
ERROR ALGEBRAS

Error Algebras

By

WEI LEI, B.ENG.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

© Copyright by Wei Lei, November 2007

ii Wei Lei - Department of Computing and Software

MASTER OF SCIENCE (2007)
(Computing and Software)

TITLE: Error Algebras

McMaster University
Hamilton, Ontario

AUTHOR: Wei Lei, B.Eng. (Wuhan University of Technology, China)

SUPERVISOR: Dr. Jeffery I. Zucker

NUMBER OF PAGES: iv, 70

Abstract

In computations over many-sorted algebras, one typically encounters error cases,

caused by attempting to evaluate an operation outside its domain (e.g. division by

the integer 0; taking the square root of a negative integer; popping an empty stack).

We present a method for systematically dealing with such error cases, namely the

construction of an "error algebra" based on the original algebra. As an application

of this method, we show that it provides a good semantics for (possibly improper)

function tables.

iii

Acknowledgements

First, I would like to express my sincere thanks and appreciation to my supervisor

Dr. J. I. Zucker, for his thoughtful guidance, stimulating suggestions and constant

encouragement throughout my study.

Also, I am grateful to the members of my committee, especially Dr. W. M. Farmer,

for their careful review and valuable comments. Thanks to all my other professors,

notably Dr. S. Qiao and Dr. P. Speissegger, for their help during my studies.

My thanks also go to Jian Xu, and all my other friends for their friendship, support

and help.

Last but not least, I would like to express my gratitude to my parents. They are

always ready to help in any way I need. I cannot thank them enough for their love

and support.

iv

Contents

Abstracts

Acknowledgements

1 Introduction

1.1

1.2

1.3

Background and objectives .

Related work on error analysis .

Overview

2 Basic Concepts

2.1

2.2

Basic algebraic concepts

Reducts and expansions

2.3 Standard signatures and algebras

2.4 Stacks over algebra of data

2.5 Terms over L:: syntax and semantics

v

iii

iv

1

1

2

2

4

4

10

10

13

16

vi Wei Lei - Department of Computing and Software

3 Error Algebras

3.1

3.2

3.3

3.4

The error value «:: algebras Ae of signature r;e

Semantics of term over r;e

Monotonicity . .

Error-consistency

4 Semantic of Improper Tables using Error Algebras

4.1 Normal tables . . .

4.1.1

4.1.2

Properness .

Semantics of normal tables .

4.2 Inverted tables

4.3 Transformations of tables .

4.4 Inverting a normal table .

4.5

4.6

Normalising an inverted Table

Comparison with the logic of Parnas

5 Conclusion and Future Work

5.1

5.2

Conclusion .

Future work

19

19

28

34

37

41

43

46

49

55

58

59

64

66

69

69

70

Chapter 1

Introduction

1.1 Background and objectives

In this thesis, we will develop a systematic method for handling error cases in compu

tation over many-sorted algebras using error algebras. Desirable properties in com

puting with error cases are:

(1) monotonicity, which is a weaker condition than strictness, and

(2) error-consistency, which is a weaker condition than consistency.

We will apply this theory to the semantics of proper and improper function tables.

In particular, the type of booleans, has an error value a.: as well as tt and ff, leading

to a 3-valued logic.

1

2 Wei Lei - Department of Computing and Software

1.2 Related work on error analysis

The treatment of error values, and the related areas of definedness of terms and

partial function, have received a great deal of attention, with various approaches.

Good exposition of some of these approaches can be found in [Far90, Far95, Fef95,

Jon06, KK94, Luo03, Par95, Par03, TZ88, Zhu03]

A strong motivation for at least some of these approaches is the investigation of

new error and exception handling in software analysis.

1.3 Overview

Chapter 2 gives the fundamental definitions of many-sorted signatures E and E

algebras.

In Chapter 3, we introduce error algebras. Also, we discuss two important prop

erties of such algebras: monotonicity and error-consistency.

In Chapter 4 we present a semantics for function tables using error algebras which

extends the semantic theory of [Zuc96] by defining a uniform semantics for both

proper and improper tables.

We consider both normal and inverted function tables, and show that the seman

tics, as well as the properties of properness, and improperness are preserved under

the transformation between these two classes of tables. Finally, a comparison with

1. Introduction 3

the logic used by Parnas in [Par93] is given in this chapter.

Chapter 5 summaries the main results of the thesis and considers possible future

work.

Chapter 2

Basic Concepts

We briefly introduce the basic concepts used in this thesis in this chapter, including

many-sorted signatures I: and L:-algebras. Some examples are provided.

Most of the material and more details can be found in [TZ99, TZOO, TZ03].

2.1 Basic algebraic concepts

Definition 2.1.1 (Many-sorted signature I:). A many-sorted signature I: is a

pair (Sort(L:), Func(L:)) where

(1) Sort(L:) is a finite set of sorts;

(2) Func(L:) is a finite set of primitive (or basic) function symbols

F : St X · · · X Sm -+ S (m ~ 0).

4

2. Basic Concepts 5

Each symbol F has a type s1 x · · · x sm --+ s, where s1, ... , sm E Sort('£) are the

domain sorts and s E Sort('£) is the range sort of F. The arity ofF ism 2:: 0. The

case m = 0 corresponds to constant symbols; we write F : --+ s in this case.

Definition 2.1.2 (Product types over "£). A '£-product type, or a product type

over "£, has the form u = s1 x · · · x sm (m 2:: 0), where s1 , ... , Sm E Sort('£) are

'£-sorts. We write u, v, w ... for '£-product types.

Definition 2.1.3 ('£-algebras). A '£-algebra A has:

(1) for each sort s of"£, a non-empty set A 8 , called the carrier set of sort s;

(2) for each 'E-function symbol F : s1 x · · · x Sm --+ s, a function FA : Au --+ As

where u is the '£-product type s1 x · · · x sm, a:nd

The algebra A is total if FA is total for each "£-function symbol F. We write

E(A) for the signature of an algebra A [see Chapter 3].

In this thesis we assume:

Assumption 2.1.4 (Totality Assumption). All algebras are total.

Remark 2.1.5. Note that the existence of error output for certain input values of a

function FA does not imply partiality of FA, or of A.

6 Wei Lei- Department of Computing and Software

Example 2.1.6. The algebra of booleans has signature

signiture ~(B)

sorts bool

functions true, false : --+ bool,

1\, V : bool2 --+ bool,

-, : bool --+ bool

end

Then the algebra B has the carrier llli = {tt, ff} of sort bool, and so

B = (lffi; tt, ff, /\, v, •)

where trueB = tt, falseR= ff, and the standard boolean operations have their usual

meaning.

Example 2.1.7. The algebra W(A) over a set A (an "alphabet") has signature

signature ~ (W)

sorts letter, word

functions sing : letter --+ word,

concat : word2 --+ word,

() : --+word

end

2. Basic Concepts 7

and so

Example 2.1.8. Algebras of naturals:

(1) The algebra No of naturals has signature

signature E(No)

sorts nat

functions 0 : -t nat,

sue : nat -t nat

end

The algebra No consists of the carrier N={O, 1, 2, ... } of sort of nat, the zero

constant oN : -t N, and the successor function sucN : N -t N, and so

(2) The expanded algebra N of naturals has signature

signature E(N)

import No

functions +,X: nat2 -t nat
0

end

8 Wei Lei - Department of Computing and Software

The algebra N is expanded from the algebra No by adding functions + : ~ -t N

and x: ~ -t N:

Example 2.1.9. We can also form algebras expanding N such as

Since the algebras are total (by the Totality Assumption), in order to define the terms

such as predN(O) or divN(2, 0) we have to use default values:

divN(m, 0) = 0 for all mEN

minusN(m, n) = 0 form< n

Example 2.1.10. The algebra Z of integers:

signature ~(Z)

sorts int

functions 0, 1 : -t int,

• 2 • +, x : mt -t mt,

minus : int2 -t int

end

2. Basic Concepts 9

The algebra Z consists of the carrier Z={ ... , -2, -1, 0, 1, 2, ... } of sort of int:

Now pred and minus have natural (non-default) total definitions. But now we have

new problems with functions such as:

sqrtz : int ---t int

or divz : int2 ---t int

For now, we again use default values:

0 for m < 0
sqrtz(m) =

(integer division)

n where n2
::; m < (n + 1)2 for m 2 0

divz(m, 0) = 0 for all mE Z.

Example 2.1.11. The ring 'Roof reals has signature

signature ~('Ro)

sorts real

functions 0, 1 : ---t real,

end

and so 'R0 = (R; 0, 1, +, -, x).

+, x : rea12 ---t real,

- : real ---t real

10 Wei Lei - Department of Computing and Software

2.2 Reducts and expansions

Definition 2.2.1. Let :E and :E' be signatures.

(1) :E ~ :E' if and only if Sort(:E) ~ Sort(:E') and Func(:E) ~ Func(:E').

(2) Suppose A is a :E-algebra, A' is a :E'-algebra and :E ~ :E'.

(a) The :E-reduct A'Jr; of A' is the algebra of signature :E, consisting of the

carriers of A' named by the sorts of :E, and equipped with the functions of

A' named by the function symbols of :E.

(b) The :E' -algebra A' is a :E' -expansion of A if and only if A is the :E-reduct

of A'.

Example 2.2.2.

No= NJr;(No)

Ro = RJr;cn.o)

2.3 Standard signatures and algebras

Definition 2.3.1 (Standard signatures). A signature :E is standard if :E(B) ~ :E,

and the function symbols of :E include a conditional

if8 : bool X s2 ---+ s

2. Basic Concepts 11

for all sorts s of I; other than bool.

For a standard signature I;, a sort of I; is called an equality sort if I; includes an

equality operator

Definition 2.3.2 (Standard algebras). Given a standard signature I;, a l,;-algebra

A is a standard algebra if (i) it is an expansion of B, (ii) the conditional operator on

each sort s has its standard interpretation in A; i.e., forb E 1ffi and x, y E A8 ,

X ifb=tt
if1(b,x,y) =

y if b = ff;

and (iii) the operator eq5 is interpreted as a identity on each equality sort s.

Example 2.3.3. The algebra zB has signature L;(ZB).

signature L;(ZB)

import Z, B,

functions eqint' lessint: int2 ~ bool,

ifint: bool x int2 ~ int

end

12 Wei Lei - Department of Computing and Software

Then

zB = (Z B· eqz lessz jfz)
' ' ' '

where the standard operations (listed above) have their standard interpretations

on Z.

More generally: Given a signature 2: and a 2:-algebra A, a boolean expansion of

2: is a signature I;B where

Sort(I:) U {bool}

Func(I:) U

Func(I:(B)) U

{ (eq8 : 8
2 --t bool) sES,

(if 8 : boo I X s2 --+ S) sESort(E)

}

where S ~ Sort(I:) is the set of equality sorts of 2:.

The boolean expansion of A is the 2:B-algebra

where

if1 : lB x A~--+ As (s E Sort(I:))

2. Basic Concepts 13

Example 2.3.4. The standard algebra of reals R~ is formed by standardizing the

ring Ro.

Note that real is not generally chosen to be an equality sort, since equality between

two reals is not decidable.

Remark 2.3.5. Any many-sorted signature E can be standardized to a standard

signature E8 by adjoining the sort bool together with the standard boolean operations;

and, correspondingly, any algebra A can be standardized to a standard algebra A B

by adjoining the algebra B and other boolean operators, e.g. the equality operation

at the equality sorts of E8 .

Assumption 2.3.6 (Standardness). We will assume our signatures and algebras

are standard.

Remark 2.3.7. The standard algebra zB (or some expansion of it) will be the main

source of examples later in this thesis, especially in Chapter 4.

2.4 Stacks over algebra of data

Consider a standard algebra of data 'D:

14

of signature~ where

Wei Lei - Department of Computing and Software

Sort(~)
Func(~)

{data, boo I}
Func(~) ('D) U
Func(~(B)) U

{ eqdata : data 2
--t bool,

if data : boo I x data2
--t data

}

Then, ~stk is the stack signature over ~ where

Sort(~stk)
Func(~stk)

{data, bool, stk}
Func(~) U
{empty : stk,
push : data x stk --t stk
*pop : stk --t stk
*top : stk --t data
isempty : stk --t bool
eqstk : stk2

--t bool
if stk : boo I X stk2 --t stk

}

1)stk is the ~stk expansion of 1) where the carrier of sort stk is

set of all stacks of data

and all stack operations which are listed above have their usual interpretations.

Remarks 2.4.1.

(1) vstk is a standard algebra, and ~stk includes eqstk, derived from eqdata·

(2) How should we define pop(empty) and top(empty)? For now, we again use

2. Basic Concepts

default values:

pop(empty) = empty

top(empty) =?

15

We must assume there is a default data item, that is, a default element of][)).

For example

1B\ take tt (or ff)

N take 0

For][))= z take 0

A* take ()

§ take empty

More generally we make the following assumption on I::

Assumption 2.4.2 (Instantiation). For each sort s of I:, there is a closed term in

I:. Using these closed terms, 08 , as default values we can systematically extend all

functions in I: to be total on all I:-algebras.

Discussion 2.4.3 (Default values). Extending the domain of functions by default

values is neither an esthetically nor computationally satisfactory. The problem is that

default values hide errors. In the next chapter we will introduce a better idea: error

algebras.

16 Wei Lei- Department of Computing and Software

2.5 Terms over I:: syntax and semantics

Definition 2.5.1 (Variables).

(1) For each s E Sort(L-), Var5 is a countable set of variables of sorts: x 5
, y5

, •••

(2)

Var(L-) = U Vars
sESort(E)

Definition 2.5.2 (Terms).

(1) The set Tm8 (L-) of L--term of sort sis defined inductively by the clauses:

(a) Var5 (L-) E Tms(L-).

(b) if c : ---+ s is in Func(L-) then c E Tm8 (L-).

(c) ifF: s1 x ··· x sm---+ sis in Func(L-) and tiE Tmsi fori= 1, ... ,m

(2)

Tm(L-) = U Tms(L-)
sESort(E)

Note: In (1) clause (b) is a special case of clause (c), with m = 0.

Definition 2.5.3 (States over A). Let A be a L--algebra. A state over A is a family

2. Basic Concepts 17

of functions

Definition 2.5.4 (Term evaluation). Each ~-term t has a value [t]Ao- in A relative

to state o-. The function

[t]A : State(A) ---+ As

is defined by structural induction (or recursion) on t:

(a) [xstO" = 0"8 (x8
).

(b) [c]Ao- = ~.

(c) [F(t1, ... , tm)]Ao- = pA([tito-, ... , [tm]Ao-).

Note: if t : s then [t]Ao- E A8 •

Definition 2.5.5. Var(t) is the set of variables occurring in t.

Notation 2.5.6. We write o-(x8
) for o-s(x8

) where o- = (o-s)sESort(E)

Definition 2.5.7. ForM~ Var(~):

o- ~ o-' (rel M) ¢=::?- o- r M = o-' r M

i.e. o- and o-' agree on M.

Lemma 2.5.8 (Coincidence Lemma). For any ~-term t:

18 Wei Lei- Department of Computing and Software

Proof. By structural induction on t. D

Definition 2.5.9 (Closed terms over ~).

(1) tis closed if Var(t) = 0

(2) CT(~) is the set of all closed ~-terms.

Corollary 2.5.10. If t is closed then [t]o- is independent of a-.

So if t is closed we can write:

Chapter 3

Error Algebras

In this chapter, we will introduce error algebras. Two important properties of such

algebras, monotonicity and error-consistency, are discussed.

Some contents are adapted from [TZ88].

3.1 The error value {f: algebras A€ of signature ~€

Given a standard 'E-algebra

let ff be a new object or symbol, representing an "error value". For each sort s, let

In particular, JBIE = {tt, ff, ff }, producing a three-valued logic.

19

20 Wei Lei - Department of Computing and Software

For each F: u--+ sin Func(~), if u = s1 x · · · x sm, define

let

AE - (AE pA,€) _ -
81

, ••• , , ••• , E8 , • • • ,

and for each F E .Func(~)u--+s, let

be some extension of FA : Au --+ As.

Definition 3.1.1 (Strict and consistent extensions). For each FE .Func(I:)u--ts'

we say:

(1) FA,E is strict over A if FA,E(a1 , ••• , t:E, ••. , am) = t:E

(i.e. FA,€(a1 , ... ,am) has value t:E if any argument is t:E); and

(2) FA,E is consistent over A if it extends FA, i.e. pA,E ~A= FA.

Definition 3.1.2 (Basic error signature and algebra). Let A€ be the algebra

of signature ~€ where

Sort(~)

3. Error Algebras 21

and for all sorts s : error~ = f£

We call

(1) I;E the basic error signature over I:;

(2) Af the basic error algebra over A.

Example 3.1.3 (Basic error algebra based on B). Consider the algebras:

B = (lffi; tt, ff, and, or, not)

The logical operators andf, orf and note which extend and, or and not strictly and

consistently, give rise to weak 3-valued logic [Kle52, §64].

Example 3.1.4 (Other error algebras on B). The strict or weak 3-valued oper-

ators [Kle52] have the following truth tables (read rows before columns):

tt tt ff (£

ff ff ff (£

(£ (£ (£ (£

Table 1: Strict 'and'

22 Wei Lei - Department of Computing and Software

tt tt tt «:

ff tt ff «:

«: «: «: «:

Table 2: Strict 'or'

We can also define strong (non-strict) versions of there:

1 strong-and II tt 1 ff I «: I

tt tt ff «:

ff ff ff ff

«: «: ff «:

Table 3: Strong 'and'

I strong-or II tt I ff I «= I

tt tt tt tt

ff tt ff «:

«: tt «: «:

Table 4: Strong 'or'

3. Error Algebras 23

Remarks 3.1.5.

(1) All these operators are commutative.

(2) We could also define a weak 3-valued implication, as well as a strong version:

1 strong-imp II tt 1 ff 1 ~ 1

tt tt ff ~

ff tt tt tt

~ tt tf tf

Table 5: Strong 'imply'

Discussion 3.1.6 (Non-strict semantics). Consider statements:

(1) x # 0 and (t"div x) > 0

(2) x = 0 or (1 div x) > 0

Suppose x = 0 (i.e. evaluate at a with a(x) = 0). We may very well want:

• statement (1) to evaluate to ff; and

• statement (2) to evaluate to tt.

But strict operators would (in both cases) evaluate to tf.

A good solution is to use cand ("conditional and") and cor("conditional or").

These operators evaluate conjunctions and disjunctions from the left:

24 Wei Lei - Department of Computing and Software

1 cand II tt 1 ff 1 ~ 1

tt tt ff ~

ff ff ff ff

~ ~ ~ ~

Table 6: conditional 'and'

tt tt tt tt

ff tt ff ~

~ ~ ~ ~

Table 7: conditional 'or'

Remarks 3.1.7.

(1) cand and cor are not commutative. Nevertheless these operators are computa

tionally meaningful. In functional programming languages, such as SML, they

are called 'andalso' and 'orelse' respectively.

(2) We could add operators cand or cor to the algebra

B = (lffi; tt, ff, and, or, not)

3. Error Algebras 25

which is then extended consistently but not strictly to:

Remarks 3.1.8. Consider the data algebra

and the basic algebra over A

Now, consider the interpretation of equality eq and the conditional if in Ae:

(1) Equality vs identity: The function eqA,e extends eqA by strictness ("weak

equality" on A e) so

a: (not tt) if x = a:

a: (not ff) otherwise

On the other hand, the identity function ("strong equality") on A e has the form:

where

tl: if X= 6:

ff otherwise

Note that idA' is a non-strict extension of eqA.

26 Wei Lei - Department of Computing and Software

(2) Conditional: Note that ifA,e extends ifA by strictness. But it is not a condi

tional operation on ve:

ifA,E(tt, d, tE) = tE (not d)

This is a "weak conditional" on A €.

We could adjoin a non-strict (or "strong") conditional to A €:

where

X if b = tt

ifns(b, X, Y) = y if b = ff

lE if b = lE

This is a non-strict extension of if with the standard meaning for the conditional,

thus:

ifns(tt, d, E) = d (not tE).

(3) Ae is not (quite) standard, even if A is, since:

(a) A€ contains B€ instead of B; and

(b) A e has ifA,e and eqA,€ as strict extensions of if A and eqA, i.e. weak condi

tional and equality, not the standard interpretations of these symbols on

AE.

3. Error Algebras 27

Example 3.1.9. Consider

n = (lR, Q, Z,lm; ... , eqQ, eqz)

Equality would (or should) be available on Q, Z (and Jm) but not JR, since equality on

the reals is not computable.

Now consider the algebra:

This does not have eqE on n E. However we assume we can still distinguish between

"real" reals and fER, so we add the predicate

where

tt if X= fER

is-errorR" (x) =

ff otherwise

(as well as errors on the other sorts s)

Remark 3.1.10 {Other operators in AE). Over the basic error algebra AE we can

define operators such as

• cand or cor from if05 ;

28 Wei Lei - Department of Computing and Software

• id from eq, is-error and ifns;

• is-error from id.

Definition 3.1.11 {Augmented error signature and algebra). Let E€ and A€ be

the basic error signature and algebra over E and A. The augmented error signature

EE,a and augmented error algebra A €,a are formed by adding is-error and ifns for all

sorts s of E.

Definition 3.1.12 (Strict and consistent error signature and algebra). Let

A be a E-algebra and A € an error algebra over A.

(1) A€ is strict over A iff for all FE Func(E), pA,€ is strict over A.

(2) A€ is consistent over A iff for all FE Func(E), pA,€ is consistent over A.

Remarks 3.1.13.

(1) The basic error algebra over A is consistent and strict over A.

(2) So is the augmented error algebra.

3.2 Semantics of term over 'EE

Note that State(A) C State(A€).

3. Error Algebras 29

Definition 3.2.1 (States over Ae represented over A).

For CJ E State(Ae), define CJA E State(A) by

CJ(x8
) if CJ(x) # a:

8: if CJ(x) = a:

where 88 is the default value which exists from the Instantiation Assumption 2.4.2.

(I.e., we replace error values with default values of the same sort.)

Theorem 1. Let Ae be an error algebra over A, t E Tm(:E) and CJ E State(Ae).

Then

(1) If Ae is strict over A, and there exists x E Var(t) such that CJ(x) =a:, then

(2) If Ae is consistent over A, and for all x E Var(t), .CJ(x) #a:, then

Proof.

(1) By structural induction on t.

(a) t _ x:

By assumption, CJ(x) = a:,

and so,

[x]A• CJ = CJ(x) = a:.

30 Wei Lei - Department of Computing and Software

n
since there exists x E Var(t), cr(x) = ff and Var(t) = U Var(ti),

i=l

we have, for some i E {1, ... , n }:

x E Var(ti) and cr(x) = ff

By induction hypothesis:

Hence,

since pA• is strict.

(c) t- c:

By definition of Terms (definition 2.5.2) this is a special case of clause

(b), with m = 0. Thus,

(2) By structural induction on t:

(a) t = x:

Using the given fact that cr(x) =J- ff:

3. Error Algebras 31

By definition

where by the induction hypothesis:

continuing on we have:

(c) t = c:

It is true since it is the special case of clause (b) with n = 0.

D

Remarks 3.2.2.

(1) Theorem 1(1) says that the semantics of A€ extends the semantics of A strictly.

i.e. errors propagate or persist: once ff occurs as value of a subterm it will

persist as the value of the whole term.

(2) Theorem 1(2) says that the semantics of A€ extends the semantics of A

consistently.

32 Wei Lei- Department of Computing and Software

Discussion 3.2.3. So there are two possible reasons why [t]A" CJ = a::

(1) From Theorem 1(1): for some x E Var(t) : CJ(x) =a:; or

(2) From Theorem 1(2): Ae is not consistent over A, so some function at some

argument returns a: instead of a default value.

Corollary 3.2.4. If Ae is consistent over A, t E Tm(I;) and CJ E State(A) then

[t]N CJ = [t]ACJ

Proof. From Theorem 1(2), since if CJ E State(A), then CJ = CJA. D

Corollary 3.2.5. If Ae is consistent over A, and t E CT(I;) then

Proof. Immediate from Theorem 1(2). D

Discussion 3.2.6. Theorem 1 works only assuming Ae is consistent and strict. How

important or desirable are these properties?

• Strictness: This does not hide errors: "errors propagate". This formalizes the

idea of 'GIGO'. But we may prefer operators such as cand, cor and ifns as (non-strict)

extensions of and, or and ifA. We will return to this.

• Consistency: Consider algebras containing functions with default values, for ex

ample:

3. Error Algebras 33

(1) N' = (N, Jffi; 0, sue, pred, ...) where pred(O) = 0.

Now define:

So now prede is not a consistent extension of pred!

Similarly, one can have non-consistent but strict extensions to remove default

values, with, for example,

div in N or Z; or

pop and top in vstk.

So consistency is not always desirable.

Remarks 3.2. 7.

(1) From now on, we will evaluate ~>terms and :Ee-terms over A\ that is, we let

a1, a2, ... range over State(Ae), and let [t]a mean [t]A' a (even if t E Tm(:E)).

(2) We can think of a(x) = ff: as "a is unspecified at x" or "x is not yet initialized

in state a" .

Discussion 3.2.8. We are looking for (computationally meaningful) conditions on

error algebras, weaker than

(1) strictness; and

34 Wei Lei - Department of Computing and Software

(2) consistency.

For (1) we propose monotonicity; and for (2) we propose error-consistency. We

discuss both of these in the following two sections.

3.3 Monotonicity

First define a simple partial order on each carrier A~ of AE.

Definition 3.3.1. For all x, y E A~

x ~ y -¢:::::} x = y or x = f£
8

Definition 3.3.2.

(1) Let F: s1 x · · · x Sm---+ s be in Func(L:). Then pA,E is monotonic over A iff

(2) AE is monotonic over A iff for all FE Func(:E), FA,E is monotonic over A.

Lemma 3.3.3. Strictness =? monotonicity

Proof. From definitions of strictness (Definition 3.1.1) and monotonicity (Definition

3.3.2). 0

3. Error Algebras 35

An equivalent characterization of monotonicity is:

Lemma 3.3.4. If F : u ---+ s is in Func('E), then pA,€ is monotonic over A iff the

following holds:

for any a E Au, where a = (a1, .•• , ff, ... , am) (including at least one ff),

if pA,t:(a) = y =/= ff, then replacing ff in a by any other argument will not change the

output y.

Proof. Immediate from Definitions 3.3.1 and 3.3.2 (2). 0

Discussion 3.3.5. The computational significance of strictness is that it does not

"hide errors" in the input. Monotonicity is a more liberal concept than strictness

it may hide errors in the input, but only if they do not affect the output, that is, if

they are irrelevant to output.

Example 3.3.6. The operators if, cand, cor, strong-and, strong-or are

monotonic. But is-error and id are not.

Remark 3.3.7 (Semantics of bounded quantifiers). Consider bounded

quantification over integers. Then interpret

Vka<S:k~b P(k) (a, bE Z)

as

P(a) cand P(a + 1) cand ... cand P(b).

36 Wei Lei - Department of Computing and Software

and interpret

:3ka<k~b P(k) (a, bE Z)

as

P(a) cor P(a + 1) cor ... cor P(b).

Definition 3.3.8. ForM~ Var(2::),

a~ a'(rel M) ("a is extended by a' relative toM")

iff for all x E M, a(x) ~ a'(x)

Proposition 3.3.9. a~ a'(rel M) {::=}a C: (rel M) and a' C: a(rel M)
"' "'

Proof. Clear from Definitions 3.3.1 and 3.3.8. D

Remarks 3.3.10.

(1) The relation "~ (rel M)" (for fixed M) is a pre-partial order on State(A15
), i.e.

it is transitive and reflexive (but not anti-symmetric).

(2) The relation "~ (rel M)" is the corresponding equivalence relation at State(A15
).

(3) The c: -minimal states (rel M) are those which are totally unspecified on M.
"'

Theorem 2 (Monotonicity for Tm(2::)). Suppose A 15 is monotonic over A. Then

for all t E Tm(2::), and a, a' E State(A 15
):

a C: a'(rel Var(t)) ~ [t]a ~ [t]a'
"'

3. Error Algebras 37

Proof. By structural induction on t. 0

Remark 3.3.11. As a Corollary we get: if At: is monotonic over A then

a~ a'(rel Var) ==> [t]a = [t]a'

but we know this already from the Coincidence Lemma (Lemma 2.5.8) without the

assumption of monotonicity.

Corollary 3.3.12. If A€ is monotonic over A, then for all t E Tm(:E) and

a E State(At:) :

[t]a =/= «: ==> \fa'~ a (rel Var(t)), [t]a' = [t]a

Remark 3.3.13. This again has the idea that an error in an input may be hidden,

provided it is "irrelevant".

3.4 Error-consistency

Definition 3.4.1.

(1) Let A be ~-algebra, At: an error algebra over A and

F : s1 x · · · X Sm --* s in Func(~)

Then pA,t: is error-consistent over A iff for all a1 E A81 , ••• , am E Asm :

38 Wei Lei - Department of Computing and Software

(2) A€ is error-consistent over A if and only if for all FE Func('L;), pA,€ is error

consistent over A.

An equivalent characterization of error-consistency is:

Lemma 3.4.2. FA,e is error-consistent over A if and only if for all a1 E A 81 , ••• , am E

Notes.

(1) In the case where f£ is the result, think of this as giving an error message instead

of a default value.

(2) Every pA,e considered so far is error-consistent.

Lemma 3.4.3. consistency ==> error-consistency

Proof From definitions of consistency (Definition 3.1.1) and error-consistency (Def

inition 3.4.1). D

Theorem 3 (Error-consistency for Tm('L;)). Let Ae be error-consistent and mono

tonic over A, and let t E Tm('L;). Then:

(1) If a E State(A€) and for all x E Var(t), a(x) =If£ then

[t]A' a ~ [t]AaA;

3. Error Algebras

(2) If a E State(A) then

(3) If t is closed then

Proof

(1) By structural induction on t:

(a) t = x:

Using the given fact that a(x) =J ff:

and so [t]A" a ~ [t]AaA

(b) t = F(t1, ... , tn):

By definition

where by the induction hypothesis:

continuing on we have:

39

40 Wei Lei - Department of Computing and Software

FA,€([t1]A• a, ... , [tn]A• a) C FA,€([ti]AaA, ... , [tn]AaA) (monotonicity, (*))

C FA([t1]AaA, ... , [tn]AaA) (error-consistency)

(2) Immediate, since aA =a if a E State(A).

(3) Directly from (1) and Corollary 2.5.10.

D

Chapter 4

Semantic of Improper Tables using

Error Algebras

In this chapter we present a semantics for function tables, using error algebras. The

method of tabular representations, developed by David Parnas and his collaborators,

has been found to be very useful for the formal documentation and inspection of

software systems.

The first application of this technique was in the documentation for the revised

flight software for the US Navy's A-7 aircraft in the late seventies [Hen80, HKP78).

Another large project which used tabular notation was the documentation of the

shutdown systems of the Darlington Nuclear Power Generating Station in Ontario,

Canada, required by the Atomic Energy Control Board of Canada for that station's

41

42 Wei Lei- Department of Computing and Software

licensing, in the late eighties (Par94, PAM91]. These two projects served both as

testing grounds for the tabular method, and as incentives for its further development.

The tabular method is also useful in the documentation of simple programs, as

demonstrated in (PMI92]. Some examples of its use in system documentation are

given in (WT95]. A survey of the method is given in (JPZ96).

The tabular notation is, essentially, a useful and perspicuous method for defining

functions on many-sorted algebras. In the course of the projects described above,

many kinds of tables were developed, and were found to be useful. A systematic

exposition of ten kinds of tabular expressions was given in [Par92].

In [Zuc96) Zucker considered two kinds of tabular expressions: normal and in

verted. He provided a semantics for both kinds of tables, and defined transformation

between them which preserve the semantics. However the semantics apply only to the

unproblematic case of "proper" tables. The extension of the semantics to "improper"

tables was left as an open problem.

In this chapter we extend the semantic theory of [Zuc96] by defining a uniform

semantics for proper and improper tables, using error algebras. The actual error

algebras are not specified precisely, except for the assumption that they are standard,

monotonic and error-consistent.

The approach take here is not to divide tables into proper and improper subclasses

4. Semantic of Improper Tables using Error Algebras 43

(as in [Zuc96)) but to consider, for any table T at any particular state a, whether

T is proper or improper at a. (The answer will vary, in general, with a). It is also

found necessary to broaden the concept of "properness" used in [Zuc96], to allow

overlapping conditions where the output value agrees on the overlap.

For convenience, we restrict our attention to 1- and 2-dimensional tables. The

theory presented here can be easily generalised to the case of n-dimensional tables,

as in (Zuc96].

4.1 Normal tables

We will define the class TabN(E) of normal (function) tables over E. Consider (for

convenience) a 2-dimensional normal table [Par92, Zuc96].

Example 4.1.1 (A two dimensional normal table).

C{ I

tu tl2 ... tu

t21 t22 ... t2l

tkl tk2 ... tkl

G
Table 8

44 Wei Lei - Department of Computing and Software

In Table 8, the headers H 1 and H 2 contain conditions Cl (1 :::; i :::; h) and

CJ (1 :::; j :::; l) respectively. These are boolean-valued expressions over L;, extended

e.g. by bounded quantifiers (Remarks 3.3. 7). The cells (i, j) of the grid G ofT contain

terms ti,j, all of the same L;-sort.

The value ofT (at a given state) is the value of the cell determined by the condi

tions in the headers H 1 and H 2 which are evaluate to tt:(at that state), assuming Tis

proper (see Remark 4.1.2 below). What if Tis not proper? More generally, how may

errors come in the output?

There are three ways in which the output of a normal table T can be a: for a given

state a:

(i) T is not proper at a;

(ii) each header is proper (at a) in the sense of having one condition that evaluates

to tt:, but one of the non-true condition evaluates to a: instead of ff;

(iii) each header is proper (at a) with a true condition (say) Ci~ and CJ
0

, but

[ti0 j 0]a = a:.

Remarks 4.1.2. Above, by "proper" we mean:

(1) there is a unique i such that [Cl]a = tt, and for all i' =I= i, [Ci'] = ff; and

(2) there is a unique j such that [CJ]a = tt, and for all j' =I= j, [Cj'] = ff.

4. Semantic of Improper Tables using Error Algebras 45

Later (Definition 4.1. 7) we will give a different (more general, and more appropri

ate) definition of 'properness', and we will call the above "strict properness".

Remarks 4.1.3. We cannot exclude improper tables at the syntactic level since

(1) properness of T depends on the state;

(2) properness (at all states) is not decidable in general.

Remarks 4.1.4. Here are two possible strategies for evaluating improper tables at

a given state CY, assuming all headers have at least one condition which evaluates to

true:

(1) Take the leftmost (or topmost) condition which evaluates to true (like the "case"

statement in Pascal). But this is dangerous since the semantics is then depen

dent on the order of rows and columns, and hence would not be preserved by

table transformations (from normal to inverted, and conversely, see below).

(2) Give the output value as a:. So define the table function as:

This is a better idea, but it is still not ideal, as we will see (Remark 4.1.19).

46 Wei Lei - Department of Computing and Software

4.1.1 Properness

We are looking for a condition on tables which will make their semantics unproblem

atical. Differing from the definition of properness in [Zuc96], we define "properness"

by allowing overlapping conditions, where the values agree on the overlap.

Definition 4.1.5. Let C be a condition. A tuple (01, ... , Cn) of conditions is called

• disjoint relative to C at state a over Var(C, C~, ... , Cn) {::=}- if a satisfies C,

then a satisfies at most one of C1, ... , Cn.

• universal relative to Cat state a over Var(C, C~, ... , Cn) {::=}-if a satisfies C,

then a satisfies at least one of C1, ... , Cn.

• strictly proper relative to C at state a if it is both disjoint and universal relative

to Cat a.

Equivalently, (C1, ... , Cn) is strictly proper relative to C at a over

Var(C, C1, ... , Cn) {::=}- if a satisfies C, then a satisfies exactly one of C1, ... , Cn.

An important special case of the above concepts is given by the following.

Definition 4.1.6. A tuple (C1, ... , Cn) of conditions is called (respectively) disjoint,

universal or strictly proper at a if it is (respectively) disjoint, universal or strictly

proper relative to the condition true at a.

Equivalently, (C1, ... , Cn) is strictly proper at a over Var(C1, ... , Cn) iff a

satisfies exactly one of C1, ... , Cn.

4. Semantic of Improper Tables using Error Algebras 47

Note that these concepts (disjointness, universality and strict properness) are all

relative to the E.-algebra A. For example, the tuple (x < 0, x = 0, 0 < x) is not

strictly proper in all algebras (of the appropriate signature), but only in those algebras

in which the interpretation of'<' satisfies the trichotomy law. On the other hand, the

tuple (x < 0, x {. 0) is strictly proper in all algebras (of the appropriate signature).

Let T be a normal table.

Definition 4.1.7 (Proper normal table). Tis proper at a if

(i) all its headers are universal at a, and

(ii) the value of a term ti; at a is the same for all (i, j) for which conditions CJ in

header H 1 and CJ in header H 2 are true at a.

Remarks 4.1.8.

(1) Condition (ii) says that the values agree on overlapping conditions given by

non-disjoint headers.

(2) The important concept of a tableT is not whether it is proper (at all states),

but whether it is proper at a particular state. The reason for this is that it is

not (in general) effectively decidable whether a table is proper at all states.

(3) Of course, some tables are proper at all states, for example:

48 Wei Lei - Department of Computing and Software

Example 4.1.9 (A proper normal table).

1 y ~ 10 1 y = 10 1 y > 10 1

H2

x+y 10+x -y2

x-y X -10 x-y

G

Table 9

Table 9 is an example of a proper normal table (at all states). Suppose u(y) = 10.

Then conditions (y ~ 10) and (y = 10) in header H 2 are satisfied, and the value

agrees on overlapping conditions. Note that this table, and most of the following

examples of tables, are based on the signature ~(zB) of the standardised algebra of

integer (or some expansion of it).

Example 4.1.10 (A strictly proper normal table).

1 y = 10 1 y > 10 1 y < 10 1

H2

0 y2 -y2

X x+y x-y

G

Table 10

Note that each header is strictly proper (at all states).

4. Semantic of Improper Tables using Error Algebras 49

4.1.2 Semantics of normal tables

Definition 4.1.11. Let T be a normal table over 'E, and u a state over T in A.

Suppose T is proper at u. Choose indices i, j for which the entries Cl and CJ hold

at u. Then the meaning of T relative to u is

Note that by the properness condition, the value of [tij]u does not depend on the

choice of indices i, j for which [Ci]u = [Ci]u = tt.

Next we will define table functions relative to a list of variables.

Definition 4.1.12. A list x of variables is said to coverT if it includes all of Var(T),

i.e., if Var(T) ~ x.

Definition 4.1.13. Let x = (x17 ••• , xm) be any list of variables which covers T,

with xi : Si for i = 1, ... , m. Then relative to x, T names or defines a table function

symbol

fr,x : s1 X • • • X Sm --t s

with interpretation on A

as follows. For all a1 E A81 , ••• , am E Asm, let u be the state over A defined by

u(xi) = ai fori= 1, ... , m. Then

50 Wei Lei - Department of Computing and Software

Discussion 4.1.14 (Semantics of improper tables). We turn to the semantics of

tables that are improper at certain states. The semantics in [Zuc96] only works when

Tis proper at a given state a. Thus, we must use another method. The two strategies

mentioned in Remarks 4.1.4. are not satisfactory (see Remark 4.1.19). A better idea

is to define an improper table function using error algebras which are monotonic and

error-consistent.

We must first modify the definition (4.1.5) of universality of condition tuples

evaluated over error algebras.

Definition 4.1.15 (Universality for headers over error algebras). A tuple of

conditions (C1 , ... , Cn) is said to be universal at a E State(Af) if:

(1) for some i, [Ci]A• a= tt;

Remarks 4.1.16.

(1) the definition (4.1.7) of properness of a normal tableT at a state a over Af now

presupposes that none of the header conditions evaluates to ff.

(2) However a term tij in the grid ofT may very well evaluate to ff at a without

causing T to be improper. This is analogous to the (non-strict) semantics for

the conditional

if (tbool ts ts)
ns ' I' 2

4. Semantic of Improper Tables using Error Algebras 51

We now extend the definition (4.1.11) of [T]Aa in the case that Tis improper at

a:

Definition 4.1.17 (Semantics of table over ~E). Let T be a normal table over

~E, and a a state over T in A E. We define [T]A• a as follows:

Case 1: T is proper at a. Then [T]Ae a is as in Definition 4.1.11.

Case 2: Tis improper at a. Then [T]A< a= ff:.

Definition 4.1.18 (Table function). Let AE be an error algebra over A. Let T

be a table, x = (xb ... , xm) be any list of variables which covers T with Xi : si for

i = 1, ... , m. For a1 E A81 , ••• , am E Asm let a be a state overT satisfying a(xi) = ai

fori= 1, ... ,m. Then:

(1) if T is proper at a (according to Definition 4.1. 7 applied to A E), define J¢: (a1 , ... , am)
'

as above (using AE instead of A).

(2) if T is not proper at a, then

f.A,E() _
T,x a1, ···,am - ff:.

Remarks 4.1.19 (Semantics with error algebras).

(1) If T is improper at a, then

52 Wei Lei - Department of Computing and Software

(2) But even ifT is proper at a, this semantics may give an output of lt, because A€

is error-consistent rather than consistent. This method is better since it shows

error values which would be hidden by default values. To illustrate this:

Example 4.L20. Let T be the table

At the state (x = 0, y = 1), the value ofT is :

(i) 0 according to the "default semantics" of Example 2.1.10;

(ii) lt according to Definition 4.1.18(2).

The latter output is more desirable, since it does not hide error by default values.

The general situation here is shown by the following theorem.

Theorem 4. Let A€ be an error algebra which is monotonic and error-consistent. Let

T be a normal table, with Var(T) ~ x. Then J¢,: is

(1) monotonic, and

4. Semantic of Improper Tables using Error Algebras 53

(2) error-consistent.

Proof.

(1) Monotonicity: It is sufficient to show:

0"1 C <T2 ===> [T]u1 ~ [T]u2
~

If [T] = ff, this is trivial. So we may assume: [T] =/:. ft.

Hence T is proper at u, i.e.,

(a) the headers ofT are both universal at 0"1,

(b) for all i, j such that:

and so,

[T]u1 =a.

By monotonicity of Ato, for all i,j:

Hence the headers of T are also universal at u2 and for all i, j such that:

54 Wei Lei- Department of Computing and Software

and so

proving (*).

(2) Error-consistency: Let 0' be a state over A. It is sufficient to show:

There are two cases.

(a) Tis proper at 0'.

Then the header H 1 and H 2 are universal, w.r.t. 0'. By Theorem 3

for i = 1, ... , k and j = 1, ... , l:

Then by (***), for all i, j

Since T is proper at 0', there exists i, j:

Then for this i, j

4. Semantic of Improper Tables using Error Algebras 55

By (****) for the same i, j,

By Theorem 3:

Hence,

(b) Tis improper at a. Then

Combining (a) and (b), we conclude (**)

D

4. 2 Inverted tables

In this section we consider the class Tab1 (~) of inverted (function) tables over ~.

Such a tableT differs from a normal table in the following way (see Table 12).

(1) One of its headers (H1), is the value header. It contains terms, all of the

same sort, instead of conditions. The other header (H2) the condition header,

contains conditions as before.

56 Wei Lei- Department of Computing and Software

(2) The cells ofT contain conditions instead of terms.

The idea (or operational semantics) for T is as follows. For a given state O" over

T, search the condition header H 2 until you find a condition Ci which holds at O".

The index j determines a column. Search along this column for the cell (i, j) whose

entry Cii has the value tt. The corresponding entry ti in H 1 then gives the value of

the function.

The desirability of this search always producing a unique value, leads to the fol

lowing definitions. Let T be an inverted table as follows:

Example 4.2.1 (An inverted table).

Cu . . . clj ... ell

Gil . . . cij ... Cit

ckl . . . ckj ... ckl

G

Table 12

Definition 4.2.2 (Proper inverted tables). T is proper at O" iff

(1) For some j, O" F= Ci.

4. Semantic of Improper Tables using Error Algebras 57

(2) For all j s.t. a F= C;, there exits i s.t. a F= Cii·

(3) For all j s.t. a F= C;, and all i s.t. a F= Ci;, the value of [ti;]a is the same.

Example 4.2.3 (A proper inverted table).

y ~ 10 y < 10

x+y x<O x<y

x-y O~x<y y~x<O

y-x x~y x~O

G

Table 13

Table 13 is an example of a proper inverted table. Notice that the columns are

not proper (for some values of y), but are proper (in fact, strictly proper) relative to

the corresponding conditions in the column header H 2 .

Definition 4.2.4 (Semantics of inverted tables). The semantic function [T]Aa

and the table function f¢~ are defined analogously to Definitions 4.1.11 and 4.1.18, ,

according to the above informal operational semantics.

58 Wei Lei - Department of Computing and Software

4.3 Transformations of tables

We are interested in transforming tables to other, semantically equivalent, tables,

which may be easier to work with. First we define the notion of semantic equivalence

of tables.

Definition 4.3.1 (Semantic equivalence of tables over At:). Let T1 and T2 be

two tables. T1 and T2 are semantically equivalent on At: (written T1 ~A< T2) iff for all

states a over Var(T1,T2) in At:, [T1]A"a = [T2]A"a.

Remark 4.3.2. Semantic equivalence is defined here not only as a relation between

proper tables (as in [Zuc96]) but also for improper tables.

We will define transformations

<p: 7 -+ 7
1

of tables from one class 7 to another class 7
1

• These transformations must satisfy the

following three properties:

(1) <p is semantics preserving, in the sense that, if T E 7 is improper, then so is

rp(T), and rp(T) ~ T.

(2) <pis effective or computable.

(3) For all a, Tis proper at a iff cp(T) is proper at a.

If cp(T) = T', then T' is called the transform ofT under <p.

4. Semantic of Improper Tables using Error Algebras 59

4.4 Inverting a normal table

We have two methods (or algorithms) [Zuc96] for transforming a normal table to a

semantically equivalent inverted one.

We illustrate the first inversion method with a simple example. Consider the case

of a 2-dimensional 3 x 3 normal tableT, given in Table 14.

Example 4.4.1 (A normal table).

c;

tn tl2 t13

t21 t22 t23

ta1 t32 taa

G

Table 14

T is "inverted along dimension 1" to produce an inverted table (Table 15) with

condition header H 2 unchanged, and value header H 1 , much bigger than the original,

since the length of the value header in the new table has increased to the size of the

original table, i.e. the number of cells in its grid.

The second method for inversion is appropriate for a normal table T in which

the number of distinct terms in its grid is small. Suppose, e.g., the grid in Table 14

60 Wei Lei - Department of Computing and Software

contains only 2 terms, say t1 and t2, as shown in Table 16. According to Method 2,

we invert T, also along dimension 1, to produce Table 17.

Example 4.4.2 (Inversion of Table 14: Method 1).

tn C1 1 false false

t21 Cl 2 false false

t31 Cl 3 false false

tn false Ci false

t21 false Ci false

t31 false Cj false

tn false false c1 1

t21 false false Ci

t31 false false Cj

G

Table 15

4. Semantic of Improper Tables using Error Algebras

Example 4.4.3 (A special case of Table 14).

c;

Cl
1 tl tl

Cl 2 t2 tl

Cl
3 tl t2

Table 16

Example 4.4.4 (Inversion of Table 16: Method 2).

Q
Q

c;

C1 vc1
1 3

CJ

CfvCJ

Cj

Table 17

t2

t2

t2
G

false

ct vcJ vcj

61

The following theorems holds for both inversion transformations considered in this

Section.

Lemma 4.4.5. Let T be an normal table, and T the inverted table obtained from T

by Method 1 or 2. Then

T is proper at a -<===} T is proper at a.

62 Wei Lei - Department of Computing and Software

Proof. We show

(1) T is proper at a ===} T is proper at a;

(2) T is improper at a ===} T is improper at a.

(1) Tis proper at a.

The proof is similar as for Theorem 2 (1) in [Zuc96).

(2) Tis improper at a.

If H 2 is not universal in T (at some state a), then the same header H 2 is not

universal in T. If H 1 is not universal in T, then all the columns in the grid of

T will also not be universal.

If H 1 and H2 in Tare both universal (at a) but lead to different values on the

overlap, then these different values will also manifest themselves in the value

header ofT.

0

Remarks 4.4.6. Suppose the normal table T (Table 15) is proper but not strictly

proper, e.g. if a p Cr and a p Ci and also a p CJ. Then the inverted table

by Method 2 (Table 17) is strictly proper. Hence Lemma 4.4.5 does not hold with

"properness" replaced by "strict properness". This explains our new, more liberal,

definition of properness.

4. Semantic of Improper Tables using Error Algebras 63

Theorem 5. Suppose T is a normal table, and T is the inverted table obtained from

T by Method 1 or Method 2. Then

Proof. There are two cases.

(1) Tis a proper normal table. Similar to Theorem 2 in section 8 of [Zuc96].

(2) Tis an improper table.

For all a1 E A811 ... , am E Asm, a(xi) = ai fori= 1, ... , m, we have

by definition of the improper table function (Definition 4.1.18(2)).

From Lemma 4.4.5 the inverted tableT is also improper. Then we have

Ae - A• !.r-' (ab ... ,am) = [T] a= E. ,x

Thus,

and so

D

64 Wei Lei - Department of Computing and Software

4.5 Normalising an inverted Table

We now consider the transformation of an inverted table to a normal one. The

situation is less satisfactory since the normal table produced here is one-dimensional.

We consider the 2-dimensional 3 x 2 inverted table shown as Table 18, with value

header H 1 •

Example 4.5.1 (Two-dimensional table).

Cu c12

c21 c22

Cal Ca2

G

Table 18

This can be normalised to a 1-dimensional table, shown as Table 19.

Example 4.5.2 (Normalisation of Table 18).

(c? 1\ Cu) v (c~ 1\ C12) tl

(cr A c21) v (c~ A c22) t2

(Cr 1\ Cal) V (C~ 1\ Ca2) ta

Al G
Table 19

4. Semantic of Improper Tables using Error Algebras 65

Table 18 can also be normalized to Table 20, by "splitting disjunctions" in the

conditions.

Example 4.5.3 (Another normalisation of Table 18).

cr /\en

c~ /\ c12

Cr /\ C21

c? /\ c22

Cr /\ C31

C? /\ C32

H1

Table 20

tl

tl

t2

t2

t3

t3

G

Lemma 4.5.4. Let T be the normal table obtained from T by the method of either

Table 19 or Table 20. Then

T is proper at a {::::=:::} T is proper at a.

Proof.

By extending the method of Theorem 3(1) in [Zuc96] for proper tables, as in

Lemma 4.4.5(2).

D

66 Wei Lei - Department of Computing and Software

Theorem 6. Suppose T is an inverted table, and T is the normal table obtained from

T as above. Then:

T ~A· T.

Proof. Similar to Theorem 5. 0

Remark 4.5.5. Here also, we see that properness and improperness are both

preserved with our new definition of properness (see Remark 4.4.6).

4.6 Comparison with the logic of Parnas

In [Par93] there are two types of expressions:

(1) Terms, such as the expressions in the grid of a normal table.

(2) Predicate expressions, such as the boolean-valued conditions of the table

headers.

The semantics of terms (including boolean-valued terms) is 3-valued, essentially

like ours. But the semantics of conditions is 2-valued.

An atomic condition C = f (t1, ... , tn), where f E .Func(L:) of type s1 x · · ·X Sn ---+

boot is evaluated as:

{

tt if [t1]0" #a:, ... , [tn]O" #a: and CA([ti]O", ... , [tn]O") = tt

[C]O" = ff ~f [t1]0" #a:, ... , [tn]O" #a: and CA([ti]O", ... , [tn]O") = ff

ff If [t1]0" = a: or ... or [tn]O" = a:

4. Semantic of Improper Tables using Error Algebras 67

This gives a 2-valued semantics for boolean conditions, which is non-monotonic.

Note that the equality predicate is then also non-monotonic.

Example 4.6.1. Say C = (x = 0), then for

we get

[C]a1 = ff and [C]a2 = tt,

and so

Note that with our semantics [C]a1 = a: h tt = [C]a2 .

Example 4.6.2. Compare following two tables.

t<O •(t < 0)

H2

y < 10 x+y x-y

y ~ 10 x2 y2

Hl G

Table 21

68 Wei Lei- Department of Computing and Software

t~O •(t > 0) I
H2

y < 10 x-y x+y

y ~ 10 x2

G

Table 22

Suppose t = (1 div x) in the state (x = 0). These conditions are equivalent, but

the semantics in (Par93] gives different outputs for the two tables, since (t 1- 0) in

Table 21, being a complex expression, is evaluated to tt while (t ~ 0) in Table 22 is

evaluated to ff. Our semantics gives«: as the output for both tables.

We should however, point out that in the above example the table header H 2 used

by Parnas would most likely be of the form

t<O t~O

which would then yield (in this case) the same semantics as ours.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have developed a systematic method for handling error cases in

computation over many-sorted algebras, with the use of error algebras. The desirable

properties of these algebras, in computing with error cases, are:

(1) monotonicity, which is a weaker condition than strictness, and

(2) error-consistency, which is a weaker condition than consistency.

We have applied this theory to the semantics of (not necessarily proper) function

tables.

69

70 Wei Lei - Department of Computing and Software

5.2 Future work

Some possible applications or extensions of our work are the following.

(1) To generalise the theory in Chapter 4 ton-dimensional tables would be routine.

More interesting, perhaps, would be generalising this theory to the other types

of tables considered in [Par92).

(2) It would be interesting to find applications of error algebras, with our emphasis

on monotonicity and error-consistency, in other areas of software analysis and

verification, such as Hoare logic [TZ88, Zhu03), equational specifiability (Luo03)

and program development [Jon06).

Bibliography

[Far90] W. M. Farmer. A Partial Functions Version of Church's Simple Theory of

Types. Journal of Symbolic Logic, 55:1269-91, 1990. Also MITRE Corpora

tion technical report M88-52, 1988; revised 1990.

[Far95] W. M. Farmer. Reasoning About Partial Functions with the Aid of a Com

puter. ERKENNTNIS: An International Journal of Analytic Philosophy,

43:279-294, 1995.

[Fef95] S. Feferman. Definedness. ERKENNTNIS: An International Journal of

Analytic Philosophy, 43:295-320, 1995.

[Hen80] K. L. Heninger. Specifying Software Requirements for Complex Systems:

New Techniques and Their Apllication, IEEE Transactions on Software

Engineering, SE-6, 2-13, 1980.

71

72 Wei Lei - Department of Computing and Software

[HKP78] K. L. Heninger, J. Kallander, D. L. Parnas, and J. E. Shore. Software Re

quirements for the A-7E Aircaraft. United States Naval Research Laboratory,

Washington DC, NRL Memorandun Report 3876, 1978.

(Jon06] Cliff B. Jones. Reasoning about partial functions in the formal development

of programs. Electr. Notes Theor. Comput. Sci., 145:3-25, 2006.

(JPZ97] R. Janicki, D. L. Parnas, and J. I. Zucker. Tabular representations in rela

tional documents. Relational methods in computer science, pages 184-196.

Springer-Verlag New York, Inc. 1997.

[KK94) M. Kerber and M. Kohlhase. A mechanization of strong Kleene logic for

partial functions. In A. Bundy, editor, Automated Deduction-CADE-12,

volume 814 of Lecture Notes in Computer Science, pages 371-385. Springer

Verlag, 1994.

(Kle52] S. C. Kleene. Introduction to metamathematics. North-Holland, 1952.

(Luo03] L. Luo. Specifiability and Computability of Functions by Equations on Par

tial Algebras. Master's thesis, Dept. of Computing and Software, McMaster

University, 2003. Technical Report CAS 03-07-JZ, Dept. of Computing and

Software, McMaster University, April 2003.

BIBLIOGRAPHY 73

(Par92] D. L. Parnas. Tabular representation of relations. Communications Research

Laboratory, McMaster University, CRL Report 260, 1992.

(Par93] D. L. Parnas. Predicate logic for software engineering. IEEE Transactions

on Software Engineering, 19:856-862, Springer-Verlag New York, Inc., 1993.

(Par95] D. L. Parnas. A Logic for Describing, Not Verifying, Software. ERKENNT

NIS: An International Journal of Analytic Philosophy, 43:321-338, 1995.

(PAM91] D. L. Parnas, G. J. K. Asmis and J. Madey. Assessment of Safety-Critical

Software in Nuclear Power Plants. Nuclear Safety, 32, pages 189-198, 1991.

(PMI94] D. L. Parnas, J. Madey, and M. Iglewski. Formal documentation of well

structured program. IEEE Transactions on Software Engineering, 20:948-

976, 1994.

(TZ88] J. V. Tucker and J.l. Zucker. Program Correctness over Abstract Data Types

with Error-State Smantics. IEEE Transactions on Software Engineering.

North-Holland, 1988.

[TZOO] J. V. Tuker and J. I. Zucker. Computable functions and semicomputable sets

on many-sorted algebras. Handbook of Logic in Computer Science volume 5

section 1.2, pages 317-523, Oxford University Press, 2000.

7 4 Wei Lei - Department of Computing and Software

[TZ04] J. V. Thcker and J. I. Zucker. Abstract versus concrete computation on

metric partial algebras. ACM Transactions on Computational Logic, 2004.

[WT95} A. J. Wilder and J. V. Thcker. System Documentation Using Tables - a

short course. Communications Research Laboratory, McMaster University,

CRL Report 306, 1995.

[Zhu03] L. Zhu. Hoare logics for programming languages with partial functions and

non-deterministic choice. Master's thesis, Dept. of Computing and Software,

McMaster University, 2003. Technical Report CAS 06-04-JZ, Dept. of Com

puting and Software, McMaster University, April 2006.

(Zuc96] J. I. Zucker. Transformations of Normal and Inverted Function Tables. For

mal Aspects of Computing, 8:679-705, 1996.

3754 64

