zg € Cp,(E) by definition and is thus LICj for ®, we can conclude:
(Hexy)splae L] NZzNZ;

= spla € LN ZNZ; (by(1)), as required.
Part ¢ complete.

d) Show s € Z,,, = (A € £}) sl € L2, N ZN Ty,

Assume s € Imj (10)
We will now show this implies (3 € ¥}) sl € £, N Z NIy,

We immediately have: s € LI NZ;N Zg and s € L, by (3) and (10).

100

Master’s Thesis - P. Dai McMaster - Computing and Software

As Zg € Cp,;(E) by definition and is thus LICj for ®, we can conclude:
(Bles;)sle Ll NZsNTy,

= sl € L, N ZNLy, (by definition of Z), as required.

Part d complete.

From Parts a, b, ¢ and d, we can conclude that Z is LICj with respect to system

.

We can thus conclude that Z € Cp (E), as required.
Part 2 complete.

3) Show Cp, (F) contains a (unique) supremal element.

Sufficient to show that supremal element exists, as uniqueness would thus follow.

Let supCy (F) = U{Z| Z € Cr,(E)}

Claim: supCr, (F) is the supremal element.
From Part 2, we have: supCy (E) € Cr, (E)

Clearly, (VZ € Cp,(F))Z C supCy,(FE), thus supCy,(E) is an upper bound for
Cr,(E).

All that remains is to show:
(vZ' e CL].(E)) ((VZ € CLJ(E)) z2CzZ)y= SupCL].(E) cz

Let Z' € Cp, (E).
Assume (VZ € C,(E)) Z C Z' (11)
Must show implies supCp, (E) C Z’

Let s € supCy, (£). Must show implies s € 2.

101

Master’s Thesis - . Dai McMaster - Computing and Software
s € supCy, (E) = (3Z € C1;(F)) s € Z, by definition of supCy,(E).
=se€Z, by (11)
We thus conclude that supCr,(E) is the supremal element.

Part 3 complete.
O

We now note that if we take language £ = Z,. ., we can conclude that

j,m)

supCr,(2r,,,) = supCr;(Lh, N &L, NIy, exists. As supCr(Z,,) © Zi,

Jym 3,

by definition, it follows that supCr, (2,) N Zr,

§om Jyrm

that supCy (Zy;,,) C 21, as Z1,,, C 2, and Z,; is closed. This means that if

). This implies

Fem

— supCs, (Z;

we take supCr,(2y,,,) as the marked language of our 7" low level supervisor, and
ml—) as the supervisor’s closed behavior, then the supervisor will repre-
sent the closed loop behavior of the j** low level. It will thus follow that the 7% low
level will be nonblocking, and thus point 2 of Definition 3.5.1 will automatically

be satisfied for this j.

5.3.1 The j* Low Level Fixpoint Operator

) exists, we need a means to construct

F,m

Now that we have shown that supCy, (Zg,
it. We will do so by defining a fixpoint operator {7, and show that our supremal
element is the greatest fixpoint of the operator. To do this, we need to first define

functions Qpnp, and Qic;.
Definition 5.3.2 For system ®, we define the j** low level nonblocking operator,
Qrwg, : Pur(Z*) — Pwr(¥*), for arbitrary Z € Pwr(X*) as follows:

QLNB]-(Z) = ZNZL,

F.m

- The way we will be using Qins;, we would have Z C Z;, and closed, thus Qpxg,(Z)

would be the marked strings of the j** low level that remain in Z. Clearly, operator

102

Master’s Thesis - P. Dai McMaster - Computing and Software

Qnp, is monotone.

Definition 5.3.3 For system ®, we define the j** low level interface controllable

operator, Q¢ : Pwr(¥*) — Pwr(¥X*), for arbitrary Z € Pwr(X*) as follows:
Qric,(Z) == Z — Extz(FailLIC;(Z))
where
FailLIC;(Z) = {s € LY NT; N Z] ﬂ[Eling(s) NE. C Eligzy (s)]
V —[Eligr,(s) N Eg, C Elig£§ﬂ~2(s)]

V =[(Vp € Bp,)(Va € By) spa € I; = (3l € B}) spla € L] NZNIZ;

Voalsely, = @lel)slell, NZNI,]}

We first note that FailLIC;(Z) C Z and thus FailLIC;(Z) C Ext5(FailLIC;(Z)) as
s < s, for all s € *. The way we will be using QLICJ,(Z), we would have Z C Z,
and thus we would be removing from Z any string that has a prefix that would
cause Z to fail the LICj definition. The reason we also remove the extensions of

failing strings, is to ensure that we get a prefix closed language.

Lemma 4 Let Z € Pwr(X*). For system @, the operator Qpjc, always produces
a prefix closed language. ie. Qprc,(Z) = Quic;(2)

Proof
We first note that by definition, we have: Quic,(Z) = Z — Extz(FailLIC;(Z2))

It 1s thus sufficient to show that:
Z— Ext(FailLIC; (2)=7Z - Eth(FailLICj(f))

We have FailLIC;(Z) C Z by definition, so we can now apply Proposition 7 and
conclude: Z — Ext(FailLIC;(Z)) = Z — Ext5(FailLIC;(Z))

O

103

Master’s Thesis - P. Dai McMaster - Computing and Software

We now show that operator {lrjc; is monotone.

Lemma 5 For system ®, the operator Qpic, is monotone. ie.

(VZ,Z' € Pur(¥")) Z C 7" = Qric,(Z) € Quic,(Z')
Proof
Let Z,7' € Pwr(¥*)
Assume Z C Z' (1)
Let s € Q11c,(Z). (2)
We will now show this implies: s € Qpic,(Z’).

By Definition of Quic; operator, it is sufficient to show:

s € Z' — Ext5(FailLIC;(Z"))
From (2), we have: s € Qpi¢,(2)

= 5 € Z — Extz(FailLIC;(Z)), by definition of Qyc, .

=s€Z A s ¢ Extz(FailLIC;(2)) (3)
=>scZ
= s€ Z' as Z C Z' (by (1)), and fact prefix closure preserves ordering. (4)

All that remains now is to show that: s & Ext(FailLIC;(Z"))

This means showing: s & {t € Z'|t’ < ¢ for some ¢’ € FailLIC;(Z")}, by definition

of the Ext operator.

Thus sufficient to show that: (Vs’ < s) s’ & FailLIC;(Z")

104

Master’s Thesis - P. Dai McMaster - Computing and Software

Substituting for FailHIC(Z"), we see we must show:
(Vs' <s)s' ¢ {t € L{NT;N Z'| ~[Eligz(t) Ny € Eligzny (1))
V =[Bligz,(t) N Sr, C Bligez(1)]
V o[(Vp € Eg))(Va € Ba,) tpa € ;= (A € B}) tplo € LENZ'NT]
VAt €y, = (3 eX])tlell, NZ'NI,]}

Which means it’s sufficient to show:
(V' <s)s'eNT;NZ = [Eligﬂz;(s’) N, C Eliggng ()]
A [Elig(s') N Zg, C Eligz:;’n?(sl)]
A [(Vp € Tp)(Va € By,) s'pa € Z; = (A € 57) s'pla € LENZTN T
N[s'€Ly, = (3leky)slell, NZ'NI,)]

Let ' <s (6)
Assume s’ € LENT; N 2 (7

We will now show this implies:
[Eligﬂgy(s’) NXy € Eligging, (s)] A [Eligz,(s) N Zg, © Eligcfﬁj(s’)}
A [(Vp € Zg))(Va € By,) s'pa € I; = (A € T]) s'pla € Ly NnZ'N1
N[s'€ln, =T eky)slels NZ' NI, T

We next note that we have s & Ext5(FailLIC;(Z)) by (3).

= (Vs" <s)s" e LiNT,NZ = [Eligcf(s”) NZy C Eliggag, (s”)]
A [Eligg,(s") N g, C Eligrqz(s")]
7 3
A [(Vp € Zg,)(Ya € Xy,) s"pa € I; = (3 € ¥) s"pla € L7 NZNIZj
N[s" €Ly, = (3 eX])s"l €Ly, NZN1,,] (8)

We now note that as s’ < s by (6), and s € Z by (3), it follows that s’ € Z as Z

is closed.

= s e LLNT;NZ, by (7).

Master’s Thesis - P. Dai McMaster - Computing and Software

Using (8), we can now conclude:
[Eligcgy(s’) N, C Eligzng, (s")] A [Eligg (s) N Zg, C Eligﬁgrﬁ(s’)]
A [(Vp € Zg,) (Vo € B4,) s'pa € I = (A € X}) s'pla € LT N Z N T}]
N[€T, = (3leX])slely NZNT,)] (9)

We next note that we have Z C 7/, as Z C Z' (by (1)) and fact prefix closure

preserves ordering, (10)
We will now show that t is satisfied in four parts.

A) Show Eligﬁg(s’) N, C Eligﬁvj(s’)

Sufficient, to show: (Vo € £,)s'c € L} = s0 € Z' NI

Let o € ¥, and assume s'o € L},

s'o € Z' NI; follows immediately from (9) and (10).

B) Show Eligz (s) N Zg, C Eligq»n?(s’)

Sufficient to show: (Vp € Xg,)s'p € I; = s'p € L] Nz

Let p € X, and assume s'p € Z;.

s'p € LEN Z7 follows immediately from (9) and (10).

C) Show (Vp € Sp,)(Ya € B4)s'pa € I; = (A € X}) s'pla € LENZ'N T,
Let p € Xg,, @ € X4, and assume s'pa € Z;

(N eXy,)s'plac Lin Z' N I; follows immediately from (9) and (10).

D) Show s' € I, = (AL € X7) s € L5, NZ' NIy,

Assume s’ € Ty,

106

Master’s Thesis - P. Dai McMaster - Computing and Software
(3l exy) s'leLh, NZ' NIy, follows immediately from (1) and (9).

By Parts A-D, we can now conclude that f is satisfied.

We now are ready to define our fixpoint operator €2p,.

Definition 5.3.4 For system ®, we define the 5% low level fixpoint operator,
Qp, : Pur(X*) — Pwr(E*), for arbitrary Z € Pwr(X*) as follows:

Qr,(Z) = Quws,;(QLic,(2))

As operators {pic; and QLNB]. are monotone, it is easy to show that € so defined

is also monotone.

We next present two useful propositions before we give our main result for this

section.

Proposition 11 Let Z, 7' C X* be arbitrary languages. For system @, the follow

properties are true:

LZC7 = (ie{0,1,2,..)0 (Z) S (2)
2. QL,(Z) =7 = 7€ CLJ-(ZL,-,m)

3. The sequence {Q’;Lj(ZL].),i = 0,1,2,...} is monotonically decreasing. ie.

O H(2L,) € 0 (21)
Proof

1. Show Z C Z' = (Vi € {0,1,2,..}) Qf (2) C O, (2))

Proof identical to the proof in part 1 of Proposition &, after relabelling.

2. Show Q,(2) = Z = Z € Cy,(Zs,,)

107

Master’s Thesis - P. Dai McMaster - Computing and Software
Assume Qp, (Z) = Z. (3)
We will show this implies Z € Cp,(Z1,,,)

By definition of Cp, it is sufficient to show that Z C Z; = and that Z is LIC;j

with respect to ®.

By (3) and the definition of {2z;, we have: Z = Qng, (QLic,(2))

= Z = [Z — Exty(FailLIC;(2))] N 21,

Which implies Z C Z,,, and Z C [Z — Extz(FailLIC;(Z))]. (4)
All that remains is to show that Z is LICj with respect to ®.

To do this, we first need to show that FailLIC;(Z) = §. We will do this using proof

by contradiction:

Assume FailLIC;(Z) # 0.

= Js € FailLIC;(Z) (5)
As FailLIC;(Z) C Z by definition, we can conclude s € Z. (6)
= (3 eX¥)ss'eZ (7)

We can also conclude by (5) and the definition of the Ext operator that:
s € Ext5(FailLIC;(2))

However, we have by (7) and (4) that:
ss' € Z — Exty(FailLIC;(2))

= ss' ¢ Ext5(FailLIC;(Z)) Ass' € Z
= (V5" € FailLIC;(Z)) =(s" < ss)
Which contradicts (5).

108

Master’s Thesis - . Dai McMaster - Computing and Software
We thus conclude that FailLIC;(Z) = 0.

=>MellNnI;NZ) [Eliges(t) N 3y C Eligzng, (1)]
A [Eligg (1) N Zg, © Eligc;’n?(t)]
A [(Vp € Zg,)(Va € Ey,) tpa € I = (3l € T) tpla € LrNZ NI
ANtel,, = @leX)lelt, NZNT,)]

Which implies by Definition 5.3.1 that Z is LICj with respect to ®.
We thus have Z € Cr,(Zy,,,), as required.

3. Show Q7"1(21,) € O (2¢,), for i = 0,1,2, ...

We will first show that Qle (Z1,) € Q(])Jj(ZL].), ie, Qr,(21,;) € 2,

By definition of 2,,, we have:

Qu;(Z1;) = Quns; (Quic; (21,)) = Quie,; (21,) N 21, € 21,,, € 24,
We thus have QL] (ZLJ) g ZL].
This means we can take Z = Qy,(2y,), and Z’ = Z;, and apply point 1.

We thus take ¢ € {0,1,2,...} and can conclude:

= QiLJEI(ZL]-) - Qij (Z1,), as required.

Proposition 12 For system @, supCp,(2y,,,) is the greatest fixpoint of Q.

Proof

To prove that supCy,(Zy,,,) is the greatest fixpoint of Q2 L;, we need to show:

1. supCLj(ZLj,m) = QL]. (supCLJ(ZLJ»m))

109

Master’s Thesis - P. Dai McMaster - Computing and Software

2. VZ ePwr(X%)Z =Q.,(Z) = Z CsupCy,(21,,,)

The second part follows from Point 2 of Proposition 11. As every fixpoint is in

Cr,(Z1,,,), it follows that the fixpoint is C supCy,(Zy,;,,) since supCr,(Zy;,,) is
the supremal element of C1,(Zz,,,)-
All that is left to show is that supCy,(2y,,,) is a fixpoint of Qf_.
We first note that by definition of (1, we have:

QLj (SupCLj (ZLj,m)) - QLIC]- (SupCLj (ZLj,m)) n ZLj,m (1)
By definition of Qyc we have: (2)

QL]. (supCLj (ZLJ,m)) = [supCL]. (ZLj’m)—Extmz‘gf“*(FaﬂLICj(SupCLj (ZLJYm)))]ﬂZLj‘m

jom)

We now note that as supCy,(Zz,,,) is LICj with respect to ®, by definition.
By Definition 5.3.1, it thus follows that: FailLIC;(supCy,(Zz,,.)) =0

Ext operator.

= Qp,(supCr,(Z1,,.)) = supCr,(21,,.) N ZL,,., by (1). (3)
We are now ready to show supCy,;(Z2y,,.) = Qu,(supCr, (21, ,,.)).

(I) Show supCr (Zyr;,,) € Q,;(supCyr, (2L, ,.))

By (3), is its sufficient to show that supCyr,(2y,,,) C m NZ,..

We first note that supCy,(2y,,,) C m, by definition of prefix closure.

C 2z

Also as supCy (Zy,,,) is in Cr,(Z1,,,), we have supCr,(Zy,,,) € 2y, .-
= supCy;(Zy,,,) € supCr,(Zs;,.) N Z1,,,

110

Master’s Thesis - P. Dai McMaster - Computing and Software
Part (I) complete.

(1I) Show 2 (supCp,;(Zy,;,.)) € supCr, (2L, ,.)

Let s € Qp,(supCr,(Zy1;,.))- (4)
We will now show this implies s € supC; (Zp,,,)

From (4) and (2), we can conclude that:

= [s € supCs, (Za,)] A Is & Btz (PalLIC; (upCi, (Z2,,)] (6)
= (Vs' < 5)s’ ¢ FailLIC;(supCy, (2L, ,,)) by definition of the Ext operator.
= (Vs' € {s}) s’ ¢ FailLIC;(supCr,(Z1,,.)) (7)

We next note that s € supCr(Zz;,,) (by (6)) implies that s € 21, as Z;, is closed

Fm

and supCr,(Zy,,.) € Zi,,. € Z1,, thus supCy,(Z,,.) C 21, C Z1, as prefix

j.m

closure respects ordering.

We thus have s € L N Z; by definition of Z, .

S s € L2 T, N5upCs (22,

= (Vs' € {s})s € LENZ;N m, as all three languages are closed.
Combining with (7), we can conclude that for all s’ € {s}, the following: (8)

1. s € LENT;NnsupCyr,;(2y,;,,)

[N

. Eligey(s) NS C Bliggupe, (2, e, (5)

wo

. Eligzj(sl) N Xg, C Ehgcg?nsuchj(zLj’m)(S/)

e

. (Vp € Zg,)(Va € By,) s'pa € I; = (3 €) s'pla € LINsupCr(Zy,,,)NZ;

ot

s' €Ly, = (A ey sl el NsupCy,(Zy,,,) NIy,

111

Master’s Thesis - P. Dai McMaster - Computing and Software
Let Z = supCy,(Z1,,,) U {s} (9)

We will now show that Z is in Cr,(Zy,,,), which will imply Z C supC;,(Zy,,,),

giving us the needed result.

We first note that by (9), we have:
SupCL]. (ZLj,m) g Z

= supCy,(Zy,,.) C Z, as prefix closure preserves ordering. (10)

We next note that we have supCy,(Zg;,.) € Zr,, by definition, and by (5) we

have s € Zp,,,
We thus have Z C Z;,

Jm

To show that Z is in Cy (21, ,,), all that now remains is to demonstrate that Z is

LICj with respect to system .
Lette LSNZ;NZ (11)
We will now show that the following conditions are satisfied:

1. Eligz(t) N Xy C Eliggn, (¢)

bo

. Eligz, (t) N Sg, C Eligzz(t)

[N

. (Vp € B,)(Va € Ey))tpa € I; = (Al € T,) tpla € LYNZNI,

4 teT, = Aen;)tle s, NZNT,,

'"L]'
1) Show Elig.r(t) N2y C Eligyzqg, (¢)
Let o € X, and to € L.
Sufficient to show implies to € Z NZ;.

Ift e Z — {s}, we have t € supCr,(Zi;,,)-

112

Master’s Thesis - . Dai McMaster - Computing and Software
As supCy,(Z1,,,) is LICj for @, it follows that to € mn@.
= to € ZNZ; by (10).
If ¢ € {s}, it follows directly from (8) and (10).
2) Show Eligz (¢) N g, C EligL;_»nZ(t)
Let p € Xg; and tp € ;

Sufficient to show implies tp € L] N Z.

Ift € Z — {s}, we have t € supCr,(Zy,,,)-
As supCy, (Zy,,,) is LICj for @, it follows that tp € L] NsupC,(2y,,,)-
=>tlp€ E‘; N Z, by (10).

If t € {s}, it follows directly from (8) and (10).

3) Show (Vp € Xg,)(Va € Bp)) tpa € Z; = (A € Xf) tpla € LN Z NI,
Let p € Xg;, @ € Ba,, and tpa € 7;.

We will now show this implies (I € X7) tpla € LN ZNI;

Ifte Z - {s}, Wehavetem.

As supCr, (Zy,,,) is LIC] for @, it follows that:
(F e X7) tple € LT NsupCy,(Zy,,,) NI

= tpla € L5N Z NI, by (10).

If t € {s}, it follows directly from (8) and (10).

4) Show t € I, = (A e X}) tl € L5, NZNTy,

113

Master’s Thesis - P. Dai McMaster - Computing and Software

Assume t € T,

We will now show this implies (A € X7) tl € L5, N Z N1y,

If t € Z — {s}, we have t € supCr,(Zy,,,)-

As supC;, (Zy,,,) is LICj for @, it follows that:
(e xp)tlelh, NsupCr,(ZL,,,) N Ly,

= Ll (S c,’r)n] n ZmI"L]‘a by (9)

If t € {s}. it follows directly from (8) and (10).

We can now conclude by points 1-4 that Z is LICj with respect to system @.
= 7 CsupCy,(2y;,,), as supCr,(Zy,,,) is the supremal element for Cy (Zy,,,)
= s € supCy(Zy,,) (by (9)) , as required.

Part (II) complete.

By (I) and (II), we get supCyr,(Zy,,,) = Qr,(supCr,(ZL,,,)) as required.

We thus conclude that supCr;(Zr,,,) is the greatest fixpoint of Q.

3,m

a

We will now show that if Qf, (ZLJ) reaches a fixpoint after a finite number of
steps, then that fixpoint is our supremal element. In Chapter 6, we will give an
automata based algorithm that implements Q2 (Z,). As the algorithm operates
by removing one or more states of Grr, which is assumed to have a finite state
space, we know it will complete in a finite number of steps (ie. it must stop when

we have no more states left to remove).

Theorem 9 For system ®, if there exists i € {0,1,2,...} such that QiLJ(ZLj) 18
a fizpoint, then QiLJ, (Z1,) = supCr;(ZyL,,.)-

114

Master’s Thesis - P. Dai McMaster - Computing and Software
Proof
Assume Ji € {0,1,2,.. .}, such that Qr,(Q (2r,)) = Q,(Zr,) (1)

We first note that we have: supCr,(Zz,,) C Z1,,, C Zi,

Fam
This allows us to apply Point 1 of Proposition 11 and conclude:

QLLJ (SupCL] (ZLj,m)) g Q}J] (ZL]) (3)
By Proposition 12, we know that supCy,(Zy,,,) is the greatest fixpoint of Q. (4)

= O}, (supCr, (Z1,,,)) = supCr,(2c,,.)

Combine this with (3), and we can conclude:

supCy,(Z1,,,) € %, (Z1,) (5)

AssupCy,(Zy,,,) is the greatest fixpoint of Q7 (by (4)) and QiLj (Z1,) is a fixpoint,
it thus follows: QiLJ (Z1,) CsupCr,(Zy,,.)

By (5), we thus have QiLj(ZLj) = supCy,(Zy,,,) as required.

7.m

o

We now show that we can use supCy (Zy,,.) for our j% low level supervisor
and satisfy the relevant interface conditions. We will use S Lm © 2" to stand for

the marked language of the 5% low level supervisor.

Corollary 3 For system ®, if there exists i € {0,1,2,...} such that QiLj (Z1,) is
a fixpoint, then system ® with Sy, = QiLj (Zr;) and St, = Si,,, satisfies Points 4,
5, and 6 of Definition 3.4.2, Point II of Definition 3.5.1 and Point 11 of Definition
3.6.1.

Proof

Assume 3i € {0,1,2,...}, such that Q, (0, (2,)) = Qf,(Z4,)- (1)

115

Master’s Thesis - P. Dai McMaster - Computing and Software

Let SL = QiLJ(ZLj) and SLj = SL

7, Fm”

By Theorem 9, S, ,, = supCy,(Zy,,,) is LIC; with respect to . (2)

By Definition 5.3:1 and using the fact that Sz, = Si,,, we have for all s €
LENT; NSy,

1. Elig£§(s) Ny, € EligSL]an(s) (3)
2. Eligy (s) N Zg; C Eligc;’nsL].(S) (4)
3. (Vp € Xg,)(Va € Zy;)

spa € L; = (A € B7) spla € LN S, NI (5)
4 os€ly, = (3eXy)slelf, NSy, NIy, (6)

We immediately note that Point II of Definition 3.6.1 follows immediately from

(3).

We next note that we can use the fact that £; = LN Sy, and £, = L5, NS, .,
to rewrite (3)-(6) as for all s € £; NZ;

1. Eligz (s) N Zg, C Elig, (s) (M)

2. (Vp (S ERJ)(V(J c EA]»)
spa € ;= (A € B) spla € L;NT; (8)

3. 8€Ly, = (A ey sl € Loy, NIy, (9)
We now note that Points 4, 5, and 6 of Definition 3.4.2 follow immediately from
(7)-(9), respectively.

All that remains is to show that Point I of Definition 3.5.1 is satisfied.
This means showing that L,,, NZ,, = L; NZ;

116

Master’s Thesis - P. Dai McMaster - Computing and Software

By (2), we have S, = supCr,(ZL,,,)-
= SL;m © 21, as supCp,(Z1;,,) € Z1,,, by definition. (10)

= S1,. € Z1,,88 Z1,,, € Zy,

= 5. C ZyL;, a8 Zg, is closed and prefix closure preserves ordering.

o —

= S, C Zp;, by definition of Sg. (11)
Substituting for Zz, , in (10), we get Si,,, C Lh N&x,,, N L, (12)
Substituting for Z;, in (11), we get Sp, C LN &L, NI (13)

Using the fact that £, = E{’n], NSL;,., we get Lo, N2y, = L{’nj NSLm N,
= ﬁmj N ij = SL],m, by (12). (14)
Using the fact that £; = LN S, we get £;NZ; = LN S, NI

= Ej ij = SLj; by (13)

AS SLJ- = SL,-

3ym?

by definition, it follows from (9) that L,,, NZ,,, = £; NZ;, as
required.

O

We have now shown that supCy(Zy,,) exists and for all 7 € {1,...,n},
supCp;(Zy,,,) exists. We have also given fixpoint operators for each that allow us
to construct them. In Chapter 6, we will present out automata based algorithms
that implements our fixpoint operators. We will then tie everything together and

present our overall synthesis results for system ®.

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 6

Algorithms

Our goal is to construct a supervisor for the high level, and one for each low level
based on a set of specifications for each level, such that the supervisor will satisfy
the corresponding HISC conditions by design, and will be maximally permissive

for its level.

We will first give a few common data structures and algorithms used in this
chapter and then present our algorithms. We give an algorithm to verify whether
a given interface is a command-pair interface or not, an algorithm to check that
a given parallel system satisfies the interface consistency condition, and finally,
a set of algorithms to construct a HIC supervisor for the high level, and a LICj
supervisor for each low level. We first give pseudo code to present the algorithms

and then we provide a time complexity analysis.

6.1 Common Data Structures and Algorithms

Before bringing in algorithms for the interface system, we first discuss a few data
structures and algorithms that will be commonly used in the algorithms given in

the following sections.

118

Master’s Thesis - P. Dal McMaster - Computing and Software

6.1.1 DES

The data structure of a DES is designed to handle all elements of a DES, with
access functions provided for the data members. The DES data structure has the

following member structures:

o states : all states of the DES. states can be implemented as an array or
linked list. Since we are building a DES with the number of states unknown
at the beginning, a linked list is used. A traversal of the whole state space

takes linear time.

o marker_states : all marker states of the DES. It is implemented as a linked

list in our algorithms.

o initial_state : the initial state of the DES. Since the initial state is important,

we have a pointer to it for fast access.

o cvents : A linked list off all events that belong to the event set of the DES.

A state consists of:

e index : integer starting from 1 as the unique key to identify a state. Since
each state has a unique integer index, it’s very easy to construct an array of

states and get fast access to each state and their properties.

e {rans : transition list, including all transitions starting from this state. This
is a linked list. A lransition consists of an event and a state, and is always

associated with its source state (the state that transition starts from).

e inverselrans : inverse transition list, including all transitions ending with
the state. It consists of the event, and the source state. This is designed
to provide fast lookup for synthesis and while checking properties such as

nonblocking. It is implemented as a linked list.

119

Master’s Thesis - P. Dai McMaster - Computing and Software

An event consists of a unique index, starting from 1. An event has a property
event lype that carries the value A or R if the event is an answer or request event,
or value N otherwise. Checking the event type of an event takes constant time.
An event also has a boolean flag isControl which is true if an event is controllable.

As a result, checking if an event is in ¥, or ¥, takes constant time.

Transitions arc frequently accessed to determine if an cvent is defined at a
statc when doing a synthesis or checking conditions. For fast access, we create
a transition matriz. The matrix is a three dimension array, wherc a location
is determined by an index for the DES, its states and the possible events. We
can determine if a DES has a transition at a given state for a given cvent by
checking the corresponding location in the array. If the value stored is zero, then
the transition is undefined. Otherwise, the index of the target state (the state the
transition takes us to) is stored at this location; thus getting the next state of a

transition or checking whether a transition is defined takes constant time.

6.1.2 Functions

In this section we list functions that are used in our algorithms and access functions

to our data structures.

o |z]
The function floor(x) (|z]) gets the largest integer that’s smaller than the

given number xz. The function takes constant time.

® pop
Is similar to a stack 'pop’ function. In our algorithms we used it on our
pending list and some other linked lists.! It takes an element from the list as
output and removes that element from the list. The function takes constant

time.

Lthe pending list used in our algorithins is defined in Section 6.1.3.

120

Master’s Thesis - P. Dai McMaster - Computing and Software

e push
Is similar to a stack 'push’ function. It appends an element to the given list.

The function takes constant time.

o addState
A DES object can call the addState function to add a state to its state list.
It also adds the state to the marker_states list if the state is marked. Both
state list and marker_states are linked lists and this function takes constant

time.

o addInverselrans
Given a source state and an event, the function adds a new inverse transition
to the calling state’s inverse transition list (¢nverseTrans). This means there
exists a transition from the source state, labeled by the event, leading to the
calling state. Since inversel'rans is a linked list structure, this function

takes constant time.

o removelnverselrans
It removes a transition from a state’s inversel'rans list. This function takes
O(nsnx), where ny, is the number of events of the DES, and nx is the number
of states. We note that ngny is actually the upper bound for the number
of reverse transitions for the entire DES (ie. if we added up the reverse
transitions for each state, they can’t exceed this number for a deterministic
DES). Where it is possible that we can have this many reverse transitions at
a given state, it would mean there would be none at all the other states! In
particular, if we were looping through all nx states, and examining all reverse
transitions, it would appear we would have nsn% steps, when in actually this

can not exceed nynyx.

o addlrans

Given a source state and an event, add a new transition for the calling state’s

121

Master’s Thesis - P. Dai McMaster - Computing and Software

transition list (trans). This means there exists a transition from the calling
state, labeled by the event, leading to the source state. The transition list is

a linked list structure, this function takes constant time.

o removelrans

Same as removelnverseTrans, this function takes linear time, O(nsy).

6.1.3 Pending and Found List

When applying a synthesis algorithm to a subsystem consisting of m DES, we start
from the synchronous product of the m DES, then trim off states that don’t satisfy

certain properties such as controllability.

Let n; be the state size of the i component DES, ¢ = 1,2,...m: let Nx be
the upper bound of all n; (ie. n; < Nx for each ¢). When we do a synchronous

product, the state space is worst case exponential in the size of an individual DES

(i.e. O(NZ)).

While constructing the synchronous product or verifying certain properties, we
often need to maintain a pending list. This list contains items remaining to be
processed. We also usually need to maintain a found list which contains items
already added to the pending list. Note: the found list contains items already
encountered, but they may not still been in the pending list if they have already

been processed.

The pending list operates like a work pool. We we need a new item to process,
we take it from this list. When we encounter a new item which is not in the found
list, we add it to the pool and to our found list. The order of the items in the
pending list doesn’t matter to the final result, so we can thus use either a stack or
a queue as an implementation. In either case, adding or removing items from the

pending list can be done in constant time.

122

Master’s Thesis - P. Dai

We next discuss the found list. When constructing the synchronous product,
we are essentially doing a traversal of all reachable states in the cross product of
the DES. When we encounter a state, which is a tuple of m component states from
our m DES, we need to search the found list to check whether we have encountered
the tuple already. If the tuple hasn’t been “found” yet, we add it to our found
list, and define a state variable for the tuple. Operations like insert and search are
thus frequently required. To provide good performance in these operations and
to store the tuple information efficiently, we adapt the trie structure to store the

found list. A trie is a multi-branch tree with certain properties that we will define

below. See Figure 6.1 for an example.

Py

S

NN

L

H

(L]

X1:State

X3:State

Name:char *

Name:char *

X5:State

Name:char *

getName():char *

Figure 6.1: Trie Hlustration

getName():char *

McMaster - Computing and Software

X7:State

Name:char *

getName():char *

X6:State

getName():.char * getName():char *
X2:State X4:State
Name:char * Name:char *

Name:char *

getName():.char *

getName():char *

Since a state in a synchronous product is based on the component states from

123

Master’s Thesis - P. Dai McMaster - Computing and Software

the m component DES, we represent it as a m-tuple such as (z1, za, ..., Z,,). When
we have m component DES, we will use a trie of height m. Each level represents
a DES, with DES 1 represented by the root node, DES 2 by the level below the

root node, and so on. In other words, the nodes at level ¢+ — 1 represent DES 4.

The nodes at a level i of the trie consist of an array of pointers. The size of the
array is n;,1, the state size of DES i+ 1. This means that such a node can have n; .,
children. For nodes at level other than m — 1, the elements of the array point to
the next level of the trie, or contain the NULL pointer depending on which tuples
have been stored already. We will make this clearer in a moment by discussing an
example. For nodes at level m — 1, the array elements contain either pointers to
state variables, or the NULL pointer depending on which tuples have been stored

in the trie already.

For example, assume we have a subsystem with m = 3 DES: G4, G2 and Gg.
We will also assume they have state spaces of size 4 (ie. states 1, 2, 3, 4, and 5),
5 and 3, respectively. Figure 6.1 contains a trie that could correspond to such a
systemn. Say we encountered state tuple (1, 2, 2) and we wanted to determine if it
wag already present in the trie. We would first check position one of the array at
the root node. If it is the NULL pointer, then that means no tuples with a “1”
in the first position have yet been added to the trie. In Figure 6.1, it so happens
that we have a pointer at position one that leads us to a node at level one. We
next check position two of this node, and again find a pointer to the next level.
We follow the pointer to the node at level two, and check position to of the array.
If the tuple has already been added, we will find a pointer to the state variable
that represents the tuple. For our example, we find the NULL pointer meaning
the tuple is not present in the trie. Given a state in the synchronous product, we
can thus look it up in the trie in O(m) steps, where m is the number of DES in

the subsystem.

If a tuple has not already been added to the trie, we allocate the missing nodes

124

Master’s Thesis - P. Dai McMaster - Computing and Software

and a new state structure, and set the pointers appropriately. This means worst
case allocating memory for m items, setting one pointer at level 0, followed by
setting Sg—o3 _mnx < (m — 1)Nx) pointers (including initializing unused ones to
NULL). Adding a state is thus O(m + 14+ (m —1)Nx) = O(m(1+ Nx) +1— Nx).

If we take Nx as a constant, we get O(m).

The trie structure used for states has a fixed height. We also used a variable
height version of the trie structure to keep track of events. For a detailed discussion

of variable height trie structures, see [28].

6.1.4 Disjoint Union

When checking command-pair interface properties and other conditions, we need
to frequently verify that two or more sets are disjoint. We also often have to verify

whether a set is equal to the disjoint union of two or more sets. In the format
Ag — Ag’l US2

We need to check two properties

1. S=5US5;

2. 51052:0

For fast processing, we store the sets as arrays. We thus need to make sure there
are no duplicate elements in the array. In the following algorithms, we will use
integer elements for demonstration purposes. In order to check whether two sets
are disjoint or not, we can simply put the two sets together and sort the results.
If the two sets are disjoint, there should be no duplicate elements in the resulting
set. We first present the UMERGESORT algorithm in Listing 6.1. The algorithm

is a variation of MERGE-SORT [17].

1

2

3

4

5

10

11

12

14

15

16

17

Master’s Thesis - P. Dai McMaster - Computing and Software

To present UMERGESORT, we first must present the algorithm for UMERGE,
which UMERGESORT uses. Algorithm UMERGE takes four parameters: an input
array A, start and end indexes p and r, and a middle index q. Array A is a place
holder for the input and output arrays. The algorithm takes two sub-arrays from
A (i.e. Alp..q] and Al(g + 1)..r]) and then merges the two sub-arrays into one
array, with the elements in ascending order. We use two array variables, L and R,
to hold the two sub-arrays in the algorithm. We also will use the notation co to

represent a number that is bigger than any possible value in the array.

Algorithm UMERGESORT takes three parameters: A as the input array,as well

as b and e as the indices of the first and last elements in the array.

Listing 6.1: Modified Merge sort

bool UMERGE (A, p, q, r)
begin
n— q-p+1;
ng e r-q;
Lil..m] « Alp..q];
L[ni+1] « oo
R[1..ng « A[(q+1)..1r];
Rngt1l] « oc;
1« 1;
i1
for Kk — p to r do
if L[i] = R[j] then
return false;
else if L[i] < R[j] then
Alk] « L{i++];
else
Alk] —R[j++];
end if

126

23

26

27

28

29

30

31

32

33

34

1

2

3

4

5

Master’s Thesis - P. Dai McMaster - Computing and Software

end for
return true;

end

bool UMERGESORT (A, b, e)
begin
if b<e then
me | (bte)/2];
if UMERGESORT (A, b, m) = false or
UMERGESORT (A, m+1, e} = false or
UMERGE (A, b, m, e) = false then
return false;
end if
end if
return true;

end

We modified MERGE-SORT such that when two items are found equal, the algo-
rithm will immediately terminate and return false. The running time of UMERGE-
SORT is same as MERGE-SORT, i.c., O(nlogn), where n is the total number of

elements in the input array.

The disjoint union checking algorithm is given in Listing 6.2. It takes as input
three sets A;, A; and S and it checks if S is equal to the disjoint union of A; and

As. We use the array variable Ay as temporary storage.

Listing 6.2: Verify disjoint union
bool DISJOINTUNION (Aj, Ag, S)
begin
ny <« size of Ay
ng «— size of Ag

ng«— size of S;

127

Master’s Thesis - P. Dai McMaster - Computing and Software

6 if ng #n; + ng then

7 return false;

8 end if

o Ag[1l..m1] —A[1..m];

10 Ap[ni+1.m3] —Ag[1. .ng;

11 if UMERGESORT (Ay, 1, ng} = false or
12 UMERGESORT (S, 1, n3) = false then
13 return false;

14 end if

15 for i « 1 to ngdo

16 if Ag[i] # S[i] then

17 return false;

18 end for

19 return true;

20 end

We first check to make sure that the size of S is equal to the sum of the sizes
of the two member sets (ie. |S| = |A;| + |Az|: lines 3-8). We the copy the two
member sets into a larger set Ag (lines 9-10). This takes linear time. Next, we
call Algorithm 6.1 to check whether the two member sets have duplicate elements
(line 11). We then Perform the same check on S (line 12). These checks each
take O(nslogns). We then traverse the two sorted sets and check whether each
corresponding element is equal (lines 15-18). This takes linear time. The running

time of this algorithm is thus dominated by UMERGESORT, which is O(nslogns).

6.1.5 Language vs. States

The synthesis process starts with creating a cross product of the component DES.
Based on this new DES, our algorithms trim off states that represent strings that

don’t meet our requirements, such as controllability and interface consistency.

128

Master’s Thesis - P. Dai McMaster - Computing and Software

In Chapter 5, we presented a set of language based fixpoint operators to con-
struct our supremal languages. The algorithms we present in this chapter construct
DES that represent these supremal languages, but they operate by removing states,
instead of strings. In this section, we will show the equivalence of removing states

to removing strings that fail our language based definition.

Let DES G; := (Q;, %, 6i, Goi, @mi), ¢ = 1,2. A cross product of DES G4, G2
is defined as Gy X G2 := (@, %, 0, ¢o, @m), where Q = Q1 X Q2,8 = §; X 02,4, =
((1017 (Ioz), and Qp, = le X Qm2, with

(01 x 62)((q1, 42), 0) = (0u(qn, 0), 02(q2, 7))

whenever §1(q1, 0)! and d3(qe, 0)!. The meet of the two DES is the reachable sub-
DES of G1 X G2 ([65])

We now extend the cross product definition to multiple DES. Given DES G; :=
(@ir 2,0, 40i» Qumi)y © = 1,2,...,m; a cross product of DES G1,Ga,...,Gyq is
defined as G4 X Gg X ... X Gy :=(Q, 2,0, ¢y, Qsn), Where

Q Q1 x Q2 x...xXQy
6 = 61X52X...X52

i

o = (q017 q02>, ceey QOn)
Qm = le X Qm2 X ... X an

with
(61 X 52 X0 X 52)((41, gz, .- . 7Q‘n)7 0) = (51((11, O'), 52((]27 0)7 R 5n(%, U))

whenever for all i = 1,2,...,n, d;(qg,0)!. Again, the meet of the n DES is the
reachable sub-DES of G; x Gg x ... X Gy,.

In the HISC definitions, we used the synchronous product. The main difference
between the meet and the synchronous product is that all DES combined in the

meel must have the same event set, where in the synchronous product, they each

129

Master’s Thesis - I’. Dai McMaster - Computing and Software

can be defined over a different event set. As it’s easier to work with the meet, we
can add appropriate selfloops to each DES so that they are then defined over a

common event set.

We do this as follows. Let DES G; = (Q:, ¥, s, @oi, @mi), & = i U
P:%* -5 i=1,2...n. We then define new DES G/ = sel floop(Gi, T —).
We thus have L(G}) = P, 'L(G;) and L,(G}) = P 'L,,(G;). It then follows that
L{meet(G}, G5, ...GL)) = L(G1||Gz||...||Gn) and L, (meet(G}, G, ...G)) =
L (G1||G2]---||Gn)-

We will now present a useful relationship between the states of G, and the
Nerode equivalence relations for the individual G;. The proposition below states
that for any two strings that go to the same state in G, then these two strings
also lead to the same state in each of the component DES, and thus they belong
to the same nerode equivalent classes of the component DES’s closed and marked

languages.

Proposition 13 Let DES Gi := (Q4, X, 0i, @ois Qmi) (1 = 1,2) and G = Gy %
G2 x...x Gy, =(Q,%,0,q,, Q). It then follows:

(Vie{l1,2,...n})(Vs,t € X*) 0(qo,s) = 0{go,t) = s=pyt N s =Gy L

¢
Proof
Let s,t € ¥* and i € {1,2,...n}.
Assume 0(qo, $) = 6(qo, 1) (1)

We will now show this implies s =p(g,) t and s =1, (g, t-

From (1) we have

(51 X 52 X...X 6n)((q017q02a .. ':qon)a 5) = (51 X 62 X...X 5n)((%1, Go2; - - '7qon)1t)

130

Master’s Thesis - P. Dai McMaster - Computing and Software

= (51 (%17 5)7 (52((1023 3)7 ey 5n(qon7 5)) - (51 (qola 5)7 52(qo27 5)7] 5n(q:rm t))
= 51‘(%1',5) - di(Q()ht)'

=>s=pa) t A S =L,(a) t (from [65]), as required.
O

We now present an analogous result for the synchronous product of n DES.
Let DES G; = (Qs, Zi, 04, Qois Qmi), & :jzluwnz,-, P ¥ —>%i=12,...n
Define G = G1||Gz|...||Gn = (@, 5,0, 40, Qm), L£i := P 'L(G), and L,,; =
P L (Gy).

Proposition 14 Let G; (i = 1,2), G, L;, and L,,; be fined as above. It then
follows:

(VZ € {1127 .- n})(vsvt € E*) (5((]0,3) = 5(QOt) = s=p,t As=g, 0

myi

o
Proof
Let s,t € ¥* and 7 € {1,2,...n}.
Assume 6(q,, 5) = 9(qo, t)- (1)

We will now show this implies s =¢, ¢t A s=,, ,t.
We now define new DES Gj = sel floop(Gj, X — X5) (j = 1,2,...n).

We thus have L(G}) = P7HL(Gy) = £; and L (Gj) = P Li(Gy) = Lo, for all
je{1,2,...n}. (2)

We next define G' = G} x G, x ... x G, = (@', 2,0, ¢, Q),)

We note that as L(G') = L(G), Ln(G') = L,(G), and the fact that the G} are
constructed by simply adding selfloops to the original DES| it follows from (1)

131

Master’s Thesis - P. Dai McMaster - Computing and Software

that §(go, s) = (o, t).

We can now apply Proposition 13 to G’ and the Gj (j = 1,2,...n) and conclude:

$=u@e) E A S Sraen t

s=r,t N s=g, 1, by (2).
O

We will now use these propositions to prove some useful results related to
the HISC conditions. We first introduce some notation that we will need. Let
I € {1,2,...n} and I, € {1,2,...n} be nonempty index sets for our n DES.
Define £;, = Njer, £5 and L, = Nger, Lk-

Proposition 15 Let G = G||G2||...[|Gn = (@, 2,9, ¢, @), La € X and I, and
I, be nonempty index sets for our n DES. It thus follows that for all s,t € ¥*, if
(g0, 8) = 0(go, t) then

Elige, (s) X & Eligr, (s) < Ehg, ()X, € Elige, (1)

o
Proof
Let s,t € X%,
Assume 8(qo, s) = 6(qo, t) (1)

We will now show that this implies

Eligﬂjl(s) N, € Eligﬁlz(s) & EligLI1 Hn%, Eligh2 (t)
We first note that as s and ¢ are arbitrary and the condition to be proven is
symmetric, it is sufficient to prove

Eligﬁll(s) N, € Eligﬁlz(s) = Elig,;l1 Ny, € EligLI2 (t)

132

Master’s Thesis - P. Dai McMaster - Computing and Software
We thus assume Elig,, (s) N Za € Elig,, (s). (2)
We will now show this implies Elig,, (1) N X, € Elig., (2). (3)

To prove (3), it is sufficient to show:

(30’ € Ea) to € [,11 Nto & [:12
From (2), we can conclude: (Jo € £,)s0 € L1, Aso & Ly, (4)

We next note that by (1) we can apply Proposition 14 and can conclude:
(Vie (LhUb))s=,t

Combining with (4), we can thus conclude:

to € mjeh[fj = Eh and to & nkelzﬁk = L[z

=toc € L ANto & Ly,, as required.
|

We now note that if we choose I, I, and ¥, appropriately, then Proposition
15 can be applied to the level-wise controllability definition, as well as points 3 and
4 of the interface consistency definition. Essentially the proposition states that if
a string fails such a property, then all the strings that lead to the same state in the
synchronous product will fail the same property, thus we need to remove the state.
This is consistent with how our state based algorithms work. We also note that
removing a state not only removes all strings that reach this state from the initial
state, but also removes all defined strings that can leave this state. In other words,
if we remove state ¢ € Q of DES G = (Q, %, 6, g,, @), we remove from L(G) the
strings Ly := {s € L(G)| (g, s) = q} as well as all strings that have prefixes in
Lq (ie. Extrgy(Lg)). This is consistent with how we defined our language based
fixpoint operators in Chapter 5.

We next present a nonblocking result. To show nonblocking for a DES G, we

would need to show L(G) = L,,(G). If G was blocking, then we would have

133

Master’s Thesis - P. Dai McMaster - Computing and Software

L(G) € L(G). We will now show that if a string was in L(G) but not in Ln,(G),
then all the strings that lead to the same state will also fail this condition, thus
we need to remove the state. Clearly this result can be applied to make the high

level, or a given low level nonblocking.

Proposition 16 Let G = (Q, 3,6, ¢, Qm). It thus follows that for all s,t € ¥*,

if 8(d0 5) = 0(4o 1) then s & Ln(G) & L & Lin(G) 0
Proof

Let s,t € ¥*.

Assume 6(go, 5) = (go, 1) (1)

We will now show that this implies s € L,,(G) © t € L (G)

We first note that as s and t are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove: s € Ly, (G) = ¢ & L (G)
Assume s & L,(G) (2)
We will now show this implies ¢ ¢ L,,(G).

We next note that we know from [65] that 6(qo,, s) = 6(q,,t) implies that s =1,(q) ¢

(3)
From (2), we can conclude: (Vu € £*) su & L,,,(G)
= (Vu € ¥*)tu &€ L,(G), by (3).

=t & L,(G), as required.
t

We now present a set of propositions relevant to the high level interface con-

trollable (HIC) definition, the j** low level interface controllable (LICj) definition,

134

Master’s Thesis - P. Dai McMaster - Computing and Software

as well as for nonblocking.

Let ® stand for the ntD degree HISC-valid specification interface system
that respects the alphabet partition given by (3.1) and is composed of plant
DES G%, G ,..., G}, specification DES Ey, Er,,...,EL,, and interface DES
Gy, ..., Gy, that we are considering. We will also take j to be an index in the
range {1,...,n}. We will also make use of the related natural projections and
languages defined in Section 5.1. We thus have Gu, = GY||Eg||Gy]|- .. |G,
and Guy, = Gi |[EL,||Gy,.

We first present a proposition for the HIC definition.

Proposition 17 For system @, let G := Gy = (Q, X, 5, ¢o, Qm). It follows that
for all s,t € ¥*, if 6(qo, 5) = 6(go, t) then

1. Eligyprg(s)NEy € EligL(GHL)(s) & EBligrprz(O) N, € Eligc) (t)

2. (Vj €{1,...,n}) Blig; (s) N X, L Elig (s) &
HPOL{G)0 Q Ik
k#j
Eligr,(t) N Xa, € Elig)
HPOL(G g)N Q Ik
k# i
%
Proof
Let s,t € %,

Assume 0(qo, 8) = 6(qo, t).

1. Show Eligypnz(s) N Zu € Eligy gy,)(s) € Eligyenz(t) NSy Z Eligy gy,)(t)

This follows from Proposition 15 when we take X, = 2, set index I to represent
G5, Gy, ..., GI,, and set index I3 to represent all of the DES used to construct
DES Gygg.

Master’s Thesis - P. Dai McMaster - Computing and Software
2. Show (Vj € {1,...,n}) Eligz (s) N X4, € Elig (s) &
’ HAOLGLN, () T
k#j
Eligz (t) N X4, € Elig (0
HPOL(GHL)ﬁkQ Ik
J

Let j € {1,...,n}.

The result follows from Proposition 15 when we take ¥, = X4, set index I; to
represent G I and set index I to represent all of the DES used to construct DES
GpuL. With respect to the definition of I, we are use the fact that L(Gnr) =
1{P
HP N L(GHL) ﬂijIk.

O

We now present a proposition for the LICj definition.
Proposition 18 For system @, let G := G, = (Q, %, 6, ¢, Q). It follows that
for all s,t € *, if 5(qo, 5) = §(go, t) then

1. Bliger(s) N3y € EligL(GLLj)ﬂIj(S) & Eligp(t)NEy, € Eth(GLLj)nzj (1)

2. ElZgIJ(S) ﬁ ER]‘ Z Eligﬁ?nL(GLLj)(s) p=—g Ehgzj(t) ﬂ ERj Z ElZgLI;OL(GLLJ)(t)

3. (¥p € Tr,)(Var € Bu,) [spa € T) A[(VL € £) splar & L2 1 L(Gyp,) N T;]
[tpo € TI A [(VI € Z}) tpla & LN L(Grr,) NI

4. [s € Ln,| N[(VI € 7)) sl & L5, N L(Grry) N L]
[t < Irnj] A [(Vl S Ez]) tl ¢ L£P2 N Lm(GLLj) ﬂIm]]

™mj

0
Proof
Let 5,1 € ¥*.
Assume 6(gy, 5) = 6(go,1). (1)

136

Master’s Thesis - P. Dai McMaster - Computing and Software
Using (1), we can apply Proposition 14 and conclude (2)

s=pt N s=pp 1
c? £,

s = t N s= t
£, EL;

s=g t A szzmjt

1. Show Eligﬁf(s) n, ¢ EligL(GLLj)nzj(s) & Eligq’(t) n, € EligL(GLLj)an (t)

This follows from Proposition 15 when we take X, = X, set index I; to represent

G’]:j, and set index I3 to represent all of the DES used to construct DES Gy, .

2. ShOW EthJ (3) ﬂ ZRJ Z Ehgﬁan(GLL) (S) =4 EthJ (t) ﬂ ERJ Z
J J
Eligﬁ;’nL(GLL] (1)

This follows from Proposition 15 when we take Y, = X, set index I3 to represent

Gy;, and set index Iy to represent all of the DES used to construct DES Gyr,.

3. Show (Vp € L,) (Vo € By,) [spax € TiA[(V € B}) spla & LINL(Gi,)N <
tpa € LIN[(VI € 2}) tola & L5 N L(Grr,) NI

Let p € ¥g;, and o € Xy,

We first note that as s and ¢ are arbitrary and the condition to be proven is
symmetric, it is sufficient to prove:
[spa € I A [(VI € 2]) sple & LT N L(Grr,) NT] = [tpo € THA
[(Vl € B7)) tpla & LN L(Gr,) N L)

Assume [spa € T A [(VI € X7) spla & L5 0 L(Gr,) N 7). (3)
We will now show this implies

(tpa € T A [(VE € X7) tpla & L5 N L(Gre,) N T4

137

Master’s Thesis - P. Dai McMaster - Computing and Software
From (2), (8), and fact that by definition L(Gry,) = L{NEL,NZ;, we can conclude

[tpa €] A [(VE€ X)tpla € LENE, NT;

= [tpa € ;] A [(VL € X)) tplec & L5 0 L(Gri,;) NZ], as required.
4. Show [s € T, | A [(VI € Z7)) sl & L5, N Lin(Grr,) NZn)] &
t€Zn,] A[(VI€Zy,) t & LE, N Ly(Gry,) NZy,]

We first note that as s and ¢ are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove:
[s € I, I A [(Vl € E*L,-) sl ¢ l:fn,- N Lyn(Gry;) N, =
teZn N[Vl e Z‘zj) tl & Cﬁbj N Ly (Grr,) N]
Assume [s € I | A [(VI € 27) sl & LB, 0 Lin(Grr,) N)] (4)

We will now show this implies

[t € Zn,| AN[(VL € X7) tL & LT, N Lin(Grry) N Lo,
From (2), (4), and fact that by definition L,,(Grr,) = L5, N &L, ,, N Ly, we can
conclude: [t € I,] A[(Vl € X}) tl & L, NEy,, NIy,

>t eZn|AN[(VieZ]) U ¢ Lh O Ln(Gry,) NZTy,), as required.

6.2 Verify Command-pair Interfaces

A DES must satisfy the properties given in Definition 3.2.1 to be a command-
pair interface. As this definition is given in terms of the languages L(Gy) and

L,,(Gy), we would prefer a state-based definition that would be easier to verify

138

Master’s Thesis - P. Dai McMaster - Computing and Software

using automata. We present below such a definition, and then show that it is

equivalent to Definition 3.2.1.

Definition 6.2.1 A DES Gy = (X,XpUZX4, &, 70, Xin), with X,en C X its set of
reachable states and X,,, C X, its set of reachable marked states, is a command-

pair interface if the following properties are satisfied:

1. 2o € Xy
2. (Vz € X;m)(Vo € TpUZA)E(z,0)! = 0 € ZrAE(z,0) € Xpeh — Xom
3. (Vz € Xoon — X)) (Vo € BpUE L) E(z,0)! = 0 € BaAN&(x,0) € Xpp O

We now show that our new definition for command-pair interfaces is is equiv-

alent to the original definition given in Chapter 3.

Proposition 19 Definition 3.2.1 and 6.2.1 are equivalent. O

Proof

Let Gi = (X, XpUX4,&, 2o, Xim), and let X,q, € X be its set of reachable states

and X,,, € X,, its set of reachable marked states.

We will now show that Gy satislies Definition 3.2.1 if and only if it satisfies Defi-
nition 6.2.1.

I) Assume Gy satisfies Definition 6.2.1.
We will now show that this implies Gy satisfies Definition 3.2.1.
To do this we need to show that Gy satisfies points A and B of Definition 3.2.1.

I.A) To show point A, we need to show: L(G;) C (Xg.24)*

139

Master’s Thesis - P. Dai McMaster - Computing and Software

This essentially says that a string in L(Gy) can be either the empty string, €, or it
must start with a request event and then alternate answer and then request events

from then on.

This is equivalent to saying: i
(Vs € L(G))(3k € {0,1,2,3,...})(301,02,..., 00 ELrUXA)0102...0, = s

where k =0 means s = ¢, and for 1 > ¢ > &

a; € g if 7 is an odd number, and ; € X4 if 7 is an even number
From point 1 of Delinition 6.2.1, we know that z, is a marked state, and from poini
2 we know that at all reachable marked states only request events are allowed, and
they always take us to a non marked state. From point 3, we know that at all

reachable non marked state, only answer events are allowed, and they always take

us to a marked state.

Clearly, this implies that for a string ¢ € L(Gy), either ¢ = € or ¢ starts with a
request event, and then alternates answer-request event from then on. In other

words, L(Gy) satisfies T.
1.B) To show point B, we need to show: L,(Gj) = (5g.Z4)" N L(G)

We thus need to show L,,(G;) € (Xg.24)* N L(G)) and (Zg.Xa)* N L(G)) C
L.(G)).

1.B.i) Assume s € (£g.24)* N L(Gy).
Must show this implies s € L,,(G)
We first note that s € (Xg.£4)* implies s = e or s € (XpUX4)*34

From point 1 of Definition 6.2.1, we know that xq is a marked state, thus e €

L (Gy).

140

Master’s Thesis - P. Dai McMaster - Computing and Software

If s € (ErgUZ4)*. X4 we can conclude:
(3s' € (BrUZA))(Fa e Xy)s'a=s

As s € L(Gy)), it follows that s’ € L(Gy)) as L(Gy)) is closed.
We thus have £(xg, s') € Xien and &(zo, s'a) € Xien.

By point 2 of Definition 6.2.1, we can thus conclude &(zp, ') € Xin — Xym as

answer events are not permitted at states in X, .,.

We can thus conclude by point 3 that £(zo, s'a) € Xpm.
We thus have s € L,,(Gr) (as s = s'a), as required.
L.B.ii) Assume s € Ln,,(Gy)

As L,,(G) € L(Gy), we immediately have s € L(Gy).
It is thus sufficient to show s € (¥g.X4)*

From Part I.A, we have L(G/) C (Sz.Z4)"

As L,(Gf) € L(G/), we thus have L (G;) C (Zg.Z4)*.

In other words, strings in L,,(G) can be either the empty string, or it must start
with a request event and then alternate answer and then request events from then

on.
If s = ¢, we would have s € (£p.X4)*.

We now examine the case that s starts with a request event and then alternates

answer and then request events.
This means that it is sufficient to show that s € (XU 4)*.24.

As s € L,,(Gy), it follows that &(zg, s) € Xym.

141

Master’s Thesis - P. Dai McMaster - Computing and Software

From points 2 and 8 of Definition 6.2.1, it follows that &(xo, s) can only be reached

by an answer event transition, thus s € (XU X 4)*.X 4, as required.

From Part 1.B.i and I.B.ii, we have L,,(G;) = (¥r.24)* N L(Gy), as required.

From Part I.A and I.B, we have that Gy satisfies Definition 3.2.1.
II) Assume Gy satisfies Definition 3.2.1.
We will now show that this implies Gy satisfies Definition 6.2.1.

We first not that by point A of Definition 3.2.1, we know that L(Gy) satisfies {.

(1)
I1.1) Show that zg € X,

By point B of Definition 3.2.1, we have ¢ € L,,(Gy). It immediately follows that
zo € Xy, from the definition of L,,(Gy).

I1.2) Show that (Vz € X,,)(Vo € BrUX4)&(z,0)! = 0 € ZrA€(x,0) € Xien —
XTm

Let £ € X, and 0 € U4,
Assume &(z, 0)!. Must show implies o € ¥g A &(z,0) € Xieh — Xom
From Part 11.1, we know we have two choices: x = zg or x # zg

If x = zo, we know that o € Xy as every string in L(G;) must start with a request

event, by (1).
By point B of Definition 3.2.1, we can conclude that o & L,,(Gy).

We can thus conclude that &(z,0) € X — Xom.

142

Master’s Thesis - P. Dai McMaster - Computing and Software
We now consider the case x # zg.

As z is reachable by assumption, we can conclude 3s € L(Gy) such that £(zg, s) =

x.

From (1), we can conclude that s starts with a request event, then alternates

answer then request event.

As z € X,,, by assumption, we thus have s € L,,(G).

= s € (BpUX 4)*.X4, by point B of Definition 3.2.1 and fact z # xq.

By (1), we can thus conclude o € Lg. (2)
As &(z,0)! by assumption and fact z is reachable, we thus have so € L(Gy).

= so & L,,(G/) by (2) and point B of Dcfinition 3.2.1.

T € Xieh — Xy, as required.

I1.3) Show that (Vo € Xienh — Xom) (Vo € ZrUZA) E(z,0)l = 0 € B4 N E(x,0) €
X?"m

Let £ € Xieh — Xpm and 0 € DU X 4.

Assume &(z, 0)!. Must show implies 0 € 4 A &(z,0) € Xy

As z is reachable, we can conclude 3s € L(Gy) such that £(zg,0) = x.

As 7 € Xy — Xpm, we know that s € L,,,(Gy). (3)
This also allows us to conclude x # xg by Part IL.1.

We can thus conclude by (1) that s begins with a request event and then alternates

answer then request event. (4)

143

Master’s Thesis - P. Dai McMaster - Computing and Software
From (3) and point B of Definition 3.2.1, we can conclude s € (EpUX4)*.Z4.
= s € (XrUX4)* Tk, by (4).
= 0 € ¥y, by (4). (5)
As &(x, 0)! by assumption and fact z is reachable, we thus have so € L(Gy).
= so € L,(Gy), by (5) and points A B of Definition 3.2.1.

= {(x,0) € X,m, as required.

From Parts I1.1-3, we have that Gj satisfies Definition 6.2.1.

From Parts I and II, we can now conclude that Gj satisfies Definition 3.2.1 if and
only if it satisfies Definition 6.2.1.
O

We will now present an algorithm that checks whether a given DES is a com-
mand pair interface according to Definition 6.2.1. All the properties will be verified

in one traversal over the DES.

When an interface DES is designed and read into memory, we require that
every state starting from the initial state, is given an index number starting from
1, which can be used as a keyword to identify a unique state. We reserve 0 for
later use to mark an undefined state or a state with special meaning. Similarly,

we index events starting from 1.

Given a DES G1 = (X, 2}, €, 2o, X;n) and event sets Lg, X4, we need to check
that Gy satisfies the properties listed in Definition 6.2.1.

Listing 6.3: Checking Command-pair interface
1 bool CoMMANDPAIR (G1)

2 begin

144

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Master’s Thesis - P. Dai McMaster - Computing and Software

if DisjoINTUNION(Zg, 4, Xr)=false then
return false;
end if
if Gi= EMPTY then
return false;
end if
if =g ¢ X,nthen
return false; //point 1
end if
XFound +— {xo};
Xpend + {zo};
while Xp..s # 0 do
X < pop Xpend ;
if x €¢ X,,then
for each ¢ € ¥; do
if ¢£(x, o)! then
x — &(x, o);
if 0 ¢Xr0R x’ €X,,then
return false; //point 2
else
if X’ ¢ Xpoung then
push Xpounda, X5
push Xpe.., x;
end if
end if
end if
end for
else //x & X
for each o € ¥;do
if £(x, o)! then

x « &(x, 0);

34

35

36

37

38

39

40

41

42

43

44

485

46

47

Master’s Thesis - P. Dai McMaster - Computing and Software

if ¢ ¢240R X ¢X,,then
return false; //point 3
else
if x’ ¢ Xpoung then
push Xrpound, X’;
push Xpenq, x';
end if
end if
end if
end for
end if
end while
return true;

end

Let n, = |X|,ns = |¥;] be the number of states and events. Lines 3-5 calls
Algorithm 6.2 to check if 3} is a disjoint union of X g and ¥4, it takes O(n,-logn,).
Lines 6-8 checks if the DES is empty. This takes constant time. Lines 9-11 make
sure that the initial state is marked. Lines 12-13 initialize the following state sets:
Xrounp: states found/processed; X penq: a set of states waiting to be processed.

The initialization takes constant time.

Lines 17-29 check that, for any given state in X,.,,, only request events occur
and they lead to states in X, — X,y (Point 2). Similarly Lines 31-43 check Point
3.

The while block, lines 14-45, runs n, times worst case. The for blocks in lines
17-29 and lines 31-43 run n, times. Checking event type (such as on line 20) takes
constant time. Since we know the size of the state space, we can use an array to
store flags to mark whether a state is found or not. Checking of whether a state
is found or not, as done on line 23, thus takes constant time. Operations (Push

and pop) on Xp..q take constant time. So the while block, Line 14-45, takes

146

Master’s Thesis - P. Dai McMaster - Computing and Software

O(ny - ns) running time. We conclude that the running time for Algorithm 6.3 is

O(ns - logns + ng - ng).

6.3 Level-wise Nonblocking and Controllable

Since our synthesis method constructs supervisors for each subsystem and makes
sure the resulting supervisor is nonblocking and controllable, we don’t need to

verify these two properties for our supervisors.

In case a verification is required, normal verification tools such as TCT can
be used. Verification is much simpler than synthesis since whenever a state or
string fails the desired property, the whole process can be stopped and the state
and property that failed can be then be returned to the user. Rudie [50] studied
the complexity of supcon for systems with one plant and one spec (ie. a flat
system), and concluded the time complexity for such a supcon algorithm to be
O(snpny+syeper), in which s and s, represent ﬁumbers of events and uncontrollable
events, n, and n; represent the state sizes of the plant and specification, e, and
e; represent numbers of transitions in plant and specification. As e, < sn, and
e; < sny, we can rewrite the complexity as O(sn,n; + susznpn,). Interested readers

are referred to [50] for verification algorithms for nonblocking and controllable.

6.4 Verify Interface Consistency

For a given nth degree (n > 1) hierarchical interface based system composed

of DES GH;GLU- . '7GLn’GIL" ..,G[

n?

we need to verify that all the interface

consistency conditions in Definition 3.4.2 are satisfied.

First we will verify that the system respects the alphabet partition given by

Equation 3.1. Then we will check the listed six interface consistency properties.

147

Master’s Thesis - P. Dai McMaster - Computing and Software
6.4.1 Alphabet Partition

We need to verify that

£=3Sy0U, U (S, Uk, UTy,).

=17..,,n

By definition of disjoint union, we have n, = || = |Eg| + Eg=1,. o (|Zr, | + 2R, | +

|£4,|). Here we use |E| to mean the number of elements in the set .

To check that the two sets are disjoint, we can use a variation of Algorithm 6.2.
Essentially, we would remove the S set from the algorithm, set ng = |A;| + |Az],
remove lines 4-8, the uMergeSort call for set S, and lines 15-18, and return the Ay
array (we will need this shortly). The complexity would still be O(ngslogns). If we
use n, as an upper bound for ng3, we see that the comparison for any two of our

sets would be O(n;logny).

Since we have one high level with event set Xz and n low levels each having
three event sets (X L, 2R, and X A].) associated with them, we thus have 3n + 1
event sets in total. To directly verify that all sets are pairwise disjoint, we could
compare every two combinations out of the 3n 4+ 1 possible sets to see if they are

In?+3n

disjoint. This would require CS"*! = comparisons. > However, we can
2 2 ’

actual check this condition using a maximum of 3n comparisons.

Imagine a complete binary tree structure, with each event set as a leaf node. 3
We then apply our comparison algorithm that we discussed above to every two sets
who share the same parent node. After comparing the two sets, we then replace
their parent node with the resulting set from the disjoint union (array A, discussed
above). If we have an odd number of sets at a given level, we move the rightmost

node that represents a set, up one level to replace its parent node.

We repeat this process from bottom up until we have replaced the root node.

QCn — n!
m T ml(n—m)!

completely filled. At the lowest level, all nodes must be as far left as possible.

148

Master’s Thesis - P. Dai McMaster - Computing and Software

If any of these steps we find the two sets we are comparing are not disjoint, the
process terminates and we conclude that the alphabet partition does not satisfy

the requirement, and thus the system is not interface consistent.

We will need to call our comparison algorithm at most 3n times. Clearly, the
n3 value for any comparison will be less than n,. We thus have time complexity

O(3n) - O(nslogns) = O(n - nilogn).

In the remainder of this chapter we will assume that the disjoint union property
has already been verified and we will use U (normally set union) instead of U in

our discussions.

6.4.2 Multi-level Properties

Multi-level property Point 1 can be verified by comparing event set of Gy and
Y1, and event set of GLJ. and Yy, , for j =1...n. We need do n+ 1 comparisons

in total.

Let n; be the size of alphabet > and let np be an upper bound for the number
of component DES that make up Gy and the GLj. We assume that ;4. and each
Y11, are represented by a Boolean array of size ns;. As each event has an index
number greater than or equal to one, we can specify whether an event in 3 belongs
to a given set by marking the corresponding entry as true. We can thus test set

membership for a given event in constant time.

To determine the event set used by Gy, we first initialize each entry in its
array to false. This has time complexity O(ns). We then process the event set
of each component DES and mark each corresponding array entry as true. This
process is O(nsnp). We can now check that every entry of this array is set to true
if and only if the corresponding entry of the array for ¥y is set to true which
will tell us if the sets are equal. This process is O(n,). Our entire process is thus

O(2ns + nsnp) = O(ngnp). We can use a similar approach to check the n low

149

Master’s Thesis - P. Dai McMaster - Computing and Software

levels. We thus find the total time complexity for Point 1 to be O(nnsnp).

Multi-level property Point 2 requires that all interface DES are command-pair
interface. We can verify this by applying Algorithm 6.3 (Section 6.2) to each
Gy, for 5 = 1...n. Let n, be the largest state size of of all the interfaces. As
Algorithm 6.3 runs in O(nslogns + n, - n,) time, we can thus check Point 2 in

O(nnslogns + nng - ns).

6.4.3 High Level Property

The high level property (Point 3 of Definition 3.4.2) is similar to the controllability
definition. If we take Gy, as the plant DES, GullGL |G, |GG, Bu = B4,
as the supervisor DES and 3, = ¥—X 4, we can then apply a normal controllability
check for each j € {1,2,...,n}. We also note that the synchronous product of the
plant and the supervisor is the same in each case, so we can then do only one
synchronization but check for each version of the controllability property at each

reachable state.

When carrying out our check, we store pointers to the component DES in an
array and put them in the following order: plant, specification and then interface
DES. Let nygp and ngg be the number of plant and specification DES in the high
level, respectively. When checking the high level property, we need to use all the
plant and specification DES from the high level, plus all n interface DES. The total

number of DES involved is thus
myg = ngp + Ngs + Nn.

The algorithm to check Point 3 is given below in Listing 6.4.

Listing 6.4: Interface Consistency Pt 3 Check
1 bool PT3CHECK ()
2 begin

15

16

17

20

21

22

23

24

26

27

28

29

30

31

32

33

Master’s Thesis - P. Dai McMaster - Computing and Software

Zm gV Uper n(Ba, U XR,);

ngp «— number of high level plant DES;

ngs < number of high level specification DES;

my < nygp + nigs + n;

for kw1 to mpyg do

Fill transition matrix (DES k):y(k,z,0);

end for

80 — < T15, T2, Tmpye > 3 //Tuple of initial

pending « {so};
found « {s¢};

while pending # 0 do

s = <Z1,%2,...,Tmy > + extract element from

for each o €Z,y do
undefined «— false;
for i — 1 to my do
if dy(i,z;,0) ! then
z;” —o0p(i,xi,0) ;
else
undefined « true;
break;
end if
end for
if undefined then

if i < ngp + nys then

for j —nyp + ngs + 1 to my do

if 6y(j,z5,0) ! and o €Xa, then

return falsc;
end if
end for
end if

else

151

states from

pending;

all DES

34

35

36

37

38

39

40

41

42

43

Master’s Thesis - P. Dai McMaster - Computing and Software

s’ <z, T2y, Ty >
if s’ ¢ found then
pending « pending U {s’};
found— found U {s’};
end if
end if
end for
end while

return true; //pt 3 check pass

end

Let nsg = |Zrx|. Let ng be the number of states of the largest DES (in terms of
state size) among the my DES. Let n, be state size of the synchronous product of

GH,GII,.. .,Gln.

In Line 3, we simply copy the indicated event sets into a large array, which takes
linear time. Lines 7-9 constructs the transition table for each component DES. As
transition lists are stored as linked lists in DES, we need to construct the table
in able to quickly determine if a transition is defined at a given state, and where
the transition takes us. We construct the array for a given DES as follows: For
each state of the DES, we initialize the entry for each event in ;4 to be to that
state (ie. set it to a selfloop). This is to account for events not in the event set of
the DES. This effectively converts the synchronous product to the corresponding
meet operation. We then loop through every event in the event set of the DES and
set that entry to zero which indicates no transition with that event label defined
as the state indexes start at one. We now loop through the transition list (stored
as a linked list) for the that state. Since we assume the DES is deterministic, we
can have maximum n,y transitions at a given state. For each one we find, we set
the corresponding array index to the indicated next state. As we do this for every

state of each DES, this operation is thus O(my - ny - nsy).

152

Master’s Thesis - P. Dai McMaster - Computing and Software

The while block, lines 13-41, goes over the state space of the synchronous
product DES, which is worst case n, < n}* states. The for loop in lines 15-40
runs ngg times, while the two parallel for loops in lines 17-24 and lines 27-31 each
run O(mpy) times. Access to the trie representing the found set is also O(mpy).
The running time for this algorithm is thus O(my - ng - neg) + O(nG? - ney - my)

which is dominated by the O(n® - ngy - my) term.

6.4.4 Low Level Properties

Point 4, 5 and 6 are all low level properties, which allows us to check them all

together and reduce the traversals required over a given low level subsystem.

We store pointers to the component DES in an array and organize them in the
order: plant, specification and then interface DES. Let ny, p and ny,s be number
of plant and specification DES in the i* low level (i € {1,2,...,n}), respectively.
For the i*" low level, the total number of DES involved in the interface consistent

check is the number of plants and specifications plus one interface, thus
mp, = nr,p + nrgs+ 1

We will use the data structures listed below in our algorithms to check the low

level properties.

e R-Reachable contains states from the synchronous product for a given low
level which can be reached by a request event, as well as the corresponding
component state belonging to the interface for that low level. We use this list
to check property 5 by calling function SEARCHANSWER given in Algorithm

6.6 for each state (from the synchronous product) in R-Reachable.

e 5-Consistent contains states from R-Reachable that we have already called
function SEARCHANSWER. This is to prevent duplicate searches when a given

state can be reached by request events from multiple other states.

153

Master’s Thesis - P. Dai McMaster - Computing and Software

o [-Marked contains states that are not marked in the synchronous product
of a given low level, but their corresponding interface component state is

marked in the interface for that low level. We use this list to verify Point 6.

Listing 6.5: Interface Consistency Pt 4, 5 and 6 Check

1 bool LowICCHECK ()

2 begin

3 for i=1 to n do //Go over all n low levels
. Sr1, « X1, USR US4, ;

5 n,p < number of i** low level plant DES;

6 nr,s < number of i low level specification DES;

7 mr, < nr,p + nps + 1;

8 for k1 to mg, do

9 Fill transition matrix (DES k):6;(k,z,0);

10 end for

1 80 ¢ < X1y, %2y ---1Tmp > ; //Tuple of initial states from all DES
12 pending « {so};

13 found — {so};

14 R—~Reachable «— 0;

15 5—Consistent « 0;

16 I-Marked « 0;

17 markedStates « 0;

18 //begin pt 4 check

19 while pending # 0 do

20 s = <Z1,%2,...,Tm,, > < pop pending;

21 for each ¢ € ¥y, do

22 undefined « false;

23 marked « true ;

24 for j — 1 to mg, do //] represents a given component
25 if 8(j,zj,0) ! then // DES at low level i
26 z; — 6(j,zj,0) ;

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

54

55

56

57

Master’s Thesis - P. Dai McMaster - Computing and Software

if not z;’.marked then
marked «— false;
end if
else
undefined «— true;
break;
end if

end for

if undefined and ¢ €Xp, and d(mri,zm,,,0)

//defined in the interface
return Pt 4 fails;
else
s’ — <mLw ..., Ty >
if s’ ¢ found then
if marked then

s . marked « true;

markedStates « markedStates U {s’}

end if

3

push pending, s’;

’

push found, s’;

if ;). marked and not s’.marked then

I-Marked «- I-Marked U {s’};
end if //save for pt 6 check
end if

if o0 €Xp then

!

R-Reachable «— R-Reachable U {(s’, zm,)};

end if
end if
end for
end while

//end pt 4 check

then

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

77

78

79

80

81

82

83

&4

85

86

87

88

Master’s Thesis - P. Dai McMaster - Computing and Software

//begin pt 5 check
while R—Reachable # § do
(s, x) « extract item from R-Reachable;
if s ¢ 5—Consistent then
answers «— answer events defined at x in interface;
visited [] « false; //Array of bool, shows states visited
if SEARCHANSWER (s, answers, visited, i) then
5—Consistent « 5~Consistent U {s};
else
return pt 5 fails;
end if
end if
end while
//end pt 5 check
//begin pt 6 check
if I-Marked # @ then
pending « markedStates;
found <« pending;
while pending # ¢ do
s « extract element from pending;
for each inverse transition (t, o) of s do
if 0 €, A t ¢ found then
found « found U {t};
pending « pending U {t};
end if
end for
end while
if not I-Marked C found then
return Pt 6 fails;
end if
end if

Master’s Thesis - P. Dai McMaster - Computing and Software

39 //end pt 6 check
9o end for //End of loop from Line 3

91 end

We first give function SEARCHANSWER and analyze its complexity and then give

the complexity analysis for Algorithm 6.5.

Listing 6.6: explore DES for indicated answer events from s

1 bool SEARCHANSWER (s, answers, visited , i)

2 //Check if all answer events defined at z; are reachable from s

3 begin
4 if answers = () then
5 return true;

s end if
7 visited (s) « true;

s for each transition (s, o) of s, leading to some state t do

9 if ¢ € answers then

10 answers « answers — {o};

11 else if o €Xy, then

12 if not visited(t) then

13 if SEARCHANSWER (t, answers, visited , i) then;
14 return true;

15 end if

16 end if

17 end if

18 end for

1vs if answers == () then
20 return true;

21 else

22 return false;

23 end if

24 end

Master’s Thesis - P. Dai McMaster - Computing and Software

Let nsr, = |Z11,]. Let ng, be the number of states of the largest largest DES (in
terms of state size) among the my, DES of the it* low level (i € {1,2,...,n}).
Lines 4-6 of Listing 6.6 terminates searching if we have found a path to all the
required answer events. The for loop in lines 8-18 searches all transitions from
the given state for answer events in the answers set. Whenever it finds an element
in the set, it removes it from the set. It also extends the search to states that
can be reached from the current state by low level events (lines 11-17). Line 12
ensures each state of the DES is visited no more than once. As we can remove an
event from the answers set in line 10 without immediately checking if the set is
now empty, it’s possible we could exit the for loop with the answers set empty.
We thus check for this in lines 19-21. The worst case scenario of this algorithm is
that it needs to traverse all the transitions in the synchronous product, which is

O(nsg, - nZL“)

We now analyze the time complexity of Algorithm 6.5. Since there are n low
levels, we need to check Points 4, 5, 6 n times (Line 3-88). We now show the run
time for the i** low level. We have my, component DES for the i** low level, and

each DES has no more than ny, states.

Line 4 copies the indicated event sets into a large array. This step takes linear
time O(ngr,). Similar to algorithm PT3CHECK in listing 6.4, lines 8-10 construct
a transition matrix for all component DES in the i** low level. The matrix is

constructed in O(my, - ny, - nyz,) time.

We now examine the complexity of checking Point 4 (lines 18-57). The while
block (lines 19-56) goes over the state space of the synchronous product, which
is worst case nZL’. The for loop in lines 21-55 repeats nsy, times to check every
event in low level i. 'This for loop also contains the for loop in lines 24-34 which
goes over every DES, and thus runs my, times. In parallel to the inner for loop,
we also access the found variable (lines 40 and 46) which is implemented as a trie

data structure. This access is O(my,). Putting things together, we find that the

158

Master’s Thesis - P. Dai McMaster - Computing and Software

outer for loop (21-55) is O(nsz,-my,). Combining this with the while loop, and we
find that checking Point 4 check, takes O(nsg, - my, onZL"). We note that checking
Point 4 dominates line 4 and lines 8-10, and can thus be covered by the value for

the Point 4 check.

We now consider the Point 5 check (lines 58-71). In the worst case, R-Reachable
can contain an entry for every transition in the synchronous product. The while
loop (lines 59-70) thus runs O(nsLinZL")‘ However, the if statement at line 61
ensures that the core loop only gets executed O(nZL") times. If fact, it’s as if we
have a while loop that executes O(n; Linzlf") times performing a constant number
of operations each iteration, followed by a while loop that executes O(nZL") times
and executes lines 62-68 each iteration. Computations inside the second while
loop are additive and dominated by the SEARCHANSWER function, which takes
O(nsr, - n:-ZL"). So the Point 5 check thus takes O(nsLinZL") + O(nZL") -O(ngy, -

nZLi) = O(nsLi - ni’inlzi).

The Point 6 check (lines 72-88) is similar to the normal coreachability check.
The main difference being that we only traverse inverse transitions that are labelled
by events in ¥,. The while loop runs worst case once per state in the synchronous

my, . . . - . . ey
product, thus O(n L,L1) times. Each iteration, it processes all inverse transitions for
the current state being examined. The for loop at lines 78-83 thus runs O(nsy, -
774) times. The while loop thus appears to take O(n '712mLi) time. However
ny, ") times. > whi pt wppears t 5Ly N, . However,
we note that the while loop is in effect processing each inverse transition in the
synchronous product once. As each inverse transition corresponds to a unique
ey . my, . «
transition, we can thus have maximum O(n,p, -ny ") unique inverse transitions in

a deterministic DES. We thus conclude that the while loop executes O(n,y, nZL‘)

times.

After searching all transitions, we check whether all states in I-Marked were
reached in our search (lines 85-87). This takes O(nZL”') steps. Running time for

the Point 6 check is dominated by the while loop, which is O(nsy, - nZL’).

159

Master’s Thesis - P. Dai McMaster - Computing and Software

Adding the running time together for the construction of the transition matrices
and the checking of interface consistent properties Point 4, 5 and 6, and then
repeating n times, we have the running time for Algorithm 6.5 as O(n) - (O(ngy, -
mLi-nZL")+O(nsLi~niT:LL")—I—O(nsLi-nzL")) = O(n-(noz, mp, ny +nsLi-n2LTL")). As

typically we have > my,, we can normally simplify this to O(n -n,y, -n%“ .
y y L; 4 Yy Yy i L;

6.5 Interface Consistent Synthesis

When applying HISC synthesis algorithms to generate supervisors from given
plants, specifications and interfaces, we want to make sure that the generated
supervisors satisfy the interface consistency, level-wise nonblocking, and level-wise
controllability definitions. We verify that the system is HISC-valid when we load
the component DES into memory. This provides us with the starting point for
our synthesis. For the high level subsystem, we want to make sure that it satisfies
Point 3 of the interface consistency definition as well as Point I of the level-wise
nonblocking definition and Point 1T of the level-wise controllability definition. For
the low levels, we need to make sure that Points 4, 5 and 6 of the interface con-
sistency definition as well as Point II of the level-wise nonblocking definition and
Point I of the level-wise controllability definition. By applying our algorithms on
the given HISC structured system, we will produce a set supervisors such that the
system, with the specifications replaced by these supervisors, is interface consistent

level-wise nonblocking and level-wise controllable.

6.5.1 High Level Interface Consistent Supcon

The objective of the traditional supcon algorithm ([64, 50]) is to construct the
maximally permissive controllable sublanguage of a given specification language
E, with respect to the plant G. The objective of HISC synthesis is to create level-

wise maximally permissive controllable sublanguages of the given specifications,

160

Master’s Thesis - P. Dai McMaster - Computing and Software
while making sure that the resulting system satisfies the interface properties.

The high level synthesis algorithm is based on the synchronous product op-
eration. It trims off states that violate the high level portion of the level-wise
controllability, nonblocking and interface consistency definitions. Based on the
synchronous product of the plant, specification DES, and interfaces, we trim off
three kinds of state: uncontrollable, non-interface consistent and blocking states.
Since trimming off any single state can possibly change the other properties, we
need to keep trimming until all three properties are satisfied in the resulting DES.
At that point no more states need to be trimmed off and we have reached a fixpoint

for the synthesis algorithm.

In this section we list the ISUPCONHIGH algorithm which implements the high
level fixpoint operator Q2. ISUPCONHIGH calls two functions TRIMSTATE and
TRIMDESHIGH. TRIMSTATE trims off a state in a controllable, high level interface
consistent fashion, This means that when asked to trim a given state s, it will
recursively trim s and any state s’ that connects to s if s’ fails the controllabil-
ity property or Point 3 of the interface consistency property. Since the index of
states in our DES start from 1, we can mark the trimmed states with index 0,
and then clean the trimmed states at the end of the synthesis algorithm. Func-
tion TRIMDESHIGH will typically do the bulk of the required work. It returns
true if there is no need to trim another state. Definitions of these functions will
follow. Also in the following algorithm, we will use pseudo code addState (add a
state to the result DES. Also assigns state a unique index with value greater than
one), addTrans (add a transition to a state), addInverseTrans (add an inverse
transition to a state), addToM arkerState(adds state to list of marker states),
removeM arkerState (removes state from list of marker states), removeState (re-
moves state from DES). All three add a node to a linked list and take constant
time. We use states and marker_states to represent linked lists of states and

marker states for a DES. A traversal of either lists takes linear time.

161

1

2

3

4

5

10

11

12

17

18

19

20

21

Master’s Thesis - P. Dai McMaster - Computing and Software

When running our algorithms, we store pointers to the component DES in an
array and put them in the following order: plant, specification and then interface
DES. Similar to algorithm PT3CHECK, we define ngyp and ngg to be the number
of plant and specification DES in the high level, respectively. We will use a total
number of

myg = ngp + nygs + n

DES in the high level synthesis, where n represents number of low levels and thus

the number of interfaces.

Listing 6.7: High Level Synthesis
DES 1SurPcoNHIGH ()
begin
i —ZpU Up—1.n(Za, U ZRy);
ngp <+ number of high level plant DES;
ngs «— number of high level specification DES;
myg <~ ngp + npgs + n;
for k= 1 to myg do
Fill transition matrix (DES k):0u(k,z,0);
end for
o~ < L1gy 200 - - s Lo > //Tuple of initial states from all DES
pending «— {zo};
found « {xo};
DES resultDES;
result DES . addInitialState (zo);
while pending # @ do
X =< Z1,2L2,...,Tmy > < extract element from pending;
for each o € Xy do
undefined «— false;
marked «— true;
for i «— 1 to my do

if dg(i,zi,0) ! then

162

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

42

43

44

46

47

48

50

51

52

Master’s Thesis - P. Dai McMaster - Computing and Software

x;) «—o0p(i,xi,0) ;
if z;’. marked = false then
marked «— false;
end if
else
undefined + true;
break;
end if
end for
if undefined then
untrimmed «— true;
if i <ngp + ngs then
for j —nyp + nys + 1 to mpy do
if ou(j,z;,0)! and o € X4, then
//fail high level property
TRIMSTATE (x) ;
untrimmed « false;
break;
end if
end for
end if
if i >nyp and i < nyp + nys and o € X,
and untrimmed then
// as 1 > ngp we know the ¢ transition
// defined in all of the plants
specBlocked « true;
for j —nygp + ngs + 1 to my do
if not dx(j,zj,0)! then
specBlocked « false;
break;
end if

163

is

53

54

55

56

57

58

60

81

62

63

64

65

66

67

72

73

T4

76

77

78

79

80

81

82

Master’s Thesis - P. D

end for

al

McMaster -~ Computing and Software

if specBlocked then

TRIMSTATE (X) ;

end if
end if
else // pot undefined
X — <x1,125 .., Tyt >

if X’ ¢ found then
if marked then

x'. marked « true;

//uncontrollable event defined for

//all plants, and interfaces

resultDES . addToMarkerState (x’);

end if

result DES . addState (x7);

pending « pending U {x’};

found « found U {x’};

end if
if x'.index > 0 th

x.addTrans(x’, o

en

E

x’. addInverseTrans(x, o);

end if
end if

end for
end while
reach[] « false;
reach [xo] «— true;
pending «— {zo};
found « {zo};

while pending # ¢ do

X «— extract element from pending;

for each t € x.trans

do

164

84

85

86

87

88

89

91

92

93

94

95

96

97

28

g

100

101

Master’s Thesis - P. Dai McMaster - Computing and Software

x' e t.state;
if X’ ¢ found then
pending « pending U {x’};
found <« found U {x’};
reach [x’] « true;
end if
end for
end while
while TRIMDEsHIGH (resultDES, reach) do
; //keep trimming until no changes happen
end while
for each x € resultDES.states do
if not reach[x] then
resultDES . removeState (x);
end if
end for
return resultDES;

end

We now briefly discuss how the ISUPCONHIGH algorithm works. We defer the
complexity analysis until after we have presented and analyzed the TRIMSTATE

TRIMDESHIGH algorithms.

In lines 15-75, we construct a possibly restricted synchronous product for the
high level. As we process each state, we check to see if it violates Point 3 of the
interface consistency definition, as well as Point 111 of the level-wise controllability
definition. We do this by examining each event that does not have a transition
defined at that state. We check Point 3 on lines 33-42. If ¢ < ngp + ngs, we
know that a plant or spec DES does not allow the event to occur at the current
state. We then check each interface to see if the event is allowed by the interface,

and if so, whether the event belongs to the interfaces set of answer events. If both

165

Master’s Thesis - P. Dai McMaster - Computing and Software

true, then Point 3 fails and we call TRIMSTATE to remove the state.

In lines 43-58, we check to make sure the state satisfies Point III of the level-
wise controllability definition. If ¢ > ngp and i < nygp + ngs and the event is
uncontrollable, then we know that a specification is trying to disable an uncon-
trollable event. As ¢ > ngp, we know that the event can occur in all of the plant
components at this state. We then check to see if any interfaces prevents the event.
If they all allow it, then the state fails Point III and we call TRIMSTATE to remove

the state.

After we have determined that an event has a transition defined at our current
state, we process it in lines 59-73. Lines 61-68 ensure we only process each state
once. Lines 69-72 ensure that the state we have reached has not already been

found and trimmed from the DES before we add transitions to/from the state.

As it is possible that our DES may contain some unreachable states, we do a
reachability check (lines 77-90) and store the results in variable reach. We pass
reach into function TRIMDESHIGH which will update the reach if it needs to trim

off any states.

Now that the synchronous product has been constructed, we call function
TRIMDESHIGH to make the result DES nonblocking. This function call mainly
implements the {1y xp operator, but it also trims away states in a controllable and
Point 3 consistent fashion. This is equivalent to make the DES nonblocking, fol-
lowed by a pass to make sure the DES is still controllable and satisfies Point 3 of the
interface consistency definition. We loop (lines 92-94) until calls to TRIMDESHIGH

cause no change to our DES, meaning we have hit a fixpoint.

Now that we have reached a fixpoint, we remove from the DES all states that

are unreachable.

In the following algorithms, a state = has a transition list trans and an

inverse tramsition list inverselrans. For some state z’, we use pseudo code

166

Master’s Thesis - P. Dai McMaster - Computing and Software

xz.removel'rans(z') to remove any transitions from z to 2’. Similarly, we use
z.removelnverseTrans(z’) to remove any inverse transitions that correspond to

transitions from x to z’. We start by presenting TRIMSTATE.

Listing 6.8: TrimState

1 void TRIMSTATE (State x)

2 begin

3

4

5

10

i2

16

17

18

if x.index = 0 then
return;
end if
x.index « 0; //mark the state as trimmed
for each t € x.trans do
r1< t.state;
z1.removelnverseTrans (x);
end for
for each t € x.inverseTrans do
1< t.state;
¢ «— t.event;
z1. removeTrans (x };
if e €X, or e €X,4 then
TRIMSTATE (1) ;
end if

end for

19 end

TRIMSTATE2 given in Algorithm 6.9 is a variation of TRIMSTATE. The only

difference between these two is that Algorithm 6.9 is used in the final stage of the
synthesis procedure, thus it adds checking for reachability. As Algorithm 6.8 is
used during the creation of the synchronous product, it’s possible that a state may
only temporarily become unreachable and thus it should not be removed at that

point.

167

1

2

3

4

5

18

19

20

21

22

23

Master’s Thesis - P. Dai McMaster - Computing and Software

Listing 6.9: Trim State With Reachable Check
void TRIMSTATE2(x, reach)
begin
if x.index = 0 then
return;
end if
x.index « 0; //mark the state as trimmed
reach[x] « false;
for each t € x.trans do
1+ t.state;
z1. removelnverseTrans(x);
if z;.inverseTrans = @ then //r; no longer reachable
TRIMSTATE2(21) ;
end if
end for
for each t € x.inverseTrans do
r1+— t.state;
e «— t.event;
z1. removeTrans (x);
if e €¢X, or e €¥4 then
TRIMSTATE2(z1) ;
end if
end for

end

We now give the TRIMDESHIGH algorithm, followed by a complexity analysis
for algorithms 6.7- 6.10. We use an array visited to mark coreachable states, and
at the end of the algorithm we trim off all non coreachable states to make the DES
nonblocking. We use states and marker_states to represent linked lists of states
and marker states for a DES. A traversal of either list takes linear time. Below,

we refer to the EMPTY DES. This is a placeholder representing any DES with

168

Master’s Thesis - P. Dai McMaster - Computing and Software

no states. This means that the closed behavior and the marked language of the

EMPTY DES are both empty.

Listing 6.10: High Level DES Trim Function

1 bool TRIMDESHIGH (des, reach)
2 begin

3 changed « false;

4+ if des = EMPTY then

5 return changed;

s end if

7 pending « 0;

s visited [] « false;

9 for each x € des.marker_states do

10 if reach{x] then

1 pending <« pending U {x};
12 visited [x] = true;

13 else

14 des.removeMarkerState (x);
15 end if

16 end for

17 if pending = § then

18 // means no reachable marker states
19 des «— EMPTY;
20 return changed;

21 end if

22 while pending # ¢ do

23 x «— extract element from pending;
2 for each r € x.inverseTrans do

25 x1— r.state;

26 if not visited [z1] then

2 visited [z;] = true;

169

28

29

30

31

32

33

34

35

36

37

38

39

Master’s Thesis - P. Dai McMaster - Computing and Software

pending « pending U {xi};
end if
end for
end while
for each x € des.states do
if not visited[x] then
TRIMSTATE2 (x, reach};
changed « true;
end if
end for
return changed;

end

As defined earlier, my is the number of high level DES (plants + specs) plus
number of interfaces (n), nsy = |Zry|, and ny is the number of states of the
largest DES (in terms of state size) among the my DES. Let n, be state size of
the synchronous product of Gg, Gy, ..., Gr,. We can see that the synchronous

H

product has worst case n, < nj? states.

Algorithm 6.8 and 6.9 check a state’s transitions, which in the worst case have
nsg transitions and nj"ngy inverse transitions. When trimming one state, the
algorithm may also go to another state and start trimming that state off by loop-
ing over the other state’s transition and inverse transition lists and so on. The
algorithm would appear to be O(ngg - nZ"H } due to the number of possible re-
verse transitions at each state. However, as each reverse transition corresponds
to a unique transition, there can be a maximum of n;”n.y such transitions in a

deterministic DES. As this algorithm can be seen as looping over each all reverse

transitions in the DES, it is thus actually O(nsp - nf,™).

In Algorithm 6.10, initializing the visited array takes O(ny;”). The for loop in
lines 9-16 also takes O(n%"). We note that as we are looping through the linked

170

Master’s Thesis - P. Dai McMaster - Computing and Software

list marker_states, we do not have to search to remove the current marked state,

thus its removal can be done in constant time.

The while loop in lines 22-31 runs O(np”) times. Within the while loop,
the for loop in lines 24-30 runs O(nggny™) times. This would appear that the
2my

while loop is O(nspny ™), but as discussed above, a deterministic DES can have a

maximum of n7 ngy reverse transitions so the while loop is actually O(nsgny™).

We now note that the for loop in lines 32-37 runs O(n’y") times. Within the
for loop, function TRIMSTATE2 runs O(n.y - ng™). It would appear that the for
loop is O(nsy -n%}"’* }. However, as a state can only be trimmed once, implemented
by lines 3-6 in both Algorithm 6.8 and 6.9, it is actually O(nsg - nj;"). Putting
everything together, we see that Algorithm 6.10 is 2 - O(ny") + O(nem - ng™) +

O(nsy - i) = Ongy - 7).

Now we investigate time complexity for Algorithm 6.7. Similar to Algorithm
6.4, line 3 takes O(n,y) time , and lines 7-9 takes O(mpy - ng - ngy) time. The
while block (lines 15-76) goes over the state space of the result DES, and thus

Ty

loops O(ny™) times.

Within the while loop, the for loop in lines 17-75 runs nyy times, and the
three parallel inner for loops in lines 20-30, lines 34-41, and lines 48-53 each run
O(my) times. Also in parallel to the inner for loops are accesses to the found
variable on lines 37, and 56, and a call to TRIMSTATE on line 56. Accessing the
found variable is O(mp), and TRIMSTATE runs O(n,g - ng”). Within the for
loop on lines 34-41, we have a call to TRIMSTATE on line 37. The complexity for
this for loop is O(my) + O(nsm - nig™) = O(my + ngy - n;M) as TRIMSTATE can

be called at most once.

Putting everything together, the for loop in lines 17-75 appears to be O(nsy) -
(O(mpy) + O(nsy - ™)) = O(nsu(my + nsy - niy™)). As a state can be trimmed

only once, the complexity is actually O(nsy - my + ngy - ny¥).

171

Master’s Thesis - P. Dai McMaster - Computing and Software

We now see that the while loop (lines 15-76) appears to be O(ny®) - O(nqg -
my + nsy - npT) = O(new - mu - NG + ney - n%’”’). Again, as a state can
only be removed once, we can argue as above that the while loop is actually

Olnsg -myg -n 2" +ney -n'i?) = Olngg - my - nHH).
H H H

We next note that the array reach (line 77) can be initialized in O{n’;*) time.
The variable found can be now implemented as an array, and thus be accessed
(lines 85 and 87) in constant time. The while loop in lines 81-91 runs in O(n,y -
) time.

The while block in lines 92-94 calls Algorithm 6.10, where each call takes
O(nsy - n5™) time. The worst case is that Algorithm 6.10 only trims one state
each time and finally all states need to be trimmed off. The while block will
thus run O(nj;”) times, making the total run time O(ny") - O(neg - ng™) =
O(nsy - n5™). However, the function TRIMDESHIGH is typically only called a
constant number of times 4. Therefore the running time for the while block will

mi

typically be O(nsg - nj;™). Finally, the for loop in lines 95-99 runs O(n'y") times.

We are now ready to determine the complexity for all of Algorithm 6.7. Putting
the parallel sections together, we see that Algorithm 6.7 runs in O(nsy)+O(mg-ny-
nsg)+O0(nsg-myg-ny")+O0(nsg -ni,m”) +O0(ng") = O(nsg-mpg -ng" +nsy -n?,m”)
as typically mpg -ny < n”. However, as discussed above, the O(n,p - nilm”) term

typically turns out to be O(nsg - njg"). We would thus expect the algorithm to

m
behave as O(nsy - mpy - ng™).

6.5.2 Low Level Interface Consistent Synthesis

For the k™ low level of an interface system, k € {1,2,...,n}, we would like to

compute the k* low level level-wise maximally permissive supervisor that satisfies

4In a standard supcon algorithm, there is a similar trim function. Rudie {50] shows that a
standard supcon algorithm normally calls the trim function once. And if there are multiple calls,
the number of calls is effectively constant compared to the number of states of the DES.

172

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

Master’s Thesis - P. Dai McMaster - Computing and Software

the interface properties. For the low levels, we need to make sure that Points 4,
5 and 6 of the interface consistency definition as well as Point II of the level-wise

nonblocking definition and Point II of the level-wise controllability definition.

In this section we list the ISUPCONLOW algorithm which implements the k** low
level fixpoint operator 2;,. We will use the same notations as defined for LowIC-
CHECK in Section 6.4.4. Similar to high level’s TRIMSTATE and TRIMSTATEZ2, we
use slightly modified versions TRIMSTATELOW and TRIMSTATELOW2 to remove

unwanted states.

Listing 6.11: Low Level Synthesis
bool 1SUPcONLoOw ()
begin
for i=1 to n do // (A), go over all n low levels

DES resultDESi
S, 30, USR US,, ;
ng,p < number of ith low level plant DES;
nr,s < number of ith low level specification DES;
mp, < ngp + nps + 1;
for k— 1 to my, do

Fill transition matrix (DES k):6;(k,z,0);
end for
50— < L1y, L2, --1%mpe >3 //Tuple of initial states from all DES
pending « {so};
found « {sg};
R-Reachable « 0;
I-Marked « @
//begin pt 4 check
while pending # § do

s = < Z1,%2,...,%m;, > — pop pending;

for each o € ¥y,

undefined « false;

173

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

51

52

Master’s Thesis - P. Dai McMaster - Computing and Software

marked + true;
for j — 1 to my,
if 6;(j,xzj,0) ! then
z; — 8(4,x5,0) ;
if not z;’. marked then
marked « false;
end if
else
undefined « true;
break;
end if

end for

if undefined and [(o €Xp, and

or (j >ngp and o €%,)] then

TRIMSTATELOW (s, i);
else
s’ — <:El‘,:132‘,...,meiL>)
if s’ ¢ found then
if marked then

s '. marked « true;

resultDESi.addToMarkerState (s ’);

end if

result DESi.addState(s’);

?

push pending, s’;

b

push found, s’;

if Zm;,-marked and not s’.marked then
I-Marked « I-Marked U {s’};
end if //save for pt 6 check

end if

if o €Xp then

R-Reachable « R-Reachable U {(s’, zm,)};

174

6i(mLi) Tmypys U) !)

53

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Master’s Thesis - P. Dai McMaster - Computing and Software

end if
if s’.index > 0 then
s.addTrans(s’, o);
s . addInverseTrans(s, o);
end if
end if
end for
end while
reach [] « false;
reach [sg] «— true;
pending « {so};
found « {so};
while pending # ¢ do
s « extract element from pending;
for each t € s.trans do
s’ «— t.state:
if s’ ¢ found then
pending « pending U {s’};
found « found U {s’};
reach[s’] « true;
end if
end for
end while
while TRIMDESLOW (resultDESi, R—Reachable, I-Marked,
i , reach) do
i //keep trimming until no changes happen
end while
for each s € resultDESi.states do
if not reach[s] then
result DESi.removeState(s);

end if

84

85

86

87

1

2

3

4

5

10

Master’s Thesis - P. Dai McMaster - Computing and Software

end for
end for
return resultDESj, j = 1,2, .. , n;

end

We now briefly discuss how the ISUPpcONLOW algorithm works. Much is similar
to the ISUPCONHIGH algorithm, so we will only discuss the new stuff. We defer
the complexity analysis until after we have presented and analyzed the TRIM-

StaATELOW TRIMDESLoOW algorithms.

In lines 34-36, we check whether a state violates Point 4 of the interface con-
sistency definition, and Point II of the level-wise controllability definition. If the

state fails either condition, we trim the state away from the result DES.

During the synchronization, we record a few sets (R-Reachable and I-Marked)

and keep them for checking Point 5 and 6.

Finally after the synchronous product is constructed, we call function
TRIMDESLOW to make the result DES nonblocking and to ensure it satisfies Points
5 and 6 of the interface consistency definition. It also trims state away in a con-

trollable and Point 4 consistent fashion.

Listing 6.12: Low Level Trim State
void TRIMSTATELOW (x, 1)
begin
if x.index = 0 then
return;
end if
x.index « 0; //mark the state as trimmed
for each t € x.trans do
r1+— t.state;
z1.removelnverseTrans(x);

end for

176

11

12

13

14

15

16

17

18

19

Master’s Thesis - P. Dai McMaster - Computing and Software

for each t € x.inverseTrans do
z1+ t.state;
e «— t.event;
zi.removeTrans (x);
if e €X, or e €Xp, then
TRIMSTATELOW (21, 1);
end if
end for

end

TRIMSTATELOW2 given in Algorithin 6.13 is a variation of TRIMSTATELOW. The
only difference between these two is that Algorithm 6.13 is used in the final stage

of the synthesis procedure, thus it adds checking for reachability. As Algorithm

6.12 is used during the creation of the synchronous product, it’s possible that a

10

11

12

13

state may only temporarily become unreachable and thus it should not be removed

at that point.

Listing 6.13: Low level Trim State With Reachable Check

void TRIMSTATELOW2(x, i, reach)
begin
if x.index = 0 then
return;
end if
x.index « 0; //mark the state as trimmed
reach x| « false;
for each t € x.trans do
x1 - t.state;
z1. removelnverseTrans(x);
if z;.inverseTrans = ¢ then //r; no longer reachable
TRIMSTATELOW2 (z7, 1, reach);

end if

14

15

16

17

18

19

20

21

22

23

1

2

11

Master’s Thesis - P. Dai McMaster - Computing and Software

end for

for each t € x.inverseTrans do
xr1+— t.state;
e «— t.event;
z1. removeTrans (x);
if e €%, or e €Xp, then

TRIMSTATELOW2(zy, i, reach);

end if

end for

end

We now give the TRIMDEsSLOw algorithm, followed by a complexity analysis
for algorithms 6.11-6.14. We use states and marker_states to represent linked lists
of states and marker states for a DES. A traversal of either list takes linear time.
Below, we refer to the EMPTY DES. This is a placeholder representing any DES
with no states. This means that the closed behavior and the marked language of
the EMPTY DES are both empty. We also note that we use in the algorithm

below the function SEARCHANSWER which was given earlier in Listing 6.5.

Listing 6.14: Low Level DES Trim Function

bool TRIMDESLOW (des, R-Reachable, I-Marked, i , reach)
begin
changed « false;
if des = EMPTY then
return changed;
end if
remain [|] « false;
pending « 0;
for each s € des.marker_states do
if reach([s] then

pending <« pending U {s};

178

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

Master’s Thesis - P. Dai McMaster - Computing and Software

remain[s] « true;
else
des.removeMarkerState(s);
end if
end for
if pending = @ then
// means no reachable marker states
des « EMPTY;
return changed;
end if
5—Consistent « §
while pending # ¢ do //check coreachable
s <« pop pending;
for each r € s.inverseTrans do
s’ «— r.state;
if not remain[s’] then
remain[s’] « true;
push pending, s’;
end if
end for
end while
//check Point 5
for (s, x) € R-Reachable do
if (not reach[s]|) or (not remain|s|) then
R-Reachable « R—-Reachable — {(s, x)};
else
if s ¢ 5—Consistent then

answers «— answer events defined at x in

visited [] « false;

interface;

if SEARCHANSWER (s, answers, visited, i) then

5—Consistent «— 5—Consistent U {s};

179

43

44

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Master’s Thesis - P. Dai McMaster - Computing and Software

else
//mark all states for trimming that reach s via
// a request event
for t € s.inverseTrans do
if t.event € Xpg,then
remain [t.state] « false;
end if
end for
end if
end if
end if
end for
//check Point 6
if I-Marked # ® then
// the next two lines imply that pending and found are
// assigned a copy of des.marker_states
pending «— des.marker_states;
found « des.marker _states;
while pending # @ do
s « extract element from pending;
for each (s’, o) € s.inverseTrans do
if 0 €Xp,A s’ ¢ found then
found « found U {s’};
push pending, {s’};
end if
end for
end while
for each x € I-Marked do
if not reach[x] then
I-Marked « I-Marked — {x};
else if x ¢ found then

180

74

75

76

77

78

79

80

81

82

83

84

85

86

Master’s Thesis - P. Dai McMaster - Computing and Software

remain [x] « false;
I-Marked «— I-Marked — {x};
end if
end for
end if
for each x € des.states do
if not remain[x]| then
TRIMSTATELOW2(x, i, reach);
changed «— true;
end if
end for
return changed;

end

We now give a complexity analysis for algorithms 6.11-6.14. We will leave

Algorithm 6.11 for last.

For low level k, k = 1,2,...n, let ng = [2;.,|, and ng be the number of states
of the largest DES (in terms of state size) among the my, DES. We note that the

state size of the synchronous product is O(n, **).

We first note that Algorithms 6.12 and 6.13 are almost identical to Algorithms

6.8 and 6.9, and thus take O{(ngy - n;nL’“) time when called for the &% low level.

We now examine Algorithm 6.14 for processing low low level k. On line 7, we
initialize the array remain which takes O(nzw’“) time. We use the array remain to
mark whether a state should stay in the final result. The for loop on lines 9-16

also takes O(n, *) time.

The while loop in lines 23-32 is similar to the while loop on lines 22-31 in

Algorithm 6.10, and is thus O(ngn, *).

We now consider the for loop in lines 34-54 that checks Point 5. In the worst

case, R-Reachable can contain an entry for every transition in the synchronous

181

Master’s Thesis - P. Dai McMaster - Computing and Software

product. The for loop thus runs O(nsyL:LL’“). However, the ¢f statement at line
38 ensures that the core loop only gets executed O(n;:L’“) times. If fact, it's as if
we have a for loop that executes O(nskn;:L’“) times performing a constant number
of operations each iteration, followed by a for loop that executes O(n;m") times
and executes lines 39-52 each iteration. Computations inside the second for loop
are additive and dominated by the SEARCHANSWER function and the for loop on
lines 46-50, both taking O(ng - nZLL’“) time. We thus have that the Point 5 check

takes O nsknml"‘ + O,) -0 Tisk - netYy =0 Thsk - n2mL’c .
k k k k

We next note that the initialization of the arrays on lines 59-60 each take
O(ny'**) time. We now examine the while loop in lines 61-69. As this loop is
similar to the while loop in lines 76-84 in Algorithm 6.5, we know it executes
mLk)

O(ng - nZLL’“) times. It’s followed by a for loop in lines 70-77 which runs O(n,

times.

Finally, we note that the for loop in lines 83-88 is similar to the for loop in

lines 32-37 of Algorithm 6.10 and thus runs in O(ng - n;nbk) time.

As all the other steps take either constant or linear time, they are covered
by the parts we analyzed. Put the analysis together for Algorithm 6.14, it takes

O(nZLLk) + O (s - ";ank) + O(ng - nimk) = O(ngk - nszk).

Now we investigate time complexity for Algorithm 6.11. The for loop (Line
3-85) runs n times, once for each low level. We will now analyze the rest for low

level k.

Similar to Algorithm 6.4, line 5 takes O(ng) time , and lines 9-11 takes O(my,, -
Nk - Nsx) time. We now examine the while loop in lines 18-60. The while loop goes
over the state space of the synchronous product, which is worst case nZLL’“. The
for loop in lines 20-59 repeats ng, times to check every event in low level k. This
for loop also contains the for loop in lines 23-33 which goes over every DES, and

thus runs m,, times. In parallel to the inner for loop, we also access the found

182

Master’s Thesis - P. Dai McMaster - Computing and Software

variable (lines 39 and 46) which is implemented as a trie data structure. This
access is O(my,). Also parallel to the inner for loop is a call to TRIMSTATELOW
in line 36. Putting things together, we find that the outer for loop (20-59) is
O(nsk - my, +n? - n:”’“). However, as TRIMSTATELOW ensures that a state can
only be trimmed at most once, we actually get O(ng-mp, +nsk -nZLL’“ }. Combining
this with the while loop, we get O(ng - my, - nZLL’“ + ng nimL’“). Again, as
TRIMSTATELOW ensures that a state can only be trimmed at most once, we get

Cmp MLy mr,
O(nsi - mp, -ny * +ng-ng *) = O0(ng-mp, -ny, *).

We next note that the array reach (line 61) can be initialized in O(n, **)

time. The variable found can now be implemented as an array, and thus be
accessed (lines 69 and 71) in constant time. The while loop in lines 65-75 runs in

O(ng - np °*) time.

The while block in lines 76-79 calls the Algorithm 6.14. Each call of this
algorithm takes O(ngy - niml“‘“) time. The worst case is that Algorithm 6.14 only
trims one state each time and finally all states need to be trimmed off. The while

block will thus run O(n; **) times, making the total run time O(n, **) - O(n, -

3m

2mLk) — O('I‘Lsk . nk

Ny “¥). Similar to analysis for Algorithm 6.7, the number of

calls to this function is effectively constant, thus this block would normally run in

O(ns - n2™*) time. Finally, the for loop in lines 80-85 runs O(n;, **) times.

Putting the parallel sections together, the run time for Algorithm 6.11 for one

my,

low level is O(ng) 4+ O(my, - nk - nax) + O(nsg - my, -7y, *) + O(n?’“’“) + (ns -
m 3m. m m 3m
nk'L") + O(ngy - nz ")+ O(ng ™) = O(ng, - my, - my, g omy,). As we
m 3 .
have n low levels, we thus have O(n(ng, - my, - n, B 4 g - nkmL’“)). As typically

my, 2my, . . . 3myp, .
My, -y, © <K ny *, we can simplify this to O(n-ns-n, *). As discussed above,
2mLk

the O(ng - n2™RY term typically turns out to be O(ng - n, . We would thus
k &

expect the algorithm to behave as O(n - ngy - nimL)

183

Master’s Thesis - P. Dai McMaster - Computing and Software
6.5.3 Summary

It’s shown in [25], the supcon of a system constructed from multiple plant and
specification DES is a NP-hard problem, there is unlikely any algorithm that solves
this problem in a polynomial time. The complexity is exponential to the number

of component DES involved in the synthesis.

As we can see from our analysis, we would expect our algorithms take O{ny -
my - npt) and O(n - ng, - ny"™) to generate our high and low level interface

consistent supervisors.

Let Ny denote the size of the state space of G¥||Eg, while N; and Ny, are upper
bounds for the state space size of G;, and G’}JjHELJ. (7 = 1,...,n), respectively.
As was discussed in [33], the limiting factor for a flat system would typically be
NyN}7, and Ng N7 for the HISC method as it grows in the number of low levels.

We would expect our method to offer significant improvement as long as N; <« N

Of course, this increased scalability comes with a price: a more restrictive
architecture and thus the possible loss of global maximal permissiveness. In other
words, if we instead modeled the system as a flat system and did a normal synthesis
operation such as using the TCT supcon algorithm [65], we might be able to get a
larger closed loop behavior than we got with the HISC synthesis. However, we feel
that the tradeoff is worthwhile due to the increased scalability and the behavior

encapsulation provided by the HISC method.

184

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 7

AIP Example

To demonstrate the utility of our method, we apply it to a large manufacturing
system, the Atelier Inter-établissement de Productique (AIP) as described in [8,
13], and later investigated by Leduc et al. [30, 31, 32, 33, 29] using the HISC
method and then by Ma et al. [41, 42] using state tree structure and binary

decision diagrams.

In this chapter we first introduce the system structure of the AIP. Then we
describe our modifications to the AIP example which are based on Leduc et al.
[30, 31, 32, 33, 29]. Finally, we apply our synthesis method to the example, and

discuss the result.

In this chapter, a few figures are borrowed from [30, 31] with the author’s

permission. We will indicate in the figure’s caption when this happens.

7.1 Introduction

The AIP is an automated manufacturing system consisting of a central conveyor
loop (CL) and four external conveyor loops (EL). There are three assembly stations

(AS) that process incoming pallets and four transfer units (TU) that transfer

185

Master’s Thesis - P. Dai McMaster - Computing and Software

pallets between central and external loops. An [/O station puts raw pallets into

external loop 4 and takes away processed pallets from it.

The AIP system structure is shown in Figure 7.1. Figure 7.2 shows the hierar-

/O Station ’ﬂ‘U

chical structure of AIP system.

External
loop 1

Transport
Unit 4 <

loop

Station 3

—... Transport|..
< Unit 2

Assembly
Station 2

Figure 7.1: AIP System Structure ([30])

A transfer unit checks whether a pallet needs to be transferred or not and if it
does, then performs the transfer between the central loop and the transfer unit’s

external loop.

Assembly stations monitor pallets on their corresponding external conveyor

loops. If the pallets need to be processed, the assembly station processes it and

186

Master’s Thesis - P. Dai McMaster - Computing and Software

High level

B

Low level , | Low level, | Low level , | Low level,i Low level , | Low level , i Low level ,

Glé’ Guié IEGLA‘é Glé G”é G’*‘TZ gGLsﬁGU»‘Z_ gGmﬁGmé EGUﬁG”;
| As2 | A3 | TUl | TU2 | TUS | TU4

Figure 7.2: Hierarchical Structure of AIP([30])

AS1

then puts it back on its external loop. The pallet then waits to be transferred
to the central loop. The three assembly stations can perform different assembly
actions. Station 1 (AS1) can do tasklA and taskl1B. Station 2 (AS2) can do task2A
and task2B. Station 3 (AS3) acts like a master station which can perform all four

tasks and works as a backup machine when AS1 or AS2 break down.

Figure 7.3 and 7.4 show the layout of an assembly station and a transfer unit,

respectively.
External loop X i
J AT e &
| \
’ ’ :
et w2
=
{ Ll s A /
\ NO O CIRW device X [/ © - 7
. [spx2 \ 1)
._— E A ~O \
CESX.1 Pallet gate X.2 Legend

Extractor X Pallet sensor
Extractor sensor

£ ESX.2 Read\ write device

Raising Pallet stop

platform X Robot X

Assembly
station X

Pallet gate

E e

Figure 7.3: Assembly Station Layout ([30])

The AIP system can process two types of pallets: type 1 pallets and type 2

pallets. We assume that the system is initially empty and two types of pallets are

187

Master’s Thesis - P. Dai McMaster - Computing and Software

Legend ol «—
> Pallet sensor / g
@ Drawer sensor
T ‘::‘T;I\ write device Central
allet stop 1 &
oop |4
< Pallet gate
Transfer drawer i
| o
| £
X0
1 o
\ @ J
SN Zo /o
A N Ox /
: > A
RW device S.X '
e N
Qo AN
2 i
bl
> g
=8
[Transport)
\ unit X =
External loop X -

Figure 7.4: Transfer Unit Layout ([30])

fed into the system alternately in the order type 1, type 2, type 1, ...

The system needs to achieve the follow control specifications:

e Type 1 pallets are processed in the order tasklA, taskl1B, task2A, task2B
Type 2 pallet is processed in the order task2B, task2A, tasklB, tasklA.

Pallets may only leave the system after all four steps have been completed.
e Pallets exiting the system must alternate in type, starting with type 1.
e Only one pallet is permitted in external loop 1 or 2 at a time.
e Assembly stations can only process one pallet at a time.

e When AS1 or AS2 are down, pallets will be routed to AS3. When the station

is repaired, the system will return to normal.

e When an assembly error occurs, the unfinished pallet will be routed to AS3
for maintenance and then sent back to the original station to undergo the

assembly operation again.

188

Master’s Thesis - P. Dai McMaster - Computing and Software

We first applied our algorithm on the original AIP example as appeared in
[31, 32, 33, 29]. The result was supervisor with 3,306,240 states, constructed in 3
minutes 24 seconds, using 885MB of memory. As expected, no states were trimmed
off during the synthesis process since the given set of specifications are themselves

supervisors that were designed to meet the HISC requirements.

In next section we will modify the AIP example by slightly changing the control

specifications so that we will need to do synthesis.

7.2 Modifying the AIP

In this chapter, we use the AIP model in Leduc et al. [30, 31, 32, 33, 29] as our
starting point. In addition to the control specifications given in Section 7.1, we

have added two new design requirements:

e Restrict capacity of external loop 3 to three pallets.

e For AS1 and AS2, if three consecutive errors happen, the assembly station

is suspected to be broken and a repair procedure will be invoked.

We use italic font for uncontrollable events and regular font for controllable
events. We use the event partition listed in [30] with one small change. As part of
our redesign, we removed DES DetWhichStnUp and thus had to remove event
DetStnsUp from Xg. In the DES in our diagrams, the initial state has a thick

border and marker states are represented by filled gray circles.

7.2.1 High Level

The high level contains 6 plant DES and 7 specification DES, as shown in Figure
7.5. The synchronous product of these 6 plant DES is the high level plant G%;, and

189

Master’s Thesis - P. Dai McMaster - Computing and Software

the synchronous product of all 7 specification DES is the high level specification

DES Ey.

Plants Specs
PalletArvGateSenEL3 2 ManageT Ul
QueryPalletAtTU _TUI ManageTU2
QueryPalletAtTU TU2 “ EL3Cap
QueryPalletAtTU_TU3 ManageTU3
QueryPalletAtTU _TU4 ManageTU4
ASStoreUpState4 State OFProtELI
OFProtEL2

Figure 7.5: High Level DES List

We first discuss the plant DES. PalletArvGateSenEL 2 _AS3, a shown in
Figure 7.6, states that a pallet can not be processed by AS3 until a pallet has
arrived at its gate. QueryPalletAtTU.i in Figure 7.7, where i in {"TUL’, "'TU2’,
'TU3’, "TU4’}, are a set of DES that check whether a pallet is ready to be trans-

ferred between the center loop and a specific external loop.

QPalletAtELI

MoPalletEL.i

tsPalletel.!
IsPalletCly R
PalletArvGEL _2.AS3 NoPalletCL.i QRalletAtCLl
s0 ProcPalletass 5!
s0
Figure 7.6: PalletArvGate-
SenEL_2_AS3 ([30)) Figure 7.7: QueryPalletAtTU.i ([30])

DES ASStoreUpState, shown in Figure 7.8, stores the breakdown status of
AS1 and AS2. It encodes the status in events which are used by TU3 to determine

190

Master’s Thesis - P. Dai McMaster - Computing and Software

TrnsfToEL3_Up RobUp AST

StnUp.AS1
StnUp.AS2

DoRpr.ASt1
TrnsfToEL3_1D

» StnDown.As 1
ASDw n.AS1 StnUp.AS2

ASDwn.AS2 ASDwn.AS2
RobUp.AS2
RobUp.AS2
ASDwn.AS1 s3]

> DoRpr.AS1
DoRpr.AS2 DoRpr.AS2
TrnsfToEL3_2D RobUp.AS1 TrnsfToEL3_BD
StnUp.AS1 StnDown.AS1
StnDown.As2 StnDown.As2

Figure 7.8: ASStoreUpState

if a pallet should be processed by AS3. For example, the event TrnsfToEL3_1D

contains the information that AS1 is down and AS2 is currently up.

We now discuss the specification DES for the high level. DES ManageTU1
and ManageTU2, shown in Figure 7.9 and Figure 7.10, differ from the original
ones in [30] by removing the QStnUp.i events ('’ stands for either AS1 or AS2) as
these events are no longer needed. These supervisors control the transfer of pallets

between the center loop and the indicated external loop.

We update DES ManageTU3, shown in Figure 7.11, by removing the Det-
StnsUp event which was previously used to signal DES DetWhichStnUp. In
the AIP example from [30, 31, 32, 33, 29], ManageTU3 used supervisor De-
tWhichStnUp to determine whether AS1 and AS2 are up, and then encode
this information as an event. This task is now performed by plant compo-
nent ASStoreUpState, so DES DetWhichStnUp is no longer required. The
DES HndlComEventsAS was also removed from the system (it was present in
[30, 31, 32, 33, 29]) as it is no longer needed as its task was to arbitrate between

DetWhichStnUp and ManageTU1 and ManageTU2 with respect to access

191

Master’s Thesis - P. Dai McMaster - Computing and Software

NoPalletEL.TU3

QPalletAtEL.TU3
TrnstEoDCL‘TUI&

/ IsPalletEL. TU3 TrnsfCplToCL.TU3
s2
s0

NoPalletCL.TU3 o

TrnsfToEL3_Up
TrosfToEL3_1D
TrosfToEL3_2D
TrnsfToEL3_BD

QPalletAtCL.TU3

TrsfCpITOEL.TU3 IsPalleiCL.TU3

PalletRIsd.TU3

LibPallet. TU3

Figure 7.9: ManageTU1

to common controllable events.

For the new requirement that only three pallets are permitted at a time in
external loop 3, we added DES EL3Cap, shown in Figure 7.12. The remaining
supervisors DES ManageTU4, OFProtEL1 and OFProtEL2, are unchanged.

Readers are referred to [30] for more details.

7.2.2 Low Levels

We implemented the second new specification by modifying interfaces for low levels
AS1 and AS2, shown in Figure 7.13. In the diagram, ’i’ can take the value ’AS1’ or

’AS2’. After three consecutive errors, the new interface forces a repair operation.

To accommodate the new interface, we had to modify plant components
Robot.AS1 and Robot.AS2, shown in Figures 7.16 and 7.17. In the original
model, a robot repair could only be initiated after a timeout during processing oc-

curred. We had to add the functionality that a repair could occur while the robot

192

Master’s Thesis - P. Dai McMaster - Computing and Software

NoPalletEL.TU2
QPalletAtEL.TV TrnsfELToCL.TU2

SinlUp.AS2 StnUp.482

StnDown.AS2 StnDown. 482
IsPalletEL. TU2 AQ TrnsfCplToCL.TU2
A

s2

NoPalletCL.TU2

QPalletAtCL.TU2
StnUp.AS2
tnDown.AS2

s0

~.

]fibP?}CtETLU%UQ IsPalletCL.TU2
mstio .

PalletR1sd. TU2 StnUp.AS2

TrnsfCpIToEL.TU2 StnDown.AS2

s4

PalletR1sd. TU2
NoTrnsfEL.TU2

SinDown.AS2

LibPallet. TU2
StnUp.AS2
StnDown.AS2

Figure 7.10: ManageTU2

was in its initial state. We then had to make corresponding changes to supervisors
DoRobotTasks.AS1, DoRobotTasks.AS2, shown in Figures 7.14, 7.15. For A

the remainder DES at the low levels, readers are referred to [30, 31] .

7.2.3 Results

We now apply our software to our version of the AIP example, and determine
that the system is HISC-valid. We next apply our 1ISUPCONHIGH algorithm and
get a high level interface consistent supervisor.We then apply our 1ISUPCONLOW
algorithm and get seven low level interface consistent supervisors, one for each low
level. Since our algorithms build interface consistent, level-wise nonblocking and
level-wise controllable supervisors, we can apply Theorem 6 and Theorem 7 and
conclude that the flat systern is nonblocking and the flat supervisor is controllable
for the flat plant. Running on a Redhat Linux 9 computer with a 2.4 GHz Xeon

CPU and 4G memory, the program finishes in 6 minutes and 2 seconds and uses

193

Master’s Thesis - P. Dai McMaster - Computing and Software

NoPalletEL.TU3

TrnsfELTCL.TU3
IsPalletEL. TU3 TrosfCplToCL.TU3
A

s2

\ s3
NoPalletCL.TU3

TrnsfToEL3 Up
TrosfToEL3 1D
TrnsfToEL3_2D
TrnsfToEL3_BD

QPalletAtEL.TU3

QPalletAtCL.TU3

s0

TrasfCpIToEL.TU3 IsPalletCL.TU3

PalletRlsd. TU3

NoTrrsfEL.TU3

LibPallet. TU3

Figure 7.11: ManageTU3

TrnsfCplToEL.TU3 TrosfCpIToEL. TU3 TrnsfCplToEL.TU3

s0

TrnsfCplToCL.TU3 TrnsfCplToCL.TU3 TrnsfCplToCL.TU3

Figure 7.12: EL3Cap

2GB memory. Detailed results are shown in Table 7.1. It shows the size of the
various subsystem automata used in the AIP calculations. First, the size of the
state space of each component without being synchronized with their respective
interfaces (Standalone) is given and then state space size when synchronized with
their interface DES (G is synchronized with all seven interfaces). Next, the size
of the interfaces for for the high level and each low level. We then give the number

of states trimmed during synthesis, followed by the run time for each component.

In Section 6.5.3, we discussed that the limiting factor for a monolithic algorithm
would be Ny N} and similarly Ny N} for the HISC method. In the equations, Ny
denotes the size of the state space of Gy, while Ny and Ny are the bounds for G I

and G, (j = 1,...,n), respectively. If we substitute actual data from Table 7.1,

194

Master’s Thesis - P. Dai McMaster - Computing and Software

ProcCpli

ProcPallet.i ProcErr.i

s0

ProcCpli ProcPallet.i [ProcCpli

RobUp.i

ProcPallet.i

DoRpr.i ASDwn.i

ProcErr.i s6

sb ~ s7

s2

ASDwn.i
ProcErr.i

Figure 7.13: Interface for AS1 and AS2

N7 = (353)2(203)(98)2(204)(152) = 7.53 x 10% and N7 = (9)%(2)(4)* = 41,471

This is a potential savings of 11 orders of magnitude!

Table 7.1; AIP Results

States States |Computing

Subsystem Standalone“l with Gy |Size of G, Trimmed Time;#

Gy 793,800 | 6,634,800 | 41,472 | 349,200 |6 min 1 sec
AS1 1,732 353 9 116 < 1 sec
AS2 1,732 353 9 116 < 1 sec
AS3 1,178 203 2 0 < 1 sec
TU1 98 93 4 0 <1 sec
TU2 98 98 4 0 < 1 sec
TU3 204 204 ! 0 < 1 sec
TU4 152 152 4 0 < 1 sec

The modified AIP example has a worst case state space of 2.25 x 10?2, This
was estimated by multiplying the size of the state space of the high level and all of
the low levels together. It is quite likely that the actual system is much smaller.
We also tried to construct a synchronous product of our entire system to see how
long that would take and what the state space size would be, but the program

crashed after using up all available memory.

195

Master’s

Thesis - P. Dai McMaster - Computing and Software

—

AErroriB.AS1
S(rRtasklA ASI

/
/
//

/\ StrRtimer AS1
ProcTypl.AS1

StrRtask1B.AS1 / |
StrRtimer. AS1
s4

7-{ RtaskCpliA.AS!

-

s3

52 .

RobRprCpl. AS!

)

DoRpr,AS1

512

™,
™ e—ROBDWD >
/510
s

-

-

‘\\ RraskaIlA.ASlI

AEﬂarlA AS1 |

Rtimeoum~\ | ’I

/()s‘; . Rtimeout. 451 |]

'// ~ /
-~ AssmbErTA.AS1 StrRobRepair.AS 1 L /

/
/

e

. - // /

~
Rtimeout. AS] / Rtimeout.AS1

\\{E 1B.481 AR /

rroriB. - /
e /

7 /

58
StrRtimer.AS1 /“\ J

N\
\ProcTyp2.AS1
N\,

\ <6 StrRtimer.AS1 {)") RtaskCpliB.ASI

\\ StrRiaskIB.AS StrRtask1A.AS
\\ " AErrori4.451
~_
T _AssmbErrA.AS L v
e —
Figure 7.14: DoRobotTasks.AS1

It is interesting to note that typically we can not perform a flat synthesis, such
as the supcon algorithm from TCT [65], to an HISC system and expect to receive
a meaningful result. Let’s consider the high level for the AIP. If we examine
the specification in EL3Cap Figure 7.12, we see that it forbids answer event
TrnsfCpliToCL. TUS3 from occurring at state sf. The high level synthesis is not
permitted to disable an answer event, so it will correctly disable the request event
TrnsfELtoCL. TUS that leads to a state that the answer event is defined. This is
because it knows that the answer event is an abstraction of a corresponding low
level task, and it is the low level task that we actually wish to prevent. However
if we did a flat synthesis, supcon would just disable TrnsfCpltToCL.TU3 as it’s a
controllable event, but allow request event TrnsfELtoCL. TU3 to occur. This would

have the effect of allowing the low level task to occur, but only disabling the low

196

Master’s Thesis - P. Dal McMaster - Computing and Software

e Rtask
/// askCpl.AS2 —
/ N
~
o
7 | \
S Assmbf'j'ff_s.z—._._(i” RiaskCpi2B.AS2| |
T EARN
- N
- \ // |
-
/ t
/ e AError2B.A5? \ / |
/ e StrRtagk2A AS2 StrRtask2B.AS2/ i
/ < /- ™~ I !
/ / S}~ StuRtimer AS? Q RiaskCpi2A A2~ SteRiimer.AS? \\A/
J . .
7 - 3 H
/ / / N s S RiaskCpl2d.482
- . !
StrRobRepan AS2 / / ProcTypl.AS2 <" AError24.AS2 \\\ !
Ritimeout. A§2 ™ H /
f\ ™ Rtimeaut. 482
, DoRpr AS2 / / 517 \\\ A82 /
S
- AssmbErrA AS2 StrRobRepair.AS2 BN
N\ ~
RobRprCplAS?) RobUD AS2 / RobRprCpl.AS2 ‘\/ DoRpr.AS2 RobDwn.AS2Z " /
\, s
\\ s13 s12 s11 rd /
g AssmbErrB AS2 // /
A g
ﬁup,Asz \\ \ \()‘ / /
<21 \ 516 . el Riimeout. 482 /
NN N\ 4Eror2Bas Riimeout AS2_- /
ProcTyp2.AS2 -
\\ rocTyp - 7
~ /
\\ \'F N 58 <9
. ss‘/ StrRtimer.AS2 C‘jj RtaskCpl2B.AS2 StrRtimer.AS2 /1\ 3
- p
\\ SirRtask2B.AS2 7 SuRuskZA.AS2
N o
S " AErrorlA.AS2
™ —\A//
T AssmbErrA.AS2 529)

Figure 7.15: DoRobotTasks.AS2

level from reporting that the task has completed! Definitely not the desired result.
The reason that a normal flat synthesis would likely not produce a meaningful
result is because it does not understand the hierarchy of an HISC system, or the

abstractions that it employs.

197

Master’s Thesis - P. Dai McMaster - Computing and Software

s5

RobRprCpl.ASI

RiaskCplIA.AS1

AErroriA.AS] StrRobRepair.AS1

StrRtask1A.AS1 Rtimeout. 451

StrRtimer.AS1

s4

StrRobRepair. AS1 StrRtask1B.AS1

RiaskCplIB.AS1

AErrorlB.AS1 Rtimeout. AS1

RobRprCpl.AS]

s6

Figure 7.16: Robot.AS1

s5

RobRprCpl.AS2

RtaskCpi24.482

StrRobRepair. AS2
AError24.482 TRobRepair

StrRtask2A.AS2 Rtimeout. 452

StrRtimer.AS2

54

StrRobRepair. AS2 StrRtask2B.AS2

RtaskCpl2B.AS2

AError2B.AS2 Rtimeout. AS2

RobRprCpl.AS2

s6

Figure 7.17: Robot.AS2

198

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we developed a synthesis method for the Hierarchical Interface-based
Supervisory Control (HISC) system that does a per level synthesis to construct
for each level a maximally permissive supervisor that satisfies the corresponding

HISC conditions.

We then defined a set of language based fixpoint operators and showed that they
compute the required level-wise supremal languages. We then presented algorithms
that implement the fixpoint operators. Next, we performed a complexity analysis
for the algorithms. As the synthesis is done on a per level basis, the complete
system model never needs to be stored in memory, offering potentially significant
savings in computational resources. In fact, as long as the state size of the interfaces
are much smaller than the state size of the corresponding low levels, we should see

significant reduction in complexity.

Finally we developed software to implement the algorithms. We modified the
AIP example from [30, 31, 32, 33, 29|, and applied our software to it. We demon-

strated that we were able to handle this complex example, where a monolithic

199

Master’s Thesis - P. Dai McMaster - Computing and Software

approach failed.

8.2 Future Work

The HISC framework is still relatively new, and there are many areas of interest

to be explored. Some of these are:

e The current HISC model accommodates only two levels: one high level and
one or more low level subsystems. In general, as we add more low levels to
the system, the high level becomes increasingly more complex. Similarly, a
given low could be potentially very large. It would be useful to extend the

HISC method to allow for a multi-level hierarchy.

o Currently, only the high level can communicate directly with the low levels. It
would be useful if the low levels were able to communicate directly with each
other, and request other low levels to perform tasks for them. This would be
useful for modeling a system composed of independent autonomous agents,

for example.

o Although our synthesis method simplified the work for designers, there are
not many choices for design tools. Currently, our software takes text files as
input and can output in either text or TCT [65] data file format. A graphical
interface for entering DES and the system hierarchy would be very helpful

for designers.

e In the current HISC structure, communication between levels occurs via re-
quest and answer events. When the high level sends a request event to a
particular low level, it can not send additional information to the low level
until it receives an answer event back from it. It would be useful to able
to send information in between the request and answer events. A possible

application would be an abort signal if the task was no longer needed.

200

Master’s Thesis - P. Dai McMaster - Computing and Software

Bibliography

1]

Sharif Abdelwahed, Interacting discrete event systems: Modeling, verification
and supervisory control, Ph.D. thesis, Dept. of Elec. and Comp. Eng., Univer-
sity of Toronto, 2002.

Knut Akesson, Hugo Flordal, and Martin Fabian, Ezploiting modularity for
synthesis and verification of supervisors, Proc. of the IFAC World Congress

on Automatic Control (Barcelona, Spain), 2002.

N. Alsop, Formal techniques for the procedural control of industrial processes,
Ph.D. thesis, Department of Chemical Engineering and Chemical Technology,
Imperial College of Science, Technology and Medicine, London, 1996.

P. Apkarian and D. Noll, Decentralized supervision of petri nets, IEEE Trans.
Automatic Control 51 (2006), no. 2, 376— 381.

Adnan Aziz, Vigyan Singhal, and Gitanjali M. Swamy, Minimizing interact-
ing finite state machines: A compositional approach to language containment,
Proc. of IEEE Int. Conf. on Computer Design: VLSI in Computers and Pro-
cessors (Cambridge, Massachusetts), Oct 1994, pp. 255-261.

George Barrett and Stephane Lafortune, Decentralized supervisory control
with communicating controllers, IEEE Trans. Automatic Control 45 (2000),
no. 9, 1620-1638s.

201

[7]

[10]

[11]

[15]

Master’s Thesis - P. Dai McMaster - Computing and Software

Sergey Berezin, Sérgio Campos, and Edmund M. Clarke, Compositional rea-
soning in model checking, COMPOS’97, LNCS, vol. 1536, Springer-Verlag,
1998, pp. 81-102.

Bertil Brandin and Frangois Charbonnier, The supervisory control of the auto-
mated manufacturing system of the AIP, Proc. Rensselaer’s 1994 Fourth Inter-
national Conference on Computer Integrated Manufacturing and Automation

Technology (Troy), Oct 1994, pp. 319-324.

Y. Brave and M. Heymann, Control of discrete event systems modeled as
hierarchical state machines, IEEE Trans. on Automatic Control 38 (1993),
no. 12, 1803-1819.

R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Trans. Comput. C-35 (1986), no. 8, 677—691.

J.R. Burch, Edmund M. Clarke, and K.L. McMillan, Symbolic model checking:
10%° states and beyond, Information and Computation 98 (1992), 142-170.

P.E. Caines and Y.J. Wei, The hierarchical lattices of a finite machine, Sys-
tems Control Letters 25 (1995), 257-263.

F. Charbonnier, Commande par supervision des systémes a événements dis-
crets: application @ un site expérimental I’Atelier Inter-établissement de Pro-
ductique, Tech. report, Laboratoire d’Automatique de Grenoble, Grenoble,
France, 1994.

Haoxun Chen and Hans-Michael Hanisch, Model aggregation for hierarchical
control synthesis of discrete event systems, Proc. 39th Conf. Decision Contr.

(Sydney, Australia), December 2000, pp. 418-423.

S.-L. Chen, Control of discrete-event systems of vector and mized structural
type, Ph.D. thesis, Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ONT, 1996.

202

[16]

[19]

[20]

[21]

22]

23]

[24]

Master’s Thesis - P. Dai McMaster - Computing and Software

Yi-Liang Chen and Feng Lin, Hierarchical modeling and abstraction of discrete
event systems using finite state machines with parameters, Proc. 40th Conf.

Decision Contr. (Orlando, USA), December 2001, pp. 4110-4115.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliff Stein, Introduc-

tion to algorithms, MIT Press and McGraw-Hill, 2001.

M. Courvoisier, M.Combacau, and A. de Bonneval, Control and monitoring of
large discrete event systems: a generic approach, Proc. of ISIE 93 (Budapest),
1993, pp. 571-576.

Luca de Alfaro and Thomas A. Henzinger, Inferface automata, Proceedings of
the Ninth Annual Symposium on Foundations of Software Engineering, ACM
Press, 2001, pp. 109-120.

E. W. Endsley, M. R. Lucas, and D. M. Tilbury, Modular design and ver-
ification of logic control for reconfigurable machining systems, [ONLINE].
Available: http://www-personal.engin.umich.edu/~tilbury/papers.html, Oct.
2000.

E. W. Endsley and D. M. Tilbury, Modular verification of modular finite state
machines, Proc. 43th Conf. Decision Contr. (Atlantis, Paradise Island, Ba-
hamas), vol. 1, December 2004, pp. 972-979.

Jose M. Eyzell and Jose E.R. Cury, Exploiting symmetry in the synthesis of
supervisors for discrete event systems, Proc. of American Control Conference

(Philadelphia, USA), June 1998, pp. 244-248.

M. Fabian, On object-oriented non-deterministic supervisory control, Ph.D.

thesis, Chalmers Univ. of Tech., Goteborg, Sweden, 1995.

M. Fabian and B. Lennartson, Petri nets and control synthesis; an object

oriented approach, Proc. of LM.S. (Vienna, Austria), June 1994, pp. 365-370.

203

[25]

[26]

28]

[29]

[30]

[31]

Master’s Thesis - P. Dai McMaster - Computing and Software

P. Gohari-M. and W.M. Wonham, On the complezity of supervisory control
design in the RW framework., IEEE Trans. on Systems, Man and Cybernetics;
Part B: Cybernetics. (Special Issue on Discrete Systems and Control) (2000),
643-652.

Peyman Gohari-Moghadam, A linguistic framework for controlled hierarchical
DES, Master’s thesis, Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ont, 1998.

Johan Gunnarsson, Symbolic methods and tools for discrete event dynamic
systems, Ph.D. thesis, Department of Electrical Engineering at Linkoping Uni-
versity, Sweden, 1997.

Robert Kruse, Bruce Leung, and Clovis Tondo, Data structures and program

design in c, Prentice Hall, Inc., 1997.

R. Leduc, M. Lawford, and P. Dai, Hierarchical interface-based supervisory
control of a flexible manufacturing system, Accepted to IEEE Trans. on Con-

trol Systems Technology, Dec. 2005.

R. J. Leduc, Hierarchical interface-based supervisory control, Ph.D.
thesis, Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, Ont., 2002, [ONLINE] Available:

http://www.cas.mcmaster.ca/"leduc.

—, Hierarchical interface-based supervisory control: Command-pair in-
terfaces (see extended version), Proc. of the Third International DCDIS
Conference on Engineering Applications and Computational Algorithms
(Guelph, Ontario, Canada), May 15-18 2003, [ONLINE] Available:
http://www.cas.mcmaster.ca/"leduc, pp. 323-329.

204

32]

[33]

[34]

[35]

[36]

(38)

Master’s Thesis - P. Dai McMaster - Computing and Software

R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham, Hierarchical
interface-based supervisory control, part I: Serial case, IELEE Trans. Automatic

Control 50 (2005), no. 9, 1322-1335.

R. J. Leduc, M. Lawford, and W. M. Wonham, Hierarchical interface-based
supervisory control, part II: Parallel case, IEEE Trans. Automatic Control 50
(2005), no. 9, 1336-1348.

R.J. Leduc, B.A. Brandin, and W. Murray Wonham, Hierarchical interface-
based non-blocking verification, Proceedings of the Canadian Conference on

Electrical and Computer Engineering, May 2000, pp. 1-6.

R.J. Leduc, B.A. Brandin, W. Murray Wonham, and M. Lawford, Hierarchical
interface-based supervisory control: Serial case, Proc. of 40th Conf. Decision

Contr. (Orlando, USA), December 2001, pp. 4116-4121.

R.J. Leduc, M. Lawford, and P. Dai, Hierarchical interface-based supervi-
sory control of a flexible manufacturing system, Tech. Report No. 32, Soft-
ware Quality Research Laboratory, Dept. of Computing and Software, Mc-
Master University, Hamilton, ON, Canada, Dec. 2005, [ONLINE| Available:

http://www.cas.mcmaster.ca/sqrl/sqrl reports.html.

R.J. Leduc, W. Murray Wonham, and M. Lawford, Hierarchical interface-

based supervisory control: Parallel case, Proc. of 39th Annual Allerton Con-

ference on Comm., Contr., and Comp., Oct 2001, pp. 386-395.

Ryan Leduc, PLC implementation of a DES supervisor for a manufactur-
ing testbed: An implementation perspective, Master’s thesis, Department of
Electrical and Computer Engineering, University of Toronto, Toronto, ONT,

1996.

1 Y. Li, Control of vector discrete-event systems, Ph.D. thesis, Department of

Electrical Engineering, University of Toronto, Toronto, ONT, 1991,

205

140]

41]

[42]

(47]

Master’s Thesis - P. Dai McMaster - Computing and Software

F. Lin and W.M. Wonham, Decentralized control and coordination of discrete-
event systems with partial observations, Proc. 27th IEEE Conf. Decision
Contr., Dec 1988, pp. 1125-1130.

C. Ma and W. Murray Wonham, Control of state tree structures, Proc. 11th
Mediterranean Conference on Control and Automation, June 2003, Paper T4-

005 (6pp.).

Chuan Ma, Nonblocking supervisory control of state tree structures, Ph.D.
thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 2004.
K.L. McMillan, Symbolic model checking, Kluwer, 1992.

John O. Moody and Panos J. Antsaklis, Supervisory control of discrete event

systems using Petri nets, Kluwer Academic Publishers, 1998.

T. Moor, J. Raisch, and J.M. Davoren, Admissibility criteria for a hierarchical
design of hybrid control systems, Proc. IFAC Conference on Analysis and

Design of Hybrid Systems (Saint-Malo, France), June 2003, pp. 389-394.

Ken Qian Pu, Modeling and control of discrete-event systems with hierarchical
abstraction, Master’s thesis, Dept. of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 2000.

Robin G. Qiu and Sanjay B. Joshi, A structured adaptive supervisory control
methodology for modeling the control of a discrete event manufacturing system,
IEEE Trans. Systems, Man, and Cybernetics, Part A 29 (1999), no. 6, 573—

-

586.

M.H. de Queiroz and J.E.R. Cury, Modular supervisory control of large scale
discrete event systems, Proceedings of WODES 2000 (Ghent, Belgium), Aug
2000, pp. 103-110.

49]

[54]

Master’s Thesis - P. Dai McMaster - Computing and Software

P. Ramadge and W. Wonham, Supervisory control of a class of discrete-event

processes, SIAM J. Control Optim 25 (1987), no. 1, 206-230.

Karen Rudie, Software for the control of discrete event systems: A complezity
study, Master’s thesis, Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ONT, 1988.

Karen Rudie and Jan C. Willems, The computational complexity of decen-
tralized discrete-event control problems, IEEE Trans. Automatic Control 440

(1995), no. 7, 1313-1319.

Karen Rudie and W.M. Wonham, Think globally, act locally: Decentralized
control, IEEE Transactions on Automatic Control (1992), 1692—1708.

M.A. Shayman and R. Kumar, Process objects/masked composition: an object-
oriented approach for modeling and control of discrete-event systems, IEEE

Trans. Automatic Control 44 (1999), no. 10, 1864-1869.

Gang Shen and Peter E. Caines, Hierarchically accelerated dynamic program-
ming for finite-state machines, IEEE Trans. Automatic Control 47 (2002),
no. 2, 271-283.

Raoguang Song, Symbolic synthesis and verification of hierarchical interface-
based supervisory control, Master’s thesis, Department of Computing and Soft-

ware, McMaster University, Hamilton, ONT, March 2006.

G. Stremersch and R.K. Boel, Decomposition of the supervisory control prob-
lem for Petri nets under preservation of maximal permissiveness, IEEE Trans.

Automatic Control 46 (2001), no. 9, 1490-1496.

| C. Torrico and J. Cury, Hierarchical supervisory control of discrete-event sys-

tems based on state aggregation, Proceedings of Fifteenth Triennial World
Congress of the International Federation of Automatic Control (Barcelona,

Spain), Jul. 2002.

207

58]

[59]

[60]

(64]

Master’s Thesis - P. Dai McMaster - Computing and Software

M. Uzam, An optimal deadlock prevention policy for flexible manufacturing
systems using Petri net models with resources and the theory of regions, Int.

J. Adv. Manuf. Technol. 19 (2002), 192-208.

Arash Vahidi, Bengt Lennartson, and Martin Fabian, Efficient analysis of
large discrete-event systems with binary decision diagrams, Proc. of the 44th

IEEE Conference on Decision and Control and European Control Conference

2005 (Seville, Spain), 2005, pp. 2751-2756.

Bing Wang, Top-down design for RW supervisory control theory, Master’s
thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 1995.

Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event

systems, International Journal of Control 54 (1991), no. 5, 1143-1169.

K.C. Wong, Discrete-event control architecture: An algebraic approach, Ph.D.
thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 1994.

K.C. Wong and J.H. van Schuppen, Decentralized supervisory control of dis-
crete event systems with communication, Proc. of WODES 1996 (Edinburgh,
UK), Aug 1996, pp. 284-289.

W. Wonham and P. Ramadge, On the supremal controllable sublanguage of a
given language, SIAM J. Control Optim 25 (1987), no. 3, 637-659.

W. Murray Wonham, Supervisory control of discrete-event systems, De-
partment of Electrical and Computer Engineering, University of Toronto,
July 2005, Monograph and TCT software can be downloaded at
http://www.control.toronto.edu/DES/.

208

(66]

167)

[69]

[70]

7]

Master’s Thesis - P. Dai McMaster - Computing and Software

T. Yoo and S. Lafortune, A general architecture for decentralized supervisory
control of discrete-event systems, Proc. of WODES 2000 (Ghent, Belgium),
Aug 2000, pp. 111-118.

Z.H. Zhang, Smart TCT: an efficient algorithm for supervisory control design.,
Master’s thesis, Dept. of Electrical and Computer Engineering, University of

Toronto, Toronto, Ont, 2001.

Z.H. Zhang and W. Murray Wonham, STCT: an efficient algorithm for su-
pervisory control design, Proc. of SCODES 2001 (INRIA, Paris), July 2001,
pp- 82-93.

H. Zhong and W.M. Wonham, On the consistency of hiearchical supervision
in discrete-event systems, IEEE Transactions on Automatic Control (1990),

1125-1134.

Meng Chu Zhou, David T. Wang, and Israel Mayk, Using Petri nets for
object-oriented design of command and control systems, International Journal

of Intelligent Control and Systems 2 (1998), no. 2, 287-300.

MengChu Zhou and Frank DiCesare, Petri net synthesis for discrete event

control of manufacturing systems, Kluwer Academic Publishers, 1993.

209

