
A PROGRAM FAMILY APPROACH TO DEVELOPING MESH

GENERATORS

A PROGRAM FAMILY APPROACH TO DEVELOPING MESH

GENERATORS

By

FANGCAO, B.Sc

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Applied Science

McMaster University

© Fang Cao, April 2006

MASTER OF APPLIED SCIENCE (2006 April)

(Software Engineering)

McMaster University

Hamilton, Ontario

TITLE: A Program Family Approach to Developing Mesh Generators

AUTHOR: Fang Cao, B.Sc (University of Ottawa)

SUPERVISORS: Dr. Spencer Smith

NUMBER OF PAGES: vii, 211

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Spencer Smith, for his suggestions,

guidance, and motivation during my pursuit of the Master degree. Without his encourage­

ment and support, this work would not have come to an existence. For that I'm eternally

grateful for his help.

I also want to express my sincere gratitude to my family, especially my parents and my

girlfriend Sandy. They have been such a blessing in my life and given me constant support

and encouragement.

Abstract

This thesis presents a systematic approach for rapid development of a program family of

special-purpose 2D structured mesh generators, where a mesh is a discretization of a geo­

metric domain into small simple shapes, such as triangles or quadrilaterals. Mesh gener­

ators are commonly used to produce the input files for finite element and other numerical

analysis programs that solve partial differential equations.

Despite the existence of many general-purpose mesh generators, there is a lack of re­

search attention on the design of special-purpose generators suitable for small and spe­

cific meshing problems. The program family approach shown in this thesis supports reuse

and code customization by identifying the commonalities and variabilities between mesh

generators. The program family we developed accommodates variabilities in geometry,

topology, material properties, boundary conditions, system parameters and output file for­

mat. Developing mesh generators using the program family approach results in the quality

of special purpose mesh generators being improved in terms of usability, reusability and

maintainability.

The contribution of this thesis centres on the design documentation and the system im­

plementation. The complete documentation of our design includes a commonality analysis,

requirements specification, and module guide. The contributions with respect to the imple­

mentation include the use of a domain-specific language (DSL) written in XML (Extensible

Mark-up Language) to model the seed specification required to produce a mesh generator

family member, as well as applying XSL (Extensible Stylesheet Language) to allow flexible

customization of the output file(s).

Contents

Acknowledgement

Abstract

Contents

List of Tables

List of Figures

Chapter 1. Introduction

1.1 Background on Mesh Generators

1.1.1 Mesh Terminology . . .

1.1.2 Physical Mesh Information Used by Finite Element Analysis Pro-

grams

1.2 Current Practices for Designing and Developing Mesh Generators

3

4

5

11

12

1

2

2

7

8

1.2.1 A Look at the Design Strategies Used for Existing Mesh Generators 9

1.2.2 Problems with the Current Approach 12

1.3 A Review of Program Family Methodology and Family-Oriented Software

Production . 15

1.3.1 The Appropriateness of a Mesh Generator Family. 15

1.3.2 Current Techniques of Family-Oriented Software Development 17

1.4 Purpose and Scope . 21

Contents 6

1.5 Overview of the Thesis . 22

Chapter 2. Software Requirements and Design

2.1 Commonality Analysis

2.1.1 Commonality

2.1.2 Variabilities .

2.1.3 Parameter of Variation

2.2 Requirements Specification . .

2.2.1 What is a Software Requirement .

2.2.2 Identifying Our Requirements . .

2.2.2.1 Understanding the System .

23

24

25

28

29

33

33

35

35

2.2.2.2 Modifying Commonality Analysis Document as System

Requirements . 37

Chapter 3. System Implementation

3.1 Mesh Input Specification with XML

42

43

3.2 Meshing Algorithm 48

3.3 Formatting Output Files with XSLT Stylesheets 54

3.3.1 The Structure ofXML Document Containing the Mesh Data 54

3.3.2 Using XSLT Stylesheets to Produce Plain Text Files

Chapter 4. System Demonstration

4.1 General-purpose Interface for Rectangular Domain Meshing

4.1.1 File and Domain Menus

4.1.2 Geometry Dialog

4.1.3 Material Dialog .

4.1.4 Element Dialog .

4.1.5 Boundary Condition Dialog

4.1.6 System Parameter Dialog . .

4.1. 7 Generating the Mesh and Visualization

58

61

62

63

64

65

66

66

67

68

4.1.8 XSL Stylesheet and Output File Generation . . .

4.2 Special-purpose Interface for a Nonrectangular Domain .

4.2.1 Special-purpose vs. General Purpose ...

4.2.2 Nonrectangular Domain Mesh Generation .

Chapter 5. Conclusions

5.1 Conclusions

5.2 Contributions of Our Work

5.3 Future Work .

Bibliography

Chapter A. Commonality Analysis for Mesh Generating Systems

A.1 Introduction

A.2 Terminology and Definitions

A.3 Commonalities

A.3.1 Mesh Generation

A.3.2 Input

A.3.3 Output

A.3.4 Nonfunctional Requirements .

A.4 Variabilities

A.4.1 Mesh Generation

A.4.2 Input

A.4.3 Output

A.4.4 System Constraints

A.5 Parameters of Variation .

A.5.1 Mesh Generation

A.5.2 Input .

A.5.3 Output

A.5.4 System Constraints

7

69

71

72

74

82

82

84

85

87

93

93

94

94

96

100

102

104

106

107

110

111

113

113

114

118

120

122

A.6 References

A.7 Appendix: Topology Patterns for Structured Meshes.

Chapter B. The Software Requirement Specification for a "Parameterized Mesh

Generator"

B.1 Introduction •••• 0 •••••

B.l.l Purpose of Document .

B.1.2 Terminology and Definitions .

B.1.2.1 Software Engineering Related Definitions and Acronyms

B.1.2.2 Mesh Generation Related Definitions and Acronyms .

B.l.3 References

B.1.4 Overview .

B.2 General System Description

B.2.1 System Purpose .

B.2.2 System Scope . .

B.2.3 System Context .

B.2.4 Major System Capabilities

B.2.5 User Characteristics ...
B.2.6 Assumptions and Dependencies

B.3 Specific System Requirements ..

B.3.1 Functional Requirements .

B.3.1.1 PMG features

B.3.1.2 Input

B.3.2 Nonfunctional Requirements .

B.3.3 System Constraints

B.4 Other System Issues .

B.4.1 Open Issues .

B.4.2 Off-the-Shelf Solutions .

B.4.3 Our Program Family ..

8

123

123

125

125

125

126

127

129

130

131

131

131

134

135

136

139

139

140

141

141

143

151

153

154

155

155

156

9

B.4.4 Waiting Room 156

Chapter C. The Module Guide for "Parameterized Mesh Generator" (PMG) 159

C.1 Introduction 159

C.2 Module Decomposition . . 161

C.2.1 Hardware-Hiding module . 161

C.2.1.1 Input Device module . 161

C.2.1.2 Output Device module . . 162

C.2.1.3 File Input/Output module . 163

C.2.2 Behavior-Hiding module 163

C.2.2.1 Function Drivers module . 163

C.2.2.2 Shared Services module .

C.2.2.2.1

C.2.2.2.2

Error Handle module

Mesh Drawing module

C.2.2.2.3 File Customization module

C.2.3 Software Decision module

C.2.3.1

C.2.3.2

C.2.3.3

Specification Parsing module

Input Data module .

Mesh Data module .

C.2.3.3.1

C.2.3.3.2

Geometric Grid module .

Physical Attributes module

C.2.3.3.3 System Parameters module

C.2.3.4 Mesh Generation Algorithm module

C.3 Module Hierarchy

C.4 Use Hierarchy between Modules

Chapter D. Test Plan

D.1 General Information.

D.l.l Summary ..

. 166

. 166

. 166

. 166

. 167

. 167

. 167

. 168

. 168

. 168

. 168

. 168

. 169

. 170

177

. 177

. 178

10

D.1.2 Goals and Objectives 178

D.1.3 State of Scope 178

D.2 Building the Test Plan . . 179

D.2.1 Test Factors and Risks . 179

D.2.2 Reference 182

D.2.3 Tested Components . . 182

D.2.4 Testing Methods .. 183

D.2.4.1 Code Inspection 184

D.2.4.2 Unit Testing .. 185

D.2.4.3 Integration Testing . 186

D.2.4.4 Validation Testing 186

D.2.4.5 Test Matrix . . 186

D.2.5 Testing Cases . 188

D.2.5.1 PMG 188

D.2.5.2 MG Interface . 192

D.2.5.3 Mesh Generation and Output File . . 195

D.2.6 Detailed Test Cases . . 197

D.2.7 Example Test Case . . 208

List of Tables

2.1 An Example Commonality . . .

2.2 Modifications to Commonalities

2.3 An Example Variability

26

27

29

2.4 An Example Parameter of Variation 31

2.5 Changes Made to Parameter of Variation Between S&C and the current study 32

2.6 Outline of SRS in Appendix B . 38

2.7 Example ofMGG Requirement. 39

2.8 Another Example of MGG Requirement

2.9 Example of a Nonfunctional Requirement

2.10 Example of a System Constraint

D.1 Test Factor/Test Phase Matrix .

D.2 Test Matrix

40

40

41

181

188

List of Figures

1.1 A Hexahedral Mesh

1.2 Mesh Entities in a Computational Domain

1.3 Unstructured Finite Element Mesh by P. Lafvre

1.4 Example of a 2D Quadrilateral Mesh with Boundary Conditions

3

5

6

8

3.1 DSL Fragment for Element Specification. 46

3.2 Natural Coordinate System of a Triangular Element 4 7

3.3 DSL Fragment for Material Specification 47

3.4 A Parabolic Quadrilateral Mesh Calculated with Eight-node Shape Functions 48

3.5 General Scheme of ZP Algorithm with Key Diagram Mapping 50

3.6 DTD ofXML Document Holding Mesh Data 56

3.7 A Fragment ofXML Document Defining Mesh Data

3.8 Sample XSL Stylesheet File

3.9 Output Text File

4.1 Key Diagram of Quadrilateral Domain

4.2 XML Specification for General-purpose Mesh Generator

4.3 GUI for a Mesh Generator

4.4 Specified Information in Geometry Dialog .

4.5 Specified Information in the Material Dialog .

4.6 Specified Subdivisions in the Element Dialog

4.7 Specified Node Information in Element Dialog

57

59

60

62

62

63

64

65

67

68

List of Figures

4.8 Specified Information in the Boundary Condition Dialog

4.9 Specified Information in System Parameter Dialog

4.10 Generated Quad Mesh

13

69

70

71

4.11 Generated Triangular Mesh by Changing the Element Shape and Topology . 72

4.12 Stylesheet File 1 .

4.13 Stylesheet File 2 .

4.14 Specified Information in Output File Dialog

4.15 Output File 1

4.16 Output File 2

4.17 Key Diagram and Geometric Domain

4.18 XML specification of Geometry . .

4.19 XML specification of Element Type

4.20 Geometry Dialog Appearance for Specification-time Information .

4.21 Geometry Dialog Appearance for Specification-time Information .

4.22 Triangular Mesh Produced by Special-purpose Mesh Generator .

A.1 Parameters of variation for patterns for structured mesh elements

B.1 System Context

B.2 Flow chart ofPMG capabilities .

B.3 Flow chart of MG capabilities .

B.4 Requirements formulated to fulfill commonality requirements .

B.5 Requirements formulated to fulfill variability requirements

C.1 Module Hierarchy

C.2 Generation of mesh generators

C.3 Boundary Specification

C.4 Material Specification .

C.5 Boundary Condition Specification

C.6 File Format Specification

••• 0 0 •

73

74

75

75

76

76

77

78

79

80

81

124

136

137

138

157

158

169

171

172

173

174

175

List of Figures 14

C. 7 Mesh Generation 176

D.1 XML Specification for General-purpose Mesh Generator 198

D.2 XML Specification for Special-purpose Mesh Generator . 200

D.3 Stylesheet File 204

D.4 Test Code for Counterclockwise . 209

D.5 Triangular Mesh Used for Testing . 210

D.6 Test Result for the Mesh •••• 0 . 211

Chapter 1

Introduction

Meshing can be defined as the process of decomposing a spatial domain into smaller and

simpler sub-domains. Mesh generation techniques are widely employed in essentially all

engineering fields as part of the process of modeling physical phenomena. For instance,

a generated mesh serves as input to a finite element program, which can be used to solve

partial differential equations for the purpose of analysis and design. Due to the potential

complexity and size of the spatial domains of interest, a computerized approach is often

required to produce a suitable mesh. The software used to automatically create the mesh is

called a mesh generator.

Despite the excellent progress of research on the development of mesh generational­

gorithms, from a software development perspective there is still progress to be made. For

example, options for formatting the output file(s) in many mesh generators are limited and

only rarely does the user have the capability for customization of the output file formats.

Another problem with the current development of mesh generators is the lack of sufficient

software documentation, especially with respect to requirement and design specifications.

In part due to this lack of documentation, many similar mesh generators have been devel­

oped with little reuse of existing designs and code. In software engineering, when there is a

collection of similar programs like this, the programs can often be developed as a program

family. If development as a program family can be shown to be feasible, then this will

1. Introduction 2

facilitate a systematic approach to rapidly developing mesh generators. Moreover, when a

family-oriented approach is combined with software engineering methodologies for design

and documentation, the quality of mesh generators can be improved not only with respect

to reusability, but also with respect to usability, portability, and maintainability. The goal of

this thesis is to show that a program family approach is feasible and that software engineer­

ing methodologies can be employed to allow rapid development of a high quality program

family of mesh generators.

This chapter is intended to provide the reader with introductory material and back­

ground information for the later chapters. First, we present an overview of mesh termi­

nologies. Second, we look at the current development of mesh generators and evaluate

existing design strategies. Third, we briefly review methodologies for developing and gen­

erating program families. Fourth, we introduce the motivation, the goals, and the scope of

our work, and finally we present an overview of the organization for the remainder of the

thesis.

1.1 Background on Mesh Generators

This section provides background knowledge about meshes and mesh generation software.

Section 1.1.1 introduces the geometric nature of meshes and defines the common terms

employed in the field of mesh generation. Section 1.1.2 elaborates on the previous section

and describes non-geometric mesh information, such as material properties and boundary

conditions. This non-geometric information is needed when the mesh generator is used as

a finite element pre-processor.

1.1.1 Mesh Terminology

Informally, a mesh is a discretization of a geometric domain into small simple shapes, such

as line segments in 10, triangles or quadrilaterals in 20, and tetrahedral or hexahedra in

3D. Figure 1.1 is a hexahedral mesh used for numerical simulation of drop testing of a latch

1. Introduction 3

mechanism. (The volume mesh in Figure 1.1 is slightly changed from the original mesh

available at http:/ /cubit.sandia. govlhelp-version9 .1/chapter_2/ gui_tutoriallimageslhex_mesh.gif)

Figure 1.1: A Hexahedral Mesh

A formal definition of mesh can be found in [47] as follows:

Let n be a closed bounded domain in IR or IR2 or IR3 and let K be a simple shape, such as

a line segment in 1D, a triangle or a quadrilateral in 2D, or a tetrahedron or hexahedron in

3D. A mesh of D, denoted by D*, has the following properties:

1. n ~ U(KI KE D* : K), where U is first closed and then opened.

2. The length of every element K, of dimension 1, in 0* is greater than zero.

3. The interior of every element K, of dimension 2 or 3, in 0* is nonempty.

4. The intersection of the interior of two elements is empty.

The above definition of a mesh is slightly modified from the original definition found

in [18]. First of all, the"=" sign is changed to"~" because the discretization of the compu­

tational domain may not always exactly match the boundary of the domain. For example,

if the boundary is curved, it cannot be matched with a mesh consisting of a finite number

of straight edged triangular elements. Second, one-dimensional elements have been added

to the definition.

Meshes are widely used in many application areas. For instance, in geography and

cartography, meshes are employed to give precise representations of terrain data [4]. In

1. Introduction 4

computer graphics, most objects are first reduced to meshes before they are rendered to

the screen. Meshes are also of critical importance for the finite element method, which

will be the principle application of interest in our study. The finite element method is

employed to numerically solve partial differential equations (P.D.Es) that arise in physical

simulation [18]. The first step in a finite element analysis is the generation of a finite

element mesh. The output of the mesh generation program becomes the input to a finite

element program. In the finite element method, the quality of the mesh, in terms of the size,

shape, and placement of the elements, is critical to the success of the finite element analysis.

Advanced mesh optimization and refinement techniques such as smoothing [9, 36] and

adaptive meshing [3] have been implemented as ways to produce higher quality meshes.

A mesh generator used as finite element pre-processor produces a mesh that contains

three types of information: geometry, topology(connectivity), and physical information.

This section focuses on the geometric and topological information, with the discussion of

physical information postponed until the next section.

Figure 1.2 shows the following geometric entities of a mesh: domain, boundary, vertex,

edge, and element. A domain, or computational domain, is a spatial area or volume that is

to be discretized. The boundary of a mesh encloses the domain. A vertex is a point in space

that defines the shape of a cell. In lD, the vertices are end-points of elements. In 2D and

3D elements, the vertices are the locations where edges of elements intersect. The location

of the vertices in a mesh are given by their coordinates. An edge of a mesh connects two

vertices. In mesh generation, the domain is discretized into smaller, and simpler shapes

called elements or cells. The domain of each element is delimited by the set of its vertices.

1. Introduction

Ut>t"t:PX

~

I

I
el-ePient
{CeH)

\
\

edge

boondCU"'!J

I

Figure 1.2: Mesh Entities in a Computational Domain

5

The connectivity of a mesh provides the topological pattern reflected by the mesh and

its elements. There are two types of topological information: one for the mesh, and one for

a mesh element. The connectivity of a mesh element is called cell connectivity and is de­

fined as" the definition of the connections between the vertices at the element level" [18],

whereas the connectivity of the mesh is given by the set of connectivities of its constituent

elements. In the output file(s) produced by a mesh generator, the cell connectivity informa­

tion lists the neighboring nodes of an element in a specified order (e.g. counter-clockwise).

Based on the topology patterns reflected in a mesh, meshes can be classified into two main

classes: structured and unstructured meshes.

Structured Mesh (Grid)

A structured mesh is one where "the local organization of the grid points and the form

of the grid cells do not depend on their position but are defined by a general rule" [4].

Simply put, in structured meshes, the interior vertices and elements are topologically alike

and the neighbor connectivity can be implicitly induced. Figure 1.2 is an example of a

simple structured mesh. A structured mesh is often called a grid. Structured meshes are

commonly used because of their simplicity. Since the connectivity of structured meshes is

1. Introduction 6

implicitly assumed from the element shape, pattern, etc. the data structure used to store

them is easy to access and and can save on storage requirements. However, it is difficult

to use structured meshes to fit complicated geometric domains, which motivates the use of

unstructured meshes.

Unstructured Mesh

An unstructured mesh is one "whose element connectivity of the neighboring grid vertices

varies from point to point" [4]. Any mesh that is not a structured mesh is an unstructured

mesh. An example of an unstructured mesh is shown in Figure 1.3. (The magnetron mesh in

Figure 1.3 can be found at the following web-page: http://www.geuz.org/gmsh/gallery/magnetron1.gif)

·,:::'

Figure 1.3: Unstructured Finite Element Mesh by P. Lafvre

Compared to structured meshes, unstructured meshes are more difficult to produce since

the internal data structure is more complex. They also require more storage space since the

connectivity information must be explicitly stored. However, unstructured meshes are often

required by practical problems because they are capable of fitting complicated domains, and

the quality of unstructured meshes can be improved by rapid cell grading and refinement

and de-refinement [4].

1. Introduction 7

1.1.2 Physical Mesh Information Used by Finite Element Analysis Pro­

grams

When a mesh generator is used as a pre-processor for a finite element analysis, the finite el­

ement program requires information related to the properties of the physical problem. This

type of information is called the physical attributes. Three common types of physical at­

tributes are boundary conditions, location and number of degrees of freedom, and material

properties.

Boundary Conditions

Boundary conditions are physical conditions applied on the domain boundaries. Figure 1.4

illustrates a quadrilateral mesh of a 20 rectangular domain(dimensions L by W), which

could be used for analysis of a solid mechanics problem to solve for displacements in the

x andy directions(ui and vi, respectively). The boundary conditions on the domain are

described in terms of applied tractions (e.g. Tx), prescribed displacements (e.g. ~y), and

fixity (e.g. roller versus pinned versus free). Two common types ofboundary conditions are

Neumann and Dirichlet. A Neumann boundary condition specifies the gradient of the de­

pendent variable in a POE, whereas a Dirichlet boundary condition specifies the prescribed

value of the dependent variable.

Location and Number of Degrees of Freedom

In the finite element method the dependent variables of the POE become degrees offreedom

that are solved for at the nodes. Nodes may be located at the vertices in a mesh, but they

can also be located at midpoints of an edge, the centroid of an element or elsewhere within

the element. In Figure 1.4, the nodes are located at the vertices and each node has two

degrees of freedom, one for displacement in each of the x and y directions. If there are

more nodes than vertices in an element and the nodes are used to interpolate the geometry,

the element can have curved edges.

1. Introduction 8

Figure 1.4: Example of a 20 Quadrilateral Mesh with Boundary Conditions

Material Properties

Material properties are another common physical attribute; they describe the material in­

formation for a domain. The entire domain may be of the same material, but it may also

be divided into a number of zones, with each zone represented by a different material. In

finite element analysis used for mechanical problems, common material properties include

Poisson's ratio, Young's modulus, material density, etc.

1.2 Current Practices for Designing and Developing Mesh

Generators

To evaluate mesh generator software, we take the viewpoint of a software engineer and thus

the first question we ask is: How are today's mesh generators developed? We want to know

1. Introduction 9

whether there is an example of a mesh generator developed as a "software jewel" [42]?

The term "software jewel" refers to "a well structured program written in a consistent style,

free of kludges, developed so that each component is simple and organized, and designed

so that the product is easy to change" [42]. We also want to know whether existing mesh

generators have sufficient documentation to ease future extensions and modifications? This

section is intended to answer the above questions by investigating current mesh generators.

In Section 1.2.1, we evaluate a few representative example programs in detail to see how

they have applied software engineering principles in developing their software. Section

1.2.2 summarizes the problems we observed in the existing designs.

1.2.1 A Look at the Design Strategies Used for Existing Mesh Gener­

ators

Based on the range of applicability, a mesh generator can be classified as either general­

purpose or special-purpose. A general-purpose (GP) mesh generator is developed to solve

a wide range of problems in many application domains. Most commercial mesh generator

software is designed to be general-purpose; many software packages are capable of gener­

ating meshes on almost arbitrary closed shapes in 2D and 3D. Most GP mesh generators

support advanced optimization features such as mesh refinement and grading. Special­

purpose (SP) mesh generators, on the other hand, are those that are tailored to specific

problems. For instance, a special-purpose mesh generator may target a certain problem

domain, or it may be restricted to generate meshes on a simply shaped domain. Although

general-purpose mesh generators provide considerable functionality, research scientists and

engineers still write special-purpose mesh generators to solve their specialized problems. In

such cases, limited options of a special-purpose mesh generator provide more convenience

for solving a specific problem. For example, a special-purpose mesh generator for ther­

modynamic problems can fix the common physical attributes that are exclusively related

to the intended problems, thus reducing unnecessary effort and reducing the complexity

of the interface, which improves the quality of usability. In the same situation, a general-

1. Introduction 10

purpose mesh generator would require the same physical attributes be entered each time

before generating the mesh.

There are at least hundreds, if not thousands, of mesh generators being developed and

used today. A good source to acquire a list of available mesh generators can be found at

[39, 45]. To help our investigation, we need mesh generators that are available in the public

domain and provides sufficient design documentation so we can study them in detail. Based

on these criteria, we have selected Qmesh Mesh Generation Package [29], Gmsh mesh

generation software [20], and the AOMD library [24].

Qmesh Mesh Generation Package

QMesh [29] is a two-dimensional mesh generator designed for use with two-dimensional

finite element analysis. Qmesh provides five programs, QMESH, RENUM, RENUM8,

QPLOT, and QPLOTS. QMesh provides for a modular, flexible input method, whereby a

body is described as a collection of regions. QMESH is the central program of the pack­

age, which reads the information about the input body and develop a mesh for each re­

gion independently and writes the mesh description to a file. The bandwidth minimization

is performed by RENUM for four-node elements or RENUM8 for eight-node elements.

QPLOT and QPLOT8 are plot programs to display four-node element meshes and eight­

node meshes, respectively.

The organization of the package is based on the task to be performed (i.e. mesh gen­

eration, bandwidth minimization, mesh display). This is a poor decomposition approach

because a design decision (e.g. file format) is embedded in many modules and a change

in one module requires changes to other modules as well. As a result, the system is less

changeable and reusable. Another undesired design is the existence of the similar programs

such as QPLOT and QPLOT8. The two programs are basically performing the same task;

therefore, they could be developed together by sharing common modules. However, the

system is not designed in a way that a module can be reused for a subset of service offered

by it. Instead, a separate program had to be written to provide this service.

1. Introduction 11

Gmsh Mesh Generation Software

Gmsh [20] is an automatic 3D finite element mesh generator with a build-in CAD engine

and post-processor. It provides a good meshing tool and advanced visualization capabilities

to solve academic problems with parametric inputs.

According to the reference manual [20], the software consists of four modules: geom­

etry, mesh, solver, and post-processing. Grush provides two ways to specify a boundary

domain: the input values can be entered either via the graphical interface or via the script­

ing language. The boundary is specified in a bottom-up approach; primitive entities such

as points and lines are specified first, followed by two-dimensional shapes (e.g. triangles,

quadrilaterals) and three-dimensional objects (e.g. tetrahedral, hexahedra). The scripting

language in Gmsh allows parametrization of the geometry so that a complex spatial domain

can be constructed from basic geometry entities with relative ease. Unfortunately, Grush

provides limited options for file format customization by only allowing the user to choose

from a list of available file format extensions. The solver and post-processing modules in

Grush integrate into a finite element solver, which works with the file format defined by

Grush; therefore, the problem with customizing the file format is solved, but only in the

case where the user decides to use the Grush solver.

When investigating the documentation in further detail, we found that the term "mod­

ule" is used to group a set of data structures and functions. For example, the geometry

module is a container of the geometry entities used by Gmsh (i.e. points, lines, circles,

etc). However, the modules used in Grush contains too much information and the internal

structure and module secrets are not explicitly explained in the documentation. Also, the

documentation is written based on the flow of execution instead of modular structure; as a

result, the relationship between components is unclear and we cannot decide whether reuse

is possible during the system design.

AOMD Library

AOMD [24] (Algorithm Oriented Mesh Database) is a mesh management database aimed

at effectively maintaining general mesh representations. The implementation language of

1. Introduction 12

AOMD is C++ and the standard template library (STL) is extensively used to consistently

store different types of mesh entities through generic data structures such as containers,

iterators, etc. AOMD uses object-oriented programming for building a hierarchy of classes

and uses the generic paradigm to build STL-like algorithms.

The structure of AOMD is well documented in its reference manual [46]. All the data

structures in AOMD are defined as a base class using class templates. When a mesh is

created, its entities are built through inheritance from the base class. If mesh entities are not

static (e.g. nodes and elements that are added or removed), a hash table is used to store them

so that the average time it takes to add and remove entities in a mesh is constant. Functions

to implement and change a mesh are developed in the same way. By using generic concepts,

the implementation of AOMD is "light and efficient in terms of compilation and memory

use" [24].

Reuse is clearly emphasized in the implementation of AOMD through class inheritance

and template initialization. One of the design goals of AOMD is to achieve algorithmic

generality such that the algorithm can be used regardless of the concrete mesh represen­

tation. This is very close to our research objective. Therefore we can use its design for

reference in the future. However, mesh generation with AOMD could be improved with re­

spect to software usability. For instance, the use of a graphical user interface would be more

user-friendly than the text-based interface provided by AOMD. In addition, AOMD does

not provide an automated approach to developing different members of a program family,

and the programming task to generate a mesh is often more complicated than necessary

for simple problems. In this case, an automated approach to generate mesh generators is

desired and when usability is a requirement, a graphical user interface (GUI) with menu­

based instructions is a much better solution than a text-based interface.

1.2.2 Problems with the Current Approach

After reviewing today's literature on mesh generation, we had the following general obser­

vations. First, most papers related to mesh generation focus on the algorithms or methods

1. Introduction 13

for the mesh generation technique, and there are only a few documents on the software

design approaches that have been taken, such as [5, 17]. The lack of publications on mesh

software design is illustrated by the fact that among the approximately 120 papers available

on Meshing Research Comer [39] from 2002 to 2004, there are only three papers [7, 19, 21]

that talk about the software design of mesh generators. Secondly, although many special­

purpose mesh generators are used today, a research effort on their systematic development

is still lacking. A problem with developing special-purpose mesh generators is that most

of them are only developed when they are needed to solve specific problems, thus ignoring

the possible connection between programs. Our observation concludes that the software

engineering principles are rarely considered and followed in the field of mesh generation,

and the lack of such practice has caused the following problems:

[1] Many mesh generators do not encourage program reuse. For example, in Qmesh, the

existence of two mesh plot programs is unnecessary. We can reuse QPLOT8 for the

four-node element mesh as well. This problem indicates there is a lack of software

engineering practice in the field of mesh generation and scientific computing. The

involvement of software engineers in these fields would greatly benefit the develop­

ment of mesh generators and other types of scientific software.

[2] The documentations of many mesh generators are often incomplete, ambiguous, or

even non-existent. For instance, the documentation for GRUMMP [38] consists only

of a user manual and the source code, even though GRUMMP has a complex object­

oriented design. Without clear documentation, it is difficult to understand the soft­

ware structure. A lack of documentation also matters when it comes to future main­

tenance.

[3] The development of similar mesh generators lacks a systematic approach. The fact

that many existing mesh generators are similar in terms of mesh types, interface

requirements, etc. has led us to believe that it is advantageous to develop them as

a family. These mesh generators can be developed by reusing the common aspects

1. Introduction 14

developed in advance, and considering their differences systematically.

[4] The mesh generation for specialized problems is not addressed. For example, ather­

modynamics parametric study may require repetitive meshing of a simple rectangular

domain of a heat plate. Although specialized problems can be solved with general­

purpose mesh generators, we argue that this is not the most efficient solution. First of

all, general-purpose mesh generator provides too many details that may distract the

engineer from their relatively simple problem. For instance, if the problem always

needs to discretize a rectangular domain, then a package that support mesh gener­

ation on arbitrary closed shapes is more complicated than required. Secondly, the

interface of general-purpose mesh generators is too complicated for simple mesh­

ing problems. For instance, Gmsh requires 15 steps to specify a rectangular domain

and generate the mesh. If the same problem arises repetitively, the use of Gmsh is

inefficient because the user has to repeat the same multiple sequence many times.

[5] Most general-purpose mesh generators that we studied offer little or no customizing

capability for output file(s) at run-time. Although software such as GRUMMP [38]

allows user-defined formats to customize the output file(s), the same degree of cus­

tomizing capability is rarely implemented in other mesh generators. Our literature

research reveals that most GP mesh generators take a common approach by providing

the user with a set of pre-defined formats in which the output file(s) can be stored.

For example, Gmsh defines only one native file format with extension .msh, along

with providing several other common export formats. The previous approach allows

the user to customize the output file(s) by choosing the format he/she requires. How­

ever, this type of customization control offers very limited flexibility. For example, if

the user wants an output format which is not provided by the mesh generator, he/she

must write a program to transform the output file to the format they require. A bet­

ter solution to this problem is that if the user knows the input format for the finite

element program for which the mesh is used, then he/she should be to able to cus-

1. Introduction 15

tomize the format of the output file(s) through the mesh generator interface before

generating the mesh.

Our research goal is to come up with a systematic approach to develop mesh generators

for special purpose problems. It is a fact that these special-purpose mesh generators are

similar in many ways. For example, they deal with the computational domain bounded by

a relatively simple shape, and generate two-dimensional or three-dimensional elements, etc.

Software engineering experience tells us that if we are developing a set of related programs,

it is advantageous to consider them as a family where the common properties (e.g. graphical

interface, mesh type) can be shared by all family members and the distinctions among them

(e.g. file format) can be explicitly identified.

1.3 A Review of Program Family Methodology and Family­

Oriented Software Production

A continuing dilemma that today's software engineers face is the objective of producing

functional programs that are designed for flexibility, while under time constraints for doing

so. A solution to this problem is the concept of program families [40, 41]. This section

is aimed at providing fundamental knowledge about program family design. Section 1.3.1

explains why mesh generators fit in the context of program families. Section 1.3.2 intro­

duces several design techniques that can be used to achieve the goals of producing program

families and generating reusable components.

1.3.1 The Appropriateness of a Mesh Generator Family

Parnas said, "When we were first taught how to program, we were given a specific problem

and told to write one program to do that job. Later we compared our program to others,

but still assuming that we were producing a single product" [41]. However, when it comes

to today's software development, one software designer must be aware that he is often not

1. Introduction 16

designing a single program but rather a family of programs. Today's software products

must undergo frequent changes to meet new requirements and to improve quality. With

limited time, it is almost impossible to go through redesign, recoding, and retesting to

create a new individual system to accommodate changes. In this case, creating program

families is a much better solution because this approach support rapidly producing new

family members with little or no redesign, recoding, and reduced retesting. Pamas defines

a program family as "a set of programs whose common properties are so extensive that it is

advantageous to study the common properties of the programs before analyzing individual

members" [40]. The concept was first proposed by Dijkstra [15], and later investigated by

Pamas [40, 41]. It has also been applied by Weiss [2, 53, 54] in the context of what he calls

Family oriented Abstraction, Specification and Translation (FAST) [13, 52].

The suitability of mesh generators as a program family has been argued by Chen [8]

and Smith and Chen [4 7], because the development of mesh generators satisfies the three

hypothesis for the production strategies of a program family as introduced by Weiss [53].

First, the redevelopment hypothesis states that most software development involved in pro­

ducing the family should be redevelopment work. In the case of mesh generators, redevel­

opment is common such that most small code are based on modification of existing code.

Second, the oracle hypothesis requires that the likely changes in the future of the system's

lifetime be predictable. This is certainly the case for a mesh generators where one can de­

termine likely changes by consulting the large body ofliterature and mathematical theories

on the topic. Thirdly, the organizational hypothesis says that a program family should allow

the developers to organize the software in the way that changes can be made independently.

In mesh generators, the changes in such areas as the user interface, visualization, and out­

put format can be dealt with in an elegant manner. Even changes in the mesh algorithm,

which are complicated by the coupling between the data structures and the algorithms, can

potentially be made independently of other modules in the program [17, 24].

Mesh generators fit Pamas 's definition of a program family because they possess a set of

common features. For example, they are similar in that all mesh generators require a com-

1. Introduction 17

putational domain and then discretize it, and they all produce output file(s). On the other

hand, the distinctions between mesh generators can be identified as well. For instance,

different meshing programs use different mesh generation algorithms, and produce out­

put files in different formats. By identifying the commonalities and variabilities of mesh

generators, we can rapidly produce programs by reusing the code common to all family

members, and then adding the customizing capability as the variabilities.

The advantages of developing mesh generators as a program family is obvious: If the

common features of mesh generators can be identified and the variabilities predicted, the

mesh generator production can be systematic. As a consequence of systematic production,

the cost of program development and maintenance can be reduced. The conflicting goals

of rapid production and careful engineering can be satisfied concurrently [2]. However,

this practice requires significant investment and effort in identifying the commonalities and

variabilities among family members. As we will point out in the next chapter, a common­

ality analysis document provide a systematic methodology for the identification process.

1.3.2 Current Techniques of Family-Oriented Software Development

The key in family-oriented software development is the prediction of future changes. A

well-structured design, that is, a design that can be easily understood and, most importantly,

easily modified can become extremely useful when change needs to be accommodated. The

program family methodology facilitates a well-structured design since it satisfies the orga­

nizational hypothesis; that is, changes among family members can be predicted in advance

and made in only a few modules. The practice of family design has been implemented for

FAST [52], and general implementation strategies have been formulated [16]. This section

introduces specific techniques for generation of family members or reusable components.

The use of configuration constants, conditional compilation, generic programming, and

domain-specific languages will be discussed, respectively.

Configuration Constants

Configuration constants are symbolic constants provided in programming languages to

1. Introduction 18

make programs easily adaptable to modifications and generate new program family mem­

bers [16]. One problem with software modifications is that if specific information that may

change is spread throughout the program, then changes need to be made to each reference

to that information in the program. For example, if an array is declared to be of size 10

and later compared with an integer variable for boundary checking, then any change to the

size of the array requires changing both declaration and boundary checking statements. In

this case, if the required changes are a set of configuration constants, the problem may be

solved by changing the value of such constants and then recompiling the program. The

use of configuration constants is a simple solution to implement a program family. The

configuration constants also have the advantage that they can be given names that suggest

their meanings, which improves readability and modifiability of the program. However,

configuration constants only works when the distinction between family members can be

represented by constants. When the difference between family members becomes more

complex, a more general approach such as conditional compilation is needed.

Conditional Compilation

Conditional compilation provides a more flexible and general scheme to implement a pro­

gram family and generate new family members [16]. The essence of conditional com­

pilation is that all family members are produced from one copy of source code, and the

difference between family members is identified by a precondition in the code. When the

program is compiled, the source fragment common to all family members will be included,

along with a variable fragment if the corresponding precondition is satisfied. Each compi­

lation produces only one program because the code that is not part of the specified fragment

will be ignored by the compiler. Conditional compilation includes configuration constants,

as they are used in the precondition during the execution of the conditional compilation.

Generic Programming with Templates

Generic programming is a programming paradigm aiming at code reuse and abstracting

general concepts. The term generic means to create code that is type-independent. Generic

programming extends the language so that one can write a function for a generic type

1. Introduction 19

once, and use it for a variety of actual types. In a program family produced with generic

programming, the algorithms are considered as the commonality of all members of the

family, and the differences between them are the concrete data types that are instantiated.

For example, a sorting algorithm can be written to perform a common sorting procedure for

all family members, each of which will provide a different data type (e.g. integer, floating

point, etc) for its own implementation purpose. A programming language that support

general-programming well is C++. The C++ templates and the Standard Template Library

(STL) provide a good mechanism to write type-independent code for functions, pointers,

and classes.

Software Generation through Domain Specific Languages

A domain specific language (DSL) is a small, usually declarative language, that offers

expressive power focusing on a particular problem domain. A DSL can be viewed from

two perspectives: a programming language or a software architecture [10]. A DSL is a

programming language, or an executable specification language, that offers convenience

and ftexibilities in software design and implementation. This convenience makes a DSL

more attractive compared to general-purpose languages (GPL) such as C and C++, when

programming for a specific domain. For example, DSLs provide easier programming envi­

ronments than GPLs. A program written in DSL is more concise and readable than its GPL

counterpart because of appropriate abstractions, notations and declarative formulations.

Another favorable property of DSLs is that they promote systematic reuse by integrating

common operations into libraries. DSLs also offer built-in functionalities to encourage

re-use.

From the software architecture perspective, a DSL addresses the important issue of a

program family. As Consel [1 0] says, "a DSL program designates a member of a program

family." If it is foreseen that the program to be developed addresses a set of related prob­

lems, it is worthwhile to adopt the program family methodology and design a DSL from

which family members are developed.

There are different ways of using DSLs in a family-oriented design. First of all, a DSL

1. Introduction 20

can be used to generate executable code to produce family members. In this approach, the

DSL can be termed as an application modeling language (AML) [41] that provides a spec­

ification of each family member from which the deliverable code for the family member

may be generated. The FAST process proposed by Weiss [13, 52] provides facilities that

typically consist of a language for specifying family members, a translator for generating a

family member from a specification in the language, and tools for analyzing such a specifi­

cation. An application of the FAST process is a floating weather station family that uses a

DSL to configure buoys [52]. Secondly, a DSL can be used as a specification for run-time

customization. One example is XML (Extensible Markup Language) data binding where

the DSL is developed as a XML document and the binding of the document is to customize

an Java object. XML is a structured language widely used for knowledge modeling in many

scientific fields, such as mathematics [11], chemistry [37],and material study [22]. XML

data binding refers to the automatic generation of computer language source code corre­

sponding to an XML DTD or schema. Recent research has developed tools, such as JAXB

(Java Architecture for XML Binding) [35], to provide a convenient way to bind XML data

to Java code and objects [34]. Thirdly, a DSL program can be developed as input to a

custom compiler developed by tools such as Lex and Yacc [26, 33]. Lex [33] is a lexical

analyzer generator designed for lexical processing of character input streams. It accepts a

high-level specification written in a DSL language for string matching and processing. The

core of Lex is a table of regular expressions and corresponding program fragments, which

are used to translate the input streams and partition them into strings that match the regular

expressions. If a string is recognized in the DSL source program, the corresponding code

fragment will be executed by Lex. A Lex program can be written in different languages,

such as C, to generate the output code to process the DSL program. Yacc [26] stands for

"yet another compiler compiler" and provides a tool for imposing structure on the input to a

computer program. To use Yacc, a user prepares a specification which includes a collection

of rules to describe the input structure, code to be invoked when the rule is recognized, and

a low-level routine provided by Lex to process the basic input. Yacc then generates a func-

1. Introduction 21

tion called parser to control the input process. The generated parser is responsible to read

the source program, which is the output produced by Lex, and perform the actions as spec­

ified in the specification. Lex and Yacc combined offer a programming environment for

developing customized compilers to execute a DSL program developed to meet the users'

demand. They have been extensively used in numerous practical applications, such as lint

[27], the portable C compiler [28], and a system for typesetting mathematics [31].

1.4 Purpose and Scope

As mentioned previously, our research interest is in the type of mesh generators used as a

pre-processor to a finite element program. Having identified the problems that we observed

in the current development of mesh generators, it is clear that there is a lack of a software

solution for rapidly developing special-purpose mesh generators. In our thesis, we fill this

need by proposing a technique for automated generation of a program family of special

purpose mesh generators. Our goal in this thesis is to create a type of software that not

only overcomes the difficulties we have discovered but is also developed with a systematic

approach to achieve important software qualities, such as correctness, user friendliness,

reusability, maintainability, and portability. It is also important that the software should

be well-documented and any future changes to the software should be consistent with its

documentation.

As mentioned previously, the mesh generators of interest in this thesis are those used as

pre-processors for finite element programs. From the mesh generation perspective, we only

focus on the mesh generators that generate 2D structured planar meshes with triangular or

quadrilateral elements. The coordinate system of the mesh will be Cartesian. From the

standpoint of software engineering and automated program generation, our scope includes

a design of a DSL in XML format, XML run-time binding for Java software generation, a

graphical user interface for all family members, and the use of XSL stylesheets to produce

customized output file(s).

1. Introduction 22

1.5 Overview of the Thesis

In Chapter 2, we will present our methodology for developing a program family gener­

ator. This chapter covers the phases of commonality analysis, gathering and analyzing

software requirements, and system architecture. The documentation, including commonal­

ity analysis (CA), software requirement specification (SRS), and module guide (MG) will

be discussed in the relevant appendix sections.

After completing the software design, we move on to Chapter 3 to explain how our

system was implemented. This chapters starts with design decisions related to our im­

plementation such as the DSL design and the file format transformation. The rest of the

chapter follows the order in which the implementation proceeds. Starting from the design

of our DSL, we will explain the mesh seed information specification, mesh generation and

its algorithms, and the use of XSL stylesheet for output file customization.

To convince the reader that our system is practical, we will use Chapter 4 to provide

case studies to solve real problems. This chapter serves as a user guide to give an overview

of how to use our system. Starting from system initialization, we will illustrate each step

in how to generate a mesh generator with our product. In Chapter 5 we will conclude our

thesis by first evaluating our approach, followed by a summary of the contributions of our

work. Finally, we end the thesis with a list of possible future research directions. The

appendices are documents that we have produced during our design, including a CA, an

SRS and an MG. A test plan is also included in the appendix.

Chapter 2

Software Requirements and Design

After proposing our research goal, which is to support rapid development of a program

family of special-purpose mesh generators, our attention now turns to accomplishing this

goal. The traditional waterfall model [16] suggests that the lifecycle of a software system

consists of five phases: requirements analysis and specification, design and specification,

coding and module testing, integration and system testing, delivery and maintenance. With

the exception of delivery and maintenance, which is outside the scope of this thesis, each

phase will be discussed in this chapter. In family-oriented software development, we must

also identify the family before performing requirement analysis. This is done by conducting

a commonality analysis, which systematically identifies the similarities and differences

among family members.

We demonstrate an engineering approach to designing a program family of special­

purpose mesh generators. Section 2.1 introduces the notion of commonality analysis and

discusses how a suitable program family of mesh generators can be identified. Section 2.2

identifies the requirements for the mesh generator family we intended to build, and briefly

presents our requirement specification. The module guide will be provided in the Appendix

C.

23

2. Software Requirements and Design 24

2.1 Commonality Analysis

In Chapter 1, we discussed the reasons why it is appropriate and possible to develop a

program family of mesh generators. The success of developing a program family depends

on how well the software engineers can predict what family members will be needed [40].

In family-oriented software development, a systematic methodology to identify a program

family is a commonality analysis.

A commonality analysis is an analytical approach that consists of systematically iden­

tifying and documenting the commonalities that all program family members share, the

variabilities between family members and the terminology used in describing the family.

It is initially proposed by Weiss [40] and has been demonstrated in FAST [13, 52]. A

commonality analysis provides a systematic way of gaining confidence that a family is

worth building and of identifying what the family members will be [48]. According to

Weiss [40, 41, 48], a commonality analysis can benefit the system design in the following

ways: a starting point for the design of DSLs, a basis for a common design for all family

members, a historic reference for future improvement, a basis for reengineering a domain,

and a basic training reference for future software developers. The commonality analysis

can be used as the starting point for writing a requirement specification.

In Weiss's proposal [40, 41], a commonality analysis document consists of five sections.

They are listed in the following order:

[1] A list of terminologies and definitions used in the document.

[2] A set of commonalities that represent the common features that all family members

share.

[3] A set of variabilities that distinguish family members from one another.

[4] A set of parameters of variation, where a parameter of variation is the range of values

that can be assigned to the corresponding variability.

2. Software Requirements and Design 25

[5] A list of issues that arose during the commonality analysis, but that do not fit in the

other sections.

In the field of mesh generation, a commonality analysis for 2D mesh generators was

documented by Chen [8], and later revised by Smith and Chen [47] to cover all mesh

generators that are used as finite element pre-processors. Since we are interested in finite

element pre-processors, we will use the templates and examples from Smith and Chen [47]

as the basis of our commonality analysis. For convenience of reference, we will use S&C

as an abbreviation for Smith and Chen [4 7]. The commonality analysis described in this

chapter is documented in Appendix A.

The remainder of this section discusses a commonality analysis for the mesh generators

used as pre-processors for finite element programs. Section 2.1.1 introduces the concept

of commonalities and explains some example commonalities for mesh generators. Section

2.1.2 presents the variabilities of mesh generators, and further elaborates specific examples.

Section 2.1.3 discusses the parameters of variation, and demonstrate how the variabilities

in mesh generators can be quantified by assigning different values to the corresponding

parameters of variation.

2.1.1 Commonality

A commonality is "a requirement or goal common to all family members" [47]. The con­

cept of commonality captures the common features that all members of a family share. In

the domain of mesh generators used as pre-processors for finite element programs, some

common features that are shared by such mesh generators are easy to find. For instance,

some of common features listed in Appendix A are as follows:

[1] A mesh generator discretizes a given computational domain into a covering up of a

finite number of simple shapes.

[2] Each vertex has a unique identifier.

[3] Each element has a unique identifier.

2. Software Requirements and Design 26

Item Number C1
Description A mesh generator discretizes a given computational domain

(closed boundary D) into a covering up of a finite number of
simple shapes.

Related Variability V4, V7, V8, V10
History Borrowed from S&C on May 9, 2005

Table 2.1: An Example Commonality

[4] Information on the created meshes includes boundary conditions.

[5] A mesh generator requires that information be input by the user to define his/her

meshing problem.

[6] The user needs to specify the physical attributes, such as the material properties, the

boundary conditions, etc.

[7] Mesh generators write mesh information to output file(s).

In a commonality analysis document, the commonalities should be documented in a

uniform structure. In S&C and Appendix A, each commonality is described in a table with

four fields. The structure of the table is as follows: First, each commonality is given an

identifier prefixed by a capital "C" followed by a unique natural number. Second, the de­

scription of the commonality is provided, followed by a set of related variabilities. Finally,

each commonality ends with a summary of its history, including the date of creation and

any dates of modification, along with a brief description of the modification. An example

commonality is provided in Table 2.1.

As discussed in Section 1.4, our research scope is restricted to structured mesh gen-

erators generating 2D planar meshes, etc. Therefore, our commonality analysis covers a

narrower range of mesh generators than those covered in S&C. As a result, new common-

ali ties are added by fixing the parameter of variation for some of the variabilities in S&C.

2. Software Requirements and Design 27

For example, if we only consider structured meshes, then the variability that allows unstruc-

tured meshes in S&C should be changed to a commonality that states all program family

members generate structured meshes. Similar changes also need to be made to several other

variabilities, as shown in Table 2.2. Each item in Table 2.2 consists of new commonalities

added in our commonality analysis document. In Table 2.2, all references to "V?", where

"?" is a natural number, are referring to variabilities documented in S&C.

Identifier Commonality Description Old Vari-
ability

C8 The mesh generators will not provide optimization features V3
such as smoothening, and refinement/coarsening.

Cll From topological perspective, all mesh generators in our V6
scope produce only structured meshes.

C12 The local numbering of vertices and nodes in the mesh is V8
always counter-clockwise.

C13 The mesh generators should not accommodate a mixed V16-V18
mesh, a hybrid mesh, or a nonconformal mesh.

C14 The mesh generators only use Cartesian coordinates to de- V20
scribe the geometry.

C16 The mesh generators provide graphical user interface. V21
C17 The interface for specifying the closed boundary of the do- V22

main is provided as the number of subdivisions along each
direction.

C18 The mesh generators will not allow the specification of two V28
degrees of freedoms to have the same value.

C19 The mesh generators will not allow the specification of inter- V29
nal boundaries.

C20 The user defines the geometric domain of the problem by V23
parametric representations.

C23 The mesh generators display the resulting mesh on the V30
screen.

. .
Table 2.2: Mod1ficatwns to Commonahtles

2. Software Requirements and Design 28

2.1.2 Variabilities

A variability is "a requirement or goal that varies between family members" [47]. The set

of variabilities shows how family members can be distinguished from one another. In the

case of our intended mesh generators, the variabilities can be seen from the different types

of meshes that can be produced. For example, mesh generators for 2D domains differ in

the type of element shapes they can produce. Another example of variability is the format

of the output files produced by the mesh generators. A sample list of variabilities between

mesh generators as documented in S&C. These variabilities are also variabilities for the

current project, are as follows:

[1] Different mesh generators will be able to accommodate the creation of meshes for

different problem domains (e.g. solid mechanics, thermodynamics).

[2] For structured meshes different templates for the local patterns in the element topol­

ogy are possible.

[3] The number of different materials allowed in the specification of the physical prob­

lem.

[4] The format of the information in the file(s) output by the mesh generator.

[5] The degree to which the user can customize the output file formats.

In S&C, the template used for documenting variabilities is similar as that used for com­

monalities. Each variability is described in a table with five fields. The structure of the

table is as follows: in the first row, each variability is given a unique identifier prefixed

by a capital "V" followed by a natural number. Second, the description of the variability

is provided, followed by a set of related commonalities, which can be used to refer back

to the previous section of commonalities. Third, the parameter of variation is provided to

2. Software Requirements and Design 29

Item Number V7
Description For structured meshes different templates for the local patterns

in the element topology are possible.
Related Commonal- Cl
ity
Related Parameter P7
History Created - May 9, 2005

Table 2.3: An Example Variability

show how the variability is quantified for all family members. Finally, each variability ends

with a summary of the history, including the date of creation and any dates of modification,

along with a brief description of the modification. To illustrate a variability in further detail,

we pick an example of a variability documented in our commonality analysis as shown in

Table 2.3.

Since we restrict the scope of research by only considering the type of mesh generators

presented in Section 1.4, there will be a reduction in the number of variabilities, which are

now listed as commonalities in our commonality analysis. The variabilities listed in S&C

that were removed are shown in Table 2.1.

2.1.3 Parameter of Variation

A parameter of variation is a way of quantifying variabilities by assigning the possible val­

ues to the family members that reflects their differences. In commonality analysis, each

variability is identified by the corresponding parameter of variation. For example, the pos­

sible types of element shapes in 20 domains are quadrilaterals and triangles. A sample list

of parameters of variation between mesh generators as documented in S&C, and which are

also parameters of variation for the current project, are as follows:

[1] Mesh generators can be built either to be general-purpose for an arbitrary range of

2. Software Requirements and Design 30

problem domains, or to be special-purpose for a specialized problem domain, such

as solid mechanics, structured fluid dynamics, heat transfer, etc.

[2] The possible element topology patterns are listed in Appendix A.6 in the referenced

document.

[3] The entire domain can consist of one material or there may be any finite number of

different materials.

[4] Different mesh generators organize mesh information into file(s) in different orders.

The data structure that is output can change between mesh generators.

[5] Some mesh generators will have a fixed file format, while others will allow the user

to customize the output.

In S&C, each parameter of variation is documented in a table of four rows. The table

is constructed with the template as follows: first, each parameter of variation is assigned a

unique identifier of the form "P" followed by a natural number. Second, the related variabil­

ity is indicated so that the parameter of variation can be traced back to the corresponding

variability. Third, the range of parameter field enumerates the range of possible values

for all family members. Finally, the binding time indicates the time that the variability is

fixed. The value of a parameter of variation can be fixed during specification (specification

time), or during building of the system (compile time), or during execution of the system

(run time). It is possible to have a mixture of binding times. For instance, a parameter

of variation could have a binding time of "specification or building" to represent that the

parameter could be set at specification time, or it could be postponed to the time when the

family member is built. The choice of postponing the decision until the build would be

associated with the presence of a DSL that would allow postponing decisions on the values

of the parameter of variation. If the value for a parameter of variation has been fixed, the

2. Software Requirements and Design 31

Item Number P7
Corresponding Vari- V7
ability
Range of Parameters Nine (9) potential local topology templates are possible, as

shown in Appendix A.
Binding Time specification or build or run time

Table 2.4: An Example Parameter of Variation

different values of its binding time would still constitute different family members in terms

of generality. For example, a mesh generator fixing the geometry of a domain at run time

is more general-purpose than another mesh generator fixing the same value at specification

time.

To illustrate a parameter of variation in further detail, we pick an example of parameter

of variation documented in our commonality analysis. The structure of documenting such

a parameter of variation is provided in Table 2.4.

This parameter of variation is given to show what patterns may be used for structured

meshes in our research. In a mesh generator, the value of such a pattern may be fixed at

specification time or build time. The use of a DSL in our implementation provide the con-

venience to parameterize the value of the interested pattern at specification time. Another

option is to postpone the decision until run-time, where the mesh generator is already built

and the pattern can be specified in the user interface before generating the mesh.

Besides removing parameters of variation from S&C for those variabilities that become

commonalities (Table 2.1), another type of change is made to some parameters of varia­

tion, as shown in Table 2.5. These changes involve modifying the original parameters of

variation to reflect our scope. Please note that all references to "P?" in Table 2.5 refers to

parameters of variation in our commonality analysis as shown in Appendix A, not to S&C.

2. Software Requirements and Design 32

Identifie
P7

P9

P13
P14

P19

Old Description New Description
Seven(7) potential local topology pat- Nine(9) potential local topology pat-
terns are provided in Appendix A of terns are provided in Appendix A of
S&C. our commonality analysis document.
In lD there are line segments; in 2D In 2D there are triangles and quadri-
there are triangles and quadrilaterals. laterals.
In 3D, there are tetrahedras and hexa-
hedras.
lD, 2D, or 3D 2D
The computational domain in 1 D can In 2D domains, the possible shapes
be either a straight line or a curve. are those accepted by Zienkiewicz
For 2D and 3D the domain can con- and Phillips.
sist of simple shapes, such as triangles
(tetrahedra), rectangles (boxes), par-
allelograms (parallelepipeds), etc.
lD, 2D, or 3D 2D

Table 2.5: Changes Made to Parameter ofVanatwn Between
S&C and the current study

2. Software Requirements and Design 33

2.2 Requirements Specification

The likelihood of a good software design increases when a software designer has a spec­

ification of the system's required functionalities and qualities. To determine the software

requirements, the designer works with and decides what the software should do to meet the

users' demand. This is the process of gathering, analyzing and documenting software re­

quirements. As indicated by the waterfall model of software development, a rational design

process should start with establishing and documenting software requirements. A success­

ful software design process must be accompanied by its software requirement specification

(SRS), which contains everything the designers need to know to help write software that is

acceptable by the user.

In this section, we look into the details of this crucial stage of software development.

We will first introduce the concept of software requirements. Then, we will discuss the

approaches we took in identifying the specific requirements of our system, and highlight

the keys in our requirement gathering process. Finally, we will list specific requirement

examples from the SRS provided in Appendix B.

2.2.1 What is a Software Requirement

A software requirement is "i) a condition or capability needed by a user to solve a problem

or achieve an objective; ii) a condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard, specification, or other formally

imposed document; or, iii) a documented representation of a condition or capability as in

the above two definitions" [50].

An important quality for good requirements is that they be abstract, where abstract

means not imposing design decision; that is, the requirements should be about "what" is

required as opposed to "how" to do it. It is important to recognize the boundary between

2. Software Requirements and Design 34

the statement of software requirements and how the requirements will be implemented.

For instance, a word processing application may have a requirement to be able to open an

existing file. However, it is a design issue whether to build a customized file selection tool

or to use a platform-standard file selection tool to satisfy the requirement.

There are several types of software requirements. We categorize them into three types:

functional requirements, non-functional requirements, and system constraints. Each type

of requirements is listed in separate sections in the SRS.

Functional Requirements

A functional requirement describes the functionality that the system or a component of the

system must possess. In other words, a functional requirement should answer the question

"what is the system supposed to do?" The set of functional requirements capture the es­

sential behaviors of the system and must be stated precisely to avoid any ambiguity. The

previous example of a word processing application is an example of a functional require­

ment.

Non-functional Requirements

A non-functional requirement describes the property that the system as a whole must pos­

sess. Non-functional requirements deal with software quality issues such as performance

(e.g. speed, availability), portability, maintainability, usabilility, security, etc. When de­

scribing a non-functional requirement, one should be specific and use quantitative measure­

ments so that the requirement can be validated. For instance, to describe the performance

of opening an existing file, one can say "opening a file should take less than 3 seconds for

90% of the files and less than 10 seconds for every file."

System Constraints

A constraint is a "factor that is imposed on a solution" [1]. A system constraint puts a

restriction on external environments in which the system operates or the system may be

interfacing with (e.g. hardware, software). For example, a system constraint for the word

2. Software Requirements and Design 35

processing application could be: "The application must operate on both the Windows and

Linux operating systems." A system constraint may also be related to the project, such

as the availability of resources assigned for the project, and the deadlines imposed for the

delivery of the system. Constraints should be clearly stated in the requirement documents,

since they directly influence the decisions of how the system is implemented.

2.2.2 Identifying Our Requirements

For our research, an SRS for our system has been written and included in Appendix B. In

the subsequent sections, we want to highlight the two key steps in our requirement gath­

ering process. First, we must provide a clear understanding of the system. Second, we

have mentioned earlier that the commonality analysis for mesh generators can be modi­

fied to express requirements. In this section we provide some examples to show how this

modification process was done in our research.

2.2.2.1 Understanding the System

Our intended system automates the generation of special-purpose mesh generators. There­

fore, we are not building mesh generators, but a program generator that builds a program

family of mesh generators. The system is called a "Mesh Generator Generator"(MGG).

The mesh generation is performed after the mesh generators has been built. If one wants

to construct a specific mesh for a general class of related meshing problems, two step are

necessary: 1) Generate a mesh generator Musing MGG, which meets the specification of

the class of related problems, and 2) Generate the specific mesh using M. We will explain

these two phases in further detail in subsequent paragraphs. Please note that in the require­

ment phase, we will not discuss the design decisions related to future implementations. The

discussions of design decisions will be postponed until Chapter 3.

2. Software Requirements and Design 36

Generating a Family of Mesh Generators

The program generator that generates a mesh generator contains two parts: 1) the DSL

source language and 2) the translator that builds mesh generators using the DSL program.

As mentioned in Chapter 1, a DSL is a language that captures the essential set of infor­

mation related to a specific field. In the case of mesh generation, the DSL contains all

necessary mesh-related inputs to produce a mesh. For our research, the source of there­

quired inputs is the commonality analysis, where the input section of the document clearly

defines the information needed by a mesh. For example, a generated mesh contains geome­

try information as well as physical attributes. Therefore, the DSL must be able to represent

both types of information. Other information may include system parameters, output file

formats, etc.

The primary language construct used by the DSL is a property list, where each property

is a specific mesh-related input mentioned earlier, such as material property, boundary con­

dition type, etc. A property is expressed as a property name and a value for the property.

For a specific property, which is introduced as a variability in the commonality analysis,

its value is chosen from the corresponding parameter of variation. The binding time of a

property value is given either as specification time or run time. Binding at specification

time means the value is specified in the DSL program and cannot be changed later. The

user decides what property values are bound at specification time and adds them into the

property list, which becomes the DSL program. The DSL program is read by the transla­

tor and a mesh generator member is generated. A family of mesh generators can be built

by specifying different values and binding times for properties in the DSL language. The

degree of generality for a special-purpose mesh generator depends on the number of prop­

erty values assigned in the DSL program; a mesh generator is more special-purpose than

another if it is generated from a DSL program with more properties bound at specification

time. Therefore, the most general-purpose mesh generator in our program family is the one

2. Software Requirements and Design 37

generated from an empty DSL program.

Mesh Generation Using the Mesh Generator

Once a mesh generator has been built, the values specified at specification time are built

into the mesh generator. Before generating the mesh, the property values missing from

the DSL program must be specified in the user interface. This is called run time binding.

The produced mesh is visualized in the user interface and the output file(s) stored in the

user-defined format can be used as input by a finite element program.

2.2.2.2 Modifying Commonality Analysis Document as System Requirements

In Section 2.1, we introduced the commonality analysis and explained the importance of

practicing commonality analysis in family-oriented software development. It has been

clearly explained that commonality analysis can be modified to software requirements be­

cause commonalities and variabilities are in fact describing the desired behaviors between

individual members of a program family. Therefore, they are requirements. More specifi­

cally, the commonalities are the requirements for all members of a family, whereas the vari­

abilities are the requirements for different family members with the value of the difference

quantified as the corresponding parameter of variation. However, since the commonality

analysis document in Appendix A are only aimed at mesh generation, it can only be used

for the requirements of mesh generators after they have been built. For a complete require­

ment document for our intended system, the requirements for the program generator must

be considered as well. Table 2.6 provides the outline of the SRS documented in Appendix

B.

1 Introduction

1.1 Purpose of Document

1.2 Terminology and Definitions

2. Software Requirements and Design

1.3 References

1.4 Overview

2 System Description

2.1 System Purpose

2.2 System Scope

2.3 System Context

2.4 Major System Capabilities

2.5 User Characteristics

2.6 Assumptions and Dependencies

3 Specific System Requirements

3.1 Functional Requirements

3.1.1 MGG features

3.1.2 Input

3.2 Nonfunctional Requirements

3.3 System Constraints

4 Other System Issues

Table 2.6: Outline of SRS in Appendix B

38

The connection between commonality analysis and the requirement specification can

be found in the section of input requirements. Each input requirement is either associated

with a commonality or a variability previously described in the commonality analysis. To

explicitly indicate how the input requirements are modified from the commonality analysis

document, we provide for each input requirement the item identifier from the commonality

analysis in Appendix A. In particular, the corresponding parameter of variation and binding

2. Software Requirements and Design 39

time are also given for the input requirements related to variabilities in Appendix A. We

also labeled some commonalities as scope-time decisions because these commonalities

were modified from variabilities in S&C to reflect the change of the scope.

The requirements of the program generator are beyond the scope of the commonality

analysis, thus, they are established separately. A few detailed examples are given below.

Table 2.7 and 2.8 are two example requirements for the MGG. Table 2.9 and 2.10 are

example of a nonfunctional requirement and a system constraint, respectively.

Requirement ID

Description

Rl

After the program generator reads the DSL

input specification, it should either pro­

duce a mesh generator if there is no error

in the DSL specification, or halt.

Commonality reference -

Parameter of variation

Binding time

Table 2.7: Example ofMGG Requirement

Requirement ID

Description

R3

The system MGG should provide the func­

tionality to incorporate a graphical user in­

terface for all family members.

Commonality reference V21

Parameter of variation All mesh generators use a graphical user

interface.

2. Software Requirements and Design

Binding time scope time

Table 2.8: Another Example ofMGG Requirement

Requirement ID

Description

R28

The MGG should perform its essential

functions in reasonable time, such as in­

stantaneous for entering user input, sec­

onds for waiting graphics display, or

minutes for mesh generation and output

file creation.

Commonality reference C15, V39

Parameter of variation

Binding time scope time

Table 2.9: Example of a Nonfunctional Requirement

Requirement ID

Description

R36

The first version of MGG is designed to

run under Windows and MacOS because

of the time constraint. However, we intend

to develop the future versions to run under

multi-platforms such as Linux.

Commonality reference C19, V37, P37

Parameter of variation

40

2. Software Requirements and Design 41

Binding time scope time

Table 2.10: Example of a System Constraint

Chapter 3

System Implementation

As we mentioned in Chapter 2, we intend to build a system that facilitates automatic gener­

ation of a program family of mesh generators. In the FAST design process [13, 52], Weiss

proposes an application development environment, which provides facilities that typically

consist of a language for specifying family members, a translator for generating a family

member from a specification in the language, and tools for analyzing such a specification.

Since our research goal is also an application of producing program family members, the

implementation of the system follows a similar approach as suggested in FAST. This chap­

ter introduces the design decisions that were made prior to coding, and it provides details

about the implementation stage.

The chapter is organized following the order of each system module is implemented.

Section 3.1 discusses the adoption of XML to implement the DSL to model the require­

ments of mesh inputs. Section 3.2 focuses on the meshing algorithm used by all mesh

generator family members. Finally, Section 3.3 discusses the use ofXSL to customize the

format of output file(s).

42

3. System Implementation 43

3.1 Mesh Input Specification with XML

Our implementation starts with the design of our DSL, which contains the mesh-related

information described in the commonality analysis (Appendix A). As mentioned in Chapter

2, the primary structure of our DSL is a property list. The design of our DSL follows two

principles. First, the DSL should be declarative, regardless of whether it is embedded

in a GPL or stand-alone. The word "declarative" means that the DSL for building mesh

generators should only describe what the requirements for the mesh generator are, such as

the boundary description and output file formats. The DSL should not imply how a mesh

generator or a part of the mesh generator is built, which is the job of the program generator.

Second, the nature of the mesh generator application implies that the DSL should have

a top-down structure. This top-down structure is also visible by inspecting and studying

the relationship between the set of input data required to generate a mesh generator. For

instance, a mesh application in our research scope requires input in three major categories:

geometry description, physical attributes, and output file specification. Each category can

be further divided in detail until the input can be specified by a single value. For example,

the geometry description of the domain can be summarized by the specification of different

zones, where each zone is further specified by the coordinates of each boundary vertex.

As another example, the physical attributes of a mesh application can start with the set of

material specifications, where each material is described by a set of material properties,

each of which contains a value. The top-down design principle of our DSL is not only

logical, it is also capable of reducing input errors, since each category of input information

(e.g. geometry, physical attributes, etc.) is specified in an orderly fashion. A specific

category should be fully expanded until each piece of input is provided with a single value.

At the initial stage of developing our DSL to model mesh applications, we have two

options: we can either develop a stand-alone DSL with a new syntax and compiler, or

3. System Implementation 44

we can develop a DSL embedded in an existing programming language. After careful

consideration, we decided to go with the second idea because the extra effort to develop a

language parser to fit a new DSL is unnecessary. An abundance of research literature [23,

25, 30] has shown that it is not only easy to use an existing language to implement a

DSL, but it is also convenient to develop a language translator since many languages offer

APis and tools that provide the parsing capabilities [6, 34, 35]. During our research, we

have carefully considered two types of languages as design options. They are a functional

programming language or Extensible Markup Language (XML).

Functional Languages with Domain-specific Embedding

Functional languages with functional composition and higher-order typing offer many ca­

pabilities that can be used to create a domain-specific language [23, 44]. Functional com­

position, overloading, monads and data types are tools to create an abstraction that can

serve as a DSL.

One example of embedding domain-specific functionality within functional language

is wxHaskell [32], which provides an interface to the wxWidgets [55] GUI library. The

WX library part of the implementation applies functional abstractions to the user interface

components. This allows Haskell programs to create user interfaces and it allows further

programming logic to easily connect to the user interface components and events. "Most

of the hierarchical structure of user interface components is lost in the functional abstrac­

tions" [14].

The use of functional languages was explored as a possible host language to model

mesh information at the early stage of our DSL design. However, the distinctive functional

abstraction capability offered by a functional language is not needed for the declarative

data required to generate a mesh generator. Also, the top-down hierarchical structure can

be naturally implemented in languages such as XML.

3. System Implementation 45

Use ofXML to Encapsulate Data in Markups

XML is a mark-up language used to provide structured information. The application of

XML in DSL design has been explored by others. Examples of using XML syntax for

DSLs include MathML [11], MatML [22], etc. One of the advantages of this practice is

that XML provides flexible parsing. Basic XML parsing techniques such as tree-parsing

and event-parsing have been implemented in many APis and frameworks [35].

We decided to use XML as the implementation language for our DSL. First of all, XML

is designed to encapsulate structured information. The nature of nested markup elements

in XML can be used to reflect a hierarchical relationship between mesh related inputs.

For example, a mesh contains elements, an element contains vertices, etc. Secondly, the

existing parsing and binding technologies such as [35] offer convenient tools to process the

data in an XML document. Thirdly, the examples shown in a similar field in MatML [22]

strengthen our belief that XML works for our purpose. MatML [22] is an application of

XML to model material data, aimed at improving the interpretation and interoperability of

communicating material property data. Since our DSL contains material information, the

practice of XML in material data can be expanded to describe other types of information.

The document structure in XML can be defined in two ways: DTD (Document Type

Definition) or Schema. Figure 3.1 and 3.2 provide fragments of a DSL implementation that

describes the mesh element and material specifications, respectively.

Figure 3.1 is a sample specification of a set of elements in terms of node locations. The

< elementSet > is the top element, which contains subelements < geometrySpec >,

< nodeGeo >, < node >, < location >. In this specification, we are describing the

triangular elements that the mesh generator will generate. Each element consists of three

geometric nodes located at the three triangular vertices. The hierarchical structure ensures

that the top element must be closed after all the subelements have been properly closed.

The location of a node within an element is specified using the natural coordinate system.

3. System Implementation

<elernentSet>
<geornetrySpec>

<shape>triangle</shape>
<nodeGeo count=' '3">

<node id="l">
<location>l,O,O</location>

</node>
<node id= ' '2" >

<location>O,l,O</location>
</node>
<node id=''3">

<location>O,O,l</location>
</node>

</nodeGeo>
</geornetrySpec>

</elernentSet>

Figure 3.1: DSL Fragment for Element Specification

46

The natural coordinates for a triangle are shown in Figure 3.2, where the coordinates of

point P are as follows:

As an example, if point P is at the centroid of a triangle of area A, then A1 = A2 =

A3 = ~. Therefore, the natural coordinates of point P are (~, ~, ~).

Figure 3.3 is a sample specification of the material information required to produce a

mesh generator. The < materialSet > is the top element, which contains subelements

< material >, < id >, < matproperty >, < name >, < type >, < value >. In

this specification, there is one material with one material property, which is Poisson's ratio

with a value of 0.3. A more complex material specification can be written by adding more

material properties and materials. Before adding a new material in the specification, the

3. System Implementation

Figure 3.2: Natural Coordinate System of a Triangular Element

last < material > must be properly closed.

<material Set>
<material>

<id> 1 </id>
<matproperty>

<name> Poisson ratio </name>
<type> real </type>
<value> 0.3 </value>

</matproperty>
</material>

</materialSet>

Figure 3.3: DSL Fragment for Material Specification

47

3. System Implementation 48

3.2 Meshing Algorithm

The mesh generation process for all mesh generators in the program family is handled by

the same meshing algorithm, which was decided at scope time. For our research, we adopt

the isoparametric meshing scheme proposed by Zienkiewicz and Phillips [56]. We chose

this semi-automated algorithm because it is designed for structured mesh generation and

because it accommodates a wide variety of spatial configurations. The essence of this algo­

rithm, which we will call the ZP algorithm, is the use of isoparametric curvilinear mapping

of quadrilaterals, which allows a unique coordinate mapping of curvilinear and Cartesian

coordinates. For a simple rectangular domain in which the Cartesian coordinates of the

four comer nodes are specified, the coordinate for any node in the domain can be calcu-

lated using the four shape functions associated with the comer nodes. A shape function

in the ZP algorithm is used to interpolate the geometry by defining the mapping between

curvilinear and Cartesian coordinates.

Figure 3.4: A Parabolic Quadrilateral Mesh Calculated with Eight-node Shape Functions

A simple example of curvilinear coordinate system in a quadrilateral mesh is shown in

Figure 3.4. If the boundary contains curved edges, a set of eight-node shape functions may

be necessary to calculate the coordinates of nodes in the mesh. Given the coordinates of the

comer vertices and possibly midpoints of each boundary edge, any point P with coordinate

x, y, and z within the domain can be calculated using the shape functions on curvilinear

3. System Implementation 49

coordinates. For example, any point Pin the domain is calculated by the Cartesian coordi­

nates of the eight boundary nodes (x;, y;, and z; with 1 :s; i :s; 8) and the associated shape

functions. The calculations of the coordinates of point Pare done as follows:

8 8 8

(3.1) x = LN;x; y = LN;y;
i=l i=l

z= LN;z;
i=l

where N; is a shape function associated with node i. Each N; is defined in terms of a

curvilinear coordinate system e and TJ, which has values ranging from -1 to 1 on opposite

sides of the quadrilateral shaped domain. For an eight-node element, the shape functions

are listed as follows [56]:

1
N1 = -4(1- ~)(1- TJ)(~ + TJ + 1),

(3.2)

1
N3 = 4(1- ~)(1 + TJ)(-~ + TJ- 1),

1
Ns = 4(1 + ~)(1 + TJ)(~ + TJ- 1),

1
N1 = 4(1 + ~)(1- TJ)(~- TJ- 1),

In the current study, we are assuming that the domain boundaries have straight edges.

Therefore, the implementation for the current study will use 4-noded elements and their

associated shape functions.

The ZP algorithm can be extended to a general scheme that applies for arbitrary domain

shapes. To do this, the ZP algorithm uses the curvilinear mapping from a key diagram to

the actual geometric domain. An example key diagram used for an arbitrary shape is shown

in Figure 3.5. The key diagram is a chequerboard pattern of quadrilaterals, which we refer

to as "super" elements. Each "super" element uses the curvilinear system in the same way

as used for one element in Figure 3.4. The ZP algorithm requires three types of data inputs

3. System Implementation 50

to define the domain: span definitions, specified points, and zone specification. The span

definitions are the number of rows and columns in the key diagram. The number of"super"

elements is the product of the number of rows and columns. The specified points are the

Cartesian coordinates of the corner vertices in each "super" element. The zone definitions

define the material assignment for different parts of the domain. Geometrically, a zone

corresponds to one "super" element or multiple "super" elements combined. Each zone is

assigned by a material and the set of material properties. If such a material is not given,

the corresponding zone is considered as void. Void zones are useful to define multiply­

connected domains. For example, in Figure 3.5, zone 4 and 6 are void zones and they

represent the hole in the bottom part of the actual domain.

2 4 6

...
1 3 5

Key diagram Geometric Domain

Figure 3.5: General Scheme of ZP Algorithm with Key Diagram Mapping

To generate a structured mesh with the ZP algorithm, the number of equal subdivisions

for each row and column must be specified. The nodal numbering are generated and tra­

versed sequentially across a specified direction. The direction is either horizontal if the

number of column subdivisions is greater than the number of row subdivisions or vertical

if this is not the case. A "super" element in the key diagram uses the subdivision numbers

to create Cartesian coordinates using shape functions in the manner shown by Equation 3.1.

Our implementation of the ZP algorithm written in Java is provided in Figure 3.6. After

3. System Implementation 51

all nodal points are generated, the mesh elements are produced by connecting nodal points

according to element connectivity, which follows a pre-determined pattern depending on

the required topology pattern and the shape of the elements.

3. System Implementation

pubr1c dass meshGeneratian

r Variables Declarations. Ths section contains the input variables and olher vartables that

will be used to store the results 'I

r All the input variaOles are declared-as tolioWs. The values ot these:input variables have b.een

initialized. Please no!& thai the super <'Iemen! numbMng is always varti<:ally upwards. The r and s direction

refer to fh~ horfzontal and vertical directions in the ctnvilinear system in Figure 3. 4. +I

int nrows:

int ncofs;

lntUnetr:

tnt n nels:

boolean n zone_ valid;

float[] •-super:

iloat 0 y_super:

/11he number of rows in 1tw k~ diagtam

II the number of columns in the key diagram

II the number of subdivisions in the r·dilection in each row, initiaftzed to 0 for all entries

II the number of subdivisions in the s-direction tn each oolumn,initialized t.o 0

II the array to identify void zones, a zone is 1 it void and 0 otherwise

lithe x coordioates of all ""per elements

illhe y coordinates of all Sllpe!' elemente

r All the other variables that store the results are deicared hera 'I

float [l J<. .. coord, Y ... coord; II the arrays to hold the <, y coordinates ol tho nodes in the mesh

f!oallJ r..ooord, s .. coord;

int nnoctes;

iot nzones:

int r_sub, s_sub;

tnt 0 zone . ..id:

II the arrays to hold lhe r, s coordlnates of the nodes in !he mash

II the number o! nodes in the mash

II the number of to.oos in the mesh

I! th& total number of subdivisions along rand s direclions

II zone id is stored for each- node.

52

3. System Implementation 53

;-+ tJ1~ methl)d ti'1:ot \tt<ptemi!l'l:t:!:> tne roe'!<'trtng: Q'lg-t~-nUnl! is. ¢S. fQHOws, Plea1<e 1'\.!:)t~ t~o~ this ~t'teu­
c.f ("Od~ nl'lly dt~01!< ill!i.t:h r<>:tt Dr.l.~e4 ~lnrlui.. ~hJ:mhf!r·fng •1

puhli.c vo1t1 fJt'!l'l"""'Gi:.£0
{

f;;;~f'(tnt t ""0; i.. .:: rt~lr."len@t~;. {,H)

!

}
fot(111t i » G: i < tt(i"l'!<-1ei"lgt~~ i-¥-1-)
l

n2.a.M::c "" M"tH\1& 1< nellis (/ l::'aleulote th.e ttiJI!ItHH' M 1£-upiH"el~lMt:s in the: ke.y di.cgr¢.:'1!:
ll(IOtk') "' (f'_!<i..ll> + 1) .. c~_s.:wb +- 1.); II Ctlleutot:~ the t'I:U!Cl.b~r- o·f lltldt!fo. i!'t tt'l~ nlhh
I' _{{.1-r,u•d ,.. 11e-w ntwt(rltmslt•~); // \rth:tc,lH.~ vr.l:lwH, <Jf t•_(.:tJt'H'd

:~_"C:OO!'d"' tH?l'l flo.at·t(lfli:ldM.)~ // it~i.halue VC.hs~S of S_C:Otll"d

x_eum·d ., (J("W fl(J.o.t[nnode""'] t 1/ l.fltti.olize vtltu~$ ul' .cr.oo-rd
y_um!"d .,.. no(!~ ftU(itfm\tldt.>~).; /I int-tt-111U·tf! 'lt!ilw~~ tJf ;·_c:oon'J
ZUftfl:_ll.i "" >U:"' i.f:t[tUl).)dM.]; // inib.~l Lt.(' -tl>tl.e_~ d EH't'fl:f

ir1t: fll>dt'H':d~:ot., 0~ // t~i.ttnt'lzt- l.ht': l:t)LJHtf!'<' 1;Q i.tH.:I't'.~~:<llt. ttJ~ m;:dal 1'$~~r'i.n~

notot r,s.~ il l"'wt vcri::.~bh tu h(tld r tm-a s -;;:oordtlmt~$ for' a tto.d~
rvt(1nt rr:nci~~dt.:<.,.. 1~ (n.'!>_l.(lde>; -<;' M'~f. ... 1}; rt~w_l.nd!~XH)

{
~flt k ,., r·ow_irHlt~l!; If t.h!! YI'J:ri.OOLf!- ~ kee:p·!O- t.ror.R Ul' Ul(!. ("hang~ of s.tspe:-r~?1<'1ltt~rtts.

fm'fint i.,.,. k:; (~ -: nt[ol!'[({k.¥1) 'X m''ilW~)j ..- 1); ·i.H~~ //loop- O:YM {k-1)1'nr<<Jw'S ti.m""~
(

_., _.._ (fl-oat"){·l __,. i!~(i .. -1.)/Utnat)nHr-(((k-1) X rlt"Uw$)J)~ // t:aH.ul~t£: s
i.f(k: -t. i"lLtHl-{1-~ " 1) I(if the- ~u~H~·t~-t'!lto:rumt u, Not: at: th~ n.g~tmv~l:" p'!J~;;iU.tm
{

fr:n•(tnl: j,.... 1~ j-1.-" Ae:l.'i{.Mat.n.-t.fi!tUn9(k/1'1.r'tlwS) - 1] i- tOn-!!_valid[k+fl-rov."J>~lJ~ jHJ
i,t toop fJvet r"t.ll!ll!s 'i.o r-s -~P!l<:~
{

r ""'fflout.)(-1 -t- Z:'.fi:(j-1)/(flm\t.) Olfh(~atl't Ct'.llinQ(k/nr-vw!>) - 1J)~ If (Olt:.u'l.utt< r-
t'_(.CJQI"'d[n(Jd-e!in<!!l!Jt.] ""' r; /f ~,;et r::::oor-d vot~,.~:e
s ... toordCm)d~"LNde-") ,.. s.; !l :i-et s._!Coard vol;..~e-
:!otie_ut(~mdtt·l.nd~x] ,., ~; !/ s~t .. nm~_irJ <H"rtr.; vf)hst<
r!odt-i~d-ex++-; /f i.nc-reR!-I!'rtt no~e <-¢\lntf:r

/ 1-.erl:d j fot' lth1P
k ·""' k "!' ~u·VI'Ii~; /I -g~ ttl the next r-~w

1/ \f 1'1:>-t, th~~ the !f.Up<:er~te:~<'!nt: is: ot t!'-1-e rightmost pc"'it1.on
ftw(lflt j 1; j<,.. n!!h(~th.\:e~t-lnjj(k/r.t>ows:) - lL .1+-*-) fl toop- uv~r ruw~ if< r'~$ SpiH:.e
{

r «· Utoot){-1 + 2 .. (j-l)/{f1o-at)(nets(MGth.e:~tHn9;(l.Jnroi'Vs} ~ 1])); ;'/.:;:.(l.i>t-u1J3te r
,. _(.aor-d(nadei nde~J ...- r; l!s~t t'-_t.:tJ'cn:l v~1.v~.

s __ cuordCnod~iruie"J , s; /h..et s_cooY.d vo:li.ie-
z:ttne:_ i.d(M-d-eindE:!">:} « K; ll set :tone._i.d \lr"f"ay vot:we
n.o:de~n6<:e.x+ ; // \l'lt"Y"I.";Af~rtt J'!CH~e o~:.c-vr<tf:r

} /tend j far 1>:3;op
-k ,.. l'<>w_inde.::

} / /er:d ehe
It g.l.:! t>3 ·-the Hr~t superelelt'!ent ~r. that ~ow

} /le:rfd. -;. lt!O;p
} /)end f'f..l":t-~ ... tnd'\!x lo~p

i• 1\iO;w C!llcul~t~ the: (cf"t-e$.HI-1 cour-O:inute~ U!:'infi fo-ur-node !ih-ape functtl31"H-. f</
for(itit i ,.. 0; "i < Modes-; H+) // g:o 13'VH alt r.ode-&
{

tt!t I< """ ;tOt'l·Lid('i} ~ li fi.nd t"'e $il..lpo:!re.hiii~M the na.de i t-s i.n
?> * r_coor>df.i.]; 1./ 9et f" v-alu-e f~r noq.e 1.

!0 .. s_coordJ'i1: // ~et s. vt~li.l-e f-or node: i.
/) c:.t;ilc:.ulate :.: c:oor-ih~ate fnr ttode i us·ing !i.htt!:le function
:ct.oOt'd(ij , x_sul)er[~·1J(0.l .. ((.1·-r-)*\.1·-!<-)14-) .. lCSU!:Iet'(k-1Jf1J•((1-u·)•(1 s)/-4) + x_supc-r-r~

~1Jt2)"{(1+r)•{l+s)/4) -> :-;_wpHtk-11(3) *{{l-.r) .. (l+s)/4);
/1 c.ulc.ulate y t.:o-of"din.ate fur node t using shta?e f:.mcti.on
y_ttJOf'd[il , y3utlerfk-1J[01 • ({1.-r>)>P("i-!>)/4-) ~ Y'-~ti!'H~:f''[k--l]tl]•t"(lH"j•(l-t}J-4) + Y-~up€r[J.;

·11(2:1*((1>~'1"):"'{1-ts)/1) ~ y_s:Upt!r[k-.lJUJ '"({1-r)•(l•>S}I.-$);
} ; / :e:nd lot.p;. I'!¢~ all -t:t:t!: nodes: have b-e:e:n net1te4

}1/~nd gc:r,e!'"ut~'! mr:thoj'j
}//ei1d .::\a:!<5

3. System Implementation 54

3.3 Formatting Output Files with XSLT Stylesheets

One of the major contributions of our research is to design mesh generators that allow

customization of output file formats. To do this, we use XSLT (Extensible Stylesheet Lan­

guage Transformation) [12] to organize mesh data in different file(s). There are two steps

involved in the output file production process. First, after the mesh is produced, all the

relevant data that may be useful in a finite element program will be stored in a separate

XML document in a pre-defined structure. Second, according to the structure definition of

the XML document that contains the mesh data, the XSL stylesheet file(s) must be created

to specify the output file formats. The XSL files are then specified either at specification

time or at run time. If the stylesheet is parsed without errors, the transformation process is

performed automatically, and the output files will be created as indicated by the stylesheet.

This section is organized as follows. Section 3.3.1 gives the essentials of the XML

document structure that contains the mesh data after the mesh has been produced. Section

3.3.2 introduces the use ofXSLT in general and explain how the stylesheet functionality is

integrated into our system to produce plain text files.

3.3.1 The Structure of XML Document Containing the Mesh Data

The mesh generation process is followed by a function to organize mesh data according to

the pre-defined XML document structure. This function uses basic file input/output han­

dling to open a new file, wrap data in pre-defined tags, and close the file when the writing

process is complete. The resulting XML document will be stored in the directory in which

the system files are located. Although this XML document can be directly opened to view

the contents, this action is not encouraged. Instead, the document definition documents of

the XML file will be presented so that different stylesheets can be written to indicate how

the mesh data should be organized in the output files. Figure 3.5 is the DTD (Document

3. System Implementation 55

Type Definition) of the XML document holding mesh data information.

A DTD file defines the structure of an XML document by listing the parent child rela­

tionship between elements. A DTD document uses two symbols: <!ELEMENT> and

<!ATTLIST >. A<!ELEMENT > definesanelementbyitsnameandthesetofchild

element between a pair of brackets. The top element in a DTD is the root element in the

XML document structure. If an element has child elements, the child elements are defined

in the same order as they appear in the child element list. For example, in the structure of

mesh data file, the root element is < M eshData >. The root element has six child ele­

ments, each of which defines a specific category of information that may be used by finite

element programs. An < !ATT LIST > defines attributes embedded in an element. An

attribute is either marked by #REQUIRED if they must be assigned a value or #IMPLIED

if they can be omitted. In a DTD document, the element list is usually created first, fol­

lowed by the attribute list. A fragment of a sample XML document created by this DTD

is shown in Figure 3.6. In this example, we assume that the number of degrees of freedom

for each node is 1. Therefore, the fixity value is either 0 if it is fixed or 1 if it is free. In

more complex examples, a fixity may be a sequence of numbers, with each element in the

sequence associated with the corresponding sequence of a degrees of freedom.

Figure 3.6 contains a small fragment of XML document holding geometric data of a

mesh. The< VertexSet >iterates over all vertices in a mesh and organize them based on

x, y, and z coordinates. Fixity is also included in < VertexSet >,which is a list of zero

or one values. The set of elements is represented by < ElementSet >,which has three

required attributes. Each element defined in < ElementSet > must be given an ID, its

vertex coordinates, and the locations of nodes for the degrees of freedom. The reason that

the vertex coordinates are stored twice is that the structure is aimed at providing maximum

flexibility in producing file outputs. The set of vertex information is usually required by

finite element programs, either separately or embedded in element data. Although it may

3. System Implementation 56

<!ELEMENT MeshData (domaininfo,VertexSet,ElementSet,ZoneSet,
BoundaryConditionSet,SysParameterSet)>
<!ELEMENT domaininfo(author,title,comment)>
<!ELEMENT VertexSet(x_coord,y_coord,z_coord,fixity)>
<!ELEMENT ElementSet (Element)>
<!ELEMENT Element (ElementGeo,ElementDof)>
<!ELEMENT ElementGeo (Vertex)>
<!ELEMENT Vertex (x_coord,y_coord,z_coord,fixity)>
<!ELEMENT ElementDof (Node)>
<!ELEMENT Node (x_coord,y_coord,z_coord,dofName)>
<!ELEMENT ZoneSet (zone)>
<!ELEMENT zone (elements,material)>
<!ELEMENT elements (elementid)>
<!ELEMENT material (matproperty)>
<!ELEMENT matproperty (name,type,value)>
<!ELEMENT BoundaryConditionSet (BoundaryCondition)>
<!ELEMENT BoundaryCondition (name,type,location,value)>
<!ELEMENT SysParameterSet (SysParameter)>
<!ELEMENT SysParameter (name,value)>
<!ATTLIST ElementSet shape CDATA #REQUIRED>
<!ATTLIST ElementSet NumOfVertices CDATA #REQUIRED>
<!ATTLIST ElementSet NumOfNodes CDATA #REQUIRED>
<!ATTLIST ElementSet LocalNumbering CDATA #REQUIRED>
<!ATTLIST Element id CDATA #REQUIRED>
<!ATTLIST Vertex id CDATA #REQUIRED>
<!ATTLIST Node NumOfDof CDATA #REQUIRED>
<!ATTLIST ZoneSet NumOfZones CDATA #REQUIRED>
<!ATTLIST zone id CDATA #REQUIRED>
<!ATTLIST material id CDATA #REQUIRED>
<!ATTLIST material name CDATA #REQUIRED>
<!ATTLIST material type CDATA #REQUIRED>

Figure 3.6: DTD of XML Document Holding Mesh Data

3. System Implementation 57

<MeshData>
<ElementSet shape="triangle" NumOfVertices="3" NumOfNodes="3"

LocalNumbering="1 2 3">
<Element id="1">

<ElementGeo>
<Vertex id="1">

<x_coord> 5 </x_coord>
<y_coord> 3 </y_coord>
<z_coord> 0 </z_coord>
<fixity> 1 </fixity>

</Vertex>
<Vertex id="2">

<x_coord> 2 </x_coord>
<y_coord> 3.5 </y_coord>
<z_coord> 0 </z_coord>
<fixity> 1 </fixity>

</Vertex>
<Vertex id="3">

<x_coord> 2.5 </x coord>
<y_coord> 3 </y_coord>
<z_coord> 0 </z_coord>
<fixity> 1 </fixity>

</Vertex>
</ElementGeo>
<ElementDof>

<Node NumOfDof="1">
<x_coord> 5 </x_coord>

<y_coord> 3 </y_coord>
<z_coord> 0 </z_coord>
<dofName> x displacement </dofName>

</Node>
</ElementDof>

</Element>
</ElementSet>

</MeshData>

Figure 3.7: A Fragment ofXML Document Defining Mesh Data

3. System Implementation 58

be converted between different formats by using stylesheets, the extra work required by

stylesheets is more difficult than writing the same information twice in the XML docu­

ment. Therefore, we choose to introduce the structure as shown in Figure 3.5.

3.3.2 Using XSLT Stylesheets to Produce Plain Text Files

XSLT [12] is a domain-specific markup language aimed at XML document transformation

and presentation. XML is a language that describes data. However, if the data needs

to be transformed for web display or other processing requirements, XSLT is often used.

The stylesheet functionality provided by XSLT is powerful in that it can convert between

multiple types of documents, such as XML to XML, XML to HTML, XML to plain text

files, etc. Therefore, when we made the decision to use XML to model mesh data. XSLT

became a good choice to meet our requirement of file transformation processing.

In the age of the Internet, formats such as HTML clearly dominate the application

of XSLT on the output side. However, plain text is usually required by finite element

programs. The transformation from XML to text is done by specifying the method of the

output format< xsl : output >as text. However, we need to choose an XSLT processor

as an environment for transformation process. The XSLT processor provides a run-time

command to create text files through transformation, as well as extensions and tools for

advanced functions (e.g. apply multiple stylesheets to a single XML data source). The

XSLT processor we adopted to implement our system is Xalan [43].

The stylesheet files written based on the XML structure introduced in Figure 3.5 should

be prepared by the users of our system. Figure 3. 7 is an example XSL stylesheet to produce

a text file, which contains the coordinate information for the vertices in the first element.

The transformation inserts a tab between each coordinate value. In the example shown in

Figure 3.7, the XSL stylesheet uses< xsl :template >and< xsl :value-of> elements

3. System Implementation

<?xml version="l.O"?> <xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="l.O">
<xsl:output method="text"/>
<xsl:variable name="newline"><xsl:text>
</xsl:text></xsl:variable>

59

<xsl:variable name="tab"><xsl:text>	</xsl:text></xsl:variable>
<xsl:template match="MeshData">
<xsl:text>X Coordinate	Y Coordinates	
z Coordinates	Fixity</xsl:text>
<<xsl:value-of select="$newline"/>
<xsl:apply-templates select="Vertex"/>
</xsl:template>
<xsl:template match="Vertex">
<xsl:value-of select="x_coord"/><xsl:value-of select="$tab"/>
<xsl:value-of select="y_coord"/><xsl:value-of select="$tab"/>
<xsl:value-of select="z_coord"/><xsl:value-of select="$tab"/>
<xsl:value-of select="fixity"/><xsl:value-of select="$newline"/>
</xsl:template>
</xsl:stylesheet>

Figure 3.8: Sample XSL Stylesheet File

3. System Implementation 60

to apply templates and extract values between XML element tags. XSL stylesheets also of-

fers programming facilities for further data manipulation. For example,< xsl : variable >

is used to declare special symbols for later use. XSLT embeds advanced string-handling

functionality, such as testing string patterns, adding or removing characters from a string,

etc .. However, as mentioned earlier, the use of the advanced XSLT functionality is up to the

user of our system, because they are responsible for preparing and validating the stylesheets

that they need. The resulting text file is shown in Figure 3.8.

X Coordinate
5
2
2.5

Y Coordinate
3
3.5
3

Z Coordinate
0
0
0

Figure 3.9: Output Text File

Fixity
1
1
0

Chapter 4

System Demonstration

This chapter provides examples of a proof of concept PMG - Parameterized Mesh Gener­

ator. As mentioned in previous chapters, the implementation of the system should reflect

the distinction between program family members. For example, fixing the parameters of

variation to different values should produce different mesh generators. Binding the value

of a variability at specification time or run time is considered to have the same effect. The

examples provided in this chapter focus on the variabilities and show that changes made to

parameters of variation at specification time lead to changes in the resulting mesh generator.

The chapter includes two example spatial domains discussed in separate sections. The

first example is meshing a rectangular domain with four zones. The mesh generator used

in this example is generated from an empty specification and therefore is the most general­

purpose mesh generator in the family. The second example involves an irregular domain

with six zones, two of which are void zones.

61

4. System Demonstration 62

4.1 General-purpose Interface for Rectangular Domain Mesh-

ing

As mentioned in Chapter 3, we use a meshing algorithm which adopts the mapping between

curvilinear and Cartesian coordinates. The curvilinear mapping is used in the key diagram

where the "super" element is defined. In this example, the key diagram is of the same

geometric shape as the actual geometric domain. Figure 4.1 illustrates the key diagram.

2 5 8

2 4

1
4

7

1 3

0 3 6

Figure 4.1: Key Diagram of Quadrilateral Domain

We use the most general-purpose mesh generator in the family for this problem. The

specification corresponding to the general-purpose family member is described in Figure

4.2. It only contains the root element of the data definition.

<?xml version="l.O"?>
<MeshGeneratorApplication>
</MeshGeneratorApplication>

Figure 4.2: XML Specification for General-purpose Mesh Generator

The resulting mesh generator is produced with interface shown in Figure 4.3. The

4. System Demonstration 63

general-purpose mesh generator allows all the seed information to be entered at run time.

Therefore, the values of all the inputs shown in dialog boxes are blank. To illustrate each

menu options, we will include the screen shots of the system interface in sections 4.1.1-

4.1.6.

Figure 4.3: GUI for a Mesh Generator

4.1.1 File and Domain Menus

The first two menus are "File" and "Domain". The "File" menu has three options: Open,

Save, and Exit. The user clicks on "Open" to open an existing file of a mesh, "Save" to

save the current mesh, and "Exit" to exit the system. The "Domain" menu allows the user

to enter the domain information, which consist of the following four types of information:

domain, author, date, and comments. Domain stands for the application domain for which

the mesh is intended (e.g. mechanic, thermodynamic, etc). The information can be directly

written to the output file(s).

4. System Demonstration 64

4.1.2 Geometry Dialog

The geometry dialog allows the user to enter the geometric information, such as the co­

ordinates of the vertices in the key diagram. The key diagram contains a span of "super"

elements, where the user must specify the number of rows and columns. After that, the

user must provide the coordinates for each zone, as well as the assigned material identifier.

Since our scope only considers boundaries with straight edges, each zone is set to have four

vertices. Figure 4.4 displays the geometry dialog with the geometric information associated

with this example.

Figure 4.4: Specified Information in Geometry Dialog

4. System Demonstration 65

4.1.3 Material Dialog

The material dialog allows the user to enter the material information associated with the

problem. The general-purpose system allows a maximum of five materials to be specified,

each of which can have up to five different material properties. Each material property is

described by a name, type, and value. An example of material dialog with the specified

information is shown in Figure 4.5.

Figure 4.5: Specified Information in the Material Dialog

4. System Demonstration 66

4.1.4 Element Dialog

The element dialog allows the user to enter information associated with the mesh elements.

The dialog has two parts: subdivision and node. In the first part, the number of subdivi­

sions for each row and column along each direction must be specified. Subdivision values

for each row and column are separated by commas. The shape of the element must also

be specified. The possible topology patterns to be selected are quadrilaterals and eight

triangular patterns, corresponding to the parameters of variation documented in the com­

monality analysis(Appendix A). The node information is related to the nodes that are used

to interpolate the geometry or that are assigned with degrees of freedom. The location of

a node in this case is in the local coordinate system used by the shape functions in Chap­

ter 3. For nodes used for degrees of freedom, the names of degrees of freedom on each

node can also be specified. If there are multiple degrees of freedom, their names should

separated by commas. In Figure 4.7, the two degrees of freedom are "x_displacement" and

"y_displacement". Figure 4.6 and 4.7 illustrate the two parts of the dialog with the user

specified information for the current problem.

4.1.5 Boundary Condition Dialog

The boundary condition dialog allows the user to enter boundary conditions associated with

the problem. In this example, the boundary conditions in terms of fixity and traction are

specified as in Figure 4.8. The boundary where each boundary condition is applied is a pair

of vertices separated by commas in the key diagram. The handling of boundary conditions

in the prototype ofMGG assumes that the entire edge has the same boundary condition.

4. System Demonstration 67

Figure 4.6: Specified Subdivisions in the Element Dialog

4.1.6 System Parameter Dialog

The system parameter dialog lets the user enter any system-related information, which is

directly written to output file(s). Examples of system parameters are degree of implicitness

for a time marching algorithm, spring stiffness for artificially constraining degree of free­

dom, the maximum number of iteration, etc. The prototype of MGG allows a maximum of

three systems parameters to be specified. Figure 4.9 is an example of a system parameter

dialog with user specified information.

4. System Demonstration 68

Figure 4.7: Specified Node Information in Element Dialog

4.1. 7 Generating the Mesh and Visualization

After the input information is specified, the mesh can be generated by clicking "Generate".

The resulting quadrilateral mesh of our example is shown in Figure 4.1 0.

Since this is the general-purpose mesh generator, we can change some values and see

the changes in the resulting mesh. One common variability is to change the shape of the el­

ement. The interface allows the user to specify six patterns of triangular meshes. Changing

the value in the element dialog to "Triangle6" results in the mesh shown in Figure 4.11.

4. System Demonstration 69

Figure 4.8: Specified Information in the Boundary Condition Dialog

4.1.8 XSL Stylesheet and Output File Generation

In the current example, we specified two stylesheet files for file generation. The contents of

the files are shown in Figure 4.12 and Figure 4.13. The first stylesheet contains instructions

to print only vertex coordinate information, while the second stylesheet is to print only

element connectivity information.

The output file dialog allows the user to specify the XSL stylesheet file to be used for

customizing output file(s). Figure 4.14 is a screen shot of output file dialog with specified

XSL file locations for the quadrilateral mesh shown in Figure 4.1 0.

The resulting text files are shown in Figure 4.15 and 4.16. Since the mesh has too many

4. System Demonstration 70

Figure 4.9: Specified Information in System Parameter Dialog

elements, we will only print a portion of contents of the output files.

4. System Demonstration 71

Figure 4.10: Generated Quad Mesh

4.2 Special-purpose Interface for a Nonrectangular Do­

main

The first example shows a simple rectangular domain using the most general-purpose mesh

generator in the family. In this example we will show how a special-purpose mesh generator

is produced with input values bound at specification time in the XML specification, and

how this mesh generator program differs from the first one.

Before we parse the XML specification, we will look at the key diagram and the actual

physical domain of the problem in Figure 4.16. Please note that zone 4 and 6 in the key

diagram are void zones so no elements will be generated inside these two zones.

4. System Demonstration 72

Figure 4.11: Generated Triangular Mesh by Changing the Element Shape and Topology

The XML specification in this case will provide the geometry and element informa­

tion. The other parameters of variation will be set at run-time. The geometry and element

information in the specification are provided in Figure 4.17 and 4.18, respectively.

4.2.1 Special-purpose vs. General Purpose

Parsing the specification of this example produces the same interface as in Figure 4.3.

However, the differences between family members are reflected by the appearances of the

dialogs for the specific category of information specified at specification time. For exam­

ple, the geometry dialog in this mesh generator is shown in Figure 4.19, and the element

information is shown in Figure 4.20.

4. System Demonstration 73

<?xml version="l.O"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="l.O">
<xsl:output method="text"/>
<xsl:variable name="newline"><xsl:text>
</xsl:text></xsl:variable>
<xsl:variable name="tab"><xsl:text>	</xsl:text></xsl:variable>
<!-- category names -->
<xsl:template match="Mesh">
<xsl:text>ID	x_coord	y_coord	</xsl:text>
<xsl:value-of select="$newline"/>
<xsl:apply-templates select= "VertexSet"/>
</xsl:template>
<xsl:template match="VertexSet">
<xsl:for-each select = "Vertex">
<xsl:value-of select = "id"/> <xsl:value-of select = "$tab"/>
<xsl:value-of select "x_coord"/> <xsl:value-of select= "$tab"/>
<xsl:value-of select= "y_coord"/> <xsl:value-of select= "$tab"/>
<xsl:value-of select = "$newline"/>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Figure 4.12: Stylesheet File 1

The values set at specification-time are passed into the interface and the values cannot

be changed through the interface. This is how we can distinguish a general-purpose mesh

generator from a special-purpose one. The general-purpose mesh generator allows every

input to be specified at run time, while the special-purpose mesh generator fixes certain

values at specification time. If two specifications differ in the values of some input, they

will also produce different special-purpose family members. In this example, we can see

that the geometry and element dialog have been fixed. The other input dialogs will be

general-purpose and require user input information before a mesh can be generated.

4. System Demonstration 74

<?xml version="l.O"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="l.O">
<xsl:output method="text"/>
<xsl:variable name="newline"><xsl:text>
</xsl:text></xsl:variable>
<xsl:variable name="tab"><xsl:text>	</xsl:text></xsl:variable>
<!-- category names -->
<xsl:template match="Mesh">
<xsl:text>ID	x_coord	y_coord	</xsl:text>
<xsl:value-of select="$newline"/>
<xsl:apply-templates select = "ElementSet"/>
</xsl:template>
<xsl:template match="ElementSet">
<xsl:for-each select "Element">
<xsl:value-of select = "id"/> <xsl:value-of select
<xsl:value-of select "element_connectivity"/>
<xsl:value-of select= "$newline"/>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Figure 4.13: Stylesheet File 2

4.2.2 Nonrectangular Domain Mesh Generation

"$tab"/>

After all the seed information is specified, the resulting mesh on the geometric domain is

shown in Figure 4.21. Please note the element type has been bound at specification time to

be "Trianglel".

4. System Demonstration

ID
1
2
3
4
5
6
7

8

9

x_coord
0.0
0.5
1.0
1.4
1.8
2.2
0.025
0.5125
1.0

Figure 4.14: Specified Information in Output File Dialog

y_coord
0.0
0.0
0.0
0.0
0.0
0.0
0.125
0.125
0.125

Figure 4.15: Output File 1

75

4. System Demonstration 76

ID connectivity
ID connectivity
1 0 1 7 6
2 1 2 8 7
3 2 3 9 8
4 3 4 10 9
5 4 5 11 10
6 6 7 13 12
7 7 8 14 13
8 8 9 15 14
9 9 10 16 15

Figure 4.16: Output File 2

2 4 6

...
1 3 5

Key diagram Geometric Domain

Figure 4.17: Key Diagram and Geometric Domain

4. System Demonstration

<geometry>
<spanSpec>

<rows>2</rows>
<cols>3</cols>

</spanSpec>
<zoneSpec ID="l" MaterialAssigned="l">

<vertex ID="l">
<x_coord>l7</x_coord>
<y_coord>O</y_coord>

</vertex>
<vertex ID="2">

<x_coord>18</x_coord>
<y_coord>3</y_coord>

</vertex>
<vertex ID="3">

<x_coord>lO</x_coord>
<y_coord>4.17</y_coord>

</vertex>
<vertex ID="4">

<x_coord>lO</x_coord>
<y_coord>O</y_coord>

</vertex>
</zoneSpec>

continued for six zones
</geometry>

Figure 4.18: XML specification of Geometry

77

4. System Demonstration

<elementSet>
<geometrySpec>

<shape>trianglel</shape>
<subdivisions>

<raxis>2,2</raxis>
<saxis>2,3,2</saxis>

</subdivisions>
<pattern>trianglel</pattern>
<nodeGeo count="3">

<node id="l">
<location>l,O,O</location>

</node>
<node id="2">

<location>O,l,O</location>
</node>
<node id="3">

<location>O,O,l</location>
</node>

</nodeGeo>
</geometrySpec>

</elementSet>

Figure 4.19: XML specification of Element Type

78

4. System Demonstration 79

Figure 4.20: Geometry Dialog Appearance for Specification-time Information

4. System Demonstration 80

Figure 4.21: Geometry Dialog Appearance for Specification-time Information

4. System Demonstration 81

Figure 4.22: Triangular Mesh Produced by Special-purpose Mesh Generator

Chapter 5

Conclusions

In this chapter we first present the conclusions of our work in Section 5.1. We then list the

contributions of our work in Section 5.2 and offer suggestions for future work in Section

5.3.

5.1 Conclusions

In this thesis we presented PMG as a framework for rapid development of special-purpose

mesh generators as members of a program family. The system design process involves

producing the following documents: a commonality analysis, a requirement specification,

and a module guide. We also implemented a prototype of PMG. From this experience, the

following conclusions can be made:

[1] Special-purpose mesh generators are suitable for development as a program family.

The most important result we have shown in our work is that the program family

design is a good approach for rapid development of special-purpose mesh genera­

tors. Although the nature of mesh generators as software suggests that they are ideal

candidates to be developed as a program family [47], the implementation of PMG

82

5. Conclusions 83

clearly displays our confidence that not only is the appropriateness sound in theory,

it can also be demonstrated through a proof of concept implementation. As shown in

Chapter 4, the variabilities between different family members are reflected by fixing

the values of parameters of variation at specification time or run time.

[2] Commonality analysis greatly assisted in developing PMG and it should be equally

beneficial for developing other family-based scientific computing software. The key

in family-oriented software development is the prediction of future changes. In the

design ofPMG, this is handled by conducting a commonality analysis. A common­

ality analysis is an analytical approach that consists of systematically identifying and

documenting the commonalities that all program family members share, the variabil­

ities between family members and the terminology used in describing the family. It

was initially proposed by Weiss [40] and has been demonstrated in FAST (Family

oriented Abstraction, Specification and Translation) [13, 52]. Our design process

spent considerable time refining an original commonality analysis documented by

Smith and Chen [47] to reflect our scope time decisions. Our experience in the end is

that a good commonality analysis is not only a successful starting point for the sub­

sequent design activities, such as requirement specifications and module guide, but

also provides the guidance for the implementation of the system to model different

mesh generator members in the family. For example, the DSL design follows the

commonality analysis such that the values of each variability bound at specification

time can be specified in the DSL.

[3] A module guide with clear module decomposition is beneficial to the system devel­

opment. The module guide documented in Appendix C defines the structures of the

system and was used to guide our implementation consistently through the program­

ming stage. The module decomposition shown in the module guide are based on

5. Conclusions 84

the information hiding principle and separation of concern. The anticipated changes

from the commonality analysis are encapsulated in separate modules; therefore, each

module hides some design decisions of the system. The module guide also provides

the relationship of modules by displaying the "uses" hierarchy, so that the responsi­

bilities and functions of the modules are clear.

[4] The concept of "Design through documentation" guides the entire process. Docu­

mentation of software design serves as a media for communication between devel­

opers, and can also be used to verify and test the system functions based on the

functional requirements in the requirement specifications. All the design documents

included in the appendices are a good source to understand PMG and for possibly

maintaining and further development in the future. These documents and the trace­

ability that exists between them greatly improve the internal quality of maintainabil­

ity.

5.2 Contributions of Our Work

This section lists the achievements of our work as follows:

[1] Presenting a framework for rapid development of special-purpose mesh generators.

[2] Revising an existing commonality analysis to reflect the scope time decision.

[3] Documenting a software requirement specification for the program family.

[4] Applying module decomposition techniques and documenting a module guide.

[5] Using XML to implement a domain-specific language to model the seed information

necessary to produce a mesh generator.

5. Conclusions 85

[6] Applying advanced Java parsing techniques to customize the object representing a

mesh generator family member.

[7] Programming Java Swing components for the graphical interface of the mesh gener­

ators.

[8] Implementing a meshing algorithm introduced by Zienkiewicz and Phillips [56] to

produce structured meshes with quadrilateral and triangular elements.

[9] Using XSL stylesheets to allow flexible customization of the output file(s).

[10] Providing a mechanism to quantify the degree of generality of a mesh generator,

since the DSL for a program family member explicitly shows these parameters of

variation that are fixed at specification time versus those that are set at run time.

5.3 Future Work

The results of our work encourage future research in the development of a family of mesh

generators. Our time constraints have limited us to only implement a simple version of

PMG. Therefore, more work should be done in the future to refine the program and expand

the scope of the thesis. A list of possible further investigations is as follows:

Expand the program family. Many refinements can be done by revising the scope

time decisions in this thesis to specification time or run time binding. This include

programming work with respect to satisfying functional requirements and nonfunc­

tional requirements.

[1] In terms of functional requirements, many scope time decisions in the common­

ality analysis can be reused to cover more possibilities. For example, the future

5. Conclusions 86

versions of PMG can include the support of unstructured mesh generation and

mesh optimization features (e.g. mesh refinement and smoothing).

[2] Improve the user interface for better usability. For example, future versions of

PMG can add mesh editing features and allow the geometry to be specified by

drawing the bounding domain with a mouse.

[3] Improve the robustness of PMG. Any error in the user inputs including incon­

sistencies between inputs, should be detected and handled before generating

the mesh. For example, the GUI should check that a coordinate of the geometry

only contains numbers. A more complex example may be that the number of

degrees of freedom should be the same as the number of values of fixity.

A module interface specification (MIS) should be conducted using formal mathe­

matics and logic. An MIS documents the design secrets and key functions of each

module in the system. In other words, an MIS describes "what a module does, but not

how it does it." The module specification in the MIS also explains how the current

modules interact with other modules by exporting some functions or variables to be

used.

The program family approach demonstrated in this thesis may be used to create other

scientific computing software. For instance, a family of finite element analysis pro­

grams or ordinary differential equation (ODE) solvers may be developed using a

similar approach as that shown in this thesis.

Bibliography

[1] I. S. 1233. Ieee guide for developing system requirements specifications, 1996.

[2] M. Ardis and D. M. Weiss. Defining families: The commonality analysis. In Nine­

teenth International Conference on Software Engineering. ACM, Inc., 1997.

[3] R. E. Bank. A domain decomposition for a parallel adaptive meshing algorithm.

Department of Mathematics University of California, San Diego La Jolla, California,

92093-0112,2002.

[4] M. Bern and P. Plassmann. Mesh Generation. Handbook of Computational Geometry.

Elsevier Science, 2000.

[5] G. Berti. Generic components for grid data structures and algorithms with C++. In

First Workshop on C++ Template Programming, October 2000.

[6] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific lan­

guage embedding and assimilation without restrictions. In D. C. Schmidt, editor,

Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program­

ing, Systems, Languages, and Applications (OOPSLA '04), pages 365-383, Vancou­

ver, Canada, October 2004. ACM Press.

[7] M. Cecilia and N. Hitschfeld-Kahler. An evolvable meshing tool through a flexible

BIBLIOGRAPHY 88

object-oriented design. Proceedings, 13th International Meshing Roundtable, SAND

2004-3765C:pp.203-212, September 2004.

[8] C.-H. Chen. A software engineering approach to developing mesh generators. Mc­

Master University, Hamilton, Ontario, Canada, 2003.

[9] L. Chen. Mesh smoothing schemes based on optimal delaunay triangulations. Pro­

ceedings of 13th International Meshing Roundtable, pages 109-120, September 19-

22,2004.

[10] C. Consel and R. Marlet. Architecturing software using a methodology for language

development. In Proceedings of the I Oth International Symposium on Programming

Languages, Implementations, Logics and Programs PLILPIALP '98, 1998. Invited

paper.

[11] W. Consortium. Mathml2.0. URL: http://www.w3c.org/Math.

[12] W. consortium. The extensible stylesheet language family (XSL).

URL:www.w3.org/Style/XSL, 2005.

[13] D. A. Cuka and D. M. Weiss. Specifying executable commands: An example of fast

domain engineering. Submitted to IEEE Transactions on Software Engineering, pages

1-12, 1997.

[14] R. de Groot. Design and implementation of embedded domain-specific languages.

Center for Software Technology, Institute of Information and Computing Sciences,

Utrecht University, 2005.

[15] E. W. Dijkstra. Structured Programming, chapter Notes on Structured Programming.

Academic Press,London, 1972.

BIBLIOGRAPHY 89

(16] M. J. Dino Mandrioli, Carlo Ghezzi. Fundamentals of Software Engineering.

Prentice-Hall, USA, 2005.

[17] A. H. ElSheikh, W. S. Smith, and S. E. Chidiac. Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software, 35(12):827-841, 2004.

[18] P. J. Frey and P. L. George. Mesh Generation Application to Finite Elements. Hermes

Science Europe Ltd., 2000.

[19] R. V. Garimella. Mstk- a flexible infrastructure library for developing mesh based

applications. Proceedings, 13th International Meshing Roundtable, SAND 2004--

3765C:pp.203-212, September 2004.

(20] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh gen­

erator with built-in pre- and post-processing facilities. http://www.geuz.org/gmsh, No­

vember 2005. Version 1.61.

[21] D. H. R. Gopalsamy, S. and A. M. Shih. Api for grid generation over topolog­

ical models. Proceedings, 13th International Meshing Roundtable, SAND 2004-

3765C:pp.221-230, September 2004.

[22] X. group. Matml, xml for material property data. URL: http://www.matml.org, 2005.

(23] P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys,

28A, December 1996.

[24] M.S. J.F. Remacle, B.K. Karamete. Algorithm oriented mesh database. 2000.

(25] P. H. John Peterson and C. Elliott. Lambda in motion: Controlling robots with haskell.

First International Workshop on Practical Aspects of Declarative Languages, 1999.

BIBLIOGRAPHY 90

[26] S.C. Johnson. Yacc: Yet another compiler-compiler. Computing Science Technical

Report 32, 1975. AT&T Bell Laboratories, Murray Hill NJ.

[27] S.C. Johnson. Lint, a c program checker. Comp. Sci. Tech. Rep., (No. 65), 1978.

[28] S. C. Johnson. A portable compiler: Theory and practice. Proc. 5th ACM Symp. on

Principles of Programming Languages, pages pp. 97-104, January 1978.

[29] R. E. Jones. The qmesh mesh generation package. Proceedings of the SIGNUM

meeting on Software for partial differential equations, pages 31-34, 1975.

[30] S. Kamin and D. Hyatt. A special-purpose language for picture-drawing. Proceedings

of the USE NIX Conference on Domain-Specific Languages, 1999.

[31] B. W. Kernighan and L. L. Cherry. A system for typesetting mathematics. Comm.

Assoc. Camp. Mach., pages pp. 151-157, March 1975. Bell Laboratories, Murray

Hill, New Jersey.

[32] D. Leijen. wxhaskell- a portable and concise gui library for haskell. In ACM SIG­

PLAN Haskell Workshop (HW'04). ACM Press, September 2004.

[33] M. E. Lesk and E. Schmidt. lex: A lexical analyzer generator, volume 2, pages

388-400. Holt, Rinehart, and Winston, New York, NY, USA, 1979. In UNIX Pro­

grammer's Manual.

[34] B. McLaughlin. Java & XML data binding. O'reilly, 2002.

[35] Sun MicroSystems. Java architecture for xml binding (jaxb). URL:

http://java.sun.com/webservices/jaxb, 2005.

[36] L. F. M.J. and P. P. An efficient parallel algorithm for mesh smoothing. 4th Interna­

tional Meshing Roundtable, pages pp. 47-58, 1995.

BIBLIOGRAPHY 91

[37] P. Murray-Rust and H. S. Rzepa. Chemical markup language. http://www.xml­

cml.org/information/position.html, 2001. A Position Paper.

[38] C. Ollivier-Gooch. Grummp. URL: http://tetra.mech.ubc.ca/GRUMMP /index.html,

2002.

[39] S. Owen. Meshing research comer. http://www.andrew.cmu.edu/user/sowen/mesh.html,

May 2006.

[40] D. Pamas. On the design and development of program families. IEEE Transactions

on Software Engineering, March 1976.

[41] D. L. Pamas. Designing software for ease of extension and contraction. IEEE Trans­

actions on Software Engineering, pages 128-138, March 1979.

[42] D. L. Pamas. Why software jewels are rare. IEEE Computer, 29:57-60, 1996.

[43] A. Project. Xalan, the xslt processor. URL: www.xml.apache.org/xalan-j/, 2005.

[44] M. Rhiger. A foundation for embedded languages. ACM Trans. Program. Lang. Syst.,

25(3):291-315, 2003.

[45] R. Schneider. Meshing software. URL: http://www-users.informatik.rwth­

aachen.de/ roberts/software.html, May 2006.

[46] SCOREC. Aomd documentation. URL: www.scorec.rpi.edu/AOMDI

[47] W. S. Smith and C.-H. Chen. Commonality and requirements analysis for mesh gener­

ating software. In Proceedings of the Sixteenth International Conference on Software

Engineering and Knowledge Engineering (SEKE 2004), pages 384-387, Banff, Al­

berta, Canada, June 2004.

BIBLIOGRAPHY 92

[48] S.Smith and C.H.Chen. Commonality analysis for mesh generating systems. Techni­

cal report, Computing and Software Department,McMaster University, 2004.

[49] D. Stolle. Grid generator. Department of Civil Engineering, McMaster University,

2000.

[50] R. H. Thayer and M. Dorfman. Ieee recommended practice for software requirements

specifications. IEEE Computer Society, 2000.

[51] N. R. o. C. The Numerical Modelling Group Mining Research Laboratories. Cansafe

I visrock - a windows application packlage for stress analysis using finite element

techniques. Division Report: MRL 94-046(TR), October 1994.

[52] D. Weiss and C. Lai. Software Product Line Engineering. Addison-Wesley, 1999.

[53] D. M. Weiss. Defining families: The commonality analysis. Submitted to IEEE

Transactions on Software Engineering, 1997.

[54] D. M. Weiss. Commonality analysis: A systematic process for defining families.

Lecture Notes in Computer Science, pages 214-222, 1998.

[55] wxWidget Project. Wxwidget cross-platform gui library.

URL:http://www. wxwidgets.org/, 2005.

[56] 0. Zienkiewicz and D. V. Phillips. An automatic mesh generation scheme for plane

and curved surfaces by 'isoparametric' co-ordinates. International Journal for Nu­

merical Methods in Engineering, pages 519-528, 1971.

Appendix A

Commonality Analysis for Mesh

Generating Systems

A.l Introduction

This document serves as the starting point to designing mesh generators as a program fam­

ily. The targeted family is the type of mesh generators that are pre-processors to finite

element programs. An existing commonality analysis for the same type of mesh genera­

tors has been conducted and documented by Smith and Chen [48]. However, our research

scope is more restricted than Smith and Chen [48] because we only focus on structured

mesh generators on 20 domains. Therefore, we use the results from Smith and Chen [48]

as the basis of our document, while making necessary changes to reflect the change of

scope. For the convenience of referring to the original commonality analysis results, we

use the abbreviation S&C to designate the Smith and Chen document.

The current document is organized as follows: Section 2 contains the list of terminology

definitions and abbreviations used in the document. Section 3 records the commonalities

shared by the members of the mesh generator family. Section 4 and 5 record the variabilities

93

A Commonality Analysis for Mesh Generating Systems 94

and the corresponding parameters of variation, respectively.

A.2 Terminology and Definitions

This section lists the terminologies used in the field of software engineering and mesh gen­

eration. Most terminologies associated with our commonality analysis has been provided

in S&C, to which the reader can refer for the definitions. The definition given below is the

only one that differs from S&C. The change was made to better integrate the notions of

connectivity of a mesh element versus connectivity of a mesh.

Connectivity: There are two types of connectivity, one for a mesh element and one for the

mesh:

[1] "The connectivity of a mesh element is the definition of the connection between

the vertices at the element level." [18]

[2] The connectivity of the mesh is given by the set of connectivities of its con­

stituent elements.

A.3 Commonalities

This section lists all the common features among all the potential family members. The

commonalities are organized using the same abstraction ofthe system as indicated in [48].

The categories of the abstraction are as follows: input information, mesh generation, and

output information. Section A.3.1 describes the commonalities for the mesh generation

step, which includes the discretization of the domain, as well as other information on the

problem such as the boundary conditions, material properties, etc. Section A.3.2 highlights

the input information that is required for all mesh generators, such as the geometry of the

A Commonality Analysis for Mesh Generating Systems 95

domain that is going to be discretized. The next section, Section A.3.3, shows the common

features for the output of mesh generators, such as the requirement that mesh information

be written to files. The final section covers qualities of the system that cannot be classi­

fied as input, mesh generation or output. These commonalities are termed nonfunctional

requirements of the system.

Each commonality below uses the same structure. All of the commonalities are as­

signed a unique item number, which takes the form of a natural number with the prefix

"C". Following this, a description of the commonality is provided along with a list of re­

lated variabilities, which are given as hyperlinks that allow navigation of the document to

the text describing the variability. Finally, each commonality ends with a summary of the

history, including the date of creation and any dates of modification, along with a brief

description of the modification. If a commonality is borrowed from another document such

as S&C, then the corresponding history section will mention its source.

Since we restricted our scope to cover a less broad range of mesh generators, some

variabilities need to be redefined and become commonalities in the current commonality

analysis. These new commonalities are added in this section, where for each new com­

monality, its original source of variability will be mentioned in the corresponding history

field.

A. Commonality Analysis for Mesh Generating Systems 96

A.3.1 Mesh Generation

Item Number Cl

Description A mesh generator discretizes a given computational domain

(closed boundary D) into a covering up of a finite number of

simple shapes.

Related Variability V4, V8, VlO

History Borrowed from S&C- May 9, 2005

Item Number C2

Description Each vertex has a unique identifier.

Related Variability None

History Borrowed from S&C- May 9, 2005

Item Number C3

Description Each element has a unique identifier.

Related Variability None

History Borrowed from S&C- May 9, 2005

Item Number C4

Description An element's topology is given by the connectivity of its set of

vertices.

Related Variability None

History Borrowed from S&C- May 9, 2005

A. Commonality Analysis for Mesh Generating Systems 97

Item Number C5

Description Information on the created meshes includes material properties.

Related Variability Vll, V12

History Borrowed from S&C- May 9, 2005

Item Number C6

Description Information on the created meshes includes boundary condi-

tions.

Related Variability V13

History Borrowed from S&C- May 9, 2005

Item Number C7

Description Information on the created meshes includes system parameters,

such as the number of elements in the domain and numerical

parameters needed by the finite element analysis program.

Related Variability V14

History Borrowed from S&C- May 9, 2005

Item Number C8

Description The mesh generators will not provide optimization features such

as smoothing, and refinement/coarsening.

Related Variability None

History Created- May 9, 2005. Modified from variability V3 from

S&C

A. Commonality Analysis for Mesh Generating Systems 98

Item Number C9

Description The mesh generators will not provide mesh editing features,

such as "tweaking" a vertex location, etc.

Related Variability None

History Created - May 9, 2005. Modified from variability V4 from

S&C

Item Number ClO

Description The vertices in the mesh will be numbered in the order that min-

imizes bandwidth.

Related Variability None

History Created- May 9, 2005. Modified from variability V5 from S&C

Item Number Cll

Description From topological perspective, all mesh generators in our scope

produce only structured meshes.

Related Variability V4, VS, VlO

History Created- May 9, 2005. This commonality is modified from V6

from S&C

A. Commonality Analysis for Mesh Generating Systems 99

Item Number C12

Description The local numbering of vertices and nodes in the mesh is always

counter-clockwise.

Related Variability None

History Created- May 9, 2005. Modified from variability V8 from S&C

Item Number C13

Description The mesh generators will not accommodate a mixed mesh, a

hybrid mesh, or a nonconformal mesh.

Related Variability None

History Created - May 9, 2005. Modified from variabilities V16-Vl8

from S&C

Item Number C14

Description The mesh generators only use Cartesian coordinates to describe

the geometry.

Related Variability VlO

History Created- May 9, 2005. Modified from variabilities V20 from

S&C

A. Commonality Analysis for Mesh Generating Systems 100

A.3.2 Input

Item Number C15

Description A mesh generator requires that information be input by the user

to define his/her meshing problem.

Related Variability V14

History Borrowed from S&C- May 9, 2005

Item Number C16

Description The mesh generators provide a graphical user interface.

Related Variability None

History Created - May 9, 2005. Modified from variabilities V21 from

S&C

Item Number C17

Description The interface for specifying the closed boundary of the domain

is the selection of the number of subdivisions along each direc-

tion.

Related Variability None

History Created - May 9, 2005. Modified from variability V22 from

S&C

A Commonality Analysis for Mesh Generating Systems 101

Item Number C18

Description The mesh generators will not allow the specification of two de-

grees of freedoms to have the same value.

Related Variability None

History Created - May 9, 2005. Modified from variability V28 from

S&C

Item Number C19

Description The mesh generators will not allow the specification of internal

boundaries.

Related Variability None

History Created - May 9, 2005. Modified from variability V29 from

S&C

Item Number C20

Description The user defines the geometric domain of the problem using the

same approach as Zienkiewicz and Phillips.

Related Variability None

History Created - May 9, 2005. This commonality is modified from

V23 from S&C

A. Commonality Analysis for Mesh Generating Systems 102

Item Number C21

Description The user needs to specify the physical attributes, such as the

material properties, the boundary conditions, etc.

Related Variability Vll, V12, V13, V14

History Borrowed from S&C- May 9, 2005

Item Number C22

Description When boundary conditions are specified, a maximum of one

condition may be given for each degree of freedom (dot). For

instance, a dof cannot have both a prescribed displacement and

a prescribed force.

Related Variability V13

History Borrowed from S&C- May 9, 2005

A.3.3 Output

Item Number C23

Description The mesh generators display the resulting mesh on the screen.

Related Variability None

History Created - May 9, 2005. Modified from variability V30 from

S&C

A Commonality Analysis for Mesh Generating Systems 103

Item Number C24

Description Mesh generators write mesh information to text file(s).

Related Variability V15, V16

History Borrowed from S&C - May 9, 2005

Item Number C25

Description The element information of a mesh is listed in the output file in

some order.

Related Variability V17

History Borrowed from S&C - May 9, 2005

Item Number C26

Description The vertex information, such as the coordinates, for a mesh is

listed in output file(s) in some order.

Related Variability Vl8

History Borrowed from S&C- May 9, 2005

A. Commonality Analysis for Mesh Generating Systems 104

A.3.4 Nonfunctional Requirements

Item Number C27

Description The mesh generators should perform the essential functions in

reasonable time, such as essentially instantaneously for entering

user input, seconds for waiting graphics display, or minutes for

mesh generation and output file creation.

Related Variability None

History Created - May 9, 2005; Modified from variability V39 from

S&C

Item Number C28

Description The mesh generator will provide reasonable measures of accu-

racy consistent with usual expectations for engineering and sci-

entific software.

Related Variability None

History Created - May 9, 2005; Modified from variability V 40 from

S&C

Item Number C29

Description The mesh generator provides the precision consistent with usual

expectations for engineering and scientific software.

Related Variability None

History Created - May 9, 2005; Modified from variability V 41 from

S&C

A. Commonality Analysis for Mesh Generating Systems 105

Item Number C30

Description The quality of generated mesh, measured in attributes such as

aspect ratio, minimum angle, etc. is consistent with those qual-

ities that are generally true of engineering computing software.

Related Variability None

History Created - May 9, 2005; Modified from variability V15 from

S&C

Item Number C31

Description The mesh generator is robust enough to handle the types of users

and the types of problems that the system is expected to en-

counter.

Related Variability None

History Borrowed from S&C- May 9, 2005

Item Number C32

Description The mesh generator will be as portable to other operating sys-

terns as required by the users of the system.

Related Variability V20

History Borrowed from S&C- May 9, 2005

A. Commonality Analysis for Mesh Generating Systems 106

Item Number C33

Description The mesh generators require reasonable amount of memory and

disk storage, consistent with the resources of a typical personal

computer in the year 2005.

Related Variability None

History Created - May 9, 2005; Modified from variability V38 from

S&C

A.4 Variabilities

This section provides a list of characteristics that may vary among family members. As

in Section A.3, the first three subsections on variabilities are organized into the following

sublists: Mesh Generation, Input and Output. The final two subsections list variabilities

that can be characterized as system constraints and as nonfunctional requirements.

As for the commonalities, each variability is labeled with a unique item number. In this

case the numbers are preceded with the letter "V". The other four headings provided for

each variability are: Description, Related Commonality, Related Parameter and History.

The related commonalities and parameters are given as a set of identifiers that respectively

refer back to the previous section on commonalities or refer forward to the next section on

parameters of variation.

A Commonality Analysis for Mesh Generating Systems 107

A.4.1 Mesh Generation

Item Number Vl

Description Different mesh generators will be able to accommodate the

creation of meshes for different problem domains.

Related Commonality None

Related Parameter Pl

History Borrowed from S&C- May 9, 2005

Item Number V2

Description The degree of generality of the mesh generator. Some mesh

generators are general purpose programs, while others are

tailored to a specific application domain.

Related Commonality None

Related Parameter P2

History Borrowed from S&C- May 9, 2005

Item Number V3

Description For structured meshes, different templates for the local pat-

terns in the element topology are possible.

Related Commonality Cl, C11

Related Parameter P3

History Borrowed from S&C- May 9, 2005

A. Commonality Analysis for Mesh Generating Systems 108

Item Number V4

Description The shape of the elements generated by the mesh generator

as defined by their vertices.

Related Commonality Cl, C11

Related Parameter P4

History Borrowed from S&C- May 9, 2005

Item Number V5

Description The number of nodes for an element and the location of

those nodes.

Related Commonality None

Related Parameter P5

History Borrowed from S&C - May 9, 2005

Item Number V6

Description The number of degrees of freedom at a node and the mean-

ing of each of those degrees of freedom.

Related Commonality None

Related Parameter P6

History Borrowed from S&C- May 9, 2005

A Commonality Analysis for Mesh Generating Systems 109

Item Number V7

Description The pattern of the number of degrees of freedom and the

meaning of these degrees of freedom can vary between the

nodes of an element.

Related Commonality None

Related Parameter P7

History Borrowed from S&C- May 9, 2005

Item Number V8

Description The dimensionality of the computational domain.

Related Commonality Cl

Related Parameter P8

History Borrowed from S&C- May 9, 2005

Item Number V9

Description The shape allowed for the computational domain.

Related Commonality Cl, C20

Related Parameter P9

History Borrowed from S&C- May 9, 2005

A Commonality Analysis for Mesh Generating Systems IIO

Item Number VIO

Description The dimension of the coordinate system used to describe

the geometry (coordinates) of the vertices and possibly of

the nodes.

Related Commonality CI, C20, CI4

Related Parameter PIO

History Borrowed from S&C - May 9, 2005

A.4.2 Input

Item Number VII

Description The number of material properties, their names and their

types.

Related Commonality C5, C2I

Related Parameter Pll

History Borrowed from S&C- May 9, 2005

Item Number VI2

Description The number of different materials allowed in the specifica-

tion of the physical problem.

Related Commonality C5, C2I

Related Parameter PI2

History Borrowed from S&C- May 9, 2005

A Commonality Analysis for Mesh Generating Systems 111

Item Number Vl3

Description The types of boundary conditions accommodated by the

system.

Related Commonality C6, C21, C22

Related Parameter Pl3

History Borrowed from S&C- May 9, 2005

Item Number Vl4

Description The number and type of different system parameters input

to the system. These parameters will be passed on to the

finite element program.

Related Commonality C7, Cl5, C21

Related Parameter Pl4

History Borrowed from S&C- May 9, 2005

A.4.3 Output

Item Number V15

Description The number of files that are output by the mesh generator.

Related Commonality C24

Related Parameter Pl5

History Borrowed from S&C- May 9, 2005

A. Commonality Analysis for Mesh Generating Systems II2

Item Number VI6

Description The format of the information in the file(s) output by the

mesh generator.

Related Commonality C24

Related Parameter PI6

History Borrowed from S&C- May 9, 2005

Item Number VI7

Description The element information is written to the file(s) following

a different ordering.

Related Commonality C25

Related Parameter PI7

History Borrowed from S&C - May 9, 2005

Item Number VIS

Description The vertex information is written to the file(s) following a

different ordering.

Related Commonality C26

Related Parameter PIS

History Borrowed from S&C - May 9, 2005

A. Commonality Analysis for Mesh Generating Systems 113

Item Number V19

Description The degree to which the user can customize the output file

formats.

Related Commonality C24

Related Parameter P19

History Borrowed from S&C- May 9, 2005

A.4.4 System Constraints

Item Number V20

Description The operating systems on which the mesh generating sys-

tern is intended to run.

Related Commonality C32

Related Parameter P20

History Borrowed from S&C- May 9, 2005

A.5 Parameters of Variation

This section specifies the parameters of variation for the variabilities listed in Section A.4.

They are organized into the same five subcategories as employed previously: Mesh Gener­

ation, Input, Output, System Constraints, Nonfunctional Requirements.

Each parameter of variation is given a unique identifier of the form "P" followed by

a natural number. The corresponding variability is listed to allow navigation back to the

appropriate item in Section A.4. The final entry for each parameter of variation is the

A. Commonality Analysis for Mesh Generating Systems 114

binding time, which is the time in the software lifecycle when the variability is fixed. The

binding time could be during specification, or during building of the system (compile time),

or during execution of the system (run time). It is possible to have a mixture of binding

times. For instance, a parameter of variation could have a binding time of"specification or

building" to represent that the parameter could be set at specification time, or it could be

postponed until the given family member is built. The choice of postponing the decision

until the build would be associated with the presence of a domain specific language that

would allow postponing decisions on the values of the parameter of variation.

A.S.l Mesh Generation

Item Number P1

Corresponding Variability V1

Range of Parameters Mesh generating systems can build meshes for a large

range of problem domains corresponding to the large

range of problems that can be solved via finite ele-

ment analysis. For instance, the mesh data files can

be targeted toward the following problem domains:

solid mechanics, fluid mechanics, heat transfer, seep-

age, electrostatics, etc.

Binding Time specification or run time

A Commonality Analysis for Mesh Generating Systems 115

Item Number P2

Corresponding Variability V2

Range of Parameters A continuum exists from the most specialized systems

to arbitrarily general systems. For instance, a special

purpose system may involve quadrilateral elements on

a 2D rectangular domain for the purpose of solving

for the temperature in a heated plate. On the other

hand, a general purpose system would handle an ar-

bitrary geometry for the domain, provide a choice of

element shapes, allow for ID, 2D or 3D domains and

provide meshes for a variety of physical problems.

Binding Time specification or build time

Item Number P3

Corresponding Variability V3

Range of Parameters Nine(9) potential local topology templates are possi-

ble, as shown in Appendix A.

Binding Time specification or build or run time

Item Number P4

Corresponding Variability V4

Range of Parameters In 1 D there are line segments; in 2D there are triangles

and quadrilaterals.

Binding Time specification or build or run time

A. Commonality Analysis for Mesh Generating Systems 116

Item Number P5

Corresponding Variability V5

Range of Parameters The element can have fewer nodes than vertices, the

same number of nodes as vertices or more nodes than

vertices. The nodes can be located at the vertices, on

the element edges, or inside the element.

Binding Time specification or build or run time

Item Number P6

Corresponding Variability V6

Range of Parameters The number and type of degrees of freedom at the

nodes can vary between different types of elements

and within an element. The dof for an element rep-

resent the dependent variable that will be solved for.

Some example dof are as follows: displacements, ve-

locities, temperatures, voltages, pressures, etc.

Binding Time specification or build or run time

A Commonality Analysis for Mesh Generating Systems 117

Item Number P7

Corresponding Variability V7

Range of Parameters If the geometry is interpolated at fewer nodes than the

interpolation of the dof, then the element is subpara-

metric. If the geometry is interpolated at the same

number of nodes as the interpolation for the dof, then

the element is isoparametric. If the geometry is in-

terpolated at more nodes than the interpolation for the

dof, then the element is superparametric.

Binding Time specification or build or run time

Item Number P8

Corresponding Variability V8

Range of Parameters 1D or 2D

Binding Time specification or build or run time

Item Number P9

Corresponding Variability V9

Range of Parameters A 2D domain is of any possible shape allowed by

Zienkiewicz and Phillips.

Binding Time specification or build time

A. Commonality Analysis for Mesh Generating Systems 118

Item Number P10

Corresponding Variability VlO

Range of Parameters The dimension of the spatial coordinate system that is

used to express the geometric coordinates. The only

possible option is 20.

Binding Time specification or build or run time

A.5.2 Input

Item Number Pll

Corresponding Variability Vll

Range of Parameters The number of material properties is variable and can

include such properties as elastic modulus, viscosity,

relaxation time, thermal conductivity, etc.

Binding Time specification or build or run time

Item Number P12

Corresponding Variability V12

Range of Parameters The entire domain can consist of one material or there

may be any finite number of different materials.

Binding Time specification or build or run time

A. Commonality Analysis for Mesh Generating Systems 119

Item Number Pl3

Corresponding Variability V13

Range of Parameters The boundary conditions may be of the Dirichlet or

Neumann. If the boundary conditions are for pre-

scribed values (Dirichlet type) that are zero, they may

be specified in a different manner from other pre-

scribed values. For instance, in solid mechanics prob-

lems a boundary may be fixed in one or more direc-

tions so that it cannot move in that direction and it

will be free in the remaining directions. The input may

specify this kind of fixity information.

Binding Time specification or build time

Item Number P14

Corresponding Variability V14

Range of Parameters The number and meaning of the system parameters

can vary from one mesh generator to the next. System

parameters may include global numerical parameters,

such as the degree of implicitness for a time marching

scheme.

Binding Time specification or build or run time

A. Commonality Analysis for Mesh Generating Systems 120

A.5.3 Output

Item Number P15

Corresponding Variability V15

Range of Parameters The number of files can range from 1 to many. In the

case of many files the data can be split between files,

possibly so that geometry data, topology data, material

properties data, etc. are separated.

Binding Time specification or build or run time

Item Number P16

Corresponding Variability V16

Range of Parameters Different mesh generators organize mesh information

into file(s) in different orders. The data structure that

is output can change between mesh generators, or it

may be something that the user can customize within

a given mesh generator.

Binding Time specification, build or run time

Item Number P17

Corresponding Variability V17

Range of Parameters Some mesh generators list elements in an increasing

order (implicity), while other explicitly output the ele-

ment identifier and list them in an arbitrary order.

Binding Time specification or build or run time

A. Commonality Analysis for Mesh Generating Systems 121

Item Number P18

Corresponding Variability V18

Range of Parameters Some mesh generators list nodal information in as-

cending order (implicitly), but others explicitly output

the node's identifier and list them in an arbitrary order.

Binding Time specification or build or run time

Item Number P19

Corresponding Variability V19

Range of Parameters Some mesh generators will have a fixed file format,

while others will allow the user to customize the out-

put. The customization can range from modifying file

names, to changing the order of blocks of data, to split-

ting the data between files, to changing the data struc-

ture, to changing from text to binary, etc.

Binding Time specification or build or run time

A. Commonality Analysis for Mesh Generating Systems 122

A.5.4 System Constraints

Item Number P20

Corresponding Variability V20

Range of Parameters Most operating systems that are in common use will

have mesh generators that will run on the system.

Some examples include: Windows, Unix, Mac OS X,

Linux, etc.

Binding Time specification, build or run time

A. Commonality Analysis for Mesh Generating Systems 123

A.6 References

[1]0. Zienkiewicz and D. V. Phillips. An automatic mesh generation scheme for plane

and curved surfaces by 'isoparametric' co-ordinates. International Journal for Numerical

Methods in Engineering, pages 519-528, 1971.

[2]P.J.Frey and P.L.George. Mesh Generation Application to Finite Elements. Hermes

Science Europe Ltd, 2000.

[3]W. S. Smith and C.H. Chen. Commonality and requirements analysis for mesh gen­

erating software. In Proceedings of the Sixteenth International Conference on Software

Engineering and Knowledge Engineering (SEKE 2004), pages 384-387, Banff, Alberta,

Canada, June 2004.

A. 7 Appendix: Topology Patterns for Structured Meshes

The appendix contains the possible templates for the local pattern in the element topology

of a structured mesh. The list of patterns are obtained by considering the quadrilateral

and triangular elements. It is obvious that there is only one possible type of quadrilateral

elements as shown in "quad" in Figure 1. For triangular elements, we start with the same

pattern of quadrilateral elements, and divide each quadrilateral diagonally into triangles;

first in the same direction (e.g. left and right), then in different directions. This gives us

24 = 16 possible patterns, of which six are symmetric as shown in Triangle!)- TriangleS)

in Figure 1. Since we are only interested in symmetric patterns, these six patterns will be

included. Finally, we divide each quadrilateral diagonally twice to obtain the pattern h) in

Figure 1.

A. Commonality Analysis for Mesh Generating Systems 124

Quad Trianglel Triangle2

Triangle3 Triangle4 TriangleS

Triangle6 Triangle7 TriangleS

Figure A.l: Parameters of variation for patterns for structured mesh elements

Appendix B

The Software Requirement Specification

for a "Parameterized Mesh Generator"

B.l Introduction

(Content: This section contains the purpose of the document, lists of definitions and ter­

minologies that appear later in the document, references used for the document, and an

overview of the rest of the document.)

(Motivation: To provide an introduction to this document.)

To help improve the readability of this SRS document, we will start each section and

its subsections with a brief discussion about its content and motivation. As part of the

convention, they will be written in italics to distinguish them from the other parts of the

document.

B.l.l Purpose of Document

(Content: This subsection discusses the purpose of writing this SRS and introduces the

intended audience of the SRS.)

125

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 126

(Motivation: To provide a basis so all readers of the SRS can have a common understanding

of the intended use of this document.)

The purpose of writing this Software Requirement Specification (SRS) is to define

the requirements of our system" Parameterized Mesh Generator" (PMG), and provide a

"black-box" description in terms of its performance and interaction with the external envi­

ronment. The intended audience of this SRS includes system users such as mesh generator

builders and mesh generator users, whose roles will be defined in Section 1.2.1. Moreover,

the developing personnel can refer to this document for design verification as well as future

maintenance and evolution.

B.1.2 Terminology and Definitions

(Contents: This section includes all the definitions for the potentially unclear terms ap­

pearing in this document.)

(Motivation: To reduce ambiguity in the document.)

This section contains two subsections. The first subsection explains the definitions used

in the software engineering field. Some definitions about the " 'mesh generator' generator"

are also listed in this subsection because they are related to software requirements issues

as potential users of our system. These definitions are mesh generator builders and mesh

generator users. The second subsection presents the definitions used in mesh generation.

The definitions are ordered alphabetically; however, they are not meant to be read sequen­

tially, but are rather intended for reference purposes. Some of the terms have already been

defined in the associated commonality analysis report [48]; therefore, we will not redefine

them here, but rather refer to the previous document to provide their definitions.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 127

B.1.2.1 Software Engineering Related Definitions and Acronyms

(Contents: This section includes the definitions for the potentially unclear terms from the

software engineeringfield.)

(Motivation: To reduce ambiguity in the document.)

Commonality Please refer to [48].

Constraint A design constraint is an imposing factor that may limit or mod­

ify the design options. Unlike functional requirements of the system, a

constraint expresses "how" the system should be implemented, instead of

"what" the system should accomplish.

Context The interaction between the system to be built and the environment,

which consists of the people, other systems, and technology that inter­

faces with the system.

Domain-specific Language (DSL) A programming language or executable

specification language that offers, through appropriate notations and ab­

stractions, expressive power focused on, and usually restricted to a par­

ticular problem domain [14].

Mesh Generator Builder (MGB) The person(s) responsible for generating

members in our mesh generator program family. They are required to be

familiar with our DSL. Their task is to work with mesh generator users

to gather mesh inputs such as application domain, geometry description

and physical attributes, mesh output file formats, etc. The mesh generator

builder records these mesh inputs in the DSL and use the PMG to gen­

erate mesh generators. The mesh generator builder and mesh generator

user can be the same person.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 128

MG Mesh Generator

PMG "Parameterized Mesh Generator"

Mesh Generator User (MGU) The person(s) for whom the mesh generator

is to be built. They will have a set of specific requirements about the type

of mesh generators they expect, which will be recorded as a specifica­

tion program in the DSL by the mesh generator builders to produce the

corresponding mesh generator to solve their meshing problems.

Program Family Please refer to [48].

Requirement Please refer to [48].

Run time Binding Variabilities have a run time binding if the values of their

parameter of variation can be fixed after the mesh generator has been

built. These run time values are specified by the MGUs via the MG user

interface.

Scope time Binding During design and implementation of a program family

generator, it may be necessary to restrict the scope of some of the ex­

isting variabilities in the commonality analysis document. When these

decisions are made, they are considered as scope time decisions. Instead

of being variabilities, they will be considered as commonalities of the

newly restricted program family.

Specification time Binding Variabilities have a specification time binding if

the values of their parameters of variation have to be fixed before building

the family member. In particular, the values are recorded by the MGBs in

the specification using the DSL. Once the mesh generator is built, these

values cannot be changed at run time.

Variability Please refer to [48].

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 129

B.1.2.2 Mesh Generation Related Definitions and Acronyms

(Contents: This section includes the definitions for the potentially unclear terms from the

mesh generation field.)

(Motivation: To reduce ambiguity in the document.)

lD One Dimensional.

2D Two Dimensional.

3D Three Dimensional.

Cell Please refer to [48].

Conformal Mesh Please refer to [48].

Connectivity Please refer to [48].

Degree of Freedom (dot) Please refer to [48].

Domain Please refer to [48].

Element Please refer to [48].

Hybrid mesh Please refer to [48].

Mesh Please refer to [48].

Mesh Generation Please refer to [48].

Mixed mesh Please refer to [48].

Node Please refer to [48].

Physical Attribute Please refer to [48].

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 130

Structured mesh Please refer to [48].

Topology Please refer to [48].

Vertices Please refer to [48].

B.1.3 References

(Contents: This section gives the complete list of all documents referenced in the SRS.)

(Motivation: To specify the source from where the referred documents are obtained.)

[1] Fang Cao, Software Requirement Specification for" 'Mesh Generator' Generator",

Appendix of Master Thesis, Computing and Software Department, McMaster University.

2006.

[2] David M. Weiss. Defining families: The commonality analysis. Submitted to IEEE

Transactions on Software Engineering, 1997. URL http://www.research.avayalabs.com/user/weiss/Pub

[3] David A. Cuka and David M. Weiss. Specifying executable commands: An example of

fast domain engineering. Submitted to IEEE Transactions on Software Engineering, 1997.

URL http://www.research.avayalabs.com/user/weiss/Publications. html.

[4] IEEE Std. 1233, 1998 Edition, IEEE Guide for Developing System Requirements Spec­

ifications, ISBN 0-7381-1515-0 SS94659

[5] Arie van Deursen, Paul Klint, Joost Visser, Domain-Specific Languages: An Annotated

Bibliography, 1998. URL: http://homepages.cwi.nl/ arie/papers/dslbib/

[6] CANSAFE I VISROCK- A Windows Application Package For Stress Analysis Using

Finite Element Techniques, The Numerical Modeling Group Mining Research Laborato­

ries, Natural Resources of Canada, Division Report: MRL 94-046{TR), October 1994

[7] Grid Generator, Dr. Stolle, Department of Civil Engineering, McMaster University

[8] C.Geuzaine and J.Remacle, Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities, March 2005. URL:http://www.geuz.org/gmsh/

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 131

[9] S.Smith and C.H.Chen, Commonality Analysis for Mesh Generating Systems, Tech­

nical Report CAS-04-1 0-S S, Computing and Software Department, McMaster University.

2004

B.1.4 Overview

(Contents: This subsection describes what the rest of the SRS contains.)

(Motivation: To introduce how the SRS is organized.)

The remainder of this SRS document explains the concept of the PMG and defines the

specific requirements of the PMG.

Section 2 provides the overall description of the system. It does not provide specific

requirements, but rather it provides background information to make the requirements eas­

ier to understand. Section 3 lists the specific requirements for our system, separated into

functional requirements, non-functional requirements, and system constraints. Section 4,

the last section of this SRS, discusses some issues that arose in the course of composing

and revising the document.

B.2 General System Description

(Contents: This section contains general information about the PMG, including the system

purpose, scope, context, major capabilities, user characteristics, and assumptions.)

(Motivation: To provide a background for the system requirements.)

B.2.1 System Purpose

(Contents: This section contains a description of current methods of mesh generator devel­

opment that motivates the development of the PMG.)

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 132

(Motivation: To provide a typical scenario for mesh generation and the reasons for devel­

oping PMG.)

Our system, which is named the "Parameterized Mesh Generator" or PMG, represents

an attempt to apply the idea of program family design into mesh generating systems, also

known as mesh generators. A mesh is a discretization of a geometric domain into small

simple shapes, such as line segments in lD, triangles or quadrilaterals in 2D, and tetrahe­

dral or hexahedra in 3D. Meshes are popular in many application areas such as geography

and cartography. The principal application of interest in the current context is the finite el­

ement method, where meshes are essential in the numerical solution of partial differential

equations. Mesh generation by hand is too demanding, especially when the computational

domain is complex or the mesh contains too many elements. We need mesh generators to

automatically generate meshes for us. When using a mesh generator, the user only needs

to concentrate on a few input parameters and relies on the mesh generator to produce the

correct mesh.

Based on the degree of generality, mesh generators today can be classified into two

broad categories: general purpose and special purpose. General-purpose mesh generators

are intended to solve a wide range of problems. They usually support a wide selection

of element types in arbitrary domain shapes in one, two or three dimensional space, and

offer flexible options via a variety of mesh generation tools. While these characteristics

of general purpose MGs are appealing, their versatility implies that they are not ideal for

problems in specific domains. For example, if an engineer faces problems that involve

repeatedly solving rectangular domains, a general purpose mesh generator that supports

arbitrary closed shape is more complex than he needs. Working with the general purpose

interface will be more time consuming than necessary, and it may even distract the engineer

from his original problems. Moreover, the wide variety of options available in general

purpose MGs makes them difficult to learn and use. Special-purpose mesh generators

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 133

are tailored for the specific physics of the problem of interest. Besides having a simpler

interface for data input, they are superior to general purpose MGs for specializing output

file formats because the general purpose MGs may provide an overwhelming number of

choices, or possibly use a proprietary data format.

Given the advantages of special purpose mesh generators, it would be very useful to

develop them systematically. Our research goal is to study the commonalities and variabil­

ities between special purpose mesh generators and design a system for rapid development

of special purpose MGs.

Our research shows that it is advantageous to develop MGs as a program family. The

suitability of applying program family design into mesh generators has been argued in

Smith and Chen [48] by showing that mesh generators meet the three hypotheses of a pro­

gram family proposed by Weiss [53]. The idea of program families in software design has

been considered by Weiss in the context of FAST (Family oriented Abstraction, Specifica­

tion and Translation) [13]. The idea of" 'mesh generator' generator" centers on generating

a set of special purpose MGs. These MGs form a program family by sharing the com­

monalities listed in ref.[48] as their common requirements, and their differences are set by

assigning different values to the parameter of variations, thus fixing the uniqueness of each

family member. The commonality analysis performed in ref. [48] serves as a starting point

for designing our DSL. Once the DSL is developed, the family members can be rapidly

generated using the language. The DSL must be developed to allow one to specify the

values for all parameters of variation, which can be fixed either at specification time in the

DSL or can be postponed until run time. In the proposed DSL, the choice of postponing the

specification until run time would be reflected by the absence of specifying the parameter

of variation in the DSL specification.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 134

B.2.2 System Scope

(Contents: This subsection provides a short description of what the system will and will not

do.)

(Motivation: To define the scope of our system.)

During our commonality analysis, some design decisions were made at scope time. We

list them briefly here as our system scopes. The requirements that are also scope time

decisions will be clearly indicated. For more details, please refer to the section on specific

system requirements. In addition, the term "mesh generator" used in the list refers to all

potential mesh generators in our program family.

All mesh generators only generate structured meshes with a 20 topology and a 20

space.

The mesh generators do not incorporate mesh optimization features such as smoothen­

ing and refinement/coarsening.

The vertices and nodes are ordered counter-clockwise by convention.

The values of mesh quality attributes, such as aspect ratio, will not be explicitly

specified by the program user.

The mesh generators will not produce the following meshes: hybrid, non-conformal

or mixed.

The type of coordinate system to describe the boundary geometry is always a Carte­

sian coordinate system.

All mesh generators provide a graphical user interface to display the mesh on the

screen.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 135

All mesh generators provide the same interface for specifying the domain.

It is not possible to set boundary conditions so that two or more degrees of freedom

(do f) have the same value.

The mesh generators will not allow specification of internal boundaries.

All mesh generators will write mesh information into text format.

The tolerance and precision for each mesh output will not be explicitly controlled by

the user.

The PMG and the family member MGs should satisfy the nonfunctional require­

ments in accord with standard engineering analysis software. These nonfunctional

requirements are usability, portability, maintainability, performance, and robustness.

B.2.3 System Context

(Contents: This subsection includes diagrams and narrative that defines all the important

interfaces across system boundaries.)

(Motivation: To provide the context of the system.)

Figure 1 shows the context for our system. A rounded rectangle represents an exter­

nal entity, and a rectangle is the system itself. Arrows represents the data flows between

entities.

Figure 1 shows that the mesh generator user (MGU) works with the mesh generator

builder (MGB) to determine the mesh-related inputs. During the preparation of the mesh

inputs, it is important to understand the mesh generator user can be the same person as

the mesh generator builder. Also, the mesh generator user is not necessarily one person;

the term could refer to a group of people who need to solve the same types of meshing

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 136

mesh generator requirement

run time input input specification

build mesh generator ------'1 PMG

I

produce mesh output files

Figure B.l: System Context

problems. The mesh generator builder must translate these mesh inputs into a requirement

specification using our DSL. The PMG then reads the specification and generates a special

purpose MG family member. The PMG can be used repeatedly until all the necessary MGs

are built. If the requirements specification for an MG should change in the future, the PMG

can be run again to produce a new family member that meets the new requirements. Mesh

generators are the output of PMG and they are considered as external entities with respect

to PMG. Each MG produced by the PMG is a member of the program family. The MGUs

will use the generated MGs to solve their meshing problems.

B.2.4 Major System Capabilities

(Contents: Diagrams and narrative will be included in this subsection to show the funda-

mental features of the systems needed by the user.)

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 137

(Motivation: To give an overview of the essential features of the system as well as the

relationship between them.)

Since the mesh generators built by PMG are external entities, we will present the ca­

pabilities of MG and PMG in separate diagrams. Figure 2 shows the major capabilities of

PMG and how they collaborate in the system. The squares, diamonds, and rounded rectan­

gles denote system processes, decisions, and start/stop actions respectively. Parallelograms

represent input/output. The rectangle with two extra vertical bars denotes an external entity

or process. There are two types of arrows. A black arrow denotes a sequence flow between

internal entities within the current system scope. A dashed arrow denotes a sequence flow

from internal entities to external entities. Figure 3 shows the mesh generation process as

performed by an MG.

Figure B.2: Flow chart of PMG capabilities

The major capabilities of PMG includes the following: Upon the request of MGB,

PMG opens and asks for the location of the input specification. If the file is found, PMG

will read its content and perform a validity check. If the specification cannot be found or

it is syntactically incorrect, the system will halt and display an error message. The error

message will prompt the MGB to specify the correct DSL specification, and perform the

same validity check again. If the specified DSL specification is correct, the PMG starts

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 138

Yes

No No-c::J
Yes

Figure B.3: Flow chart ofMG capabilities

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 139

the building process, which upon successful completion, will produce a mesh generator.

At this moment, the MGB can choose to either restart the PMG if there are more mesh

generators to build or terminate the program.

The process now shifts to mesh generation. As a scope time decision, all MGs generated

by the PMG will provide a graphical user interface. If there are mesh inputs that need to

be specified at run time, the MGU will specify them in the MG interface and generate the

mesh. After the mesh visualization is displayed on the screen, the MGU should decide

whether he needs the output files. If the output files are needed, they will be generated in

the format specified by the MGU. The principal use of the files is that they are the inputs

of external finite element programs. The MG can be used repeatedly if the MGU needs a

new mesh and the requirements stay the same.

B.2.5 User Characteristics

(Contents: This section reviews the potential users of the system and their characteristics.)

(Motivation: To give consideration on the qualification of the system users and make sure

they are consistent with the required knowledge level.)

The target user group of the PMG includes engineers, project managers, students, and

other possible users involving in finite element analysis and requiring relatively easy and

fast special purpose mesh generators. They are expected to have completed first year engi­

neering or science at the university level or equivalent. They should also be knowledgable

in numerical methods, and know how to use Windows operating system.

B.2.6 Assumptions and Dependencies

(Contents: This section lists the factors that affect the requirements stated in the SRS.)

(Motivation: To make everyone aware of the assumptions that are made in this SRS.)

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 140

By the time the system is to be released, personal computers are existing and widely

used.

B.3 Specific System Requirements

(Contents: This section contains all the system requirements. The types of requirements

listed here are functional requirements, non-functional requirements, and system constraints.)

(Motivation: To list every requirement of the system in one section.)

The requirements listed in this SRS document are formulated based on the commonal­

ity analysis discussed in ref. [48]. The commonalities and variabilities listed in ref. [48]

provides an excellent groundwork for the requirements. The commonalities represent the

uniform properties of all the mesh generators in the context of the commonality analysis;

therefore, they should be requirements in our SRS. The variabilities reflects the distinction

between family members, and they should also be requirements. However, the distinc­

tion of family members is shown by the parameters of variation and their binding time;

therefore, we include the parameters of variation and binding time information with the re­

quirements associated with variabilities. To ensure that this SRS document is complete, we

can check whether all the commonalities and variabilities have been referred to by some

requirements in the SRS. A systematic approach to do this is through a table similar to

traceability matrix. The table that we made to check our SRS completeness is included in

Appendix B.4.

All the system requirements are presented in a table format. Each requirement has

a unique requirement number, starting with capital "R". Each requirement is given in a

separate table with the following rows: requirement ID, description, commonality refer­

ence, parameter of variation, binding time, and history. Rows three to five are used to

cross-reference the requirements to the commonality analysis report [48], and these fields

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 141

are only provided in the cases where the reference exists. The parameter of variation and

binding time entries have the value'-' if the requirement is not linked with a variability. Be­

cause of the scope time binding, some requirements, for example R2, that were originally

associated with variabilities are now associated with commonalities. These requirements

will have the value'-' as the parameter of variation, and have the value 'scope time' as the

binding time.

B.3.1 Functional Requirements

(Contents: This section contains the specification of each individual functional requirement

ofPMG.)

(Motivation: To list the functional requirements of the system.)

This section is divided into two subsections: PMG features and input. The section of

PMG features lists the requirements of PMG to generate a correct mesh generator. These

requirements must be captured to describe the core functionalities of PMG. The section

on input presents the expected contents of mesh inputs, such as geometry description and

output file formats, that are read by the PMG in the DSL. As discussed earlier, the values

of these inputs can be specified either via our DSL at specification time or via the graphical

user interface at run time. It is worth noting that the term "mesh generator" used in the

context refers to all mesh generators in our program family.

B.3.1.1 PMG features

(Contents: This section contains the functional requirements of PMG.)

(Motivation: To describe the functionality of PMG.)

Requirement ID I Rl

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 142

Description After PMG reads the DSL input specification, it should ei­

ther produce a mesh generator if there is no error in the DSL

specification, or halt.

Commonality reference -

Parameter of variation

Binding time

Requirement ID R2

Description The system PMG should provide the functionality to incor-

porate a graphical user interface for all family members.

Commonality reference V21

Parameter of variation All mesh generators use a graphical user interface.

Binding time scope time

Requirement ID R3

Description During the code generation process of PMG, it should dis­

tinguish the set of parameters of variation specified at spec­

ification time and at run time. If a parameter of variation is

specified in the DSL, it cannot be changed at run time. Oth­

erwise, it must be specified in the mesh generator interface

at run time by the MGUs before generating a mesh.

Commonality reference -

Parameter of variation

Binding time

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 143

B.3.1.2 Input

(Contents: The requirements listed here relate to possible ways to specify mesh inputs and

their formats. These inputs are for the PMG in order to generate a MG as a family member.)

(Motivation: To list the requirements about inputs.)

Requirement ID R4

Description To define a meshing problem, the MGUs should provide

a DSL specification that contains the mesh inputs, such as

geometry description and output file formats, to the PMG.

Commonality reference C8

Parameter of variation

Binding time

Requirement ID

Description

R5

The mesh inputs should allow one to specify a string for the

targeted problem domains corresponding to a large range of

problems that can be solved via finite element analysis.

Commonality reference Vl, Pl

Parameter of variation The problem domain includes solid mechanics, fluid me­

chanics, heat transfer, etc.

Binding time specification or run time

Requirement ID R6

Description The geometric domain of the problem specified in the mesh

inputs should be a closed boundary.

Commonality reference C9

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 144

Parameter of variation

Binding time

Requirement ID

Description

Commonality reference

Parameter of variation

Binding time

Requirement ID

Description

I~
R7

The mesh inputs should provide a parametric representation

to define the boundary of the computational domain.

V23, P23

scope time

R8

The mesh inputs should include the dimensionality of the

geometric coordinates.

Commonality reference V19, P19

Parameter of variation 2D

Binding time specification or run time

Requirement ID R9

Description The mesh inputs should include the dimensionality of mesh

elements.

Commonality reference V19, P19

Parameter of variation 2D

Binding time specification or run time

Requirement ID I R 10

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 145

Description The mesh inputs should include physical attributes, such as

the material properties, the boundary conditions, etc.

Commonality reference C 10

Parameter of variation

Binding time

Requirement ID

Description

Rll

The mesh inputs should allow one to specify the number of

subdivisions along each direction for structured meshes.

Commonality reference V22, P22

Parameter of variation The number of subdivisions are variable depending on the

shape of the computational domain, ranging from 1 to many

for each boundary edge.

Binding time specification or run time

Requirement ID Rl2

Description The mesh inputs should include options to allow the user to

specify the number of material properties, their names and

their types.

Commonality reference V24, P24

Parameter of variation The number of material properties is variable, ranging from 1

to many. The names of material properties can be any string

defined by the user. The possible types of material properties

can be the following: integer, real, and boolean.

Binding time specification or run time.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 146

Requirement ID R13

Description The mesh inputs should specify the number of materials al­

lowed in the computational domain.

Commonality reference V25, P25

Parameter of variation The entire domain can consist of one material or there may

be a finite number of different materials.

Binding time specification or run time.

Requirement ID R14

Description The mesh inputs should specify boundary conditions details,

such as name, type and value.

Commonality reference V26, P26

Parameter of variation

Binding time

Requirement ID

Description

The boundary conditions are of Neumann or Dirichlet type.

If a Dirichlet boundary condition has the value zero, it will

typically be specified using the fixity information.

specification or run time

R15

When specifying boundary conditions, a maximum of one

condition can be given for each degree of freedom. For in­

stance, a dof cannot have both a prescribed displacement and

a prescribed force.

Commonality reference C 11

Parameter of variation

Binding time

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 147

Requirement ID

Description

R16

The number and meaning of system parameters may be dif­

ferent. These parameters can be passed to a finite element

program.

Commonality reference V27, P27

Parameter of variation

Binding time

Requirement ID

Description

System parameters may include the degree of implicitness

for a time marching scheme. The number and type of these

parameters may vary.

specification or run time

Rl7

The mesh inputs should allow one to specify the number of

nodes for an element and the location of these nodes.

Commonality reference VlO, PlO

Parameter of variation The element can have fewer nodes than vertices, the same

number of nodes as vertices or more nodes than vertices. The

nodes can be located at the vertices, on the element edges, or

inside the element.

Binding time specification time or run time

Requirement ID R18

Description The mesh inputs should include the number of dof at a node

and the meaning of each of those do f.

Commonality reference Vll, Pll

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 148

Parameter of variation

Binding time

Requirement ID

Description

The number and type of degrees of freedom at the nodes

can vary between different types of elements and within an

element.

specification or run time

Rl9

The mesh inputs may include the pattern of the number of

dofs that vary between the nodes of an element.

Commonality reference Vl2, Pl2

Parameter of variation If the geometry is interpolated at fewer nodes than the inter­

polation of the dof, the element is called subparametric. If

the geometry is interpolated at the same number of nodes as

that for the dof, the element is isoparametric. If the geom­

etry is interpolated at more nodes than that for the dof, the

element is superparametric.

Binding time specification or run time

Requirement ID R20

Description The mesh inputs should include the possible types of local

topology patterns allowed by the computational domain.

Commonality reference V7, P7

Parameter of variation In 2D element topology, the possible template may be one

of the one of the nine potential local topology templates pro­

vided in Appendix A.

Binding time specification or run time

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 149

Requirement ID

Description

R21

The mesh inputs should not allow two dofs to have the same

value.

Commonality reference V28,P28

Parameter of variation

Binding time

Requirement ID

Description

scope time

R22

The mesh inputs should not allow specification of internal

boundaries.

Commonality reference V29, P29

Parameter of variation

Binding time scope time

Requirement ID R23

Description The mesh inputs should specify the number of output file(s)

generated by the mesh generator.

Commonality reference V32, P32

Parameter of variation The value for the number of output files can range from 1 to

many.

Binding time

Requirement ID

Description

specification or run time

R24

The mesh inputs should provide some degree of customiza­

tion of output file(s).

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 150

Commonality reference V36, P36

Parameter of variation The degree of customization may vary for different mesh

generators. It can range from modifying file names, to

changing the order of blocks of data, to splitting the data

between files, etc.

Binding time

Requirement ID

Description

specification or run time

R25

The mesh inputs should allow one to specify the order of

element information of a mesh.

Commonality reference V34, P34

Parameter of variation The element information of a mesh is either listed in an in­

creasing order (implicitly), or in arbitrary order.

Binding time

Requirement ID

Description

specification time or run time

R26

The mesh inputs should allow one to specify the order of

nodal information of a mesh.

Commonality reference V35, P35

Parameter of variation The nodal information of a mesh is either listed in an increas­

ing order (implicitly), or in arbitrary order.

Binding time specification time or run time

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 151

B.3.2 Nonfunctional Requirements

(Contents: The nonfunctional requirements are listed here. They are concerned with qual­

ities of system performance, usability, maintainability, etc.)

(Motivation: To list the nonfunctional requirements.)

Requirement ID

Description

R27

The PMG should perform its essential functions in reason­

able time, such as instantaneously for entering user input,

seconds for waiting graphics display, or minutes for mesh

generation and output file creation.

Commonality reference C15, V39

Parameter of variation

Binding time

Requirement ID

Description

scope time

R28

The accuracy for each output is not explicitly controlled by

the MGUs. The tolerance will be consistent with the usual

expectations for engineering and scientific computation soft­

ware.

Commonality reference C16, V40

Parameter of variation

Binding time

Requirement ID

scope time

I R29

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 152

Description The precision for each output is not explicitly controlled by

the MGUs. The precision will be consistent with the usual

expectations for engineering and scientific computation soft­

ware.

Commonality reference C 17, V 41

Parameter of variation

Binding time scope time

Requirement ID R30

Description An anonymous survey shall show that 90% of a test panel of

MGUs with basic computer skills and mesh software expe­

rience can use PMG to generate a rectangular domain, and

discretize it with one material property and one boundary

condition on one edge within 2 minutes.

Commonality reference -

Parameter of variation

Binding time

Requirement ID

Description

scope time

R31

The mesh quality parameters such as aspect ratio, minimum

angle, etc. are not controlled by the MGUs. However, the

quality of the meshes will be consistent with the ones that

are generally created by engineering computing software.

Commonality reference VIS

Parameter of variation

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 153

Binding time

Requirement ID

Description

Commonality reference

Parameter of variation

Binding time

Requirement ID

Description

Commonality reference

Parameter of variation

Binding time

I scope time

R32

The PMG should take no more than 20 minutes for an aver­

age user to learn how to discretize a simple rectangular do­

main with one material property and one boundary condition

on one edge.

scope time

R33

The PMG should be developed to reduce the time spent on

maintenance. The redevelopment should not take more than

25% of the time as the first development.

scope time

B.3.3 System Constraints

(Contents: The requirements for system constraints relate to the external environments.)

(Motivation: To list all the constraints imposed on the system.)

Requirement ID I R34

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 154

Description The first version of PMG is designed to run under Windows

and MacOS because of the time constraint. However, we

intend to develop the future versions to run under multi­

platforms such as Linux.

Commonality reference C19, V37, P37

Parameter of variation

Binding time scope time

Requirement ID R35

Description The system requires reasonable amount of memory and disk

storage, consistent with the resources of a typical personal

computer in the year 2006.

Commonality reference V38, P38

Parameter of variation

Binding time scope time

B.4 Other System Issues

(Content: This section contains some other supporting iriformation important to PMG de­

velopment. It includes open issues, off-the-shelf solutions, our program family, and waiting

room.)

(Motivation: To present a more complete picture of all factors that might contribute to the

PMG development.)

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 155

B.4.1 Open Issues

(Contents: A statement of factors that are uncertain and may have an impact on the system

are listed here.)

(Motivation: To discuss the uncertainties appearing in PMG design and provide objective

input to risk analysis.)

In the course of composing and revising the above documentation, the following issues

arose:

The documentation and definition of a mesh should be made more formal.

The design of our DSL has many options. We can choose an existing language such

as XML to implement our DSL. However, the choice ofDSL may have an impact on

the performance of the PMG. It may be advantageous if a new DSL is developed in

the future that offers the best way to capture the mesh generator requirements.

B.4.2 Off-the-Shelf Solutions

(Contents: A list of existing systems similar to our research goal, if any, is stated here. They

could be the potential solutions to our research problems.)

(Motivation: To give consideration to whether or not our solution can be bought or bor­

rowed.)

The idea of creating a program family of mesh generators is an unexplored and chal­

lenged research area. So far, we have not been able to find an existing solution to our

research problem. However, we can study the design from existing mesh generators such

as CanSafe [51], Grid Generator [49], Gmesh [20], etc.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 156

B.4.3 Our Program Family

(Content: This section provides a blueprint of how the system will be extended. It separates

the requirements for the first version of the system with the potential requirements of future

versions of the system.)

(Motivation: To make plan for the project management.)

This section discusses how the requirements listed in Section B.3 will be implemented

in different versions of the system. All the requirements listed in section B.3 will be imple­

mented in the first version. However, some scope time decisions can be relaxed or changed

for future versions of the system. For example, a future software version can be designed to

accommodate a mixed mesh, a hybrid mesh, or a nonconformal mesh. If the future program

family offers more fiexibilities, this SRS document needs to be revised to accommodate the

new requirements.

B.4.4 Waiting Room

(Contents: This section contains some potential requirements of the future version of the

system.)

(Motivation: To make plans for the project development.)

The PMG could be designed for unstructured mesh generators.

The element topology may include 3D structures such as tetrahedral or hexahedra

elements.

The MGU may specify whether or not to incorporate mesh optimization features.

The possibility of adding complex meshes such as hybrid, mixed, or nonconformal

meshes can be considered.

B. The Software Requirement Specification for a "Parameterized Mesh Generator" 157

Appendix B.A

This section illustrates the tabular approach to verify the completeness of the SRS. The

rows denote the commonalities and variabilities presented in the commonality analysis in

reference [48]. The columns represent the requirements formulated in the SRS. A symbol

'../' is filled at the intersection of a row and a column if the commonality or variability in

the row is fulfilled by the requirement in the column. A systematic check of the complete-

ness of the SRS was done by examining whether all rows representing commonalities and

variabilities contain one or more check marks.

L R-1 R' R~3 R.i. RS Rs ·R..- Re
:v..-
V2

;-~~:~r---
::~f=~ ----- ------ ------ ~--- --- -------------- ------- -'~- --- -------------- ---- -

-~~-~

~- 1::= -1== -1-~ __
f---~-

- --
:V'19
:-v;:.20

~~~~- ~ -

•-::::;~'==- ====~--- -== "-'": '"'-- -------- ------~~--=-----,---- ----------------- ~= ~ =-
~,=-~ =- -------- =r:--~- -~--~7""- "-'":- -- =-~-==1---:~:_:____ 

[~~~~ ---- ----- --~ -=-_._._ ~=---· __ =--= =---~_. -- ___ -_- --_._-_~ ~-----~--~-- =~~~~- -=-~-~ ---~-~-- -------- =-~-=- -_____ -_____ ~ .. -~-=- ~--=- --- -------- ------ - ------- .::-1.... ---;:,j---- f--- --------
~~ -- ~-~- ~~~ 

-v~a 

··~~~ :~~==,:=-::-= =-'= .:= :=--== ~= == = :=: :.=::_ == ==-=-::--= == -==-:==~=:-=:I- -= ~= t=: = 
Figure B.4: Requirements formulated to fulfill commonality requirements 



B. The Software Requirement Specification for a "Parameterized Mesh Generator" 158 

f'i:~R:Rl ti RiiiRi'Rah~· rf.t 1.H\1' ~;· ~4Ri 'ft1. 17FH ~-RiCftiil'ti:.l? R*.'4IR25R' ft2 R2[<}9 
~ ~ 

VS 
:vs 

:C"~':t0 -++--H--I-H--+-+-+--t--l-+-i-H-+-,--i-H---I--H--1---1--i- r-+-

-~~1--- ~j-- -- -- ·--- ---- --- t- f--- --- -- t- - --- ----- -~ -- ---

"V15 

~~"!-' -H--H--1-H--+'+--+-+--I-+-+-t-1-l--t-H---I---IH--+-H-t-'--H 

+- ------- __ 1 ____ ---- -------

1- -1--+-H-+-i-+-+-+-t-1-1-1-1- ---1-

Figure B.5: Requirements formulated to fulfill variability requirements 



Appendix C 

The Module Guide for "Parameterized 

Mesh Generator" (PMG) 

C.l Introduction 

This document, known as the module guide for PMG, discusses the organization of our 

software based on information hiding and abstraction. We need to provide a structural 

description of our system that shows how the system is decomposed into parts and the 

relations between those parts. Such recent practices have been suggested to be highly useful 

for software documentation and future change or maintenance. A clear modular structure is 

intended to help the designers and maintainers identify the parts of the software they need 

to understand, without being confused about details of the other parts of the software. It 

has been argued in [8]A clear module guide would benefit further software development by 

achieving the following: 

As a Guide for New Project Members - The responsibilities of modules are clearly 

specified in the module guide. Furthermore, the hierarchical structure of the docu­

ment allows the new members to quickly understand the system and find the specific 

159 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 160 

module(s) they are looking for. 

As the Support for Maintainers - As mentioned above, the likely changes are made 

in individual modules rather than the whole system. This module guide helps the 

maintainers' understanding when making these changes. However, after the changes, 

the maintainers have to update the relevant sections of the document to reflect the new 

design. 

As a Verification Check for Reviewers - The module guide can be used to check for 

possible errors in the current design. First of all, inconsistency (e.g. duplication or 

gaps) among modules can be disovered. Secondly, feasibility of the decomposition 

can now go under investigation. Finally, the flexibility of the design can now be 

evaluated. 

Our goal of the decomposition is to reduce the cost of software development by assign­

ing each part of the system behaviors and functionalities into modules, and allow modules 

to be designed and revised independently. Therefore, we followed the principle listed as 

follows: 

Each module's structure should be simple enough that it can be understood fully. 

It should be possible to change the implementation of one module without knowledge 

of the details of other modules and without affecting the behavior of other modules. 

It should be possible to make likely changes without changing the module interfaces. 

Only very unlikely changes should require changes in the interfaces of widely used 

modules. 

It should be possible to make a major software change as a set of independent changes 

to individual modules. If the interfaces of the modules are not changed, it should be 

possible to run and test any combination of old and new module versions. 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 161 

In the module description section, some of the modules have no prefixes in this doc­

ument because they are assumed to be supported by the operating system or the software 

and hardware environment in which the PMG will operate. Therefore, these modules will 

not be directly implemented by us. 

The rest of the document is organized into three sections: Section 2 describes all the 

modules in PMG. Section 3 summarizes the module hierarchy of all modules introduced in 

Section 2. Section 4 discusses the relationship between modules with the "use" hierarchy. 

C.2 Module Decomposition 

C.2.1 Hardware-Hiding module 

Secrets: The data structures and algorithms used to implement the virtual hardware. 

Services: This module provides the interface between the hardware and software. A typical 

example is to display the resulting mesh on the screen, and to accept inputs from input 

devices. 

Prefix: -

C.2.1.1 Input Device module 

Secrets: The data structures and algorithms used to implement the hardware that accepts 

user inputs. 

Services: Serves as an interface between the system and input devices such as keyboards 

and mouse to receive user inputs. 

Prefix: -

2.1.1.1 Keyboard Input module 

Secrets: The data structures and algorithms used to implement the interface between the 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 162 

keyboard and the software. 

Services: Receives the input from keyboard and communicates the information with the 

rest of the system. 

Prefix: -

2.1.1.2 Mouse Motion module 

Secrets: The data structures and algorithms used to implement the interface between the 

mouse and the software. 

Services: Keeps track of mouse motion and behaviors, and communicates the information 

with the rest of the system. 

Prefix: -

C.2.1.2 Output Device module 

Secrets: The data structures and algorithms used to implement the hardware that handles 

system output. 

Services: Serves as an interface between the system and output devices such as monitors 

and output files to display the system results. 

Prefix: -

2.1.2.1 Screen Display module 

Secrets: The data structures and algorithms used to implement the interface between the 

system and the monitor to display results on the screen. 

Services: Provides the interface between the system and the screen so the system can dis­

play information on the screen through the use of the programs in the module. 

Prefix: -



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 163 

C.2.1.3 File Input/Output module 

Secrets: The data structures and algorithms used to read file(s) into the software, and write 

text to file(s). 

Services: Implement the hardware aspect of file Input/Output to read and write information 

between the software and file(s). 

Prefix: -

C.2.2 Behavior-Hiding module 

Secrets: The implementation details of the required behaviors. 

Services: The behavior-hiding module contains many lower level programs that imple­

ments the requirements defined in the software requirement specification (SRS). These 

programs combine to provide externally visible behaviors of the system. This module 

serves as the communication layer between the hardware module and software decision 

module. The programs in this module reflect the visible functions of the implementation 

and they will need to be changed if there are changes in the relevant sections in the SRS. 

Prefix: -

C.2.2.1 Function Drivers module 

Secrets: The rules that determine the value of the inputs/outputs. 

Services: Consists of a set of individual submodules called 'function drivers', and each 

function driver controls a set of closely related outputs. 

Prefix: -

2.2.1.1 Master Control module 

Secrets: How to use programs provided by other modules to start and maintain the proper 

sequence of programs being called. 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 164 

Services: Provides the main program that controls the flow of software execution. This 

module acts as a central hub or a mediator among the function drivers of the system. 

Prefix: me 

2.2.1.2 Frame Display module 

Secrets: The data structure and algorithms to decide how the graphical user interface (GUI) 

of the system is drawn on the screen. 

Services: Displays various visual components (e.g. buttons, menus, dialogs, icons, etc) that 

form the overall system GUI. 

Prefix: -

Mesh Generator Interface module 

Secrets: How the interface for a specific mesh generator family member will appear and 

how the user can interact with this interface. 

Services: Provides the interface so that the user can generate a mesh. This module uses 

many programs that specify all the required information to generate a mesh. 

Prefix: mgi 

Geometry Specification module 

Secrets: How the interface for boundary specification will appear and how the user can 

interact with this part of the interface. 

Services: Provides the interface to let user specify the boundary information, such as the 

number of boundary vertices and their coordinates. 

Prefix: gs 

Element Specification module 

Secrets: How the interface for element type specification will appear and how the user can 

interact with this part of the interface. 

Services: Allow the user to specify the desired mesh element type. The relevant infor-



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 165 

mation include the span information (numbers of rows and columns), element shape and 

topology, coordinates of the nodes used for geometry interpolation and degrees of freedom 

( d.o.t), and the subdivisions along each row and column. 

Prefix: es 

Physical Attributes Specification module 

Secrets: How this part of user interface will appear and how the user will interact with this 

part of the system. 

Services: Lets the user specify the physical attributes of the input information. 

Prefix:-

Material Property Specification module 

Secrets: How the material properties are to be specified, for example, what the user inter­

face for the specification should be. 

Services: Lets the user specify the material properties of the input domain. 

Prefix: mps 

Boundary Condition Specification module 

Secrets: How the boundary conditions are to be specified, for example, the steps taken to 

specify certain types of boundary conditions, how the user interface for this specification 

looks like. 

Services: Lets the user specify the boundary conditions of the input domain. 

Prefix: bcs 

System Parameter Specification module 

Secrets: How the interface for system parameters will appear and how the user can interact 

with this part of the interface. 

Services: Lets the user specify the name, type, and value of the system parameter(s), if 

there's any. 

Prefix: sps 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 166 

File Output Specification module 

Secrets: How the interface for output file specification will appear and how the user can 

interact with this part of the interface. 

Services: Lets the user specify the extensible stylesheet language (XSL) files to transform 

the mesh information into user-customized format. 

prefix: fos 

C.2.2.2 Shared Services module 

Secrets: The aspect of the behavior that applies to two or more of the outputs. 

Services: Includes modules that are shared by two or more function drivers. If there is a 

change in this module, it will affect all the modules that share it. 

Prefix:-

C.2.2.2.1 Error Handle module Secrets: The error detection mechanisms on handling 

different errors. 

Services: Provides programs to handle different types of errors. (e.g. display error message, 

terminate the program, and etc.) 

Prefix: eh 

C.2.2.2.2 Mesh Drawing module Secrets: The mechanism of how to draw the mesh 

on the screen. 

Services: Provides programs to draw the mesh on the screen. 

Prefix: md 

C.2.2.2.3 File Customization module Secrets: The mechanism of how to write mesh 

data to text files in a specified format. 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

Services: Provides programs to write mesh data to text files in a specified format. 

Prefix: fc 

C.2.3 Software Decision module 

167 

Secrets: This module contains hidden software design decisions. These design decisions 

may be based on mathematical theorems, physical facts, or programming considerations 

such as algorithmic efficiency. The secrets of this module are not described in the SRS. 

Services: Receives user inputs and implement the core system functions using data types 

and algorithms determined by the software designers. The programs in this module do not 

provide direct interaction with user. 

Prefix:-

C.2.3.1 Specification Parsing module 

Secrets: The data structures and algorithms used to transform XML specification into a 

mesh generator. 

Services: Parses the information from XML specification, and generate a mesh generator 

according to the specification. 

Prefix: xsp 

C.2.3.2 Input Data module 

Secrets: How the user inputs are stored. 

Services: Stores the user inputs in proper data structures. The inputs include the informa­

tion provided in the XML specification and in the user interface at run-time. 

Prefix: id 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

C.2.3.3 Mesh Data module 

Secrets: How the mesh information is stored. 

Services: Stores the complete mesh information in proper forms. 

Prefix: md 

168 

C.2.3.3.1 Geometric Grid module Secrets: How the geometric aspect of mesh infor­

mation is stored. 

Services: Stores the geometric information of a mesh (e.g. nodal coordinates), and pro­

vides ways to import and export the information. 

Prefix: gg 

C.2.3.3.2 Physical Attributes module Secrets: How the physical attributes of mesh 

information is stored. 

Services: Stores the physical attributes associated with mesh elements, and provides ways 

to import and export this information. 

Prefix: pa 

C.2.3.3.3 System Parameters module Secrets: How the system parameters of the 

mesh is stored. 

Services: Stores the system parameters associated with mesh, and provides ways to import 

and export this information. 

Prefix: sp 

C.2.3.4 Mesh Generation Algorithm module 

Secrets: The data structure and procedures used to implement the mesh generation algo­

rithm. 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 169 

Services: Implements the mesh generation algorithm to generate a mesh. 

prefix: mga 

C.3 Module Hierarchy 

f.!ilmm .. llBii .. 
Input Device Keyb o atd Input module 

H atdwate-Hicling Module Mouse Motion module 
module File Re acling module 

Output Device Sere en Display module 
module File W riling module 

Master Control module 

Mesh Generator 
lnterfac e module 

Geometry 
Specification module 
Element Specification 

module 

Function Drivers 
Frame Display module 

Physic a! Attributes 

module Specification module 

Behavior-Hiding Mat erial Property 

module Specification Module 
B oundaty Con clition 
Specification module 

System P atameter 
Specification module 

File Output 
Sp_ecification module 

Error H anclle module 
Shated Services Mesh Drawing module 

module File Customization module 
Softwate Decision Xlii!L Specification 

module Patsing module 

Input Data module 

Mesh Data module Geometric Grid module 
Phvsic a! Attributes module 
Svstem Patameters module 

Mesh Generation 
Algorithm module 

Figure C.l: Module Hierarchy 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 170 

C.4 Use Hierarchy between Modules 

In this section, we include the use hierarchy between modules for the major features of the 

system. 

The use hierarchy presented here is the "uses relation" defined by Parnas. If module A uses 

module B, A uses the functionalities provided by B and the correctness of A depends on the 

correctness of B. In the diagram, each circle represents the module that will be implemented 

in PMG, and the rectangles represent the modules that will not be implemented. The use 

hierarchy can be found as the one constructed by the arrows with filled ends, whereas the 

arrows with empty ends means data flow. 

To aid the readers' understanding about the interactions between modules of the system, 

we divide the entire system into subsystems, and each of the subsystem performs a major 

functionality in the system. The major subsystems are PMG, boundary specification, ma­

terial specification, boundary condition, mesh generation, and file format. 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

send 
error 
msg 

Figure C.2: Generation of mesh generators 

171 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

send component info -------lliil 
to be drawn ScreenDisplalt I 

Figure C.3: Boundary Specification 

172 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

get 
}--- keyboard send 

error 
msg 

!liiii!jijjjPF Input 
get mouse 
click position 

send material info 

send component info -------M 
to be drawn ScreenDisplay 

Figure C.4: Material Specification 

173 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

Frame Display error 
msg 

send component info -------Jioil 
to be drawn 

get 
h---- keyboard 

input 

Screen Display 

Figure C.5: Boundary Condition Specification 

174 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 

send 
error 
msg 

send component info -----llllit 
to be drawn Screen Display 

send xsl file location 

Figure C.6: File Format Specification 

get keyboard 
input 

Keyboard 
Input 

175 



C. The Module Guide for "Parameterized Mesh Generator" (PMG) 176 

send geometric info 
send physical 
attributes send system 

parameters 

get physical attributes 

Draw mesh get geometry \ 
and connectivity get system parameters 

Figure C.7: Mesh Generation 



AppendixD 

Test Plan 

D.l General Information 

The test plan describes how testing of our system will be accomplished. A good test plan 

documentation provides three major benefits. First, a test plan facilitates the technical 

tasks of testing. Test plans help improve testing coverage and efficiency. Second, a test 

plan improves the communication about testing tasks and process. A well-written test plan 

improves the communication between the programmers and the testers by providing the 

thinking behind the tester's strategy. Finally, a test plan provides structure for organizing 

and managing the testing project. If the testing is performed by a team, writing a test plan 

helps identify and coordinate the procedures involved in the overall testing process. 

This section contains two subsections. Section 0.1.1 briefly summarizes the functions 

of PMG. Section 0.1.2 states the objectives to be accomplished by testing. Section 0.1.3 

presents the scope of the testing process. 

177 



D. Test Plan 178 

D.l.l Summary 

Our system, PMG, is an attempt to systematically develop special-purpose mesh generators 

using the program family methodology. The system centers on using an XML specifica­

tion, which describes values bound at specification time according to the definition in the 

commonality analysis document as in Appendix A. Given the set of variabilities, a user 

with certain degree of mesh generation knowledge should be able to use PMG to quickly 

develop a special-purpose mesh generator to solve his specialized problems. The mesh gen­

erators generated by PMG also offers capabilities to customize output files by using XSL 

stylesheets. The prototype shown in this thesis focuses on mesh generators that produce 

structured meshes within a 2D domain with straight boundary edges. 

D.1.2 Goals and Objectives 

The test plan is written to discover and fix unexpected behaviors of PMG that may im­

pact the functional requirements ofPMG as listed in Appendix B. In the future, testers are 

expected to go through the test cases with appropriate techniques described in this docu­

ment to uncover coding bugs and logic errors that affect the functional requirements , and 

possibly omissions in the implementation. 

D.1.3 State of Scope 

Because PMG is currently a prototype, we will focus on testing the functional requirements 

as listed in the SRS. The testing of nonfunctional requirements and system constraints, such 

as performance, usability, portability, etc is outside the scope of the test plan. The future 

improvements in these areas have been described as future work in Chapter 5. 



D. Test Plan 179 

D.2 Building the Test Plan 

The rest of the test plan document is organized as follows. Section D.2.1 identifies the 

risks/concerns that need to be evaluated to assure they can be addressed by one or more 

testing techniques we will adopt. Section D.2.2 lists the components to be tested. Section 

D.2.3 discusses the testing strategy that we will adopt in this document, and provides the 

test matrix to show how each functional requirements can be tested with the strategies. Sec­

tion D.2.4 describes the test cases in greater detail, where each test case will be described 

by the expected output versus corresponding inputs. When testing mesh generation, an 

exhaustive test is infeasible because of infinite possibilities. Therefore, we will run limited 

examples in that section. Finally Section D.2.5 provides an example of implemented test 

case that checks the output files contains the correct node order numbering for the element 

connectivity information. 

D.2.1 Test Factors and Risks 

During the development of a test plan, it is clear that the risk factors are the basis or objec­

tive of testing. In [1 ], the risks associated with testing are called test factors. Test factors are 

attributes of the software that, if they are required but not present, pose a risk to the success 

of the software. Depending on the understanding of our system PMG and the description 

of the 15 test factors in [1], we have chosen the following test factors that are most critical 

to the expected functionality of our software; therefore they must be tested. Tests must be 

selected to improve our confidence that the risks have been mitigated. 

[1] Correctness. This test factor states that the functional requirements have been de­

fined and is conformed by the developed design and implementation. The functional 

testing should ensure that all the functional requirements are properly implemented, 

etc. 



D. Test Plan 180 

[2] File integrity. The output file customization is an important system feature. Given a 

mesh, we should be able to test whether all the required information has been stored 

properly. 

[3] Continuity of processing. Although implementing a full test on all possible error 

handling is not in our scope, the current prototype should provide certain degree of 

robustness, where the error detection and handling is reported by the XML and XSL 

parser. 

[4] Maintainable. The reason we developed mesh generators as a program family in­

cludes that the program family methodology encourages program reuse. We should 

be able to test whether the system is prepared to be maintainable. 

After identifying the set of test factors, we need to recognize the possible risks and 

build the test factor/test phase matrix. The test factor/test phase matrix indicates the cor­

respondence between the specific risk scenarios and the test factor in different test phases. 

A risk scenario describes a specific unexpected behavior of the system. The following list 

discusses some potential risk scenarios that causes critical failures of our software. 

[1] PMG generates an incorrect mesh generator according to a correct XML specifica­

tion. 

[2] For an MG produced by PMG, the values bound at specification time in the XML 

specification are changeable at run time. 

[3] At specification time or run time, the specification of the value for the topology 

pattern does not correspond to the produced mesh. 

[4] The output file produced by an MG contains incorrect information according to the 

corresponding XSL stylesheet. For example, the output file contains element con­

nectivity when the XSL stylesheet instructs to only print vertex information, etc. 



D. Test Plan 181 

[5] PMG cannot detect and handle potential errors during the MG generation and mesh 

generation. For example, an unclosed boundary domain is meshed, although the 

corresponding MG should alert the user that the domain is incorrect and abandon the 

meshing process. 

[ 6] Changing an individual module requires changes in many other modules of the sys­

tem. For example, changing the meshing algorithm implementation to accommodate 

more topology pattern results changing the mesh drawing module, although using 

the same abstract representation can reduce the coupling between the two modules. 

Table D.1 presents the test factor/test phase matrix given the test factors and the possible 

risk scenarios described earlier. For each risk scenario, its numeric identifier is cross­

marked if the risk scenario can be checked against a test factor in a test phase. The possible 

test cases for PMG include system requirements, system architecture, implementation, unit 

testing, integration testing, and validation testing. 

TFTP SRS MG Impl UT IT VT 

Correctness 1,2,3 1,2,3 1,2,3 1,2,3 

File Integrity 4 4 4 4 

Continuity of Processing 5 5 5 5 5 

Maintainable 6 6 6 6 6 

Table D.1: Test Factor/Test Phase Matrix 



D. Test Plan 182 

D.2.2 Reference 

[1] William E.Perry, Effective Methods for Software Testing. Second Edition. Wiley Com­

puter Publishing, 2002 

D.2.3 Tested Components 

The following software components of PMG will be tested. 

PMG 

The PMG parsing needs to be tested to make sure the generated MG meets the requirement 

such that the specification-time bound values are read into the MG interface, and they are 

used to produce a correct mesh. At this step, An exhausted test is feasible by feeding possi­

ble XML specifications with different values of parameter of variation or the binding time. 

The resulting mesh generator should be able to contain the values specified in the XML 

specification, and have run-time values ready to be entered. 

MG Interface Components 

This test is to ensure the desired functionalities of the user interface is preserved. For each 

menu, the expected behavior can be visualized by the appearances of the resulting visual 

components. The following is a list of all the menu options that allow run-time inputs in 

the MG interface and their expected behaviors. 

Interface Components to be Tested 

Initial Interface 

- File menu and specification dialog 



D. Test Plan 

Domain menu and specification dialog 

Geometry menu and specification dialog 

Element menu and specification dialog 

Boundary condition menu and specification dialog 

System parameter menu and specification dialog 

Output file menu and specification dialog 

- Generate menu and mesh visualization frame 

Meshing Algorithm and File Customization Components 

183 

The meshing algorithm component needs to be tested to ensure the implementation pro­

duces the correct mesh. One way to do this is through code inspection. Another way is 

that for each meshing problem that is tested, we feed the XML file containing the mesh 

data to another program that defines the properties that the mesh must have. Later in this 

document, we will show an example of testing node numbering with this approach. 

Components to be Tested 

Meshing Algorithm 

XML file Writing 

- XSL parser 

D.2.4 Testing Methods 

In this section, we will describe the methods we will use to perform the test. We will use 

four different testing methods to test our system. 



D. TestPlan 184 

D.2.4.1 Code Inspection 

Code inspection is usually performed by the software developers as a formal analysis of the 

program source code to find defects. Small bugs can be detected by code inspection and 

they can be easily fixed. Code inspection also helps improves the readability and under­

standability of the program. The most critical programs in PMG are the XML specification 

parsing program and the mesh generation algorithm implemention. During the process of 

code inspection, the following checklist shows some standards regarding how the program 

source code ofPMG can be checked. 

Are all the variables declared and initialized properly before they are used? 

Are the scope of each variable considered before they are used? A variable outside 

of its scope cannot be used. 

Is an array initialized with a hard-coded constant? If yes, replace the constant with a 

global constant if applicable. 

Is it possible an array of a certain size may be too small for extreme cases? 

Are all the functions and method calls consistent based on their access control iden­

tifiers? For example, a method declared public within a private class cannot be used 

by another class. 

Are all the function's return type consistently implemented? For example, does a 

function declared with non-void return type end with a return statement with a vari­

able in the same type? 

Is there any type casting in the code? If yes, is it a possible cause for data accuracy 

loss? 



D. Test Plan 185 

Is there any redundancy code in the program? For example, is there any function or 

variable that are never used? If yes, remove it. 

Is there any print statements irrelevant to system functions? If yes, remove it. 

Is there any non-constant variable whose value never changes? If yes, declare them 

as constants. 

Does a negative value for a variable make no sense? If yes, declare them as signed. 

- If exception handling is implemented, are all try blocks followed by a catch block? 

D.2.4.2 Unit Testing 

In the unit test case, we will be testing the separate modules of the software. If the unit 

testing for all modules are conducted successfully, it is more likely that the system would 

meet its functional requirements. We will use both black-box and white-box test strategies. 

To test functional requirements, we can test the components by passing data through it, and 

we will be monitoring output and use it to compared with expected result. However, we 

have mentioned that an exhaustive test for mesh generation is not possible. Therefore, it is 

a good idea to use white-box strategy to test the mesh generation code. For example, the 

mesh generation code shown in Figure 3.6 can be used for boundary condition, edge, path, 

and statement check. A boundary condition check can be done by feeding a set of values 

for the rows, columns, subdivisions, etc. and test whether the code treats valid values 

as exceptions. For instance, the number of subdivisions number must be non-negative, 

otherwise, it should be an exception. 



D. Test Plan 186 

D.2.4.3 Integration Testing 

In integration testing, we will pass data or control between components of the system. We 

will be looking for signs of the collision when multiple modules are involved to achieve a 

system function. Most test cases in Section 0.2.4 will be done by integration testing. For 

example, the test of whether a value specified at specification value cannot be changed at 

run-time involves the XML parsing module and all the related interface module. The test of 

mesh correctness also requires the mesh generation algorithm and the file output module. 

D.2.4.4 Validation Testing 

In this method, we will work to find out if the software developed is valid according to the 

requirements. One way to perform a validation testing is to have several input data (XML 

specification) from which we will derive the results. We can compare the results from the 

PMG with the expected correct result to check the validation of the software. If there are 

problems with the system, we will record all the problems in a deficiency list. Eventually, 

all components and subcomponents of the system should be given a validation test. 

D.2.4.5 Test Matrix 

The test matrix is the key component of the test plan. First of all, it lists what is to be 

tested and which tests are to be performed. Secondly, between the two dimensions of the 

matrix are the tests applicable to the software. In our case, we are checking to ensure that 

requirements can be tested with one or more tests that we have mentioned. If a requirement 

can be checked with a test, it will be marked "T", otherwise it is blank. 

The test matrix in Table 0.2 only shows how the set of functional requirements as in 

Appendix B can be tested. The nonfunctional requirements and the system constraints are 

temporarily left out because they are outside the scope of the PMG prototype as explained 



D. Test Plan 187 

in the body of the thesis. 

Requirement Code UT IT VT 

Inspection 

Rl T T T T 

R2 T T T 

R3 T T T T 

R4 T T 

R5 T T T T 

R6 T T T T 

R7 T T T 

R8 T T T 

R9 T T T 

RIO T T T T 

Rll T T T T 

R12 T T T T 

R13 T T T T 

R14 T T T T 

R15 T T T 

R16 T T T T 

R17 T T T T 

R18 T T T T 

R19 T T T T 

R20 T T T T 

R21 T T T 

R22 T T T 



D. Test Plan 188 

R23 T T T 

R24 T T T T 

R25 T T T T 

R26 T T T T 

Table 0.2: Test Matrix 

D.2.5 Testing Cases 

This section describes the detailed test cases. The test cases are aimed in breadth and 

will be divided into three groups depending on their relevance. The groups are PMG, MG 

interface, and mesh generation with output file. Each test case scenario is described with 

the following information: case identifier, test name, test type (UT, IT, or VT), inputs, 

expected behavior, expected output, and the associated requirement as in Appendix B to 

make sure all functional requirements are covered by test cases. 

0.2.5.1 PMG 

Test Case TCl 

N arne: XML parsing 

Type: UT 

Input: an XML specification according to the DTD. A fragment of the DTD is given in 

Figure 3.1. 

Expected Behavior: XML parser customizes the object modeling the MG. 

Expected Output: All the values specified in the XML specification can be output. The 

values for other variabilities are not assigned. 

Associated Req: Rl 



D. Test Plan 

Test Case TC2 

Name: MG generation 

Type: IT, VT 

189 

Input: an XML specification. The specification should contain at least the root element 

as defined by the DTD. The XML specification may contain any value that represents a 

parameter of variation as shown in Appendix A. 

Expected Behavior: Parse the specification and produce an MG interface. Examples are 

shown in Chapter 4. 

Expected Output: An MG interface with specification-time value fixed and run-time in­

puts waiting to be entered. If the specification only contains the root elements, all variabil­

ities will be specified at run-time. Two examples are shown in Chapter 4. 

Associated Req: Rl,R2,R3,R4 

Test Case TC3 

N arne: Geometry at spec time 

Type: IT, VT 

Input: an XML specification with a closed geometry specified at specification time. The 

geometry information is given in parametric form, which includes numbers of rows, columns, 

and vertex coordinates. An example spec is given in Figure 4.18. 

Expected Behavior: XML parser recognizes the closed geometry value and customizes 

the object modeling the MG. 

Expected Output: An MG interface with geometry values fixed, and other variabilities left 

blank. An example is shown in Figure 4.20. 

Associated Req: R6,R7,R8,R22 



D. Test Plan 

Test Case TC4 

N arne: Domain Info at spec time 

Type: IT, VT 

190 

Input: an XML specification with domain information specified at specification time. The 

domain info should include four strings: author name, date, application domain, and com­

ment. 

Expected Behavior: XML parser recognizes the domain information and customizes the 

object modeling the MG. 

Expected Output: An MG interface with domain information fixed, and other variabilities 

left blank. 

Associated Req: R5 

Test Case TC5 

Name: Element at spec time 

Type: IT, VT 

Input: an XML specification with element specification specified at specification time. The 

element specification includes the number of subdivisions, topology patterns, and node lo­

cations for geometry and dof. 

Expected Behavior: XML parser recognizes the element value and customizes the object 

modeling the MG. 

Expected Output: An MG interface with element values fixed, and other variabilities left 

blank. 

Associated Req: R9,Rll,R17,R18,Rl9,R20,R21 

Test Case TC6 

Name: Physical Attributes at spec time 



D. Test Plan 191 

Type: IT, VT 

Input: an XML specification with physical specification specified at specification time. 

The physical specification includes boundary conditions and material properties described 

by name,location,and value. 

Expected Behavior: XML parser recognizes the physical attributes specification and cus­

tomizes the object modeling the MG. 

Expected Output: An MG interface with element values fixed, and other variabilities left 

blank. 

Associated Req: R10,R12,R13,Rl4,Rl5 

Test Case TC7 

Name: System Parameter at spec time 

Type: IT, VT 

Input: an XML specification with system parameter specification specified at specification 

time. A system parameter is described by a name and the value. 

Expected Behavior: XML parser recognizes the system parameter information and cus­

tomizes the object modeling the MG. 

Expected Output: An MG interface with system parameter information fixed, and other 

variabilities left blank. 

Associated Req: R16 

Test Case TC8 

Name: Output File at spec time 

Type: IT, VT 

Input: an XML specification with output file specification specified at specification time. 

The locations of the XSL stylesheet must be given. 



D. Test Plan 192 

Expected Behavior: XML parser recognizes the output file information and customizes 

the object modeling the MG. 

Expected Output: An MG interface with output file information fixed, and other variabil­

ities left blank. 

Associated Req: R23,R24,R25,R26 

Test Case TC9 

N arne: Inputs at Run time 

Type: IT, VT 

Input: an XML specification with only root element 

Expected Behavior: XML parser should produce the most-general purpose mesh genera­

tor 

Expected Output: An MG interface where all variabilities are left blank, so their values 

are entered at run-time. Figure 4.3-4.9 shows an example. 

D.2.5.2 MG Interface 

This section discusses the test procedures to verify the appearances of the MG interface. 

The purpose of testing the interface is to ensure that all values that may be specified at 

run-time is properly represented and can be entered in the interface. 

Test Case TC 10 

Name: File Dialog 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: The MG interface should allow for basic file open/save functionality. 

Expected Output: "File" menu options provide "open" and "save". 



D. Test Plan 

Associated Req: -

Test Case TC 11 

N arne: Domain Dialog 

Type: IT,VT 

Input: an XML specification 

193 

Expected Behavior: The MG interface should allow the entering of domain information. 

Expected Output: The domain dialog has labels and boxes so user can enter the domain 

information. 

Associated Req: -

Test Case TC12 

Name: Geometry Dialog 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: The MG interface should allow the entering of geometry information. 

Expected Output: The geometry dialog has labels and boxes so user can enter the domain 

information. 

Associated Req: -

Test Case TC13 

N arne: Element Dialog 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: The MG interface should allow the entering of element information. 

Expected Output: The element dialog has labels and boxes so user can enter the element 



D. Test Plan 

information. 

Associated Req: -

Test Case TC 14 

N arne: physical attributes Dialog 

Type: IT,VT 

Input: an XML specification 

194 

Expected Behavior: The MG interface should allow the entering of physical information. 

Expected Output: The boundary condition and material dialog have labels and boxes so 

user can enter the relevant information. 

Associated Req: -

Test Case TC15 

Name: System Parameter and File Dialog 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: The MG interface should allow the entering of system parameters and 

file specification. 

Expected Output: The system parameter and file dialog have labels and boxes so user can 

enter the relevant information. 

Associated Req: -

Test Case TC 16 

N arne: Information Passing 

Type: IT,VT 

Input: XML specification 



D. Test Plan 195 

Expected Behavior: The MG interface should provide functionalities so that the run-time 

inputs can be passed in to produce the mesh. 

Expected Output: The "OK" and "Cancel" button are typically used. 

Associated Req: -

D.2.5.3 Mesh Generation and Output File 

Test Case TC 17 

N arne: Produce Mesh 

Type: IT,VT 

Input: an XML specification with the configuration as Figure 4.2.2 for quadrilateral mesh 

Expected Behavior: Produce a quadrilateral Mesh 

Expected Output: A mesh is produced and can be visualized. The mesh is shown in Fig­

ure 4.10. 

Associated Req: R25,R26 

Test Case TC 18 

Name: Different Topology 

Type: IT,VT 

Input: The same XML specification as above, but with QUAD8 pattern at specification 

time or run time 

Expected Behavior: Produce a Mesh within the same domain in the QUAD8 pattern 

Expected Output: A mesh is produced and can be visualized. The mesh is shown in Fig­

ure 4.11. 

Associated Req: R26 



D. Test Plan 

Test Case TC 19 

N arne: Check Topology 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: All elements reflect the same topology 

Expected Output: True if all the element reflect the required topology 

Associated Req: R26 

Test Case TC20 

Name: Check XML file 

Type: IT,VT 

Input: An XML specification 

196 

Expected Behavior: Use external programs to check the correctness of mesh data. Section 

2.4.4 has an example of checking the counterclockwise of all elements. 

Expected Output: True when the test is successful, and false otherwise 

Associated Req: R23 

Test Case TC21 

Name: Produce Output File 

Type: IT,VT 

Input: an XML specification the same as the previous test case, and the stylesheets as 

shown in Figure 4.12 and 4.13. 

Expected Behavior: Produce two text files with vertex and connectivity information. 

Expected Output: The files as shown in Figure 4.15 and 4.16. 

Associated Req: R23 



D. Test Plan 

Test Case TC22 

Name: Different Output File 

Type: IT,VT 

197 

Input: an XML specification the same as the previous test case but with QUAD8 pattern, 

and the stylesheets as shown in Figure 4.12 and 4.13. 

Expected Behavior: Produce two text files with vertex and connectivity information. 

Expected Output: The first file should have contain new vertex information, and the sec­

ond file should have four times the number of elements as the previous test case. 

Associated Req: R23 

Test Case TC23 

Name: Different Material Property 

Type: IT,VT 

Input: an XML specification 

Expected Behavior: Changing the value of a material properties results changing the cor­

responding contents of the output file 

Expected Output: By inspecting the file contents, one can tell whether changes made at 

either specification time or run time have been reflected in the new output file. 

Associated Req: R23 

D.2.6 Detailed Test Cases 

This section lists six detailed test cases. For each of the six test cases, we give all of the 

information necessary to do the test. Each test case is explained step by step, followed by 

the expected behavior and outputs. The last test case in this section explains an automated 



D. Test Plan 198 

testing, which may require a separate engine. 

Test Case TC24 

N arne Test General Purpose Mesh generator 

Purpose Check that all variabilities should be specified at run-time. 

Input An XML specification with only the root elements. According to the DTD, the XML 

file with the following contents should be prepared first. The test is done by assuming the 

file name is meshml.xml and it has been saved in the program directory. 

Test Procedure 

<?xml version="l.O"?> 
<MeshGeneratorApplication> 
</MeshGeneratorApplication> 

Figure D.1: XML Specification for General-purpose Mesh Generator 

[1] In the DOS window, go to the correct directory the program is in. 

[2] Following the prompt, type in 'java jaxp file:/thedirectory/meshml.xml 

[3] The most general-purpose mesh generator interface will appear. It is the same as 

shown in Figure 4.3. 

[4] Within the interface, click "domain" menu. The domain dialog will show up. The 

dialog boxes should all be empty and accessible. Click "OK" or "Cancel" to close 

dialog. 

(5] Click "geometry" menu, the geometry dialog will show up. The boxes to specify 

the number of rows and column, the zone id and material, and the vertex ID and 

coordinates should be empty and accessible. Click "OK" or "Cancel" to close dialog. 



D. Test Plan 199 

[6] Click "element" menu, the element dialog will show up. Under the first tab "ele­

ment", the number of subdivisions along each direction should be empty and acces­

sible. The topology pattern should display "Quadrilateral". Under the second tab 

"node", all the node specification boxes should be empty and accessible. They in­

clude the number of nodes for the geometry and the dof, and their locations. The 

names of dofs can also be specified. Click "OK" or "Cancel" to close dialog. 

[7] Click "boundarycondition" menu, the boundary condition dialog will show up. The 

dialog should be with a vertical bar, and for each boundary condition, its name, 

location, and value should be empty and accessible. Click "OK" or "Cancel" to 

close dialog. 

[8] Click "material" menu, the material dialog will show up. Click on each of the five 

tabs, the names and values of each material property is empty and editable. The value 

in the type box should all be "integer". Click "OK" or "Cancel" to close dialog. 

[9] Click "system parameter" menu, the system parameter dialog will show up. For each 

system parameter, its name and value should be empty and editable. Click "OK" or 

"Cancel" to close dialog. 

[10] Click "output file" menu, the output file dialog will show up. For each output file, its 

location box should be empty and editable. Click on "browse" button to select a file 

by mouse. Click "OK" or "Cancel" to close dialog. 

Test Case TC25 

Name Test Special Purpose Mesh generator 

Purpose Check that the variabilities specified at specification time cannot be changed at 

run-time, and other variabilities are left blank. 



D. Test Plan 200 

Input An XML specification with material property and boundary condition fixed. Ac­

cording to the DTD, the XML file with the following contents should be prepared first. The 

test is done by assuming the file name is meshml.xml and it has been saved in the program 

directory. 

Test Procedure 

<?xml version="l.O"?> 
<MeshGeneratorApplication> 
<Material Set> 

<material> 
<mat property> 

<name>Poisson's ratio</name> 
<type>real</name> 
<value>0.3</value> 

<matproperty> 
<material> 

</MaterialSet> 
<loadcase> 

<boundarycondition> 
<name> traction </name> 
<location> 0,1 </location> 
<value> 3.0E6 </value> 
</boundarycondition> 

</loadcase> 
</MeshGeneratorApplication> 

Figure D.2: XML Specification for Special-purpose Mesh Generator 

[1] In the DOS window, go to the correct directory the program is in. 

[2] Following the prompt, type in "java jaxp file:/thedirectory/meshml.xml 

[3] The mesh generator interface will appear. It is the same as shown in Figure 4.3. 

[4] Within the interface, click "domain" menu. The domain dialog will show up. The 



D. Test Plan 201 

dialog boxes should all be empty and accessible. Click "OK" or "Cancel" to close 

dialog. 

[ 5] Click "geometry" menu, the geometry dialog will show up. The boxes to specify 

the number of rows and column, the zone id and material, and the vertex ID and 

coordinates should be empty and accessible. Click "OK" or "Cancel" to close dialog. 

[6] Click "element" menu, the element dialog will show up. Under the first tab "ele­

ment", the number of subdivisions along each direction should be empty and acces­

sible. The topology pattern should display "Quadrilateral". Under the second tab 

"node", all the node specification boxes should be empty and accessible. They in­

clude the number of nodes for the geometry and the dof, and their locations. The 

names of dofs can also be specified. Click "OK" or "Cancel" to close dialog. 

[7] Click "boundarycondition" menu, the boundary condition dialog will show up. The 

dialog should have one boundary condition fixed as gray. The corresponding name, 

location, and value are "traction", "0,1 ", and "3.0E6". The values are not editable. 

Click "OK" or "Cancel" to close dialog. 

[8] Click "material" menu, the material dialog will show up. there should be one tab 

with one material property available. The name, type, and value for the material 

property are "Poisson's ratio", "Real", and "0.3". They are not editable. Click "OK" 

or "Cancel" to close dialog. 

[9] Click "system parameter" menu, the system parameter dialog will show up. For each 

system parameter, its name and value should be empty and editable. Click "OK" or 

"Cancel" to close dialog. 

[10] Click "output file" menu, the output file dialog will show up. For each output file, its 



D. Test Plan 202 

location box should be empty and editable. Click on "browse" button to select a file 

by mouse. Click "OK" or "Cancel" to close dialog. 

Test Case TC26 

Name Generate a mesh with different topologies 

Purpose Check that changing topologies at run time changes the mesh 

Input We will use the same specification from the previous test case. All other variabilities 

are set at run time. The domain is a unit square with 4 zones. 

Test Procedure 

[1] In the DOS window, go to the correct directory the program is in. 

[2] Following the prompt, type in "java jaxp file:/thedirectory/meshml.xml" 

[3] The mesh generator interface will appear. It is the same as shown in Figure 4.3. 

[ 4] Click "geometry" menu, the geometry dialog will show up. We specify the following 

information: 

number of rows is 2; 

number of columns is 2; 

The first zone id is 1. the vertices are specified as (0,0), (1,0), (1,1), (0,1) 

The first zone id is 2. the vertices are specified as (0,0), (1,1), (1,1), (0,1) 

The first zone id is 3. the vertices are specified as (1,0), (2,0), (2,1), (1,1) 

The first zone id is 4. the vertices are specified as (1, 1 ), (2, 1 ), (2,2), (1 ,2) 

[5] Click "element" menu, the element dialog will show up. Under the first tab "ele­

ment", we specify the following: 



D. Test Plan 

number of subdivisions in r direction is 2,2 

number of subdivisions in s direction is 5,3 

topology pattern is Triangle1 

Under tab "node", we need to specify the following: 

number of nodes for geometry and dof are both 3 

203 

node 1,2,3 are at location (1,0,0),(0,1,0),(0,0,1). The name of dofis "x displace-

ment". 

[6] Click "boundarycondition" menu, the boundary condition dialog will show up. The 

dialog should have one boundary condition fixed as gray. The corresponding name, 

location, and value are "traction", "0,1 ", and "3.0E6". The values are not editable. 

Click "OK" or "Cancel" to close dialog. 

[7] Click "material" menu, the material dialog will show up. There should be one tab 

with one material property available. The name, type, and value for the material 

property are "Poisson's ratio", "Real", and "0.3". They are not editable. Click "OK" 

or "Cancel" to close dialog. 

[8] Click "Generate" and a new frame with the mesh is displayed. The pattern can be 

seen as Triangle 1 because the triangle are divided by going right. The mesh is also 

dense vertically because the number of subdivisions are greater than horizontally. 

[9] Go back to the interface and go to the element dialog, change the pattern to TriangleS 

and click "Generate". The resulting mesh should be of the corresponding pattern by 

examining all the elements. 

Test Case TC27 

Name File Correctness 



D. Test Plan 204 

Purpose Check the content of the output file 

Input This test case is an extension of the previous test case. We can start with the same 

specification and go through all the steps as described. This is the starting point of this test 

case. The other inputs used in this test are the stylesheet file given partially as follows. The 

stylesheet instructs to print the material and boundary condition information. 

Test Procedure 

<xsl:template match="Mesh"> 
<xsl:text>ID&#x09;x_coord&#x09;y_coord&#x09;</xsl:text> 
<xsl:value-of select="$newline"/> 
<xsl:apply-templates select= "MaterialSet"/> 
</xsl:template> 
<xsl:template match="MaterialSet"> 
<xsl:for-each select "material"> 
<xsl:value-of select "name"/> <xsl:value-of select = "$tab"/> 
<xsl:value-of select = "value"/> <xsl:value-of select = "$tab"/> 
<xsl:value-of select = "$newline"/> 
</xsl:for-each> 
</xsl:template> 
<xsl:apply-templates select= "boundaryconditionset"/> 
</xsl:template> 
<xsl:template match="boundaryconditionset"> 
<xsl:for-each select = "boundarycondition"> 
<xsl:value-of select = "location"/> <xsl:value-of select = "$tab"/> 
<xsl:value-of select = "name"/> <xsl:value-of select = "$tab"/> 
<xsl:value-of select "value"/> 
<xsl:value-of select= "$newline"/> 
</xsl:for-each> 
</xsl:template> 
</xsl:stylesheet> 

Figure 0.3: Stylesheet File 

[1] Go to th element dialog and under the "element" tab, choose the pattern QUAD. This 

will generate a quadrilateral mesh. 



D. Test Plan 205 

[2] Go to the output file dialog and specify the location of the stylesheet. This can be 

done either by typing manually or use the browse button. 

[3] Click "Generate" to generate a quadrilateral mesh. 

[4] The generated output can be opened to check contents. First of all, the material 

information should be printed as "Poisson's ratio", "0.3". The boundary conditions 

contains the vertices for the traction as specified. In this file, the traction should be 

specified for vertex ID 1, 10, 19 since these three vertices are on the edge 0,1 as 

specified. No other vertex should be printed in this file. 

Test Case TC28 

N arne File Correctness for minimum bandwidth 

Purpose Check the content of the output file 

Input This test case is another one extended from previous case. This test case is an simple 

example of white box testing and check whether the vertex numbering is horizontally or 

vertically depending on the number of subdivisions. Our program implemented this fea­

ture for all topology patterns except for TriangleS. For the simplicity of file checking, the 

number of subdivisions horizontally will be 2,2 and 2,3 vertically. The XSL file used in 

this case lists the vertex ordering, the same as in Figure 4.12. This test case is an coverage 

testing derived from the code such that if the number of subdivisions on one direction is 

greater than the other, the vertex numbering in the output file will be in the corresponding 

direction. 

Test Procedure 

[1] Start from the previous interface and keep the topology pattern as QUAD. 

[2] Change the number of subdivisions to 2,2 in s axis and 2,3 for r axis. The mesh 



D. Test Plan 206 

generation algorithm will choose the path leading to vertices numbering horizontally 

first, followed by vertically. 

[3] Click "Generate" to generate the quadrilateral mesh. The mesh should contain fewer 

elements than the previous case. 

[ 4] Check the output file that contains the vertex coordinates. Every group of six vertices 

should be having the same y coordinate with increment on the x coordinate. This is 

because the number of subdivisions for vertical direction is greater than the horizontal 

direction. 

[5] To test the opposite case, go back to element dialog and switch the input values for 

the subdivision numbers of the two directions, and generate the mesh. The output 

file should list the vertices in the way that every group of six vertices have the same 

x coordinate with increment on the y coordinate. 

Test Case TC29 

Name Automated Testing 

Purpose Check the mesh output files based on the XML specification 

Input This test case requires an XML specification and an input of an simulation engine 

we can call "PMGtester" from a slight modification of the program. The MG interface will 

not be visible. PMGtester will have a component called "PMGFileChecker" to check the 

contents of the output files. In terms of the specification, the following inputs are specified 

in the specification. 

Geometry 

[ 1] number of rows is 2, number of columns is 2 



D. Test Plan 207 

[2] For each of the four zones, specify the vertex coordinates as in TC26. 

Element 

[ 1] number of subdivisions is 2,2 for each direction, and the pattern is "Triangle 1" 

[2] Specify the node information as in TC26. 

Physical attributes. We can reuse the boundary condition specification as in TC25. 

- Output files. We specify none. We will check the XML data file in this case. 

Test Procedure 

[1] Develop PMGtester. 

[2] Name the specification "meshml.xml". Under the DOS window, start PMGtester and 

use it to read meshml.xml 

[3] The mesh data file will be named "MeshData.xml". In this case, PMGFileChecker 

will read MeshData.xml to check the following information. 

Each element should have three vertices. 

The counterclockwise property can be checked as in Section 2.7. 

The vertex coordinates cannot be negative. 

The material property should be included that has "Poisson's ratio", "real", and 

"0.3". 

The number of vertices should be 25. 

The number of elements should be 32. 



D. Test Plan 20S 

The boundary conditions should be specified for vertex 1,6,ll.{The row num­

bering is used by default) 

[4] We can automate this process by changing the topology pattern to "Triangle!" to 

"TriangleS" in the specification. PMGFileChecker will be used to test different out­

put file to verify the contents. For example, if "triangleS" is used, the number of 

vertices should be 41 given the same subdivisions. However, changing the pattern to 

"QUAD" requires changing the node information. Each element should be given 4 

nodes instead of 3. The resulting output file should have 25 vertices and 16 elements. 

[5] PMGFileChecker is also capable to check correct vertx numbering if we change the 

subdivision to unequal numbers. 

D.2. 7 Example Test Case 

This section illustrates an example to test the validity of the mesh by examining whether 

the node numbering of each element is counterclockwise. We chose to implement this 

test case because this is a nontrivial test given that correctness is the focus of our testing. 

The correct order of vertices in a mesh is a very important property that each mesh in our 

program family must hold true. A mesh that violates this property means that our software 

is incorrect because it may cause invalid results from the finite element program. 

This test case is implemented as follows: We will write a separate program that exam­

ines the XML file that contains the mesh data. The connectivity of each element will be 

checked by using the basic computational geometry theory. Given the time constraints, we 

will only implement the triangular elements in this document. The case of quadrilateral 

elements can be done as part of the future work. 

The test of whether the vertices of a triangular element are counterclockwise is given 

by the following piece of code as part of a simple XML parser. The array variable "set" 



D. Test Plan 209 

contains the three vertices for each element. The vertices within the array are stored in the 

order as in the XML data file indicated by the element connectivity information. The theory 

of the computation is adapted from Triangle software implementation. (URL available at 

http://www.cs.cmu.edu/ quake/triangle.html) We used this parser to test the following mesh 

public double counterclockwise(Vertex[] set) 
{ 

double result, resultleft, resultright = 0.0; 
resultleft = (set[O) .x_coordinate set[2] .x_coordinate)* 

(set[l) .y_coordinate- set[2] .y_coordinate); 
resultright = (set[O] .y_coordinate set[2] .y_coordinate)* 

(set[l) .x_coordinate- set[2] .x_coordinate); 
result = resultleft - resultright; 
return result; 

Figure D.4: Test Code for Counterclockwise 

data XML files. The picture of the mesh and the test result are also given. 

The test runs through the connectivity information in the XML data file and use the 

counterclockwise function. The result is shown as passed so this is a correct data file. We 

also run the same test for another data file corresponding to the irregular domain mesh as 

shown in Chapter 4, and we get the same results. 



D. Test Plan 210 

Figure D.5: Triangular Mesh Used for Testing 



D. Test Plan 211 

Figure D.6: Test Result for the Mesh 

5606 61 


	Cao_Fang_2006_04_master0001
	Cao_Fang_2006_04_master0002
	Cao_Fang_2006_04_master0003
	Cao_Fang_2006_04_master0004
	Cao_Fang_2006_04_master0005
	Cao_Fang_2006_04_master0006
	Cao_Fang_2006_04_master0007
	Cao_Fang_2006_04_master0008
	Cao_Fang_2006_04_master0009
	Cao_Fang_2006_04_master0010
	Cao_Fang_2006_04_master0011
	Cao_Fang_2006_04_master0012
	Cao_Fang_2006_04_master0013
	Cao_Fang_2006_04_master0014
	Cao_Fang_2006_04_master0015
	Cao_Fang_2006_04_master0016
	Cao_Fang_2006_04_master0017
	Cao_Fang_2006_04_master0018
	Cao_Fang_2006_04_master0019
	Cao_Fang_2006_04_master0020
	Cao_Fang_2006_04_master0021
	Cao_Fang_2006_04_master0022
	Cao_Fang_2006_04_master0023
	Cao_Fang_2006_04_master0024
	Cao_Fang_2006_04_master0025
	Cao_Fang_2006_04_master0026
	Cao_Fang_2006_04_master0027
	Cao_Fang_2006_04_master0028
	Cao_Fang_2006_04_master0029
	Cao_Fang_2006_04_master0030
	Cao_Fang_2006_04_master0031
	Cao_Fang_2006_04_master0032
	Cao_Fang_2006_04_master0033
	Cao_Fang_2006_04_master0034
	Cao_Fang_2006_04_master0035
	Cao_Fang_2006_04_master0036
	Cao_Fang_2006_04_master0037
	Cao_Fang_2006_04_master0038
	Cao_Fang_2006_04_master0039
	Cao_Fang_2006_04_master0040
	Cao_Fang_2006_04_master0041
	Cao_Fang_2006_04_master0042
	Cao_Fang_2006_04_master0043
	Cao_Fang_2006_04_master0044
	Cao_Fang_2006_04_master0045
	Cao_Fang_2006_04_master0046
	Cao_Fang_2006_04_master0047
	Cao_Fang_2006_04_master0048
	Cao_Fang_2006_04_master0049
	Cao_Fang_2006_04_master0050
	Cao_Fang_2006_04_master0051
	Cao_Fang_2006_04_master0052
	Cao_Fang_2006_04_master0053
	Cao_Fang_2006_04_master0054
	Cao_Fang_2006_04_master0055
	Cao_Fang_2006_04_master0056
	Cao_Fang_2006_04_master0057
	Cao_Fang_2006_04_master0058
	Cao_Fang_2006_04_master0059
	Cao_Fang_2006_04_master0060
	Cao_Fang_2006_04_master0061
	Cao_Fang_2006_04_master0062
	Cao_Fang_2006_04_master0063
	Cao_Fang_2006_04_master0064
	Cao_Fang_2006_04_master0065
	Cao_Fang_2006_04_master0066
	Cao_Fang_2006_04_master0067
	Cao_Fang_2006_04_master0068
	Cao_Fang_2006_04_master0069
	Cao_Fang_2006_04_master0070
	Cao_Fang_2006_04_master0071
	Cao_Fang_2006_04_master0072
	Cao_Fang_2006_04_master0073
	Cao_Fang_2006_04_master0074
	Cao_Fang_2006_04_master0075
	Cao_Fang_2006_04_master0076
	Cao_Fang_2006_04_master0077
	Cao_Fang_2006_04_master0078
	Cao_Fang_2006_04_master0079
	Cao_Fang_2006_04_master0080
	Cao_Fang_2006_04_master0081
	Cao_Fang_2006_04_master0082
	Cao_Fang_2006_04_master0083
	Cao_Fang_2006_04_master0084
	Cao_Fang_2006_04_master0085
	Cao_Fang_2006_04_master0086
	Cao_Fang_2006_04_master0087
	Cao_Fang_2006_04_master0088
	Cao_Fang_2006_04_master0089
	Cao_Fang_2006_04_master0090
	Cao_Fang_2006_04_master0091
	Cao_Fang_2006_04_master0092
	Cao_Fang_2006_04_master0093
	Cao_Fang_2006_04_master0094
	Cao_Fang_2006_04_master0095
	Cao_Fang_2006_04_master0096
	Cao_Fang_2006_04_master0097
	Cao_Fang_2006_04_master0098
	Cao_Fang_2006_04_master0099
	Cao_Fang_2006_04_master0100
	Cao_Fang_2006_04_master0101
	Cao_Fang_2006_04_master0102
	Cao_Fang_2006_04_master0103
	Cao_Fang_2006_04_master0104
	Cao_Fang_2006_04_master0105
	Cao_Fang_2006_04_master0106
	Cao_Fang_2006_04_master0107
	Cao_Fang_2006_04_master0108
	Cao_Fang_2006_04_master0109
	Cao_Fang_2006_04_master0110
	Cao_Fang_2006_04_master0111
	Cao_Fang_2006_04_master0112
	Cao_Fang_2006_04_master0113
	Cao_Fang_2006_04_master0114
	Cao_Fang_2006_04_master0115
	Cao_Fang_2006_04_master0116
	Cao_Fang_2006_04_master0117
	Cao_Fang_2006_04_master0118
	Cao_Fang_2006_04_master0119
	Cao_Fang_2006_04_master0120
	Cao_Fang_2006_04_master0121
	Cao_Fang_2006_04_master0122
	Cao_Fang_2006_04_master0123
	Cao_Fang_2006_04_master0124
	Cao_Fang_2006_04_master0125
	Cao_Fang_2006_04_master0126
	Cao_Fang_2006_04_master0127
	Cao_Fang_2006_04_master0128
	Cao_Fang_2006_04_master0129
	Cao_Fang_2006_04_master0130
	Cao_Fang_2006_04_master0131
	Cao_Fang_2006_04_master0132
	Cao_Fang_2006_04_master0133
	Cao_Fang_2006_04_master0134
	Cao_Fang_2006_04_master0135
	Cao_Fang_2006_04_master0136
	Cao_Fang_2006_04_master0137
	Cao_Fang_2006_04_master0138
	Cao_Fang_2006_04_master0139
	Cao_Fang_2006_04_master0140
	Cao_Fang_2006_04_master0141
	Cao_Fang_2006_04_master0142
	Cao_Fang_2006_04_master0143
	Cao_Fang_2006_04_master0144
	Cao_Fang_2006_04_master0145
	Cao_Fang_2006_04_master0146
	Cao_Fang_2006_04_master0147
	Cao_Fang_2006_04_master0148
	Cao_Fang_2006_04_master0149
	Cao_Fang_2006_04_master0150
	Cao_Fang_2006_04_master0151
	Cao_Fang_2006_04_master0152
	Cao_Fang_2006_04_master0153
	Cao_Fang_2006_04_master0154
	Cao_Fang_2006_04_master0155
	Cao_Fang_2006_04_master0156
	Cao_Fang_2006_04_master0157
	Cao_Fang_2006_04_master0158
	Cao_Fang_2006_04_master0159
	Cao_Fang_2006_04_master0160
	Cao_Fang_2006_04_master0161
	Cao_Fang_2006_04_master0162
	Cao_Fang_2006_04_master0163
	Cao_Fang_2006_04_master0164
	Cao_Fang_2006_04_master0165
	Cao_Fang_2006_04_master0166
	Cao_Fang_2006_04_master0167
	Cao_Fang_2006_04_master0168
	Cao_Fang_2006_04_master0169
	Cao_Fang_2006_04_master0170
	Cao_Fang_2006_04_master0171
	Cao_Fang_2006_04_master0172
	Cao_Fang_2006_04_master0173
	Cao_Fang_2006_04_master0174
	Cao_Fang_2006_04_master0175
	Cao_Fang_2006_04_master0176
	Cao_Fang_2006_04_master0177
	Cao_Fang_2006_04_master0178
	Cao_Fang_2006_04_master0179
	Cao_Fang_2006_04_master0180
	Cao_Fang_2006_04_master0181
	Cao_Fang_2006_04_master0182
	Cao_Fang_2006_04_master0183
	Cao_Fang_2006_04_master0184
	Cao_Fang_2006_04_master0185
	Cao_Fang_2006_04_master0186
	Cao_Fang_2006_04_master0187
	Cao_Fang_2006_04_master0188
	Cao_Fang_2006_04_master0189
	Cao_Fang_2006_04_master0190
	Cao_Fang_2006_04_master0191
	Cao_Fang_2006_04_master0192
	Cao_Fang_2006_04_master0193
	Cao_Fang_2006_04_master0194
	Cao_Fang_2006_04_master0195
	Cao_Fang_2006_04_master0196
	Cao_Fang_2006_04_master0197
	Cao_Fang_2006_04_master0198
	Cao_Fang_2006_04_master0199
	Cao_Fang_2006_04_master0200
	Cao_Fang_2006_04_master0201
	Cao_Fang_2006_04_master0202
	Cao_Fang_2006_04_master0203
	Cao_Fang_2006_04_master0204
	Cao_Fang_2006_04_master0205
	Cao_Fang_2006_04_master0206
	Cao_Fang_2006_04_master0207
	Cao_Fang_2006_04_master0208
	Cao_Fang_2006_04_master0209
	Cao_Fang_2006_04_master0210
	Cao_Fang_2006_04_master0211
	Cao_Fang_2006_04_master0212
	Cao_Fang_2006_04_master0213
	Cao_Fang_2006_04_master0214
	Cao_Fang_2006_04_master0215
	Cao_Fang_2006_04_master0216
	Cao_Fang_2006_04_master0217
	Cao_Fang_2006_04_master0218
	Cao_Fang_2006_04_master0219
	Cao_Fang_2006_04_master0220
	Cao_Fang_2006_04_master0221
	Cao_Fang_2006_04_master0222
	Cao_Fang_2006_04_master0223
	Cao_Fang_2006_04_master0224
	Cao_Fang_2006_04_master0225
	Cao_Fang_2006_04_master0226

