DEVELOPING USER-CENTRIC SOFTWARE
REQUIREMENTS SPECIFICATIONS

DEVELOPING USER-CENTRIC SOFTWARE
REQUIREMENTS SPECIFICATIONS

By
HonGQING Sun, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software
McMaster University

© Copyright by Hongqing Sun, August 2007

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

MASTER OF APPLIED SCIENCE (2007) McMaster University
(Computing and Software) Hamilton, Ontario
TITLE:

DEVELOPING USER-CENTRIC SOFTWARE REQUIREMENTS SPECIFICATIONS

AUTHOR: Hongging Sun, B.Sc. (NANKAI UNIVERSITY, CHINA)

SUPERVISOR: Dr. Alan Wassyng

NUMBER OF PAGES: xiv, 183

ii

Abstract

Software systems with intensive user-computer interactions account for a fairly large
part of the total real world software applications, such as web applications, MS Win-
dows applications, GNOME/KDE applications etc. We call this kind of software
user-centric software, denoting a defining characteristic which is that they are usable
directly by users.

Exhibited in this thesis is a systematic approach for developing a software
requirements specification (SRS) for user-centric software. While this approach con-
forms to the well-recognized software requirements engineering process model, which
contains the processes of requirements elicitation, analysis, specification and valida-
tion, it is tailored to user-centric software. The user-centric ideas are embodied and
applied throughout our approach. In the elicitation process, the joint requirements
development (JRD) sessions (known as requirement workshops) are advocated, and
step-by-step guidance is developed leading to a natural flow from the raw problem
descriptions to user requirements - the use case model. Further, based on the var-
ious object-oriented analysis paradigms, we build a systematic analysis process to
seek analysis classes, where domain classes are harvested from the composed data
hierarchies of all use cases, and application classes and functions are captured from
sequence diagrams. Especially, our notation of boundary classes provides considerable
flexibility in the user interface (UI) design phase. During the SRS process, functional
requirements derived from the analysis model are specified according to a class speci-
fication template. Moreover, the three-level validation process positively involves the
user’s participation facilitating assurance that the right software is built. Also, to
demonstrate the practicability of this approach, it is applied in a case study deal-
ing with developing the SRS of a photodynamic therapy (PDT) treatment planning
application.

iii

Acknowledgements

I am greatly indebted to Dr. Alan Wassyng, my supervisor, for his good teach-
ing, constructive guidance, enlightening suggestions, friendly help and encouragement
throughout the entire period of my studies and this research. Without his support,
it would have been impossible to finish this thesis. During the two-year studies I
have known him as a knowledgable, humorous, and principle-centered person. His
substantial experience and integral view on research and his mission for providing
‘high-quality work’, have made a deep impression on me. He could not even realize
how much I have learnt from him.

I would like to express my sincere thanks to Dr. Tom Maibaum and Dr.
Douglas Down, my defense committee, for their valuable time and comments on my
research. I am very grateful to Dr. Tom Maibaum, for his generous and stimulating
suggestions throughout this research.

Deep thanks to Dr. Ridha Khedri for his valuable recommendation and supply
of research materials and suggestions. I would also like to thank Dr. Jacques Carette,
Dr. Spencer Smith and Dr. Wolfram Kahl for their precious comments during this
research.

Much thanks to University Health Network for providing the case study re-
sources. Sincere appreciation to Sean Davidson, for him coming to McMaster and
suggesting wonderful hints on the case study.

I owe much thankfulness to my parents for their endless love, encouragement
and moral support. I wish their happiness and good health all the time.

Especially, I would like to give my special thanks to my wife Na whose love
and care enabled me to complete this work.

v

Contents

Abstract iii
Acknowledgements iv
List of Figures X
List of Tables xiii
1 Introduction 1
1.1 Meaning of User-Centric 2
1.1.1 User-Centric Software 2

1.1.2 User-Centric Development 2

1.1.3 User-Centric in Our Approach 3

12 Contextofthia Researely . . . <« oo wn s s s s o nw s nanwsoss 4

13 Motivationof Bessareli - . o o v o « s w250 2 35 s 56 54 8+ 55 8 5

1.4 Research Problem and Scope 6

15 Contribulion of thisn Thesis . . - . = v s s s s s s m s vs s a5+ wea T

140 ThelaBlruetite, « « « v s s s s 2 s s v s Do v B K2 n 6 5 ¢ 8 & & % 8

2 Overview of Software Requirements Engineering 9
2.1 Clarification of Some Concepts. 9
211 WhatBaSmlem? .. «ccosiviwamsnsmasnsvse 10

2.1.2 What is a Requirement? 10

2.1.3 What is a Software Requirements Specification (SRS) 12

2.2 Software Requirements Engineering Approaches 12
2.2.1 Function-Oriented Analysis Approach 12

v

M.A.Sc. Thesis - Hongqing Sun

2.2.2 Object-Oriented Analysis Approach
2.2.3 Goal-Oriented Approach
2.2.4 Problem Frames Approach

3 A Practical Approach

3.1
3.2

3.3

3.4

An Overview of the Approach
Requirements Elicitation
3.2.1 Gather Understanding of the Problem Description
3.2.2 Find the System Boundary
323 Identify Ackors . . . « + « » 52 w2 @« s 25 5253 @« v am «s
3.2.4 Specify Primary Actor’s Tasks
525 CpenifyUse OB . » + « » + s s v s s s s s n v # s wp @ 5 4 5 »
Software Requirements Analysis, SRA
3.3.1 Denotations of Analysis
3.3.2 Software Requirements are at the Interfaces
3.3.3 Why Objected-Oriented Requirements Analysis?
B34 Analysls Clagses ; « o s - « s 5 s s s v s s s 3 s 8 6 54 5 5 9 5 o
3.3.5 Analysis Model - What isto Be Built
3.3.6 Overview of Analysis Process
3.3.7 Draw the Activity Diagrams for Use Cases
3.3.8 Identify Data Used in Activity Diagrams and Draw the Data
Hieiafehies o s« v s s s s s v s v v s 56 55 ms 5 55 & 5 5
3.3.9 Identify Domain Classes, their Attributes and Relationships
3.3.10 Construct Sequence Diagrams for Use Cases
3.3.11 Identify Application (Boundary) Classes, Class Functions . . .
3.3.12 Construct the Whole Analysis Class Diagram
3.3.13 Analysis Model Document, AMD
3.3.14 More on Sequence Diagrams and Boundary Classes
Software Requirements Specification, SRS
3.4.1 Specify a Function of the System in the SRS
3.4.2 The Specification Language
843 TheSRSTemplate . ;. « » « w6 5.6 2 s 25 55 5 5 55 5 ¢ 553
3.4.4 Specify Functional Requirements with Class Specifications

vi

McMaster - Computing and Software

76
80
80
85
85
86
89
92
92
92
93
94

M.A.Sc. Thesis - Hongqing Sun

3.4.5

Specify System Constraints

3.5 Software Requirements Validation

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

Why Requirements Validation?
Validation Techniques
Validation Level 1: Simple Check of Scenario Tables
Validation Level 2: Storyboard of Use Cases
Validation Level 3: Software Prototyping and Formal Review
BEERE i i e u A B EE GO B TR BRI B SN NP SRR S B

3.6 Our Practical Approach and “High Quality SRS”

3.6.1
3.6.2

HighQuality SRS . . o ¢ o6 56 v s 0 vw v nm siw 60 m 5 &3
Our Approach Leads to a High Quality SRS

4 A Case Study: PDT Treatment Planning Software
4.1 Apply Elicitation Process.

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7
4.1.8

ReSOUTCES « « w5 56 5 ¢ 5 65 5 & 5 % 5@ 65 856 6§ 4 5 & 8 5 8 8
Understanding of Problem Description
System Context Diagram
Actors and Their Profiles.
Primyary Actor-Task List . . « » « v c v v 2 v v s s w0 ca = s
Scenario Tables of User Tasks
LB E R « o s s e s s S LW S P HFHF R DO DG H S BB 8503
User Requirements Document

4.2 Apply Analysis Process i

4.2.1
4.2.2
4.2.3
4.2.4

Activity Diagrams and Data Hierarchies
Initial Domain Class Diagram
Sequence Diagrams, Boundary Classes and Class Functions . .
Analysis Class Diagrams

4.3 Apply Specification Process

5 Conclusions and Future Work
Bl ConcluSion . . ¢ v v v v v v s v e e h e e e e e e e e e e e e s e
52 PUbUXE WOIK . 4 .« v s 5 5 55 3 s s S oo 66 5% 5 5 5 « 5 5 5 5 & 8

Bibliography

vii

McMaster - Computing and Software

113
113
113
114
119
120
122
122
130
130
138
138
146
147
147
147

157
157
158

160

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Appendix 167
A The SRS Template 167
Al Imtroduction 167
Bl IHIRE vssaansicuseanobas s s snsd®sdy 167
A2 Beopeofthe SoftWare . « « « « s ¢ 6 & » s 5 + 56 5 ¢ 20 = 5 & 167
A.1.3 Definitions, Acronyms, and Abbreviations 167
Bl BEISTOnres . . o « v 2o 2 5 06 25 s« 560 5 F akm e s . n 168

B lB TINBIVIOW « o« ww 5 w2 52 % 8 46 B 4 8§ BE 8 €888 8 ns 168

A.2 Overall Description 168
A.2.1 Product Perspective 168
A22 Produck Pupelions . « + » cs v s s s v s s sm v 4 v 0 58 # o 168
A28 UserCharactetlfics . « s v o s s s s s s b s s 6 65 w5 5 & » 4 169
A.2.4 General System Constraints 169
A.2.5 Assumptions and Dependencies 169
A.2.6 Apportioning of Requirements 169

A.3 Specific Requirements., 169
A3l Bllornal Inletladibsl « o s o s s s w a9 s s v 93 55 nmw s w s 170
A3.2 Boundary Classes v v v v i i e 170
K33 Dotnsin CIEEEEE « + « » « 5 s s s 05 5 5 s e a s 25 o 8 o don oo 170

A PorfOrmBBes « « + o « 2 ¢ 2 5 2 0 2 5 5 % 5 v % 2 x5 8566 %255 &5 171
AS Design ConBlraints . . » « « v v o « 80 96 oo m s v s oo s emensn 171
A6 Reliability 171
AT MaintaGimabilitF « « @ o @ o 0 o 6 o 0 6@ 5w o0 w0 o om e o A 171
A8 Portability 172
B IRl s nnn e h R e R ERFH Y B FRENENERER 8F 86 P4 B & 172
A.10 Other Requirements v i i v i 172
B The Partial SRS of PDT Treatment Planning Software 173
Bl Introdostion . « « « s 5 5 26 55 56 5 v 0 5w w s 58 55 me me w s 173
Bulll PHPEEE c oot s 0 o0) &l 8 6l 4 @ v B 60 S 98 68 & @8 173
B.1.2 Scope of the Software 173
B.1.3 Definitions, Acronyms, and Abbreviations 174
Bld Dolotetods « o6 o5 o 56 2 65 b € 8 Kb 0ok 58 8 & &5 174

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

Bilih OVEIVIEW & 5 o o 6 o 6o 6 o 6 m 6 m oo mis ms m & m o s m o 174
B.2 Overall Description it 175
B.2.1 Product Perspective 175
B22 Produck FYMetions - - . « < « « = s 5 55 56 56 0 s 56 55 5 s 175
B28 UserCharacteristics « « o+ v ¢ v s s s 5 w5 0 9w % ¢ 5 » 176
B.2.4 General System Constraints 176
B.2.5 Assumptions and Dependencies 176
B.3 Specific Requirements, 176
B.3.1 External Interfaces 176
B32 BoundaryClasseso i ... 176
B.3.3 DomainClasses v v it 181
Bid Perlortaflien . « « s o o s 0 v % s 2 s s ¥ 6 ¥ 5 5 8 9 5 45 5 & & % % ¥ & 182
B.5 Design Constraints 182
BE BeBabIEY » o o o o 2 0.3 56 5 sith 588 » & 4 smased s %m 5% 5% & &0 3 182
B.T Maintaimabilify 0. S Na ., . % i we e wa s 182
BE PortBBIY o » 5 ¢ o5 5% 0 68 6% 0 % 0 56 %58 658 08 56 @08 % 183
B9 Legall;: ccpopaeae B ot aEgis 0§ 98 M FLEE PRE DL D E T 183
BIDOther Beguiremettdl . - « « <« s s s a a s v ar s ® a5 5 5 & 5 & & & ¢ 183

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Artifacts View of the Approach 17
Processes View of the Approach 18
Elicitation Process« i i it i vt i 20
Domain Decomposition Rules 31
Domain Decomposition: a Company 32
Top Level Problem Context Diagram 33
First-Decomposition Level Problem Context Diagram 35
Further-Decomposition Level Problem Context Diagram 36
Treatment Planning Software Problem Context Diagram 37
A System Context DISgraffi ~ - « » s » 6 s 5 s v s 6w o w6 ¥ % & 5 ¥ 4 43
Action Composition Model 47
Pulfilling a Respongibility « « « s s + s+ # 2 2 s 0 5 5 3 8 2 6 60 4 9 » 49
A Transaction Has Four Parts 53
Patterns to Handle Alternative Conditions 55
A Use Case Template 60
The Partial Use Case Diagram-Treatment Planning Software 63
Use Requirements Document 64
Analysis Process Model 65
Top Level Problem Context Diagram 69
Activity Diagram for the use case “Link MRIImageSet” 7
Data RelafionShips - « « s s s 5 2 s 56 52 56 8 1 55 05 6§ & v o i 78
A Data Hierarchy Example 78
Activity Diagram & Data Hierarchies of use case “Link MRIImageSet” 81
Initial Domain Class Diagram of use case “Link MRIImageSet” . .. 82

M.A.Sc

3.25
3.26

3.27

3.28
3.29
3.30
3.31
3.32
3.33
3.34

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16
4.17
4.18

. Thesis - Hongqing Sun McMaster - Computing and Software

Sequence Diagram for the use case “Link MRIImageSet”
The Partial Boundary Class Diagram from Use Case “Link MRIIm-
BEEBOL” . o o s 4 mems B G e R E D EE BE B R A R R EE R
The Partial Final Domain Class Diagram from Use Case “Link MRI-
IHBTENEE" . - 55 0+ 5 5 % 56 5 % 68 L s b & @ FEFF T EER NE S
The Partial Class Diagram from Use Case “Link MRIImageSet” . . .
The Analysis Model Document Template
Sequence Diagram A at Requirements Level
Sequence Diagram B at Requirements Level
Sequence Diagram C at Requirements Level
The SRS Templabe . » o c v o v v s w s 8 s 6 o s s 5 muw 88wy & & &
The Class Specification Template

The PDT Treatment for Prostate Cancer
The Prostate Example: PDT Treatment Planning Software
Treatment Planning Software Problem Context Diagram: Case Study
Treatment Planning Software System Context Diagram: Case Study .
Use Case Diagram of Treatment Planning Software: Case Study . . .
Activity Diagram and Data Hierarchy: Enter PatientInfo & TargetInfo

Activity Diagram and Data Hierarchy: Link MRIImageSet Task . . .
Activity Diagram and Data Hierarchy: Define Target Task
Activity Diagram and Data Hierarchy: Set TreatmentOption Task . .
Activity Diagram and Data Hierarchy: Add a TreatmentDevice Task
Activity Diagram and Data Hierarchy: Do Simulation Task
Activity Diagram and Data Hierarchy: Generate TreatmentPlanRe-
DO TASK 5 o 6 v s v m d md % d 5 6 @ % B A B B SR B R W W
Final Data Hierarchy Model: Case Study
Initial Domain Class Diagram: Case Study
Sequence Diagram UC001: Enter PatientInfo & TargetInfo
Sequence Diagram UC002: Link MRIImageSet
Sequence Diagram UC003: Define Target
Sequence Diagram UC004: Set TreatmentOption

84

86

86
87
88
90
91
91
94
96

114
115
120
121
130

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

4.19 Sequence Diagram UC006: Do Simulation 153
4.20 Sequence Diagram UC007: Generate TreatmentPlanReport 154
4.21 Boundary Class Diagram: Case Study 155
4.22 Final Domain class diagram: Case Study 156

xii

List of Tables

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Guidance for Finding System Constraints 25
Typical Structured Meetings 27
Customer's Authoritios . . « « « « 20 w2 45 5 6 5 5 0 8 5 5 % © » & s 29
User’s Responsibilities and Tasks 29
Profilea of Actors . . « + » + s s v s s s o v 8 s 0 0% 855 6 ¢ 8¢5 53 5 45
The Primary Actor - Task List Example 50
The Soenatio TaBlE . s v s s s w s s v MR R e B o K & & 5 5 & 56
A Scenario Table Example of Task: Link MRIImageSet. 58
A Use Case Example: Link MRIImageSet. 62
Data Involved in a PDT Treatment 116
Customer Authorities: Case Study 118
User’s Responsibilities and Tasks: Case study 118
System Constraints: Case Study 119
Profiles of Actors: Case Study 121
The Primary Actor-Task List: Case Study 122
The Scenario Table of Task: Enter PatientInfo & TargetInfo 123
The Scenario Table of Task: Link MRIImageSet. 124
The Scenario Table of Task: Define Target. 125
The Scenario Table of Task: Set TreatmentOption. 126
The Scenario Table of Sub Task: Add a TreatmentDevice. 127
The Scenario Table of Task: Do Simulation. 128
The Scenario Table of Task: Generate TreatmentPlanReport. 129
Use Case UC001: Enter PatientInfo & TargetInfo. 131
Use Case UC002: Link MRIImageSet. 132

xiii

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

4.16 Use Case UC003: Define Target. 133
4.17 Use Case UC004: Set TreatmentOption. 134
4.18 Use Case UC005: Add a TreatmentDevice 135
4.19 Use Case UC006: Do Simulation. 136
4.20 Use Case UC007: Generate TreatmentPlanReport 137

Xiv

Chapter 1
Introduction

In software engineering, a software development life cycle (SDLC) contains at least
four phases which are requirements, design, construction and testing. Although there
exist significant differences among various SDLC models, such as Waterfall [72], Spi-
ral [11], Unified Process [50] and Agile [2] etc., all of them start with the requirements
phase. A software requirements specification (SRS) is the deliverable of the require-
ments phase, grounding later development phases.

As the characteristics of different software types vary, such as embedded soft-
ware, safety critical software, scientific computational software etc., we should not
expect to be able to define a uniform approach for developing a SRS that can fit all
types of software. This thesis addresses an approach which not only gives step-by-step
guidance for activities involved in developing a user-centric software SRS, but also
examines the underlying principles of software requirement engineering.

This chapter is organized as follows: Our meaning of user-centric is stated in
section 1.1. Section 1.2 presents the context of this research — the software require-
ments engineering processes. The motivation of this research is presented in section
1.3. The research problem and scope are identified in section 1.4. Section 1.5 sum-
marizes the contributions of this thesis. Finally, section 1.6 presents the organization
of the remainder of the thesis.

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

1.1 Meaning of User-Centric

This section explains what we mean by “user-centric” in different situations.

1.1.1 User-Centric Software

Currently, there is no formal definition of a user-centric software system. In [65], a
user-centric software system is described as an interactive system, where interactive
systems are those that enable users to communicate with them [31].

With the popularity of software applications in the modern world, software
systems with intensive user-computer interactions constitute a fairly large ratio of
the total. Examples include web-based software, office software, accounting software,
payroll software, patient information management software, etc. We define this kind
of software to be user-centric software. User-centric software has the following char-
acteristics.

e Intensive user-computer interactions.
e Oriented to users’ responsibilities or goals.
e Usability sensitive - appropriate interface, easy operation.

e Users’ HCI satisfaction is a priority.

1.1.2 User-Centric Development
According to [29, 38], user-centric development meets the following characteristics.
e The software development team includes some users.

e The user is an equal participant with the developers in making development

decisions.

e The software development team develops the software using an iterative ap-
proach.

e A series of versions or prototypes of the software are developed and delivered
with feedback from users of earlier versions of the software driving development

of later versions.

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

So, in a user-centric development approach, the software system grows iter-
atively and incrementally. Users are continually involved in the process, giving the
developers regular feedback. The development team responds quickly to users’ re-
quests and feedback.

The benefits of user-centric software development are the following.

e The right software is built - usability and appropriate quality ensured.

e Users will be satisfied with the software - user’s satisfaction and acceptance

ensured.

e Frequent communications ease the gap between the development team and the
application domain users.

As a result, instead of having to work in a way that suits the software, users
will have software that lets them work at the way they really want to. Also, users’
involvement let them see their contributions as development progresses. It makes
them enthusiastic about the development and delivery of the system, and reduces
their reluctance to accept and use the system when it goes live.

1.1.3 User-Centric in Our Approach

The requirements phase unavoidably involves various stakeholders, such as customers,
domain experts and users. We advocate user-centric development in our requirement
engineering approach. Although our approach only focuses on the requirements phase,
all the principles of user-centric development are applied.

Specifically, we use the following techniques.

e JRD. Joint Requirements Development originated from JAD!. JRD sessions
are held in a “controlled environment, facilitated by a business analyst, wherein
users participate in discussions to elicited requirements, analyze their details

and uncover cross-functional implications.” [87]

¢l

Joint Application Design/Development (JAD), is a methodology that involves the client or end
user in the design and development of an application, through a succession of collaborative workshops
called JAD sessions. Chuck Morris and Tony Crawford, both of IBM, developed JAD in the late
1970s and began teaching the approach through workshops in 1980.

3

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

JRD Sessions are:

1. Very focused

2. Conducted in a dedicated environment

3. Quickly drive major requirements

4. JRD participants typically include:
- Session leader
- 1 Business analyst or requirements engineer
- Various user types
- 1 Developer

- 1 Domain expert

e Modeling. Different models are used to communicate with users and capture
various levels of requirements, such as the problem context diagram, the scenario

table, the activity diagram and the sequence diagram.

1.2 Context of this Research

A common model of software engineering [28] states that the software development
process involves the following phases: software requirements, preliminary design, de-
tailed design, coding, unit testing, integration testing, system testing, deployment
and maintenance. Specific development approaches, as mentioned earlier, may per-
form the phases differently from the above sequence. However, in all of the software
development approaches, the requirements phase is the foremost one of any software
development activities. A software requirements specification (SRS) is the output of
the requirements phase, describing the desired external behavior of the system to be
built and underlying the later design and testing phases. The theme of our research
is the whole requirements phase covering all the activities related to developing an
SRS.

In software requirements engineering, a common process model of the require-

ments phase consists of the following five processes [81].

o Software Requirements Flicitation. The process through which the analysts
understand the user’s needs and the constraints on the software system. Tech-

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

niques include interviews, questionnaires, conversations, study of domain doc-
uments and use cases [49, 74].

e Software Requirements Analysis. The process of analyzing the user’s needs
to arrive at a definition (solution) of software requirements. Typical analysis
techniques include object-oriented analysis, function-oriented analysis, state-
oriented analysis. Details of these are introduced in almost all software require-
ments engineering books, such as well known ones like [28, 78].

e Specifying Software Requirements. The process of writing a document that pre-
cisely and completely specifies the software requirements of the software system.
This process is based on the results of requirements elicitation and requirements
analysis. Various templates, such as IEEE-830 [44], Volere [69], ESA [15], and
specification languages, such as UML [62], Z [1], Tabular Expressions [66], are
used for documenting the SRS.

e Validating Software Requirements. The process to check and ensure the Soft-
ware Requirements Specification is in compliance with the user’s needs and is
adequate for proceeding to the design phase. Versatile tools and techniques
exist for various kinds of specifications, like the SCR toolset [40], PVS [79], and

formal reviews.

e Managing Software Requirements. The planning and controlling of the require-
ments elicitation, specification, analysis, validation and verification activities.

The use of the term “engineering” for the software requirements phase im-
plies that systematic, efficient and iterative techniques should be applied to ensure
that software requirements are complete, consistent, correct and reusable. In our re-
search, each of the processes mentioned above shall be developed using an engineering
approach to improve the likelihood of developing a high quality SRS.

1.3 DMotivation of Research

A software requirements engineering approach and resulting software requirements
specification not only provide a basis for subsequent development phases, but pro-
vides the basis also for the success of the whole project. For example, the London

5

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Ambulance Service Dispatch System closed down in 1992 after only two days of oper-
ation. This well known system failure was caused by poor requirements engineering
— “poor requirements analysis within the social domain” [80]. Another failed project,
Performing Rights Society PROMS, was abandoned in 1992 after £11 millon was
spent. It was reported that they failed to set out the requirements in a form that
could be understood and checked by ordinary people and the specifications were ill-
conceived [13]. A good requirements engineering approach and high quality SRS are
essential to guarantee the success of a software project.

Moreover, some industrial software systems must be validated or certified to
meet certain regulations, guidelines, or standards before they can be used. For ex-
ample, FDA General Principles of Software Validation [35] is for medical software,
and Software Considerations in Airborne Systems and Equipment Certification [73]
for avionic software.

As stated previously, user-centric software systems account for a large pro-
portion of the total number of systems in use, and our literature review did not
unearth any detailed engineering oriented processes aimed at developing an SRS for
this kind of software. This provided our inspiration to develop a practical approach
for developing a high quality SRS for user-centric software.

1.4 Research Problem and Scope

The following questions drove our research.
1. What activities are included in each process?
2. What are the principles in all of the activities?

3. How do we ensure we produce a high quality user-centric software requirements

specification?
To solve the research problem we conducted the following activities:
— We reviewed the literature about software requirements engineering approaches.

— We developed the elicitation process according to the characteristics of user-

centric software.

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

— We evolved the analysis process from different object-oriented analysis methods.
— We suggested a tailored SRS template based on the IEEE 830-1998 template.
— We developed a three-level validation process.

— We exposed the principles of all activities.

— We built a systematic engineering approach for the requirements phase.

— We applied our approach to a case study to show the applicability of our ideas.

1.5 Contribution of this Thesis

This thesis provides a practical and systematic software requirements engineering

approach for developing user-centric software requirements specifications.
— We clarified some basic concepts in software requirements engineering.

— We advocated a user-centric development method that ensures that the right

software system is built.

— We built a problem domain decomposition/composition model during the elic-
itation process which provides a technique to thoroughly understand the prob-

lem.
— We developed a scenario table model to capture user requirements.
— We developed a systematic process to seek classes and their relationships.
— We defined the boundary class without restricting thé design choices.

— We proposed a class specification template to document functional require-
ments.

— We determined and documented the guidance of all activities.

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

1.6 Thesis Structure

The remainder of this thesis is organized as follows.

Chapter 2 presents an overview of software requirements engineering, where
key concepts are clarified and some typical requirements engineering approaches are
introduced.

Chapter 3 and Chapter 4 constitute the key part of this thesis. Chapter 3
states the approach we developed. Each process is refined into operable activities, and
underlying rationale and guidance are developed. Chapter 4 shows the application of
our approach - a case study of a photodynamic therapy treatment planning software
system.

Chapter 5 presents the conclusion of this thesis as well as recommendations
for future work.

Two appendices are included. Appendix A presents the tailored SRS template
with explanation of each subsection. Appendix B is the partial SRS of a case study.

Chapter 2

Overview of Software

Requirements Engineering

This overview focuses on the clarification of concepts involved in software require-
ments engineering and introduces some typical software requirements engineering
approaches.

2.1 Clarification of Some Concepts

Software requirements engineering is the science and discipline concerned with estab-
lishing and documenting software requirements [81]. A commonly supported process
model of software requirements engineering includes processes of elicitation, analysis,
specification, validation and management, that were already introduced in section
1.2

While people are increasingly realizing the importance of the software require-
ments phase and making efforts to establish good software requirements, they are
sometimes confused by some of the concepts in this area, such as system require-
ments, business requirements, user requirements, software requirements, functional
requirements, non functional requirements etc. In this section, we will present a uni-

fied /consistent set of definitions which are used in our documentation and processes.

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

2.1.1 What is a System?

In the publication of IEEE 1233-1998, a system is defined as “An interdependent
group of people, objects, and procedures constituted to achieve defined objectives or
some operational role by performing specified functions. A complete system includes
all of the associated equipment, facilities, material, computer programs, firmware,
technical documentation, services, and personnel required for operations and support
to the degree necessary for self-sufficient use in its intended environment.”

However, the definition above is the meaning in the large sense [47]. In soft-
ware requirements engineering, the software is focused on. We give a “small sense”
definition in the context of software requirements engineering for user-centric soft-
ware — “A system is a combination of software and the underlying general-purpose
computer.”

In this sense, people and other systems are certainly not included. The func-
tionality of the system is achieved by the software. It is the software that transforms
the computer into a system, which can accomplish the desired purpose. We suppose
that the underlying general-purpose computer always works properly.

When we talk about software or software system, we mean the same thing. It
refers to the software under discussion. The functionality of the system is the same
as the functionality of the software.

2.1.2 What is a Requirement?

In Webster’s Dictionary 1989, requirement is defined as “something required; some-
thing wanted or needed.” In IEEE terminology [43], requirement is defined as: “(1)
A condition or capability needed by a user to solve a problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents. (3) A documented representation of a condition or capability as in (1)
or (2).” Alan Davis [28] describes the concept of requirement to be “A user need
or a necessary feature, function, or attribute of a system that can be sensed from a
position external to that system.” Kotonya and Sommerville [53] define requirement
as “A statement of a system service or constraint”.

The above definitions do not distinguish the differences between the system

10

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

requirements, user requirements and software requirements. In the following para-
graphs, we will clarify the relationships and differences between them.

System Requirements. System requirements describe the behavior of the system
as seen from the outside, for example, by the user [81]. So they are the high-level
requirements that represent the system as a whole, which contains both hardware
and software.

User Requirements. User requirements (also called Stakeholder requirements)
describe the tasks the users must be able to accomplish with the product [86]. Som-

“... abstract requirements

mervile and Sawyer [78] define the user requirements as
describing the system services which people need to use the system and to integrate
it with their business processes.” User requirements are usually captured in use cases
or scenario descriptions.

Apparently the user requirements represent the system’s behavior from the
user’s point of view. As a result, in any pure software case, especially for stand-alone
software systems which will be installed in a general-purpose computer, they could

be regarded as system requirements.

Software requirements. We give the definition of a software requirement as “A
statement of a function or a constraint of the system from the software developer’s
point of view.”

Software requirements consist of all the requirements the software must demon-
strate for the system to meet the user requirements. They are derived from analysis
of user requirements. Software requirements include the so-called functional require-
ments and non-functional requirements, where user interfaces are considered to be
part of functional requirements in our approach.

Functional requirements (behavior requirements) define what the system does,
namely, the functions (actions) of the system. They describe all the inputs and
outputs to and from the system as well as information concerning how the inputs and
outputs interrelate [28].

Non-functional requirements define the constraints of the system as it performs
its functional requirements. They include a description of the system’s usability, reli-

11

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

ability, performance, security, maintainability, portability, implementation, interface,
operations, packaging and legal obligations.

2.1.3 What is a Software Requirements Specification (SRS)

Alan Davis [28] defines “A software requirement specification is a document containing
a complete description of what the software will do without describing how it will do
it.” Another formal definition in [81] states “A software requirements specification is
the document that clearly and precisely describes each of the essential requirements
(functions, performance, design constraints, and quality attributes) of the software
and the external interfaces.”

The above two definitions summarize what an SRS should be. An SRS states
what is to be built, it records the functional requirements, which present what behav-
ior the software system should offer, and non-functional requirements, which describe

the specific constraints on the system.

2.2 Software Requirements Engineering Ap-

proaches

This section briefly introduces the main software requirements engineering approaches
that can be found in the literature. These approaches differ in their analysis methods,
modeling techniques, specification languages, or their combinations of these compo-

nents.

2.2.1 Function-Oriented Analysis Approach

The Function-Oriented Analysis Approach defines the required behavior as a map-
ping from inputs to outputs. The system functionality is decomposed into a function
hierarchy. Each level of the hierarchy adds detail about the processing steps nec-
essary to accomplish the more abstract function in the level above. The function
above controls the processing of its subfunctions. Data flow diagrams (DFD), entity
relationship diagrams (ERD) and data dictionaries are the main modeling techniques
of this approach. The details of a function are defined using a textual specification

12

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

called a “MiniSpec”, in the form of natural language, decision tables, or a procedure
definition language (PDL). Techniques belonging to this approach include Structured
Analysis and Design Technique (SADT) [71], Structured Requirements Definition
(SRD) [63], Structured Analysis and System Specification (SASS) [30], Structured
System Analysis and Design Methodology (SSADM) [33] etc.

As a top-down functional decomposition approach, the resulting solution usu-
ally lacks flexibility and is hard to scale up and extend in the future.

2.2.2 Object-Oriented Analysis Approach

The Object-Oriented Analysis Approach (OOA) originated from Object-Oriented
Programming (OOP) and Object-Oriented Design (OOD), and partitions the sys-
tem into interacting analysis objects which are linked by various relationships. Each
object encapsulates a set of services (also called functions or methods) and a state (a
set of data, a data structure, or attributes). In object-oriented analysis, the analysis
mainly contains the following activities: finding the analysis classes, structuring the
analysis classes, describing interactions among analysis classes, defining services of
analysis classes and defining attributes of analysis classes. The first object-oriented
analysis approach, Object-Oriented Systems Analysis: Modeling the World in Data
(OOSA) [77], adopts the entity-relationship model to capture the domain object rela-
tionships of a software system. Since then, numbers of OOA approaches have emerged
such as Object-Oriented Analysis (OOA) [20], Object-Oriented Modeling and Design
(OMT) [75], Object-Oriented Analysis and Design with Applications (OOAD) [12]
and Object-Oriented Software Engineering (OOSE) [49], which support both the
declarative and interactive modeling of a software system. In particular we note that,
OOSE invented the use case technique.

Today, one of the market leading approaches is the Unified Process (UP) [50],
which is roughly a convergence of [10, 12, 49]. Also, the Unified Modeling Language
(UML) [62], which consists of a set of dynamic and static models, is gradually stan-
dardizing the modeling techniques used in the OOA world.

However, the OOA techniques of UP are deeply influenced by software de-
sign. The control classes introduced actually model internal aspects of a software
application.

13

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

2.2.3 Goal-Oriented Approach

Goal-Oriented requirements engineering is concerned with the use of goals for elic-
iting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements [83]. A goal is an objective the system should achieve. Once
a preliminary set of goals is obtained and validated by stakeholders, many other goals
can be identified by AND/OR refinement and by abstraction, just by asking HOW and
WHY questions about the available goals, respectively. The refinements stop until
subgoals can be assigned to individual agents! in the system, and in the environment.
Lowest level goals become requirements in the former case, and expectations in the
latter. A number of papers describe the detailed modeling techniques and tools used
in goal based requirements engineering, see 5, 27, 59, 82]. One merit of this approach
is that non-functional requirements are apparently analyzed and transformed into

goals.

2.2.4 Problem Frames Approach

Jackson advocates a different methodology to develop requirements and specifications
[47, 48]. In this approach, a problem is decomposed into sub problems. Each sub
problem is a projection of the whole problem and should fit a certain problem frame.
A problem frame is a kind of pattern that captures and defines a commonly found
type of simple sub problem. There are five basic problem frames: required behavior
frame, command behavior frame, information display frame, simple workpieces frame,
and transformation frame. A key component of this approach is the problem diagram
which contains both the problem context and related requirements. This approach
focuses upon the problem domain; it is a return to what might be considered old-
fashioned practice [13].

Moreover, there exist dozens of other approaches and supported specifica-
tion languages such as state-oriented approaches (Z, VDM, and Petri Net), the
software cost reduction (SCR) approach (SCR tables) [40], viewpoint-oriented ap-
proach [53], agent-oriented approach, volere requirements approach (a require-

1

Agent : a human, device or system component. A system agent is a part of the system being
modeled. An environmental agent is a part of the system environment.

14

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

ments shell) etc. Also, there are several tools that support requirements cap-
ture and traceability, such as DOORS/ERS (Telelogic), Analyst PRO (Goda
Software), and Rational RequisitePro (IBM Rational). Most modeling nota-
tions and specification languages have tool support. A requirements tools sur-
vey is located in http://www.volere.co.uk/tools.htm. Lastly, a large bibliogra-
phy of requirements engineering is maintained by Alan Davis at his website:
http://web.uccs.edu/adavis/UCCS /index.htm.

15

Chapter 3

A Practical Approach

This chapter explains the approach we developed. Firstly, a whole picture is given to
demonstrate the approach. Then various processes and steps are elaborated on.

3.1 An Overview of the Approach

The approach we developed includes the well-recognized software requirements en-
gineering processes: Requirements Elicitation , Requirements Analysis, Software Re-
quirements Specification and Requirements Validation. While we put much attention
on the characteristics of user-centric software, we also based our approach on solid
underlying principles and rationale derived from the literature.

At the elicitation stage, the system user’s responsibilities are refined into user
tasks, and then scenarios fulfilling these tasks are explored and eventually captured
into use cases, which form the user requirements. During the analysis stage, through
analyzing each use case, the required functionality and behavior of the system are
allocated into different functional parts of the system - analysis classes, which consist
of domain classes and application (boundary) classes. The specification process uses
the results of the elicitation process and analysis process, to specify the functional
requirements and system constraints (non-functional requirements) in the form of a
software requirements specification. The validation process embraces a number of
steps to ensure that all the user requirements and constraints have been accurately
captured and documented. Validation can occur during or after the other processes.

16

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

The approach we developed is systematic, incremental and iterative. It has
somehow a style similar to UP (Unified Process) [50] although it just covers the
requirements phase. Figure 3.1 and Figure 3.2 are two views of the approach.

Domain Documents
Research Results
Observation Records
Interviews

Background
Description

Current Situation
User Responsibilities
& Tacke Problem Context], [System Context [Primery e
Elicitation +»|" 2 ystem Conte rimary Actor-
[Vision st it | [Diagram (PCD) || Diagram (SCD) Task list

General System
Constraints

Activity Domain Class
Diagrams Model

Sequence Boundary Class
Diagrams Model

Specification

| i ,

Software Formal Review Storyboards of Use| Simple Checks of
Prototypes Results Cases and Results Scenarios and Results

Validation

Figure 3.1: Artifacts View of the Approach

3.2 Requirements Elicitation

Software Requirement Elicitation is an essential process of Software Requirement
Engineering. It is perhaps the most difficult, most critical, most error-prone, and most
communication-intensive aspect of software development [86]. Eliciting requirements
is about finding the real needs for the system [14]. We gather understanding of

LT

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

Validation

;1:%
i
o
s
o
-
a,
<
. =
555 o
E) : <
g 0 E- 3
s |§ W | :
9 < i E 8
w 35 g %
g i 8
E§§E Egs 5 8
énggsgggigg 6::
M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

the future system and captured in use cases. The users validate the use cases typically
by reviewing the scenarios or by testing small prototypes.

Elicitation Process Steps:

1. Gather understanding of the problem description.
2. Find the system boundary.

3. Identify actors.

4. Specify primary actor’s tasks.

5. Specify use cases.

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

problem descriptions by studying the user’s environment and domain documentation,
discovering the functionality of any existing systems, and interviewing users.

User-Centric

Most systems are designed to be used by people. This is especially true for user-centric
software applications, in which the human/computer interface is extremely important.
Each user type has some responsibilities for using the system. Correspondingly, the
system must provide some services for a user type to fulfill its responsibilities. All
such services provided by the system constitute the functionality of the system. So,
we focus on studying what responsibilities each user type has and what behavior the
system shall provide when each user type uses the system.

The results are specified in use cases (introduced in the next paragraph) as
user requirements. Use cases identify the functionality of a system from the users’
point of view.

Scenarios-Based

The customers and users are experts in their domain and have a general idea of what
the system should do, but they often have little experience in software development.
On the other hand, developers have experience in building systems, but often have
little knowledge of the environment of the users.

Scenarios were designed to bridge this gap. A scenario is “a narrative descrip-
tion of what people do and experience as they try to make use of computer systems
and applications” [18]. A scenario describes an example of system use in terms of a
series of interactions between the user and the system. For many years, this technique
has been used by analysts to help elicit requirements [56]. In 1992, Ivar Jacobson
invented the use-case approach for object-oriented software engineering [49], which
gave an informal definition of scenario-usage. A use case is an abstraction that de-
scribes a collection of scenarios for a primary actor to fulfill a goal or task using the
system.

We elicit requirements by observing and interviewing users. We start by rep-
resenting the user’s current work process (work-flow) through as-is scenarios. After
that we develop additional scenarios describing the functionality to be provided by

19

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

the future system and captured in use cases. The users validate the use cases typically
by reviewing the scenarios or by testing small prototypes.

Elicitation Process Steps:

1. Gather understanding of the problem description.
2. Find the system boundary.

3. Identify actors.

4. Specify primary actor’s tasks.

5. Specify use cases.

Use cases are the outputs of the elicitation process as user requirements, and in a
complete model, the use cases partition the functionality of the system and they may
be properly organized according to functionality. Figure 3.3 indicates the input and

output of the elicitation process.

——Problem descriptio Elicitation User requirements—»

Figure 3.3: Elicitation Process

3.2.1 Gather Understanding of the Problem Description

Normally, we are not experts in the problem area for which our software systems
provide solutions, so the first thing we must do is to become familiar with the prob-
lem area to understand the processes for the given field and to understand how our
software should facilitate those processes.

During this step, considerable expansion of information and knowledge about
the problem are collected, including all the constraints on the problem’s solution. An
understanding of problem description is an output of this step.

20

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

What Is a Problem?

Generally speaking, a problem is a state of difficulty that needs to be resolved or a
question raised for consideration or solution. A useful definition of problem comes
from Gause and Weinberg, “A problem is the difference between things as perceived
and things as desired” [36].

What Is a Software Development Problem?

In software development, a software development problem refers to any problem that
needs to be resolved by creating the software for a computer system that will serve
some useful purpose in the world. Software development problems are about the real
world where the system must have its effect.

What Is a Domain?

In dictionaries, domain has many definitions like “A particular environment”, “A
territory over which rule or control is exercised”, “People in general; especially a
distinctive group of people with some shared interest.”

In their book Object Life Cycles, Sally Shlaer and Stephen Mellor define do-
main in a different way: “In building a typical large software system, the analyst
generally has to deal with a number of distinctly different subject matters, or do-
mains. Each domain can be thought of as a separate world inhabited by its own
conceptual entities or objects” [57].

Our preference is Michael Jackson’s definition of domain: “A particular part of
the world that can be distinguished because it is conveniently considered as a whole,
and can be considered - to some extent - separately from other parts of the world.”
[47]

What Is a Problem Domain?

A problem domain is a domain that is directly related to the problem. In a software
development problem, the problem domain is what is given, while the system is what
is to be built. The system provides a solution to the problem by interacting in some
way with the problem domain.

21

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

A domain can be decomposed into sub domains, further, a sub domain can
be decomposed into its sub domains and so on. A part of the problem domain is a
problem sub domain, which can be a person, a system, a device, an organization, or
a physical representation of some related information (a set of data).

In a traditional context diagram, we typically restrict our attention to what
we call the environment of the system - all the problem sub domains that are directly
connected with the system. So, a problem domain is more than the environment of
the system to be built. It includes all the relevant parts of the problem.

In short, the environment just consists of something that physically surrounds
the system, whereas the problem domain includes all the related parts of the world in
which the customers are interested. This can include people, other systems, devices,
company’s products, buildings, intangible things like graphics images or timetables
or employment payscales, and absolutely anything else that will interact with the
system or furnish the subject matter of its computations [47]. To understand the
problem, we need to explore the whole problem domain.

What Are Phenomena?

The Cambridge Advanced Learner’s Dictionary defines phenomena as “something
that exists and can be seen, felt, tasted, etc., especially something which is unusual
or interesting”. So, phenomena are any entities, relations, states or processes known
through the senses rather than by intuition or reasoning. In other words, phenomena
are what appear to exist when you observe the world or part of the world. The
subject of study of phenomena is called phenomenology, which makes a contrast with
ontology, which is about what really, truly, fundamentally, and objectively exists,
independently of our perceptions and observations.

As software developers, to understand the problem, we need to capture all the
existing phenomena of the problem and the desired phenomena of the system. We
do not need to disclose the real essence of the phenomena - we deal with them as we
experience them, as they appear to customers and users.

Meanwhile, rather than using the elaborate phenomenology, we want a simple
phenomenology. So, we limit ourselves to three kinds of individuals (events, entities
and values) and three kinds of relations (states, truths, and roles). An individual is
something that can be named and reliably distinguished from other individuals. The

22

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

distinguishability of individuals relies on our purpose of analyzing the problem. So,
individuals may be any things we choose, as long as they can be distinguished one
from another for our purpose. A relation is a set of associations among individuals.
A relation consists of some number of tuples.

The various individuals and relations are defined below [48].

e Event. An event is an individual happening, taking place at some particular
point in time. Each event is indivisible and instantaneous. It is a phenomenon
located at a single point in space-time, which follows and is caused by some
previous phenomenon.

e Entity. An entity is an individual that persists over time and can change its
properties and states from one point in time to another, and it is perceived or

known or inferred to have its own distinct existence.

e Value. A walue is an intangible individual that exists outside time and space,
and is not subject to change. We are interested in those values like numbers
and characters, represented by symbols. A range is a pair of values.

e State. A state is a relation among individual entities and values; it can change
over time. We often use state in place of tuple. We say a state holds (is true)
or doesn’t hold (is false).

e Truth. A truth is a relation among individuals that cannot possibly change
over time. The related individuals are always values and the truth expresses a
mathematical fact, such as LengthOf (“ABCDE”, 5).

e Role. A role is a relation between an event and individuals that participate in
it in a particular way.
What Is a User’s Responsibility?

A user’s responsibility is something a system user must do because of prior agreement.
Each responsibility of a user type is a collection and summary of a user’s tasks when
using the system.

23

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

What Is a Task.

A task is a piece of work that needs to be done regularly [45]. It is a part of a set of
actions which accomplish a job, problem or assignment.

What Is Included in the Understanding of Problem Description?

Understanding of Problem Description (UPD) are the abstract but explicit statements
of the problem to be solved in a way that is familiar to people with experience in
the problem domain. It describes the problem and the requirements at a high level.
It includes the current situation, a vision statement, user responsibilities, system
constraints, a glossary and the problem context diagram. Some part of the UPD are
eventually transferred into SRS, such as the glossary.

Current Situation describes the current state of affairs. It describes how
the responsibilities (tasks) of users supported by the new system are accomplished at
the current time.

Vision Statement summarizes what the system is expected to accomplish.
It should explain what the purpose of the system is and what the system should
ultimately become.

User Responsibilities and Customer Authorities. Each user type has a
set of responsibilities when it uses the system. To fulfill its responsibilities, it performs
some tasks which are eventually represented as use cases. At the earlier requirements
stage, each user type’s responsibilities are identified through interviews, as well as the
user tasks that are needed to fulfill each user’s responsibility.

Customers’ authorities are identified also. The customers of the system have
limited authorities when they want to use the system. The system should be built
so that customers cannot access functionality of the system that is beyond their
authorities.

System Constraints, also known as non-functional requirements, are con-
straints the system must obey when the system performs its services (i.e. imple-
ments the functional requirements). Non-functional requirements involve consider-
ations such as usability, reliability, performance, maintainability, implementation,
interface, legal requirements, etc.

As in most cases, system constraints are associated with a particular user

24

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

task, such as performance requirements (e.g. response time for an action), and they
can be explored during the use task exploration. Some more generic constraints
like reliability (e.g. mean time between failures), political and legal constraints (e.g.
certification) can be examined in earlier stage. Table 3.1 (revised from [14]) is used
as a general guide to find system constraints.

Category Guide Questions
Usability What is the level of expertise of the user?
What user interfaces are familiar to the user?
Reliability (including How available and robust should the system be?
robustness, safety and How should the system handle the exceptions?
security) What encryption levels are needed over internet?
How much data can the system lose?
Performance How responsive should the system be?

Are any user tasks time critical?
How many concurrent users should it support?

Maintainability Who maintains the system?
What efforts needed to maintain or enhance the system?
Portability Does the system have the ability to easily move to different

hardware platforms, operating systems, database management
systems, network protocols?

Implementation Are there constraints on the hardware system?

Are there constraints on the programming language?

Are there constraints imposed by the maintenance team?

Interface Should the system interact with any other existing system?
How are data exported/imported into the system?
Operation Who manages the running system?
Packaging Who installs the system?
Are there time constraints on the installation?
Legal How should the system be licensed?

Table 3.1: Guidance for Finding System Constraints

Glossary (Data dictionary) contains both a domain glossary and any other
terms or abbreviations used in the specification. A glossary de-mystifies the jargon for
anyone examining the document. Each entry in the glossary defines a term. Terms
with the form of concatenation of several words denote that they are used by the
system, such as an MRIImageSet. If a term is a data structure, the including data
items are enclosed in parentheses and are separated by commas, such as MRIImage-
Set(Name, SliceNumber, MRIImages). We use plural to denote a collection and [i

25

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

to denote the ™" element of a collection, such as MRIImages[1].

The analysts and developers should keep the glossary up to date as the re-
quirements specification evolves.

Problem Context Diagram is a diagram that structures the world into the
system domain, and the problem domain (which includes problem sub domains), and
shows how they are connected. It is not limited to the parts of the world that are
directly connected to the system. A problem context diagram shows what the real
world will be when the system is running.

3.2.1.1 Study of Documents and Existing Software Systems

Studying documentation on the problem domain should be done as early as possible,

and the resources may come from:
e A good introductory book suggested by customers.

e Organization documents including work procedures, job descriptions, policy
manuals and business plans.

e Domain journals and reference books.

e Documents that describe current or competing systems.

3.2.1.2 Further Analysis of the Problem Domain

Once we have some basic knowledge in the problem area, we can begin typical tasks
such as the following:

e Build a domain glossary. To facilitate clear communication, we should capture

the significant terms in a glossary.
e Understand the underlying problem goals.

e Identify different types of users and corresponding representatives, and charac-

teristics.

e Identify decision makers for the project.

26

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Topic Questions ‘When Who Times
Vision Vision for the system Start of A representative |l..n
Alternative minimally acceptable solution project from each user
Other source of information type
System constraints
User responsibilities | Responsibilities of each user type Start of A representative |1..n
and customer Authorities of customers project from each user
authorities Tasks needed to achieve each users type’s type

responsibilities

Task workshop Work-flows (Scenarios) of each task (how After capture |Representatives 1.8
they do now, how they desire with the new |primary from related user
system) actor-task list |types

Use case validation Does each use case correctly capture After initial |Representatives l.n
corresponding user task? sketch of use |from related user

cases. types

Table 3.2: Typical Structured Meetings

3.2.1.3 Interviewing Users Effectively

Elicitation can succeed only through an effective customer (user)-analyst (developer)
partnership. As stated in Chapter 1, we advocate the joint requirements development
(JRD) method. However, various interview forms also are suggested at the beginning
of a project. After we have mastered some domain knowledge, we can arrange in-
terviews with the customers and users, because customers and users are the best
source of information about the problem domain. Interviews are the primary tech-
nique of fact finding and information gathering. Specifically, we may use the following
approach:

e Structured meeting but open-ended questions recommended.

e Core meetings/requirements workshops suggested. Table 3.2 lists some typical
meetings.

e Specific details for any issue: five w’s - what, who, when, where and why.

e Pre-determined open-ended questions in the first meeting: What do you believe
the application must do to be effective? What are the most important aspects
of the problem domain? What are the processes now?

e Review with interviewees the items discussed.

27

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Elicitation is a highly collaborative process, not just a recording of what cus-
tomers and users say they need. We must probe beneath the surface of the require-
ments the customers present to understand their true needs. So open-ended questions
are recommended to help us better understand the user’s current scenarios and to see
how the new system could serve.

User tasks and corresponding scenarios are a very important part in the elic-
itation process. Suggested questions in this part could be “What are your responsi-
bilities for using the system? To fulfil your responsibilities, what tasks do you need
to perform with the system?” Also, we should never neglect variations in the user
tasks that might be encountered or ways that other possible users might need to use
the system. Further, inquire about exceptions: what could prevent the user from
successfully completing a task? How does the user think the system should respond
to error conditions? Last but not least, discuss with the users the interactions and
dialogues between the users and the system that they hope to complete each task.
We will discuss the detailed process of task specification in later sections.

3.2.1.4 Observation of Users at Work

In most circumstances, it is difficult to obtain complete information about the prob-
lem description through interviews and the methods above. The customers may just
convey fragmentary knowledge of a complete working process. In such a case, obser-
vation may be an effective fact-finding technique.

Observation has generally three forms [55]: passive observation, active obser-
vation and explanatory observation. In a passive observation, the analyst observes
the user’s activities without interruption, whereas, in an active observation, the an-
alyst directly takes part in the users’ team. In an explanatory observation, the user
explains his or her activities to the analyst while doing the job.

As different people tend to behave differently even when following formal rules
and procedures, we ought to abstract and generalize their activities and ensure that
the requirements captured apply to the user type as a whole.

28

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

3.2.1.5 Capturing the Understanding of Problem Description

In a project, when the above steps are carried out and initial information is gathered,
we can begin to specify our understanding of the problem description. The following
is partial initial information about a photodynamic therapy (PDT) treatment planning
software problem, which we use as an example throughout our approach.

Vision of the system: Treatment planning software is required for simulating
treatment of cancer patients (e.g. prostate cancel patients) and for producing treat-
ment plans for them. For each patient, the baseline MRI images will be loaded into
the system and the important structures will be defined (e.g. prostate, rectum and
urethra for prostate patients). Then, a virtual array of treatment devices (e.g. cylin-
drically diffusing optical fibers) is added to the virtual target volume (e.g. prostate).
Once a set of treatment parameters (e.g. device numbers, energy etc.) is defined, the
light dose distribution both inside the target volume and in its surroundings can be
calculated by the software and the calculated results can also be visualized by super-
imposing the treatment effect onto the MRI images. Being iteratively changed, a set
of treatment parameters is determined until an acceptable balance between efficacy
and safety is achieved.

In this example, we have the hospital as the customer and a radiologist as a
user type. Tables 3.3 and 3.4 demonstrate their authorities and responsibilities.

Customer Authorities
Hospital Run the software for treatment planning for patients

Table 3.3: Customer’s Authorities

User Responsibilities Tasks
Radiologist Ensure the correct target Enter PatientInfo & TargetInfo
definition Link MRIImageSet
Define Target

Table 3.4: User’s Responsibilities and Tasks

3.2.1.6 Draw a Problem Context Diagram

As mentioned above, a problem context diagram (PCD) is a part of the UPD. We
separate this subsection because it includes additional information that needs to be

29

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

clarified.

Most people directly draw a system context diagram at the very beginning
of the requirements stage. How do they obtain it? Probably it is a result of rules
of thumb; they focus on only the system itself and its surroundings. How can the
surroundings be found? They may say by exploring the requirements. They never
show the process of how to draw a system context diagram - we will, with the usage
of the problem context diagram.

Another question is, how about other relevant parts of the problem that are
not directly connected with the system? For example, in the treatment planning
software, the patients are not directly connected with the system. Do we need to care
about them?

The answer is “yes”. Showing all the relevant parts of a problem indicates that
we have really understood the problem. At the requirements phase, our objective is
to understand the problem, that is, to identify the problem, and then we analyze it
and try to get a definition of a solution. Those parts not directly connected with
the system also contain the necessary information to solve the problem, e.g., the
patient name shall be related to a specific treatment plan, and thus they should not
be omitted. So, at the early requirements stage we put emphasis on identifying the
problem completely, and capturing it visually in a problem context diagram to show
our understanding.

When we set about analyzing and structuring a problem, it is fundamental to
determine what it is about - that is, where the problem is located, and what parts of
the world it concerns. After we have done some research, studies, and initial interviews
with users and captured the vision statement and users responsibilities and tasks, we
record what we find from various descriptions of the problem into a problem context
diagram. Based on the knowledge and information already developed, an analyst
examines the various parts in the problem domain. These parts (called problem sub
domains) form the context into which the planned system must fit. Then the analyst
determines how the system will fit into this context. The result of this is a context
diagram showing the vision of the problem context with the system installed in it.
So, a problem context diagram locates the problem in the physical world. It identifies
all the relevant parts of the world and abstracts the understanding of the problem.

It is an iterative process to draw a problem context diagram. As the elicitation

30

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

activities go forward, the sub domains may be added, composed, or decomposed to
reach an understandable level.

Decomposition of a (Sub) Domain

A domain can be divided into sub domains; further a sub domain can be divided
into its own sub domains, and so on. The decomposition is based on our desire
for abstraction. Figure 3.4 demonstrates the basic rules of domain decomposition.
Any decomposition can be carried out by these two kinds of decompositions, or a
combination of them.

S

@)

I
|
I
1
I
|
sp S |
I
|
|
I
I

(a) Domain Decomposition

S Super domain

sp Interface of super domain

Sa, S, ... Sub domains, where S=Sa U Sb ...
spa,spb,... SubInterfaces, where sp=spa U spb...

Figure 3.4: Domain Decomposition Rules

In Figure 3.4 (a), a super domain S is decomposed into a finite number of
sub domains Sa, Sb, ..., and its interface sp (a set of shared phenomena: events,
states and values) with other (sub) domain(s) is decomposed into interfaces of its sub
domains, where S = SalJSb..., sp = spalJspblJ.... The sub interfaces must be
mutually disjoint; in case that they are not, further interface decompositions should

be performed according to the rules in Figure 3.4 (b), and some sub interfaces are

31

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

shared by two or more sub domains. Also, internal interfaces between sub domains
may be derived, because the super domain S itself is something that, as a whole, can
be separated from others, and we expect that there may exist some cohesion among
its sub domains. For example, a company super domain may be decomposed into
a sales department sub domain, accounting department sub domain and a supply
department sub domain etc., and the sales department has an inner connection with
the accounting department.

In Figure 3.4 (b), the interface sp of a super domain S is decom-
posed into a finite number of sub interfaces spa, spb, ..., where sp =
spal)spblJ..., and spa[)spb()... = @. For example, when the company domain
interacts with the outside world, its interface may be divided into customer contact
interface, supplier interface, bank interface etc.

Figure 3.5 shows the decomposition of a company domain, in which the cus-
tomer contact interface belongs to the sales department. Further, the customer con-
tact interface of the sales department can be divided into a web interface and a
telephone interface.

Supplier Supply
terfac Dept.
ank Accounting
Interfac Dept.

Company

Sales Dept.

Figure 3.5: Domain Decomposition: a Company

To simplify the notation, we will not give extra notation for concurrent shared

phenomena of an interface. We focus on the existence of shared phenomena. However,
22

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

plural is used in case there is more than one instance of sub domains at any particular
point of time in the problem.

Composition of Sub Domains

The composition of sub domains follows exactly the reverse rules of the decomposition,
and likewise, the definitions of composition of sub domains are similar as well. We
define a super domain S as a composition of sub domains Sa, Sb, ... such that
S = SalySbly, ... and sp = spalJ spblJ

As needed, a problem context diagram can have levels through (sub) domain-
decomposition and composition. The higher level problem context diagram shows the
overview of the lower level problem context diagrams. Especially when a problem has
many sub domains, the abstract level of the problem context diagram will be helpful
in understanding the whole picture of the problem.

Top Level Problem Context Diagram.

The problem context diagram contains both the system and the problem domain, and
shows how they are connected: that is, their interface(s). Figure 3.6 is a top level
problem context diagram. The system and problem domain communicate or interact

Problem
Domain

sp:Interface, a set of shared phenomena

e

Figure 3.6: Top Level Problem Context Diagram

only at their interfaces. Interfaces are not dataflow or messages. At this early stage,
we discuss the real world problem with our customers. We do not want to assume
that all communications are of the dataflow kind, we will think in more general terms
- that inter-actions between (sub) domains are shared phenomena, which include
shared events, shared states and shared values.

33

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Only through the communication or interaction with the problem domain,
namely, sensing and affecting it, can the system fulfill its purpose. In Figure 3.6,
the overlapping part of the system and problem domain is the hand-shaking area sp,
which is the interface between the system and the problem domain. This interface is
where the system and the problem domain meet and interact. It is a set of shared
phenomena in which both the system and the problem domain participate.

First-Decomposition Level Problem Context Diagram.

In a First-Decomposition Level problem context diagram, the problem domain is
decomposed into problem sub domains. In most cases, this level is detailed enough for
us to understand the problem, otherwise it can be further decomposed. Each problem
sub domain will have its own context diagram accordingly, which is a fragment of the
whole. We will omit “First-Decomposition Level” from here on, because this level
is our primary interest. When we talk about a problem context diagram, we always
mean this level.

A problem context diagram captures all the relevant parts of the world and
their connections and shows the problem world as it will be when the system is in
operation. It structures the world into a system domain, problem sub domains, and
shows the interfaces between them: that is, how the system domain is connected to
problem sub domains and how problem sub domains are connected to each other.
Figure 3.7 shows what a problem context diagram looks like. The union of inter-
faces between the system and the problem sub domains constitutes the interface
between the system and the whole problem domain, sp in the top level problem con-
text diagram. In Figure 3.8, a further-decomposition level problem context diagram
is illustrated, where the sub domain B in Figure 3.7 is decomposed to produce its own
context diagram as a fragment of the whole problem context diagram. Moreover, for
the UHN treatment planning software problem example, a problem context diagram
is illustrated in Figure 3.9.

Definitions inside the Problem Context Diagram

In the following few paragraphs, we will clarify some definitions that are based on the
original concepts of Michael Jackson [47, 48].

34

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

Problem
sub domain A

| Problem I
sub domain Bl

System spb

@ Problem ‘
P subdomainD

sp=spa U spb U spc

Figure 3.7: First-Decomposition Level Problem Context Diagram

System domain is the system under discussion. It consists of the software to be
developed, and underlying general-purpose hardware and operating system.
Problem sub domains consist of all parts of the world where the problem is related
at a fairly abstract level. Each part of the problem domain is a problem sub domain.
A problem sub domain can be people, a system, a device, an organization, or a
physical representation of some information (a set of data). There are two kinds of
problem sub domains:

e A Data Sub Domain (“designed” sub domain as denoted by M. Jackson) is the
physical representation of some information, for example, on a magnetic stripe
card, or on a floppy disk or on a hard disk, or even on a screen or in printed
output. You are free to design and specify its data structure and, to some
extent, its data content during the software design stage which follows after the
requirements stage.

e An Entity Sub Domain (“given” sub domain as denoted by M. Jackson) is a
problem sub domain whose properties are given, that is, you are not free to
design the domain. In some of them you can affect their behavior or state by

35

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

g

Problem
Sub Domain B

B=B1UB2UB3

spb=spb1 Uspb2 Uspb3

spd =spd1 Uspd2

spba: an inner interface between B2 and B3

Figure 3.8: Further-Decomposition Level Problem Context Diagram

designing the system appropriately, e.g. the printer; some of the others cannot
be affected by the system (e.g. patients).

All the problem sub domains in the problem context diagram are physical, they
exist (e.g. patients) or will exist (e.g. treatment plan report). They identify the
parts of the world in which the customer will check for observable effects. Problem
sub domains are communicable or operable. Showing a sub domain as a data sub
domain means that you will have the responsibility for doing the design work and the
freedom that comes from being able to make design decisions in the later software
development stage. For an entity sub domain you will not have that freedom, and
your responsibility will just be to investigate and describe its properties and behavior,
rather than developing a design.

An interface is a set of shared phenomena. The system domain and problem sub
domains are physical, and the interfaces between them are physical. Interface is an
area where (sub) domains connect and communicate. It is a place where (sub) do-
mains partially overlap, so that the phenomena in the interface are shared phenomena
- they exist in both of the overlapping (sub) domains. In a shared event, both of the
sharing (sub) domains participate, but only one of them can cause it. In a shared
state or value, both of the sharing participants can see the state or value, but only

36

M.A.Sc. Thesis -

Software System

spb: MI!

spc: TPSS!
spd: TPSS!
spe: TPSS!

spf: TPSS!
spg: TPSS!
sph: PA!

spi: PA!
spj: WVS!

Treatment Planning

Hongging Sun

lTarget
| Definition

{EnterPatientinfo &Targetinfo,
LinkMRIImageSet, DefineTarget,
SetTreatmentOption, DoSimulation,
GenerateTreatmentPlanReport}

{MRIlImageSet}

{Targetinfo, AdjacentTissuelnfo}

{Un-selected TreatmentOptions}

{Selected TreatmentOption,

Patientinfo,

Targetinfo

(Name, AbsorptionCoeff, ScatteringCoeff, ThresholdDose)}
{LightDose Of Selected TreatmentOption,
SimulationResultimageSet Of Selected TreatmentOption,}
{LightDose of Un-selected TreatmentOptions,
SimulationResultimageSet of Un-selected TreatmentOptions})
{TargetStructure}

{Patientinfo(Name, PhysicianName), Targetinfo(Name)}
{Targetinfo(AbsorptionCoeff, ScatteringCoeff, ThresholdDose)}

T

McMaster - Computing and Software

Working Value
Spreadsheet |

Patient

set of shared
phenomena

System domain
Problem entity

sub domain

Problem data
sub domain

Interface

Controlling

Figure 3.9: Treatment Planning Software Problem Context Diagram

one of them can change or determine it.

At this early stage of software development, we use shared phenomena con-
cepts rather than input/output in that we try to use the natural or domain language
to describe the connections (interactions) among the parts of the problem world.
Moreover, not all the phenomena of the problem domain are data flows, but we need

to capture all of them to understand the problem.

Non Directly-Connected Problem Sub Domains

As we discussed at the beginning of this subsection, a problem context diagram also
should contain the problem sub domains that are not directly connected with the

37

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

system, such as patient in Figure 3.9. We call them NDC (Non Directly-Connected)
problem sub domains. Similarly, those directly connected with the system are called
DC problem sub domains. We also mentioned that NDC sub domains are necessary
parts to solve the problem (the patient name example). Usually, NDC sub domains
connect with DC sub domains (Connections between NDC sub domains are possible).

In a problem context diagram, the shared phenomena are actually abstractions
of behavior and information of related (sub) domains. The shared phenomena between
the NDC sub domains and DC sub domains are physically transformed into the system
through the DC sub domains. For example, in Figure 3.9, the Name of Patient
is transformed into input data of the system through the User’s Enter PatientInfo
& TargetInfo event. All the shared phenomena in a problem context diagram are
necessary to solve the problem. They are eventually abstracted in the system either
by functions or by data.

So, the NDC problem sub domains are also important parts to understand a
problem. They contain the behavior and data that the system should be aware of to
solve the problem, which are transformed by their connected DC sub domains and
abstracted by the system.

Problem Domain Decomposition Rules

To draw a problem context diagram, the first step is to structure and separate the
problem domain into a number of sub domains: a number of distinctly different
subject matters - that is, the internal properties and behavior (phenomena) of each
sub domain must be largely independent [47]. To some extent this decomposition
can be done intuitively, dividing the problem domain along obvious lines suggested
by the problem and the context. We give guidance for the decomposition as follows:

e A little theory [48]: The principle of problem domain relevance: everything
that is relevant to the requirements must appear in some part of the problem

domain.

e A set of data that can be talked about and grouped together are composed into
a Data Sub Domain (e.g. in an online shop problem, all the goods selected by
a customer can be composed into a data sub domain), the set of data are the

phenomena shared with the system domain or other sub domains.
38

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

e Each entity type is a potential Entity Sub Domain (e.g. user types, devices).
Its interacting phenomena (events, states and values) with the system domain
and other sub domains are the shared phenomena, of its interfaces.

e Entity types that have common interacting behavior are composed into one
Entity Sub Domain (e.g. two user types that share similar tasks with the
system), their interacting phenomena with the system domain and other sub
domains are the shared phenomena of the interfaces of the entity sub domain.

e A user task is abstracted to be a shared event between the user type and the
system.
Problem Context Diagram Drawing Rules

The following rules apply to constructing a problem context diagram.
e System domain is included.
e Each problem sub domain is included.

e Where (sub) domains interact, an interface is recorded. The interaction takes
the form of shared phenomena. Each interface is a set of shared phenomena
and is given a unique identifier beginning with “sp”.

e For shared phenomena of each interface, the controlling (sub) domain is identi-

“"7

fied with its acronym following a

e If necessary, a sub domain may further be decomposed.

Boundary of the Problem Context Diagram

The problem context diagram shows all the domains and interfaces that we must take
into account. It locates the problem within quite an exact boundary. Something out
of it means that it will play no part in our work, it won’t affect the outcome.
Identifying the customer’s authority and user’s responsibility can avoid broad-
ening the problem too far and narrowing it too much. Customers have certain limited
authority and users have necessary responsibilities. Use those limits and necessities

39

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

as the touchstone when we are in doubt about the location and scope of the problem.
User’s responsibilities place a lower bound on the sub domains that must appear in
the context diagram (some sub domains are affected and must appear). Customer’s
authority limits the scope of what the software system may legitimately be designed
to do and on what assumption: it places an upper bound on the domains that may
appear in the problem context and be affected by the software system.

Ask ourselves: must this requirement be in scope? Can it be in scope? And

what are the consequences for the context diagram?

3.2.2 Find the System Boundary

To seek and decide where the system boundary is and further for the purpose of
identifying user requirements (for finding actors of use cases), a traditional context
diagram is an effective tool, which is originally employed as the top level of abstraction
in a data flow diagram developed according to principles of structured analysis [63, 71].
We derive this context diagram from the problem context diagram and name it the

system context diagram.

3.2.2.1 System Boundary
What Is a Boundary?

The line or relatively narrow space that marks the outer limit of something. [45]

What Is the System Boundary?

The system boundary is the interface between a system and the environment, where
the environment consists of entities that are directly connected with the system -
such as other systems, people and devices etc. - that expect some services from the
system or provide services to the system. In other words, the system boundary is the
interface where input/output data flows between the environment and the system.
The system boundary is different from the problem boundary. The problem
boundary pays attention to what should or should not be included in the problem
context, whereas the system boundary focuses on the data flow between the system

and entities in the problem domain. The activity of finding the system boundary is

40

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

the process of identifying the problem domain entities that are directly connected to
the system.

3.2.2.2 System Context Diagram

Data flow diagrams (DFDs) have been used for many years prior to the advent of
computers [28]. DFDs show the flow of data through a system. A popular notation
of DFD denotes that a DFD is composed of data on the move, shown as a named
arrow; transformations of data into other data, shown as named bubbles; sources and
destinations of data, shown as named rectangles called terminators; and data in static
storage (i.e., data bases), shown as two parallel lines.

A system context diagram is a high, abstract level DFD, with only one bubble-
the system, showing all system terminators and external inputs and outputs. It
consists of the system, its environment, and data flows between the environment and
the system. It explicitly illustrates the boundary by showing the connections between
the system and the outside world.

3.2.2.3 Deriving the System Context Diagram

Unlike in a problem context diagram, relevant physical parts of the world and their
shared phenomena could be directly and easily identified as problem sub domains,
external entities surrounding the system sometimes are implicit. Based on some rules,
we can easily derive a system context diagram from a problem context diagram.
From definitions of the problem context diagram and the system context dia-
gram, we note the assumptions below.
Assumption 1. In a problem context diagram, there must exist shared events or
states or values between the system and its directly connecting problem sub domains,
which also implies that there exists interactions between them.
Assumption 2. In a problem context diagram, for each sharing event only one of
the sharing participants can cause it; for a shared state only one of the sharing partici-
pants can change it; moreover, for a shared value, only one of the sharing participants
can determine it.
Assumption 8. In a problem context diagram, interfaces are symmetrical in the

sense that each (sub) domain may control some of the shared phenomena of the in-

41

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

terface.

Assumption 4. In a system context diagram, all terminators are directly connected
to the system.

Assumption 5. In a system contexrt diagram, there must exist input or output or
both data flows between terminators and the system, which also stand for the interac-

tion between them.

Derive a System Context Diagram from the Problem Context Diagram
According to the assumptions above, we can deduce the rules for the derivation.

e The system domain becomes the system bubble.

e Problem sub domains not directly connected with the system domain are elim-
inated, but their effects on the problem domain are encapsulated by other sub

domains or the system domain as discussed in page 37.

e Problem sub domains directly connected with the system become terminators,
their shared phenomena with the system are converted to data flows.

e Shared phenomena (events, states, or values) controlled by the system are con-
verted to output data flows, whereas those controlled by problem sub domains

are converted to input data flows.

According to these rules, Figure 3.10 shows a derived system context diagram
of the treatment planning problem from Figure 3.9.

3.2.3 Identify Actors

In our approach, we capture the user requirements in use cases. As stated, a use case
describes a sequence(s) of interactions between the system and an external “actor”
that results in the actor accomplishing a task. In order to identify use cases, we need
to identify actors firstly from the system context diagram.

A user is a person who uses the system. Normally, a system has many types
of users. Each type of user is represented as an actor.

An actor is anyone or anything with behavior [22], or anything that needs
to exchange information with the system [49]. Basically, actors represent external

42

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

.
User %%
S %
Radiologist) 0("’4- %, %, OQO, %
o)

Targetinfo

MRI Image MRlimageSet Treatment AdjacentTissuelnfo Target
Set Planning Software Definition

System

R R S S S s U O

Treatment Simulation
Plan Results

i
|

[] Temminator — Data flow

Figure 3.10: A System Context Diagram

entities that interact with the system. The actor is a user type or a category. It
can be human, organizations, devices and an external system [14]. However, an actor
could be an internal system entity such as a timer, e.g., when a system needs to print
the system log at midnight automatically. Also, in our conception, we give the actor

43

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

wider semantics which we will clarify in later sections.

An actor is a role abstraction. If it is a user type, an actor represents a certain
role that a user can play, in other words, an actor is a user class and users are instances
of that actor.

A primary actor is an actor who is going to use the system directly [49] or
the one who initiates an interaction with the system for some purpose. The primary
actors will govern the necessity of the main functionality of the system to be built.

A supporting actor (secondary actor) is an actor that provides a service to the
system under development [22], e.g. printer, web service etc. It exists because of
the primary actor using the system. Supporting actors are helpful for identifying the
external interfaces the system will use and the protocols that cross those interfaces.

3.2.3.1 Rules for Identifying Actors

According to the rules for deriving the system context diagram, terminators of a
system context diagram describe all the things that interact directly with the system.
Therefore, we can identify actors from the system context diagram, for example, a
certain user type appears in a problem context diagram as a sub domain, and then
it is converted to be a terminator in a system context diagram, and then it can be
identified as an actor. We have the following rules for identifying actors:

e All terminators in the system context diagram are actors.
e Each terminator that contains the user type(s) is a primary actor.

In the treatment planning software problem, from Figure 3.10, we can identify the
User (including Radiologist and Planner), MRI Image set, Target Definition, Treat-
ment Plan, Treatment Plan Report and Simulation Results as actors, and the User

is a primary actor.

3.2.3.2 Extra Questions to Check Completeness of Actors

While we should check the completeness of the problem context diagram to ensure
that we capture all the parts of the problem domain and based on that, theoretically
we can get all the actors from the derived system context diagram, we still have

chances to examine if we have identified all the actors at this stage. We may ask the

44

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Actor Profile: Background and Skills

User (Radiologist) [A physician specializing in diagnostic techniques for viewing internal
organs and tissues without surgery. Radiological methods include X-ray,
MRI, computed tomography (CT), scan, ultrasound, angiography, and
nuclear isotopes.

Table 3.5: Profiles of Actors

following questions: Which user groups execute the system’s main functions? Which
user groups are supported by the system to perform their work? Which user groups
perform secondary functions, such as maintenance and administration? With what
external hardware or software system will the system interact?

3.2.3.3 Profile of the Actors

The background and skills of actors are one of the important sources based on which
the designers will design the system behavior and user interfaces. An actor/profile
table can be used to list the characteristics of each actor. Table 3.5 shows an example
of the description of an actor from the case study.

3.2.4 Specify Primary Actor’s Tasks

Our purpose of the elicitation process is to capture user requirements into use cases.
Generally, there are several approaches to identify use cases [51, 54]:

e Identify actors and their roles first, then identify the business processes in which
each participates to reveal use cases.

e Identify the external events to which the system must respond, then relate these
events to participating actors and specific use cases.

e Express business processes or daily activities in terms of specific scenarios, derive

use cases from the scenarios, and identify the actors involved in each use case.

e Derive likely use cases from existing functional requirement statements. If any
requirements don’t align with a use case, consider whether you really need them.

45

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

A use case is a complete course of events in the system, seen from a user’s perspective
[49]. In other words, a use case represents a complete unit of functionality for a
primary actor to use the system.

Apparently, interactive systems are developed for users (abstracted by user
types) to use. From the user’s perspective, each user type has its own tasks (goals) in
order to achieve its responsibilities when using the system. So, if we intuitively derive
a task-oriented description for each user type and get a user type-task list which shows
all the user’s tasks that the system can support, we will get all the system’s functional
content. We can thus identify use cases by a more direct way - performing each task
will become a use case. By interviewing users or examining available documentation,
we can develop all the scenarios for performing each task, and capture them in use
cases.

A use case involves only one primary actor role, and in most cases, it is a user
type that triggers the use case, and the name of that actor is the name of the user
type. However, if two user types can perform the same task (the same use case), they
will play the same specific primary actor role in terms of this task. So, a specific
primary actor role of a specific use case can be played by different user types. In this
situation we can make a role name of this specific primary actor. So, what we really
need is the primary actor-task list rather than the user type-task list, which contains
all non-duplicated tasks the system should support.

By going through all the primary actors and defining all the tasks they need
to do and will be able to do with the system, we will define the complete functionality
of the system.

3.2.4.1 User’s Responsibilities and Tasks

User’s Task. A user’s task is a task that a user must perform to fulfill one of his
or her responsibilities by using the system. It is an elementary work process. It is the
goal the user has in trying to get work done in using the system. Often a transaction
in a transaction system corresponds to a user’s task, such as withdrawing cash in an
ATM system.

Action. An action is the behavior that triggers an interaction between the actor
and the system [21] or behavior that triggers an internal state change of the system.

46

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Actions can be given from both the actors and the system. There are two types of
actions: flow of actions and primitive action. A primitive action is an action that
triggers an atomic interaction between the actor and the system (e.g. a user enters
the password which triggers an interaction), or an atomic internal state change of the
system (e.g. system validates the password which triggers a validation running). A
flow of actions is composed of several actions (e.g. a user requests to save a file). A
flow of actions can have any one of the following semantics: sequence, alternative,
repetition, and concurrency [70]. Figure 3.11 shows the composition model of the
action.

S S S
%{W&s»\
i
]

l |

Flow of actions Primitive Action

Composition

—

Figure 3.11: Action Composition Model

Formally, an action is a mathematical relation over objects, where objects
are things of interest which can be referenced in requirements. Action applications
define the state transitions. Each action has a precondition and postcondition, where
precondition and postcondition represent certain states that must exist before and
after the action.

Sub Task. A sub task is a sub action flow of a task. It is abstracted to be an action
step in a scenario of a task. Often a reused section of a scenario could be rolled up
into a sub task, like print a file. A sub task can have its own sub tasks.

Normal Scenario. A normal scenario is also called a basic scenario, a normal

course, a normal flow, a main course, and is the normal sequence of actions to ac-

47

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

complish the intended task of the system.

Alternative Scenario. Any variation conditions and exception conditions in the
normal scenario lead to various action steps to perform a task, they are alternative
scenarios. So, an alternative scenario of a task can be successful, or failed.

Activity. An Activity is a process that users carry out to achieve a responsibility

or perform a task or execute an action.

3.2.4.2 Carry Out a User’s Responsibility

As stated previously, the users’ objectives for using the system are to accomplish their
responsibilities when they interact with the system. So, the complete set of function-
alities which are needed for accomplishment of all users’ responsibilities constitute
the functionality of the system. Therefore, in our user-centered approach, we focus
on how each user type can accomplish its responsibilities by using the system. We
are looking at what functionalities the system should provide when each user type
interacts with the system.

Each responsibility of a user type is carried out by performing some tasks. A
task can be accomplished by performing a sequence of actions (known as a scenario).
A task can be performed by different scenarios because of the variation and exception
conditions. Figure 3.12 depicts the rationale for the accomplishment of a responsibil-
ity of a user type. We derive an AND/OR refinement model from the traditional
AND/OR graph structures. We call it activity refinement. There are two kinds of
activity refinements: AND refinement and OR refinement.

AND refinement. An activity A is AND refined by a finite set B of activities
b;, i = 1..n such that (1) fulfilling all the activities of set B implies fulfilling activity
A. (2) the failure of any activity in set B implies the failure of A.

OR refinement. An activity A is OR refined by a finite set B of activities b;, i =
1..n such that (1) fulfilling any activity of set B implies fulfilling activity A (2) The

success of any activity in set B implies the success of A.

48

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Wm‘%ﬁ»&%@%ﬁ%%

Responsibility
|
D i
.
Task 1 Task 2 cen Taskm %
/ .
/OR
Normal Scenario Alternative | Alternative
Scenario 1 Scenario n
< AND refinement
ND
_~A>. OR refinement
Action 1 || Action2 | ... Action j
[e

Figure 3.12: Fulfilling a Responsibility

In Figure 3.12, a responsibility is AN D refined by a set of tasks and a scenario
is AND refined by a set of actions. Similarly, a task is OR refined by a normal
scenario and alternative scenarios.

3.2.4.3 Identify Primary Actor - Task List

As mentioned before, the primary actor - task list shows all the user’s tasks that
the system supports, showing the system’s functionality. We start with investigating
the tasks of primary actors because the tasks of supporting actors are entirely for
supporting the tasks of the primary actors. Moreover, a primary actor is an abstract
role which may represent more than one user types. Primary actor - task list also
eliminates the redundancy of user type - task list.

Identifying rule:

e Each primary actor in the system context diagram is mapped to the correspond-
ing problem sub domain of the problem context diagram, and the corresponding
user tasks are identified from the shared phenomena in the problem context di-

49

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

[Primary Actor |Tasks |

User(Radiologist, Planner)|Enter PatientInfo & TargetInfo
Link MRIImageSet
Define Target

Table 3.6: The Primary Actor - Task List Example

agram.

e The identification is iterative and incremental, as the interviews go forward, the

user tasks may be added, deleted and revised.

Table 3.6 lists part of the primary actor - task list in the treatment planning

software example.

3.2.4.4 Perform a User’s Task

In our user-centered approach, the core point is to figure out all the services the
system should provide when each user type performs their tasks. So, we focus on
what behaviors the system has to have when users use the system.

Task Workshop

As stated previously, we gather user’s responsibilities, tasks and desired work-flows
of each task directly from representatives of various user types. We advocate a task
JRD, which takes the form of a series of 2-3 hour elicitation meetings or workshops.
Each workshop’s participants include user representatives, analysts and one or more
developers. Developers serve as the voice of reality when infeasible requirements are
suggested.

Each elicitation workshop may explore several tasks for certain user type. For
each responsibility of certain user type, needed tasks are figured out first. For each
task, it is the analyst who will capture the information. The participants begin
by identifying a user type (the primary actor) who would perform the task. Next,
they define the preconditions that have to be satisfied to perform the task, post-
conditions that would describe the state of the system after the task is complete, and
the estimated frequency of use which provides an early indicator of concurrent usage

50

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

and capacity requirements. Then, the analyst asks the participants how they envision
interacting with the system to perform the task. The resulting dialogue sequence of
user actions and system responses becomes the flow that is identified as the normal
scenario. In case that there are alternative normal courses, the normal scenario should
be the one which is easy to understand and fairly typical for performing the task.

The normal scenario is the normal sequence of actions to accomplish the in-
tended task with the system. A normal course can branch off into an alternative
course at some decision point in the interaction sequence, then rejoin the normal
course later. So, alternative courses can also result in successful task completion,
which represent variations in the path to complete the task. Some of the steps in an
alternative course will be the same as those in the normal course, but certain unique
actions are needed to accomplish the alternative path. Conditions that result in the
task being failed are usually documented as exceptions, which are also regarded as
a type of alternative conditions in our approach. It is important to describe the
exception paths, because they represent the user’s vision of how the system should
behave under specific conditions and they could cause the system to fail when they
are overlooked.

It is impossible to complete all the information of a task in one meeting or
workshop. Instead, we explore the task in increments, and then review and refine
them iteratively, so that at a later stage, for example, the analyst may sketch the
scenarios for explored tasks and give them to the workshop participants, who review
them prior to the next workshop. These informal reviews can reveal many errors, such
as previously undiscovered variations and exceptions, and missing steps in the action
steps. Or alternatively, intense review workshops can be arranged to formally review
the use cases after their sketching. The task-scenarios-use case approach provides a
powerful way to improve requirements quality through such incremental reviews.

To summarize, each of the user’s tasks will be accomplished through certain
scenarios which the system must support. Alternative scenarios must also be sup-
ported when variations and exceptions happen. Each scenario includes actions from
both the user and the system and the information needed for each action step. To
explore a task, the following things should be considered:

e Precondition: conditions (system state) that must be true before the task can
be performed.

51

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

e Normal scenario: a set of action steps which is the simplest and most common

work flow.

e Alternative scenarios: alternative scenarios can complete the task itself, or rejoin
the normal scenario after handling the alternative conditions, or fail.

e Success post condition: conditions that are guaranteed after successful comple-
tion of the task.

e Failure postcondition: what must be minimally guaranteed when task fails.

e System constraints: any non functional requirements that relate to this task.

Action Steps of a Scenario (Normal and Alternative)

The use case techniques can be used in exploring scenarios of tasks. According to Ivar
Jacobson [49], a use case consists of a sequence of transactions and each transaction
consists of several actions to be performed. A transaction has four parts (See Figure
3.18):

1. The primary actor sends request and data to the system. (For example, the
user selects an MRIImageSet)

2. The system validates the request and the data. (System checks readability)

3. The system alters its internal state. (System sets the current selectedMRIIm-
ageSet)

4. The system responds to the actor with the result. (System presents the select-
edMRIImageSet)

According to the composition of the compound interaction, we can derive a guideline
of what should be described in an action step of a scenario:

e Among the four parts, each part, or combination of various parts, or all four
parts can be an action step. The combination should depend on the complexity
of each part and the natural breaks in the processing.

52

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Request with data System

Validat

),
(ﬁte_rﬁh/

Respond cisngs

Figure 3.13: A Transaction Has Four Parts

e Identify explicitly what data items are passed through in each action step , and
how these data items are retrieved or calculated.

If there is an existing system or manual process, it makes it easier for the users
to give you the detail needed for these steps. If there is no existing system, encourage
them to imagine it and to think of all the detail they need for the task — we advocate
a user-centric way. Walk the users through the steps to encourage them to remember
additional details.

Alternative Scenarios

In each action step of a normal scenario, variations and exceptions should be discussed.
For each point where behavior can branch because of a particular condition (called
alternative condition), write down the condition and then write the action steps that
handle it. In most cases, these alternative handling steps end by simply merging
with the normal scenario steps and lead to an alternative successful path. However,
some alternative conditions can not be recovered and will produce failed alternative
courses. Every alternative condition leads to an alternative scenario. Alternative
conditions of an alternative scenario might be encountered. Based on the guideline
below, questions like “What should happen if...” may be asked by analysts to find the

53

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

alternative conditions. Once each task is fully explored and no additional variations,
exceptions, or details are proposed, the workshop participants move on to another
task.

Guideline to finding alternative conditions: for each action step in a normal
scenario, brainstorm what the system can detect differently compared with the normal
situation. For example, invalid password or network not connected.

Cockburn [22] lists a series of specific aspects to be considered, which are

extremely helpful:
e An alternate success path (clerk uses a shortcut code).
e The primary actor behaves incorrectly (invalid password).
e Inaction by the primary actor (time-out waiting for password).

e Every occurrence of the phase “the system validates” implies that there will be

an alternative condition (invalid account number).
e Inappropriate or lack of response from supporting actor (time-out for response).

e Internal failure within the system, which must be detected and handled (cash

dispenser jams).

e Unexpected and abnormal internal failure, which must be handled and will have
an externally visible consequence (corrupt transaction log discovered).

e Critical performance failures of the system (response not calculated within 5
seconds)

Patterns for Dealing with Alternative Conditions

When an alternative condition becomes true, we should consider how this can be
handled by the system. The derived handling action steps branch from the normal
scenario and lead to the alternative scenario of the task. Different alternative scenario
patterns are illustrated in Figure 3.14. To enhance the understandability, action step
2 is specifically used as an example, and different alternative conditions of action step

2 are clarified.

54

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

Pattern 2:

Action 3)->{(Action Step4)--—>(@)

_—

Action .i) <+ <{ Action .1)

d

1 2d:
Pattern 4: .%Q\ction H\cﬁon Hcﬁon Mcﬁon Ste@v--eq

i

§

Action .(i+1)

Pattern 5:

Action Step4)- /)

Pattern 6:

Figure 3.14: Patterns to Handle Alternative Conditions

A Tabular Form to Capture Scenarios of a Task - Scenario Table

When discussing with the users about performing a task, a scenario table will be an
efficient tool for capturing the scenarios, see Table 3.7.

The condition table ideas and notations from [84] are the origins of this
tabular form. In a scenario table, the normal precondition of an action step is
identified to explore the alternative conditions. These conditions are actually

95

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Task: Name of the task.

Task summary: Description of the purpose of the task.

Precondition: Things that must be true before the task can execute, they are predicates on
the state of the system.

Success post condition: Things that must be true at the end of the task when the task suc-

ceeds.
Failure post condition: Things that must be true at the end of the task when the task fails.
System constraints: Any constraints to perform the task.

i} 2 n
Precondition Normal precondition 2: Normal precondition n:
Normal step 1 Normal step 2 Normal step n
. \ Alternative condition 2a:
Alternative scenario steps.
Alternative condition 2b:
Alternative scenario steps.

Table 3.7: The Scenario Table

predicates of the system state that must be true to perform the normal action steps,

and they must meet the following disjointness and completeness properties:

Disjointness:

Vn,i, 7,1 # j, Normal precondition n A Alternative condition ni «» FALSE
N\ Alternative condition ni A Alternative condition nj < FALSE, and
Completeness:

Normal precondition n V Alternative condition niV Alternative condition nj... < TRUE

Construction of the table obeys the following rules:
e The horizontal header identifies the numbers of normal action steps.

e Each row of the grid contains at least one scenario, where the first row describes

the normal scenario, each of the other rows describes alternative scenarios.

e Italic sentences state the normal preconditions of an action step, or alternative

conditions. They end with a colon.

56

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

e Alternative conditions have identifiers with a normal step number followed by
a lower-case character in alphabetic order, e.g. 2a stands for first alternative
condition of normal step 2.

e Each grayed cell has the same action step as that of the normal scenario, while
blank cells indicate there are no actions.

e Alternative conditions are explored from left to right, top to bottom of the
table.

e Use 3 to 9 steps to perform a task. Complicated steps are rolled up to be a sub
task (a sub task scenario table needed).

e For the alternative handling pattern 5 in Figure 3.14, the alternative condition
handling steps are rolled up to be a sub task.

e For pattern 6, a separate scenario table may be needed.
e For steps that are sub tasks or other tasks, they are underlined.

e Alternative conditions of alternative scenarios must be explored.

The task “Link MRIImageSet” of a radiologist in the treatment planning soft-
ware is used as an example to demonstrate this technique, see Table 3.8.

3.2.4.5 Gather System Constraints in a User’s Task

We introduced categories of system constraints (non-functional requirements) in sec-
tion 3.2.1 and noted that some general system constraints are gathered into the UPD
in an earlier stage of the project. During task exploration, constraints that are com-
mon for many or all tasks are added to the system constraints section of the UPD.
However, most non-functional requirements are related to a specific user task, such
as requirements that specify the speed, availability, security, accuracy, response time,
recovery time, or memory usage with which the system must perform a given task
[50]. According to the guidance table 3.1, we capture the system constraints of each
task and specify them in each user’s task and then transfer them into the correspond-
ing use case. After refinement and increment during use cases realization, eventually
all these system constraints are concluded in the SRS in separate sections.

o7

M.A.Sc. Thesis - Hongging Sun McMaster - Computing and Software

Task: Link MRIImageSet
Task summary: The user chooses to link an MRIImageSet to the current patient’ current treatment plan.
Precondition: 1. User has selected to make TreatmentPlan for this patient.
2. A new TreatmentPlan for current patient with initial data values has been created. Ref. Table
4.7
3. Required PatientInfo and TargetInfo have been stored. Ref. Table 4.7
Success post condition: An MRIImageSet is linked to current TreatmentPlan and presented.
Failure post condition: None.
System constraints: 1. Successive retries of the same MRIImageSet selection can be executed at most three times.

1 2 3 4
User selects to link an Number of available User selects an Selection of MRIImageSet is
MRIImageSet. MRIImageSets > 1: MRIImageSet of current |successful & Number of retried
System presents a list of [patient. times < 3:
names of available System links the selected
MRIImageSets. MRIImageSet to current

TreatmentPlan and presents the
selected MRIImageSet,
including presentation of the
first MRIImage slice of the
image set and list of MRIImage
slices in the set.

2a. Number of available
MRIImageSets < 1:

.1 System informs user.
.2 Task fails.

4a. Selection of MRIImageSet
is not successful & Number
of retried times < 3:
System informs user that
the selection of current
MRIImageSet fails, and
asks user to retry the
current selection, or try
another selection, or cancel
the task.

User selects to retry current
selection: system performs
normal step 4.

User selects to retry
another selection: system
returns to normal step 2.
User selects to cancel: task
fails.

Selection of MRIImageSet
s not successful & Number
of Retried times > 8:
System notifies user of
failure.

.2 Task fails.

Table 3.8: A Scenario Table Example of Task: Link MRIImageSet.

58

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

When to Finish a Scenario Table?

A scenario table is finished when it is deemed correct (i.e, it captures the right require-
ments), complete (i.e., it describes all possible paths), and consistent. The scenario
tables are evaluated by analysts and users at specific review meetings or at the be-
ginning of the next task workshop.

3.2.5 Specify Use Cases

Use cases provide a way to represent the user requirements, which can be regarded as
the system requirements. The objective of the user-centric approach to requirements
elicitation is to describe all the tasks that the users (actors) will need to perform
with the system. For easily exploring and clearly viewing reasons, we capture all the
scenarios of performing the users’ tasks in scenario tables. However, to document
the scenarios, we use a well recognized mechanism - the use case model. A user case
model consists of individual use cases and use case diagrams. Each use case is a
textual description which collects the scenarios of certain user tasks. In theory and
practice, the resulting set of use cases will encompass all the desired functionality of
the system, because use cases are collections of scenarios of user tasks [86].

3.2.5.1 Rules for Specifying Use Cases

Using the scenario tables, we specify use cases according to the following rules:
e Each primary actor’s task is a task level use case.

e Cells of the scenario tables of a task are transferred into corresponding part of
the use case template.

e Each sub (sub) task is a sub task level use case.
e System constraints are also transferred.

According to the analysis of the scenario tables of each task, we sketch out the
use case for each task and validate that with the users at review meetings.

59

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

3.2.5.2 A Use Case Template

We develop a use case template as a guide to specifying use cases (see Figure 3.15).

e g
Use Case ID: <aunique #>
Use Case Name: <the name should be the task as a short active verb phrase>
Created by <Name> Date Created <MMDDYYYY>
Last Updated by <Name> Date Last Updated <MMDDYYYY>
Summary: <a longer statement of the task, if needed, its normal occurrence conditions>
Level: <one of: Summary, User-task, Sub task>
Primary Actor: <arole name for the primary actor >
Precondition: <what we expect is already the state of the world>
Success Post Condition <the state of the world if task succeeds>
Failure Post Condition: <how the interests are protected under all exits>
Trigger: <What starts the use case, may be time event> [Optional]
Normal Scenario:
<put here the steps of the scenario from trigger to task delivery, and any cleanup after>
<step #> <action description>
Alternatives
<put here the alternative scenarios, one at a time, each referring to the step of the normal scenario>
<step altered> <condition>: <alternative handling actions or sub-use case>
<step altered> <condition>: <alternative handling actions or sub-use case> |
Capacity: <number of concurrent executions of the use case that the system may have to handle>
Association: <other use cases associated> ’
System Constraints: <Constraints on the performing of the use case>
Related Information
<whatever your project needs for additional information>

Figure 3.15: A Use Case Template

Also, when writing use cases, some guidelines are listed below. These are

revisions of guidelines given in [22] and [64].

e Using words suited to user requirements, that are strong (enter vs input), precise
(data item vs information) and flexible (present vs display), which will not

constrain the future software design or evolution.

e Use simple grammar to describe an action step, with the form “Subject...
verb...direct object...prepositional phrase”, e.g. the system...deducts...the

amount...from the account balance.
60

M.A.Sc. Thesis - Honggqing Sun McMaster - Computing and Software

Show clearly which actor is passing the message to the other (who to whom).

Write like you are watching over the user using the system. The customer...The
system...

All the data that passes in one way gets collected into just one action step.

Avoid “whether” when describing the success condition, usually describe the
scenario as “succeeding”, e.g. “the system checks whether the password is
correct” should be written “the system validates that the password is correct.”

Optionally mention the timing, not always, because most steps follow directly
from the previous one. However, occasionally, you will need to say that “at any

b

time between steps 3 and 5, the user will...” or “as soon as the user has, the

system will...”
Write “Do steps x-y until condition.” when some steps need to be repeated.

When a use case references another use case, the referenced use case is under-
lined.

Do not mention GUI design details such as buttons, drop-down lists etc.

Do not mention design or implementation details such as applet, database. This
would restrain the designs.

As an example, we use these rules and recommended guidelines to derive the use case
Link MRI Image Set from the task scenario Table 3.8, see Table 3.9.

3.2.5.3 Use Case Diagram

A use case model contains all the use cases. It summarize all the possible uses of the

system. All the different use cases for a system can be depicted in a use case diagram.

Use case diagrams address the static use-case view of a system. Once all the

use cases are specified, a use case diagram will give a clear picture of the functionality

of a system. Figure 3.16 is a part of the use case diagram of the treatment planning

software system.

61

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Use Case ID: UC002
Use Case Name: Link MRIImageSet

Created by: Date Created:

Last Updated by: Date Last Updated:

Summary: The user chooses to link an MRIImageSet to the current patient’s current treatment
plan.

Level: User Task
Primary Actor: User(Radiologist, Planner)
Precondition: 1. User has selected to make TreatmentPlan for this patient.
2. A new TreatmentPlan for current patient with initial data values has been
created.
3. Required PatientInfo and TargetInfo have been stored.
Success Postcondition: An MRIImageSet is linked to current TreatmentPlan and presented.
Failure Postcondition: None.
Normal Scenario:

1. User selects to link an MRIImageSet.

2. System presents a list of names of available MRIImageSets.

3. User selects an MRIImageSet of current patient.

4. System links the selected MRIImageSet to current TreatmentPlan and presents the
selected MRIImageSet, including presentation of the first MRIImage slice of the image
set and list of MRIImage slices in the set.

Alternative Scenarios:

2a. Number of available MRIImageSets < 1:

.1 System informs user.
.2 Task fails.
4a. Selection of MRIImageSet is not successful & Number of retried times < 3:
.1 System informs user that the selection of current MRIImageSet fails, and asks user
to retry the current selection, or try another selection, or cancel the task.
.2a User selects to retry current selection: system performs normal step 4.
.2b User selects to retry another selection: system returns to normal step 2.
.2¢ User selects to cancel: task fails.
4b. Selection of MRIImageSet is not successful & Number of Retried times >3:
.1 System noti