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Abstract 

Classification is the process of finding (or training) a set of models (or 

functions) that describe and distinguish data classes or concepts. That is for 

the purpose of being able to use the models to predict the unknown class labels 

of instances [12]. 

We deal with the ranking problem in this thesis . The ranking problem 

is a special case of the classification problem, where the class labels are ranks 

or ratings , represented by integers from 1 to q. The ranking problem can also 

be cast as the process of training a rank-prediction model that assigns each 

instance a rank that is "as close as possible" to the instance 's actual rank [8]. 

Popular applications of the ranking problem include ranking the importance 

of web pages, evaluating the financial credit of a person, and ranking the risks 

of investments. 

Two popular families of methods to solve ranking problems are Multi­

Criteria Decision Aid (MCDA) methods and Support Vector Machines (SVMs). 

The performance of successful MCDA methods, such as UTilites Additives 

DIScriminantes (UTADIS) and Generalized UTilites Additives DIScriminantes 

(GUTADIS) , is achieved by exploiting the background knowledge that de­

scribes the correlations between the attributes and the ranks . Unfortunately, 

the background knowledge is case-dependent, hence it is likely to be unavail-
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able, inexact or difficult to be modeled in practice. This restricts the appli­

cation of MCDA methods. SVMs, instead, do not require any background 

knowledge. Their good performance is achieved by keeping balance between 

minimizing the empirical loss and maximizing the separation margin. Nor­

mally, a multi-class Support Vector Machine Classifier is constructed by com­

bining several binary Support Vector Machine Classifiers. In the SVM-based 

approach the ranking information is not used. 

This thesis attempts to construct an efficient algorithm for ranking 

problems. We compare the properties of existing algorithms for ranking prob­

lems and propose a hybrid algorithm that combines the multi-class SVM (M­

SVM) and the UTADIS model. In the new algorithm, the binary SVM clas-

sifiers are combined into a multi-class classifier based on the fuzzy voting 

technique. The optimal fuzzy voting strategy is searched by solving a Linear 

Program (LP). The new algorithm is called Fuzzy Voting based Support Vec­

tor Ranking (FVSVR) method. We also extend the idea of Fuzzy Voting from 

ranking problems to generic multi-class classification problems, which leads to 

a Fuzzy Voting based Support Vector Machine (FVSVM) method. The bene­

fits of FVSVR and FVSVM are demonstrated by experimental results based 

on several databases of practical classification problems. 
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Chapter 1 

INTRODUCTION 

In this chapter we first give a brief introduction to the ranking problem and 

review two related concepts: multi-class classification and regression. Then, 

we describe the motivation of our research and outline the organization of the 

thesis. 

1.1 Classification and Regression 

As we have mentioned in the abstract, classification is the task of constructing 

a set of models to separate different classes. The applications of classifica­

tion include pattern recognition, image segmentation, and natural language 

processmg. 

In classification, an instance (a sample) IS usually represented by a 
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used to predict an instance's target value, which is usually continuous [12]. In 

classification, the set of class labels Y is a set of discrete class labels such as 

{ -1, 1} or {A, B, C}. In regression, instead, Y is a continuous domain, such 

as [-1,1] or (-oo,+oo). 

1.2 The Prediction Loss 

The training processes of both the classification problem and the regression 

problem can be cast as optimization problems. Specifically, the task of the 

training process is to find a set of optimal parameters for the classification/regression 

model (function) so that the expected risk of errors [4] is minimized. 

We usually use a loss function [4], which determines the amount of loss 

when prediction errors take place on an instance, to evaluate the expected risk 

of errors of a prediction model. The most popular loss function for classifica­

tion problems is the 0-1 loss function. Suppose that l(f), y) denotes the loss 

function of assigning a label f) to a sample with an actual label y. The 0-1loss 

function is: 

l(fj, y) = 
1' if f) I= y' 

0, if f)= y. 

This means that each misclassification causes identical loss of value 1. 

(1.1) 

There are two popular loss functions for regression problems. One is 

4 



Chapter 1 

INTRODUCTION 

In this chapter we first give a brief introduction to the ranking problem and 

review two related concepts: multi-class classification and regression. Then, 

we describe the motivation of our research and outline the organization of the 

thesis. 

1.1 Classification and Regression 

As we have mentioned in the abstract, classification is the task of constructing 

a set of models to separate different classes. The applications of classifica­

tion include pattern recognition, image segmentation, and natural language 

processing. 

In classification, an instance (a sample) is usually represented by a 
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fixed number of attributes x = [x1 , x2 , ... , Xn], together with a class label y. 

A instance is called labeled if its class label is known, otherwise unlabeled. 

Figure1.1 lists a few samples in the country risk classification problem. 

AtUibu{ffl Clnss Labels 

JrJS!<UifJ!!i Uati(J of Growth(.r1) Assigned (f( x)) Actual (y) 

Jnswuw 1 O.Q:ll 4 4 

lttSWl~2 O.Gl5 3 2 

lnilrau.r.r "'~ 0.073 8 6 
---·~~ 

Figure 1.1: Samples in the country risk classification problem. 

The process of classification has two steps: training and test/use. In the 

training step, a set of labeled instances (the training set) is provided. Based on 

the training set, a mapping from the attribute space X to the class label space 

Y is established by training. The training process can be formulated as an 

optimization problem that we will discuss in the next section. The resultant 

mapping f is called a classifier. For example, for X= ffi.d andY= {0, 1} we 

might have a binary classifier f : X ~ Y. We call it a binary classifier since 

all the instances are in 2 classes, either in class "0" or in class "1", i.e., the 

the cardinality of Y is 2. The problem to construct such a binary classifier is 

called as the binary classification problem. Correspondingly, if the cardinality 

of Y is q, the problem is a q-class multi-class classification problem. 

After the training step, the obtained classifier f may be used to assign a 

2 
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class label f) to any instance x by f) = f ( x). The performance of this classifier 

is tested by another set of labeled instances (test set), and the prediction 

accuracy is assessed based on the comparison between the actual class labels 

and the class labels assigned by f. If the obtained accuracy is acceptable, 

this classifier can be used in practice. The whole classification process is 

demonstrated by Figure 1.2. 

Class Labels 
for Unlabeled Samples 

Pmci'Bl! 
e 

Figure 1.2: The classification system. 

In the field of data mining, the regression problem is to train a regres-

sion function that assigns a value to an instance that is as close as possible to 

its actual value. The applications of regression include traffic flux estimation 

and air temperature prediction. 

Similar to the classification problem, the regression problem is to find 

a function that describes or distinguishes certain concept. The difference be-

tween classification and regression is that, classification is to predict an in-

stance's class label, which is usually discrete or nominal, while, regression is 
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used to predict an instance's target value, which is usually continuous [12]. In 

classification, the set of class labels Y is a set of discrete class labels such as 

{ -1, 1} or {A, B, C}. In regression, instead, Y is a continuous domain, such 

as [-1, 1] or (-oo, +oo). 

1. 2 The Prediction Loss 

The training processes of both the classification problem and the regression 

problem can be cast as optimization problems. Specifically, the task of the 

training process is to find a set of optimal parameters for the classification/regression 

model (function) so that the expected risk of errors [4] is minimized. 

We usually use a loss function [4], which determines the amount of loss 

when prediction errors take place on an instance, to evaluate the expected risk 

of errors of a prediction model. The most popular loss function for classifica­

tion problems is the 0-1 loss function. Suppose that l(f), y) denotes the loss 

function of assigning a label f) to a sample with an actual label y. The 0-1 loss 

function is: 

l(f), y) = 
1 ' if f) -1= y' 

0, if f)= y. 

This means that each misclassification causes identical loss of value 1. 

(1.1) 

There are two popular loss functions for regression problems. One is 
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the least square loss function [10] defined as: 

(1.2) 

and the other one is the c:-intensive loss function [25] defined as: 

0, if 1:0 - y 1 ::; c:, 
(1.3) 

1:0 - y 1 - c:, if 1 g - y 1 > c:, 

where f is a constant and 1:0 - Yl denotes the distance between the assigned 

class label and the actual class label. Figure 1.3 depicts the c:-intensive loss 

function graphically. Both of these loss functions are distance-based ones, 

I'Y -yl-c: 

y-y 

Figure 1.3: The c:-intensive loss. 

since they are monotone functions of 1:0-YI· Compared to the 0-lloss function 

for classification, the distance-based loss functions can guide the optimization 

process of regression training so that the obtained regression function may 

assign a label value to an instance that is "as close as possible" to its actual 

label value. 
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1.3 The Ranking Problem 

There are many applications where it is desirable to rank rather than to classify 

instances [6], for instance: ranking the importance of web pages, evaluating 

the financial credit rating of a person, and ranking the risk of investments. 

The ranking problem is the task of learning a rank-prediction model 

that assigns an instance a discrete rank "as close as possible" to its actual rank 

[8]. In this thesis we define the ranking problem as a multi-class classification 

problem with ordinal class labels and a distance-based loss function. We can 

see that ranking problems are predication problems that share properties from 

both classification problems and regression problems. In ranking problems, the 

values to be predicted are termed as ranks or levels. They are discrete values 

as in classification problems. However, the loss functions of ranking problems 

are distance-based as in regression problems. 

The special properties of ranking problems indicate that the algorithms 

for classification and regression are not quite suitable for ranking problems. 

The evidence for this argument is demonstrated in the remainder of our thesis. 

6 



M.Sc. Thesis - T. Jiao -McMaster- Computing and Software 

1.4 Motivation and Organization 

Two popular algorithms for ranking problems are the UTilites Additives DIS­

criminantes (UTADIS) [11] and the multi-class Support Vector Machine (SVM) 

methods [7]. We offer a brief discussion of the advantages and disadvantages 

of these two methods in this section to propose the motivation of our research. 

The UTADIS model, which is a successful MultiCriteria Decision Aid 

(MCDA) method [29], incorporates the background knowledge in ranking 

problems by optimizing a set of piecewise-linear monotone criterion functions 

that represent the monotone correlations between the attributes and the ranks. 

Since generally the monotonicity assumption of the UTADIS model does not 

hold [26], its accuracy is not encouraging. The accuracy of GUTADIS model 

[26] is better than UTADIS, but its training process is time-consuming. 

SVMs have good generalization performance for pairwise classification 

problems [13]. Normally, a multi-class Support Vector Machine classifier is con­

structed by combining several binary Support Vector Machine classifiers[13]. 

The problem with the popular "Max-Wins" voting combination method is that 

it does not take the ordinal relation among classes into consideration and it 

does not use the distance-based loss function. Thus this method is not good 

for ranking problems either. 

The main purpose of this thesis is to construct an efficient algorithm for 

7 
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ranking problems assuming that the ranking information of classes is available. 

In particular, we discuss some issues on how to combine binary SVM classifiers. 

We propose a hybrid algorithm that takes the advantage of both of UTADIS 

and SVM, and combines binary SVM classifiers by "fuzzy voting". The same 

idea is extended to the generic multi-class classification. 

The rest of this thesis is organized as follows. In Chapter 2, a review of 

the UTADIS and the GUTADIS models for ranking problems is presented. In 

Chapter 3, binary SVM, multi-class SVM and SVR are reviewed and discussed. 

We propose our hybrid algorithm for ranking problems and for generic multi­

class classification problems in Chapter 4. Chapter 5 describes the process of 

our empirical experiments and reports the results. We conclude our work and 

suggest some further research directions in Chapter 6. 

8 



Chapter 2 

UTADIS AND GUTADIS 

In this chapter, we review the UTADIS and GUTADIS methods for ranking 

problems. 

2.1 The UTADIS Model 

2.1.1 Prior Knowledge in Ranking Problems 

Prior knowledge (background knowledge in some references) refers to general 

information about the concepts that we are concerned about [16]. How to 

incorporate the background knowledge into the construction of a classification 

model is an active research topic. In ranking problems, the most frequently 

used background knowledge is the correlation between the attributes and the 

9 
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class labels. For example, to predict the age of an abalone from its physical 

measurements [21], we may use the prior knowledge that a greater size indicates 

an older age. Imposing the prior knowledge on the classifier can make the 

classification result consistent with experts' knowledge and easy to understand. 

When the training set is relatively small, the background knowledge can help 

to control the complexity of the classification model so that the overfitting 

problem [22] is avoided. 

In [11], the authors proposed UTADIS, a classification model that incor­

porates the background knowledge in function space. In the UTADIS model, 

the correlations between the attributes and the class labels are assumed to be 

monotone. The assumption is consistent with the background knowledge of 

the undertaking applications. 

2.1.2 The Model of UTADIS 

The idea of UTADIS is to train a utility function U(x) to determine the class 

label of sample x. The concept of utility function comes from decision science 

[14], where the ranking problem is considered to make the best choice (the best 

class) from a list of choices (classes). An assumption is that any decision-maker 

unconsciously uses utility function: 

10 
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which aggregates his preferences in different aspects (attributes) of a choice, 

to rank all the optional choices [26]. 

Once we get the utility function, the class label of a sample x is decided 

by the following rules: 

if U(x) 2: /J1, then X E c1, 

if /Jk ~ U(x) < /Jk-1, Vk, 2 ~ k ~ q- 1, then X E ck, (2.1) 

if U(x) < /Jq- 1 , then x E Cq, 

where the utility function U(x) is usually normalized, i.e., 0 ~ U(x) ~ 1, and 

JJ1 , ... , /Jq- 1 are the decision boundaries for the q classes. 

Then, the main task of UTADIS training is to estimate such a utility 

function U(x) and a set of decision boundaries {JJ1 , ... , /Jq- 1}. Thus, we have 

to define a classification function space as our search space. In the UTADIS 

model, U(x) is searched in the following function space: 

(2.2a) 

(2.2b) 

where U(x) is the additive combination of a set of criterion functions: {Ui(x), i = 

1, ... , q}, and Ui (X) is a piecewise-linear monotone function that characterizes 

the correlation between the ith attribute and the class label. According to 

(2.2b), when x1 is fixed, the piecewise-linear function Ui(x) is decided by the 

11 
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sequence of U/, j = 1, ... , ri, which are the variables to be optimized. It is 

obvious that searching for an optimal piecewise-linear function Ui(x) is equiv-

alent to searching for a set of optimal variables {U/, j = 1, ... , ri}. Figure 

2.1 demonstrates a one-dimensional utility function decided by a monotone 

sequence of 6 points. 

0.9 

/ 0.8 

0.7 
I 

J.lk 0.6 I 
0.5 I 

I 
0.4 I p,k+l 

0.3 I 
I 

0.2 I 
0.1 I 

1.5 2 2.5 5.5 

xf Xf 

Figure 2.1: A piecewise monotone criterion function 

Note that by using the additive form of the utility function, we impose 

another implicit assumption, i.e., each criterion (attribute) affects the utility 

function value independently. This assumption makes the model simple and 

easy to solve. It is typically not true in practice, though. 

12 
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2.1.3 The Loss Function of UTADIS 

The loss function of the UTADIS model is distance-based. To describe this, we 

need to introduce the "right range" for an instance. For an instance x in class 

k, its "right range" is the range: [ILk, ILk - 1], where ILk is the boundary values 

introduced in (2.1). According to (2.1), if the utility function value U(x) is in 

the "right" range of x, the instance is correctly classified. Correspondingly, the 

classification loss of xis zero. If the value of U(x) is out of the "right range" of 

x, the misclassification error is linearly punished. Figure 2.2 demonstrates the 

"right range" for instances in class k, denoted by ck? and the misclassification 

errors when U(x) is smaller than ILi or greater than ILi-l, denoted by O"+(c) 

and O"-(c) respectively. The loss function of UTADIS is quite similar with the 

c-intensive loss (1.3). 

I 
a+ (c) 1 

Cq 

~-: 
ck c1 

.. 
J..Lq-1 U(x<)f..Lk Jlk-1 J.ll 

I I a- (c) 
Cq I ck I Ct 

I I I 
I : .. L.I 
I I I .. 

Jlq-1 Jlk Jlk-1 U(x<) J.ll 

Figure 2.2: The "right range" for class k and misclassification errors. 

Then the UTADIS training is to find the optimal estimation of the 

13 
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utility functions U(x) and the set of the optimal boundary values {tt1 , ... , /Lq-d, 

so that the total loss of the misclassified training instances is minimized. This 

gives the following LP problem. 

2.1.4 The Linear Program for UTADIS Training 

The UTADIS training is a Linear Program: 

(2.3a) 

n 

s.t. L Ui(xf)- ILk+ O"+(c) ~ 0, Y1 ::; k::; q- 1, Yc E ck, (2.3b) 
i=l 

n 

L Ui(xf)- /Lk-1- 0"-(c) ::; -6, Y2::; k::; q, 'Vc E ck, (2.3c) 
i=l 

/Lk-1-/Lk~s, k=2,··· ,q-1, (2.3d) 

uj+l- uf ~ 0, 'Vi= 1, ... 'n, 'Vj = 1, ... ,ri- 1, (2.3e) 

U/ = 0, 'Vi= 1, · · · , n, (2.3f) 

n 

'""'uri= 1 L.....t z ' 
(2.3g) 

i=l 

(2.3h) 

where n is the number of the attributes, q is the number of classes, and Ui(xc) 

is the criterion function defined by (2.2 b), Yc E Ck is used to denote "for all 

the instances xc whose class label are k ". Misclassification error for training 

instance xc is captured by O"+(c) or O"-(c) in constraints (2.3 b,c), which is 

14 
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linearly punished in the objective function (2.3 a). The boundary values are 

defined in (2.3 d). Constraint (2.3 e) guarantees that the piecewise-linear 

criterion functions are monotone. Normalization constraints (2.3 f,g) define 

the contribution of each attribute to the resulting utility function value. 

After the training step, the obtained U(x) can predict the class label of 

unknown samples. For an unknown instance x, we compare the utility function 

value U(x) with the boundary values, p,1 , ... , P,q- 1 , and assign x a class label 

according to (2.1). 

The prediction accuracy of the UTADIS model is usually not good, 

since both the naive monotone assumption and the independent assumption 

are not satisfied in many applications. These unrealistic assumptions should 

be removed or generalized. 

2.2 The GUTADIS Model 

To deal with the non-monotone criteria, Wang [26] introduced the GUTADIS 

model that extends the monotone assumption to unimodal. 

In GUTADIS model, we still use the additive combination of criterion 

functions to estimate the utility function, which means we still impose the 

independent assumption. The loss function of GUTADIS is the same as the 

UTADIS model. The only difference is that we search the piecewise-linear 
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unimodal function space for optimal criterion functions. 

The optimization problem of GUTADIS training is: 

(2.4a) 

n 

(2.4b) 
i=1 

n 

L Ui(c)- fJk-1- 0"-(c) ::; -6, V2::; k::; q, Vc E ck, (2.4c) 
i=1 

fJk-1 - fJk 2: s, Vk = 2, · · · , q- 1, (2.4d) 

Uj uj- 1 > 0 w· 1 w.- 2 i - i _ , v'l E m, vJ - , · · · , ri, (2.4e) 

(2.4f) 

YiJ 2: Yi,J+1, Vi E Iu, Vj = 2, · · · , ri- 1, (2.4g) 

0 ::; Uj ::; 1, Vi = 1, · · · , n, Vj = 1, · · · , ri, (2.4h) 

YiJ E {-1, 1}, ViE Iu, Vj = 2, · · · ,ri, (2.4i) 

(2.4j) 

which is an integer nonlinear programming problem. Integer variable YiJ is 

employed to control the increasing and decreasing of the criterion function. 

Constraints (2.4 f,g and i) exactly ensure that the sequence: Uf, j = 1, ... , ri 

is a unimodal sequence. 

The performance of GUTADIS model is much better than the original 

UTADIS model, because the unimodal assumption is much less restrictive than 

16 
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the monotonicity assumption. Nevertheless, there is one major concern for 

GUTADIS, i.e, the integer nonlinear programming problem (2.4) is typically 

intractable which excludes the algorithm from applications with a large data 

set. 

17 
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Chapter 3 

SUPPORT VECTOR 

MACHINES 

In this chapter, we first review Support Vector Machine (SVM) for binary 

classification, also called Support Vector Classification (SVC). Then we discuss 

its extension to regression and multi-class classification 

3.1 Binary SVM 

In this section, we first introduce the hard margin linear SVM that forms the 

basis of our later discussion. Then we discuss the optimization model for SVM. 

At the end, we introduce soft margin SVM and nonlinear (kernel based) SVM 

as generalizations of the hard margin linear SVM. 
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3.1.1 Linear Hard Margin SVM 

Binary classification is to train a model to separate two classes. We first 

consider the case where the classifier is a linear function, i.e., the separation 

hyperplane of the classifier can be written as: 

where w and b are the model parameters that determine the direction and 

position of the separation hyperplane. For any hyperplane wT x + b = 0 that 

correctly splits the data points into two classes, we impose the following addi­

tional constraints on w and b 

WTX1 + b = -1, 

WTX2 + b = +1, 

(3.la) 

(3.1b) 

where x1 and x2 are the data points closest to the separate hyperplane in class 

1 and class 2 respectively. The constraints actually imply: 

and the separation hyperplane wT x + b = 0 bisects the space (the margin) 

between the parallel hyperplanes defined by (3.1 a,b), as Figure 3.1 shows. 

Notice that if w is fixed and b is a variable, then wT x + b = 0 defines a family 

of paralleled hyperplanes, in which only one hyperplane bisects the margin. In 
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other words, by imposing the constraints, we only need to search an optimal 

w. When w is decided by the training process of the linear SVM, the value of 

b can be determined accordingly. 

For any hyperplane wT x + b = 0 correctly separating the data points 

of class 1 and class 2, we can define its margin as the distance between the 

parallel hyperplanes: wT x + b = 1 and wT x + b = -1, denoted by m in Figure 

3.1. It follows that 

(the projective length of x2 - x 1 on direction w). From (3.1 a,b), we have that 

It indicates that any pair of (w, b) satisfying constraints (3.1) decides an separa­

tion hyperplane and a margin. The size of the margin is 11~ 11 • It has been proved 

that essentially by requiring a larger margin (a small llwll), we can obtain a 

classification model with greater capacity of generalization [4]. The training of 

linear hard margin SVM is to search a function with a maximum margin in the 

linear function space under the constraints that all training samples are out of 

the margin. This is the so-called Max-Margin principle. Suppose we are given 

a set of n training samples {(xi, Yi), Xi E ~n, Yi E { -1, 1 }, i = 1, ... , n }, the 

following optimization problem describes the training process of linear hard 

21 



M.Sc. Thesis - T. Jiao -McMaster- Computing and Software 

margin SVM: 

• 
• 

• 
da.'>S 1 

• 

class 2 

• 
. . . .. .. 

Figure 3.1: The margin between two classes. 

s.t. Yi(wT xi+ b) ~ 1, i = 1, ... , n. 

(3.2a) 

(3.2b) 

Constraints (3.2 b) guarantee that the training instance in both class 1 and 

class 2 are out of the margin. This is a convex linear constrained quadratic 

programming problem. In practice, we solve the dual problem that is given as 

follows: 

n 

s.t. L aiYi = 0, 
i=l 

ai ~ 0, i = 1, ... , n, 

22 
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where ai, i = 1, ... , n, are the Lagrange Multipliers of constraints (3.2 b). After 

solving the dual problem, w can be recovered by 

As a result of the training process, we get a linear decision function 

For a new sample z, if f(z) :S 0, we classify z into class 1, otherwise we classify 

it into class 2. 

Note that in the dual problem of the training process and in the test 

or use process, the samples are referenced only as inner product: xf Xj or xf z. 

This is important for the kernel trick, which will be discussed in Section 3.1.3. 

3.1.2 Soft Margin SVM 

In practice, a few outliers, denoted by xi and Xj in Figure 3.2, may cause con­

straint (3.2b) infeasible. This implies that the two classes cannot be separated 

by a hyperplane. To deal with the infeasible cases, Vapnik [7] proposed the 

relaxed separation constraints as below: 

Yi(wTxi+b) ~ 1-~i, i=1, ... ,n. 

The violatings of constraint (3.2b) are captured in slack variables ~i ~ 0; 2 = 

1, ... , n, which are penalized in the' objective function via a regularization con-
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daS> 1 

.. . . .. .. .. .. .. ..• 

class 2 

Figure 3.2: A linearly inseparable case. 

stant C, chosen as a priori. As a consequence, we get the following quadratic 

programming problem: 

1 n 

min-llwll 2 + c:L:~i 
w,b,~ 2 . 

l=l 

(3.4a) 

s.t. Yi(wT xi+ b) 2:: 1- ~i, i = 1, ... , n, (3.4b) 

~i 2:: 0, i = 1, ... , n. (3.4c) 

The constant C controls the tradeoff between the training errors (denoted by 

n 

"2:: ~i, the summation of the violatings) and the complexity of the separation 
i=l 

function (denoted by ~llwll 2 ). It has been proved that the expected risk, which 

indicates the probability of misclassification for unseen samples, is small if we 

keep both the training errors and the function complexity small [4]. 
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The dual problem of (3.4) is: 

s.t. C ;:::: ai ;:::: 0, i = 1, ... , n, 

n 

LO:iYi = 0. 
i=l 

Again,the samples are referenced only as inner product here. 

3.1.3 Nonlinear SVM 

Separation Margin 

-3 -2 0 2 
X 

Figure 3.3: A mapping ¢(x) = {x, x2 }. 

(3.5a) 

(3.5b) 

(3.5c) 

Up to now, the separation model we discussed is the linear function, 

whose usability is quite limited. To allow for more general separation bound-

ary, first, the input vectors: (x1 , ... , xnf can be nonlinearly transformed into 

a high-dimension feature space by a mapping ¢ : ~n -+ ~k, k > n, then a lin-

ear separation can be searched in the feature space. Figure 3.3 demonstrates 
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an separation using a mapping from one-dimension space to two-dimension 

space, where the instances in class 1 (-3,-2 and 2) and the instances in class 

2 (0 and 1) are inseparable in the one-dimensional space but are separable in 

the two-dimensional space. This shows that mapping a data set from so-called 

input space to the feature space allows us to find a linear separation relatively 

easily. 

As mentioned before in both the training and the test processes of the 

linear SVM, the samples are referenced only as inner product: xT z. After the 

mapping, the inner product of samples in feature space becomes ¢(xf ¢(z). 

So the dual problem of SVM training in the feature space is: 

n 
1 

n 

m:x L ai - 2 L aiCYjYiYj<I>(xif <I>(xj) 
i=l i=l,j=l 

s.t. C 2: ai 2: 0, i = 1, ... , n, 
n 

LCYiYi = 0. 
i=l 

Correspondingly the decision function of the classifier is: 

s 

f(z) = wTz + b = L CYtiYti<I>(xtif<I>(z) +b. 
j=l 

(3.6a) 

(3.6b) 

(3.6c) 

To make the calculation more efficient, we can rewrite ¢(xf ¢(z) into the form 

of a kernel function, i.e., K(x, z) = ¢(xf ¢(z). The dual problem for SVM 
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training is rewritten as: 

s.t. C ~ ai ~ 0, i = 1, ... , n, 

n 

LCYiYi = 0. 
i=l 

The corresponding decision function can be constructed by: 

s 

j(z) = WT z + b = 2:: CYtiYtiK(xti, z) +b. 
j=l 

(3.7a) 

(3.7b) 

(3.7c) 

Note that the map ¢(x) does not appear in the final optimization formula. 

Actually, by selecting a kernel function, we implicitly select the mapping func-

tion ¢( x). Every mapping function ¢( x) has a corresponding kernel function: 

K¢(x, z) = ¢(xf ¢(z), but not every bivariate function K(x, z) has a corre-

sponding mapping function ¢(x). For example, function K(x, z) = x2 + 0 * z 

does not has such a ¢(x). It has been proved that any bivariate function 

K(x, z) satisfying Mercer's Condition [4] has a corresponding mapping func-

tion. Such a bivariate function K(x, z) can thus be considered as a kernel 

function. 

In conclusion, the good performance of SVMs lies in two important 

features: One is the balance between the training error and the complexity of 

the classification model, controlled by the parameter C, which minimizes the 
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expected risk. The other is the kernel technique that makes the SVMs flexible 

and efficient. 

3.2 Support Vector Regression {SVR) 

The Max-Margin principle and kernel technique in SVM can be extended to 

regression. In E-SVR [25], we are looking for a margin that contains most of 

the data points, instead of a margin to separate two classes in SVM. Figure 

3.4 shows a linear E-SVR, where the dark area is the theE-tube (the "margin") 

of the linear regression function. 

X 

Figure 3.4: Support vector regression (linear case). 

Similar to the discussion of SVM above, we consider the linear regres-

sion case of SVR first, then we extend the result to the nonlinear case. 

Compared to the least square regression [10], which uses the least square 
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loss function (1.2), t:-SVR uses the t:-insensitive loss function (1.3). They are 

compared in Figure 3.5, where u is the target value of an instance; u is the 

regression function value of the instance; l ( u, u) is the loss function. Intuitively, 

-8 

Figure 3.5: The comparison of the t:-insensitive loss and the least square loss. 

by using t:-insensitive loss, errors less than t: are ignored; errors greater than 

t: are linearly penalized. 

The t:-insensitive loss function is designed so that the ideas of margin 

and kernel can be used conveniently. Given a data set x 1 , ... , Xn with target 

values u 1 , ... , Un, and a priori chosen t:, the t:-SVR training is a quadratic 

programming problem [25]: 

(3.8a) 

s.t. ui- wT Xi- b :S t: + ~i, i = 1, ... , n, (3.8b) 

- Ui + WT Xi+ b :'S t: + ~t, i = 1, ... , n, (3.8c) 

~i ~ 0; ~; ~ 0 i = 1, ... , n. (3.8d) 
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The errors greater than E are captured by ~i and ~; that are punished in the 

objective function. Similar to SVM, C is a parameter to control the amount 

of influence of the training errors. 

By solving the kerneled dual problem: 

~~~- c t(ai +a;)+ t(a;- ai)ui- ~ t (a;- ai)(aj- aj)K(xi, Xj) 
, i=l i=l i,j=l 

(3.9a) 

n 

s.t. 2:)a;- ai) = 0, (3.9b) 
i=l 

(3.9c) 

we obtain the values of ai and a;, which are both zero if xi does not contribute 

to the error function. The obtained regression function is 

Jinbo Bi and Kristin Bennett [2] proposed a geometric approach demonstrating 

the relation between c-SVR and binary SVC. They showed that c-SVR can be 

regarded as a binary SVC in dual space. 

c-SVR can be used to solve ranking problems. The algorithm is de-

scribed as follows: 
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• Setting the Parameters: Select the kernel function K and decide the 

values for C and E. 

• Training Process: 

Input: (xi, ui), i = 1, ... , n, where 

xi is the attributes of the ith instances in the training set; 

ui is the ranks of the ith instances in the training set; 

Step 1: 

Solve (3.9) to obtain the parameters (ai, aj, 't = 1, ... , n) of 

regression function. 

Step 2: 

s 

j(z) 2.:.: (ati - a;)K(xtj, z) + b 
j=l 

• Test or Use: For any unlabeled instance xc, rank(xc) =round(J(xc)), 

where round(x) rounds x to the nearest integer. 

3.3 Multi-Class SVM (M-SVM) 

The SVM [7] was originally proposed for binary classification, as discussed 

earlier. To extend SVM efficiently for the multi-class cases is an on-going 
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research issue. The M-SVM classifiers are computationally more expensive 

than the binary SVM classifiers. The typical way to construct a multi-class 

SVM classifier is combining several binary SVM classifiers. There are three 

different strategies by which the binary classifiers are combined: "one-against-

one" [18], "one-against-all" [3] and Directed Acyclic Graph Support Vector 

Machines (DAGSVM) [23]. 

For a q-class classification problem, the "one-against-all" strategy of 

M-SVM constructs q binary classifiers. The ith classifier is trained by taking 

the instances in the ith class as positive instances, and taking all the other 

instances as negative ones, i.e., the ith SVM training solves the following 

problem: 

(3.10a) 

(3.10b) 

(3.10c) 

~; :2: 0. (3.10d) 

The decision functions of binary classifiers is obtained by 

After obtaining the decision functions, the class label for any unlabeled in-

stance x is assigned according to the following rule: 
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class of x = j(x) = argmaxi=l, ... ,q(Ji(x)). 

The "one-against-one" strategy constructs q( q- 1) /2 binary classifiers 

where each one is trained on data from two classes. To train the classifier 

separating the ith and the jth classes, the following optimization problem is 

solved: 

1 2: .. min .. -llwijll 2 + C ~?, 
w'J b'J C'J 2 

' '~ t 

(3.11a) 

(3.11b) 

(3.llc) 

(3.11d) 

The decision functions of binary classifiers is obtained by 

After obtaining the decision functions, the class label for any unlabeled in-

stance x is decided by the "Max-Wins" voting method [13], which we will 

discuss later. 

The DAGSVM [23] is similar to the "one-against-one" method, except 

that it uses a rooted binary Directed Acyclic Graph (DAG) to organize the 

q(q-1)/2 binary classifiers obtained from the SVM training (3.10). The binary 

classifiers are embraced as the nodes of the graph. Given an unknown sample 
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x, we traverse a path from the start node of the graph to one of q end node 

of the graph by evaluating q - 1 binary classifiers. The label of the end node 

decides the class label of the instance. 

Obviously, M-SVM can be used to solve ranking problems. Taking 

"one-against-one" strategy as an example, we describe the algorithm as follows. 

• Setting the Parameters: Decide the kernel function K and the parameter 

C for the binary classifiers. 

• Training Process: 

Input: (xi, Yi), i = 1, ... , n, where 

xi is the attributes of the ith instances in the training set; 

ui is the ranks of the ith instances in the training set; 

Step 1: 

Solve (3.11) to obtain the parameters ( wii, bii, i < j) of the 

binary classifiers. 

Step 2: 

Construct the decision functions of the classifiers by: 

if i < j 

-(wii)T cjy(x)- bii =- fji(x), if i > j. 
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• Test or Use: 

Input: Any unlabeled instance xc. 

Step 1: Calculate Vi(xc) = ~ s(fi1(xc)), where 
j 

1, if t > 0 
s(t) = 

0, if t s 0. 

Step 2: Rank(xc) = argmaxi=l, ... ,q(Vi(x)) 

All the described multi-class SVM methods: one-against-one, one-against-

all, and DAGSVM, are solving the ranking problem by treating it as generic 

multi-class classification problem and neglecting the ranking information. Al-

though the DAGSVM uses a list of natural numbers as class labels and uses 

the list to construct the Directed Acyclic Graph (DAG), the choice of the 

class order in the list is arbitrary [23]. Thus all of the described multi-class 

SVM methods can be improved for ranking problems by taking the ranking 

information into consideration. 
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Chapter 4 

HYBRID ALGORITHMS 

In this chapter, we first discuss the advantages and disadvantages of the current 

methods for ranking problems. Based on the discussion, we propose to use fuzzy 

voting in our hybrid algorithm for ranking problems. At the end, we apply the 

idea of fuzzy voting to generic multi-class classification problems. 

4.1 The Hybrid Algorithm for Ranking Prob-

I ems 

4.1.1 Comparison of Existing Methods 

Both UTADIS-based algorithms and SVM-based algorithms are candidates for 

ranking problems. We simply compare these two families of methods. 
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The UTADIS model comes from decision science, where it is usually 

assumed that the prior knowledge about the correlations between attributes 

and class labels is available and easy to be characterized by function models. 

However, the assumption is not true in general. The prior knowledge may 

be unavailable or inexact for most ranking problems. This explains why the 

prediction performance of UTADIS is not good [26]. 

As for the GUTADIS model, although its prediction performance is 

good, its computational complexity is extremely high, because a time-consuming 

Mixed Integer Program (MIP) needs to be solved in the GUTADIS model. 

This prevents the algorithm from applications with a large data set. 

We can see that the performance of UTADIS-based algorithms is re­

stricted by the assumptions made, and it is hard to manage the tradeoff be­

tween the training errors and the complexity of the classification model. 

The SVM-based methods, instead, provide the convenience to control 

the tradeoff, and they do not need any prior knowledge or assumptions. These 

are important reasons why SVM-based methods are among the most popular 

classification methods. 

The multi-class SVM (M-SVM) is designed for generic multi-class clas­

sification problems, whose loss function is the 0-1 loss defined by (1.1), that 

is, there is no difference among the losses of any misclassification errors; each 
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misclassification causes identical loss of "1". This loss function is not a good 

choice for ranking problems, since in ranking problems some misclassification 

errors are more serious than others. For example, Table 4.1 lists the empiri-

Predicted by M-SVM, average accuracy: 80.43% 

Class 1 2 3 4 5 6 7 8 

1 100.00 0 0 0 0 0 0 0 

2 0 100.00 0 0 0 0 0 0 

3 0 35.29 58.82 5.88 0 0 0 0 

4 0 0 3.57 82.14 14.29 0 0 0 

5 0 0 3.03 9.09 81.82 6.06 0 0 

6 0 0 0 8.33 33.33 58.33 0 0 

7 0 0 0 0 33.33 0 66.67 0 

8 0 0 0 0 66.67 0 33.33 0 

Table 4.1: M-SVM for the Country Risk Classification problem 

cal prediction accuracy of M-SVM method for the Country Risk Classification 

problem. The number in row i and column j denotes the probability of a sam­

ple in class i being misclassified to class j. We notice that the number in row 8 

and column 5 is 66.60%, which means it is much possible that a "CC-D" (class 

8) country is misclassified as an "BB" (class 5) country. This kind of misclas­

sification errors is more serious than misclassifying a "CC-D" (class 8) country 
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to "CC" (class 7). Thus, this kind of misclassifications should be penalized 

heavier in loss function so that the loss function can guide the training process 

of the classifier to avoid them. It also indicates that the loss function used in 

ranking problems should be distance-based loss function, such as E-intensive 

loss, defined in (1.3). Motivated by this observation, we propose to modify the 

M-SVM method so that it can handle the distance-based loss functions. 

loss(x") 3 
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// 
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Figure 4.1: The loss function of the UTADIS model. 

One interesting issue we would like to discuss is the SVR. If we consider 
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the class labels in ranking problems as target values in regression problems, 

we can use c:-SVR to solve ranking problems. Suppose the class labels are 

represented by natural numbers, i.e., Y = {1, 2, ... , q}, the loss function of 

c:-SVR with c: = 0.5 is equivalent to that of the UTADIS model with fixed 

f.ti = i + 0.5, i = 1, ... , q - 1. The comparison of Figure 4.1 and Figure 

3.5 shows the equivalence clearly. Since c:-SVR takes the advantage of SVM 

methods and embraces the distance-based loss function, it seems that c:-SVR 

is a better choice for ranking problems than either UTADIS or M-SVM. 
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Figure 4.2: A smooth function estimated by c:-SVR. 

Unfortunately, the empirical results (listed in Chapter 5) indicate that 

the prediction performance of c:-SVR for ranking problems is not very good. 
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Figure 4.3: A stair-like function need to be estimated in ranking problem. 

The reason is that the E-SVR is designed to predict continuous real numbers. 

It is used to construct a smooth function whose E-tube covers most of the 

data points, as shown in Figure 4.2. However, when we use SVR to solve 

ranking problems, the functions that need to be estimated are typically not 

very smooth since the target values (the ranks) are discrete. The fact can be 

illuminated by a trivial one dimensional ranking problem as shown in Figure 

4.3. In this problem, each pair of adjacent classes can be separated by several 

points (denoted by s1 ,s2 , and s3). If we try to use SVR, we have to estimate 

a stair-like function shown by the dark line, since the data points are concen-

trated in several layers. SVR can hardly estimate such a stair-like function 
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well. The UTADIS model, instead, can estimate such a stair-like function by a 

piecewise-linear monotone function. This observation motivates us to combine 

the SVM method with the UTADIS model to achieve a better algorithm for 

ranking problems. 

4.1.2 Construction of Binary Classifiers 

In our hybrid algorithm for ranking problems, we first construct q - 1 binary 

classifiers where the ith classifier is trained by taking the instances from the 

first i classes as positive instances, and the rest instances as negative ones, 

that is, the ith SVM training solves the following optimization problem: 

(4.1a) 

( 4.1 b) 

(4.1c) 

~; ~ 0. ( 4.1d) 

The reason why we use these q - 1 classifiers can be attributed to the spe-

cific properties of ranking problems. These q - 1 classifiers are the smallest 

collection of binary classifiers containing all necessary separation boundaries. 
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4.1.3 Fuzzy Voting Combination of Binary Classifiers 

After we construct q - 1 binary SVM classifiers, for each instance c, which is 

represented by xc in training set, we calculate its decision function values of 

the q- 1 classifiers, and take the values as new attributes of the instance, i.e., 

we calculate 

(4.2) 

where, fi(x) is the decision function of the ith binary classifier, and obtained 

vf is the ith new attribute of c. This is actually a transformation from the 

original space X to a new space :F. Now each instance c in the training set is 

represented by q- 1 new attributes vf, i = 1, ... , q -1 in the transformed data 

set. In the next step, we use the transformed data set and the original class 

labels (the ranks) to train the UTADIS model. 

By using the UTADIS model, we typically assume that the correla­

tions between the new attributes vi, i = 1, ... , q - 1 and class labels y are 

monotone. We can see the assumption is reasonable by examining Figure 

4.4, which demonstrates the semi-monotone correlations between the decision 

function values v1 , v2 and the class label y in the application of Country Risk 

Classification. 

The following LP problem is proposed to train the UTADIS-based com-
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Class Lah<.l Cla.s Lah<.l 

5 ••• ··- ·--·· 

Figure 4.4: The semi-monotone relation between v1 v2 and the class label y. 

bination: 

(4.3a) 

q-1 

s.t. L Ui(fi(xc))- f-tk + a+(c) 2 0, \11 ~ k ~ q- 1, \fc E Ck, (4.3b) 
i=l 

q-1 

L Ui(Ji(xc))- f.-Lk-1- a-(c) ~ -6, \12 ~ k ~ q, \fc E ck, (4.3c) 
i=l 

f.-Lk-1 - f-tk 2: s, \fk = 2, ... 'q- 1, ( 4.3d) 

uf+1 
- Uf 2: 0, Vi= 1, · · · , q- 1, \fj = 1, · · · , ri- 1, ( 4.3e) 

U/ = 0, U[i = 1, Vi= 1, · · · , q- 1, ( 4.3f) 

(4.3g) 

where q is the number of classes, and thus the number of attributes is q- 1, 
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ck represents the kth class, fi (xc) is the ith new attribute of instance c, which 

is actually the decision function value of the ith binary classifier on instance 

An interesting way to understand why we use the UTADIS model to 

combine these binary classifiers is that we actually proposed a "fuzzy" voting 

method instead of the "Max-Wins" voting method to combine the binary 

classifiers. In other words, when a classifier "votes" an instance c for or against 

a class, the classifier uses a real number in [0, 1] as its "fuzzy" vote instead of 

the exact vote in {0, 1} in "Max-Wins". 

In this algorithm, the "fuzzy" vote of the ith classifier for samples c is 

actually Ui(fi(xc) ). Recall that fi(xc) is the decision function value of the ith 

classifier on sample c, and Ui is a piecewise-linear monotone function, which 

normalizes fi(xc) to some value between 0 and 1. In brief, the "fuzzy" vote 

of the ith classifier is its decision function value normalized by function Ui. 

The votes from q - 1 binary classifiers are summed up to get the value of the 

utility function: U(xc) = 'Li Ui(fi(xc)). This value can be considered as the 

total votes on the instance c, which determines the rank of the instance. 

In the optimization of UTADIS training, we search the optimal criterion 

functions Ui(t), i = 1, ... , q-1, which are actually the optimal voting strategies 

of the binary classifiers, so that the loss of training errors, defined by ( 4.3 a), 
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is minimized. 

The benefits of this "fuzzy" voting are obvious. First, the additional in­

formation from the decision function values of the binary classifiers can help to 

improve the prediction performance. Second the E-intensive loss is minimized 

in UTADIS training. 

In conclusion, we have the following hybrid algorithm for ranking prob-

lems: 

• Setting the Parameters: Decide the kernel function K and the value of 

C for the binary classifiers. 

• Training Process: 

Input: (xi, Yi), i = 1, ... , n, where 

Xi is the attributes of the ith instances in the training set; 

ui is the ranks of the ith instances in the training set; 

Step 1: 

Solve (4.1) to obtain the parameters (wi, bi, i = 1, ... , q- 1) 

of the q - 1 binary classifiers. 

Step 2: 
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Construct the decision functions of the classifiers by: fi ( x) = 

Step 3: 

Construct a new data matrix F : n x ( q - 1), whose entities 

F(i,j) is calculated by: F(i,j) = fj(xi)· 

Step 4: 

Taking F as the new attribute matrix of training set, solve 

(4.3) to construct the piecewise-linear criterion functions Ui(t) 

and obtain the boundary values: ~i, i = 1, ... , q- 1. 

• Test or Use: 

Input: Any unlabeled instance xc 

Step 1: 

Calculate the summation of the fuzzy votes by: 

( 4.4) 

Step 2: 

Compare U(xc) with the boundary values ~i, i = 1, ... , q- 1 

to decide the rank of instance xc. 
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We name our hybrid algorithm for ranking problems as "Fuzzy Voting Sup­

port Vector Ranking (FVSVR)". Empirical results (in Chapter 5) show that 

FVSVR achieves a promising performance in accuracy and it is more efficient 

than UTADIS and GUTADIS methods. 

In the first stage of FVSVR training, the ranking information is used 

to group the classes, so that only q-1 binary classifiers are constructed. That 

make FVSVR more efficient than M-SVM in the first stage. 

While, in the decision process, FVSVR has to solve a additional LP 

problem ( 4.3) to achieve the fuzzy voting functions. The LP problem, which 

has 4m + (r + 2)(q- 1) - 1 constraints and 2m+ (r + 1)(q- 1) valuables, 

is usually an easier problem than the LP problem of UTADIS training (2.3), 

which has 4m + nr + q- 1 constraints and 2m+ (r + 1)n valuables, because 

in most of the practical applications, the attribute number n is greater than 

the class number q. 

Since both the QP problem in binary SVM training and the LP problem 

in UTADIS training are easy to solve, the FVSVR, as a combination of them, 

is efficient. This augment is supported by experiments in Chapter 5. 
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4.2 Using the Quadratic Loss Function 

In the LP problem ( 4.3), the misclassification errors are linearly punished. 

Other loss functions can also be employed into this optimization problem. 

We here try to use the quadratic loss function, which results in the following 

Quadratic Programming (QP) problem. 

(4.5a) 

q-1 

s.t. L Ui(fi(xc))- /-lk +a+( c) 2:: 0, V1 :::; k:::; q- 1, Vc E ck, (4.5b) 
i=1 

q-1 

L Ui(fi(xc)) -Mk-1- a-(c):::; -6, V2:::; k:::; q, Vc E ck, (4.5c) 
i=1 

/-lk-1 - /-lk 2:: s, Vk = 2, 0 0 0 'q - 1, ( 4.5d) 

UJ+1 
- Uj > 0 Vi = 1 · · · q- 1 VJ. = 1 . . . r·- 1 

'l 'l - ' ' ' ' ' ' z ' 
(4.5e) 

U/ = 0, U[i = 1, Vi= 1, ... , q- 1, ( 4.5f) 

( 4.5g) 

The only difference between ( 4.3) and ( 4.5) is in the objective functions. Ex-

perimental results in Chapter 5 shows that the effect of quadratic loss function 

is insignificant. 
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4.3 Fuzzy Voting for Generic M-SVM 

In the "fuzzy" voting method proposed in the first section of this chapter, 

the normalized decision function values of the q - 1 binary classifiers are used 

as the "fuzzy" votes. The rank of a sample c is decided by the summation 

of these "fuzzy" votes. This idea can be extended to the generic multi-class 

SVM (M-SVM) to improve the current combination methods. 

As we have mentioned before, there are three different combination 

strategies by which the binary SVM classifiers are combined into multi-class 

classifiers: "one-against-one" [18], "one-against-all" [3] and DAGSVM [23]. In 

the following part of this section, we will propose our "fuzzy" voting method for 

the "one-against-one" strategy, which is called "Fuzzy Voting Support Vector 

Machine (FVSVM)". In the following discussion, we denote Cij as the binary 

classifier that separate class i and class j' denote ci as the ith class, and denote 

c as an instance. 

4.3.1 Fuzzy Voting Combination for "One-Against-One" 

Strategy 

Recall the algorithm we mentioned in Chapter 3, the "one-against-one" strat­

egy constructs q(q- 1)/2 binary classifiers each of which is trained on data 
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from two classes. The "Max-Wins" voting method [13] is used to combine the 

binary classifiers into multi-class classifiers. 

In the "Max-Wins" voting method, we calculate 

(4.6) 
j=l, ... ,q,jfi 

for each instance c and each class i, where xc denotes the data point of the 

sample c. fij ( x) is the decision function of the binary classifier that is trained 

by taking the samples from class i as positive ones and the samples from class 

j as negative ones. Thus, there are two decision functions of a classifier Cij(x): 

fij(x) and !Ji(x), and obviously, fij(x) =- fji(x). In (4.6), function s(t) maps 

the decision function value to 0, 1 as follows: 

1, if t > 0 
s(t) = (4.7) 

0, if t :::; 0. 

In brief, ( 4.6) means that when classifier Cij decides that a sample c is in class 

i rather than in class j (fij(xc) > 0), the classifier contributes 1 as its vote to 

Vi(xc), otherwise it contributes 0. For each class i and each instance c, Vi(xc), 

then, is the summation of the votes from the binary classifiers in favor of the 

decision that the instance c is in class i. This is the "voting" process. 

Then, the class label of sample c is decided by: 

Class Label of c = argmaxi=l, ... ,qVi(xc), (4.8) 
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i.e., we decide that instance c belongs to class i if class i gets the maximum 

votes from the binary classifiers. This is what "Max-wins" voting means. We 

call this voting strategy as the "exact" voting since the votes from classifiers 

are either exact 1 or exact 0. 

Similar as the approach made for ranking problems, we propose our 

"fuzzy" voting instead of the "exact" voting to combine the binary classifiers 

for the generic multi-class classification problems. We replace the function 

s(t) in (4.6) by a piecewise-linear monotone function Uij(t) that normalizes 

(maps) the decision function value fij(x) to a real value between 0 and 1, i.e., 

the "fuzzy" version of ( 4.6) is 

(4.9) 
j=l, ... ,q,jof=i 

For an instance c, when classifier Cij votes it for or against the class i, the 

classifier uses its normalized decision function value Uij (fij ( xc)) instead of "0 

or 1" as its "fuzzy" vote. For each class i and each instance c, Vi(xc), again, is 

the summation of the votes from the binary classifiers in favor of the decision 

that the instance c is in class i. 

Note that for an instance c, any binary classifier Cij contributes two 

votes: v1 for class i and v2 for class j. In exact voting, v1 , v2 E { 0, 1} and 

and we still want to keep the constraint: v1 + v2 = 1, so that the weights 
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(authorities) of the binary classifiers in voting are identical, i.e., we want 

( 4.10) 

Since we know that fij(x) = - !Ji(x), we can prove that if we impose the 

following constraint: 

( 4.11) 

on the normalization functions Uij(t), then (4.10) is satisfied. The proof is 

trivial: 

( 4.12a) 

(4.12b) 

=1. (4.12c) 

Now the remaining problem is how to build the normalization functions Uij ( t). 

Similar to the hybrid algorithm proposed before, we construct a LP to search 

the optimal normalization functions Uij(t), j -=/=- i, so that the loss of training 

errors is minimized. The optimization problem is: 

min L~j 
~,u . 

(4.13a) 
c,J 

(4.13b) 

L uij(jij(xc)), Vi= 1, ... , q, (4.13c) 
j=l, ... ,q,jofi 
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Ui~ = 0, Uij = 1, Vi =I j, 

cc > 0 
<.,]- ' 

( 4.13d) 

(4.13e) 

( 4.13f) 

(4.13g) 

where Uii(t) in ( 4.13 c) is a piecewise-linear function. Suppose the decision 

tl+ 1 - f· . (xc) J· . (xc) - tl u ·(!· ·( c))= ij ~J ul. + ~J ij ul+l 
~J lJ X tl+l - tl.. lJ tl+l - tl. lJ . 

lJ lJ lJ ~J 

(4.14) 

According to the "Max-Wins" principle (4.8), for an instance c E Ci, if 

Vi(xc) =I max Vj(xc), a misclassification error takes place. We use ~j in 
J=l, ... ,q 

( 4.13 b) to capture these misclassification errors, which are linearly penalized 

in the objective function (4.13 a). Constraint (4.13 d) guarantees that the 

sequence Ufi, l = 1, ... , r is monotone. We import the constraint ( 4.13 e) so 

that the normalization functions satisfies ( 4.11). Also, constraints ( 4.13 d and 

f) guarantee that the range of the normalization function is [0, 1] 

By solving this LP, we get the piecewise-linear monotone normalization 

functions Uij(t), i =I j, which can be used to assign class labels to unlabeled 

samples. 

In summary, the key issue of our "fuzzy" voting methods is to use the 

normalized decision function value as the "fuzzy" votes instead of the 0-1 votes 
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used in exact "Max-Wins" voting. The normalization (mapping) functions 

Uij(t), i =J- j are decided by the LP(4.13). Thus, our "FVSVM" algorithm is 

described as follows. 

• Setting the Parameters: Decide the kernel function K and the value of 

C for the binary classifiers. 

• Training Process: 

Input: (xi, Yi), i = 1, ... , n, where 

Xi is the attributes of the ith instances in the training set; 

ui is the ranks of the ith instances in the training set; 

Step 1: 

Solve (3.11) to obtain the parameters ( wij, bij, i < j) of the 

binary classifiers. 

Step 2: 

Construct q * ( q - 1) decision functions by: 

(wijf¢(x)+bij, ifi<j 
fij(x) (4.15) 

-(wji)T ¢(x)- b)i =- fji(x), if i > j; 

Step 3: 
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Calculate the decision function value for the instances in train-

ing set, and reserve the decision function value of the ith in-

stance as the ith row of the matrix F : ( m x q( q - 1)) . 

Step 4: 

Taking matrix F as the new attribute matrix of training set, 

solve ( 4.13) to construct the piecewise-linear normalization 

functions uij ( t). 

• Test or Use 

Input: 

Any unlabeled instance xc. 

Step 1: Vi ( xc) = L, Uij (fij ( xc)) 
j 

Step 2: Class Label of xc = argmaxi=l, ... ,q(Vi(x)) 

The described algorithm is called Fuzzy Voting based Support Vector Machine 

(FVSVM). Empirical results of FVSVM are presented in Chapter 5. It is clear 

that FVSVM is a little more time-consuming than SVM since they construct 

the same set of binary SV classifiers and an additional LP problem (4.13) has to 

be solved in the decision process of FVSVM. But the LP problem we proposed 

is very easy to solve. In practice, the running time of FVSVM training for 
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each problem is roughly twice of that of M-SVM. 
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Chapter 5 

COMPUTATIONAL RESULTS 

AND EXPERIMENTS 

The purpose of our experiment is to compare the prediction performance of 

our hybrid algorithms proposed in Chapter 4 with the current algorithms for 

both ranking problems and generic multi-class classification problems. The 

performance is compared on several practical classification problems. In this 

chapter, we first describe the computational environment and the procedure 

of our experiments. Then, for each classification problem, we briefly introduce 

the application background, the data source and the properties of the problem. 

Following this, we propose our empirical results of the candidate algorithms on 

this problem. The benefits of our approach are demonstrated by the empirical 
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results. 

5.1 The Computation Environment 

5.1.1 The Solvers 

Both the LP problems ( (2.3) for UTADIS training, ( 4.3) for Fuzzy Voting 

based Support Vector Ranking (FVSVR) and (4.13) for Fuzzy Voting based 

Support Vector Machine (FVSVM)) and the QP problem (4.5) are solved 

using SeDuMi v 1.1 [24], which is one of the best software package for opti­

mization over symmetric cones. It was developed by Jos F. Sturm, and the 

Advanced Optimization Lab at McMaster University continues the develop­

ment and maintenance of SeDuMi. The developers, Oleksandr Romanko and 

Imre Polik, both are Ph.D. students of Dr. Tamas Terlaky. 

SeDuMi is not designed specifically for LP, but in practice I found it is 

more robust and efficient than the LP solver provided by MATLAB. 

The Mix-integer nonlinear programming problem (2.4) for GUTADIS 

training is solved by MINLP [19], which implements a branch and bound algo­

rithm for nonlinearly constrained mix-integer programming problem. MINLP 

was developed by Roger Fletcher and Sven Leyffer at the University of Dundee. 

The SVM solver we used is LIBSVM [5], which is a simple, easy-to-
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use, and efficient software for SVM classification and regression. It can solve 

binary SVM, multi-class SVM, v-SVM, one-class-SVM, c-SVR, and v-SVR. It 

also provides an automatic model selection tool for SVM classification. The 

package was developed and maintained by Chih-Chung Chang and Chih-Jen 

Lin [5] from National Taiwan University. The simple MATLAB interface for 

LIBSVM we used in our experiment was provided by Jun-Cheng Chen, Kuan­

Jen Peng, Chih-Yuan Yang, and Chih-Huai Cheng from the National Taiwan 

University. 

Another popular data mining package we used to test the performance 

of M-SVM is "Weka" [15], which is an open source data mining software pack­

age. We used its SMO algorithm, which implements John Platt's Sequential 

Minimal optimization algorithm for training a SVM classifier. The prediction 

accuracy of SMO for each problem is listed where we present our empirical 

result. 

We designed several MATLAB 7.0 programs to manage the whole pro­

cess of our experiment. The tasks include the file operations, the data pre­

processing, the construction and maintenance of the matrices and vectors, the 

organization of the cross validation process and the visualization of the exper­

imental results. The source code of the programs can be found in Appendix 

I. 
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Most of our programs are executed on an IBM PC with an P-IV 1.7G 

CPU and 256M memory, except that we used the "MINLP" solver provided 

by NEOS [9] to solve the Mix-integer nonlinear programming in GUTADIS 

training. 

5.2 The Process of Experiments 

5.2.1 Data Pre-processing 

Most of the databases in our experiment are stored as ".txt" files. They are 

transferred to matrices that can be processed conveniently. Such attributes as 

the ID of the instances are ruled out to avoid the overfitting problem. Nominal 

attributes are converted to binary numeric attributes. All the attributes are 

normalized to the range of [ -1, 1]. The class labels are represented by natural 

numbers: {1, ... , q}, where q is the number of classes. In ranking problems 

the order of the natural number indicates the order of the classes. However, 

in generic multi-class Classification problems, these natural numbers are just 

symbols of the classes. 

After data pre-processing, we get a matrix X : n x m, which stores 

the attribute values of the instances in the database, and a vector Y : n x 1 

that stores the class label of the instances. They are inputs of the candidate 
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classification algorithms. 

5.2.2 k-fold Cross Validation 

The k-fold cross validation method [17], which we utilized to evaluete the 

power of our algorithms is widely used to evaluate the prediction ability of 

classification models. In this validation method, the data set is randomly 

partitioned into k subsets, with the samples in each classes evenly distributed 

in the k sets. The validation procedure is then repeated k times. Each time, 

one of the k subsets is left out as the test set, while the others are used as 

training set. After running the training procedure on the training set, the 

obtained classifier is tested on the test set and the test errors are recorded. 

When all the k validation procedures are finished, the average accuracy is 

calculated as the approximation of the predication accuracy of the classifier. 

We can see that each validation procedure takes a kkl fraction of the 

data set as training set. On the one hand, a smaller k indicates a smaller 

proportion of the training set, hence indicates an underestimated classifier 

with poorer generalization ability. On the other hand, a larger k indicates a 

validation procedure consuming more time and computational power. In this 

thesis, we choose k = 10, a widely used trade-off, which means 90 percent of 

the samples is used as training set and 10 percent is used as test set at each 
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validation phase. 

5.3 Databases and Experimental Results for 

Ranking Problems 

The experiment is to compare the prediction performance of M-SVM, FVSVR, 

UTADIS, GUTADIS, and SVR for ranking problems. 

We test the candidate algorithms with a group of ranking problems. 

One of them is the country risk classification problem. We employ it mainly 

because the UTADIS and GUATDIS models have been successfully applied 

to this problem. The other two are the computer performance estimation 

problem and the auto-mpg estimation problem. Both of them are from the 

UCI Machine Learning Repository [21]. 

5.3.1 Experiments with the Country Risk Classification 

Problem 

The problem of country risk classification originates from international busi­

ness. The country risk of a country refers to the risk that the country may 

not repay its international debt. The estimation of the country risk can help 

to make the decision of loans and investments to a certain country. The esti-
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mation is usually done by constructing a multi-class classifier that ranks the 

country risks of different countries in terms of their economic and political 

status. 

The database of this problem has two sources: the economic and po­

litical data of the countries come from the Would Development Indicators 

(WDI) [28] database created by The Would Bank. This database records 575 

attributes for 207 countries. Xijun Wang [26] selected 40 attributes and 69 

countries from the online limited version of WDI as the data set of the Country 

Risk Classification problem. The country risk levels (class labels) of these 69 

countries are provided by Standard and Poors [1]. 

This problem is a typical ranking problem, since the class labels of 

this problem: from AAA (class 1) to CC-D (class 8), are ordinal and the 

misclassification losses are distance-based. 

Before we test the SVM-based algorithms on this data set, we have 

to decide the penalty factor C and kernel function K(x, z) for the binary 

classifiers. In the whole procedure of our experiment, we use the "RBF" 

kernel [4] with fixed 1 = 0.2 as our kernel function, since how to select a good 

kernel is not the topic of this project. For each candidate algorithm, we do the 

10-fold Cross Validation 11 times. Each time, we test different penalty factors: 

C = 2-i, i = -2, -1, 0, 1, ... , 8. We pick the best prediction performance from 
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Predicted by M-SVM 

Class 1 2 3 4 5 6 7 8 

1 20 0 0 0 0 0 0 0 

2 0 22 0 0 0 0 0 0 

3 0 6 10 1 0 0 0 0 

4 0 0 1 23 4 0 0 0 

5 0 0 1 3 27 2 0 0 

6 0 0 0 1 4 7 0 0 

7 0 0 0 0 1 0 2 0 

8 0 0 0 0 2 0 1 0 

Table 5.1: Confusion matrix of M-SVM on the Country Risk Clas-

sification database 

the 11 tries as predication performance of the algorithm. 

The best prediction performance of M-SVM on the Country Risk Clas­

sification database, achieved by trying C = 26 , is demonstrated by the Confu­

sion Matrix X in Table 5.1, where the natural number Xij in row i and column 

j indicates the number of instances whose actual class label is i but it is clas-
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Predicted by M-SVM, accuracy: 80.43% 

Class 1 2 3 4 5 6 7 8 

1 100.00 0 0 0 0 0 0 0 

2 0 100.00 0 0 0 0 0 0 

3 0 35.29 58.82 5.88 0 0 0 0 

4 0 0 3.57 82.14 14.29 0 0 0 

5 0 0 3.03 9.09 81.82 6.06 0 0 

6 0 0 0 8.33 33.33 58.33 0 0 

7 0 0 0 0 33.33 0 66.67 0 

8 0 0 0 0 66.67 0 33.33 0 

Table 5.2: Performance of M-SVM on the Country Risk Classifi-

cation database 

sified to class ) . For example, the seventh row of the matrix X means that 

there are 3 instances in class 7, 2 of which are correctly classified (to class 7) 

and 1 of which is misclassified to class 5. 

We divide the numbers in each row of X by the sum of this row, the 

total number of instances in this class, to get a matrix R preseneted in Table 
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Predicted by FVSVR, accuracy: 81.16% 

Class 1 2 3 4 5 6 7 8 

1 85.00 15.00 0 0 0 0 0 0 

2 0 100.00 0 0 0 0 0 0 

3 0 29.41 58.82 11.76 0 0 0 0 

4 0 0 3.57 89.29 7.14 0 0 0 

5 0 0 0 12.12 87.88 0 0 0 

6 0 0 0 0 41.67 58.33 0 0 

7 0 0 0 0 0 66.67 33.33 0 

8 0 0 0 0 0 33.33 33.33 33.33 

Table 5.3: Performance of FVSVR on the Country Risk Classifi-

cation database 

5.2. The entry rij in matrix R is the correct/incorrect classification rate from 

class i to class j. In the following part of this chapter we present this error 

rate matrix instead of the confusion matrix as the experiment result, since it 

is more convenient for us to compare the performance of different algorithms 

based on the misclassification rate. The "accuracy" listed on the top of the 
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table is the average accuracy of the algorithm, which is calculated as follows: 

Ln· AveAccuracy = ----.:, 
. n 

(5.1) 

where, ni is the number of correctly classified instances at the ith validation, 

and n is the total number of instances. 

Predicted by FVSVR, accuracy: 80.43% 

Class 1 2 3 4 5 6 7 8 

1 75.00 10.00 10.00 5.00 0.00 0.00 0.00 0.00 

2 0.00 90.91 9.09 0.00 0.00 0.00 0.00 0.00 

3 0.00 5.88 70.59 23.53 0.00 0.00 0.00 0.00 

4 0.00 0.00 3.57 82.14 14.29 0.00 0.00 0.00 

5 0.00 0.00 3.03 0.00 90.91 6.06 0.00 0.00 

6 0.00 0.00 0.00 0.00 33.33 66.67 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 66.67 33.33 0.00 

8 0.00 0.00 0.00 0.00 0.00 33.33 0.00 66.67 

Table 5.4: Performance of FVSVR with quadratic loss on the 

Country Risk Classification database 

We can see from Table 5.2 that although the accuracy of M-SVM is 

good (80.43% by LIBSVM and 81.16 % by SMO in Weka), it allows some 
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Figure 5.1: The accuracy of candidate algorithms with different panelty factor 

C. 

Algorithms M-SVM FVSVR UTADIS GUTADIS SVR 

Training Time 1.602 2.415 3.623 24.57 3.472 

Table 5.5: Training time of candidate algorithms (seconds per training) 

serious misclassifications. For example, the misclassification rate from class 8 

to class 5 is as great as 66.67%. These serious misclassifications can be avoided 

by employing the distance-based loss function. We can see the effect of the 
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the distance-based loss function from the experimental results of FVSVR in 

Table 5.3. The prediction performance of FVSVR with quadratic loss function 

is reported by Table 5.4. 

The performance of the UTADIS model is not as good as that of M­

SVM and FVSVR, (61.59% in average). Although the prediction accuracy 

of GUTADIS is pretty good (81.16% in average), it is quite time-consuming 

in computation. The prediction accuracy of c--SVR is 75.36% in the average, 

which is not very competitive. The accuracy of candidate algorithms is com­

pared by Figure 5.1. We can see that FVSVR achieves the best performance 

(81.16%). 

In the first stage of the training process of FVSVR, we construct only 

7 binary SV classifiers, compared by 28 binary classifiers in M-SVM. In the 

decision process, we solve aLP problem with 614 constraints and 332 variables 

compared by the LP problem in the original UTADIS model which has 2599 

constraints and 2356 variables. The training times of the candidate algorithms 

are listed in Table 5.5, which shows that FVSVR is as efficient as M-SVM, 

UTADIS and SVR. And it is much more efficient than GUTADIS. 
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M-SVM, accuracy: 64.59% 

Class 1 2 3 4 5 

1 48.39 51.61 0.00 0.00 0.00 

2 8.20 81.97 6.56 1.64 1.64 

3 3.45 34.48 37.93 17.24 6.90 

4 0.00 32.00 36.00 16.00 16.00 

5 0.00 0.00 7.94 4.76 87.30 

Table 5.6: Performance of M-SVM on the Computer Hardware database 

5.3.2 Experiments with the Computer Performance Es­

timation Problem 

This problem is to estimate the relative performance capabilities of computers 

in terms of their cycle time, memory size, etc. 

We treat this problem as a five-levels ranking problem by grouping the 

relative performance of the items into 5 ranks: (0, 20), [20, 40), [40, 60), [60, 80), [80, Max). 

We have 209 instances in 5 ranks. Each instance has 7 numeric attributes in-

cluding the class label. 

The performance of M-SVM, FVSVR and FVSVR with quadratic loss 

function for this problem is presented in Table 5.6, Table 5. 7 and Table 5.8 
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respectively. Since the correlations between the attributes and the ranks are 

FVSVR, accuracy: 67.94% 

Class 1 2 3 4 5 

1 58.06 41.94 0.00 0.00 0.00 

2 11.48 70.49 11.48 6.56 0.00 

3 0.00 20.69 51.72 20.69 6.90 

4 0.00 16.00 32.00 44.00 8.00 

5 0.00 0.00 4.76 7.94 87.30 

Table 5.7: Performance of FVSVR on the Computer Hardware database 

FVSVR, accuracy: 67.94% 

Class 1 2 3 4 5 

1 58.06 38.71 3.23 0.00 0.00 

2 8.20 70.49 14.75 6.56 0.00 

3 0.00 17.24 48.28 27.59 6.90 

4 0.00 16.00 32.00 48.00 4.00 

5 0.00 0.00 6.35 6.35 87.30 

Table 5.8: Performance of FVSVR with quadratic loss on the Computer Hard-

ware database 

monotone, the obtained accuracy of UTADIS and GUTADIS (62.20%) is as 
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good as M-SVM (64.59 %by LIBSVM and 63.94% by SMO in Weka) but still 

worse than FVSVR (67.94%). The accuracy of c-SVR is 59.41% which is not 

good. The accuracy is compared by Figure 5.3 We can see that the FVSVR 

0.62 / GUTADIS , ~ 
l/ M-SVJvi -" 
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lo!(C 

Figure 5.2: The accuracy of candidate algorithms with different panelty factor 

c. 

achieves the best performance (67.94%). 

Algorithms M-SVM FVSVR UTADIS GUTADIS SVR 

Training Time 0.1156 0.8412 1.7525 6.6850 0.2983 

Table 5.9: Training time of candidate algorithms (seconds per training) 

In the first stage of the training process of FVSVR, we construct only 

4 binary SV classifiers, compared by 10 binary classifiers in M-SVM. In the 
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decision process, we solve aLP problem with 871 constraints and 450 variables 

compared by the LP problem in the original UTADIS model which has 1146 

constraints and 730 variables. The training times of the candidate algorithms 

are listed in Table 5.9, which shows that FVSVR is a little time-consuming 

than SVM and SVR, but is more efficient than UTADIS and GUTADIS. 

5.3.3 Experiments with the Auto-mpg Estimation Prob­

lem 

Predicted by M-SVM, accuracy: 64.32% 

Class 1 2 3 4 5 6 

1 83.02 16.98 0 0 0 0 

2 13.27 70.41 14.29 2.04 0 0 

3 1.28 17.95 51.28 25.64 2.56 1.28 

4 0 2.60 15.58 70.13 9.09 2.60 

5 0 0 1.79 16.07 55.36 26.79 

6 0 0 2.78 5.56 41.67 50.00 

Table 5.10: Performance of M-SVM on the Auto-mpg database 

The Auto-mpg database concerns city-cycle fuel consumption in Miles 

Per Gallon, to be predicted in terms of such attributes as horsepower and 
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Predicted by FVSVR, accuracy: 66.08% 

Class 1 2 3 4 5 6 

1 81.13 18.87 0 0 0 0 

2 11.22 71.43 17.35 0 0 0 

3 1.28 12.82 61.54 21.79 2.56 0 

4 0 0 22.08 64.94 11.69 1.30 

5 0 0 1.79 19.64 57.14 21.43 

6 0 0 2.78 0 41.67 55.56 

Table 5.11: Performance of FVSVR on the Auto-mpg database 

weight of a vehicle. 

We treat this problem as a six-levels ranking problem by grouping the 

MPGs into 6 levels: (0, 15), [15, 20), [20, 25), [25, 30), [30, 35), [35, Max). We 

have 398 instances in 6 ranks. Each instance has 8 attributes including the 

class label. 

The performance of M-SVM, FVSVR and FVSVR with quadratic loss 

are presented in Tables 5.10 5.11 and 5.12 respectively. 

Since the background knowledge about the correlations between the 

attributes and the ranks is unavailable in this problem, to test the performance 
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Predicted by FVSVR, accuracy: 67.84 

Class 1 2 3 4 5 6 

1 83.02 16.98 0.00 0.00 0.00 0.00 

2 13.27 71.43 15.31 0.00 0.00 0.00 

3 0.00 15.38 61.54 20.51 2.56 0.00 

4 0.00 0.00 22.08 62.34 14.29 1.30 

5 0.00 0.00 1.79 14.29 66.07 17.86 

6 0.00 0.00 2.78 5.56 27.78 63.89 

Table 5.12: Performance of FVSVR with quadratic loss on the Auto-mpg 

database 

of the UTADIS model, we have to arbitrarily assume that each attribute has an 

increasing correlation with the rank of MPGs, that is a greater attribute value 

indicates a higher rank. Thus, the obtained accuracy of UTADIS is not good 

(52. 76%). The accuracy of c--SVR on this database is 64.82% that is a little 

bit better than M-SVM (64.32% by LIBSVM and 63.47% by SMO in Weka), 

but still worst than FVSVR (67.84%). The GUTADIS method achieves an 

accuracy of 63.47%. The accuracy is compared by Figure 5.2 

In the first stage of the training process of FVSVR, we construct only 
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Figure 5.3: The accuracy of candidate algorithms with different panelty factor 

C. 

Algorithms M-SVM FVSVR UTADIS GUTADIS SVR 

Training Time 0.3305 1.8426 3.5823 34.3292 1.6123 

Table 5.13: Training time of candidate algorithms (seconds per training) 

5 binary SV classifiers, compared by 15 binary classifiers in M-SVM. In the 

decision process, we solve aLP problem with 1636 constraints and 836 variables 

compared by the LP problem in the original UTADIS model which has 1954 
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constraints and 1160 variables. T he training times of the candidate algorithms 

are listed in Table 5.13, which shows that FVSVR is a little time-consuming 

than SVM and SVR, but is more efficient than UTADIS and GUTADIS. 

5.4 Databases and Experimental Results for 

Generic Multi-class Classification Problems 

The experiment is to compare the prediction performance of M-SVM and 

FVSVM for generic multi-class classification problems. 

The M-SVM and FVSVM are compared with several practical problems 

which has been used in [13] to test the performance of SVM-based methods. 

They are the glass identification problem, the DNA identification problem, 

the vowel recognition problem, the vehicle recognition problem, the iris iden­

tificaiton problem, the wine identificaiton problem, the segment recognition 

problem, and the satimage identification problem. They are generic multi-class 

classification problems, that is , the ranking information of classes are unavail­

able or unclear. All of them are from the UCI Machine Learning Repository. 

[21]. 
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5.4.1 Experiments with the Glass Identification Prob-
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Figure 5.4: The comparison of M-SVM and FVSVM with glass. 

The study of classification of types of glass was motivated by crimina-

logical investigations. At the scene of the crime, the glass left can be used as 

evidence, if it is correctly identified. So the task of glass identification is to 

identify the type of glass by its oxide content (i.e., Na, Fe, K, etc). 

In this database, we have 214 instances in 6 classes. Each instance has 

10 attributes including the class label. 

The performances of M-SVM and FVSVM are compared and demon-

strated in Figure 5.4, which shows the prediction accuracy of these two al-
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gorithms with different values of the penalty factor C. We can see when C 

is small (less than 22
) the prediction accuracy of M-SVM (indicated by the 

dash-dot line) is terrible. Meanwhile the prediction accuracy of FVSVM (in­

dicated by the solid line) is always acceptable. When C reaches it optimal 

value. M-SVM and FVSVM achieves similar accuracy. 

We justify this result by the following discussion. Remind that the 

"fuzzy voting" technique improves the performance of the original M-SVM 

method by extracting more information from the binary classifiers. When C 

is far away from its optimal value, the binary separation boundaries may not 

be optimal, then the "fuzzy voting" technique can use the additional infor­

mation from the decision function to adjust the combination of the binary 

separations so that the obtained multi-class classifier achieves a better perfor­

mance. However, when Cis close to its optimal value, the binary separations 

are nearly optimal, the binary separation boundaries themselves are represen­

tative enough to construct the multi-class separation. Then, the information 

from the decision functions is usually redundant, and thus FVSVM can hardly 

do a better job then M-SVM in this situation. 
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Figure 5.5: The comparison of M-SVM and FVSVM with DNA. 

5.4.2 Experiments with the DNA Identification Prob-

I em 

In this problem, we have 2000 training instances and 1186 testing instances 

from 3 classes. Each of them has 181 binary attributes including the class 

label. 

The comparason of M-SVM and FVSVM is demonstrated by Figure 

5.5, from which, we can see that FVSVM is much more robust. 
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Figure 5.6: The comparison of M-SVM and FVSVM with vowel. 

5.4 .3 Ex periments with the Vowel R ecognition Problem 

In this problem, we have 528 instances from 11 classes. Each of them has 11 

attributes including the class label. 

The comparason of M-SVM and FVSVM is demonstrated by Figure 

5.6, from which, we can see that FVSVM is more robust. 
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5.4.4 Experiments with the Vehicle Recognition Prob-

lem 

In this problem, we have 846 instances from 4 classes. Each of them has 19 

attributes including the class label. The comparason of M-SVM and FVSVM 
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Figure 5. 7: The comparison of M-SVM and FVSVM with vehicle. 

is demonstrated by Figure 5.7, from which, we can see that FVSVM is a little 

more robust. 

5.4.5 Experiments with the Iris Identificaiton Problem 

In this problem, we have 150 instances from 3 classes. Each of them has 5 

attributes including the class label. The comparason of M-SVM and FVSVM 
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Figure 5.8: The comparison of M-SVM and FVSVM with iris. 

is demonstrated by Figure 5.8, from which, we can see that FVSVM is much 

more robust. 

5.4.6 Experiments with the Wine ldentificaiton Prob-

lem 

In this problem, we have 178 instances from 3 classes. Each of them has 14 

attributes including the class label. The comparason of M-SVM and FVSVM 

is demonstrated by Figure 5.9, from which, we can see that FVSVM is much 

more robust. 
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Figure 5.9: The comparison of M-SVM and FVSVM with wine. 

5.4. 7 Experiments with the Segment Recognition Prob-

lem 

In this problem, we have 2310 instances from 7 classes. Each of them has 20 

attributes including the class label. The comparason of M-SVM and FVSVM 

is demonstrated by Figure 5.10, from which, we can see that FVSVM and 

M-SVM have similar performance. 
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Figure 5.10: The comparison of M-SVM and FVSVM with segment. 

5.4.8 Experiments with the Satimage Recognition Prob-

I em 

In this problem, we have 4435 training instances and 2000 testing instances 

from 6 classes . Each of them has 37 binary attributes including the class label. 

The comparason of M-SVM and FVSVM is demonstrated by Figure 

5.11 , from which, we can see that FVSVM is more robust. 
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Figure 5.11: The comparison of M-SVM and FVSVM with satimage. 

5.4.9 Time Complexity 

It is obviously that FVSVM is more time-consuming than SVM since they 

use the same set of binary SV classifiers and an additional LP problem has 

to be solved in the decision process of FVSVM. In practice, the running time 

of FVSVM training for each problem is roughly triple of that of M-SVM. So 

our FVSVM is a promising trade-off between the robusticity and the time-

complexity of the M-SVM method. 
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Chapter 6 

CONCLUSIONS AND 

FUTURE WORK 

In this thesis, we compare UTADIS based methods with Support Vector Ma­

chine based methods for ranking problems. We conclude that although the 

multi-class SVM (M-SVM) has good performance for generic multi-class clas­

sification problems, it fails to control the serious misclassifications for ranking 

problems. This is mainly due to the fact that M-SVM is not driven by distance­

based loss, hence it is unable to distinct the serious misclassifications from the 

others. We propose a hybrid algorithm that combines M-SVM and UTADIS to 

solve this problem. In this new algorithm, binary SVM classifiers are combined 

into a multi-class classifier by the fuzzy voting technique instead of the exact 
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voting technique in M-SVM. Therefore, the new algorithm is named as Fuzzy 

Voting based Support Vector Ranking (FVSVR) method. Empirical results on 

the databases of three typical ranking problems show that the FVSVR method 

achieves better performance in practice than M-SVM, UTADIS and SVR. We 

also extend the idea of Fuzzy Voting from ranking problems to generic multi­

class classification problems, which results in the so called Fuzzy Voting based 

Support Vector Machine (FVSVM) method. Our empirical results show that 

FVSVM is insensitive to the choice of the penalty factor C. 

There are still a few issues we need to explore for both the FVSVR 

and FVSVM methods. First, as we have mentioned before, there are three 

strategies by which binary SVM classifiers are combined to multi-class classi­

fiers: "one-against-one", "one-against-all", and "DAG". The FVSVM method 

we proposed is just the fuzzy voting version of the "one-against-one" strategy. 

The same idea can be extended to the "one-against-all" and the "DAGSVM" 

strategies. 

Secondly, in FVSVR and FVSVM the optimization problems of search­

ing the binary SVM classifiers and that of searching the optimal voting are 

two separate steps. It is an interesting problem to explore how these two steps 

can be combined together into a single optimization problem. 
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