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Abstract 

Meta-analysis is a statistical method to summarize the overall evidence 

of effects on intervention by systematically combining outcomes from 

available studies in the literature which are homogeneous in research 

methodology and research interest. The objective of this project is to evaluate 

the treatment effects of preoperative aspirin on bleeding and other 

cardiovascular outcomes from 11 randomized control trials (RCT) and 19 

observational (non-RCT) studies. Both Bayesian meta-analysis and classical 

(frequentist) meta-analysis were applied to continuous and binary outcomes, 

and the results were compared. 

The robustness of the Bayesian approach is assessed by examining the 

performances of different likelihood functions and priors. We also discuss 

strategies on dealing with zero-event studies for binary outcomes, and the 

implementation of multiple imputation (MI) technique to missing data for 

continuous outcomes. 

Most results of pnmary analysis agree between the Bayesian and 

classical approaches. We suggest that the final conclusion of a meta-analysis 

should be based on the comparison of the results from both Bayesian and 

classical approaches. 
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Chapter 1 

Introduction 

1.1 Background 

Aspirin (ASA) is one of the common anti-platelet therapies used to treat 

patients with ischemic heart disease and clot-related strokes [1]. Coronary 

artery bypass grafting (CABG) is a type of heart surgery which re-routes, or 

"bypasses", blood around clogged arteries to improve blood flow and oxygen 

delivery to the heart [2]. Many studies have reported that preoperative 

aspirin increases patient blood loss, blood transfusion requirement, and 

incidence of re-operation due to bleeding [3]. However, other studies have 

shown a benefit of increased early and late vein graft patency in patients who 

received peri-operative aspirin therapy [4]. Therefore, risk-benefit assessment 

of aspirin therapy for CABG patients is controversial in the literature. 
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Despite the CABG guidelines recommending that asp1rm should be 

discontinued seven days prior to coronary bypass surgery [5], many cardiac 

surgeons allow their patients to continue to take aspirin until the day of 

surgery, due to the aforementioned conflicting evidence [6]. Therefore, a 

systematic review is needed to summarize the results of the independent 

studies in the literature, and determine conclusive evidence on how aspirin 

affects the postoperative bleeding and the other associated risks around the 

time of CABG. 

1.2 Objectives 

The clinical objective of this study is to quantitatively summanze the 

findings of available literature on CABG surgery. To achieve this goal, a 

systematic review and related meta-analysis were conducted. The results 

from our meta-analysis will help to diminish the conflict surrounding the 

preoperative aspirin therapy and the risk of increased peri-operative bleeding 

and other adverse events. These conclusions will provide a more conclusive 

finding to assist surgeons in making an evidence-based decision. 

The statistical objective of this thesis is to compare the performance of 

Bayesian meta-analysis to classical meta-analysis on different data settings. 

The robustness of the Bayesian model was assessed by sensitivity analysis on 

different likelihood functions and prwr distributions. The advantages and 
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limitations of Bayesian approach are discussed based on the comparison to 

classical meta-analysis. We also propose strategies to deal with problematic 

data such as zero-event studies and missing data. We hope the experience 

gained from this project will assist others conducting meta-analyses. 

1.3 Scope of Study 

In the following chapters, we will discuss the methodological issues of a 

systematic review, the methods of statistical analysis, the results, the 

strategies used to deal with problematic data, and, finally, our conclusions. 

Specifically, in Chapter 2, we describe the steps used to conduct our 

systematic review and the characteristics of the data which we used to 

perform our meta-analysis. 

Chapter 3 discusses the statistical methods of meta-analysis, including the 

random effect model using both Bayesian and classical approaches and the 

sensitivity analysis of the Bayesian models. 

Chapter 4 compares the results obtained from the Bayesian approach and 

the classical approach. The assessment of the robustness of the Bayesian 

model is also discussed in this chapter. 

Subsequently, in Chapter 5, we discuss the strategies used to deal with 

zero-events in binary outcomes, and propose a sensitivity analysis to assess 

the impact of missing values for continuous outcomes. 

3 
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Finally, in the last chapter, we discuss the advantages and limitations of 

Bayesian meta-analysis by comparing it to classical meta-analysis. 

4 
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Chapter 2 

Methods of Literature Review 

2.1 Literature Search Strategy 

To conduct a reproducible literature review with minimized bias, we used 

a systematic review to identify all papers in the relevant literature on our 

pre-defined research questions. The primary question is whether giving 

preoperative aspirin increases blood transfusion and bleeding in coronary 

artery bypass grafting (CABG) compared to giving no aspirin. In the following 

section, we discuss the steps of conducting the literature search. 

2.2 Sources of Literature Search 

MEDLINE, EMBASE, the Cochrane Central Register of Controlled 

Trials, the Cochrane database of systematic reviews, the Cochrane database 

of abstracts and effects, and the Web of Science database were each searched 

for relevant articles from January 1975 to February 2007. The key words 
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included asp~rm, coronary artery bypass, acetylsalicylic acid and coronary 

artery bypass surgery. Other terms used in search included graft occlusion, 

vascular patency, graft patency, and antifibrinolytic agents. All abstracts of 

published papers and technical reports were scanned and relevant articles 

identified using predefined inclusion and exclusion criteria. 

2.3 Study Selection and Data Extraction 

The study selection was based on the following pre-defined inclusion and 

exclusion criteria. First, the primary research objective had to be the use of 

aspirin preoperatively in coronary artery bypass surgery. Second, the patients 

must have been undergoing their first cardiac surgery. Third, for randomized 

controlled trials (RCTs), the primary endpoints must have included 

postoperative blood transfusion requirement or bleeding. In the case of non­

RCTs (retrospective studies), blood transfusion requirement or bleeding must 

have been part of the primary analysis or a clearly defined secondary analysis. 

All study abstracts which satisfied the inclusion criteria were highlighted, 

and read to ensure compliance with exclusion criteria. Any studies which did 

not satisfy the following exclusion criteria were omitted from the final 

analysis. First, studies were excluded if the treatment group received aspirin 

concurrently with other drugs. Second, non-RCTs were excluded if studies 

did not have a control group. Additionally, studies which included patients 
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who had previously undergone thoracotomy surgery were not included. 

Finally, studies involving only off-pump coronary bypass were excluded. 

Mter relevant studies were identified, data were extracted by two 

independent reviewers using a customized data collection form. Subsequently, 

abstracted data were compared, and any disagreements between the two 

reviewers were resolved by consensus. 

The qualities of the RCT studies were assessed by the two reviewers 

independently using the Jadad scale [9]. The Jadad scores of each RCT study 

were compared, and any disagreements were resolved by consensus. 

2.4 Clinical Endpoints and Study 

Characteristics 

Following study selection and data extraction, the data from nine RCT 

studies [10-18] and 14 non-RCT studies [19-32] were available for a meta­

analysis. Since RCTs and retrospective observational studies (non-RCT) have 

completely different design characteristics [8], data were analyzed separately. 

The treatment group was defined as those patients consuming aspirin 

(ASA) until the day of operation. The control group included those patients 

who received no-aspirin treatment (noASA) at least seven days prior to the 

operation [5]. Of the nine RCTs, two studies had two treatment groups, and of 
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the 14 non-RCTs, two studies had three treatment groups and one study had 

two treatment groups. To properly incorporate multi-treatment-group studies 

into final analysis, the control groups in those studies were evenly divided 

according into two or three groups according to the number of treatment 

groups [33]. 

The primary endpoint in our study was homologous blood transfusion 

requirement (measured as packed red blood cells unit). The secondary 

endpoints were the amount of peri-operative bleeding (measured as millilitre 

(ml)), event of peri-operative myocardial infarction (MI), event of peri­

operative mortality, and event of re-operation for bleeding. Of these endpoints, 

the requirement for blood transfusion and the amount of bleeding were 

continuous variables, while MI, mortality andre-operation are counts. 

All studies included in our analysis were published between 1978 and 

2005. Of the 30 studies analyzed, two were non-English studies. 

Detailed information regarding these studies is found in Table 1, Appendix 

B. 
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Chapter 3 

Statistical Methods 

3.1 Methods of Analysis 

In this study, both classical (Frequentist) meta-analysis and Bayesian 

meta-analysis were adopted to estimate aspirin's treatment effects on five 

endpoints of the blood transfusion requirement, amount of bleed, myocardial 

infarction (MI), mortality andre-operation respectively. Eleven RCT studies 

and 19 non-RCT studies are analyzed separately. In the case of continuous 

endpoints, i.e. blood transfusion requirement and the amount of bleeding, the 

treatment effects were reported as absolute mean difference, and for the other 

three binary outcomes, the treatment effects were reported as odds ratio (OR). 

Besides the point estimates, we also reported the associated 95% confidence 

interval for the classical approach and the associated 95% credible interval 

for the Bayesian approach. 
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Heterogeneity (between study variance) is a big obstacle in meta-analysis 

for pooling data from different studies and for interpreting the overall 

estimates obtained from pooled data. Our approach to deal with heterogeneity 

was that instead of exploring it by using subgroup analysis, we incorporated 

it by adopting the random effects model in both the classical and Bayesian 

approaches. The main concern of avoiding subgroup analysis is the relatively 

small number of studies. For example, in the case of blood transfusion 

requirement in RCTs, there were only six studies available to be pooled 

together. Any result from subgroup analysis obtained by dividing such a 

small dataset into two or even more subsets might be driven solely by chance. 

The results of the primary analysis of the above five endpoints from the 

classical meta-analysis and from the Bayesian meta-analysis are compared in 

Chapter 3. 

To assess the robustness of the Bayesian models, we conducted sensitivity 

analyses to test the impacts of different likelihood functions for continuous 

outcomes, and the impacts of different priors for binary outcomes. The 

results are presented in Chapter 3. 

The software used to perform the classical meta-analysis was STATA 9.2 

with meta-analysis package [34]. WinBUGS 14.1 (Windows Version of 

Bayesian Inference Using Gibbs Sampling) was used to conduct the Bayesian 

meta-analysis [35]. 

10 
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3.2 Classical Meta-Analysis with Random 

Effects Model 

In the random effects model of classical meta-analysis, the treatment 

effect of each individual study is assumed to be an independent random 

variable pulled from a population with normal distribution 

-1 
Where 1L'i is the random variance in each study, the so-called within-study 

variance, and r2is the between-study variance, the so-called heterogeneity 

[36). For the continuous outcomes, lJ.i is the absolute mean difference, and 

for the binary outcome, {ji is the odds ratio on logarithmic scale. 

The overall estimate of treatment effect is obtained by calculating the 

weighted average of the treatment effect from each individual study. The 

weight of each study is given by the reciprocal of total variance (the so-called 

inverse variance method) in individual study, i.e. within-study variance plus 

between-study variance. When all studies are homogeneous, the between-

study variance equals zero, and the random effects model will reduce to the 

fixed effects model. 

11 
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In classical meta-analysis, the statistical heterogeneity is assessed by 

Cochran's Q-test 

k 
Q = 2:: t,v;(e;- e) 2 

i=l 

where H-'i is the weight of each study, if is the average of {ji and k 1s the 

number of studies. The test statistic Q is assumed to have a chi-squared 

distribution with degrees of freedom (df) equal to the number of studies 

minus one. The problem with this test is that when the number of studies is 

large, the heterogeneity will become significant by adding up very small 

between-study variances from each study [37-38]. 

Instead of testing homogeneity, a better approach is quantifying 

heterogeneity. The formula of calculation the quantity of heterogeneity is 

12=100% x (Q-df)IQ [37-38], where Q is Cochran's heterogeneity statistics, 

and df is the degrees of freedom. Since this quantity deducts the effect of the 

number of studies in calculating heterogeneity, it measures between-study 

variance more accurately. When the value of J2 is less than or equal to zero, 

there is no heterogeneity observed, and the larger the value of J2 the severe 

the heterogeneity. 

The results of the overall estimates of treatment effects obtained from 

classical meta-analysis are discussed in Section 4.1, including the mean 

difference for continuous outcomes and the odds ratio for binary outcomes, 
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and associated 95% confidence intervals. The forest plots of the pooled studies 

are presented in Appendix A. 

3.3 Bayesian Meta-Analysis with Random 

Effects Model 

Unlike the frequentist inference which is used in the classical meta­

analysis, the Bayesian inference uses the observed data as new information 

to update a researcher's pre-belief or external information. In a Bayesian 

frame, the observed data are presented as likelihood functions, the pre-beliefs 

or external information are presented as prior distributions, and the updated 

results are presented as posterior distributions. Therefore, in Bayesian 

inference, all parameters are treated as random variables. 

The mathematical link between the researcher's pre-belief or external 

information, the observed data and the updated result are expressed as 

The vector of observed treatment effect y has a joint density function 

J(y I ~1 : w) which is a proportion of the likelihood function, with the 

corresponding parameter of mean ~Jand of within-study variability'W. The 

parameter'l/-'has a prior distribution p(~) I e, T2
) with the parameter of mean 

13 
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(J and of the between-study variability T
2. The within-study variability has a 

prior distribution p( W I a), and the between-study variability has a pnor 

distribution p( T
2 I (J ). The parameter a has a prior distribution p( a). 

In our analysis, we were interested in the estimates of the mean of the 

treatment effect and the between-study variability which were obtained from 

posterior distribution P('t/J. w, e, 72, a I Y) directly. 

In the Bayesian random effects model for primary analysis, we specified 

the likelihood function and the prior of parameter mean as normal 

distributions. The parameter a had a uniform distribution. In WinBUGS, the 

normal distribution is parameterized as mean and precision, thus the 

variance of a normal distribution is defined as 1/ a2. 

To make the results of the Bayesian approach comparable to the results of 

the classical approach, non-informative priors were chosen which minimized 

the influence of the researcher's pre-belief or external information on the 

observed data [36, 39]. 

In our Bayesian model, the prior used for the mean was N (0, l.OE-6) and 

the prior for the precision was uniform (0, 10). The total number of iterations 

to obtain the posterior distribution for each endpoint was 500,000, and the 

burned-in number was 10,000. To reduce the influence of the autocorrelation 

14 
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from previous iteration, we thinned our samples by five, i.e., every set of five 

samples generated one valid sample. 

The reporting of the results is in accordance with the recommendations by 

Sung et al. [39]. 

The results from the Bayesian meta-analysis are presented in Section 4.1, 

which include estimates of the mean difference for continuous outcomes and 

the estimates of the odds ratio for binary outcomes, and the associated 95% 

credible intervals. To evaluate the convergence of the Markov Chain [39], 

plots of entire posterior distributions including dynamic trace plots, times 

series plot, density plots and autocorrelation plots are provided in Appendix C. 

The codes for running Bayesian models on WinBUGS along with the initials 

can be found in Appendix D. 

3.4 Sensitivity Analysis of Likelihood 

Functions and Priors 

Sometimes we might suspect that the observed data have heavy tails. In 

this case, the likelihood function of the observed data was specified as 

student's t distribution [40]. For our continuous outcomes, i.e. the blood 

transfusion requirement and the amount of bleeding, to test the impact of 

likelihood functions, we changed the normal distribution used in the primary 
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analysis to the student's t distributions with different degrees of freedom (df) 

equal to 4, 8, 16, and 32. 

In the primary analysis, we followed the common practice by specifying 

the priors of variance as uniform distribution with the upper bound 

parameter equal to 10 for the binary data, i.e. MI, mortality andre-operation. 

However, the robustness of this specification needs to be assessed [41]. We 

evaluated the impact of different priors by giving the upper bound parameter 

of uniform distribution different values used as 1, 5, 10, 25, 50 and 100. 

The comparisons of the results obtained from different likelihood functions 

and priors are discussed the Section 4.2 and Section 4.3. 
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Chapter 4 

Results 

4.1 Results of Primary Analysis 

The overall estimates obtained from the classical approach and the 

Bayesian approach from 11 RCT studies were similar except for re-operation. 

The results from both approaches reported that no significant differences on 

treatment effect were detected between the treatment group (ASA group) and 

the control group (noASA group) for blood transfusion requirement, the 

amount of bleeding, MI and mortality. The only disagreement between the 

classical approach and the Bayesian approach happened on re-operation. The 

classical approach reported that the re-operation rate of the ASA group was 

significantly higher than the re-operation rate in the noASA group as 

OR= 2.52 (1.18, 5.38). However, the Bayesian approach reported that there 

was no significant difference on treatment effect of re-operation as OR = 2. 78 
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(0.96, 8.86). In our case, the result from Bayesian meta-analysis was more 

meaningful by comparing it to the difference of re-operation rate in non-RCT 

studies. In non-RCTs, the results from both the classical approach and the 

Bayesian approach agreed that there was no significant difference in the re-

operation rate between the treatment group and the control group (classical: 

OR= 1.12 (0.69, 1.83); Bayesian: OR= 1.20 (0.63, 2.39)). Sincere-operation is 

a very objective measure which is little influenced by confounders and other 

bias factors, the result from RCT studies should be similar to the result from 

non-RCT studies. 

Classical Method Bayesian Method 
RCT (Continuous Outcome) WMD C.I. Mean Cr.I. 

Blood Transfusion 0.36 (-0.37, 1.08) 0.45 (-1.11, 1.97) 
Bleeding 89.75 (-17.85, 179.43) 99.00 (-46.37, 227.60) 
(Binary Outcome) OR C.I. OR Cr.I. 
MI 1.04 (0.35, 3.07) 1.04 (0.05, 24.05) 
Mortality 1.21 (0.31, 4. 71) 1.23 (0.18, 8.18) 
Re-operation 2.52 (1.18, 5.38) 2.78 (0.96, 8.86) 

Non-
RCT (Continuous Outcome) WMD C.I. Mean Cr.I. 

Blood Transfusion 0.34 (0.12. 0.56) 0.36 (0.06, 0.66) 
Bleeding 131.10 (61.72, 200.47) 134.00 (7.26, 240.60) 
(Binary Outcome) OR C.I. OR 
*MI 1.29 (0.02, 68.92) NA 
Mortality 0.59 (0.34, 1.02) 0.91 (0.33, 3.59) 
Mortality without Bybee's 1.39 (0.55, 3.53) 1.53 (0.43, 6.21) 
Re-operation 1.12 (0.69, 1.83) 1.20 (0.63, 2.39) 

Table 2: Overall estimates of primary analysis from classical meta-analysis and from 

Bayesian meta-analysis (*only one study available) 

18 
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We also noticed that the credible interval of MI was unrealistically wide 

(OR= 1.04 (0.05, 24.05)) in the Bayesian approach. This problem is discussed 

in Section 4.2 as part of the results of the sensitivity analysis 

The overall estimates of treatment effect on five endpoints in 19 non-RCT 

studies obtained from the classical approach and the Bayesian approach were 

similar. The significant difference between the treatment group (ASA group) 

and the control group (noASA group) were detected on the blood transfusion 

requirement and the amount of bleeding. For mortality and re-operation (the 

Bayesian approach on MI could not be conducted due to insufficient data), no 

significant differences of treatment effect were found. 

In the overall estimates of non-RCT studies, we noticed that the point 

estimate of mortality from the classical approach and the Bayesian approach 

were quite different in magnitude ((classical: OR = 0.59 (0.34, 1.02)); 

Bayesian: OR= 0.91 (0.33, 3.59)). From the forest plot, we found that the data 

from Bybee's study [32] might be an outlier which behaved very differently 

from other studies. By excluding Bybee's studies, the estimates of treatment 

effect from the classical and the Bayesian approaches became similar 

(classical: OR= 1.39 (0.55, 3.53): Bayesian: OR= 1.53 (0.43, 6.21)). 

Overall, the point estimates from both the classical and the Bayesian 

approaches were more similar than the interval estimates. The credible 
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intervals from the Bayesian approach were wider than the confidence 

intervals from the classical approach, and the smaller the number of studies 

the wider the interval. The main reason for the difference was that the 

Bayesian approach incorporated all kinds of variability from all parameters. 

The difference and similarity between classical meta-analysis and Bayesian 

meta-analysis are discussed in the last chapter. 

In the results of the classical meta-analysis, significant heterogeneities 

were found in the blood transfusion requirement (in RCTs: p = 0.01, 

]2 = 66.9%; in non-RCTs: p < 0.001, ]2 = 75.0%) and the amount of bleeding (in 

RCTs: p = 0.006, 12 = 61.2%; in non-RCT: p = 0.001, J2 =68.4%). The reason is 

that these two endpoints are more subjective so that the variation among 

independent studies easily happens. 

4.2 Impact of Likelihood Functions 

To examine the influence of likelihood functions in Bayesian meta-analysis, 

we also specified the likelihood functions as the Student's t distribution which 

has heavier tails than the normal distribution, with the degrees of freedom 

equal to 4, 8, 16, and 32 respectively for continuous endpoints, i.e. blood 

transfusion requirement and bleeding. 

The results of the blood transfusion requirement in RCTs showed that the 

estimates of odds ratios and credible intervals from the Student's t likelihood 
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function converged with those estimates from the normal likelihood function 

gradually while the degrees of freedom of the student's t increases. For 

example, the overall estimates from the student's t likelihood function of the 

treatment effect on the blood transfusion requirement in RCT studies were 

OR = 0.38 (-1.06, 1.88) (df = 4), OR = 0.42 (-1.09, 1.95) (df = 8), OR = 0.44 

(-1.08, 1.96) (df= 16), and OR= 0.44 (-1.10, 1.97) (df= 32). When the degrees 

of freedom reached 32, the result was very similar to the result from the 

normal likelihood distribution which had OR = 0.45 (-1.11, 1.97). The 

detailed information for this comparison can be found in Appendix B, Table 3, 

and a visual plot of this comparison can be found in Appendix A, Figure 2. 

The sensitivity analysis about different likelihood functions proved that 

our specification of the likelihood function as a normal distribution was 

proper. However, when the observed data belong to the student's t 

distributions, the choice of the degrees of freedom will influence the results. 

4.3 Impact of Priors ofVariance Parameter 
In Bayesian meta-analysis, the uniform prior distribution is a preferred 

choice of non-informative prior for variance parameters [41]. It works 

properly for most cases, and generates estimates similar to those from the 

classical approach. However, when the number of studies is small, this choice 

will lead to an extremely large variance and an unrealistically broad credible 
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interval [41]. In this situation, a restriction of the upper bound parameter for 

uniform distribution has to be applied. 

To examine the relationship between the number of studies and the 

uniform prior, we changed the upper bound parameter of the uniform prior 

from small to large by setting it equal to 1, 5, 25, 50, and 100 respectively. 

These five different priors were applied on binary outcomes in which the 

number of studies for those outcomes varied from 3 to 7 to 11. The results 

from the above priors were compared to the results from uniform (0, 10), 

which is a common choice for binary endpoints and which was used in our 

primary analysis. 

The results of the above sensitivity analysis showed that when the number 

of studies is small, three in our example, the length of the credible interval 

increased dramatically while the upper bound parameter of the uniform prior 

increased. When the number of studies is moderate, seven in our example, 

the credible interval became stable when the upper bound parameter of the 

uniform prior was equal to or greater than 10. When the number of studies is 

large, eleven in our example, all choices of the upper bound parameter for the 

uniform priors produced similar results. Therefore, uniform (0, 10) is a proper 

choice as a non-informative prior for most binary endpoints with number of 

studies from moderate to large. But when the number of studies is small, 

according to Gelman's suggestion in his paper of the simulation study, we 
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have to use the empirical priOr, 1.e. the prior needs to be estimated from 

observed data [41]. 

The results of this comparison are presented in Appendix B, Table 4, and a 

visual plot of this comparison can be found in Appendix A, Figure 3. 
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Chapter 5 

Dealing with Problematic Data 

5.1 Problems of Missing Data and Zero-events 

in Meta-analysis 

Meta-analysis uses summary statistics extracted from limited studies as 

input data to calculate the overall estimate. If summarized data from several 

valid studies cannot be incorporated into the meta-analysis for some reason, 

we not only face the problem of low statistical power, but also lose the 

integrity of the evidence in the literature. 

There are two kinds of problematic data which are difficult or impossible 

to incorporate into meta-analysis. One is missing data and the other is zero­

event studies. Though the standard software for meta-analysis does not fully 

support these problems, other statistical techniques can be borrowed to either 
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solve the problems or evaluate the impact of these problems. In the following 

two sections, we discuss some common approaches in the literature and new 

attempts used to deal with these problems. The results from those approaches 

are compared to the results from the primary analysis to evaluate the 

influence of importing these techniques. 

5.2 Dealing with Zero-events Studies 

Mortality or occurrence of rare events is very often used as an outcome to 

monitor the treatment effect in clinical research. Sometimes the event rate is 

so low that we do not have enough observations, which leads to lack of power 

to detect the treatment effect. The worst case scenario is that we may not 

observe any event in a single study. Therefore meta-analysis can be used as 

an efficient tool to increase the statistical power by combining the single 

insufficient studies. To increase the power, we should pool all available data 

into the analysis, but it has been argued whether including those zero-event 

studies into meta-analysis is meaningful [42]. For those either-arm zero-event 

studies, i.e., the zero-event happened either in the treatment group or in the 

control group, the consensus of opinion in the literature is that those studies 

should be included. However, there is no common method for incorporating 

these data [42-43]. For both-arm zero-event studies, i.e. no observation in 

both the treatment and the control groups, the majority of researchers think 
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that those studies should be excluded from the analysis. The reason for 

excluding both-arm zero-event studies is that those studies do not make any 

contribution to the overall estimates. One paper published in 2007 has 

suggested that including both-arm zero events would reduce the risk of over­

estimated treatment effect and narrow the confidence interval for classical 

meta-analysis [44]. 

In our study, we compared the results of excluding all kinds of zero-event 

studies, including only either-arm zero-event studies, and including all zero­

event studies by using classical meta-analysis and Bayesian meta-analysis. 

In classical meta-analysis, we used continuity correction (correction factor 0.5) 

with the inverse variance (IV) method and the Peto method [ 42-43] to 

incorporate either-arm zero-event studies. To incorporate two-arm zero-event 

studies, we adopted continuity correction into IV method by manually adding 

0.5 to each cell in both-arm zero-event studies. This is the approach we used 

in our primary analysis to include all kinds of zero-event studies into the final 

data analysis. 

The endpoint we chose to illustrate the different approaches for dealing 

with zero-event studies was re-operation in RCT studies. Of the seven 

available studies, three were either-arm zero-event studies, and one was 

both-arm zero-event study. 
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The results showed that by including all kinds of zero-event studies, both 

the confidence intervals from classical meta-analysis and the credible 

intervals from Bayesian meta-analysis were narrowed, particularly for the 

Bayesian approach. The results of the classical approach showed a 

substantial change before and after including zero-event studies. The result 

of excluding any kind of zero-event studies reported that no significant 

treatment effect was detected with OR = 2.33 (0.99, 5.48). However, after 

including either-arm zero-event studies in analysis, the result showed that 

there was a significant difference between treatment group and control group 

with OR= 2.68 (1.34, 6.10) from the IV method and with OR= 2.90 (1.44, 5.82) 

from the Peto method. The reason for this change is that including zero-event 

studies increased sample size and thus increased the statistical power to 

detect the difference between treatment group and control group. We also 

found that, compared to the results of including only either-arm zero-event 

studies, adding both-arm zero-event studies in the analysis can pull the 

estimates of treatment effect closer to the null hypothesis to produce a more 

conservative estimate. 

Another benefit gained from including all zero-event studies into the 

analysis was reduced publication bias. Publication bias is caused by lack of 

small studies [45], and zero-events often happen in studies having a small 

number of patients. 
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The numerical summary of this comparison is presented in Appendix B, 

Table 5, and a visual plot of this comparison can be found in Appendix A, 

Figure 4. 

5.3 Dealing with Missing Data 

Most of the data used in meta-analysis are extracted from separate and 

independent papers in the literature. Since the process of conducting the 

analyses and the format of the reporting of results varies from study to study, 

we very often cannot find all the needed data from all the studies. For 

example, in our database, every endpoint had different levels of missing data. 

In the literature, almost all meta-analyses automatically deleted the 

studies with missing data from the final analysis without any further 

exploration. This strategy seems to be the only choice, but ignoring missing 

data leads to smaller sample size and the loss of integrity of evidence. Firstly, 

after following a strict selection procedure, the number of valid studies is very 

limited. Any missing data might make the total sample size too small to 

detect the statistical significance of the treatment effect. Thus, one of the 

major advantages of meta-analysis is lost. Secondly, even if the sample size is 

large enough to detect the significance, the overall conclusion based on partial 

literature is still susceptible. Readers might doubt what will happen if all 

missed studies do not favour this conclusion. Furthermore, an important data 
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handling principle in RCTs is the intention-to-treat analysis (ITT) [8]. This 

principle states that all data of patients who have been randomized into the 

trials should be included in the final analysis. Otherwise the result will be 

biased in favour of the treatment group. 

In this study, the proportions of missing data were very large. For example, 

in the primary endpoint, blood transfusion requirement, five out of 11 RCT 

studies and five out of 19 non-RCT studies could not be pooled into the final 

analysis due to missing data. To evaluate the impact of missing data on the 

final result for this endpoint, we imputed ten datasets simultaneously by 

using the multiple imputation method (MI) [46]. The patient demographics 

and clinically related information were used to fill in the missing data in the 

blood transfusion requirement. They were study design type, number of 

patient, patient average age, proportion of males, average number of graft, 

aspirin dose, pumping time of bleeding, and the amount of bleeding. The seed 

of the imputation was 84446. 

After combining the results for the ten imputed datasets, the overall 

estimates of the difference of blood transfusion requirement in RCT studies 

(0.50 (0.02, 0.97)) was significant. However, the result from our primary 

analysis reported that there was no significant difference between the 

treatment group and the control group (0.36 (-0.37, 1.08)). Comparing the 

dramatically increased sample size (58%) by applying imputation, the original 
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sample size might have been too small to have enough power to detect the 

difference. Therefore, we need to interpret the results of the primary analysis 

with caution. The results based on imputation for non-RCT studies (0.47 (0.16, 

0.77)) was similar to the results from primary analysis (0.34 (0.12, 0.56)), 

thus from the statistical point of view, the results of non-RCT studies from 

the primary analysis were more reliable than the result of RCT studies. 

The detailed comparison of the overall estimate of blood transfusion before 

and after the imputation can be found in Appendix B, Table 6. 
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Chapter 6 

Discussion and Conclusions 

6.1 Difference between Classical and Bayesian 

Meta-analysis 

Meta-analysis is an effective tool for quantitatively synthesizing overall 

evidence by pooling information from all qualified independent studies in the 

literature. Though classical meta-analysis and Bayesian meta-analysis have 

the same goal, they have different philosophies on statistical inference. 

Classical meta-analysis belongs to frequentist inference, in which point 

estimates, confidence intervals and hypothesis tests are based on the 

assumption of infinite but identical repetitions on the fixed but unknown 

parameters [36). This process is more deductive, and estimates of parameters 

are summarized from the observations directly. 
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For Bayesian inference, all unknown parameters are treated as random 

variables. The estimates of treatment effect and between-study variance 

which we are interested in are directly obtained from their posterior 

distributions. The Bayesian approach works more inductively, in the way that 

a researcher's pre-beliefs (or external information) are expressed as prior 

distribution functions; these beliefs then are updated by incorporating the 

likelihood function of observed data. The updated beliefs form the posterior 

distribution functions, and the point estimates and credible intervals are 

directly estimated from the density of posterior distributions. 

Despite the above philosophical differences between the frequentist 

inference and the Bayesian inference, in practice, by using non-informative 

priors in the Bayesian model, these two different methods often lead to 

similar numerical results. 

6.2 Advantages of Bayesian Meta-analysis 

The availability of well-developed statistical software on Bayesian 

inference such as WinBUGS, and powerful computers has greatly increased 

the use of the Bayesian approach for meta-analysis. However, the debate 

regarding the advantages and limitations of Bayesian meta-analysis versus 

classical meta-analysis continues [53]. In our study, we compared the process 
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and the results between Bayesian meta-analysis and classical meta-analysis, 

and found that Bayesian analysis has many advantages. 

One of the major advantages of Bayesian approach 1s the ability to 

incorporate all kinds of variability. In general, this feature leads to credible 

intervals wider than the confidence intervals from the classical approach, 

thus providing readers with more conservative evidence. 

Another attractive point of the Bayesian approach 1s that it allows 

researchers to make probability statements on the results. For example, the 

probability of the correctness of a 95% credible interval is 0.95. 

Furthermore, the Bayesian approach provides researchers the flexibility to 

choose different priors and likelihood functions. The prior distribution can 

express a researcher's pre-beliefs more intuitively and also allows a 

researcher to construct the prior distribution by borrowing the evidence from 

external sources. Unlike the common used method for classical meta-analysis 

where the data are always assumed to have a normal distribution, the 

Bayesian approach allows a researcher to specify the likelihood function of 

observed data as other distributions, e.g. a student's t distribution when the 

data were suspected having heavy tails. When the number of observations is 

large, the data will approximate to a normal distribution; when number of 

observation is small, the Bayesian model is more flexible to generate more 

accurate estimates. 
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In this study, we found an advantage of the Bayesian model which is 

ignored in most research papers. Compared to the classical approach, the 

Bayesian model is relatively robust to outliers. Since the weight of the 

individual study is given by the reciprocal of the total variance in classical 

meta-analysis, when a large study happens to have an outlier, the estimates 

of overall effect will be driven by this heavily weighted study. For example, 

Bybee's study contributed 65.1% weight, and it was the only study which 

claimed that the control group had higher mortality (OR= 0.37 (0.19, 0.73)). 

When we pooled this study with other non-RCT studies by performing 

classical meta-analysis, its large weight might have been the reason which 

caused the estimates of odds ratio of mortality in non-RCT studies (OR= 0.59 

(0.34, 1.02)) to differ in direction and magnitude from the results of RCT 

studies (OR= 1.21 (0.31, 4. 71)). However, when we compared the estimates 

of odds ratios of mortality in RCT studies and non-RCT studies generated by 

the Bayesian approach, the difference (RCTs: OR = 1.23 (0.18, 8.18); non­

RCTs: OR = 0.91 (0.33, 3.59)) between the two study designs was much 

smaller than the difference in the classical approach. Since mortality is a 

very objective measurement, the event rate in RCT studies and non-RCT 

studies should be similar, thus the result from the Bayesian meta-analysis is 

more reasonable. The reason for the Bayesian approach's outlier-free 

(relatively) character is that the Bayesian model captures total variability 
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from all parameters, so the influence of sample size is reduced. Actually, 

when we excluded Bybee's study from our analysis, the estimates of odds 

ratio of mortality in RCTs from the classical approach (1.39 (0.55, 3.53)) and 

the results from the Bayesian approach (1.53 (0.43, 6.21)) became similar. 

6.3 Limitations of Bayesian Meta-analysis 

The ability to capture all variability and interpret the results on an exact 

probability makes Bayesian meta-analysis attractive to many researchers 

[47]. However, the Bayesian approach has its own limitations. 

First, the results from the Bayesian approach are somehow dependent on 

pre-defined priors, which express a researcher's subjective beliefs (or external 

information). Though the influence of priors can be maximally diminished by 

using non-informative priors, non-informative priors do not work properly 

when the number of studies is small, particularly for the prior of variance. 

When this situation happens, the priors have to be estimated from observed 

data, thus the advantage of the full Bayesian model is partially lost. 

Probability distributions have to be specified for all parameters and the 

likelihood functions for observed data. When the number of studies is small, 

the misspecification of priors or likelihood functions has some impact on the 

posteriors. For example, for the blood transfusion requirement in RCT studies, 

the student's t likelihood function with a small degree of freedom yielded 
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different point estimates compared to the normal likelihood function. Though 

the significance of results did not change in this case, the different magnitude 

of point estimation might influence the clinical interpretation. 

In the Bayesian frame, the posterior distribution of one parameter is 

requires integration over all other parameters. When we have many 

parameters in the model, the integral on a high dimension parameter-space 

might cause problems. Gibbs sampling within the Markov Chain Monte 

Carlo (MCMC) simulation method used in WinBUGS simplifies the high 

dimensional integral to sampling the posterior conditional distributions over 

a sufficiently long time period [35]. However, for some complex models, the 

convergence of Markov Chain is sensitive to the specification of priors and 

initial values [48]. 

Another unavoidable disadvantage is the computation burden for the 

Bayesian model. If one uses state-of-the-art computers, this is not always a 

problem, but when the number of parameter or the number of studies is large, 

using the Bayesian method is still a time-consuming process. For example, 

the Bayesian model used for binary endpoints in our studies needed at least 

twice the time of than the model for continuous endpoints. 
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6.4 Choice of Analysis Methods for Small 

Datasets 

The data used to perform meta-analysis were extracted from separate 

studies, and the studies were skimmed using strictly defined inclusion and 

exclusion criteria. Very often, the number of valid studies is small. When we 

faced a small dataset, we had to carefully choose the proper method to carry 

out the analysis, and interpret the results with caution, i.e. verifying the 

results by finding the coincidence across methods or finding the clinical 

rationales. 

Firstly, when number of studies was small, the better choice for dealing 

with heterogeneity rather than explaining it by using subgroup analysis was 

to incorporate it by using a random effects model. Further dividing the 

dataset into smaller subsets might cause the loss of statistical power to detect 

statistical significance. Even if the result showed a significant difference 

between groups, the results might be caused only by random chance. 

Secondly, for small datasets, the classical approach and the Bayesian 

approach might lead to different results. The results from the classical meta­

analysis can be overly optimistic by assuming that the observed data can 

represent the whole population. On the other hand, the unrealistically broad 

credible interval from the Bayesian approach provides little information for 
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decision making. When such disagreement rises, we should not make any 

quick conclusions based on the result from either method. 

In Chapter 4 we discussed the strategies of increasing sample s1ze by 

including zero-event studies for binary outcomes. We also proposed a 

sensitivity analysis for continuous outcomes by using the multiple imputation 

method to evaluate the impact of the decreased sample size due to missing 

values. 

6.5 Conclusions 

In general, our results from the Bayesian approach agreed with those from 

the classical meta-analysis. The only exception was the odds ratio in RCT 

studies. 

For the blood transfusion requirement and the amount of bleeding, the 

disagreement between RCT studies and non-RCT studies made it difficult for 

us to make the final conclusion. The results of the RCT studies showed that 

there was no significant difference between the aspirin group and the no­

aspirin group. Usually the results from RCT studies are more reliable than 

the results from non-RCT studies since RCT design is considered relatively 

bias free. However, the small number of RCT studies, e.g. six studies of blood 

transfusion requirement, was questionable. We doubted that we had enough 

statistical power to detect the significance of the treatment effect, and the 
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results of the sensitivity analysis usmg multiple imputation methods 

provided further evidence to confirm this. On the other hand, non-RCT 

designs, known as confounders, and bias-associated design, were likely to 

provide over-estimated results favouring the treatment group [7]. Therefore, 

we could not make our final conclusion based on the results of the non-RCT 

studies. 

In the case of mortality, we were more confident in concluding that there 

was significant difference between the aspirin group and the no-aspirin group. 

For myocardial infarction (MI), all available results showed that the 

treatment effect of aspirin was not significant. However, considering how 

small the sample sizes were and how much wider the confidence or credible 

intervals were, we could not make any conclusions based on this study 

without caution. 

For re-operation, most results showed that the re-operation rate of the 

aspirin patients was not higher than the no-aspirin group, which went 

against the results in RCTs from the classical meta-analysis. However, if we 

notice that the lower limit of the credible interval from Bayesian meta­

analysis in RCT studies was just across 1 (OR = 2.78 (0.96, 8.86)), the 

certainty of these results is questionable. 

Incorporating all available evidence, we suggest that discontinuing aspirin 

seven days before coronary artery bypass grafting surgery is a safer choice. 
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The comparisons between Bayesian meta-analysis and classical analysis 

cannot prove that one method is superior to another. Our conclusion from a 

statistical aspect is that to conduct a proper meta-analysis, we should apply 

both the Bayesian approach and the classical approach. Any final conclusions 

made should be based on the comparison of the results from these two 

approaches. 

40 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

Bibliography 

1. Willard JE, Lange RA, Hillis LD. The use of aspirin in ischemic heart 

disease. New England Journal of Medicine 1992; 327:175-181. 

2. America Heart Association Website http://www.americanheart.org/, 

accessed 02-17-2007. 

3. Dacey LJ, Munoz JJ, Johnson ER, et al. Effect of Preoperative Aspirin Use 

on Mortality in Coronary Artery Bypass Grafting Patients. The Annals of 

Thoracic Surgery 2000: 70:1986-1990. 

4. Chesebro JH, Clements IP, Fuster V, et al. A platelet-inhibitor-drug trial 

m coronary-artery bypass operations: benefit of perioperative 

dipyridamole and aspirin therapy on early postoperative vein-graft 

patency. New England Journal of Medicine 1982; 307:73-78. 

5. Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA Guidelines for 

Coronary Artery Bypass Graft Surgery: Executive Summary and 

Recommendations. Circulation 1999; 100:1461-1480. 

6. Sun JC, Crowther MA, Warkentin TE, et al. Should Aspirin Be 

Discontinued Before Artery Bypass Surgery? Circulation 2005; 112:e85-

e90. 

41 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

7. Guyatt GH, Rennie D. Users' Guides to the Medical Literature: A Manual 

for Evidence-Based Clinical Practice. Chicago, Illinois: American Medical 

Association, 2002. 

8. Haynes RB, Sackett DL, Guyatt GH, Tugwell P. Clinical Epidemiology: 

How to do Clinical Practice Research, 3rd Ed. New York NY: Lippincott 

Williams & Wilkins, 2005. 

9. Moher D, Jones A, Lepage L. Use of the CONSORT Statement and 

Quality of Reports of Randomized Trials. Journal of the American Medical 

Association 2001; 285:1992-1995. 

10.Fuller JK, Copeland JG. Does Short-Term Pre-Operative Aspirin in 

Coronary Bypass Patients Increase Post-Operative Bleeding? Vascular 

Surgery 1985; 19:174-178. 

11. Karwander SV, Weksler BB, Gay WA, et al. Effect of Preoperative 

Antiplatelet Drugs on Vascular Prostacyclin Synthesis. The Annals of 

Thoracic Surgery 1987; 43:318-322. 

12. Ferraris VA, Ferraris SP, Lough FC, et al. Preoperative Aspirin Ingestion 

Increases Operative Blood Loss after Coronary Artery Bypass Grafting. 

The Annals of Thoracic Surgery 1988; 45:71-74. 

13.Goldman S, Copeland J, Moritz T, et al. Starting Aspirin Therapy Mter 

Operation-Effects on Early Graft Patency. Circulation 1991; 84:250-256. 

42 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

14. Hockings BE, Ireland MA, Goth-Martin KF, et al. Placebo-Controlled Trial 

of Enteric Coated Aspirin in Coronary Bypass Graft Patients. The Medical 

Journal of Australia 1993; 159:376-378. 

15. Kallis P, Tooze JA, Talbot S, et al. Pre-operative Aspirin Decreases 

Platelet Aggregation and Increases Post-operative Blood Loss - A 

Prospective, Randomized, Placebo Controlled, Double-Blind Clinical Trial 

in 100 Patients with Chronic Stable Angina. European Journal of Cardia­

Thoracic Surgery 1994; 8:404-409. 

16. Matsuzaki K, Okabe H, Kajihara N, et al. A Prospective Study on the 

Timing of Discontinuation of Aspirin before Coronary Artery Bypass 

Grafting. Journal of Japanese Annals of Thoracic Surgery 1997; 45:1710-

1714. 

17. Klein M, Keith PR, Dauben HP, et al. Aprotinin Counterbalances an 

Increased Risk of Peri-operative Hemorrhage in CABG Patients Pre­

treated with Aspirin. European Journal of Cardia-thoracic Surgery 1998; 

14:360-366. 

18.Morawski W, Sanak M, Cisowski M, et al. Prediction of the Excessive 

Perioperative Bleeding in Patients Undergoing Coronary Artery Bypass 

Grafting: Role of Aspirin and Platelet Glycoprotein Ilia Polymorphism. 

Surgery for Acquired Cardiovascular Disease 2005; 130:791-796. 

43 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

19.Michelson EL, Morganroth J, Torosian M, el at. Relation of Preoperative 

Use of Aspirin to Increased Mediastinal Blood Loss after Coronary Artery 

Bypass Graft Surgery. The Journal of Thoracic and Cardiovascular 

Surgery 1978; 76:694-697. 

20. Torosian M, Michelson EL, Morganroth J, et al. Aspirin and Coumadin 

Related Bleeding After Coronary Artery Bypass Graft Surgery. Annals of 

Internal Medicine 1978; 89:325-328. 

21. Taggart DP, Siddiqui A, Wheatley DJ, et al. Low-Dose Preoperative 

Aspirin Therapy, Postoperative Blood Loss, and Transfusion 

Requirements. The Annals of Thoracic Surgery 1990; 50:425-428. 

22.Rawitscher RE, Jones JW, McCoy TA, et al. A Prospective Study of 

Aspirin's Effect on Red Blood Cell Loss in Cardiac Surgery. The Journal of 

Cardiovascular Surgery 1991; 32:1-7. 

23.Reich DV, Patel GC, Vela-Cantos F, et al. Aspirin Does Not Increase 

Homologous Blood Requirements in Elective Coronary Bypass Surgery. 

Cardiovascular Anesthesia 1994; 79:4-8. 

24. Vuylsteke A, Oduro A, Cardan E, et al. Effect of Aspirin in Coronary 

Artery Bypass Crafting. Journal of Cardiothoracic and Vascular 

Anesthesia 1997; 11: 831-834. 

25.Jakics J, Lee J, Ikeda S. Preoperative Aspirin and Heparin Therapy Does 

Not Increase Perioperative Blood Loss and Blood Product Requirements in 

44 



M.Sc. Thesis- J. Cheng McMaster - Statistics 

Coronary Artery Bypass Graft Surgery. Journal of Anesthesia 1999; 13:8-

13. 

26. Chavanon 0, Durand M, Romain-Sorin V, et al. L Does the Time Between 

Preoperative Interruption of Aspirin Intake and Operation Influence 

Postoperative Blood Loss and Transfusion Requirement in Coronary 

Artery Bypass Graft? Annales fran9aises d 'anesthesie et de reanimation 

2002; 21:458-463. 

27. Weightman WM, Gibbs NM, Weidmann CR, et al. The Effect of 

Preoperative Aspirin-Free Interval on Red Blood Cell Transfusion 

Requirements in Cardiac Surgical Patients. Journal of Cardiothoracic and 

Vascular Anesthesia 2002; 16:54-58. 

28. Gerrah R, Izhar U. Beneficial Effect of Aspirin on Renal Function Post­

Cardiopulmonary Bypass. Asian Cardiovascular and Thoracic Annals 

2003; 11:304-308. 

29.Ray JG, Deniz S, Olivieri A, et al. Increased Blood Product Use among 

Coronary Artery Bypass Patients Prescribed Preoperative Aspirin and 

Clopidogrel. BMC Cardiovascular Disorder 2003; 3:1-6. 

30. Gerrah R, Ehrlich S, Tshori S, et al. Beneficial Effect of Aspirin on Renal 

Function in Patients with Renal Insufficiency Postcardiac Surgery. The 

Journal of Cardiovascular Surgery 2004; 45: 545-50. 

45 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

31. Gerrah Babin, Elami A, Stamler A, et al. Preoperative Aspirin 

Administration Improves Oxygenation in Patients Undergoing Coronary 

Artery Bypass Grafting. CHEST 2005; 127:1622-1626. 

32. Bybee KA, Powell BD, Valeti U, et al. Preoperative Aspirin Therapy Is 

Associated with Improved Postoperative Outcomes in Patients Undergoing 

Coronary Artery Bypass Grafting. Circulation 2005; 112:286-292. 

33. http://www .cochrane-net.org/openlearning/HTML/modA2-5.htm, accessed 

2007-02-17. 

34. Sterne JA, Bradburn MJ, Egger M. Systematic Reviews in Health Care: 

Meta-Analysis in Context, 2nd Edition: Chapter 18 Meta-analysis in Stata. 

London, England: British Medical Journal Publishing Group, 2001. 

35. http://www .mrcbsu.cam.ac. uklbugs/winbugs/contents.shtml, accessed 

2006-09-16. 

36. Whitehead A. Meta-Analysis of Controlled Clinical Trials. West Sussex, 

England: John Wiley and Sons, 2002. 

37.Higgins JP, Thompson SG. Quantifying Heterogeneity in a Meta-Analysis. 

Statistics in Medicine 2002; 21:1539-1558. 

38. Higgins JO, Thompson SG, Deeks JJ, et al. Measuring Inconsistency in 

Meta-Analyses. British Medical Journal 2003; 327:557-560. 

46 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

39. Sung L, Hayden J, Greenberg ML, et al. Seven Items Were Identified for 

Inclusion When Reporting a Bayesian Analysis of a Clinical study. 

Journal of Clinical Epidemiology 2005; 58: 261-268. 

40.Angers JF. Use of Student-t Prior for the Estimation of Normal Means: A 

Computational Approach. Bayesian Statistics 1992; 4:567-575. 

41. Gelman A. Prior Distributions for Variance Parameters in Hierarchical 

Models. Bayesian Analysis 2006; 1: 515-533. 

42. Sweeting MJ, Sutton AJ, Lambert SP. What to Add to Nothing? Use and 

Avoidance of Continuity Correction in Meta-analysis of Sparse Data. 

Statistics in Medicine. 2004; 23:1351-1375. 

43.Bradburn MJ, Deeks JJ, Belin JS, et al. Much Ado about Nothing: A 

Comparison of the Performance of Meta-Analytical Methods with Rare 

Events. Statistics in Medicine. 2007; 26:53-77. 

44.Friedrich JO, Adhikari NK, Beyene J. Inclusion of Zero Total Event Trials 

in Meta-Analyses Maintains Analytic Consistency and Incorporates All 

Available Data. BMC Medical Research Methodology 2007; 7:5-10. 

45. Sterne JA, Gavaghan D, Egger M. Publication and Related Bias in Meta­

Analysis: Power of Statistical Tests and Prevalence in the Literature. 

Journal of Clinical Epidemiology 2000; 53:1119-1129. 

47 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

46. Yuan YC. Multiple Imputation for Missing Data, Concepts and New 

Development: SAS Documentation Experimental MI. 

http://support.sas.com/rnd/app/da/new/dami.html, accessed 2006-12-15 

47.Bloom BS, de Pouvourville N, Libert S. Classical or Bayesian Research 

Design and Analysis: Does it Makes a Difference? International Journal of 

Technology Assessment in Health Care 2002; 18: 120-126. 

48. Sutton AJ, Abrams KR. Bayesian Methods in Meta-Analysis and Evidence 

Synthesis. Statistical Methods in Medical Research 2001; 10:277-303. 

48 



M.Sc. Thesis- J. Cheng McMaster- Statistics 

Appendix A 

Forest Plots of the Primary 
Analysis and Comparison Plots 
of Sensitivity Analysis 

49 



Author (year) 

RCT 
Ferraris (198 
Matsuzaki2 ( 
Matsuzaki1 ( 
Hockings (19 
Morawski (20 
Klein (1998) 

Subtotal 

non-RCT 
Rawitscher ( 
Weightman2 
Gerrah1 (200 
Weightman3 
Gerrah2 (200 
Vuylsteke (1 
Gerrah3 (200 
Weightman1 
Michelson (1 
Ray (2003) 
Chavanon2 ( 
Reich (1994) 
Jakics (1999 
Chavanon1 ( 

Subtotal 

l) 
1997) 
1997) 
93) 
05) 

991) 
(2002) 
3) 
(2002) 
4) 
97) 
5) 
(2002) 
178) 

~002) 

~002) 

I 

-2 

M.Sc. Thesis- J. Cheng McMaster - Statistics 

Mean d\~erence %Weight 

---- • --

• -- • 
--- • 

• -- --
• -====--

I 

-1 0 

Mean difference 
Favours noASA Favours ASA 

-

• ~ 

I I 

2 

0.78. 4.42) 
2.58, 0.98) 
1.60, 2.20) 
0.20, 1.08) 
0.11, 1.35) 
1.35, 0.15) 
0.37, 1.08) 

0.01, 0.21) 
0.33, 0.73) 
1.48, 0.82) 
0.30, 0.90) 
0.16, 1.64) 
1.31, 0.51) 
1.24, 0.58) 
0.11, 1.69) 
1.32, 0.92) 
0.01, 0.99) 
0.20, 0.60) 
0.15, 1.15) 
0.67, 2.13) 
0.08, 0.92) 
0.12, 0.56) 

Figure la Classical Random Effects Model of Pooled Blood Transfusion 
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Figure lb Classical Random Effects Model of Pooled Amount of Bleeding 
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Odds ratio No. of events 

Author (year) I (95% Cl) ASA noAS~o Weight 

RCT 

Ferraris (1988) 1.14 ( 0.14, 9.21) 2/16 2/18 27.1 

Kallis (1994) 1.00 ( 0.19, 5.21) 3/50 3/50 43.3 

Morawski (2005) 1.00 ( 0.14, 7.39) 2/51 2/51 29.5 

Subtotal 1.04 ( 0.35, 3.07) 7/117 7/119 100.0 

non-RCT 

Gerrah3 (2005) 1.28 ( 0.02, 68.26) .5/15 .5/19 100.0 

Subtotal c:=========t=======::::J 1.28 ( 0.02, 68.26) .5/15 .5/19 100.0 

.1 .2 .5 1 2 5 10 
Odds ratio 

Favours noASA Favours ASA 

Figure lc Classical Random Effects Model of Pooled Myocardial Infarction (MI) 
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Figure ld Classical Random Effects Model of Pooled Mortality 
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Figure le Classical Random Effects Model of Pooled Re-operation 
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Figure 3 Impacts of Different Priors on Overall Estimate of Myocardial Infarction (MI) 
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Odds Ratio 

Study (95%CI) 

IV without Zero 2.33 ( 0.99, 5.48) 

Peto Method Either-Arm Zero 2.90 ( 1.44, 5.82) 

IV with Either-Arm Zero 2.68 ( 1.24, 5.81) 

IV with Both-Arm Zero 2.51 ( 1.17, 5.37) 

Bayesian without 2.39 ( 0.13, 43.82) 

Bayesian with Either-Arm Zero 3.04 ( 0.97, 10.84) 

Bayesian with Both-Arm Zero 2.78 ( 0.96, 8.86) 

.5 10 

Odds Ratio 

Figure 4 Comparison of Excluding Zero-events, Including Either-arm Zero-events 
and Including All Zero-events 
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Appendix B 

Tables of Extracted Data, 
Summaries of the Primary Analysis 
and Summaries of the Sensitivity 
Analysis 
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Reference 
Number 

10 
10 

II 

12 

13 

14 

15 

16 

16 

17 

18 

19 

20 

21 

21 

21 

22 

23 

24 

25 

26 

26 

27 

27 

27 

28 

29 

30 

31 

32 

Author 

Fuller! 

Fuller2 

Kewanee 

Ferraris 

Goldman 

Hockings 

Challis 

Matsuzakil 

Matsuzaki2 

Klein 

Mora ski 

Michelson 

Torsion 

Taggart! 

Taggart2 

Taggart3 

Ravisher 

Reich 

Vuylsteke 

Jakics 

Chavanonl 

Chavanon2 

Weightman! 

Weightman2 

Weightman3 

Gerrahl 

Ray 

Gerrah2 

Gerrah3 

Year 

1985 

1985 

1987 

1988 

1991 

1993 

1994 

1997 

1997 

1998 

2005 

1978 

1978 

1990 

1990 

1990 

1991 

1994 

1997 

1999 

2002 

2002 

2002 

2002 

2002 

2003 

2003 

2004 

2005 

M.Sc. Thesis- J. Cheng McMaster - Statistics 

Design Centre( s) 

RAT Single 

RAT Single 

RAT Single 

RAT 

RAT 

!tAT 

RAT 

RAT 

RAT 

RAT 

RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

non-RAT 

Single 

Multiple 

Single 

Single 

Single 

Single 

Multiple 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Aspirin Group 
Mean of 

No. of Patient 
Patient Age 

II 53.0 

10 60.0 

14 58.0 

16 

176 

50 

50 

II 

II 

37 

51 

9 
9 

28 

29 

44 

28 

87 

86 

51 

172 

162 

140 

255 

215 

10 

105 

46 

14 

64.3 

60.0 

60.0 

62.0 

62.0 

64.0 

61.3 

53.4 

53.4 

58.0 

58.0 

56.0 

62.8 

67.7 

61.0 

64.5 

Percentage 
of Male Aspirin 
Patient Dose 

325 

2,600 

75.0 80 

87.5 

100.0 

94.0 

82.0 

63.6 

72.7 

94.1 

100.0 

100.0 
89.3 

82.8 

75.0 

82.1 

65.5 

81.4 

74.5 

325 

325 

100 

300 

239 

262 

100 

300 

600 

1,500 

150 

300 

75 

85 

325 

325 

100 

100 

100 

Bybee 2005 non-RAT Single 1,316 

62.1 

61.4 

61.6 

64.0 

66.7 

67.0 

64.0 

69.0 

82.9 

83.1 

86.0 

70.0 

67.6 

73.9 

85.7 

76.2 

Table 1 Study Characteristics and Patient Demographics 
(reference number: corresponding number in bibliography) 
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No Aspirin Group 
Mean of Percentage 

No. of Patient of Male 
Patient Age Patient 

5 59.0 

5 59.0 

10 70.0 70.0 

18 

175 

52 

50 

20 

20 

36 

51 

16 

64 

33 
33 
33 
72 

110 

58 

49 

39 

39 

62 

63 

63 

10 

497.00 

48.00 

18.00 

320.00 

60.7 

60.0 

60.0 

62.0 

63.0 

63.0 

61.1 

54.6 

53.2 

56.0 

56.0 

56.0 

60.7 

68.2 

62.0 

61.7 

62.0 

62.0 

62.0 

62.0 

64.9 

70.0 

62.0 

69.0 

88.9 

100.0 

92.3 
80.0 

70.0 

70.0 

~.4 

100~ 

~.I 

M.9 
M.9 
M.9 
n~ 

~.I 

81.0 

n.5 

80.6 

80.0 

80.0 

80.0 

78.9 

81.3 

66.7 

72.5 
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RCT non-RCT 

Blood Transfusion Bleeding Blood Transfusion Bleeding 

Likelihood (n=6) (n=14) (n=10) (n=10) 

functions MD Cr. I. MD Cr. I. MD Cr. I. MD Cr. I. 

Normal 0.45 (-1.11, 1.97) 99.00 (-46.37, 227.60) 0.36 (0.06, 0.66) 134 (7.26, 240.60) 

Student's t 
(df=4) 0.38 (-1.06, 1.88) 95.87 (-43.32, 222.90) 0.35 (0.06, 0.65) 130.1 (9.52, 233.50) 

Student's t 
(df=8) 0.42 ( -1.09, 1.95) 97.23 ( -46.00, 225.30) 0.35 (0.06, 0.65) 132.5 (8.55, 237.10) 

Student's t 
(df=16) 0.44 ( -1.08, 1.96) 98.16 (-45.49, 226.00) 0.36 (0.06, 0.65) 133.9 (7.091, 239.9) 

Student's t 
(df=32) 0.44 (-1.10, 1.97) 98.16 (-46.32, 277.70) 0.36 (0.06, 0.65) 134.2 (8.44, 239.20) 

Table 3 Comparison of the Impact of Different Likelihood Functions on Continuous Outcomes 
for the Bayesian Random Effects Model 

(MD: mean difference; Cr.I.: credible interval; df: degrees of freedom; n: number of studies) 
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Priors 

unif(O,l) 

unif(0,5) 

unif(O,IO) 

unif(0,25) 

unif(0,50) 

unif(O, I 00) 

M.Sc. Thesis- J. Cheng McMaster - Statistics 

RCT non-RCT 

MI Mortality Re-operation Mortality Re-operation 

(n=3) (n=7) n=7) (n=7) (n=ll) 

OR Cr. I. MD Cr. I. MD Cr.!. MD Cr.!. MD Cr.!. 

1.04 (0.28, 3.94) 1.26 (0.27, 6.07) 2.74 (1.15, 6.91) 0.83 (0.37, 2.17) 1.19 (0.65, 2.26) 

1.05 (0.1 0, 11.02) 1.23 (0.19, 7.88) 2.77 (0.95, 8. 7 !l 0.91 J..0.33, 3.6Q2_ 1.20 J..0.63, 2.39) 

1.04 (0.05, 24.051 1.23 (0.18, 8.1 !ll 2.78 J..0.96, 8.8()}_ 0.91 J..0.33, 3.5<)}_ 1.20 J..0.63, 2.39) 

1.05 (0.01' 92.02) 1.22 J..0.18, 8.2ll 2.77 (0.94, 8.87) 0.92 J..0.34, 3.6ll 1.20 J..0.63, 2.36) 

1.02 (0.005, 169.19) 1.22 (0.18. 8.25) 2.77 (0.94, 8.87) 0.92 (0.33, 3.60) 1.20 (0.63, 2.36) 

1.03 (0.004, 332.62) 1.22 (0.18, 8.25) 2.77 (0.94, 8.87) 0.92 (0.33, 3.60) 1.20 (0.63, 2.36) 

Table 4 Comparison of the Impact of Different Priors on Binary Outcomes for 
Bayesian Random Effects Model 

(unif: uniform distribution; OR: odds ratio; Cr.I.: credible interval; n: number of studies) 

Length of 
OR C.I C.I. I Cr.l. 

IV without Zero Event Studies 2.33 (0.99, 5.4~ 4.49 

Peto Method 2.90 (1.44, 5.82) 4.38 

IV with Either Arm Zero Studies 2.68 _{1.24, 5.8!2_ 4.57 
IV with Both Arm Zero Studies 2.51 _{1.17, 5.3'Zl_ 4.20 
Bayesian without Any Zeros 2.39 (0.13, 43.82) 43.69 

Bayesian with Either Arm Zeros 3.04 _{0.97, 10.8"!2_ 9.87 
Bayesian with Both Arm Zeros 2.78 (0.96, 8.86) 7.90 

Table 5 Comparison of Excluding and Including Zero-event Studies on Re-operation 
(number of studies= 7, either-arm zero-event studies= 3, two-arm zero-event studies= 1) 
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Imputation Estimates L.L. U.L. 

RCT I 0.489 0.059 0.9I9 

Blood 2 0.400 -O.I9 0.99I 

Transfusion 3 0.493 0.063 0.923 

4 0.667 0.175 1.158 

5 0.566 O.I08 1.023 

6 0.46I -0.009 0.93I 

7 0.463 -0.004 0.93 

8 0.538 0.13I 0.944 

9 0.442 -0.07 0.952 

IO 0.46I -0.029 0.952 

Average 0.50 0.02 0.97 
Original 0.36 -0.37 1.08 

Non-RCT I 0.554 0.099 I.OI 

Blood 2 0.520 0.26 0.779 
Transfusion 3 0.606 0.278 0.933 

4 0.534 0.268 0.80I 

5 0.488 0.25I 0.73 

6 0.343 0.11 0.576 

7 0.446 0.203 0.688 

8 0.565 O.I52 0.977 

9 0.275 -0.011 0.561 

IO 0.324 0.03 0.62 

Average 0.47 O.I6 0.77 

Original 0.34 0.12 0.56 

Table 6 Comparison of the Overall Estimates of Blood Transfusion After-Before Imputation 
(missing rate in RCTs = 0.45; missing rate in non-RCT = 0.26) 
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Appendix C 

Plots of Dynamic Trace, 
Kernel Density, Time Series 
and Autocorrelation of Bayesian 
Random Effects Models 
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Mean and Between-Variance of Blood Transfusion in RCT Studies 
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Appendix D 

Codes for Bayesian Random Effects 
Model with Input Data, 
Initial Values and Seeds 
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model # Random effect model for continuous outcomes 
{ #k<-200 # k=4, 8, 16, 32 #(df of Student't distribution) 

for (i in l:r) 
{ 

y[i]-dnorm(psi[i],w[i]) #normal likelihood 
# y[i]-dt(psi[i],w[i],k) # student's likelihood 
psi[i]-dnorm(theta,t) 
w[i]<-1/(sigma*sigma) 

theta-dnorm(O,l.OE-6) 
sigma-dunif(O,lO) 
t<-1/(sigma*sigma) 
tausq<-1/t #between-study variance of normal likelihood 
#tausq<-k/(t*(k-2)) #between-study variance of student's t 
#likelihood 

#blood transfusion in RCT 
list(y=c(2.6,0.44,-0.6,0.3,-0.8,0.73),r=6) 

#initial 
list(theta=O,sigma=l,psi=c(O,O,O,O,O,O)) 

#blood transfusion in non-RCT 
list(y=c(0.5,0.2,-0.33,0.9,-0.33,1.4,0.2,0.1,0.5,0.5,0.4,0.9,0.2,0.3), 
r=14) 

#initial 
list(theta=O,sigma=l,psi=c(O,O,O,O,O,O,O,O,O,O,O,O,O,O)) 

#bleeding in RCT 
list(y=c(597,170,514,105,204,45,-200,-3,43,273),r=l0) 

# initial 
list(theta=O,sigma=l,psi=c(O,O,O,O,O,O,O,O,O,O)) 

#bleeding in non-RCT 
list(y=c(26,11,177,230,171,239,482,81,480,31), r=lO) 

#initial 
list(theta=O,sigma=l,psi=c(O,O,O,O,O,O,O,O,O,O)) 

#seed 14721869 
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model # Random effect model for binary outcomes 
{ 

for (i in l:r) { 
rc[i] - dbin(pc[i],nc[i]) 
rt[i] - dbin(pt[i],nt[i]) 
logit(pc[i])<-mu[i] 
logit(pt[i])<-mu[i]+delta[i] 
mu[i]-dnorm(O,l.OE-5) 
delta[i]-dnorm(theta,t) 
} 

theta-dnorm(O, l.OE-6) 
t<-1/(sigma*sigma) 
sigma-dunif(O,lO) 
#sigma-dunif(O,l) #prior for sensitivity analysis 
#sigma-dunif(O,S) #prior for sensitivity analysis 
#sigma-dunif(0,25) #prior for sensitivity analysis 
#sigma-dunif(0,50) #prior for sensitivity analysis 
#sigma-dunif(O,lOO) #prior for sensitivity analysis 
#tausq<-1/t #between-study variance 

#MI in RCT 
list(nt=c(16,50,51),rt=c(2,3,2),nc=c(l8,50,51),rc=c(2,3,2),r=3) 

#initial 
list(theta 0, sigma=l, mu c( 0, 0, 0), delta c (0, 0, 0) ) 

#Mortality in RCT 
list(nt=c(17,12,11,51,12,12,51),rt=c(0.5,0.5,0.5,0.5,0.5,0.5,2), 

nc=c(19,5.5,5.5,51,21,21,51),rc=c(0.5,0.5,0.5,0.5,0.5,0.5,1),r=7) 

#initial 
list(theta = 0, sigma=l, mu 
c(O,O,O,O,O,O,O)) 

c( O,O,O,O,O,O,O), delta 

#Mortality in non-RCT 
list(nt=c(1316,11,29,46,140,255,215),rt=c(22,0.5,0.5,4,3,4,6), 

nc=c(320,11,73,48,62.5,62.5,62),rc=c(l4,0.5,0.5,3,1,1,1),r=7) 

#initial 
list(theta = 0, sigma=l, mu 
c(O,O,O,O,O,O,O) ) 

c(O,O,O,O,O,O,O), delta 
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#Re-operation in RCT 
list(nt=c(51 1 12 1 10 1 16 1 176 1 50 1 50) 1 rt=c(4 1 0.5 1 1 1 2 1 11 1 3 1 4) 1 

nc=c(51 1 5.5 1 5.5 1 19 1 175 1 52 1 51) 1 rc=c(2 1 0.5 1 0.5 1 0.5 1 4 1 2 1 0.5) 1 r=7) 

#initial 
list(theta = 0 1 sigma=1 1 mu 
c(0 10 1 0 10 10 10 10) ) 

c( 0 10 1 0 1 0 1 0 10 1 0) 1 delta 

#Re-operation in no-RCT 
list(nt=c(1316 1 172 1 162 1 11 1 28 1 87 1 9 1 86 1 140 1 255 1 215) 1 

rt=c(46 1 2 1 2 1 0.5 1 l 1 0.5 1 1 1 1 1 6 1 8 1 12) 1 

nc=c(320 1 39 1 39 1 11 1 72 1 111 1 64 1 58 1 62 1 62.5 1 62.5) 1 rc=c(11 1 1 1 1 1 0.5 1 3 1 0.5 1 1 1 1 
1 2 1 1 • 51 1 • 5) 1 r= 11) 

#initial 
list(theta= 0 1 sigma=1 1 mu 
c (01 010101010101010101 0) ) 

#seed 14721869 

c( 0 10 1 0 1 0 1 0 10 1 0 1 0 10 1 0 1 0) 1 delta 
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