
DEVELOPING USER-CENTRIC SOFTWARE

REQUIREMENTS SPECIFICATIONS

DEVELOPING USER-CENTRIC SOFTWARE
REQUIREMENTS SPECIFICATIONS

By

HoNGQING SuN, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software

McMaster University

©Copyright by Hongqing Sun, August 2007

M.A.Sc. Thesis- Hongqing Sun

MASTER OF APPLIED SCIENCE (2007)
(Computing and Software)

TITLE:

McMaster - Computing and Software

McMaster University
Hamilton, Ontario

DEVELOPING USER-CENTRIC SOFTWARE REQUIREMENTS SPECIFICATIONS

AUTHOR: Hongqing Sun, B.Sc. (NANKAI UNIVERSITY, CHINA)

SUPERVISOR: Dr. Alan Wassyng

NUMBER OF PAGES: xiv, 183

ii

Abstract

Software systems with intensive user-computer interactions account for a fairly large

part of the total real world software applications, such as web applications, MS Win­

dows applications, GNOME/KDE applications etc. We call this kind of software

user-centric software, denoting a defining characteristic which is that they are usable

directly by users.

Exhibited in this thesis is a systematic approach for developing a software

requirements specification (SRS) for user-centric software. While this approach con­

forms to the well-recognized software requirements engineering process model, which

contains the processes of requirements elicitation, analysis, specification and valida­

tion, it is tailored to user-centric software. The user-centric ideas are embodied and

applied throughout our approach. In the elicitation process, the joint requirements

development (JRD) sessions (known as requirement workshops) are advocated, and

step-by-step guidance is developed leading to a natural flow from the raw problem

descriptions to user requirements - the use case model. Further, based on the var­

ious object-oriented analysis paradigms, we build a systematic analysis process to

seek analysis classes, where domain classes are harvested from the composed data

hierarchies of all use cases, and application classes and functions are captured from

sequence diagrams. Especially, our notation of boundary classes provides considerable

flexibility in the user interface (UI) design phase. During the SRS process, functional

requirements derived from the analysis model are specified according to a class speci­

fication template. Moreover, the three-level validation process positively involves the

user's participation facilitating assurance that the right software is built. Also, to

demonstrate the practicability of this approach, it is applied in a case study deal­

ing with developing the SRS of a photodynamic therapy (PDT) treatment planning

application.

lll

Acknowledgements

I am greatly indebted to Dr. Alan Wassyng, my supervisor, for his good teach­

ing, constructive guidance, enlightening suggestions, friendly help and encouragement

throughout the entire period of my studies and this research. Without his support,

it would have been impossible to finish this thesis. During the two-year studies I

have known him as a knowledgable, humorous, and principle-centered person. His

substantial experience and integral view on research and his mission for providing

'high-quality work', have made a deep impression on me. He could not even realize

how much I have learnt from him.

I would like to express my sincere thanks to Dr. Tom Maibaum and Dr.

Douglas Down, my defense committee, for their valuable time and comments on my

research. I am very grateful to Dr. Tom Maibaum, for his generous and stimulating

suggestions throughout this research.

Deep thanks to Dr. Ridha Khedri for his valuable recommendation and supply

of research materials and suggestions. I would also like to thank Dr. Jacques Carette,

Dr. Spencer Smith and Dr. Wolfram Kahl for their precious comments during this

research.

Much thanks to University Health Network for providing the case study re­

sources. Sincere appreciation to Sean Davidson, for him coming to McMaster and

suggesting wonderful hints on the case study.

I owe much thankfulness to my parents for their endless love, encouragement

and moral support. I wish their happiness and good health all the time.

Especially, I would like to give my special thanks to my wife Na whose love

and care enabled me to complete this work.

IV

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1 Meaning of User-Centric

1.1.1 User-Centric Software ..

1.1.2 User-Centric Development

1.1.3 User-Centric in Our Approach .

1.2 Context of this Research . ..

1.3 Motivation of Research

1.4 Research Problem and Scope .

1.5 Contribution of this Thesis .

1.6 Thesis Structure

2 Overview of Software Requirements Engineering

2.1 Clarification of Some Concepts.

2.1.1 What is a System?

2.1.2 What is a Requirement?

2.1.3 What is a Software Requirements Specification (SRS)

2.2 Software Requirements Engineering Approaches

2.2.1 Function-Oriented Analysis Approach .

v

iii

iv

X

xiii

1

2

2

2

3

4

5

6

7

8

9

9

10

10

12

12

12

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

2.2.2 Object-Oriented Analysis Approach .

2.2.3 Goal-Oriented Approach

2.2.4 Problem Frames Approach

3 A Practical Approach

3.1 An Overview of the Approach

3.2 Requirements Elicitation

3.2.1 Gather Understanding of the Problem Description .

3.2.2 Find the System Boundary . . .

3.2.3 Identify Actors

3.2.4

3.2.5

Specify Primary Actor's Tasks .

Specify Use Cases

3.3 Software Requirements Analysis, SRA

3.3.1 Denotations of Analysis

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

Software Requirements are at the Interfaces

Why Objected-Oriented Requirements Analysis? .

Analysis Classes

Analysis Model- What is to Be Built ...

Overview of Analysis Process

Draw the Activity Diagrams for Use Cases

3.3.8 Identify Data Used in Activity Diagrams and Draw the Data

13

14

14

16

16

17

20

40

42

45

59

65

65

68

68

71

74
74
76

Hierarchies . 76

3.3.9 Identify Domain Classes, their Attributes and Relationships 80

3.3.10 Construct Sequence Diagrams for Use Cases 80

3.3.11 Identify Application (Boundary) Classes, Class Functions . 85

3.3.12 Construct the Whole Analysis Class Diagram . . . 85

3.3.13 Analysis Model Document, AMD 86

3.3.14 More on Sequence Diagrams and Boundary Classes 89

3.4 Software Requirements Specification, SRS

3.4.1 Specify a Function of the System in the SRS

3.4.2

3.4.3

3.4.4

The Specification Language

The SRS Template

Specify Functional Requirements with Class Specifications

Vl

92

92

92

93

94

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.5

3.4.5 Specify System Constraints

Software Requirements Validation .

3.5.1 Why Requirements Validation?

3.5.2 Validation Techniques

3.5.3 Validation Level 1: Simple Check of Scenario Tables .

99

100

101

101

106

3.5.4 Validation Level 2: Storyboard of Use Cases 107

3.5.5 Validation Level 3: Software Prototyping and Formal Review

of SRS . 108

3.6 Our Practical Approach and "High Quality SRS" .

3.6.1 High Quality SRS

3.6.2 Our Approach Leads to a High Quality SRS

4 A Case Study: PDT Treatment Planning Software

4.1 Apply Elicitation Process

4.1.1 Resources

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

Understanding of Problem Description

System Context Diagram .

Actors and Their Profiles . . .

Primary Actor - Task List . .

Scenario Tables of User Tasks

Use Cases

4.1.8 User Requirements Document

4.2 Apply Analysis Process

4.2.1 Activity Diagrams and Data Hierarchies

4.2.2 Initial Domain Class Diagram

110

110

111

113

113

113

114

119

120

122

122

130

130

138

138

146

4.2.3 Sequence Diagrams, Boundary Classes and Class Functions . 147

4.2.4 Analysis Class Diagrams 147

4.3 Apply Specification Process .

5 Conclusions and Future Work

5.1 Conclusion ..

5.2 Future Work .

Bibliography

Vll

147

157

157

158

160

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Appendix

A The SRS Template

A.1 Introduction . . .

A.1.1 Purpose

A.1. 2 Scope of the Software .

A.1.3 Definitions, Acronyms, and Abbreviations

A.1.4 References .

A.1.5 Overview

A.2 Overall Description

A.2.1 Product Perspective

A.2.2 Product Functions .

A.2.3 User Characteristics

A.2.4 General System Constraints

A.2.5 Assumptions and Dependencies

A.2.6 Apportioning of Requirements .

A.3 Specific Requirements . . .

A.3.1 External Interfaces

A.3.2 Boundary Classes

A.3.3 Domain Classes

A.4 Performance

A.5 Design Constraints

A.6 Reliability . . .

A. 7 Maintainability

A.8 Portability . . .

A.9 Legal

A.10 Other Requirements

B The Partial SRS of PDT Treatment Planning Software

B.1 Introduction

B.1.1 Purpose

B.1.2 Scope of the Software

B.1.3 Definitions, Acronyms, and Abbreviations

B.1.4 References

Vlll

167

167

167

167

167

167

168

168

168

168

168

169

169

169

169

169

170

170

170

171

171

171

171
172

172
172

173

173

173

173

174

174

MOAOScO Thesis- Hongqing Sun McMaster- Computing and Software

Bol.5 Overview 0 0 0 0 174

Bo2 Overall Description 0 0 0 175

B.2o1 Product Perspective 175

B.202 Product Functions 0 175

B0203 User Characteristics 176

B.2.4 General System Constraints 176

B0205 Assumptions and Dependencies

Bo3 Specific Requirements 0 0 0

B.3o1 External Interfaces

B0302 Boundary Classes

B0303 Domain Classes

Bo4 Performance 0 0 0 0

Bo5 Design Constraints

Bo6 Reliability 0 0 0

B. 7 Maintainability

Bo8 Portability 0 0 0

Bo9 Legal 0 0 0 0 0 0

Bo10 Other Requirements

lX

176

176

176

176

181

182

182

182

182

183

183

183

List of Figures

3.1 Artifacts View of the Approach

3.2 Processes View of the Approach

3.3 Elicitation Process

3.4 Domain Decomposition Rules .

3.5 Domain Decomposition: a Company

3.6 Top Level Problem Context Diagram

3.7 First-Decomposition Level Problem Context Diagram

3.8 Further-Decomposition Level Problem Context Diagram

3.9 Treatment Planning Software Problem Context Diagram

3.10 A System Context Diagram

3.11 Action Composition Model . .

3.12 Fulfilling a Responsibility . . .

3.13 A Transaction Has Four Parts

3.14 Patterns to Handle Alternative Conditions

3.15 A Use Case Template

3.16 The Partial Use Case Diagram-Treatment Planning Software

3.17 Use Requirements Document

3.18 Analysis Process Model

3.19 Top Level Problem Context Diagram

3.20 Activity Diagram for the use case "Link MRllmageSet"

3.21 Data Relationships

3.22 A Data Hierarchy Example

17

18

20

31

32

33

35

36

37

43

47
49
53

55

60

63

64

65

69
77

78
78

3.23 Activity Diagram & Data Hierarchies of use case "Link MRIImageSet" 81

3.24 Initial Domain Class Diagram of use case "Link MRIImageSet" 82

X

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.25 Sequence Diagram for the use case "Link MRIImageSet" 84

3.26 The Partial Boundary Class Diagram from Use Case "Link MRIIm­

ageSet" . 86

3.27 The Partial Final Domain Class Diagram from Use Case "Link MRI-

ImageSet" . 86

3.28 The Partial Class Diagram from Use Case "Link MRJimageSet" 87

3.29 The Analysis Model Document Template . . 88

3.30 Sequence Diagram A at Requirements Level 90

3.31 Sequence Diagram B at Requirements Level 91

3.32 Sequence Diagram Cat Requirements Level 91

3.33 The SRS Template 94

3.34 The Class Specification Template 96

4.1 The PDT 'Ireatment for Prostate Cancer . 114

4.2 The Prostate Example: PDT Treatment Planning Software . 115

4.3 'Ireatment Planning Software Problem Context Diagram: Case Study 120

4.4 'Ireatment Planning Software System Context Diagram: Case Study . 121

4.5 Use Case Diagram of 'Ireatment Planning Software: Case Study . . . 130

4.6 Activity Diagram and Data Hierarchy: Enter Patientlnfo & Targetlnfo

Task. 138

4.7 Activity Diagram and Data Hierarchy: Link MRIImageSet Task . . 139

4.8 Activity Diagram and Data Hierarchy: Define Target Task 140

4.9 Activity Diagram and Data Hierarchy: Set 'IreatmentOption Task . 141

4.10 Activity Diagram and Data Hierarchy: Add a 'IreatmentDevice Task 142

4.11 Activity Diagram and Data Hierarchy: Do Simulation Task 143

4.12 Activity Diagram and Data Hierarchy: Generate 'IreatmentPlanRe-

port Task 144

4.13 Final Data Hierarchy Model: Case Study 145

4.14 Initial Domain Class Diagram: Case Study 146

4.15 Sequence Diagram UC001: Enter Patientlnfo & Targetlnfo 149

4.16 Sequence Diagram UC002: Link MRIImageSet . . 150

4.17 Sequence Diagram UC003: Define Target 151

4.18 Sequence Diagram UC004: Set 'IreatmentOption 152

xi

M.A .Sc. Thesis - Hongqing Sun McMaster- Computing and Software

4.19 Sequence Diagram UC006: Do Simulation

4.20 Sequence Diagram UC007: Generate TreatmentPlanReport .

4.21 Boundary Class Diagram: Case Study .

4.22 Final Domain class diagram: Case Study

xii

153
154

155
156

List of Tables

3.1 Guidance for Finding System Constraints . 25

3.2 Typical Structured Meetings . . . 27

3.3 Customer's Authorities 29

3.4 User's Responsibilities and Tasks 29

3.5 Profiles of Actors 45

3.6 The Primary Actor- Task List Example 50

3. 7 The Scenario Table 56

3.8 A Scenario Table Example of Task: Link MRIImageSet.. 58

3.9 A Use Case Example: Link MRIImageSet. 62

4.1 Data Involved in a PDT Treatment 116

4.2 Customer Authorities: Case Study 118

4.3 User's Responsibilities and Tasks: Case study 118

4.4 System Constraints: Case Study 119

4.5 Profiles of Actors: Case Study 121

4.6 The Primary Actor-Task List: Case Study . . 122

4.7 The Scenario Table of Task: Enter Patientlnfo & Targetlnfo 123

4.8 The Scenario Table of Task: Link MRIImageSet. . . 124

4.9 The Scenario Table of Task: Define Target. 125

4.10 The Scenario Table of Task: Set TteatmentOption. 126

4.11 The Scenario Table of Sub Task: Add a TteatmentDevice. 127

4.12 The Scenario Table of Task: Do Simulation. 128

4.13 The Scenario Table of Task: Generate TteatmentPlanReport. . 129

4.14 Use Case UC001: Enter Patientlnfo & Targetlnfo. 131

4.15 Use Case UC002: Link MRIImageSet . . 132

xiii

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

4.16 Use Case UC003: Define Target . .

4.17 Use Case UC004: Set TreatmentOption. .

4.18 Use Case UC005: Add a TreatmentDevice

4.19 Use Case UC006: Do Simulation

4.20 Use Case UC007: Generate TreatmentPlanReport

XIV

133

134

135

136

137

Chapter 1

Introduction

In software engineering, a software development life cycle (SDLC) contains at least

four phases which are requirements, design, construction and testing. Although there

exist significant differences among various SDLC models, such as Waterfall [72], Spi­

ral [11], Unified Process [50] and Agile [2] etc., all of them start with the requirements

phase. A software requirements specification (SRS) is the deliverable of the require­

ments phase, grounding later development phases.

As the characteristics of different software types vary, such as embedded soft­

ware, safety critical software, scientific computational software etc., we should not

expect to be able to define a uniform approach for developing a SRS that can fit all

types of software. This thesis addresses an approach which not only gives step-by-step

guidance for activities involved in developing a user-centric software SRS, but also

examines the underlying principles of software requirement engineering.

This chapter is organized as follows: Our meaning of user-centric is stated in

section 1.1. Section 1.2 presents the context of this research- the software require­

ments engineering processes. The motivation of this research is presented in section

1.3. The research problem and scope are identified in section 1.4. Section 1.5 sum­

marizes the contributions of this thesis. Finally, section 1.6 presents the organization

of the remainder of the thesis.

1

M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software

1.1 Meaning of User-Centric

This section explains what we mean by "user-centric" in different situations.

1.1.1 User-Centric Software

Currently, there is no formal definition of a user-centric software system. In [65], a

user-centric software system is described as an interactive system, where interactive

systems are those that enable users to communicate with them [31] .

With the popularity of software applications in the modern world, software

systems with intensive user-computer interactions constitute a fairly large ratio of

the total. Examples include web-based software, office software, accounting software,

payroll software, patient information management software, etc. We define this kind

of software to be user-centric software. User-centric software has the following char­

acteristics.

• Intensive user-computer interactions.

• Oriented to users' responsibilities or goals.

• Usability sensitive - appropriate interface, easy operation.

• Users' HCI satisfaction is a priority.

1.1.2 User-Centric Development

According to [29, 38], user-centric development meets the following characteristics.

• The software development team includes some users.

• The user is an equal participant with the developers in making development

decisions.

• The software development team develops the software using an iterative ap­

proach.

• A series of versions or prototypes of the software are developed and delivered

with feedback from users of earlier versions of the software driving development

of later versions.

2

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

So, in a user-centric development approach, the software system grows iter­

atively and incrementally. Users are continually involved in the process, giving the

developers regular feedback. The development team responds quickly to users' re­

quests and feedback.

The benefits of user-centric software development are the following.

• The right software is built - usability and appropriate quality ensured.

• Users will be satisfied with the software - user's satisfaction and acceptance

ensured.

• Frequent communications ease the gap between the development team and the

application domain users.

As a result, instead of having to work in a way that suits the software, users

will have software that lets them work at the way they really want to. Also, users'

involvement let them see their contributions as development progresses. It makes

them enthusiastic about the development and delivery of the system, and reduces

their reluctance to accept and use the system when it goes live.

1.1.3 User-Centric in Our Approach

The requirements phase unavoidably involves various stakeholders, such as customers,

domain experts and users. We advocate user-centric development in our requirement

engineering approach. Although our approach only focuses on the requirements phase,

all the principles of user-centric development are applied.

Specifically, we use the following techniques.

• JRD. Joint Requirements Development originated from JAD1 . JRD sessions

are held in a "controlled environment, facilitated by a business analyst, wherein

users participate in discussions to elicited requirements, analyze their details

and uncover cross-functional implications." [87]

Joint Application Design/Development (JAD), is a methodology that involves the client or end
user in the design and development of an application, through a succession of collaborative workshops
called JAD sessions. Chuck Morris and Tony Crawford, both of IBM, developed JAD in the late
1970s and began teaching the approach through workshops in 1980.

3

M.A .Sc. Thesis- Hongqing Sun McMaster - Computing and Software

JRD Sessions are:

1. Very focused

2. Conducted in a dedicated environment

3. Quickly drive major requirements

4. JRD participants typically include:

- Session leader

- 1 Business analyst or requirements engineer

- Various user types

- 1 Developer

- 1 Domain expert

• Modeling. Different models are used to communicate with users and capture

various levels of requirements, such as the problem context diagram, the scenario

table, the activity diagram and the sequence diagram.

1. 2 Context of this Research

A common model of software engineering [28] states that the software development

process involves the following phases: software requirements, preliminary design, de­

tailed design, coding, unit testing, integration testing, system testing, deployment

and maintenance. Specific development approaches, as mentioned earlier, may per­

form the phases differently from the above sequence. However, in all of the software

development approaches, the requirements phase is the foremost one of any software

development activities. A software requirements specification (SRS) is the output of

the requirements phase, describing the desired external behavior of the system to be

built and underlying the later design and testing phases. The theme of our research

is the whole requirements phase covering all the activities related to developing an

SRS.

In software requirements engineering, a common process model of the require­

ments phase consists of the following five processes [81].

• Software Requirements Elicitation. The process through which the analysts

understand the user's needs and the constraints on the software system. Tech-

4

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

niques include interviews, questionnaires, conversations, study of domain doc­

uments and use cases [49, 74].

• Software Requirements Analysis. The process of analyzing the user's needs

to arrive at a definition (solution) of software requirements. Typical analysis

techniques include object-oriented analysis, function-oriented analysis, state­

oriented analysis. Details of these are introduced in almost all software require­

ments engineering books, such as well known ones like [28, 78].

• Specifying Software Requirements. The process of writing a document that pre­

cisely and completely specifies the software requirements of the software system.

This process is based on the results of requirements elicitation and requirements

analysis. Various templates, such as IEEE-830 [44], Volere [69], ESA [15], and

specification languages, such as UML [62], Z [1], Tabular Expressions [66], are

used for documenting the SRS.

• Validating Software Requirements. The process to check and ensure the Soft­

ware Requirements Specification is in compliance with the user's needs and is

adequate for proceeding to the design phase. Versatile tools and techniques

exist for various kinds of specifications, like the SCR toolset [40], PVS [79], and

formal reviews.

• Managing Software Requirements. The planning and controlling of the require­

ments elicitation, specification, analysis, validation and verification activities.

The use of the term "engineering" for the software requirements phase im­

plies that systematic, efficient and iterative techniques should be applied to ensure

that software requirements are complete, consistent, correct and reusable. In our re­

search, each of the processes mentioned above shall be developed using an engineering

approach to improve the likelihood of developing a high quality SRS.

1.3 Motivation of Research

A software requirements engineering approach and resulting software requirements

specification not only provide a basis for subsequent development phases, but pro­

vides the basis also for the success of the whole project. For example, the London

5

M.A.Sc . Thesis- Hongqing Sun McMaster - Computing and Software

Ambulance Service Dispatch System closed down in 1992 after only two days of oper­

ation. This well known system failure was caused by poor requirements engineering

- "poor requirements analysis within the social domain" [80] . Another failed project,

Performing Rights Society PROMS, was abandoned in 1992 after £11 millon was

spent. It was reported that they failed to set out the requirements in a form that

could be understood and checked by ordinary people and the specifications were ill­

conceived [13]. A good requirements engineering approach and high quality SRS are

essential to guarantee the success of a software project.

Moreover, some industrial software systems must be validated or certified to

meet certain regulations, guidelines, or standards before they can be used. For ex­

ample, FDA General Principles of Software Validation [35] is for medical software,

and Software Considerations in Airborne Systems and Equipment Certification [73]

for avionic software.

As stated previously, user-centric software systems account for a large pro­

portion of the total number of systems in use, and our literature review did not

unearth any detailed engineering oriented processes aimed at developing an SRS for

this kind of software. This provided our inspiration to develop a practical approach

for developing a high quality SRS for user-centric software.

1.4 Research Problem and Scope

The following questions drove our research.

1. What activities are included in each process?

2. What are the principles in all of the activities?

3. How do we ensure we produce a high quality user-centric software requirements

specification?

To solve the research problem we conducted the following activities:

- We reviewed the literature about software requirements engineering approaches.

- We developed the elicitation process according to the characteristics of user­

centric software.

6

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

- We evolved the analysis process from different object-oriented analysis methods.

- We suggested a tailored SRS template based on the IEEE 830-1998 template.

- We developed a three-level validation process.

- We exposed the principles of all activities.

- We built a systematic engineering approach for the requirements phase.

- We applied our approach to a case study to show the applicability of our ideas.

1.5 Contribution of this Thesis

This thesis provides a practical and systematic software requirements engineering

approach for developing user-centric software requirements specifications.

- We clarified some basic concepts in software requirements engineering.

- We advocated a user-centric development method that ensures that the right

software system is built.

- We built a problem domain decomposition/composition model during the elic­

itation process which provides a technique to thoroughly understand the prob­

lem.

- We developed a scenario table model to capture user requirements.

- We developed a systematic process to seek classes and their relationships.

- We defined the boundary class without restricting the design choices.

- We proposed a class specification template to document functional require­

ments.

- We determined and documented the guidance of all activities.

7

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

1.6 Thesis Structure

The remainder of this thesis is organized as follows.

Chapter 2 presents an overview of software requirements engineering, where

key concepts are clarified and some typical requirements engineering approaches are

introduced.

Chapter 3 and Chapter 4 constitute the key part of this thesis. Chapter 3

states the approach we developed. Each process is refined into operable activities, and

underlying rationale and guidance are developed. Chapter 4 shows the application of

our approach - a case study of a photodynamic therapy treatment planning software

system.

Chapter 5 presents the conclusion of this thesis as well as recommendations

for future work.

Two appendices are included. Appendix A presents the tailored SRS template

with explanation of each subsection. Appendix B is the partial SRS of a case study.

8

Chapter 2

Overview of Software

Requirements Engineering

This overview focuses on the clarification of concepts involved in software require­

ments engineering and introduces some typical software requirements engineering

approaches.

2.1 Clarification of Some Concepts

Software requirements engineering is the science and discipline concerned with estab­

lishing and documenting software requirements [81]. A commonly supported process

model of software requirements engineering includes processes of elicitation, analysis,

specification, validation and management, that were already introduced in section

1.2.

While people are increasingly realizing the importance of the software require­

ments phase and making efforts to establish good software requirements, they are

sometimes confused by some of the concepts in this area, such as system require­

ments, business requirements, user requirements, software requirements, functional

requirements, non functional requirements etc. In this section, we will present a uni­

fied/consistent set of definitions which are used in our documentation and processes.

9

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

2.1.1 What is a System?

In the publication of IEEE 1233-1998, a system is defined as "An interdependent

group of people, objects, and procedures constituted to achieve defined objectives or

some operational role by performing specified functions. A complete system includes

all of the associated equipment, facilities, material, computer programs, firmware,

technical documentation, services, and personnel required for operations and support

to the degree necessary for self-sufficient use in its intended environment."

However, the definition above is the meaning in the large sense [47]. In soft­

ware requirements engineering, the software is focused on. We give a "small sense"

definition in the context of software requirements engineering for user-centric soft­

ware - "A system is a combination of software and the underlying general-purpose

computer."

In this sense, people and other systems are certainly not included. The func­

tionality of the system is achieved by the software. It is the software that transforms

the computer into a system, which can accomplish the desired purpose. We suppose

that the underlying general-purpose computer always works properly.

When we talk about software or software system, we mean the same thing. It

refers to the software under discussion. The functionality of the system is the same

as the functionality of the software.

2.1.2 What is a Requirement?

In Webster's Dictionary 1989, requirement is defined as "something required; some­

thing wanted or needed." In IEEE terminology [43], requirement is defined as: "(1)

A condition or capability needed by a user to solve a problem or achieve an objective.

(2) A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents. (3) A documented representation of a condition or capability as in (1)

or (2)." Alan Davis [28] describes the concept of requirement to be "A user need

or a necessary feature, function, or attribute of a system that can be sensed from a

position external to that system." Kotonya and Sommerville [53] define requirement

as "A statement of a system service or constraint".

The above definitions do not distinguish the differences between the system

10

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

requirements, user requirements and software requirements. In the following para­

graphs, we will clarify the relationships and differences between them.

System Requirements. System requirements describe the behavior of the system

as seen from the outside, for example, by the user [81]. So they are the high-level

requirements that represent the system as a whole, which contains both hardware

and software.

User Requirements. User requirements (also called Stakeholder requirements)

describe the tasks the users must be able to accomplish with the product [86]. Som­

mervile and Sawyer [78] define the user requirements as " ... abstract requirements

describing the system services which people need to use the system and to integrate

it with their business processes." User requirements are usually captured in use cases

or scenario descriptions.

Apparently the user requirements represent the system's behavior from the

user's point of view. As a result, in any pure software case, especially for stand-alone

software systems which will be installed in a general-purpose computer, they could

be regarded as system requirements.

Software requirements. We give the definition of a software requirement as "A

statement of a function or a constraint of the system from the software developer's

point of view."

Software requirements consist of all the requirements the software must demon­

strate for the system to meet the user requirements. They are derived from analysis

of user requirements. Software requirements include the so-called functional require­

ments and non-functional requirements, where user interfaces are considered to be

part of functional requirements in our approach.

Functional requirements (behavior requirements) define what the system does,

namely, the functions (actions) of the system. They describe all the inputs and

outputs to and from the system as well as information concerning how the inputs and

outputs interrelate [28].

Non-functional requirements define the constraints of the system as it performs

its functional requirements. They include a description of the system's usability, reli-

11

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

ability, performance, security, maintainability, portability, implementation, interface,

operations, packaging and legal obligations.

2.1.3 What is a Software Requirements Specification (SRS)

Alan Davis [28] defines "A software requirement specification is a document containing

a complete description of what the software will do without describing how it will do

it." Another formal definition in [81] states "A software requirements specification is

the document that clearly and precisely describes each of the essential requirements

(functions, performance, design constraints, and quality attributes) of the software

and the external interfaces."

The above two definitions summarize what an SRS should be. An SRS states

what is to be built, it records the functional requirements, which present what behav­

ior the software system should offer, and non-functional requirements, which describe

the specific constraints on the system.

2.2 Software

proaches

Requirements Engineering Ap-

This section briefly introduces the main software requirements engineering approaches

that can be found in the literature. These approaches differ in their analysis methods,

modeling techniques, specification languages, or their combinations of these compo­

nents.

2.2.1 Function-Oriented Analysis Approach

The Function-Oriented Analysis Approach defines the required behavior as a map­

ping from inputs to outputs. The system functionality is decomposed into a function

hierarchy. Each level of the hierarchy adds detail about the processing steps nec­

essary to accomplish the more abstract function in the level above. The function

above controls the processing of its subfunctions. Data flow diagrams (DFD), entity

relationship diagrams (ERD) and data dictionaries are the main modeling techniques

of this approach. The details of a function are defined using a textual specification

12

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

called a "MiniSpec", in the form of natural language, decision tables, or a procedure

definition language (PDL). Techniques belonging to this approach include Structured

Analysis and Design Technique (SADT) [71], Structured Requirements Definition

(SRD) [63], Structured Analysis and System Specification (SASS) [30], Structured

System Analysis and Design Methodology (SSADM) [33] etc.

As a top-down functional decomposition approach, the resulting solution usu­

ally lacks flexibility and is hard to scale up and extend in the future.

2.2.2 Object-Oriented Analysis Approach

The Object-Oriented Analysis Approach (OOA) originated from Object-Oriented

Programming (OOP) and Object-Oriented Design (OOD), and partitions the sys­

tem into interacting analysis objects which are linked by various relationships. Each

object encapsulates a set of services (also called functions or methods) and a state (a

set of data, a data structure, or attributes). In object-oriented analysis, the analysis

mainly contains the following activities: finding the analysis classes, structuring the

analysis classes, describing interactions among analysis classes, defining services of

analysis classes and defining attributes of analysis classes. The first object-oriented

analysis approach, Object-Oriented Systems Analysis: Modeling the World in Data

(OOSA) [77], adopts the entity-relationship model to capture the domain object rela­

tionships of a software system. Since then, numbers of OOA approaches have emerged

such as Object-Oriented Analysis (OOA) [20], Object-Oriented Modeling and Design

(OMT) [75], Object-Oriented Analysis and Design with Applications (OOAD) [12]

and Object-Oriented Software Engineering (OOSE) [49], which support both the

declarative and interactive modeling of a software system. In particular we note that,

OOSE invented the use case technique.

Today, one of the market leading approaches is the Unified Process (UP) [50],

which is roughly a convergence of [10, 12, 49]. Also, the Unified Modeling Language

(UML) [62], which consists of a set of dynamic and static models, is gradually stan­

dardizing the modeling techniques used in the OOA world.

However, the OOA techniques of UP are deeply influenced by software de­

sign. The control classes introduced actually model internal aspects of a software

application.

13

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

2.2.3 Goal-Oriented Approach

Goal-Oriented requirements engineering is concerned with the use of goals for elic­

iting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and

modifying requirements [83]. A goal is an objective the system should achieve. Once

a preliminary set of goals is obtained and validated by stakeholders, many other goals

can be identified by AND/OR refinement and by abstraction, just by asking HOW and

WHY questions about the available goals, respectively. The refinements stop until

subgoals can be assigned to individual agents1 in the system, and in the environment.

Lowest level goals become requirements in the former case, and expectations in the

latter. A number of papers describe the detailed modeling techniques and tools used

in goal based requirements engineering, see [5, 27, 59, 82]. One merit of this approach

is that non-functional requirements are apparently analyzed and transformed into

goals.

2.2.4 Problem Frames Approach

Jackson advocates a different methodology to develop requirements and specifications

[47, 48]. In this approach, a problem is decomposed into sub problems. Each sub

problem is a projection of the whole problem and should fit a certain problem frame.

A problem frame is a kind of pattern that captures and defines a commonly found

type of simple sub problem. There are five basic problem frames : required behavior

frame, command behavior frame, information display frame, simple workpieces frame,

and transformation frame. A key component of this approach is the problem diagram

which contains both the problem context and related requirements. This approach

focuses upon the problem domain; it is a return to what might be considered old­

fashioned practice [13].

Moreover, there exist dozens of other approaches and supported specifica­

tion languages such as state-oriented approaches (Z, VDM, and Petri Net), the

software cost reduction (SCR) approach (SCR tables) [40], viewpoint-oriented ap­

proach [53], agent-oriented approach, volere requirements approach (a require-

Agent : a human, device or system component. A system agent is a part of the system being
modeled. An environmental agent is a part of the system environment.

14

M.A. Sc. Thesis - H ongqing Sun McMaster - Computing and Software

ments shell) etc. Also, there are several tools that support requirements cap­

ture and traceability, such as DOORS/ERS (Telelogic) , Analyst PRO (Goda

Software), and Rational RequisitePro (IBM Rational). Most modeling nota-

tions and specification languages have tool support.

vey is located in http:/ /www.volere.co.uk/tools.htm.

A requirements tools sur­

Lastly, a large bibliogra-

phy of requirements engineering is maintained by Alan Davis at his website:

http:/ /web. uccs.edu/ adavis/UCCS /index.htm.

15

Chapter 3

A Practical Approach

This chapter explains the approach we developed. Firstly, a whole picture is given to

demonstrate the approach. Then various processes and steps are elaborated on.

3.1 An Overview of the Approach

The approach we developed includes the well-recognized software requirements en­

gineering processes: Requirements Elicitation , Requirements Analysis, Software Re­

quirements Specification and Requirements Validation. While we put much attention

on the characteristics of user-centric software, we also based our approach on solid

underlying principles and rationale derived from the literature.

At the elicitation stage, the system user's responsibilities are refined into user

tasks, and then scenarios fulfilling these tasks are explored and eventually captured

into use cases, which form the user requirements. During the analysis stage, through

analyzing each use case, the required functionality and behavior of the system are

allocated into different functional parts of the system - analysis classes, which consist

of domain classes and application (boundary) classes. The specification process uses

the results of the elicitation process and analysis process, to specify the functional

requirements and system constraints (non-functional requirements) in the form of a

software requirements specification. The validation process embraces a number of

steps to ensure that all the user requirements and constraints have been accurately

captured and documented. Validation can occur during or after the other processes.

16

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

The approach we developed is systematic, incremental and iterative. It has

somehow a style similar to UP (Unified Process) [50] although it just covers the

requirements phase. Figure 3.1 and Figure 3.2 are two views of the approach.

Elicitation

Analysis

Background
Description

Current Situation

User Responsibil~ies
& Tasks

Vision Statement

Glossary

General System
Constraints

Specification

Validation

Figure 3.1: Artifacts View of the Approach

3.2 Requirements Elicitation

0 Resource

C]AMact

-Based on

Software Requirement Elicitation is an essential process of Software Requirement

Engineering. It is perhaps the most difficult , most critical, most error-prone, and most

communication-intensive aspect of software development [86]. Eliciting requirements

1s about finding the real needs for the system [14] . We gather understanding of

17

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

,..q
(.)
cO
0
1-<
0..
0..
<

(1)
,..q ...,
'+-<

.r:. 0
0

::= IU e (1)
Q. > Q.
<{

I f en rn
0::

\
(1)

en l. j) rn
rn

rk· U. -!
(1)
(.)

0
~~~~!iii t! 1-< 
~~ . • ~.,ll_: ~ 0.. 

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

the future system and captured in use cases. The users validate the use cases typically 

by reviewing the scenarios or by testing small prototypes. 

Elicitation Process Steps: 

1. Gather understanding of the problem description. 

2. Find the system boundary. 

3. Identify actors. 

4. Specify primary actor's tasks. 

5. Specify use cases. 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

problem descriptions by studying the user's environment and domain documentation, 

discovering the functionality of any existing systems, and interviewing users. 

User-Centric 

Most systems are designed to be used by people. This is especially true for user-centric 

software applications, in which the human/computer interface is extremely important. 

Each user type has some responsibilities for using the system. Correspondingly, the 

system must provide some services for a user type to fulfill its responsibilities. All 

such services provided by the system constitute the functionality of the system. So, 

we focus on studying what responsibilities each user type has and what behavior the 

system shall provide when each user type uses the system. 

The results are specified in use cases (introduced in the next paragraph) as 

user requirements. Use cases identify the functionality of a system from the users' 

point of view. 

Scenarios-Based 

The customers and users are experts in their domain and have a general idea of what 

the system should do, but they often have little experience in software development. 

On the other hand, developers have experience in building systems, but often have 

little knowledge of the environment of the users. 

Scenarios were designed to bridge this gap. A scenario is "a narrative descrip­

tion of what people do and experience as they try to make use of computer systems 

and applications" [18]. A scenario describes an example of system use in terms of a 

series of interactions between the user and the system. For many years, this technique 

has been used by analysts to help elicit requirements [56]. In 1992, Ivar Jacobson 

invented the use-case approach for object-oriented software engineering [49], which 

gave an informal definition of scenario-usage. A use case is an abstraction that de­

scribes a collection of scenarios for a primary actor to fulfill a goal or task using the 

system. 

We elicit requirements by observing and interviewing users. We start by rep­

resenting the user's current work process (work-flow) through as-is scenarios. After 

that we develop additional scenarios describing the functionality to be provided by 

19 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

the future system and captured in use cases. The users validate the use cases typically 

by reviewing the scenarios or by testing small prototypes. 

Elicitation Process Steps: 

1. Gather understanding of the problem description. 

2. Find the system boundary. 

3. Identify actors. 

4. Specify primary actor's tasks. 

5. Specify use cases. 

Use cases are the outputs of the elicitation process as user requirements, and in a 

complete model, the use cases partition the functionality of the system and they may 

be properly organized according to functionality. Figure 3.3 indicates the input and 

output of the elicitation process. 

--Problem description--1 Elicitation f--user requirements-. 

Figure 3.3: Elicitation Process 

3.2.1 Gather Understanding of the Problem Description 

Normally, we are not experts in the problem area for which our software systems 

provide solutions, so the first thing we must do is to become familiar with the prob­

lem area to understand the processes for the given field and to understand how our 

software should facilitate those processes. 

During this step, considerable expansion of information and knowledge about 

the problem are collected, including all the constraints on the problem's solution. An 

understanding of problem description is an output of this step. 

20 



M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

What Is a Problem? 

Generally speaking, a problem is a state of difficulty that needs to be resolved or a 

question raised for consideration or solution. A useful definition of problem comes 

from Gause and Weinberg, "A problem is the difference between things as perceived 

and things as desired" [36]. 

What Is a Software Development Problem? 

In software development, a software development problem refers to any problem that 

needs to be resolved by creating the software for a computer system that will serve 

some useful purpose in the world. Software development problems are about the real 

world where the system must have its effect. 

What Is a Domain? 

In dictionaries, domain has many definitions like "A particular environment" , "A 

territory over which rule or control is exercised", "People in general; especially a 

distinctive group of people with some shared interest." 

In their book Object Life Cycles, Sally Shlaer and Stephen Mellor define do­

main in a different way: "In building a typical large software system, the analyst 

generally has to deal with a number of distinctly different subject matters, or do­

mains. Each domain can be thought of as a separate world inhabited by its own 

conceptual entities or objects" [57]. 

Our preference is Michael Jackson's definition of domain: "A particular part of 

the world that can be distinguished because it is conveniently considered as a whole, 

and can be considered - to some extent - separately from other parts of the world." 

[47] 

What Is a Problem Domain? 

A problem domain is a domain that is directly related to the problem. In a software 

development problem, the problem domain is what is given, while the system is what 

is to be built . The system provides a solution to the problem by interacting in some 

way with the problem domain. 

21 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

A domain can be decomposed into sub domains, further, a sub domain can 

be decomposed into its sub domains and so on. A part of the problem domain is a 

problem sub domain, which can be a person, a system, a device, an organization, or 

a physical representation of some related information (a set of data). 

In a traditional context diagram, we typically restrict our attention to what 

we call the environment of the system- all the problem sub domains that are directly 

connected with the system. So, a problem domain is more than the environment of 

the system to be built. It includes all the relevant parts of the problem. 

In short, the environment just consists of something that physically surrounds 

the system, whereas the problem domain includes all the related parts of the world in 

which the customers are interested. This can include people, other systems, devices, 

company's products, buildings, intangible things like graphics images or timetables 

or employment payscales, and absolutely anything else that will interact with the 

system or furnish the subject matter of its computations [47]. To understand the 

problem, we need to explore the whole problem domain. 

What Are Phenomena? 

The Cambridge Advanced Learner's Dictionary defines phenomena as "something 

that exists and can be seen, felt, tasted, etc., especially something which is unusual 

or interesting". So, phenomena are any entities, relations, states or processes known 

through the senses rather than by intuition or reasoning. In other words, phenomena 

are what appear to exist when you observe the world or part of the world. The 

subject of study of phenomena is called phenomenology, which makes a contrast with 

ontology, which is about what really, truly, fundamentally, and objectively exists, 

independently of our perceptions and observations. 

As software developers, to understand the problem, we need to capture all the 

existing phenomena of the problem and the desired phenomena of the system. We 

do not need to disclose the real essence of the phenomena - we deal with them as we 

experience them, as they appear to customers and users. 

Meanwhile, rather than using the elaborate phenomenology, we want a simple 

phenomenology. So, we limit ourselves to three kinds of individuals (events, entities 

and values) and three kinds of relations (states, truths, and roles). An individual is 

something that can be named and reliably distinguished from other individuals. The 

22 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

distinguishability of individuals relies on our purpose of analyzing the problem. So, 

individuals may be any things we choose, as long as they can be distinguished one 

from another for our purpose. A relation is a set of associations among individuals. 

A relation consists of some number of tuples. 

The various individuals and relations are defined below [48]. 

• Event. An event is an individual happening, taking place at some particular 

point in time. Each event is indivisible and instantaneous. It is a phenomenon 

located at a single point in space-time, which follows and is caused by some 

previous phenomenon. 

• Entity. An entity is an individual that persists over time and can change its 

properties and states from one point in time to another, and it is perceived or 

known or inferred to have its own distinct existence. 

• Value. A value is an intangible individual that exists outside time and space, 

and is not subject to change. We are interested in those values like numbers 

and characters, represented by symbols. A range is a pair of values. 

• State. A state is a relation among individual entities and values; it can change 

over time. We often use state in place of tuple. We say a state holds (is true) 

or doesn't hold (is false). 

• Truth. A truth is a relation among individuals that cannot possibly change 

over time. The related individuals are always values and the truth expresses a 

mathematical fact, such as LengthOJ ("ABCDE", 5}. 

• Role. A role is a relation between an event and individuals that participate in 

it in a particular way. 

What Is a User's Responsibility? 

A user's responsibility is something a system user must do because of prior agreement. 

Each responsibility of a user type is a collection and summary of a user's tasks when 

using the system. 

23 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

What Is a Task. 

A task is a piece of work that needs to be done regularly [45]. It is a part of a set of 

actions which accomplish a job, problem or assignment. 

What Is Included in the Understanding of Problem Description? 

Understanding of Problem Description (UPD) are the abstract but explicit statements 

of the problem to be solved in a way that is familiar to people with experience in 

the problem domain. It describes the problem and the requirements at a high level. 

It includes the current situation, a vision statement, user responsibilities, system 

constraints, a glossary and the problem context diagram. Some part of the UPD are 

eventually transferred into SRS, such as the glossary. 

Current Situation describes the current state of affairs. It describes how 

the responsibilities (tasks) of users supported by the new system are accomplished at 

the current time. 

Vision Statement summarizes what the system is expected to accomplish. 

It should explain what the purpose of the system is and what the system should 

ultimately become. 

User Responsibilities and Customer Authorities. Each user type has a 

set of responsibilities when it uses the system. To fulfill its responsibilities, it performs 

some tasks which are eventually represented as use cases. At the earlier requirements 

stage, each user type 's responsibilities are identified through interviews, as well as the 

user tasks that are needed to fulfill each user's responsibility. 

Customers' authorities are identified also. The customers of the system have 

limited authorities when they want to use the system. The system should be built 

so that customers cannot access functionality of the system that is beyond their 

authorities. 

System Constraints, also known as non-functional requirements, are con­

straints the system must obey when the system performs its services (i.e. imple­

ments the functional requirements). Non-functional requirements involve consider­

ations such as usability, reliability, performance, maintainability, implementation, 

interface, legal requirements, etc. 

As in most cases, system constraints are associated with a particular user 

24 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

task, such as performance requirements (e.g. response time for an action), and they 

can be explored during the use task exploration. Some more generic constraints 

like reliability (e.g. mean time between failures), political and legal constraints (e.g. 

certification) can be examined in earlier stage. Table 3.1 (revised from [14]) is used 

as a general guide to find system constraints. 

Category Guide Questions 
Usability What is the level of expertise of the user? 

What user interfaces are familiar to the user? 
Reliability (including How available and robust should the system be? 
robustness, safety and How should the system handle the exceptions? 
security) What encryption levels are needed over internet? 

How much data can the system lose? 
Performance How responsive should the system be? 

Are any user tasks time critical? 
How many concurrent users should it support? 

Maintainability Who maintains the system? 
What efforts needed to maintain or enhance the system? 

Portability Does the system have the ability to easily move to different 
hardware platforms, operating systems, database management 
systems, network protocols? 

Implementation Are there constraints on the hardware system? 
Are there constraints on the programming language? 
Are there constraints imposed by the maintenance team? 

Interface Should the system interact with any other existing system? 
How are data exported/imported into the system? 

Operation Who manages the running system? 
Packaging Who installs the system? 

Are there time constraints on the installation? 
Legal How should the system be licensed? 

Table 3.1: Guidance for Finding System Constraints 

Glossary {Data dictionary) contains both a domain glossary and any other 

terms or abbreviations used in the specification. A glossary de-mystifies the jargon for 

anyone examining the document. Each entry in the glossary defines a term. Terms 

with the form of concatenation of several words denote that they are used by the 

system, such as an MRIImageSet. If a term is a data structure, the including data 

items are enclosed in parentheses and are separated by commas, such as MRIImage­

Set(Name, SliceNumber, MRIImages). We use plural to denote a collection and [i] 

25 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

to denote the ith element of a collection, such as MRIImages[l]. 

The analysts and developers should keep the glossary up to date as the re­

quirements specification evolves. 

Problem Context Diagram is a diagram that structures the world into the 

system domain, and the problem domain (which includes problem sub domains) , and 

shows how they are connected. It is not limited to the parts of the world that are 

directly connected to the system. A problem context diagram shows what the real 

world will be when the system is running. 

3.2.1.1 Study of Documents and Existing Software Systems 

Studying documentation on the problem domain should be done as early as possible, 

and the resources may come from: 

• A good introductory book suggested by customers. 

• Organization documents including work procedures, job descriptions, policy 

manuals and business plans. 

• Domain journals and reference books. 

• Documents that describe current or competing systems. 

3.2.1.2 Further Analysis of the Problem Domain 

Once we have some basic knowledge in the problem area, we can begin typical tasks 

such as the following: 

• Build a domain glossary. To facilitate clear communication, we should capture 

the significant t erms in a glossary. 

• Understand the underlying problem goals. 

• Identify different types of users and corresponding representatives, and charac­

teristics. 

• Identify decision makers for the project . 

26 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

Topic Questions When Who Times 
Vision Vision for the system Start of A representative l..n 

Alternative minimally acceptable solution project from each user 
Other source of information type 
System constraints 

User responsibilities Responsibilities of each user type Start of A representative l..n 
and customer Authorities of customers project from each user 
authorities Tasks needed to achieve each users type's type 

responsibilities 

Task workshop Work-flows (Scenarios) of each task {how After capture Representatives l..n 
they do now, how they desire with the new primary from related user 
system) actor-task list types 

Use case validation Does each use case correctly capture After initial Representatives l..n 
corresponding user task? sketch of use from related user 

cases. types 

Table 3.2: Typical Structured Meetings 

3.2.1.3 Interviewing Users Effectively 

Elicitation can succeed only through an effective customer (user)-analyst (developer) 

partnership. As stated in Chapter 1, we advocate the joint requirements development 

(JRD) method. However, various interview forms also are suggested at the beginning 

of a project. After we have mastered some domain knowledge, we can arrange in­

terviews with the customers and users, because customers and users are the best 

source of information about the problem domain. Interviews are the primary tech­

nique of fact finding and information gathering. Specifically, we may use the following 

approach: 

• Structured meeting but open-ended questions recommended. 

• Core meetings/requirements workshops suggested. Table 3.2 lists some typical 

meetings. 

• Specific details for any issue: five w's - what, who, when, where and why. 

• Pre-determined open-ended questions in the first meeting: What do you believe 

the application must do to be effective? What are the most important aspects 

of the problem domain? What are the processes now? 

• Review with interviewees the items discussed. 

27 



M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software 

Elicitation is a highly collaborative process, not just a recording of what cus­

tomers and users say they need. We must probe beneath the surface of the require­

ments the customers present to understand their true needs. So open-ended questions 

are recommended to help us better understand the user's current scenarios and to see 

how the new system could serve. 

User tasks and corresponding scenarios are a very important part in the elic­

itation process. Suggested questions in this part could be "What are your responsi­

bilities for using the system? To fulfil your responsibilities, what tasks do you need 

to perform with the system?" Also, we should never neglect variations in the user 

tasks that might be encountered or ways that other possible users might need to use 

the system. Further, inquire about exceptions: what could prevent the user from 

successfully completing a task? How does the user think the system should respond 

to error conditions? Last but not least, discuss with the users the interactions and 

dialogues between the users and the system that they hope to complete each task. 

We will discuss the detailed process of task specification in later sections. 

3.2.1.4 Observation of Users at Work 

In most circumstances, it is difficult to obtain complete information about the prob­

lem description through interviews and the methods above. The customers may just 

convey fragmentary knowledge of a complete working process. In such a case, obser­

vation may be an effective fact-finding technique. 

Observation has generally three forms [55]: passive observation, active obser­

vation and explanatory observation. In a passive observation, the analyst observes 

the user's activities without interruption, whereas, in an active observation, the an­

alyst directly takes part in the users' team. In an explanatory observation, the user 

explains his or her activities to the analyst while doing the job. 

As different people tend to behave differently even when following formal rules 

and procedures, we ought to abstract and generalize their activities and ensure that 

the requirements captured apply to the user type as a whole. 

28 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

3.2.1.5 Capturing the Understanding of Problem Description 

In a project, when the above steps are carried out and initial information is gathered, 

we can begin to specify our understanding of the problem description. The following 

is partial initial information about a photodynamic therapy (PDT) treatment planning 

software problem, which we use as an example throughout our approach. 

Vision of the system: Treatment planning software is required for simulating 

treatment of cancer patients (e.g. prostate cancel patients) and for producing treat­

ment plans for them. For each patient, the baseline MRI images will be loaded into 

the system and the important structures will be defined (e.g. prostate, rectum and 

urethra for prostate patients). Then, a virtual array of treatment devices (e.g. cylin­

drically diffusing optical fibers) is added to the virtual target volume (e.g. prostate). 

Once a set of treatment parameters (e.g. device numbers, energy etc.) is defined, the 

light dose distribution both inside the target volume and in its surroundings can be 

calculated by the software and the calculated results can also be visualized by super­

imposing the treatment effect onto the MRI images. Being iteratively changed, a set 

of treatment parameters is determined until an acceptable balance between efficacy 

and safety is achieved. 

In this example, we have the hospital as the customer and a radiologist as a 

user type. Tables 3.3 and 3.4 demonstrate their authorities and responsibilities. 

Customer Authorities 
Hospital Run the software for treatment planning for patients 

Table 3.3: Customer's Authorities 

User Responsibilities Tasks 
Radiologist Ensure the correct target Enter Patientlnfo & Targetlnfo 

definition Link MRIImageSet 
Define Target 

Table 3.4: User's Responsibilities and Tasks 

3.2.1.6 Draw a Problem Context Diagram 

As mentioned above, a problem context diagram (PCD) is a part of the UPD. We 

separate this subsection because it includes additional information that needs to be 

29 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

clarified. 

Most people directly draw a system context diagram at the very beginning 

of the requirements stage. How do they obtain it? Probably it is a result of rules 

of thumb; they focus on only the system itself and its surroundings. How can the 

surroundings be found? They may say by exploring the requirements. They never 

show the process of how to draw a system context diagram - we will, with the usage 

of the problem context diagram. 

Another question is, how about other relevant parts of the problem that are 

not directly connected with the system? For example, in the treatment planning 

software, the patients are not directly connected with the system. Do we need to care 

about them? 

The answer is "yes". Showing all the relevant parts of a problem indicates that 

we have really understood the problem. At the requirements phase, our objective is 

to understand the problem, that is, to identify the problem, and then we analyze it 

and try to get a definition of a solution. Those parts not directly connected with 

the system also contain the necessary information to solve the problem, e.g., the 

patient name shall be related to a specific treatment plan, and thus they should not 

be omitted. So, at the early requirements stage we put emphasis on identifying the 

problem completely, and capturing it visually in a problem context diagram to show 

our understanding. 

When we set about analyzing and structuring a problem, it is fundamental to 

determine what it is about - that is, where the problem is located, and what parts of 

the world it concerns. After we have done some research, studies, and initial interviews 

with users and captured the vision statement and users responsibilities and tasks, we 

record what we find from various descriptions of the problem into a problem context 

diagram. Based on the knowledge and information already developed, an analyst 

examines the various parts in the problem domain. These parts (called problem sub 

domains) form the context into which the planned system must fit . Then the analyst 

determines how the system will fit into this context . The result of this is a context 

diagram showing the vision of the problem context with the system installed in it. 

So, a problem context diagram locates the problem in the physical world . It identifies 

all the relevant parts of the world and abstracts the understanding of the problem. 

It is an iterative process to draw a problem context diagram. As the elicitation 

30 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

activities go forward, the sub domains may be added, composed, or decomposed to 

reach an understandable level. 

Decomposition of a (Sub) Domain 

A domain can be divided into sub domains; further a sub domain can be divided 

into its own sub domains, and so on. The decomposition is based on our desire 

for abstraction. Figure 3.4 demonstrates the basic rules of domain decomposition. 

Any decomposition can be carried out by these two kinds of decompositions, or a 

combination of them. 

==-

I~ 
~ 
~ ~ 

~~~ s 

'
...

(a) Domain Decomposition

s
sp
Sa,Sb, ...
spa,spb, ...

(b) Interface Decomposition

,_.._.,
·--~..........,

Super domain
Interface of super domain
Sub domains, where S =Sa U Sb ...
Sub Interfaces, where sp =spa U spb ...

..................................... ·········-···. ·-· -· ..• -·····-·············-··-·

Figure 3.4: Domain Decomposition Rules

In Figure 3.4 (a), a super domain S is decomposed into a finite number of

sub domains Sa , Sb, .. . , and its interface sp (a set of shared phenomena: events,

states and values) with other (sub) domain(s) is decomposed into interfaces of its sub

domains, where S = SaUSb .. . , sp = spaUspbU The sub interfaces must be

mutually disjoint; in case that they are not , further interface decompositions should

be performed according to the rules in Figure 3.4 (b), and some sub interfaces are

31

. M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

shared by two or more sub domains. Also, internal interfaces between sub domains

may be derived, because the super domain S itself is something that , as a whole, can

be separated from others, and we expect that there may exist some cohesion among

its sub domains. For example, a company super domain may be decomposed into

a sales department sub domain, accounting department sub domain and a supply

department sub domain etc., and the sales department has an inner connection with

the accounting department.

In Figure 3.4 (b), the interface sp of a super domain S is decom­

posed into a finite number of sub interfaces spa, spb, ... , where sp

spaUspbU ... , and spanspbn .. . = 0. For example, when the company domain

interacts with the outside world, its interface may be divided into customer contact

interface, supplier interface, bank interface etc.

Figure 3.5 shows the decomposition of a company domain, in which the cus­

tomer contact interface belongs to the sales department. Further, the customer con­

tact interface of the sales department can be divided into a web interface and a

telephone interface.

Company

Supply
Dept.

Figure 3.5: Domain Decomposition: a Company

To simplify the notation, we will not give extra notation for concurrent shared

phenomena of an interface. We focus on the existence of shared phenomena. However,

32

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

plural is used in case there is more than one instance of sub domains at any particular

point of time in the problem.

Composition of Sub Domains

The composition of sub domains follows exactly the reverse rules of the decomposition,

and likewise, the definitions of composition of sub domains are similar as well. We

define a super domain S as a composition of sub domains Sa, Sb, ... such that

S = SaUSbU, ... and sp = spaUspbU

As needed, a problem context diagram can have levels through (sub) domain­

decomposition and composition. The higher level problem context diagram shows the

overview of the lower level problem context diagrams. Especially when a problem has

many sub domains, the abstract level of the problem context diagram will be helpful

in understanding the whole picture of the problem.

Top Level Problem Context Diagram.

The problem context diagram contains both the system and the problem domain, and

shows how they are connected: that is, their interface(s) . Figure 3.6 is a top level

problem context diagram. The system and problem domain communicate or interact

I I
System -c sp ~ Problem

I 1 Domain

sp: Interface, a set of shared phenomena

Figure 3.6: Top Level Problem Context Diagram

only at their interfaces. Interfaces are not dataflow or messages. At this early stage,

we discuss the real world problem with our customers. We do not want to assume

that all communications are of the dataflow kind, we will think in more general terms

- that inter-actions between (sub) domains are shared phenomena, which include

shared events, shared states and shared values.

33

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Only through the communication or interaction with the problem domain,

namely, sensing and affecting it , can the system fulfill its purpose. In Figure 3.6,

the overlapping part of the system and problem domain is the hand-shaking area sp,

which is the interface between the system and the problem domain. This interface is

where the system and the problem domain meet and interact . It is a set of shared

phenomena in which both the system and the problem domain participate.

First-Decomposition Level Problem Context Diagram.

In a First-Decomposition Level problem context diagram, the problem domain is

decomposed into problem sub domains. In most cases, this level is detailed enough for

us to understand the problem, otherwise it can be further decomposed. Each problem

sub domain will have its own context diagram accordingly, which is a fragment of the

whole. We will omit "First-Decomposition Level" from here on, because this level

is our primary interest. When we talk about a problem context diagram, we always

mean this level.

A problem context diagram captures all the relevant parts of the world and

their connections and shows the problem world as it will be when the system is in

operation. It structures the world into a system domain, problem sub domains, and

shows the interfaces between them: that is, how the system domain is connected to

problem sub domains and how problem sub domains are connected to each other.

Figure 3. 7 shows what a problem context diagram looks like. The union of inter­

faces between the system and the problem sub domains constitutes the interface

between the system and the whole problem domain, sp in the top level problem con­

text diagram. In Figure 3.8, a further-decomposition level problem context diagram

is illustrated, where the sub domain B in Figure 3. 7 is decomposed to produce its own

context diagram as a fragment of the whole problem context diagram. Moreover, for

the UHN treatment planning software problem example, a problem context diagram

is illustrated in Figure 3.9.

Definitions inside the Problem Context Diagram

In the following few paragraphs, we will clarify some definitions that are based on the

original concepts of Michael Jackson [47, 48].

34

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

System

sp=spa U spb U spc

Figure 3.7: First-Decomposition Level Problem Context Diagram

System domain is the system under discussion. It consists of the software to be

developed, and underlying general-purpose hardware and operating system.

Problem sub domains consist of all parts of the world where the problem is related

at a fairly abstract level. Each part of the problem domain is a problem sub domain.

A problem sub domain can be people, a system, a device, an organization, or a

physical representation of some information (a set of data). There are two kinds of

problem sub domains:

• A Data Sub Domain ("designed" sub domain as denoted by M. Jackson) is the

physical representation of some information, for example, on a magnetic stripe

card, or on a floppy disk or on a hard disk, or even on a screen or in printed

output. You are free to design and specify its data structure and, to some

extent, its data content during the software design stage which follows after the

requirements stage.

• An Entity Sub Domain ("given" sub domain as denoted by M. Jackson) is a

problem sub domain whose properties are given, that is, you are not free to

design the domain. In some of them you can affect their behavior or state by

35

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

8=81 U82U83
spb = spb 1 U spb2 U spb3
spd=spd1 Uspd2
spba: an inner interface between 82 and 83

Figure 3.8: Further-Decomposition Level Problem Context Diagram

designing the system appropriately, e.g. the printer; some of the others cannot

be affected by the system (e.g. patients).

All the problem sub domains in the problem context diagram are physical, they

exist (e.g. patients) or will exist (e.g. treatment plan report). They identify the

parts of the world in which the customer will check for observable effects. Problem

sub domains are communicable or operable. Showing a sub domain as a data sub

domain means that you will have the responsibility for doing the design work and the

freedom that comes from being able to make design decisions in the later software

development stage. For an entity sub domain you will not have that freedom, and

your responsibility will just be to investigate and describe its properties and behavior,

rather than developing a design.

An interface is a set of shared phenomena. The system domain and problem sub

domains are physical, and the interfaces between them are physical. Interface is an

area where (sub) domains connect and communicate. It is a place where (sub) do­

mains partially overlap, so that the phenomena in the interface are shared phenomena

-they exist in both of the overlapping (sub) domains. In a shared event, both of the

sharing (sub) domains participate, but only one of them can cause it. In a shared

state or value, both of the sharing participants can see the state or value, but only

36

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

spa: US!

spb: Mil
spc: TPSS!
spd: TPSSI
spe: TPSS!

spf: TPSSI

spg: TPSSI

sph: PAl
spi: PAl
spj: VI/I/SI

{EnterPatientlnfo &Targetlnfo.
LinkMRllmageSet. DefineTarget.
SetTreatmentOption, DoSimulation,
Generate TreatmentPian Report}
{MRllmageSet}
{Targetlnfo, AdjacentTissuelnfo}
{Un-selected TreatmentOptions}
{Selected TreatmentOption,
Patientlnfo,
Targetlnfo
(Name, AbsorptionCoeff, ScatteringCoeff, ThresholdOose)}
{lightDose Of Selected TreatmentOption,
SimulationResultlmageSet Of Selected TreatmentOption,}
{LightDose of Un-selected TreatmentOptions,
SimulationResultlmageSet of Un-selected TreatmentOptions}
{TargetStructure}
{Patientlnfo(Name, PhysicianName), Targetlnfo(Name)}
{Targetlnfo(AbsorptionCoeff, ScatteringCoeff, ThresholdDose)}

spa, spb.. . set of shared U
phenomena 1
System domain

Problem entity
sub domain

Problem data
sub domain

Interface

Controlling

Figure 3.9: Treatment Planning Software Problem Context Diagram

one of them can change or determine it.

At this early stage of software development, we use shared phenomena con­

cepts rather than input/output in that we try to use the natural or domain language

to describe the connections (interactions) among the parts of the problem world.

Moreover, not all the phenomena of the problem domain are data flows, but we need

to capture all of them to understand the problem.

Non Directly-Connected Problem Sub Domains

As we discussed at the beginning of this subsection, a problem context diagram also

should contain the problem sub domains that are not directly connected with the

37

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

system, such as patient in Figure 3.9. We call them NDC (Non Directly-Connected)

problem sub domains. Similarly, those directly connected with the system are called

DC problem sub domains. We also mentioned that NDC sub domains are necessary

parts to solve the problem (the patient name example). Usually, NDC sub domains

connect with DC sub domains (Connections between NDC sub domains are possible) .

In a problem context diagram, the shared phenomena are actually abstractions

of behavior and information of related (sub) domains. The shared phenomena between

the NDC sub domains and DC sub domains are physically transformed into the system

through the DC sub domains. For example, in Figure 3.9, the Name of Patient

is transformed into input data of the system through the User's Enter Patientlnfo

€3 Targetlnfo event. All the shared phenomena in a problem context diagram are

necessary to solve the problem. They are eventually abstracted in the system either

by functions or by data.

So, the NDC problem sub domains are also important parts to understand a

problem. They contain the behavior and data that the system should be aware of to

solve the problem, which are transformed by their connected DC sub domains and

abstracted by the system.

Problem Domain Decomposition Rules

To draw a problem context diagram, the first step is to structure and separate the

problem domain into a number of sub domains: a number of distinctly different

subject matters - that is, the internal properties and behavior (phenomena) of each

sub domain must be largely independent [47] . To some extent this decomposition

can be done intuitively, dividing the problem domain along obvious lines suggested

by the problem and the context. We give guidance for the decomposition as follows:

• A little theory [48]: The principle of problem domain relevance: everything

that is relevant to the requirements must appear in some part of the problem

domain.

• A set of data that can be talked about and grouped together are composed into

a Data Sub Domain (e.g. in an online shop problem, all the goods selected by

a customer can be composed into a data sub domain), the set of data are the

phenomena shared with the system domain or other sub domains.

38

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Each entity type is a potential Entity Sub Domain (e.g. user types, devices).

Its interacting phenomena (events, states and values) with the system domain

and other sub domains are the shared phenomena of its interfaces.

• Entity types that have common interacting behavior are composed into one

Entity Sub Domain (e.g. two user types that share similar tasks with the

system), their interacting phenomena with the system domain and other sub

domains are the shared phenomena of the interfaces of the entity sub domain.

• A user task is abstracted to be a shared event between the user type and the

system.

Problem Context Diagram Drawing Rules

The following rules apply to constructing a problem context diagram.

• System domain is included.

• Each problem sub domain is included.

• Where (sub) domains interact, an interface is recorded. The interaction takes

the form of shared phenomena. Each interface is a set of shared phenomena

and is given a unique identifier beginning with "sp".

• For shared phenomena of each interface, the controlling (sub) domain is identi­

fied with its acronym following a "!".

• If necessary, a sub domain may further be decomposed.

Boundary of the Problem Context Diagram

The problem context diagram shows all the domains and interfaces that we must take

into account. It locates the problem within quite an exact boundary. Something out

of it means that it will play no part in our work, it won't affect the outcome.

Identifying the customer's authority and user's responsibility can avoid broad­

ening the problem too far and narrowing it too much. Customers have certain limited

authority and users have necessary responsibilities. Use those limits and necessities

39

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

as the touchstone when we are in doubt about the location and scope of the problem.

User's responsibilities place a lower bound on the sub domains that must appear in

the context diagram (some sub domains are affected and must appear). Customer's

authority limits the scope of what the software system may legitimately be designed

to do and on what assumption: it places an upper bound on the domains that may

appear in the problem context and be affected by the software system.

Ask ourselves: must this requirement be in scope? Can it be in scope? And

what are the consequences for the context diagram?

3.2.2 Find the System Boundary

To seek and decide where the system boundary is and further for the purpose of

identifying user requirements (for finding actors of use cases) , a traditional context

diagram is an effective tool, which is originally employed as the top level of abstraction

in a data flow diagram developed according to principles of structured analysis [63, 71].

We derive this context diagram from the problem context diagram and name it the

system context diagram.

3.2.2.1 System Boundary

What Is a Boundary?

The line or relatively narrow space that marks the outer limit of something. [45]

What Is the System Boundary?

The system boundary is the interface between a system and the environment, where

the environment consists of entities that are directly connected with the system -

such as other systems, people and devices etc. - that expect some services from the

system or provide services to the system. In other words, the system boundary is the

interface where input/output data flows between the environment and the system.

The system boundary is different from the problem boundary. The problem

boundary pays attention to what should or should not be included in the problem

context, whereas the system boundary focuses on the data flow between the system

and entities in the problem domain. The activity of finding the system boundary is

40

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

the process of identifying the problem domain entities that are directly connected to

the system.

3.2.2.2 System Context Diagram

Data flow diagrams (DFDs) have been used for many years prior to the advent of

computers [28]. DFDs show the flow of data through a system. A popular notation

of DFD denotes that a DFD is composed of data on the move, shown as a named

arrow; transformations of data into other data, shown as named bubbles; sources and

destinations of data, shown as named rectangles called terminators; and data in static

storage (i.e., data bases), shown as two parallel lines.

A system context diagram is a high, abstract level DFD, with only one bubble­

the system, showing all system terminators and external inputs and outputs. It

consists of the system, its environment, and data flows between the environment and

the system. It explicitly illustrates the boundary by showing the connections between

the system and the outside world.

3.2.2.3 Deriving the System Context Diagram

Unlike in a problem context diagram, relevant physical parts of the world and their

shared phenomena could be directly and easily identified as problem sub domains,

external entities surrounding the system sometimes are implicit. Based on some rules,

we can easily derive a system context diagram from a problem context diagram.

From definitions of the problem context diagram and the system context dia­

gram, we note the assumptions below.

Assumption 1. In a problem context diagram, there must exist shared events or

states or values between the system and its directly connecting problem sub domains,

which also implies that there exists interactions between them.

Assumption 2. In a problem context diagram, for each sharing event only one of

the sharing participants can cause it; for a shared state only one of the sharing partici­

pants can change it; moreover, for a shared value, only one of the sharing participants

can determine it.

Assumption 3. In a problem context diagram, interfaces are symmetrical in the

sense that each (sub) domain may control some of the shared phenomena of the in-

41

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

terface.

Assumption 4· In a system context diagram, all terminators are directly connected

to the system.

Assumption 5. In a system context diagram, there must exist input or output or

both data flows between terminators and the system, which also stand for the interac­

tion between them.

Derive a System Context Diagram from the Problem Context Diagram

According to the assumptions above, we can deduce the rules for the derivation.

• The system domain becomes the system bubble.

• Problem sub domains not directly connected with the system domain are elim­

inated, but their effects on the problem domain are encapsulated by other sub

domains or the system domain as discussed in page 37.

• Problem sub domains directly connected with the system become terminators,

their shared phenomena with the system are converted to data flows.

• Shared phenomena (events, states, or values) controlled by the system are con­

verted to output data flows, whereas those controlled by problem sub domains

are converted to input data flows.

According to these rules, Figure 3.10 shows a derived system context diagram

of the treatment planning problem from Figure 3.9.

3.2.3 Identify Actors

In our approach, we capture the user requirements in use cases. As stated, a use case

describes a sequence(s) of interactions between the system and an external "actor"

that results in the actor accomplishing a task. In order to identify use cases, we need

to identify actors firstly from the system context diagram.

A user is a person who uses the system. Normally, a system has many types

of users. Each type of user is represented as an actor.

An actor is anyone or anything with behavior [22], or anything that needs

to exchange information with the system [49]. Basically, actors represent external

42

M.A.Sc. Thesis- Hongqing Sun

MRIImage
Set

Treatment
Plan

MRIImageSet

Q System

McMaster - Computing and Software

Treatment
Planning Software

System

D Terminator

Targetlnfo
AdjacentTissuelnfo

Treatment
Plan Report

Target
Definition

Simulation
Results

- Dataflow

Figure 3.10: A System Context Diagram

entities that interact with the system. The actor is a user type or a category. It

can be human, organizations, devices and an external system [14]. However, an actor

could be an internal system entity such as a timer, e.g., when a system needs to print

the system log at midnight automatically. Also, in our conception, we give the actor

43

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

wider semantics which we will clarify in later sections.

An actor is a role abstraction. If it is a user type, an actor represents a certain

role that a user can play, in other words, an actor is a user class and users are instances

of that actor.

A primary actor is an actor who is going to use the system directly [49] or

the one who initiates an interaction with the system for some purpose. The primary

actors will govern the necessity of the main functionality of the system to be built.

A supporting actor (secondary actor) is an actor that provides a service to the

system under development [22], e.g. printer, web service etc. It exists because of

the primary actor using the system. Supporting actors are helpful for identifying the

external interfaces the system will use and the protocols that cross those interfaces.

3.2.3.1 Rules for Identifying Actors

According to the rules for deriving the system context diagram, terminators of a

system context diagram describe all the things that interact directly with the system.

Therefore, we can identify actors from the system context diagram, for example, a

certain user type appears in a problem context diagram as a sub domain, and then

it is converted to be a terminator in a system context diagram, and then it can be

identified as an actor. We have the following rules for identifying actors:

• All terminators in the system context diagram are actors.

• Each terminator that contains the user type(s) is a primary actor.

In the treatment planning software problem, from Figure 3.10, we can identify the

User (including Radiologist and Planner), MRI Image set, Target Definition, Treat­

ment Plan, Treatment Plan Report and Simulation Results as actors, and the User

is a primary actor.

3.2.3.2 Extra Questions to Check Completeness of Actors

While we should check the completeness of the problem context diagram to ensure

that we capture all the parts of the problem domain and based on that, theoretically

we can get all the actors from the derived system context diagram, we still have

chances to examine if we have identified all the actors at this stage. We may ask the

44

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Actor Profile: Background and Skills
User (Radiologist) A physician specializing in diagnostic techniques for viewing internal

organs and tissues without surgery. Radiological methods include X-ray,
MRI, computed tomography (CT), scan, ultrasound, angiography, and
nuclear isotopes.

Table 3.5: Profiles of Actors

following questions: Which user groups execute the system's main functions? Which

user groups are supported by the system to perform their work? Which user groups

perform secondary functions, such as maintenance and administration? With what

external hardware or software system will the system interact?

3.2.3.3 Profile of the Actors

The background and skills of actors are one of the important sources based on which

the designers will design the system behavior and user interfaces. An actor/profile

table can be used to list the characteristics of each actor. Table 3.5 shows an example

of the description of an actor from the case study.

3.2.4 Specify Primary Actor's Tasks

Our purpose of the elicitation process is to capture user requirements into use cases.

Generally, there are several approaches to identify use cases [51, 54]:

• Identify actors and their roles first , then identify the business processes in which

each participates to reveal use cases.

• Identify the external events to which the system must respond, then relate these

events to participating actors and specific use cases.

• Express business processes or daily activities in terms of specific scenarios, derive

use cases from the scenarios, and identify the actors involved in each use case.

• Derive likely use cases from existing functional requirement statements. If any

requirements don't align with a use case, consider whether you really need them.

45

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

A use case is a complete course of events in the system, seen from a user's perspective

[49] . In other words, a use case represents a complete unit of functionality for a

primary actor to use the system.

Apparently, interactive systems are developed for users (abstracted by user

types) to use. From the user's perspective, each user type has its own tasks (goals) in

order to achieve its responsibilities when using the system. So, if we intuitively derive

a task-oriented description for each user type and get a user type-task list which shows

all the user's tasks that the system can support, we will get all the system's functional

content. We can thus identify use cases by a more direct way- performing each task

will become a use case. By interviewing users or examining available documentation,

we can develop all the scenarios for performing each task, and capture them in use

cases.

A use case involves only one primary actor role, and in most cases, it is a user

type that triggers the use case, and the name of that actor is the name of the user

type. However, if two user types can perform the same task (the same use case), they

will play the same specific primary actor role in terms of this task. So, a specific

primary actor role of a specific use case can be played by different user types. In this

situation we can make a role name of this specific primary actor. So, what we really

need is the primary actor-task list rather than the user type-task list, which contains

all non-duplicated tasks the system should support.

By going through all the primary actors and defining all the tasks they need

to do and will be able to do with the system, we will define the complete functionality

of the system.

3.2.4.1 User's Responsibilities and Tasks

User's Task. A user's task is a task that a user must perform to fulfill one of his

or her responsibilities by using the system. It is an elementary work process. It is the

goal the user has in trying to get work done in using the system. Often a transaction

in a transaction system corresponds to a user's task, such as withdrawing cash in an

ATM system.

Action. An action is the behavior that triggers an interaction between the actor

and the system [21] or behavior that triggers an internal state change of the system.

46

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Actions can be given from both the actors and the system. There are two types of

actions: flow of actions and primitive action. A primitive action is an action that

triggers an atomic interaction between the actor and the system (e.g. a user enters

the password which triggers an interaction), or an atomic internal state change of the

system (e.g. system validates the password which triggers a validation running). A

flow of actions is composed of several actions (e.g. a user requests to save a file) . A

flow of actions can have any one of the following semantics: sequence, alternative,

repetition, and concurrency [70] . Figure 3.11 shows the composition model of the

action.

I
I

Action I

1 I I

~ Flow of actions I I Primitive Action

Composition Generalization

-+ -t>

Figure 3.11: Action Composition Model

Formally, an action is a mathematical relation over objects, where objects

are things of interest which can be referenced in requirements. Action applications

define the state transitions. Each action has a precondition and postcondition, where

precondition and postcondition represent certain states that must exist before and

after the action.

Sub Task. A sub task is a sub action flow of a task. It is abstracted to be an action

step in a scenario of a task. Often a reused section of a scenario could be rolled up

into a sub task, like print a file . A sub task can have its own sub tasks.

Normal Scenario. A normal scenario is also called a basic scenario, a normal

course, a normal flow, a main course, and is the normal sequence of actions to ac-

47

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

complish the intended task of the system.

Alternative Scenario. Any variation conditions and exception conditions in the

normal scenario lead to various action steps to perform a task, they are alternative

scenarios. So, an alternative scenario of a task can be successful, or failed.

Activity. An Activity is a process that users carry out to achieve a responsibility

or perform a task or execute an action.

3.2.4.2 Carry Out a User's Responsibility

As stated previously, the users' objectives for using the system are to accomplish their

responsibilities when they interact with the system. So, the complete set of function­

alities which are needed for accomplishment of all users' responsibilities constitute

the functionality of the system. Therefore, in our user-centered approach, we focus

on how each user type can accomplish its responsibilities by using the system. We

are looking at what functionalities the system should provide when each user type

interacts with the system.

Each responsibility of a user type is carried out by performing some tasks. A

task can be accomplished by performing a sequence of actions (known as a scenario) .

A task can be performed by different scenarios because of the variation and exception

conditions. Figure 3.12 depicts the rationale for the accomplishment of a responsibil­

ity of a user type. We derive an AND/OR refinement model from the traditional

AND j 0 R graph structures. We call it activity refinement. There are two kinds of

activity refinements: AND refinement and OR refinement.

AND refinement. An activity A is AND refined by a finite set B of activities

bi, i = l..n such that (1) fulfilling all the activities of set B implies fulfilling activity

A. (2) the failure of any activity in set B implies the failure of A.

OR refinement. An activity A is OR refined by a finite set B of activities bi, z =
l..n such that (1) fulfilling any activity of set B implies fulfilling activity A (2) The

success of any activity in set B implies the success of A.

48

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

~ AND refinement

~ OR refinement

c:::J Activity

Figure 3.12: Fulfilling a Responsibility

In Figure 3.12, a responsibility is AND refined by a set of tasks and a scenario

is AND refined by a set of actions. Similarly, a task is 0 R refined by a normal

scenario and alternative scenarios.

3.2.4.3 Identify Primary Actor - Task List

As mentioned before, the primary actor - task list shows all the user's tasks that

the system supports, showing the system's functionality. We start with investigating

the tasks of primary actors because the tasks of supporting actors are entirely for

supporting the tasks of the primary actors. Moreover, a primary actor is an abstract

role which may represent more than one user types. Primary actor - task list also

eliminates the redundancy of user type - task list.

Identifying rule:

• Each primary actor in the system context diagram is mapped to the correspond­

ing problem sub domain of the problem context diagram, and the corresponding

user tasks are identified from the shared phenomena in the problem context di-

49

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

agram.

!Primary Actor !Tasks

User(Radiologist, Planner) Enter Patientlnfo & Targetlnfo
Link MRIImageSet
Define Target

Table 3.6: The Primary Actor - Task List Example

• The identification is iterative and incremental, as the interviews go forward, the

user tasks may be added, deleted and revised.

Table 3.6 lists part of the primary actor- task list in the treatment planning

software example.

3.2.4.4 Perform a User's Task

In our user-centered approach, the core point is to figure out all the services the

system should provide when each user type performs their tasks. So, we focus on

what behaviors the system has to have when users use the system.

Task Workshop

As stated previously, we gather user's responsibilities, tasks and desired work-flows

of each task directly from representatives of various user types. We advocate a task

JRD, which takes the form of a series of 2-3 hour elicitation meetings or workshops.

Each workshop's participants include user representatives, analysts and one or more

developers. Developers serve as the voice of reality when infeasible requirements are

suggested.

Each elicitation workshop may explore several tasks for certain user type. For

each responsibility of certain user type, needed tasks are figured out first. For each

task, it is the analyst who will capture the information. The participants begin

by identifying a user type (the primary actor) who would perform the task. Next,

they define the preconditions that have to be satisfied to perform the task, post­

conditions that would describe the state of the system after the task is complete, and

the estimated frequency of use which provides an early indicator of concurrent usage

50

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

and capacity requirements. Then, the analyst asks the participants how they envision

interacting with the system to perform the task. The resulting dialogue sequence of

user actions and system responses becomes the flow that is identified as the normal

scenario. In case that there are alternative normal courses, the normal scenario should

be the one which is easy to understand and fairly typical for performing the task.

The normal scenario is the normal sequence of actions to accomplish the in­

tended task with the system. A normal course can branch off into an alternative

course at some decision point in the interaction sequence, then rejoin the normal

course later. So, alternative courses can also result in successful task completion,

which represent variations in the path to complete the task. Some of the steps in an

alternative course will be the same as those in the normal course, but certain unique

actions are needed to accomplish the alternative path. Conditions that result in the

task being failed are usually documented as exceptions, which are also regarded as

a type of alternative conditions in our approach. It is important to describe the

exception paths, because they represent the user's vision of how the system should

behave under specific conditions and they could cause the system to fail when they

are overlooked.

It is impossible to complete all the information of a task in one meeting or

workshop. Instead, we explore the task in increments, and then review and refine

them iteratively, so that at a later stage, for example, the analyst may sketch the

scenarios for explored tasks and give them to the workshop participants, who review

them prior to the next workshop. These informal reviews can reveal many errors, such

as previously undiscovered variations and exceptions, and missing steps in the action

steps. Or alternatively, intense review workshops can be arranged to formally review

the use cases after their sketching. The task-scenarios-use case approach provides a

powerful way to improve requirements quality through such incremental reviews.

To summarize, each of the user's tasks will be accomplished through certain

scenarios which the system must support. Alternative scenarios must also be sup­

ported when variations and exceptions happen. Each scenario includes actions from

both the user and the system and the information needed for each action step. To

explore a task, the following things should be considered:

• Precondition: conditions (system state) that must be true before the task can

be performed.

51

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Normal scenario: a set of action steps which is the simplest and most common

work flow.

• Alternative scenarios: alternative scenarios can complete the task itself, or rejoin

the normal scenario after handling the alternative conditions, or fail.

• Success post condition: conditions that are guaranteed after successful comple­

tion of the task.

• Failure postcondition: what must be minimally guaranteed when task fails.

• System constraints: any non functional requirements that relate to this task.

Action Steps of a Scenario (Normal and Alternative)

The use case techniques can be used in exploring scenarios of tasks. According to Ivar

Jacobson [49], a use case consists of a sequence of transactions and each transaction

consists of several actions to be performed. A transaction has four parts (See Figure

3.13):

1. The primary actor sends request and data to the system. (For example, the

user selects an MRIImageSet)

2. The system validates the request and the data. (System checks readability)

3. The system alters its internal state. (System sets the current selectedMRIIm­

ageSet)

4. The system responds to the actor with the result. (System presents the select­

edMRIImageSet)

According to the composition of the compound interaction, we can derive a guideline

of what should be described in an action step of a scenario:

• Among the four parts, each part, or combination of various parts, or all four

parts can be an action step. The combination should depend on the complexity

of each part and the natural breaks in the processing.

52

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Request with data System
'

A
/

M
ntema

Respond
change

/

'

Figure 3.13: A Transaction Has Four Parts

• Identify explicitly what data items are passed through in each action step , and

how these data items are retrieved or calculated.

If there is an existing system or manual process, it makes it easier for the users

to give you the detail needed for these steps. If there is no existing system, encourage

them to imagine it and to think of all the detail they need for the task- we advocate

a user-centric way. Walk the users through the steps to encourage them to remember

additional details.

Alternative Scenarios

In each action step of a normal scenario, variations and exceptions should be discussed.

For each point where behavior can branch because of a particular condition (called

alternative condition), write down the condition and then write the action steps that

handle it. In most cases, these alternative handling steps end by simply merging

with the normal scenario steps and lead to an alternative successful path. However,

some alternative conditions can not be recovered and will produce failed alternative

courses. Every alternative condition leads to an alternative scenario. Alternative

conditions of an alternative scenario might be encountered. Based on the guideline

below, questions like "What should happen if... " may be asked by analysts to find the

53

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

alternative conditions. Once each task is fully explored and no additional variations,

exceptions, or details are proposed, the workshop participants move on to another

task.

Guideline to finding alternative conditions: for each action step in a normal

scenario, brainstorm what the system can detect differently compared with the normal

situation. For example, invalid password or network not connected.

Cockburn [22] lists a series of specific aspects to be considered, which are

extremely helpful:

• An alternate success path (clerk uses a shortcut code).

• The primary actor behaves incorrectly (invalid password).

• Inaction by the primary actor (time-out waiting for password).

• Every occurrence of the phase "the system validates" implies that there will be

an alternative condition (invalid account number) .

• Inappropriate or lack of response from supporting actor (time-out for response).

• Internal failure within the system, which must be detected and handled (cash

dispenser jams) .

• Unexpected and abnormal internal failure, which must be handled and will have

an externally visible consequence (corrupt transaction log discovered).

• Critical performance failures of the system (response not calculated within 5

seconds)

Patterns for Dealing with Alternative Conditions

When an alternative condition becomes true, we should consider how this can be

handled by the system. The derived handling action steps branch from the normal

scenario and lead to the alternative scenario of the task. Different alternative scenario

patterns are illustrated in Figure 3.14. To enhance the understandability, action step

2 is specifically used as an example, and different alternative conditions of action step

2 are clarified.

54

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Pattern 1:

Pattern 2:

Pattern 3:

Pattern 4:

Pattern 5:

Pattern 6:

Figure 3.14: Patterns to Handle Alternative Conditions

A Tabular Form to Capture Scenarios of a Task - Scenario Table

When discussing with the users about performing a task, a scenario table will be an

efficient tool for capturing the scenarios, see Table 3. 7.

The condition table ideas and notations from [84] are the origins of this

tabular form. In a scenario table, the normal precondition of an action step is

identified to explore the alternative conditions. These conditions are actually

55

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Task: Name of the task.
Task summary: Description of the purpose of the task.
Precondition: Things that must be true before the task can execute, they are predicates on

the state of the system.
Success post condition: Things that must be true at the end of the task when the task suc­

ceeds.
Failure post condition: Things that must be true at the end of the task when the task fails.
System constraints: Any constraints to perform the task.

Precondition
Normal step 1

Table 3. 7: The Scenario Table

Normal precondition n:
Normal step n

predicates of the system state that must be true to perform the normal action steps,

and they must meet the following disjointness and completeness properties:

Disjointness:

Vn, i, j, i =/= j, Normal precondition n 1\ Alternative condition ni <--> FALSE

A Alternative condition ni 1\ Alternative condition nj .-.FALSE, and

Completeness:

Normal precondition n V Alternative condition ni V Alternative condition nj ... <--> TRUE

Construction of the table obeys the following rules:

• The horizontal header identifies the numbers of normal action steps.

• Each row of the grid contains at least one scenario, where the first row describes

the normal scenario, each of the other rows describes alternative scenarios.

• Italic sentences state the normal preconditions of an action step, or alternative

conditions. They end with a colon.

56

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Alternative conditions have identifiers with a normal step number followed by

a lower-case character in alphabetic order, e.g. 2a stands for first alternative

condition of normal step 2.

• Each grayed cell has the same action step as that of the normal scenario, while

blank cells indicate there are no actions.

• Alternative conditions are explored from left to right, top to bottom of the

table.

• Use 3 to 9 steps to perform a task. Complicated steps are rolled up to be a sub

task (a sub task scenario table needed).

• For the alternative handling pattern 5 in Figure 3.14, the alternative condition

handling steps are rolled up to be a sub task.

• For pattern 6, a separate scenario table may be needed.

• For steps that are sub tasks or other tasks, they are underlined.

• Alternative conditions of alternative scenarios must be explored.

The task "Link MRIImageSet" of a radiologist in the treatment planning soft­

ware is used as an example to demonstrate this technique, see Table 3.8.

3.2.4.5 Gather System Constraints in a User's Task

We introduced categories of system constraints (non-functional requirements) in sec­

tion 3.2.1 and noted that some general system constraints are gathered into the UPD

in an earlier stage of the project. During task exploration, constraints that are com­

mon for many or all tasks are added to the system constraints section of the UPD.

However, most non-functional requirements are related to a specific user task, such

as requirements that specify the speed, availability, security, accuracy, response time,

recovery time, or memory usage with which the system must perform a given task

[50]. According to the guidance table 3.1, we capture the system constraints of each

task and specify them in each user's task and then transfer them into the correspond­

ing use case. After refinement and increment during use cases realization, eventually

all these system constraints are concluded in the SRS in separate sections.

57

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Task: Link MRIImageSet
Task summary: The user chooses to link an MRIImageSet to the current patient' current treatment plan.
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. A new TreatmentPlan for current patient with initial data values has been created. Ref. Table
4.7

3. Required Patientlnfo and Targetlnfo have been stored. Ref. Table 4. 7
Success post condition: An MRIImageSet is linked to current TreatmentPlan and presented.
Failure post condition: None.
System constraints: 1. Successive retries of the same MRIImageSet selection can be executed at most three times.

User selects to link an
MRIImageSet.

Number of available
MRI!mageSets 2': 1:
System presents a list of
names of available
MRIImageSets.

2a. Number of available
MRIImageSets < 1:
.1 System informs user .
. 2 Task fails .

Selection of MRI!mageSet is
MJtUJlm.ag•~::SE!t of current successful & Number of retried

times ::; 3:
System links the selected
MRIImageSet to current
TreatmentPlan and presents the
selected MRIImageSet,
including presentation of the
first MRIImage slice of the
image set and list of MRIImage
slices in the set.

4a. Selection of MRI!mageSet
is not successful & Number
of retried times < 3:

.1 System informs user that
the selection of current
MRIImageSet fails, and
asks user to retry the
current selection, or try
another selection, or cancel
the task .

. 2a User selects to retry current
selection: system performs
normal step 4 .

. 2b User selects to retry
another selection: system
returns to normal step 2 .

. 2c User selects to cancel: task
fails.

4a. Selection of MRIImageSet
is not successful &Number
of Retried times 2': 9:

.1 System notifies user of
failure .

. 2 Task fails.

Table 3.8: A Scenario Table Example of Task: Link MRIImageSet.

58

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

When to Finish a Scenario Table?

A scenario table is finished when it is deemed correct (i.e, it captures the right require­

ments), complete (i.e., it describes all possible paths), and consistent. The scenario

tables are evaluated by analysts and users at specific review meetings or at the be­

ginning of the next task workshop.

3.2.5 Specify Use Cases

Use cases provide a way to represent the user requirements, which can be regarded as

the system requirements. The objective of the user-centric approach to requirements

elicitation is to describe all the tasks that the users (actors) will need to perform

with the system. For easily exploring and clearly viewing reasons, we capture all the

scenarios of performing the users' tasks in scenario tables. However, to document

the scenarios, we use a well recognized mechanism - the use case model. A user case

model consists of individual use cases and use case diagrams. Each use case is a

textual description which collects the scenarios of certain user tasks. In theory and

practice, the resulting set of use cases will encompass all the desired functionality of

the system, because use cases are collections of scenarios of user tasks [86].

3.2.5.1 Rules for Specifying Use Cases

Using the scenario tables, we specify use cases according to the following rules:

• Each primary actor's task is a task level use case.

• Cells of the scenario tables of a task are transferred into corresponding part of

the use case template.

• Each sub (sub) task is a sub task level use case.

• System constraints are also transferred.

According to the analysis of the scenario tables of each task, we sketch out the

use case for each task and validate that with the users at review meetings.

59

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.2.5.2 A Use Case Template

We develop a use case template as a guide to specifying use cases (see Figure 3.15).

Use Case ID: <a unique#>
Use Case Name: <the name should be the task as a short active verb phrase>
Created by <Name> Date Created <MMDDYYYY>
Last Updated by <Name> Date Last Updated <MMDDYYYY>
Summary: <a longer statement of the task, if needed, its normal occurrence conditions>
Level: <one of: Summary, User-task, Sub task>
Primary Actor: <a role name for the primary actor>
Precondition: <what we expect is already the state of the world>
Success Post Condition <the state of the world if task succeeds>
Failure Post Condition: <how the interests are protected under all exits>
Trigger: <What starts the use case, may be time event> [Optional]
Normal Scenario:
<put here the steps of the scenario from trigger to task delivery, and any cleanup after>
<step #> <action description>
Alternatives
<put here the alternative scenarios, one at a time, each referring to the step of the normal scenario>
<step altered> <condition>: <alternative handling actions or sub-use case>
<step altered> <condition>: <alternative handling actions or sub-use case>
Capacity: <number of concurrent executions ofthe use case that the system may have to handle>
Association: <other use cases associated>
System Constraints: <Constraints on the performing ofthe use case>
Related Information
<whatever your project needs for additional information>

Figure 3.15: A Use Case Template

Also, when writing use cases, some guidelines are listed below. These are

revisions of guidelines given in [22] and [64].

• Using words suited to user requirements, that are strong (enter vs input), precise

(data item vs information) and flexible (present vs display), which will not

constrain the future software design or evolution.

• Use simple grammar to describe an action step, with the form "Subject ...

verb .. . direct object ... prepositional phrase", e.g. the system ... deducts ... the

amount .. .from the account balance.

60

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Show clearly which actor is passing the message to the ot her (who to whom).

• Write like you are watching over the user using the system. The customer. .. The

system ...

• All the data that passes in one way gets collected into just one action step.

• A void "whether" when describing the success condition, usually describe the

scenario as "succeeding", e.g. "the system checks whether the password is

correct" should be written "the system validates that the password is correct."

• Optionally mention the timing, not always, because most steps follow directly

from the previous one. However, occasionally, you will need to say that "at any

time between steps 3 and 5, the user will .. . " or "as soon as the user has, the

system will ... "

• Write "Do steps x-y until condition." when some steps need to be repeated.

• When a use case references another use case, the referenced use case is under­

lined.

• Do not mention GUI design details such as buttons, drop-down lists etc.

• Do not mention design or implementation details such as applet, database. This

would restrain the designs.

As an example, we use these rules and recommended guidelines to derive the use case

Link MRl Image Set from the task scenario Table 3.8, see Table 3.9.

3 .2.5.3 Use Case Diagram

A use case model contains all the use cases. It summarize all the possible uses of the

system. All the different use cases for a system can be depicted in a use case diagram.

Use case diagrams address the static use-case view of a system. Once all the

use cases are specified, a use case diagram will give a clear picture of the functionality

of a system. Figure 3.16 is a part of the use case diagram of the treatment planning

software system.

61

M.A.Sc. Thesis- Hongqing Sun

Use Case ID: UC002
Use Case Name: Link MRIImageSet
Created by:
Last Updated by:

McMaster- Computing and Software

Date Created:
Date Last Updated:

Summary: The user chooses to link an MRIImageSet to the current patient's current treatment
plan.

Level: User Task
Primary Actor: User(Radiologist, Planner)
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. A new TreatmentPlan for current patient with initial data values has been
created.

3. Required Patientlnfo and Targetlnfo have been stored.
Success Postcondition: An MRIImageSet is linked to current TreatmentPlan and presented.

Failure Postcondition: None.
Normal Scenario:

1. User selects to link an MRIImageSet.
2. System presents a list of names of available MRIImageSets.
3. User selects an MRIImageSet of current patient .
4. System links the selected MRIImageSet to current TreatmentPlan and presents the

selected MRIImageSet, including presentation of the first MRIImage slice of the image
set and list of MRIImage slices in the set.

Alternative Scenarios:
2a. Number of available MRIImageSets < 1:

.1 System informs user .

. 2 Task fails.
4a. Selection of MRIImageSet is not successful & Number of retried times < 3:

.1 System informs user that the selection of current MRIImageSet fails, and asks user
to retry the current selection, or try another selection, or cancel the task.

.2a User selects to retry current selection: system performs normal step 4 .

. 2b User selects to retry another selection: system returns to normal step 2 .

. 2c User selects to cancel: task fails .
4b. Selection of MRIImageSet is not successful & Number of Retried times ~3:

.1 System notifies user of failure .

. 2 Task fails.
Capacity: 1
Associations: None.
System Constraints: Successive retries of the same MRIImageSet selection can be executed

at most three times.

Table 3.9: A Use Case Example: Link MRIImageSet.

62

M.A .Sc. Thesis- Hongqing Sun McMaster - Computing and Software

System

Figure 3.16: The Partial Use Case Diagram-Treatment Planning Software

3.2.5.4 Grouping Use Cases

Once all the use cases are specified, they can be organized in clusters according to

the functional areas or actors. The categorization will help find the specific use case

quickly, especially for a large system. Each use case group should have a use case

diagram to provide an overview of the use cases within it.

3.2.5.5 Review and Validate the Use Cases

Once all or part of the use cases are sketched, they should be reviewed by the users.

Also, graphical models like flowcharts , interaction diagrams, entity relationship dia­

grams can be used to enhance the shared understanding of the use cases, both for the

analyst and the users. These models depict different views of the use cases, that can

often disclose inconsistency, incompleteness, omissions, ambiguities etc. We suggest

a storyboard format to validate use cases using the activity diagrams. Details about

the validation are stated in section 3.5.

Like the whole process of software development, the development of use cases

is also incremental and iterative. After several times of informal or formal review,

a set of complete, correct and consistent use cases is produced as the output of the

elicitation process.

63

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.2.5.6 User Requirements Document, URD

In the process of elicitation, the following artifacts are produced: understanding of

the problem description, actors and their profiles, primary actor- task list, scenario

tables of tasks, use case descriptions. All together, they are captured into a user

requirements document. A suggested template is introduced as below in Figure 3.17.

Each primary actor task has a unique identifier "PAT#" mapping to a scenario table

"ST#". A similar mapping applies between a scenario table "ST#" and a use case

"UC#".

Use Requirements Document (URD)

Revision History

1. Understanding of the Problem Description
1.1 Current Situation
1.2 Vision Statement
1.3 User Responsibilities and Customer Authorities
1.4 System Constraints
1.5 Problem Context Diagram
1.6 Glossary

2. Actors
2.1 System Context Diagram
2.1 Actors and their Profiles

3. Primary Actor-Task list
3.1 PAT001
3.2 PAT002

4. Scenario Tables
4.1 ST001
4.2 ST002

5. Use cases
5.1 UC001
5.2 UC002

5.(N+1) Use Case Diagram

Figure 3.17: Use Requirements Document

64

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.3 Software Requirements Analysis, SRA

Software requirements analysis is a core process in software requirements engineering.

As stated in the preceding chapter, it is the various methodologies of the analysis pro­

cess that produce distinctly different approaches of software requirements engineering.

However, no matter which approach is used, the general principle of the analysis pro­

cess is to find , invent and define the "funct ion and data" of the new software system.

In our user-centric approach, we use an object-oriented requirements analysis

(OORA) method. To us, software requirements analysis is the process of studying

user requirements to define the context of possible software solutions to the problem,

namely, arriving at a definition of software requirements based on users ' needs. We

take user requirements (use cases) as inputs to this process, and software requirements

(analysis model) as outputs. The resulting analysis model (class model, activity

diagrams, sequence diagrams) demonstrates what is to be built and will form the base

of the functional requirements of the software requirements specification. Meanwhile,

key elements of user interfaces are developed and captured, as well as the newly found

system constraints during analysis of each use case (tagged to the analysis model, or

put into the relevant part of SRS directly). An abstract process model is depicted in

Figure 3.18.

Software Requirement~
(Analysis Model) ~

User Requirements (
(Use Cases) ~. \. Analysis

Figure 3.18: Analysis Process Model

3.3.1 Denotations of Analysis

Software development can be regarded as problem solving. Analyzing a problem is

the core activity to get a solution for it. We should clarify what analysis means within

the context of our approach.

65

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Analysis.

In Merriam-Webster's Online Dictionary [45], the definition of analysis is "Separation

of a whole into its component parts; an examination of a complex, its elements, and

their relations" .

Problem Analysis.

Alan Davis says in [28], "Problem analysis is the activity that encompasses learning

about the problem to be solved, understanding the needs of potential users, trying to

find out who the user really is, and understanding all constraints on the solution." He

thinks that problem analysis can be thought of as defining the product space, that

is, the range of all possible software solutions. The product space is that range of

problem solutions that meets all known constraints. Moreover, he divides the whole

requirements stage into two parts - problem analysis and writing the SRS. Also, he

concludes that problem analysis is primarily a decomposition process: decomposing

problems into subproblems with the goal of understanding the entire problem at hand.

System Analysis.

One pioneer of the structured analysis method, DeMarco, offers the following defi­

nition [30]: "Analysis is the study of the problem, prior to taking some action." In

[20], Peter Coad and Edward Yourdon regard that "analysis is the study of a prob­

lem domain, leading to a specification of externally observable behavior; a complete,

consistent, and feasible statement of what is needed; a coverage of both functional

and quantified operation characteristics (e.g., reliability, availability, performance);

analysis means the process of extracting the needs of a system - what the system

must do to satisfy the client, not how the system will be implemented."

Our Meaning of Analysis

In software engineering, we may often encounter terms such as "analysis", "prob­

lem analysis", "system analysis", "problem domain analysis" etc. These terms are

synonyms or near synonyms with the same meaning as above, covering both the

requirements elicitation and the requirements analysis process. Other terms, like "re-

66

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

quirements analysis", "software requirements analysis", or even sometimes "analysis"

[50], often have the same meaning as ours (see paragraph below), which is commonly

recognized in the software requirements engineering field.

Our meaning of analysis, precisely speaking, software requirements analysis

(SRA), is a process through analysing the user requirements, to seek the required

functions and data items of the system to be built, and allocate them to externally

observable parts of the system in an object-oriented manner. It is applieq specifically

to the analysis purely as opposed to the elicitation or SRS document~tion process

of the requirements. It is an updating process from the Unified Process (UP) [50],

along with some concepts and artifacts absorbed from [7, 10, 20, 50]. Our analysis

process performs different activities from UP, which we believe are more practical,

and simpler than UP.

Like most analysis methods, SRA is also a decomposition process- the process

to seek the data involved, to partition and allocate the required functionality to

different functional parts of the system, and to capture them and their relationships

from the developer's point of view. In object-oriented analysis (OOA) terminology,

the "functional parts" are analysis classes including domain classes and application

classes.

In user-centric software, the domain classes come from the problem domain.

Domain classes are conceptions of the problem domain, they physically exist or will

exist in the problem domain. Domain classes are application independent1
, they

are mainly the entity and data sub domains, abstracted for use in the system. The

application classes exist only along with the application. They are abstractions of

interfaces between the system and the problem domain, along with functions that

the system needs to perform externally visible behavior (domain classes also contain

some functions in the same sense). To avoid confusion with the notation of interface

classes of some programming languages like Java, we will not call them interface

classes. Instead, we call them boundary classes which is a name commonly used in

OOA [49, 50].

The source of SRA is the use case model captured in the elicitation process.

Although some domain classes are things that will be produced by the application, such as a
treatment plan report, they are still application independent - the conception of them exists inde­
pendently from any kind of applications, or even without an application.

67

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

The purpose of analysis is to achieve a more precise understanding of the user require­

ments and to produce a model of the software system (the analysis model) which is

correct, complete, consistent, and verifiable. The analysis model specifies what is to

be built - software requirements. It consists of other individual models, such as the

static model - analysis class diagrams, the dynamic models - activity diagrams,

sequence diagrams, and the state model - statechart diagrams (optional in our ap­

proach). Object Management Group (OMG) UML [62], a developers' language is

used · to specify the analysis model.

During analysis, analysts focus on realizing, structuring and formalizing user

requirements - the use cases, finding ambiguities, incompleteness, inconsistencies

and errors and updating them in use cases.

3.3.2 Software Requirements are at the Interfaces

Recalling our top-level problem context diagram that is redrawn here (Figure 3.19),

the requirements lie in the shared phenomena SP (events, states, values) between the

system and the problem domain. User requirements are the description of the shared

phenomena from the user's point of view when they interact with the system, while

the software requirements (specification) describe the behavior that the system must

have at its interface with the world, from the developer's point of view. For example,

any user input is an event from the user's view, while, to a developer, it is a function

of a particular boundary class.

So, software requirements describe the system's behaviors that are externally

"visible" . The description contains the data items the system will operate on and

the functions the system will provide. These data items and functions are held by

objects of analysis classes. The objects of analysis classes are visible parts of the

system, such as an MRI image. The shared phenomena at the interface of the system

and the problem domain is handled by objects of analysis classes.

3.3.3 Why Objected-Oriented Requirements Analysis?

There are several reasons to use an object-oriented analysis method for a user-centric

software SRS.

68

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

System IL---J?_ ~ ~sp:-----____.1 Problem
1 l Domain

sp: Interface, a set of shared phenomena

Figure 3.19: Top Level Problem Context Diagram

Popularity of Object-Oriented Development Approach

The traditional structured approach to software systems development, also called the

functional or procedural approach, was popularized in the 1980s, including structured

analysis and design technique (SADT) [71], structured system analysis and design

methodology (SSADM) [33] etc. Most of these methods used data flow diagrams

(DFD) for process modeling, and some used entity relationship diagrams (ERD) for

data modeling. In this approach, the system is decomposed into functional parts

with a process-centric hierarchy structure linked by data flows. The main drawback

of this approach is that the whole functionality must be specified first, to do top­

down decomposition, it is hard to modify and extend when requirements change. For

example, when a functionality needs to be added, it may change many of the existing

functional parts.

The object-oriented development approach became popular in the 1990s when

object-oriented programming was catching on, especially because of the C++ pro­

gramming language. The main object-Oriented approaches include Object-Oriented

Analysis and Design with Applications (OOAD) [12], Object-oriented Software Engi­

neering (OOSE) [49], Object-Oriented Modeling and Design (OMD) [75] and Unified

Process (UP) [50] . The object-oriented approach partitions a system into parts of

various granularity (subsystems, components and objects), with classes of objects at

the bottom of this decomposition. Each object encapsulates a set of services (also

called functions or methods) and a state (a set of data, a data structure, or attributes)

on which the services can operate. Functionality is carried out by interactions among

objects which are linked by various relationships. The system behavior is the result

69

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

of specified object interactions.

With the advent of modern graphical user interfaces (GUis), the approach to

computing has changed dramatically. GUI (user centric) programs are event-driven

and execute in a random and unpredictable fashion dictated by user-generated events

from a mouse, keyboard, or other input devices [55]. Object-oriented programming

is well-suited to the rising popularity of GUis. Behind every event, there is a soft­

ware object that knows how to service that event. Once the service is accomplished,

control returns to the user and system waits for the next event . Since the object­

oriented programming meets the development of the modern GUI systems so well that

it dominates the programming world now, so does the object-oriented development

approach.

Other reasons for the popularity of the object-oriented approach are the tech­

nical advantages of the object paradigm, such as reuse, inheritance, message pass­

ing, polymorphism and abstraction. These technical properties contribute to greater

usability of code and data, shorter development times and increased programming

productivity.

As a fact, the object-oriented approach to system development became fash­

ionable in the 1990s and people will still be using it tomorrow.

On Construction of a Seamless Software Development Approach

Object-oriented requirements analysis (OORA) is a method of formulating the re­

quirements for a software system in terms of objects and their interactions [7]. Based

on the analysis result, a specific template and language are used to document the SRS

that is the essential input of the software design phase. Together with the use case

method in the requirement elicitation phase, all of this constitutes a SRS method­

ology, as a part of the whole software development approach which further includes

design, implementation and test phases.

Different analysis criteria for decomposing a system make it difficult to proceed

from one kind of analysis result to another kind of design phase, for example, from

structured analysis to object-oriented design. The result of structured analysis -

process-oriented decomposition, may not flow well into an object-oriented design­

interacting parts decomposition, and more reorganization may be required to perform

the transition [24, 76]. Object-oriented requirements analysis decomposes the system

70

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

into interacting parts (analysis classes) according to the user requirements, in a way

that is compatible with object-oriented design.

The object-oriented requirements analysis approach facilitates the seamless

transition from requirements phase to design phase. Most of the analysis classes can

remain during the design phase. It also simplifies the traceability of requirements

throughout the development life cycle (e.g. when a function needs to be changed

during design, it is easy to go back to the corresponding analysis class, and further

the related use case).

Characteristics of User-Centric Software

As discussed in the introduction chapter, user centric software is a kind of application

with intensive user-system interactions and multiple user interface elements (forms,

list items, folders, buttons). It is the main type of modern GUI application. An

object oriented development approach is appropriate, and so is an object oriented

requirements analysis.

3.3.4 Analysis Classes

In an object-oriented requirements analysis method, the functionality of the system is

decomposed into interacting functional parts which are linked by various relationships.

It is the interactions among these functional parts that fulfill the functionality of the

system and meet the user's requirements. We call these parts analysis classes in

accordance with the object-oriented analysis notation.

Analysis classes are abstractions from the problem domain and the computer

application to be built. They represent the externally visible parts of the system. As

stated in [50], analysis classes represent abstractions of classes and possibly subsys­

tems in the system's design. Each analysis class holds a set of functions that perform

some exterior behavior of the system, and a set of data which are operated on by these

functions. All the functions of analysis classes constitute the functional requirements

of the system. There are two kinds of analysis classes, domain classes and application

classes (in our case, they are boundary classes).

Although in most OOA methods [12, 49, 50, 75], people advocate another kind

of application class - control class, or controller, we do not think it is appropriate

71

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

at the requirements stage. According to their definition, instances of control classes

are used to manage instances of domain classes (called entity classes) and boundary

classes. These controllers seem to be more related to "how" than to "what" and

would be more appropriate to the software design stage.

Domain Class

A domain class represents a problem domain concept such as an individual type (a

doctor), a problem domain object type (an MRI image), an event (an arrival) or a

set of information (a set of parameters). They are derived from the problem sub

domains. A domain class abstractly models information that is long lived and often

persistent in the system. They physically exist or will exist (after the system is built)

in the problem domain. Most domain classes are from a problem domain that are

meaningful outside of any application [74], even if some of them are produced by the

applications, such as the treatment plan class in a treatment planning application,

see Footnote 1 on page 67. Domain classes are identified from use cases, and only

those containing information needed by the system are captured.

Domain classes not only hold the information the system is dependent upon,

but they can have behavior related to the information they represent. However, in

most cases the objects of domain classes are manipulated by objects of boundary

classes in our approach.

Domain classes represent the information that needs to be handled by the

system to be built. Domain objects (objects of domain classes) have a mapping

from the real world. While this mapping is the reason object-oriented development

approach started, it also ensures the stability and flexibility of requirements change

throughout the whole development process. Domain classes survive through to the

design phase.

Application Class (Boundary Class)

Application classes, in our case only boundary classes, are the main external be­

havioral parts of the system that perform some functionality, based on information

in domain classes. Boundary classes are abstractions of interfaces between the sys­

tem and its environment, together with the functions needed to perform the related

72

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

system's behavior. There are various boundary classes such as user boundary class

(UBC) and system boundary class (SEC). A user boundary class abstracts the key

elements of a particular user interface, or multiple user interfaces, or a part of a user

interface, and some functions related to that user interface(s). Likewise, a system

boundary class contains information of a particular interface to other systems, and

related functions .

Boundary classes are application dependent - they exist only in the system

rather than in the problem domain, and they are externally visible (perceivable) to

users [74] or to other systems.

In UP [50] , a boundary class is used to model the interaction between the

system and its actors (i.e. users and external systems). In our approach, we give

the boundary classes more interaction semantics, that is, a boundary class is an

integration of certain functionalities of the system. The functionality includes not

only the interaction between the system and its actors, for example, a user enters a

password, but also the interaction among objects of analysis classes which produce

the externally visible behavior of the system, for example, when the system switches

from one screen to another screen, it is an interaction between user boundary objects.

So, while boundary classes represent the interfaces between the system and its

environment (actors), they also present the functionality of the system. For actors

representing users, they provide user interfaces (UI) such as windows, forms, panes,

capturing commands and queries and presenting feedback and results. For actors

representing external systems, they provide system interfaces (SI) such as commu­

nication interfaces, printer interfaces, sensors, terminals, and APis. For objects of

analysis classes, they provide the functions to communicate with.

At the requirements level, boundary classes do not define design attributes,

but rather interface data items (key elements of interfaces) and their related behavior

(needed functions) . So, boundary classes often are kept on a fairly abstract level,

especially the user boundary classes. Since not only is detailing them time consuming,

also they usually will change even at the test phase. However, most of the boundary

classes survive through to the design phase.

We advocate using a user boundary class to represent a user interface (UI), or

multiple Uis, or even just a part of a UI, because we do not want to restrict the design

of Uis. That is, UI designers can freely compose or decompose the user boundary

73

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

classes to build Uis.

3.3.5 Analysis Model - What is to Be Built

Analysis is about finding what is to be built. We need to decompose a complex set of

user requirements into the essential parts (analysis classes) and their relationships on

which we will define the software solution of the problem. The output of the analysis

process is the analysis model which includes a set of individual models: analysis class

model, activity model, interaction model and state model.

The analysis class model describes the objects that are manipulated by the

system, their properties and their relationships. This model gives a static view of

the objects and their relationships and provides an infrastructure where the activity,

interaction and state models can be grounded. We use UML class diagrams to depict

the analysis class model, including classes, their attributes, and functions (services),

and their relationships.

Dynamic models (activity and sequence diagrams and state charts) focus on

the behavior of the system. An activity diagram shows the flow of control among the

processing steps. A sequence diagram represents the interaction sequence among a

set of objects of a use case. A state diagram represents the behavior of a single object.

Dynamic models demonstrate and validate that the class model is feasible. In our

approach, we will use dynamic models to find classes, their attributes, relationships

and functions with a bottom-up flavor.

The analysis model describes different aspects of the system in a complete

manner, presents what must be built to meet the user requirements and demonstrates

our deep understanding of the user requirements from the developers point of view.

3.3.6 Overview of Analysis Process

An analysis class model is the cornerstone of objected-oriented system development.

Unfortunately, classes are chronically difficult to find and the properties of classes are

not always obvious. Bahrami [6] concludes the main points of the four most popu­

lar approaches for identifying classes, noun phrase approach, common class patterns

approach, CRC (class responsibility collaborators) approach, and use-case driven ap­

proach [50]. Each of the approaches provides its own guideline to find classes. How-

74

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

ever, most of the guidelines are heuristic and half-systematic, for example, there are

no systematic methods to decide if a datum is a class or an attribute. In these ap­

proaches, the analyst's knowledge, experience and even intuition will play important

roles during the seeking of classes, attributes and their relationships.

As stated previously, all the use cases constitute the whole functionality of a

system from the user's point of view. As a result, the aim of analysis intuitively is

to find from all the use cases what is needed to fulfill the functionality. In an 00

based system, the functions (services, methods) of all classes compose the functional

requirements in a software requirements specification SRS. For each use case, the

functionality and needed information will map to the methods and attributes of one

or more classes. The bridge to finding the mapping is the activity diagrams and

sequence diagrams in our approach. In the activity diagram of each use case, we

record the needed information in each action step. This information is represented by

either domain classes (objects) or their attributes. In the sequence diagram of each

use case, we show the objects that are required at the top of lifelines. These indicate

the application classes (boundary classes), existing domain classes or newly found

domain classes, and the messages that are needed among them. These represent the

functions and usage associations.

So, based on the guidelines of the use-case driven method of UP [50], we seek

classes and their properties, but we have developed a more systematic process than

UP. It has a bottom-up flavor: once the use cases are known and the interaction

models (sequence and activity model) are at least partly defined, the objects used

in these models lead to the discovery of classes. Meanwhile, while realizing the use

cases, ambiguity, incompleteness, missing behavior can also be identified and revised.

The analysis process is iterative and incremental in the sense that any model

can be updated, and any newly found classes, attributes or relationships can be added

and any errors can be revised. The analysis process has the following steps.

1. Draw activity diagrams for use cases.

2. Identify data used in activity diagrams and draw data hierarchies.

3. Identify domain classes, their attributes and relationships from data hierarchies.

4. Construct sequence diagrams for use cases.

75

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

5. Identify boundary classes, class functions from sequence diagrams.

6. Construct the whole class diagram.

7. Draw necessary state diagrams (optional).

3.3. 7 Draw the Activity Diagrams for Use Cases

Activity diagrams can be used to "execute" a use case through a flow of actions.

During the realization of use cases, any newly found ambiguity, incompleteness, error

should be revised and updated in the corresponding use case, as well as in the system

constraints.

For each use case, at least one activity diagram should be constructed. Each

sub use case should have its own activity diagram. For our preceding example "Link

MRIImageSet" use case, ref. Table 3.9, we can realize it by drawing an activity

diagram, see Figure 3.20. To simplify the example, we do not put the exception

handling in this diagram.

3.3.8 Identify Data Used in Activity Diagrams and Draw the

Data Hierarchies

Both domain classes and their attributes can be identified from the use cases [49] .

To distinguish domain classes and their attributes, we use a data decomposition

mechanism to construct data hierarchies. This mechanism originates from M. Jackson

[46] and J. Chen et al. [19], but we have added some "rules" for identifying classes

and attributes from the desired data hierarchy.

Data Decomposition

Data in a system should be decomposed if their components are operated on by some

operations. In data decomposition, data relationships including sequence, iteration,

and selection may exist between a datum and its components, as described next:

• Sequence relationships indicate that a datum contains one copy of its compo­

nents. For example, Figure 3.21 (a) indicates that a "point" contains one copy

of "x" value, one copy of "y" value, and one copy of "z" value.

76

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

User System

0 Action State

• [Nonnaq
Initial State

• Final State

<> Decision Point

~ Transition

Figure 3.20: Activity Diagram for the use case "Link MRllmageSet"

• Iteration relationships indicate that a datum contains multiple copies of its com­

ponents. For example, Figure 3.21 (b) indicates that an "MRllmage" contains

multiple copies of "Point."

• Selection relationships indicate that a datum is a generalization of its compo­

nents. For example, Figure 3.21 (c) indicates that "Image" is a generalization

of "MRIImage" and "CTimage."

Since data components can be further decomposed, a datum may be decomposed into

a hierarchy called the data hierarchy. Figure 3.22 demonstrates what a data hierarchy

looks like.

77

M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software

Point MRI/mage)m'\ / '\
X y z Point* MRIImage0 CTimage0

(a) Sequence Relationship (b) • Iteration Relationship (c) 0 Selection Relationship

Figure 3.21 : Data Relationships

Image

/~
Patient

I
MRI/mage° CTimage0 Name

I~ (b)

Poinr Patient(Name)

1\
X y Z

! Sequence Relationship

~ Iteration Relationship

(a) I
'I!' Selection Relationship

Figure 3.22: A Data Hierarchy Example

Generally, a datum can be transformed into a class if its components are oper­

ated on by some operations, because classes encapsulate attributes and the operations

that operate on those attributes. That is, data that need to be decomposed can be

transformed into classes, otherwise they will be attributes of classes.

78

M.A. Sc. The$iS - H ongqing Sun McMaster- Computing and Software

Rules for Identifying Classes and Attributes from Data Hierarchy

Based on the discussion above, the following rules can be used to identify classes and

their attributes from a data hierarchy.

1. The datum in a leaf node of a data hierarchy will become an attribute of its

parent, and non-leaf nodes are classes. For example, in Figure 3.22 (a), "x" is

an attribute of its parent "Point".

2. A non-leaf node with a parent should be regarded as a part class of its parent.

In this regard, data hierarchies can be used to identify class aggregation (com­

position) relationships. For example, in Figure 3.22 (a), "Point" is a part class

of "MRIImage" .

3. If a non-leaf node has other non-leaf nodes as children and selection relationships

exist among the children, then inheritance relationships exist between the parent

and the children. In Figure 3.22 (a), "Image" is a generalization of "MRIImage"

and "CTimage".

4. If a class contains a component of another class, there exists a uni-association2

relationship between them, In Figure 3.22, "MRIImage" has a uni-association

relationship with "Patient" because of its "Patient(Name)" component.

Construct the Data Hierarchies from Activity Diagrams

As discussed previously, finding the data involved in the user requirements and further

identifying them to be domain classes are the primary tasks of the analysis process.

In order to systematically seek the data demanded of use cases, we use the activity

diagrams as the source and explore action steps one by one. The following guidelines

govern this activity.

1. For each activity diagram of each use case, list data used by each action beside it,

then related data are structured using these relationships: sequence, iteration,

and selection.
2

If class A has a uni-association with class B, it denotes that there exists a unidirectional link
between objects of A and B. When A occurs, B must occur, not vice versa.

79

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

2. Create data hierarchies for each activity diagram. Data hierarchies that are

included in previous use cases can be omitted.

3. Repeat 1-2 until all use cases have been explored.

4. Combine all of the data hierarchies into the final data hierarchy model (FDH)

FDH = I:!:JDHi, where I:!:J denotes combination of all data hierarchies, i =
l..N, N is the number of activity diagrams.

5. In FDH, non-leaf data is expressed using italics. To simplify the diagram,

detailed decomposition of a non-leaf node is shown only at one place.

Figure 3.23 shows the data used in use case "Link MRIImageSet" and the correspond­

ing data hierarchy.

3.3.9 Identify Domain Classes, their Attributes and Rela­

tionships

Once all the use cases are realized by activity diagrams and the needed data rela­

tionships are captured in corresponding data hierarchies, we will get a stable data

hierarchy model, FDH, by combining all the data hierarchies.

Based on the identifying rules above, we can easily identify from the FDH the

domain classes, their attributes, and their relationships. We capture this information

in a class diagram, we call the initial domain class diagram. For example, from the

data hierarchies in Figure 3.23, we can get an initial domain class diagram as shown

in Figure 3.24.

3.3.10 Construct Sequence Diagrams for Use Cases

The sequence model adds details and elaborates the informal themes of use cases.

Each use case requires one or more sequence diagrams to describe its behavior. Each

sequence diagram shows a particular interaction sequence of the objects participating

in the use case, and it illustrates how the use case behavior is realized by the analysis

classes.

80

M.A .Sc. Thesis- Hongqing Sun

User

«data»

MRIImageSet

McMaster- Computing and Software

System

<<data>>

MRIImageSet
(Name,
TreatmentPian(Name))
MRIIma e Name

<<data>>

MRIImageSet
(Name,SiiceNumber)
MRIImage
(Name, lmageSize,
Slice Thickness)

Figure 3.23: Activity Diagram & Data Hierarchies of use case "Link MRIImageSet"

Good Object-Oriented Software System

Lower coupling between classes, or subsystems is one of the properties of good

00 software. Although we are at the analysis phase, we need to understand suc­

cessful architectural level design techniques, such as Model-View-Controller (MVC),

client/ supplier, multiple layers (tiers). Especially layers (in small sense, subsystems)

help to reduce complexity by breaking the implementation up into more manageable

chunks. As Bertrand Meyer states in [58]: "A serious software system, even a small

one by today's standards, touches on so many areas that it would be impossible to

guarantee its correctness by dealing with all components and properties on a single

level. Instead, a layered approach is necessary, each layer relying on lower ones."

81

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

MRIImageSet

TreatmentPian +MRIImages

+Name +Name
+SiiceNumber
+ TreatmentPian(Name)

1

*

MRIImage
+lmageSize
+Name
+Slice Thickness

u se Aggregate Association

- - -~ -<>

Figure 3.24: Initial Domain Class Diagram of use case "Link MRIImageSet"

At the requirements stage, we are describing externally observable behavior of

the system. It is not the time to discuss the deep layers of the system. As a result ,

we have only two kinds of layers of classes to identify: domain classes layer (so called

entity layer) , and boundary classes layer (so called presentation layer). However, as

the analysis model constitutes the basis of design, the layer principle still provides

a consistent guide to the analyst for construction of the analysis model. When we

allocate functions to classes, we should obey the layer principles where we can. For

example, the boundary class layer should rely on the domain class layer, not vice

versa.

Principles of Developing Sequence Diagrams

Another primary task of analysis in our approach is to find the boundary classes,

functions of all analysis classes from the sequence diagrams, and to reach a definition

of the software solution space - what must be done to fulfil the use cases. We choose

a use case and realize it using at least one sequence diagram. During the realization

82

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

of a use case, as the interactions go forward, we seek the needed objects and put

them on the top of the diagram, along with their functions. Eventually, we get all

the objects and functions required to carry out the use case.

Guidelines for Identifying Boundary Classes

• Each software system has a main user boundary class, named MainUB.

• Identify one central boundary class for each primary actor as its main boundary

class. This is the place where the primary actor navigates required functions of

the system.

• Identify a boundary class for each use case, if necessary.

• Identify boundary classes in which the primary actor needs to enter data, if

necessary.

• Each different presentation of the system implies a boundary class.

• Identify one central boundary class for each external system actor (printers,

terminals, alarm devices, sensors, DBMS systems, etc.).

• Boundary classes are reusable.

Guidelines for Drawing Sequence Diagrams

• Prepare at least one scenario per use case, usually the normal scenario.

• Abstract the scenarios into sequence diagrams.

• The first column is the actor who initiates the use case.

• The second column is a boundary object of the triggering actor.

• Domain objects are accessed by boundary objects.

• Domain objects never access boundary objects.

• Reuse boundary classes if applicable.

83

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Assign required functions to boundary classes or domain classes.

• Reuse functions of classes.

• Divide complex interactions if necessary.

• Prepare sequence diagrams for alternative conditions if necessary.

According to the guidelines above, we draw the sequence diagrams for use

cases one by one. During the drawing of each use case, while we model the order of

the interactions among the objects, we also assign services to each object in the form

of functions (operations), namely, we decompose and distribute the functionality to

participating objects. Again, we use the use case "Link MRIImageSet" as a realization

example. Figure 3.25 depicts the realized sequence diagram.

·MRI!mageSet I I ·MRI!mageSetPresentUB I ~ I ·Treatme:tP!anUB I

I I
1 selectlinkMRI!mageSet() 1

presentlistOfMR!ImageSets()

se!ectM RllmageSet()

setlink(TreatmentP!an(Name))

present()

getMRI!mages()

Figure 3.25: Sequence Diagram for the use case "Link MRIImageSet"

84

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.3.11 Identify Application (Boundary) Classes, Class Func­

tions

When all the sequence diagrams are drawn, we arrive at a point to harvest boundary

classes and their services, as well as the services of domain classes and newly found

domain classes.

We know that sequence diagrams describe the interaction between objects.

We then intuitively take for granted the semantics of sequence diagrams, and use a

bottom-up approach to get the classes from the sequence diagram- those appearing

at the top of the sequence diagrams. Similarly, messages transmitted between objects

are services of the classes to which they belong - the functions of classes. Also, the

associations between objects emerge automatically from those linking messages. All

of the boundary classes, their attributes, and functions are captured in a boundary

class diagram; similarly, domain classes are captured in a final domain class diagram

which combines the initial domain class diagram.

We separate the domain class model and boundary class model because the

domain class model is fairly stable during the development, also it is easy to trace back

from the specification to analysis model. Figure 3.26 is the partial boundary class

diagram captured from the sequence diagram Figure 3.25. Figure 3.27 is the partial

final domain class diagram which also combines the initial domain class diagram in

Figure 3.24.

Of course, as the requirements phase proceeds, the class diagrams can be

drawn incrementally, or alternatively, they may be illustrated until all the sequence

diagrams being finished.

3.3.12 Construct the Whole Analysis Class Diagram

A Class Model captures the static structure of a system by characterizing the objects

in the system, the relationships between the objects, and the attributes and functions

for each class of objects. Class diagrams provide a graphic notation for modeling

classes and their relationships, thereby describing possible objects. They are concise,

easy to understand, and work reasonably well in practice. The combination of domain

class diagram and boundary class diagram shows the whole static view of the system

to be built. Figure 3.28 is a partial class diagram of the system.

85

M.A.Sc. Thesis- Hongqing Sun

TreabnentPianUB
+MRIImageSetNames
+SelectedMRIImageSetName
+presentlistOfMRIImageSets()
+selectlinkMRIImageSet()
+selectMRIImageSet()

Use Aggregate Association

---7 --+

McMaster- Computing and Software

MRIImageSetPresentUB
----- +SelectedMRIImageSet

+present()

Figure 3.26: The Partial Boundary Class Diagram from Use Case "Link MRIImage­
Set"

MRIImageSet
+MRIImages

TreabnentPian +Name
I++~NiaaiTmiee---~------l+SiiceNumber

Use Aggregate Association

---7 -<>

+ TreatmentPian(Name)

+getMRIImages()
+setlink()

MRIImage
+lmageSize
+Name
+Slice Thickness

Figure 3.27: The Partial Final Domain Class Diagram from Use Case "Link MRIIm­
ageSet"

3.3.13 Analysis Model Document, AMD

The output of the analysis process is the analysis model which includes activity

diagrams and data hierarchies, sequence diagrams, boundary class diagram, domain

86

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

TreatmentPianUB TreatmentPian
+MRIImageSetNames +Name
+SelectedMRIImageSetName

+presentlistOfMRIImageSets()
+selectlinkMRIImageSet()
+selectMRIImageSet()

I I

MRIImageSet
l------------;+MRIImages

MRIImageSetPresentUB
+SelectedMRIImageSet

+present()

Use Aggregate Association

- - -~ --<>

+Name
+ TreatmentPian(Name)

) +getMRIImages()
+setlink()

1 (

.
MRIImage

+lmageSize
+Name
+Slice Thickness

Figure 3.28: The Partial Class Diagram from Use Case "Link MRIImageSet"

class diagrams and system class diagram. All these individual models may be recorded

as the appendix of the SRS or in an analysis model document. We suggest a template

for this document in Figure 3.29.

Activity Diagrams and Data Hierarchies

This subsection captures activity diagrams and corresponding data hierarchies of each

use case. We use ACT-DHOOn to list all the activity diagrams and data hierarchies,

where "ACT and DH" are acronyms of activity diagram and data hierarchy respec­

tively, "n" corresponds to the use case number in URD UCOOn.

87

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Analysis Model Document (AMD)

Revision History

1. Activity Diagrams and Data Hierarchies
1.1 ACT-DH001
1.2 ACT-DH002

2. Final Data Hierarchy, FDH
3. Initial Domain Class Diagram, DCD-Initial
4. Sequence Diagrams

4.1 SD001
4.2 SD002

5. Boundary Class Diagram, BCD
6. Final Domain Class Diagram, DCD-Final
7. System Analysis Class Diagram

Figure 3.29: The Analysis Model Document Template

Reference URD 5. Use Cases, see sub section 3.2.5.6.

Final Data Hierarchy, FDH

This subsection lists the final data hierarchy that is combined by individual data

hierarchies of all activity diagrams.

Reference AMD 1.

Initial Domain Class Diagram, DCD-Initial

This diagram captures the domain classes, their attributes, and relationships, where

the DCD identifies domain class diagram. DCD-Initial is derived from the final data

hierarchy.

Reference AMD 2.

88

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Sequence Diagrams, SD

This subsection lists sequence diagrams of use cases, one for each. We use SDOOn

to organize the sequence diagrams, where "SD" stands for sequence diagram, "n"

corresponds to the use case number in URD UCOOn.

Reference URD 5. Use Cases.

Boundary Class Diagram, BCD

This Diagram depicts the boundary classes, their attributes, functions, and relation­

ships.

Reference AMD 4.

Final Domain Class Diagram, DCD-Final

This Diagram lists the final version of domain classes, their attributes, functions, and

relationships.

Reference AMD 2, 4.

System Analysis Class Diagram

This diagram illustrates the whole class diagram of the software to be built.

Reference AMD 5, 6.

3.3.14 More on Sequence Diagrams and Boundary Classes

What we want to emphasize hereto is the usage of sequence diagrams and boundary

classes.

The sequence diagram model is widely used during the design phase to show

the realization of use cases. Our usage of sequence diagrams also realizes use cases

with objects of classes, but the main purpose is to seek the required boundary classes,

required functions of the system and assign the functions to boundary classes and

domain classes.

In our approach, we use the boundary classes in a flexible manner. As we

discussed previously, boundary classes are abstractions of the data items of user

interface(s), and abstractions of related functions of the system. Boundary classes

89

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

can be composed, or decomposed for lower level purpqse (UI design, or software

design) .

The next paragraph explains the flexibility of the usage of boundary classes.

We still use the same example to illustrate the strategies. In Figure 3.30, 3.31 and

3.32, the sequence diagrams realize the same use case "Link MRIImageSet" . All of

the three diagrams contain the same 6 functions of the system. The differences are

at the boundary classes, function allocations and function uses (who calls the func­

tions) . The sequence diagram in Figure 3.30 is the most abstract one, which is also

our preference at the SRS stage. During the UI design activity, Figures 3.31 and 3.32

may be derived, and the boundary class TreatmentPlanUB in Figure 3.30 is decom­

posed into two boundary classes: TreatmentPlanUB and MRIImageSetSelectionUB.

In Figures 3.31 and 3.32, the differences come from the function uses, that is, "who

call the functions of other classes". Obviously, the sequence diagram in Figure 3.32

will lead to higher coupling among classes from the software designer's point of view.

At the step of drawing the sequence diagrams, the domain class model is

already fairly stable. So, the functions of domain classes are fairly stable too, and so

are the allocations of their functions.

~ I ·Jreatme:IP!anUB I

I I
I se!ectlinkMRIImageSet() 1

I ·MRIImageSet II·MRIImageSe!PreseotUB I

presentlis!OfMRI!mageSets()

selectMR!ImageSet()

setliok(Treatmen!P!an(Name))

present()

getMRIImages()

Figure 3.30: Sequence Diagram A at Requirements Level

90

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

;.Uw l·rrea!me:IP!anUB II ·MRI!mageSe!Se!ecljonUB II·MRI!mageSet II·MRI!maqeSetpresen!UB I

I I
I selec!LinkMRI!mageSe!O 1

presen!O

setlink(Treatmen!Pian(Name))

presen!O

getMRI!magesO

Figure 3.31: Sequence Diagram B at Requirements Level

;.UW l-rreatmen!PianUB II ·MRI!mageSe!Se!ectionUB I ·MRI!m,ageSet II·MRI!mageS:tPresen!UB I

I I I

:se!ectlinkMRI!mageSetO: :

presentO

se!ectMRilmageSetO

I
I
I

I
I
I
I
I
I
I
I
I
I

sellink(Treatmen!Pian(Name)) 1

presentd

getMR!!magesO

Figure 3.32: Sequence Diagram C at Requirements Level

91

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.4 Software Requirements Specification, SRS

Documenting the Software Requirements Specification (SRS) is the process of record­

ing the results of the elicitation process and analysis process with various forms, in­

cluding natural language, formal symbolic, or graphic representations. The SRS is

the output of this process. The SRS unambiguously defines a software system be­

havior such that, given a problem, it specifies the functionality to carry out the user

requirements.

3.4.1 Specify a Function of the System in the SRS

In mathematics, function means a mapping between two sets of elements (called

domain and range, respectively) such that every element of the domain is mapped

exactly onto one element in the range [67]. In the computer world, people usually

call the domain of a function- the set of input(s), the range- the set of output(s) .

At the requirements stage, a function is actually a function abstraction, which

models some action of the system. An action application defines the state transition

of the system, and each action has a precondition and post condition. So does a

function.

In our approach, each function is specified with four clauses: input clause,

output clause, requires clause and ensures clause. The input or output clause repre­

sents a vector of the related data items of the system, identifying the current state of

the system. The requires and ensures clauses give, respectively, a precondition and

postcondition for the function. A user's primitive action, e.g. a click, is regarded as a

kind of input, because it abstracts a state of the system, such as the mouse position,

click counter, button name etc. Moreover, we define any information displayed by

the system to be a presentation type, which is considered to be a kind of output. In

user-centric software systems, these kinds of descriptions are fairly effective to clearly

capture the behavior of the system at requirements stage.

3.4.2 The Specification Language

We use natural language with structured forms as the specification language rather

than other pure formal specification languages like B, Z, VDM, Petri Nets etc, because

92

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

while the SRS should be precise and unambiguous, the maximum readability for

domain readers should also be considered.

In addition to primitive data types, some other types are defined to precisely

demonstrate the semantics of the input and output of a function. Also, we try to

use some other simple notations to tidy the context. The following are some defined

types and symbols:

User event - representing a user's primitive action.

Message - representing the invocation of a function.

Presentation - representing the presentation of any information.

{ij - representing the ith element of a collection.

3.4.3 The SRS Template

We use a revised template from IEEE A4 [44] with tailored content, see Figure 3.33. In

appendix A, the details of each category are described. The Software Requirements

Specification (SRS) has three main parts: the introduction to the document, the

overall description of the software to be built, and the specific requirements.

The introduction part states information about the SRS document itself. It

includes a statement of the purpose of the SRS, a statement of the system's scope, a

glossary used in the SRS, and a list of other referred documents, e.g. User Require­

ments Document. This part also contains an overview of the SRS document, which

describes the structure of the SRS.

The overall description part describes an abstract and complete view of the

system to be built. It has six sections: the product perspective, product functions,

user characteristics, system constraints (general), assumptions and dependencies, and

apportioning of requirements.

The specific requirements part constitutes most of the SRS. It is the part

that we call software requirements, including functional requirements and system

constraints (so called non-functional requirements).

93

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.4.4

The SRS Template

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Glossary
1.4 References
1. 5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements
3.1 External interface requirements

3.1.1 Hardware interfaces
3.1.2 Communications interfaces

3.2 Boundary Classes
3.2.1 C1000 <name>
3.2.2 C2000 <name>

...
3.3 Domain Classes

3.3.1 C1 <name>
3.3.2 C2 <name>

3.4 Performance requirements
3.5 Design constraints
3.6 Reliability
3. 7 Maintainability
3.8 Portability
3.9 Legal

3.1 0 Other requirements

Figure 3.33: The SRS Template

Specify Functional Requirements with Class Specifica­

tions

Based on our object-oriented analysis approach, we allocate the functions of the

software system to different analysis classes. As a result, we specify the functional

requirements with the category of analysis classes, and we call each category a class

specification. All of the class specifications constitute the functional requirements of

the SRS.

We also regard the specification of boundary classes as functional requirements,

because at the requirements stage, boundary classes externally present both the key

elements of interfaces and what the system will do.

To document the specification of each class, we combine some ideas from [13]

and [26] . Also, we construct the class specification according to the following rules:

94

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• Each class has an unique label "Cn", where C stands for class. For boundary

classes, we let "n" start from 1000 and increment by 1000, for domain classes,

we let "n" begin with 1 and increment by 1. We identify the classes from class

diagrams together with other analysis models if necessary.

• For each attribute of a class, "Cn-Am" is labeled, where "Am" is the m-th

attribute of the class "Cn" . For each function of a class, "Cn-Fm" is labeled,

where "Fm" stands for the m-th function of the class Cn.

• For each attribute of a class, the type and reference are identified, where ref­

erence usually refers to another class specification when a certain relationship

exists, such as an aggregation or an association.

• For each function, requires, ensures, input, output and uses clauses are listed,

where uses states the functions that are used by the current function. The

contents of uses are identified when the output includes the messages.

• For each uses in the class functions, we get the used functions according to the

sequence diagrams of use cases. This provides a dynamic view of the SRS and

ensures the traceability and testability of the specification.

• Each alternative condition and corresponding output shall be documented in

the ensures parts.

• To enhance the readability, the "object" is omitted when we talk about an

object of an analysis class. For example, an MRIImageSet will mean an object

of the MRIImageSet class.

Figure 3.34 demonstrates a suggested class specification template.

The following examples are identified from our analysis of the use case Link

MRIImageSet, which has been used throughout this chapter, see its sequence diagram

Figure 3.25 and class diagram Figure 3.28.

3.4.4.1 C2000, TreatmentPlanUB

The TreatmentPlanUB class shall provide the user the ability to navigate all the

functions related to making a treatment plan, including Enter Patientlnfo & Target-

95

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Class Specification Template

Class Name
Summary of the class, relationships.

Attribute 1
Summary of the attribute.
Name Type

Attribute 2

Function 1
Input

Output

Requires

Ensures
Function 2

Type

Type

Reference

Reference

Uses

Figure 3.34: The Class Specification Template

Info, Link MRIImageSet, Define Target, Set TreatmentOption, Do Simulation and

Generate TreatmentPlanReport.

3.4.4.1.1 C2000-Al, MRIImageSetNames

A TreatmentPlanUB shall maintain a set of available MRIImageSet names to be

chosen.
Attribute

MRIImageSetN ames
Type Reference

A set of strings 3.4.4.4

3.4.4.1.2 C2000-A2, SelectedMRIImageSetN arne

A TreatmentPlanUB shall maintain a selected MRIImageSet name, the default value

is first one of the MRIImageSetN ames or null.
Attribute

SelectedMRIImageSetN arne

96

Type

String
Reference

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.4.4.1.3 C2000-Fl, SelectLinkMRIImageSet()
Input

User selection
Output

Message of presenting the list of MRllmageSetNames
Requires
A TreatmentPlan is active in the system.
Ensures

System shall perform PresentListOfMRllmageSets function.

Type

User event
Type
Message

3.4.4.1.4 C2000-F2, PresentListOfMRIImageSets()
Input

MRllmageSetNames
Output

A presentation of the MRllmageSetNames
Requires

Ensures

Type
A set of strings
Type

Presentation

Reference

Uses
3.4.4.1.4

Reference

Uses

If the MRllmageSetNames is not null, the system shall present a list of available MRllmageSet
names, and set SelectedMRllmageSetName=MRllmageSetNames[l];
Else the system shall present the error information and stop current function.

3.4.4.1.5 C2000-F3, SelectMRIImageSet()
Input

User selection
Output
SelectedMRllmageSetN arne
Message of setting the link of the selected MRllmageSet
Message of presenting an MRllmageSetPresentUB
Requires

Type

User event
Type

String
Message
Message

The system presents a list of available MRllmageSet names {3.4.4.1.4).
Ensures
The system shall set SelectedMRllmageSetName=the selected MRllmageSet Name.

Reference

Uses

3.4.4.4.4
3.4.4.2.2

If the selected MRllmageSet is reachable and readable, the system shall perform the setLink
function {3.4.4.4.4) and the presenting an MRllmageSetPresentUB function {3.4.4.2.2).

Else if the retried times < 3, the system shall allow the user to retry current function or choose to
stop current function.
Else the system shall notify user the error information and stop current function.

3.4.4.2 C3000, MRIImageSetPresentUB

The MRIImageSetPresent UB class shall provide the ability to present the selected

MRIImageSet.

3.4.4.2.1 C3000-Al, SelectedMRIImageSet

97

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

A MRIImageSetPresentUB shall maintain an MRIImageSet to be presented, the de­

fault value is null.
Attribute
SelectedMRIImageSet

3.4.4.2.2 C3000-Fl, Present()
Input
An MRIImageSet(Name)
Output

Type

MRIImageSet

Type

String
Type

Message of getting the MRIImages from the selected MRIImageSet Message
Presentation of the selected MRIImageSet
Requires

The input MRIImageSet(Name) is not null.
Ensures

Presentation

The system shall present the MRIImages[l] and the list of MRIImages of the selected
MRIImageSet.

3.4.4.3 C1, TreatmentPlan

Reference

Reference

Uses

3.4.4.4.5

The TreatmentPlan class represents a treatment plan for a patient in the treatment

planning software system. The system shall maintain a current TreatmentPlan for

the current patient.

3.4.4.3.1 C1-A1, Name

The system shall maintain a TreatmentPlan name for each TreatmentPlan.
Attribute

Name

3.4.4.4 C2, MRIImageSet

Type

String
Reference

The MRIImageSet class represents the MRI image sets of patients that are managed

by the treatment planning software system. Each MRIImageSet includes a collection

of MRIImages.

3.4.4.4.1 C2-A1, TreatmentPlan(Name)
The system shall maintain a TreatmentPlan name for each MRIImageSet, the default

value is null.
Attribute

TreatmentPlan(Name)

98

Type

String
Reference

3.4.4.3.1

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.4.4.4.2 C2-A2, Name

The system shall maintain a name for each MRIImageSet.
Attribute

Name

3.4.4.4.3 C2-A3, MRIImages

Each MRIImageSet contains a set of MRIImages.
Attribute

MRIImages

3.4.4.4.4 C2-Fl, SetLink()
Input

Current TreatmentPlan(Name)
Output

Requires

Current TreatmentPlan(Name) is not null.
Ensures

TreatmentPlan(Name) of Current MRIImageSet is set.

3.4.4.4.5 C2-F2, GetMRIImages()

Type

String

Type

MRIImage

Type

String
Type

The system shall retrieve all of the MRIImages of an MRIImageSet.
Input

Output

A set of MRIImages
Requires

Ensures

All of the MRIImages of an MRIImageSet are retrieved.

3.4.5 Specify System Constraints

Type

Type
MRIImage

Reference

Reference

Reference

Uses

Reference

Uses

The specific system constraints are transformed from the user requirements document

(URD and user cases). They are specified according to the corresponding subsections

in the SRS.

99

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.5 Software Requirements Validation

Software requirements validation is the process of checking that the software require­

ments of a software system fulfills its intended purpose, namely, the correct function­

ality for the solution system is defined.

Validation is different from verification. According to the Capability Maturity

Model (CMMI-SW vl.l) [17], "Validation confirms that the product, as provided, will

fulfill its intended use. In other words, validation ensures that 'you built the right

thing'. Verification confirms that work products properly reflect the requirements

specified for them. In other words, verification ensures that 'you built things right'."

We emphasize the process to be "validation" rather than "verification" in that

the SRS is a definition of the solution of software, a view of user requirements at the

aspect of developers. SRS just states what is to be built. The validation seeks to

discover and correct any errors that occur during the requirements engineering phase,

it aims to ensure that we are defining the correct functionality and building the right

system. The following overall goals should be met:

• Scenario tables correctly and completely describe feasible user tasks.

• Use cases correctly record the user tasks.

• Software requirements are correctly derived from the use cases or from other

origins.

• Software requirements are complete.

• All views of requirements are consistent.

Validation is accomplished through a variety of reviewing or testing proce­

dures. It is not a separate phase and can occur at many levels and in different

stages. The validation activities are threaded throughout the iterative elicitation,

analysis and specification process. We recommend three levels of validation during

the requirements phase: simple checks of scenario tables, storyboard of use cases, and

formal review and prototype of SRS.

100

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

3.5.1 Why Requirements Validation?

"Software is not written, it is rewritten." - Everybody knows.

There is no error-free guarantee in human activities including software de­

velopment, but at least we can reduce the probability of mistakes through certain

processes and techniques.

Making changes early in the software development life cycle is extremely cost

effective since there is nothing at that point to redo. If a project is changed after

considerable work has been done then small changes could require large efforts to

implement since software systems have many dependencies. According to statistics,

it costs 68 to 110 times more to correct a requirement defect found by the customer

after the system has been deployed than to fix an error found during requirements

development [86]. According to [52], during requirements stage it needs 30 minutes

to fix an error, whereas it will take 5 to 17 hours to correct a defect during the system

testing phase.

Requirements validation can find the errors and ambiguities at the early re­

quirement phase and thus reduces the system's life costs for maintenance.

3.5.2 Validation Techniques

Review, testing, and prototyping are the main techniques that can be used to validate

an SRS. Some authors regard review as a form of testing [55], but we separate it from

testing.

Review

Software review is "A process or meeting during which a software product is exam­

ined by project personnel, managers, users, customers, user representatives, or other

interested parties for comment or approval" [41]. "Software product" means "any

technical document or partial document, produced as a deliverable of a software de­

velopment activity", and may include documents such as requirements documents,

specifications, designs, source code, user documentation etc. Types of review include

management reviews, technical reviews, audits, inspections and walkthroughs.

101

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Reviews can be formal or informal. Informal reviews are conducted on an

as-needed basis. The analyst chooses a review panel and provides and/or presents

the material to be reviewed. The material may be as informal as a computer screen

or hand-written documentation. Formal reviews are conducted at the end of each life

cycle phase. The project manager appoints a formal review panel, who may make or

affect a go/no-go decision to proceed to the next step of the life cycle. Formal reviews

include the software requirements review, the software preliminary design review, the

software critical design review and so on.

In software development, peer reviews are considered an industry best-practice

for detecting software defects early and learning about software artifacts. Peer review

refers to a type of software review in which a work product is examined by its author

and/or one or more colleagues in order to evaluate its technical content and quality.

Inspections and walkthroughs are two main forms of peer reviews.

A walkthrough is a form of peer review "in which the author leads members

of the development team and other interested parties through a work product, and

the participants ask questions and make comments about possible errors, violation of

development standards, and other problems." [41] During walkthroughs, the author

presents the work product in a step-by-step manner; a recorder notes all potential

defects , decisions, and action items identified during the walkthrough meeting; a

walkthrough leader conducts the walkthrough (and who is often the author). In

general, a walkthrough has one or two broad objectives: to gain feedback about the

technical quality or content of the document; and/or to familiarize the audience with

the content. Walkthroughs can be informal or formal.

Inspections are peer reviews of any work product by trained individuals who

look for defects using a well defined process. Like walkthroughs, inspections involve

the line-by-line or step-by -step evaluation of the product being reviewed. Inspections,

however, are significantly different from walkthroughs. In an inspection, a work

product is selected for review and a team is gathered for an inspection meeting to

review the work product: a moderator is chosen to moderate the meeting, one or

more inspectors prepare for the meeting by reading the work product carefully and

noting potential defects, a reader, who leads the team through the item, a recorder,

who notes the faults , and the author, who helps explain the item being inspected.

The goal of the inspection is to identify defects and for all of the inspectors to reach

102

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

consensus on the work product. In most cases, inspections are formal.

IEEE 1028 defines a generic process for formal reviews based on the software

inspection process originally developed by Michael Fagan [34].

1. Entry evaluation: The review leader (Moderator) uses a standard checklist of

entry criteria to ensure that preconditions exist for a successful review.

2. Management preparation: Responsible management ensures that the review

will be appropriately resourced with staff, time, materials, and tools, and will

be conducted according to policies, standards, or other relevant criteria.

3. Planning: The review leader and the author identify the objectives of the review,

organize a team of reviewers, and ensure that the team is equipped with all

necessary resources for conducting the review.

4. Overview Meeting: In the meeting, the review leader ensures that all reviewers

understand the review goals, the review procedures, the materials available to

them, and the procedures for conducting the review.

5. Preparation: The reviewers individually prepare for group examination of the

work product under review, by examining it carefully for defects according to a

checklist of typical defects.

6. Inspection Meeting: The reviewers meet at a planned time to pool the results

of their preparation activity and arrive at a consensus regarding the status of

the document being reviewed.

7. Follow-up: The Author of the work product undertakes whatever actions are

necessary to repair defects or otherwise satisfy the requirements agreed to at the

inspection meeting. The review leader verifies that all action items are closed.

8. Exit evaluation: The review leader verifies that all activities necessary for suc­

cessful review have been accomplished, and that all outputs appropriate to the

type of review have been finalized.

At the requirements phase, a review, is a detailed examination of a document

for the purpose of obtaining constructive criticism; particularly, the detection of errors

103

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

[13]. Both inspections and walkthroughs are involved during our validation process.

They are conducted during and at the end of each process of the requirements life

cycle to determine whether established requirements have been met.

Testing

Testing is the operation of the software product with real or simulated inputs to

demonstrate that a product satisfies its requirements and, if it does not, to identify

the specific differences between expected and actual results.

A test case is an input and an expected result [42]. In order to fully test that

all the requirements of an application are met, there must be at least one test case

for each requirement.

There are various levels of software tests, ranging from unit testing, which is

based on minimal software components, integration testing, which is based on soft­

ware architecture design, up to software system testing, which is based on functional

requirements, and acceptance testing, which is based on user requirements [28, 68].

Testing plans and test cases should be developed and (conceptually) executed in each

life cycle respectively.

During the requirements stage, although we can not run the test cases on

the software to be built - as it has not been built yet, we still can create functional

test cases based on use cases to find errors and ambiguities in our SRS and analysis

models. We can conceptually run the test cases on the SRS and analysis models by

walkthrough. Errors, omissions, ambiguities and nondeterminisms may be uncovered.

More requirements testing related topics can be found in [4, 9, 23] . Conceptual

functional testing of software requirements is a powerful technique for finding errors

at a very early stage of the project. It saves exponentially increased costs for fixing

a requirement error not found until the coding stage.

Prototype

Prototype is defined in [45] as "something from which copies are made". Generally,

a prototype is an original type, form, or instance of some thing serving as a typical

example, basis, epitome, or standard for other things of the same category.

Unlike in other engineering disciplines, prototype in software engineering is a

104

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

relatively recent phenomena from early 1970's [37]. In software engineering, proto­

types provide the software developers with a "working model" for demonstration or

use by customers, quality-assurance, business analysts, and managers to confirm or

make changes to requirements, help define interfaces etc. Particularly, in software re­

quirements engineering, prototypes demonstrate explicitly the behavior as defined in

the SRS and make it obvious to users and clients whether their ideas and wishes have

been correctly interpreted (or if their original thoughts need revision) [13]. Moreover,

prototyping is, to date, the only effective way of developing user interfaces [78].

Prototyping has many variants in terms of types and forms, e.g., software

prototype, GUI prototype (click dummy), paper prototype. Nowadays as the advent

of powerful 4GLs (4th programming languages) and flexible CASE tools, software

prototyping has become more feasible and more efficient. It is the primary format in

prototyping. Further, prototypes can also be automatically generated from specifica­

tions. Usually this is based upon some formal specification techniques together with

special software tools such as Statemate [39], SCR [40] method.

Software prototypes are constructed to visualize the system, or just part of

it, in order to obtain feedback. A software prototype is a "quick and dirty" working

model of the solution that presents a graphical user interface and simulates the system

behavior for various user events. The information content is usually hard-coded rather

than acquired from a database. Because a software prototype program runs like the

real software, the users can easily judge the response behavior of the future system,

compare the functionality with what they want, and determine if some functions are

neglected.

There are two major types of software prototyping: throwaway proto typing and

evolutionary prototyping. Throwaway prototyping refers to the creation of software

that will eventually be discarded after the requirements phase. After preliminary re­

quirements gathering is accomplished, a simple working model of the system is quickly

constructed to visually show the users what their requirements may look like, from

which users can re-examine their expectations and clarify their requirements early in

the development of the software. This, in turn, leads to the accurate specification

of requirements, and the subsequent construction of a valid and usable system from

the user's perspective. When this has been achieved, the prototype model is "thrown

away", and the system is formally developed based on the identified requirements

105

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

specification.

Evolutionary Prototyping (also known as breadboard prototyping) targets to

build robust software based on well-understood requirements so that the first version

of the product can be released. An evolutionary prototype is usually an incomplete

model of the whole system, and once built, it forms the heart of the new system,

and the improvements and further requirements will be built on to it [25]. The

partial system is sent to customer sites. As users work with the system, they detect

opportunities for new features and give requests for these features to developers.

Developers then change the software requirements specification, update the design,

recode and retest. By a process of gradual refinement, the "prototype" becomes the

product. Evolutionary prototyping is usually involved in certain software development

approaches such as Agile Software Development.

The prototype process usually has the following steps [89]:

1. Identify basic requirements: determine basic requirements including the input

and output information desired. Details, such as security, can typically be

ignored.

2. Develop initial prototype: the initial prototype is developed that includes user

interfaces and the basic functions.

3. Review: the customers, including end-users, examine the prototype and provide

feedback on additions or changes.

4. Revise and enhance the prototype: using the feedback, both the specifications

and the prototype can be improved. Negotiation about what is within the

scope of the contract/product may be necessary. If changes are introduced then

a repeat of steps 3 and 4 may be needed.

3.5.3 Validation Level 1: Simple Check of Scenario Tables

The goal of this level validation in our approach is to confirm that each user task (the

problem domain behavior) is correct. This validation activity should be implemented

during the task-workshops. Once each scenario table of a task is documented, it

should be checked in the next workshop with the users. Checking points include: if

106

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

any data is missed in each step? if any condition is neglected? are there any other

alternative scenarios? Although we call this validation activity "simple check", it

does not means that it is not important. Rather, it is of the first importance because

the scenario tables are the basis of the later requirements processes.

3.5.4 Validation Level 2: Storyboard of Use Cases

The goal of this level validation is to confirm that the recorded requirements (use

cases) are correct. Validating use cases helps to ensure that we have captured the

right user requirements. We use storyboards because graphical views are always more

understandable than textual forms.

A storyboard is a series of pictures, or diagrams, or screens from which a story

is told. We use the activity diagram as the storyboard image type to validate the

use cases on screen - the activity diagram should be developed by a UML tool like

MS Visio, Rational Rose etc. This activity can start when all or part of the activity

diagrams of use cases are drawn. Our goal is to communicate the use cases to the

users to obtain a shared understanding of the functionality the software will provide,

and to check for any errors and omissions. This validation is a kind of walkthrough

and can be formal or informal.

Validation Guide:

• Prepare at least one storyboard for each use case.

• Use another storyboard to show subtask steps.

• Walk through the use case one step at a time; tell the story.

• Check each decision point, and walk through each alternative branch.

• Walk the user through all the functionality in the context of the use case.

• Record errors and omissions.

• Revise use cases and scenario tables, if applicable.

107

M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software

Storyboard Checklist:

• Is each use case a discrete user task?

• Is the use case written in the user's language?

• Are all alternative courses documented?

• Are there any common action sequences that could be split into separate use

cases?

• Is the dialog sequence for each use case clearly written, unambiguous, and com­

plete?

• Is every action step pertinent?

• Is each action step feasible?

3.5.5 Validation Level 3: Software Prototyping and Formal

Review of SRS

The goal of this level validation is to confirm that the specification (system behavior)

is correct.

3.5.5.1 Software Prototyping

The software prototyping can start when the class specification of the first use case

is derived.

Prototyping Guide:

• Use case based prototype is built to implement each use case.

3.5.5.2 Formal Review of SRS

Formal review activity is conducted after the initial version of the SRS documentation

is finished. We follow the process suggested by IEEE 1028 [41].

108

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Participants.

The formal reviewer team includes the author (usually an analyst), a developer, a

tester, a domain expert and the project manager.

Formal Review Entry Conditions.

The following is a list of entry conditions that must be satisfied before starting a

formal review of the SRS.

• All other levels validation have been carried out.

• The documents conform to the proposed template.

• A spell check has been performed.

• The use case model and analysis model are available.

Inspection Checklist

The following checklist lists typical aspects for inspection:

Correctness Are all use cases realized through a sequence diagram?

Are all requirements in the SRS also in the analysis model?

Unambiguousness Is there any use of the term "may", "might", "should" etc. to describe

the system's behavior?

Completeness

Consistency

Verifiability

Modifiability

Traceability

Are there any uses of other terms that are vague?

Are all attributes and methods included in the analysis model also spec­

ified in the SRS?

Are all conditions and constraints on functional requirements specified

in the SRS?

Are all references fully defined?

Are all uncommon terms defined?

Is each attribute defined once?

Is each method defined once?

Are all quantities specified in measurable terms?

Can test cases be defined for each use case scenario?

Does the structure of the SRS match the structure of the analysis model?

Have all redundant structures been removed?

Is each requirement uniquely numbered in a manner that allows the

attribute or method to be associated with its class?

Is each requirement traced to the use cases it helps realize?

109

M.A .Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Formal Review Exit Conditions.

The following is a list of exit conditions that must be satisfied before ending the

formal review of the SRS.

• All defects detected have been recorded and analyzed, and the SRS revised,

accordingly.

• The revised documents have been spell checked.

• The documents have been "versioned" and checked into the configuration man­

agement system.

3.6 Our Practical Approach and "High Quality

SRS"

We say the approach is practical because of its easy understandability and applica­

bility for users. Also, our approach meets the characteristics of general engineering

principles, i.e., it is systematic and iterative. For each activity of each process, we not

only work out the step-by-step guidelines, but also analyze the underlying rationale.

As a result, our approach will help to lead to high quality SRSs.

3.6.1 High Quality SRS

According to [28, 44] etc, a high quality SRS should be correct, unambiguous, com­

plete, consistent, modifiable, verifiable, and traceable.

Correct

An SRS is correct if, and only if, every requirement stated therein represents some­

thing required of the system to be built.

Unambiguous

An SRS is unambiguous if, and only if, every requirement stated therein has only one

interpretation.

110

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Complete

An SRS is complete if, only if, it includes the following elements: all functional

requirements, system constraints, definitions of the responses to all kinds of input

data in any situation, full labels and references to all figures, tables, and diagrams,

definitions of all terms and units of measure.

Consistent

An SRS is consistent if, and only if, no subset of requirements stated therein conflict,

such as conflicting behavior, conflicting terms.

Modifiable

An SRS is modifiable if its structure and style are such that any necessary changes to

the requirements can be made easily and still remain relevant attributes of the SRS.

Verifiable

An SRS is verifiable if, and only if, every requirement stated therein is verifiable.

A requirement is verifiable if, and only if, there exists some finite cost-effective pro­

cess with which a person or machine can check that the software product meets the

requirement.

Traceable

An SRS is traceable if the origin of each of its requirements is clear and if it facilitates

the referencing of each requirement in future development or enhancement documen­

tation. Backward traceability ensures each requirement explicitly references its source

in earlier documents. Forward traceability demands each requirement having a unique

name or reference number.

3.6.2 Our Approach Leads to a High Quality SRS

In our SRS, the structure of functional requirements directly maps the class diagrams

which show the static structure of the software system. Meanwhile, the dynamic

111

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

message flows are identified as output references (uses) in functions which match the

sequence diagrams.

Our approach will help to lead to a high quality SRS. On one hand, the SRS is

directly derived from the analysis model, and on the other hand, the analysis model

is the realization of use cases, which capture the real use requirements. This process

greatly facilitates developing a correct and complete SRS.

Correctness is enhanced, in that every functional requirement in the SRS is

one the software must implement - it originates from the user requirements .

Completeness is also enhanced, in that all necessary functions are included.

We realize all use cases in analysis models - at least one sequence diagram for each

use case, this can help ensure that we have accurate and complete required analysis

classes for each use case. During the realization, needed functions are also allocated

to analysis classes, and eventually they are identified in the SRS. As a result , the

SRS includes and only includes the required functionality required by the user re­

quirements.

Consistency is aided, in that according to the specifying rules, each attribute

and each function will have a unique number in the SRS.

Verifiability is aided, in that functional test cases can be walked through

courses of each use case.

Modifiability and traceability are aided, in that any change in any place can

be traced forward or backward among the use cases, the analysis models and the SRS.

112

Chapter 4

A Case Study: PDT Treatment

Planning Software

In this chapter, we use an example of treatment planning software as a case study to

explain the application of our requirements specification approach. A prototype of

such software was made available to us by the University Health Network (UHN) , and

we have agreed not to disclose details of this system while it is under development.

4.1 Apply Elicitation Process

4.1.1 Resources

Training Manual of Existing Software

An introductory-level user manual of the existing treatment plan software, provides

an informal overview of how to use the software to produce treatment plans [16] .

UHN Clinical Trials Treatment Planning Report

This report briefly explains the underlying principles of the PDT treatment planning

software, including the PDT treatment principle, threshold model of treatment plan­

ning and computational model of the simulation. This report also briefly describes

the process of how to implement PDT treatment planning for prostate cancer patients

based on the current software.

113

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Other Sources

There are many websites explaining the general principles of PDT, such as [60, 61, 88] .

In terms of similarity with the UHN system, the following website can be explored:

http:/ /www.prostatepdt.com/.

Numerous papers also provide the domain knowledge and theoretical basis of

PDT. Some recent ones are [8, 32, 85] .

4.1.2 Understanding of Problem Description

There is no SRS for the current UHN treatment planning software. However, based on

the available documents and other sources, we can get information that is as detailed

as that we would get from the normal elicitation processes like interviews, workshops

etc, and is sufficient for the purpose of applying our approach.

Background Description

PDT uses laser, or other light sources, combined with a light-sensitive drug (some­

times called a photosensitizing agent, or photosensitizer) to destroy cancer cells. Fig­

ure 4.1 [3] visually shows how a PDT treatment is performed for the prostate cancer.

The prostate template is drilled with a 0.5-cm equal spaced grid. Cylindrical diffusing

fibers (CDF) are inserted into the catheters to illuminate the entire prostate gland.

Figure 4.1: The PDT Treatment for Prostate Cancer

114

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

A photosensitizing agent is a drug that makes cells more sensitive to certain

wavelength light. After injection into the blood stream, the drug is attracted to

cancer cells. It does not do anything until it is exposed to a particular type of light.

When a sufficient amount of light is directed at the area of the cancer, the drug is

activated and produces the aggressive singlet oxygen which leads to death of cancer

cells. Some healthy, normal cells in the body will also be affected by PDT, although

these cells will usually heal after the treatment.

In our case study, the PDT treatment aims for radical treatment of tissue

volumes (e.g. prostate cancer, brain tumors), where a significant treatment depth is

required or in which multiple interstitial diffusing optical treatment devices (e.g. fiber

sources) are used to achieve complete irradiation. To spare adjacent normal tissues

from side-effects, a detailed treatment plan is needed for each treatment.

The solution lies in the treatment planning software, namely, the application

for calculation of the effective PDT dose delivered for a specified set of treatment

parameters (device number, position, depth, energy, time duration etc.) on specific

tissues. In a treatment planning software system, a set of images is loaded into the

system, Figure 4.2 (a) [85]; the target tissue (black line in Figure 4.2 (b) [85]) and

its adjacent tissues are traced and the virtual treatment devices are set (the five

black dots); and then the software calculates the light distribution throughout the

tissues. Led by visually simulated treatment results, Figure 4.2 (b) [85] (threshold

dose contour, the white line), users change the parameters to reach the optimized

option delivering a balance between effectiveness and safety.

(a) (b)

Figure 4.2: The Prostate Example: PDT Treatment Planning Software

115

M.A. Sc. Thesis - H ongqing Sun McMaster- Computing and Software

Source (delivery fiber) array: energy= power x illumination time
Name Unit Working Value Comments
number of fibers
length
positions within the target
power to each fiber m WI em
illumination time
wavelength nm 700.00

Tissue optical properties:
absorption coefficient
scattering coefficient

average values
average values

trial specific
trial specific

Drug concentration: drug concentration= delivered dose x specific uptake ratio

Related
light dose
light dose
light dose
light dose
light dose
PDT dose

light dose
light dose

extinction coefficient em 1(/.ll g) 1drug specific, unknown PDT dose
delivered dose mg I kg tissue specific PDT dose
specific uptake ratio tissue specific, unknown PDT dose
photobleaching rate em2J-l tissue specific, unknown PDT dose

Threshold Dose
light threshold dose
PDT threshold dose

Jlcm2

photons I em 3

Table 4.1: Data Involved in a PDT Treatment

Current Situation

light dose
PDT dose

Using the current treatment planning software platform, UHN can make treatment

plans for prostate cancer patients who had prior radiotherapy.

A light dose, also referred to as light fluence, represents the amount of light

received at a given location in tissue. It is a measure of the amount of the light energy

that passes through the location and is given in units of fluence (Jjcm2) .

A PDT dose at a certain location in tissue is calculated by combining the

light dose, the drug concentration and local oxygenation. It is expressed in photons

absorbed by the PDT drug per cm3 .

In a real treatment, a PDT dose calculation is affected by many factors which

are listed below, see Table 4.1.

Since some parameters for calculating the PDT dose are unknown, such as

Extinction Coefficient and the specific Uptake Ratio for the photosensitizing agent in

the prostate, it is impossible to calculate the real PDT dose. As a result, the current

116

M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software

software calculates Light Dose to evaluate each treatment option for treatment clinical

plans.

The following assumptions are applied in the current treatment planning soft-

ware.

• Oxygen-independent: an unlimited oxygen supply to the tissues.

• Drug-independent: constant and homogeneous photosensitizer concentration.

Vision Statement

Treatment plan software is required for simulating treatment of cancer (e.g. prostate

cancer) patients and for producing treatment plans for them. For each patient, the

baseline MRI images will be loaded into the software and the important structures will

be defined (e.g. prostate, rectum and urethra). Then, a virtual array of cylindrically

diffusing optical treatment devices (e.g. fibers) is added to the virtual target volume.

Once a set of treatment parameters (e.g. device numbers, energy, illumination time

etc.) are defined, the light dose distribution both inside the treatment volume and in

its surroundings can be calculated by the software and the calculated results can also

be visualized by superimposing the treatment effect onto the MRI images. Simulated

treatment results are evaluated through the contours of light threshold dose of treat­

ment volume and surrounding normal tissues. The treatment parameters are changed

iteratively until an acceptable balance between efficacy and safety is achieved. This

determines a near optimal set of treatment parameters. Eventually, a treatment plan

report is created for guidance of clinical trial treatment, which includes the selected

treatment option for the patient, and images showing the positions of the treatment

devices and the target structures.

User Responsibilities and Customer Authorities

Basically the customers of treatment planning software will be hospitals and their

authorities are listed in Table 4.2. According to current documents, there are two

kinds of users, namely, radiologist and planner. Their responsibilities and tasks are

listed in table 4.3. For simplicity, we will omit the administrator user type of the

system.

117

M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software

Customer Authorities
Hospital Running the Software for Treatment Planning

Table 4.2: Customer Authorities: Case Study

User Responsibilities Tasks

Ensuring Correct Target
Enter Patientlnfo & Targetlnfo

Radiologist Link MRIImageSet
Definition

Define Target
Enter Patientlnfo & Targetlnfo
Link MRIImageSet

Planner Making Treatment Plan
Define Target
Set TreatmentOption
Do Simulation
Generate TreatmentPlanReport

Table 4.3: User's Responsibilities and Tasks: Case study

Glossary

This part is eventually transferred into the SRS, see the complete glossary in appendix

B.l.3. The following are some typical examples:

MRIImageSet

MRIImage

Patientlnfo

Treatment Option

TreatmentDeviceA rray

TreatmentDevice

System Constraints

=(Name, MRIImages, SliceNumber, TreatmentPlan(Name))

//A series of MRI Images for certain patient, usually the T2-weight

series is used for treatment planning/ j.

=(Name, Points, SliceThickness, ImageSize)

//A slice of image scanned by Magnetic resonance imaging (MRI)

Machine.//

=(Name, PhysicianName)

//A patient whose treatment plan is produced by the treatment

planning software.//

=(Number, TreatmentDeviceArray)

//A treatment option is a set of treatment parameters.//

= (N arne, TreatmentDevices, DeviceN umber)

//An array of treatment devices//

=(Name, Label, Length, Power, IlluminationTime, Position)

//A light delivery source//

Table 4.4 describes the general system constraints known at this time.

118

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Usability
Users are familiar with GUis.
Users have experience using Windows application.

Reliability (robustness, Authentication is required.
safety and security)
Performance
Maintainability
Portability The software will run only on MS windows platform.
Implementation

Interface

Operation

Packaging

Legal FDA standard.

Table 4.4: System Constraints: Case Study

Problem Context Diagram

The advantages of drawing a problem context diagram are obvious. While a problem

context diagram shows our understanding of the problem in an easily understandable

way, it is also used to derive a traditional context diagram, which provides a basis for

later stages. Figure 4.3 is the problem context diagram of our example.

In this diagram, we do not list all the problem sub domains, such as there

exists an MRI Machine sub domain between the MRI Image set and Patient. Since

the appearance of the MRI machine has no significant meaning for our problem, we

regard these kinds of sub domain as connection sub domains. To simplify the diagram,

connection sub domains can be omitted - if we always assume they work properly,

they are transparent to the connected sub domains.

Also, we abstract the two user-type sub domains Radiologist and Planner to

be one sub domain User, because they perform similar tasks and we do not care now

the division of labor between them. However, you can separate them if you prefer.

4.1.3 System Context Diagram

A system context diagram is derived directly from the problem context diagram

according to our stated rules, see Figure 4.4

119

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

• ~~ !.

I
spa: US!

spb: Mil

i
spc: TPSS!
spd: TPSS!
spe: TPSS!

spf: TPSS!

I spg: TPSS!

sph: PA!
,{ spi: PA!

~ spj: Wv'S!

{EnterPatientlnfo & Targetlnfo,
LinkMRIImageSet, DefineTarge~
SetTreatmentOption, DoSimulation,
GenerateTreatmentPianReport}
{MRIImageSet)
{Targefinfo, Adjacentnssuelnfo)
(Un.selected TreatmentOptions}
{Selected TreatmentOption,
Patientlnfo,
Targetlnfo
(Name, AbsorptionCoeff, ScatteringCoeff, ThresholdDose)}
{LightDose Of Selected TreatmentOption,
SimulationResultlmageSet Of Selected TreatmentOption,}
{LightDose of Un·selected TreatmentOptions,
SimulationResultlmageSet of Ur>-selected TreatmentOptions)
{TargetStructure)
{Patientlnfo(Name, PhysicianName}, Targetlnfo(Name))
{Targetlnfo(AbsorptionCoeff, ScatteringCoeff, ThresholdDose)}

spa, spb... set of shared
phenomena

System

Problem entity
sub domain

Problem data
sub domain

Interface

Controlling

Figure 4.3: Treatment Planning Software Problem Context Diagram: Case Study

4.1.4 Actors and Their Profiles

All the things surrounding the system are actors, i.e. we regard any sub domain that

needs information from or provides information to the system as an actor. So in our

system context diagram, the surrounding actors include not only the external entities,

but also those data sub domains - you can think of them as some form of physical

representations or anything else that contains the data information. This conception

is a little different from that of the context diagrams which people usually draw, they

only include external entities, such as devices, people, and other systems. We prefer

this conception in that we do not hope to restrict the future design - the data could

be contained in any sources (network, local disk, etc) .

Although in the context diagram we abstract the two user types Radiologist

and Planner to be one actor User, their profiles should · be given separately. Table

4.5 lists all actors and their profiles.

120

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Q System 0 Terminator

TargeUnfo
Adjacentnssuelnfo

Dataftow

Figure 4.4: Treatment Planning Software System Context Diagram: Case Study

Actor Profile: Background and Skills
User-Radiologist A physician specializing in diagnostic techniques for viewing internal

organs and tissues without surgery. Radiological methods include X-ray,
MRI, computed tomography (CT),scan, ultrasound, angiography, and
nuclear isotopes.

User-Planner Beginner-level or expertise treatment planner
MRI Image Set Storage or source of a serials of MRI Image slices of a target.
Target Definition Storage of definitions of anatomical structures inside the target.
Treatment Options Storage of patient information and sets of treatment parameters.
Treatment Plan Report Storage of Treatment Plan Report.
Simulation Result Storage of simulation results including light dose calculating results and

images of simulating results.

Table 4.5: Profiles of Actors: Case Study

121

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

!Primary Actor I Tasks

User (Radiologist, Planner) Enter Patienlnfo & Targetlnfo
User (Radiologist, Planner) Link MRIImageSet
User (Radiologist, Planner) Define Target
User (Planner) Set TreatmentOption
User (Planner) Do Simulation
User (Planner) Generate TreatmentPlanReport

Table 4.6: The Primary Actor-Task List: Case Study

4.1.5 Primary Actor- Task List

As discussed before, each user type is a primary actor. In some cases, a user type

may perform some same tasks as another user type, for example, both the Radiologist

and the Planner perform Enter Patient Information task. In this case, the radiologist

and planner play the same primary actor role of the same task.

If you draw the problem context diagram according to the rules, and subse­

quently derive the system context diagram based on that, you eventually get all the

actors. Each of the primary actors that you get may include more than one user

types, for example, the User primary actor combines both the Radiologist and the

Planner user types. That is the reason why we capture the Primary Actor - Task

list rather than the User Type - Task list. We should avoid the duplication, but still

we need to clarify the differences between the user types, for example, a radiologist

performs less tasks than a planner. Table 4.6 lists what we can get in the treatment

planning software example.

4.1.6 Scenario Tables of User Tasks

Based on the documents, we can get the scenario table of each task respectively. See

Tables 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13.

122

Task: Enter Patientlnfo & Targetlnfo

Task summary: The user intendtt to enter the information of a patient and hitt/her being-treated target in order to make a new Treatment Plan for that patient.

Precondition: User is logged in .

Success post condition: 1. Entered Patientlnfo and Targetlnfo are added into the system.

2. A new TreatmentPlan is created and stored with some initial data values.

3 . A blank TreatmentOption is created and stored with entered TteatmentOption(Number}, which is the active TreatmentOption of current
TreatmentPian.

Failure post condition: No stored data will change within the system.

System constraints: None.

2 3

User selects to make TheatmentPlan. System responds by presenting required User completes all data items.
data items with default values where
necessary, including Patitmtlnfo(Name,
PhysicianName), Targetlnfo(Name,
AbsorptionCoeff, Sca.tteringCoeff,
ThresholdDose) and
TreatmentOption(Number) .

4

Nn TreatmentPlan alrv.adv exi&U fur
thia patient:

System creates and stores a new
TreatmentPian for this patient with
some initial data values: Name,
entered Patientlnfo(Name), entered
Targetlnfo(Name), a blank
TreatmentOption with entered
TreatmentOption(Number) . System
also stores entered data of Patientlnfo,
Targetlnfo and TreatmentOption.

4a. 1"reatmentPlan already e:r.iata:

.1 System informs user that a
TreatmentPlan already exists for
this patient, and asks user to use
the entered da.ta for a new
TreatmentPla.n, or revise the
current input, or cancel the task.

User selects to use the entered
data for a new TreatmentPlan:
system performs normal step 4
neglecting the normal condition.

User selects to revise the current
input and revises the
Patientlnfo(Name): task returns
to normal step 3 .

. 2c User selects to cancel the task:
task fails.

Table 4. 7: The Scenario Table of Task: Enter Patientlnfo & Targetlnfo

Task: Link MRllmageSet

Task summary: The user chooses to link an MRIImageSet to the current patient' current treatment plan.

Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. A new TreatmentPlan for current patient with initial data values has been created. Ref. Table 4.7

3. Required Patientlnfo and Targetlnfo have been stored. Ref. Table 4.7

Success post condition: An MRIImageSet is linked to current TreatmentPlan and presented ..

Failure post condition: None.

System constraints: 1. Successive retries of the same MRIImageSet selection can be executed at most three times.

Number of available M RllmageSet!J ~ 1 :

System presents a list of names of
available MRIImageSets.

2a. Number of available MRIImageSet.'l

<L

Selection of MRI/mageSet U ~ucces~ful

& Number of t-etried times $ 3:

System links the selected
MRIImageSet to current
TreatmentPlan and presents the

selected MRIImageSet, including
presentation of the fin;t MRIImage
slice of the image set and list of

slices in the set.

4a. Selection of MRI/mageSet is not

successf'rd & Number of retried

times< 3:

.1 System informs user that the
selection of current MRIImageSet
fails, and asks user to retry the
current selection, or try another
selection, or cancel the task .

. 2a User selects to retry current
selection: system performs normal
step 4 .

. 2b User selects to retry another
selection: system returns to
normal step 2 .

. 2c User selects to cancel: task fails .

4b. Selection of MRI/mageSet is not

successful & Number of Retried time"
?:_,9,

. 1 System notifies user of failure .

. 2 Task fails.

Table 4.8: The Scenario Table of Task: Link MRIImageSet.

Task: Define Target

Ta.t~k t!Ummary: The user intend~:~ to define the target on a linked MRIImageSet of current patient for the treatment ::dmulation, which includes the definition of target volume
structure (Targetlnfo{Tracings)) and adjacent normal tissue structuret:~ {AdjacentTissuelnfo{Tracings)).

Precondition: 1. User has selected to make TreatmentPlan for this patient .

2. A MRIImageSet has been linked to current patient . Ref. Table 4 .8

Succe~ po::Jt condition: The target volume structure and adjacent normA.l t~ue ~:~tructurel:f a.re defined.

Failure post condition: No stored data will change in the system.

System constraints: None.

Table 4.9: The Scenario Table of Task: Define Target.

All 1hlcing,, are
acceptable: (ull loops are

clo•ed)
System stores Tracings to
a Targetlnfo(Tradngs) or
AdjacentTissue­
lnfo(Tracings) .
System returns to normal
step 2.

User repeats normal step
until dune.

Not all Tracings are
acceptable: (Not all
looplt are r.lo~ted}

System informs user
that Tracing(•) on
MRIImage s lice(•) is
(are) not acceptable.

User revises the
corresponding
Tracing(s) .

. 3 Normal

Task: Set TreatmentOption

'I'a..sk summary: The user intends to add a light delivery TreatmentDeviceAnay into c urrent TreatmentOption for the virtual treatment of the defined target.

Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. There exists an active TreatmentOption of current 'IreatmentPlan.

3. Target has been defined. Ref. Table 4.9

Success post condition: A delivery TreatmentDeviceArray is added into current TreatmentOption.

Failure post condition: Data of current TreatmentOption remains unchanged.

System constraints: None.

User selects to set TreatmentOption.

1u. User intends to select another

'J'ho..atmentOption:

.1 User selects another
TreatmentOption(Number) .

. 2 Selected Til'!atmentOption exists:

normal step 1 .

. 2a. Selected 'J'ho..atmentOption doe., not

exi.!t:

.1 System creates a blank

Current TreatmentOption i., blank:

System aclcls current
TreatmentDeviceArray into current
TreatmentOp­
tion(TreatmentDeviceArray).

System notifies user to update the
current TreatmentOption or
cancel the task.

User chooses to update current
TreatmentOption: system
performs normal step 4 ignoring
the normal condition, and also
updates all existing dependent
data items to their default values.

User chooses to cancel the task:
task fails.

Table 4.10: The Scenario Table of Task: Set TreatmentOption.

Sub Task: Add a TreatmentDevice

Task summary: The user intends to add a TreatmentDevice into a TreatmentDeviceArray for the virtual treatment.

Precondition: User has selected to set TreatmentOption.

Success post condition: A delivery TreatmentDevice is added into current TreA.tmentDeviceArra.y.

Failure post condition: The current delivery TreatmentDeviceArray remains unchanged.

System constraints: None.

2 3 4 5 6

User selects to Add a
Treatment Device.

System presents the
linked MRilmageSet .

User sets the Treatment­
Device(Position) by
selecting the distal tip
point on an MRIImage
slice.

St!lected TreatmentDe­
vice(Pottition) is
acceptable (ttelected point
E Taryetlnfn(Trucing•)):

User completes remaining System adds the

System stores the
selected point as the
TreatmentDe­
vice(Position) and ends
the presentation of the
MRIImageSet.

4a. Selected
7reatmentDevice
(Po6ition) U not
acceptable (.selected
point f£ Targetlnfo
(Trueing•)):

.1 Syt~tcm notifica uacr

of the mistake .

. 2 User revises .

. 3 Normal step 4.

data items of the
TreatmentDevice, see
Table 4 .10, step2.

TreatmentDevice to
current
TreatmentDevlceAr­
ray(TreatmentDevice)

Table 4.11: The Scenario Table of Sub Task: Add a TreatmentDevice.

Task: Do Simulation

Task summary: The user intends to r equest the system to perform treatment simulation for current patient.

Prt!condition: 1. Ust!r h as St!lectt!d to make TreatmentPlan for this patient .

2 . Current active TreatmentOption has been set. Ref. Table 4.10

Success post condition: The LightDose distribution is calculated through out the defined target volume and adjacent tissues.

Failure post condition: The SimulationResult of this patient remains unchanged .

System constraints: None.

Simul:ationRest.t.lt corresponding to
cun-ent TreatmentOption does not exist, ISim\lla.tionl1~esultlm,ageS•et
or exists urith the default values:
System stores the SimulationResult
with the following data items: Name,
LightDose,
TreatmentOption(N umber),
SimulationResultlmageSet.

3a. SimulationResult corre.1ponding to

current TreatmentOption exi.<Jt.<J
with none-de.fault value.!:

.1 System informs user that the
SimulationResult of current
TreatmentOption already exists 1

and asks user to overwrite it or
cancel the task .

. 2a User selects to overwrite it:
system performs normal step 3
ignoring the normal condition .

. 2b User selects to cancel: task fails.

Table 4.12: The Scenario Table of Task: Do Simulation.

Task: Generate TreatmentPlanReport

Task summary: The user intends to select a TreatmentOption and generates the TreatmentPlanReport for current patient .

Precondition : 1. User has selected to make TreatmentPlan for this patient.

2. At least one SimulationResult hM been calculated and stored in current TreatmentPlan. Ref. Table 4.12

Success post condition: A selected TreatmentPlanReport is generated.

Failure post condition: Current TreatmentPlan data of the patient remains unchanged .

System constraints: None.

User selects one Treat-

mentOption(Number) of 7reatment0ption '"
current Trea.tmentPla.n . M&r.cett~ful:

System retrieves
corresponding
TreatmentOption
(TreatmentDeviceArray)
and SimulationResult .

fa. Selection of curn:nt

'ITeo.tmentOption
fail..:

.I Syt:~tcm notific~:~ ut~cr !

and asks user to try
another one, or
cancel the task .

.2a User selects to try
another one: task
returns to normal
step 1.

.2b User selects to cancel
the taak: task fails .

Table 4.13: The Scenario Table of Task: Generate TreatmentPlanReport.

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

4.1. 7 Use Cases

Based on our rules for capturing use cases, corresponding use cases can be derived

from scenario tables of user tasks, see use cases in Tables 4.14, 4.15, 4.16, 4.17, 4.18,

4.19, 4.20. Also, a use case diagram is constructed to give an overview of the main

functionality of the system, see Figure 4.5.

System

Figure 4.5: Use Case Diagram of Treatment Planning Software: Case Study

4.1.8 User Requirements Document

The above content may be specified in the User Requirements Documents according

to the template introduced in 3.2.5.6 of precious chapter, we omit it here.

130

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Use Case ID: UC001
Use Case Name: Enter Patientlnfo & Targetlnfo
Created by: Date Created:
Last Updated by: Date Last Updated:
Summary: The user intends to enter the information of a patient and his/her being-treated

target in order to make a new TreatmentPlan for that patient.
Level: User Task
Primary Actor: User(Radiologist, Planner)
Precondition: User is logged in.
Success Postcondition: 1. Entered Patientlnfo and Targetlnfo are added into the system.

2. A new TreatmentPlan is created and stored with some initial data
values.

3. A blank TreatmentOption is created and stored with entered Treat­
mentOption(Number), which is the active TreatmentOption of cur­
rent TreatmentPlan.

Failure Postcondition: No stored data will change within the system.
Normal Scenario:

1. User selects to make TreatmentPlan.
2. System responds by presenting required data items with default values where neces­

sary, including Patientlnfo(Name, PhysicianName), Targetlnfo(Name, AbsorptionCo­
eff, ScatteringCoeff, ThresholdDose) and TreatmentOption(Number) .

3. User completes all data items.
4. System creates and stores a new TreatmentPlan for this patient with some initial

data values: Name, entered Patientlnfo(Name), entered Targetlnfo(Name), a blank
TreatmentOption with entered TreatmentOption(Number). System also stores entered
data of Patientlnfo, Targetlnfo and TreatmentOption.

Alternative Scenarios:
4a. TreatmentPlan already exists:

.1 System informs user that a TreatmentPlan already exists for this patient, and asks
user to use the entered data for a new TreatmentPlan, or revise the current input,
or cancel the task .

. 2a User selects to use the entered data for a new TreatmentPlan: system performs
normal step 4 neglecting the normal condition .

. 2b User selects to revise the current input and revises the Patientlnfo(Name): task
returns to normal step 3 .

. 2c User selects to cancel the task: task fails.
Capacity: 1
Associations:
System Constraints: None.

Table 4.14: Use Case UC001: Enter Patientlnfo & Targetlnfo.

131

M.A.Sc. Thesis- Hongqing Sun

Use Case ID: UC002
Use Case Name: Link MRIImageSet
Created by:
Last Updated by:

McMaster - Computing and Software

Date Created:
Date Last Updated:

Summary: The user chooses to link an MRIImageSet to the current patient's current treatment
plan.

Level: User Task
Primary Actor: User(Radiologist, Planner)
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. A new TreatmentPlan for current patient with initial data values has been
created.

3. Required Patientlnfo and Targetlnfo have been stored. Ref. Table 4.14.
Success Postcondition: An MRIImageSet is linked to current TreatmentPlan and presented.
Failure Postcondition: None.
Normal Scenario:

1. User selects to link an MRIImageSet.
2. System presents a list of names of available MRIImageSets.
3. User selects an MRIImageSet of current patient.
4. System links the selected MRIImageSet to current TreatmentPlan and presents the

selected MRIImageSet, including presentation of the first MRIImage slice of the image
set and list of MRIImage slices in the set.

Alternative Scenarios:
2a. No ImageSets available:

.1 System informs user .

. 2 Task fails.
4a. Selection of MRIImageSet is not successful & Number of retried times < 3:

.1 System informs user that the selection of current MRIImageSet fails, and asks user
to retry the current selection, or try another selection, or cancel the task .

. 2a User selects to retry current selection: system performs normal step 4 .

. 2b User selects to retry another selection: system returns to normal step 2 .

. 2c User selects to cancel: task fails.
4b. Selection of MRIImageSet is not successful & Number of Retried times :=::3:

.1 System notifies user of failure .

. 2 Task fails.
Capacity: 1
Associations: None.
System Constraints: Successive retries of the same MRIImageSet selection can be executed

at most three times.

Table 4.15: Use Case UC002: Link MRIImageSet.

132

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Use Case ID: UC003
Use Case Name: Define Target
Created by: Date Created:
Last Updated by: Date Last Updated:
Summary: The user intends to define the target on a linked MRIImageSet of current pa­

tient for the treatment simulation, which includes the definition of target volume
structure (Targetlnfo(Tracings)) and adjacent normal tissue structures (Adjacent­
Tissuelnfo(Tracings)) .

Level: User Task
Primary Actor: User(Radiologist, Planner)
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. A MRIImageSet has been linked to current patient. Ref. Table 4.15
Success Postcondition: The target volume structure and adjacent normal tissue structures are

defined.
Failure Postcondition: No stored data will change in the system.
Normal Scenario:

1. User selects to define target.
2. System responds by presenting a list of names of structures that need to be defined,

including being-treated target volume and adjacent normal tissues.
3. User selects the target volume or an adjacent normal tissue to define.
4. System presents the linked MRIImageSet of current patient, including presentation of

the first MRIImage slice and list of MRIImage slices in the set; and other required data
items with default values where necessary, including: Targetlnfo(Name, Volume Value)
or AdjacentTissuelnfo(Name, VolumeValue), and Tracing(PointsNumber, AreaValue)
on current MRIImage slice.

5. User traces the Tracing(Loops) of selected structure by selecting points to form loops
on each MRIImage slice where it is perceivable(visible).

6. System stores Tracings to a Targetlnfo(Tracings) or AdjacentTissuelnfo(Tracings).
System returns to normal step 2.
User repeats normal step 3-6 until done.

Alternative Scenarios:
6a. Not all Tracings are acceptable (Not all loops are closed):

.1 System informs user that Tracing(s) on MRIImage slice(s) is (are) not acceptable .

. 2 User revises the corresponding Tracing(s) .

. 3 Normal Step 6.
Capacity: 1
Associations: None.
System Constraints: None.

Table 4.16: Use Case UC003: Define Target.

133

M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software

Use Case ID: UC004
Use Case Name: Set TreatmentOption
Created by:
Last Updated by:

Date Created:
Date Last Updated:

Summary: The user intends to add a light delivery TreatmentDeviceArray into current Treat-
mentOption for the virtual treatment of the defined target.

Level: User Task
Primary Actor: Planner
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. Target has been defined. Ref. Table 4.16
3. There exists an active TreatmentOption of current TreatmentPlan.

Success Postcondition: A delivery TreatmentDeviceArray is added into current TreatmentOp­
tion.

Failure Postcondition: Data of current TreatmentOption remains unchanged.
Normal Scenario:

1. User selects to set TreatmentOption.
2. System responds by presenting the default data items of a TreatmentDeviceArray of

current TreatmentOption, including a list of TreatmentDevices within current
TreatmentDeviceArray and a default TreatmentDevice(Label, Name, Length, Radius,
Power, IlluminationTime, Position).

3. User selects to Add a TreatmentDevice, or Edit a TreatmentDevice, or
Delete a TreatmentDevice.
User repeats step 3 until done.

4. System adds current TreatmentDeviceArray into current
TreatmentOption(TreatmentDeviceArray).

Alternative Scenarios:
1a. User intends to select another TreatmentOption:

.1 User selects another TreatmentOption(Number) .

. 2 Normal stepl.

.2a. Selected TreatmentOption does not exist:
.1 System creates a blank TreatmentOption with selected TreatmentOp­

tion(N umber) .
. 2 Normal stepl.

4a. Current TreatmentOption is set already:
.1 System notifies user to update the current TreatmentOption or cancel the task .
. 2a User chooses to update current TreatmentOption: system performs normal step 4

ignoring the normal condition, and also updates all existing dependent data items
to their default values .

. 2b User chooses to cancel the task: task fails .
Capacity: 1
Associations: UC005 (Table 4.18).
System Constraints: None.

Table 4.17: Use Case UC004: Set TreatmentOption.

134

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Use Case ID: UC005
Use Case Name: Add a TreatmentDevice
Created by: Date Created:
Last Updated by: Date Last Updated:
Summary: The user intends to add a TreatmentDevice into a TreatmentDeviceArray for the

virtual treatment.
Level: Sub User Task
Primary Actor: Planner
Precondition: User has activated the set TreatmentOption.
Success Postcondition: A delivery TreatmentDevice is added into current TreatmentDeviceAr­

ray.
Failure Postcondition: The current delivery TreatmentDeviceArray remains unchanged.
Normal Scenario:

1. User selects to Add a TreatmentDevice.
2. System presents the linked MRIImageSet.
3. User sets the TreatmentDevice(Position) by selecting the distal tip point on an

MRIImage slice.
4. System stores the selected point as the TreatmentDevice(Position) and ends the

presentation of the MRIImageSet.
5. User completes remaining data items of the TreatmentDevice, see Table 4.17, step2.
6. System adds the TreatmentDevice to current

TreatmentDeviceArray(TreatmentDevice).
Alternative Scenarios:

4a. Selected TreatmentDevice (Position) is not acceptable (selected point
!jtTargetlnfo(Tracings)):
.1 System notifies user of the mistake .
. 2 User revises .
. 3 Normal step4.

Capacity: 1
Associations: None.
System Constraints: Only straight delivery fiber is allowed.

Table 4.18: Use Case UC005: Add a TreatmentDevice

135

M.A.Sc. Thesis- Hongqing Sun

Use Case ID: UC006
Use Case Name: Do Simulation
Created by:
Last Updated by:

McMaster- Computing and Software

Date Created:
Date Last Updated:

Summary: The user intends to request the system to perform treatment simulation for current
patient.

Level: User Task
Primary Actor: Planner
Precondition: 1. User has selected to make TreatmentPlan for this patient.

2. Current active TreatmentOption has been set. Ref. Table 4.17
Success Postcondition: The LightDose distribution is calculated through out the defined target

volume and adjacent tissues.
Failure Postcondition: The SimulationResult of this patient remains unchanged.
Normal Scenario:

1. User selects to do simulation.
2. System calculates LightDose distribution through out the defined target volume struc­

ture (Targetlnfo(Tracings)) and surrounding normal tissue structures (AdjacentTissue­
Info(Tracings)).

3. System stores the SimulationResult with the following data items: Name, LightDose,
TreatmentOption(Number), SimulationResultlmageSet.

4. System presents the SimulationResultlmageSet containing list of slices in the image set,
the fist SimulationResultlmage slice which includes the first MRIImage Slice, Thresh­
oldDoseContours, TreatmentDevices(Position, Label), Targetlnfo(Tracing) and Adja­
centTissuelnfo (Tracing).

Alternative Scenarios:
3a. SimulationResult corresponding to current TreatmentOption exists with none-default

values:
.1 System informs user that the SimulationResult of current TreatmentOption al­

ready exists, and asks user to overwrite it or cancel the task .
. 2a User selects to overwrite it: system performs normal step 3 ignoring the normal

condition .
. 2b User selects to cancel: task fails.

Capacity: 1
Associations: None.
System Constraints: None.

Table 4.19: Use Case UC006: Do Simulation

136

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

Use Case ID: UC007
Use Case Name: Generate TreatmentPlanReport
Created by: Date Created:
Last Updated by: Date Last Updated:
Summary: The user intends to select a TreatmentOption and generates the TreatmentPlan-

Report for current patient.
Level: User Task
Primary Actor: Planner
Precondition: 1. User has selected to make TreatmentPlan for this patient .

2. At least one SimulationResult has been calculated and stored in current
TreatmentPlan.Ref. Table 4.19.

Success Postcondition: A selected TreatmentPlanReport is generated.
Failure Postcondition: Current TreatmentPlan data of the patient remains unchanged.
Normal Scenario:

1. User selects one TreatmentOption(Number) of current TreatmentPlan.
2. System retrieves corresponding TreatmentOption(TreatmentDeviceArray) and

SimulationResult.
3. User selects to present SimulationResult.
4. System presents the SimulationResultlmageSet containing list of slices of the image

set, the first SimulationResultlmage slice which includes the first MRIImage Slice,
ThresholdDoseContours, TreatmentDevices(Position, Label), Targetlnfo(Tracing) and
AdjacentTissuelnfo(Tracing).
User repeats step 1-4 until the selection is done.

5. User selects to generate TreatmentPlanReport.
6. System produces the TreatmentPlanReport which includes: Patientlnfo(Name,

PhysicianN arne), Targetlnfo(N arne, ThresholdDose), selected
TreatmentOption(TreatmentDeviceArray), and snapshots of the presentation of
selected SimulationResultlmageSet.

Alternative Scenarios:
2a. Selection of current TreatmentOption fails :

.1 System notifies user, and asks user to try another one, or cancel the task .

. 2a User selects to try another one: task returns to normal step 1.

.2b User selects to cancel the task: task fails.
Capacity: 1
Associations: None.
System Constraints: None.

Table 4.20: Use Case UC007: Generate TreatmentPlanReport

137

M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software

4.2 Apply Analysis Process

4.2.1 Activity Diagrams and Data Hierarchies

According to our approach, activity diagrams are firstly constructed for each use

case, and data used in each action step of an activity diagram are captured in the

data hierarchies. Eventually, all data hierarchies are combined into the final data

hierarchies.

Based on the use cases, activity diagrams and corresponding data hierarchies

are made in Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12. We eventually get the final

data hierarchy model in Figure 4.13.

<<data>>

Patientlnfo
(Name,
Physician Name)
Targetlnfo
(Name,
AbsorptionCoeff,
ScatteringCoeff,
Threshold Dose)
TreatmentOption
Number

<<data>>

Patientlnfo
TreatmentPian

<<data>>
TreatmentPian
(TreatmentOption)
Patientlnfo
Tar etlnfo

Figure 4.6: Activity Diagram and Data Hierarchy: Enter Patientlnfo & Targetlnfo
Task.

138

M.A. Sc. Thesis - H ongqing Sun

User

McMaster- Computing and Software

System

[Error. and Retry Times<3]

<<data>>

MRIImageSet
(Name.
TreatmentPian(Name))
MRIIma e Name

<<data>>

MRIImageSet
(Name,SiiceNumber)
MRIImage
(Name, lmageSize,
Slice Thickness

Figure 4. 7: Activity Diagram and Data Hierarchy: Link MRIImageSet Task

139

M.A .Sc. Thesis- Hongqing Sun

<<data>>

Targetlnfo
(Name)

<<data>>

MRIImageSet(Name)
MRIImage(Name)
T argetlnfo or
AdjacentTissuelnfo
(Name,
VolumeValue)
Tracing
(PointsNo.,
Area Value

User

McMaster- Computing and Software

System

Present linked
MRIImageSet and
default data items

<<data>>

MRIImageSet(Name)
MRIImage(Name)
Targetlnfo or
AdjacentTissuelnfo
(Name,
Volume Value)
Tracing

[Else) (PointsNo.,
AreaValue

<<data>>

Targetlnfo or
AdjacentTissuelnfo
(Name,
VolumeValue)
Tracing
(PointsNo.,
AreaValue)
Loo Points

Figure 4.8: Activity Diagram and Data Hierarchy: Define Target Task

140

M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software

System

[Is Done]

i

<<data>>

TreatmentDeviceArray
TreatmentDevice(
Label, Name,
Length, Radius,
Power,
Illumination Time,
Position

[Else]

Figure 4.9: Activity Diagram and Data Hierarchy: Set TreatmentOption Task

141

M.A.Sc. Thesis- Hongqing Sun

<<data>>

TreatmentDevice
(Position)
Point

<<data>>

TreatmentDevice
(Label,
Name,
Length
Radius,
Power,
Illumination Time

User

McMaster- Computing and Software

System

[Is in Target Volume)

<<data>>

[Else) r:--:-:;-:c:-::-:-c:-----,
«data»

TreatmentDevice
(Position)
Point

<<data>>

TreatmentDeviceArray
TreatmentDevice

Figure 4.10: Activity Diagram and Data Hierarchy: Add a TreatmentDevice Task

142

M.A .Sc. Thesis- Hongqing Sun

User

Select to
Do Simulation

McMaster - Computing and Software

System

<<data>>

Targetlnfo
AdjacentTissuelnfo
TreatmentOption
Patientlnfo
SimulationResutt
LightDose
Point

SimulationResuttlmageSet
SimulationResuttlmage
MRIImage
Targetlnfo(Tracing)
AdjacentTissuelnfo(Tracing)
TreatmentDevice(Position. Label)
ThresholdDoseContours

Figure 4.11 : Activity Diagram and Data Hierarchy: Do Simulation Task

143

M.A.Sc. Thesis- Hongqing Sun

TreatmentOption
(Number)

<<data>>

SimulationResult

User

McMaster- Computing and Software

System

Retrieve TreatmentOption
and SimulationResult

Produce
TreatmentPianReport

<<data>>

T reatmentOption
SimulationResu~

<<data>>

SimulationResulttmageSet
MRIImages
Targettnfo(Tracing)

[No] AdjacentTissuelnfo
(Tracing)
TreatmentDevice
(Position, Label)
ThresholdDoseContours

<<data>>

Patienttnfo(Name)
Targettnfo(Name)
Selected­
TreatmentOption
Selected­
SimulationResulttma eSet

Figure 4.12: Activity Diagram and Data Hierarchy: Generate TreatmentPlanReport
Task

144

TreatmeniPian

~~------Name Patientlnfo(Name) TreatmentOp~on* Targetlnfo(Name) ______ , ----
Number TreatmentDeviceArray lsSelected

~~~ 
Name TreatmeniDevice* Number 

~~ 
Name Label Length Power Illumination lime Position (Point) 

/lmige~ 
Name MRI/mage* SliceNumber TreatmentPian(Name) 

~~ 
Name lmageSize Poinr Slicelhickness 

~~ 
x y z LightDoseValue lsTreated 

(a) (b) 

~~ T_,. ~""""'""'"'""' 
~'J~mber) 1sse1ected simulaTR~et ~I~ 

Name Targellnfo(Point(DoseValue)*) 1issuelnfo((Point(DoseValue)*) Slmula~onResultlmage• Name Name AbsorptionCoelf V/lY~ringCoelf ThresholdDose 

__ -::::::;:::::=::::::::::::::::::::=71 ~ ··~r::::_ 
Name MRI/mage Targetlnfo(Tracing) Adjacentnssuelnfo(Tracing) ThresholdDoseContou,. TreatmentDevice(Posi~on, Label)* Name Area Polnr PointNo. 

/~ 
Name Poinr 

(d) (c) 

Patientlnfo( Name) Targetlnfo(Name) Selected Treatmentop~on Selected Simula~onResultlmageSet 

Figure 4.13: Final Data Hierarchy Model: Case Study 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

4.2.2 Initial Domain Class Diagram 

From Final Data Hierarchy 4.13, we can find all the data used m use cases, which 

constitute the initial domain class model including domain classes, their attributes 

and relationships. According to the identifying rules, the initial domain class diagram 

is illustrated in Figure 4.14. 

TreatmentPian r-;:::::;;;=.;::;=:;----l Targetlnfo 
I;+NN;,am;e~=::...:.::::..:....i-______ _j_j Patlentlnfo L +AbsorptionCoeff 

1 1 +Name 
+Patientlnfo(Name) 1----------l+Name +ScatteringCoeff 
+Targetlnfo(Name) 1 +PhysicianName +ThresholdDose 
+TreatmentOptions l

1 +Tracings 

19 1 TreatmentPianReport 
+Patientlnfo(Name) 

AdjacentTlssuelnfo 
+AbsorptionCoeff 
+Name 

- +ScatteringCoeff 
1 • +Threshold Dose 

+Tracings 

+Selected SimulationResultlmageSet 
+Selected TreatmentOption 
+Targetlnfo(Name) 

MRIImageSet 
+MRIImages 
+Name 

'----:
1
0--\---;::::::::;;;_....,..,..,...-=--::---, '-----1--i+SiiceNumber 

1 SlmulatlonResult +TreatmentPian(Name) 
+lightDose 
+Name 
+SimulationResultlmageSet 1 

\ 

+ TreatmentOption(Number) 

TreatmentOption 
+Number 
+ TreatmentDevices 

TreatmentDevlceArray 
+Number 
+ T reatmentDevices 

TreatmentDevlce 
+Illumination Time 
+label 
+Length 
+Name 
+Posrtion 
+Power 

0 .. 1 

Use Aggregate Association 

- - - ~ -<> -

1 10~---------. 
1 

SlmulatlonResulllmageSet 
+Name 
+SimulationResunlmages 

lightDose I 
+Points(lightDoseValue) J 

I 

Tracing 
+Area 

SlmulatlonResultlmage _____--;-+Name 
1 +loops 

+Adjacentlnfo(Tacing) ~ +PointNo. 
+MRIImage 
+Name mage 
+ Targetlnfo(Tracing) 1 +lmageSize 1 
+ ThresholdDoseContour h +Name 
+ TreatmentDevice(Position, label) 1 1 

+Points 

ThresholdDoseContour 
+Name 
+Points 

+Slice Thickness 

Point 

Loop 
+Area 
+Name 
+Points 
+PointNo. 

1 

+lsTreated v 
+lightDoseValue • 
+x 
+y 
+z 

Figure 4.14: Initial Domain Class Diagram: Case Study 

146 



M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

4.2.3 Sequence Diagrams, Boundary Classes and Class Func­

tions 

To find boundary classes and allocate the functionality to different analysis classes, 

sequence diagrams are a wonderful mechanism. Realizing use cases by sequence dia­

grams can help ensure that we have an accurate and complete analysis class model. 

While the behaviors of use cases are assigned to different classes, we can also check 

if any domain classes are missing. For each use case, we draw at least one sequence 

diagram. In Figures 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20, the normal scenario of each 

use case is realized respectively. 

4.2.4 Analysis Class Diagrams 

The class diagram is an effective mechanism to show a static view of the system. From 

sequence diagrams, we identify the boundary classes, newly found domain classes 

and all the class's functions. They are specified in the boundary class diagram and 

final domain class diagram respectively. Figures 4.21 and 4.22 are what we captured 

from the sequence diagrams, where the final domain class diagram also combines the 

initial domain class diagram Figure 4.14. We separate the domain class diagram and 

boundary class diagram in order to show the different parts of the system and also 

to enhance the readability of the diagram. 

As discussed in the previous chapter, the boundary objects are not only the 

user interfaces in our approach, they are also the holders of the system functions . Each 

boundary class is assigned some functions of the system, and all the system functions 

are navigated starting from a certain boundary object. At the requirements stage, 

we just hope to explore externally visible classes, the internal functional classes are 

the tasks of the design phase. 

4.3 Apply Specification Process 

The specification process is the activity to specify the results of the elicitation and 

analysis processes. In this case study, we focus on the class specifications - the most 

important part of an SRS. In the PDT case study, we begin with the boundary class 

147 



M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

specifications which we regard as part of the functional requirements. We specify the 

classes according to their appearance order in the class diagram, from left to right , 

top to bottom. For each function, we should also refer to the sequence diagrams, and 

activity diagrams if necessary. We list the partial class specifications in appendix B. 

148 



'--M-ai:-n_u_e_JII ·rreatmentP!anUB 

: se!ectMakeTreatmentP!an(): 

l ·rreatmentP!an I I ·TreatmentOotion II ~ II ~ 

present() 
I 

comp!eteDataltems() 

create() 

create() 

setPatient!nfo() 

set!argetlnf~() 

Figure 4.15: Sequence Diagram UCOOl: Enter Patientlnfo & Targetlnfo 



J.lm ·JreatmentP!anVB I 
I : 
1 selectlinkMRIImageSet{) 1 

·MRIImageSetPresentVB I ·MRIImageSet I 
I 
I 

presentListOfMRIImageSets() I 
I 

I 
selectMRIImageSet() 

setlink(TreatmentPian(Name)) 
-r 

-~ 
present{) I 

I 

I I getMRIImages{) 
I 

w I 
I 
I 
I 

I I 
I I 

I 

Figure 4.16: Sequence Diagram UC002: Link MRIImageSet 



:lJm I I '!reatme:tP!anUB I 

I I 
1 selec!DefineTarget{) 1 

presentlistOfStructures{) 

I 
selectStructure{) 

present{) 

complete Tracing() 

I·MBIImageS~tPreseniUB I 

I 
I 
I 
I 
I 

·MBIImageSet I 

getTracedTrecings{) 

-~ 
Se!Tracings() 

Figure 4.17: Sequence Diagram UC003: Define Target 



I Treatme:tPianUB II TreatmeniD~YiceArrayUB II MRI!maaeS:tPresentUB II ·MRI!:aae II 
I I 

I present() 

I I 
I I 
I I 

I 

selectAddTreat~entDevice() I 
I 
I 

1 selectSetTreatmentOption() 

Jm!leteTreatmentDevicePosition() 

I 

present() I 
I 

getPos~ion() 

D "T I 
I I 
I I 

completeAddTreatmentDevice() 
I I 
I I 
I I 

u I I 
addT reatmentDevice() I 

I I 
I I 

· Treatment~eyjceArray II 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

· Treatm:n!Deyice I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I l I se!Data() I 

~ ·u 

Figure 4.18: Sequence Diagram UC004: Set 'freatmentOption 



-en 
w 

I ;1llli I I Treatme~!PianUB I I Targ:tlo!o II Adiacen!;jssuelo!o ll · simu!ati~oResuH II J.iabl.QQu II ·Sjmy!atjooR:suH!maaeSet I I ·Simy!atjonResultUB I 

I I 1 I I I 
1 se!ectDoSimu!atioo() 1 1 1 1 1 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I I 

getPointsOoseVa!ue() I I 
I I 

I I I 
I I I 
I I I 
I I I 

: setlightOose() I I I 
I I I 

I 
I 
I 
I 

tDoseValues() : 

I 
setSimu!a~ionResu!t!mages() 

I I 

present() I 

Figure 4.19: Sequence Diagram UC006: Do Simulation 

~ 
;:t:.. 

~ 
~ 
n. 
Cl:l 

""· Cl:l 

~ 
~ 
..c:) 

~-

~ 
~ 

~ 
~ 
Cl:l -n. 
""'! 

~ 
~ 
~ -~-
>:l 
~ 
R. 
Cr.l 

~ e: 
>:l 
~ 



·TreatmentPianUB ·JreatmentOotjon II ·SimulationResult ll·simulationResuHUB II TreatmentP!anReport I 
selectTreatmentOption() 

getTreatmentDeviceArray() 

selectPresentSimulationResuH() 

electGenerateTreatmentPianReport() 

I 

getLightDose() 

getSimulationResultimageSet() 

present() 

I 
I 
I 
I 

setPatientData() 
I 

set I argetData() 
I 

setTreatmentOptionData() 
I 

setSimulationResuHimageSetData() 

Figure 4.20: Sequence Diagram UC007: Generate TreatmentPlanReport 



M.A.Sc. Thesis- Hongqing Sun 

MalnUB 

+selectMakeTreatmentPian() 

<<uses>> 

I 

TreatmentPianUB 
+CurrentPatientlnfo(Name) 
+CurrentPatientlnfo(PhysicianName) 
+CurrentTargetlnfo(Name) 
+CurrentTargetlnfo(AbsorptionCoeff) 
+CurrentT argetl nfo(ScatteringCoeff) 
+CurrentTargetlnfo(ThresholdDose) 
+CurrentTreatmentOption(Number) 
+MRIImageSetNames 
+SelectedMRIImageSetName 
+completeDataltems() 
+present() 
+presentlistOfMRIImageSets() 
+presentlistOfStructures() 
+selectlinkMRIImageSet() 
+selectMRIImageSet() 
+selectDefine Target() 
+selectStructure() 
+selectSetTreatmentOption() 
+selectDoSimulation() 
+selectTreatmentOption() 
+selectPresentSimulationResult() 
+selectGenerate TreatmentPianReport() 

Use Aggregate Association 

~ 

I 

McMaster- Computing and Software 

MRIImageSetPresentUB 
+SelectedMRIImageSet 

~complete Tracing() 
/ +complete TreatmentDevicePosition() 

,' +present() 

I 

I 
I 

<<uses>> 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

<<uses>> 

I 
I 
I 
I 
I 
I 
I 

<<uses>> 

TreatmentDevlceArrayUB 
+CurrentTreatmentDeviceArray 

----------; +completeAddTreatmentDevice() 
+present() 
+selectAddTreatmentDevice() 

' '"<<uses>> 
' 

' ' ' SlmulatlonResultUB 
~ +CurrentSimulationResultlmageSet 

+present() 

Figure 4.21: Boundary Class Diagram: Case Study 

155 



M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

Targetlnfo 
TreatmentPian 

+Name 
+Patientlnfo(Name) 
+ Targetlnfo(Name) 

Patlentlnfo 
L +AbsorptionCoeff AdjacentTissuelnfo 

r--1----------~+Name 1 +Name +AbsorptionCoeff 
+ScatteringCoeff +Name 

1 +PhysicianName +Threshold Dose f--- +ScatteringCoeff 
+ TreatmentOptions l +setPatientlnfo() +Tracings 1 • +Tracings 

+getPointsDoseValue() ~ +Threshold Dose 
+setTargetlnfo() 1 +getPointsDoseValue() 
+setTracings() 

'-+_c_re_a..,ter('-) ---------' 1 

TreatmentPianReport 
+Patientlnfo(Name) 
+Selected SimulationResu~lmageSet 
+Selected TreatmentOption MRIImageSet 

+ Targetlnfo(Name) 
+setPatientData() 
+setTargetData() 
+setTreatmentOptionData() 
+setTreatmentOptionData() 

+MRIImages 
+Name 

'------------------------l+SiiceNumber 
+ TreatmentPian(Name) 
+getMRIImages() 
+getTracedTracings() 

TreatmentOptlon 
+Number 
+ TreatmentDevices 
+create() 
+getTreatmentDeviceArray() 

TreatmentDevlceArray 
+Number 
+ TreatmentOevices 
+addTreatmentDevice() 

1 

TreatmentDevlce 
+Illumination Time 
+Label 
+Length 
+Name 
+Position 
+Power 
+setData()() 

0 .. 1 

SlmulatlonResult 
+LightDose 
+Name 
+SimulationResu~lmageSet 
+ TreatmentOption(Number) 

1 +setLightDose() 
+setSimulationResu~lmageSet() 

+getLightDose() 
+getSimulationResu~lmageSet() 

11 1 (\LJ _____ 1...,1 

1 SlmulatlonResultlmageSet 
+Name 
+SimulationResu~lmages 

+setSimulattionResu~lmages() 

1 

SlmulatlonResultlmage 

+setlink() 

+Adjacentlnfo(Tacing) MRIImage 
+MRIImage +lmageSize 
+Name +Name 
+ Targetlnfo(Trac1ng) - 1 _____.-;-+Points 
+ThresholdDoseContour ~ ' +SiiceThickness 
+ TreatmentDevice(Posttion, Label) 1 +getPostt1on() 

ThresholdDoseContour 

+Name b.. +LightDoseValu; 
~+~P~o~in~ts ____________ _j~1~-------------+x 

L_-----~============~----~+y 
f-+-=z----------1 

Use Aggregate Association 

----7 -<> --

Figure 4.22: Final Domain class diagram: Case Study 

156 

Tracing 

Loop 
+Area 
+Name 
+Points 
+PointNo. 



Chapter 5 

Conclusions and Future Work 

This chapter draws the conclusion of this thesis, and suggests future research in this 

field . 

5.1 Conclusion 

We conclude this research with the following remarks. 

• The User-Centric Software Requirements Specification (UCSRS) approach we 

developed is applicable to user-centric software systems. It provides an incre­

mental and iterative user oriented engineering method to develop the software 

requirements. 

• The well-defined processes of our UCSRS approach are developed in the spirit 

of an engineering method. They provide enough detail for people to adopt this 

approach. Also, the processes lend themselves to being implemented with the 

aid of software tools (see below). 

• Users are kings of user-centric software. The user-centric SRS not only helps 

to ensure the right software systems are built, but should also help to raise 

acceptance and productivity. 

• Requirements have levels, where user requirements are a subset of high level 

system requirements. In the pure software case, they are identical. Software 

157 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

requirements should be derived from the analysis of the user requirement (pure 

software case), they are what the system must have from the developer's point 

of view. 

• Software requirements should just specify the externally perceivable behavior of 

the system, which are functions or task-specific constraints that directly produce 

these behaviors. 

• In an object-oriented requirements analysis approach, the (functionality of) the 

system is decomposed into analysis classes. Analysis classes are the externally 

perceivable functional parts of the system. They are abstractions of the future 

subsystems or implementation classes. The analysis is the process we use to 

find "function and data" of the system and allocates them to various analysis 

classes. 

• Software requirements specifications should not restrict the software design and 

future software evolution. This point is reflected both in user requirements and 

software requirements specifications. In user requirements, flexible and precise 

words are advocated, such as using selection and present, rather than click 

and display. In the SRS, words like button, menu, dropdownlist etc, should not 

appear in the user interface classes (boundary classes). 

5.2 FUture Work 

There are several areas of this paper that can be extended in future research. 

One area is to examine the management process of the SRS, for example, 

for each user task, the rough time duration and cost. Because the budget is also 

important to decide the success of a project. 

The second area is to prototype the case study using a specific programming 

language such as MS Visual Basic.net 2005. 

Moreover, a computerized toolset is necessary with the following functions: 

constructing the task scenario table, transforming scenario tables into use cases, con­

structing the data hierarchy, composing the data hierarchies, and transforming the 

final data hierarchy to a UML-like class diagram. 

158 



M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software 

Finally, more case studies in various kinds of applications should be applied, to 

show that UCSRS has universal applicability to most user-centric software systems. 

159 



Bibliography 

[1] J. R. Abrial, S. A. Schuman, and B. Meyer, A Specification Language, in On the 

Construction of Programs. Cambridge University Press, 1980. 

[2] A. Alliance, "http:/ jwww.agilealliance.org/." 

[3] M.D. Altschuler, T. C. Zhu, J . Li, and S.M. Hahn, "Optimized Interstitial PDT 

Prostate Treatment Planning with the Cimmino Feasibility Algorithm," Medical 

Physics, vol. 32, no. 12, pp. 3524-3536, 2005. 

[4] S. Ambler, "Reduce Development Costs with Use-Case Scenario Testing," Soft­

ware Development, vol. 3, no. 7, pp. 53-61, 1995. 

[5] A. I. Anton, "Goal-Based Requirements Analysis," in ICRE '96: Proceedings 

of the 2nd International Conference on Requirements Engineering (ICRE '96}, 

(Washington, DC, USA), p. 136, IEEE Computer Society, 1996. 

[6] A. Bahrami, Object Oriented Systems Development. McGraw-Hill/Irwin, 1998. 

[7] S. C. Bailin, "Object-Oriented Requirements Analysis," in Software Require­

ments Engineering, vol. 2, pp. 334-355, IEEE Computer Society Press, 1997. 

[8] W. BC., "Photodynamic Therapy for Cancer: Principles," Canadian Journal of 

Gastroenterology, vol. 16, no. 6, pp. 393-396, 2002. 

[9] B. Beizer, Software Testing Techniques. International Thomson Computer Press, 

1990. 

[10] M. R. Blaha and J . R. Rumbaugh, Object-Oriented Modeling and Design with 

UML. Prentice Hall, 2004. 

160 



M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software 

[11] B. Boehm, "A Spiral Model of Software Development and Enhancement," Com­

puter, vol. 21, no. 5, pp. 61-72, 1988. 

[12] G. Booch, Object-Oriented Analysis and Design with Applications. Addison Wes­

ley, 1994. 

[13] I. K. Bray, An Introduction to Requirements Engineering. Addison Wesley, 2002. 

[14] B. Brudgge and A. H. Dutoit, Object-Oriented Software Engineering: Using 

UML, Patterns and Java. Prentice Hall, 2003. 

[15] E. BSSC, "ESA PSSP-05-0-ISSUE 2: SOFTWARE PROJECT DOCUMENTS." 

European Space Agency, Feb. 1991. 

[16] CADMIT, "PDT Theatment Planning Platform, Thaining Manual," 2006. 

[17] S. E. I. Carnegie Mellon, "CMMI vl.l." http:/ /www.sei.cmu.edu, 2002. 

[18] J. M. Carroll, Scenario-based Design: Envisioning Work and Technology in Sys­

tem Development. John Wiley Sons, 1995. 

[19] J. Chen and S. Chou, "An Object Oriented Analysis Technique Based on the 

UML." http:/ /www.adtmag.com/joopjarticle.aspx?id=3666, June 2001. 

[20] P. Coad and E. Yourdon, Object-Oriented Analysis. Prentice Hall, 1991. 

[21] A. Cockburn, "Structuring Use Cases with Goals," Humans and Technology HaT 

TR95.1, 1995. 

[22] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Professional, 2000. 

[23] R. Collard, "Test Design," Software Testing and Quality Engineering, vol. 1, 

no. 4, pp. 3Q-37, 1999. 

[24] T. Corner, "Thansitioning from Structured Analysis to Object-Oriented Design," 

in Proceedings of the Fifth Washington Ada Symposium on Ada, pp. 151-162, 

ACM Press, 1988. 

[25] J. Crinnion, "Evolutionary Systems Development," Plenum Press, New York, 

1991. 

161 



M.A. Sc. Thesis - H ongqing Sun McMaster- Computing and Software 

[26] L. R. A. Daniel R. Windle, Software Requirements Using the Unified Process. 

Prentice Hall, 2002. 

[27] A. Dardenne, S. Fickas, and A. van Lamsweerde, "Goal-Directed Requirements 

Acquisition," Science of Computer Programming, vol. 20, no. 1-2, pp. 3- 50, 1993. 

[28] A. M. Davis, Software Requirements: Objects, Functions and States, Second 

Edition. Prentice Hall PTR, 1993. 

[29] M. DeBellis, "User-Centric Software Engineering," IEEE Expert, vol. 10, no. 1, 

pp. 34-41, Feb. 1995. 

[30] T. Demarco, Structured Analysis and System Specification. Prentice Hall PTR, 

1979. 

[31] A. Dix, I. Finlay, G. Abowd, and R. Beale, Human Computer Interaction. Pren­

tice Hall, New Jersey, 1993. 

[32] D. Dolmans, D. FU.kumura, and R. Jain, "Photodynamic Therapy for Cancer," 

Nature Reviews Cancer, vol. 3, no. 5, pp. 380-387, 2003. 

[33] M. Eva, SSADM Version 4: A User 's Guide. Mcgraw Hill Book Co Ltd, 1991. 

[34] M. Fagan, "Design and Code Inspections to Reduce Errors In Program Devel­

opment," IBM Systems Journal, vol. 15, no. 3, pp. 258-287, - 1976. 

[35] FDA, "General Principles of Software Validation; Final Guidance for Industry 

and FDA Staff." http:/ jwww.fda.gov/cdrh/compjguidance/938.html, Jan. 2002. 

[36] D. C. Gause and G. M. Weinberg, Exploring Requirements: Quality Before De­

sign. Dorset House Publishing Company, 1989. 

[37] T. Grimm, "The Human Condition: A Justification for Rapid Prototyping," 

Time Compression Technologies, vol. 3, no. 3, May 1998. 

[38] C. Haapala, "User Centric Development." http:/ jwww.stormingmedia.us/, 1994. 

[39] D. Harel, "Statemate: A Working Environment for the Development of Complex 

Reactive Systems," IEEE Transactions on Software Engineering, vol. 16, no. 4, 

pp. 403-414, 1990. 

162 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

[40] C. Heitmeyer, "Using the SCR* Toolset to Specify Software Requirements," in 

Proceedings of the Second IEEE Workshop on Industrial Strength Formal Speci­

fication Techniques, ACM, Oct 1998. 

[41] IEEE, IEEE Standard For Software Reviews -IEEE Std 1028-1997. 

[42] IEEE, IEEE Standard For Software Testing- IEEE Std 829-1998. 

[43] IEEE, IEEE Standard Glossary of Software Engineering Terminology - IEEE Std 

729-1983. 

[44] IEEE, "IEEE Recommended Practice for Software Requirements Specifications," 

IEEE Standard 830-1998 Edition, New York, US, June 1998. 

[45] M. W. Inc, "Merriam-Webster's Online Dictionary." http:/ jwww.merriam­

webster.com/ cgi-bin/ dictionary, 2007. 

[46] M. Jackson, System Development. Prentice Hall, 1983. 

[47] M. Jackson, Software Requirements and Specifications. Addison-Wesley Profes­

sional, 1995. 

[48] M. Jackson, Problem Frames: Analyzing and Structuring Software Development 

Problems. Addison-Wesley Professional, 2000. 

[49] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Ap­

proach. Addison-Wesley Professional, 1992. 

[50] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development 

Process. Addison-Wesley Professional, 1999. 

[51] M. Keil and C. Erran, "Customer-Developer Links in Software Development," 

in Communications of the ACM, vol. 38(5), pp. 33-34, ACM Press, 1995. 

[52] J. C. Kelly, J. S. Sherif, and J. Hops, "An Analysis of Defect Densities Found 

During Software Inspections," Journal of Systems and Software, vol. 17, no. 2, 

pp. 111-117,- 1992. 

163 



M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software 

[53] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Tech­

niques. Wiley, 1998. 

[54] C. Larman, "The Use Case Model: What are the Processes?," Java Report, 

vol. 3, no. 8, pp. 62-72, 1998. 

[55] L. A. Maciaszek, Requirements Analysis and System Design. Addison Wesley, 

2005. 

[56] K. L. McGrawand and K. Harbison, User-centered Requirements: the Scenario 

Based Engineering Process. Lawrence Erlbaum, 1997. 

[57] S. J. Mellor and S. Shlaer, Object Life Cycles: Modeling the World In States. 

Prentice Hall PTR, 1991. 

[58] B. Meyer, Object-Oriented Software Construction. Prentice Hall PTR, 2000. 

[59] J. Mylopoulos, L. Chung, and E. Yu, "From Object-Oriented to Goal-Oriented 

Requirements Analysis," Commun. ACM, vol. 42, no. 1, pp. 31-37, 1999. 

[60] NEGMA. http:/ /www.prostatepdt.com/, 2007. 

[61] OGI. http:/ /omlc.ogi.edu/pdt/, 2007. 

[62] OMG, "Unified Modeling Language 2.0 Specification." http:/ /www.uml.org/, 

2007. 

[63] K. Orr, Structured Requirements Definition. K. Orr, 1981. 

[64] G. Overgaard and K. Palmkvist, Use Cases: Patterns and Blueprints. Addison­

Wesley Professional, 2004. 

[65] C. Pahl, "Adaptive Development and Maintenance of User-Centric Software Sys­

tems," Information and Software Technology, vol. 46, no. 14, pp. 973-986, 2004. 

[66] D. L. Parnas, "Tabular Representation of Relations," Tech. Rep. CRL Report 

260, Telecommunications Research Institute of Ontario (TRIO), McMaster Uni­

versity, 1992. 

164 



M.A .Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

[67] D. L. Parnas and J . Madey, "FUnctional Documents for Computer Systems," 

Science of Computer Programming, vol. 25, no. 1, pp. 41-61, 1995. 

[68] E. Programming, "Acceptance Test." http:/ /www.extremeprogramming.org/ . 

[69] S. Robertson and J . Robertson, Mastering the Requirements Process. Addison 

Wesley Professional, 2006. 

[70] C. Rolland, C. Souveyet, and C. B. Achour, "Guiding Goal Modeling Using 

Scenarios," IEEE Transactions on Software Engineering, vol. 24, no. 12, Dec 

1998. 

[71] D. Ross, "Applications and Extension of SADT," IEEE Computer, vol. 18, no. 4, 

pp. 25-34, April 1985. 

[72] W. W. Royce, "Managing the Development of Large Software Systems: Concepts 

and Techniques," Technical Papers of Western Electronic Show and Convention 

(WesCon) ., vol. August, no. 1, pp. 25-28, 1970. 

[73] RTCA and EUROCAE, "Software Considerations in Airborne Systems and 

Equipment Certification," Dec. 1992. 

[74] J. Rumbaugh, "Getting Started: Using Use Cases to Capture Requirements," 

in Software Requirements Engineering, vol. 2nd, pp. 153-157, IEEE Computer 

Society Process, 1997. 

[75] J. Rumbaugh, M. Blahaby, W. Lorensen, F. Eddy, and W. Premerlani, Object­

Oriented Modeling and Design. Prentice Hall, 1991. 

[76] E. Seidewitz and M. Stark, "Toward a General Object-Oriented Software Devel­

opment Methodology," in ACM SIGAda Ada Letters, vol. VII, Issue 4, pp. 54- 67, 

ACM Press, 1987. 

[77] S. Shlaer and S. J. Mellor, Object Oriented Systems Analysis: Modeling the World 

in Data. Prentice Hall PTR, 1988. 

[78] I. Sommerville, Requirements Engineering: A Good Practice Guide. John Wiley 

and Sons Ltd, 1997. 

165 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

[79] SRI, "PVS Specification and Verification System." http:/ /pvs.csl.sri.comj. 

[80] A. Sutcliffe, "Scenario-Based Requirements Analysis," Requirements Engineering 

Journal, vol. 3, no. 1, pp. 48-65, 1995. 

[81] R. H. Thayer and M. Dorfman, Software Requirements Engineering, 2nd Edition. 

Wiley-IEEE Computer Society Pr, 2000. 

[82] A. van Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided 

Tour," in RE '01: Proceedings of the 5th IEEE International Symposium on 

Requirements Engineering, p. 249, IEEE Computer Society, 2001. 

[83] A. van Lamsweerde, "Goal-Oriented Requirements Engineering: A Roundtrip 

from Research to Practice," Requirements Engineering, vol. 6, no. 11, pp. 4-7, 

2004. 

[84] A. Wassyng and M. Lawford, "Lessons Learned from a Successful Implementa­

tion of Formal Methods in an Industrial Project," in FME 2003: International 

Symposium of Formal Methods Europe Proceedings, val. 2805 of Lecture Notes in 

Computer Science, pp. 133-153, Springer-Verlag, Aug 2003. 

[85] B. Whelan, W. Whelean, and S. Davidson, "Treatment Planning Platform for 

Photodynamic Therapy: Architecture, Function, and Validation," Optical Meth­

ods for Tumor Treatment and Detection: Mechanisms and Techniques in Photo­

dynamic, vol. 4612, pp. 85-92, 06 2002. 

[86] K. E. Wiegers, Software Requirements. Microsoft Press, 1999. 

[87] Wikipedia, "Joint Requirements Development." http:/ /en.wikipedia.org/, 2007. 

[88] Wikipedia, "Photodynamic Therapy." http:/ /en.wikipedia.org/wiki/, 2007. 

[89] Wikipedia, "Software Prototyping." http:/ jen.wikipedia.org/wiki/, 2007. 

166 



Appendix A 

The SRS Template 

A.l Introduction 

The introduction provides an overview of the entire SRS. The overview contains the 

following parts: purpose of the document, scope of the software, definitions and 

acronyms, other documents referred by this document, and the overview of the struc­

ture of the SRS. 

A.l.l Purpose 

This subsection includes the statement of the purpose of the SRS and the statement 

of the intended audience for the SRS 

A.1.2 Scope of the Software 

This subsection identifies the name of the software to be built, explains what the soft­

ware (the system) will do, describes the objectives of the application of the software. 

Reference URD 1.2. Vision Statement 

A.1.3 Definitions, Acronyms, and Abbreviations 

This subsection provides definitions of all terms, acronyms, and abbreviations . 

Derived from URD 1.6 Glossary 

167 



M.A .Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

A.1.4 References 

This subsection lists all the other documents referenced which should include the 

title, date, publishing organization. 

URD 

A.1.5 Overview 

This subsection describes what the rest of the SRS contains, and how it is organized. 

A.2 Overall Description 

This section of SRS provides a complete, abstract view of the software system to 

be built. It describes the general factors that affect the software product, which 

are defined in detail in section 3 of the SRS. Overall description includes six sections: 

product perspective, product functions, user characteristics, constraints, assumptions 

and dependencies, and apportioning of requirements. 

A.2.1 Product Perspective 

This subsection of the SRS demonstrates a perspective of the software and its envi­

ronment with a system context diagram if it is stand alone, or a block diagram if it 

is a part of a larger system. Also, this subsection provides a general description of 

interfaces of the software system, including system interfaces, user interfaces, hard­

ware interfaces, software interfaces, communication interfaces. 

Reference URD 1.4 System Constraints, URD 2.1 System Context Diagram 

A.2.2 Product Functions 

This subsection of the SRS provides a summary of the major functions of the software 

to be built. 

Reference URD 1.2. Vision Statement 

168 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

A.2.3 User Characteristics 

This subsection describes the general characteristics of the intended users of the 

software including the educational level, experience, and technical expertise. 

Reference URD 2.1 Actors and their Profiles 

A.2.4 General System Constraints 

This subsection provides a general description of the constraints that will limit the 

development options. 

Reference URD 1.4 

A.2.5 Assumptions and Dependencies 

This subsection lists each of the factors that affect the requirements stated in the SRS. 

These factors are not design constraints on the software but are, rather, any changes 

to them that can affect the requirements in the SRS. For example, an assumption 

may be that a specific operating system will be available on the hardware designated 

for the software. If, the operating system is not available, the SRS would then have 

to change accordingly. 

A.2.6 Apportioning of Requirements 

This subsection states requirements that may be delayed until future versions of the 

software. 

A.3 Specific Requirements 

This section of SRS specifies the results of our analysis work including the specific 

functional requirements, system constraints. All functions of the software system 

should be specified, together with the inputs and outputs of the software system. In 

our approach, this corresponds to all the class specifications. 

The specifications in this section specify what we call the software requirements 

distinguishing from user requirements. They should be in a level of detail sufficient 

169 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

to enable designers to design a system accordingly, and tester to test that the system 

satisfies those requirements. Although these specifications are the definitions of the 

software solution of the problem according to the developers' view, they should be 

also externally perceivable by users, operators, and other external systems. 

A.3.1 External Interfaces 

This subsection presents details of hardware interfaces and communication interfaces. 

For various interfaces, included contents and formats can vary, they should contain 

the following: 

• Name of item and purpose. 

• Valid range, accuracy, and/or tolerance. 

• Units, type. 

• Timing. 

• Relationship to other inputs/outputs. 

• Data formats. 

• Command formats. 

• End messages. 

A.3.2 Boundary Classes 

This subsection specifies the detailed description of the boundary classes (user inter­

faces and system interfaces). Each class has a set of attributes and function, which 

are documented using specific specification language and standard form. The class 

specification template may reference Figure 3.34. 

A.3.3 Domain Classes 

This subsection specifies the detailed description of the domain classes. 

170 



M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software 

A.4 Performance 

This section specifies requirements about both static and dynamic quantifiable at­

tributes of the systems, such as the number of simultaneous users to be supported, 

the number of transactions , the amount of data to be processed, response time and 

accuracy. All of them should be stated in measurable terms, such as "all the trans­

action shall be processed in less than 1 second." 

Reference URD 1.4, URD 5. 

A.5 Design Constraints 

This section specifies the design constraints that are imposed by other standards, 

hardware limitations, operation limitations etc. For example, the software shall be a 

web based application. Reference URD 1.4, URD 5. 

A.6 Reliability 

This section specifies robustness-the degree to which a system can function correctly 

in different conditions (e.g. acceptable mean time to failure), safety-a measure of 

the absence of catastrophic consequences to the environment (e.g. consequence of 

system failure, if the backup systems are available), and security requirements of the 

system-the factors that protect the software from malicious access, use, modification, 

destruction, or disclosure (e.g. utilize certain cryptographical techniques, system log). 

Reference URD 1.4, URD 5. 

A.7 Maintainability 

This section specifies the ability to change the system to deal with new technology 

or to fix defects. Reference 

Reference URD 1.4. 

171 



M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

A.8 Portability 

This section should specify the ease attributes of porting the software to another hard­

ware or software environments. This may include: percentages of components with 

host-dependent code and host-independent code; use of a proven portable language, 

use of a particular operating system. 

Reference URD 1.4. 

A.9 Legal 

This section specifies the requirements concerned with licensing, regulation, and cer­

tificate issues. They may include the report format, data naming, accounting proce­

dures and audit tracing. For example, in a payroll system, an audit trace requirement 

states that all changes to a payroll database must be recorded in a trace file with be­

fore and after values. 

Reference URD 1.4 

A.lO Other Requirements 

This section specifies other requirements that are not mentioned in precious sections. 

172 



Appendix B 

The Partial SRS of PDT 

Treatment Planning Software 

Revision History 

Name Date Reason Version 

B .1 Introduction 

B.l.l Purpose 

This document will define all software requirements for the PDT Treatment Planning 

Software System. The intended readers include the users, developers, and testers. 

B.1.2 Scope of the Software 

The PDT Treatment Planning Software System will provide users the ability to make 

treatment plans for cancer patients who need a radical treatment. 

Reference URD 1.2. Vision Statement 

173 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

B.1.3 Definitions, Acronyms, and Abbreviations 

MRIImageSet 

MRIImage 

Patientlnfo 

=(Name, MRIImages, SliceNumber, TreatmentPlan(Name)) 

//A series of MRI Images for certain patient, usually the T2-weight 

series is used for treatment planning//. 

=(Name, Points, SliceThickness, ImageSize) 

//A slice of image scanned by Magnetic resonance imaging (MRI) 

Machine.// 

=(Name, PhysicianName) 

//A patient whose treatment plan is produced by the treatment 

planning software.// 

TreatmentOption =(Number, TreatmentDeviceArray) 

//A treatment option is a set of treatment parameters.// 

TreatmentDeviceA rray = (N arne, TreatmentDevices, DeviceN umber) 

//An array of treatment devices// 

TreatmentDevice =(Name, Label, Length, Power, IlluminationTime, Position) 

//A light delivery source// 

Derived from URD 1.6 Glossary 

B .1.4 References 

• "Recommended Practice for Software Requirements Specifications", IEEE stan­

dard 830-1998 edition, New York, US" 

• User Requirements Document, URD 

• Analysis Model Document, AMD 

B.1.5 Overview 

This document will present all the specific requirements for the PDT Treatment 

Planning Software System. Section 2 describe the general factors that affect the 

software and its requirements. Specific functional requirements are specified in section 

3 with the form of class specifications, categorized for each class. System constraints 

are also specified in section 3. The user requirements documents (URD) and analysis 

model document (AMD) are maintained as attachments of this document. 

174 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

B.2 Overall Description 

B.2.1 Product Perspective 

The PDT Treatment Planning Software System provides users a computerized tool 

that allows users to make a near optimal treatment plan for a specific patient. 

B.2.1.1 System Interfaces 

No external system interfaces are connected. 

Reference URD 1.4 System Constraints, URD 2.1 System Context Diagram 

B.2.1.2 User Interfaces 

The user interface shall require a stand alone software environment. 

B.2.1.3 Hardware Interface 

No hardware interfaces are connected. 

B.2.1.4 Software Interface 

Finite Element Method computation software is required. 

B.2.1.5 Communication Interface 

No communication interfaces are required. 

B.2.1.6 Memory 

No specific memory requirements have been specified. 

B.2.2 Product Functions 

The major functions of the software are 

• Allow users to simulate a treatment. 

• Allow users to generate a treatment plan report. 

175 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

• Allow users to reconstruct treatment simulation. 

Reference URD 1.2. Vision Statement 

B.2.3 User Characteristics 

The users are familiar with medical image software. 

Reference URD 2.1 Actors and their Profiles 

B.2.4 General System Constraints 

The software will be certified by FDA. 

Reference URD 1. 4 

B.2.5 Assumptions and Dependencies 

None. 

B.3 Specific Requirements 

This part shall use the template as stated in appendix A. 

B.3.1 External Interfaces 

No specific external interfaces. 

B.3.2 Boundary Classes 

B.3.2.1 ClOOO, MainUB 

The MainUB class shall provide each user type the ability to navigate its central 

boundary objects. 

176 



M.A.Sc. Thesis - Hongqing Sun McMaster - Computing and Software 

B.3.2.1.1 ClOOO-Fl, SelectMakeTreatmentPlan() 
Input 

User selection 
Output 

Message of presenting a TreatmentPlanU8 

Requires 

User is logged in. 

Ensures 
System shall perform the present function of a TreatmentPlanU8. 

B.3.2.2 C2000, TreatmentPlanUB 

Type 

User event 
Type 

Message 

Reference 

Uses 

8.3.2.2.13 

The TreatmentPlanUB class shall provide the user the ability to navigate all the 

functions related to making a treatment plan, including Enter Patientlnfo & Target­

Info, Link MRIImageSet, Define Target, Set TreatmentOption, Do Simulation and 

Generate TreatmentPlanReport. 

B.3.2.2.1 C2000-Al, MRIImageSetNames 

A TreatmentPlanUB shall maintain a set of available MRIImageSet names to be 

chosen. 
Attribute 

MRllmageSetNames 

Type Reference 

A set of strings 8.3.3.2 

B.3.2.2.2 C2000-A2, SelectedMRIImageSetName 

A TreatmentPlanUB shall maintain a selected MRIImageSet name, the default value 

is first one of the MRIImageSetN ames or null. 
Attribute 
SelectedMRllmageSetN arne 

Type 

String 

B.3.2.2.3 C2000-A3, CurrentPatientlnfo(Name) 

Reference 

A TreatmentPlanUB shall maintain a current Patientlnfo(Name), the default value 

is null. The user shall be allowed to enter a string to change the value. 
Attribute 

CurrentPatientlnfo(N arne) 

Type 

String 

B.3.2.2.4 C2000-A4, CurrentPatientlnfo(PhysicianName) 

Reference 

A TreatmentPlanUB shall maintain a current Patientlnfo(PhysicianName), the de­

fault value is null. The user shall be allowed to enter a string to change the value. 
Attribute 

CurrentPatientlnfo(PhysicianName) 

177 

Type 

String 

Reference 



M.A.Sc. Thesis - Hongqing Sun McMaster- Computing and Software 

B.3.2.2.5 C2000-A5, CurrentTreatmentOption{Number) 

A TreatmentPlanUB shall maintain a CurrentTreatmentOption(Number), the default 

value is 1. The user shall be allowed to change the value. 
Attribute 
Current'freatmentOption(Number) 

Type 

Integer 

B.3.2.2.6 C2000-A6, CurrentTargetlnfo(Name) 

Reference 

A TreatmentPlanUB shall maintain a CurrentTargetlnfo(Name), the default value is 

null. The user shall be allowed to change the value. 
Attribute 
CurrentTargetlnfo(N arne) 

Type 
String 

Reference 

B.3.2.2.7 C2000-A 7, CurrentTargetlnfo(AbsorptionCoeff) 

A TreatmentPlanUB shall maintain a CurrentTargetinfo(AbsorptionCoeff), the de­

fault value is 0.0. The user shall be allowed to change the value. 
Attribute Type Reference 
CurrentTargetlnfo{AbsorptionCoeff) Real 

B.3.2.2.8 C2000-A8, CurrentTargetlnfo{ScatteringCoeff) 

A TreatmentPlanUB shall maintain a CurrentTargetlnfo(ScatteringCoeff), the de­

fault value is 0.0. The user shall be allowed to change the value. 
Attribute 
CurrentTargetlnfo{ScatteringCoeff) 

Type 

Real 

B.3.2.2.9 C2000-A9, CurrentTargetlnfo(ThresholdDose) 

Reference 

A TreatmentPlanUB shall maintain a CurrentTargetlnfo(ThresholdDose), the default 

value is 0.0. The user shall be allowed to change the value. 
Attribute 
CurrentTargetlnfo(ThresholdDose) 

Type 
Real 

B.3.2.2.10 C2000-Fl, SelectLinkMRIImageSet() 
Input 
User selection 
Output 
Message of presenting the list of MRIImageSetNames 

Requires 
A TheatmentPlan is active in the system. 

Ensures 
System shall perform PresentListOfMRIImageSets function. 

178 

Type 

User event 
Type 

Message 

Reference 

Reference 

Uses 
B.3.2.2.11 



M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

B.3.2.2.11 C2000-F2, PresentListOfMRIImageSets() 
Input 

MRIImageSetNames 
Output 

A presentation of the MRIImageSetNames 
Requires 

Ensures 

Type 

A set of strings 
Type 

Presentation 

Reference 

Uses 

If the MRIImageSetNames is not null, the system shall present a list of available MRIImageSet 
names, and set SelectedMRIImageSetName=MRIImageSetNames(l]; 
Else the system shall present the error information and stop current function. 

B.3.2.2.12 C2000-F3, SelectMRIImageSet() 
Input 

User selection 
Output 

SelectedMRIImageSetN arne 
Message of setting the link of the selected MRIImageSet 
Message of presenting an MRIImageSetPresentU8 
Requires 

Type 

User event 
Type 

String 
Message 
Message 

The system presents a list of available MRIImageSet names (Ref. 8.3.2.2.11). 
Ensures 

The system shall set SelectedMRIImageSetName=the selected MRIImageSet Name. 

Reference 

Uses 

8 .3.3.2.4 
8.3.2.3.2 

If the selected MRIImageSet is reachable and readable, the system shall perform the setLink 
function (Ref. 8 .3.3.2.4) and the presenting an MRIImageSetPresentU8 function (Ref. 8 .3.2.3.2) . 

Else if the retried times < 3, the system shall allow the user to retry current function or choose to 
stop current function. 
Else the system shall notify user the error information and stop current function. 

B.3.2.2.13 C2000-F4, Present() 
Input 

Output 

A presentation of a TreatmentPlanU8 
Requires 

Ensures 

System shall present A3-A9 data items. 
System shall present required function selections Fl , F5-F10. 

B.3.2.2.14 C2000-F5, CompleteDataltems() 

Omitted. 

B.3.2.2.15 C2000-F6, SelectDefineTarget() 

Omitted. 

179 

Type 

Type 

Presentation 

Reference 

Uses 



M.A.Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

B.3.2.2.16 C2000-F7, SelectSetTreatmentOption{) 

Omitted. 

B.3.2.2.17 C2000-F8, SelectTreatmentOption() 

Omitted. 

B.3.2.2.18 C2000-F9, SelectPresentSimulationResuslt () 

Omitted. 

B .3.2 .2.19 C2000-F10, SelectGenerateTreatmentPlanReport() 

Omitted. 

B.3.2.3 C3000, MRIImageSetPresentUB 

The MRIImageSetPresent UB class shall provide the ability to present the selected 

MRIImageSet. 

B.3.2.3.1 C3000-Al, SelectedMRIImageSet 

A MRIImageSetPresentUB shall maintain an MRIImageSet to be presented, the de­

fault value is null. 
Attribute 
SelectedMRIImageSet 

B.3.2.3.2 C3000-Fl, Present() 
Input 

An MRIImageSet(Name) 

Output 

Type 

MRIImageSet 

Type 

String 

Type 

Message of getting the MRIImages from the selected MRIImageSet Message 

Presentation of the selected MRIImageSet 

Requires 

The input MRIImageSet(Name) is not null. 
Ensures 

Presentation 

The system shall present the MRIImages[l) and the list of MRIImages of the selected 

MRIImageSet. 

180 

Reference 

Reference 

Uses 

B.3.3.2.5 



M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

B.3.3 Domain Classes 

B.3.3.1 Cl, TreatmentPlan 

The TreatmentPlan class represents a treatment plan for a patient in the treatment 

planning software system. The system shall maintain a current TreatmentPlan for 

current patient. 

B.3.3.1.1 Cl-Al, Name 

The system shall maintain a TreatmentPlan name for each TreatmentPlan. 
Attribute Type Reference 

B.3.3.2 C2, MRIImageSet 

The MRIImageSet class represents the MRI image sets of patients that are managed 

by the treatment planning software system. Each MRIImageSet includes a collection 

of MRIImages. 

B.3.3.2.1 C2-Al, TreatmentPlan{Name) 

The system shall maintain a TreatmentPlan name for each MRIImageSet, the default 

value is null. 
Attribute 
'IreatmentPlan(Name) 

B.3.3.2.2 C2-A2, Name 

Type 

String 

The system shall maintain a name for each MRIImageSet. 
Attribute 

Name 

B.3.3.2.3 C2-A3, MRIImages 

Each MRIImageSet contains a set of MRIImages. 
Attribute 
MRIImages 

181 

Type 

String 

Type 

MRIImage 

Reference 
8.3.3.1.1 

Reference 

Reference 



M.A .Sc. Thesis- Hongqing Sun McMaster- Computing and Software 

B.3.3.2.4 C2-Fl, SetLink() 
Input 

Current TreatmentPlan(Name) 
Output 

Requires 

Current TreatmentPlan(Name) is not null. 

Ensures 

TreatmentPlan(Name) of Current MRIImageSet is set. 

B.3.3.2.5 C2-F2, GetMRIImages() 

Type 

String 
Type 

The system shall retrieve all of the MRIImages of an MRIImageSet. 
Input 

Output 
A set of MRIImages 

Requires 

Ensures 
All of the MRIImages of an MRIImageSet are retrieved. 

B.4 Performance 

No specific requirements. 

B.5 Design Constraints 

Type 

Type 

MRIImage 

The application shall be designed to run on MS Windows. 

Reference URD 1.4, URD 5. 

B.6 Reliability 

This system shall have no more than one failure per calendar week. 

Reference URD 1.4, URD 5. 

B.7 Maintainability 

No specific maintainability requirements have been specified. 

Reference URD 1.4. 

182 

Reference 

Uses 

Reference 

Uses 



M.A.Sc. Thesis- Hongqing Sun McMaster - Computing and Software 

B.8 Portability 

No specific requirements required. 

Reference URD 1.4. 

B.9 Legal 

This software must meet the FDA standard, "General Principles of Software Valida­

tion; Final Guidance for Industry and FDA Staff." 

Reference URD 1.4 

B.lO Other Requirements 

No other requirements have been specified. 

183 




