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Abstract 

The accuracy of a diagnostic test is often evaluated with the measures of sensitivity 

and specificity and the joint dependence between these two measures is captured 

by the receiver operating characteristic (ROC) curve. To combine multiple testing 

results from studies that are assumed to follow the same underlying probability law, 

a smooth summary receiver operating characteristic (SROC) curve can be fitted. 

Moses et al. (1993) proposed a least squares approach to fit the smooth SROC 

curve. 

In this thesis we overview the summary measures for the ROC curve in single 

study data as well as the summary statistics for the SROC curves in meta-analysis. 

These summary statistics include, the area under the curve (AUC), Q* statistic, 

area swept under the curve (ASC) and the partial area under the curve (pAUC). 

Our focus, however is mainly on the partial area under the SROC curve as it 

is being used frequently in meta-analysis of diagnostic testing. The appeal to use 

the pAUC instead of the full AUC is that the partial area can be used to focus 
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on a clinically relevant region of the SROC curve where false positive rate (FPR) 

is small. Simulations and considerations for the use of the summary indices of the 

ROC and SROC curves are presented here. 

Key Words: receiver operating characteristic (ROC) curve; summary receiver op­

erating characteristic (SROC) curve; meta-analysis; area under the curve (AUC); Q* 

statistic; area swept out by the curve (ASC); partial area under the curve (pAUC); 

homogeneous; heterogeneous 
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Chapter 1 

Introduction 

The pooling of receiver operating characteristic (ROC) curves, which combines evi­

dence from independent studies examining the diagnostic value of test results on a 

continuous scale originated in 1990. Techniques have been described for combining 

sensitivities and specificities of studies on tests with separate outcomes. These tech­

niques use different analysis for sensitivity and specificity, as well as a linear model 

on a logit scale relating the two measures. 

The summary receiver operating characteristic (SROC) analysis is applied to 

data from diagnostic tests which have been pooled from multiple sources. This 

method is used since simple averages can produce misleading results if the data sets 

vary between each other in terms of size or study quality (Rutter & Gatsonis, 2001). 

Poorly conducted or reported studies are more likely to produce outlying results, 
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which skew the overall pooled data. A weighed average can be biased towards large 

studies or studies comprised of very similar results. It can be difficult to identify 

outlying data and exclude it. On the other hand, more data mean wider conclusions 

can be reached. The SROC analysis deals with pooled data without these pitfalls 

(Jones et al., 2005). 

The area under an SROC curve (AUC) is often used to summarize the diagnostic 

performance described by an entire SROC curve. The value of the AUC index can 

be interpreted as the average value of the true positive rate (TPR) over all possible 

values of the false positive rate (FPR) between 0 and 1. 

The AUC index, however, may not be a relevant measure of a diagnostic perfor­

mance in some situations. In these cases, summary measures such as Q* statistic, 

which is the value of TPR at the point where sensitivity equal specificity, the area 

swept out by the curve (ASC), and the partial area under the SROC curve (pAUC) 

are recommended. 

The clinical applications of some diagnostic tests demand high sensitivity. For 

these tests, only those study points on an SROC curve that have high sensitivity 

values are clinically acceptable. Therefore, the AUC index, which summarizes an 

entire SROC curve by giving equal weight to the study points at all sensitivity levels, 

does not measure diagnostic performance meaningfully from a clinical perspective 

in such situations. 
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An easiest way to understand the SROC curve is to look first at the ROC curve. 

The ROC curve and its indices: AUC, Q*, ASC and pAUC statistics are discussed 

in Chapter 2. The homogeneous logistic and normal threshold models are com­

pared. The homogeneous logistic threshold model is shown to generate constant 

ORs for over all thresholds. The comparison of the AUC and Q* statistics are also 

shown. The Q* statistic does not appear to be any more useful than the AUC in the 

cases where clinically relevant regions are of importance. Lastly, the ASC summary 

measure and it's unsatisfactory behaviour for the step ROC function are evaluated. 

In Chapter 3, various properties of the SROC curve are discussed. We review 

the AUC, Q*, ASC, pAUC statistics and their standard error formulas proposed by 

Moses et al. (1993) and Walter (2002). Chapter 4 assesses the standard errors for 

the AUC, Q* and partial AUC SROC indices and compares these estimates to a 

bootstrapping procedure. Simulations for study design with varying study sample 

sizes with focus on the partial area are also presented in Chapter 4. A practical 

example is described in Chapter 5, based on the diagnostic performance of two 

magnetic resonance angiography techniques: 3D gadolinium-enhanced (3D-GD) and 

2D time of flight (2D-TOF) for detecting peripheral arteriosclerotic occlusive disease 

(Nelemans et al., 2000). FUrther points of discussions are considered in Chapter 6, 

including considerations and general observations for the use of the summary indices 

of the ROC and SROC curves. 
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Chapter 2 

Single ROC Analysis 

2.1 Motivation 

A two-by-two table giving the probabilities of positive and negative test results 

for subjects with or without disease (Table 2.1) is a standard way of describing 

the performance of a diagnostic test. A diagnostic test is any kind of medical 

procedure performed to aid in the diagnostic or detection of a disease. The test 

can be used to calculate the probability a subject has a disease under consideration 

given a certain test result. The ideal diagnostic test should differentiate diseased 

and healthy individuals with out any errors. 

There are two questions that occur when evaluating diagnostic tests. First, 

whenever a diagnostic test is subjected to study, the question arises as to how sure 
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the experimenter can be that the control subjects are indeed healthy and that all 

the disease subjects actually have a disease (Youden, 1950). The second question 

deals with two types of errors a diagnostic test may make: false positives and false 

negatives. When a false positive is made, the price of retesting can become quite 

costly, let alone the emotional shock the subject would occur. However, if a false 

negative is made the subjects maybe harmed if treatment is deferred until too late 

(Youden, 1950). 

The probabilities in Table 2.1, add to one in each column. The ideal test would 

show true positive rate (TPR) and true negative rate (TNP) both equal to one, with 

false negative rate (FNR) and false positive rate (FPR) both equal to zero (Moses 

et al., 1993). 

Table 2.1: Summary of test performance probabilities for subjects with disease and 
subjects without disease 

With disease Without disease. 
Test + TPR FPR 

Outcome - FNR TNR 
Sum 1 1 

An alternative to this probability table would be where the entries are counts. 

For example, the counts could be the number of subjects rather than the test per-

formance probabilities as shown in Table 2.2. In this table, the ideal test would be 

when b and c were both zero, making a equal to n 1 and d equal to n 2 • 
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Table 2.2: Frequencies from applying the diagnostic test in n1 subjects with disease 
and n2 subjects without disease. 

With disease Without disease 
Test + a c 

Outcome - b d 
Sum nl n2 

2.2 Receiver Operating Characteristic Curve 

Sensitivity (or TPR) is the proportion of subjects with the disease who test positive. 

Specificity (or 1-FPR) is the proportion of subjects without the disease who test 

negative. Sensitivity and specificity is a pair of statistics that together measure 

the performance of a diagnostic test. The joint dependence of TPR and FPR is 

captured fully in the Receiver Operating Characteristic (ROC) curve (Moses et al., 

1993). The ROC curve is a well established method of summarizing the performance 

of a diagnostic test (Walter, 2002). It indicates the relationship between TPR and 

FPR of the test at various thresholds used to distinguish disease cases from non-

disease cases. The curve is a plot of the TPR versus the FPR. The points of the 

curve are obtained by sweeping the classification threshold from the most positive 

classification value to the most negative. In other words, an ROC curve is a path 

in the unit square, rising from the lower left corner, where both TPR and FPR are 

zero, to the upper right corner, where they are both one. Points near the lower left 
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corner of the ROC plot correspond to conservative thresholds and the points near 

the upper right corner correspond to moderate thresholds. 

If a test could perfectly differentiate from disease and control, it would have a 

score above which the entire disease population would fall and below all non-disease 

scores (Delong et al., 1988). The curve would then pass through the point (0,1) on 

the unit square. The closer an ROC curve comes to this ideal point, the better its 

discriminating ability. A test with no discrimination ability will produce a curve 

that follows the diagonal line from (0,0) to (1,1) (Delong et al., 1988). 

Although, the whole ROC curve is informative, summary indices are always 

helpful. For example, indices are needed when the performances of two indicators 

for diagnosing a particular disease are to be compared and neither of the two cor­

responding ROC curves dominates the other. From the ROC curves, a particular 

value of specificity may attain higher sensitivity than the other values, whereas at 

another specificity, the reverse maybe true. Therefore, it is difficult to say which in­

dicator is better. This problem of in-comparability can be avoided if the comparison 

is based on an index that summarizes the ROC curve (Lee & Hsiao, 1996). 

2.3 The Homogeneous Logistic Threshold Model 

In the context of ROC curves for single studies, the homogeneous logistic threshold 

model is equivalent to assuming two equivariant logistic distributions, for true cases 
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and non-cases. The implication is that disease differs from non-disease only by 

a location shift. (Van Der Schouw et al., 1994). In the heterogeneity situation, 

the two distributions also differ by a scale parameter, implying different variances 

(VanDer Schouw et al., 1994). The logistic distribution also gives a reasonably close 

approximation to normally distributed test results. Therefore, comparable estimates 

for the ROC curve and its summary measures of normally distributed data can be 

derived (VanDer Schouw et al., 1994). 

Assume we have two subpopulations with different logistic or normal distribu­

tions of the score variable with the same standard deviations but different means 

(homogeneous case). Logistic distributions are unique in giving a constant OR for 

any threshold (VanDer Schouw). An estimated OR will depend on what threshold 

is chosen. The mean area under the ROC curve (AUC) and its standard error can 

be generated by repeated sampling of the two selected logistic or normal distribu­

tions for both the disease and control groups. When there is no overlap between the 

disease and control the AUC is one, so the test is perfect. 

Suppose the mean and standard deviation of the test results for a subject without 

the disease are /-LI and u1 , respectively. A monotone transformation of the test results 

is given by: 

(2.1) 
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The distribution of the test results for a non-disease individual is 

ey 
F1(Y) = 1 +eY' for Y E lR (2.2) 

and the distribution of the transformed test results for a disease individual is 

(2.3) 

for a> 0 and(}> 0. The relationship between FPR and TPR at a cutoff point, k 

are 

1 
FPRk = Pr(Y > k) = k 

1+e 
(2.4) 

1 
TPRk = Pr(X > k) = k 8 , 

1 + ea-
(2.5) 

respectively. From equation 2.4, k is 

k = l (1- FPRk) 
n FPRk . (2.6) 

(VanDer Schouw et al., 1994). 

The test results from two logistic distributions with unequal variances determine 
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the equation for the shape of the ROC curve as: 

(2.7) 

for FPR E (0, 1), a= ~~ and()= In [(?$~g_=-.J$J;~a J. In the homogeneous case a 

would equal one. 

2.4 Area Under the ROC Curve 

Summary indices associated with the ROC curve can measure the overall accuracy 

of a test. The most familiar index is the area under the ROC curve (AUC). The 

AUC is the probability that a randomly selected disease individual has a higher 

score on the test than a randomly selected control person. This assumes that the 

disease have (on average) a higher score than the non-disease. 

Let X and Y denote the diagnostic marker measurements for disease and control 

subjects, respectively. Bamber (1975) showed that AUC = Prob(X < Y). Since the 

entire ROC curve is defined within a unit squared, AUC varies between zero and 

one. The values of AUC close to one indicate that the marker has high diagnostic 

accuracy and a test with a AUC equal to one is perfectly accurate. A test with no 

discrimination ability would have an AUC = 0.5. 

In this section we review a non-parametric approach using the Wilcoxon Mann-
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Whitney (MW) two-sample U-statistic for estimating the AUC. This approach fol-

lows from estimating the ROC curve as a step-function based on empirical cumula-

tive distribution functions. It can be shown that the AUC for the empirical ROC 

curve, when calculated by the trapezoidal rule, is equal to the MW statistic applied 

to the two sample X 1 , ... , Xm and Y1 , ... , Yn (Bamber, 1975; Hanley & McNeil, 

1982). Since the MW statistic is a generalized U-statistic, statistical analysis re-

garding the performance of a diagnostic test can be performed by utilizing the 

general theory for U-statistics. The standard error (SE) of the AUC estimate can 

be found by using the Bamber (1976) and Hanley & McNeil (1982) approach. 

Let A(X, Y) denote the AUC for X andY as computed by the trapezoidal rule, 

then 

1 
A(X, Y) = P(X < Y) + 2P(X = Y). (2.8) 

Note that P(X = Y) = 0 when X andY are continuous. The Wilcoxon Mann-

Whitney U-statistic is defined as being the total number of (X, Y) pairs in which 

X < Y. From this definition is can be seen that A(X, Y) and MW U-statistic are 

closely related (Bamber, 1975). Thus, if X andY are continuous 

___ 
1 

m n 

AUC(X, Y) =-:;;;: LLS(Xi, Yj), 
n 1 1 

(2.9) 
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where 

S(Xi, Y:J·) = 1 v. _X 2 LJ- i 
(2.10) 

The standard error for the nonparametric estimate of AUC can be calculated with 

the formula of Hanley & McNeil (1982): 

--- JO(O- 1) + (m- 1)(QI- 02 ) + (n- 1)(Q2 - 02 ) 
SE(O) = , 

mn 
(2.11) 

where(}= P(Xi < }j), the observed AUC. The quantile, Q1 = P(Xi > }j, Xk > }j), 

is the probability that two randomly chosen disease individuals will both be ranked 

higher than a randomly chosen control individual. The quantile, Q2 = P( Xi > 

}j, Xi > Yi), is similar, with the probability that one randomly chosen disease 

person will be ranked higher than two randomly chosen non-disease subjects. Q1 

and Q2 can be approximated (Hanley & McNeil, 1982) and expressed as 

(2.12) 

When these two equations are substituted into equation (2.11), the SE can be ex-

pressed at any level of(} and the values of m and n can vary until SE(O) is sufficiently 

small (Hanley & McNeil, 1982). The SE's are smallest for very high (close to one) 
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AUC values. 

An alternative to the exact computation of the variance is to determine instead 

the maximum of the variance over all possible continuous distributions with the 

same expected value of the AUC and its variance. 

Let SE(Omax) denote the maximum possible value of SE(O) for fixed AUC and 

fixed sample sizes m and n (Bamber, 1975). For each combination of X and Y, 

SE( 0) is calculated for fixed m and n. The largest SE( 0) obtained is denoted as 

0(1- 0) < 
min{m,n}-

1 

4min{m,n} 

The area under the ROC curve for the logistic threshold model is 

for unequal variances (a# 1) (VanDer Schouw et al., 1994), and 

(2.13) 

(2.14) 

(2.15) 

for equal variances (a= 1) (VanDer Schouw et al., 1994). An alternative expression 
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for the homogeneous AUC is 

OR 
AUChom = (OR _

1
)2 [(OR- 1) -ln(OR)] (2.16) 

where OR is the constant odds ratio. An approximate variance for Auehom is 

- OR 
SE(AUChom) = (OR_ 

1
)3 [(OR+ 1) ln OR- 2(0R- 1)]SE(a). (2.17) 

(Walter, 2002). 

2.4.1 Examples 

A comparison of the logistic and normal threshold model as well as examples demon-

strating the behaviours of these models will be discussed in this section. In the two 

examples below, we will see that the logistic threshold model is quite variable when 

the location parameters are further apart in the disease and non-disease cases. 

For example 1, we generated n 1 =50 samples from the disease group that gives 

diagnostic scores which follow a logistic distribution with location= 3 and scale = 

1 and another n 2 = 50 samples from the control group which is also logistic but 

with location = 0 and scale= 1. The mean AUC and standard error of AUC was 

0.88 and 0.034, respectively. 

In example 2, we showed what happens when the groups are a bit further apart 
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and have varying unequal sample sizes. The location parameters are 4 with sample 

size n 1 = 50 and 0 with sample size n2 = 500 for the disease group and the control 

group, respectively. The scale parameters were 1 for both groups. The corresponding 

mean AUC was 0.94 with standard error of 0.018. In this example, the AUC is larger 

and standard deviation is smaller when compared to example 1. We can conclude 

that the further apart the two distributions are the smaller the standard errors will 

be. When there is less or no overlap between disease and control groups the ROC 

curve will be close to or always "perfect" with a right-angled at the top left corner 

and the AUC equal to one, no matter what the actual data. Similar results follow 

when using the normal threshold model. 

2.5 Odds Ratio 

When the scores are from a logistic distribution the true odds ratio (OR) can be 

calculated from the parameters and the estimated OR will depend on what threshold 

is chosen (VanDer Schouw et al., 1994). The cumulative distribution function (cdf) 

and the probability density function (pdf) for a logistic distribution are 

1 
F (X) - -;-------;---;----:--;--:-:-

- (1 + exp( -(k- JL)/u)) 
(2.18) 
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and 

e-(k-J.L)/u 

f(x) = a(1 + e-(k- J.L)/a)2' (2.19) 

respectively. With J.L denoted as the mean, a > 0, as the scale parameter and k as 

the threshold or cutoff point. From the cdf it is easy to show that no matter what 

threshold is used to classify disease and control, the logistic distribution gives an 

OR equal to the following formula 

(
J.L2 /-Ll) OR=exp --- . 
0"2 0"1 

(2.20) 

When the logistic distributions for the disease cases and control cases have equal 

variances, the OR is constant for all true positive and false positive rates as shown 

in Fig. 2.1. When the scores are normally distributed in the homogeneous case the 

ORs vary with threshold (Fig. 2.1). 

Fig. 2.1 shows that the estimated ORs are emphasized in the tails of the distri-

butions. There is a difference in the homogeneous case when the scores come from 

a normal distribution or a logistic distribution. Further exploration into the ho-

moscedastic logistic threshold model is needed to identify if the model is not robust 

enough to apply when the scores follow some other distributions. 

From examples 1 and 2 the true odds ratios are exp(3-0) = 20.1 and exp(4-0) = 

54.6, respectively. While the estimated OR are defined by the intersection of the 
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Logistic Distribution Normal Distribution 

0 0 
N N 

~ ~ 

0 0 = ~ ~ S! S! {l 
~ i3 

"' "' 

0 0 

-3 -1 1 2 3 4 -3 -1 1 2 3 4 

Scores Scores 

Figure 2.1: Comparison of the ORs for the two logistically distributed (right) and 
the two normally distributed (left) scores with means /-ll = 1 and J-l2 = 0 and scale 
parameter 171 = 172 = 0. 

distributions and the thresholds. 

To observe the random samples from the two logistic distributions in example 

1, we picked three thresholds: (k = 1, 3 & 5), we then set up the 2 x 2 tables and 

computed the corresponding ORs (Table 2.3). When n was small the ORs differed 

with varying threshold but when n was large the ORs became less sensitive to the 

thresholds chosen. Also, when the difference in means stayed the same and the 

sample size increased, the observed OR became more accurate to the true OR. In 

the example, when n =50 the ORs bounced from 11.7- 32.7 with a k = 1 where 

as, when n = 5000 the observed ORs bounced from 18.9 - 21.8 with the same 

threshold. As the sample size increased the observed ORs became more precise and 
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stayed closer to the true odds ratio, exp(3) = 20.1. 

Table 2.3: OR values with varying thresholds of randomly generated logistic distri­
bution with the disease group have mean = 3 and scale = 1, while the control group 
being the standard logistic distribution (mean = 0, scale= 1). 

Sample size Threshold OR 
50 5 0.24000 

3 8.32759 
1 17.11111 
1 23.14286 
1 18.61364 
1 32.73077 
1 11.71429 

500 5 12.26374 
3 14.05115 
1 21.82232 
1 16.73057 
1 21.89079 
1 26.40650 
1 17.48782 

5000 5 22.02351 
3 19.89667 
1 19.92016 
1 21.79255 
1 18.96111 
1 20.30981 
1 19.61054 

2.5.1 Non-Central Hypergeometric Models 

When evaluating 2 x 2 tables that had fixed row totals and a specified theoretical 

OR, say exp(3), the observed OR varied around that total. We simulated this 

18 



using both the Fisher's and Wallenius' noncentral hypergeometric distribution and 

observed that the larger the row totals and the larger the sample sizes the more 

accurate the observed OR would be. 

The Fisher's noncentral hypergeometric (FNCH) distribution is obtained if the 

samples are taken independently of each other, where as the Wallenius' noncentral 

hypergeometric (WNCH) distribution is obtained if the sample size, n subjects are 

taken one by one (Fog, 2007). Each draw depends on the previous draws which 

would imply a competition between the individual, n subjects. FNCH would have no 

such dependence between draws. In this case, n would be a random variable and the 

Fisher's distribution is a conditional distribution which can only be determined after 

the experiment, when n is known. The unconditional distribution is two independent 

binomials for the FNCH distribution (Fog, 2007). 

FNCH distribution is used mainly for statistical tests in contingency tables. The 

WNCH distribution is used in models of natural selection and biased sampling (Fog, 

2007). The difference between FNCH and WNCH distributions are negligible when 

the OR is close to 1 and n is low compared to N, where N is the total number 

of subjects. The difference between the two distributions become meaningful when 

the ORs are high and n is near N. In our case, since n was randomly selected 

and samples were taken independently it is sufficient to use the Fisher's noncentral 

hypergeometric distribution when fixing the row totals and specifying an OR. 
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2.6 Q* Statistic 

One criticism of using the summary statistic AUC is that it depends largely on 

an irrelevant region. For this reason, one alternative would be to use the point of 

intersection on the ROC curve with the line FPR + TPR = 1, with slopes from the 

(0,1) corner to the (1,0) corner (Moses et al., 1993). At that intersection, sensitivity 

equals specificity and their common value is know as Q*. Similar to the AUC, the 

Q* is an indicator of how closely the ROC curve is to the upper-left corner (Moses 

et al., 1993). Moreover, the Q* statistic is defined as a point of indifference on the 

ROC curve, where the probabilities of incorrect test results are equal for disease 

and non-disease cases. Thus, it represents the diagnostic threshold at which the 

probability of a correct diagnosis is constant for all subjects (Walter, 2002). 

The Q* statistic for the homoscedastic logistic threshold model is 

Q* JOR 
hom= 1 + JOR' (2.21) 

with an approximate standard error from the delta method of 

-- 1 --SE(Q* ) - SE(OR) 
hom - 2VOR(VOR+ 1)2 

(2.22) 

(Water, 2003). 

For the two logistically distributed scores in example 1 with the true OR of 
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exp(3) has Qb.om statistic equal to 0.82 and SE(Qb.om) equal to 0.004. 

To understand the strong relationship between the AUC and Q* statistics we 

used a nonparametric bootstrap of samples with replacement from the Henley & 

McNeil (1982) data. The AUC had a mean of 0.89 and the Q* statistic had a mean 

of 0.82. The standard errors for AUC and Q* were 0.030 and 0.033, respectively. 

A plot of the 1000 randomly generated AUC and Q* statistics is shown in Fig. 

2.2. Although, the AUC depends largely on an irrelevant region, the straight line 

indicates a high positive correlation between the two summary statistics (r = 0.89). 

Both summary measures show how closely the ROC curve is to the upper left hand 

corner in the unit space. To conclude, the use of the Q* statistic over the AUC 

shows no increase in information in regards to a diagnostic test. 
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Figure 2.2: AUC vs. Q* statistics using a nonparametric bootstrap of 1000 samples 
with replacement from the Henley & McNeil (1982) data. 
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2. 7 Area Swept out by the ROC curve 

Another summary index for the ROC curve, proposed by Lee & Hsiao (1996), is 

the area swept out by the ROC curve (ASC). They state without proof that ASC 

= probability of correctly diagnosing a pair of diseased vs non-diseased (low vs 

high) +probability of correctly diagnosing a pair of diseased vs non-diseased (high 

vs low), which gives a useful interpretation for this index and a justification for 

its use. Zhang (2004) has studied the properties of the ASC in more detail and 

given examples. The ASC is defined geometrically. Imagine a ray starting from the 

origin (0,0) to each point in the ROC curve. As the point moves from the origin 

to the right-uppermost point (1,1), the ray will sweep out some areas. The total of 

the areas swept out in this way is the ASC statistic (Lee et al., 1996). Note that 

if these emanating rays sweep out some regions more than once, those areas are 

counted repeatedly (Lee & Hsiao, 1996). In Fig. 2.3, the ROC curve consists of 

three line segments. Since the region B is swept out twice, the ASC in this example 

is A+2B+C. 

For a test with no diagnostic value, the ROC curve lies entirely on the diagonal 

and the swept out areas are zero. If the ROC curve strays from the diagonal at any 

point, ASC becomes positive. The maximum value ASC can attain is 1/2. 

The definition of the ASC applies when a parametric ROC curve for a logit­

threshold model is used or for an empirical ROC curve that is defined by a small 
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Figure 2.3: ROC curve demonstrating the calculation of the ASC index. 

number of line segments. However, when we defined the empirical ROC curve as 

a step function with runs and rises defined by the points when sensitivities and 

specificities change values. The difference is most obvious when the scores in both 

groups are on a continuous scale so there are no tied scores within or between the 

groups. In this case, the ROC is a step function, stepping up when there is a score 

in the disease group and across when there is a score in the control group. The tip of 

the ray defining the ASC statistic then runs alternatively up a vertical segment and 

across a horizontal segment. When it sweeps across a horizontal segment, it sweeps 

a triangle that is half the area of the rectangle under that segment. When it sweeps 

up a vertical segment, it sweeps a triangle that is half the area of the rectangle to 

the left of the segment, so letting PQR be "area beside the curve" (i.e. to the left) 
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shown in Fig. 2.4. In this example the ASC = area( D..PQ R) + area( D..PQ S) + 

axea(D..PTS) + area(D..PTU) + axea(D..PVU) = 1/2. This applies to any step ROC 

curve mo matter how many steps there are in the curve. Even with both disease 

and control groups large, given a relatively smooth curve the ASC = 1/2 (Fig. 2.5). 

The ASC statistic does not carry useful information when dealing with a step ROC 

curve. 
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Figure 2.4: ROC curve as a step function demonstrating that the ASC- 1/2. 

2.8 Partial Area Under the ROC Curve 

The partial area under the ROC curve (pAUC) is a summary measure of the ROC 

curve used to make statistical inference when only a region of the ROC space is 

of interest. The AUC summarizes across all thresholds and is the most commonly 
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Figure 2.5: Step ROC curve for large disease and control groups. 

used measure of diagnostic accuracy for quantitative tests. However, the AUC 

summarizes test performance over regions of the ROC space in which one would 

never operate (Dodd & Pepe, 2003). In diagnostic testing, it is critical to maintain 

a high TPR in order not to miss detecting subjects with disease. In this case, 

interest is in the region of the ROC curve corresponding only to acceptable high 

TPR values. 

If the attention is focused on a limited range of FPR values, then the AUC 

statistic becomes irrelevant as a summary measure of the data. An alternative 

would be to use the pAUC summary measure. The pAUC can be thought of as the 

probability that a disease and control pair of test results will be correctly ranked, 

conditional on the disease value falling within the restricted range of the curve 
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(Walter, 2004). 

The "smooth" partial AUC is defined as 

pAUC(O) = ir ROC(0)80, (2.23) 

where r and s denote the false positive rates of interest. This alternative index 

can be interpreted as the average TPR of the test over the restricted range of FPR 

values. 

Selecting the interval ( r, s) is an important practical issue. The choice depends 

on the particular setting and should depend on the cost of a false positive diagnosis 

as well as the benefits of a true positive (Dodd & Pepe, 2003). 

The partial AUC curve, Or, is denoted as the trapezoid area between cutpoints 

rand r + 1. The pAUC can be approximated by the area of a trapezoid; 

(2.24) 

where X denotes the test result of an individual with the disease, Y denoted the 

test result of an individual without the disease, and Zr is an ordinal rating scale 

at cutpoint r (r = 1, ... , s) (Zhang et al., 2002). The rating scale is assigned to 

each individual such that higher values of the rating are associated with the disease 

(z1 < · · · < Zr < · · · < Z8 ). For a perfect test ROC(zr) = 1 for all Zr E (0, 1), and 
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the partial AUC is the area of the rectangle with height 1 and base Z8 - Zr· Where 

Zr and Zs are the two selected cutpoints (Dodd & Pepe 2003). 

The pAUC, ()r can be estimated using the methods from Delong et al. (1988) 

and the Mann-Whitney U statistics (Zhang et al., 2002). Suppose there are nr 

observations from Y with rating scale Zr· Then the total sample of Y can be divided 

into 8 groups n = E:=l nr. Similar, the sample size of X is, m = E:=l mr (Zhang 

et al., 2002). An unbiased estimator for ()r is 

(2.25) 

where 

1, X·< y. 
~ J and Yj = Zr 

Sr(Xi, Yj) = 1 xi= }j and Yj = Zr (2.26) 
2' 

0, otherwise. 

The pAUC equals the total of each trapezoidal area between two cutpoints. 

The study of partial ROC curves in medical research has increased recently. The 

partial ROC analysis provides more detailed information when two ROC curves cross 

or when interest is in a specific clinical range. 

The partial AUC for r::::; FPR::::; 8 for the homogeneous logistic threshold model 
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is as follows 

OR [ (1 + s(OR- 1))] 
pAUChom = (OR- 1)2 (OR- 1)(s- r) -ln 1 + r(OR- 1) ' (2.27) 

with an approximate standard error 

(2.28) 

and 

8p~~~hom - (OR~ 1)3 [f(OR, r)- J(OR, s)], (2.29) 

where 

!(OR. s) = [s(OR- 1)(1 +OR+ s(OR- 1)) -ln{1 + s(OR- 1)}(0R + 1)(1 + s(OR- 1))J. 
1 + s(OR-1) 

(2.30) 

(Walter, 2005). 

The summary index, pAUC cannot in general attain the maximum value of one 

that is achievable by AUC, but instead has a maximum value of s- r. In order to 

regain the desirable property of a summary measure that ranges between 0 and 1, 

consider the scaled pAUC as 

AUC* = pAUChom 
P hom ' s-r 

(2.31) 
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where pAUC~om denotes a value scaled by the range of FPR values under con-

siderations. The standard error of pAUC~om is 

SE( Av-e* ) = SE(pAUChom) 
P hom · s-r 

(2.32) 

The pAUC and scaled pAUC in example 1 for the false positive rates ranging 

from 0 to 0.6 with a true OR of exp(3) is AUChom = 0.49 with SE(AUCham) = 0.004 

and AUC~om = 0.82 with SE(pAUC~om) = 0.007, respectively. 
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Chapter 3 

Multiple Study ROC Analysis 

3.1 Motivation 

To evaluate the performance of a binary scale diagnostic test, whether its binary 

nature comes from a true binary outcome or from a continuous outcome with a 

threshold applied, the result is described as a 2 x 2 table. From the 2 x 2 table, we 

can estimate the sensitivity and specificity which measures how accurate a binary 

scale diagnostic test is to detect the disease status. Since a single large size study 

is not easy to conduct, methods to combine the results from several independent 

studies are desired. Comparing to a single study, a careful structural review with 

rigorous meta-analysis can provide more reliable information for power analysis or 

sample size estimation for future studies. Some models can also be used to explore 
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the heterogeneity across studies. 

When the response of a diagnostic test is continuous, its sensitivity and specificity 

are derived by dividing the outcomes at a certain threshold. Different thresholds 

result in different pairs of sensitivity and specificity. When combining results from 

different independent studies, it is assumed that there exists an underlying proba­

bility distribution and each study's results correspond to a specific threshold that 

determines the sensitivity (or TPR) and 1-specificity (or FPR) (Moses et al., 1993). 

These true positive and false positive rates are assumed to be on one common ROC 

curve, which is called the summary ROC (SROC) curve (Moses et al., 1993). If the 

underlying probability distribution is known, then we only need to estimate a few 

parameters in order to fit a smooth SROC curve (Moses et al., 1993). Common 

methods, such as maximum likelihood could be used to estimate the parameters 

and then the distributions. However, the underlying probability is seldom known. 

The simplest method for analyzing pooled data from multiple studies is calcu­

lating sensitivities and specificities and their averages. This is valid when the same 

criteria for a positive result has been used in each study and each study is of similar 

size and quality (Jones et al., 2005). If different criteria or thresholds have been used, 

there will be a relationship between sensitivity and specificity across the studies. As 

sensitivity increases, specificity will generally drop. This is the threshold effect. 

The relationship between sensitivity and specificity cannot be evaluated if there is 
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a threshold effect across the studies. Combining such rates usually underestimates 

the test performance (Siadaty & Shu, 2004). 

Alternatively, one may choose to extract odds ratios from each paper and then 

estimate the average OR across the studies. The advantage of this method is that dif­

ferent sensitivities and specificities can point to the same OR (homogeneous case). 

This means that different studies are reporting "truly different" sensitivities and 

specificities and that the between-study variation is not due to random noise alone, 

but because of the different decision thresholds chosen. Therefore, the major ad­

vantage of OR and its corresponding ROC curve, is that it provides measures of 

diagnostic accuracy independent from the decision criteria (Siadaty & Shu, 2004). 

Occasionally, the remaining variation between studies, after utilizing OR as the 

summary performance measure, is still too much to be attributed to random noise. 

This is because the ORs may vary from study to study (heterogeneous case). Dif­

ferent ORs in the test performance across studies may be due to differences in study 

designs, subject populations, case difficulties, types of equipment, ability of rates, 

and dependencies of OR on the thresholds chosen (Siadaty & Shu, 2004). An SROC 

curve that allow for the possibility of "inconstant discrimination accuracy" would 

result in that of a heterogeneous SROC curve (Nelson, 1986). This means the SROC 

curve represents different ORs at different points. 

In a single study, changing the threshold results in monotonic changes in TPR 
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and FPR (Henley & McNeil, 1982). In a meta-analysis, the units of analysis are 

separate studies. In the simplest case, each study contributes an estimate of TPR 

and FPR. The SROC curve is intended to represent the relationship between TPR 

and FPR across studies, recognizing they may have used different thresholds. In 

contrast to the ROC analysis, the set of (FPR, TPR) points need not necessarily 

yield a unique, monotonic curve (Walter, 2002). 

Moses et al. (1993) proposed a least-squares approach to fit the SROC curve 

for combining different studies. He estimated the variances of the coefficients using 

the standard method for least-squares estimators. This method has been frequently 

used in meta-analysis literature in the last decade. Several alternative approaches 

have been proposed by various authors to either fit the smooth SROC curve us­

ing a hierarchical SROC model or deriving summary statistics of a diagnostic test 

from multiple studies. The hierarchical regression approach is a more sophisticated 

method that takes into account the correlation between sensitivity and 1-specificity 

and incorporates the intra-study and inter-study variations simultaneously (Rutter 

& Gatsonis, 1995). However, this method is quite computationally complex and is 

therefore not widely used in meta-analysis research. 

In this section we introduce the notation as well as the method proposed by 

Moses et al. (1993) for fitting the SROC curve. This is followed by the summary 

measures used in SROC analysis. The summary statistics included are: area under 
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the SROC curve (AUC), Q* statistic, area swept out by the curve (ASC), diagnostic 

odds ratio (DOR), and the partial area under the SROC curve (pAUC). 

3.2 Summary ROC curve 

The SROC curve is conceptually very similar to the ROC curve. However, each data 

point comes from a different study, not a different threshold. Diagnostic thresholds 

should be similar for each study, so the threshold effect does not influence the shape 

of the curve. The curve's shape is based entirely by the results across the studies 

(Jones et al., 2005). Each study produces values for sensitivities, specificities and 

therefore TPRs and FPRs. The SROC curve is made from the (TPR, FPR) points. 

The SROC curve is placed over the points, (TPR, FPR), to form a smooth 

curve. The curve is calculated using a regression model (Littenberg & Moses, 1993) 

where TPR and FPR are transformed into logarithmic variables and graphed. A 

regression equation is calculated and the variables are manipulated to achieve TPR 

as a function of FPR. This is the equation for the SROC curve, which is then plotted 

over the original (TPR, FPR) points as shown in Fig. 3.1. 

The curve is symmetric if the ORs do not vary between thresholds and asym­

metric if the ORs vary between thresholds. Kardaun & Kardaun (1990) suggested 

an empirical transformation that mapped (TPR, FPR) from the ROC space, onto 
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SROC curve for the Homogeneous Case SROC curve for the Heterogeneous Case 
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Figure 3.1: SROC curves for the homogeneous case (left) with location = 2 and 
scale = 0 and the heterogeneous case (right) with location= 2 and scale= 0.5. 

(U, V) space, where 

U = logit(FPR) = ln[FPR/(1- FPR)] 

V = logit(TPR) = ln[TPR/(1- TPR)]. 

These definition lead to the estimates 

(; = ln[(c/n2)/(d/n2 )] = ln[c/d] 

V = ln[(a/nt)/(b/n1 )] = ln[ajb], 

where a, b, c, and d are defined in Table 2.2. 

(3.1) 

(3.2) 

If a, b, c, or d are zero, the transform involving these variables is undefined. To 

avoid this problem, a Cox (1970) correction was made in the rates ajn1 and cjn2 
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and resulted in the estimates (Moses et al., 1993), 

0 = In ( c + 0.5) 
d+0.5 

V =In (a+ 0.5). 
b+0.5 

(3.3) 

Under the assumption that the response of the test follows a logistic distribution, 

Moses et al., (1993) showed that U and V are linearly related. Let X be the test's 

response for a disease subject andY be the test's response of a non-disease subject. 

Assume that X and Y follow logistic distributions with parameters (p,1 , s1) and 

(p,2 , s2), respectively. The probability density functions are 

It was shown that at a particular threshold k, the test had the corresponding sen-

sitivity (TPR), 

and !-specificity (FPR), 

FPR ~ Prob(Y > k) ~ 1- Fy(k) ~ [1 + exp ( k :,~'-') l-1 

(3.6) 
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(Moses et al., 1993). 

Therefore, U = (f.l2 - k) I 8 2 and V = (f.l1 - k) I 8 1 are linearly related. If X 

and Y do not follow a logistic distribution exactly, the linear relationships might 

not be observed but may approximately hold (Walter, 2002). The closer the true 

distributions are to logistic, the closer the relationship between U and V is to linear. 

Some transformations can help in reaching better linearity. For example, further 

transformation of ( U, V) into ( D, S) is recommended. That is where 

D = V - U = ln ( TPR ) - ln ( FPR ) 
1- TPR 1- FPR 

(3.7) 

and 

( 
TPR ) ( FPR ) 

S = V + U = ln 1 - TPR + ln 1 - FPR . (3.8) 

Dis equivalent to the diagnostic log-odds ratio, ln(OR). It represents the odds of a 

positive test result among people with the disease relative to the odds of a positive 

test result among people without the disease. S can be looked at as a measure of 

the diagnostic threshold for classifying a test as positive. It has a value of zero when 

TPR = 1-FPR (Walter, 2002). S is positive when a threshold is used that increases 

sensitivity and decreases specificity and is negative when a threshold is used that 

decreases sensitivity and increases specificity (Irwig et al., 2006). Moses et al., 
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(1993) assumed a linear relationship between D and S for all possible thresholds as 

D=A+BS. (3.9) 

This regression equation can be fitted by standard least squares methods, as-

suming that D is approximately normal for a given values of S. The coefficient B 

represents the dependence of the test accuracy on the threshold. If B ~ 0, then 

the studies are homogeneous and can be summarized by an overall 0 R, noting that 

A = ln(OR) (Walter, 2005). In this case, other approaches to combining ORs for 

meta-analysis can be used, for example the Mantel-Haenszel procedure (Irwig et 

al., 2006). If B =/= 0, then the studies are heterogeneous with respect to the ORs 

(Walter, 2002). 

Reversal of the transformations (3. 7) and (3.8) can be done once the regression 

has been fitted. When this is complete, the formulation of the relationship between 

TPR and FPR can be made and results in a summary ROC curve 

ex (_A_) ( FPR )(l+B)/(1-B) 
TPR = p 1-B 1-FPR 

1 + (_A_) ( FPR ) (l+B)/(1-B). 
exp 1-B 1-FPR 

(3.10) 

The SROC curve can be used to estimate TPR for each fixed value of FPR and 

conversely. The standard errors of the estimates can be obtained using the delta 

method (Gatsonis & Paliwal, 2006). 
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Equation (3.9) can be re-arranged as V = 1~8 + i~~U. Substituting U and V 

with the notation used in equations (3.5) and (3.6), we have the following equation: 

(
J..Ll- k) = ~ + 1 + B (J.12- k) . 

s 1 1- B 1- B s2 
(3.11) 

Equation (3.11) demonstrates the relation of the parameters between the two lo-

gistic distributions through the common threshold k and the true regression param-

eters. When A, B and (J..L2, s2) are known, the parameters (J..L1, s1) can be obtained 

according to the above equation. 

The SROC curve is similar in principle to the ROC curve for a single study, ex-

cept that the data points for the SROC curve are obtained from a set of studies being 

used for a meta-analysis (Walter, 2005). Ideally, the studies to be included would be 

identified through a formal search process, with inclusion and exclusion criteria, as 

well as other methodological requirements (Whitehead, 2002). The SROC is derived 

when each component from a set of studies contributes one 2 x 2 contingency table 

indicating the relationship between the true disease state (case or non-case) and 

the test result (positive or negative), for a single diagnostic threshold (Gatsonis & 

Paliwal, 2006). The SROC curve is intended to summarize the relationship between 

TPR and FPR across the set of studies. 
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3.3 Area Under the SROC Curve 

There may be interest in identifying particular points on the SROC curve. It is 

often useful to have an overall summary measure of the curve's behaviour. For a 

single study the AUC is commonly used as a summary measure of the ROC curve. 

It indicates the overall performance of a diagnostic test in terms of its accuracy at 

various diagnostic thresholds that are used to discriminate cases and non-cases of 

disease (Henley & McNeil, 1982). A perfect test would have AUC = 1, where as 

a completely random test with the ROC curve lying on the main diagonal would 

have AUC = 0.5. In practice, most tests will lie somewhere between these two 

extremes. It also represents the (unweighted) average of TPR over all possible 

values of FPR (Van Der Schouw et al., 1994). The AUC measure is also used 

in meta-analysis, where each component study provides an estimate of the test 

sensitivity and specificity. These estimates are then combined to calculate an SROC 

curve which describes the relationship between test sensitivity and specificity across 

studies (Moses et al., 1993). The AUC for the SROC curve can be calculated as 

1 ex (_A_) (---'L) (l+B)/(1-B) 
AUC = { p 1-B 1-x 8x 

lo 1 + exp (_A_) (---'L) (l+B)/(1-B) . 
l-B l-x 

(3.12) 

Walter & Sinuff (2006) showed that in the homogeneous case, (!3 = 0) the AUC 
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can be calculated as 

OR 
AUChom = (OR_ 

1
)2 [(OR -1) -ln(OR)]. (3.13) 

In the heterogeneous case, AUC can be calculated only by using numerical integra-

tions (Walter & Macaskill, 2004). 

The AUC is calculated for SROC as for ROC. The diagnostic test is constant 

throughout the studies, so the AUC reflects overall performance of that test (Jones 

et al., 2005). The perfect test will again have an AUC of one. 

The AUC can be interpreted in several different ways. First, the AUC represents 

the average value of TPR over all possible FPR values between 0 and 1. Second, 

AUC is also the probability of correctly ranking a case and non-case, based on the 

observed test values of these individuals (Walter, 2005). Lastly, the AUC is related 

to the Mann-Whitney statistic used to evaluate the significance of the differences 

between the sample distributions of case and non-case test values (Walter, 2005). 

It can be difficult to carry out a diagnostic meta-analysis since some studies 

report diagnostic ORs and others provide the AUC from a ROC curve. Both OR and 

AUC are valid summary measures of diagnostic accuracy. However, the measures 

are on two different metrics, which makes the combining of studies into the meta-

analysis difficult (Walter & Sinuff, 2006). 

The conversion of the AUC values into OR point estimates will be achieved using 
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a logit-threshold model proposed by Moses et al., (1993). The logit-threshold model 

is D =A+ BS where D and S are given in equations (3.7) and (3.8), respectively. 

If B ~ 0, the general expression in (3.12) becomes 

11 exp(A) (-2;) 
AUChom = (A) ( x ) 8x. o 1 + exp 1_x 

(3.14) 

We can obtain an exact solution to the AUC as shown in equation (3.13). If A= 0 

(or OR = 1), then AUChom = ~' which is then degenerate. Equation (3.13) can 

be used to evaluate AUC for homogeneous studies, by using the common estimate 

of OR and without the need for numerical integration (Walter & Sinuff, 2006). In 

Walter's (2002) paper he showed that the AUChom expressions in (3.13) and (3.14) 

also gives a good approximations to the AUC index even if the component studies 

are heterogeneous. 

3.4 Q* Statistic 

The Q* statistic is the intercept of the SROC curve at the anti-diagonal (TPR + 

FPR = 1) line through the unit square. Its value indicates the overall accuracy by 

finding where sensitivity and specificity are the same (Jones et al., 2005). The closer 

the curve is to the top left corner (perfect sensitivity and specificity), the better the 

accuracy. For symmetric curves, this value is also the point at which the curve is 
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closest to the ideal point, where FPR = 0 and TPR = 1 (Gatsonis & Paliwal, 2006). 

The anti-diagonal will cut the curve at a higher level, giving higher Q* and a more 

accurate test (Jones et al., 2005). 

Q* statistic is appropriate provided high sensitivity and high specificity are 

equally desirable. If one is clinically more important than the other, the Q* statistic 

does not address the clinical usefulness of the test (Jones et al., 2005). In this case, 

overall accuracy is not as relevant as overall sensitivity or specificity. 

The Q* statistic is similar to the area under the entire SROC curve as it is an 

indicator of how closely the SROC curve is to the north-west corner (Moses et al., 

1993). The point where the line TPR + FPR = 1 intersects the SROC curve has 

the co-ordinates 

TPR = exp(A/2) and FPR = 1 

1 + exp(A/2) 1 + exp(A/2) 
(3.15) 

The Q* statistic is a function of A only and the standard error for Q* is available 

when the least squares model has provided the estimate of A (Moses et al., 1993). 

The Q* represents the diagnostic threshold at which the probability of a correct 

diagnosis is constant for all subjects. 

When B =I 0 the SROC curve has a region where TPR < FPR , which lies below 

the main diagonal. In this region, the test would be predicted to performing worse 

than at random (Walter, 2002). For example, we can see this region near the lower 
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left corner when E = 0.5 in Fig. 3.1. If E ~ 0, it can be shown that the point 

(FPR', TPR') where the SROC curve crosses the diagonal is 

FPR' = TPR' = exp(-A/2E) 
1 + exp(-A/2E) 

(3.16) 

If E < 0, there is a symmetrically opposite point in the top-right corner of the 

SROC space (Walter, 2002). A diagnostic test would not usually be used at such 

low values of TPR, so in practice the improper part of the curve where TPR < FPR 

is negligible. 

Note that, AUC declines with increasing E and that the limit curve withE--+ 1 

passes through the common Q* point. From (3.15) a lower bound for AUC in the 

curve can be formed with a given value of A 

Q* = exp(A/2) _ JOR 
1 + exp(A/2) 1 + JOR" (3.17) 

Equation (3.17) is the same as the TPR value in equation (3.15). Upper and 

lower bounds for AUC with a given value of A > 0 are given using the Q* from 

(3.17) and the maximum value of AUChom from (3.13), respectively (Walter, 2002). 

This argument assumes lEI < 1, since lEI > 1 is not of practical interest. 

Walter (2002) used the delta method to give an approximate standard error for 
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SE(Q*) = .;oR SE(A). 
2( .;oR+ 1)2 

(3.18) 

3.5 Area Swept Out by the SROC Curve 

The SROC curve is a special case in the definition for the ASC index proposed by 

Lee et al. (1996). The ASC applies when a parametric ROC (or SROC) curve for 

a logit-threshold model is used. AUC refers to the area under the SROC curve and 

the ASC is the area swept out by the SROC curve. Zhang (2004) has found it useful 

to express the ASC in terms of the AUC since some regions of these two indices 

overlap. 

For the heterogeneous case, when both A and B are positive, (Fig. 3.1), we 

can imagine a ray arising from the origin (0,0) to each point in the SROC curve. 

This ray can be expressed as y = kx, where k is the slope of the line. As the point 

moves from the origin to the left-uppermost corner, the slope of the line will reach 

its maximum at some point of the curve when the line still touches the curve except 

for the origin. This line is the tangent of the curve. It can be expressed as y = k*x, 

where k* is the slope of the tangent line. As the end of the ray moves from (0,0) to 

(1,1), the areas are swept out within the SROC space. Also, the areas surrounded 

by the tangent line, the main diagonal line and the curve may be swept out twice. 

If we denote the area swept out as the ray moves from the origin up to the 
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tangent line as M, then the ASC when B =f 0 can be expressed as 

ASG =AUG+ 2M-~ when B > 0 (3.19) 

or 

ASG =2M+~- AUG when B < 0. (3.20) 

Zhang (2007) used the delta method to yield an approximate variance for ASC 

- (~ASC) 2 

A (~ASC) 2 

A (~ASC) (~ASC) A A var(ASC) = ----;u- var(A) + ~ var(B) + 2 ----;u- ~ cov(A, B) (3.21) 

here, 
8ASG 8AUG 8M 

when B >0, 
8A 

-
8A + 2 8A' (3.22) 

8ASG = 28M_ 8AUG 
when B<O. 

8A 8A 8A ' 

Similarly, 
8ASG 8AUG 8M 

when B >0 
8B 

-
8B + 2 8B' (3.23) 

8ASG = 28M_ 8AUG when B<O. 
8B 8B 8B ' 

In Zhang (2007) paper she showed that the values of the M index, for a fixed 

value of A, as B changes from negative to positive were unsteady. This resulted in 

non-smooth values of ASC. However, ASC decreases as B changes from negative to 

zero and increases as B changes from zero to positive. As A----+ oo, ASC ----+ 0.5, the 

maximum value. If the ASC is close to 0.5, the greater the probability of a correct 
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diagnosis when A > 0 and the greater the probability of a wrong diagnosis when 

A< 0. Zhang (2007) suggests that only if the AUC is large and the parameter A is 

positive, a large value of ASC implies a perfect test. 

The ASC is affected mostly by the index l\!1 proposed by Zhang (2004). Although 

the AUC is symmetric with respect to !AI and IBI, ASC lacks symmetry with respect 

to B for a fixed A or lacks symmetry with respect to A for fixed B. The ASC is a 

decreasing function of A when B is positive and an increasing function of A when B 

is negative. On the other hand ASC is a decreasing function of B when A is negative 

and an increasing function of B when A is positive. In the homogeneous case, when 

B = 0, ASC is the region between the curve and the diagonal line (Zhang, 2004). 

ASChom = AUChom- !, for all A> 0 (3.24) 

or 

ASChom =!- AUChom' for all A< 0. (3.25) 

The approximate variance of the ASC statistic for when B = 0 is 

..-.. exp(2A) ~ 
var(ASChom) = [exp(A) _ l]6 [A(exp(A) + 1)- 2(exp(A)- 1)]2var(A) (3.26) 

(Zhang, 2007). 

The basic properties of ASC in the context of the SROC curve were reviewed in 
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this section. The mathematical expressions of the ASC and its variance proposed 

by Zhang, (2004) were shown here. The ASC in the homogeneous case can provide 

a good approximation to heterogeneous studies with a large odds ratio. Also, the 

ASC and its variance are easily computed in the homogeneous case. Similar to the 

AUC index, ASC is related to the probability that the test will correctly rank a 

disease and control pair of subjects when the value of A is positive or negative. In 

practice, data yielding A < 0 are unlikely. 

3.6 Diagnostic Odds Ratio 

When comparing tests for the same diagnostic procedure, it can be useful to turn 

to the OR. Tests can differ in terms of sensitivity and specificity, which reflects as 

a threshold shift. Comparing ORs can help in an initial evaluation, although the 

total costs will depend on the relative weight attached to the false positive and 

false negative results. Furthermore, the diagnostic odds ratio (DOR) appears in the 

SROC method for meta-analysis of diagnostic tests. 

The DOR offers considerable advantages in meta-analysis of diagnostic tests 

that combines results from different studies into summary estimates with increased 

precision. The approach by Moses et al. (1993) relies on the logarithmic linear 

regression of the DOR for a study (dependent variable, A) on an expression of the 

positivity threshold for that study (independent variable, B). If the regression line 
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has a zero slope (B = 0), the DORis constant across studies. The resulting SROC 

curve will be symmetric and concave. In other words, study heterogeneity can be 

attributed to threshold differences. In the context of the DOR, the summary OR 

of the study under evaluation can be obtained from the intercept, A ( eA) from the 

regression line (Moses et al., 1993). 

A method for determining if the variation is not due to random noise alone 

but to a study characteristic within a study. The model D = A+ BS can easily 

be expanded to a multiple linear regression model by adding one or more covari­

ates, such as examination (X1), subject (X2) and study design (X3 ) characteristics: 

D =A+ BS + B1X1 + B2X2 + B3 X 3 • The regression coefficients (B11 B2, B3 ) are 

indicators of the independent effects of the corresponding covariates (X 1 , X2 , X 3 ) on 

the dependant variable, ln(DOR). The magnitude of the regression coefficient of a 

variable represents the difference in ln(DOR) between studies with different levels 

of that variable, with all other variables held constant. A large regression coeffi­

cient indicates that the corresponding covariate has a large influence on diagnostic 

accuracy. 

The DORis another measure of the overall diagnostic power of the test. A high, 

DOR > 1 implies that the test shows good diagnostic accuracy in all subjects. 
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3.7 Partial Area Under the SROC Curve 

The AUC has been criticized in meta-analysis for two reasons. First, the studies 

contributing to the meta-analysis are sometimes only observed within a limited 

range of FPR values. Second, even if some data are available in higher ranges of 

FPR, using a test with a high FPR value may be unacceptable in the clinical context 

(Scheidler et al., 1997). In order to adopt a new test for routine clinical use, one 

might restrict attention to smaller values of FPR (Walter, 2005). 

To reduce the problem of the linear model in (3.9) being overly influenced by 

a point that is irrelevant to the area of decision making, Moses et al. (1993) sug-

gested that one could include only those studies within a range considered clinically 

relevant. However, it maybe difficult to judge which areas are clinically relevant. 

If the attention is indeed focused on a limited range of FPR, then the AUC 

statistic becomes less relevant as a summary measure of the data. A possible alter-

native would be to adopt the partial area under the SROC curve (pAUC) (McClish, 

1989). 

From the model in (3.9), the pAUC for r ~ FPR ~sis as follows 

s ex (--.:L) (_L_) (l+B)/(1-B) 

AUG = 1 p 1-B 1-x 8x 
p 1 + (--.:L) (_I;_) (l+B)/(1-B) . 

r exp 1-B 1-x 

(3.27) 

The pAUC can be interpreted as the average TPR of the test over the restricted 
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range of FPR values. Walter (2005) used the delta method to obtain the approxi-

mate standard error for the pA U C, 

var(pAUC) ~ ( 0~YC) 
2 

var(A) + ( 0~~C) 
2 

var(B) 
(3.28) 

+2 ( o~YC) ( o~~C) cov(A, B), 

where 

(3.29) 

and p = (1 + B)/(1- B). 

The scaled pAUC, denoted as pAUC*, is used as a summary measure that falls 

into the range 0 and 1, 

pAUC* = pAUC 
s-r 

(3.30) 

The pAUC* is denoted as a value scaled by the range of FPR values under 

consideration. The standard error for pAUC* is 

SE(pAUC*) = SE(pAUC). 
s-r 

(3.31) 

When B = 0 and hence exp(A) =OR the pAUC has a closed form as shown in 

Section 2.8, along with its standard error. The scaled partial area under the SROC 
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curve, pAUC~om and its standard error are also shown in Section 2.8. 

Irwig et al., (1995) believes that the pAUC has two drawbacks. The first, it is 

often difficult to judge which area is clinically relevant. Second, the method excludes 

(or includes) points which may be outside (inside) the area because of different study 

designs. 

Although, the AUC, Q* and ASC statistics are sufficient summary measures for 

describing the behaviours of the studies in an SROC curve, the pAUC summary 

measure is being used more to describe the relevant regions in an SROC curve. 

The partial area has clinical appeal in many situations, however, procedure and 

guidelines on the use of the pAUC in meta-analysis have not yet been produced. 

The next two section will focus mainly on the pAUC statistic and it's behaviours in 

different study designs. 
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Chapter 4 

Assessment of Proposed Estimates 

and Study Designs 

4.1 Motivation 

The summary receiver operating characteristic (SROC) curve and its associated 

indices are valuable tools for the assessment of the accuracy for diagnostic tests. 

The area under the SROC curve is a popular summary measure of the accuracy for 

a test. The full area under the SROC curve, however, has been criticized because 

it gives equal weight to all false positive rates. Alternative indices include the area 

under the SROC curve in a particular range of false positive rates (partial area) and 

the Q* statistic. We present an approach for computing sample sizes for the SROC 

53 



curves and their indices. 

It is well known that the closer the ROC and SROC curves are to the upper 

left-hand corner, the more accurate the diagnostic tests. Diagnostic tests are more 

accurate when TPR is close to 1 and FPR is close to 0. The SROC curve obtained by 

a small number of studies may not lie in the upper left quadrant as would be desired. 

For example, small studies may produce extreme results from small population. 

Small studies are prone to producing outlying results and shift the overall outcome. 

The study size can contribute to the different sensitivity and specificity results. 

Heterogeneity may also contribute to the differences in sensitivity and specificity 

results across studies. Study designs and a small sample size, with respect to both 

the number of studies available for the meta-analysis, as well as the number of 

subjects included in each study are two possible explanations for the SROC curve 

not occupying the upper left-hand corner (Walter, 2002). 

In this chapter we will first look at assessing the proposed estimates of the area 

under the SROC curve as well as the Q* statistic. In Section 2 we will compare 

the approximate standard error formulas for AUC and Q* with a bootstrapping 

procedure. We will follow this with a simulation comparing a variety of study sample 

sizes in Section 3 and 4. We will conclude with a section comparing balanced with 

unbalanced data sets with respects to the number of disease and control subjects 

within a study sample. 
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4.2 Bootstrap Procedure 

To determine if the approximate standard errors formulas (3.28) and (3.18) are 

adequate for the AUC and Q* statistics, respectively, we generated a bootstrapping 

procedure to estimate the sampling distributions of the two statistics. Estimated 

standard errors for the AUC and Q* statistics are generated by using the variance 

estimator and approximated by the bootstrap methods (Table 4.1). Estimates of the 

standard errors generated by both Moses et al., (1993) and the bootstrap methods 

were similar. 

Bootstrap procedures take the combined samples as a representation of the pop­

ulation from which the data came and creates 1000 or more bootstrapped samples 

by drawing, with replacement, from that pseudo-population. The means and stan­

dard deviations were calculated for each sample. The average of the statistics over 

all the samples are the bootstrap estimators. In this case, the bootstrap estima­

tors after 2000 repeated samples, are the AUC and Q* statistics. The variances 

of the estimated AUC and Q* statistic provide an estimate of the sample variance 

for the two statistics. Since the standard error calculated by both the formulas 

and the bootstrap methods were similar, we will use the formulas (3.28) and (3.18) 

for the standard errors of AUC and Q* statistics, respectively, for the rest of the 

applications in this paper. 
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4.3 Small vs. Large samples 

In this section, we simulated 10 studies using binomial data for small and large 

study sample sizes, with 1000 data sets simulated for each condition. We computed 

the empirical variance of an SROC index by calculating A and B directly from 

the Moses et al., (1993) model for each data set. We estimated the areas under 

the SROC curve by integration, utilizing these direct estimates of A and B. We 

computed the variability in the 1000 estimates of () = AU C calculated in this way. 

We calculated the pAUC indices holding r = 0 and varying the value of s. 

Fig. 4.1 shows the comparison for small and large study sample sizes of the 

standard errors for the pAUCs or scaled pAUCs with N = 10, A = 2 and B = 

-0.5, 0 and 0.5. We can see that the standard errors of pAUC and scaled pAUC 

for B = 0.5 are similar for both small and large sample sizes indicating little effect 

with sample size differences in the estimate. This may be due to the curve having a 

Table 4.1: Standard error values of the AUC and Q* statistics with A = 2 and 
B = -0.5, 0, 0.5. Comparing the standard error formulas with the standard 
errors found by bootstrapping. 

B value Statistic Formulas Bootstrap 
-0.5 SE(AUC) 0.03358 0.03417 

SE(Q*) 0.02883 0.02825 
0 SE(AUC) 0.03646 0.03816 

SE(Q*) 0.02816 0.02935 
0.5 SE(AUC) 0.05388 0.05394 

SE(Q*) 0.04239 0.04232 
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Figure 4.1: Comparison of small and large study sample sizes for the standard errors 
of the pAUC or scaled pAUC for N = 10 and A= 2 with varying values of B. 

region where T P R < F P R, which lies below the main diagonal line near the bottom 

left-hand corner. Also, the standard errors for the pAUC and scaled pAUC with 

B = 0.5 are higher than forB= 0 or B = -0.5 in both small and large sample 
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sizes. If B = -0.5 the SROC curve has a region similar to the region given when 

B = 0.5 but in a symmetrical opposite point on the top right corner of the SROC 

space. A diagnostic test would not usually be used at such low values of TPR, so 

in practice, the improper part of the curve where T P R < F P R is negligible. From 

this result one would want to achieve the homogeneous logistic threshold model 

with B = 0. In other words, there is a common odds ratio that underlines the N 

studies. To do this, the data must come from two logistic distributions with the 

same scale but different location parameters for the control and the disease groups, 

respectively. The standard errors for small sample sizes when B = 0 are higher 

than they are for larger sample sizes as one would generally expect. However, large 

samples sizes are seldom available when studying a diagnostic test. 

When B = 0 or B = -0.5 the standard errors for the scaled partial AUC for 

small data are relatively the same for all scaled pAUC indices from s = 0.2 to 1.0 as 

shown in Fig. 4.1. The clinically relevant region of the SROC space, where s = 0.05 

to 0.15, the standard errors for the scaled pAUC when B = -0.5 are larger then 

when B = 0. This is another indication the homogeneous model is ideal for this 

type of analysis when dealing with small study sample sizes. For large study sample 

sizes the standard errors for all scaled pAUCs are larger than when B = -0.5. 

Fig. 4.2 compares the standard errors of the pAUC and scaled pAUC for four 

different samples sizes with B = 0 and B = 0.5. The four samples sizes include: all 
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Figure 4.2: Comparison of study sample sizes for the standard errors of the pAUC 
or scaled pAUC for N = 10 and A = 2, B = 0 or B = 0.5. 

small samples, 10% large samples, half small and half large samples and all large 

samples. When B = 0 the standard errors for pAUC and scaled pAUC decrease as 

the study sample sizes increase. However, when B = 0.5 the standard errors are 
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similar for 3 of the 4 sample sizes simulated. The standard errors are alike when all 

small samples, 10% large or half small and half large sample sizes are used. This 

shows that when B > 0 the effect of increasing the sample sizes is minimal and 

therefore non informative when dealing with relatively small sample sizes. 

4.4 Assessment of Sample Sizes 

We conducted another simulation study to assess the estimators for variance of the 

various SROC indices. Similar to the previous section, we simulated 10 studies using 

binomial data from various sets of (A, B) parameters and for various study sample 

sizes, with 1000 data sets simulated for each condition. 

We computed the empirical variance of a summary ROC index by calculating 

A and B directly from the Moses model for each data set. We estimated the areas 

under the SROC curve by integration utilizing these direct estimates of A and B, as 

before. We computed the variability in the 1000 estimates of(}= AUG calculated 

in this way. 

We considered five SROC indices: the full area under the curve ( 00,1); the areas 

under the curves in the FPR ranges of 0.0 to 0.05 (00,0.05 ),0.0 to 0.1 (00,0.1), 0.0 to 

0.15 (Bo,o.I5) and 0.0 to 0.2 (00.0,0.2). The simulation was done for four cases: the 

case when all study sample sizes are small (less than 50), when 10% of the studies 
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Table 4.2: SROC indices and their standard errors for the four sample size cases 
with B = -0.5, A = 2, N = 10 and r = 0. 

Cases s value pAUC SE(pAUC) Scaled pAUC SE(SpAUC) 
I. All Small 

0.05 0.02030 0.00658 0.40608 0.13164 
0.10 0.04696 0.01206 0.46961 0.12056 
0.15 0.07673 0.01682 0.51156 0.11211 
0.20 0.10946 0.02047 0.54742 0.10234 
1.00 0.76071 0.04064 0.76071 0.04064 

II. 10% Large 
0.05 0.02043 0.00633 0.40858 0.12659 
0.10 0.04729 0.01181 0.47292 0.11806 
0.15 0.07833 0.01619 0.52222 0.10791 
0.20 0.11151 0.01935 0.55753 0.09676 
1.00 0.75902 0.03901 0.75902 0.03901 

III. 50/50 
0.05 0.02236 0.00518 0.44727 0 .. 10361 
0.10 0.05093 0.00905 0.50927 0.09048 
0.15 0.08243 0.01211 0.54952 0.08075 
0.20 0.11541 0.01479 0.57704 0.07393 
1.00 0.76556 0.02986 0.76556 0.02986 

IV. All Large 
0.05 0.02448 0.00234 0.48957 0.04676 
0.10 0.05513 0.00401 0.55133 0.04012 
0.15 0.08771 0.00530 0.58475 0.03598 
0.20 0.12208 0.00649 0.61038 0.03247 
1.00 0.77363 0.01290 0.77363 0.01290 

are large (greater than 50), when half of the studies have small samples and half 

have large samples and lastly, when all sample sizes are large. The simulation was 

done for B = -0.5, 0 and 0.5, with A = 2, N = 10 and r = 0. 

For B = -0.5 in Table 4.2, all pAUC and scaled pAUC statistics increase as the 
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Table 4.3: SROC indices and their standard errors for the four sample size cases 
with B = 0, A = 2, N = 10 and r = 0. 

Cases s value pAUC SE(pAUC) Scaled pAUC SE(SpAUC) 
I. All Small 

0.05 0.00976 0.00503 0.19523 0.10059 
0.10 0.02888 0.01093 0.28884 0.10931 
0.15 0.05354 0.01642 0.35696 0.10945 
0.20 0.08312 0.02107 0.41559 0.10533 
1.00 0.76928 0.04452 0.76928 0.04453 

II. 10% Large 
0.05 0.00922 0.00463 0.18446 0.09251 
0.10 0.02870 0.01048 0.28695 0.10477 
0.15 0.05241 0.01619 0.34938 0.10792 
0.20 0.08258 0.02105 0.41290 0.10523 
1.00 0.77251 0.04309 0.77251 0.04309 

III. 50/50 
0.05 0.00883 0.00385 0.17655 0.07698 
0.10 0.02727 0.00880 0.27272 0.08796 
0.15 0.05292 0.01374 0.35277 0.09161 
0.20 0.08234 0.01796 0.41171 0.08982 
1.00 0.78063 0.03387 0.78063 0.03387 

IV. All Large 
0.05 0.00818 0.00210 0.16366 0.04209 
0.10 0.02705 0.00503 0.27051 0.05027 
0.15 0.05255 0.00769 0.35030 0.05130 
0.20 0.08249 0.00991 0.41244 0.04956 
1.00 0. 79241 0.01890 0.79241 0.01890 

sample sizes increase. The standard errors for scaled pAUC decrease as the value 

of 8 increases. For cases I and II the standard errors do not fall with in 90 per cent 

confidence intervals (CI) except when 8 > 0.2. ForB= 0 in Table 4.3, the pAUCs 

and scaled pAUCs for 8 = 0.05 and 8 = 0.10 decrease as the sample sizes increase. 

The standard errors for the scaled pAUC in this case is maximum when 8 = 0.15. 
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This indicates that the largest standard error falls within the 90 per cent CI for 

small to large sample sizes. This result shows that when B = -0.5 the estimate 

given for small samples are not as accurate when B = 0. When B = 0.5 in Table 

4.4, the pAUC and scaled pAUC for s = 0.05, 0.10, and 0.15 decrease as the 

sample sizes increase. The standard errors for the scaled pAUC is maximum when 

s = 0.25 (Case I: 0.121005) , which does not fall with in the 90 per cent CI region 

(not shown in table). However, for cases I, II, and III the standard errors for scaled 

pAUC fall within 90 per cent when s is between 0.05 and 0.15. For all three B 

values the full AUC increases as sample sizes increase. 

From this simulation we can conclude that B = 0 and B = 0.5 give accurate 

estimates for 00 ,0 .05 , 00,0 .10 and 00,0.15 for small sample sizes. The maximum standard 

error for B = 0 falls within 10 per cent significance, whereas the maximum for 

B = 0.5 does not. For small study sample sizes, the homogeneous case, when 

B = 0, gives the most accurate estimates for the pAUC and scaled pAUC when 

s ~ 0.2. 
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Table 4.4: SROC indices and their standard errors for the four sample size cases 
with B = 0.5, A = 2, N = 10 and r = 0. 

Cases s value pAUC SE(pAUC) Scaled pAUC SE(SpAUC) 
I. All Small 

0.05 0.00468 0.00319 0.09369 0.06370 
0.10 0.01699 0.00917 0.16995 0.09174 
0.15 0.03153 0.01543 0.21023 0.10287 
0.20 0.05506 0.02305 0.27528 0.11527 
1.00 0.74457 0.05742 0.74457 0.05742 

II. 10% Large 
0.05 0.00386 0.00305 0.07720 0.06097 
0.10 0.01297 0.00876 0.12968 0.08758 
0.15 0.03035 0.01639 0.20230 0.10926 
0.20 0.05059 0.02418 0.25296 0.12090 
1.00 0.74398 0.06091 0.74398 0.06091 

III. 50/50 
0.05 0.00227 0.00222 0.04542 0.04444 
0.10 0.00990 0.00785 0.09901 0.07845 
0.15 0.02433 0.01538 0.16217 0.10255 
0.20 0.04534 0.02418 0.22668 0.12088 
1.00 0.75571 0.05865 0.75571 0.05865 

IV. All Large 
0.05 0.00188 0.00164 0.03754 0.03287 
0.10 0.00983 0.00642 0.09827 0.06420 
0.15 0.02396 0.01269 0.15971 0.08463 
0.20 0.04698 0.01972 0.23489 0.09862 
1.00 0.78014 0.04376 0.78014 0.04376 

4.5 Effects of Study Design: Numbers of Control 

and Disease Subjects 

Not all studies that estimate the SROC curve have the same number of control and 

disease subjects and the design may be unbalanced. For example, in single diagnostic 

64 



analysis, one may find it easier to obtain verified results for disease subjects. In other 

situations, the analysis may choose to test more control subjects, where the ratio 

of control to diseased subjects is greater than one. It is important to consider this 

aspect of the design in determining the appropriate sample size, of the entire size and 

the ratio of the numbers of control and diseased subjects. In this section we looked 

at the extreme cases where all study sample sizes either have twice as many disease 

or twice as many control subjects. We compare these two cases with a balanced 

design. 

Lets K be the ratio of the number of control subjects (nc) to the number of 

disease subjects ( nd) in the study sample. 

(4.1) 

For example, K = 1 means equal number of subjects with and without the disease in 

the study sample; K = 0.5 means twice as many disease subjects as control subjects 

in the study sample; and K = 2 means twice as many control subjects as disease 

subjects in the study. 

Tables 4.5 and 4.6 show the influence of K and Bon the standard errors of the 

partial AUC and scaled partial AUC, respectively. Here, we assume A = 2, giving 

an approximate area under the curve equal to 0. 78 and the total number of studies, 
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Table 4.5: Effect of B and K on the estimated standard error of the pAUC indices 
where 80,1 = 0. 79, A = 2, and N = 10 

K B value Bo,I 8o,o.o5 Bo,o.I 8o,o.3 
0.5 -0.5 0.03828 0.00625 0.01133 0.02436 
0.5 0 0.04400 0.00494 0.01119 0.02996 
0.5 0.5 0.05868 0.00302 0.00875 0.03676 
1 -0.5 0.04892 0.00767 0.01385 0.03141 
1 0 0.04703 0.00569 0.01210 0.03123 
1 0.5 0.05773 0.00337 0.00939 0.03541 
2 -0.5 0.04814 0.00745 0.01335 0.03002 
2 0 0.04451 0.00519 0.01121 0.02922 
2 0.5 0.05556 0.00334 0.00905 0.03363 

Table 4.6: Effect of B and K on the estimated standard error of the scaled pAUC 
indices where 80,1 = 0. 79, A = 2, and N = 10 

K B value Bo 1 8o,o.o5 Bo,o.I 8o,o.3 
' 

0.5 -0.5 0.03828 0.12490 0.11334 0.08120 
0.5 0 0.04400 0.09876 0.11191 0.09986 
0.5 0.5 0.05868 0.06048 0.08746 0.12255 
1.0 -0.5 0.04892 0.15340 0.13845 0.10469 
1.0 0 0.04703 0.11386 0.12104 0.10411 
1.0 0.5 0.05773 0.06735 0.09392 0.11804 
2.0 -0.5 0.04814 0.14908 0.13346 0.10006 
2.0 0 0.04451 0.10379 0.11211 0.09739 
2.0 0.5 0.05556 0.06671 0.09046 0.11209 

N = 10. When K = 0.5 the full AUC increases as the dependence of the test 

accuracy on threshold, B, increases from -0.5 to 0.5. However, when K > 1, B has 

much less of an influence. The relationship between K, B and the variance of the 

partial area and scaled partial area are not clear. For two of the partial areas, 80,o.o5 

and 80,0.1 the standard errors decrease with B. For 80,0.05 and 80,0.1 the standard 
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error is maximum when B = -0.5 and for 00,0.3 , a much wider range of FPR values 

the standard error is maximum when B = 0.5. The same is evident for the standard 

errors of the scaled pA U C. 

In Fig. 4.3 we have computed the sample sizes for a range of values for K. From 

this figure one can note that the precision wasn't enhanced much when doubling 

the control group or when doubling the disease group. Therefore an equal number 

(K = 1) of subjects with and without the disease is recommended. 

4.6 Remarks 

We have proposed a simple method for determining the required sample size for 

studies of diagnostic accuracy. The method applies to studies that involve the two 

main indices associated with the SROC curve, namely, the area under the full SROC 

curve and the partial area under the curve. 

These SROC indices have different applications in diagnostic accuracy studies. 

The area under the full curve is particularly useful in evaluating a new test or 

procedure. One can use it to determine if the new test had a diagnostic ability 

(that is, AUG > 0.5) and to compare its overall diagnostic ability with standard 

tests. 

The partial area under the SROC curve is an excellent index for describing the 

accuracy of a test for a particular setting. This is because we can transform the value 
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Figure 4.3: Plots of the standard errors of the pAUC and the scaled pAUC when 
K = 1 and K = 2. The plots show that the precision isn't enhanced much by 
doubling the control group. 

of the partial area index to the more familiar zero to one scale for interpretation 

purposes. The methods described here provide unbiased estimates of the variance 

of this index. 
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We have shown that the homogeneous model would be the ideal model when 

dealing with the partial AUC summary statistic for small study sample sizes in a 

meta-analysis of diagnostic testing. When B = 0 there is no relationship between 

OR and thresholdS and therefore there is no between study variation. The AUC 

statistic is symmetric with respects to B. The partial AUC does not posses this 

property and hence it will show far greater dependence on the degree of inter-study 

heterogeneity (Walter, 2002). This is one of many reasons why the homogeneous 

logistic threshold SROC model is preferred when taking the partial AUC of an 

SROC curve. 

Walter (2002) showed that the AUC of an SROC curve and its standard error 

are remarkably robust against heterogeneity, which is an attractive feature for a 

summary measure. In contrast, the partial AUC is not robust to heterogeneity, 

especially when only a small portion of the SROC curve is used (Walter, 2002). The 

pAUC, the scaled pAUC and their standard errors depend strongly on the degree 

of truncation and the particular type and strength of inter-study heterogeneity. 

The scaled pAUC is used to restore the numerical range of the summary mea­

sure to be between zero and one. The standard errors for the scaled pAUC when 

compared to the standard errors for the pAUC is much larger, indicating a lost in 

precision in the scaled summary measure. However, when B = 0, in most cases the 

standard errors for the scaled pAUC for region where FPR is between 0 and 0.15 are 
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lower than for regions where FPR is between 0.20 and 0.50. For a small number of 

studies in a meta-analysis, the scaled pAUC has a lower standard error than when 

r = 0 and sis between 0.05 and 0.15. The pAUC for the homogeneous model works 

for the clinical region in certain situations. 
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Chapter 5 

Application 

We will illustrate the usefulness of the partial area under the curve in meta-analysis 

by reanalyzing a meta-analysis on the diagnostic performance of two magnetic res­

onance angiography techniques: 3D gadolinium-enhanced (3D-GD) and 2D time 

of flight (2D-TOF) for detecting peripheral arteriosclerotic occlusive disease (Nele­

mans et al., 2000). The separate meta-regression analysis yielded an intercept of 

4.13 and a slope of 0.41 for 2D-TOF. For 3D-GD, these values were, 5.93 and -0.37, 

respectively. 

Separate summary ROC curves were constructed for studies reporting on 2D 

time-of-flight MR angiography and for studies reporting on 3D gadolinium-enhanced 

MR angiography. Fig. 5.1 shows the separate summary ROC curves for 2D-TOF 

and 3D-GD. Most notably for studies on 2D-TOF MR angiography, there are consid-
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Figure 5.1: SROC curves for 2D time-of-flight (2D-TOF) MR angiography (left) 
and for studies reporting on 3D gadolinium-enhanced (3D-GD) MR angiography 
(right). 

erable discrepancies between the SROC curve and the observed data points. These 

findings indicate that differences in the threshold for a positive examination result 

explain only a small part of the variation between study results. A method to ex-

plore this variation was done by Nelemans et al. (2000), where they looked at other 

sources of variation by adding variables to the linear regression model and compared 

relative diagnostic ORs. They found that about half of the between-study variation 

was due to four factors: (a) the intercept A; (b) the variable S, which is a measure 

of the leniency of the threshold for a positive examination result; (c) the MR angio-

graphic examination type; and (d) the extent of image evaluation. Another method 

would be to look at eliminating the studies that have high FPR values in order to 
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reduce the heterogeneity among studies. 

Table 5.1: Partial AUC for the on the diagnostic performance of two magnetic 
resonance angiography techniques: 3D gadolinium-enhanced (3D-GD) and 2D time 
of flight (2D-TOF). 

s value 2D-TOF Reduced 2D-TOF 3D-GD 
1.00 0.94 (0.029) 0.95 (0.021) 0.98 (0.014) 
0.05 0.01 (0.021) 0.02 (0.021) 0.05 (0.003) 
0.10 0.04 (0.035) 0.06 (0.027) 0.09 (0.003) 
0.15 0.09 (0.035) 0.10 (0.027) 0.14 (0.002) 
0.20 0.14 (0.034) 0.15 (0.026) 0.19 (0.003) 

The partial AUC indices, Oo,o.o5,0o,o.10, Oo,O.l5, and Oo,o.2o were analyzed for the two 

techniques. The partial AUC, scaled partial AUC and their standard errors for 2D-

TOF and 3D-GD MR angiography are found in Table 5.1 and 5.2. The interpretation 

of the scaled pAUC where s = 0.05 for the 3D-GD data is that, conditional on the 

FPR value being no greater than 5%, the SROC curve has achieved a partial area 

which is 92 per cent of its maximum potential in this restricted region. We may 

also consider this value in relation to the corresponding area for an informative test. 

For the 2D-TOF data when FPR is limited to values below 0.1, the partial AUC, 

00,0.1 is 0.045 (0.035). The corresponding scaled pAUC value is 0.45 (0.351). The 

partial area in the triangle representing the performance of a random diagnostic 

test up to FPR=0.1 is 0.005. To interpret these results, we note that 2D-TOF 

MR angiography technique is performing better than a random test in the range of 
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clinical interest for FPR between 0.0 and 0.05. However, there are large standard 

errors for the scaled pAUC in the 2D-TOF MR angiography data. These extreme 

standard errors fo!: the scaled pAUC in 2D-TOF may be due to the outline point 

shown in Fig. 5.1. Study 10 has a smaller TPR value and higher FPR value than the 

12 other studies. This outlying point may be caused by random error, differences 

in study methodology, population or test characteristics. 

Table 5.2: Scaled partial AUC for the diagnostic performance of two magnetic 
resonance angiography techniques: 3D gadolinium-enhanced (3D-GD) and 2D time 
of flight (2D-TOF). 

s value 2D-TOF Reduced 2D-TOF 3D-GD 
1.00 0.94 (0.029) 0.95 (0.021) 0.98 (0.014) 
O.Oti 0.19 (0.426) 0.33 (0.414) 0.92 (0.053) 
0.10 0.45 (0.351) 0.57 (0.272) 0.94 (0.026) 
O.Ui 0.60 (0.235) 0.69 (0.179) 0.95 (0.017) 
0.20 0.69 (0.168) 0.76 (0.128) 0.96 (0.013) 

In diagnostic t~~sting, it is critical to maintain a high TPR in order not to miss 

detecting subjects with disease. We analyzed the 2D-TOF data again with a re-

striction to the meta-analysis to include studies that have a TPR value greater than 

0.70 only. This restriction would then exclude study 10 from the meta-analysis. 

The reduced 2D-TOF data yielded an intercept of 4.33 and a slope of 0.31. The 

partial AUC, scalEd pAUC and their standard errors for the reduced 2D-TOF data 

can be found in Tables 5.1 and 5.2. When we eliminated the study with a low TPR 
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value we got higher values of the scaled pAUC and lower standard errors. However, 

when we compared the two techniques we can conclude that the 3D-GD technique 

was clearly superior to that of 2D-TOF MR angiography. The extreme variation in 

2D-TOF MR angiography data needs to be looked into further to understand the 

between study variation. In this case an hierarchical SROC model which takes into 

account the betwee a study variation is recommended. 
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Chapter 6 

General Observations and 

G uidelirtes 

6.1 ROC analysis 

The ROC curve has been used in single study data analysis of diagnostic testing 

for many years. Indices for the ROC curve are available as one-number summary 

measures for easy interpretation of diagnostic tests. The summary measures assessed 

in Chapter 1 included the AUC, Q*, ASC, and pAUC statistics. Suggestions toward 

these indices have been proposed in Chapter 1. In this section three observations 

for the use of the su:nmary measures for a single ROC curve are presented. 
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Advantages of Logistic Scores 

If the scores are normally distributed with different means but same scale parameters 

for the disease and control groups the estimated ORs will be symmetric for all 

rates. However, if the scores for the disease and control groups came from logistic 

distributions with same scale but different mean parameters then the estimated 

ORs will be canst ant for any given threshold. Also, the true odds ratio can be 

determined from be parameters of the logistic distribution. If the scores come from 

normal distributio1s the OR will vary between thresholds. Ideally, the scores would 

come from homogeneous logistic distributions, however, this is not always the case. 

AUC or Q* Statistics? 

The area under thE ROC curve has been criticized for its dependency on an irrelevant 

region where FPR is high. The Q* statistic has been suggested as an alternative 

measure of the ROC curve. The point where sensitivity equals specificity is denoted 

as the Q* statistic. Figure 2.2 showed an example where the AUC and Q* statistics 

are highly correlat~~d implying that the Q* statistic carries the same information as 

the AUC. Note that Q* has a simple interpretation as a function of ORs under the 

homogeneous logistic threshold model. We recommend using the partial area under 

the ROC curve as a summary measure in situations where small values of FPR are 
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of interest. 

Disadvantages of ASC 

Similar to the AUC, the area swept by the ROC curve is related to the probability 

that the test will correctly rank a disease and control pair of subjects. The ASC, 

however, is only informative for a parametric ROC curve or an empirical ROC curve 

defined by a small number of line segments. When a step ROC curve with no ties 

is generated using the runs and rises defined by the points when sensitivity and 

specificity changes the ASC will always equal 1/2. Therefore, when a step ROC 

curve is employed the ASC summary measure is of no use. Perhaps ASC could be 

applied to a smoothed version of the step ROC curve but that is a topic of further 

investigation. 

6.2 SROC analysis 

The SROC curve and its summary measures are being used more for meta-analysis 

of diagnostic testing. In particular, many researchers are using the partial area 

under the SROC curve as a summary measure to describe the clinically relevant 

region. The releva11t region is when the false positive rates are low. In order to 

correctly utilize the pAUC statistic, guidelines must be set for proper use. 
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Inclusion C1riteria 

The inclusion criteria for a meta-analysis of diagnostic testing should always consider 

rejecting studies with low TPR. For example, an inclusion of studies with TPR 

~ 0. 70 maybe a suitable restriction. Variations in study design, population and 

subject characteristics can contribute to possible low TPR values in some studies 

when compared with other studies analyzing the same diagnostic test. Studies with 

low, outlying TPR values are seldom clinically relevant. 

Outlier Studies 

The simulations in :3ection 4 showed that the best results came from a homogeneous 

logistic threshold model where B = 0. This was because the diagnostic thresholds 

were similar for each study in the meta-analysis. The standard errors for the homo­

geneous model were smaller than those for the heterogeneous model in all the indices 

evaluated. Several indices were compared, including the full AUC and partial AUC 

where s equaled 0.(15, 0.10, 0.15, and 0.20 for small and large study sample sizes. 

The symmetric property found in the homogeneous model showed there was little 

between-study variation. If B =/:. 0, then we have a heterogeneity model. In this 

case, the diagnostic odds ratio depends on the threshold used for a given study. 

A method for achieving an SROC curve with a smaller B value could be to 
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eliminate studies with low TPR values. These values may be considered as outlying 

studies. Outlier studies are easily distinguishable in the plot of an SROC curve. 

For example, in the application, study 10 for 2D time-of-flight MR angiography in 

Nelemans' data had a lower TPR value than the other studies and when study 10 

was extracted from the meta-analysis the B value decreased to 0.31 from 0.41. 

Numbers of Control and Disease Subjects 

In Section 4.5 some cases where disease (control) study sample sizes were twice 

as large as the comrol (disease) study sample sizes were examined. The analysis 

showed that the sar,Iple size between the disease and control groups for unbalanced 

( K =f 1) or balance(. ( K = 1) studies had little difference in the SROC analysis. The 

estimated standard errors for AUC and pAUC summary measures were relatively 

the same for both balanced and unbalanced study data. Further work is needed to 

illustrate the trade-off between the number for subjects with and without the disease 

in each study for less and more extreme cases of imbalance. One situation could be 

to analyze the effects of the SROC indices when only one study is unbalanced. 
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Interpretatiions of pAUC 

The partial AUC can be interpreted as the probability that a disease and control 

pair of test results will be correctly ranked, conditional on the non-case value falling 

within the restricted range of the curve (Dobb & Pepe, 2003). Since the pAUC 

in equation (3.23) is less than or equal to one, the pAUC index cannot attain 

the maximum value of 1 that is achievable by the AUC index, but instead has a 

maximum value of s-r (Walter, 2005). In order to retain the desirable property that 

the pAUC ranges from zero to one it is recommend to use the scaled partial AUC 

statistic. For example the interpretation for the scaled pAUC in the application 

found in Section 5 for the 2D time-of-flight MR angiography data with s = 0.15 

is, conditional on be FPR values being no greater than 15 per cent, the SROC 

curve has achieved a partial area which 60 per cent of its maximum potential in this 

restricted range. The pAUC value can be compared to the corresponding area for 

an informative test, where the SROC curve lies on the diagonal line. This would 

show that the pAUC has more or less information than if the study was selected at 

random with an AUC of 0.5. In the above example for an uninformative test up to 

a maximum FPR of 15 per cent would be 0.01125. 
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Chapter 7 

Conclusions 

Receiver operating characteristic curves and their associated indices are valuable 

tools for assessment of the accuracy of diagnostic tests. Chapter 1 reviewed the AUC, 

Q*, ASC and pAUC summary measures. In examining these indices suggestions were 

made. In particular, AUC and Q* statistics were used to determine if the ROC curve 

is close to the region where FPR is 0 and TPR is 1. The AUC and Q* statistics 

were shown to be highly correlated (r = 0.89). This result indicates that AUC and 

Q* express more or less the same thing so it wouldn't matter which statistic is used. 

The ASC is also similar to the AUC index, however the interpretation of the ASC is 

irrelevant when dealing with a step ROC curve. The concepts and approaches used 

in ROC analysis were found to be beneficial in understanding SROC analysis. 

Summary receiver operating characteristic analysis is increasingly popular for 
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meta-analysis of diagnostic test validity. However, it is only meaningful when simi­

lar endpoints, diagnostic thresholds, study quality and test characteristics are com­

pared. The AUC and Q* statistics were used to compare results from different 

SROC analyses. Partial AUC may be used if specificity values are limited, with 

interpretation on an individual meta-analysis basis. 

Our simulations illustrated that the partial AUC index can be used to compare 

diagnostic performE,nces in SROC curves. Comparison of the AUC values is practi­

cally meaningless because, in practice, all points on the curve will not have the same 

clinical relevance. The partial area index is defined for sensitivity levels of clinical 

interest; however, there is uncertainty in the partial area index to the extent that 

the group of sensitivity levels are well chosen. 

Although we m:ed magnetic resonance angiography techniques for illustration 

purposes in this paper, the potential usefulness of the pAUC is not limited to that 

application but ext,~nds to the evaluation of any diagnostic test that must maintain 

a high sensitivity level, clinically. The partial AUC is more meaningful than the 

conventional AUC index in such situation because it reflects the portion of the 

SROC curve that i:.; clinically relevant. 

Presently, the partial AUC index is being used more in meta-analysis of diag­

nostic testing; how~ver guidelines and strategies have not been established. In this 

thesis, we collaborated our simulation findings to incorporate broad guidelines when 
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using the partial AUC index in an SROC analysis. 

Sometimes the sensitivity and specificity will be available for different thresholds 

within the same study. Depending on the predetermined diagnostic threshold and 

the amount of literature available, the most appropriate threshold should be chosen 

for the analysis. ·with enough literature available, it is possible to perform SROC 

analysis for different thresholds of the same test. The AUC, Q* or pAUC would 

be used, where appropriate, to compare the accuracy of the same test for different 

thresholds. This requires multiple analysis which are often published separately 

(Jones et al., 2005). 

There is a lack of understanding by clinicians of the concepts and interpretations 

of the partial AUC for an SROC curve. It is our desire that the guidelines on the use 

of the partial area under the SROC curve presented in this thesis will help clinicians 

with the comprehension of the pAUC index. We expect as the pAUC for the SROC 

curve becomes m01e popular and understanding grows, interpretation of the partial 

AUC index will become easier. 
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Appendix A 

Source It codes for Graphs 

Figure 1 

> plot. OR<-funct:.on (tgr, filename = "plotOR.pdf") 
{ 

} 

pdf(filename) 
m <- matrix(c(1, 2), 1, 2) 
layout(m) 
logisOR <- function(t, mu1, mu2 = 0, sd1 = 1, sd2 = 1) { 

} 

(1 - plogis(t, mu1, sd1)) * plogis(t, mu2, sd2)/(plogis(t, 
mu1, sd1) * (1 - plogis(t, mu2, sd2))) 

logisOR <- flmction(t, mu1, mu2 = 0, sd1 = 1, sd2 = 1) { 

} 

(1 - plogis(t, mu1, sd1)) * plogis(t, mu2, sd2)/(plogis(t, 
mu1, sd1) * (1 - plogis(t, mu2, sd2))) 

plot(tgr, logisOR(tgr, 1), type= 11 1", ylim = c(O, 20), ylab 
= "Odds Hatio", xlab ="Scores", main= "Logistic 
Distribution") 

plot(tgr, normOR(tgr, 1), type= "1", ylim = c(O, 20), ylab 
="Odds Hatio", xlab ="Scores", main= "Normal 
Distribution") 

dev. off (dev. cur()) 
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Figure 2 

> roc.boot.plot 
function (scored, scorec, B, filename = 11 rocboot.pdf 11

) { 

} 

pdf(filename) 
rocboot <- roc.boot(scored, scorec, B = 2000) 
pairs(rocboot) 
dev.off(dev.cur()) 

Figure 3 

> ASCplot1 
function (FPR, TPR, filename = 11 ASCplot1.pdf 11

) { 

} 

pdf (filename:) 
dat <- cbincl(c(O, 1), c(O, 1)) 
dat2 <- cbind(c(O, 1), c(O, 0.5)) 
plot(FPR, TPR, type = 11 1") 

lines(dat, lty = 2) 
lines(dat2, lty = 2) 
text(0.2, 0.3, 11 A11

) 

text(0.5, 0.4, 11 8 11
) 

text(0.9, 0.7, 11 C11
) 

dev.off(dev cur()) 

Figure 4 

> ASCplot2 
function (FPR, TPR, filename = 11 ASCplot2.pdf 11

) { 

pdf (filenam(:l) 
plot(FPR, TPR, type = 11 1") 

dat <- cbind(c(O, 0.25), c(O, 0.5)) 
lines(dat, lty = 2) 
text(0.025, 0, 11 P 11

) 

text(0.275, 0.5, 11 Q11
) 

text(O, 0.525, 11 R11
) 

dat2 <- cbind(c(O, 0.25), c(O, 0.75)) 
lines(dat2, lty = 2) 
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} 

text(0.25, 0.775, "S 11
) 

dat3 <- cbind(c(O, 0.75), c(O, 0.75)) 
lines(dat3, lty = 2) 
text(0.775, 0.75, "T") 
dat4 <- cbind(c(O, 0.75), c(O, 1)) 
lines(dat4, lty = 2) 
text (0. 725, 1, "U") 
dat5 <- cbind(c(O, 1), c(O, 1)) 
lines(dat5, lty = 2) 
text(1, 0.975, 11 V") 
dev.off(dev.cur()) 

Figure 5 

> ASCplot3 
function (FPR, TPR, filename = "ASCplot3.pdf") { 

pdf(filename) 

} 

dat <- cbind(c(O, 1), c(O, 1)) 
plot(FPR, TPR, type = "1") 
legend(0.6, 0.1, c( 11 AUC = 0.84", "Q* = 0.75", "ASC = 0.5 11

)) 

lines(dat, lty = 2) 
dev.off(dev.cur()) 

Figure 6 

> plot.SROChom<-function (FPR, A1, B1 = 0, m1 = 25, m2 = 20, 
filename = "plotSROChom.pdf 11

) 

{ 

pdf(filename) 
TPR1.sroc <- matrix((exp(A1/(1 - B1)) * (FPR/(1 - FPR))-((1 + 

B1)/(1 - B1)))/(1 + exp(A1/(1 - B1)) * (FPR/(1 - FPR))-((1 + 
B1)/(1 - B1)))) 

xx1 <- rbinomtableHet(A1, B1, FPR, m1, m2) 
plot(xx1[, 6], xx1[, 5], ylim = c(O, 1), xlim = c(O, 1), 

xlab ="False Positive Rate", ylab = 11 True Positive Rate", 
main = "SROC curve for the Homogeneous Case 11

) 

lines(sort(FPR), sort(TPR1.sroc), type = "1", ylim = c(O, 
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} 

1), xlim = c(O, 1), lty = 2, col= 1) 
abline(O, 1) 
dev.off(dev.cur()) 

> plot.SRDChet<-function (FPR, A2, 82, m1, m2, filename = 
"plotSROChet.pdf") 

{ 

} 

pdf(filename) 
TPR2.sroc <- matrix((exp(A2/(1 - 82)) * (FPR/(1 - FPR))-((1 + 

82)/(1 - 82)))/(1 + exp(A2/(1 - 82)) * (FPR/(1 - FPR))-((1 + 
82)/(1 - 82)))) 

xx2 <- rbinomtableHet(A2, 82, FPR, m1, m2) 
plot(xx2[, 6], xx2[, 5], ylim = c(O, 1), xlim = c(O, 1), 

xlab ="False Positive Rate", ylab ="True Positive Rate", 
main = "SROC curve for the Heterogeneous Case") 

lines(sort(FPR), sort(TPR2.sroc), type= "P, ylim = c(O, 
1), xlim = c(O, 1), lty = 2, col= 1) 

abline(O, 1) 
dev.off(dev.cur()) 

Figure 7 

SEpAUC.plot2 function (xx1, xx2, xx3, xx25, xx26, xx27, filename= 
"SEpAUCplot2.pdf") { 

pdf(filename) 
m <- matrix(c(1, 2, 3, 4), 2, 2) 
layout(m) 
plot(xx1 [, 10], xx1 [, 2], xlab = 11 S 11

, ylab = 11 sepAUC 11
, main = 

"Comparison of 8 values for SE of \n pAUC (Small samples)", 
sub= "r=O and A=2", type= "1 11

, lty = 2, ylim = c(O, 
0.15)) 

lines(xx1[, 10], xx2[, 2], lty = 3) 
lines(xx1[, 10], xx3[, 2], lty = 4) 
legend(0.1, 0.15, c("8=-0.5 11

, "8=0 11
, "8=0.5"), lty = c(2, 

3, 4)) 
plot (xx1 [, 10], xx1 [, 4], xlab = 11 S 11

, ylab = "seSpAUC", main = 
"Comparison of 8 values for SE of \n Scaled pAUC (Small 
samples)", sub= "r=O and A=2", type= 11 1 11

, lty = 2, ylim 
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} 

= c(O, 0.15)) 
lines(xx1[, 10], xx2[, 4], lty = 3) 
lines(xx1[, 10], xx3[, 4], lty = 4) 
plot(xx25[, 10], xx25[, 2], xlab = "s", ylab = "sepAUC", 

main = "~omparison of B values for SE of \n pAUC (Large 
samples)", sub= "r=O and A=2", type= "1", lty = 2, ylim = 
c(O, 0.15)) 
lines(xx25[, 10], xx26[, 2], lty = 3) 
lines(xx25[, 10], xx27[, 2], lty = 4) 
plot(xx25[, 10], xx25[, 4], xlab = 11 s 11

, ylab = "seSpAUC", 
main = "Comparison of B values for SE of \n Scaled pAUC 

(Large sampl,3s)", sub = "r=O and A=2", type = 11 1 11
, lty = 

2, ylim = c(O, 0.15)) 
lines(xx25[, 10], xx26[, 4], lty = 3) 
lines(xx25[, 10], xx27[, 4], lty = 4) 
dev. off (dev. <:ur()) 

Figure 8 

> Sample.Comp 
function (xx2, xx3, xx8, xx9, xx20, xx21, xx26, xx27, filename = 
"SampleComp.pdf") { 

pdf(filename) 
m <- matrix(c(l, 2, 3, 4), 2, 2) 
layout(m) 
plot(xx1[, 10], xx2[, 4], xlab = "s", ylab = "seSpAUC", main= 
"Comparison of Sample size for \n SE of Scaled pAUC", 

sub = "r==O, A=2 and B=O", type = 11 1 11
, lty = 2, ylim = c(O, 

0.15)) 
lines(xx1[, :LO], xx8[, 4], lty = 3) 
lines (xx1 [, :LO] , xx20$seSpAUC, l ty = 4) 
lines(xx1[, 10], xx26[, 4], lty = 5) 
plot(xx1[, 10], xx3[, 4], xlab = "s", ylab = "seSpAUC", main= 
"Comparison of Sample size for \n SE of Scaled pAUC", 

sub= "r=O, A=2 and B=0.5", type= "1", lty = 2, ylim = c(O, 
0.15)) 

lines(xx1[, 10], xx9[, 4], lty = 3) 
lines(xx1[, 10], xx21$seSpAUC, lty = 4) 
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} 

lines(xx1[, 10], xx27[, 4], lty = 5) 
plot(xx1[, 10], xx2[, 2], xlab = nsn, ylab = nsepAucn, main= 
ncomparison of Sample size for \n SE of pAUCn, 

sub= nr=O, A=2 and B=On, type= n1n, lty = 2, ylim = c(O, 
0.15)) 

lines(xx1[, 10], xx8[, 2], lty = 3) 
lines(xx1[, 10], xx20$sepAUC, lty = 4) 
lines(xx1[, 10], xx26[, 2], lty = 5) 
legend(0.15, 0.15, c{I'All small", none largen, nHalf/Halfn, 

nAll Largen), lty = c(2, 3, 4, 5)) 
plot(xx1[, 10], xx3[, 2], xlab = nsn, ylab = nsepAucn, main= 
ncomparison of Sample size for \n SE of pAUCn, 

sub= nr=O, A=2 and B=0.5n, type= n1n, lty = 2, ylim = c(O, 
0.15)) 

lines(xx1[, 10], xx9[, 2], lty = 3) 
lines(xx1[, 10], xx21$sepAUC, lty = 4) 
lines(xx1[, 10], xx27[, 2], lty = 5) 
dev.off(dev.cur()) 
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Appendix B 

Source R codes for ROC Analysis 

> roc.boot 
function (scored, scorec, B = 200) { 

md <- length(scored) 

} 

me <- length(scorec) 
t(apply(cbind(matrix(sample(scored, md * B, replace= T), 

nrow =B), matrix(sample(scorec, me* B, replace= T), 
nrow =B)), 1, roc.stats, md = md)) 

> roc. stats 
function (sall, md, ... ) { 

} 

me <- length(sall) - md 
sind<- rep(c(O, 1), c(md, me)) 
stab <- table(sall, sind) 
stab<- stab[nrow(stab):1,] 
tpr <- c(O, cumsum(stab[, 1]))/md 
fpr <- c(O, cumsum(stab[, 2]))/mc 
AUC <- sum(0.5 * (tpr[-1] + tpr[-length(tpr)]) * diff(fpr)) 
Qi <- match(TRUE, tpr + fpr >= 1) 
Qstar <- (tpr[Qi - 1] * (fpr[Qi] - fpr[Qi - 1]) + (1 - fpr[Qi -

1]) * (tpr[Qi] - tpr[Qi - 1]))/((fpr[Qi] - fpr[Qi - 1]) + 
(tpr[Qi] - tpr[Qi - 1])) 

c(AUC = AUC, Qstar = as.numeric(Qstar)) 
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Appendix C 

Source JR codes for SROC Analysis 

Random Binomial Tables 

rbinomtableHet<--function (A, B, FPR, m1, m2) 
{ 

} 

table! <- NULL 
TPR <- matr:Lx((exp(A/(1- B)) * (FPR/(1- FPR))-((1 + B)/(1-

B)))/(1 + exp(A/(1 - B)) * (FPR/(1 - FPR))-((1 + B)/(1 -
B)))) 

for (i in 1:length(FPR)) { 
a<- rbinom(1, m1, TPR[i]) 
c <- rbinom(1, m2, FPR[i]) 
table <·- cbind(a = a, b = m1 - a, c = c, d = m2 - c, 

TPRl = a/m1, FPR1 = c/m2) 
table! <- rbind(table1, table) 

} 

table! 

Moses Model 

> mosesModel<-function (a, b, c, d) 
{ 

Uhat <- log((c + 0.5)/(d + 0.5)) 
Vhat <- log((a + 0.5)/(b + 0.5)) 
Dhat <- Vhat - Uhat 
Shat <- Vhat + Uhat 
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} 

fit <- lm(Dhat - Shat) 
sum.fit <- summary(fit, cor = T) 
A<- sum.fit$coef[1] 
B <- sum.fit$coef[2] 
seA<- sum.fit$coef[1, 2] 
seB <- sum.fit$coef[2, 2] 
corAB <- sum.fit$cor[2] 
covAB <- corAB * seA * seB 
list(A = A, B = B, seA = seA, seB = seB, corAB = corAB, 
covAB = covAB) 

SROC indices 

> SROC1 
function (fpr, A, B, r, s, seA, seB, cov_AB) 
{ 

var_A <- seA-2 
var_B <- seB-2 
SROC_1 <- function(fpr) { 

} 

tpr.roc.hom <- (exp(A/(1 - B)) * (fpr/(1 - fpr))-((1 + 
B)/(1 - B)))/(1 + exp(A/(1 - B)) * (fpr/(1 - fpr))-((1 + 
B)/(1 - B))) 

x <- integrate(SROC_1, r, s, stop.on.error = FALSE) 
pAUC <- x$value 
p <- (1 + B)/(1 - B) 
integ_Af <- function(fpr) { 

} 

Af <- ((fpr/(1 - fpr))-p)/((1 + ((fpr/(1 - fpr))-p) * 
exp(A/(1 - B)))-2) 

integ_Bf <- function(fpr) { 

} 

Bf <- (((fpr/(1 - fpr))-p) * (A + 2 * log(fpr/(1 -
fpr))))/((1 + ((fpr/(1 - fpr))-p) * exp(A/(1 - B)))-2) 

dAUC_A <- (1/(1 -B)) * exp(A/(1- B)) * integrate(integ_Af, 
r, s, stop.on.error = FALSE)$value 

dAUC_B <- ((1/(1 - B))-2) * exp(A/(1 -B)) * integrate(integ_Bf, 
r, s, stop.on.error = FALSE)$value 
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} 

sepAUC <- sqrt((dAUC_A-2 * var_A) + (dAUC_B-2 * var_B) + 
(2 * dAUC_A * dAUC_B * cov_AB)) 

ScaledpAUC <- pAUC/(s - r) 
seScaledpAUC <- sepAUC/(s - r) 
Qstar <- (ex.p(A/2))/(1 + exp(A/2)) 
seQstar <- (sqrt(exp(A)) * seA)/(2 * (sqrt(exp(A)) + 1)-2) 
list(pAUC = pAUC, sepAUC = sepAUC, ScaledpAUC = ScaledpAUC, 

seScalec:tpAUC = seScaledpAUC, Qstar = Qstar, seQstar = 
seQstc:.r) 

Bootstrapping function 

> sroc.stats<-flmction (FPR, A, B, m1, m2, r, s) 
{ 

} 

xx <- rbinomtableHet(A, B, FPR, m1, m2) 
model <- mosesModel (xx [, 1] , xx [, 2] , xx [, 3] , xx [, 4]) 
AA <- modelBA 
BB <- modeUlB 
SROC_1 <- function(fpr) { 

} 

tpr.roc.hom <- (exp(AA/(1 - BB)) * (fpr/(1- fpr))-((1 + 
BB)/(1 - BB)))/(1 + exp(AA/(1 - BB)) * (fpr/(1 -
fpr))-((1 + BB)/(1 - BB))) 

x <- integra.te(SROC_1, r, s) 
pAUC <- x$va.lue 
ScaledpAUC <- pAUC/(s - r) 
Qstar <- (exp(AA/2))/(1 + exp(AA/2)) 
c(pAUC, ScaledpAUC, Qstar) 

> sroc.boot<-fuaction (FPR, Bt = 200, r, s, A, B, m1, m2) 
{ 

n <- length(FPR) 
t(apply(matrix(sample(FPR, n * Bt, replace= T), nrow = Bt), 

1, sroc.stats, r = r, s = s, A = A, B = B, m1 = m1, m2 = m2)) 
} 
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