
A TOOL FOR AUTOMATIC INDEX ANALYSIS OF

DIFFERENTIAL-ALGEBRAIC EQUATIONS

A TOOL FOR AUTOMATIC INDEX

ANALYSIS OF

DIFFERENTIAL-ALGEBRAIC

EQUATIONS

By

NING LIU, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Science

McMaster University

©Copyright by Ning Liu, September 2006

MASTER OF SCIENCE (2006)
(Computing and Software)

McMaster University
Hamilton, Ontario
Canada

TITLE:

AUTHOR:

SUPERVISOR:
NUMBER OF PAGES:

A Tool for Automatic Index Analysis of
Differential-Algebraic Equations
Ning Liu
B.Sc. (McMaster University)
Dr. Ned N edialkov and Dr. Sanzheng Qiao
vii, 82

ii

Abstract

Systems of differential-algebraic equations (DAEs) arise in applications such as circuit
simulation, models of chemical processes, optimal control, and multi-body dynamics.
Informally, the index of a DAE is the number of differentiations needed to convert
it to an ordinary differential equation. The index generally indicates the difficulty of
solving a DAE problem. The higher the index of a DAE, the more difficult it is to
solve it numerically.

Structural index analysis plays a crucial role in solving DAE problems. In this
thesis, we present two methods for index analysis, namely, Pryce's structural analysis
(SA) and Linninger's symbolic-numeric (SN) analysis. We provide a Matlab tool
implementing these two approaches: an Automatic Structural Index Analyzer (ASIA).
We discuss the underlying algorithms, which include generating a signature matrix
and computing SA index, computing a system Jacobian, and generating a symbolic­
numeric matrix and computing SN index. We also present implementation issues and
illustrate how ASIA is used.

Numerical experiments show that ASIA can produce reliable structural informa­
tion. We also show examples on which structural analysis fails, and how ASIA detects
such situations.

Acknowledgements

First, I would like to express my sincere thanks and deep appreciation to my super­
visors, Dr. Nedialko Nedialkov and Dr. Sanzheng Qiao, for their constant support,
encouragement, and guidance through my entire graduate studies. This thesis would
not be what it is now without their enormous suggestions and corrections. I have
learned much from them in both academic research and non-academic fields.

I thank Dr. Douglas Down and Dr. Christopher Anand, for reviewing my thesis
and their valuable suggestions and comments. I appreciate all the faculty members
and fellow students in the department of computing and software, for inspiring me
and sharing many good ideas with me.

I am grateful to my dearest parents. Without their selfless love and support in
many years, I would never accomplish any goal in my life. I also thank my cousin
Kang Liu and his wife, for their great help during my studies.

I would not forget Jim Cai, Yi Luo, Kelvin, Omar, Shu Wang, and all other friends
in Canada, for the friendship and all cheerful moments we had.

Last but never least, my special thanks to Shanshan Chen, who brings a new and
hopeful dimension to my life mission.

ii

Contents

Abstract

Acknowledgements

1 Introduction
1.1 Background
1.2 Motivation and Contribution .
1.3 Thesis Structure

2 Theory of Index Analysis
2.1 Pryce's Structural Analysis
2.2 The Symbolic Numeric Index Analysis

3 Numerical Software
3.1 The Algorithms .

3.1.1 Implementation of Structural Index Analysis
3.1.2 Computing the System Jacobian
3.1.3 Implementation of Symbolic Numeric Analysis

3. 2 Software
3. 2.1 General description
3.2.2 Specification
3.2.3 Interface
3. 2.4 Installation and Usage

4 Numerical Experiments
4.1 Structure of the Experiments
4.2 Single Pendulum

4.2.1 Background Information
4.2.2 Mathematical Description
4.2.3 Numerical Results

4.3 Double Pendula

lll

1

ii

1
2
4
5

7
7

12

21
21
22
27
34
40
40
41
43
46

51
51
53
53
53
53
55

iv CONTENTS

4.3.1 Background Information 55
4.3.2 Mathematical Description 55
4.3.3 Numerical Results 55

4.4 Two-link Robotic Arm 0 • 0 ••• 57
4.4.1 Background Information 57
4.4.2 Mathematical Description 57
4.4.3 Numerical Results 58

4.5 Car Axis 60
4.5.1 Background Information 60
4.5.2 Mathematical Description 61
4.5.3 Numerical Results 62

4.6 Example of Failures in Structural Analysis 64
4.6.1 Background Information 64
4.6.2 Mathematical Description 65
4.6.3 Numerical Results 65

4.7 Chemical Akzo Nobel 66
4.7.1 Background Information 66
4.7.2 Mathematical Description 67
4.7.3 Numerical Results ... 69

4.8 'fransistor Amplifier •••• 0 •• 70
4.8.1 Background Information 70
4.8.2 Mathematical Description 70
4.8.3 Numerical Results ... 72

4.9 Ring Modulator 73
4.9.1 Background Information 73
4.9.2 Mathematical Description 73
4.9.3 Numerical Result 0 •••• 74

4.10 Summary of Numerical Experiments 76

5 Conclusions and Future Work 77
5.1 Conclusions 77
5.2 Future Work . 78

Bibliography 80

List of Figures

3.1 Hierarchy diagram of the system. 41
3.2 Signature matrix of robotic arm 43
3.3 Interface design of ASIA 44
3.4 Organization of ASIA. 47

v

List of Tables

2.1 Rules of O'V-operations 14

3.1 Steps of generating a derivative array 25
3.2 Initialization for the Single Pendulum . 29
3.3 Evaluation of code list for f = x" + x>.. 32
3.4 Evaluation of code list for g = y" + y>. +G. 33
3.5 Evaluation of code list for h = x2 + y 2 - £ 2 . 33
3.6 Initialization of generating SNI matrix 35
3. 7 Evaluation of !I = x~ - x4 37
3.8 Evaluation of !2 = x~ - x 2 + x4 . . 38
3.9 Evaluation of h = x;- xi- x§. . 38
3.10 Evaluation of f 4 = x1 + x2 + 4x3 . 38

4.1 Structural index analysis of single pendulum 54
4.2 Signature matrix for single pendulum 54
4.3 Consistent point and condition number for single pendulum 54
4.4 Structural index analysis of double pendula 56
4.5 Signature matrix for double pendula . . 56
4.6 Jacobian matrix for double pendula 56
4. 7 Structural index analysis of robotic arm . . 58
4.8 Consistent point and condition number for robotic arm 59
4.9 Structural index analysis of modified robotic arm 60
4.10 Constants in car axis 62
4.11 Structural index analysis of car axis 63
4.12 Consistent point and condition number for car axis 63
4.13 Structural index analysis of an example in [KL04] 65
4.14 Signature matrix for the example in [KL04] 66
4.15 Structural index analysis of chemical Akzo Nobel . 69
4.16 Consistent point and condition number for chemical Akzo Nobel 69
4.17 Structural index analysis of transistor amplifier 72

vi

LIST OF TABLES

4.18 Consistent point and condition number for transistor amplifier
4.19 Structural index analysis of ring modulator (ODE)
4.20 Structural index analysis of ring modulator (DAE)
4.21 Structural index analysis of modified ring modulator (DAE)

vii

73
74
74
75

viii LIST OF TABLES

Chapter 1

Introduction

We consider an initial value problem (IVP) of a system of differential-algebraic equa­

tions (DAEs) of the form

fi (t, Xj and their derivatives) = 0, 1 ::; i, j ::; n, (1.1)

where Xj = Xj(t) are dependent variables, and t is an independent variable. We

assume that /i are sufficiently differentiable.

Informally, the index of a DAE system is defined as the number of differentiations

needed to convert it into an ordinary differential equation (ODE) system. In this

thesis, we study and implement two index analysis algorithms [Pry98, KL04]: one

allows derivatives of order higher than one to appear in the system, and the other

allows first order derivatives only. We also provide a tool for automatic index analysis

of DAEs.

1

2 1. Introduction

1.1 Background

Solving the initial value problem of a DAE system has been an active research area

for over two decades. Many physical and engineering problems occur as a system of

nonlinear differential equations with algebraic constraints.

Various numerical methods have been developed for solving DAEs, including back­

ward differentiation (BDF) and implicit Runge-Kutta (IRK) methods [KEBP96].

These methods are used widely, and have been proven to be efficient and reliable

in many situations. However, most of these approaches target lower index problems

and sometimes require special structure of the problem. It was thought that DAEs

of index higher than one are less significant in practice. Nevertheless, recent research

in different areas shows that many problems are naturally and easily modeled as

high-index DAEs. Generally, high-index DAEs are much more difficult to solve than

index-1 or 2 problems.

Many studies have been conducted for index analysis of DAE systems. Pantelides

[Pan88] derives a criterion for determining how to differentiate a subset of equations

in a nonlinear DAE system to provide further constraints for initial values. He pro­

posed an algorithm based on graph theory to locate those subsets of equations to be

differentiated.

In [MS93], Mattsson and Soder lind present an index reduction algorithm for DAEs.

They differentiate parts of the DAE analytically and replace the derivatives intro-

1. Introduction 3

duced by differentiation by a new algebraic variable called a dummy derivative. The

resulting augmented system is at most index 1.

Campbell and Gear's derivative array equations [CG95a] is another attempt of

studying DAE indices. Comparing with Pryce's structural analysis [Pry98, PryOl J,

which we will introduce shortly, this approach requires symbolic preprocessing of the

system. Therefore, it can be difficult to implement.

In [Pry98, PryOl], Pryce presents a direct, easily applied method for structural

analysis (SA) of a DAE. It generalizes the method of Pantelides [Pan88], but it is more

straightforward and can be applied to DAEs of any order. Based on this, Nedialkov

and Pryce [NP05b] introduce a new approach for solving DAEs in the form (1.1). The

DAEs can be of high index, fully implicit and contain derivatives of orders higher than

one. Nedialkov [NP05b] implements the method into a prototype DAE solver, and

Zhang redesigns and implements the solver HIDAETS in [Zha05].

Generally speaking, the index obtained by structural analysis is an upper bound

for the true index of a DAE system [KEBP96]. However, recent research has shown

that the actual differential index could be greater than the structural rank in some

problems [GRBOO]. In [KL04], S. Chowdhry, H. Krendl, and A. Linninger pro­

pose a new approach for index analysis. Their method includes symbolic as well

as numerical information of the system in order to overcome the shortcomings of

over/underestimating the correct DAE index.

4 1. Introduction

1.2 Motivation and Contribution

Index analysis plays a crucial role in solving DAE systems. Due to the lack of high­

index DAE solvers, early work on index analysis deals mainly with index reduction

[Gea88, Gea90]. In general, it consists of directly searching for derivatives of al­

gebraic variables by multiple differentiations of algebraic constraints. However, the

symbolic processing of nonlinear equations in various applications can be complex.

The structural analysis is developed to overcome this defect. In an SA, a DAE system

is represented by a matrix of variables and their derivatives. Each entry CJij in the

matrix indicates the appearance of the ith variable in the jth equation.

Pryce's SA [PryOl] is considered to be one of the easy-to-use and efficient index

analysis methods. An automatic tool which applies this analysis is needed, so that

it can help users from different application areas to reliably determine the index of a

given system. However, this SA fails in particular problems due to various reasons,

that are unclassified and not fully understood. A tool, which can help to identify the

patterns in those problems where the SA fails, is important to future index analysis

studies.

Linninger's symbolic-numeric (SN) analysis [KL04] is another structural approach.

It shows some advantages in determining differential indices for DAE systems with

derivatives appears linearly. We also want to have an integrated software that provides

results of the SN analysis as a reference and complement to Pryce's SA analysis, which

1. Introduction 5

can also assist improving the SA approach in various ways.

In this thesis, we present the algorithms for our Automatic Structural Index Ana­

lyzer (ASIA), including generating structural information, computing a system Jaco­

bian, and computing the SN index. We implement these algorithms in Matlab using

the technique of operator overloading. This avoids complex source code transforma­

tion. We provide a user-friendly interface of ASIA, so that the software can be easily

used by people without advanced knowledge of index analysis. We conduct exten­

sive numerical tests for both DAE and ODE problems using ASIA. The experiments

show that our software can perform accurate index computation and return useful

information for comparing two types of analyses and helping to develop heuristics for

better index analysis algorithms.

1.3 Thesis Structure

The thesis is organized as follows.

In Chapter 2, we introduce the main steps of Pryce's SA method and Linninger's

SN analysis. We illustrate them using simple examples.

Chapter 3 consists of two parts. We first present a detailed algorithm for im­

plementing the SA, computing the system Jacobian, and computing the SN index

through operator overloading. All the algorithms are demonstrated by pseudo code.

In the second part, we discuss some issues from a software design perspective. We

6 1. Introduction

present a general description of ASIA, its informal specifications, the interface design,

and instructions of how to install and use this tool.

In Chapter 4, we perform numerical experiments on 8 problems. Among them,

we show examples where both analyses succeed, as well as some cases where trans­

formation of equation formulation is required to obtain correct results.

In Chapter 5, we give a conclusion of this thesis and discuss future work.

Chapter 2

Theory of Index Analysis

In this chapter, we introduce two approaches for index analysis on which our tool is

based.

2.1 Pryce's Structural Analysis

In general, Pryce's SA is composed of the following steps.

1. Generate a structural matrix.

2. Solve a linear assignment problem for the matrix obtained in the previous step.

3. Compute the structural index.

We first introduce some definitions and notation and then present the details of each

step with simple examples.

7

8 2. Theory of Index Analysis

This SA is also called a signature method, as it involves an n x n matrix 'E = (aii),

the signature matrix, defined for (1.1) as:

highest order of derivative of the jth variable that occurs in the

<Jij = ith equation; or (2.1)

-oo if the jth variable does not occur in the ith equation.

A Linear Assignment Problem (LAP) is defined as a task of maximizing the effec-

tiveness of assigning a set of jobs to a group of workers, where each worker i has an

effectiveness measure for job j. More details about LAP can be found in [Ber91]. In

the content of SA, we use an LAP solver to find the highest value transversal (HVT)

of a signature matrix 'E (2.1). A transversal of an n x n 'E is an n-element subset

of 'E, with one element in each row and column. The highest value transversal is a

transversal T, where the sum of all elements in T, denoted by IITII, is maximum.

A consistent point of a DAE system is a set of values of Xj and their derivatives

at a given t that determine a unique solution.

The degree of freedom of (1.1) is the number of independent initial conditions

required.

Given a DAE system of the form (1.1), we perform the following steps of SA.

1. Form then x n signature matrix 'E defined in (2.1).

Example 2.1. Through the rest of this chapter, we use the single pendulum

2. Theory of Index Analysis

problem [AP98]:

0 = f = x" + x.X,

0 = g = y" + y.X- G,

0 = h = x 2 + y 2
- L 2 ,

9

(2.2)

where G > 0, L > 0 are constants, and the dependent variables are x(t), y(t),

and .X(t).

Its signature matrix I:, labeled by equations and variables, is

X y A

f 2 -oo 0

g -oo 2 0

h 0 0 -oo

2. Solve the LAP for I: and find the HVT.

Example 2.2. For the single pendulum problem, two possible HVTs can be

easily found at positions (!,.X), (g, y), (h, x) and (!, x), (g, .X), (h, y), where both

IITII =2.

For large systems, efficient algorithms for solving LAP can be found in [Ber91]

and [Duf81].

10 2. Theory of Index Analysis

3. Solve the dual of HVT T in linear programming (LP) sense to find two n-

dimensional integer vectors c and d, which maximize z = L;j dj - L;i ci, with

all ci 2:: 0, satisfying

dj - ci 2:: CJij for all i, j = 1, ... , n,
(2.3)

di- ci = CJij for all (i, j) E T.

The vectors c and d are called equation offsets and variable offsets respectively.

Example 2.3. The offsets for the single pendulum problem are c = (0, 0, 2)

and d = (2, 2, 0):

X y A Ci X y A Ci

f 2 -oo 0* 0 f 2* -()() 0 0

g -00 2* 0 0 and g -()() 2 0* 0

h 0* 0 -()() 2 h 0 0* -()() 2

dj 2 2 0 d· J 2 2 0

Here the HVTs are marked with*·

4. Form the system Jacobian J, where

a (!ict)' ... '~~en))
J =) . (d1) (dn) a (X1 , ... , Xn

(2.4)

By Griewank's lemma in [NP05a], the authors proved that (2.4) is equivalent

2. Theory of Index Analysis 11

to

if d·- C· =a·· J t tJ'

0 otherwise.

Example 2.4. In our single pendulum problem, we compute J as

1 0 X

J = 0 1 y

2x 2y 0

5. Form the enlarged system obtained by taking derivatives of fi up to cith order.

Example 2.5. For the single pendulum, denoting X = (x, x', x"; y, y', y"; >.),

we have

x" + x>.

y" + y>.- G

F(t,X) =

2xx' + 2yy'

2xx" + 2yy" + 2x'2 + 2y'2

6. The structure analysis succeeds if (t*, X*) is a solution point of F(t, X), and J is

nonsingular there. We call (t*, X*) a consistent point ofF as defined previously.

In our example, it is easy to check that det J = -2(x2 + y2
) = -2£2 =f. 0, for

all x andy. Therefore, the SA succeeds on the single pendulum problem.

12 2. Theory of Index Analysis

7. Upon the success of SA, we can conclude the following properties of a DAE in

a neighborhood of (t*, X*).

• The DAE has DOF ~di- ~ci, which is also the value of the HVT.

• The DAE has a differentiation index [PryOl] Vd less than or equal to the

structural index vr, where

1 if some di = 0,

0 if all di > 0.

(2.5)

Example 2.6. According to the offset vectors c and d, the single pendulum

system has DOF 2, and vd = vr = 3.

In [PryOl], the author concludes that for all problems where Pantelides' [Pan88]

algorithm applies, the SA returns the same index vr as in Pantelides' algorithm.

2.2 The Symbolic Numeric Index Analysis

The SN analysis is another type of structural approach to compute the indices of DAE

problems. It is only applicable to first order systems. The overall process contains

two major steps: generating a symbolic numeric incidence matrix and computing its

rank. Similarly, we first give some definitions and notation. Then we illustrate each

step by simple examples.

2. Theory of Index Analysis 13

A symbolic numeric incidence (SNI) matrix P of a DAE system is ann x 2n matrix,

whose columns represent dependent variables Xj and their first-order derivatives xj.

The values of its entries are defined as

c if Xj or xj appears linearly with coefficient c in /i,

Pij = * if Xj or xj appears nonlinearly in /i, or (2.6)

0 if xi or xj does not appear in fi.

Example 2. 7. A simple example of SNI matrix is

X y A
0 = f = x' + x,\ + 2y,

A set of av-operations n = { +, -, x, /}is defined for symbols of SNI matrix en-

tries. The operations are binary compositions of addition, subtraction, multiplication

and division over three types of SNI matrix entries: {0, c, * }. The rule of computa-

tion is similar to regular arithmetic operations except that any operation involving '*'

produces '* ', indicating that the nonlinearity is preserved under av-operations. The

complete binary operations definition is in Table 2.1.

The av-differentiation is a method that performs regular differentiation of alge-

braic equations using its SNI matrix. For an algebraic equation ei and a variable Xj,

the av-differentiation of ei is defined as follows.

1. If xi appears linearly with coefficient c in ei (which corresponds to (ei, xi) = c in

14 2. Theory of Index Analysis

oED

0 0 { c, *}
OoO

c1 o {0, c2}
*o{O,c}
{c, *} o *

Oo*

+ X

{c,*} { -c, *} 0
0 0 0

c1 + {0, c2} c1 - {0, c2} Cl X {0, c2}

* * *
* * *
* * 0

Table 2.1: Rules of av-operations

I
0

N/A
Nj A or ci/c2

NjA or*

*
0

the SNI matrix), after differentiation, Xj is eliminated from ei, while xj appears

linearly with coefficient c (which corresponds to (ei, xi) = 0 and (ei, xj) = c in

the SNI matrix).

2. If Xj appears nonlinearly in ei (which corresponds to (ei, xi) = * in the SNI

matrix), after differentiation, both Xj and xj appear nonlinearly in ei (which

corresponds to (ei, xi)=* and (ei, xj) =*in the SNI matrix).

3. If xi does not appear in ei (which corresponds to (ei, Xj) = 0 in the SNI matrix),

after differentiation, both (ei, Xj) and (ei, xj) remain 0 in the SNI matrix.

By definition, the av-differentiation is rigorous in linear cases, which means that it

is capable of reflecting additions/subtractions of coefficients in linear terms. However,

since each nonlinear term is simply represented by a symbol '*', the av-differentiation

may ignore the effect of multiplication/ division between nonlinear terms, as we will see

in the case studies later. Based on the av-differentiation, we can give the algorithm

of the symbolic numeric index analysis [KL04].

Given a DAE in the form of (1.1), we perform the following steps.

2. Theory of Index Analysis 15

1. Initialize a variable index to 0. Form the symbolic numerical incidence matrix

P according to (2.6).

Example 2.8. Similarly, we use the following example to illustrate each step

of the symbolic numeric index analysis. For a DAE system with independent

variables X= (x1, ... , x4),

0 = fi = X~ - X4,

0 = f2 = X~ - X2 + X4,

0 f I 2 2 = 3 = x3 - xl + x2, (2.7)

0 = j4 = X1 + X2 + 4x3,

its SNI matrix P is

X~ x' 2 X~ X~ X1 X2 X3 X4

!I 1 0 0 0 0 0 0 -1

h 0 1 0 0 0 -1 0 1 (2.8)

h 0 0 1 0 * * 0 0

!4 0 0 0 0 1 1 4 0

2. Compute the numerical rank of P. One approach to determine matrix rank is to

apply a symbolic-numeric type LU decomposition, which involves both regular

coefficient and special variable elimination in SNI matrices. However, this rank

determination may be inaccurate due to limitations of floating-point arithmetic.

16 2. Theory of Index Analysis

Generally speaking, singular value decomposition can handle rank-deficiency in

the presence of round-off error. It is done by comparing small singular values

with a given tolerance E. The strategy of managing numerical issues in the

implementation will be discussed in the next chapter. More details about rank

determination can be found in [GL96].

Example 2.9. For (2.8), since f 4 does not contain any derivative of xi, the

rank of the SNI matrix is 3, which indicates rank deficiency.

3. If the SNI is full-rank in step 2, the index of the DAE system is 0. If rank-

deficiency is detected, a loop of o-v-differentiation is applied. Each of the alge-

braic constraints in the system is differentiated once.

Example 2.10. In (2.8), the only algebraic equation is f 4 . Therefore, it is

differentiated as

x' 1 x' 2 x' 3 x' 4 X1 X2 X3 X4

J, (0 0 0 0 1 1 4

:)
(2.9)

:::} ~~ 1 1 4 0 0 0 0

4. After the differentiation, known derivatives will be substituted into the new
(1'0
~

equations obtained from the previous step according to (2.1).

Example 2.11. To eliminate x~, x~, and x~, we subtract f1, h, and h in (2.8)

2. Theory of Index Analysis 17

from f 4 in (2.9):

x' 1 x' 2 x' 3 x' 4 XI x2 X3 X4

!~ c 1 4 0 0 0 0

:) :::::} l~ 0 0 0 * * 0

(2.10)

Note that the x4 terms in !I and !2 are cancelled out during the elimination.

5. Increase variable index by 1. The process is completed, if the SNI matrix

becomes full-rank after substitution, otherwise we go back to step 3 and differ-

entiate algebraic equations once more. The loop continues until a full-rank SNI

matrix is detected.

The termination of the whole process is another issue that may arise in prac-

tice. In general, if some variable Xi or its first derivative appears nonlinearly

in the system, by the continuous differentiations of the algebraic constraints

and substitutions of variables, we will have the nonlinear terms appear in every

algebraic constraint in the system. This will transform the SNI matrix into a

full-rank one. However, it is possible that the linear coefficient of a particular

variable Xi is repeatedly being canceled after one or several rounds of processing.

In this case, we may have an infinite loop. This indicates that the original DAE

system is not well-setup and, consequently, nonsolvable, since one can never

obtain the expression of x~ by differentiation.

18 2. Theory of Index Analysis

Example 2.12. Replacing the last row of (2.8) by (2.10), we obtain a new

matrix:

X~ X~ x' 3 X~ XI X2 X3 X4

!I 1 0 0 0 0 0 0 -1

12 0 1 0 0 0 -1 0 1

h 0 0 1 0 * * 0 0

R 0 0 0 0 * * 0 0

whose rank is still 3. We differentiate J~ again in order to obtain the derivative

x' I x' 2 x' 3 x' 4

~~c 0 0 0

::::} !~' * * 0 0

* * 0

:)
(2.11)

* * 0

Performing substitution of x~ and x~ in (2.11) will give us

x' I x' 2 X~ x' 4 XI X2 X3 X4

1:(* * 0 0 * * 0

:)
(2.12)

::::} ft 0 0 0 0 * * 0

Finally, a third differentiation of (2.12) and substitution yield the desired form

2. Theory of Index Analysis 19

that contains a x~ term.

x' I x' 2 x' 3 x' 4 XI X2 X3 X4

fl' 0 0 0 0 * * 0 *

* !~" * * 0 * * * 0 *

* It 0 0 0 * * * 0 *

Upon completion, the final SNI matrix is

x' I x' 2 x' 3 X~ XI X2 X3 X4

!I 1 0 0 0 0 0 0 -1

h 0 1 0 0 0 -1 0 1

h 0 0 1 0 * * 0 0

lt' 0 0 0 * * * 0 *

It is not hard to see that the matrix is structurally full rank. Therefore the

symbolic numeric index analysis succeeds and returns index 3. Meanwhile, if

20 2. Theory of Index Analysis

we apply SA on this problem, it returns a ~ matrix and offsets:

XI X2 X3 X4 Ci

]I h -oo -oo 0 0

h -oo 1 -()() 0* 0

h 0 0 h -00 0

h 0 0* 0 -()() 1

dj 1 1 1 0

where the structural index is vr =maxi ci + 1 = 2, which is less than the true

index 3. One of the ways the SA can fail is when it is unable to catch the

cancellation of x4 in the process, as we have shown in the SNI analysis.

Chapter 3

Numerical Software

In this chapter, we present first the algorithms used in ASIA. Then we describe our

program from a software engineering perspective, to discuss issues arising in the design

and implementation, and explain how to use ASIA.

3.1 The Algorithms

Our automatic index-analysis software includes three major functional components:

Structural index analysis, Computing the system Jacobian, and Symbolic-numeric in­

dex analysis. These components are implemented using operator overloading to avoid

complicated source code transformation. Different algorithms for arithmetic opera­

tions and elementary functions have been applied in each component. We illustrate

the process using pseudo code and simple examples.

21

22 3. Numerical Software

3.1.1 Implementation of Structural Index Analysis

The Structural index analysis component implements Pryce's SA introduced in the

previous chapter. Given a DAE system of the form (1.1), written in the required

format, upon completion of the program, the software returns the Taylor index ZIT,

equation and variable offsets c and d, and HVT T.

The code for implementing the SA is separated into two parts:

• generating the signature matrix, and

• computing the index.

To generate the signature matrix, we associate a derivative array1 with each variable

and subexpression in an equation. The elements of these arrays indicate the highest

order of derivatives of independent variables present in the DAE system.

Example 3.1. If a DAE system has independent variables X = {x1, ... , x4}, a

possible subexpression and its corresponding derivative array could be:

Informally, operator overloading is applied in generating the signature matrix in

the following way.

1This is not S.L. Campbell's derivative array approach in [CG95b].

3. Numerical Software 23

1. Initially, each independent variable is assigned a derivative array.

2. When one or more variables are combined together by an arithmetic operation

or elementary function, a new derivative array is created for this expression

accordingly, whose entries are determined by rules that we will introduce shortly.

3. The previous step repeats until a derivative array is formed for each equation

in the DAE system. Then, this derivative array is the corresponding row in the

signature matrix.

Initialization of derivative arrays. From (2.1), we initialize the derivative array

V of an independent variable Xi as:

Vj={l
-00

if i = j; or
(3.1)

otherwise.

Binary operations of derivative arrays. If an expression contains two variables

or subexpressions, which are combined by one of the four binary arithmetic operators

{ +, -, x, /}, the highest order derivative of each independent variable that appears

in the resulting expression is obviously the higher one between the two components.

Accordingly, the derivative array of the resulting expression is the componentwise

maximum of the derivative arrays of two constituent variables or subexpressions. If

one of the operands is a constant, the resulting derivative array is simply a copy of

the counterpart of the other non-constant operand.

24 3. Numerical Software

We use addition of derivative arrays as an example, where other operations follow

the same procedure. Let 81 and 82 be two expressions with associated derivative

arrays 81 .array and 82.array. We also assume both arrays are of the same size

throughout the examples in this chapter. Then we have the following algorithm to

compute the result of 8 = 81 + 82.

PLUS(81, 82)

1 if neither 81 nor 82 is constant

2 then 8.array +-- max(81.array, 82.array)

3 else if 81 is a constant

4 then 8.array +-- 82.array

5 else if 82 is a constant

6 then 8.array +-- 81.array

7 return 8

Here max computes the componentwise maximum of 81 .array and 82.array.

Differentiation. As introduced before (1.1), the SA can handle DAEs with arbi­

trarily high-order differentiations. When a variable or expression is differentiated p

times, by definition, each component of a derivative array is increased by p. Note that

in (3.1), -oo is used to represent absence of independent variables in a corresponding

subexpression. Therefore, when such expressions are differentiated, adding a constant

3. Numerical Software

Xl

X3

X4

Xl X X3

su bexpressions

Xl X X3 + 5
X~
X~
COSX3

X~+ Xl X X3 + 5
COS X3 + X~ + Xl X X3 + 5
X~ + COS X3 + X~ + Xl X X3 + 5

derivative array
(0 -oo -oo -oo)

' ' ' (-oo -oo 0 -oo)
' ' ' (-oo -oo -oo 0)
' ' ' (0, -oo, 0, -oo)

(0, -oo, 0, -oo)
(1 -oo -oo -oo)

' ' ' (-oo -oo -oo 2)
' ' '

(-oo -oo 0 -oo)
' ' ' (0, -oo, 0, 2)

(0, -oo, 0, 2)
(1, -oo, 0, 2)

Table 3.1: Steps of generating a derivative array

n to the -oo will not destroy the correct representation.

25

Nonlinear smooth functions. We also implement common smooth functions (sin,

cos, exp, power, log, etc.) for derivative arrays. Since applying these nonlinear

functions does not change the highest order of a derivative, the resulting derivative

array remains unchanged.

Example 3.2. Here we choose the same example used previously to illustrate the

process of parsing an equation and generating the corresponding derivative array.

With the same expression in Example 3.1, the steps of operator overloading execution

are shown in Table 3.1.

The second part of the program is to compute the Taylor index vr (2.5) based on

the signature matrix. The main step is to solve a linear assignment problem and find

the HVT defined in the previous chapter.

26 3. Numerical Software

We provide a LSOVLE function to compute the HVT and offsets of the signature

matrix. In this function, we invoke a third party LAP solver from [JV03] through

Matlab's external interface. This solver is based on the shortest augmenting path

algorithm. A detailed description can be found in [JV87]. Some technical issues are

also presented here. The LAP solver is written in C++ and actually computes the

smallest value transversal (SVT) of an input matrix. In order to avoid dangerous

computation involving infinities in C++ and to compute the HVT instead of the

SVT, we pass a modified signature matrix, which is obtained by setting negative

infinity to a large positive number and then reversing the sign of the whole matrix,

to the LAP solver.

Upon completion of LSOLVE, we have the following output: two index vectors

rows and cols, where (rowsi, colsi) are the entries of~ that contribute to the HVT;

and the two offsets c and d defined in (2.3).

Lastly, we have all the information to determine the structural index vr defined

in (2.5). Overall, the function for determining the index is as follows.

COMPUTE-SAINDEX(~)

1 [rows, cols, c, d] = LSOLVE(~)

2 HVT 2: vat>~'"'
= IJrowsi,colsi /.---......, Y·' ~"':/J ..

-r
3 if any component of d is~zero

4 then index= max(c) + 1

3. Numerical Software 27

5 else index= max(c)

6 return HVT, rows, cols, c, d, index

3.1.2 Computing the System Jacobian

In [NP05a], N edialkov and Pryce present a source code translation algorithm for

computing the Jacobian. Although likely very efficient, it is complicated in imple-

mentation. Another approach is applied in ADOL-C [GW04]. Here we implement a

scheme based on operator overloading. Before we introduce the rules of computing

gradient arrays, let us introduce two definitions.

A code list is a sequence of variables and expressions that consists of fundamental

arithmetic operations and other functions.

The code offset of an expression v is the unique value such that

(3.2)

where Oj(v) is the highest order of derivative of Xj on which v depends. The compu-

tation of a(v) can be based on the following rules.

1. If v = Xj, then

28 3. Numerical Software

2. If v = fi, then

a(v) = ci·

3. If v is a function of variables X, then

a(v) = min(a(X)).

4. If v = dPuj dtP, then

a(v) = a(u)- p.

The complete proof of this is in [NP05a].

With the two definitions, we are ready to show how to apply the operator over­

loading of gradient arrays on the expressions in the code list. Generally, the strategy

for computing the Jacobian is described below.

1. For each variable or expression in the code list, we associate three types of

information.

• A gradient array to store the gradient vector of this variable or expression.

• A code offset computed following the rules introduced above.

• The value of this expression at the given point.

2. Initially, for each variable Xi, every component of its gradient array is set to

0, except the ith one, which is set to 1. The initial code offsets for xi are the

3. Numerical Software

code list
X

y
;\

gradient array
(1, o, 0)
(0, 1, 0)
(0, 0, 1)

code offset
2
2
0

Table 3.2: Initialization for the Single Pendulum

29

corresponding variable offsets di obtained from the SA analysis. We also store

the initial value of each Xi, which is given as a consistent point.

3. The gradient arrays are propagated through the code list under special rules

specified for each fundamental arithmetic operation and elementary function.

4. The code offset of the expression is computed based on those of its subexpres-

sions.

5. The value of the expression is evaluated and stored.

6. The above three steps repeat until the gradient array for the right-hand-side

expression of each equation in the system is obtained. These gradient arrays

consist of the Jacobian matrix evaluated at the given consistent point.

Initialization of gradient array and code offset. We set the components of an

associated gradient array of independent variable Xi to be the ith unit vector ei· The

code offset of Xi is di obtained from the SA by (3.2).

Example 3.3. For the single pendulum, we have the initialization in Table 3.2.

30 3. Numerical Software

Differentiation. In [NP05a], the authors present Griewank's Lemma, which states

that if v, a function of Xj and its derivatives, does not depend on any derivatives of

Xj higher than the qth, then

Denote

ov
ox(q)'

J

for all p 2: 0.

\7 k = (axi~+d,) , ... , ax~~+d.)) .
By setting q = k + dj in (3.3), and applying the notation of "\h, we have

and if k = -a(v), v = dPujdtP then (3.5) becomes

V' -a(v)(v) = V' -a(u)(u).

(3.3)

(3.4)

(3.5)

(3.6)

A detailed proof is in [NP05a]. By (3.2) and (3.6), the differentiation operator pre-

serves the gradient array of the operand, and the code offset decreases by the order

of differentiation.

DIF(u,p)

1 if V = dPujdtP

2 then v.gradient +-- u.gradient

3 v.offset +-- u.offset- p

4 return v

3. Numerical Software 31

Arithmetic operations on gradient arrays. We show how to compute the result

of binary arithmetic operations of two gradient arrays. First, each \7 k obeys regular

rules of gradient operations. For example, if v = xy, then

Generally speaking, if vis an algebraic function f(x, y, .. .), we have

Second, from (3.2), we know that for any v in the code list, it does not depend on

any derivatives of Xj higher than the (dj- a(v))th. Therefore, applying (3.4) in (3.3)

when k > -a(v), we obtain

\7k(v) = 0, if k > -a(v).

Following the two properties above, we can conclude the rules of computing gra-

client arrays through arithmetic operations as follows. For v = v1 o v2, where

o E { +, -, *, /}, the gradient of v is computed by the normal rules of gradient op-

erations with one prerequisite that if the code offset of v1 is greater than that of v2,

then we replace the gradient of v1 by 0 in the formula, and vice versa. We show the

pseudo code of multiplication as an example.

32

code list
tl = xo
t2 = A.o
t3 = xoA.o
t II
4 = xo

ts = t4 + t3
f = ts

gradient array
(1, 0, 0)
(0, 0, 1)
(0, 0, xo)
(1, 0, 0)

(1, 0, xo)
(1, 0, xo)

3. Numerical Software

code offset
2
0
0
0
0
0

Table 3.3: Evaluation of code list for f = x" + x.\.

2 then v.gradient +-- v1 x v2.gradient + v2 x vl.gradient

3 v.offset +-- Vt.offset

4 else if Vt.off set> v2.ojj set

5 then v.gradient +-- v1 x v2.gradient

6 v.offset +-- v2.ojjset

7 else if v2.ojjset > Vt.offset

8 then v.gradient +-- v2 x v1 .gradient

9 v.offset +-- Vt.offset

10 return v

Example 3.4. For the single pendulum, the initialization step is shown in (3.2). Now

we illustrate the evaluation of gradient code list in Tables 3.3, 3.4, and 3.5.

3. Numerical Software 33

code list gradient array code offset

t1 =Yo (0, 1, 0) 2
t2 = Ao (0, 0, 1) 0
t3 = YoAo (0, 0, yo) 0
t II 4 =Yo (0, 1, 0) 0
t5 = t4 + t3 (0, 1, yo) 0
t6 = t5 + G (0, 1, yo) 0
g = t6 (0, 1, yo) 0

Table 3.4: Evaluation of code list for g = y" + y>.. +G.

code list gradient array code offset

tl = xo (1, 0, 0) 2
t1 =Yo (0, 1, 0) 2
t3 = x6 (2xo, 0, 0) 2

t4 = Y6 (0, 2yo, 0) 2
t5 = t4 + t3 (2xo, 2yo, 0) 2
t6 = t5- L2 (2xo, 2yo, 0) 2
h = t6 (2xo, 2yo, 0) 2

Table 3.5: Evaluation of code list for h = x2 + y2 - L2.

34 3. Numerical Software

3.1.3 Implementation of Symbolic Numeric Analysis

Similar to the SA, the symbolic numeric analysis is also divided into two major steps:

generating the SNI matrix and computing the symbolic numeric index. We will first

introduce the rules of operator overloading and then the algorithm for computing a

symbolic numeric index.

In (2.6), each row in the SNI matrix is defined to represent coefficients of linear

terms as well as the first order derivatives of each variable Xi· Accordingly, we define

a coefficient array associated with each variable and subexpression in the equation.

Along with the computation, the coefficient arrays are gradually updated, and finally

form the rows of the SNI matrix.

Example 3.5. Using the same notation of SNI matrix from (2.6), here is a simple

example of an equation, where the independent variables are X= {xi,x2,x3}, and

its associated coefficient array:

X~ x' 2 x' 3 XI X2 X3

0 = 2x~ + COS X3 + XI X X3 + 5, (2 0 0 * 0 *)
Initialization of coefficient array. Similar to the SA, our program for SNI analy-

sis also requires an initialization of the coefficient arrays for each independent variable

Example 3.6. Given the same DAE system as (2.7), the initialization step is shown

3. Numerical Software

code list coefficient array
(0, 0, 0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 0, 0, 0, 1)

Table 3.6: Initialization of generating SNI matrix

in Table 3.6.

35

Arithmetic operations on coefficient arrays. Since the numbers stored in the

array correspond to coefficients, when we add or subtract two variables or other

expressions in the code list, we only need to perform the same operation on the corre-

spending coefficients of each variable in the two operands to obtain a new coefficient

array for the resulting expression. If a constant is added to or subtracted from an

expression, the coefficient array is unchanged.

1 if neither 81 nor 82 is constant

2 then 8.array +-- 81.array + 82 .array

3 else if 81 is a constant

4 then 8.array +-- 82 .array

5 else if 82 is a constant

6 then 8.array +-- 81.array

7 return 8

36 3. Numerical Software

The multiplication and division for coefficient arrays are slightly more compli­

cated than addition and subtraction. When two subexpression are combined with a

nonlinear operation, all variables that appear in both operands will become nonlinear.

We use multiplication as an example to show the algorithm. For division, an extra

check for divide-by-zero is imposed.

TIMES(SI, S2)

1 if neither sl nor s2 is constant

2 then for i +-- 1 to n

3 do if either S 1 .array(i) or S2 .array(i) is nonzero

4 then S.array(i) +-- *

5 else S.array(i) +-- 0

6 else if S 1 is a constant

7 then S.array f- sl X s2.array

8 else if s2 is a constant

9 then S.array f- s2 X sl.array

10 return S

Differentiation of coefficient array. Since the SNI analysis only handles first

order DAE systems, the differentiation operation can only be applied to an expression

3. Numerical Software

code list coefficient array
(0, 0, 0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, -1)

Table 3.7: Evaluation of !I= x~- x4 .

37

that does not contain any derivatives. Therefore, the result is obtained by shifting

the coefficients of Xi to the coefficients of x~.

Nonlinear smooth functions. The appearance of nonlinear functions, such as

trigonometric functions, the exponential function, etc., in an equation simply indicates

nonlinearity of variables. Accordingly, all nonzero components in the coefficient array

will be set to * to reflect this fact. Here we use a cos function as an example.

1 if S 1 .array(i) is nonzero

2 then S.array(i) <---- *

3 else S.array(i) <---- 0

4 return S

Example 3.7. We illustrate the whole process of generating the SNI matrix for the

DAE system (2.7) in Tables 3.7, 3.8, 3.9, and 3.10.

Computing the SNI matrix involves symbolic-numeric Gaussian elimination on

38

code list

3. Numerical Software

coefficient array
(0, 0, 0, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1)
(0, 1, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, -1, 0, 0)
(0, 1, 0, 0, 0, -1, 0, 1)

Table 3.8: Evaluation of h = x~ - x2 + x4.

code list
XI

X2

X3

X~
X~
xi

I 2 x3- xi

coefficient array
(0, 0, 0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0)
(0, 0, 1, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, *, 0, 0)
(0, 0, 0, 0, *, 0, 0, 0)
(0, 0, 1, 0, *, 0, 0, 0)
(0, 0, 1, 0, *, *, 0, 0)

Table 3.9: Evaluation of /3 = x~- xi- x~.

code list coefficient array
(0, 0, 0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 0, 0, 4, 0)
(0, 0, 0, 0, 1, 1, 0, 0)
(0, 0, 0, 0, 1, 1, 4, 0)

Table 3.10: Evaluation of f 4 =XI+ x 2 + 4x3.

3. Numerical Software 39

the SNI matrix. Function COMPUTE-SNINDEX initializes the index to be 0, and then

invokes FINDRANK which executes LU factorization steps to determine the rank of

the SNI matrix. If the matrix is found to be structurally full rank, the program stops

and returns index 0; otherwise, FINDALGEQNS is called to find algebraic equations

in the system and differentiates them once by calling DIFFEQNS. Accordingly, the

index is also increased by 1. After differentiation, L U factorization is executed again to

compute the rank. This procedure is repeated until a full-rank matrix is determined.

COMPUTE-SNINDEX(SN !matrix, dim)

1 index<-- 0

2 tempRank <-- FINDRANK(SN!matrix, dim, tol)

3 if tempRank = dim

4 then exit

5 else algeqns <-- FINDALGEQNs(SNimatrix, dim)

6 while true

7 do SN!matrix <-- DIFFEQNS(SN!matrix,dim,algeqns)

8 index<-- index+ 1

9 temp Rank <-- FIND RANK(S N I matrix, dim, tol)

10 if tempRank =Dim

11 then break

12 else algeqns <-- FINDALGEQNS(SN !matrix, dim)

40 3. Numerical Software

13 return index

The algorithm implemented in FINDRANK is symbolic-numeric type of LU fac­

torization with partial pivoting. It performs equivalence transformations and per­

mutations with those of the regular linear algebra, but using the symbolic numeric

operations defined in (2.1). As mentioned in the previous chapter, round off error

may affect the correctness of the result. To avoid comparing the pivot with zero, we

introduce a user defined tolerance, so any number smaller than the tolerance will be

regarded as zero.

3.2 Software

In this section, we follow the procedure of software development and describe the

specification and design issues raised during the development.

3.2.1 General description

As mentioned previously, the system contains three components, which deploy the

three analyses and computations introduced in Chapter 2. In these three components,

the computation of SA and SNI are independent. The user needs to provide a system

of DAEs written in the specified form. The system returns the signature matrix :E,

offsets c and d, the HVT T, and the stuctural index vr; or the SNI matrix, and

3. Numerical Software 41

OAE:System

Offsets

'r---------D_A_E_s_y,_ste_m _____ ---1>1 Compute Jacobian

Evaluating point

ComputeSNI
DAEsystem

Figure 3.1: Hierarchy diagram of the system.

SNI index in the case of SNI analysis. The computation of system Jacobian partially

relies on the results from the SA component. The user is responsible for preparing

a system of DAEs and a point at which the Jacobian is evaluated. In addition, the

variable offset d obtained from SA computation is also required. Upon completion,

the system returns the Jacobian matrix, a condition number indicating the reliability

of the computation. A sketch of the system is presented in Figure 3.1.

3.2.2 Specification

Here we give an informal functional specification of our software package.

1. The software handles a DAE system of the form (1.1). The DAE system must

have an equal number of equations and variables. It should consist of funda-

42 3. Numerical Software

mental arithmetic operations { +, -, x, /}, differential operators, smooth con­

tinuous functions such as trigonometric functions, the exponential function, etc.

No nonsmooth functions, such as min, abs, etc., are allowed in the DAE system.

2. The goal of this software is to facilitate automatic index analysis of DAE sys­

tems. We want to provide the user with a tool that can apply different types

of analysis methods. This tool can give the structural information obtained

through the analysis. Because of the potential failure of both structural analy­

ses in some problems, we also want the software to produce useful information

and suggestions on possible adjustments that can be done to correct the inac­

curate index computation.

3. The output of the software contains several components.

• The corresponding signature matrix of the input DAE.

• A signature matrix object containing the signature matrix. This is used

for an auxiliary function to print the numerical results in a figure.

• Structural information: the HVT, the index vectors of 2: entries contribut­

ing to the HVT, offsets c and d, and structural index.

• The symbolic-numeric matrix of the input system.

• The SNI index.

• The system Jacobian evaluated at a given point.

3. Numerical Software

2

3
f/)
c
.Q
Cii
=>
rr
Q)

4

5

6

2 3

2

2

0 2

0

0

4 2 4

variables

offsets d.
)

4

0

5

0

0

Figure 3.2: Signature matrix of robotic arm

• The condition number of the Jacobian.

43

6

0 0

0 2

0 0
u-

~
f/)

'5
2

4

4

2

4. An auxiliary function is provided to plot a figure to show t he structural infor-

mation. A sample print is in Figure 3.2.

3.2.3 Interface

The goal of the software is to provide a tool for scientists and engineers to analyze the

index of DAE systems that arise in applications. Therefore, users of this tool may or

44 3. Numerical Software

User

Figure 3.3: Interface design of ASIA

may not have advanced knowledge on the theory of index analysis, but they require

a reliable result on the structural index of a DAE problem to conduct an appropriate

strategy in solving the problem numerically on the next step. On the other hand,

due to the lack of generic algorithms that always return correct structural indices for

general problems, one also expect the software to return a reference that can indicate

the correctness of the index computation.

We design the interface of ASIA to be compact and straightforward, so that the

users need not to set the complicated parameters of index analysis to be able to obtain

3. Numerical Software 45

the result they require. A driver is implemented, so that the user only supplies the

system of equations and the dimension of the problem, and the driver invokes the

corresponding functions to perform the analysis. This structure is shown in Figure

3.3. After finishing the computation, the driver returns an object. It contains the

computed index as well as the Jacobian matrix and its condition number, which serve

as the reference for the correctness of the computation. The interface is given as

function myresult DAEAnl(myFunc, dim, option, y)

The arguments are listed below.

myFunc The name of the file defining the target DAE system. Its format is shown in

the next subsection.

dim The dimension of the DAE system.

option A string determines the mode of computation.

• FULL: The software performs both Pryce's structural analysis and the

Symbolic-numeric Analysis, and computes the system Jacobian. Only ap­

plicable to first order systems.

• SIMPLE: The software performs Pryce's structural analysis only, and com­

putes the system Jacobian. Applicable to systems of arbitrary orders.

46 3. Numerical Software

y An optional argument that specifies the point at which the system Jacobian is eval-

uated. If this argument is not provided, we randomly choose a set of numbers,

which are uniformly distributed on the unit interval with mean 0, using Matlab

random number generating function.

3.2.4 Installation and Usage

This section describes how to install and use the ASIA package. ASIA uses the LAP

solver from [JV03j2. This third party library is included in our package. In order to

compile the Matlab/C++ API function, one needs to have the corresponding C/C++

compiler installed. We have compiled and tested on Solaris 9 with GNU gcc/g++

v3.4 compiler. After compilation, ASIA can be used in any platform with Matlab

version 6.5 or later installed.

Content of the package

The file structure of the ASIA package is shown in Figure 3.4. In this diagram, entities

in bold font represent folders, while others represent single functions.

Installing ASIA

The following steps are needed to install ASIA.

• Download ASIA package.

2The algorithm can be found in [JV87]

I

DAESA

I

sigma slgnatureMatrix lap

'- J ~ J '- _/

ASIA

I
I I

DAEJ DAESNA Examples

I I
I I

gradt Jacobian symNum symNumMatrlx

J '- J '- J '- /

Figure 3.4: Organization of ASIA.

I

DAEAnl

C/.j

~
~ s
ctl
'"l
n
P-l -rn
0
~

~
ctl

~
-l

48 3. Numerical Software

• Add related directories to Matlab path.

• Set up the mex compiler.

• Compile the mex file in /lap folder.

Using ASIA

The user provides a system of equations and the dimension of the problem. Below

we go through each step of analyzing the single pendulum problem to illustrate the

use of ASIA.

1. Set system equations. The user must give a DAE system written in required

form. Here is the definition of the single pendulum problem in pendulum.m.

function f=pendulum(n, y, t)

f(1)=dif(y(1),2)+y(1)*y(3);

f(2)=dif(y(2),2)+y(2)*y(3)-1.0;

f(3)=y(1)*y(1)+y(2)*y(2)-1.0*1.0;

2. Invoke the DAEAnl. After setting up the equations, we are ready to use the

analyzer. To invoke the software, one can type the following line in the Matlab

command window.

3. Numerical Software 49

singlePendulumResult = DAEAnl(~singlePendulum, 3, 'SIMPLE', [1, 0,

0])

The object returned by the above command contains the following attributes.

• sigMatrix: the signature matrix of the DAE system

• hvt: the highest value transversal of the signature matrix

• indexVector: two index vectors, containing indices of the entries con­

tributing to HVT

• SAindex: the structural index of the DAE system

• offset: the offset vectors c and d where d(i)- c(j) 2:: s(i,j)

• point: the consistent point at which the Jacobian is evaluated

• jacob: the system Jacobian

• condJ: the condition number of the Jacobian

• symnMatrix: the SNI matrix

• SNindex: the SN index of the DAE system

To fetch an attribute, one can use the corresponding functions provided. Some

examples are shown below.

>> singlePendulum = DAEAnl(~pendulum, 3, 'SIMPLE');

50

>> s = getSigMatrix(singlePendulum)

s =

2 -Inf 0

-Inf 2 0

0 0 -Inf

>> i getSAindex(singlePendulum)

i

3

>> [c d] = getDffset(singlePendulum)

c =

0 0 2

d =

2 2 0

>> condJ = getcondJ(singlePendulum)

condJ =

2.6006

3. Numerical Software

3. Interpretation of the result. According to the theory of Pryce's analysis

[NP05b), the nonsingularity of the Jacobian serves as an indicator of the cor­

rectness of HVT computation. Here, if the condition number is moderate com­

pared to the norm of the input vector at which the Jacobian is evaluated, then

we consider the HVT and structural index computed by ASIA to be reliable.

Chapter 4

Numerical Experiments

We conduct numerical experiments using ASIA on various DAE problems, including

the single pendulum [AP98], the double pendula [Pry98], the two-link robotic arm

problem [PryOl] and its modified version, the car axis problem [MI03], an example

of SA failure from [KL04], the chemical Akzo Nobel problem [MI03], the transistor

amplifier problem [MI03], and the ring modulator problem in ODE, DAE and modified

DAE formats [MI03].

4.1 Structure of the Experiments

For each problem, we present

1. Background information

51

52 4. Numerical Experiments

2. Mathematical description

3. Numerical results

In the numerical results, we present the following information.

1. Structural information of the problem. Four types of structural infor­

mation that we present are listed below. We compare our solution with the

solution in the literature to verify the correctness of ASIA.

• Structural Index

• HVT

• Variable Offsets

• Equation Offsets

2. The system Jacobian matrix with its condition number. We present

this information as an auxiliary reference to show the reliability of index com­

putation. (See Chapter 2 for details.)

3. Comparison between the two index analyses. If applicable, we compare

the two analyses to obtain some heuristic approaches for computing correct

DAE indices.

4. Numerical Experiments 53

4.2 Single Pendulum

4.2.1 Background Information

These equations model the behavior of a pendulum movement. It is a nonstiff DAE

system with 3 variables.

4.2.2 Mathematical Description

The equations are

0 = x" + x.\,

0 = y" + y.\ - G,

0 = x2 + y2 - L 2'

where L is the length of the pendulum, G is a gravity; x, y are Cartesian coordinates

of the pendulum bob withy pointing downwards; ,\ characterizes the tension in the

string. We choose L = 1 for simplicity. (See also Equation 2.2 in Chapter 2.)

4.2.3 Numerical Results

In [AP98], the single pendulum is given as a nonstiff DAE problem of index 3. The

structural information returned by our program is shown in Table 4.1.

The signature matrix of the single pendulum is given in Table 4.2. Here the entries

54 4. Numerical Experiments

Structural information Results
Structural Index
HVT
Variable Offsets
Equation Offsets

3
2

(0, 0, 2)
(2, 2, 0)

Table 4.1: Structural index analysis of single pendulum

y A Ci

-()() 0*) 0
2* 0 0
0 -()() 2
2 0

Table 4.2: Signature matrix for single pendulum

marked by * represent those in the HVT.

In [AP98], the authors point out that this problem can have arbitrary initial

values. We evaluate the system Jacobian at a consistent point and compute its

condition number, as shown in Table 4.3.

For the single pendulum, we can see that ASIA returns the correct index and struc-

tural information. The system Jacobian evaluated at one initial point is structurally

nonsingular, therefore the computed result from ASIA is reliable.

var.
X

y
A

condition number

value
-4.5766268835131380e - 001

8.8912589867298431e - 001
3.6673776960190421
2.6180339887498999e + 000

Table 4.3: Consistent point and condition number for single pendulum

4. Numerical Experiments 55

4.3 Double Pendula

4.3.1 Background Information

Double pendula consist of one pendulum attached to another. The problem is a

simple example of dynamic system which can exhibit chaotic behavior. It contains 4

differential equations and 2 algebraic constraints.

4.3.2 Mathematical Description

The problem is given in the form

0 = x" + x.\

0 = y" + y). - g

0 = x2 + y2- L2

0 = u" +UK,

0 = v" + V/'i,- g

Here we take L = 1, g = 1, and c = 0.1; x, y, A, u, v, and /'i, are the dependent

variables.

4.3.3 Numerical Results

This double pendula problem is given as a nonstiff DAE problem of index 5 in [Pry01).

The structural information returned by our program is shown in Table 4.4. The

signature matrix of the double pendula is given in Table 4.5. A consistent point is

(1, 0, 0, 1, 0, 0). We evaluate the system Jacobian at this point and obtain the result

56

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

4. Numerical Experiments

Results
5
4

(2, 2, 4, 0, 0, 2)
(4, 4, 2, 2, 2, 0)

Table 4.4: Structural index analysis of double pendula

X y A u v /'i, Ci

!I 2 -oo 0* -oo -oo -oo 2

h -00 2* 0 -oo -oo -00 2

h 0* 0 -oo -oo -oo -00 4

i4 -00 -oo -00 2 -oo 0* 0
is -00 -oo 0 -oo 2* -00 0
i6 -oo -oo 0 0* 0 -00 2
d· J 4 4 0 2 2 2

Table 4.5: Signature matrix for double pendula

in Table 4.6. The condition number of the Jacobian is 2.808452574757240e + 000.

From this, we can conclude that the Jacobian matrix is structurally nonsingular at

the consistent point. Therefore, the structural index computed for the double pendula

is reliable.

X y A u v /'i,

!I 1 0 1 0 0 0

h 0 1 0 0 0 0

h 2 0 0 0 0 0

i4 0 0 0 1 0 1

is 0 0 0 0 1 0

i6 0 0 -0.2 2 0 0

Table 4.6: Jacobian matrix for double pendula

4. Numerical Experiments 57

4.4 Two-link Robotic Arm

4.4.1 Background Information

This example is a slight simplification of equations for the prescribed-path control of

a two-link robotic arm [Pry98]. It is a DAE of 3 differential equations and 3 algebraic

constraints.

4.4.2 Mathematical Description

The problem is of the form

0 = x~- [2c(x3)(x~ + x~)2 + d(x3)x~2

+ (2x3 - x2)(a(x3) + 2b(x3)) + a(x3)u1- a(x3)u2],

0 = x~- [-2c(x3)(x~ + x~) 2 - d(x3)x~2

+ (2x3 - x2)(l- 3a(x3)- 2b(x3))- a(x3)u1 + (a(x3) + l)u2],

0 = x~- [-2c(x3)(x~ + x~) 2 - d(x3)x~2

+ (2x3 - x2)(a(x3)- 9b(x3))- 2x~2c(x3)- d(x3)(x~ + x;?

- (a(x3) + b(x3))u1 + (a(x3) + b(x3))u2],

0 = cos XI + cos(xi + x3) -PI (t),

0 = sin XI +sin(xi + x3) - P2(t),

58

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

4. Numerical Experiments

Results
3
2

(0, 0, 0, 2, 2)
(2, 2, 2, 0, 0)

Table 4. 7: Structural index analysis of robotic arm

where

PI(t) =cos (et- 1) +cos (t- 1),

P2(t) =sin (1- et) +sin (1- t),

2
a(s) = ----,---

2- cos2 s'

()
sins

c s = ------:--
2- cos2 s'

b(s) = coss
2- cos2 s'

d (
8

) = cos s sin s .
2- cos2 s

By construction, the solution has x 1 = 1 - et, x 3 = et - t.

4.4.3 Numerical Results

In [CG95b], the authors show that this DAE has index 5 via their derivative-array

equation method. The structural information obtained through our experiment is

shown in Table 4.7.

The software returns index 3, which is lower than the correct index 5. In order

to confirm the failure of Pryce's analysis in this example, we compute the system

Jacobian and its condition number at the consistent point, as shown in Table 4.8.

It is clear to see that we have a large condition number, which indicates that the

4. Numerical Experiments

var.

condition number

value
-2.6692966676192422

2. 65 78533275805367
2.3692966676192442
2.1507094761478751e + 001
2.2158319076934220e + 001
7.9259796473774460e + 016

Table 4.8: Consistent point and condition number for robotic arm

59

system Jacobian is likely singular, therefore the index computation above may be

incorrect.

Alternatively, we identify common subexpressions in the original equations, as

done in [Pry01], and have the following modified version.

0 = x~- [-v + X(1- 3a(x3)- 2b(x3))- a(x3)w + JL2],

0 = x~- [-v + X(a(x3)- 9b(x3))- 2x~ 2c(x3)- d(x3)Y'2

- (a(x3) + b(x3))w],

0 = COSX1 +COS (Y)- PI(t),

0 =sin x1 +sin (Y)- P2(t),

where

60

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

4. Numerical Experiments

Results
5
0

(0, 2, 0, 2, 4, 4)
(4, 2, 4, 0, 0, 2)

Table 4.9: Structural index analysis of modified robotic arm

The introduction of a new variable w is essential. Applying the new system into

our software, we obtain the correct structural information in Table 4.9. We use the

same consistent point shown in Table 4.8, and calculate the system Jacobian again.

The condition number obtained is 2.660343827951100e + 001. We can see clearly

that the condition number for the modified system is small, indicating that the index

computation is correct.

4.5 Car Axis

4.5.1 Background Information

The problem is a stiff DAE system consisting of 8 differential and 2 algebraic equa-

tions. It is originally defined in [Sch94].

4. Numerical Experiments 61

4.5.2 Mathematical Description

The problem is of the form

P
I q,

Kq' f(t,p, -\),

0 cp(t,p),

with initial conditions p(O) = Po, q(O) = qo, p'(O) = qo, q'(O) = q~, -\(0) = >.o, and

A'(O) = -\~.

The matrix K reads E2 Af 14 , where 14 is the 4 x 4 identity matrix. The function

f : IR9 -> IR4 is given by

f(t,p, >.) =

xz
(lo- lz)­

lz

(lo - lz) Yz
lz

(
[_ [) Xr- Xb
0 r lr

(l -l)Yr- Yb
0 r lr

Here, (xz, yz, Xn Yr)T = p, and lz and lr are given by

Furthermore, the functions xb(t) and Yb(t) are defined by

Yb(t) = r sin (wt).

62 4. Numerical Experiments

Table 4.10: Constants in car axis

The function ¢: JR5
-t JR2 reads

The constants are listed in Table 4.10.

Consistent initial values are

0 -1/2

1/2 0
Po= Qo =

1 -1/2

1/2 0

qb = ;;t2 f(O,po, >..o), >..o = >..~ = (0, Of.

The indices of the variables p, q, and >.. are 1, 2, and 3, respectively.

4.5.3 Numerical Results

In the reference solution for this problem, the DAE system is given as index 3. The

structural information obtained through our software is given in Table 4.11. A con-

sistent point and the corresponding condition number of the Jacobian evaluated at

this point are given in Table 4.12.

4. Numerical Experiments

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

Results
3
4

(1, 1, 1, 1, 0, 0, 0, 0, 2, 2)
(2, 2, 2, 2, 1, 1, 1, 1, 0, 0)

Table 4.11: Structural index analysis of car axis

var.
XI

X2

X3

X4

Xs
X6

X7

Xg

Xg

xw
condition number

value
0.4934557842752397e- 001
0.4969894602300073
0.1041742524885424e + 001
0.3739110272653672

-0. 7705836840358462e - 001
0.7446866592147278e- 002
0.1755681575356589e- 001
0.7703410437798304

-0.4736886590853484e- 002
-0.1104680331259640e- 002

8.7782354298555460e + 003

Table 4.12: Consistent point and condition number for car axis

63

64 4. Numerical Experiments

From this experiment, we can see that the condition number of the Jacobian is

not large. This indicates that the Jacobian is structurally nonsingular, which further

confirms the correctness of index computation for this problem.

On the other hand, since this problem is in first order, the SNI analysis is another

applicable approach. Our software returns the SN index as 3, which is consistent

with the result from the SA analysis. This is an example when the two analyses

report the same index. In the case of systems which are nonlinear with respect to

their highest-order derivatives, the coincidence is expected due to the nature of the

SNI analysis, in which only linear coefficients are recorded. In the next example, we

discuss the situation when the two analyses contradict with each other, and why the

SNI analysis may provide correct results in some particular cases.

4.6 Example of Failures in Structural Analysis

4.6.1 Background Information

This example is due to Chowdhry, Krendl, and Linninger [KL04], in which they use

it to show a situation where Pantelides' algorithm and their SN analysis contradict

in index computation. It contains 3 differential equations and 1 algebraic constraint.

(See also Chapter 2 for details.)

4. Numerical Experiments

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

Results
2
2

(0, 0, 0, 1)
(1, 1, 1, 0)

Table 4.13: Structural index analysis of an example in [KL04)

4.6.2 Mathematical Description

The equations are in the form of

4.6.3 Numerical Results

65

The correct index of this problem is 3. However, the structural index returned by

our software is 2, as shown in Table 4.13. The signature matrix of this problem is

given in Table 4.14. Since no consistent point is given in the original literature, we

select a sufficient number of random points, which are uniformly distributed in the

unit interval with mean 0, to compute the system Jacobian. The results show that

the Jacobian always has a very large condition number. This is an indication of likely

incorrectness of our structural analysis.

66

X2 X3

-oo -oo
h -oo
0 h
0 0
1 1

4. Numerical Experiments

X4 Ci

o;) ~
-oo 0
-oo 1

0

Table 4.14: Signature matrix for the example in [KL04]

On the other hand, the result of SNI analysis returned from our software shows

that the system has index 3. The detailed steps of computation are explained in

Chapter 2. From this example, we can see that when a DAE system is first order

and linear with respect to the highest-order derivatives, the SNI analysis returns an

accurate differential index. Both Pantelides' approach and Pryce's SA may or may

not capture the cancellation between linear coefficients, therefore they may fail to

produce the correct structural index of the problem. For first order linear systems,

the SN index may serve as a good reference to the result from the SA analysis, since

it is rigorous for linear problems.

4.7 Chemical Akzo Nobel

4. 7.1 Background Information

This IVP is a stiff system of 6 non-linear Differential Algebraic Equations of index

1. The problem originates from Akzo Nobel Central research in Amsterdam, The

4. Numerical Experiments 67

Netherlands [Sto98]. It describes a chemical process in which 2 species are mixed,

while carbon dioxide is continuously added [M103].

4. 7.2 Mathematical Description

The problem is of the form

dy
M dt = j(y), y(O) =Yo, y'(O) = y~,

with

y E lR, 0 :s; t :s; 180.

The matrix M is given in the form of

1 0 0 0 0

0 1 0 0 0

M= 0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

68 4. Numerical Experiments

and the function f is defined as

-2.0 · r1

-0.5 · r1 -0.5 · rs +Fin

!=

+rs

Ks · Y1 · Y4 - Y6

where the ri and Fin are auxiliary variables given by

r 4 = k3 · Y1 · Y~,

2 l
rs = k4 · Y6 · Yi,

p. = klA. (p(C02) -)
m H Y2 ·

The values of the constant parameters are

kl = 18.7, k4 = 0.42, Ks = 115.83,

k2 = 0.58, K = 34.4, p(C02) = 0.9,

k3 = 0.09, klA = 3.3, H = 737.

4. Numerical Experiments

Structural information Results
Structural Index
HVT
Variable Offsets
Equation Offsets

1
5

(0, 0, 0, 0, 0, 0)
(1, 1, 1, 1, 1, 0)

Table 4.15: Structural index analysis of chemical Akzo Nobel

var.

Y1
Y2
Y3
Y4
Ys
YB

condition number

value
4.4400000000000001e- 01
1.2300000000000000e- 03
O.OOOOOOOOOOOOOOOOe + 00
7.0000000000000001e- 03
O.OOOOOOOOOOOOOOOOe + 00
3.5999964000000001e- 01
1.0000005115012430e + 000

Table 4.16: Consistent point and condition number for chemical Akzo Nobel

4. 7.3 Numerical Results

69

In the reference solution, the system is given as index 1. The structural information

obtained from our software are shown in Tables 4.15.

A consistent point given in the reference, as well as the computed condition num-

ber of the Jacobian at this point, are shown in Table 4.16. From the computation,

we can see our software returns the correct structural information. The Jacobian

evaluated at the consistent point is well-conditioned. We also ran the SNI analysis

on this problem, and obtained the same differential index 1. This is another proof of

the correctness of our computation.

70 4. Numerical Experiments

4.8 Transistor Amplifier

4.8.1 Background Information

This problem is a stiff DAE consisting of 8 equations. The formulation we use here

is taken from [EHR89].

4.8.2 Mathematical Description

The problem is of the form

dy
M dt = f(y), y(O) =Yo, y'(O) = Yb,

with

y E JR8
, 0:::; t:::; 0.2.

The matrix M is

-01 o1 0 0 0 0 0 0

o1 -01 0 0 0 0 0 0

0 0 -02 0 0 0 0 0

0 0 0 -03 03 0 0 0
M=

0 0 0 03 -03 0 0 0

0 0 0 0 0 -04 0 0

0 0 0 0 0 0 -Os Os

0 0 0 0 0 0 Os -Os

4. Numerical Experiments 71

and the function f is defined as

_ Ue(t) + .1Ll_

Ro Ro

-g(y2 - Ya) + _k~

!=
-2 + t + o:g(y2 - Ya)

-~ + Ys(~5 +~)-(a- 1)g(ys- Y6)

-g(ys - Y6) + ft"

- ~: + ~ + o:g(ys- Y6)

where g and Ue are auxiliary functions given by

g(x) = f3(erJP - 1) and Ue(t) = 0.1 sin(2007rt).

The values of the constants are

Ro = 1000,
Up= 0.026,

and
Rk = 9000, for k = 1, ... , 9,

0: = 0.99,
ck = k . 10-6

' for k = 1, ... '9.

72

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

4. Numerical Experiments

Results
1
5

(0, 1, 0, 0, 1, 0, 0, 1)
(1, 1, 1, 1, 1, 1, 1, 1)

Table 4.17: Structural index analysis of transistor amplifier

4.8.3 Numerical Results

The original system is defined by 8 differential equations only. Therefore, the struc-

tural index obtained from our SA computation is 0. However, one can easily determine

that the coefficient matrix M is rank deficient, where the second, fifth, and eighth

equations are linearly dependent with the first, fourth, and seventh equations. By

explicitly eliminating the linearly dependent rows in M, we obtain a modified system

with 5 differential equations and 3 algebraic constraints.

In the reference solution, the system is determined as index 1. The structural

information of the modified system returned by our software is shown in Table 4.17.

A consistent point and the condition number of the Jacobian are given in Table

4.18. From the computation, we can see the Jacobian is likely nonsingular at the

consistent point, which indicates our index computation is reliable.

4. Numerical Experiments

var.

Y1
Y2
Y3
Y4
Ys
Y6
Y7
Ys

condition number

value
O.OOOOOOOOOOOOOOOOe + 00
3.0000000000000000e + 00
3.0000000000000000e + 00
6.0000000000000000e + 00
3.0000000000000000e + 00
3.0000000000000000e + 00
6.0000000000000000e + 00
O.OOOOOOOOOOOOOOOOe + 00
2.6189826195363230e + 002

Table 4.18: Consistent point and condition number for transistor amplifier

4.9 Ring Modulator

4.9.1 Background Information

73

Originally, this problem is a stiff ODE system of 15 non-linear differential equations

[MI03]. If we let the parameter Cs be 0, it becomes a DAE system with 11 differential

equations and 4 algebraic constraints. The original problem is taken from [WKS92].

4.9.2 Mathematical Description

dy
dt = f(y), y(O) =Yo,

with

The definition of J(y) is given in [MI03].

74

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

4. Numerical Experiments

Results
0
15

(0, 0, ... ,0)
(1, 1, ... ,1)

Table 4.19: Structural index analysis of ring modulator (ODE)

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

Results
1

11
(0, 0, ... ,0)

(1, 1, 0, 0, 0, 0, 1, 1, ... ,1)

Table 4.20: Structural index analysis of ring modulator (DAE)

4.9.3 Numerical Result

Here we give the structural results for both ODE and DAE formats of the problem.

For the ODE case, the result returned by our software is shown in Table 4.19.

The system Jacobian is the identity matrix with condition number 1.

For the DAE case, the correct index is 2. However, the SA analysis obtains index

1 as shown in Table 4.20. Given a consistent point at 0, we compute the Jacobian and

its condition number. Due to the large condition number 8.150552506528627e + 016

obtained, we can conclude that the structural index 1 we computed previously is

4. Numerical Experiments

Structural information
Structural Index
HVT
Variable Offsets
Equation Offsets

Results
2
10

(0, 0, 0, 0, 1, 0, 0, ... ,0)
(1, 1, 0, 0, 0, 0, 1, ... ,1)

Table 4.21: Structural index analysis of modified ring modulator (DAE)

likely unreliable. If we look at the formulas of the four algebraic equations

!1 : 0 = Y10- q(Um) + q(Uv4),

h : 0 = -yu + q(Um) - q(Uv3),

h: 0 = Y12 + q(Um)- q(UD3),

f4: 0 = -Y13- q(Um) + q(Uv4),

75

we can see that these four equations are linearly dependent in terms of the auxil-

iary function q(Uv.). We modify the original problem so that the third equation is

substituted by

= Y10 + Yn + Y12 + Y13·

For the modified system, we apply the SA analysis again and obtain the correct

structural information as in Table 4.21. With the same consistent point, we have a

significant smaller condition number 1.288620749590146e + 006.

76 4. Numerical Experiments

4.10 Summary of Numerical Experiments

Conclusions from our experiments are given below.

1. ASIA is accurate for computing the structural information of DAE systems

when the SA analysis succeeds. We have tested on problems with index 1 to

index 5. Our software successfully returns the correct structural indices, HVTs,

offsets, as well as system Jacobian evaluated at consistent points. For first order

problems, ASIA also provides the SN indices and SNI matrices as references.

2. The condition number of the Jacobian is a good indication of correctness of

index computation. In our examples, structural nonsingularity of the Jacobian

matrix at a consistent point always corresponds to a correct index computation.

3. For some problems, the SA analysis can fail and produce a structurally singular

Jacobian. We have illustrated that common subexpression elimination and lin­

ear transformation can transform the system into a form such that the analysis

succeeds.

4. For first order linear systems, we have shown that the SN analysis can provide

accurate differential index in some particular cases, while the SA analysis fails.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have presented a software for automatic structural index analysis. For a given

DAE system programmed in the required format, we compute the signature matrix

through operator overloading. After that, we solve a linear assignment problem and

obtain the HVT. Then, we solve the dual of the HVT to find the two offsets. Based

on this information, we return the structural index accordingly.

The second part of our index analysis is to compute the system Jacobian at a given

consistent point. Similarly, we evaluate each equation by operator overloading. We

compute the condition number of the Jacobian to determine its structural singularity,

which indicates the correctness of the index computation in the previous step.

77

78 5. Conclusions and Future Work

Third, for first order systems, we apply the symbolic-numeric analysis. We form

the SNI matrix, and perform the symbolic-numeric differentiation to obtain the SN

index of the problem.

In addition, we discussed some design and implementation issues of the software,

and gave detailed instructions on how to use the package.

We have reported detailed numerical results on 8 DAE and ODE test problems.

We showed that ASIA can provide accurate index computation on applications from

different disciplines. We compared the results from the two analyses and gave expla­

nations on the situation when they contradict with either other. This can be used

as important reference for future refinement of the algorithms. We also showed some

initial attempts of transforming a given DAE system into another form, which can

help to eliminate the failures of structural analysis.

5.2 Future Work

From the numerical experiments, we can see that in some cases both structural anal­

yses cannot compute the correct index for the original problem. Certain transforma­

tions may help to provide a solvable form of the problem, but these transformations

have not been systematically studied. Future work in index analysis may include

developing heuristics for transforming equations. Based on that, an automatic pre­

processing module may be added to the tool. Furthermore, a more general algorithm

5. Conclusions and Future Work 79

for structural index analysis may be developed.

The examples that we have tested are taken from the literature with small to

moderate sizes. In future, large scale industrial applications can be studied using

ASIA. Due to the nature of large matrix computation, some optimization may need

to be applied to the software to meet specific requirements.

Bibliography

[AP98]

[Ber91]

[CG95a]

[CG95b]

[Duf81]

[EHR89]

U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differ­
ential Equations and Differential-Algebraic Equations. SIAM, July 1998.

D. P. Bertsekas. Linear Network Optimization. MIT Press, 1991.

S. L. Campbell and C. W. Gear. The index of general nonlinear DAEs.
Numerische Mathematik, 72:173-196, 1995.

S.L. Campbell and E. Griepentr. Solvability of general differential alge­
braic equations. SIAM J. Sci. Comput., 16:257-270, 1995.

I. S. Duff. On algorithms for obtaining a maximum transversal. ACM
Transactions on Mathematical Software, 7(3):315-330, 1981.

C. Lubich E. Hairer and M. Roche. The numerical solution of differential­
algebraic systems by runge-kutta methods. Lecture Notes in Mathematics,
1490, 1989.

[Gea88] C. W. Gear. Differential algebraic equations index transforms. SIAM J.
Sci. Stat. Comput., 9:39-47, 1988.

[Gea90] C. W. Gear. Differential algebraic equations, indices, and integral alge­
braic equations. SIAM J. Numer. Anal., 27:1527-1534, 1990.

[GL96] G. H. Golub and C. F. Van Loan. Matrix Computation. John Hopkins
University Press, 1996.

[GRBOO] W. Martinson G. Reiszig and P. Barton. Differential-algebraic equations
of index 1 may have an arbitrarily high structural index. SIAM J. Sci.
Comput., 2000.

[GW04] A. Griewank and A. Walther. On the efficient generation of Taylor expan­
sions for DAE solutions by automatic differentiation. Technical report,
Technische Universitat Dresden, Department of Mathematics, Institute of
Scientific Computing, 2004.

80

BIBLIOGRAPHY 81

[JV87J

[JV03]

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38:325-340,
1987.

R. Jonker and A. Volgenant. LAP web page, May 2003. LAP is available
at http: I /www .magiclogic. com/assignment. html.

[KEBP96] S. L. Campbell K. E. Brenan and L. S. Petzold. Numerical Solution of
Initial- Value Problems in Differential-Algebraic Equations. SIAM, 1996.

[KL04] S. Chowdhry H. Krendl and A. A. Linninger. Symbolic numeric index
analysis algorithm for differential algebraic equations. Ind. Eng. Chem.
Res., 43:3886-3894, 2004.

[MI03] F. Mazzia and F. lavernaro. Test set for initial value problem solvers.
Technical report, Department of Mathematics, University of Bari, Italy,
August 2003.

[MS93] S. E. Mattsson and G. Soderlind. Index reduction in differential-algebraic
equations using dummy derivatives. SIAM. J. Sci. Comput., 14:677-692,
1993.

[NP05a] N. Nedialkov and J. D. Pryce. Solving differential-algebraic equations by
Taylor series(II): computing the System Jacobian. BIT, 2005. submitted.

[NP05b] N. S. Nedialkov and J. D. Pryce. Solving differential-algebraic equations
by Taylor series(!): computing Taylor coefficients. BIT, pages 561-591,
2005.

[Pan88] C. C. Pantelides. The consistent initialization of differential-algebraic sys­
tems. SIAM. J. Sci. Stat. Comput, 9:213-231, 1988.

[Pry98] J. D. Pryce. Solving high-index DAEs by Taylor series. Numerical Algo­
rithms, 14:195-211, 1998.

[Pry01]

[Sch94]

[Sto98]

J. D. Pryce. A simple structural analysis method for DAEs. BIT,
41(2):364-394, 2001.

S. Schneider. Integration de systemes d'equations differentielles raides
et differentielles-algebriques par des methodes de collocations et methodes
generales lineaires. PhD thesis, Universite de Geneve, 1994.

W.J.H. Stortelder. Parameter Estimation in Nonlinear Dynamical Sys­
tems. PhD thesis, University of Amsterdam, March, 1998.

82 BIBLIOGRAPHY

[WKS92] P. Rentrop W. Kampowski and W. Schmidt. Classification and numeri­
cal simulation of electric circuits. Surveys of Mathematics of Industries,
2(1):23-65, 1992.

[Zha05] W.H. Zhang. Design and implementation of a solver for high-index
differential-algebraic equations. Master's thesis, McMaster University,
2005.

