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We present a system for the inference of various static properties from source code 

written in the Maple programming language. We make use of an abstract interpretation 

framework in the design of these properties and define languages of constraints specific 

to our abstract domains which capture the desired static properties of the code. Finally we 

discuss the automated generation and solution of these constraints, describe a tool for doing 

so, and present some results from applying this tool to several nontrivial test inputs. 
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Chapter 1 

Introduction 

Our goal is the static inference of properties from Maple code. The motivations we have 

for this effort are primarily the traditional arguments for static analysis: better program 

comprehension, automated error detection, and general desire for a saner world. 

We are also curious to see what consequences the fact that Maple is a computer algebra 

system with some unusual and even unique features has on our analysis. Are there features 

shared by Maple and other symbolic computer algebra systems such as Mathematica and 

MuPAD, but not shared with any other programming languages? Might there be static 

properties entirely unique to Maple? 

As well, as a dynanamic language Maple is considerably more polymorphic than many 

authors of Maple programs realize. The "correct" semantics of a program may therefore 

differ considerably from the semantics the program author had in mind, and a tool like the 

one we propose might aid in detecting these cases of"inadvertent polymorphism". 

In a previous work ( [2], with Jacques Carette ), we attempted a very naive type inference 

of Maple through a traversal of its library routines. It became clear through this analysis that 

more benefits could be obtained with the addition of some Maple-specific "opportunistic" 

knowledge. 

Our framework for this analysis must be consistent, scaleable, and most importantly, 

correct. A major guiding factor in our approach is our desire to avoid the toy problem 

syndrome: a static analysis tool that as a consequence of design decisions is artificially 

limited in its scope or efficiency. 

While in the interests of expediency we will obviously be bound by certain restrictions 

on the range of inputs that we can process, we wish to make our analysis as generic as 

1 



1. Introduction 2 

possible. If no information about a particular component can be statically deduced, we 

would like to merely note this fact and move on, without this further limiting our analysis. 

With these restrictions in mind, our ultimate choice is to employ various techniques 

from Data Flow Analysis to generate systems of constraints on values or state, whose cor­

rectness is assured using a framework of abstract interpretation. This gives us, for each 

property of interest, a convenient language of constraints in which to express the relation­

ships between program points. 

The work has considerable potential, not just for static analysis and overall code com­

prehension but also as as an enabler of automated program transformations. In particular, 

it would aid in the breadth and range possible for tools like partial evaluators [20, 4], type 

inferencers, and code generation. 

For example, a significant problem faced in performing partial evaluation on a Maple 

procedure is resolving and residualizing a procedure call. We may be able to greatly sim­

plify the specialized procedure if we know how many arguments were supplied in calling 

it; however, in Maple this knowledge generally requires static analysis to compute. 

With a longer-term view, one could combine several of these static analyses in an effort 

to do static type inference on the code. While the constraint languages here are simple by 

design, the language of inferred types would be complex enough to capture all or most of 

the information present in each quantity. 

In our presentation here, we are guided by the "separation of concerns" described by 

Cousot [5], who argued for clear distinctions between identification of the properties one 

wishes to estimate, the lattices employed in such estimations, the specification for a solution 

strategy, and the details of its actual implementation. 



Chapter 2 

Overview of Maple 

We have opted to direct our efforts here specifically upon the Maple programming lan­

guage. Many of the specific details that will interest and challenge us are not especially 

well-known outside Maple circles, so it is necessary to provide a brief survey of the lan­

guage itself. 

Our purpose here is threefold: to introduce and give a feeling for the language we shall 

be tackling to readers unfamiliar with the Maple programming language, to provide some 

motivation for our choice of properties to analyze in Chapter 4, and to chronicle the more 

peculiar aspects of the language that will present unique impediments to our analyses. For 

a more detailed discussion of the semantics of Maple, the interested reader should refer to 

[18]. 

In the examples below, we shall employ the convention that input to Maple is prefaced 

with a > prompt, and the corresponding output is shown on the following line. 

In the following, "Maple" will usually refer to the Maple programming language, and 

less often to the commercial software package implementing said language. In general, the 

details discussed are independent of software version numbers, but whenever this is not the 

case, the version referenced is Maple 10. 

Maple is an interpreted, untyped, procedural language with lexical scoping and first­

class procedures. 

Many of the analyses we wish to attempt are complicated by the particular semantics 

of Maple. Some of these, such as basic control structures, are shared with many other 

programming languages. Other features, such as support for arbitrary-precision integers, 

3 



2. Overview of Maple 4 

are shared with a much smaller set of other programming languages. Still other features, 

such as a symbolic default value for variables, are specific to a CAS or to Maple alone. 

Following is a description of some key features. 

2.1 Data types 

2.1.1 Base types 

As one would expect from a mathematical programming language, Maple has a rich variety 

of base types. These include arbitrary-precision integers, rationals, hardware and software 

floating-point numbers, and complex numbers over all the previously-mentioned domains. 

Arbitrary-precision floating-point computations are possible through software. 

Here we see an exact computation with rational numbers: 

> 2'65 * (1/3"42) + 7; 
802826412068005617695/109418989131512359209 

Arithmetic with integers and rationals is exact by default; floating-point computations 

are performed only if specially requested or if a floating-point number is introduced into 

the computation. The same example with 7 . 0 illustrates the significance a single floating­

point number has on the outcome of the computation: 

> 2'65 * (1/3"42) + 7.0; 
7.337176284 

In addition to numeric data, strings are a base type with and usual string operations 

(concatenation, subselection, pattern-matching, etc.) 

2.1.2 Variables 

Variables in Maple have a dual role as containers and data. If a variable name is not initial­

ized, but used, its evaluated value is merely itself or, more correctly, a symbolic reference 

to its own name. One might view such symbols as another basic data type. 

This example shows that a, a variable with no past history, may be freely used as a 

symbol as part of an expression assigned to another variable. 
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> b := 2* a; 

b := 2*a 

5 

Since any fragment of code may alter the value of a global variable at any time, we 

cannot assume that state remains constant when evaluating an expression. Should a in the 

above example later be assigned a value, say 7, the variable b will afterwards evaluate to 

14, not 2*a, even though no further writes to b have been made .. 

2.1.3 Container types 

Maple has a wide variety of container types for data. These include lists, sets, expression 

sequences,function applications, as well as hash tables, arrays, vectors, and matrices. 

It will be helpful to begin with the more familiar datatypes. A list is simply an arbitrary­

sized ordered sequence of Maple objects. Syntactically, a list is a comma-delimited se­

quence of objects enclosed by opening and closing brackets. Lists are ordered and duplicate 

elements are allowed. A list may contain any Maple value, including other lists: 

> [1' [4, 3, [7' 7}], 6]; 

[1, [4, 3, [7, 7]], 6] 

Sets are similar to lists, but differ in that they are unordered and duplicate elements 

are removed. The ordering imposed by Maple is arbitrary, based on an element's memory 

address, and is also session-specific. Syntatically, a set is a comma-delimited sequence of 

objects enclosed by opening and closing curly braces: 

> {1, 2, {1,2,3}, {2,3,1}, 2}; 

{1, 2, {1, 2, 3}} 

We proceed now to a less-familiar datatype. An expression sequence (which we shall some­

times abbreviate as expseq) is an arbitrarily-sized list of values. Its values are syntactically 

delimited with commas; unlike lists and sets, no left and right braces are necessary. 

The sequence of comma-delimited values from which an expseq is built may be any 

values, including other expseqs. However, expseqs are self-flattening: that is, the result of 

concatenating two expseqs is a single non-nested expseq: 
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> 1, (4, 3, (7, 7)), 6; 

1, 4, 3, 7, 7, 6 

6 

There is a unique expression sequence of length 0; it is accessible by the special name 

NULL. 

>NULL, (1, 2), NULL, 3; 

1, 2, 3 

In addition to being self-flattening, another notable feature of expression sequences is auto­

matic cast to value: an expression sequence of length 1 automatically evaluates to its only 

element. Put another way, an object whose only potential length as an expression sequence 

is 1 is not an expression sequence. 
(Observe that because of self-flattening and automatic cast to value, NULL is a left and 

right identity for the , operator.) 

We can therefore partition the set of Maple values such that every value v is either an 

expression or an expseq, and in the latter case either v = NULL or the length of expseq vis 

> 2. 

At this point, it is helpful to return to lists and sets. We spoke of lists and sets as 

containing values: to be precise, a list or set holds only a single value, which is an expseq. 

Lists and sets are merely wrappers; however, because they are expressions, they may be 

nested. 

> [1, (4, 3, {7, 7}), 6; 

[1, 4, 3, {7}, 6] 

2.1.4 Function applications 

Function applications deserve special attention as their behaviour is especially unique. A 

function application has the form f(a) where f is the function name and a is an expression 

sequence of arguments. Following Maple terminology we shall refer to f as the zeroth 

operand of f(a). 

The fact that a is an expression sequence provides another illustration of the ubiquity of 

expression sequences in Maple; one might say that all Maple functions take only a single 

argument (an expression sequence). Because the sequence of arguments is an expression 

sequence, it may be constructed dynamically, and so even the number of arguments passed 

in a function application may not be statically knowable. For example: 
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> s := 2,3,7,11; 

2, 3, 7, 11 

> igcd ( S ) ; # same as igcd (2, 3, 7, 11) because of previous assignment 

7 

We are not able to determine the number or type of arguments passed to igcd from the 

function application alone; to find this we must examine the preceding computation history. 

It is not only the input to function applications which is unusual. When the name f is 

assigned to a procedure (see 2.2), the procedure is applied the operands of the function 

application, and returns the result, as one would expect. 

However, recall from 2.1.2 that an unassigned name has a symbolic default value. Iff 

is an unassigned name, the application f( a) returns unevaluated, as a function data structure. 

If the symbol f later receives a value and this function data structure f(a) is re-evaluated, it 

will evaluate as a function application by applying the value off to the argument a. 

2.2 Procedures 

As described in 2.1.4 when a function application is not a data structure as described above, 

it results in the execution of a procedure. 

> p := proc(a,b,c,n) 
return(a'n + b'n 

end proc: 

> p(x,y,z,3) 
x'3 + y'3 = z'3 

c 'n); 

A procedure body is a sequence of statements (see 2.4) from which a value is returned; if 

no value is provided explicitly, the system implicitly returns the last evaluated value. 

Certain special variable names are usable in a procedure body and convey dynamic 

information about the function application that initiated the procedure. The name args 

provides the expression sequence of arguments passed into the procedure, while the name 

nargs gives the number of arguments provided (which, as mentioned in 2.1.4, may vary). 

> p := proc() 
sprintf( "Number of arguments was: o/<d\n", nargs ); 

end proc: 
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>p(1,2,4); 

"Number of arguments was 3" 

> p(); 

"Number of arguments was 0" 

Procedures are lexically-scoped, with local variables in their own local scope. Lo­

cal variables have a default symbolic value as do other Maple variables. These symbols, 

or structures containing or referencing them, may be freely passed out of the procedure: 

Maple thus supports closures. 

The following example demonstrates Maple's support for closures, lexical scoping, and 

procedures as first-class values. The procedure in this example is a counter generator pro­

cedure: it initializes a local counter variable, then returns a counter procedure which con­

tains a lexical reference to this counter, increments it upon each function call, and returns 

the result. 

> CounterGenerator := proc( initial Value) local counter; 

counter := initialValue; 

proc() 

counter := counter + 1; 

counter; 

end proc: 

end proc: 

> CounterProc := CounterGenerator ( 0): 

proc () counter := counter + 1; counter end proc 

> CounterProc (); 

> CounterProc (); 

2 

In general procedures usable by Maple may be classified into three groups : kernel, 

library, and user-defined. They are distinguished thus: 

• Kernel procedures or built-in procedures are those procedures that are not written 

in the Maple language but are built in to the system kernel itself. These typically 

involve core functionality. 

• Library procedures are those written in the Maple language and included in the de­

fault Maple library. 
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• User-defined procedures are written in the Maple language but are not part of the 

default Maple library. 

This distinction will become important later on, since we will be unable to perform analysis 

on built-in procedures as they are not written in the Maple language. 

2.3 Typing 

Though Maple is effectively an untyped language in its design, it does have some notion 

of type-checking. A particular subset of first-class values are types. (This idea of types 

as a subset of values is commonly called "Type:Type" in type theory literature [1] and has 

important consequences for type inference in the system, see [24, ch. 30]). 

One may dynamically check whether a value conforms to a given type via a function 

call of the form type (expression, type_expression), which returns a boolean result. 

> type( 2/3, integer ); 

fa Is e 

>type( ["pomme", "orange", "ananas"], list ); 

true 

One can also put explicit type checks on the formal arguments to a user-defined procedure. 

These raise an exception when supplied with non-matching values. 

> ThueMorse := proc(n:: nonnegint) 

if n=O then 0 

elif type(n, even) then procname( n/2 

else 1-procname( (n-1)/2 ) end if; 

end proc: 

> ThueMorse( -1 ); 

Error, (in ThueMorse) invalid input: ThueMorse expects its 1st 

argument, n, to be of type nonnegint, but received -1 

However, unlike in a statically-typed language, these checks are only performed at runtime 

at the moment of function application. 

In this sense, Maple types can be regarded effectively as a class of dynamic predicates 

on values, and not types in the usual sense. 
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2.4 Statements and control structures 

Many of the control structures of Maple are broadly similar to those encountered in other 

procedural languages and do not require special explanation. Maple has an assignment 

operator, if-then structures, loops, try/catch blocks, and error statements. We will discuss 

those aspects of these control structures which are Maple-specific or otherwise unusual. 

2.4.1 Simultaneous assignment 

In addition to assignment to a single variable, simultaneous assignment is supported; in the 

following example, the assignment to a and b is done simultanously in both steps: 

> (a,b) := (1 ,2); 

(a, b):= (1, 2) 

> (a,b) := (b,a); 

(a, b) := (2, 1) 

Note that as a consequence, the value of a and b has been swapped without resorting to the 

use of temporary variables. 

2.4.2 Loops 

Maple supports two types of loops. It should be noted, however, that because of Maple's 

functional features (see 2.5) many computations that might otherwise employ loops instead 

utilize functional primitives for traversing expressions. 

Two types of loop are supported: 

• For-from loop: This loop takes a variable v and arguments (a, s, b, c) and steps from 

a to b by interval s, assigning each step value to v. This is essentially the standard 

procedural for-loop. (Note that infinity is an acceptable value forb, so the fact 

that b is given a value does not guarantee termination.) 

• For-in loop: This loop takes a variable v and an value e and steps through the 

operands of e, assigning v to each in tum. This is the equivalent of the "foreach" 

loop in some programming languages. 

Both loops have an optional dynamic condition which, if provided, is checked at the start 

of each loop iteration. 
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2.5 Functional features 

While still fundamentally a procedural language, Maple has many functional features. 

These include first-class procedures, pattern matching, a map command for mapping over 

data structures, a functional if operator, functional operators for arithmetic operations, 

and library support for currying, composition, and ,\-abstraction. 

The following example computes the element maximum of two lists using zip and 

max: 

> z i p ( max , [ I , 7 , 5 , 9 ] , [ 6 , 6 , 8 , - I ] ) ; 

[6, 7, 8, 9] 

The following is a Maple implementation of the function concatMap from the Haskell 

Prelude (see [23]). 

> concatMap := proc(f,a) local x; [seq(op(f(x)),x=a)] end proc: 

The command combinat: -partitions (n) gives a list of all partitions of a positive integer n; in 

this sense a partition is a list [a1 , ... , an] such that ai E Nand 1 :::::; ai :::::; n fori= 1, ... , n 

and a 1 + · · · + an = n. This example computes all partitions up to size 3: 

> concatMap( combinat:-partitions, [I, 2, 3] ); 

[[I], [1, I], [2], [I, I, 1], [I, 2], [3]] 

However, we should not overstate our case here: appearance notwithstanding, Maple is 

very far from the typical characterization of a functional language. Any procedure can alter 

global state at any time, should it opt to do so. An even stronger argument is that because 

variables can be passed around as symbols prior to receiving a value, and anything glimpsed 

as a symbol can be assigned, this means that an innocuous-looking function application 

with an unknown or dynamic function name has the capacity to alter the state of any of its 

arguments. Therefore we can not even always trust that any state changes will be confined 

to global (and not local) state. 

Here is a simple example of a procedure that receives an argument and promptly at­

tempts to write the value 2 to it. 

> writeTwo := proc(s) if type(s, name) then assign(s,2) end if; end proc: 

> write Two ( freshSymbol ) ; 

> freshSymbol; 

2 
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2.6 Evaluation levels 

As the system permits the creation of deeply-nested expressions containing symbolic quan­

tities, it is necessary to allow some flexibility on how expressions are evaluated. There are 

several tools for this purpose: 

Maple has a delay evaluation operator: this 

is simply a thunk. If e would evaluate to an ex- > To Inert ( x->3*x "2 ) ; 

pression b, the result of evaluating a when sur- _lnerLPROC ( 

rounded by the delay operator will be simply a, _lnerLP ARAMSEQ ( 

rather than its evaluated result b. Additionally, 

there are ways of forcing custom evaluation lev­

els. The command eval will evaluate the ex­

pression as far as it can. Though this is often 

necessary, it has the potential to become quite 

expensive. 

2. 7 Reflection tools 

One of the features ofMaple which is especially 

interesting and which will prove especially use­

ful is its built-in support for reflection. This sup­

port is provided by a pair of functions which con­

vert "live" code to a so-called inert form. 

Concretely, the inert form is a data structure 

made of a series of nested function calls with 

symbolic function names. Because the names 

are symbols, the expression is inert, meaning 

_lnerLNAME ("x ") 

) ' 
_lnerLLOCALSEQ () , 

_lnerLOPTIONSEQ ( 

) ' 

_lnerLNAME ("operator"), 

_lnerLNAME ("arrow") 

_lnerLEXPSEQ () , 

_lnerLST A TSEQ ( 

) ' 

_lnerLPROD ( 

_lnerLPOWER ( 

_lnerLP ARAM ( 1 ) , 

_lnerLINTPOS ( 3) 

) ' 
_lnerLINTPOS (2) 

_lnerLDESCRIPTIONSEQ () , 

_lnerLGLOBALSEQ () , 

_lnerLLEXICALSEQ () 

it will not evaluate to anything other than its Figure 2.1: Tolnert example, formatted 

present value. This use of symbolic function for readability 

applications as a customized data structure is a 

common pattern in Maple. 

However, the key point is the data in the data structure. The symbols used in the inert 

form and the arrangement of function calls is a representation of the abstract syntax tree of 
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the original expression from which the inert form was generated. In general, each function 

application in the inert form corresponds to a node in the abstract syntax tree. 

The result is that we may freely transform a "live" expression into data which is or­

ganized in a consistent manner and which can be studied and manipulated without fear of 

accidentally triggering an evaluation. Once we are finished, the data may be freely trans­

formed back into a "live" expression. 

The symbols present as function names in inert form data structures all belong to a finite 

set of symbols: they all take the form _Inert_foo where foo is the name of data type or 

control structure. We may think of these as equivalent to labels on nodes in the AST which 

qualify which type of expression or statement we are examining. 

We will refer to these _Inert_f oo symbols as "inert tags." The list of inert tags that 

may be produced by a call to Toinert is lengthy but finite. For a complete accounting, 

see Appendix A. 

The built-in procedure To Inert transforms an input expression into an inert form. 

Following is a short example; for a lengthier one see figure 2.1. 

> Tolnert( [-I, I] ); 

_InerLLI S T ( _lnerLEXPSEQ ( _InerLINTPOS (I), _InerLINTNEG (-I))) 

The inverse operation to Toinert is, naturally enough, Frominert, which transforms 

an inert form into a "live" Maple object. 

> From Inert ( _lnerLSUM ( _InerLNAME ("a"), _InerLINTNEG ( 5))); 

a - 5 

The inert form shall be an essential low-level tool in our analysis. The abstract syntax 

tree as provided by Toinert will be the basic unit upon which all our analyses will be 

performed. For this reason, it is To Inert which we shall be using most frequently: there 

are however some occasions on which we will be grateful for the capability of transforming 

code in either direction. 



Chapter 3 

Constraint-based Data Flow Analysis 

and Abstract Interpretation 

In this chapter we present the theoretical underpinnings of our analysis. Here our discussion 

is generic and makes no reference to Maple; we intend to motivate our later exposition and 

introduce important concepts and terminology which will be used later. 

3.1 Constraint-based Data Flow Analysis 

Data Flow Analysis is a widely-studied and well-established branch of static analysis, in 

heavy use in both the academic and commercial field. Here we briefly summarize a par­

ticular technique, data flow analysis utilizing a constraint-based approach, which we shall 

make use of later. 

Our somewhat informal presentation is loosely based on [22, pp. 8-10, 41-43]. See also 

[28] for a good presentation of Reaching Definitions and other related Data Flow analyses. 

3.1.1 System of constraints 

Given an input program p, we first obtain its abstract syntax tree AST(p). We are typically 

interested in a specific subset of the nodes of AST(p ), specific to our particular analysis. 

To each of these "nodes of interest" we affix a unique label drawn from some fresh set of 

symbols. Let Lab denote the set of labels; clearly Lab will be finite because AST(p) is 

finite. 

14 
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At this point we have in mind some lattice (L, ~) of values. It is our goal to construct 

a map c.p : Lab ---> L; that is, to associate with every program point 1! E Lab of interest a 

value in L. 

Let us define the set Mas follows: 

• If x E Lab or x E L, then x E M. 

• Iff: Ln --->Lis a monotone function and X1, ... , Xn E M, then f(x 1 , ... , Xn) E M. 

The central idea is to generate, in a way specific to the input language and lattice L, a 

system of constraints. These are predicates of the form 1! ~ x where 1! E Lab and x EM. 

(Without loss of generality we take 1! ~ x; we could have also chosen 1! [;;;: x, as long as the 

direction is consistent across all constraints.) 

Given any two constraints £ ~ x and £ ~ y for some £ E Lab and x, y E M, we can 

unify these into a single constraint with the lattice join operator; that is: 

(£ ~ x) 1\ (£ ~ y) ===? £ ~ (xU y) 

After all these unifications have been performed, we end with a system of constraints of 

the form 

where N is the (finite) size ofLab, and the £i are all distinct. 

We may write this as l ~ F( l) for F E L N ---> LN. 

3.1.2 Fixed points 

The fact that F is monotone and F ( l) ~ l tells us that pn+ 1 ( l) ~ pn ( l) for any n E N. 

Definition 1 Let (L, [;;;;, ~) be a lattice. A sequence { ai}~1 with ai E Lis said to be an 

ascending chain if an ~ an+ 1 for all n E N. 

The L satisfies the Ascending Chain Condition if for every ascending chain { ai}~1 there 

is some N E N such that ai = aj fori, j > N. 
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If L is finite or satifies the Ascending Chain Condition, there exists some n E N such 

that pn+l(l) = Fn(l). 

This is in fact also a least solution to our constraint problem f;;;;) F(l). Therefore, 

starting from f = l we may generate a solution in n steps by successive application of 

F to the incremental result, provided of course that the convergence criteria hold. We will 

later discuss what to do if they do not hold. 

3.2 Abstract interpretation 

Abstract Interpretation [9, 11] is a general theoretical framework for the sound approxi­

mation of program semantics. Its generality and applicability to many different domains 

makes it particularly well-suited for use as a program analysis methodology. 

Here, we provide a brief introduction to the field. The interested reader may learn more 

from the many papers of P. Cousot ( [ 14, 6] being particularly relevant for our purposes). 

This overview has been adapted from a shorter one by Jacques Carette and this author 

(see [3]); this in tum was greatly influenced by the pleasant introduction [26] by Mads 

Rosendahl, and by David Schmidt's lecture notes [27]. 

While the many approaches that fall under the rubric of "abstract interpretation" differ 

in both their theoretical underpinnings and the subjects of their analyses, there is a single 

unifying idea. 

Given a program p, we assign two distinct semantics to p. The first is the "usual" or 

concrete semantics, which models the runtime behaviour of p. The other semantics, the 

abstract semantics, is typically chosen because it is easier to compute or reason with. We 

require that our two interpretations of p "agree" in a sense, so that we may answer certain 

questions about the runtime behaviour of p (i.e. its concrete semantics) by examining its 

abstract semantics and translating this back to the concrete world. 

More formally, our assignment of semantics top is an interpretation. We therefore have, 

two interpretations 11 [p] and 12 [p], where 11 [p] is a concrete interpretation and 12 [p] an 

abstract interpretation. 

The entire aim of the technique of abstract interpretation is the judicious selection of 

11 [p] and 12 [p] in such a way that 11 [p] models the "real world", 12 [p] is easier to handle, 

and the two are related in such a way that we may infer facts about 11 [p] from 12 [p]. 
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3.3 Example: Rule of sign 

To make this discussion less "abstract," let us begin with a standard example, the Rule of 

sign (for an early description, see [29]). Consider a simple expression language given by 

the grammar 

(In the above, n is a placeholder for all integers n E Z.) 

The standard interpretation is usually given as 

E[e] : Z 

E[n] = n 

E[e1 + e2] = E[e1] + E[e2] 

E[e1 * e2] = E[e1] * E[e2] 

We wish to be able to predict the sign of an expression whenever possible, by using 

only the signs of the constants in the expression. 

Our chosen abstract domain will allow us to distinguish between expressions that are 

constantly zero, positive or negative. In fact, however, this is not enough: if we add a 

positive integer to a negative integer, we cannot know the sign of the result (without actually 

performing the addition). So we also give ourselves a value to express this uncertainty, and 

denote that all we know is the result is a 'number'. 

Taking Sign = {zero, pos, neg, num }, we can define an "abstract" version of addition 

and multiplication on Sign: 
EB : Sign x Sign ----+ Sign ® : Sign x Sign ----+ Sign 

EB neg zero pos num ® neg zero pos num 

neg neg neg num num neg pos zero neg num 

zero neg zero pos num zero zero zero zero zero 

pos num pos pos num pos neg zero pos num 

num num num num num num num zero num num 
Using these operators, we can define an abstract interpretation for expressions as: 

A[e] : Sign 

A[n] = sign(n) 

A[e1 + e2] = A[e1] EB A[e2] 

A[e1 * e2] = A[e1] ® A[e2] 

where sign(x) =if x > 0 then pos else if x < 0 then neg else zero. 
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How are the interpretations E[x] and A[x] related? Formally, we can describe the 

relation between them as follows (and this is typical): 

1 : Sign --+ P(Z) \ 0 a : P(Z) \ 0 --+ Sign 

,(neg) = { x I x < 0} neg X~{xlx<O} 

!(zero) = {0} zero X= {0} 

!(pos) ={xI x > 0} 
a(X) = 

pos X~{xlx>O} 

!(num) = Z num otherwise 

The (obvious) relation between 1 and a is: 

• For all 8 E Sign, we have a(/(8)) = 8. 

• For all X E P(Z) \ 0, we have X~ 1(a(X)). 

1 is called a concretization function, while a is called an abstraction function. Note these 

functions allow a much simpler definition of the operations on signs: 

81 EB 82 =a( {x1 + x2l x1 E 1(81) n x2 E 1(82)}) 

81 ® 82 = a({x1 * x2l x1 E /(81) nx2 E !(82)}) 

3.4 Sound approximations 

From this we get the very important relationship between the two interpretations: 

'v'e.{ E[e]} ~ 1(A[e]) 

In other words, we can safely say that the abstract domain provides us with a correct ap­

proximation to the behaviour in the concrete domain. This relationship is often called a 

safety or soundness condition. So while a computation over an abstract domain may not 

give us very useful information (think of the case where the answer is num), it will never 

be incorrect, in the sense that the true answer will always be contained in what is returned. 

More generally we have the following situation: 



3. Constraint-based Data Flow Analysis and Abstract Interpretation 19 

3.4.1 Galois connections 

Definition 2 Let (C, r;;;;) and (A, r;;;;) be complete lattices, and let a : C -> A, 'Y : A -> C 

be monotonic and w-continuous functions. If for all a E A, c E C we have the condition 

that 

c r:c 'Y(a(c)) <===* a("!(a)) r;;;;A a 

then we say we have a Galois connection. If in fact for all a E A, c E C we have the 

stronger condition: 

c r;;;; 1(a(c), a("!(a)) =a 

then we say we have a Galois insertion. 

The reader is urged to read [17] for a complete mathematical treatment of lattices and 

Galois connections. The main property of interest is that a and 'Y fully determine each 

other. Thus it suffices to give a definition of 'Y : A -> C; in other words, we want to name 

particular subsets of C which reflect a property of interest. More precisely, given 'Y, we can 

compute a via a( c)= n{ a I c r:c "!(a)}, where n is the meet of A. 

Given this, we will want to synthesize abstract operations in A to reflect those of C; in 

other words for a continuous lattice function f : C -> C we are interested in J : A -> A 

via f = a o f o I· Unfortunately, this is frequently too much to hope for, as this can easily 

be uncomputable. However, this is still the correct goal: 

Definition 3 For a Galois connection (as above), and functions f : C -> C and g : A -> 

A, g is a sound approximation off if and only if 

Vc.a(f(c)) r;;;;A g(a(c)) 

or equivalently 

Va.f("!(a)) r:c !(g(a)). 

Then we have that (using the same language as above) 

Proposition 1 g is a sound approximation off if and only if g r;;;;A_,A a o f o 'Y· 

How do we relate this to properties of programs? To each program transition from point 

Pi to pj, we can associate a transfer function fij : C -> C, and also an abstract version 
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hi : A ---+ A. This defines a computation step as a transition from a pair (Pi, s) of a program 

point and a state, to (Pi, fij ( s)) a new program point and a new (computed) state. In this 

we are performing a kind of pseudo-evaluation, 

We always restrict ourselves to monotone transfer functions, i.e. such that 

which essentially means that we never lose any information by approximating. This is 

not as simple as it sounds: features like uneval quotes, if treated naively, could introduce 

non-monotonic functions. 

3.4.2 Return to data flow analysis 

We return momentarily to the discussion in Section 3.1 to comment on the implications of 

Galois connections for this approach. In Section 3.1, we saw that for La finite lattice one 

could compute the fixed point of l:! F ( l) simply by iterating F, starting from l = l until 

a fixedpoint was reached. 

It is worth noting now that same is possible with a Galois connection. Briefly, if we 

take G to be an operator in the constraint language which is the concrete analogue of the 

language described in Section 3.1, our concretization and abstraction functions will induce 

a relation 

As a o G o 1 is also monotonic, it too has a least fixed point that can be obtained by simple 

iteration when the abstract lattice is finite. 

How does a o Go 1 compare to F? We have placed no conditions on F other than mono­

tonicity; since it simply represents some attempt to approximate the operational semantics 

of the program, there is no guarantee that the designer "thought of everything." 

On the other hand, a o G o 1 is defined entirely by the operational semantics of the 

program: it cannot therefore fail to be ideal. In fact we have a o G o 1 ~ F in general. The 

condition a o Go 1 = F, sometimes provable, indicates that the analysis F is optimal for 

its abstract domain. 
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3.5 Collecting semantics 

In general, we are interested in execution traces or collecting semantics, (see [15, 22]) 

which are (possibly infinite) sequences of the transitions discussed in Section 3.4.1. 

A trace corresponds to one particular execution path through the procedure being ana­

lyzed; in some sense, it is a projection of the property of interest into some idealized world 

in which we may magically obtain information which in reality is dynamic and inaccessi­

ble. But because every possible execution of the program is captured by some trace, we are 

assured of correctness. 

Thus, a set of traces is frequently chosen as the concrete semantics when establishing 

the correctness of an analysis through a Galois connection. 

A typical example is the classical analysis Reaching Definitions (see [22, p. 15]). Here, 

the goal is to determine, for a program point£, and for each variable x, the label of the most 

recent assignment to x. 

Of course in general we will not find a single answer, as there may have been previous 

conditional branches prior to £ in which x was written. Our abstract semantics is then 

P(Var x Lab). But because a trace corresponds to one particular execution path, there 

is always a unique past computation history: that is, tr E (V ar, Lab)* (the * is a Kleene 

star). Our concrete semantics domain is then simply P(Var x Lab)*. 

3.6 Widening and narrowing operators 

We have mentioned several times (such as in Section 3.1) the condition that our abstract 

domain either be finite or satisfy the Ascending Chain Condition to guarantee convergence 

upon a fixed point. We now examine what recourse is left to us when that it not the case. 

Here we summarize the presentation in [22, pp. 222-230]. See also [15] for a concise 

summary. 
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3.6.1 Widening operators 

Let L be a complete lattice and f : L ~ L be a monotone function. We define the following 

sets: 
Fix(!) 

Red(!) 

Ext(!) 

{ x: f(x) = x} (xis a fixedpoint of f) 

{ x : f ( x) ~ x} (f is reductive at x) 

{ x : f ( x) ;;;J x} (f is extensive at x) 

We define lfp(f), the least fixed point off to be the greatest lower bound of Fix(!) in L, 

and gfp(f), the greatest fixed point off to be the least upper bound off in L. 

Tarski's Fixed Point Theorem (see [1 0] for a constructive proof due to Cousot) imposes 

the condition that 

and it may be shown that 

lfp(f) = nFix(f) = nRed(f) 

gfp(f) = U Fix(!) = U Ext(!) 

However, all of the above inclusions may be strict for all n E N. 

Such problems may be dealt with by the judicious use of widening operators [8, 9] 

which ensure termination and convergence upon a safe upper approximation oflfp(f). 

Definition 4 Let L be a complete lattice. An operator 0 : L x L ~ L is an upper bound 

operator if x 1 ~ (x10x2 ) and x2 ~ (x10x2 ). That is, 0 is guaranteed to be as large or 

larger than both its arguments. 

Now, let { xn}~=l be a sequence inLand take any¢ : L x L ~ L. We can define a 

new sequence { x~} ~= 1 as follows: 

x0 ifn = 0 

¢(x~_ 1 , Xn) ifn > 0 

It can be shown that whenever 0 is an upper bound operator that { x~} ~=1 is an ascending 

chain, and x~ = U{ x 1 , .•. , xn} for all n E N. 

(Observe also, incidentally, that the join operator U acts as an identity on any sequence 

that was already an ascending chain.) 
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Definition 5 An upper bound operator V : L x L ---> L is an widening operator if for every 

sequence { Xn}~=1 the ascending chain { x~}~=1 eventually stabilizes. 

An example of a nontrivial widening operator is taken from [22, p. 223] on the lattice 

II(Z). We pick somes E II(Z) and define 0 8 : II(Z) x II(Z) ---> II(Z) as follows: 

~ { XU y 
XUsY = 

[-oo .. oo] 

If we have an infinite ascending chain like 

ifx!;: s ory!;: x 

otherwise 

[0 .. 0), [0 .. 1], [0 .. 2), [0 .. 3), [0 .. 4), ... 

and we ensure the endpoints of s are finite, say s = [0 .. 2], then the widening operator 

Or0 .. 2] transforms this into the ascending chain 

[0 .. 0), [0 .. 1), [0 .. 2), [-oo .. oo), [-oo .. oo), ... 

which of course has stabilized. 

Given a widening operator V : L x L ---> L and a monotone function f : L ---> L, we 

can then define a sequence fv defined by 

ifn = 0 

if n > 0 and f(f~- 1 ) ~ f~- 1 

otherwise 

Speaking roughly, the second case f(f~- 1 ) ~ f~- 1 tells us that we have overshot lfp(J), 

and that we should stop here. In fact we define lfpv (!) to be the fv for the first m that 

stabilized the chain, and we have 

lfp(f) h lfpv(f) 

giving us our desired safe approximation. 
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3.6.2 Narrowing operators 

The use of widening operators certainly moves us from the realm of danger into safe terri­

tory, but it is perhaps too safe. Perhaps, having leaped ahead past the least fixedpoint, we 

can take a few steps back to refine our approximation. 

Recall that the triggering condition for stabilization was the fact that f (f~-l) ~ ~~- 1 , 

which is stating that the function f has become reductive. To employ this idea naively 

and apply f repeatedly to lfpv (f) would be unwise, as we have no idea whether that will 

stabilize. The answer is a narrowing operator, defined as follows: 

Definition 6 An operator ~ : L x L -----+ L is a narrowing operator if 

• whenever x!:;;;; y, then x!:;;;; (x~y) !:;;;; yfor all x, y E L, and 

• for every descending chain { Xn}~=1 , the descending chain { x;; }~=1 stabilizes. 

With this narrowing operator we can then define a further approximation of f which 

will stabilize downwards and provide a worthy approximation of lfp(f). 

ifn = 0 

ifn > 0 

The sequence [f]n will stabilize for some value m' EN. We define 

This is our final approximation for f. 

3.6.3 Comparison of approaches 

The question of the overall utility of widening and narrowing operators is an interesting 

one. Some have argued [12, 13] that the results of using such operators can be replicated 

or approximated merely by avoiding infinite lattices or lattices without the ascending chain 

condition in the first place, and that use of narrowing and widening operators can sometimes 

lead to arbitrary loss of information. 

In [13], Cousot contrasts the use of widening and narrowing operators with the "Ga­

lois connection approach" of choosing an abstract domain of sufficient simplicity to avoid 
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infinite chains. He argues that the widening/narrowing approach may give better results, 

though he suggests that in many cases widening and narrowing operators are best used in 

connection with a Galois connection approach which performs some initial simplification 

of the problem domain. 



Chapter 4 

Properties and their domains 

4.1 Introduction 

Our goal is the static inference of various properties from Maple source code based on 

our knowledge of Maple's operational semantics. Given our previous discussion about the 

unique aspects of Maple, one might expect this distinctness to guide us in our choice of 

properties of interest, and indeed that is the case. 

Since we have opted to place ourselves in an abstract interpretation framework, we wish 

to investigate those properties which can be be approximated using complete lattices. As it 

turns out, this requirements is easy to satisfy in various ways. 

Many of the classical intraprocedural data-flow analyses described in ( [22, pp. 37-

52]), such as Available Expressions, Live Variables, and Very Busy Expressions do not fit 

naturally with Maple because of its special semantics, particularly its use of symbolic vari­

ables. We will, however, make extensive use of a modified form of the Reaching Definitions 

Analysis. 

4.2 Properties of interest 

We can divide the properties of interest into those that are state-based, those that are 

program-based, and those that are value-based. 

A state-based property associates a program point with an approximation of program 

state; computing such a property amounts to a pseudo-evaluation of the program statements 
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projected into the space of the property of interest. Statements or other operations affecting 

state, such as assignments, induce transfer functions between properties. 

A program-based property is an property of the program or procedure which depends 

on the source code (specifically the abstract syntax tree) in some direct manner. Some 

examples of this category might be various properties of program blocks, such as a property 

measuring the number of iterations of a for loop. 

A value-based property is one which associates a program point with an approximation 

of an expression value. An earlier example illustrating this in the field of abstract interpre­

tation is the classical sign approximation, where we seek to model the sign of an arithmetic 

quantity. Here, functions and operations on values induce transfer functions between prop­

erties. 

4.2.1 State-based properties 

Reaching Definitions 

Reaching Definitions, occasionally called Reaching Assignments, is a classical analysis (see 

[22, pp. 4-10, 41-44] or [28, p. 26]), the goal of which is to determine, at every program 

point, the last assignment made to each "currently active" variable. 

Such an analysis conveys a wealth of information about the state and data flow of the 

program in question, but we shall need still more (as per the next item). 

The Reaching Definitions analysis is closely tied to the Use-Definition and Definition­

Use chains, which link variable instances to their prospective definitions and vice-versa. In 

fact, these chains may be easily contructed from a Reaching Definitions analysis; see [22, 

pp. 50-52]. 

Reaching Contexts 

Reaching Contexts is a generalization of Reaching Definitions. At some program point, 

we seek to determine, for each "currently active" variable, the last statement context which 

affected our knowledge about that variable. 

This is a somewhat subtler notion than state alone, and will help to discuss what this 

means for specific types of statements. Consider the following program: 
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p : = pro c (N : : i n t e g e r ) I o c a I n , i , s ; 

if [N > op then n := [Nj2; else n := -[N]3 ; end if; 

[s := 0;] 4 

for i from 1 to [n]" do 

[s := [sF + i '2;]6 

end do; 

end proc: 
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Observe that label 2 corresponds to the first branch of the if-block. The evaluation of the 

condition N>O did not change the state ofthe variable N, but it does change our knowledge: 

within that branch N>O holds. 

Similarly, consider the variable s at position 7 within the for-loop. A Reachings Def­

initions analysis would determine that s last received its value at either label 4 or label 6 

(in a previous iteration of the loop). It is perhaps more helpful merely to recognize, at the 

beginning of a loop iteration, that s is a variable which may be transformed by the loop. 

Informally, the goal of the Reaching Contexts is to determine the last assignment, loop, 

or if structure which may have affected our knowledge about a variable. We are interested 

only in assignments which write to v, if conditions in which v appears, and loops in which 

v may be transformed. We shall make this definition precise in Section 4.3.1. 

4.2.2 Program-based properties 

Number of variable reads 

We wish to estimate how many times each of the 'active variables' have been read. For 

each label /! corresponding to a program block and each local variable v, can we tell the 

number of times v has been read in the scope of/!? 

Number of variable writes 

This is a natural (semantic) dual to the Number of variable reads analysis; it is, however, 

operationally independent so we have opted not to try to capture both within a single prop­

erty. 
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Number of loop steps 

Given a program point 1! corresponding to a loop, how many times in an execution of the 

program will the loop 1! iterate before terminating? 

One thing to clarifY is that we wish to know how many times the loop 1! will iterate, not 

how many times its body will be executed. This becomes important in the case of nested 

loops, where the inner loop is repeatedly re-executed. For example: 

s := 0; 

[for i from I to 3 do [for j from I to 5 do s := s+i+j; od;j2 od;jl 

Here, our solution for label 2 is 5, not 15, even though the statement body executes 15 

times. 

The loop-step analysis provide a good example of the interdependence of many of these 

properties: clearly, the number of steps of a loop is dependent on the expressions or numer­

ical ranges being traversed, which are the subject of other properties. 

4.2.3 Value-based properties 

Surface type 

An obvious candidate for a property of interest is the type of an value; indeed, type infer­

ence is a frequent goal of static analysis. Rather than attempting to use Maple's own rather 

idiosyncratic system for typing, or inventing our own system, we will allow ourselves to 

be guided by Maple's own inert form. We will construct a quantity we call a surface type 

based on the inert form. 

As described in section 2.7, any Maple value v may be converted to an inert form with 

the command Tolnert(v). This inert form is a function data-structure: the root of this struc­

ture (in Maple parlance, the zeroth operand) is always one of the inert tags (see 2.7). This 

provides us with a clear and consistent concrete semantics for classifying values into some­

thing resembling types. We say that value v has surface type t if the result of executing 

op(O, Tolnert(v)) is t. 

> op (0, Tolnert ( x 

_lnerLEQUA TION 

Our aim is therefore to take a program point 1! corresponding to a value and determine 

the surface type of the dynamic value corresponding to 1!. 
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The motivation for the name "surface type" is that the type captures only the root of 

the abstract syntax tree: the type of an expression does not capture any information about 

leaves or internal nodes. 

Expression sequence length 

Here we are really doing two inferences at once: given a label f corresponding to a value, 

we seek to determine whether the value is an expression or expression sequence (refer to 

2.1.3), and if the latter, what its length is. 

From Maple's semantics, we know that expseqs behave quite differently in many con­

texts than other value, so it is important to know whether a given value is an expression 

sequence. This becomes particularly important in the analysis of function applications, for 

reasons described in 2.1.3. 

Number of operands 

In the event that program point f is an expression, how many operands does this expression 

have? That is, if it is a list or set, what is its size? If it is a function application, how 

many operands are present? In most cases this is equivalent to asking about the number of 

immediate children of the node corresponding to f in the abstract syntax tree. 

This analysis is inspired by the Maple command nops which performs an identical 

function on concrete inputs. 

Sometimes this information comes "for free" from the expression sequence length anal­

ysis: for example, in the input [1,2,3], the expression sequence 1,2,3 is part of the input, 

and will therefore be "seen" by the Expression sequence length analysis. However, this is 

not always the case. 

Because we must first know that the value f is an expression, that is, that its Expression 

Sequence length is 1, it is sensible to make the Number of Operands analysis a refinement 

of the Expression Sequence analysis. 

Literal Value 

This is a refinement of the surface type analysis. Here, for certain 'literal' quantities like 

protected symbols and integers, we attempt to track the actual concrete value of the ex pres-
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sion (in addition to its surface type). 

This degree of precision is potentially dangerous: if implemented naively, one might 

enter an expensive or infinite computation while attempting a precise estimate on some 

value. We must therefore must take special care in not attempting infinite or hugely expen­

sive operations. However, since this analysis is a refinement of the Surface Type analysis, 

we may always fall back to merely having the surface type. 

4.2.4 Summary 

Summarizing, we seek to infer the following state-based properties (according to the defi­

nitions above) for a program point£: the assignments that reach£, the "statement contexts" 

that may affect£. We also seek to infer the following value-based properties for a program 

point £ corresponding to a value: its surface type, its variable dependencies, its expression 

sequence length, its number of operands, and its literal value. Furthermore, we wish to 

measure the number of times that "active" variables have been written or read at point£. 

4.3 Modelling the properties 

The properties described in Section 4.2 are of course not statically computable in general. 

We are therefore obliged to approximate them, and this is precisely where the apparatus of 

abstract interpretation will prove greatly useful. 

For each property described in Section 4.2, we will provide two lattices: a concrete 

domain that accurately captures the quantity that we wish to learn about, and an abstract 

domain with which we shall approximate the property in question. As discussed in Defini­

tion 2, our lattices must satisfy the Galois condition: 

where L, Mare the concrete and abstract domain respectively, a, rare the abstraction and 

concretization functions, respectively, and the following rule holds: 

a(X) ~ Y ~ X ~ r(Y) 
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Some of the abstract lattices chosen are infinite and do not satisfy the Ascending Chain 

Condition 1. While this might give us some cause for concern, the judicious use of widen­

ing operators will ensure termination, as discussed in Section 3.6. 

When we do not explicitly describe the partial order !;;;: on some lattice L, the partial or­

der intended is simply the "obvious" one for this lattice. For example, given P( {1, 2, 3}) x 

N, we would simply take the usual set-inclusion orderS:: on P( {1, 2, 3}) and the::; relation 

on on N, and combine these in the natural way through the Cartesian product to define the 

partial order on P( {1, 2, 3}) x N. 

Notation 

We shall define some terms which we shall use repeatedly in the following sections. 

Quantity Description Finite? 

AST(p) Abstract syntax tree for program p Yes 

Lab Set of fresh labels (typically N, but need not always be) No 

Lab* Finite set of labels corresponding to nodes in AST(p) Yes 

Var Set of all program variables which Maple may use No 

Var* Set of program variables present in input Yes 

Val Set of all Maple values No 

IK Set of all inert tags (see 2. 7) corresponding to values Yes 

n(x) Lattice of intervals over a totally ordered set X: Finite if and only 

n(X) = {[a .. b] :a, bE X} if X is finite 

It it worth nothing that we have Var* S:: Var and Lab* S:: Lab by definition. Of course 

there are praticallimitations to the size of Var, since it is defined by the behaviour of a 

real-world computer program, but for our purposes Var is unbounded. 

The set IK is finite: in fact, its precise size is 59. For a full listing of all tags associated 

with values, see Appendix A.2. 

Program points and annotated code 

From this point forward, we will be talking frequently about program points; it will be 

helpful to clarify the meaning of this. 
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Given a program p, we can construct the abstract syntax tree AST(p) of p. We choose 

a set Lab of labels and attach a distinct label to each node of AST(p): we may refer to the 

result as an annotated abstract syntax tree. This permits us to define a bijection 

cp: Lab----+ {SubTree(x, AST(p)): xis a node of AST(p) 

where SubTree(x, AST(p)) is the subtree of AST(p) rooted at node x. 

As cp is a bijection, it is reversible: note, however that merely having access to the data 

associated with a node does not in general allow us to identify the node or its label, as 

identical values may occur multiple times in an abstract syntax tree. 

The reader may observe in the above that we have not said anything about the types 

of nodes in the AST that we are labelling: specifically, whether they are statements, ex­

pressions, or both. Many approaches to static analysis concern themselves with only one 

of these two (see example in [22, p. 3]). We will sometimes require both, and since we 

can always readily distinguish them, will include both statements and expressions in our 

labelling. 

4.3.1 State- and program-based properties 

Reaching Definitions 

As this is a classical analysis, the concrete and abstract domains are well-established (see 

[8, 22]). Our design here follows closely the description given in [22, p. 15]. 

The concrete domain for this analysis can be given via a collecting semantics as we de­

scribed in section 3.5: we have a set of traces, where each trace is a list of past assignments 

to program variables for some particular execution path of the program. 

Our abstract lattice is P(Var* x (Lab* U {?})),ordered by set inclusion. We add the 

extra symbol ? to Lab* to signify the state of a variable which has not yet been initialized. 

The abstraction and concretization operators are identical to those described in [22, p. 15]. 

For a program point p, we shall denote the reaching definitions for the entry point and 

the exit point of p by RDentry (p) and RDexit (p) respectively. 

Lastly, note that we need not worry about inducing fixed points, as the Cartesian product 

Var* x (Lab* U {?})is finite. 
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Reaching Contexts 

Reaching Contexts is a generalization of the Reaching Definitions analysis. That analysis 

provides invaluable information about the data flow and even control flow of a program, 

which may be usefully employed in other analyses. However, it is limited in some respects: 

the only statement type it handles specially is the assignment operator. We would like 

access to more statement information. 
Let us define Context as follows: 

Context= {LoopStep, LoopFinal, Assign, If, ProcedurelnitialValue} 

For our choice of concrete domain, we shall describe a collecting semantics similar to that 

used for Reaching Definitions above. Let us define Trace as follows: 

Trace= (Context x Var* x Lab*)* 

(Here the superscript* denotes the Kleene star.) 

Each t E Trace is a sequence of contexts from a particular trace through the procedure. 

Starting from the invocation of the procedure, we simply append each "context" encoun­

tered in the execution of the procedure onto a list, in exactly the same manner as a trace for 

Reaching Definitions maintains a list of variable assignments. 

Following [22] we may define, for a trace tr E Trace and x E Var *' semantically 

reaching context SRC where SRC( tr) ( x) gives us the rightmost context in which x occurs 

in the trace tr. 
With these definitions in place, our concrete domain is the set of program traces 

P(Trace), and our abstract domain is L = P(Context x Var* x Lab*). Our abstraction 

and concretization functions are then simply the following: 

o:(X) 

1(Y) 

{SRC(tr)(x): x E Var* A tr EX} 

{ tr: SRC(tr)(x) E Y for all x E Var*)} 

Since Context is finite, L must also be finite and the ascending chain condition holds. 

Our notation is similar to that employed for Reaching Definitions. We denote the reaching 

contexts for a program point p by RCentryP and RCexitP· 



4. Properties and their domains 35 

Number of variable reads 

Let f be a label corresponding to a program block. Our aim is to determine, for each 

active variable v, a nonnegative integer representing the number of times that v was read 

while control was in program block /!; of course for the static analysis we shall have to 

approximate this. 

Our concrete domain is simply the formalization of our stated goal, P(Var * x N). Thus 

for each program p we have a set of pairs from (Var* x N). Each element (v, n) asserts 

that variable v was "read" exactly n times in the context of 1!. (This of course corresponds 

to a particular execution trace.) 

For our abstract domain, we simply weaken our measure of the number of reads from 

an integer to an integer interval. Our lattice is then L = P (Var * x ll(N)): the quantity 

( v, [a .. b}) E L expresses the fact that the number of times that v was is read in the code 

block f was between a and b inclusive. 
Note that this abstract space is infinite and does not satisfY the ascending chain condi­

tion. 

Number of variable writes 

This is a natural (semantic) dual to the number of reads. The domains used for its concrete 

and abstract semantics are identical to those used for the read-counting analysis. However, 

the two analyses are operationally independent. 

Number ofloop steps 

The lattices for this property have the simplest description of the lot: given f a label cor­

responding to a loop, we wish to measure the number of steps the loop will take. Our 

concrete domain is simply Nand our abstract domain ll(N). 

4.3.2 Value-based properties 

Surface type 

In section 4.2.3 we outlined the concrete semantics of the surface type property. With each 

Maple value v E Val we can associate a unique inert tag which can be computed (when v 

is known) by evaluating op(O, Tolnert(v)). 
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For our concrete lattice take simply Val, the set of all values. Using IK directly as our 

abstract lattice will not do; we cannot always be sure to which value a program point J! will 

correspond. Therefore we take L = P(IK) as our abstract lattice. The partial order of 

P(IK) is the usual subset relation. 

It is straightforward to define abstraction a and concretization r functions between the 

complete lattice (P(Val), s;;;) of sets of Maple values Val and L. 

Our definition means that each Maple operation mapping values to values induces, as a 

consequence of the the Galois connection, a natural transfer function f : L -----+ L. 

As convenient as this characterization is, it is important to note that f is a coarse ap­

proximation. For example, if we encounter code resembling a : = L [ lJ, we can say little 

about a because it depends on something inside L. Even ifwe knew that a(L) = LIST, 

the best we can do is a( a) s;;; E, where E = P(IK) \ {EXPSEQ}. 

Expression sequence length 

For our concrete domain we again take Val. The most natural abstract lattice for expression 

sequence length is II(N) (the set of intervals with natural number endpoints) with s;;; given 

by containment. 

To a program point J! representing a value we therefore associate a nonnegative interval 

[a .. b] with a EN, bEN U { oo }. 

The abstraction function a maps all values that are not expseqs to the one-point interval 

[1..1 J; it maps expseq values to a range containing all possible lengths for that program 

point. Note that NULL (the empty expression sequence) maps to [0 .. 0], and that unknown 

expression sequences map to [O .. oo]. 

Given a program point €, we shall denote the set of expression sequence lengths of its 

possible values by ES(€). 

The abstract lattice II(N) is illustrated in Figure 4.1, as with several other chosen abstract 

lattices; it is neither finite nor does it satify the Ascending Chain Condition. An example 

of an an infinite chain is: 

[O .. oo] C [l..oo] C [2 .. oo] C · · · 

In Section 6.2.3 we shall see how our analysis copes with this fact. 
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Figure 4.1: The lattice ll(N) 
4.4 Refinements 

4.4.1 Refinement and Galois insertions 

At this point it is necessary to interrupt the presentation of the properties and their lattices 

to build up some infrastructure we shall need before progressing. 

As mentioned in section 4.2.3, we have designed our latter two properties, Nom­

Operands and LiteralValue, to be refinements of ExprseqLength and Surface Type re­

spectively. By this we informally mean that NumOperands contains all the information 

present in ExprseqLength and some additional information not expressible in Exprse­

qLength. 

Clearly this feature is both natural and highly useful. If q is a refinement of p, we may 

easily import information into p from q simply by "forgetting" the information specific to 

p, and may use p as a coarse approximation of q (as a starting point for computing q by 

successive refinement, for example). 

Let Lp,Lq be the lattices corresponding to p,q. We should expect the refinement rela­

tionship to carry over into the chosen abstract lattices in the natural way. This is indeed 

the case, using an idea we have already seen: Galois connections. We should expect that 

if q is a refinement of p, that Lq is a concretization of Lw That is, there should exist 

O:(p,q) : Lq --+ LP and /(p,q) : LP --+ Lq satisfying the Galois criterion. 

However, we want something still stronger: because q is to be a refinement of p, 

it must contain all the information that p does. Informally, the copy of p present in q 
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must be "pristine" without any spurious overapproximations. This implies that we require 

Ct(p,q) (!(p,q) ( x)) = x for all x E Lp, and as described in Section 2 this is the condition for 

a Galois insertion. 

Special lattice sum 

We would like to describe the refined property as some type of lattice sum or product of 

the original property, in such as way as the Galois insertion is implicit in the definition. We 

could find no tool obviously suited to the task in the lattice theory literature (see [ 17, 19], 

for a very comprehensive list of lattice sums and products applicable to abstract interpreta­

tion, see [ 16]). We therefore define the following operator which will suffice. 

Definition 7 Let (P, :::;, _Lp, T p) and let (Q,!: _LQ, T Q) be complete lattices. Let f3 E P 

be an atom of P, and? is some symbol tf Q. Define R as follows: 

• Ifx E P, then (x, ?) E R. 

• Jfy E Q \ {T Q, _LQ}, then (/3, y) E R. 

• Define a partial order ::S on R as follows: 

- (x1, ?) ::S (x2, ?)forallx1,x2 E Pwithx1:::; x2 

- (_Lp, ?) ::S (/3, y )for ally E Q \ {T Q, _LQ} 

- (/3, y) ::S (/3, ?)for ally E Q \ {T Q, _LQ} 

- (f3, YI) ::S (/3, Y2) ifY1 = Y2 =?or ifyl, Y2 E Q \ {T Q, _LQ} and Y1 !: Y2 

- ((3, y) ::S (x, ?)for ally E Q \ {T Q, _LQ} iff]:::; x 

• Define _LR = (_Lp, ?) and T R = (T p, ?). 

We denote R by P EB f3 Q, and call this the "special (3-sum" of P and Q. 

Informally, we make a copy of the lattice P in which we replace the ideal { _Lp, f3} with a 

copy of the lattice Q. In the new lattice, all the elements of Q sit below f3 but above the 

bottom element. (See Figure 4.2.) 

This bears a resemblance to the linear lattice sum described in [ 17], but differs in that 

the "lower lattice" is inserted underneath an atom, rather than the bottom element. Notice 

that every element in P EBf3 Q is either (/3, q) for q E Q or (p, ?) for p E P. 
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(T p, ?) 
/ I '-

/ '-
/ I '-

/ 'I' '-
/ '-

/ (/3, ?) '-
/ '-

/ / '- '-
/ / '- '-

/ / '- '-

Figure 4.2: The lattice P EB/J Q. Here p1 ,p2 ,j3 are atoms of P and q1 , q2 atoms ofQ. 

It is clear that P EBiJ Q is indeed a lattice. We can show it is a complete lattice quite 

easily. Suppose r1, r 2 E P EB/J Q: 

• Suppose r 1 = (x, ?), r 2 = (/3, y). If j3 ~ x, then r 1 = (/3, y) :::=; ({3, ?) :::=; (x, ?) = r 2, 

so r 1 1\ r 2 = r 2 . Otherwise, r 1 1\ r 2 = (_ip, ?) since j3 is a atom. 

Generalized special lattice sum 

Recall that our definition of the special lattice sum P EB iJ Q required that the element j3 E P 

must be an atom. We can extend this approach to non-atoms as well. 

Definition 8 Let (P, ~' _l_p, T p) and let (Q, ~' _l_Q, T Q) be complete lattices, and? some 

symbol rf_ Q. 
Let cp : Q -----+ P be a monotonic function whose image cp( Q) is an ideal of P. Then 

define (R :::=;) asfollows: 

• lfx = T p, x = _l_p, or x E (P \ cp(Q)), then (x, ?) E R. 

• Ify E Q \ {T Q, _l_Q}, then (cp(y), y) E R. 

• Define a partial order :::=; on R as follows: 
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- (l_p, ?) ::S (rp(y), y)for ally E Q \ {T Q, l_Q} 

- (rp(y), y) ::S (rp(T Q), ?)for ally E Q \ {T Q, l_Q} 

- (rp(yi),yi) ::S (rp(yi),yz) ifYI = Yz = ?orifyi,Yz E Q\ {TQ,l_Q} and 

Y1 ~ Yz 

- (rp(y),y) ::S (x, ?)forally E Q\ {TQ,l_Q} ifrp(y)::; x 

• Define l_R = (l_p, ?) and T R = (T p, ?). 

We denote R by P EB'P Q. 

It is clear this is a generalization of the previous definition; we can recreate the previous 

definitionwithrp: Q-----? Pdefinedasrp(l_Q) = l_p andrp(q) = ,Bforallothervaluesofq. 

To show that P EB'P Q is a complete lattice, suppose r1 , r2 E P EB'P Q: 

• Ifr1 = (xr,y1),rz = (xi,Yz)withyi,Yz E rp(Q),thenr1/\r1 = (rp(ylnyz),ylnyz). 

In fact rp(y1 n y2 ) = rp(y1) 1\ rp(y2 ) = x1 1\ x 2 by the definition of P EB'P Q and by the 

fact that rp is monotonic and rp( Q) is an ideal. 

• Suppose r1 = (xr, ?), rz = (xz, Yz). If Xz ::; x1, then rz = (xz, Yz) ::S ( rp(T Q ), ?) ::S 
(x1, ?) = r1, so r1 1\ r2 = r2 . Otherwise, r1 1\ r2 = (l_p, ?) since rp(Q) is a ideal.· 

We claim that for any rp the lattices P EB'P Q and P have a Galois insertion: the abstraction 

function a: (P ffi'P Q)-----? Pis defined simply as o:((p, q)) = p for (p, q) E R. 

4.4.2 Additional value-based properties 

We now return to cataloguing the abstract and concrete lattices. 

Number of operands 

Here, our concrete domain is again Val. 

Our goal is to estimate the number of operands of expressions. To model this, we must 

first know that quantities in question are expressions, namely that ES(£) = [1..1]. For this 
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reason we will measure two quantities simultaneously: the expression sequence length as 

done in ExprseqLength, and also the number of operands should the quantity in question 

truly be an expression. 

We therefore wish employ the specialized lattice sum defined in Section 4.4.1 at the 

atom [1..1} E JI(N). So our abstract domain is JI(N) EB[Ll] JI(N). 

Literal Expressions 

Our concrete domain is Val. Here we want to do more than in NumOperands and join 

the two lattices at more than one point. Specifically, we define a set Lit Val of literal ex­

pressions, a subset of Val. Lit Val consists of a number of Maple objects whose evaluated 

value is independent of program state and which, once evaluated, will never evaluate to 

anything different. Lit Val includes rational constants, "protected" symbols such as true, 

false, and FAIL, and also strings, and lists, sets, expression sequences, and function 

applications made purely from objects in Lit Val. 

Let asr be the abstraction function from the surface type analysis: this maps elements 

in Val to sets of inert tags. Let ValTags = asr(Lit Val); this is the set of all inert tags 

which may correspond to objects in Lit Val. 

Therefore, asr is actually the map we need to define the special sum defined in 4.4.1. 

We therefore define our abstract domain to be P(IK) EBasr JI(Lit Val). 

Though Lit Val is a set of "simple" values, it is still infinite (the set of integers is 

theoretically infinite, as is the set of rationals), so we should handle termination conditions 

carefully. 

4.5 Summary 

Table 4.5 summarizes the quantities of interest. The operator names listed in the table 

signify the map between an arbitrary program label /! and the abstract space. That is, 

STyp(/!) is the surface type abstract estimate for/!. 
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Analysis Operator Abstract Lattice Finite? 
ReachingDefinitions RDentry' RDexit P(Var* x (Lab* U {?} )) Yes 
ReachingContexts RCentry, RCexit P(Context x Var* x Lab*) Yes 
NumReads #R P(Var* x ll(~)) No 
NumWrites #W P(Var* x ll(~)) No 
LoopSteps LSteps ll(~) No 
Surface Type STyp P(IK) Yes 
ExprseqLength ES ll(~) No 
NumOperands NOps ll(~) EB(I,l) ll(~) No 
LiteralValue LVal P(IK) EBasr Lit Val No 

Table 4.1: Abstract spaces for Properties oflnterest 



Chapter 5 

Constraints 

5.1 Introduction 

The judicious application of constraints allows us to translate the semantics of Maple into a 

much simpler language of relational constraints which relate values in the abstract domain 

with variables and operators which resolve to values upon solution. 

The choice of decoupling the traversal of the abstract syntax tree (the constraint gener­

ation phase) from the constraint solution phase is very important both for design purposes 

and comprehensibility. The constraint system for a given procedure and property presents 

the ultimate expression of the projection of Maple semantics into the abstract domain. In 

many cases, the constraint system will contain significant information which is not readily 

apparent in the solution, because of the need for approximation. 

A good example of a simple constraint system is found in ( [22] p. 8-11 ); this is the 

blueprint for our design of the constraint systems for ReachingDefinitions and Reaching­

Contexts. 

While Chapter 4 was concerned with a presentation of the underlying theory behind 

our design, this chapter will be a mixture of the specification of the constraint system and 

some details from the actual implementation. Here we present an overview of the constraint 

language for each of the properties in question 

43 
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5.2 Constraints in state- and program-based analyses 

For each of the properties outlined in Chapter 4, we describe those natural operations upon 

those properties that we employ in our analysis. We omit the description of the constraint 

language for ReachingDefinitions , as it is more or less the same as that presented in [22]. 

All lattices must have the usual defined lattice operations of n, U and the constants T 

and _L It is important to note that these operations are (by design) forced to be lattice­

specific: that is, the C used for ReachingContexts is distinct from the[;;;;; used for Exprse­

qLength. 

5.2.1 ReachingContexts 

The basic operator ofReachingContexts is no different from that ofReachingDefinitions: 

it is a simple override operator E9 which transforms its argument, a set representing pro­

gram state, and replaces a subset of program state with new state. For example, we have 

E9( {a = b, c = d, e = f}, {a = z, c = h}) = {a = z, c = h, e = f} 

The use of the override operator corresponds to assignment. We might observe a constraint 

system with entries like these: 

{LDCAL(2) = {14, 27}} = RCentry(PI), 

RCentry(PI) = RCexit(PI), 

RCexit(Pl) [;;;;; RCentry(P2), RCentry(P2) = RCexit(P2) 

RCexit(P2) [;;;;; Ef)(RCentry(P3), {LOCAL(l) = { P2}}) 

RCentry(P3) [;;;;; RCexit(P4), 

RCexit ( f4) [;;;;; RCentry ( f5) 

What is significant about ReachingContexts and the reason why it we widely rely upon 

it as an enabler for other analyses, lies not in the operator chosen but in the nature of 

the data being overridden. By the description mentioned in Section 4.3.1, the state in 

ReachingContexts includes information about the current context of the program point, 

which includes information about loop control and conditional structures in addition to the 

assignments. The result is an augmented variant of ReachingDefinitions which performs 



5. Constraints 45 

p := proc(N:: integer ,a, b) local n, i, s 
i := 1; 
[ n : = f ( a ' b ) ; l before-State 

while [n > orond_state then 
[n := n- N; 

j : = j + 1 poop_state ; 

end if; 
[ p r i n t ( , R e s u It i s , , n ) ; ] after _state 

end proc: 

Figure 5.1: ReachingContexts Example 

control flow as well as data flow analysis. Figure 5.1 provides an example. The annotations 

in the body of p in Figure 5.1, labelled from 1 to 4, correspond to the state before the loop, 

the state at the execution of the loop condition, the state after the execution of the loop 

body, and the state after the loop termination, respectively. 

Let~ represent the set of variable transformed by the loop at code point£ (in this case, 

it is the two local variables n and i. We then introduce the following symbolic quantities 

for each variable v E ~ altered in the loop: 

• LoopSteplni t ( v, £) - the initial value of variable v within a loop step 

• LoopFinal ( v, £) - the final value of variable v after the loop exits 

iv = {v = LoopSteplnit(v,£),v E ~} fv = {v = LoopFinal(v,£),v E ~} 

Our aim is to introduce these symbolic quantities into our relational system for Reaching­

Contexts. The classical, straightforward formulation ofReachingDefinitions will contain 

the following: 

Reentry ( cond) C Reexit (before_state), Reentry ( cond) C Reexit (loop _state), 

Reentry (after _state) C Reexit ( cond), Reentry (after _state) C Reexit (loop _state) 

These merely express the normal statement semantics: evaluation of cond may occur ei­

ther following the preceding statement (when the loop begins) or after a loop iteration; eval­

uation of after _state occurs after the loop aborts, either after the condition is checked 

or after the statement sequence is executed. 

In ReachingContexts, these relations are not generated. Instead, given this input, we 
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would generate the following: 

RCentry ( cond) c ffi(RCexit(before_stat ), iv) 

RCentry( cond) c ffi(RCexit(loop_stat), iv) 

RCentry (after _stat) c ffi(RCexit(cond), fv) 

RCentry (after _stat) c ffi(RCexit(loop_stat), fv) 

The effect of this is that all loop variables are replaced with a symbolic dummy variable, 

which indicates the state of the variable is controlled by the loop. Note this happens not 

merely with the loop control variable (if there is one) but with every variable which is 

altered by the loop. 

The effect is to completely partition the loop state from the state of the rest of the pro­

gram. After the rest of the program has been solved or simplified, the loop can be analyzed 

independently and the results substituted into the solution. This general approach of iso­

lating and reserving pieces of program state for special treatment is known as partitioned 

iteration (see [7]). Note that variables appearing only in a read context will not be overrid­

den thus; however, since they appear only in a read context it is completely safe to leave 

them untouched. 

The idea of replacing an unknown state with a symbolic one within the constraint lan­

guage is one we shall use several times over. 

5.2.2 NumReads and Nom Writes 

The constraint language here is quite simple. Aside from meet and join there are only two 

operations on values: addition and scalar multiplication. All other values are either type 

variables NumReads(£), NumWrites(£) or the base, which is a set of ordered pairs 

( v, J), where vis a program variable and J records an estimate on how many times it has 

been read or written. 

Operations on the sets are passed elementwise onto the contents: 

L ( { v = [a .. b], w = [e .. f]}, {v = [c .. d]}) 
n({ v = [2 . .4], w = [O .. oo]}, { v = [3 .. 5]}) 
U( { v = [2 .. 4], w = [O .. oo]}, { v = [3 .. 5]}) 

{v =[a+ c .. b + d], w = [e .. fJ)} 

{ v = [3 . .4]} 
{ v = [2 .. 5], w = [O .. oo]} 
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5.3 Constraints in value-based analyses 

The constraint languages for the four valued-based properties (SurfaceType, 

ExprseqLength, NumberOfOperands, and LiteralValue) are broadly similar. For 

brevity's sake we shall use ExprseqLength as an example throughout which is charac­

teristic of the lot of them. In addition to the base types (e.g. II(N)) and the constraint 

variables corresponding to types, there are several other features to the constraint language. 

Most important are lifted operators. These correspond to operators or functions in the con­

crete interpretation (i.e. in Maple) which have been "lifted" via the Galois connection to 

functions ¢ : xn --+ X, where X is the abstract domain. 

5.3.1 ExprseqLength 

One such is example for ExprseqLength is expseq operator (sometimes called the comma 

operator), which can be viewed as taking n expression sequences and appending them to 

produce a single one. 

> (1 ,2 ,3)' (4 ,5 ,6); 

1, 2, 3, 4, 5, 6 

Because the ExprseqLength domain is defined as a measure of expression size, in this 

domain the lifted expseq function actually behaves as an addition operator on the base type 

of intervals 

LiftFunction(EXPSEQ) ( [1..4], [2 .. 3]) = [3 .. 7) 

Another important function is the evalb operator. Because Maple implicitly uses different 

semantics when evaluating conditional expressions in a loop or if condition, it is necessary 

to take this into account and build a special function that accounts for the special semantics. 

The evalb operator will force a true/false result from conditional expressions when one 

would otherwise not be obtained; this can affect the size or type of the results. 
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5.3.2 NumOperands 

As the base type for NumOperands is an ordered pair, some of the operations need special 

care for definition. This is the example ofLiftFunction(EXPSEQ) used above: 

LiftFunction(EXPSEQ)( ([a .. b]), ([c .. d])) 

LiftFunction ( EXPSEQ) ( ( [ 1..1], J), ( [ 1..1], J)) 
([a+ c .. b + d]) 

([2 .. 2]) 

In NumOperands we also define two new operators to deal specifically with the fact that 

the base type is a peculiar kind of cartesian product. We have two primitives for moving 

range estimates from one element to the other: 

Wrap(([a .. b], [c .. d])) 

Flatten( ([a .. b], [c .. d])) 

( [1..1], [a .. b]) 

{ 
([c .. _Ld], ?) if a= 1, b = 1 

otherwise 

The names are inspired by Maple semantics. An expression sequence is "wrapped" inside 

a list, while a list may optionally be "flattened" to produce an expression sequence. As we 

might expect, they act as inverses: 

Wrap(Flatten(a)) =a 

Flatten(Wrap( ([a .. b], [c .. dJ)) = ([a .. b], ?) 

whenever Flatten( a) is defined 

for [a .. b], [c .. d] E II(N) 



Chapter 6 

Design 

While the vocabulary we have constructed for capturing the semantics of Maple in our 

chosen properties is highly expressive, we have as yet not said much with it. Here we will 

discuss details involved in the generation of the constraint systems described in Chapter 5 

and describe our approaches for the solutions of these systems. These include the use of 

widening operators and a limited form of solution of loop constraints through the use of 

recurrence relations. 

Finally, we will provide a sketch of the specification for the software system written in 

Maple to perform these analyses. 

6.1 Constraint generation 

Ultimately, all constraints are generated through analysis of the abstract syntax tree for an 

input procedure p. State- and program-based analyses simply traverse the abstract syntax 

tree and build up a large conjunction of constraints directly as a result of this traversal. 

In constrast, the constraints generated for a value-based property are divided into two 

classes: opportunistic constraints and constraints generated from ReachingContexts re­

sults. 

6.1.1 Opportunistic constraint generation 

A so-called "opportunistic" constraint rule is a rule which attempts to match some part of 

the input during AST traversal against some particular pre-coded pattern. In the event a 
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pattern is matched, an constraint is generated and added to the system. 

Opportunistic rules are the usual method of constraint generation for all state- and 

program-based analyses, and are also used widely in value-based properties. Additionally, 

value-based analyses utilize other generated constraints (generated from ReachingCon­

texts, a state-based analysis) in order to save us some work and rely on already-computed 

information. 
As said earlier, opportunistic constraints are generated directly from a pass through 

the AST. Each analysis has a custom ruleset that tests for certain patterns in the AST. For 

example, if an integer constant is seen at point £ the generator for ExprseqLength will 

produce { ES ( £) ~ [ 1 .. 1]}, since an integer must always have expseq size 1. 
While other generated constraints provide the glue that properly implements the se­

mantics of the Maple language, these opportunistic rules provide the raw material that give 

different analyses their unique colour. The design of these rulesets is purely ad hoc, and 

the rule designer must be very familiar with the semantics of the language in question: it is 

exceedingly easy to miss some boundary case in the formulation of a rule. Even the reader 

familiar with the language in question may be surprised by what conclusions may be drawn 

from certain code patterns. 
Several examples of "opportunistic" rules used by the system are given in Appendix C. 

LoopSteps 

At this point is it worth revealing that one of our chosen properties, LoopSteps, is es­

sentially a "cheat." The only effort LoopSteps itself ever makes to generate constraints 

restricting the range of possible loop steps is a trivial case when there is a for-loop with 

no condition and purely numeric starting, terminating, and increment values. In no other 

circumstances does LoopSteps ever generate by itself any constraints. 
Why then do we have LoopSteps? The answer is that because our inferred properties 

trade data with each other after every iterate, LoopSteps may "learn" loop-step information 

from someone else. In particular 

• For for-in loops which traverse data structures, ExprseqLength or 

NumOperands may provide the size of the data structure in question 

• LiteralValue may be able to conclude that the continuation condition for the loop is 

exactly "true" or "false" under certain circumstances. 
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The idea then is that LoopSteps is a convenient dropping-off point for information any 

other analysis may happen to have about loop size. 

6.1.2 Generation of constraints from Reaching Contexts 

There are clearly limits to what can be obtained from "opportunistic constraints" alone: in 

solving constraint systems for value-based properties, we need a way to unite our approx­

imations for variables which have the same assigned value but occur at different program 

points. We achieve this using the information from Reaching Contexts as decribed earlier. 

The main idea is that, given any two program points £1, £2, we can compute a constraint 

set j(£1, £2) as follows: 

1. Check if£ 1 and £2 are both instances of the same program variable, say v. If not or if 

£1 = £2, then set j(£1, £2) = 0 and exit. 

2. Otherwise, check RCexit(£1) and RCexit(£2) and look up the reaching contexts of vari­

able v in each. Let S1 = RCexit(£1)(v) and S2 = RCexit(£2)(v). 

3. Then define 

{ValProp(£1) ~ ValProp(£2)} 

{ValProp(£1) = ValProp(£2)} 

{ValProp(£1) :;;;;! ValProp(£2)} 

0 

(where ValProp E {ES, STyp, NOps, LVal}) 

if s1 ~ s2 
if s1 = s2 
if s1 ~ s2 
otherwise 

We therefore simply compute C = Ux,yELf ( x, y) and augment the set of "opportunistic" 

constraints generated with the newly computed set C. 

The central idea here is that the relationship we indicate between the constraint variables 

corresponds to the shared past history of the underlying program variables. 

Note that this approach might lead to overapproximation. Consider the following: 

ListOrlntegerToSet := proc(x) 

if type(x, integer) then 

{x} 
elif type(x, list) then 



6. Design 52 

convert (x, set) 

end if; 

end proc: 

In this example the variable N is never assigned, therefore its past computation history is 

the same everywhere. However, in practice there is no possible situation under which both 

one execution path could pass through both program points (as nothing can be both a list 

and an integer simultaneously.) This does not affect the correctness of our result, only its 

precision, as we merely overapproximate. 

6.1.3 Generating constraints for "unpartitioning" 

Variables in the constraint language for value-based properties come in two varieties. The 

first are the typical kind: these associate a program point £ representing a Maple value with 

a value in the abstract domain. 

The other sort are "control variables": they associate a program variable and some 

control structure in the AST with a value in the abstract domain. There are three sorts 

of these these variables, corresponding to loops, if-then-else conditions, and procedures 

respectively. 

Only the variables of the first kind are "native" to this analysis in the sense that they are 

derived directly from a traversal of the AST that is specific to this analysis. We are capable 

of performing the analysis without control variables, but the use of control variables allows 

us to better capture the special semantics of various control structures. 

The control variables are generated from data in ReachingContexts, and are introduced 

into the constraint system by by equating them to combinations of existing variables. We 

illustrate the process here for loops; there is an analogous process for conditional structures 

and procedure state. 

Let £ be some loop and ,6. be the set of program variable transformed by the loop. For 

some value-based property VP E {ES, STyp, NOps, LVal} and each v E 6., we define the 

following: 
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Quantity Definition Explanation 

Looplni t( v, £) U(VP(w) :wE RCexit(a, v)) initial value of v when the 

where a is the label of the last loop begins. 

statement before the loop. 
LoopFinal ( v, £) U(VP(w) : W E RCexit(b, v)) the final value of v when the 

where b is the label of the loop loop terminates (note we do 

block. not implicitly assume termi-

nation) 
LoopSteplnit(v,£) U(VP(w): wE RCentry(c,v)) value of v at the start of a loop 

where c is the label of the step (unlike Looplnit(v,£), 

conditional block. this may follow an indeter-

minate number of previous 

steps). 
LoopStepFinal(v,£) U(VP(w) : W E RCentryd,v) value of v at the end of 

where d is the label of the a loop step (analogously to 

loop statement block LoopSteplni t ( v, £) ). 

It is important to make a distinction between initial/final states of the loop overall, and 

initial/final states of the looping block. 

As described earlier for Reaching Contexts, the purpose of the introduction of these 

variables is to partition program states in such a way as to make it easier to refine results. 

Specifically for loops, we isolate the loop state from the state of the rest of the program, 

after which we may attempt to solve the loop iteratively (see [7]). 

Clearly we do not want the states permanently partitioned. For assignments and if 

structures, we add information back in a controlled manner, imposing certain relations 

between generated variables specific to a particular control structure. 

6.2 Constraint solution 

Our constaint system is always a simple disjunction of relations. We therefore have no need 

to worry about disjunctions, or conversion to normal form. The following is a brief outline 

of our method of solving constraint systems. 
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6.2.1 Outline 

The process for constraint solution looks something like this. Because of the duality prin­

ciple of lattices, we can freely replace all lattice terminology with ther dual (e.g. replace T 

with _1_, !: with ;;:;), etc.) without changing the conclusions of the sentence. 

1. Gather all equality relations and assemble all constraints into equivalence classes 

based on equality constraints. From this point on we need no longer worry about 

equality constraints at all: they have been dealt with. 

2. We now collect all strict relations ordered by their rightmost quantity. By traversing 

all the relational constraints, assemble the sets 

S R(y) = { x : x ~ y is a constraint in the system } 

This is in practice equivalent to declaring that the value of y will be approximated by 

n S R(y); this idea may be viewed as a variant of the "no junk rule" which holds that 

y should at most be the join of all quantities "under" it; if nothing is constraining y 

to be larger, it should not be larger. 

3. Initialize all constraint variables to T (the lattice top). Denote the current approxi­

mation of a constraint variable by A [ x]. 

4. Repeatedly traverse every y for which S R(y) is defined. For each x E S R(y): 

(a) If x is not a value or variable, but is an operator f(zb ... , zn), evaluate r := 

f(A[z1], ... , A[zn]), where the A[zi] are the latest approximation for zi. Assign 

A[x] := A[x] n r. 

(b) Set A[y] := A[y] n A[xJ. 

This approach will ultimately succeed as long as there are no infinite chains in our analysis. 

It is essentially a simple form of Chaotic Iteration, in which we exert very little effort to 

optimize the speed of our solution. 
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6.2.2 Flow of information 

It is worthwhile to observe that, generally speaking, flow of information in our abstract 

analysis will follow the flow of the (concrete) program. 

The reason for this should become clear upon examining the graph on constraint vari­

ables which is induced by the partial order between them imposed by constraint relations. 

Because the relations are induced by shared past computation history, we have a (;;;;; b if 

constraint variable a has a subset of the past computation history of variable b. This fre­

quently means that b is "from the future", and has since acquired additional computation 

history (e.g. through unification of conditional branches.) 

Similarly, in evaluated constraints in which one of the constraint values is not a base 

type or variable, but a constraint operator, the pattern is typically X result (;;;;; J(x1 , ... , Xn) for 

some variables x 1 , ... , Xn. This type of operator effectively behaves as the direct analogue 

of a concrete function (indeed, it often is a lifted function) and does not pass information 

into its arguments X1, ... , Xn but only its result X result· 

Backward-propagating constraints 

The exceptions to this rule of forward propagation are interesting enough to warrant men­

tion. The first example is a subset of lifted library functions whose constraints take the 

form 

Xresuit (;;;;; LiftFunction(FUNCTION, jname)(x1, ... , Xn) 

Because these functions type-check their arguments before proceeding, our Function Prop­

erty Table reflects this fact, and the LiftFunction call generates a series of constraints 

xi (;;;;; 1i which correspond to restrictions imposed on the range of inputs to fname as a 

result of type-checking. Nevertheless, this backwards propagation is highly limited as the 

1i are always constants, and does not constitute a series counterexample to this trend .. 

A slightly more convincing example is used in ExprseqLength in handling 

LiftFunction(EXPSEQ). As was mentioned in Chapter 5, this operator acts like a sum 

on JI(N). We therefore have a special case that recognizes the pattern 

Xresuit = LiftFunction(EXPSEQ)(xl, ... , Xn) 

If, during the solution phase, the approximation A[xresuit] is known to be finite, we actually 
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do interval subtraction, computing for each i the quantity 

i-1 N 

ri=Xi- 2.:::- L 
j=l j=i+l 

where the addition and subtraction here are interval addition and subtraction, that is: 

[a .. bJ- [c .. dJ = [max( a-d, O) .. max(b- c, O)J 

This extra step will never help in the refinement of the result X result, but may improve the 

precision of the xis· 

For an exposition on a type of this problem, restricted to the two-variable case, see the 

thesis of Antoine Mine [21] . 

6.2.3 Termination conditions 

The issue of ensuring termination is one that cannot be avoided. By our previous arguments 

about the analysis mirroring control flow, it should be apparent that because the only Maple 

constructs that allow for the repeated visitation of a single program point are recursive calls 

and loops. There are therefore our main concerns as far as termination is concerned. 

In a procedure with no loops or recursive calls, we can generally say that all the con­

straints point in the same direction: the constraint graph is a directed acyclic graph, can 

therefore never loop, so termination is guaranteed because the code is finite. 

6.2.4 Loops 

The proper handling of program loops is a major component of our analysis. We have 

two distinct strategies for dealing with loops. Both rely on the our ability to recognize 

constraint variables used in a loop context using the loop constraint variables described in 

Section 6.1.3 and generated by the use of Reaching Contexts. 

As described earlier, in all value-based analyses, for every variable v transformed by a 

loop I! we have introduced into the language of constraints the four quantities 

Looplni t( v, 1!), LoopFinal( v, 1!), LoopSteplni t( v, £), and LoopStepFinal( v, I!) in or­

der to partition the constraint graph of the program to prevent cycles. 
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However, this gives us a convenient means of expressing the problem as a recurrence 

relation. The constraint systems will induce a symbolic dependency of the final state of a 

loop iteration upon the initial state of the iteration. In other words, for a loop .€ with loop 

variables v1 , ... , Vn we have the following: 

LoopStepFinal(.€, v1 ) C:: F1 (LoopStepinit(.€, v1 ), ... , LoopStepinit(.€, vn)) 

LoopStepFinal(R.,vn) C:: Fn(LoopSteplnit(.€,v1), ... ,LoopSteplnit(.€,vn)) 

or, in matrix form 

LoopStepFinal(.€, v) [;;;; F(LoopSteplnit(.€, v)) 

Since LoopStepinit(.€, v) = Looplnit(.€, v) at the beginning, we can therefore simulate 

the effect of the loop simply by computing the following, where n is the number of loop 

steps: 

LoopStepFinal(.€, v) [;;;; Fn(Looplnit(.€, v)) 

We have two approaches for performing this computation: a partitioned iteration approach 

and a recurrence relation approach. 

Partitioned iteration approach 

The most obvious, most readily used, and most general solution is simply to simulate the 

execution of the loop. Using the loop variables introduced in Section 6.1.3, we construct a 

mini-procedure consisting only of the constraint variables that are dependent on the loop. 

We have some kind of estimate from LoopSteps on the number of steps a given loop 

.e will take; this may well be [O .. oo), which is no great loss. As our goal we simply it­

erate X, F(X), F 2(X), ... repeatedly until we have hit a fixedpoint or taken more than 

max(LSteps(.€))) steps. 

We are guaranteed to converge provided we employ widening operators (see 3.6.1) in 

the case of analyses on infinite lattices; fortunately, we indeed use widening operators in 

our analyses for ExprseqLength and NumberOfOperands, both infinite lattices. 

The particular operator chosen is a variant, adapted for JI(N) of the operator \7 K de­

scribed in [22] (p. 226-227). Essentially, the principle is that in cases of uncontrolled 
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growth, the upper bound V K is widened to the nearest element in a finite set K of integers; 

if all elements of K have been exceeded, oo is returned. The finiteness of K ensures no 

infinite chains are possible. 

We do not currently employ narrowing operators to refine our widened results, though 

this would not be difficult to implement. 

We return the result to the calling procedure, substitute the result for our symbolic quan­

tities Loopini t,LoopFinal,LoopStepini t,LoopStepFinal into our solution, and we are 

done. 

6.2.5 Recurrence relation approach 

An alternate approach investigated and implemented was that of treating the loop as a 

recurrence equation. This approach has great utility, chiefly because it does not involve a 

potentially expensive simulation of the loop execution within the abstract domain, as the 

partitioned iteration approach does. The chief objection to this approach is that number of 

cases it can handle are quite small. 

Generalized characteristic function 

We begin our discussion with a simple analysis to handle the case of whether the loop 

executes at all. 

Let £ be the label of some loop and v be a variable whose state is transformed by 

£. Suppose a is our best approximation of v just before the loop begins, and (3 is our 

approximation at the end of the loop body, after one or more passes through the loop. 

Suppose £ executes n times. We can formalize the value of v immediately after the loop 

block by the following: 

{ 
a ifn = 0 

XN(n,a,/3)= (3 ifn21 

Observe that XN is essentially a simple characteristic function. 

However, in static analysis we usually have only an approximation of the value of n. 

Let 'J be such an interval estimate. Then define the generalized characteristic function 
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XI(N) (J, a, f3) by 

XI(N)(J, a, f3) = { ; 

aU/3 

ifJ = [0 .. 0] 

ifJ ~ [l..oo] (i.e. J = [a .. b] and a~ 1) 

otherwise 

Notice that XI(N) has the useful property: 

(an/3) ~XI(N)(J,a,/3) ~ (aU/3) 

59 

The name is motivated by the fact that this is the best-possible generalization of our original 

XN to the interval lattice I(N). 

Recurrence relations 

As above we have 

LoopStepFinal(f, v) ~ F(LoopStepinit(f, v)) 

This can be viewed as a recurrence relation, where LoopStepFinal(f, v) is the i + 1st 

value, LoopStepini t(f, v) the ith, and LoopStepini t(f, v) the initial condition. 

For certain values ofF, we can solve this recurrence explicitly. In particular, if we 

restrict ourselves to the case when F is diagonal, we need only worry about one loop 

variable vi at a time. 

We have compiled a rather ad hoc set of patterns for diagonal functions F which we 

can handle. We will use one, from ExprseqLength, as an illustrative example: 

LoopStepFinal(f, vi) ~ LiftFunction(EXPSEQ)(Loopinit(f, vi), c) 

for some constant c. As was mentioned in Chapter 5, this lifted function acts an addition 

operator, so if we knew n we could express a solution simply as 

LoopStepFinal(f, vi)= Loopinit(f, vi)+ n · c 

where + is interval addition and · represents interval scalar multiplication. 
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Of course, in general we only ever have an interval bound LSteps ( £) on n. In this case, 

we can express the explicit solution to the recurrence as 

LoopStepFinal(£, vi)= Loopinit(£, vi)+ LSteps(£) * c 

where all the quantities on the right-hand side have been approximated, and * is interval 

multiplication (as distinct from interval scalar multiplication.). 

In general, when we can solve the recurrence we will obtain an equation 

LoopStepFinal(£, vi) = d which, for convenience, assumes the loop has executed at least 

once. We can then solve LoopFinal(£, vi) using XI(N) as defined earlier, by assigning 

LoopFinal(£, vi)= XI(N)(LSteps(£), Loopinit(£, vi), d) 

This approach conveniently skips the simulation of the loop, and furthermore avoids 

any imprecision enforced by the use of widening operators. Nevertheless it is very difficult 

to anticipate the types of recurrences that actually come up in practice, many of whose 

transfer functions are lifted library functions about which we cannot easily reason. The 

recurrence relation approach is highly worthwhile when a solution is possible. 

6.2.6 Function application 

Function applications pose several problems for our analysis: in understanding what in­

formation is being passed in to the function application, making as precise as possible the 

information that is being passed out, and in handling termination issues. 

Digesting function arguments 

The most immediate problem is finding out how many arguments are being supplied to the 

function and what program values they correspond to. This problem probably does not 

occur to one unfamiliar with Maple or other languages (this includes Perl) that support the 

equivalent of expression sequences. 

If we encounter f( a, b) we must first, before anything else, establish whether a and b 

are expression sequences before concluding f is being called with two arguments. Further­

more, even knowing that f is called with two arguments does not uniquely identify a and 
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b as the arguments: there are the two spurious cases in which one of the two variables has 

expseq length of2 and the other equal to NULL (the empty expression sequence). 
One of our analyses, ExprseqLength, is designed to accomplish this task; this is not 

accidental. Nevertheless, even with ExprseqLength there will be many cases in which 

we cannot uniquely match values in the function application with procedure parameters, 

because not enough is known about the arguments provided or the number of parameters f 

will accept. 

Currently, we only handle procedure arguments when we can exactly match them to 

parameters. This could be generalized to cases where there are a small number of possible 

matchings (such the example above with f, a, and b). 

Handling built-in functions and special names 

As discussed in Chapter 2, many procedures in Maple are not writtenin the Maple language, 

but are built into the Maple kernel and usable transparently by programs. 

These procedures are entirely outside our reach for analysis, and because they make 

up much of the core functionality upon which many programs depend, we shall need our 

analyses to recognize and know something about them. 

To reconcile these problems, we have built a database of builtin functions and another 

for special names, which are symbols with special significance to the system (examples 

include true, false, and Pi.) 

In these databases, we have encoded by hand the results which our analyses should have 

found, had they been able to examine the procedures in question. The properties encoded 

in the table were gathered through a combination of reading the formal specification of the 

builtin procedure (from the online help system or [18]) and direct experimentation upon 

the builtin procedures within a session. 

Handling previously-analyzed procedures 

So far we have spoken purely of analyzing single procedures, and said little about function 

applications except for standard library functions. Yet it is frequently the case that we wish 

to analyze large libraries of heavily interdependent code as a whole. 
Moreover we would hope that if we have analyzed g and are now analyzing f which 

calls upon g, we should be able not only to benefit from our previous analysis but would 

hope to specialize it to the context in which g is used within f. 
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We have implemented two approaches to dealing with function calls to previously­

analyzed procedures. One is purely superficial. The other is more sophisticated but also 

more costly. 

Suppose in the context of executing f we encounter a function call tog, which has been 

analyzed before with constraint set C9 and solution S9 • (We also assume we can properly 

match the parameters of g!) Suppose the function call for g within f has n arguments, 

which in the language of the abstract domain are x 1 , ... , Xn· 

Superficial approach: Let p1 , ... , Pn be the constraint variables corresponding to the 

parameters of g in the abstract domain, and let r be the constraint variable corresponding 

to its return value in the abstract domain. The current estimates S9 (p1 ), ... , S9 (pn), S9 (r) 

were computed when g was previously analyzed. We generate some constraints from the 

knowledge of the parameters and return value of g: 

We augment our constraint system in f with r 1, and move on. We do not re-execute g or 

examine it further at all. 

Specialization approach: In the specialization approach, we make a temporary copy 

ofthe constraints and solution for (C9 , S9 ); call this copy (C~, S~). We define a constraint 

system which looks very much like the previous, but with all relations reversed: 

Here Sf is the current solution to the outer function f: since we are in the middle of solving 

it, there must at least be some solution for f in existence. 

We then solve C~ 1\ r 2 and assign the result to S~. We have created and solved a 

specialized version of g, which we incorporate into our constraint system for f in the 

same manner as before. This specialization is somewhat akin to partial evaluation within 

the constraint language. Recursive calls present no immediate problem: as with other 

procedures, we simply use the most recent complete solution. 

While the second approach clearly gives better results, there is an issue of where to 

stop. We have no immediate equivalent of dead-code elimination: if the list of dependent 
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procedures on f is large, this could be a costly or infinite computation. 

While this is probably best handled by a theoretically sound approach like narrowing 

and widening, in practice our implementation simply has a preset depth threshold (default 

value 1 ). After specializing every called procedure to a depth of d, we simply use the 

superficial results described earlier and return. With this threshold in place we need not 

worry about convergence, since the number of called procedures must be finite. 

6.3 Software specification 

We wish to design a piece of software which accepts as input a procedure p, constructs a 

property record for p, and saves the record for p to a property database from which it may 

later be retrieved without the need for recomputation. 

The property record for p is all the collected and inferred information we have about p, 

including its abstract syntax tree, any generated constraints, and any solved properties. 

6.3.1 Scope 

We have stated that we wish to analyze Maple procedures. We will attach one important 

proviso to this claim which slightly restricts the generality of our results. We will not 

handle or support the try I catch/finally constraint in Maple. 

Because the try/catch system can involve the immediate transportation from almost any 

program point to one of several "catching" clauses, supporting this construct would have 

serious consequences for our design. Furthermore we would be obligated to abandon our 

central assumption that the source code in its present format was expected not to throw an 

error. 

We do treat procedures with try/catch/finally structures in them, but entirely ignore the 

data outside the try block and issue a warning when first encountering such a procedure. 

6.3.2 Preprocessing 

Prior to any real work, we perform some preprocessing work to gather some basic data 

about the input. These steps include the following: 
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• A pass to determine whether loops have nontrivial conditions, or are pure for loops. 

• A pass to record whether each label is inside an "evalb context". This is a special 

context which Maple implicitly imposes when evaluating conditional expressions; 

see section 5.3 .1. 

• A pass to determine whether a the value at a given label is "concrete", i.e. whether 

it is completely independent of state and could be lifted wholesale out of the proce­

dure body and would resolve to the same expression. Integer and string literals and 

protected global symbols fit this description. 

6.3.3 Property dependencies 

There is a more-or-less natural order in which we must analyze the properties of interest, 

for value-based properties, we usually must analyze ExprseqLength, for without being 

having solved results about expression sequences, we cannot hope to attempt to analyze 

function applications. Thus SurfaceType requires ExprseqLength to be executed first. 
However, SurfaceType is also useful to ExprseqLength in certain contexts. Consider 

the following: 

r := A[x]; 

Suppose £ is the annotation corresponding to A. In general, since A may be a table or array, 

little can be said about ES(£). However, if it is known that STyp(£) ~ {STRING, LIST}, and 

that STyp(£) ~ {INTPOS}, then ES(£) ~ [1..1]. 
Thus we have a potential problem with cyclic dependencies. We resolve this in our soft­

ware design by forcing dependencies to be DAG-like, but allow for a special "composite 

constraints" phase after all quantities have been analyzed in the current pass. This "com­

posite constraints" phase is an extra traversal of the AST, in which any type of constraint 

may be freely used or generated. 
Any constraints generated in this phase are included among the generated constraints 

in the next iteration. 

6.3.4 Construction of property record 

The following is a brief outline of the steps needed to tum a procedure p into a property 

record. 
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1. Check to see if p is a built-in procedure or special procedure; these have results in 

a special lookup table since they either cannot be analyzed, or are not analyzed for 

efficiency reasons. 

2. Check the property database to determine if p has been examined before. If so, read 

any previously-analyzed property from the database. 

3. Construct the annotated tree AST(p) and perform all preprocessing upon it. 

4. Examine the dependency list for each of our analyzed properties, putting dependent 

analyses after their dependencies. 

5. Analyze each property in tum, in the following way: 

(a) For each property p, generate its constraint set. If we have any "composite 

constraints" from a previous iteration, we add them now. 

(b) Write the constraint set to the property record. 

(c) Solution step: 

• Solve the constraint system if this is the first iteration or if the constraint 

system has changed since the last iteration. 

• If we already have a past solution for p, set it as our current solution. Oth­

erwise, we set our solution to the most pessimistic possible (T for every 

quantity). 

• If we solve the system, we do so with the current solution as an initial 

condition. 

• Write the solution to the property record. 

6. Generate "composite constraints": these are a special class of opportunistic con­

straints whose triggering condition depends on the results of several different analy­

ses in a complex manner. We must therefore wait until all analyses have been com­

pleted before analyzing them. 

7. If no fixed point has been generated, we repeat step 6. 

8. If we have reached a fixed point, we return the current state ofthe property record as 

our solution. 
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Results 

After developing all this theoretical apparatus and design, we can now demonstrate some 

tangible examples of its and results on a nontrivial Maple programs. 

We will begin with illustrations of the results of our analyses on small comprehensible 

Maple programs; some of these examples were also used in [3). Following this will discuss 

two wide-scale deployments of our tool on libraries of Maple procedures. 

7.1 Examples 

The following three examples illustrate the use of our tool on small inputs which demon­

strate the idea behind their use, the interaction between properties in solving a procedure, 

and the suitability of this tool for static error detection. 

7 .1.1 Example 1: Primality tester 

It is helpful to begin with some concrete examples for which the analysis can be replicated 

by the reader. Consider the following Maple procedure: 

IsPrime := proc(n::integer) localS, result; 

S := numtheory:-factorset(n); 

if nops(S) > I then 

result (false, S); 

e Is e 

result true; 
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end if; 

return( result); 

end proc: 
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IsPrime is an combined primality tester and factorizer. It factors its input n, then returns a 

boolean result which indicates whether n is prime. If it is composite, the prime factors are 

also returned. 

This small example demonstrates the results of two of our analyses. For Exprse­

qLength , we are able to conclude, even in the absence of any special knowledge or analysis 

ofnumtheory:- factorset, that S must be an expression because it is used in a call 

to the kernel function nops ("number of operands"); we glean this information from our 

function database. 

Combined with the fact that true and false are known to be expressions, we can 

estimate the size of result as [2 .. 2] when the if-clause is satisfied and [1..1] otherwise. 

Upon unifying the two branches, our ExprseqLength estimate for result becomes [1..2). 

Our results can also be used for static inference of programming errors. We assume that 

the code, as written, reflects the programmers' intent. In the presence of a programming 

error which is captured by one of our properties, the resulting constraint system will have 

trivial solutions or no solutions at all. 

7.1.2 Example 2: GrowSeq 

For a more complex example, consider: 

GrowSeq := proc(u) local x, y, i; 

X := 2 ,3 ,4 ,5; 

y := 1; 

for in[1,2,3]do 

X := X , U; 

y := y + 1; 

end do; 

(x' y); 

end proc: 

This example illustrates two key points: our capacity to deal with loop semantics, and 

our ability to propagate information between properties. 
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Initially, ExprseqLength measures the initial size of x as [4 . .4], and attempts to solve 

the loop. However, it does not yet know how long the loop runs so it uses the extremely 

pessimistic estimate of [O .. ooJ steps. LoopSteps can measure recognize the size of the 

expression sequence inside the list [1,2,3]\ as [3 .. 3], but cannot propagate this information 

anywhere. 

Through the partition iteration approach, LoopSteps can see that the variable x is an 

expression sequence whose length is growing by 1 each step. Because of this initial pes­

simistic assessment of the number of loop steps, its first solution for the state of x at the 

end of the loop is [3 .. ooJ. ExprseqLength is not capable of doing anything withy because 

it only sees y as an expression. 

Next, SurfaceType is able to solve the loop for y as it sees y as INTPOS and knows that 

Maple's sum operator produces an INTPOS when given two INTPOS expressions as input. 

Therefore we know now that y is an INTPOS throughout the loop. 

Control passes to NumberOfOperands, which assigns the list [1,2,3]\ the measure 

([1..1}, [3 .. 3]). 

Next, our "composite constraint" pass propagates the information about the size of the 

list into LoopSteps: we now know the loop takes exactly [3 .. 3] steps. This information 

is passes to ExprseqLength in the second pass, and because SurfaceType inferred that y 

was always an INTPOS, ExprseqLength now knows its size is [1..1]. 

Eventually we exit with the estimate [8 .. 8] for the last expression in the procedure, 

having used five different analyses to obtain this result. 

7.1.3 Example 3: Error detection 

Our results can also be used for static inference of programming errors. We assume that 

the code, as written, reflects the programmers' intent. In the presence of a programming 

error which is captured by one of our properties, the resulting constraint system will have 

trivial solutions or no solutions at all. 

For an illustration of this, consider the following example. The procedure faulty is 

bound to fail, as the arguments to union must be sets or unassigned names, not integers. 

As Maple is untyped, this problem will not be caught until runtime. 
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looptest := proc( n :: posint ) :: integer; 
local s :: integer , i :: integer, T :: table, flag · · true; 
( s, i, flag):= ( 0, 1, false); 
T := table(); 
while i '2 < n do 

s := i + s; 
if flag then T[i] 
if type ( s, 'even' ) 
i := 1 + 

end do; 

s; end if; 
then flag :=true; break; end if; 

while type ( 1 , 'posint ' ) do 
if assigned(T[i]) then T[i] := T[i]- s; end if; 
if type( s, 'odd' ) then s := s- i'2 end if; 
i := i - 1 

end do; 
( s, T) 

end proc: 

Figure 7.1: Procedure looptest from test library 
faulty := proc(c) local d, S; 

d := 1; 

s := {3,4,5}; 

S union d; 

end proc: 

However, SurfaceType can detect this: the two earlier assignments impose the con­

straints STyp(X1 ) ~ {INTPOS} and STyp(X2 ) ~ {SET}, while union imposes on its 

arguments the constraints that X3 , X 4 ~ {SET} U Alias(Name). 
No assignments to d or S could have occurred in the interim, we also have the con­

straints X 1 = X 4 and X 2 = X3 • The resulting solution contains X 1 = 0, which demon­

strates that this code will always trigger an error. 

7.2 Results from testing 

We have completed two significant runs of our tools against collections of Maple proce­

dures, the results of which we present below. 

7.2.1 Example from compiler/partial evaluator test base 

We have run our tools against a private collection of Maple functions gathered from earlier 

projects (including [4]); this should provide us with a solid test-bed which catches comer 
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cases and tests the robustness of our design. 

We can analyze 294 of the 301 procedures in this test base. The remaining seven cannot 

presently be analyzed by our tool because of technical details involving the manner in 

which lexically-scoped variables are retained inside Maple archives; the details of this issue 

are unrelated to our analysis. 

Figure 7 .2.1 is an example of a function present in the test library; we present a brief 

description of how our tool regards it. 

This rather formidable procedure, while not doing anything particularly useful, is cer­

tainly complex. It contains two successive conditional loops which march in opposite di­

rections, and both of which populate the table T along the way. 

Here our analysis recognizes the fact that even though flag is written within the body 

of the first while loop, this write event cannot reach the if-condition on the preceding line 

because the write event is immediately followed by a break statement. We are also able 

to conclude that s is always an integer: though this is easy to see, given that all the write 

events to s are operations upon integer quantities. 

7 .2.2 Results from compiler/partial evaluator test base 

We will now discuss the overall results from the test run. Figure 7.2 summarizes key 

information about the test run. First, for some point a in the abstract domain (e.g. [1..1] E 

II(N), we ask the question for each test procedure p "how many times does a occur in our 

solution for p?". 

We compute this, and then express it as a a ratio over all constraint variables used in p. 

This gives a sense of how frequently this measured value occurs in p. Finally, we compute 

the average of all such estimates over all procedures p in our test base, giving us a sense 

both of what is in a "typical" procedure and how effective we are at measuring it. Expressed 

formally, 

The result is a rough guide to our precision. However, there is a significant degree of 

complexity in our chosen abstract domains. In the interests of simplifying some of this 

complexity and understanding how precise we are able to be, let us informally define a 

precision measure on the abstract domain which indicates how far we are from a concrete 

solution, independently of what the concrete solution actually is. 
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For the interval lattice [a .. b], we will define our precision measure to be 

if z = [a .. oo] for some a 

if z = [a .. b] for a, b E N 

if z = l_ 
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For the lattice of sets, our precision measure will simply be the cardinality of the set: 

p,(S) = lSI. Observe in both cases that p,(_i) = 0 and that p,(x) = 1 corresponds to 

an atom, which represents the most concrete solution possible. Quantities in the abstract 

domain whose p, values are equal have a comparable level of"concreteness," and following 

this principle we have used the p, results to group related terms in Figure 7 .2. In this figure 

we present the results from a traversal of the 294 procedures in this test base. We will 

proceed property by property: 

ExprseqLength 

Immediately we notice that on average we have p,(ES(L')) = 0 approximately 0.43% ofthe 

time. These correspond to cases where ES(L') = l_, which suggest either errors in the code 
. . 

or errors m our engme. 

Either could be the case. If it is the result of an error in our inferencer, it is likely the 

result of a poorly-specified opportunistic rule, or a poorly-formulated entry in the function 

database. 

We next observe that a huge proportion, an actual majority, of the values encountered 

tum out to be expressions. This represents what we can "prove" to be an expression; there 

may be other variables which tum out to be expressions but are currently more pessimisti­

cally classfied. 

Together with expressions, expression sequences oflengths 0, 2, and 3 represent 70.0% 

of all values, and since completely-determined values make up 70.82%, we know there 

cannot be many bigger exprseqs in the code. 

Next, notice that 28.2% of all values have infinite bounds. Ofthese 19.8% have [O .. oo) 

as their bound, which is T in our lattice. These are values upon which we have made no 

progress at all. On the other hand, this means we have shown something nontrivial for 

80.2% ofvalues. 
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ExprseqLength %match 
JL(ES( £)) = 0 0.43 
JL(ES(£)) = 1 70.82 
ES(£) = [0 .. 0] 1.190 
ES(£) = [1..1] 66.1 
ES(£) = [2 .. 2) 2.68 
ES(£) = [3 .. 3) 0.563 
JL(ES(£)) = 2 0.508 
ES(£) = [0 .. 1) 0.122 
ES(£) = [1..2) 0.374 
ES(£) = [2 .. 3) 0.016 
JL(ES(£)) = 3 0.0146 
JL(ES(£)) = 4 0 
JL(ES(£)) = oo 28.2 
ES(£) = [O .. oo) 19.76 
ES(£) = [l..oo) 7.06 
ES(£) = [2 .. oo) 0.92 
ES(£) = [3 .. oo) 0.39 

Surface Type %match 
JL(STyp(£)) = 0 7.27 
JL(STyp(£)) = 1 25.0 
STyp(£) = {INTPOS} 12.77 
STyp(£) ={STRING} 0.347 
STyp(£) = {INTNEG} 1.56 
STyp( £) = {NAME} 1.51 
JL(STyp(£)) = 2 0.72 
STyp(£) = Alias(Integer) 0.289 
JL(STyp(£)) = 3 0.248 
JL(STyp(£)) = 4 0.0400 
JL(STyp(£)) = 5 0.00 
JL(STyp(£)) = 6 3.43 
STyp(£) = Alias(Algebraic) 16.50 
STyp(£) = Alias(CompJex) 21.45 
STyp(£) = Alias(Expression) 21.45 
STyp(£) = Alias(AnyValue) 21.74 

LiteraiValue %match 
Nom Operands %match LVal(£) = (x, ?) 77.4 
NOps(£) = ([a .. b], ?) 34.80 JL(LVal(£)) = 0 0.00 
NOps(£) = [0 .. 0] 0 JL(LVal(£)) = 1 22.2 
NOps(£) = [1..1) 27.8 LVal(£) ={true} 2.02 
NOps(£) = [2 .. 2] 2.77 LVal(£) = {false} 0.05 
NOps(£) = [3 .. 3) 0.05 LVal(£)={-1} 1.667 
JL(NOps(£)) = 2 0 LVal(£) = {0} 6.23 
JL(NOps(£)) = 3 0 LVal(£) = 0} 0.01 
JL(NOps(£)) = 4 0 LVal(£) = {1} 3.96 
JL(NOps(£)) = oo 34.5 LVal(£) = {2} 0.553 
NOps(£) = [O .. oo) 32.08 LVal(£) = {3} 2.02 
NOps(£) = [l..oo) 0.89 LVal(£) = {4} 2.02 
NOps(£) = [2 .. oo) 0.91 JL(LVal(P)) = 2 0.34 
NOps(£) = [3 .. oo) 0.35 LVal(£) = {true, false} 0.31 

JL(LVal(£)) = 3 0.04 
Figure 7.2: Results using comptler/parttal evaluator test base 

Surface Type 

Our error-set is much larger here: 7.27%. This is perhaps the result of errors in the code or 

a large quantity of dead code; another explanation is an inferencer bug somewhere. 



7. Results 73 

We see that we can assign a unique surface type to 25% of values, and that positive 

integers represent over half of this total: integers are truly ubiquitous in Maple. 

Lastly, quite a number of matches come up for our type aliases Algebraic, Complex, 

etc. As we use these in the function database, it is likely this information is merely being 

propagated from there. 

NumOperands 

Here we see first that 34% of values are not provably expressions as far as the Nom­

Operands analysis is concerned; this accords well with the conclusion from Exprse­

qLength that 66% of values were expressions. 

Of the 66% that are expressions, approximately 32% have finite bounds, while the re­

maining do not. Our rate of returning T is higher than it was for ExprseqLength, but 

this could also reflect the more complex semantics ofNumberOfOperands. 

LiteralValue 

Lastly, we examine literal values. Unsurprisingly, 77.4% of values cannot be assigned 

a literal value; this is hardly shocking news since we are dealing with a very concrete 

property. 

Almost all the literal value sets that can we have encountered are singletons. This 

probably reflects an opportunistic constraint assigning a value to a literal in context, and 

that information propagating from there. 

We note that the literal values encountered are the integers -1,0,1 and "true" are partic­

ularly well-represented in the results; this is not especially surprising, especially given the 

widespread use in the Maple library of the sign and signum commands. 

7 .2.3 Results from Maple library test base 

The obvious candidate for a Maple library to use as a data mine for testing purposes is the 

Maple library itself. Figure 7.3 presents the results from a traversal of 116 procedures cho­

sen semi-randomly from the Maple 10 standard library. (We say "semi-randomly" because 

we required that the procedures chosen have certain upper bounds on size, complexity, and 

level of dependence on other procedures in order that we might analyze them). 
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ExprseqLength %match 
p(ES( f)) = 0 0.849 
p(ES( f)) = 1 63.78 Surface Type %match 
ES(f) = [0 .. 0} 3.75 p(STyp(f)) = 0 1.07 
ES(f) = [1..1] 57.5 p(STyp(f)) = 1 26.07 
ES(f) = [2 .. 2] 0.255 STyp(f) = {INTPOS} 10.9 
ES(f) = [3 .. 3] 1.64 STyp(f) ={STRING} 4.01 
p(ES( f)) = 2 0.511 STyp(f) = {INTNEG} 0.86 
ES(f) = [0 .. 1] 0.090 STyp(f) ={NAME} 0.01 
ES(f) = [1..2] 0.399 p(STyp(f)) = 2 0.12 
ES(f) = [2 .. 3] 0.000 STyp(f) = Alias(Integer) 0.289 
p(ES(f)) = 3 0 p(STyp(f)) = 3 0.00 
p(ES( f)) = 4 0 p(STyp(f)) = 6 1.218 
p(ES(f)) = oo 35.36 STyp(f) = Alias(CompJex) 1.2 
ES(f) = [O .. oo] 28.09 STyp( f) = Alias( Expression) 36.16 
ES(f) = [l..oo] 4.71 STyp(f) = Alias(AnyValue) 30.0 
ES( f) = [2 .. oo] 1.7 
ES(f) = [3 .. oo] 0.45 

NumOperands %match 
NOps(f) = ([a .. b], ?) 43.56 
p(NOps(f)) = 1 30.15 
NOps(f) = [0 .. 0] 0.503 
NOps(f) = [1..1] 28.4 
NOps(f) = [2 .. 2] 1.19 
NOps(f) = [3 .. 3] 0.00 
p(NOps(f)) = 2 0.12 
NOps(f) = [1..2] 0.12 
p(NOps(f)) = oo 26.18 
NOps(f) = [O .. oo] 26.18 

LiteralValue %match 
LVal(f) = (x, ?) 79.29 
p(LVal(f)) = 0 0.00 
p(LVal(f)) = 1 20.7 
LVal(f) = {true} 0.007 
LVal(f) = {false} 0.05 
LVal(f) = { -1} 0.983 
LVal(f) = {0} 6.23 
LVal(f) = {H 0.099 
LVal(f) = {1} 0.983 
p(LVal(f)) = 2 0 
p(LVal(f)) = 3 0.0431 

Figure 7.3: Results using Maple hbrary as a test base 
The presentation is identical to that for Figure 7 .2. We shall therefore not repeat our-

selves excessively and concentrate on the differences. 

ExprseqLength 

The results are in the same general bounds, but it is worth observing that the rate of en­

countering _l has doubled. It will require some investigation to determine whether this is a 

genuine result or an inferencer error. 
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Generally, the results are somewhat poorer: there are more quantities with JL(ES(C)) = 

oo, and fewer proven expressions. 

Surface Type 

The results are slightly weaker here as well, though the exceptionally high rate of returning 

_1_ exhibited in the previous analysis is fortunately not replicated. 

NumOperands 

Fully 44% of values cannot be proven to be expressions, and of those that can be shown to 

be expressions, many of them cannot be given a finite bound. 

LiteralValue 

The results here are essentially equivalent to those from the previous analysis, with integers, 

other numeric literals, and symbols making up the bulk of "literal quantities" we are able 

to discover. 

7 .2.4 Discussion 

The results above suggest future directions for this analyzer. A special focus on Surface­

Type would probably be fruitful, as it is clear that many of the constraints visible there are 

not being propagated forwards through chains of assignments and disseminated over other 

constraint variables. 

This suggests we have a phenomenon whereby there is a island of pure concrete knowl­

edge lost in a sea of approximation and uncertainty: the answer is to focus not on the depth 

of the quantities we wish to impose, but on their breadth. We should ensure there is nothing 

about which the system is largely ignorant. 

That said, there is a large body of code we will likely never be able to analyze effec­

tively: this includes such things as dynamic variable generators, and dynamically-generated 

procedures. One clearly beneficial addition would be a means of authoritatively knowing 

when a symbolic quantity was an assigned value and when it is not. 
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Conclusion 

We have demonstrated that static analysis and specifically abstract interpretation can be a 

highly informative tool for inferring static information about Maple code. Each of the chief 

value-based properties of interest have nontrivial amounts of inferred data for even small 

input procedures. 

Our tool is suitably generic, and can handle a wide class of Maple inputs while gener­

ating nontrivial results. Our efforts at avoidance of the "toy problem" syndrome have, on 

balance, succeeded: while the solver is extremely slow for large procedures, this is to prob­

ably be expected for this type of analysis, and the extreme genericity of our implementation 

means many efficiency improvements are possible. 

The approach of employing a small number of specialized analyses which compose 

well has proven to be a very successful strategy, as the example from 7 .1.2 illustrates. We 

have seen that the techniques of static inference through abstract interpretation permit us to 

reclaim some of the knowledge which in other programming languages we get for free. 

This tool could be combined with other tools with good results, like compilers, code 

optimizers, or partial evaluators. As discussed in the introduction, such tools could make 

use of the inferred static data in much the same way as they might make use of inferred 

types. Some errors can be caught; some dead code can be eliminated; some specializations 

or code transformations are enabled by the existence of such information. 

There are many possible directions for future work in this area. An obvious candidate is 

efficiency improvements to the constraint solver. The solver is currently extremely generic; 

while we do not want to specialize our constraint solution techniques, we can undoubtedly 

make the solution engine much, much faster and scaleable. 
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Another clear target for further improvement is the addition of more static properties; 

like the ones described here, these would have to be simple yet compose well with other 

existing properties. We might, for instance, have a "integer arithmetic" solver which mod­

els integer-valued variables with intervals. This would scale better than our LiteralValue 

analysis, and has the potential for sharing data usefully with the other interval-valued prop­

erties, like ExprseqLength and NumberOfOperands. 

Our ability to solve recurrence relations over lattices, even in restricted cases, offers 

up intriguing possibilities regarding the potential applicability of symbolic tools in abstract 

interpretation. We suspect that the class of solveable recurrences over our abstract domains 

can be extended considerably with some further work, and it is possible that this may 

permit us to recapture some precision that would otherwise be lost with a straightforward 

widening/narrowing approach. 

Finally, the rulesets for opportunistic constraint assignment could be vastly intended, 

permitting the refinement of existing analyses. The opportunistic rules used thus far are 

only a small selection of the data that could be drawn from the code. Furthermore, the 

current implementation significantly underutilizes the potential of the so-called "composite 

constraints", that is, opportunistic constraint assignment rules which depend on one or more 

existing analyses to be already present. 



Appendix A 

Inert Form Tags 

This is a list of all tag names which occur in Maple's inert form data structure, with a brief 
explanation of each. 

We have classified the tags into three groups. The first two groups correspond to state­
ments and expressions respectively. The third corresponds neither to procedures nor ex­
pressions, but merely data within the AST. 

A.l Inert Forms Corresponding to Statements 
Table A.1: Inert Form Tags Corresponding to Statements 

Inert Form Description Children in AST 
ASSIGN Assignment operator 2 
BREAK Break out of loop 0 

CONDPAIR If condition and associated branch 2 
ERROR Raise error 1 

FORFROM For-from loop 6 
FORIN For-in loop 4 

IF If statement Arbitrary 
NEXT Jump to next loop iteration 0 

STATSEQ Sequence of statements Arbitrary 
STOP Terminate session 0 
TRY Try/catch/finally block Arbitrary 

RETURN Quit procedure and return value 1 
READ Read data from external archive 1 
SAVE Save data to external archive 1 
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A.2 Inert Forms Corresponding to Values 
Table A.2: Inert Forms Corresponding to Values 

Inert Form Description 

AND Boolean conjunction (A) 
ASSIGNED NAME Assigned name 

ARRAY Rectangular array of data 
ARGS Expseq of dynamic arguments 

CACHE TAB Special memoization table 
CATENATE Concatenate two strings or names 
COMPLEX Complex number 
DCOLON Check type of expression 

EQUATION equation ( =) 
EXPSEQ expressiOn sequence 

EXACTS ERIES Mathematical series w/no order term 
FLOAT Floating-point number 

FUNCTION Function application 
HASHTAB Hash table 

INTPOS Nonnegative integer 
INTNEG Negative integer 

INEQUAT In equation (f) 
IMPLIES Boolean implication ( =?) 
LESSEQ Less than or equal to (:S) 

LESS THAN Less than ( <) 
LIST List of expressions 

LOCAL Local variable in module or procedure 
LOCALNAME Local value 

LEXICAL_LOCAL Local variable from higher lexical scope 
LEXICAL_pARAM Procedure parameter from higher lexical scope 

MATRIX Matrix data structure 
MEMBER Module member reference 
MODDEF Software module definition 
MODULE Software module 

NAME Variable name 

79 

Children in AST 

2 
2or3 
5 or6 

0 
3 
2 

I or 2 
2 
2 

Arbitrary 
Arbitrary 

2 
2 

Arbitrary 
0 
0 
2 
2 
2 
2 
1 
1 
2 
1 
1 

5 or 6 
2 
9 
3 

1 or 2 
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NARGS Number of dynamic procedure arguments 0 
NOT Boolean negation ( -,) 1 

NRESULTS Number of results expected from 0 
application of procedure 

OR Boolean disjunction (V) 2 
PARAM Procedure parameter 1 
POWER Exponent data structure 2 
PROC Procedure 9 or 10 
PROD Product data sructure Arbitrary 

PROCNAME Special name for procedure self-reference 0 
RANGE A range [a .. b] 2 

RATIONAL Fractional number 2 
SDPOLY Special data structure for sparse 7 

distributed multivariate polynomial 
SERIES A mathematical series approximation Arbitrary 

SET Set of expressions 1 
STRING String 0 

SUM Sum data structure Arbitrary 
TABLE Hash table 2 

TABLE REF Indexed expression 2 
UNEVAL Evaluation delay operator 1 

VECTOR_COLUMN Column vector 5 or6 
VECTOR Vector of unspecified orientation 5 or6 

VECTOR_ROW Row vector 5 or6 
XOR Boolean exclusive or ( EB) 2 

ZPPOLY Special polynomial structure for 7 
computations modulo p 

So as not to make the table excessively verbose, we no not list those tags which relate 
to the special parameter processing rules introduced in Maple 10. Because these features 
are so new, they are effectively never encountered in analysis of existing code. 

Nevertheless, for completeness' sake, the names of the omitted tags are: 
I NOPTIONS I NPARAMS I NREST I OPTIONS I PARAMS I REST I 

A.3 Additional Inert Form Tags 

There are a small number of remaining inert form tags. These tags can neither be regarded 
as statements or values, but serve as supplemental data to some other type of inert form. 
One demonstration of this is that fact that these additional tags occur within extremely spe­
cific contexts, such as an inert procedure, module, or hash table. They have no parallel by 
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themselves in the world of"live expressions". 

Table A.3: Unclassified Inert Form Tags 

Inert Form Description Context Appearing 
ATTRIBUTE Container for Maple attributes NAME, 

ASSIGNED NAME 
DESCRIPTIONSEQ Container for descriptive text MODULE, PROC 

EOP Parameter order evaluation data PROC 
EXPORTSEQ Names exported from a module MODULE 
GLOBALSEQ Global names used in MODULE, PROCS 

module or procedure body 
HASHPAIR Key/value pairs in hashtable HASHTAB 
LOCALSEQ Local variable names MODULE, PROC 

LEXICALPAIR A lexical binding MODULE, PROC 
LEXICALSEQ List of lexical bindings MODULE, PROC 
OPTIONSEQ List of options specified MODULE, PROC 
PARAMSEQ Procedure parameter names MODULE, PROC 

RETURN TYPE Return type for procedure PROC 



AppendixB 

Surface Type Aliases 

In the design of the system for opportunistic constraint generation (see Section 6.1 ), which 
relies on analysis of inert forms, it frequently became necessary to refer repeatedly to par­
ticular sets of inert tags which had similar semantics or characteristics. 

As these particular sets of tags were often large, it became convenient and ultimately 
necessary to invent a system of aliases to abbreviate them. The names chosen reflect the 
meaning attached to this class of inert forms in Maple; in many cases the name is identical 
in name and meaning to identical to one of Maple's built-in types (see Section 2.3). 

Table B. I catalogues the important aliases used in Section 6. They should not be re­
garded as "results" per se, but the fact that they were created out of necessity to capture the 
semantics shows they have some significance. 

Figure B. I illustrates the hierarchical relationship between several of the aliases. 

Expression 

ExprSize ne Boolean 

index~latwn 
'"11ti,/ mtLm /og;o./ 

. 1 
mteger 

Assignable 

1 
Name 

1 
symbol 

A 
global local 

rithmetic 

Figure B. I: Relationships between type aliases 
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Table B. I: Type Alias Names 

Alias Name Definition 
integer { INTPOS, INTNEG} 
rational {RATIONAL} U integer 

float {FLOAT, HFLOAT} 
Numeric float U rational 
Literal {COMPLEX, STRING} U Numeric 
relation {EQUATION,INEQUAT,LESSEQ,LESSTHAN} 
logical {IMPLIES,AND,NOT,OR,XOR} 
Boo/ {NAME} U relation U logical 

global {NAME,ASSIGNEDNAME} 
local {LOCALNAME,ASSIGNEDLOCALNAME} 

symbol local U global 
Name {TABLEREF} U symbol 

Assignable {FUNCTION} U Name 
Arithmetic {PROD, SUM, POWER} 
sequential {SET, LIST} 

lasLname_eval {PROC,MODULE,TABLE} 
WeirdAlgebraic {ZPPOLY,SDPOLY,EXACTSERIES,SERIES} 

Algebraic WeirdAlgebraic U Assignable U Arithmetic 
Vector {VECTOR,VECTOR_COLUMN,VECTORJROW} 
tabular {ARRAY, MATRIX, TABLE} U Vector 

indexable tabularU sequential U {STRING} 
ExprSizeOne {DCOLON, RANGE, MODDEF} U WeirdAlgebraic U indexab}e 

ULiteral U relation U JasLname_evaJ 
Expression {UNEVAL} U Boo} U ExprSizeOne U Assignable U Arithmetic 

EvalAwaySymbol {PROCNAME,MEMBER,PROCNAME,MEMBER, 
LOCAL, LEXICAL_LOCAL, PARAM, LEXICAL_PARAM} 

Pro cOps {ARGS,RESULTS,OPTIONS,PARAMS,REST} 
NumProcOps {NARGS,NRESULTS,NOPTIONS,NPARAMS,NREST} 

EvalAway EvalAwaySymbol U ProcOps U NumProcOps 
Any Value Expression U Eva/Away 
Statement {ASSIGN,BREAK,CONDPAIR,ERROR,FORFROM,FORIN, 

IF,NEXT,RETURN,READ,SAVE,STATSEQ,STOP,TRY} 



Appendix C 

Opportunistic constraint rules 

Here we list a few of the "opportunistic rules" for constraint generation while traversing 
the AST. As the system has hundreds of such rules, this listing should not be regarded as 
anywhere near complete. 

Example Rule Trigger Constraint Description 
Kight-hand side 

Simultaneous assign- must have SIZe 
x,y,z := e; ment to n variables ES(e) = [n .. n] n or assignment 

with n > 2 will fail. 

Occurrence of nth # ot arguments 
PARAM(7) 

procedure parameter 
ES(ARGS) ~ [n .. oo) must be 2:: n. 

Size ot liSt IS SIZe 

[ e ]; List construction NOps(r) = ([l..l),ES(e)) 
of underlying r := 
expseq. 

# or loop steps 

for x in L do 
Loop iteration over 

LSteps(£) ~ NOps(L) 
bounded by # of 

expressiOn operands of L. 

Conditional ex-
pressiOn must 

if c then If condition STyp( c) ~ Alias(Bool) have "boolean" 
surface type. 

x :=a; Assignment #W(x) = [1..1) x is written to 
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AppendixD 

Special Function Table 

Following is included the source code for our database ofbuilt-in functions. Though some 
the content is infrastructure for fetching and retrieving data, a typical entry looks something 
like the following: 

T["assigned"]:= {"ES" {"r" = 1 .. 1, 0 = 1 .. 1}, 
"ST" {" r" = {MIF (NAME)}} , 
"LV" { "r" = {_InerLNAME("true"), 

_InerLNAME(" false")}}, 
"Pure" false, "Builtin"= true }: 

The abbreviations ES, ST, PV indicate specific static properties (namely ExprseqLength, 
Surface Type, and LiteralValue ). These abbreviations appear in the entry in the form 
prop_name=S, where S is a set which contains information relevant to property prop _name. 

In the set S are additional equations, whose left-hand side consists of the string "r" or 
nonnegative integers. These refer to quantities in a function call: 

• "r" refers to the return value 

• 0 returns to the argument expseq as a whole 

• A positive integer n refers to the nth argument 

The right-hand side of this inner quantity refers to the value by which the function argument 
or return value should be constrained. 

Therefore, the first line {"ES" = {"r" = I.. I, 0 = I.. I} of our example states that 
when encountering the function "assigned", its return value and argument sequence should 
each be!;: [1..1] for expseq size. 

N.B. the name MIF ( foo) is an abbreviation for _Inert_foo, while TA (bar) refers 
to the "type alias" bar (see Appendix B). 

85 



D. Special Function Table 

FunctionData := module() export Get, Set, Select, Defined, Data; 
local 

T, classtab, defaultval, 
GenST, EStoST, 
u, v; 

Data:= proc(fname::string) locales, st, na, lv, i, 
L_st, L_na, L_lv; 

es table( Get( fname, "ES" ) ); 

s t tab 1 e ( Get ( fname, "ST" ) ) ; 
L_st := select( type, DataMap:-Keys(st), 'posint' ); 

na : = Get ( fname, 'NA" ) ; 
na := table( 'if'(na=FAIL,[] ,na) ); 
Lna := select ( type, DataMap:-Keys(na), 'posint' ) ; 

lv := Get( fname, ''LV' ) ; 
lv := table ( 'if' (lv=FAIL, [] , lv) ) ; 
L_lv := select( type, DataMap:-Keys(lv), 'posint' ); 

table([ 
"AT'= Annotate( eval( convert(fname, 'symbol'))), 

"S__ES" = table ([ 
ProcFV (0) 'CL__ExprSize' ( es ["r "]), 
ProciV(_InerLARGS(O) ,0) = 'CL_ExprSize' ( es [0]) 

]), 

"S_NA" = tab 1 e ( [ 
ProcFV(O)= 'CL_ExprNopsSize ' ( 

es["r"], 
'if' (assigned ( na [" r "]), na[" r "],NUlL) 

) ' 
ProciV (' _lnerLARGS ' ( 0) , 0) = 

CLExprNopsSize( es [ 0]), 
seq( 

ProciV ( ' _InerLP ARAM ' ( i , 0) , 0) 
= CL_ExprNopsSize( es [ i ] ) , 

i = L_na 
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]) 

) 
]), 

"S_ST" = table ([ 

]), 

ProcFV ( 0) = 'CL_SurfaceType' ( s t [" r "]), 
ProciV( '_lnerLARGS '(0) ,0)= 'CL_SurfaceType' ( st [0]), 
seq( 

ProciV ( ' __lnert_p ARAM' ( i , 0) , 0) 
=' CL_SurfaceType' ( s t [ i ] ) , 

i = L_st 
) 

"S_L V" = tab I e ( [ 

]) 

ProcFV(O) = 'CL_LiteralValue '( 
st["r"], 
'if' (assigned (lv [" r "]), lv [" r "] ,NliL) 

), 
ProciV(_InerLARGS(O) ,0) = 

'CL_LiteralValue ' ( s t [ 0]), 
seq ( 

) 

ProciV ( __Inert_p ARAM ( i , 0) , 0) = 
'CL_LiteralValue ' ( s t [ i]), 

i = L_lv 

end proc: 

# Tell whether a given name exists in our 'database' 
Defined:= proc(fname::string) assigned(T[fname]) end proc: 

Get := proc (fname:: string, quan:: string) local v, cis, fdata; 
if not assigned (T[ fname]) then return (FAIL); end if; 
fdata := table( T[fname] ); 

v := ADataMap:-Lookup( quan, T[fname] ); 
if v <>FAIL then return(v); end if; 

cis := ADataMap:-Lookup( "class", T[fname] ); 
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if cis<> FAIL then 

else 

v : = ADataMap:-Lookup ( quan , class tab [ cIs ) ) ; 
if v <>FAIL then return(v); end if; 

ADataMap:-Lookup( quan, defaultval ); 
end if; 

end proc: 

Set:= proc(fname::string, quan::string, data) 
T[fname) := ADataMap:-Insert( quan, data, T[fname] ); 

end proc: 

Select := proc ( quan:: string , val) local p; 
p := (fname)->'if ' ( val=Get(fname,quan),fname,NUIL): 
map( p, DataMap:-Keys(T) ); 

end proc: 

EStoST proc( es:: Or( range, identical (FAIL)), stl) local st; 
st 'if'( nargs > 1, stl, TA("Expression") ); 
if es=O .. O or lhs(es) >= 2 then {MIF(EXPSEQ)} 
elif es=l..l then st 
else {MIF(EXPSEQ)} union st; end if; 

end proc: 

GenST := proc(fname:: string) 
local es, esr, esO, st, str, stO; 

es := Get( fname, "ES" ) ; 
esr := ADataMap:-Lookup( "r", es ) ; 
if esr='FAIL' then esr := O .. infinity; end if; 
if esr=O .. O then 

Set(fname, ''LV'', {"r" = { _InerLEXPSEQ()}} ); 
end if; 
esO := ADataMap:-Lookup( 0, es ); 
if esO='FAIL' then esO O .. infinity; end if; 

s t := Get( fname, "ST' ) ; 
str := ADataMap:-Lookup( "r", st ); 
str := 'if'( str <>FAIL, EStoST(esr, str), EStoST(esr) ); 
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stO := ADataMap:-Lookup( 1, st ) ; 
stO := 'if'( stO <>FAIL, EStoST(esO, stO), EStoST(esO) ); 

st := ADataMap:-Insert( 0, stO, st); 
st := ADataMap:- Insert ("r", str, st); 

Set(fname, "ST", st ); 
end proc: 

class tab 
T 

table([]); 
table([]); 

class tab ["Hyperbolic Trig"] :={"ES" = {"r" = 1. .1, 0 = 1..1}, 
"ST' = {"r" = TA(" Algebraic"), 

1 = TA(" Algebraic")}, 
"Pure" = true, "Builtin" =false}: 

class tab ["Trigonometric"] {"ES" = {"r" = 1 .. 1, 0 = 1 .. 1}, 
"ST" = {"r" = TA(" Algebraic"), 

1 = TA(" Algebraic")}, 
"Pure" = true, "Builtin" =false}: 

classtab ["Elementary"] {"ES" = {"r" = 1. .1, 0 = 1. .1}, 
"ST" = {"r" = TA(" Algebraic"), 

1 = TA(" Algebraic")}, 
"Pure" = true, "Builtin" =false}: 

classtab ["relation"] {"ES" = {"r" = 1. .1, 0 = 2 .. 2}, 
"Pure" = true, "Builtin" =true}: 

classtab ["logical"] {"Pure" = true, "Builtin" =true}: 

# this is the default when something is entirely unspecified. 
defaultval := { "Pure" = false , 

T["$"] 

"IO" = false, 
"Builtin" = false, 
"ES" = {"r" = 0 .. infinity, 0 = 0 .. infinity}, 
"Sr' = {"r" = TA("AnyValue") } } : 

{ "ES" = {"r"=O .. infinity, 0=1..2}, 
"ST" = {"r"=TA(" AnyVa1ue"), 

1 = {MIF (RA1'03)} , 
2 = TA(" Assignable") union 

TA(" integer") union 
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T["~"] 

T["* * "] 

T["+"] 

T[" .. "] 

T[" <"] 

T[" <="] 

T["<>"] 

T["="] 

T[">"] 

T[">="] 

T["?()"] 

T["?[]"] 

T[" abs "] 

T["add"] 

{MIF (FWA'IIO'-D} } , 
"Pure" = false, "Builtin" = true } : 

{ "ES" = {"r"=l.. infinity, 0 = 2 .. 2}, 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r" = 1. .1 , 0 = 0 .. infinity}, 
"Pure" = true, "Builtin" = true } : 

- { ''ES" = {"r" = 1 .. infinity, 0 = 2 .. 2}, 
"Pure" = true, "Builtin" = true } : 

- { "ES" = {"r" = 1. .1, 0 = 0 .. infinity}, 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r"=l..1, 0=2 .. 2}, 
"ST' = {"r"={MIF(RAN:JE)}}, 
"Pure" = true, "Builtin" = true }: 

{ "ST' = {"r"={MIF(LESSIHAN)}}, 
"class" = "relation" }: 

{ "ST' = {"r"={MIF(LESSEQ)}}, 
"class"= "relation"}: 

{ "ST' = {"r"={MIF(JNEQUAT)}}, 
"class" ="relation" }: 

{ "ST' = {"r"={MIF(FWATION)}}, 
"class" = "relation" }: 

{ "ST' = {"r"={MIF(LESSIHAN)}} , 
"class"= "relation"}: 

{ "ST' = {"r"={MIF(LESSEQ)}} , 
"class" = "relation" } : 

- { "ES" = {"r"=O .. infinity, 0=1 .. infinity}, 
"Pure" = true, "Builtin" = 

{ "ES" = {"r"=O .. infinity, 0=2 .. 3}' 
"Pure" = true, "Builtin" = true }: 

- { "ES" = {"r" = 1.. 1 , 0= 1. .2}, 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r" = 0 .. infinity, 0 = 2 .. 2}, 
"ST" = {"r" = TA(" Algebraic"), 

2 = {MIF(FWATION), 

true 
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T["and"] 

T[" arcsin"] 
T[" arccos"] 
T[" arctan"] 
T[" arc sec"] 
T[" arccsc "] 
T[" arc cot"] 
T[" arc sinh"] 
T(" arccosh "] 
T[" arctanh "] 
T[" arcsech "] 
T[" arccsch "] 
T[" arccoth "] 
T[" arctan"] 

MIF(RJNCIION)}} } : 

- { "ES" = {"r" = 1..1, 0 = 2 .. 2}, 
"ST'' = {"r" = TA(" Assignable") 

union TA("Boolean "), 
1 = TA(" Assignable") 

union TA("Boolean "), 
2 = TA(" Assignable") 

"class" = 
union TA("Boolean ")} , 

"logical" } : 
- { "class" = "Trigonometric" } : 
- { "class" "Trigonometric" }: 
- { "class" "Trigonometric" } : 
- { "class" "Trigonometric" }: 
- { "class" "Trigonometric" }: 
- { "class" "Trigonometric" }: 

- { "class"= "Trigonometric" }: 
{ "class" = "Trigonometric" } : 

- { "class" ="Trigonometric" }: 
{ "class" = "Trigonometric" } : 

- { "class" ="Trigonometric" }: 
- { "class" = "Trigonometric" } : 

{ "ES" {"r"= 1 .. 1, 0= 1 .. 2}, 
"ST" = {"r" = TA(" Algebraic"), 

1 = TA(" Algebraic"), 
1 = TA(" Algebraic")}, 

"Pure" = true, "Builtin" = false } : 

# should handle in RD 
T["array"] := { "ES" = {"r" = 1..1, 0 =!..infinity}, 

"ST" = {"r" = {MIF(TABIE)}}, # truefalse 
"Pure" = true, "Builtin" = true } : 

T["Array"] - { "ES" = {"r" = 1..1, 0 =!..infinity}, 
"ST" = {"r" = {MIF(ARRAY)}}, # truefalse 
"Pure" = true, "Builtin" = true } : 

T["assign"] - { "ES" = {"r" = 0 .. 0, 0 = O .. infinity}, 
"Pure" = false, "Builtin"= true }: 

T[" assigned"]:= {"ES" 
"ST" 

{"r" = 1. .1, 0 = 1. .1}, 
{"r" = {MIF(N\ME)}}, 
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T[ "ASSERT'] 

T[" cat"] 

''LV' = { "r" = { _InerLNAME(" true"), 
_InerLNAME(" false")}}, 

"Pure" = false, "Builtin" = true } : 

{ "ES" = {"r" = 0 .. 0, 0 = 0 .. infinity}, 
"Pure" = true, "Builtin"= true }: 

{ "ES" = {"r" = 1..1, 0 = 0 .. infinity}, 
"ST' = {"r" = TA("name/ string") 

union {MIF(CA1ENA1E)}}}: 

# ST jmp (acts like identity on ints) 
T["ceil"] { "ES" = {"r" = 1..1, 0 = 1..2}, 
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"ST' = {"r" = {MIF(RJNCIICN)} union TA("integer")}, 
"Pure" = true, "Builtin" = true } : 

T[" coeff"] := { ''ES" = {"r" = 1 .. 1 , 0 = 2 .. 3}, 
"Pure" = true, "Builtin" = true }: 

T["convert"] := { "ES" = {"r" = 1..1, 0 = 2 .. infinity}, 
"Pure" = true, "Builtin" = true } : 

T[" cos"] - { "class" = "Trigonometric" }: 
T[" cosh"] - { "class" = "Hyperbolic Trig" } : 
T[" cot"] - { "class" = "Trigonometric" } : 
T[" coth "] - { "class" = "Hyperbolic Trig" } : 
T[" esc"] - { "class" = "Trigonometric" } : 
T[" csch "] - { "class" = "Hyperbolic Trig" }: 

T[" currentdir"] := { 
"ES" = { "r" = 1 .. 1 , 0 = 0 .. 1 } , 
"ST" = {"r" = {MIF(SIRING)}, 

1 = TA("name/ string")}, 
"IO" = true } : 

# STjmp (diff of rational) 
T["ldegree"] := { "ES" = {"r" = 1 .. 1, 0 = 1 .. 2}, 

"ST' = {"r" = {MIF(N\ME) ,MIF(PROD), 
MIF(INTPOS) ,MIF(ININEG)} , 

1 = TA("Expression "), 
1 = TA("Expression")}, 
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"Pure" = true } : 
T["degree"] { ''ES" = {"r" = 1 .. 1, 0 = 1 .. 2}, 

"ST'' = {"r" = {MIF(N'VvlE) ,MIF(IROD), 
MIF(INTPOS) ,MIF(lNINEG)}, 

1 = TA("Expression "), 
1 = TA(" Expression")}, 

"Pure" = true } : 
T["diff"] { "ES" = {"r" = 1..1, 0 = 2 .. infinity}, 

"Pure" = true } : 

T["entries"] { "ES" = {"r" = O .. infinity, 0 = 1..1}, 
"ST" = {"r" = {MIF(LIST)}, 

1 = {MIF(TABIE)} 
union TA("Name")}, 

"Pure" = true, "Builtin" = true }: 

T[" eval "] { "ES" = {"r" = 1. .1 , 0 = 1. .2}, 
"Pure" = true, "Builtin" = true }: 

T["evalb"] { ''ES" = {"r" = 1. .1, 0 = 1..1}, 
"ST" = { 1 = TA("Boolean ") 

union TA(" Assignable")} , 
"Pure" = true, "Builtin" = true } : 

T[" evalf"] { "ES" = {"r" = 1. .1, 0 = I. .2}, 

T[" exp "] 

"ST" = {"r" = {MIF(Cllv1flEX)} 
union TA(" Assignable") 

union TA("float"), 
2 = {MIF(INTPOS)}}, 

"Pure" = true, "Builtin"= true }: 
:= {"class"= "Elementary"}: 

T["exports"]:= { "ES" = {"r" = 0 .. infinity, 0 = 1..2}, 
"ST" = {"r" = TA("Name"), 

1 = TA("Name") 
union {MIF(MDJIE)}, 

2 = TA(" global")}, 
'LV' = { 2 = {_lnertNAME("instance"), 

_lnerLNAME(" typed")} } , 
"Pure" = true, "Builtin"= true }: 
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T[" factorial"] := { "ES" = {"r" = 1. .1, 0 = 1..1}, 
"Pure" = true, "Builtin" = true } : 

T["fclose"] := { "ES" = {"r" = 0 .. 0, 0 = 1 .. infinity}, 
"IO" = true } : 

T[" floor"] := { "ES" = {"r" = 1 .. I , 0 = 1 .. 2}, 
"ST" = { "r" = {MIF (RJNCIION)} 

union TA("integer")}, 
"Pure" = true, "Builtin" = true } : 

T["fopen"] := { "ES" = {"r" = 1. .1, 0 = 2 .. 3}, 
"ST" = {"r" = {MIF(INTPOS)}, 

I = TA("name/ string"), 
2 = {MIF (Nt\ME)} , 
3 = {MIF(Nt\ME)}}, 

"IO" = true } : 

T[" fprintf"] := { "ES" = {"r" = 1. .1, 0 = 2 .. infinity}, 
"ST" = {"r" = {MIF(INTPOS)}, 

2 = TA("name/ string") } , 
"IO" = true } : 

T["Fromlnert"] := { "ES" = {"r" = 0 .. infinity, 0 = 1 . . 1}, 
"ST" = {"r" = TA(" AnyValue"), 

1 = {MIF(RJNCI10N)} , 
2 = {MIF(F(UATION)} , 
3 = {MIF(F(UATION)}}, 

"Pure" = true, "Builtin" = true } : 

T[" getenv"] := { "ES" = {"r" = I .. 1 , 0 = 1 . . 1}, 
"ST" = {"r" = {MIF(SlRING)}, 

T["has "] 

1 = TA("name/ string")}, 
"IO" = true } : 

:= { "ES" = {"r" = 1 . . 1 , 0 = 2 .. 2} , 
"ST" = {"r" = { _InerLNAME}}, # truefalse 
'LV' = {"r" = { _InerLNAME(" true"), 

_Inert...NAME(" false")}}, 
"Pure" = true, "Builtin" = true } : 
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T[" if"] := { "ES" = {"r" = 0 .. infinity, 0 = 3 .. 3}, 
"ST" = { 1 = { J:nert..NAME}} , 
''LV' = { 1 = { J:nert..NAME(" true"), 

J:nert..NAME(" false"), 
J:nert..NAME("FAIL")}}, 

"Pure" = true, "Builtin" = true } : 
T["igcd"] := { "ES" = {"r" = 1..1, 0 = 0 .. infinity}, 

"ST'' = {"r" = {MIF(FUNCITON)} 
union TA("integer")}, 

"Pure" = true, "Builtin" = true } : 
T["ilog"] { "ES"= {"r"= 1..1, 0= 1..1}, 

"ST'' = { "r" = {MIF (FUNCTION)} 
union TA("integer")}, 

"Pure" = true, "Builtin" = true } : 
T[" ilog2 "] { "ES" = {"r" = 1. .1 , 0 = 1. .1}, 

"ST" = { "r" = {MIF (FUNCTION)} 
union TA("integer")}, 

"Pure" = true, "Builtin" = true } : 
T["ilcm "] { "ES" = {"r" = 1. .1, 0 = 0 .. infinity}, 

"ST" = {" r" = {MIF (RJNCIION)} 
union TA("integer")}, 

"Pure" = true, "Builtin" = true } : 

T["iolib"] { "ES" = {"r" = 0 .. infinity, 0 = 1.. infinity}, 
"ST" = { 1 = {MIF(INTPOS)}}, . 
"IO" = true, "Pure" = false, "Builtin" = true } : 

T["implies"]:= { "ES" = {"r" = 1..1, 0 = 2 .. 2}, 

T[" isqrt"] 

"ST" = {"r" = TA(" Assignable") 
union TA("Boolean "), 

1 = TA(" Assignable") 
union TA("Boolean "), 

2 = TA(" Assignable") 
union TA("Boolean ")} , 

"class" = "logical" }: 

{ "ES" = {"r" = 1 .. 1 , 0 = 1 .. 1} , 
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"ST" = {"r" = {MIF(FUNCITON)} union TA(" integer"), 
1 = {MIF(N\ME)} union TA("integer")}, 

"Pure" = true, "Builtin"= true }: 
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T["Im"] := { "ES" = {"r" = I .. 1 , 0 = I .. I} , 
"Pure" = true, "Builtin" = true } : 

T[" indets "] { "ES" = {"r" = 1. .I , 0 = I. .2}, 
"ST" = {"r" = {MIF(SET)}}, 
"Pure" = true, "Builtin" = true } : 

T["indices"] { "ES" = {"r" = O .. infinity, 0 = I.. I}, 
"ST' = {"r" = {MIF(LIST)}, 

I = {MIF(TABLE)} union TA("Name")}, 
"Pure" = true, "Builtin" = true } : 

T[" iquo "] { "ES" = {"r" = 1.. I , 0 = 2 .. 3} , 
"ST" = {"r" = {MIF(RJNCIION)} union TA("integer"), 

1 = TA(" Assignable") union TA(" integer"), 
2 = TA(" Assignable") union TA("integer"), 
3 = TA("Name")} , 

"Pure" = false, "Builtin" = true } : 
T["irem"] { "ES" = {"r" = 1..1, 0 = 2 .. 3}, 

T[" int"] 

T[" intersect"] 

"ST" = {"r" = {MIF(RJNCIION)} union TA(''integer"), 
1 = TA(" Assignable") union TA(" integer"), 
2 = TA(" Assignable") union TA("integer"), 
3 = TA("Name")} , 

"Pure" = false, "Builtin" = true } : 

{ ''ES" = {"r" = 0 .. infinity, 0 = 2 .. infinity}, 
"ST" = { 2 = {MIF(EQUATION)} union TA("Name")} , 
"Pure" = false, "Builtin" = false } : 

{ "ES" = {"r" = I. .1, 0 = 1.. infinity}, 
"ST' = {"r" = {MIF(SET)} 

union TA(" Assignable") } , 
"Pure" = true } : 

T["isprime"]:= { "ES" = {"r" = 1 .. I, 0 = l .. I}, 
"ST" = {"r" = {MIF(N\ME) ,MIF(RJNCTION)}, 

1 = {MIF(INTPOS)} 
union TA(" Assignable")}, 

"Pure" = true } : 
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T[" kernel I transpose"] { "ES" = {"r" = 1 .. 1 , 0 = 1. .1}, 
"ST" = {"r" = {MIF(LIST)} , 

1 = {MIF(LIST)}} , 
"Pure" = true, "Builtin" = true } : 

T["kernelopts"] := { "ES" = {"r" = O .. infinity, 0 = 0 .. infinity}, 

T[" In"] 
T["log"] 
T["log10"] 

T[" lhs "] 

T[" lprint"] 

#STjmp 
T["map"] 

T["Matrix "] 

:= { 
:= { 
:= { 

"Pure" = true, "Builtin" = true 
"class" = "Elementary" }: 
"class" = "Elementary" }: 
"class" = "Elementary" }: 

}: 

{ ''ES" = {"r" = 0 .. infinity, 0 = 1..1}, 
"ST" = { 1 = TA("relation ") union {MIF(RANJE)}}, 
"Pure" = true, "Builtin"= true }: 

{ "ES" = {"r" = 0 .. 0, 0 = O .. infinity} }: 

:= { "ES" = {"r" = 0 .. infinity, 0 = 2 .. infinity}, 
"Pure" = true, "Builtin" = true } : 

{ "ES" = { "r" = 1 .. 1 } , 
"ST" = { "r" = {MIF (MA1R1X)} }, 
"Pure" = true } : 

T["max"] := { "ES" = {"r" = 1. .1, 0 = 0 .. infinity}, 
"Pure" = true, "Builtin" = true } : 

T["member"] { "ES" = {"r" = 1 .. 1 , 0 = 2 .. 3} , 
"ST" = {"r" = {MIF(N\ME)}} } : 

T["min"] { "ES" = {"r" = 1..1, 0 = O .. infinity}, 
"Pure" = true, "Builtin" = true } : 

T["minus"] { "ES" = {"r" = 1 .. 1, 0 = 2 .. 2}, 
"ST" = {"r" = { _InerLSET} 

union TA(" Assignable"), 
1 = { _InerLSET} 

union TA(" Assignable"), 
2 = { _InerLSET} 

union TA(" Assignable")}, 
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"Pure"= true, "Builtin"= true}: 

T["mkdir"] - { "ES" = {"r" = 0 .. 0, 0 = 1 .. 1} , 
"ST" = { 1 = TA("name/ string")}, 
"IO" = true } : 

T["modp"] 

T["mods"] 

T["mul"] 

T[" nops "] 

T["not"] 

- { ''ES" = {"r" = 1 .. 1, 0 = 2 .. 2}, 
"ST" = {"r" = TA("integer") 

union TA(" Assignable")}, 
"Pure" = true, "Builtin"= true }: 

- { "ES" = { "r" = 1 .. 1 , 0 = 2 .. 2 } , 
"ST' = {"r" = TA("integer") 

union TA(" Assignable")} , 
"Pure" = true, "Builtin" = true } : 

- { ''ES" = {"r" = 0 .. infinity, 0 = 2 .. 2}, 
"ST" = {"r" = TA(" Algebraic"), 

2 = {M1F{F(PA1ION) ,M1F(RJNCIION)}} } : 

- { "ES" = {"r" = 1 .. 1 , 0 = 1 .. 1} , 
"ST" = {"r" = {MlF(lNTPOS)}}, 
"Pure" = true, "Builtin" = true } : 

- { "ES" = {"r" = 1 .. 1 , 0 = 1 .. 1} , 
"ST" = {"r" = TA(" Assignable") 

union TA("Boolean "), 
1 = TA(" Assignable") 

union TA("Boolean ")}, 
"class" = "logical" }: 

T["nprintf"] - { "ES" = {"r" = 1. .1, 0 = 1.. infinity}, 
"ST" = {"r" = TA(" global"), 

1 = TA("name/ string") } , 
"IO" = false } : 

T["op"] { "ES" = {"r" = 0 .. infinity, 0 = 1. .2}, 
"ST" = {"r" = TA(" AnyValue")}, 
"Pure" = true, "Builtin" = true } : 

T[" or"] - { "ES" = {" r" = 1 .. 1 , 0 = 2 .. 2 } , 
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T["parse "] 

T["print"] 
T[" printf"] 

T["Re"] 

T["remove"] 

T["rmdir"] 

T["round"] 

T[" rhs "] 

"ST" = {"r" = TA(" Assignable") 
union TA("Boolean "), 

1 = TA(" Assignable") 
union TA("Boolean "), 

2 = TA(" Assignable") 
union TA("Boolean ")} , 

"class" ="logical" }: 

{ "ES" = {"r" = 0 .. infinity, 0 = 1..1}, 
"ST" = {I = TA("name/string")}, 
"Pure" = false, "Builtin" = true } : 

{ "ES" = {"r" = 0 .. 0, 0 = 0 .. infinity} }: 
{ "ES" = {"r" = 0 .. 0, 0 = 1.. infinity}, 

"ST" = { 1 = TA("name/ string") }, 
"IO" = true } : 

{ "ES" = {"r" = 1 .. 1 , 0 = I .. 1} , 
"Pure" = true, "Builtin"= true }: 

{ "ES" = {"r" = 0 .. 1, 0 = 2 .. infinity}, 
"ST" = {"r" = TA(" Any Value")}, 
"Pure"= true, "Builtin"= true }: 

{ "ES" = {"r" = 0 .. 0, 0 = 1 .. 1} , 
"ST" = { 1 = TA("name/ string")}, 
"IO" = true } : 

{ "ES" = {"r"=l..1, 0= 1..2}, 
"ST" = {"r"={MIF(RJNCIION)} union TA(" integer")}, 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r" = 0 .. infinity, 0 = 1. .1}, 
"ST" = { 1 = TA(" relation") union {MIF(RAI\GE)}}, 
"Pure" = true, "Builtin" = true } : 

T["rtable"] { "ES" = {"r" = 1..1, 0 = 0 .. infinity}, 
"ST" = { "r" = {MIF (ARRAY)} }, 
"Pure" = true, "Builtin" = true } : 

T["rtable_dims"] := { 
''ES" = {"r" = 0 .. infinity, 0 = 1 .. infinity}, 
"ST" = {"r" = {MIF(RANJE) ,MIF(EXPSEQ)}, 

1 = TA("Name") union {MIF(ARRAY)}} , 
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"Pure" = true, "Builtin" = true } : 
T["rtable_elems"] := { 

"ES" = {"r" = 1..1, 0 = 1.. infinity}, 
"ST" = {"r" = {MIF(SET)}, 

1 = TA("Name") union {MIF(ARRAY)}} , 
"Pure" = true, "Builtin" = true } : 

T["rtable_num_dims"] := { 
"ES" = {"r" = 1..1, 0 = 1.. infinity}, 
"ST" = {"r" = {MIF(INTPOS)}, 

1 = TA(''Name") union {MIF(ARRAY)}}, 
"Pure" = true, "Builtin" = true } : 

T["rtable_num_elems "] := { 

T[" search text"] 

T[" SearchText"] 

"ES" = { "r" = 1 .. 1 , 0 = 1 .. 2} , 
"ST" = {"r" = {MIF(INTPOS)}, 

1 = TA("Name") union {MIF(ARRAY)} } , 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r" = 1..1, 0 = 2 .. 3}, 
"ST" = {"r" = {MIF(INTPOS)}, 

1 = TA("name/ string"), 
2 = TA("name/ string"), 
3 = {MIF(IW\GE)}}, 

"Pure" = true, "Builtin" = true } : 
{ "ES" = {" r" = 1 .. 1 , 0 = 2 .. 3 } , 

"ST" = {"r" = {MIF(INTPOS)}, 
1 = TA("name/ string"), 
2 = TA("name/ string"), 
3 = {MIF(IW\GE)}} , 

"Pure" = true, "Builtin" = true }: 
T["sec"] := { "class"= "Trigonometric" }: 
T["sech"] := {"class"= "Hyperbolic Trig" }: 
T["select"] := { "ES" = {"r" = 0 .. 1, 0 = 2 .. infinity}, 

"Pure" = true, "Builtin" = true } : 
T["selectremove"] := { "ES" = {"r" = 1..2, 0 = 2 .. infinity}, 

"Pure" = true, "Builtin" = true } : 
T["seq"] := { "ES" = {"r" = O .. infinity, 0 = 1..3}, 

"Pure" = false, "Builtin" = true } : 
T[" series"] := { "ES" = {"r" = 1. .I, 0 = 2 .. 3}, 

"ST" = {"r" = {MIF(SERIES) ,MIF(EXACTSERlES)}, 
2 = TA("Name") union {MIF(EQUATICN)} , 



D. Special Function Table 

3 = {MIF(INTPOS)}} , 
"Pure" = false, "Builtin" = true } : 

T[" setattribute "] := { "ES" = {"r" = 1. .1, 0 = 1.. infinity}, 
"Pure" = true, "Builtin" = true } : 

T["sign"] := { "ES" = {"r" = 1. .1, 0 = 1..3}, 

T["signum"] 

T[" sin"] 
T[" sinh"] 
T[" sprintf"] 

T[" ssystem "] 

"ST" = {"r" = TA("integer"), 
2 = {MIF(LIST)} , 
3 = TA("Name")} , 

''LV'= {"r" = {_InerLINTPOS(1), 
_InerLINTNEG ( 1)}} , 

"Pure" = false, "Builtin" = true }: 
{ "ES" = {"r" = 1 .. 1 , 0 = 1 .. 3} , 

"Pure" = false, "Builtin" = true } : 
{ "class" = "Trigonometric" }: 
{ "class" = "Hyperbolic Trig" } : 

:= { "ES" = {"r" = 1..1, 0 = 1.. infinity}, 
"ST" = {"r" = {MIF(SlRING)}, 

1 = TA("name/ string") } , 
"IO" = false }: 

{ "ES" = { "r" = 1 .. 1 , 0 = 1 .. 1 } , 
"ST" = {"r" = {MIF(SlRING)} , 

1 = TA("name/ string")}, 
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T[" subs"] 
"IO" = true, "Pure" = false, "Builtin" = true } : 

{ "ES" = {"r" = 1. .1, 0 = 1.. infinity}, 

T[" subset"] 
"Pure" = true, "Builtin" = true } : 

{ "ES" = {"r" = 1 .. 1, 0 = 2 .. 2}, 
"ST" = {"r" = {MIF(N\ME),MIF(FUNCIION)}, 

I = {MIF(SET)} union TA(" Assignable"), 
2 = {MIF(SET)} union TA(" Assignable")}, 

"Pure" = true, "Builtin" = true } : 
T["subsop"] { "ES" = {"r" = 1. .1, 0 = 1.. infinity}, 

"Pure" = true, "Builtin" = true } : 
T["subtype"] { "ES" = {"r" = 1 .. 1, 0 = 2 .. 2}, 

"ST" = {"r" = {MIF(NAME)}}, 
''LV' = { "r" = { .JnerLNAME("true "), 

.JnerLNAME(" false"), 

.JnerLNAME("FAIL")}}, 
"Pure" = true, "Builtin" = false } : 

T["substring"]:= { "ES" = {"r" = 1..1, 0 = 2 .. 2}, 
"ST" = {"r" = TA("name/ string"), 
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T["sum"] 

1 = TA("name/ string"), 
2 = {MIF(RAN:E)} union 

TA(" integer")}, 
"Pure" = true, "Builtin" = true } : 

:= { "ES" = {"r" = 0 .. infinity, 0 = 2 .. 2}, 
"ST' = {"r" = TA(" Algebraic"), 

2 = TA("Name") union {MIF(EQUATICN)}}, 
"Pure" = false, "Builtin" = false } : 

T["symmdiff"] := { "ES" = {"r" = 1..1, 0 = 0 .. infinity}, 
"ST" = {"r" = {MIF(SET)} union 

TA(" Assignable") } , 
"Pure" = true } : 

T["system"] := { "ES" = {"r" = 1..1, 0 = 1..1}, 
"ST" = { "r" = {MIF (INTPOS)} , 

1 = TA("name/string")}, 
"IO" = true, "Pure" = false, "Builtin" = true } : 

T["table"] := { "ES" = {"r" = 1..1, 0 = 1..2}, 
"ST" = {"r" = {MIF(TABIE)}, 

T["tan "] 
T[" tanh"] 
T["taylor"] 

T[" Tolnert ") 

2 = TA(" sequential")}, 
"Pure" = true, "Builtin" = true } : 

:= { "class" ="Trigonometric" }: 
:= { "class" = "Hyperbolic Trig" } : 
:= { "ES" = {"r" = 1 .. 1, 0 = 2 .. 3}, 

"ST" = {"r" = {MIF(SERIES) ,MIF(EXACTSERIES)}, 
2 = {MIF(EQUATION)} , 
3 = {MIF(NAME) ,MIF(INTPOS)}} , 

"Pure" = false, "Builtin" = true } : 
{ "ES" = {"r" = 0 .. infinity, 0 = 0 .. infinity}, 

"ST" = {"r" = {MIF(RJNCIION)}}, 
"Pure" = true, "Builtin" = true } : 

T["trunc"] := { "ES" = {"r" = 1..1, 0 = 1..2}, 
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"ST" = {"r" = {MIF(RJNCTION)} union TA("integer")}, 
"Pure" = true, "Builtin" = true } : 

T["type"] := { "ES" = {"r" = 1 .. 1, 0 = 1 .. 2}, 
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"ST" = {"r" = {MIF(NAME)}}, # truefalse 
''LV' = { "r" = { _Inert_NAME(" true"), 

_Inert_NAME(" false")}}, 
"Pure" = true, "Builtin" = true } : 

T["typematch "] := { 

T["union"J 

"ES" = { "r" = 1 .. 1 , 0 = 1 .. 2 } , 
"ST" = {"r" = {MIF(NAME)}}, # truefalse 
''LV' = {"r" = { _Inert_NAME("true "), 

_Inert_NAME(" false")}}, 
"Pure" = false, "Builtin" = true } : 

{ "ES" = {"r" = 1. .1, 0 = 0 .. infinity}, 
"ST" = {"r" = {MIF(SET), MIF(RJNCIION)}}, 
"Pure"= true, "Builtin" = true }: 

T["userinfo"J:= { "ES" = {"r" = 0 .. 0, 0 = 3 .. infinity }, 
"ST" = { 1 = {MIF(INTPOS)} } , 

T[" vector"] 

T[" Vector"] 

"Pure" = true, "Builtin" = true } : 

{ "ES" = { "r" = 1..1, 0=1.. infinity }, 
"ST" = { "r" = {MIF (TABlE)} } , 
"Pure" = true } : 

{ "ST'' = { "r" = TA("Vector") }, 
"Pure" = true } : 

T["xor"] := { "ES" = {"r" = 1 .. 1, 0 = 2 .. 2}, 
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"ST" = {"r" = TA(" Assignable") union TA("Boolean"), 

end module: 

1 = TA(" Assignable") union TA("Boolean "), 
2 = TA(" Assignable") union TA("Boolean ")}, 

"class" = "logical" }: 
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