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Abstract 

In computations over many-sorted algebras, one typically encounters error cases, 

caused by attempting to evaluate an operation outside its domain (e.g. division by 

the integer 0; taking the square root of a negative integer; popping an empty stack). 

We present a method for systematically dealing with such error cases, namely the 

construction of an "error algebra" based on the original algebra. As an application 

of this method, we show that it provides a good semantics for (possibly improper) 

function tables. 
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Chapter 1 

Introduction 

1.1 Background and objectives 

In this thesis, we will develop a systematic method for handling error cases in compu

tation over many-sorted algebras using error algebras. Desirable properties in com

puting with error cases are: 

(1) monotonicity, which is a weaker condition than strictness, and 

(2) error-consistency, which is a weaker condition than consistency. 

We will apply this theory to the semantics of proper and improper function tables. 

In particular, the type of booleans, has an error value a.: as well as tt and ff, leading 

to a 3-valued logic. 

1 
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1.2 Related work on error analysis 

The treatment of error values, and the related areas of definedness of terms and 

partial function, have received a great deal of attention, with various approaches. 

Good exposition of some of these approaches can be found in [Far90, Far95, Fef95, 

Jon06, KK94, Luo03, Par95, Par03, TZ88, Zhu03] 

A strong motivation for at least some of these approaches is the investigation of 

new error and exception handling in software analysis. 

1.3 Overview 

Chapter 2 gives the fundamental definitions of many-sorted signatures E and E

algebras. 

In Chapter 3, we introduce error algebras. Also, we discuss two important prop

erties of such algebras: monotonicity and error-consistency. 

In Chapter 4 we present a semantics for function tables using error algebras which 

extends the semantic theory of [Zuc96] by defining a uniform semantics for both 

proper and improper tables. 

We consider both normal and inverted function tables, and show that the seman

tics, as well as the properties of properness, and improperness are preserved under 

the transformation between these two classes of tables. Finally, a comparison with 
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the logic used by Parnas in [Par93] is given in this chapter. 

Chapter 5 summaries the main results of the thesis and considers possible future 

work. 



Chapter 2 

Basic Concepts 

We briefly introduce the basic concepts used in this thesis in this chapter, including 

many-sorted signatures I: and L:-algebras. Some examples are provided. 

Most of the material and more details can be found in [TZ99, TZOO, TZ03]. 

2.1 Basic algebraic concepts 

Definition 2.1.1 (Many-sorted signature I:). A many-sorted signature I: is a 

pair (Sort(L:), Func(L:)) where 

(1) Sort(L:) is a finite set of sorts; 

(2) Func(L:) is a finite set of primitive (or basic) function symbols 

F : St X · · · X Sm -+ S (m ~ 0). 

4 
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Each symbol F has a type s1 x · · · x sm --+ s, where s1, ... , sm E Sort('£) are the 

domain sorts and s E Sort('£) is the range sort of F. The arity ofF ism 2:: 0. The 

case m = 0 corresponds to constant symbols; we write F : --+ s in this case. 

Definition 2.1.2 (Product types over "£). A '£-product type, or a product type 

over "£, has the form u = s1 x · · · x sm (m 2:: 0), where s1 , ... , Sm E Sort('£) are 

'£-sorts. We write u, v, w ... for '£-product types. 

Definition 2.1.3 ('£-algebras). A '£-algebra A has: 

(1) for each sort s of"£, a non-empty set A 8 , called the carrier set of sort s; 

(2) for each 'E-function symbol F : s1 x · · · x Sm --+ s, a function FA : Au --+ As 

where u is the '£-product type s1 x · · · x sm, a:nd 

The algebra A is total if FA is total for each "£-function symbol F. We write 

E(A) for the signature of an algebra A [see Chapter 3]. 

In this thesis we assume: 

Assumption 2.1.4 (Totality Assumption). All algebras are total. 

Remark 2.1.5. Note that the existence of error output for certain input values of a 

function FA does not imply partiality of FA, or of A. 
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Example 2.1.6. The algebra of booleans has signature 

signiture ~(B) 

sorts bool 

functions true, false : --+ bool, 

1\, V : bool2 --+ bool, 

-, : bool --+ bool 

end 

Then the algebra B has the carrier llli = {tt, ff} of sort bool, and so 

B = (lffi; tt, ff, /\, v, •) 

where trueB = tt, falseR= ff, and the standard boolean operations have their usual 

meaning. 

Example 2.1.7. The algebra W(A) over a set A (an "alphabet") has signature 

signature ~ (W) 

sorts letter, word 

functions sing : letter --+ word, 

concat : word2 --+ word, 

( ) : --+word 

end 
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and so 

Example 2.1.8. Algebras of naturals: 

(1) The algebra No of naturals has signature 

signature E(No) 

sorts nat 

functions 0 : -t nat, 

sue : nat -t nat 

end 

The algebra No consists of the carrier N={O, 1, 2, ... } of sort of nat, the zero 

constant oN : -t N, and the successor function sucN : N -t N, and so 

(2) The expanded algebra N of naturals has signature 

signature E(N) 

import No 

functions +,X: nat2 -t nat 
0 

end 
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The algebra N is expanded from the algebra No by adding functions + : ~ -t N 

and x: ~ -t N: 

Example 2.1.9. We can also form algebras expanding N such as 

Since the algebras are total (by the Totality Assumption), in order to define the terms 

such as predN(O) or divN(2, 0) we have to use default values: 

divN(m, 0) = 0 for all mEN 

minusN(m, n) = 0 form< n 

Example 2.1.10. The algebra Z of integers: 

signature ~(Z) 

sorts int 

functions 0, 1 : -t int, 

• 2 • +, x : mt -t mt, 

minus : int2 -t int 

end 
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The algebra Z consists of the carrier Z={ ... , -2, -1, 0, 1, 2, ... } of sort of int: 

Now pred and minus have natural (non-default) total definitions. But now we have 

new problems with functions such as: 

sqrtz : int ---t int 

or divz : int2 ---t int 

For now, we again use default values: 

0 for m < 0 
sqrtz(m) = 

(integer division) 

n where n2
::; m < (n + 1)2 for m 2 0 

divz(m, 0) = 0 for all mE Z. 

Example 2.1.11. The ring 'Roof reals has signature 

signature ~('Ro) 

sorts real 

functions 0, 1 : ---t real, 

end 

and so 'R0 = (R; 0, 1, +, -, x). 

+, x : rea12 ---t real, 

- : real ---t real 
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2.2 Reducts and expansions 

Definition 2.2.1. Let :E and :E' be signatures. 

(1) :E ~ :E' if and only if Sort(:E) ~ Sort(:E') and Func(:E) ~ Func(:E'). 

(2) Suppose A is a :E-algebra, A' is a :E'-algebra and :E ~ :E'. 

(a) The :E-reduct A'Jr; of A' is the algebra of signature :E, consisting of the 

carriers of A' named by the sorts of :E, and equipped with the functions of 

A' named by the function symbols of :E. 

(b) The :E' -algebra A' is a :E' -expansion of A if and only if A is the :E-reduct 

of A'. 

Example 2.2.2. 

No= NJr;(No) 

Ro = RJr;cn.o) 

2.3 Standard signatures and algebras 

Definition 2.3.1 (Standard signatures). A signature :E is standard if :E(B) ~ :E, 

and the function symbols of :E include a conditional 

if8 : bool X s2 ---+ s 
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for all sorts s of I; other than bool. 

For a standard signature I;, a sort of I; is called an equality sort if I; includes an 

equality operator 

Definition 2.3.2 (Standard algebras). Given a standard signature I;, a l,;-algebra 

A is a standard algebra if (i) it is an expansion of B, (ii) the conditional operator on 

each sort s has its standard interpretation in A; i.e., forb E 1ffi and x, y E A8 , 

X ifb=tt 
if1(b,x,y) = 

y if b = ff; 

and (iii) the operator eq5 is interpreted as a identity on each equality sort s. 

Example 2.3.3. The algebra zB has signature L;(ZB). 

signature L;(ZB) 

import Z, B, 

functions eqint' lessint: int2 ~ bool, 

ifint: bool x int2 ~ int 

end 
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Then 

zB = (Z B· eqz lessz jfz) 
' ' ' ' 

where the standard operations (listed above) have their standard interpretations 

on Z. 

More generally: Given a signature 2: and a 2:-algebra A, a boolean expansion of 

2: is a signature I;B where 

Sort(I:) U {bool} 

Func(I:) U 

Func(I:(B)) U 

{ ( eq8 : 8
2 --t bool) sES, 

(if 8 : boo I X s2 --+ S) sESort(E) 

} 

where S ~ Sort(I:) is the set of equality sorts of 2:. 

The boolean expansion of A is the 2:B-algebra 

where 

if1 : lB x A~--+ As (s E Sort(I:)) 
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Example 2.3.4. The standard algebra of reals R~ is formed by standardizing the 

ring Ro. 

Note that real is not generally chosen to be an equality sort, since equality between 

two reals is not decidable. 

Remark 2.3.5. Any many-sorted signature E can be standardized to a standard 

signature E8 by adjoining the sort bool together with the standard boolean operations; 

and, correspondingly, any algebra A can be standardized to a standard algebra A B 

by adjoining the algebra B and other boolean operators, e.g. the equality operation 

at the equality sorts of E8 . 

Assumption 2.3.6 (Standardness). We will assume our signatures and algebras 

are standard. 

Remark 2.3.7. The standard algebra zB (or some expansion of it) will be the main 

source of examples later in this thesis, especially in Chapter 4. 

2.4 Stacks over algebra of data 

Consider a standard algebra of data 'D: 
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of signature~ where 
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Sort(~) 
Func(~) 

{data, boo I} 
Func(~) ('D) U 
Func(~(B)) U 

{ eqdata : data 2 
--t bool, 

if data : boo I x data2 
--t data 

} 

Then, ~stk is the stack signature over ~ where 

Sort(~stk) 
Func(~stk) 

{data, bool, stk} 
Func(~) U 
{empty : stk, 
push : data x stk --t stk 
*pop : stk --t stk 
*top : stk --t data 
isempty : stk --t bool 
eqstk : stk2 

--t bool 
if stk : boo I X stk2 --t stk 

} 

1)stk is the ~stk expansion of 1) where the carrier of sort stk is 

set of all stacks of data 

and all stack operations which are listed above have their usual interpretations. 

Remarks 2.4.1. 

(1) vstk is a standard algebra, and ~stk includes eqstk, derived from eqdata· 

(2) How should we define pop(empty) and top(empty)? For now, we again use 
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default values: 

pop(empty) = empty 

top(empty) =? 

15 

We must assume there is a default data item, that is, a default element of ][)). 

For example 

1B\ take tt (or ff) 

N take 0 

For][))= z take 0 

A* take () 

§ take empty 

More generally we make the following assumption on I:: 

Assumption 2.4.2 (Instantiation). For each sort s of I:, there is a closed term in 

I:. Using these closed terms, 08 , as default values we can systematically extend all 

functions in I: to be total on all I:-algebras. 

Discussion 2.4.3 (Default values). Extending the domain of functions by default 

values is neither an esthetically nor computationally satisfactory. The problem is that 

default values hide errors. In the next chapter we will introduce a better idea: error 

algebras. 
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2.5 Terms over I:: syntax and semantics 

Definition 2.5.1 (Variables). 

(1) For each s E Sort(L-), Var5 is a countable set of variables of sorts: x 5
, y5

, ••• 

(2) 

Var(L-) = U Vars 
sESort(E) 

Definition 2.5.2 (Terms). 

(1) The set Tm8 (L-) of L--term of sort sis defined inductively by the clauses: 

(a) Var5 (L-) E Tms(L-). 

(b) if c : ---+ s is in Func(L-) then c E Tm8 (L-). 

(c) ifF: s1 x ··· x sm---+ sis in Func(L-) and tiE Tmsi fori= 1, ... ,m 

(2) 

Tm(L-) = U Tms(L-) 
sESort(E) 

Note: In (1) clause (b) is a special case of clause (c), with m = 0. 

Definition 2.5.3 (States over A). Let A be a L--algebra. A state over A is a family 
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of functions 

Definition 2.5.4 (Term evaluation). Each ~-term t has a value [t]Ao- in A relative 

to state o-. The function 

[t]A : State(A) ---+ As 

is defined by structural induction (or recursion) on t: 

(a) [xstO" = 0"8 (x8
). 

(b) [c]Ao- = ~. 

(c) [F(t1, ... , tm)]Ao- = pA([tito-, ... , [tm]Ao-). 

Note: if t : s then [t]Ao- E A8 • 

Definition 2.5.5. Var(t) is the set of variables occurring in t. 

Notation 2.5.6. We write o-(x8
) for o-s(x8

) where o- = (o-s)sESort(E) 

Definition 2.5.7. ForM~ Var(~): 

o- ~ o-' (rel M) ¢=::?- o- r M = o-' r M 

i.e. o- and o-' agree on M. 

Lemma 2.5.8 (Coincidence Lemma). For any ~-term t: 
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Proof. By structural induction on t. D 

Definition 2.5.9 (Closed terms over ~). 

(1) tis closed if Var(t) = 0 

(2) CT(~) is the set of all closed ~-terms. 

Corollary 2.5.10. If t is closed then [t]o- is independent of a-. 

So if t is closed we can write: 



Chapter 3 

Error Algebras 

In this chapter, we will introduce error algebras. Two important properties of such 

algebras, monotonicity and error-consistency, are discussed. 

Some contents are adapted from [TZ88]. 

3.1 The error value {f: algebras A€ of signature ~€ 

Given a standard 'E-algebra 

let ff be a new object or symbol, representing an "error value". For each sort s, let 

In particular, JBIE = {tt, ff, ff }, producing a three-valued logic. 

19 
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For each F: u--+ sin Func(~), if u = s1 x · · · x sm, define 

let 

AE - (AE pA,€ ) _ -
81

, ••• , , ••• , E8 , • • • , 

and for each F E .Func(~)u--+s, let 

be some extension of FA : Au --+ As. 

Definition 3.1.1 (Strict and consistent extensions). For each FE .Func(I:)u--ts' 

we say: 

(1) FA,E is strict over A if FA,E(a1 , ••• , t:E, ••. , am) = t:E 

(i.e. FA,€(a1 , ... ,am) has value t:E if any argument is t:E); and 

(2) FA,E is consistent over A if it extends FA, i.e. pA,E ~A= FA. 

Definition 3.1.2 (Basic error signature and algebra). Let A€ be the algebra 

of signature ~€ where 

Sort(~) 
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and for all sorts s : error~ = f£ 

We call 

(1) I;E the basic error signature over I:; 

(2) Af the basic error algebra over A. 

Example 3.1.3 (Basic error algebra based on B). Consider the algebras: 

B = (lffi; tt, ff, and, or, not) 

The logical operators andf, orf and note which extend and, or and not strictly and 

consistently, give rise to weak 3-valued logic [Kle52, §64]. 

Example 3.1.4 (Other error algebras on B). The strict or weak 3-valued oper-

ators [Kle52] have the following truth tables (read rows before columns): 

tt tt ff (£ 

ff ff ff (£ 

(£ (£ (£ (£ 

Table 1: Strict 'and' 
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tt tt tt «: 

ff tt ff «: 

«: «: «: «: 

Table 2: Strict 'or' 

We can also define strong (non-strict) versions of there: 

1 strong-and II tt 1 ff I «: I 

tt tt ff «: 

ff ff ff ff 

«: «: ff «: 

Table 3: Strong 'and' 

I strong-or II tt I ff I «= I 

tt tt tt tt 

ff tt ff «: 

«: tt «: «: 

Table 4: Strong 'or' 
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Remarks 3.1.5. 

(1) All these operators are commutative. 

(2) We could also define a weak 3-valued implication, as well as a strong version: 

1 strong-imp II tt 1 ff 1 ~ 1 

tt tt ff ~ 

ff tt tt tt 

~ tt tf tf 

Table 5: Strong 'imply' 

Discussion 3.1.6 (Non-strict semantics). Consider statements: 

(1) x # 0 and (t"div x) > 0 

(2) x = 0 or (1 div x) > 0 

Suppose x = 0 (i.e. evaluate at a with a(x) = 0). We may very well want: 

• statement (1) to evaluate to ff; and 

• statement (2) to evaluate to tt. 

But strict operators would (in both cases) evaluate to tf. 

A good solution is to use cand ("conditional and") and cor( "conditional or"). 

These operators evaluate conjunctions and disjunctions from the left: 
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1 cand II tt 1 ff 1 ~ 1 

tt tt ff ~ 

ff ff ff ff 

~ ~ ~ ~ 

Table 6: conditional 'and' 

tt tt tt tt 

ff tt ff ~ 

~ ~ ~ ~ 

Table 7: conditional 'or' 

Remarks 3.1.7. 

(1) cand and cor are not commutative. Nevertheless these operators are computa

tionally meaningful. In functional programming languages, such as SML, they 

are called 'andalso' and 'orelse' respectively. 

(2) We could add operators cand or cor to the algebra 

B = (lffi; tt, ff, and, or, not) 
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which is then extended consistently but not strictly to: 

Remarks 3.1.8. Consider the data algebra 

and the basic algebra over A 

Now, consider the interpretation of equality eq and the conditional if in Ae: 

(1) Equality vs identity: The function eqA,e extends eqA by strictness ("weak 

equality" on A e) so 

a: (not tt) if x = a: 

a: (not ff) otherwise 

On the other hand, the identity function ("strong equality") on A e has the form: 

where 

tl: if X= 6: 

ff otherwise 

Note that idA' is a non-strict extension of eqA. 
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(2) Conditional: Note that ifA,e extends ifA by strictness. But it is not a condi

tional operation on ve: 

ifA,E(tt, d, tE) = tE (not d) 

This is a "weak conditional" on A €. 

We could adjoin a non-strict (or "strong") conditional to A €: 

where 

X if b = tt 

ifns(b, X, Y) = y if b = ff 

lE if b = lE 

This is a non-strict extension of if with the standard meaning for the conditional, 

thus: 

ifns(tt, d, E) = d (not tE). 

(3) Ae is not (quite) standard, even if A is, since: 

(a) A€ contains B€ instead of B; and 

(b) A e has ifA,e and eqA,€ as strict extensions of if A and eqA, i.e. weak condi

tional and equality, not the standard interpretations of these symbols on 

AE. 
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Example 3.1.9. Consider 

n = (lR, Q, Z,lm; ... , eqQ, eqz) 

Equality would (or should) be available on Q, Z (and Jm) but not JR, since equality on 

the reals is not computable. 

Now consider the algebra: 

This does not have eqE on n E. However we assume we can still distinguish between 

"real" reals and fER, so we add the predicate 

where 

tt if X= fER 

is-errorR" ( x) = 

ff otherwise 

(as well as errors on the other sorts s) 

Remark 3.1.10 {Other operators in AE). Over the basic error algebra AE we can 

define operators such as 

• cand or cor from if05 ; 
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• id from eq, is-error and ifns; 

• is-error from id. 

Definition 3.1.11 {Augmented error signature and algebra). Let E€ and A€ be 

the basic error signature and algebra over E and A. The augmented error signature 

EE,a and augmented error algebra A €,a are formed by adding is-error and ifns for all 

sorts s of E. 

Definition 3.1.12 (Strict and consistent error signature and algebra). Let 

A be a E-algebra and A € an error algebra over A. 

(1) A€ is strict over A iff for all FE Func(E), pA,€ is strict over A. 

(2) A€ is consistent over A iff for all FE Func(E), pA,€ is consistent over A. 

Remarks 3.1.13. 

(1) The basic error algebra over A is consistent and strict over A. 

(2) So is the augmented error algebra. 

3.2 Semantics of term over 'EE 

Note that State(A) C State(A€). 
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Definition 3.2.1 (States over Ae represented over A). 

For CJ E State(Ae), define CJA E State(A) by 

CJ(x8
) if CJ(x) # a: 

8: if CJ(x) = a: 

where 88 is the default value which exists from the Instantiation Assumption 2.4.2. 

(I.e., we replace error values with default values of the same sort.) 

Theorem 1. Let Ae be an error algebra over A, t E Tm(:E) and CJ E State(Ae). 

Then 

(1) If Ae is strict over A, and there exists x E Var(t) such that CJ(x) =a:, then 

(2) If Ae is consistent over A, and for all x E Var(t), .CJ(x) #a:, then 

Proof. 

(1) By structural induction on t. 

(a) t _ x: 

By assumption, CJ(x) = a:, 

and so, 

[x]A• CJ = CJ(x) = a:. 
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n 
since there exists x E Var(t), cr(x) = ff and Var(t) = U Var(ti), 

i=l 

we have, for some i E {1, ... , n }: 

x E Var(ti) and cr(x) = ff 

By induction hypothesis: 

Hence, 

since pA• is strict. 

(c) t- c: 

By definition of Terms (definition 2.5.2) this is a special case of clause 

(b), with m = 0. Thus, 

(2) By structural induction on t: 

(a) t = x: 

Using the given fact that cr(x) =J- ff: 
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By definition 

where by the induction hypothesis: 

continuing on we have: 

(c) t = c: 

It is true since it is the special case of clause (b) with n = 0. 

D 

Remarks 3.2.2. 

(1) Theorem 1(1) says that the semantics of A€ extends the semantics of A strictly. 

i.e. errors propagate or persist: once ff occurs as value of a subterm it will 

persist as the value of the whole term. 

(2) Theorem 1(2) says that the semantics of A€ extends the semantics of A 

consistently. 
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Discussion 3.2.3. So there are two possible reasons why [t]A" CJ = a:: 

(1) From Theorem 1(1): for some x E Var(t) : CJ(x) =a:; or 

(2) From Theorem 1(2): Ae is not consistent over A, so some function at some 

argument returns a: instead of a default value. 

Corollary 3.2.4. If Ae is consistent over A, t E Tm(I;) and CJ E State(A) then 

[t]N CJ = [t]ACJ 

Proof. From Theorem 1(2), since if CJ E State(A), then CJ = CJA. D 

Corollary 3.2.5. If Ae is consistent over A, and t E CT(I;) then 

Proof. Immediate from Theorem 1(2). D 

Discussion 3.2.6. Theorem 1 works only assuming Ae is consistent and strict. How 

important or desirable are these properties? 

• Strictness: This does not hide errors: "errors propagate". This formalizes the 

idea of 'GIGO'. But we may prefer operators such as cand, cor and ifns as (non-strict) 

extensions of and, or and ifA. We will return to this. 

• Consistency: Consider algebras containing functions with default values, for ex

ample: 
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(1) N' = (N, Jffi; 0, sue, pred, ... ) where pred(O) = 0. 

Now define: 

So now prede is not a consistent extension of pred! 

Similarly, one can have non-consistent but strict extensions to remove default 

values, with, for example, 

div in N or Z; or 

pop and top in vstk. 

So consistency is not always desirable. 

Remarks 3.2. 7. 

(1) From now on, we will evaluate ~>terms and :Ee-terms over A\ that is, we let 

a1, a2, ... range over State(Ae), and let [t]a mean [t]A' a (even if t E Tm(:E)). 

(2) We can think of a(x) = ff: as "a is unspecified at x" or "x is not yet initialized 

in state a" . 

Discussion 3.2.8. We are looking for (computationally meaningful) conditions on 

error algebras, weaker than 

(1) strictness; and 
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(2) consistency. 

For (1) we propose monotonicity; and for (2) we propose error-consistency. We 

discuss both of these in the following two sections. 

3.3 Monotonicity 

First define a simple partial order on each carrier A~ of AE. 

Definition 3.3.1. For all x, y E A~ 

x ~ y -¢:::::} x = y or x = f£
8 

Definition 3.3.2. 

(1) Let F: s1 x · · · x Sm---+ s be in Func(L:). Then pA,E is monotonic over A iff 

(2) AE is monotonic over A iff for all FE Func(:E), FA,E is monotonic over A. 

Lemma 3.3.3. Strictness =? monotonicity 

Proof. From definitions of strictness (Definition 3.1.1) and monotonicity (Definition 

3.3.2). 0 
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An equivalent characterization of monotonicity is: 

Lemma 3.3.4. If F : u ---+ s is in Func('E), then pA,€ is monotonic over A iff the 

following holds: 

for any a E Au, where a = ( a1, .•• , ff, ... , am) (including at least one ff), 

if pA,t:(a) = y =/= ff, then replacing ff in a by any other argument will not change the 

output y. 

Proof. Immediate from Definitions 3.3.1 and 3.3.2 (2). 0 

Discussion 3.3.5. The computational significance of strictness is that it does not 

"hide errors" in the input. Monotonicity is a more liberal concept than strictness

it may hide errors in the input, but only if they do not affect the output, that is, if 

they are irrelevant to output. 

Example 3.3.6. The operators if, cand, cor, strong-and, strong-or are 

monotonic. But is-error and id are not. 

Remark 3.3.7 (Semantics of bounded quantifiers). Consider bounded 

quantification over integers. Then interpret 

Vka<S:k~b P(k) (a, bE Z) 

as 

P(a) cand P(a + 1) cand ... cand P(b). 
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and interpret 

:3ka<k~b P(k) (a, bE Z) 

as 

P(a) cor P(a + 1) cor ... cor P(b). 

Definition 3.3.8. ForM~ Var(2::), 

a~ a'(rel M) ("a is extended by a' relative toM") 

iff for all x E M, a(x) ~ a'(x) 

Proposition 3.3.9. a~ a'(rel M) {::=}a C: (rel M) and a' C: a(rel M) 
"' "' 

Proof. Clear from Definitions 3.3.1 and 3.3.8. D 

Remarks 3.3.10. 

(1) The relation "~ (rel M)" (for fixed M) is a pre-partial order on State(A15
), i.e. 

it is transitive and reflexive (but not anti-symmetric). 

(2) The relation "~ (rel M)" is the corresponding equivalence relation at State(A15
). 

(3) The c: -minimal states (rel M) are those which are totally unspecified on M. 
"' 

Theorem 2 (Monotonicity for Tm(2::)). Suppose A 15 is monotonic over A. Then 

for all t E Tm(2::), and a, a' E State(A 15
): 

a C: a'(rel Var(t)) ~ [t]a ~ [t]a' 
"' 
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Proof. By structural induction on t. 0 

Remark 3.3.11. As a Corollary we get: if At: is monotonic over A then 

a~ a'(rel Var) ==> [t]a = [t]a' 

but we know this already from the Coincidence Lemma (Lemma 2.5.8) without the 

assumption of monotonicity. 

Corollary 3.3.12. If A€ is monotonic over A, then for all t E Tm(:E) and 

a E State(At:) : 

[t]a =/= «: ==> \fa'~ a (rel Var(t)), [t]a' = [t]a 

Remark 3.3.13. This again has the idea that an error in an input may be hidden, 

provided it is "irrelevant". 

3.4 Error-consistency 

Definition 3.4.1. 

(1) Let A be ~-algebra, At: an error algebra over A and 

F : s1 x · · · X Sm --* s in Func(~) 

Then pA,t: is error-consistent over A iff for all a1 E A81 , ••• , am E Asm : 



38 Wei Lei - Department of Computing and Software 

(2) A€ is error-consistent over A if and only if for all FE Func('L;), pA,€ is error

consistent over A. 

An equivalent characterization of error-consistency is: 

Lemma 3.4.2. FA,e is error-consistent over A if and only if for all a1 E A 81 , ••• , am E 

Notes. 

(1) In the case where f£ is the result, think of this as giving an error message instead 

of a default value. 

(2) Every pA,e considered so far is error-consistent. 

Lemma 3.4.3. consistency ==> error-consistency 

Proof From definitions of consistency (Definition 3.1.1) and error-consistency (Def

inition 3.4.1). D 

Theorem 3 (Error-consistency for Tm('L;)). Let Ae be error-consistent and mono

tonic over A, and let t E Tm('L;). Then: 

(1) If a E State( A€) and for all x E Var(t), a(x) =If£ then 

[t]A' a ~ [t]AaA; 
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(2) If a E State(A) then 

(3) If t is closed then 

Proof 

(1) By structural induction on t: 

(a) t = x: 

Using the given fact that a(x) =J ff: 

and so [t]A" a ~ [t]AaA 

(b) t = F(t1, ... , tn): 

By definition 

where by the induction hypothesis: 

continuing on we have: 

39 
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FA,€([t1]A• a, ... , [tn]A• a) C FA,€([ti]AaA, ... , [tn]AaA) (monotonicity, ( * )) 

C FA([t1]AaA, ... , [tn]AaA) (error-consistency) 

(2) Immediate, since aA =a if a E State(A). 

(3) Directly from (1) and Corollary 2.5.10. 

D 



Chapter 4 

Semantic of Improper Tables using 

Error Algebras 

In this chapter we present a semantics for function tables, using error algebras. The 

method of tabular representations, developed by David Parnas and his collaborators, 

has been found to be very useful for the formal documentation and inspection of 

software systems. 

The first application of this technique was in the documentation for the revised 

flight software for the US Navy's A-7 aircraft in the late seventies [Hen80, HKP78). 

Another large project which used tabular notation was the documentation of the 

shutdown systems of the Darlington Nuclear Power Generating Station in Ontario, 

Canada, required by the Atomic Energy Control Board of Canada for that station's 

41 
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licensing, in the late eighties (Par94, PAM91]. These two projects served both as 

testing grounds for the tabular method, and as incentives for its further development. 

The tabular method is also useful in the documentation of simple programs, as 

demonstrated in (PMI92]. Some examples of its use in system documentation are 

given in (WT95]. A survey of the method is given in (JPZ96). 

The tabular notation is, essentially, a useful and perspicuous method for defining 

functions on many-sorted algebras. In the course of the projects described above, 

many kinds of tables were developed, and were found to be useful. A systematic 

exposition of ten kinds of tabular expressions was given in [Par92]. 

In [Zuc96) Zucker considered two kinds of tabular expressions: normal and in

verted. He provided a semantics for both kinds of tables, and defined transformation 

between them which preserve the semantics. However the semantics apply only to the 

unproblematic case of "proper" tables. The extension of the semantics to "improper" 

tables was left as an open problem. 

In this chapter we extend the semantic theory of [Zuc96] by defining a uniform 

semantics for proper and improper tables, using error algebras. The actual error 

algebras are not specified precisely, except for the assumption that they are standard, 

monotonic and error-consistent. 

The approach take here is not to divide tables into proper and improper subclasses 
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(as in [Zuc96)) but to consider, for any table T at any particular state a, whether 

T is proper or improper at a. (The answer will vary, in general, with a). It is also 

found necessary to broaden the concept of "properness" used in [Zuc96], to allow 

overlapping conditions where the output value agrees on the overlap. 

For convenience, we restrict our attention to 1- and 2-dimensional tables. The 

theory presented here can be easily generalised to the case of n-dimensional tables, 

as in (Zuc96]. 

4.1 Normal tables 

We will define the class TabN(E) of normal (function) tables over E. Consider (for 

convenience) a 2-dimensional normal table [Par92, Zuc96]. 

Example 4.1.1 (A two dimensional normal table). 

C{ I 

tu tl2 ... tu 

t21 t22 ... t2l 

tkl tk2 ... tkl 

G 
Table 8 
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In Table 8, the headers H 1 and H 2 contain conditions Cl (1 :::; i :::; h) and 

CJ (1 :::; j :::; l) respectively. These are boolean-valued expressions over L;, extended 

e.g. by bounded quantifiers (Remarks 3.3. 7). The cells ( i, j) of the grid G ofT contain 

terms ti,j, all of the same L;-sort. 

The value ofT (at a given state) is the value of the cell determined by the condi

tions in the headers H 1 and H 2 which are evaluate to tt:(at that state), assuming Tis 

proper (see Remark 4.1.2 below). What if Tis not proper? More generally, how may 

errors come in the output? 

There are three ways in which the output of a normal table T can be a: for a given 

state a: 

(i) T is not proper at a; 

(ii) each header is proper (at a) in the sense of having one condition that evaluates 

to tt:, but one of the non-true condition evaluates to a: instead of ff; 

(iii) each header is proper (at a) with a true condition (say) Ci~ and CJ
0

, but 

[ti0 j 0]a = a:. 

Remarks 4.1.2. Above, by "proper" we mean: 

(1) there is a unique i such that [Cl]a = tt, and for all i' =I= i, [Ci'] = ff; and 

(2) there is a unique j such that [CJ]a = tt, and for all j' =I= j, [Cj'] = ff. 
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Later (Definition 4.1. 7) we will give a different (more general, and more appropri

ate) definition of 'properness', and we will call the above "strict properness". 

Remarks 4.1.3. We cannot exclude improper tables at the syntactic level since 

(1) properness of T depends on the state; 

(2) properness (at all states) is not decidable in general. 

Remarks 4.1.4. Here are two possible strategies for evaluating improper tables at 

a given state CY, assuming all headers have at least one condition which evaluates to 

true: 

(1) Take the leftmost (or topmost) condition which evaluates to true (like the "case" 

statement in Pascal). But this is dangerous since the semantics is then depen

dent on the order of rows and columns, and hence would not be preserved by 

table transformations (from normal to inverted, and conversely, see below). 

(2) Give the output value as a:. So define the table function as: 

This is a better idea, but it is still not ideal, as we will see (Remark 4.1.19). 
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4.1.1 Properness 

We are looking for a condition on tables which will make their semantics unproblem

atical. Differing from the definition of properness in [Zuc96], we define "properness" 

by allowing overlapping conditions, where the values agree on the overlap. 

Definition 4.1.5. Let C be a condition. A tuple (01, ... , Cn) of conditions is called 

• disjoint relative to C at state a over Var(C, C~, ... , Cn) {::=}- if a satisfies C, 

then a satisfies at most one of C1, ... , Cn. 

• universal relative to Cat state a over Var(C, C~, ... , Cn) {::=}-if a satisfies C, 

then a satisfies at least one of C1, ... , Cn. 

• strictly proper relative to C at state a if it is both disjoint and universal relative 

to Cat a. 

Equivalently, ( C1, ... , Cn) is strictly proper relative to C at a over 

Var(C, C1, ... , Cn) {::=}- if a satisfies C, then a satisfies exactly one of C1, ... , Cn. 

An important special case of the above concepts is given by the following. 

Definition 4.1.6. A tuple ( C1, ... , Cn) of conditions is called (respectively) disjoint, 

universal or strictly proper at a if it is (respectively) disjoint, universal or strictly 

proper relative to the condition true at a. 

Equivalently, (C1, ... , Cn) is strictly proper at a over Var(C1, ... , Cn) iff a 

satisfies exactly one of C1, ... , Cn. 
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Note that these concepts (disjointness, universality and strict properness) are all 

relative to the E.-algebra A. For example, the tuple (x < 0, x = 0, 0 < x) is not 

strictly proper in all algebras (of the appropriate signature), but only in those algebras 

in which the interpretation of'<' satisfies the trichotomy law. On the other hand, the 

tuple (x < 0, x {. 0) is strictly proper in all algebras (of the appropriate signature). 

Let T be a normal table. 

Definition 4.1.7 (Proper normal table). Tis proper at a if 

(i) all its headers are universal at a, and 

(ii) the value of a term ti; at a is the same for all ( i, j) for which conditions CJ in 

header H 1 and CJ in header H 2 are true at a. 

Remarks 4.1.8. 

(1) Condition (ii) says that the values agree on overlapping conditions given by 

non-disjoint headers. 

(2) The important concept of a tableT is not whether it is proper (at all states), 

but whether it is proper at a particular state. The reason for this is that it is 

not (in general) effectively decidable whether a table is proper at all states. 

(3) Of course, some tables are proper at all states, for example: 
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Example 4.1.9 (A proper normal table). 

1 y ~ 10 1 y = 10 1 y > 10 1 

H2 

x+y 10+x -y2 

x-y X -10 x-y 

G 

Table 9 

Table 9 is an example of a proper normal table (at all states). Suppose u(y) = 10. 

Then conditions (y ~ 10) and (y = 10) in header H 2 are satisfied, and the value 

agrees on overlapping conditions. Note that this table, and most of the following 

examples of tables, are based on the signature ~(zB) of the standardised algebra of 

integer (or some expansion of it). 

Example 4.1.10 (A strictly proper normal table). 

1 y = 10 1 y > 10 1 y < 10 1 

H2 

0 y2 -y2 

X x+y x-y 

G 

Table 10 

Note that each header is strictly proper (at all states). 
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4.1.2 Semantics of normal tables 

Definition 4.1.11. Let T be a normal table over 'E, and u a state over T in A. 

Suppose T is proper at u. Choose indices i, j for which the entries Cl and CJ hold 

at u. Then the meaning of T relative to u is 

Note that by the properness condition, the value of [tij]u does not depend on the 

choice of indices i, j for which [ Ci]u = [ Ci ]u = tt. 

Next we will define table functions relative to a list of variables. 

Definition 4.1.12. A list x of variables is said to coverT if it includes all of Var(T), 

i.e., if Var(T) ~ x. 

Definition 4.1.13. Let x = (x17 ••• , xm) be any list of variables which covers T, 

with xi : Si for i = 1, ... , m. Then relative to x, T names or defines a table function 

symbol 

fr,x : s1 X • • • X Sm --t s 

with interpretation on A 

as follows. For all a1 E A81 , ••• , am E Asm, let u be the state over A defined by 

u(xi) = ai fori= 1, ... , m. Then 
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Discussion 4.1.14 (Semantics of improper tables). We turn to the semantics of 

tables that are improper at certain states. The semantics in [Zuc96] only works when 

Tis proper at a given state a. Thus, we must use another method. The two strategies 

mentioned in Remarks 4.1.4. are not satisfactory (see Remark 4.1.19). A better idea 

is to define an improper table function using error algebras which are monotonic and 

error-consistent. 

We must first modify the definition (4.1.5) of universality of condition tuples 

evaluated over error algebras. 

Definition 4.1.15 (Universality for headers over error algebras). A tuple of 

conditions (C1 , ... , Cn) is said to be universal at a E State(Af) if: 

(1) for some i, [Ci]A• a= tt; 

Remarks 4.1.16. 

(1) the definition (4.1.7) of properness of a normal tableT at a state a over Af now 

presupposes that none of the header conditions evaluates to ff. 

(2) However a term tij in the grid ofT may very well evaluate to ff at a without 

causing T to be improper. This is analogous to the (non-strict) semantics for 

the conditional 

if (tbool ts ts) 
ns ' I' 2 
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We now extend the definition (4.1.11) of [T]Aa in the case that Tis improper at 

a: 

Definition 4.1.17 (Semantics of table over ~E). Let T be a normal table over 

~E, and a a state over T in A E. We define [T]A• a as follows: 

Case 1: T is proper at a. Then [T]Ae a is as in Definition 4.1.11. 

Case 2: Tis improper at a. Then [T]A< a= ff:. 

Definition 4.1.18 (Table function). Let AE be an error algebra over A. Let T 

be a table, x = (xb ... , xm) be any list of variables which covers T with Xi : si for 

i = 1, ... , m. For a1 E A81 , ••• , am E Asm let a be a state overT satisfying a( xi) = ai 

fori= 1, ... ,m. Then: 

( 1) if T is proper at a (according to Definition 4.1. 7 applied to A E), define J¢: ( a1 , ... , am) 
' 

as above (using AE instead of A). 

(2) if T is not proper at a, then 

f.A,E( ) _ 
T,x a1, ···,am - ff:. 

Remarks 4.1.19 (Semantics with error algebras). 

(1) If T is improper at a, then 
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(2) But even ifT is proper at a, this semantics may give an output of lt, because A€ 

is error-consistent rather than consistent. This method is better since it shows 

error values which would be hidden by default values. To illustrate this: 

Example 4.L20. Let T be the table 

At the state (x = 0, y = 1), the value ofT is : 

(i) 0 according to the "default semantics" of Example 2.1.10; 

(ii) lt according to Definition 4.1.18(2). 

The latter output is more desirable, since it does not hide error by default values. 

The general situation here is shown by the following theorem. 

Theorem 4. Let A€ be an error algebra which is monotonic and error-consistent. Let 

T be a normal table, with Var(T) ~ x. Then J¢,: is 

(1) monotonic, and 
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(2) error-consistent. 

Proof. 

(1) Monotonicity: It is sufficient to show: 

0"1 C <T2 ===> [T]u1 ~ [T]u2 
~ 

If [T] = ff, this is trivial. So we may assume: [T] =/:. ft. 

Hence T is proper at u, i.e., 

(a) the headers ofT are both universal at 0"1, 

(b) for all i, j such that: 

and so, 

[T]u1 =a. 

By monotonicity of Ato, for all i,j: 

Hence the headers of T are also universal at u2 and for all i, j such that: 
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and so 

proving (*). 

(2) Error-consistency: Let 0' be a state over A. It is sufficient to show: 

There are two cases. 

(a) Tis proper at 0'. 

Then the header H 1 and H 2 are universal, w.r.t. 0'. By Theorem 3 

for i = 1, ... , k and j = 1, ... , l: 

Then by (***), for all i, j 

Since T is proper at 0', there exists i, j: 

Then for this i, j 
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By (****) for the same i, j, 

By Theorem 3: 

Hence, 

(b) Tis improper at a. Then 

Combining (a) and (b), we conclude (**) 

D 

4. 2 Inverted tables 

In this section we consider the class Tab1 (~) of inverted (function) tables over ~. 

Such a tableT differs from a normal table in the following way (see Table 12). 

(1) One of its headers (H1), is the value header. It contains terms, all of the 

same sort, instead of conditions. The other header (H2) the condition header, 

contains conditions as before. 
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(2) The cells ofT contain conditions instead of terms. 

The idea (or operational semantics) for T is as follows. For a given state O" over 

T, search the condition header H 2 until you find a condition Ci which holds at O". 

The index j determines a column. Search along this column for the cell ( i, j) whose 

entry Cii has the value tt. The corresponding entry ti in H 1 then gives the value of 

the function. 

The desirability of this search always producing a unique value, leads to the fol

lowing definitions. Let T be an inverted table as follows: 

Example 4.2.1 (An inverted table). 

Cu . . . clj ... ell 

Gil . . . cij ... Cit 

ckl . . . ckj ... ckl 

G 

Table 12 

Definition 4.2.2 (Proper inverted tables). T is proper at O" iff 

(1) For some j, O" F= Ci. 
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(2) For all j s.t. a F= C;, there exits i s.t. a F= Cii· 

(3) For all j s.t. a F= C;, and all i s.t. a F= Ci;, the value of [ti;]a is the same. 

Example 4.2.3 (A proper inverted table). 

y ~ 10 y < 10 

x+y x<O x<y 

x-y O~x<y y~x<O 

y-x x~y x~O 

G 

Table 13 

Table 13 is an example of a proper inverted table. Notice that the columns are 

not proper (for some values of y), but are proper (in fact, strictly proper) relative to 

the corresponding conditions in the column header H 2 . 

Definition 4.2.4 (Semantics of inverted tables). The semantic function [T]Aa 

and the table function f¢~ are defined analogously to Definitions 4.1.11 and 4.1.18, , 

according to the above informal operational semantics. 
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4.3 Transformations of tables 

We are interested in transforming tables to other, semantically equivalent, tables, 

which may be easier to work with. First we define the notion of semantic equivalence 

of tables. 

Definition 4.3.1 (Semantic equivalence of tables over At:). Let T1 and T2 be 

two tables. T1 and T2 are semantically equivalent on At: (written T1 ~A< T2 ) iff for all 

states a over Var(T1,T2 ) in At:, [T1]A"a = [T2]A"a. 

Remark 4.3.2. Semantic equivalence is defined here not only as a relation between 

proper tables (as in [Zuc96]) but also for improper tables. 

We will define transformations 

<p: 7 -+ 7
1 

of tables from one class 7 to another class 7
1

• These transformations must satisfy the 

following three properties: 

(1) <p is semantics preserving, in the sense that, if T E 7 is improper, then so is 

rp(T), and rp(T) ~ T. 

(2) <pis effective or computable. 

(3) For all a, Tis proper at a iff cp(T) is proper at a. 

If cp(T) = T', then T' is called the transform ofT under <p. 
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4.4 Inverting a normal table 

We have two methods (or algorithms) [Zuc96] for transforming a normal table to a 

semantically equivalent inverted one. 

We illustrate the first inversion method with a simple example. Consider the case 

of a 2-dimensional 3 x 3 normal tableT, given in Table 14. 

Example 4.4.1 (A normal table). 

c; 

tn tl2 t13 

t21 t22 t23 

ta1 t32 taa 

G 

Table 14 

T is "inverted along dimension 1" to produce an inverted table (Table 15) with 

condition header H 2 unchanged, and value header H 1 , much bigger than the original, 

since the length of the value header in the new table has increased to the size of the 

original table, i.e. the number of cells in its grid. 

The second method for inversion is appropriate for a normal table T in which 

the number of distinct terms in its grid is small. Suppose, e.g., the grid in Table 14 
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contains only 2 terms, say t1 and t2, as shown in Table 16. According to Method 2, 

we invert T, also along dimension 1, to produce Table 17. 

Example 4.4.2 (Inversion of Table 14: Method 1). 

tn C1 1 false false 

t21 Cl 2 false false 

t31 Cl 3 false false 

tn false Ci false 

t21 false Ci false 

t31 false Cj false 

tn false false c1 1 

t21 false false Ci 

t31 false false Cj 

G 

Table 15 
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Example 4.4.3 (A special case of Table 14). 

c; 

Cl 
1 tl tl 

Cl 2 t2 tl 

Cl 
3 tl t2 

Table 16 

Example 4.4.4 (Inversion of Table 16: Method 2). 

Q 
Q 

c; 

C1 vc1 
1 3 

CJ 

CfvCJ 

Cj 

Table 17 

t2 

t2 

t2 
G 

false 

ct vcJ vcj 

61 

The following theorems holds for both inversion transformations considered in this 

Section. 

Lemma 4.4.5. Let T be an normal table, and T the inverted table obtained from T 

by Method 1 or 2. Then 

T is proper at a -<===} T is proper at a. 
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Proof. We show 

(1) T is proper at a ===} T is proper at a; 

(2) T is improper at a ===} T is improper at a. 

(1) Tis proper at a. 

The proof is similar as for Theorem 2 (1) in [Zuc96). 

(2) Tis improper at a. 

If H 2 is not universal in T (at some state a), then the same header H 2 is not 

universal in T. If H 1 is not universal in T, then all the columns in the grid of 

T will also not be universal. 

If H 1 and H2 in Tare both universal (at a) but lead to different values on the 

overlap, then these different values will also manifest themselves in the value 

header ofT. 

0 

Remarks 4.4.6. Suppose the normal table T (Table 15) is proper but not strictly 

proper, e.g. if a p Cr and a p Ci and also a p CJ. Then the inverted table 

by Method 2 (Table 17) is strictly proper. Hence Lemma 4.4.5 does not hold with 

"properness" replaced by "strict properness". This explains our new, more liberal, 

definition of properness. 
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Theorem 5. Suppose T is a normal table, and T is the inverted table obtained from 

T by Method 1 or Method 2. Then 

Proof. There are two cases. 

(1) Tis a proper normal table. Similar to Theorem 2 in section 8 of [Zuc96]. 

(2) Tis an improper table. 

For all a1 E A811 ... , am E Asm, a(xi) = ai fori= 1, ... , m, we have 

by definition of the improper table function (Definition 4.1.18(2)). 

From Lemma 4.4.5 the inverted tableT is also improper. Then we have 

Ae - A• !.r-' (ab ... ,am) = [T] a= E. ,x 

Thus, 

and so 

D 
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4.5 Normalising an inverted Table 

We now consider the transformation of an inverted table to a normal one. The 

situation is less satisfactory since the normal table produced here is one-dimensional. 

We consider the 2-dimensional 3 x 2 inverted table shown as Table 18, with value 

header H 1 • 

Example 4.5.1 (Two-dimensional table). 

Cu c12 

c21 c22 

Cal Ca2 

G 

Table 18 

This can be normalised to a 1-dimensional table, shown as Table 19. 

Example 4.5.2 (Normalisation of Table 18). 

( c? 1\ Cu) v ( c~ 1\ C12) tl 

( cr A c21) v ( c~ A c22) t2 

(Cr 1\ Cal) V (C~ 1\ Ca2) ta 

Al G 
Table 19 
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Table 18 can also be normalized to Table 20, by "splitting disjunctions" in the 

conditions. 

Example 4.5.3 (Another normalisation of Table 18). 

cr /\en 

c~ /\ c12 

Cr /\ C21 

c? /\ c22 

Cr /\ C31 

C? /\ C32 

H1 

Table 20 

tl 

tl 

t2 

t2 

t3 

t3 

G 

Lemma 4.5.4. Let T be the normal table obtained from T by the method of either 

Table 19 or Table 20. Then 

T is proper at a {::::=:::} T is proper at a. 

Proof. 

By extending the method of Theorem 3(1) in [Zuc96] for proper tables, as in 

Lemma 4.4.5(2). 

D 
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Theorem 6. Suppose T is an inverted table, and T is the normal table obtained from 

T as above. Then: 

T ~A· T. 

Proof. Similar to Theorem 5. 0 

Remark 4.5.5. Here also, we see that properness and improperness are both 

preserved with our new definition of properness (see Remark 4.4.6). 

4.6 Comparison with the logic of Parnas 

In [Par93] there are two types of expressions: 

(1) Terms, such as the expressions in the grid of a normal table. 

(2) Predicate expressions, such as the boolean-valued conditions of the table 

headers. 

The semantics of terms (including boolean-valued terms) is 3-valued, essentially 

like ours. But the semantics of conditions is 2-valued. 

An atomic condition C = f ( t1, ... , tn), where f E .Func(L:) of type s1 x · · ·X Sn ---+ 

boot is evaluated as: 

{

tt if [t1]0" #a:, ... , [tn]O" #a: and CA([ti]O", ... , [tn]O") = tt 

[C]O" = ff ~f [t1]0" #a:, ... , [tn]O" #a: and CA([ti]O", ... , [tn]O") = ff 

ff If [t1]0" = a: or ... or [tn]O" = a: 
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This gives a 2-valued semantics for boolean conditions, which is non-monotonic. 

Note that the equality predicate is then also non-monotonic. 

Example 4.6.1. Say C = (x = 0), then for 

we get 

[C]a1 = ff and [C]a2 = tt, 

and so 

Note that with our semantics [C]a1 = a: h tt = [C]a2 . 

Example 4.6.2. Compare following two tables. 

t<O •(t < 0) 

H2 

y < 10 x+y x-y 

y ~ 10 x2 y2 

Hl G 

Table 21 
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t~O •(t > 0) I 
H2 

y < 10 x-y x+y 

y ~ 10 x2 

G 

Table 22 

Suppose t = (1 div x) in the state (x = 0). These conditions are equivalent, but 

the semantics in (Par93] gives different outputs for the two tables, since (t 1- 0) in 

Table 21, being a complex expression, is evaluated to tt while (t ~ 0) in Table 22 is 

evaluated to ff. Our semantics gives«: as the output for both tables. 

We should however, point out that in the above example the table header H 2 used 

by Parnas would most likely be of the form 

t<O t~O 

which would then yield (in this case) the same semantics as ours. 



Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis we have developed a systematic method for handling error cases in 

computation over many-sorted algebras, with the use of error algebras. The desirable 

properties of these algebras, in computing with error cases, are: 

(1) monotonicity, which is a weaker condition than strictness, and 

(2) error-consistency, which is a weaker condition than consistency. 

We have applied this theory to the semantics of (not necessarily proper) function 

tables. 

69 
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5.2 Future work 

Some possible applications or extensions of our work are the following. 

(1) To generalise the theory in Chapter 4 ton-dimensional tables would be routine. 

More interesting, perhaps, would be generalising this theory to the other types 

of tables considered in [Par92). 

(2) It would be interesting to find applications of error algebras, with our emphasis 

on monotonicity and error-consistency, in other areas of software analysis and 

verification, such as Hoare logic [TZ88, Zhu03), equational specifiability (Luo03) 

and program development [Jon06). 
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