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Abstract 

Systems of differential-algebraic equations (DAEs) arise in applications such as circuit 
simulation, models of chemical processes, optimal control, and multi-body dynamics. 
Informally, the index of a DAE is the number of differentiations needed to convert 
it to an ordinary differential equation. The index generally indicates the difficulty of 
solving a DAE problem. The higher the index of a DAE, the more difficult it is to 
solve it numerically. 

Structural index analysis plays a crucial role in solving DAE problems. In this 
thesis, we present two methods for index analysis, namely, Pryce's structural analysis 
(SA) and Linninger's symbolic-numeric (SN) analysis. We provide a Matlab tool 
implementing these two approaches: an Automatic Structural Index Analyzer (ASIA). 
We discuss the underlying algorithms, which include generating a signature matrix 
and computing SA index, computing a system Jacobian, and generating a symbolic­
numeric matrix and computing SN index. We also present implementation issues and 
illustrate how ASIA is used. 

Numerical experiments show that ASIA can produce reliable structural informa­
tion. We also show examples on which structural analysis fails, and how ASIA detects 
such situations. 
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Chapter 1 

Introduction 

We consider an initial value problem (IVP) of a system of differential-algebraic equa­

tions (DAEs) of the form 

fi ( t, Xj and their derivatives) = 0, 1 ::; i, j ::; n, (1.1) 

where Xj = Xj(t) are dependent variables, and t is an independent variable. We 

assume that /i are sufficiently differentiable. 

Informally, the index of a DAE system is defined as the number of differentiations 

needed to convert it into an ordinary differential equation (ODE) system. In this 

thesis, we study and implement two index analysis algorithms [Pry98, KL04]: one 

allows derivatives of order higher than one to appear in the system, and the other 

allows first order derivatives only. We also provide a tool for automatic index analysis 

of DAEs. 

1 



2 1. Introduction 

1.1 Background 

Solving the initial value problem of a DAE system has been an active research area 

for over two decades. Many physical and engineering problems occur as a system of 

nonlinear differential equations with algebraic constraints. 

Various numerical methods have been developed for solving DAEs, including back­

ward differentiation (BDF) and implicit Runge-Kutta (IRK) methods [KEBP96]. 

These methods are used widely, and have been proven to be efficient and reliable 

in many situations. However, most of these approaches target lower index problems 

and sometimes require special structure of the problem. It was thought that DAEs 

of index higher than one are less significant in practice. Nevertheless, recent research 

in different areas shows that many problems are naturally and easily modeled as 

high-index DAEs. Generally, high-index DAEs are much more difficult to solve than 

index-1 or 2 problems. 

Many studies have been conducted for index analysis of DAE systems. Pantelides 

[Pan88] derives a criterion for determining how to differentiate a subset of equations 

in a nonlinear DAE system to provide further constraints for initial values. He pro­

posed an algorithm based on graph theory to locate those subsets of equations to be 

differentiated. 

In [MS93], Mattsson and Soder lind present an index reduction algorithm for DAEs. 

They differentiate parts of the DAE analytically and replace the derivatives intro-
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duced by differentiation by a new algebraic variable called a dummy derivative. The 

resulting augmented system is at most index 1. 

Campbell and Gear's derivative array equations [CG95a] is another attempt of 

studying DAE indices. Comparing with Pryce's structural analysis [Pry98, PryOl J, 

which we will introduce shortly, this approach requires symbolic preprocessing of the 

system. Therefore, it can be difficult to implement. 

In [Pry98, PryOl], Pryce presents a direct, easily applied method for structural 

analysis (SA) of a DAE. It generalizes the method of Pantelides [Pan88], but it is more 

straightforward and can be applied to DAEs of any order. Based on this, Nedialkov 

and Pryce [NP05b] introduce a new approach for solving DAEs in the form (1.1). The 

DAEs can be of high index, fully implicit and contain derivatives of orders higher than 

one. Nedialkov [NP05b] implements the method into a prototype DAE solver, and 

Zhang redesigns and implements the solver HIDAETS in [Zha05]. 

Generally speaking, the index obtained by structural analysis is an upper bound 

for the true index of a DAE system [KEBP96]. However, recent research has shown 

that the actual differential index could be greater than the structural rank in some 

problems [GRBOO]. In [KL04], S. Chowdhry, H. Krendl, and A. Linninger pro­

pose a new approach for index analysis. Their method includes symbolic as well 

as numerical information of the system in order to overcome the shortcomings of 

over/underestimating the correct DAE index. 



4 1. Introduction 

1.2 Motivation and Contribution 

Index analysis plays a crucial role in solving DAE systems. Due to the lack of high­

index DAE solvers, early work on index analysis deals mainly with index reduction 

[Gea88, Gea90]. In general, it consists of directly searching for derivatives of al­

gebraic variables by multiple differentiations of algebraic constraints. However, the 

symbolic processing of nonlinear equations in various applications can be complex. 

The structural analysis is developed to overcome this defect. In an SA, a DAE system 

is represented by a matrix of variables and their derivatives. Each entry CJij in the 

matrix indicates the appearance of the ith variable in the jth equation. 

Pryce's SA [PryOl] is considered to be one of the easy-to-use and efficient index 

analysis methods. An automatic tool which applies this analysis is needed, so that 

it can help users from different application areas to reliably determine the index of a 

given system. However, this SA fails in particular problems due to various reasons, 

that are unclassified and not fully understood. A tool, which can help to identify the 

patterns in those problems where the SA fails, is important to future index analysis 

studies. 

Linninger's symbolic-numeric (SN) analysis [KL04] is another structural approach. 

It shows some advantages in determining differential indices for DAE systems with 

derivatives appears linearly. We also want to have an integrated software that provides 

results of the SN analysis as a reference and complement to Pryce's SA analysis, which 
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can also assist improving the SA approach in various ways. 

In this thesis, we present the algorithms for our Automatic Structural Index Ana­

lyzer (ASIA), including generating structural information, computing a system Jaco­

bian, and computing the SN index. We implement these algorithms in Matlab using 

the technique of operator overloading. This avoids complex source code transforma­

tion. We provide a user-friendly interface of ASIA, so that the software can be easily 

used by people without advanced knowledge of index analysis. We conduct exten­

sive numerical tests for both DAE and ODE problems using ASIA. The experiments 

show that our software can perform accurate index computation and return useful 

information for comparing two types of analyses and helping to develop heuristics for 

better index analysis algorithms. 

1.3 Thesis Structure 

The thesis is organized as follows. 

In Chapter 2, we introduce the main steps of Pryce's SA method and Linninger's 

SN analysis. We illustrate them using simple examples. 

Chapter 3 consists of two parts. We first present a detailed algorithm for im­

plementing the SA, computing the system Jacobian, and computing the SN index 

through operator overloading. All the algorithms are demonstrated by pseudo code. 

In the second part, we discuss some issues from a software design perspective. We 



6 1. Introduction 

present a general description of ASIA, its informal specifications, the interface design, 

and instructions of how to install and use this tool. 

In Chapter 4, we perform numerical experiments on 8 problems. Among them, 

we show examples where both analyses succeed, as well as some cases where trans­

formation of equation formulation is required to obtain correct results. 

In Chapter 5, we give a conclusion of this thesis and discuss future work. 



Chapter 2 

Theory of Index Analysis 

In this chapter, we introduce two approaches for index analysis on which our tool is 

based. 

2.1 Pryce's Structural Analysis 

In general, Pryce's SA is composed of the following steps. 

1. Generate a structural matrix. 

2. Solve a linear assignment problem for the matrix obtained in the previous step. 

3. Compute the structural index. 

We first introduce some definitions and notation and then present the details of each 

step with simple examples. 

7 
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This SA is also called a signature method, as it involves an n x n matrix 'E = ( aii), 

the signature matrix, defined for (1.1) as: 

highest order of derivative of the jth variable that occurs in the 

<Jij = ith equation; or (2.1) 

-oo if the jth variable does not occur in the ith equation. 

A Linear Assignment Problem (LAP) is defined as a task of maximizing the effec-

tiveness of assigning a set of jobs to a group of workers, where each worker i has an 

effectiveness measure for job j. More details about LAP can be found in [Ber91]. In 

the content of SA, we use an LAP solver to find the highest value transversal (HVT) 

of a signature matrix 'E (2.1). A transversal of an n x n 'E is an n-element subset 

of 'E, with one element in each row and column. The highest value transversal is a 

transversal T, where the sum of all elements in T, denoted by IITII, is maximum. 

A consistent point of a DAE system is a set of values of Xj and their derivatives 

at a given t that determine a unique solution. 

The degree of freedom of (1.1) is the number of independent initial conditions 

required. 

Given a DAE system of the form (1.1), we perform the following steps of SA. 

1. Form then x n signature matrix 'E defined in (2.1). 

Example 2.1. Through the rest of this chapter, we use the single pendulum 
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problem [AP98]: 

0 = f = x" + x.X, 

0 = g = y" + y.X- G, 

0 = h = x 2 + y 2 
- L 2 , 

9 

(2.2) 

where G > 0, L > 0 are constants, and the dependent variables are x(t), y(t), 

and .X(t). 

Its signature matrix I:, labeled by equations and variables, is 

X y A 

f 2 -oo 0 

g -oo 2 0 

h 0 0 -oo 

2. Solve the LAP for I: and find the HVT. 

Example 2.2. For the single pendulum problem, two possible HVTs can be 

easily found at positions (!,.X), (g, y), (h, x) and (!, x), (g, .X), (h, y), where both 

IITII =2. 

For large systems, efficient algorithms for solving LAP can be found in [Ber91] 

and [Duf81]. 
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3. Solve the dual of HVT T in linear programming (LP) sense to find two n-

dimensional integer vectors c and d, which maximize z = L;j dj - L;i ci, with 

all ci 2:: 0, satisfying 

dj - ci 2:: CJij for all i, j = 1, ... , n, 
(2.3) 

di- ci = CJij for all (i, j) E T. 

The vectors c and d are called equation offsets and variable offsets respectively. 

Example 2.3. The offsets for the single pendulum problem are c = (0, 0, 2) 

and d = (2, 2, 0): 

X y A Ci X y A Ci 

f 2 -oo 0* 0 f 2* -()() 0 0 

g -00 2* 0 0 and g -()() 2 0* 0 

h 0* 0 -()() 2 h 0 0* -()() 2 

dj 2 2 0 d· J 2 2 0 

Here the HVTs are marked with*· 

4. Form the system Jacobian J, where 

a (!ict)' ... '~~en)) 
J = ) . (d1) (dn) a ( X1 , ... , Xn 

(2.4) 

By Griewank's lemma in [NP05a], the authors proved that (2.4) is equivalent 
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to 

if d·- C· =a·· J t tJ' 

0 otherwise. 

Example 2.4. In our single pendulum problem, we compute J as 

1 0 X 

J = 0 1 y 

2x 2y 0 

5. Form the enlarged system obtained by taking derivatives of fi up to cith order. 

Example 2.5. For the single pendulum, denoting X = (x, x', x"; y, y', y"; >.), 

we have 

x" + x>. 

y" + y>.- G 

F(t,X) = 

2xx' + 2yy' 

2xx" + 2yy" + 2x'2 + 2y'2 

6. The structure analysis succeeds if (t*, X*) is a solution point of F(t, X), and J is 

nonsingular there. We call (t*, X*) a consistent point ofF as defined previously. 

In our example, it is easy to check that det J = -2(x2 + y2
) = -2£2 =f. 0, for 

all x andy. Therefore, the SA succeeds on the single pendulum problem. 
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7. Upon the success of SA, we can conclude the following properties of a DAE in 

a neighborhood of (t*, X*). 

• The DAE has DOF ~di- ~ci, which is also the value of the HVT. 

• The DAE has a differentiation index [PryOl] Vd less than or equal to the 

structural index vr, where 

1 if some di = 0, 

0 if all di > 0. 

(2.5) 

Example 2.6. According to the offset vectors c and d, the single pendulum 

system has DOF 2, and vd = vr = 3. 

In [PryOl], the author concludes that for all problems where Pantelides' [Pan88] 

algorithm applies, the SA returns the same index vr as in Pantelides' algorithm. 

2.2 The Symbolic Numeric Index Analysis 

The SN analysis is another type of structural approach to compute the indices of DAE 

problems. It is only applicable to first order systems. The overall process contains 

two major steps: generating a symbolic numeric incidence matrix and computing its 

rank. Similarly, we first give some definitions and notation. Then we illustrate each 

step by simple examples. 
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A symbolic numeric incidence (SNI) matrix P of a DAE system is ann x 2n matrix, 

whose columns represent dependent variables Xj and their first-order derivatives xj. 

The values of its entries are defined as 

c if Xj or xj appears linearly with coefficient c in /i, 

Pij = * if Xj or xj appears nonlinearly in /i, or (2.6) 

0 if xi or xj does not appear in fi. 

Example 2. 7. A simple example of SNI matrix is 

X y A 
0 = f = x' + x,\ + 2y, 

A set of av-operations n = { +, -, x, /}is defined for symbols of SNI matrix en-

tries. The operations are binary compositions of addition, subtraction, multiplication 

and division over three types of SNI matrix entries: {0, c, * }. The rule of computa-

tion is similar to regular arithmetic operations except that any operation involving '*' 

produces '* ', indicating that the nonlinearity is preserved under av-operations. The 

complete binary operations definition is in Table 2.1. 

The av-differentiation is a method that performs regular differentiation of alge-

braic equations using its SNI matrix. For an algebraic equation ei and a variable Xj, 

the av-differentiation of ei is defined as follows. 

1. If xi appears linearly with coefficient c in ei (which corresponds to (ei, xi) = c in 
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oED 

0 0 { c, *} 
OoO 

c1 o {0, c2} 
*o{O,c} 
{c, *} o * 

Oo* 

+ X 

{c,*} { -c, *} 0 
0 0 0 

c1 + {0, c2} c1 - {0, c2} Cl X {0, c2} 

* * * 
* * * 
* * 0 

Table 2.1: Rules of av-operations 

I 
0 

N/A 
Nj A or ci/c2 

NjA or* 

* 
0 

the SNI matrix), after differentiation, Xj is eliminated from ei, while xj appears 

linearly with coefficient c (which corresponds to ( ei, xi) = 0 and ( ei, xj) = c in 

the SNI matrix). 

2. If Xj appears nonlinearly in ei (which corresponds to (ei, xi) = * in the SNI 

matrix), after differentiation, both Xj and xj appear nonlinearly in ei (which 

corresponds to (ei, xi)=* and (ei, xj) =*in the SNI matrix). 

3. If xi does not appear in ei (which corresponds to (ei, Xj) = 0 in the SNI matrix), 

after differentiation, both (ei, Xj) and (ei, xj) remain 0 in the SNI matrix. 

By definition, the av-differentiation is rigorous in linear cases, which means that it 

is capable of reflecting additions/subtractions of coefficients in linear terms. However, 

since each nonlinear term is simply represented by a symbol '*', the av-differentiation 

may ignore the effect of multiplication/ division between nonlinear terms, as we will see 

in the case studies later. Based on the av-differentiation, we can give the algorithm 

of the symbolic numeric index analysis [KL04]. 

Given a DAE in the form of (1.1), we perform the following steps. 
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1. Initialize a variable index to 0. Form the symbolic numerical incidence matrix 

P according to (2.6). 

Example 2.8. Similarly, we use the following example to illustrate each step 

of the symbolic numeric index analysis. For a DAE system with independent 

variables X= (x1, ... , x4 ), 

0 = fi = X~ - X4, 

0 = f2 = X~ - X2 + X4, 

0 f I 2 2 = 3 = x3 - xl + x2, (2.7) 

0 = j4 = X1 + X2 + 4x3, 

its SNI matrix P is 

X~ x' 2 X~ X~ X1 X2 X3 X4 

!I 1 0 0 0 0 0 0 -1 

h 0 1 0 0 0 -1 0 1 (2.8) 

h 0 0 1 0 * * 0 0 

!4 0 0 0 0 1 1 4 0 

2. Compute the numerical rank of P. One approach to determine matrix rank is to 

apply a symbolic-numeric type LU decomposition, which involves both regular 

coefficient and special variable elimination in SNI matrices. However, this rank 

determination may be inaccurate due to limitations of floating-point arithmetic. 
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Generally speaking, singular value decomposition can handle rank-deficiency in 

the presence of round-off error. It is done by comparing small singular values 

with a given tolerance E. The strategy of managing numerical issues in the 

implementation will be discussed in the next chapter. More details about rank 

determination can be found in [GL96]. 

Example 2.9. For (2.8), since f 4 does not contain any derivative of xi, the 

rank of the SNI matrix is 3, which indicates rank deficiency. 

3. If the SNI is full-rank in step 2, the index of the DAE system is 0. If rank-

deficiency is detected, a loop of o-v-differentiation is applied. Each of the alge-

braic constraints in the system is differentiated once. 

Example 2.10. In (2.8), the only algebraic equation is f 4 . Therefore, it is 

differentiated as 

x' 1 x' 2 x' 3 x' 4 X1 X2 X3 X4 

J, ( 0 0 0 0 1 1 4 

:) 
(2.9) 

:::} ~~ 1 1 4 0 0 0 0 

4. After the differentiation, known derivatives will be substituted into the new 
( 1'0 
~ 

equations obtained from the previous step according to (2.1). 

Example 2.11. To eliminate x~, x~, and x~, we subtract f1, h, and h in (2.8) 
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from f 4 in (2.9): 

x' 1 x' 2 x' 3 x' 4 XI x2 X3 X4 

!~ c 1 4 0 0 0 0 

:) :::::} l~ 0 0 0 * * 0 

(2.10) 

Note that the x4 terms in !I and !2 are cancelled out during the elimination. 

5. Increase variable index by 1. The process is completed, if the SNI matrix 

becomes full-rank after substitution, otherwise we go back to step 3 and differ-

entiate algebraic equations once more. The loop continues until a full-rank SNI 

matrix is detected. 

The termination of the whole process is another issue that may arise in prac-

tice. In general, if some variable Xi or its first derivative appears nonlinearly 

in the system, by the continuous differentiations of the algebraic constraints 

and substitutions of variables, we will have the nonlinear terms appear in every 

algebraic constraint in the system. This will transform the SNI matrix into a 

full-rank one. However, it is possible that the linear coefficient of a particular 

variable Xi is repeatedly being canceled after one or several rounds of processing. 

In this case, we may have an infinite loop. This indicates that the original DAE 

system is not well-setup and, consequently, nonsolvable, since one can never 

obtain the expression of x~ by differentiation. 



18 2. Theory of Index Analysis 

Example 2.12. Replacing the last row of (2.8) by (2.10), we obtain a new 

matrix: 

X~ X~ x' 3 X~ XI X2 X3 X4 

!I 1 0 0 0 0 0 0 -1 

12 0 1 0 0 0 -1 0 1 

h 0 0 1 0 * * 0 0 

R 0 0 0 0 * * 0 0 

whose rank is still 3. We differentiate J~ again in order to obtain the derivative 

x' I x' 2 x' 3 x' 4 

~~c 0 0 0 

::::} !~' * * 0 0 

* * 0 

:) 
(2.11) 

* * 0 

Performing substitution of x~ and x~ in (2.11) will give us 

x' I x' 2 X~ x' 4 XI X2 X3 X4 

1:(* * 0 0 * * 0 

:) 
(2.12) 

::::} ft 0 0 0 0 * * 0 

Finally, a third differentiation of (2.12) and substitution yield the desired form 
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that contains a x~ term. 

x' I x' 2 x' 3 x' 4 XI X2 X3 X4 

fl' 0 0 0 0 * * 0 * 

* !~" * * 0 * * * 0 * 

* It 0 0 0 * * * 0 * 

Upon completion, the final SNI matrix is 

x' I x' 2 x' 3 X~ XI X2 X3 X4 

!I 1 0 0 0 0 0 0 -1 

h 0 1 0 0 0 -1 0 1 

h 0 0 1 0 * * 0 0 

lt' 0 0 0 * * * 0 * 

It is not hard to see that the matrix is structurally full rank. Therefore the 

symbolic numeric index analysis succeeds and returns index 3. Meanwhile, if 
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we apply SA on this problem, it returns a ~ matrix and offsets: 

XI X2 X3 X4 Ci 

]I h -oo -oo 0 0 

h -oo 1 -()() 0* 0 

h 0 0 h -00 0 

h 0 0* 0 -()() 1 

dj 1 1 1 0 

where the structural index is vr =maxi ci + 1 = 2, which is less than the true 

index 3. One of the ways the SA can fail is when it is unable to catch the 

cancellation of x4 in the process, as we have shown in the SNI analysis. 



Chapter 3 

Numerical Software 

In this chapter, we present first the algorithms used in ASIA. Then we describe our 

program from a software engineering perspective, to discuss issues arising in the design 

and implementation, and explain how to use ASIA. 

3.1 The Algorithms 

Our automatic index-analysis software includes three major functional components: 

Structural index analysis, Computing the system Jacobian, and Symbolic-numeric in­

dex analysis. These components are implemented using operator overloading to avoid 

complicated source code transformation. Different algorithms for arithmetic opera­

tions and elementary functions have been applied in each component. We illustrate 

the process using pseudo code and simple examples. 

21 
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3.1.1 Implementation of Structural Index Analysis 

The Structural index analysis component implements Pryce's SA introduced in the 

previous chapter. Given a DAE system of the form (1.1), written in the required 

format, upon completion of the program, the software returns the Taylor index ZIT, 

equation and variable offsets c and d, and HVT T. 

The code for implementing the SA is separated into two parts: 

• generating the signature matrix, and 

• computing the index. 

To generate the signature matrix, we associate a derivative array1 with each variable 

and subexpression in an equation. The elements of these arrays indicate the highest 

order of derivatives of independent variables present in the DAE system. 

Example 3.1. If a DAE system has independent variables X = {x1, ... , x4}, a 

possible subexpression and its corresponding derivative array could be: 

Informally, operator overloading is applied in generating the signature matrix in 

the following way. 

1This is not S.L. Campbell's derivative array approach in [CG95b]. 
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1. Initially, each independent variable is assigned a derivative array. 

2. When one or more variables are combined together by an arithmetic operation 

or elementary function, a new derivative array is created for this expression 

accordingly, whose entries are determined by rules that we will introduce shortly. 

3. The previous step repeats until a derivative array is formed for each equation 

in the DAE system. Then, this derivative array is the corresponding row in the 

signature matrix. 

Initialization of derivative arrays. From (2.1), we initialize the derivative array 

V of an independent variable Xi as: 

Vj={l 
-00 

if i = j; or 
(3.1) 

otherwise. 

Binary operations of derivative arrays. If an expression contains two variables 

or subexpressions, which are combined by one of the four binary arithmetic operators 

{ +, -, x, /}, the highest order derivative of each independent variable that appears 

in the resulting expression is obviously the higher one between the two components. 

Accordingly, the derivative array of the resulting expression is the componentwise 

maximum of the derivative arrays of two constituent variables or subexpressions. If 

one of the operands is a constant, the resulting derivative array is simply a copy of 

the counterpart of the other non-constant operand. 
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We use addition of derivative arrays as an example, where other operations follow 

the same procedure. Let 81 and 82 be two expressions with associated derivative 

arrays 81 .array and 82.array. We also assume both arrays are of the same size 

throughout the examples in this chapter. Then we have the following algorithm to 

compute the result of 8 = 81 + 82. 

PLUS(81, 82) 

1 if neither 81 nor 82 is constant 

2 then 8.array +-- max(81.array, 82.array) 

3 else if 81 is a constant 

4 then 8.array +-- 82.array 

5 else if 82 is a constant 

6 then 8.array +-- 81.array 

7 return 8 

Here max computes the componentwise maximum of 81 .array and 82.array. 

Differentiation. As introduced before (1.1), the SA can handle DAEs with arbi­

trarily high-order differentiations. When a variable or expression is differentiated p 

times, by definition, each component of a derivative array is increased by p. Note that 

in (3.1), -oo is used to represent absence of independent variables in a corresponding 

subexpression. Therefore, when such expressions are differentiated, adding a constant 
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Xl 

X3 

X4 

Xl X X3 

su bexpressions 

Xl X X3 + 5 
X~ 
X~ 
COSX3 

X~+ Xl X X3 + 5 
COS X3 + X~ + Xl X X3 + 5 
X~ + COS X3 + X~ + Xl X X3 + 5 

derivative array 
(0 -oo -oo -oo) 

' ' ' (-oo -oo 0 -oo) 
' ' ' (-oo -oo -oo 0) 
' ' ' (0, -oo, 0, -oo) 

(0, -oo, 0, -oo) 
(1 -oo -oo -oo) 

' ' ' (-oo -oo -oo 2) 
' ' ' 

(-oo -oo 0 -oo) 
' ' ' (0, -oo, 0, 2) 

(0, -oo, 0, 2) 
(1, -oo, 0, 2) 

Table 3.1: Steps of generating a derivative array 

n to the -oo will not destroy the correct representation. 
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Nonlinear smooth functions. We also implement common smooth functions (sin, 

cos, exp, power, log, etc.) for derivative arrays. Since applying these nonlinear 

functions does not change the highest order of a derivative, the resulting derivative 

array remains unchanged. 

Example 3.2. Here we choose the same example used previously to illustrate the 

process of parsing an equation and generating the corresponding derivative array. 

With the same expression in Example 3.1, the steps of operator overloading execution 

are shown in Table 3.1. 

The second part of the program is to compute the Taylor index vr (2.5) based on 

the signature matrix. The main step is to solve a linear assignment problem and find 

the HVT defined in the previous chapter. 
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We provide a LSOVLE function to compute the HVT and offsets of the signature 

matrix. In this function, we invoke a third party LAP solver from [JV03] through 

Matlab's external interface. This solver is based on the shortest augmenting path 

algorithm. A detailed description can be found in [JV87]. Some technical issues are 

also presented here. The LAP solver is written in C++ and actually computes the 

smallest value transversal (SVT) of an input matrix. In order to avoid dangerous 

computation involving infinities in C++ and to compute the HVT instead of the 

SVT, we pass a modified signature matrix, which is obtained by setting negative 

infinity to a large positive number and then reversing the sign of the whole matrix, 

to the LAP solver. 

Upon completion of LSOLVE, we have the following output: two index vectors 

rows and cols, where (rowsi, colsi) are the entries of~ that contribute to the HVT; 

and the two offsets c and d defined in (2.3). 

Lastly, we have all the information to determine the structural index vr defined 

in (2.5). Overall, the function for determining the index is as follows. 

COMPUTE-SAINDEX(~) 

1 [rows, cols, c, d] = LSOLVE(~) 

2 HVT 2: vat>~'"' 
= IJrowsi,colsi /.---......, Y·' ~"':/J .. 

-r 
3 if any component of d is~zero 

4 then index= max(c) + 1 
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5 else index= max(c) 

6 return HVT, rows, cols, c, d, index 

3.1.2 Computing the System Jacobian 

In [NP05a], N edialkov and Pryce present a source code translation algorithm for 

computing the Jacobian. Although likely very efficient, it is complicated in imple-

mentation. Another approach is applied in ADOL-C [GW04]. Here we implement a 

scheme based on operator overloading. Before we introduce the rules of computing 

gradient arrays, let us introduce two definitions. 

A code list is a sequence of variables and expressions that consists of fundamental 

arithmetic operations and other functions. 

The code offset of an expression v is the unique value such that 

(3.2) 

where Oj(v) is the highest order of derivative of Xj on which v depends. The compu-

tation of a( v) can be based on the following rules. 

1. If v = Xj, then 
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2. If v = fi, then 

a(v) = ci· 

3. If v is a function of variables X, then 

a(v) = min(a(X)). 

4. If v = dPuj dtP, then 

a(v) = a(u)- p. 

The complete proof of this is in [NP05a]. 

With the two definitions, we are ready to show how to apply the operator over­

loading of gradient arrays on the expressions in the code list. Generally, the strategy 

for computing the Jacobian is described below. 

1. For each variable or expression in the code list, we associate three types of 

information. 

• A gradient array to store the gradient vector of this variable or expression. 

• A code offset computed following the rules introduced above. 

• The value of this expression at the given point. 

2. Initially, for each variable Xi, every component of its gradient array is set to 

0, except the ith one, which is set to 1. The initial code offsets for xi are the 
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code list 
X 

y 
;\ 

gradient array 
(1, o, 0) 
(0, 1, 0) 
(0, 0, 1) 

code offset 
2 
2 
0 

Table 3.2: Initialization for the Single Pendulum 
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corresponding variable offsets di obtained from the SA analysis. We also store 

the initial value of each Xi, which is given as a consistent point. 

3. The gradient arrays are propagated through the code list under special rules 

specified for each fundamental arithmetic operation and elementary function. 

4. The code offset of the expression is computed based on those of its subexpres-

sions. 

5. The value of the expression is evaluated and stored. 

6. The above three steps repeat until the gradient array for the right-hand-side 

expression of each equation in the system is obtained. These gradient arrays 

consist of the Jacobian matrix evaluated at the given consistent point. 

Initialization of gradient array and code offset. We set the components of an 

associated gradient array of independent variable Xi to be the ith unit vector ei· The 

code offset of Xi is di obtained from the SA by (3.2). 

Example 3.3. For the single pendulum, we have the initialization in Table 3.2. 
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Differentiation. In [NP05a], the authors present Griewank's Lemma, which states 

that if v, a function of Xj and its derivatives, does not depend on any derivatives of 

Xj higher than the qth, then 

Denote 

ov 
ox(q)' 

J 

for all p 2: 0. 

\7 k = ( axi~+d,) , ... , ax~~+d.)) . 
By setting q = k + dj in (3.3), and applying the notation of "\h, we have 

and if k = -a(v), v = dPujdtP then (3.5) becomes 

V' -a(v)(v) = V' -a(u)(u). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

A detailed proof is in [NP05a]. By (3.2) and (3.6), the differentiation operator pre-

serves the gradient array of the operand, and the code offset decreases by the order 

of differentiation. 

DIF(u,p) 

1 if V = dPujdtP 

2 then v.gradient +-- u.gradient 

3 v.offset +-- u.offset- p 

4 return v 
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Arithmetic operations on gradient arrays. We show how to compute the result 

of binary arithmetic operations of two gradient arrays. First, each \7 k obeys regular 

rules of gradient operations. For example, if v = xy, then 

Generally speaking, if vis an algebraic function f(x, y, .. . ), we have 

Second, from (3.2), we know that for any v in the code list, it does not depend on 

any derivatives of Xj higher than the (dj- a(v))th. Therefore, applying (3.4) in (3.3) 

when k > -a(v), we obtain 

\7k(v) = 0, if k > -a(v). 

Following the two properties above, we can conclude the rules of computing gra-

client arrays through arithmetic operations as follows. For v = v1 o v2, where 

o E { +, -, *, /}, the gradient of v is computed by the normal rules of gradient op-

erations with one prerequisite that if the code offset of v1 is greater than that of v2, 

then we replace the gradient of v1 by 0 in the formula, and vice versa. We show the 

pseudo code of multiplication as an example. 
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code list 
tl = xo 
t2 = A.o 
t3 = xoA.o 
t II 
4 = xo 

ts = t4 + t3 
f = ts 

gradient array 
(1, 0, 0) 
(0, 0, 1) 
(0, 0, xo) 
(1, 0, 0) 

(1, 0, xo) 
(1, 0, xo) 

3. Numerical Software 

code offset 
2 
0 
0 
0 
0 
0 

Table 3.3: Evaluation of code list for f = x" + x.\. 

2 then v.gradient +-- v1 x v2.gradient + v2 x vl.gradient 

3 v.offset +-- Vt.offset 

4 else if Vt.off set> v2.ojj set 

5 then v.gradient +-- v1 x v2.gradient 

6 v.offset +-- v2.ojjset 

7 else if v2.ojjset > Vt.offset 

8 then v.gradient +-- v2 x v1 .gradient 

9 v.offset +-- Vt.offset 

10 return v 

Example 3.4. For the single pendulum, the initialization step is shown in (3.2). Now 

we illustrate the evaluation of gradient code list in Tables 3.3, 3.4, and 3.5. 
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code list gradient array code offset 

t1 =Yo (0, 1, 0) 2 
t2 = Ao (0, 0, 1) 0 
t3 = YoAo (0, 0, yo) 0 
t II 4 =Yo (0, 1, 0) 0 
t5 = t4 + t3 (0, 1, yo) 0 
t6 = t5 + G (0, 1, yo) 0 
g = t6 (0, 1, yo) 0 

Table 3.4: Evaluation of code list for g = y" + y>.. +G. 

code list gradient array code offset 

tl = xo (1, 0, 0) 2 
t1 =Yo (0, 1, 0) 2 
t3 = x6 (2xo, 0, 0) 2 

t4 = Y6 (0, 2yo, 0) 2 
t5 = t4 + t3 (2xo, 2yo, 0) 2 
t6 = t5- L2 (2xo, 2yo, 0) 2 
h = t6 (2xo, 2yo, 0) 2 

Table 3.5: Evaluation of code list for h = x2 + y2 - L2. 
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3.1.3 Implementation of Symbolic Numeric Analysis 

Similar to the SA, the symbolic numeric analysis is also divided into two major steps: 

generating the SNI matrix and computing the symbolic numeric index. We will first 

introduce the rules of operator overloading and then the algorithm for computing a 

symbolic numeric index. 

In (2.6), each row in the SNI matrix is defined to represent coefficients of linear 

terms as well as the first order derivatives of each variable Xi· Accordingly, we define 

a coefficient array associated with each variable and subexpression in the equation. 

Along with the computation, the coefficient arrays are gradually updated, and finally 

form the rows of the SNI matrix. 

Example 3.5. Using the same notation of SNI matrix from (2.6), here is a simple 

example of an equation, where the independent variables are X= {xi,x2,x3}, and 

its associated coefficient array: 

X~ x' 2 x' 3 XI X2 X3 

0 = 2x~ + COS X3 + XI X X3 + 5, (2 0 0 * 0 *) 
Initialization of coefficient array. Similar to the SA, our program for SNI analy-

sis also requires an initialization of the coefficient arrays for each independent variable 

Example 3.6. Given the same DAE system as (2.7), the initialization step is shown 
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code list coefficient array 
(0, 0, 0, 0, 1, 0, 0, 0) 
(0, 0, 0, 0, 0, 1, 0, 0) 
(0, 0, 0, 0, 0, 0, 1, 0) 
(0, 0, 0, 0, 0, 0, 0, 1) 

Table 3.6: Initialization of generating SNI matrix 

in Table 3.6. 
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Arithmetic operations on coefficient arrays. Since the numbers stored in the 

array correspond to coefficients, when we add or subtract two variables or other 

expressions in the code list, we only need to perform the same operation on the corre-

spending coefficients of each variable in the two operands to obtain a new coefficient 

array for the resulting expression. If a constant is added to or subtracted from an 

expression, the coefficient array is unchanged. 

1 if neither 81 nor 82 is constant 

2 then 8.array +-- 81.array + 82 .array 

3 else if 81 is a constant 

4 then 8.array +-- 82 .array 

5 else if 82 is a constant 

6 then 8.array +-- 81.array 

7 return 8 
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The multiplication and division for coefficient arrays are slightly more compli­

cated than addition and subtraction. When two subexpression are combined with a 

nonlinear operation, all variables that appear in both operands will become nonlinear. 

We use multiplication as an example to show the algorithm. For division, an extra 

check for divide-by-zero is imposed. 

TIMES(SI, S2) 

1 if neither sl nor s2 is constant 

2 then for i +-- 1 to n 

3 do if either S 1 .array( i) or S2 .array( i) is nonzero 

4 then S.array(i) +-- * 

5 else S.array( i) +-- 0 

6 else if S 1 is a constant 

7 then S.array f- sl X s2.array 

8 else if s2 is a constant 

9 then S.array f- s2 X sl.array 

10 return S 

Differentiation of coefficient array. Since the SNI analysis only handles first 

order DAE systems, the differentiation operation can only be applied to an expression 
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code list coefficient array 
(0, 0, 0, 0, 1, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 1) 
(1, 0, 0, 0, 0, 0, 0, 0) 

(1, 0, 0, 0, 0, 0, 0, -1) 

Table 3.7: Evaluation of !I= x~- x4 . 
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that does not contain any derivatives. Therefore, the result is obtained by shifting 

the coefficients of Xi to the coefficients of x~. 

Nonlinear smooth functions. The appearance of nonlinear functions, such as 

trigonometric functions, the exponential function, etc., in an equation simply indicates 

nonlinearity of variables. Accordingly, all nonzero components in the coefficient array 

will be set to * to reflect this fact. Here we use a cos function as an example. 

1 if S 1 .array( i) is nonzero 

2 then S.array(i) <---- * 

3 else S.array(i) <---- 0 

4 return S 

Example 3.7. We illustrate the whole process of generating the SNI matrix for the 

DAE system (2.7) in Tables 3.7, 3.8, 3.9, and 3.10. 

Computing the SNI matrix involves symbolic-numeric Gaussian elimination on 
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coefficient array 
(0, 0, 0, 0, 0, 1, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 1) 
(0, 1, 0, 0, 0, 0, 0, 0) 

(0, 1, 0, 0, 0, -1, 0, 0) 
(0, 1, 0, 0, 0, -1, 0, 1) 

Table 3.8: Evaluation of h = x~ - x2 + x4. 

code list 
XI 

X2 

X3 

X~ 
X~ 
xi 

I 2 x3- xi 

coefficient array 
(0, 0, 0, 0, 1, 0, 0, 0) 
(0, 0, 0, 0, 0, 1, 0, 0) 
(0, 0, 0, 0, 0, 0, 1, 0) 
(0, 0, 1, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, *, 0, 0) 
(0, 0, 0, 0, *, 0, 0, 0) 
(0, 0, 1, 0, *, 0, 0, 0) 
(0, 0, 1, 0, *, *, 0, 0) 

Table 3.9: Evaluation of /3 = x~- xi- x~. 

code list coefficient array 
(0, 0, 0, 0, 1, 0, 0, 0) 
(0, 0, 0, 0, 0, 1, 0, 0) 
(0, 0, 0, 0, 0, 0, 1, 0) 
(0, 0, 0, 0, 0, 0, 4, 0) 
(0, 0, 0, 0, 1, 1, 0, 0) 
(0, 0, 0, 0, 1, 1, 4, 0) 

Table 3.10: Evaluation of f 4 =XI+ x 2 + 4x3. 
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the SNI matrix. Function COMPUTE-SNINDEX initializes the index to be 0, and then 

invokes FINDRANK which executes LU factorization steps to determine the rank of 

the SNI matrix. If the matrix is found to be structurally full rank, the program stops 

and returns index 0; otherwise, FINDALGEQNS is called to find algebraic equations 

in the system and differentiates them once by calling DIFFEQNS. Accordingly, the 

index is also increased by 1. After differentiation, L U factorization is executed again to 

compute the rank. This procedure is repeated until a full-rank matrix is determined. 

COMPUTE-SNINDEX(SN !matrix, dim) 

1 index<-- 0 

2 tempRank <-- FINDRANK(SN!matrix, dim, tol) 

3 if tempRank = dim 

4 then exit 

5 else algeqns <-- FINDALGEQNs(SNimatrix, dim) 

6 while true 

7 do SN!matrix <-- DIFFEQNS(SN!matrix,dim,algeqns) 

8 index<-- index+ 1 

9 temp Rank <-- FIND RANK( S N I matrix, dim, tol) 

10 if tempRank =Dim 

11 then break 

12 else algeqns <-- FINDALGEQNS(SN !matrix, dim) 
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13 return index 

The algorithm implemented in FINDRANK is symbolic-numeric type of LU fac­

torization with partial pivoting. It performs equivalence transformations and per­

mutations with those of the regular linear algebra, but using the symbolic numeric 

operations defined in (2.1). As mentioned in the previous chapter, round off error 

may affect the correctness of the result. To avoid comparing the pivot with zero, we 

introduce a user defined tolerance, so any number smaller than the tolerance will be 

regarded as zero. 

3.2 Software 

In this section, we follow the procedure of software development and describe the 

specification and design issues raised during the development. 

3.2.1 General description 

As mentioned previously, the system contains three components, which deploy the 

three analyses and computations introduced in Chapter 2. In these three components, 

the computation of SA and SNI are independent. The user needs to provide a system 

of DAEs written in the specified form. The system returns the signature matrix :E, 

offsets c and d, the HVT T, and the stuctural index vr; or the SNI matrix, and 



3. Numerical Software 41 

OAE:System 

Offsets 

'r---------D_A_E_s_y,_ste_m _____ ---1>1 Compute Jacobian 

Evaluating point 

ComputeSNI 
DAEsystem 

Figure 3.1: Hierarchy diagram of the system. 

SNI index in the case of SNI analysis. The computation of system Jacobian partially 

relies on the results from the SA component. The user is responsible for preparing 

a system of DAEs and a point at which the Jacobian is evaluated. In addition, the 

variable offset d obtained from SA computation is also required. Upon completion, 

the system returns the Jacobian matrix, a condition number indicating the reliability 

of the computation. A sketch of the system is presented in Figure 3.1. 

3.2.2 Specification 

Here we give an informal functional specification of our software package. 

1. The software handles a DAE system of the form ( 1.1). The DAE system must 

have an equal number of equations and variables. It should consist of funda-



42 3. Numerical Software 

mental arithmetic operations { +, -, x, /}, differential operators, smooth con­

tinuous functions such as trigonometric functions, the exponential function, etc. 

No nonsmooth functions, such as min, abs, etc., are allowed in the DAE system. 

2. The goal of this software is to facilitate automatic index analysis of DAE sys­

tems. We want to provide the user with a tool that can apply different types 

of analysis methods. This tool can give the structural information obtained 

through the analysis. Because of the potential failure of both structural analy­

ses in some problems, we also want the software to produce useful information 

and suggestions on possible adjustments that can be done to correct the inac­

curate index computation. 

3. The output of the software contains several components. 

• The corresponding signature matrix of the input DAE. 

• A signature matrix object containing the signature matrix. This is used 

for an auxiliary function to print the numerical results in a figure. 

• Structural information: the HVT, the index vectors of 2: entries contribut­

ing to the HVT, offsets c and d, and structural index. 

• The symbolic-numeric matrix of the input system. 

• The SNI index. 

• The system Jacobian evaluated at a given point. 
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Figure 3.2: Signature matrix of robotic arm 

• The condition number of the Jacobian. 
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4. An auxiliary function is provided to plot a figure to show t he structural infor-

mation. A sample print is in Figure 3.2. 

3.2.3 Interface 

The goal of the software is to provide a tool for scientists and engineers to analyze the 

index of DAE systems that arise in applications. Therefore, users of this tool may or 
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User 

Figure 3.3: Interface design of ASIA 

may not have advanced knowledge on the theory of index analysis, but they require 

a reliable result on the structural index of a DAE problem to conduct an appropriate 

strategy in solving the problem numerically on the next step. On the other hand, 

due to the lack of generic algorithms that always return correct structural indices for 

general problems, one also expect the software to return a reference that can indicate 

the correctness of the index computation. 

We design the interface of ASIA to be compact and straightforward, so that the 

users need not to set the complicated parameters of index analysis to be able to obtain 
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the result they require. A driver is implemented, so that the user only supplies the 

system of equations and the dimension of the problem, and the driver invokes the 

corresponding functions to perform the analysis. This structure is shown in Figure 

3.3. After finishing the computation, the driver returns an object. It contains the 

computed index as well as the Jacobian matrix and its condition number, which serve 

as the reference for the correctness of the computation. The interface is given as 

function myresult DAEAnl(myFunc, dim, option, y) 

The arguments are listed below. 

myFunc The name of the file defining the target DAE system. Its format is shown in 

the next subsection. 

dim The dimension of the DAE system. 

option A string determines the mode of computation. 

• FULL: The software performs both Pryce's structural analysis and the 

Symbolic-numeric Analysis, and computes the system Jacobian. Only ap­

plicable to first order systems. 

• SIMPLE: The software performs Pryce's structural analysis only, and com­

putes the system Jacobian. Applicable to systems of arbitrary orders. 
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y An optional argument that specifies the point at which the system Jacobian is eval-

uated. If this argument is not provided, we randomly choose a set of numbers, 

which are uniformly distributed on the unit interval with mean 0, using Matlab 

random number generating function. 

3.2.4 Installation and Usage 

This section describes how to install and use the ASIA package. ASIA uses the LAP 

solver from [JV03j2. This third party library is included in our package. In order to 

compile the Matlab/C++ API function, one needs to have the corresponding C/C++ 

compiler installed. We have compiled and tested on Solaris 9 with GNU gcc/g++ 

v3.4 compiler. After compilation, ASIA can be used in any platform with Matlab 

version 6.5 or later installed. 

Content of the package 

The file structure of the ASIA package is shown in Figure 3.4. In this diagram, entities 

in bold font represent folders, while others represent single functions. 

Installing ASIA 

The following steps are needed to install ASIA. 

• Download ASIA package. 

2The algorithm can be found in [JV87] 



I 

DAESA 

I 

sigma slgnatureMatrix lap 

'- J ~ J '- _/ 

ASIA 

I 
I I 

DAEJ DAESNA Examples 

I I 
I I 

gradt Jacobian symNum symNumMatrlx 

J '- J '- J '- / 

Figure 3.4: Organization of ASIA. 

I 

DAEAnl 

C/.j 

~ 
~ s 
ctl 
'"l ..... 
n 
P-l -rn 
0 
~ 

~ 
ctl 

~ 
-l 



48 3. Numerical Software 

• Add related directories to Matlab path. 

• Set up the mex compiler. 

• Compile the mex file in /lap folder. 

Using ASIA 

The user provides a system of equations and the dimension of the problem. Below 

we go through each step of analyzing the single pendulum problem to illustrate the 

use of ASIA. 

1. Set system equations. The user must give a DAE system written in required 

form. Here is the definition of the single pendulum problem in pendulum.m. 

function f=pendulum(n, y, t) 

f(1)=dif(y(1),2)+y(1)*y(3); 

f(2)=dif(y(2),2)+y(2)*y(3)-1.0; 

f(3)=y(1)*y(1)+y(2)*y(2)-1.0*1.0; 

2. Invoke the DAEAnl. After setting up the equations, we are ready to use the 

analyzer. To invoke the software, one can type the following line in the Matlab 

command window. 
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singlePendulumResult = DAEAnl(~singlePendulum, 3, 'SIMPLE', [1, 0, 

0]) 

The object returned by the above command contains the following attributes. 

• sigMatrix: the signature matrix of the DAE system 

• hvt: the highest value transversal of the signature matrix 

• indexVector: two index vectors, containing indices of the entries con­

tributing to HVT 

• SAindex: the structural index of the DAE system 

• offset: the offset vectors c and d where d(i)- c(j) 2:: s(i,j) 

• point: the consistent point at which the Jacobian is evaluated 

• jacob: the system Jacobian 

• condJ: the condition number of the Jacobian 

• symnMatrix: the SNI matrix 

• SNindex: the SN index of the DAE system 

To fetch an attribute, one can use the corresponding functions provided. Some 

examples are shown below. 

>> singlePendulum = DAEAnl(~pendulum, 3, 'SIMPLE'); 
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>> s = getSigMatrix(singlePendulum) 

s = 

2 -Inf 0 

-Inf 2 0 

0 0 -Inf 

>> i getSAindex(singlePendulum) 

i 

3 

>> [c d] = getDffset(singlePendulum) 

c = 

0 0 2 

d = 

2 2 0 

>> condJ = getcondJ(singlePendulum) 

condJ = 

2.6006 

3. Numerical Software 

3. Interpretation of the result. According to the theory of Pryce's analysis 

[NP05b), the nonsingularity of the Jacobian serves as an indicator of the cor­

rectness of HVT computation. Here, if the condition number is moderate com­

pared to the norm of the input vector at which the Jacobian is evaluated, then 

we consider the HVT and structural index computed by ASIA to be reliable. 



Chapter 4 

Numerical Experiments 

We conduct numerical experiments using ASIA on various DAE problems, including 

the single pendulum [AP98], the double pendula [Pry98], the two-link robotic arm 

problem [PryOl] and its modified version, the car axis problem [MI03], an example 

of SA failure from [KL04], the chemical Akzo Nobel problem [MI03], the transistor 

amplifier problem [MI03], and the ring modulator problem in ODE, DAE and modified 

DAE formats [MI03]. 

4.1 Structure of the Experiments 

For each problem, we present 

1. Background information 

51 
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2. Mathematical description 

3. Numerical results 

In the numerical results, we present the following information. 

1. Structural information of the problem. Four types of structural infor­

mation that we present are listed below. We compare our solution with the 

solution in the literature to verify the correctness of ASIA. 

• Structural Index 

• HVT 

• Variable Offsets 

• Equation Offsets 

2. The system Jacobian matrix with its condition number. We present 

this information as an auxiliary reference to show the reliability of index com­

putation. (See Chapter 2 for details.) 

3. Comparison between the two index analyses. If applicable, we compare 

the two analyses to obtain some heuristic approaches for computing correct 

DAE indices. 
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4.2 Single Pendulum 

4.2.1 Background Information 

These equations model the behavior of a pendulum movement. It is a nonstiff DAE 

system with 3 variables. 

4.2.2 Mathematical Description 

The equations are 

0 = x" + x.\, 

0 = y" + y.\ - G, 

0 = x2 + y2 - L 2' 

where L is the length of the pendulum, G is a gravity; x, y are Cartesian coordinates 

of the pendulum bob withy pointing downwards; ,\ characterizes the tension in the 

string. We choose L = 1 for simplicity. (See also Equation 2.2 in Chapter 2.) 

4.2.3 Numerical Results 

In [AP98], the single pendulum is given as a nonstiff DAE problem of index 3. The 

structural information returned by our program is shown in Table 4.1. 

The signature matrix of the single pendulum is given in Table 4.2. Here the entries 
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Structural information Results 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

3 
2 

(0, 0, 2) 
(2, 2, 0) 

Table 4.1: Structural index analysis of single pendulum 

y A Ci 

-()() 0*) 0 
2* 0 0 
0 -()() 2 
2 0 

Table 4.2: Signature matrix for single pendulum 

marked by * represent those in the HVT. 

In [AP98], the authors point out that this problem can have arbitrary initial 

values. We evaluate the system Jacobian at a consistent point and compute its 

condition number, as shown in Table 4.3. 

For the single pendulum, we can see that ASIA returns the correct index and struc-

tural information. The system Jacobian evaluated at one initial point is structurally 

nonsingular, therefore the computed result from ASIA is reliable. 

var. 
X 

y 
A 

condition number 

value 
-4.5766268835131380e - 001 

8.8912589867298431e - 001 
3.6673776960190421 
2.6180339887498999e + 000 

Table 4.3: Consistent point and condition number for single pendulum 
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4.3 Double Pendula 

4.3.1 Background Information 

Double pendula consist of one pendulum attached to another. The problem is a 

simple example of dynamic system which can exhibit chaotic behavior. It contains 4 

differential equations and 2 algebraic constraints. 

4.3.2 Mathematical Description 

The problem is given in the form 

0 = x" + x.\ 

0 = y" + y). - g 

0 = x2 + y2- L2 

0 = u" +UK, 

0 = v" + V/'i,- g 

Here we take L = 1, g = 1, and c = 0.1; x, y, A, u, v, and /'i, are the dependent 

variables. 

4.3.3 Numerical Results 

This double pendula problem is given as a nonstiff DAE problem of index 5 in [Pry01). 

The structural information returned by our program is shown in Table 4.4. The 

signature matrix of the double pendula is given in Table 4.5. A consistent point is 

(1, 0, 0, 1, 0, 0). We evaluate the system Jacobian at this point and obtain the result 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

4. Numerical Experiments 

Results 
5 
4 

(2, 2, 4, 0, 0, 2) 
(4, 4, 2, 2, 2, 0) 

Table 4.4: Structural index analysis of double pendula 

X y A u v /'i, Ci 

!I 2 -oo 0* -oo -oo -oo 2 

h -00 2* 0 -oo -oo -00 2 

h 0* 0 -oo -oo -oo -00 4 

i4 -00 -oo -00 2 -oo 0* 0 
is -00 -oo 0 -oo 2* -00 0 
i6 -oo -oo 0 0* 0 -00 2 
d· J 4 4 0 2 2 2 

Table 4.5: Signature matrix for double pendula 

in Table 4.6. The condition number of the Jacobian is 2.808452574757240e + 000. 

From this, we can conclude that the Jacobian matrix is structurally nonsingular at 

the consistent point. Therefore, the structural index computed for the double pendula 

is reliable. 

X y A u v /'i, 

!I 1 0 1 0 0 0 

h 0 1 0 0 0 0 

h 2 0 0 0 0 0 

i4 0 0 0 1 0 1 

is 0 0 0 0 1 0 

i6 0 0 -0.2 2 0 0 

Table 4.6: Jacobian matrix for double pendula 
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4.4 Two-link Robotic Arm 

4.4.1 Background Information 

This example is a slight simplification of equations for the prescribed-path control of 

a two-link robotic arm [Pry98]. It is a DAE of 3 differential equations and 3 algebraic 

constraints. 

4.4.2 Mathematical Description 

The problem is of the form 

0 = x~- [2c(x3 )(x~ + x~)2 + d(x3 )x~2 

+ (2x3 - x2)(a(x3) + 2b(x3)) + a(x3)u1- a(x3)u2], 

0 = x~- [-2c(x3 )(x~ + x~) 2 - d(x3 )x~2 

+ (2x3 - x2)(l- 3a(x3)- 2b(x3))- a(x3)u1 + (a(x3) + l)u2], 

0 = x~- [-2c(x3 )(x~ + x~) 2 - d(x3 )x~2 

+ (2x3 - x2)(a(x3)- 9b(x3))- 2x~2c(x3)- d(x3)(x~ + x;? 

- (a(x3) + b(x3))u1 + (a(x3) + b(x3))u2], 

0 = cos XI + cos(xi + x3) -PI (t), 

0 = sin XI +sin( xi + x3) - P2(t), 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

4. Numerical Experiments 

Results 
3 
2 

(0, 0, 0, 2, 2) 
(2, 2, 2, 0, 0) 

Table 4. 7: Structural index analysis of robotic arm 

where 

PI(t) =cos (et- 1) +cos (t- 1), 

P2(t) =sin (1- et) +sin (1- t), 

2 
a(s) = ----,---

2- cos2 s' 

( ) 
sins 

c s = ------:--
2- cos2 s' 

b(s) = coss 
2- cos2 s' 

d ( 
8

) = cos s sin s . 
2- cos2 s 

By construction, the solution has x 1 = 1 - et, x 3 = et - t. 

4.4.3 Numerical Results 

In [CG95b], the authors show that this DAE has index 5 via their derivative-array 

equation method. The structural information obtained through our experiment is 

shown in Table 4.7. 

The software returns index 3, which is lower than the correct index 5. In order 

to confirm the failure of Pryce's analysis in this example, we compute the system 

Jacobian and its condition number at the consistent point, as shown in Table 4.8. 

It is clear to see that we have a large condition number, which indicates that the 
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var. 

condition number 

value 
-2.6692966676192422 

2. 65 78533275805367 
2.3692966676192442 
2.1507094761478751e + 001 
2.2158319076934220e + 001 
7.9259796473774460e + 016 

Table 4.8: Consistent point and condition number for robotic arm 
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system Jacobian is likely singular, therefore the index computation above may be 

incorrect. 

Alternatively, we identify common subexpressions in the original equations, as 

done in [Pry01], and have the following modified version. 

0 = x~- [-v + X(1- 3a(x3)- 2b(x3))- a(x3)w + JL2], 

0 = x~- [-v + X(a(x3)- 9b(x3))- 2x~ 2c(x3)- d(x3)Y'2 

- (a(x3) + b(x3))w], 

0 = COSX1 +COS (Y)- PI(t), 

0 =sin x1 +sin (Y)- P2(t), 

where 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

4. Numerical Experiments 

Results 
5 
0 

(0, 2, 0, 2, 4, 4) 
(4, 2, 4, 0, 0, 2) 

Table 4.9: Structural index analysis of modified robotic arm 

The introduction of a new variable w is essential. Applying the new system into 

our software, we obtain the correct structural information in Table 4.9. We use the 

same consistent point shown in Table 4.8, and calculate the system Jacobian again. 

The condition number obtained is 2.660343827951100e + 001. We can see clearly 

that the condition number for the modified system is small, indicating that the index 

computation is correct. 

4.5 Car Axis 

4.5.1 Background Information 

The problem is a stiff DAE system consisting of 8 differential and 2 algebraic equa-

tions. It is originally defined in [Sch94]. 
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4.5.2 Mathematical Description 

The problem is of the form 

P
I q, 

Kq' f(t,p, -\), 

0 cp(t,p), 

with initial conditions p(O) = Po, q(O) = qo, p'(O) = qo, q'(O) = q~, -\(0) = >.o, and 

A'(O) = -\~. 

The matrix K reads E2 Af 14 , where 14 is the 4 x 4 identity matrix. The function 

f : IR9 -> IR4 is given by 

f(t,p, >.) = 

xz 
(lo- lz)­

lz 

(lo - lz) Yz 
lz 

(
[ _ [ ) Xr- Xb 
0 r lr 

(l -l )Yr- Yb 
0 r lr 

Here, (xz, yz, Xn Yr )T = p, and lz and lr are given by 

Furthermore, the functions xb(t) and Yb(t) are defined by 

Yb(t) = r sin (wt). 
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Table 4.10: Constants in car axis 

The function ¢: JR5 
-t JR2 reads 

The constants are listed in Table 4.10. 

Consistent initial values are 

0 -1/2 

1/2 0 
Po= Qo = 

1 -1/2 

1/2 0 

qb = ;;t2 f(O,po, >..o), >..o = >..~ = (0, Of. 

The indices of the variables p, q, and >.. are 1, 2, and 3, respectively. 

4.5.3 Numerical Results 

In the reference solution for this problem, the DAE system is given as index 3. The 

structural information obtained through our software is given in Table 4.11. A con-

sistent point and the corresponding condition number of the Jacobian evaluated at 

this point are given in Table 4.12. 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

Results 
3 
4 

(1, 1, 1, 1, 0, 0, 0, 0, 2, 2) 
(2, 2, 2, 2, 1, 1, 1, 1, 0, 0) 

Table 4.11: Structural index analysis of car axis 

var. 
XI 

X2 

X3 

X4 

Xs 
X6 

X7 

Xg 

Xg 

xw 
condition number 

value 
0.4934557842752397e- 001 
0.4969894602300073 
0.1041742524885424e + 001 
0.3739110272653672 

-0. 7705836840358462e - 001 
0.7446866592147278e- 002 
0.1755681575356589e- 001 
0.7703410437798304 

-0.4736886590853484e- 002 
-0.1104680331259640e- 002 

8.7782354298555460e + 003 

Table 4.12: Consistent point and condition number for car axis 
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From this experiment, we can see that the condition number of the Jacobian is 

not large. This indicates that the Jacobian is structurally nonsingular, which further 

confirms the correctness of index computation for this problem. 

On the other hand, since this problem is in first order, the SNI analysis is another 

applicable approach. Our software returns the SN index as 3, which is consistent 

with the result from the SA analysis. This is an example when the two analyses 

report the same index. In the case of systems which are nonlinear with respect to 

their highest-order derivatives, the coincidence is expected due to the nature of the 

SNI analysis, in which only linear coefficients are recorded. In the next example, we 

discuss the situation when the two analyses contradict with each other, and why the 

SNI analysis may provide correct results in some particular cases. 

4.6 Example of Failures in Structural Analysis 

4.6.1 Background Information 

This example is due to Chowdhry, Krendl, and Linninger [KL04], in which they use 

it to show a situation where Pantelides' algorithm and their SN analysis contradict 

in index computation. It contains 3 differential equations and 1 algebraic constraint. 

(See also Chapter 2 for details.) 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

Results 
2 
2 

(0, 0, 0, 1) 
(1, 1, 1, 0) 

Table 4.13: Structural index analysis of an example in [KL04) 

4.6.2 Mathematical Description 

The equations are in the form of 

4.6.3 Numerical Results 
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The correct index of this problem is 3. However, the structural index returned by 

our software is 2, as shown in Table 4.13. The signature matrix of this problem is 

given in Table 4.14. Since no consistent point is given in the original literature, we 

select a sufficient number of random points, which are uniformly distributed in the 

unit interval with mean 0, to compute the system Jacobian. The results show that 

the Jacobian always has a very large condition number. This is an indication of likely 

incorrectness of our structural analysis. 



66 

X2 X3 

-oo -oo 
h -oo 
0 h 
0 0 
1 1 

4. Numerical Experiments 

X4 Ci 

o;) ~ 
-oo 0 
-oo 1 

0 

Table 4.14: Signature matrix for the example in [KL04] 

On the other hand, the result of SNI analysis returned from our software shows 

that the system has index 3. The detailed steps of computation are explained in 

Chapter 2. From this example, we can see that when a DAE system is first order 

and linear with respect to the highest-order derivatives, the SNI analysis returns an 

accurate differential index. Both Pantelides' approach and Pryce's SA may or may 

not capture the cancellation between linear coefficients, therefore they may fail to 

produce the correct structural index of the problem. For first order linear systems, 

the SN index may serve as a good reference to the result from the SA analysis, since 

it is rigorous for linear problems. 

4.7 Chemical Akzo Nobel 

4. 7.1 Background Information 

This IVP is a stiff system of 6 non-linear Differential Algebraic Equations of index 

1. The problem originates from Akzo Nobel Central research in Amsterdam, The 
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Netherlands [Sto98]. It describes a chemical process in which 2 species are mixed, 

while carbon dioxide is continuously added [M103]. 

4. 7.2 Mathematical Description 

The problem is of the form 

dy 
M dt = j(y), y(O) =Yo, y'(O) = y~, 

with 

y E lR, 0 :s; t :s; 180. 

The matrix M is given in the form of 

1 0 0 0 0 

0 1 0 0 0 

M= 0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 0 
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and the function f is defined as 

-2.0 · r1 

-0.5 · r1 -0.5 · rs +Fin 

!= 

+rs 

Ks · Y1 · Y4 - Y6 

where the ri and Fin are auxiliary variables given by 

r 4 = k3 · Y1 · Y~, 

2 l 
rs = k4 · Y6 · Yi, 

p. = klA. (p(C02) - ) 
m H Y2 · 

The values of the constant parameters are 

kl = 18.7, k4 = 0.42, Ks = 115.83, 

k2 = 0.58, K = 34.4, p( C02) = 0.9, 

k3 = 0.09, klA = 3.3, H = 737. 
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Structural information Results 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

1 
5 

(0, 0, 0, 0, 0, 0) 
(1, 1, 1, 1, 1, 0) 

Table 4.15: Structural index analysis of chemical Akzo Nobel 

var. 

Y1 
Y2 
Y3 
Y4 
Ys 
YB 

condition number 

value 
4.4400000000000001e- 01 
1.2300000000000000e- 03 
O.OOOOOOOOOOOOOOOOe + 00 
7.0000000000000001e- 03 
O.OOOOOOOOOOOOOOOOe + 00 
3.5999964000000001e- 01 
1.0000005115012430e + 000 

Table 4.16: Consistent point and condition number for chemical Akzo Nobel 

4. 7.3 Numerical Results 
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In the reference solution, the system is given as index 1. The structural information 

obtained from our software are shown in Tables 4.15. 

A consistent point given in the reference, as well as the computed condition num-

ber of the Jacobian at this point, are shown in Table 4.16. From the computation, 

we can see our software returns the correct structural information. The Jacobian 

evaluated at the consistent point is well-conditioned. We also ran the SNI analysis 

on this problem, and obtained the same differential index 1. This is another proof of 

the correctness of our computation. 
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4.8 Transistor Amplifier 

4.8.1 Background Information 

This problem is a stiff DAE consisting of 8 equations. The formulation we use here 

is taken from [EHR89]. 

4.8.2 Mathematical Description 

The problem is of the form 

dy 
M dt = f(y), y(O) =Yo, y'(O) = Yb, 

with 

y E JR8
, 0:::; t:::; 0.2. 

The matrix M is 

-01 o1 0 0 0 0 0 0 

o1 -01 0 0 0 0 0 0 

0 0 -02 0 0 0 0 0 

0 0 0 -03 03 0 0 0 
M= 

0 0 0 03 -03 0 0 0 

0 0 0 0 0 -04 0 0 

0 0 0 0 0 0 -Os Os 

0 0 0 0 0 0 Os -Os 
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and the function f is defined as 

_ Ue(t) + .1Ll_ 

Ro Ro 

-g(y2 - Ya) + _k~ 

!= 
-2 + t + o:g(y2 - Ya) 

-~ + Ys(~5 +~)-(a- 1)g(ys- Y6) 

-g(ys - Y6) + ft" 

- ~: + ~ + o:g(ys- Y6) 

where g and Ue are auxiliary functions given by 

g(x) = f3(erJP - 1) and Ue(t) = 0.1 sin(2007rt). 

The values of the constants are 

Ro = 1000, 
Up= 0.026, 

and 
Rk = 9000, for k = 1, ... , 9, 

0: = 0.99, 
ck = k . 10-6

' for k = 1, ... '9. 



72 

Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

4. Numerical Experiments 

Results 
1 
5 

(0, 1, 0, 0, 1, 0, 0, 1) 
(1, 1, 1, 1, 1, 1, 1, 1) 

Table 4.17: Structural index analysis of transistor amplifier 

4.8.3 Numerical Results 

The original system is defined by 8 differential equations only. Therefore, the struc-

tural index obtained from our SA computation is 0. However, one can easily determine 

that the coefficient matrix M is rank deficient, where the second, fifth, and eighth 

equations are linearly dependent with the first, fourth, and seventh equations. By 

explicitly eliminating the linearly dependent rows in M, we obtain a modified system 

with 5 differential equations and 3 algebraic constraints. 

In the reference solution, the system is determined as index 1. The structural 

information of the modified system returned by our software is shown in Table 4.17. 

A consistent point and the condition number of the Jacobian are given in Table 

4.18. From the computation, we can see the Jacobian is likely nonsingular at the 

consistent point, which indicates our index computation is reliable. 
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var. 

Y1 
Y2 
Y3 
Y4 
Ys 
Y6 
Y7 
Ys 

condition number 

value 
O.OOOOOOOOOOOOOOOOe + 00 
3.0000000000000000e + 00 
3.0000000000000000e + 00 
6.0000000000000000e + 00 
3.0000000000000000e + 00 
3.0000000000000000e + 00 
6.0000000000000000e + 00 
O.OOOOOOOOOOOOOOOOe + 00 
2.6189826195363230e + 002 

Table 4.18: Consistent point and condition number for transistor amplifier 

4.9 Ring Modulator 

4.9.1 Background Information 
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Originally, this problem is a stiff ODE system of 15 non-linear differential equations 

[MI03]. If we let the parameter Cs be 0, it becomes a DAE system with 11 differential 

equations and 4 algebraic constraints. The original problem is taken from [WKS92]. 

4.9.2 Mathematical Description 

dy 
dt = f(y), y(O) =Yo, 

with 

The definition of J(y) is given in [MI03]. 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

4. Numerical Experiments 

Results 
0 
15 

(0, 0, ... ,0) 
(1, 1, ... ,1) 

Table 4.19: Structural index analysis of ring modulator (ODE) 

Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

Results 
1 

11 
(0, 0, ... ,0) 

(1, 1, 0, 0, 0, 0, 1, 1, ... ,1) 

Table 4.20: Structural index analysis of ring modulator (DAE) 

4.9.3 Numerical Result 

Here we give the structural results for both ODE and DAE formats of the problem. 

For the ODE case, the result returned by our software is shown in Table 4.19. 

The system Jacobian is the identity matrix with condition number 1. 

For the DAE case, the correct index is 2. However, the SA analysis obtains index 

1 as shown in Table 4.20. Given a consistent point at 0, we compute the Jacobian and 

its condition number. Due to the large condition number 8.150552506528627e + 016 

obtained, we can conclude that the structural index 1 we computed previously is 
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Structural information 
Structural Index 
HVT 
Variable Offsets 
Equation Offsets 

Results 
2 
10 

(0, 0, 0, 0, 1, 0, 0, ... ,0) 
(1, 1, 0, 0, 0, 0, 1, ... ,1) 

Table 4.21: Structural index analysis of modified ring modulator (DAE) 

likely unreliable. If we look at the formulas of the four algebraic equations 

!1 : 0 = Y10- q(Um) + q(Uv4), 

h : 0 = -yu + q(Um) - q(Uv3), 

h: 0 = Y12 + q(Um)- q(UD3), 

f4: 0 = -Y13- q(Um) + q(Uv4), 
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we can see that these four equations are linearly dependent in terms of the auxil-

iary function q(Uv.). We modify the original problem so that the third equation is 

substituted by 

= Y10 + Yn + Y12 + Y13· 

For the modified system, we apply the SA analysis again and obtain the correct 

structural information as in Table 4.21. With the same consistent point, we have a 

significant smaller condition number 1.288620749590146e + 006. 
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4.10 Summary of Numerical Experiments 

Conclusions from our experiments are given below. 

1. ASIA is accurate for computing the structural information of DAE systems 

when the SA analysis succeeds. We have tested on problems with index 1 to 

index 5. Our software successfully returns the correct structural indices, HVTs, 

offsets, as well as system Jacobian evaluated at consistent points. For first order 

problems, ASIA also provides the SN indices and SNI matrices as references. 

2. The condition number of the Jacobian is a good indication of correctness of 

index computation. In our examples, structural nonsingularity of the Jacobian 

matrix at a consistent point always corresponds to a correct index computation. 

3. For some problems, the SA analysis can fail and produce a structurally singular 

Jacobian. We have illustrated that common subexpression elimination and lin­

ear transformation can transform the system into a form such that the analysis 

succeeds. 

4. For first order linear systems, we have shown that the SN analysis can provide 

accurate differential index in some particular cases, while the SA analysis fails. 



Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

We have presented a software for automatic structural index analysis. For a given 

DAE system programmed in the required format, we compute the signature matrix 

through operator overloading. After that, we solve a linear assignment problem and 

obtain the HVT. Then, we solve the dual of the HVT to find the two offsets. Based 

on this information, we return the structural index accordingly. 

The second part of our index analysis is to compute the system Jacobian at a given 

consistent point. Similarly, we evaluate each equation by operator overloading. We 

compute the condition number of the Jacobian to determine its structural singularity, 

which indicates the correctness of the index computation in the previous step. 
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Third, for first order systems, we apply the symbolic-numeric analysis. We form 

the SNI matrix, and perform the symbolic-numeric differentiation to obtain the SN 

index of the problem. 

In addition, we discussed some design and implementation issues of the software, 

and gave detailed instructions on how to use the package. 

We have reported detailed numerical results on 8 DAE and ODE test problems. 

We showed that ASIA can provide accurate index computation on applications from 

different disciplines. We compared the results from the two analyses and gave expla­

nations on the situation when they contradict with either other. This can be used 

as important reference for future refinement of the algorithms. We also showed some 

initial attempts of transforming a given DAE system into another form, which can 

help to eliminate the failures of structural analysis. 

5.2 Future Work 

From the numerical experiments, we can see that in some cases both structural anal­

yses cannot compute the correct index for the original problem. Certain transforma­

tions may help to provide a solvable form of the problem, but these transformations 

have not been systematically studied. Future work in index analysis may include 

developing heuristics for transforming equations. Based on that, an automatic pre­

processing module may be added to the tool. Furthermore, a more general algorithm 
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for structural index analysis may be developed. 

The examples that we have tested are taken from the literature with small to 

moderate sizes. In future, large scale industrial applications can be studied using 

ASIA. Due to the nature of large matrix computation, some optimization may need 

to be applied to the software to meet specific requirements. 
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