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Introduction 

Imagine stretching out a rubber band on a flat surface and letting go sud­

denly. Picture the way the rubber band contracts in slow motion and that 

should give you a good idea of how mean curvature flow dictates the evolu­

tion of plane curves. The more stretched out the rubber band, the faster it 

snaps back. Just like the rubber band returns to it's original round shape no 

matter how it is stretched, any smooth plane curve will evolve under mean 

curvature flow to a circle. Suppose that you try to kink the rubber band, try 

to force a sharp corner into it. As soon as you let go those kinks disappear. 

Similarly a piecewise smooth curve will smooth out instantaneously under 

mean curvature flow. Now suppose that you stretch out the rubber band and 

put kinks in it, but instead of letting go completely, you hold those kinks in 

place. The rest of the rubber band will still try to shrink back to it's orig­

inal circular shape. This is the major topic of this paper-how do piecewise 

smooth curves behave under mean curvature flow if their kinks are held fast? 

It turns out that the initial evolution of a curve in such a situation depends 

completely on the number and precise angles of those kinks. 

One of the earliest references on mean curvature flow is a 1956 paper [15] 

which explored a specific case of piecewise smooth curves evolving by mean 
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curvature and found that by counting the number of sides one could deter­

mine how the enclosed area would change (Theorem 4.1). This was a supris­

ing result because in the smooth case, the area enclosed is always shrinking, 

but by adding some sharp corners it became possible that the area would in­

crease initially. Little attention seems to have been paid to piecewise smooth 

curves and mean curvature flow since then, with one notable exception be­

ing a paper by L. Bronsard and F. Reitich [5] which proved that the curves 

analyzed in the 1956 paper could really exist! 

The main result of this paper is Theorem 4.4 which is a generalization of the 

aforementioned Theorem 4.1. The new result generalizes the original in two 

ways: first it is non-specific with respect to the angles at the corners, and 

second, it allows for the the flow to be anisotropic; the evolution of the curve 

may depend on it's orientation in the plane. Two proofs of this result are 

presented. One uses ideas from the 1956 paper and is fairly intuitive. The 

other proof follows the strategy of a more recent paper [10] and proves the 

result as an intrinsic property of the curve. The final section of the paper 

mentions some other questions and topics related to mean curvature flow 

and includes a new result about the behavior of curves evolving on the unit 

sphere according to a generalized version of mean curvature flow. 
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1 Mean Curvature Flow 

The closed plane curves we will consider are embedded in R 2 , that is they do 

not cross themselves. At first our curves will be smooth, but later when we are 

working with piecewise smooth curves we require that they have only finitely 

many vertices. By smooth we mean C 00
• We will adopt the counterclockwise 

orientation, so that the curvature of the unit circle is + 1. Finally we will 

assume that all smooth portions of the curves have bounded curvature. Let 

us now define mean curvature flow, 

Definition 1.1. IfF(·, t) is a one parameter family of curves such that 

(1) 

then the curves F(·, t) are said to be evolving by Mean Curvature, where K 

is the plane curvature, N is the inward pointing unit normal and ( ·, ·) is the 

usual scalar product. 

Example 1.2. The circle provides a fairly intuitive example for mean cur­

vature flow. The curvature is constant for a circle so the normal vectors all 

have equal length and point inward towards the center. 
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Figure 1: A circle evolving by mean curvature flow. 

Straight line segments have zero curvature and hence have no velocity in 

the normal direction. With this in mind we will not consider curves that 

have any interval of constant curvature equal to zero. 

If we parameterize by arclength s, then the length of a curve F(s, t) is 

L = 1L ds. (2) 

We wish first to calculate a general formula for the time derivative of the 

length. Then we will see that Equation (1) reflects the choice of the fastest 

length minimizing flow, that is, the flow which shrinks the initial curve F(·, 0) 

most efficiently. The mathematical obstacle here is the fact that the arclength 

parameters (and hence the length L) is time dependent. To overcome this, 

we reparameterize the curve in the form 

F(u, t) = (x(u, t), y(u, t)) 

where uE[O, 1] is a time independent parameter. As we will discuss shortly, 

there are a number of existence type results which ensure that such a param-
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eterization can be made at each time so that F(u, t) is differentiable in time. 

Then the length becomes 

L = {o1 (ax)2 (ay)2d lo au + au u, (3) 

and, if we denote 

v= 

then 

ds = vdu. (4) 

This also gives us a useful relation between the associated partial derivative 

operators: 
a 1 a 
as vau· 

(5) 

Now the time derivative can be interchanged with the integral so that 

aL a { 1 
[

1 av 
8t = at lo vdu = lo at du. 

So what we need is a more meaningful expression of ~~. 

Lemma 1.3. The time derivative of v is 

av = v(T ~(aF)) 
at 'as at 

(6) 

where T is the unit tangent vector to the curve. 

Proof. First, recall that 

so that 

2 = I aF 12 = ( aF aF) 
v au au'au. 

3 



Then 

~(v2) = 2v(av) 
at at 

a aF aF 
= 8t(au' au) 

aF a2F 
= 2( au' atau). 

Since u is a time independent parameter the operators 

commute and so 

a a 
-and­
at au 

The vector ~~ points in the tangential direction and has magnitude v, and 

using the relation (5) to rewrite the operator fu we have 

av 2 a aF 
2v(at) = 2v (T, as(Bt)). (7) 

Note that because our curve is smooth, it has a nonzero tangent vector at 

every point, so 

Thus 2v can be cancelled from both sides of Equation (7) which proves the 

lemma. 

Now we have that 

or 

aL = {L (T, ~(aF ))ds 
at lo as at 

(8) 
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since 

vdu = ds. 

If we express ~~ in the orthonormal basis {T, N} as 

aF 
at =aT+bN 

for some C 1 real valued functions a and b, then 

aL 1L a 
at= 

0 
(T, as (aT+ bN))ds 

= 1L (T,! (aT))ds + 1L (T,! (bN))ds 

1L aa 1L aT 
= 

0 
(T, asT)ds+ 

0 
(T,aa;)ds 

1L ab 1L aN + 
0 

(T, as N)ds + 
0 

(T, bas )ds. 

(9) 

There is a quick, and helpful digression to be made here. For plane curves, 

the Frenet Equations are 

aF 
as 
aT 
as 
aN 
as 

T 

With the reparameterization by u the Frenet Equations become 

aF 
vT 

au 
aT 

VKN 
au 
aN 

-vKT, 
au 

5 
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and both versions will be used repeatedly throughout this paper. With Frenet 

in mind 
8L {L 8a {L 
at= Jo (T, 08 T)ds + Jo (T, aKN)ds 

{L [)b {L 
+ Jo (T, 08 N)ds + Jo (T, -bKT)ds, 

but because 

T..lN 

and both T and N have unit length the second and third terms are zero and 

we are left with 
[)L 1L [)a 1L - = -ds- bKds 
8t 0 8s 0 

= (a(L)- a(O)) -1£ bKds. 

Because we are considering smooth, closed curves, 

a(L) = a(O) 

and so 
[)L {L 
at=- Jo bKds. 

Using Holder's Inequality 

1L (Kb)ds:::; 1L IKblds 

:::; (1L IKI2ds)4(1L 1Wds)4 

with equality if and only if lbl is a multiple of IKI, that is, 
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for some positive constant c. So the fastest length minimizing flow can be 

written as 

aL 1L at= -c 
0 

,;,
2ds. (14) 

Notice that this formula is independent of the tangential component a. If we 

choose a = 0 then 
aF - = c,;,N at (15) 

and we would still have the fastest length minimizing flow given by Equation 

(14). Moreover, if the evolution of a curve by mean curvature flow is viewed 

like a movie, the constant c acts like the fast-forward/slow-motion button. 

Changing c affects the speed at which a curve changes but not the nature of 

its evolution and so we will agree to set c = 1. All of this means that we 

could consider the evolution equation 

aF = ,;,N 
at 

instead of the flow given by Equation (1), and the formula for 

aL 
at 

(16) 

would be unchanged. In fact, many of our references prefer this flow, but 

the more general nature of Equation (1) will be helpful when we examine 

piecewise smooth curves later on. 
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2 Smooth Curves 

Because mean curvature flow is the maximal length shrinking flow much 

analysis has been done. Accordingly there are standard results which will be 

discussed here. The "behavioral" results, those which illuminate how a curve 

evolves under mean curvature will be proved in this section, or discussed later 

on. The existence type results are arguably more fundamental but will be 

cited without the proofs which are beyond the scope of this paper. The first 

theorem, which we have already proved, is the defining attribute of mean 

curvature flow. 

Theorem 2.1. Under mean curvature flow 

8L 1L 8t =- o "'2ds. (17) 

The next theorem is not a suprising result in the sense that it is implied 

(at least in the long run) by Theorem 2.1, but it's generalization to piecewise 

smooth curves does hold some suprises and will play a central role in this 

paper. 

Theorem 2.2. The time derivative of the area enclosed by a curve which is 

evolving by mean curvature is 

a A 
at= -27r. (18) 
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A proof of this theorem can be found in [10], but the next section will be 

devoted to proving the more general result Theorem 3.8. In Section 4 two 

proofs of a still more general result, Theorem 4.4, will be presented. One 

implication of Theorem 2.2 is that we can calculate how long it will take for 

a curve to disappear. 

Corollary 2.3. A simple closed curve shrinks to a point in time 2'!-, where 

A is the area enclosed by the initial curve. 

Example 2.4. Determining the time 2!. for familiar shapes is straightfor­

ward. For example, the ellipse given by 

x2 y2 
-+-=1 
a b 

encloses an area of 1rab and so would disappear under mean curvature flow 

in time ~b. 

Figure 2: An ellipse evolving by isotropic mean curvature. 
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Thanks to George Green, we have a very useful formula for the area 

enclosed by an arbitrary plane curve. Let R be the region whose area we 

are interested in, with boundary curve C given by F(u) = (x(u), y(u)) where 

uc[O, 1]. We can define the area of R as 

The divergence of the vector field 

1 1 
(x, y) f-t 2(x, y) = 2F 

is 1 so by The Divergence Theorem, and using the equality ds = vdu, 

111 = -- (F,vN)du. 
2 0 

(19) 

Note that the minus sign appears because N is the inward pointing unit 

normal vector. We note that this formula generalizes directly to the case 

where C is piecewise smooth, the integral around the boundary is replaced 

by the sum of the integrals along each side. In coordinates, 

so we can compute 

N = ~ ( _ dy , dx) 
v du du 

1 dy dx 
(F, vN) = ((x, y), v-( --d , -d )) 

v u u 

dy dx 
= -x- +y-

du du 

whence (19) becomes 

111 1 11 A=- (xdy- ydx)-du =- xdy- ydx 
2 0 ou 2 0 

10 



which is the area formula familiar to many. This second expression is partic­

ularly useful when we want to consider polar coordinates, 

x = r cos (} and y = r sin (} 

in which case 
dy dx 2 xdy- ydx = (x- - y-)d(} = r d(} 
d(} d(} ' 

and 

A = ~ f
2

1r r 2d(}. 
2 Jo (20) 

Theorems 2.1 and 2.2 and Corollary 2.3 are fairly comprehensive. Together 

they tell us that a smooth, closed, plane curve will shrink under mean cur­

vature flow, how quickly it will shrink and, with Green's Formula in hand, 

how long it will take to disappear completely. We have mentioned existence 

theorems, and this is where we must rely on those results since otherwise we 

wouldn't know if there are actually any curves to analyze at all! With some 

animated intuition, or perhaps from the figures in Examples 1.2 and 2.4 the 

reader could conjecture the following result. 

Theorem 2.5 (Fundamental Theorem for Plane Curves). A smooth simple 

closed curve in R 2
, evolving by mean curvature flow shrinks to a point, and 

becomes asymptotic to a shrinking circle. 

Example 2.6. The curve on the left of figure 3 is "unrolling" from both ends, 

but at the same time it's circular shape causes it to shrink. The Fundamental 

Theorem ensures that the spiral will unroll before the whole shape collapses 

on itself. Similarly, the theorem guarantees that the curve on the right will 

not "pinch off" into two separately evolving curves. 
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Figure 3: Potentially Troublesome Shapes 

The Fundamental Theorem was proved in two parts. In 1986 M. Gage and 

R. Hamilton [10] proved that convex plane curves shrink to circular points 

and one year later, M. Grayson published a paper [12] in which he proved 

that simple closed curves become convex under mean curvature flow. Notice 

that the mean curvature evolution law Equation (1) really defines a system 

of PDE's so the Fundamental Theorem is really a result about the existence 

and nature of solutions to this system. It turns out that finding curves 

which evolve "nicely" by mean curvature is equivalent to solving a system 

of parabolic PDE's, which is the approach used by Gage and Hamilton, and 

also by D. DeTurck whose work on a more general problem [6] implies the 

following theorem: 

Theorem 2. 7. A piecewise smooth initial curve allowed to evolve by mean 

curvature will become instantaneously smooth. 
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Figure 4: Piecewise smooth curves are smooth for all positive time. 

With these existence theorems, the evolution of plane curves by mean 

curvature really is completely characterized, but in true mathematical fashion 

we will not be satisfied until these results have been generalized. 
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3 Anisotropic Mean Curvature Flow 

As promised, this section will be devoted to a generalization of Theorem 2.2, 

and the proof will closely follow Gage and Hamilton's proof in [10]. The 

evolution of a curve under Equation (1) is isotropic; the curve will evolve 

independently of it's orientation in the plane. Now we turn to a similar flow, 

but one which includes a dependence on orientation. 

Definition 3.1. IfF(·, t) is a one parameter family of curves such that 

(21) 

where 

(22) 

is a coo, 21r-periodic function of the angle a between the tangent vector T 

to the curve and the horizontal axis, then the curves F( ·, t) are said to be 

evolving by Anisotropic Mean Curvature. 

As mentioned, anisotropic evolution depends on the orientation of a curve 

in the plane. This is because rotating C also rotates its tangent vectors, 

changing the value of 'Y at each point. The requirement that 'Y be positive is 

conventional and comes from the physical applications of anisotropic mean 
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curvature flow. To the boundary of any material can be associated its free 

energy, which depends on both the microscopic structure of the material as 

well as its macroscopic shape. The function 'Y reflects this physical property 

and would depend on the specific material under investigation. 

Example 3.2. This circle is evolving by anisotropic mean curvature with 

"((a)= cos2 a+ 1, 

which is a positive, 27r-periodic function. In addition 

"((a+ 1r) ="!(a), 

and so Gage and Li 's results about anisotropic evolution in {11 j imply that 

the circle will evolve into an elliptical point in finite time. 

Lemma 3.3. The time derivative of v is 

ov 2 
{)t = -"(K V. (23) 
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Proof. Recall that because u and t are independent variables so the 

operators 
a a 
-and­at au 

commute. Following the strategy of Lemma 1.3 we have, on one hand, 

and on the other hand 

Recall that 

aF =vT 
au 

and so using the Equation (21), 

Applying the chain rule to the second term, we try to collect the terms in a 

sensible way, 

a a"! a"' aN 
2(vT, au ("!"'N)) = 2(vT, au "'N +"/au N +"!"'au) = 

a"' a"' aN 2(vT, (au"'+"! a)N +"!"'au). 

The Frenet Equation (12) together with the fact that T and N are orthogonal 

unit vectors give us 

a"! a"' aN 
2(vT, (au"'+"! a)N +"!"'au) = 

a"' a"' 2 2(vT, (au"'+"/ a)N) + 2(vT, -v"("' T) = 

16 



Remember, we can cancel 2v from both sides which proves the claim. 

Unfortunately, the operators 

a a 
-and­as at 

do not commute because s depends on t, but we can calculate in some sense 

how closely they are to commuting. 

Lemma 3.4. 
aa aa 2a 
at as = as at + "(l'i: as. 

Proof. To begin, we will rewrite things using Equation (5): 

a a a 1 a 
at as = at(-;; au). 

By the chain rule, this is 

Now u is time independent, so 

and from the previous lemma 

a a a a 
at au au at 

a 1 1 av V"(ti:
2 21 -- = --- = -- = "(l'i: -at v v2 at v2 v . 

Thus 

which proves the lemma. 

17 
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Lemma 3.5. The time derivatives of the unit tangent and inward pointing 

unit normal vectors are 

aT 
at 
aN 
at 

Proof. The Frenet Equation 

means that 

T= aF 
as' 

aT_ a aF _ a a F 
7ft- at as- (at as) . 

Using Lemma 3.4 this becomes 

By our evolution rule (21) 

and the Frenet Equation 

we get 

T= aF 
as' 

a aF 2 aF a 2 
as 8t + ')'K as = as ('Y~~:N) + ')'K T 

a aN 
= (as(')'~~:) )N + ')'K as + ')'K2T 

(25) 

(26) 

where the last line comes from applying the chain rule. By the Frenet Equa­

tion (12), the last two terms will cancel, and we are left with 

a a'Y a~~: 
(as ('Y~~:))N = (asK+')' a)N 

18 



which proves the first equality. 

The second equation follows from 

8 8T oN 
0 = ot (T, N) = (at, N) + (T, at) 

a'Y a"' aN 
= (as"' + 'Y a) + (T' at ) · 

Since N has constant length 1, it must be that 

or 

oN l..N 
at 

oN =xT 
at 

for some function x. Then 

a'Y a"' aN (as"'+ 'Y as)+ (T, at) 

0"( OK 
= ( os"' + 'Y os) + (T, xT) 

0"( OK 
= (as "' + 'Y a) + x = o 

which does imply Equation (26) as desired. 

Let a denote the angle between the tangent vector to the curve C and the 

horizontal axis, taken in the positive sense. Then 

T(a) = (cos a, sin a) 

and 

N(a) = (-sin a, cos a). 

The next lemma concerns a as a function of the variables s and t. 
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Lemma 3.6. 

Proof. Well, 

oa 
OS 
oa 
at 

On the other hand from the Frenet Equations, 

Then 

oaN 
au Vtt;N 

8a8sN 
OS au Vtt;N 

oavN 
OS 

Vtt;N 

oa 
OS 

tt;, 

To prove the second equation, recall from the previous lemma that, 

Also, 
8T 8 . . oa oa oa 
8t = ot (cos a, sma) = (- smaat, cosaat) = atN. 

Comparing these calculations gives the desired equality. 

(27) 

(28) 

The next and last technical lemma hardly deserves that title-the generaliza­

tion to anisotropy loses the simplicity of the isotropic case. However in the 
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spirit of tradition, since we are following Gage and Hamilton's strategy we 

will proceed. 

Lemma 3.7. 

Proof. Using the previous result and Lemma 3.4, 

a"' a aa a aa 2 aa 
at = at as = as at + 'Y"' as = 

!_(a'~'"'+ 'Y a"')+ '~'"'3 = as as as 
a2

'Y a'Y a"' a2
"' 3 

as2 "' + 2 as as + 'Y as2 + 'Y"' . 

Now we are ready to prove the following generalization of Theorem 2.2: 

Theorem 3.8. The time derivative of the area enclosed by a curve C which 

is evolving by anisotropic mean curvature is 

aA 1 - =- 'Y(a)da. at c 
(29) 

Proof. Equation (19) for the area enclosed by a plane curve gives, 

aA 1 a 11 

- = --- (F vN)du = at 2ato' 

1 [ 1 aF av aN 
-2 Jo ((8t,vN) + (F, atN) + (F,v at ))du. 

From our anisotropic evolution law, the first term is 

1 { 1 aF 1 t 
-2 lo (at, vN) = -2 lo ('Y"'N, vN)du. (30) 
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From Lemma 1.3 the second term is 

Using Lemma 3.5, the third term becomes 

1 [ 1 aN 
-2 Jo (F, v at )du 

111 a1 at\, = -- (F, -v(-1'\, + 'Y-)T)du 
2 0 as as 

1 { 1 a 
= 2 lo (au ('Y/'\,))(F, T)du. 

This last expression we can integrate by parts to get 

But C is closed so the boundary term is zero and we are left with 

If we simplify 

111 aF aT -- ('Y/'\,(-a , T) + "f/'\,(F, -a ))du 
2 0 u u 

aF and aT 
au au 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

using The Frenet Equations, and collect the terms from (30), (31) and (36) 

then 

aA 111 

-a = -- ('YK,V- "(/'\,2v(F, N) + "(1'\,v(T, T) + "(/'\,2v(F, N) )du. 
t 2 0 

Two of the terms cancel, and (T, T) = 1 so 

aA 111 

- = -- 2"(K,Vdu at 2 o 

= -1L "(1'\,dS. 
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By Lemma 3.6 

whence 

which proves the theorem. 

a a 
/'\,=-as 

1L aa 
=- "(-ds 

0 as 

=-L 'Y(a)da 

If we let"(= 1 then Theorem 2.2 follows as a corollary since the net rotation 

of the tangent vector around the curve is 21r. 
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4 Mullins' Law part 1 

In 1956, W. Mullins, then a research engineer in Pittsburgh, published a 

paper titled Two-Dimensional Motion of Idealized Grain Boundaries [15] in 

which he analyzes the physical migration of grain boundaries in recrystallized 

metals. Mullins' set up is as follows: 

consider a network of arbitrary curves dividing the plane into 

polygon-like cells. Let each vertex be the terminus of three such 

curves meeting at equal angles of 2
; radians. If these curves move 

according to (mean curvature) ... the rate of area loss or gain of a 

given cell is determined solely by the number of its sides. 

Our restatement of Mullins' finding is the following theorem. 

Theorem 4.1 (Mullins' Law). Let F(·, t) be a piecewise smooth simple closed 

curve with n sides such that the interior angle at each vertex is 2
; while each 

side is evolving according to mean curvature then the change in the area 

enclosed by the curve is given by 

8A 1r 8t = 3(n- 6). (37) 
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Figure 5: Mullins' original setup. 

This is an elegant and suprising result. The only factor which deter­

mines the change in the area enclosed by a curve is the number of its sides. 

Specifically any curve with more than six sides will increase in area while a 

curve with six sides will evolve while maintaining a fixed area. This section 

will lay the groundwork for a more general theorem (Theorem 4.4) which we 

will analyze to determine what assumptions must be made in order to arrive 

at Mullins' specific formula. To start with, some new notation needs to be 

introduced. 

Consider a closed, piecewise smooth, embedded plane Cl_lrve given by the vec­

tor function F(s, t), and again take the standard orientation. We will only 

consider one curve, or grain, instead of a network of them as Mullins [15] and 

Bronsard et al. [5] did because, as we will show, the short term changes in 

length and area do not depend on neighboring cells. We agreed to consider 
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1 

Figure 6: This curve has three sides so Mullins' Law dictates that it's area 

will decrease initially. 

curves with a finite number of sides, and now we will also assume that each 

curve has at least two sides. Label each side 1, ... , n in a counterclockwise 

manner, and label the vertices by their arclength. That is, pick one vertex 

as a starting point and label it s0 = 0, then label the vertices so, s1, ... , sn 

in a counterclockwise manner so that Sn = L the total length of the curve, 

and F(s0 , t) = F(sn, t). Now the ith side should begin at Si-1 and end at si· 

We again need to overcome the dependence of the arclength parameter s 

on time, and again we will introduce a time independent parameter UE[O, 1]. 

Consider the vector functions Fi(u, t) for i = 1, ... , n which parameterize 

each side of our curve independently. Now the image of Fi is the ith side of 
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Figure 7: This curve has more than six sides so it's area will increase initially. 

the curve with 

F(si-b t) 

and 

In general a subscript will indicate this situation. For example, Ni(u, t) is 

the inward pointing unit normal along the ith side. Be aware that in many 

cases, as with the unit tangent vectors Ti(u, t), the ith and (i+l)th functions 

will not agree at a vertex (see Figure 9), and some functions, for example 

the curvature functions K-i(u, t), are not even defined at vertices. 

Now we are ready to define the evolution rules for piecewise smooth curves 

with specific angle conditions. 
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3 

Figure 8: This curve has exactly six sides so Mullins' Law states that it's 

area will remain unchanged during it's inital evolution. 

Definition 4.2. The sides evolve by anisotropic mean curvature: for i 

1, ... , n and all u E (0, 1), 

(38) 

where again 'Y( a( u)) is a positive function, as in Definition 3.1, of the angle 

between the tangent vector and the horizontal axis. 

The sides do not separate: 

fori= 1, ... , n- 1, 

(39) 

and 

Fn(1, t) = F1 (0, t). (40) 
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Finally, the angle at each vertex is specified: 

for i = 1, ... , n - 1, 

and 

( Tn(1, t), T1 (0, t)) =COS (1r- f3n) 

where 

0 < f3i < 1r fori= 1, ... , n. 

(41) 

(42) 

(43) 

The reader may be worried when they recall Theorem 2. 7 which says 

that a piecewise smooth initial curve will smooth out immediately, in which 

case it should obey the formula in Theorem 2.2 and shrink irrespective of 

it's original number of sides. This is not a trivial concern and it brings us 
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T 1 (l,t) 

T 2(0,t) 

1 

Figure 9: The two unit tangent vectors are not equal. 

to a very important point. The kinks in Mullins' grains are not the same 

as DeThrck's imperfections because Mullins is implicitly requiring that his 

vertices do not smooth out but retain their original angles, and moreover he 

is requiring that the sides remain stuck together and do not separate at those 

points. If we were to write down the system of PDE's corresponding to this 

situation, it would be different from the systems analyzed by Gage, Hamilton 

and DeThrck, and consequently we need some new existence type results to 

carry on with a meaningful analysis. Mullins' recognized this situation and 

addressed it briefly in his paper: 

There is a possible question ... of the consistency of the curvature 

rule of motion with the rule of equal intersection angles at the 

vertices. Since, however, the tendency of the curves to shorten 

themselves underlies both rules, their mutual consistency seems 

plausible. 
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1 

2 

3 

Luckily for everyone, Bronsard and Reitich [5] proved the short-time exis­

tence of solutions to the system of PDE's defined by Definition 4.2. A word 

of caution is required here: the results in Section 2 are "long-time" solu­

tions which describe the behavior of curves until they dissappear. However, 

Mullins' Law is a "short-time result" and any conclusions drawn from it 

should be viewed in that context. 

Now we have some notation to work with, and confidence that the curves we 

are interested in do in fact exist. 

Remember in the case of smooth curves, the time derivative of both the 

length and area could be calculated explicitly, and both quantities were neg­

ative. In the case of piecewise smooth curves with angle conditions the 

situation is more complicated - first we shall find that the time derivative of 

the length is no longer obviously negative. 
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The length of a piecewise smooth curve is 

n is; n 
1

1 

L = L ds = L vidu, 
i=l 8i-l i=l 0 

so 

aL = ~ t avidu. 
at L...J lo at i=l 

Lemma 1.3 applies to each w 

avi = v·(T· ~(aFi)) 
at ~~'au at 

and so 
avi a ---at = vi(Ti, au (aiTi + 'Y~iNi)) 

for some C 1 real valued functions ai. Now 

Since 
aTi 
-- = Vi~iNi 
au 

and Ti l_ Ni, the second and third terms are zero and we are left with 
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Well, 

whence 

aL=t taaidu 
at i=l lo au 

+ t 11 

(Ti, '"'(Ki( -ViKiTi))du 
i=l 0 

By simplifying we arrive at the following formula: 

(45) 

From this formula we see that in the piecewise smooth case with 1 = 1, the 

integral of the curvature squared is still present, but there is a new term 

which does not have an obvious sign. 

Example 4.3. Consider the symmetric football shape in Figure {10}. If the 

functions ai are 1r-periodic in the sense that 

then because of the symmetry of the shape the first term in Equation {45} 

equals zero: In fact we don't need the entire football to be symmetric, but 

only some small neighborhoods of the two vertices. However, without at least 

some symmetry or some explicit knowledge about the functions ai the sign of 

~~ is difficult to determine. 
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a1 (0) 

Figure 10: A symmetric football shape 

The time derivative of the area is also less straightforward than in the 

smooth case, but inspired by Mullins work there is some interesting analysis 

to be done. 

Theorem 4.4. Recall that ai(u, t) is the function whose output is the angle 

between the tangent vector Ti ( u, t) and the horizontal axis along the ith side. 

We'll write ai(O) and ai(1) for this angle at the initial and final vertices of 

the ith side respectively. Then 

aA n lo;(l) 

at =-I: . "Y(a)da. 
i=l o,(O) 

(46) 

We will include two proofs of this theorem. The first proof is reminiscent 

of Gage and Hamilton's approach to smooth curves, it develops Equation 

( 46) as an intrinsic property of a curve. 

Proof 1. From Equation (19) the time derivative of the area A enclosed by 

the piecewise smooth curve F(s, t) is 

aA n a 11s; 
- =- 2:.::-- (F, N)ds. at i=l at 2 Bi-l 
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Rewriting everything in terms of the time independent parameter u allows 

the time derivative to come inside the integral, 

n 111 a 
=-~- -(F· v·N·)du L...J 2 at 1l t t i=1 ° 

n 111 
aFi 

=-~- (- v·N·)du L...J2 at' t t i=1 ° 
(47) 

1 n 11 a --~ (F· -(v·N·))du 
2 L...J t, at t t • 

i=1 ° 
(48) 

From Equation (38), the first term becomes 

n 111 aFi n 111 
- ~- (- v·N·)du =-~- (""K;·N· + a·T- v·N·)du L...J 2 at , t t L...J 2 , t t t t, t t i=1 ° i=1 0 

but Ti ..l Ni so we have 

(49) 

We could proceed here as in the proof of Theorem 3.8, but looking back 

at line (34) of that proof we see that we cannot integrate by parts in the 

same place because the functions K;i are not continuous on the closed interval 

[0, 1]. Our approach will be to instead write things in terms of component 

functions. Let 

then 
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and, for planar curves, 

So 

but we can interchange differentiation by t and u, 

Now the second term ( 48) becomes 

This is a continuous function on [0, 1] because by Bronsard and Reitich's 

results [5] Fi is C 1 in t, and we have assumed that it is coo in u. So integration 

by parts gives 

~~ t((axi ayi) (-ayi axi))du. 
+ L.....t 2 lo au , au , at , at 

i=l 0 

Notice that the integrand of the second term can be rearranged, 

(( axi ayi) (- ayi axi)) =- axi ayi ayi axi 
au'au' at'at auat+auat 

= -(~i(- ~~) + ~i~~) = -(a!i,viNi) 

and from the evolution equation (38) this is simply 

-("~~K·N· v·N·) = -"~~K·v· I t tl t t I t t· 
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Let us regroup here-using this last calculation together with equation (49) 

we have 

The first term, the boundary term, we can also rearrange, 

- 2:~=1 H((xi,Yi), (-W, W))]5 
= ~2::~=1(((xi,Yi),(-W,~)) lu=o 

(( ) ( 8y;-J 8x;-I)) I ) - Xi-1,Yi-1 ' ----at, ---at U=1 

+H ((xn, Yn), ( -~, ~ )) lu=1 

-((x1, Y1), ( -~, ~ )) lu=o). 

By definition, fori= 1, ... , n, 

(xi, Yi)(O, t) 

= Fi-1(1, t) 

and 
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Similarly, from Equations (39) and (40), fori= 1, ... , n, 

(_£lb. ~)(0 t) = (- 8Yi-! 8Xi-! )(1 t) 
8t'8t' 8t'8t' 

and 

(-~ !El.n.)(1 t) = (-!!1& ~)(0 t) 
8t'8t ' 8t'8t '. 

Since all these expressions are equal, the boundary term from Equation (50) 

is in fact zero, hence 

aA = - t lsi 'Y"'ds. 
at i=l Bi-1 

To finish things off, recall that one of the results proved in Lemma 3.6 was 

whence 

a a 
/'\,=as 

aA __ "n J:si (a)aads 
8t - L.Ji=l Bi-! "( 8s 

"n J:o:i(l) ( )d = - L.Ji=l ai(o) 'Y a a 

which was the desired result. 

The second proof is Mullins' original approach using polar coordinates. 

However, we need that the parameter () be time independent for this proof to 

work, and one consequence of this is that it imposes a particular tangential 

component to the flow of the curve and there is a question of consistency 

with any tangential component imposed by the angle conditions. 

Proof 2. Pick a point p outside the curve as the origin. Starting at the point 

s0 which corresponds to some angle ()0 , traverse the curve in the counter­

clockwise direction and split each curve Fi into subsections at the "inflection 
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points" of e, that is, the points where the angle e changes between increasing 

and decreasing as the curve is traversed. Label each point where the curve 

is divided, including the vertices, by it's angle with respect to the origin p: 

where n ~ m, and some of the angles may be the same. Why should there 

be only finitely many such points? By supposition there are only finitely 

many vertices and because the curvature along each side is bounded the 

number of inflection points must be finite. Moreover, Grayson [12] proved 

that additional inflection points are not created during a curves evolution, 

which guarantees that m < oo. Recall Equation (20), the area formula in 

polar coordinates. From that formula, the area inside the piecewise smooth 

curve is given by 
m 11(}. 

A= L- J r2d0. 
2 (}· j=l J-1 

We take e to be time independent so that the differential operator can be 

taken inside the integral. When we differentiate, we will also have boundary 

terms, but they will cancel out thanks to the short time existence of the flow. 

We now have 

aA = f ~ fei ~(r2)d0 
at j=l 2 lej-1 at 

m 11ei ar 
= L- 2r-de. 

j=l 2 ej_1 at 
Next we can compute ~~. In polar coordinates 
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and 

so 

T = aFaB 
aB as 

aB ar . ar . 
= as (aB cos()- rsmB, aB smB + rcosB) 

aB ar . ar . 
N =as(- ae smB- rcosB, ae cos()- rsmB). 

From these calculations, 

(aF N) = -r ar ae 
at' at as 

but on the other hand, from our evolution equation (38), 

Equating the right hand sides of these equations, and solving for ~~ gives 

whence Equation (51) becomes 

ar 1 ao: - = --"(­
at r ae 

We would like to cancel d() and leave everything in terms of o:, but what 

happens to the limits of integration? If ()j is a smooth point then it has a 

well defined tangent vector and one specific value of a associated with it. 

The only points we will be left with are the original n vertices: 

aA n 1a;(1) a =- 2:: 'Y(a)da. 
t i=l a;(O) 

(52) 

This completes the second proof. 
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This formula is a nice generalization of Theorem 2.2 to the anisotropic evolu­

tion of piecewise smooth curves, but it is not particularly enlightening. The 

analysis we would like to carry out involves understanding why a piecewise 

smooth curve could potentially evolve so differently from a smooth curve, 

and more specifically, what assumptions did Mullins make to arrive at his 

law. 
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5 Mullins' Law part 2 

First let us introduce some notation that will make our job easier. Define 

r(x) := 1x !'(o:)do:. (53) 

Corollary 5 .1. 

oA n la;(l)+lh 

8 = -r(21r) + 2::: !'(a)da. 
t i=l a:;(l) 

(54) 

Proof. First, from Theorem 4.4 we have 

n-1 

= -(f(o:n(l))- r(o:l(O)))- L(r(o:Hl(O))- r(o:i(l))) 
i=l 

l
a:n(l) n-1

1
a:;+l(O) 

=- !'(a)da + 2::: !'(a)da. 
0:1 (0) i=l a:;(l) 

Well, 

l
a:n(l) 

- !'(o:)do: 
0:1 (0) 

10 1211" 1a:n(l) 
= -( !'(o:)do: + !'(o:)do: + !'(o:)do:) 

0:1 (0) 0 211" 
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10!(0) 1211" 
= -r(21r) + 'Y(a)da + 'Y(a)da, 

0 On(l) 

but 'Y is 27r-periodic so 

1
on(1) 

- 'Y(a)da 
01(0) 

1
0!(0) 1211"-211" 

= -r(21r) + 'Y(a)da + 'Y(a)da 
0 On(l)-211" 

1

0!(0) 

= -r(21r) + 'Y(a)da 
On(l)-211" 

1

0!(0)+211" 

= -r(21r) + 'Y(a)da. 
On(l)-211"+211" 

Now we have 

8A n-11oi+1 (0) 1o1 (0)+27r a= -r(21r) + 2:: 'Y(a)da + 'Y(a)da. 
t i=l o;(l) On(l) 

(55) 

The angle conditions ( 41) and ( 42) in Definition 4.2 imply that for i 

1, ... ,n -1 

and 

These two identities allow us to rewrite (55), 

aA n-1

1
o;(1)+!3; 

1
on(1)+!3n 

a= -r(21r) + 2:: 'Y(a)aa + 'Y(a) 
t i=l o;(l) on(l) 

n 

1
o;(1)+!3; 

= -r(21r) + L 'Y(a)da 
i=l o;(l) 

which proves the claim. 
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This formula is very nice for two reasons. Fist, it demonstrates independence 

of the choice of the starting vertex, and second it shows that the formula has 

two competing terms. The negative term is -f(21T") and the positive term is 

the sum of integrals 

1
0:;(1)+,6; 

'Y(a)da. 
o:;(l) 

This seems to imply that the vertices, and specifically the jump that the 

tangent vector encounters at each vertex, play the most important role in 

determining how the area will change. 

The natural periodicity of 'Y allows us to reduce the required integration to 

the interval [ 0, 31!" ]. 

Lemma 5.2. 
8A n r;(1)+.6; 

8 = -r(21T") + 2: ln 'Y(a)da, 
t i=l o:;(l) 

(56) 

where ai(1) = ai(1) mod 21T"Z. 

Proof. It suffices to show that for i = 1, ... , n, 

1
o:;(l)+,6; 

1
a;(l)+,6; 

'Y(a)da= 'Y(a)da. 
o:;(l) a;(l) 

Well, ai(1) E [2n1T", 2(n + 1)11") for some n E Z, and either 

Case 1: (ai(1) + /3i) E [2n1T", 2(n + 1)11"). (57) 

or 

Case 2: (ai(1) + f3i) E [2(n + 1)11", 2(n + 2)11"). (58) 

In the first case 

and 
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so that 

(59) 

In Case 2 then again 

but this time 

so that 

(60) 

Now, 'Y is a 21r-periodic function so we can freely translate integrals of"( over 

intervals of 27r. Hence, in Case 1, 

1
a:;(l)+,(h 

"((a)da 
a:;(l) 

1
a:;(l)+,B; 

= 'Y(a)da 
a:;(l) 

In Case 2 we have, 

1
a:;(l)+.Bi 

"f(a)da 
a:;(l) 

1
a:;+,B;+211" 

= "f(a)da 
a:;(l) 

So in both cases 

1a:;(l)+,B;-2n11" 'Y(a)da 

a:;(l)-2n11" 

1
a;(l)+,B; 

'Y(a)da. 
a:;(l) 

1
a:;(l)+,B; 

1
a;(l)+,B; 

'Y(a)da= 'Y(a)da 
a:;(l) a;(l) 

which is exactly what needed to be shown. 

This leads us to a first result about the change in area. 
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Proposition 5.3. If 

r(27r) 
-------=-=:-:--....,..-:,.____.:_---,----,---,--:-:-::- < n 
mini=1, ... ,n{r(ai(l) + f3i)- r(ai(l))} -

(62) 

a A 
then 8t ~ 0, and if 

r(21r) 
-------=----:---,--:..,----:..---,------,-----,--:-:-:- > n 
maxi=1, ... ,n{r(ai(l) + f3i)- r(ai(l))} 

(63) 

a A 
then 8t < 0. 

Proof. Well certainly 

so by the hypothesis (62), 

Then 

0:::; t ~0:;( 1 )+{3; 'Y(a)da- r(27r) 
i=1 J 0:;(1) 

but by the previous result, Lemma 5.2, the right hand side of the inequality 

. tl 8A 1s exac y 7ft· 

Similarly 

together with (63) implies that 

oA n r;(1)+f3; 

8 = -r(21r) + 2:: 1jj 'Y(a)da < o 
t i=1 a;(1) 
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and this proves the proposition. 

Remark Note that division by r(ai(1)+,Bi)-r(ai(1), for anyi = 1, ... ,n is 

allowed because it was specified that ,Bi > 0, which implies that each integral 

is strictly greater than zero. 

This is a first step, but to get an idea about the change in area enclosed 

by a curve we need to calculate n integrals on the interval [0, 37r] which is 

considerably more work than simply counting to n. So how did Mullins 

arrive at a formula which depended only on the number of sides? By making 

two important assumptions we will finally obtain a result which is strikingly 

similar to Mullins' Law. We can count the number of sides of our curve and 

know whether the area enclosed by C will grow, shrink, or remain constant, 

without computing the actual value of r(,B) (we know that that it is positive) 

provided that all of the interior angles at the vertices are equal and 'Y is 

periodic with respect to that angle. 

Theorem 5.4. Suppose that each interior angle is the same, that is 

,Bi = ,B for i = 1, ... , n 

for some fixed 0 < ,B < 1r. If 'Y is ,8-periodic then 

8A at= (n- k)r(,B) 

where k,B = 211". 

(64) 

Proof. First, "( is already 27r-periodic, so if it is also ,8-periodic then 

there exists some integer k (positive since ,B < 1r < 21r) such that k,B = 27r. 

Then 

-r(21r) = -r(k,B) = -kr(,B) 
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and 
n 

1
a;(l)+i3; n 

1
a;(l)+i3 

L 'Y(a)da = L 'Y(a)da 
i=l a;(l) i=l a;(l) 

because all the angles are equal. Because of the periodicity of 'Y this becomes 

n !3 !3 

L 1 'Y(a)da = n 1 'Y(a)da 
i=l 0 0 

= nr(,B). 

Adding the two pieces back together gives 

8A at= (n- k)r(,B) 

which proves the theorem. 

Mullins' specific result follows as a corollary to this theorem. 

Corollary 5.5. Let F(·, t) describe a piecewise smooth curve with n sides 

whose interior angle at each vertex is 2
; and which is evolving according to 

Definition 4.2 with 'Y = 1 then 

8A 1r 
at= 3(n- 6). 

Proof. In this case, the angle condition of 2
; = 1r- ,8 corresponds to 

,8 = "i· So 6-i = 21r, or k = 6. If 'Y = 1 then 

r" r~ 1f 
r(,B) = lo 'Y(a)da = lo da = 3" 

So by Theorem 5.4 

8A 1r at= (n- k)r(,B) = (n- 6)3, 

which is Mullins' Law. 
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Mullins specific angle condition is very reasonable given the geometric situa­

tion he is considering. In a system of simultaneously evolving grains, where 

each vertex is the terminus of three curves it makes sense to require that all 

three interior angles are equal. The three angles of course must add up to 

21!' hence the angle condition of 2
; and the corresponding value of (3 = ~. 

Also, Mullins chose the simplest ~-periodic function possible, the constant 

function "( = 1. So in fact, although Mullins' Law extends very nicely to the 

anisotropic case via Equation (64), Mullins considered only the isotropic flow 

in his original work. 
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6 Related questions 

Thus far, this paper has concerned itself with presenting results about the 

evolution of smooth plane curves by mean curvature flow, and then exploring 

and generalizing some results to piecewise smooth plane curves, but there are 

many other generalizations, and related topics of interest. Much of the in­

spiration for studying mean curvature flow came from physical phenomena, 

such as Mullins' original interest in the migration of "grain boundaries of a 

recrystallized metal." Another closely related physical problem is the study 

of crystal formation and evolution. However, the classical mean curvature 

flow is somewhat unsatisfying in this context because most crystals are poly­

gons which we have noted do not change under Equation (1). In response to 

this, J. Taylor proposed in [17] a "theory for moving polygonal curves ... by 

their crystalline curvature," which is "analogous to ordinary curvature." Ba­

sically, the side of a polygon evolving by crystalline curvature will move in 

the direction of it's inward pointing normal vector, at a speed inversely pro­

portional to it's length. A convex polygon will shrink, and as it shrinks, the 

speed of it's collapse will increase. Further work on this topic can be found in 

[16], [17], [18]. Another natural generalization (mathematically speaking) of 

smooth curves evolving by mean curvature is the evolution of smooth, closed 
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surfaces, or hypersurfaces. In fact the word "mean" in mean curvature flow 

takes on geometric meaning only in dimensions higher than 1. A surface is 

evolving by mean curvature flow if each point moves in the direction of the 

inward pointing surface normal with speed proportional to the mean curva­

ture at that point, the average curvature at that point of all the curves on 

the surface passing through it. This particular generalization seems to be 

the most popular because it is related to R. Hamilton's promising strategy 

for tackling the Poincare Conjecture. A good reference is G. Huisken's paper 

[13] in which he proves that convex surfaces evolve by mean curvature into 

spheres, which then shrink to round points. 

The third related question we will spend a bit more time on, it is the isotropic 

evolution of curves on surfaces. In this context the flow of a smooth curve 

on a surface that we will consider is given by 

(65) 

where, as before, F(·, t) is the vector function describing the curve, N is 

the normal to the curve (not the surface normal), and "'9 is the geodesic 

curvature. M. Grayson includes a epilogue in his paper [12] titled Curves on 

surfaces from which we will include a part: 

The fact that embedded curves in the plane evolve nicely is a 

strong argument for the niceness of curves evolving on a Rieman­

nian surface. [A]bresch and Langer [1] show(ed) that curvature 

bounded for all time implies convergence to a closed geodesic. If 

our techniques were generalized slightly, they should be able to 

show that either the curve would become convex and shrink to a 

point, or its curvature would remain bounded for all time. 
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Our principal reference for this subject is M. Gage's paper [8] (for those in­

terested, Gage examines the same subject with a slightly different flow in 

a second paper [9]) The major results of this paper are in the direction of 

Grayson's conjecture. First, Gage proves an existence theorem: if the surface 

has bounded Gauss curvature, then a simple closed curve evolves nicely so 

long as it's curvature remains bounded. The other major result is that if the 

curvature remains bounded forever, so that the curve can evolve indefinitely, 

then the geodesic curvature decreases uniformly to zero. That means that, 

under these certain conditions, curves on surfaces evolve either to geodesics, 

or to points, just as Grayson predicted. Gage's last section is an applica­

tion to the unit sphere. He shows that closed curves which divide the unit 

sphere into two regions of equal area, and whose total space curvature is less 

than 31!', evolve into a great circle. He notes that the result is "significant 

because a priori one must allow the possibility that the curve converges to a 

slowly rotating great circle." He proves this by showing that "the entire one 

parameter family (of curves), not just a subsequence, converges to a single 

geodesic." Gage's more general results, outlined above, further imply that 

a curve confined inside one hemisphere of the unit circle will collapse to a 

point. This means that both the length of, and area inside such a curve will 

decrease. As we have concerned ourselves with area thus far, we will present 

here some analysis of precisely how the area in such a situation will decrease. 

Consider a smooth closed curve F(·, t) on the unit sphere which can be pa­

rameterized in the spherical coordinates (1, (), ¢>). Then we can express the 

curve as the graph of a function ¢>((), t) so that the area enclosed is given by 

1211" 14>(8,t) 
A = sin ¢>d¢>d() 

8=0 4>=0 
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which can be integrated so that, 

{27r 

A= Jo=o(l-cos¢(8,t))d8. 

If () is time independent then 

aA a 12
,.. -a =-a (I- cos ¢(e, t))de 

t t IJ=O 

127r a¢ . 
= -a sm¢d8. 

IJ=O t 
(66) 

We can calculate %'f more explicitly from the equation 

(67) 

again, where N is the "inward pointing" unit normal to the curve, that is, the 

projection of the vector onto the xy-plane is inward pointing with respect to 

the projection of the curve. Any point (x, y, z) on the curve can be expressed 

as 

(sin ¢ cos (), sin ¢ sin (), cos ¢) 

so that 
aF a¢ a¢ . a¢ . at = ( at cos ¢ cos ()' at cos ¢ sm ()' - at sm ¢). 

On the other hand 

T = aFae 
ae as 

= ~: ( ~ cos ¢cos () - sin ¢ sin(), 

~ cos ¢sin () + sin ¢cos (), 

0E. . "') - 80 sm'+', 
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and the normal to the curve is 

N=nxT 

where n is the unit surface normal. For the unit sphere, the unit surface 

normal is the position vector F, and we have just calculated the unit tangent 

vector T, so 

Now 

N = ~: (- ~~ sin B - sin ¢cos ¢ cos B, 

~~ cos e - sin ¢ cos ¢sine' 

8¢ . 2 ,/,) 
ae sm 'I' . 

fJF 
(at,N) 

ae 8¢ 8¢ . a¢ . 
= fJs (- fJt ae sm e cos e cos¢ - at cos

2 
¢ cos

2 e sm ¢ 

8¢ 8¢ ll ,/, . ll 8¢ 2 ,/, . 2 ll . ,/, + - !:I- cos u cos 'I' sm u - !:I cos 'I' sm u sm 'I' 
ut ae ut 

8¢ . 3 ,/,) --sm 'I' 
fJt 

= ~~ (- ~~ (cos2 ¢sin¢+ sin3 ¢)) 

ae 8¢ 
= - fJs fJt sin¢. 

From Equation (67) we now have 

or 
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So (66) becomes 

8A = {2n 8¢ sin <j;d() 
Of 10=0 Of 

[ 2n 8s 
= - 1 0=0 Kg 8() d() 

whence 

~~ = - 1L ro,9 ds. 

By the Gauss-Bonnett Formula 

8A =- {L ro, ds 
8t 1o 9 

= J { K dA - 21r. 1 A(t) 

Since K = 1 on the unit sphere 

and the result is the ODE 

whose solutions are 

J { KdA = A(t) 
1A(t) 

8A - = A(t)- 21r 
8t 

(68) 

(69) 

(70) 

Notice that the initial area inside the curve is thus given by A(O) = 27r- A 0 

and that 
8A t 
7ft= Aoe. 

This complements Gage's results nicely. The "interior" of a closed curve 

on the unit sphere is somewhat ambiguous, nevertheless there are only two 

cases to consider: either the curve divides the sphere into two portions of 
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equal area, or unequal areas. In the latter case, the smaller portion will 

have an area less than 27!' which means it will shrink in correspondence with 

Gage's proof that the curve will shrink to a round point. In the case that 

the initial curve separates the unit sphere into two regions, each of area 27!' 

Gage's theorem tells us that the curve will evolve to a great circle. Formula 

(70) adds to this result. Notice that if the initial area inside the curve is 271', 

then since 

A(O) = 27!' - Ao 

we know that A0 = 0. Then ~1 = 0, which proves that during the evolution 

of the initial curve into a great circle the two divided portions of the sphere 

have constant area. 

Though the literature does not seem to contain any existence theorems for 

piecewise smooth curves on the unit sphere we can, under the assumption 

that short time solutions do exist, undertake a brief investigation of the 

behavior of such curves under the flow given by Equation (65). Equation 

(66) holds for piecewise smooth curves with a finite number of vertices since 

the integrand would exist almost everywhere along the curve. In addition, 

the calculations leading to Equation (68) hold along each smooth section of 

curve, and so we arrive at 

~~ = -l ~9ds. (71) 

Suppose the curve C has n vertices. We choose one portion of the sphere 

enclosed by C to be the "interior," then the interior angles are given by f3i 

i = 1, ... , n. The Gauss-Bonnet formula again leads us to an ODE: 

8A n 
8t = A(t)- (211'- L f3i) 

i=l 

(72) 
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which has solutions 
n 

A(t) = 2n- L,Bi + A0et. (73) 
i=l 

Example 6.1. Suppose that Chad an initial interior area A(O) = n(2- J2), 

and four vertices, each interior angle measuring 2
;. Then 

t,Bi = 87!" 
. 3 
t=l 

and we can solve for Ao: 

so A 0 = n( 8-~V2). This means that 

which is greater than zero, despite the fact that the initial interior area was 

less than 2n. 

In the smooth case, the time derivative of the area depended only on the 

initial interior area, but as the above example illustrates, in the piecewise 

smooth case, the number of vertices, and the interior angles play an important 

role. The presence of enough vertices will cause even a very short curve to 

behave in a manner opposite what we would expect from the results about 

smooth curves. 

Proposition 6.2. Suppose C is a piecewise smooth curve on the unit sphere 

with n vertices. Choose one portion of the sphere to be the interior of C so 

that the interior angles measure ,Bi for each i = 1, ... , n. Also suppose that C 

evolves according to Equation ( 65) in such a way that the interior angles at 
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each vertex do not change. Then the interior area of C will increase provided 

that the initial area plus the sum of the interior angles is greater than 27f. 

That is, if 

n 

A(O) + l:f1i 
i=l 

a A 
at 

> 

then 

> 0. 

Proof. First note that, exactly like the smooth case, 

so the sign of~~ depends only on A0 . Then the result follows from Equation 

(73) because 
n 

A(O) = 27f - l: /1i + Ao 
i=l 

means that 
n 

Ao = (A(O) + l: /1i) - 21r. 
i=l 

So the inequality 

i=l 

implies that the sign of A0 and thus the sign of ~~ is positive. 
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