
AN EXTENSIBLE WORKBENCH FOR THE CoMMUNITY ADL

AN EXTENSIBLE WORKBENCH

FOR THE

CoMMUNITY ARCHITECTURE DESCRIPTION LANGUAGE

By

JORGE SANTOS, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Jorge Santos, November 2007

ii MSc Thesis- Jorge Santos

MASTER OF SCIENCE (2007) McMaster University

(Computer Science) Hamilton, Ontario

TITLE: An Extensible Workbench for the COMMUNITY
Architecture Description Language

AUTHOR: Jorge Santos, B.Sc. (Universidad Nacional Au­
tonoma de Mexico, Mexico City, Mexico)

SUPERVISOR: Doctor Thomas Maibaum

NUMBER OF PAGES: x, 85

Contents

1 Introduction 1

1.1 Objective 2

1.2 Introduction to Software Architectures 2

1.3 Introduction to ADLs 3

1.3.1 Characteristics of ADLs 3

1.3.2 Differences Between ADLs and Other Languages. 5

1.4 Some Sample ADLs. 5

1.4.1 Wright . 5

1.4.2 Acme . 8

1.4.3 Rapide . 10

1.4.4 UniCon 13

1.5 Concluding Remarks 14

1.6 Support Environments 15

1.6.1 Wright . 15

1.6.2 Acme . 15

1.6.3 Rapide . 17

1.6.4 UniCon 17

1.6.5 ArchStudio 18

1.7 Conclusions . 19

1.8 Contributions ... 19

2 Community and Friends 21

2.1 Description of the language 21

2.1.1 Designs 21

2.1.2 Connectors 24

2.1.3 The COMMUNITY Workbench . 27

2.2 Extensions to COMMUNITY 28

2.2.1 Location-aware COMMUNITY 28

iii

iv MSc Thesis- Jorge Santos

2.2.2 DynaComm 30

2.2.3 COMMUNITY to SMV 34

2.2.4 Conclusions . . . 34

3 CommUnity Workbench 2 37

3.1 Rationale 37

3.2 Design 38

3.2.1 Design goals . . . 38

3.2.2 Implementation Considerations 39

3.2.3 The Design Itself 45

3.2.4 Comparison with COMMUNITY Workbench 52

3.2.5 Extending the COMMUNITY Model 54

4 Conclusions and Further Work 59

4.1 Review of the work 59

4.2 Future Work 60

A Ecore models for CommUnity and friends 61

A.1 COMMUNITY Model 61

A.2 The DynaComm Model. 71

A.3 Location Aware CoMMUNITY Model . . . 77

A.4 DynaComm plus Location Aware CoMMUNITY Model 79

List of Figures

1.1 A sample system 6

1.2 Simple Client-Server System in Acme. 9

1.3 Elements of an Acme Description . . . 9

1.4 Representations and Properties of a Component 10

2.1 The laptop and printer designs 23

2.2 The sender design . 25

2.3 The receiver design 25

2.4 The glue design 25

2.5 The configuration (textual) 26

2.6 The configuration (graphical) 26

2.7 The laptop and printer designs with location variables 29

2.8 The follow design 30

2.9 A DynaComm Component 31

2.10 A DynaComm connector . 33

2.11 A DynaComm subsystem. 35

3.1 ArchStudio Infrastructure tools and their relationships 40

3.2 The Ecore kernel . . . 43

3.3 The Design Model . . . 47

3.4 The Connector Model . 47

3.5 The Architecture Model 48

3.6 An Architecture Editor . 50

3.7 The COMMUNITY Graphical Editor Model . 51

3.8 Mapping model 51

3.9 The CoMMUNITYGraphical Editor . 53

3.10 DynaComm Model 55

3.11 Location aware COMMUNITY Model 56

3.12 DynaComm plus Location aware COMMUNITY Model. 56

v

vi MSc Thesis- Jorge Santos

Abstract

The field of Architecture Description Languages (ADL) is in rapid and con­
stant evolution. Change and experimentation with different language fea­
tures is the norm. Additionally, it is unlikely that one ADL will ever satisfy
the needs of every architect. On the other hand, ADL experimentation and
usage require the use of easy-to-use tools that will help with the research into
different characteristics of ADLs. This leads us to the need for highly exten­
sible tools that will make it easy to work with and evolve ADLs. This thesis
presents the design of a new tool developed to work with the CoMMUNITY

Architecture Description Language with the goal of being a highly extensible
platform for future experimentation with the language.

vii

viii MSc Thesis- Jorge Santos

Acknowledgments

There are too many people that have helped me here to list, mainly because
I know I would probably forget to mention someone. Nevertheless, I will
mention my wife, Edna, which has helped me tremendously in the small and
big things, without whom these last months and the rest of my life I cannot
imagine. I would also like to thank my parents and sisters, who have always
been there for me in the good and the bad. I also have a debt of gratitude
towards my friends, with whom I have had the luck to share a little bit of
my life. Ic ertainly must thank my supervisor, Tom; without his support,
confidence and help I would not have been able to do this work. My examiners
were also very helpful and insightful, they increased tremendously the quality
of this work. Thanks also go to my many teachers, from my undergrad years
all the way to the ones that instructed me during my Masters studies, I
learned something from all of them.

ix

X MSc Thesis- Jorge Santos

Chapter 1

Introduction

Every software system of significant size must be organized in such a way
that its complexity can be effectively managed. Thus, such systems are
best organized around an architecture. This organization has implications
for the performance, security, performance and scalability of the system. It
is therefore desirable to document this architecture and give it an explicit
representation amenable to documentation and analysis.

In order to fill this need, Architecture Description Languages (ADLs)
have been created. These languages allow the representation (more or less
formally) of a software system's architecture. This allows the architect to
better communicate and analyze her design. ADLs are an active area of
research and these languages are in a state of rapid evolution.

COMMUNITY is an ADL geared towards formal specification and analy­
sis of Software Architectures. It draws ideas from category theory, parallel
program design languages, coordination languages, and architecture descrip­
tion languages to obtain a framework for the formal specification of open,
reconfigurable, mobile systems in which the computation, coordination, and
distribution dimensions are explicitly separated [25].

Even though AD Ls are interesting and valuable formalizations in their
own right, they are of little practical use without appropriate tools to create
and analyze their architectural descriptions. It is therefore of paramount
importance to have robust and usable tools to support work with ADLs.
Furthermore, since ADLs are in constant evolution, it is very important that
these tools be extensible, since researchers will often want to try new ideas
and adapt the languages to the problems of their interest.

1

2 MSc Thesis- Jorge Santos

1.1 Objective

Although there is an existing (partly) graphical editor for the COMMUNITY

ADL, it has not been designed with extensibility in mind and it has proven
hard to modify and maintain. Therefore, the objective of this research is to
develop a solid and extensible graphical editor and platform for manipulat­
ing and analyzing COMMUNITY architecture descriptions. This tool should
provide an easily extensible base that will allow for the creation of the nec­
essary additional tools that will be necessary for working and experimenting
with extensions to the core COMMUNITY language. It will therefore be of
paramount importance to pay particular attention to the ways in which this
extensibility will be realized and to have confidence that the resulting system
will be indeed useful for this purpose.

1.2 Introduction to Software Architectures

From [2]: "The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among
them." The architecture of a system focuses on the major components of
said system and models the interactions between these components, with­
out regard to their internal mechanisms. Unlike in the design of a system,
the primary interest of a system architecture is the externally visible com­
ponents of its elements, such as the services they provide, their performance
characteristics, usage of shared resources and so on, i.e., public aspects of
the system's elements, as opposed to their private aspects.

This descriptions can be static, such as the interfaces of the modules,
their shared data and so on. They also comprise dynamic aspects, such as
the synchronization between the several software modules.

It is worthwhile to note that every software system has an architecture,
whether described explicitly or not. It is in explicitly describing the archi­
tecture of a system that ADLs come into play. Architecture Description
Languages are intended to describe the architecture of a (software) system.

Architecture Description Languages, then, are languages, more or less
formal, that allow us to describe the architecture of a computer system.
ADLs are still maturing, there is little consensus on what exactly constitutes
an ADL and what characteristics it should have. Some of the most com­

3 McMaster - Computing and Software

mon ADLs are: Aesop [9], C2 [24], Darwin [21], Rapide [20], UniCon [29],
Acme [11] and Wright [1].

1.3 Introduction to ADLs

The architecture of a software system is a term in common use among soft­
ware engineers; however, this architecture is often described in an informal,
ad-hoc way. The use of Architecture (or Architectural) Description Lan­
guages allows the description of this architecture to be realized in a formal
way. This aids communication by giving a common language in which to
describe said architecture, allows formal analysis and simulation, and aids in
the reutilization of software components, among other advantages.

1.3.1 Characteristics of ADLs

Although there is no agreement on exactly what properties an ADL should
have to be considered an ADL, according to [23] they must explicitly model
components, connectors, and configurations; furthermore, to be truly usable
and useful, it must provide tool support for architecture-based development
and evolution. These four elements of an ADL are further broken down into
constitutive parts.

In [11] it is argued that ADLs share a common ontology (or conceptual
basis), the elements of which are:

Components represent the computational and data aspects of a system.
They are similar to the classes in object-oriented design, and to the
boxes in box-and-line descriptions of software architectures. Some ex­
amples of components would be clients, servers, and databases. The
components have at least one interface, and possibly more, that allows
them to interact with the other elements of the environment.

Connectors allow components to interact, since they cannot do so directly.
The connectors correspond to lines in box-and-line diagrams. They
specify the means of interaction between components. They may rep­
resent simple communication channels, such as buffers or shared vari­
ables, or more complex ones, such as a connection to a database or a

4 MSc Tbesis- Jorge Santos

communication protocol. Connectors also have interfaces, they spec­
ify the way to interact with the various participants in the interaction
represented by the connector.

Systems are connected graphs of components and connectors that describe
architectural structure. They represent configurations of said elements.
A system descriptions' overall topology is defined independently from
the components and connectors that make up the system (in contrast
with programming languages, in which modules are usually tied via
import statements). Another important characteristic of systems is
that they are possibly hierarchical, that is, components and connectors
may have internal architectures. They are akin to the configurations
of [23].

Constraints are akin to module invariants, they represent claims about an
architectural design that should remain true even as it evolves over
time. Some of the usual constraints include restrictions on allowable
properties, topology, and design vocabulary. For example, an architec­
ture might constrain its design so that users of a server belong to a
certain group.

Styles represent families of related systems. An architectural style typically
defines a vocabulary of design element types and rules for composing
them. Examples include layered systems, and data-flow architectures
based on graphs of pipes and filters. Some architectural styles addition­
ally prescribe a framework as a set of structural forms that specific ap­
plications can specialize. Examples include the traditional multistage
compiler framework, 3-tiered client-server systems, and user interface
management systems.

Regarding the tool support mentioned by [23], it is worth noting that
although the tools supporting an ADL are not formally part of the language,
they are necessary for it to be useful. There is a push from the software
engineering community to identify a canonical "ADL toolkit" [10]. Some
desirable abilities provided for the tools of an ADL are architectural design,
analysis, evolution, executable system generation, and so forth.

5 McMaster - Computing and Software

1.3.2 Differences Between ADLs and Other Languages

In order to more clearly see what ADLs are, we can contrast them to other
notations that, though similar, are not properly ADLs. The languages we
use for comparison are implementation languages, object-oriented modeling
notations, and module interconnection languages (MILs). The main criteria
that distinguishes ADLs from other languages is the need of ADLs to model
configurations explicitly.

In implementation languages the architecture of a system is only implicit,
via subprogram definitions and procedure calls. MILs typically describe uses
relationships among modules in an implemented system and support only
one type of connection.

Object oriented modeling languages, such as UML, can be extended to
support modeling of software architectures [22] [27] to be able to model ar­
chitectural abstractions that either differ or do not exist in object oriented
design. This has the advantage that there already are good tools for working
with UML, and it is a widely known and used language. The different ADLs
have certain aspects in common with UML, some of which can be expressed
with UML's extension mechanisms, while others may be included in a UML
specification but can only be interpreted by ADL-specific tools [27]. More­
over, it is convenient to use a language that closely matches the concerns
facing the software architecture, by making the peculiar aspects of archi­
tecture modeling (e.g. components and connectors) explicit the job of the
software architect is made easier.

1.4 Some Sample ADLs

There is a multitude of ADLs with very diverse focuses and characteristics.
In this section we will describe some of the more popular ones to give a more
concrete idea of what they look like and what they may be used for. For a
thorough description and comparison of a large number of them see [23].

1.4.1 Wright

Wright [1] is an architectural description language based on the formal de­
scription of the abstract behavior of architectural components and connec­
tors. It is distinguished by the use of explicit, independent connector types

6 MSc Thesis- Jorge Santos

Configuration SimpleSimulation
Component TerrainModel(map : Function)

Port ProvideMap = [Interaction Protocol]
Computation = [provide terrain data]

Component = VehicleModel
Port Environment = [Interaction Protocol]
Computation = [compute vehicle movement]

Connector UpdateValues(nsims : 1..)
Role Model_1 .. nsims = [Interaction Protocol]
Glue = [Data travels from one Model to another]

Instances
Hamilton : TerrainModel([map of Hamilton])
Bus : VehicleModel
C : UpdateValues(2)

Attachments

Hamilton.ProvideMap, Bus.Environment as C.Model

End SimpleSimulation

Figure 1.1: A sample system

as interaction patterns, the ability to describe the abstract behavior of com­
ponents using a CSP-like notation, the characterization of styles using predi­
cates over system instances, and a collection of static checks to determine the
consistency and completeness of an architectural specification. Because the
semantics of Wright specifications are formally defined, an architecture char­
acterized in Wright provides a sound basis for reasoning about the properties
of the system or style described.

To give an overview of Wright we now illustrate its main ideas via a
simple example. The system will simulate a bus driving through Hamilton.
It will have two components, one for simulating the bus and its movements,
and another simulating the places through which it drives through. The
two components communicate by transmitting updates to the values of the
objects' attributes. Figure 1.1 shows the outline of how this would look like in
Wright. Of note in this description is the explicit specification of components
and connectors, as well as the delineation of instances and their attachments.
In our example, the terrain model Hamilton is accessed by the vehicle Bus
component, and will interact with its environment via the Environment port.

7 McMaster - Computing and Software

A connector represents an interaction among a collection of components.
For example, a pipe represents sequential communication between two filters,
while an RPC connector represents one component requesting a service of
another. A Wright description of a connector consists of a set of roles and
glue. A connector, in our example C, acts as a source of data and recipient
of data, one for each model it coordinates. The connector glue defines how
the roles will interact with each other.

The parts of a Wright description (port, role, computation and glue)
are described using a variant of CSP [13]. For example, the Model role of
UpdateValues might be defined by:

Role Model - update!x ~ Model

n request ~ newValue?y ~ Model

n§

This defines a participant in an interaction that repeatedly either provides
an updated value (update!x) or request a new value (request). If it requires
a new value, it will be provided one (newValue?y). It may also choose to
terminate successfully at any time (§).

One immediate benefit of describing architectural designs with Wright,
obtained from making the meaning of an architectural description precise, is
that it facilitates the communication of ideas from the architect to the other
interested parties. For example, the Model role defines exactly what actions
a component may or may not take if it is to participate in an UpdateVal­
ues interaction. Furthermore it provides a basis for analyzing architectures.
The description of connectors in Wright can be used to determine whether
the connector satisfies certain critical properties, such as internal consistency
of the protocol and whether the roles are sufficiently constrained to ensure
proper behavior by the participants. In considering the UpdateValues con­
nector above, for example, we notice that, as it is described, if both Bus and
Hamilton were to choose to request a value before providing an update, a
conflict would occur. Both expect a value and there is no value available. In
addition to analyzing connectors, components can be analyzed to determine,
for example, whether they conform to their interface specifications.

Wright further structures the description of an architectural configura­
tion by distinguishing between component or connector types and specific
instances of them in the configuration. In the example, UpdateValues is a

8 MSc Thesis - Jorge Santos

connector type: it is defined by a set of potential participants, the Models,
and constrains how they may behave, via the Glue. C is an instance of this
type: the two participants of which are Hamilton and Bus, which are associ­
ated with the protocol in the attachments.

Since the global system behavior is derived from the architectural struc­
ture and behavior descriptions of types, Wright provides a means of extend­
ing the type-level guarantees to system instances. At the configuration level,
Wright provides checks to confirm that a given component port properly
fulfills the obligations of any role to which is attached. If the appropriate
constraints are met, then any analyses at the type level automatically apply
to instances.

In addition to describing and analyzing system configurations, Wright
permits the designer to describe and analyze entire families of systems, or
architectural styles. By formalizing a style, the architect is able to leverage
analysis across many systems and thus reduce the effort to produce individual
systems.

1.4.2 Acme

Acme was originally conceived as a language to interchange architectural
representations between various implementations of the different ADLs; how­
ever, it has evolved into an ADL on its own. The creators of Acme call it a
second generation ADL [11], meaning that it has been built on the experience
of other ADLs, and has been built with the intention of providing the basics
of ADLs with a simple syntax.

Nowadays the Acme language and toolkit provide three different capabil­
ities:

Architectural interchange as was its original goal, Acme provides a
generic interchange format for architectural design, thus allowing ar­
chitects using Acme-compatible tools a wider access to analysis and
design tools.

Extensible foundation for new architecture design and analysis tools.
Acme provides a solid, extensible foundation and infrastructure that
allows tool builders to avoid needlessly rebuilding standard tooling in­
frastructure.

9 McMaster - Computing and Software

System simple_cs = {
Component client = { Port sendRequest }
Component server = { Port receiveRequest }
Connector rpc = { Roles {caller, callee} }
Attachments : [

client.sendRequest to rpc.caller ;

server.receiveRequest to rpc.callee }

}

Figure 1.2: Simple Client-Server System in Acme .

.---.---System

Connector
Component

Role

Figure 1.3: Elements of an Acme Description

Architecture description by itself. Although not appropriate for all ap­
plications Acme can serve to describe relatively simple software archi­
tectures.

To illustrate the characteristics of Acme we will go trough a small exam­
ple: a simple architecture in which a client component is declared to have
a single send-request port, and the server has a single receive-request port
is shown in Figure 1.2. The connector has two roles designated caller and
callee. The topology (configuration) of the system is defined by listing a set
of attachments that bind component ports to connector roles, and a graphical
representation can be seen in Figure 1.3.

10 MSc Thesis- Jorge Santos

Server

shape = reel while(data) Throughput = ~wldht= 100 read(rasp); 5 kbps
halght= 50 max_coM=
color= blue 10 Small-memory High-Performance

Representation Repraeentatlon

VIsualization Source Perfonnance Small-mem-RM : RepMap Hlgh-Perf-RM : RepMap spec. Code Data

Figure 1.4: Representations and Properties of a Component

Acme allows any component or connector to be represented by one or
more detailed, lower level descriptions, called representations, in order to
support hierarchical descriptions of architectures. The ability to associate
multiple representations with a design element allows Acme to encode mul­
tiple views of architectural entities. Representations of a component are
illustrated in Figure 1.4.

1.4.3 Rapide

Rapide [20] is an ADL focusing on large-scale, distributed systems. It allows
the definition and execution of models of system architectures. The result of
executing a Rapide model is a set of events that occurred during the execution
together with causal and timing relationships between events. These sets of
events together with their causal histories form a poset (a partially ordered
set) [38].

Rapide 1.0 is structured as a set of languages consisting of the Types,
Patterns, Architecture, Constraint, and Executable Module languages; called
the Rapide language framework.

Rapide implements an interface connection architecture model. It pro­

11 McMaster - Computing and Software

vides tools to express the functionality offered by an interface, the func­
tionality required by other modules/interfaces and the connections between
interfaces. Rapide also allows for expressing the requirements/constraints an
interface behavior has to exhibit.

The main elements that define a Rapide interface are:

Actions represent a "one-way" message to be sent or received by the in­
terface. They are asynchronous from the point of view of sender and
receiver.

Functions represent a typed request/replay pair with synchronous interac­
tion between the involved interfaces.

Behavior An interface behavior can be expressed in three ways, either at­
taching an implementation module to the interface, defining an archi­
tecture that implements the interface, or describing its behavior by
means of reactive rules that specify the reaction of the interface to
events offered to it.

Actions and functions may be grouped in services to aid in their reusabil­
ity.

Interfaces are assembled into an architecture by using connections. Con­
nections, as is usual in ADLs, are dynamic entities. Rapide allows connection
behavior to be specified in terms of the relationships that the events going
into a connection and the ones coming out have.

The semantics of a connection in Rapide is such that when the triggering
event is present (expressed in the left hand side of the connections), the
connection triggers and produces the event specified in the right hand side of
the connection. Three types of connections are supported by Rapide: Basic
connections (A to B), pipe connections (A => B), and agent connections (A

II> B).

Basic connections are identity connections, events A and B are the same.

Pipe connections behave as a single thread control when producing B
events, regardless of the concurrency behavior of the triggering A events.

Agent connections behave as if each B event is generated by a different
thread of control, and thus its produced B events are not related to
each other.

12 MSc Thesis- Jorge Santos

The main distinguishing characteristic of Rapide is its model of com­
putation based on Partially Ordered Sets of Events (posets). Each event
represents the occurrence of an activity within a program at a particular
level of detail. Events are generated by communication between two com­
ponents of the system via actions and functions. Actions generate a single
event, while functions generate two events; one corresponding to the function
invocation and another to the function return. Events in Rapide are typed,
that means that they are characterized by the number, order and type of
their arguments.

Events can be ordered both by time and causality. Each of these criteria
yield partial orders on the event set of a computation.

Time order is specified with respect to local clocks, since in Rapide there
is no required global clock. Events are ordered with respect to the clocks that
apply to it, so times can only be compared with times obtained by clocks in
its scope. This fact of multiple clocks and the relationship of events to clocks
imply that events that refer to different, non related clocks are not ordered
with respect to each other.

Causal order represents the generator/generated events. Both interfaces,
via their behavior and connections may generate dependent events. Two
events A and B are dependent (A precedes B) if:

1. 	 A and B are generated by the same process or

2. 	 A process is triggered by A and then generated B or

3. 	 A process generated A and then assigns to a variable v, another process
reads v and then generates B or

4. 	 A triggers a connection which generates B or

5. 	 A precedes C which precedes B (transitive closure).

By introducing this concept of order and causality, Rapide enables the
architect to explicitly visualize and analyze the execution of the system. In
a more sophisticated use of this facility, a system behavior may be expressed
as constraints on how events can relate to each other.

13 McMaster - Computing and Software

1.4.4 UniCon

UniCon is an architectural description language whose focus is on supporting
the variety of architectural parts and styles found in the real world and on
constructing systems from their architecture descriptions.

As in other ADLs, there are components, where data or computation
are located, and connectors, which are used to connect components. The
components export players, which serve as input or output points. These
players connect to connector's roles, and thus communicate with other com­
ponents. Both components and connectors have a specification part and an
implementation part.

Components are specified by an interface, which describes three things:
its computational commitments, constraints on its usage, and performance
and behavior guarantees. It contains three types of information:

Component type is similar to the type of an object in an object oriented
language. The type of a component captures the semantics of its be­
havior, the kind of functionality it implements, its performance char­
acteristics, and its expectations of the style of interaction with other
components.

Properties are attribute-value pairs that specify additional information
about a component as a whole, such as assertions or constraints.

Player definitions are the way in which a component interact with other
components, via connectors.

Connectors are specified by a protocol, which defines the kind of commu­
nication possible among a collection of components and provides guarantees
about those interactions. It contains three types of information:

Connector type expresses the designer's intentions about the general class
of interactions to be mediated by the connector.

Properties are attribute-value pairs that specify additional information
about a component as a whole, such as assertions or constraints, just
as in components.

Role definitions give the requirements and responsibilities for the players
in a connection. They are the elements to which components' players
associate in a system.

14 MSc Thesis- Jorge Santos

Component implementations can be primitive or composite.
A primitive implementation is a pointer to a a source document external

to the UniCon language that contains the implementation. For example, it
could be an object file or a C language source code file.

A composite implementation is a description of other components and
connectors defined with UniCon. It contains three types of information:

Pieces are the specific component and connector instances used to create
the configuration description.

Configuration information is a description of the way in which compo­
nents are hooked together to form a configuration.

Abstraction information is a description of how the players in the compo­
nent interface are implemented by players in the component instances
of the composite implementation.

1.5 Concluding Remarks

Architecture Description Languages, if used consistently, can be an useful
tool in the development of large systems. By having a formal description of
the architecture of the system, is possible to communicate clearly the design
of the system to interested parties, as well as analyze the system before
building it.

Wright, by allowing the detailed description of components and connec­
tors, allows detailed analysis of components and connectors, allowing, for
example, to determine if components conform to their interface specifica­
tions.

Of the four ADLs reviewed in this chapter, Acme seems to be the more
mature one. This is probably due to the fact that it is based on older ADLs
and was originally meant to be an interchange language for several differ­
ent tools, thus is encompasses the common elements of other, older, ADLs.
Nevertheless it was not meant to be an ADL by itself, instead aiming at
becoming a basis for the development of other ADLs, so it is not as powerful
as could be required for complex projects. It may also be noted that it does
not provide any support for formal specifications by itself.

Rapide focuses on modeling and simulation of the dynamic behavior de­
scribed by an architecture. It also has code generation and has a strong
notion of event-based communication.

15 McMaster - Computing and Software

U ni Con allows the construction of systems from their architectural de­
scriptions, this may have the advantage of simplifying the mapping of the
architectural motel to the implementation of the system, but has the disad­
vantage of constraining said implementation.

ADLs are still not as well developed as, for example, programming lan­
guages or even Object Oriented Design Languages (such as UML). There are
many of them and they differ in several areas, such as area of application.
Furthermore, having a generally applicable and widely available ADL with
good tools would go a long way in establishing the use of these tools in more
projects. However, it is not clear if a single ADL can be flexible enough to
model the architecture of all categories of systems.

1.6 Support Environments

Architecture Description Languages are interesting formalisms in their own
right, and useful for reasoning about the architecture of computer systems.
However, if we are to use them for describing real systems, we need tools to
aid us in the design and analysis of said systems.

In this sections we will describe a few of the tools that have been developed
to work with ADLs and talk about their advantages and weaknesses.

1.6.1 Wright

There is a tool to convert an ASCII or ~'J'EXrepresentation of a Wright spec­
ification to a CSP specification. This tool also inserts some of the checks
pre-defined by Wright (like connector deadlock freedom) into the CSP speci­
fication making them directly invocable from FDR menus. The CSP specifi­
cation can then be checked by the FDR checker, where counter-examples may
be viewed for failed checks [14]. FDR is a refinement checker for establishing
properties of models expressed in CSP [18].

This tool does not seems to be maintained anymore [40] and we were
unable to locate any information regarding licensing.

1.6.2 Acme

The Acme ADL is supported by AcmeStudio, an architecture development
environment, written as a plug-in to IBM's Eclipse IDE Framework [28].

16 MSc Thesis- Jorge Santos

AcmeStudio supports the development of architectural models and archi­
tectural styles as defined by the Acme ADL as well as viewing and defining
of elements' properties, rules, substructure, and typing.

For the creation and modification of styles, AcmeStudio provides a style
editor, which allows component, connector, and interface types to be defined,
as well as required properties and substructure of these types. The style
studio can also be used to assign rules to the style, these rules prescribe the
composition of models belonging to the style.

These rules are checked by AcmeStudio while creating models of the cor­
responding style, and it informs the architect of the model of the correctness
of the architecture.

AcmeStudio also provides editors allowing the specification of several
graphical characteristics of the defined types, thus aiding in the visualiza­
tion of an architecture. This characteristics include the shape, color, size,
icon, label, and layout policies of components and connectors.

Additionally AcmeStudio allows the integration of different analysis tools
to support analysis beyond the built-in rule evaluation. This allows the de­
velopment of analysis tools suitable for each different style. Using the Eclipse
plug-in mechanism, AcmeStudio provides access to architectural models and
provides notifications of changes to these models to allow tools to update
their analyses. To allow the visualization of the analyses' results, AcmeStu­
dio allows plug-ins to add specific views, such as tables and actions to the
user interface [28].

Development of AcmeStudio

As of this date, AcmeStudio appears to be in active development [30]. There
is a forum for plug-in developers [31], however activity in this forum by
AcmeStudio developers seem to be sporadic.

The license for AcmeStudio does not allow redistribution of the pro­
gram [32].

Final Remarks

AcmeStudio is an ADL tool with a solid technical and research foundation
and is in active development, however, the relative closedness of the devel­
opment is a definite disadvantage.

17 McMaster - Computing and Software

1.6.3 Rapide

There is a Rap ide compiler, "rdpc" that translates programs written in
Rapide-1.0 into executable load modules, or into library information that
may subsequently be used to build executables. It is normally used in con­
junction with analysis tools such as the "pov" tool to build and analyze a
Rapide simulation. The Rapide library management system allows libraries
of Rapide components to be compiled separately for later re-use and for
organization of source files. It includes standard commands for creating,
destroying, cleaning, and examining libraries of components [37].

There also exists a Partial Order Viewer, "pov" , a tool for graphically
browsing the partial orderings of events (posets) produced by Rapide com­
putations. It reads log files generated by the execution of a Rapide program,
and displays a graphical representation of the resulting poset. The pov also
has facilities for "filtering" the poset to include only events of interest [37].

This tools also seems to be unmaintained and the license forbids redistri­
bution [37].

1.6.4 UniCon

UniCon has a set of tools for working with graphical and textual representa­
tions of the language: a compiler for the textual form, a graphical interface,
a semiautomatic wrapper-generator, and a facility for invoking the RMA
analysis tool [29].

This tools can generate artifacts that assist in constructing the finished
system. The UniCon compiler itself is built from a UniCon specification [29].
This allowed the researches to acquire experience in what the requirements
for a practical ADL would be.

The tools also support analysis of specifications using external tools (such
as real-time properties) and incorporation of the results back into the archi­
tectural description [29].

Unfortunately the tools do not seem to be supported nor available any­
more [39]. In any case, there is no indication that the implementors were
concerned with extendibility beyond the interaction with external tools.

18 MSc Thesis- Jorge Santos

1.6.5 ArchStudio

ArchStudio is a development environment for software systems architectures
based on the xADL 2.0 architecture description language. It intends to sup­
port modeling of the hierarchical structure of complex systems, the types of
various components, connectors and interfaces, product-lines of systems that
are related by a common base, and so on [33].

The ArchStudio environment allows the manipulation of architectural
descriptions using one of several views, while maintaining consistency among
them.

It provides Archipelago, a box-and-arrows editor to manipulate archi­
tectures, similar to the common diagram editing tools. It also provides
ArchEdit, a syntax-directed editor that adapts to new xADL schemas au­
tomatically with no recoding. The Type Wrangler tool provides a custom
view of an architectural model that makes it easier to achieve type consis­
tency [33].

ArchStudio also provides a framework called Archlight that allowing the
testing of architecture descriptions against different criteria. Errors can be
displayed and inspected, and users can navigate to the site of a problem in
any editor with a few mouse clicks. This tests are provided by Archlight plug­
ins, and users can provide new tests and analysis engines. Archlight ships
with the powerful Schematron XML constraint engine, which allows complex
architectural tests to be specified in about a dozen lines of code [33].

ArchStudio itself was developed using xADL. Whenever ArchStudio
starts up on a machine, its architecture description is used to instantiate
and connect components and connectors in the architecture [33].

The ArchStudio development environment is implemented as a set of
Eclipse plug-ins. Eclipse is an IDE and development platform written in
Java that provides for extendibility by providing a plug-in architecture for
adding new functionality. ArchStudio itself is written in Java 2 Standard
Edition (J2SE) version 5.0, also known as Java 1.5 [33] and should run on
any platform that supports Eclipse, including recent versions of Windows,
Mac OS X and Linux.

ArchStudio is an open-source project and is free to download and is ac­
tively maintained and has an active development team [33].

19 McMaster - Computing and Software

1.7 Conclusions

The field of Architecture Description Languages is evolving quickly and this
is reflected in the fast evolution of the tools used to work with them. Often, as
old ADLs die and their best ideas are incorporated into new ones the old tools
are the victims of bit rot. Additionally, the effort to build a capable ADL
environment is substantial and the user base of such programs is probably
fairly small.

Therefore, the approach taken by AcmeStudio and ArchStudio seems the
one with the most likelihood of a healthy future: Extend a best of breed
IDE and allow these extensions to be extended themselves. In this way the
number of code bases can be minimized and improvements to the common
parts propagate without extra effort to dependent projects.

The ArchStudio team went a step further by choosing an open-source
license for its product. This gives confidence in the continued development
of the project and allows the possibility of third parties contributing bug fixes
and features that the maintainers may be unwilling or unable to provide, and
increases the number of potential developers of the project.

1.8 ContribUitions

This research has produced a solid and extensible graphical editor and plat­
form for manipulating and analyzing COMMUNITY architectural descrip­
tions. This will make possible the creation of extension tools for working
with extensions to the language. This has been made possible by choosing
a flexible and powerful model-driven development approach and by using
modern tools designed for extensibility and of proven quality.

20 MSc Thesis- Jorge Santos

Chapter 2

Community and Friends

COMMUNITY is a platform for research into formal aspects of Software Ar­
chitecture. It draws ideas from category theory, parallel program design
languages, coordination languages, and architecture description languages
to obtain a framework for the formal specification of open, reconfigurable,
mobile systems in which the computation, coordination, and distribution
dimensions are explicitly separated [25].

In this section we will describe the Community language as well as Dy­
naComm and extension to model dynamically reconfigurable systems and
systems with subcomponents. This chapter is heavily based on [26].

2.1 Description of the language

2.1.1 Designs

COMMUNITY's most basic unit of architectural description and conceptual
unit of computation is the design (also known as component). The com per
nents can have input, output and private variables (referred to as channels
in [19]). The input variables are set by some other component in the environ­
ment and the design has no control over their contents. The output variables
are set by the design, to be read by the environment, and the private vari­
ables are for use of the design, without interaction from the environment.
Together, the internal output and private variables are called local variables.

Additionally COMMUNITY designs can have public and private actions.
Public actions can be coordinated with the public actions of other compo­

21

22 MSc Thesis- Jorge Santos

nents, private ones can not. The actions have a name and a body. Each body
has two guards, the safety guard, and the private guard, which are propo­
sitions over local variables (since input variables are not controlled by the
design). These guards establish a logical interval within which the enabling
condition of the action must lie, with the safety guard being the lower bound.
The enabling guard must be implied by the safety guard, that is, it should
not be possible for the enabling guard to be true while the safety guard is
false. The maximal interval is achieved by setting the safety guard to true
and the progress guard to false. It is possible to write only one guard if the
two are equivalent. The bodies contain one or more parallel assignments to
the local variables. These assignments are specified by first-order logic for­
mulas concatenated by the parallel execution operator (I I) . Formally, these
formulas are build from the variables in the write frame (the subset of the lo­
cal variables into which executions of the action can write) and their primed
versions (references to the values of the variables after the execution of the
action). In practice, the primed versions of the variables are identified by
always putting them in the left side of the equality operator and the prime
is omitted.

The designs in COMMUNITY interact with each other by means of con­
necting their private variables with other designs' output variables as well as
the synchronization of their public actions. Private variables and actions are
not involved in interactions. It is not allowed to synchronize two actions of
the same component. The scope of each variable and action name is local to
the component where it occurs, so interaction is possible only through explicit
attachment of names. Coordination is separate from computation because
the name bindings are specified independently of the actions' bodies.

Systems in COMMUNITY are ultimately built by using superposition mor­
phisms [41]. A CoMMUNITY design may be refined to a program by collaps­
ing the guards to one that lies "between" the guards being refined, meaning
that it cannot be weaker than the lower bound nor stronger than the upper
one. Also, the assignments of a program may not be under-specified, in other
words, they must be deterministic.

To illustrate these concepts we give an example of two designs in Fig­
ure 2.1, modified from [26]. These are named laptop and printer; the
intention is to model the production and transmission of documents by the
laptop to the printer.

The output variables are denoted by the out keyword, the input by in and
the private ones by prv. The laptop has two variables, an output variable

23 McMaster - Computing and Software

design laptop
out outfile : enum(ps, pdf)
prv saved : bool
do edit : true, false -> saved := false

[] save_ps : -saved -> outfile := ps I I saved := true
[] save_pdf : -saved -> outfile := pdf I I saved := true
[] send : saved -> 	skip

design printer
in infile : enum(ps,pdf)
prv busy : bool; printfile : enum(ps,pdf)
do get : -busy -> printfile := infile I I busy := true

[] prv print : busy -> busy := false

Figure 2.1: The laptop and printer designs

outfile of type enum(ps,pdf) and a private one saved of type bool.
The printer design has an infile mirroring laptop's outfile variable

and two private variables busy to indicate it is printing and cannot receive
any more files and printfile to copy the file to print into since infile can
be modified by the environment.

The do keyword denotes the start of the actions-specification. Each action
has the form:

name[writeframe] 	 safety_guard, progress_guard
-> assignment I I assignment I I

The part after the arrow (->) defines a set of parallel assignments (the
parallel execution operator is II). The safety__guard, progress__guard and
writeframe are as described above.

The laptop design has four actions: edit, which just sets saved to
false whenever it is selected for execution; save_ps which sets the value
of outfile; and send, which does not perform any assignments (denoted
by skip), but will be needed for synchronization purposes. The actions are
separated by [] which denotes external choice.

The printer design has two actions: get which gets a file if it is not busy
and print which just updates the busy status to false.

24 MSc Thesis- Jorge Santos

Although it is not considered in some formal descriptions of COMMUNITY

, we can consider an initial state for the variables of a design by specifying
their values using a first-order logic expression. Later extensions to the lan­
guage define this explicitly.

2.1.2 Connectors

As stated in 2.1.1, interaction in CoMMUNITY is accomplished by explicit
name-binding of variables and actions. In the example of Figure 2.1, we could
bind outfile with infile and send with get. In this way the synchronized
action send/get can only execute when the file has been saved and the
printer is not busy.

When communication between two designs has a more complex nature,
such as in a communication protocol, we define this behavior in a connec­
tor, thereby separating the communication concerns of the system from the
computational ones. In general terms, a connector comprises glue and one
or more roles. The roles are a kind of "formal parameter" of the connector,
restricting the components to which the connector can be applied, while the
glue is the "body" of the connector, describing how the actions and variables
of the roles are to be coordinated. In COMMUNITY , the glue and roles are
specified using COMMUNITY designs and the glue is connected to each role
by name-binding.

Going back to the example in Figure 2.1 we will define a connector that
will allow the communication between the laptop and the printer to be
asynchronous. With that goal, it will have a role for the sender, one for the
receiver, and the glue will model the behavior of a buffer.

The design for the sender is shown in Figure 2.2. It models the behavior of
a producer of files. Notice the use of the non-deterministic assignment oneof:
the role requires the sending component to have an action to produce a file,
but does not constrain the production policy.

The design for the receiver is shown in Figure 2.3. The design for the
glue, which we will call async is shown in Figure 2.4.

Finally, the connector is formed from these designs and a configuration
that instantiates them and binds their actions and variables, see Figure 2.5
for a textual representation and Figure 2.6 for a graphical one.

The connector can then be used by refining each role with a design (or
component). The formal definition of refinement of designs can be found
in [8], but it basically consists in a mapping from the role's names to the

25 McMaster - Computing and Software

design sender
out outfile : enum Cps, pdf)
prv ready : bool
do produce true, false -> ready := true

I I outfile oneof enumCps,pdf)
[] send ready, false -> skip

Figure 2.2: The sender design

design receiver
in 	infile : enum Cps, pdf)
do 	 receive : true, false -> skip

Figure 2.3: The receiver design

design async
in 	infile : enum Cps, pdf)
out outfile : enum Cps, pdf)
prv ready : bool; buffer : listCenumCps, pdf))
do 	 put : lengthCbuffer) < 3 -> buffer := buffer:<infile>

[] prv next : buffer /= nil & -ready -> ready := true
I I 	outfile := headCbuffer)
I I buffer := tailCbuffer)

[] get ready -> ready := false

Figure 2.4: The glue design

26 MSc Thesis- Jorge Santos

connector async {
glue

design async
roles

design sender

design receiver

configuration

s:sender r:receiver a:asynchronous

attachments {
a.infile - s.outfile a.put - s.send a.lb - s.ls
a.outfile - r.infile a.get - r.receive

}

}

Figure 2.5: The configuration (textual)

l:sender O:async

D outflle: enum(ps,pdfJ

produce

infile: enum(ps,pdfJ

put

get

2:recelver

0 lnfile: enum(ps,pdfJ

0 receive

send

Figure 2.6: The configuration (graphical)

27 McMaster - Computing and Software

component's names and a translation of terms, such that the behavior is
preserved. In this example, the role sender is refined by laptop and the
role receiver is refined by printer. For example, the refinement of sender
by laptop is given by mapping produce to save_ps and save_pdf, send to
send and outfile to outfile. As illustrated, an action of a role can be
refined my multiple actions of the component.

The modeling of a software architecture is accomplished in COMMUNITY

by the creation of architectural configurations. These are created by se­
lecting components and connectors, creating as many instances of each as
needed, and interconnecting component instances by direct name bindings
or through the application of connector instances.

A configuration has a very precise mathematical semantics, given by a
diagram in a category whose objects are the designs and whose morphisms
capture a notion of program superposition [5]. Any such categorical diagram
can be transformed, by an universal construction called a colimit, into a
single design that represents the whole (distributed) system.

Intuitively, the variables of the colimit are the union of the variables of all
the design instances in the configuration, with shared variables merged into a
single one. The resulting merged variable is an output variable only if one of
the variables is. The actions of the colimit are obtained by taking at most one
action from each design instance and synchronizing them; synchronizations
imposed by the configuration must be obeyed, but if an action is "free"
then it can co-occur with any other actions from other design instances.
Private actions can only co-occur with other private actions due to fairness
requirements. Synchronizing actions amounts to taking the union of their
bodies. The colimit, which is unique up to renaming of its variables and
actions, avoids clashes between equal names of different design instances.

The size of the colimit is bounded by the product of the size of the
instances, because it amounts to taking the Cartesian product of the actions,
removing combinations that are prevented by the explicit synchronizations
imposed by the configuration.

2.1.3 The CommUnity Workbench

The COMMUNITY Workbench is a (partially) graphical editor to support the
creation and editing of COMMUNITY architectures and of designs, connectors
and architectural configurations. Almost all of the work can be performed
graphically, except for the definition of the designs, an appropriate choice

28 MSc Thesis- Jorge Santos

given the nature of designs' definitions.
The COMMUNITY Workbench is written in Java and it uses the javacc [15]

compiler compiler to deal with the lexical and parsing parts of its work.
It is capable of checking the syntax of the designs1, calculating the colimit

of a configuration, and running a simulation of the colimit.
An interesting question to make about this tool (and the equivalent one

fro any other ADL tool, for that matter) is if its architecture is described
using the COMMUNITY ADL. The answer in this case is that it is not.

The program is freely available on the web [7] and is in active develop­
ment. The source is distributed along with the program; however, it is not
clear what license is attached to its use.

2.2 Extensions to CommUnity

In order to give a better idea of the kinds of extensions that our environment
should be able to support, we will next present two of the extensions that
have been made to COMMUNITY.

2.2.1 Location-aware CommUnity

In an extension to COMMUNITY described in [26], modeled systems are made
location-aware by adopting an explicit, but designer defined, representation
of space. This is accomplished by adding location variables to the designs
and attaching them to the regular variables and actions. Additionally, two
binary relations over locations need to represent our concept of space. This
allows the modeling of different definitions of "space" , such as a 2D, discrete
representation of space or a three dimensional one using reals to represent
each coordinate. The relations are called touches, to which two positions in
space belong if they are "in touch" with each other, and reaches, that holds
when one position is reachable from the other.

Communication in CoMMUNITY is achieved via bi-directional sharing of
variables and synchronization of actions; hence touches must be reflexive and
symmetric. For example, we can define two positions to be in touch if the
are at most one length unit apart.

1the connectors and configurations need no such checking, since they are created by
graphical (correctness preserving) actions

29 McMaster - Computing and Software

design laptop
inloc 11
out outfile@ll : enum(ps, pdf)
prv saved@ll : bool
do edit@ll : true, false -> saved := false

[] save_ps@ll : -saved -> outfile := ps I I saved := true
[] save_pdf@ll : -saved -> outfile := pdf I I saved := true
[] send@ll : saved -> skip

design printer
inloc lp
in infile : enum(ps,pdf)
prv busy@lp : bool; printfile@lp : enum(ps,pdf)
do get@lp : -busy -> printfile := infile I I busy := true

[] prv print@lp : busy -> busy := false

Figure 2.7: The laptop and printer designs with location variables

The reaches relation must be reflexive and movement of data or code to a
new position is possible only when that position is reachable from the current
one.

The specification of distribution (through the definition of the coordinate
system and touches and reaches relations) is separate from the specification
of computation to allow reuse of components in different topological contexts.

To illustrate these concepts we will rework the designs in Figure 2.1 to
include location information.

First, we have to define the type of location, which will be the type of
our location variables. To keep things simple, we will define a discrete linear
space using the type int for the type of location. The touches relation will
be defined as (x-y = 1) I (y-x = 1) I (x = y) and the reaches relation
will be defined as (x < y) I (x = y) . The new design specifications will
look like those in Figure 2.7.

Mobility is explicitly specified by assignments to location variables: all
data and code associated to the location variable on the left-hand of the as­
signment are moved to the position given by the right-hand side expression.
In Figure 2.8 we can see an example of a design that modifies location vari­
ables, this design is used as the glue of a connector that models the behaviour

30 MSc Thesis - Jorge Santos

design follow
inloc lchased
outloc lchaser
do prv move©lchaser lchaser /= lchased -> lchaser lchased

Figure 2.8: The follow design

of a portable printer that moves wherever an associated laptop goes.
Execution of designs is then carried on in a similar fashion to regular

CoMMUNITY, with two additional requirement:

1. 	That the location of each body of the action chosen for execution must
be in touch with the locations of the other bodies and of the variables
occurring in the body's guards and assignments.

2. 	 Every assignment to a location variable changes its value to a position
that is reachable from its current value.

As noted in section 3.1, this extension was incorporated into the
COMMUNITY Workbench and it helped highlight some of the shortcomings
of its design.

2.2.2 DynaComm

DynaComm is an extension to COMMUNITY that adds dynamic reconfigu­
ration and support for design of sub-architectures. It was developed to solve
the two most important problems with COMMUNITY : its lack of support for
specifying systems capable of modifying their own architectures at run time
(dynamic reconfiguration) and the lack of facilities for specifying components
made up of other components (in other words, defining hierarchical system
architecture specifications). It is described in [19].

DynaComm modifies the syntax of COMMUNITY designs and renames
them as components. It adds to COMMUNITY's notion of design an initial
condition, which constrains the values of its local channels when a component
instance is created. The COMMUNITY Workbench already supported these
although it did it outside of the design descriptions.

DynaComm also adds the possibility of specifying parameters for the
components to facilitate the design and development of systems. These pa­
rameters can be values belonging to a type, which can be used in initial

31 McMaster - Computing and Software

design component buffer(s:S, bound:int)
in i:s
out o:s
prv rd:bool;

b: list(s)

init rd = false

actions

put[b]: lbl <bound-> b=b*i
[] prv next[o,b,rd]: lbl > 0 \&\& -rd -> o = head(b)

I I b = tail (b) I I rd = true
[] get[rd]: rd -> rd =false

endofdesign

Figure 2.9: A DynaComm Component

conditions and in the guards and body of actions. They can also be types,
in which case they can be used to set the type of variables at instantiation
time.

An example component definition in DynaComm, modified from [19], can
be seen in Figure 2.9. It is very similar to the specification of COMMUNITY

designs except for the two new features described above:

• 	 An init section, which specifies the initial state of the component using
a first-order logic expression.

• Initialization parameters, specified between parentheses after the com­
ponent name, which facilitate the design and development of systems.

In order to make the description of dynamic systems more convenient,
DynaComm adds parameterized actions, which help to specify a family of
actions that use this index to identify the member of the family to which
reference is being made. The index may also appear in the enabling and
progress guards and in the assignment expressions differentiating members
of the family. Note that the cardinality of the indexing set must be finite.
An action of this kind is called a schema action or indexed action, and they
are specified after the action name:

g(index:int): L(g), U(g) -> R(g)

32 MSc Thesis- Jorge Santos

The formal definition (from [19]) is:

A schema action is a collection of actions with different identi­
fications (the index). Each member of this finite set of actions
has the same behavior, which can only be distinguished by the
unique index. This index can appear in the enabling and progress
guards, and the R(g) expression of the schema action g.

This extension is needed for the specification of multiple interfaces of the
same body of a component, which is essential for dynamic reconfiguration
in DynaComm, since reconfiguration actions will use them to differentiate
which action corresponds to (is synchronized with) which component of the
configuration.

In order to create and delete instances of components, DynaComm defines
a component manager M. This component manager can be defined for dif­
ferent component types within a system or at the subsystem level to manage
all the instances defined in that subsystem.

DynaComm also defines connector designs, which are components spe­
cialized in implementing interactions between components. This allows us to
separate the computational aspects of components from their communication
logic and allows the same communication pattern to be applied in different
contexts. In contrast with COMMUNITY, DynaComm provides a special
syntax for connectors, which simplifies the definition of complex systems in
COMMUNITY and ADLs in general.

A connector in DynaComm has a finite set of roles that can be instan­
tiated with specific components of the system under construction, a glue
specification, which describes how the activities of the role instances are to
be coordinated, and the connections between the glue and the roles, given
by synchronization of channels and actions between them. Roles define the
minimum requirements the components instantiating them must meet, and
the behaviors to be plugged into the connectors. Each role can refine another
already defined component or subsystem, in which the refinement morphism
is given by the mapping of the channels and actions between the components
or subsystems (refer to section 2.1.2 for more on refinement).

The connector can also have attributes and constraints to enable it to
specify a general architectural pattern. An attribute can be private, input
or output, as in components. The constraint is a formula in first-order tem­
poral logic, which constrains the architectural evolution of the connector's

33 McMaster - Computing and Software

design connector DCS
glue server-reg
role MCServer
connections

in_id.MCServer to out_id.server-reg

res_data.MCServer to in_data.server-reg

out_id.MCServer to in_id.server-reg

accept.MCServer to accept.server-reg

send.MCServer to send.server-reg

role client[max_index:nat]
connections

data.client[C-id] to out_dat.server-reg

send_req.client[C-id] to C-accept(C-id).server-reg

receive.client[C-id] to C-send(C-id).server-reg

endofdesing

Figure 2.10: A DynaComm connector

configuration. An example definition of a connector from [19] can be seen in
Figure 2.10. The whole system model can be found in [19].

The name of the connector is specified after the design connector key­
words. The glue part specifies the name of the component that will be play­
ing that part. Likewise, we can have zero or more role declarations naming
the components playing these parts. The connections section gives the syn­
chronization of channels and actions between the roles and the glue, for which
we can define a "middle" component (a cable) and corresponding regulative
superpositions (41] from it to the glue and the role (see section 2.1.1). These
connections can specify the actual parameters for designs and actions. Each
role can refine another already defined component or subsystem, in which the
refinement morphism is given by the mapping of the channels and actions
between the components or subsystems.

The other main aspect in which DynaComm improves over CoMMUNITY

is the possibility of creating new systems from components. The term it uses
for this new system is, a bit confusingly, subsystem; it can be thought of
as configurations of simpler components, which due to reconfiguration can
be dynamically modified. They can be be used to combine the instances of
components, connectors and other subsystems. When a subsystem is defined

34 MSc Thesis- Jorge Santos

in DynaComm a schema of the subsystem is also defined, which means the
instances of this subsystem can be used to construct other subsystems.

An example of a subsystem from [19] can be seen in Figure 2.11. The
name of the subsystem is given after the design subsystem keywords.
Then, the associations section name the components of the subsystem in
the component section and the morphisms section gives the synchronization
between the components' channels and actions. The participants keyword
is followed by a mapping of new names to the designs that will be contribut­
ing to the interface of the subsystem. Then, the channels and actions of
the subsystem are named and connected to the interface contributors' own.
Finally, the init section gives the initial state of the subsystem.

2.2.3 CommUnity to SMV

Although not an extension of the Workbench itself, work has been started
in automatic translation of COMMUNITYarchitectural descriptions to SMV
modules. The SMV system is a tool for checking finite state systems against
specifications in the temporal logic CLT [17]. This was motivated the
COMMUNITY Workbench's current lack of verification of temporal properties
of designs, such as verifying that actions execute in the proper order. This is
being done by implementing a new lexer and parser for the syntax produced
by the CoMMUNITY Workbench and producing SMV modules. It would be
desirable that this parsing work could be skipped by relaying on a higher
level API for working with COMMUNITY designs.

2.2.4 Conclusions

In conclusion we can find the following main deficiencies in the current
CoMMUNITY Workbench:

• 	 It has a monolithic architecture, unsuited for extendibility.

• 	 Lack of code documentation, making it hard to maintain.

• 	 Built from the ground up, making the code base larger than it needs
to be.

• 	 For the same reason it lacks some amenities of more modern graphical
editors. For example, its graphical editing capabilities are severely
limited.

35 McMaster - Computing and Software

design subsystem MCServer
associations

component me-reg, cable2, server

morphisms

cable2 to me-reg
connections

sync1.cable2 to a1.mc-reg

sync2.cable2 to a2.mc-reg

cable2 to server

connections

sync1.cable2 to accept.server

sync2.cable2 to send.server

participants

r:mc-reg; c:cable2; s:server

interface

in

in_id to in_id.r

out

res_data to res_data.s

down to res_data.s

down to down. s

out_id to out_id.r

actions

update to update.s

accept to accept.s

send to send.s

init
Mc-reg(r) && Server(s) && Cable2(c) && MCS(r,c,s)

endofdesign

Figure 2.11: A DynaComm subsystem

36 MSc Thesis- Jorge Santos

• 	 It does not integrate well with the environment it is running in. For
example, it does not use native file selectors.

Chapter 3

CommUnity Workbench 2

In this section, we will describe the requirements, design criteria and de­
sign decisions related to a new CoMMUNITY Workbench, a tool meant to
work with CoMMUNITY and related languages with the goal of being eas­
ily extensible to facilitate further modification and experimentation with the
language. It is only natural to ask if the the new COMMUNITY Workbench's
architecture was described using COMMUNITY itself. As previously stated,
different ADLs are suitable for different projects and, in this case, the style of
design and development was not a good fit to COMMUNITY's characteristics
and therefore it was not used to model the Workbench's architecture.

3.1 Rationale

Although the CoMMUNITY Workbench developed by Crist6vao Oliveira et
al. is a very useful tool for experimenting and working with CoMMUNITY
designs, it has design limitations that prevent it from being an ideal plat­
form for working with extensions of the language. From the source of the
COMMUNITY Workbench, available with the distribution, we can distinguish
at least two features that were ostensibly added after the initial implemen­
tation of the Workbench. From the analysis of these extensions we can see
that the extensions of the Workbench were not as straightforward as they
should have been.

The first one was the addition of location variables to the design's vari­
ables and actions. This necessitated modifications to the grammar that
parses the designs, as well as a number of files that implement different as­

37

38 MSc Thesis- Jorge Santos

pects of the COMMUNITY Workbench functionality. Most worryingly, these
changes necessitated modification to the core implementation of the language;
in other words, after these modifications, all subsequent designs would need
to take these changes into account, even if this new extension does not con­
cern them.

Another change that required modification of the code base was the ad­
dition of the ability to generate X-Klaim programs1. It was possible to add
this modification in a more local way, only a few classes were affected. Still,
it would be ideal if the core implementation of the language did not need to
be modified at all in order to add new functionality to the editor. Although
it may prove impossible to attain this initially, the intention is to fix the orig­
inal design as needed to enable this goal, instead of violating this principle
to implement new functionality and in essence forking the code base.

As discussed in section 1.7, Architecture Description Languages are in
constant and rapid evolution. This makes flexible tools that are easy to
extend a must if the language is to be useful for research purposes with
a reasonable investment in terms of researcher effort. With this in mind,
we set out to develop a robust and extensible platform for working with
COMMUNITY and its extensions.

3.2 Design

3.2.1 Design goals

As discussed previously in section 3.1, given the desire to make the workbench
a solid base for experimentation with ADL features, extensibility was the
main design concern of the new tool. It should be possible to add new
syntaxes and semantics without modifying the original code base. It should
also be possible to use external tools to process the systems modeled with
the tool.

A concern of any long-term software project is maintainability; with this
in mind, the design of the new Workbench should allow for as easy as pos­
sible maintainability. This implies an easy to understand design and, most
importantly, ease of modification.

The design should also have reasonable and scalable performance, so it
can work with reasonably sized problems.

1X-Klaim is a programming language for object-oriented mobile code [3]

39 McMaster - Computing and Software

It is also worth mentioning that it is important for the tool to be able to
run in the most common desktop environments in existence today. Especially
in academic settings. Nowadays, that translates into a recent version of
Windows, Max OS X and several different Linux distributions.

3.2.2 Implementation Considerations

Before considering the design of the tool itself it will prove useful to briefly
discuss the implementation strategy chosen, as this will direct and restrict
the specific design for the new tool.

ArchStudio as a base

Initially, ArchStudio was intended to serve as a base to develop the new
COMMUNITY Workbench on. However, several problems prevented this from
being the best option.

ArchStudio 4, the current version of ArchStudio, is based on the code base
for ArchStudio 3, which was a stand-alone Java application, which sustained
more than 70 releases over 5 years [33].

Figure 3.1 (from [6]) shows ArchStudio's tools and their relationships.
The ArchStudio team developed XML Schemas using XML Spy, a proprietary
XML Editor. Then they used a tool they developed, Apigen, to generate
Data Binding Libraries; these last two tools use Apache Xerces, which is an
XML parser and DOM implementation. xArchADT builds on top of the
Data Binding Libraries in order to provide an event-oriented interface to
ADL documents. Finally, the different tools and editors of ArchStudio, such
as ArchEdit (a visual syntax-directed, tree-based editor) in the figure use the
xArchADT to perform their duties.

The ArchStudio 4 release moved ArchStudio from being a stand-alone
Java application into being a set of Eclipse plug-ins. This allowed the Arch­
Studio developers to have a more solid and modern base for their editors and
tools.

When ArchStudio was selected to develop the new COMMUNITY Work­
bench, an initial XML Schema document describing an XML serialization of
a design was elaborated. Then, we proceeded to use Apigen [6] to generate
the necessary data bindings to build on. Unfortunately, this is where the
deficiencies in ArchStudio started to show up.

40 MSc Thesis- Jorge Santos

ArcbEdlt
V'ISUlll SynltlX-tiirected
Tree./Josed AIJL Editor

uses

xArcbADT
Event-oriented lmeiface to

ADL Docwntmts

Apigm generat s
lt:lVa-to·XML til11a binding p:·---111>1

generator.

uses

XMLSpy
COTS XML Developme-nt

Environment

Apache Xerces
Java XML Parser ami
DOM lmplenumtation

-------------­ ·..XML Schemas I

'-~------------·~-''

Figure 3.1: ArchStudio Infrastructure tools and their relationships

The first issue encountered during this step was that Apigen was failing
without much of an error message while trying to generate bindings for our
extension schemas. While this problem was later solved, this process revealed
that Apigen is not quite comprehensive in its understanding of XML Schema.
While this was not a design goal for Apigen, it does limit its applicability.
Additionally, while at the time Apigen was written there were no mature
options for generating data bindings based on XML Schemas [6], since that
time production quality tools have been developed to that effect [16].

Another problem that was uncovered during this initial effort was the
lack of documentation for the ArchStudio 4 editor and related development
tools (both in the form of tutorials, guides, references and the like, and code
documentation, such as javadoc).

In addition to these problems, while experimenting with ArchStudio 4,
several bugs and performance problems were uncovered that, while not being
show-stoppers, weakened our confidence in its overall maturity, especially
given the existence of, in our opinion, better options that will be discussed
next.

41 McMaster - Computing and Software

Finally, ArchStudio 4 itself does not seem to really be designed for ex­
tensibility, as evidenced by the fact that one of the members of the team
suggested forking the code base for the implementation of the COMMUNITY

editor.
In conclusion, the perceived benefits of basing our work on ArchStudio

would be offset by the difficulties of adapting it to our ends.

The Eclipse Graphical Modeling Framework

While researching alternatives to base our work on, we came across the
Eclipse Graphical Modeling Framework (GMF), a generative component and
runtime infrastructure for developing graphical editors based on the Eclipse
Modeling Framework (EMF) and the Graphical Editing Framework (GEF),
which is also an Eclipse project. The big advantage that GMF brings to the
table is a proven base to develop production quality graphical editors. We
will first provide a description of EMF and GEF, on which GMF is based
and then proceed to describe the unique characteristics of GMF.

The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) provides code generation facilities
for the construction of tools based on structured data models, as well as
runtime support for such tools. It provides a meta-model for model building
and the tools necessary to make working systems out of the models created
with it [34].

EMF uses the word model in a similar way in which UML, for example,
does. It is a description of a system of structured data. EMF uses XMI (the
XML Metadata Interchange XML application) [12] as its canonical form of
model definition2 . However, there are several ways to get from a model
description to an XMI model definition:

• Write an XMI document directly, using an XML editor or, macho-style,
character by character.

• Export the XMI document from modeling tools such as Rational Rose.

• Annotate Java interfaces with model properties.

2As a side note, the EMF meta-model itself is itself an EMF model.

42 MSc Thesis- Jorge Santos

• Use an XML Schema serialization of the model.

Although not all these methods have natively compatible meta-models,
EMF provides work-arounds to get around each format's limitations. Gen­
erally, an approach suiting the project at hand will be chosen. Regardless
of the method chosen to describe the model, once it is specified and in XMI
format, the EMF generator will produce a set of Java implementation classes
of the model. This provides a fast way to create the code for manipulat­
ing the model, avoiding the error-prone process of creating one by hand and
simplifying maintenance. Once the code for the classes is generated, it is
possible to add variables and methods and subsequent modifications of the
model and regeneration of code will respect these changes. Changes to the
model do not affect manually-inserted code, except for modifications to fea­
tures of the model the code depends on. This is accomplished by changing
the meta-data embedded in the comments for the code.

The generated code supports model change notification, several kinds
of persistence, a framework for model validation, and an efficient reflective
application programming interface for manipulating EMF objects generically.
Additionally, as we will see below, there are additional useful tools that build
on EMF.

In addition to the code generation and runtime support, EMF also pro­
vides the EMF.Edit framework. It builds on the core framework to provide
support for generating adapter classes that enable viewing and command­
based (undoable) editing of a model and can even generate a basic working
model editor.

EMF has its roots in the OMG (Object Management Group) MOF (Meta
Object Facility). It started as an implementation of the MOF specification,
but evolved based on practical use experience. EMF is basically an efficient
implementation of a core subset of the MOF API. The MOF-like core meta
model in EMF is called Ecore. In Figure 3.2 we show a greatly simplified
graphical representation of the Ecore kernel. For more detail refer to [4].

The proposal for the next version of MOF defines a similar subset of the
MOF model, called EMOF (Essential MOF) and separates it out. EMF can
transparently read and write serializations of EMOF [34].

The Graphical Editing Framework

The Graphical Editing Framework (GEF) allows developers to create a rich
graphical editor from an existing data model. GEF uses as its layout and

43 McMaster - Computing and Software

eSuperTypes

-~~--1,

__I----,

~~_:_•_!----- _____e_"~l-b~s ·--o-_.-~~~-=11-------'"""'""L>~

·-·~-----~ eR ences

o.•
§ EReference

c name

c conta.Jnment

eReferenceTypt! c lowerBound

l:l upperBound

L__.._._...____ -­1_]
eOpposlte

Figure 3.2: The Ecore kernel

44 MSc Thesis - Jorge Santos

rendering toolkit the draw2d plug-in. It builds on it to provide standard
graphical editing tools such as selection, creation, connection and marquee;
a palette in which to hold these tools; handles for resizing objects and bending
connections; graphical and tree viewers; undo/redo support using commands
and a command stack; and, most importantly, a controller framework for
mapping the business model to a view. This controller framework provides
plug-in policies for mapping interactions with the view to changes in the
model. Various implementations for showing feedback and adding selection
handles, and various request types and tools or actions that send these re­
quests to the controllers.

GEF is application neutral and provides the groundwork to build almost
any graphical editing application, such as GUI builders, class diagram editors,
state machine editors and even WYSIWYG text editors (35].

Summarizing, using GEF provides a set of standard tools for creating
graphical editors and solves many of the common problems encountered while
building these tools. This avoids some of the problems encountered while
trying to use ArchStudio as a base for our work.

Even without GMF, applications can be built using EMF and GEF since,
between the two, they provide all the components of a well-designed graph­
ical editor (a model, a view, and a controller). Although it is possible to
create an editor using just GEF and create the model using Plain Old Java
Objects (POJOs), using EMF provides the advantages of code generation,
built in persistence and tools for manipulating your model. Additionally, by
using EMF we avoid many of the pitfalls and bugs we would encounter when
developing a model written from scratch.

Putting it all together

GMF is a technology that has its origins in IBM Rational modeling products.
It solves some technical challenges (like different command stacks) of using
EMF models with GEF. Additionally, it provides a model-oriented develop­
ment approach to developing a graphical editor, with models describing the
editor and the correspondence between its elements and the model the editor
is going to work on. It may be viewed as analogous to the way EMF allows
us to generate a tree based editor from a model definition; only here there
is quite a bit more work involved, since graphical editors allow much more
variation and flexibility [36].

When developing a new application using GMF, the first step is usually

45 McMaster - Computing and Software

to create a model using EMF, as discussed previously. Then a graphical
definition model is created to represent the elements that will be visible on the
canvas. Next, a tooling definition model is created to describe the tools that
will be available to the editor's users. Finally, a Mapping definition model,
specifying the relations between all the other models, is created. From this,
a generator model is created that allows us to modify generation parameters
and then generate the graphical editor. Just as with the EMF case, it is
possible to modify the generated code to our liking and the tools will respect
the modifications when regenerating the code.

In addition to all the architectural benefits that these three frameworks
bring to the table, there is extensive documentation for them. Furthermore,
there are plenty of tutorials and other resources on the web to help a new
developer get started on them. This is not only important for initial de­
velopment of the project. As developers come and go, and new people get
incorporated into the development of the project, it is of paramount impor­
tance to have a stable, maintained and well documented code base to help
newcomers get up to speed.

In conclusion, for a new project that has no dependencies on an already
developed model implementation, it is a very good choice to adopt the GMF
framework and develop from there. Although this forces us to use EMF as a
meta-model framework, it is sufficiently rich and flexible that this represents
more of an advantage than a disadvantage.

3.2.3 The Design Itself

By using EMF and related technologies, the design of the tool becomes the
design of the models describing the domain models, the graphical editor and
the mapping between these two. Consequently, in what follows these models
are described.

To develop the new CoMMUNITY Workbench, we first defined a domain
model for the COMMUNITY designs and related concepts using EMF. From
there, we defined all the required GMF models and produced a graphical
editor for the model. Although at this stage the editor is quite "rough around
the edges" it was considered a better investment of time in the long run to
build a solid base for future development than to have a shaky base with a
pretty front-end.

The development of a GMF-based editor necessarily starts with the design
of the model, since this is the base from which the editor's code will start.

46 MSc Thesis- Jorge Santos

At first, we started the model specification using the Java interfaces plus
annotations mentioned above. Unfortunately, Java has been evolving rapidly
as of late, and although EMF has been evolving along with it, the documen­
tation has not been consistently updated3 . This influenced us to move the
main modeling method to XML Schema; using the XML Schema generating
capabilities of EMF saved a lot of time during this migration. The designs
were modeled down to the point of logic expressions, that is, logic expressions
were not given structure; this was decided given that the modeling of more
detail inside these expressions would have produced a bigger, more verbose
model without any immediate benefit. Additionally, as exemplified in the
example extensions reviewed in section 3.1, the expression language has so
far remained the same, so the individual modeling of their components would
not have added or detracted from the ease of their implementations. In any
case, it is possible to extend the model to do fine-grain expression modeling
without disturbing existing users of the model.

Next, we will give an illustration of the model divided into three parts,
to simplify the explanation.

First off, we will describe the part of the model describing designs. A
simplified graphical representation can be seen in Figure 3.3. The XML
representation of the Ecore model for the designs and the rest of the domain
models discussed below can be found in appendix A.

The Design model has three references to VarLists, list of variables,
one for each kind of variable (private, in and out). These variable lists
aggregate Variables, which have a type. The design also incorporates an
ActionList. The action list contains the Actions, these have a boolean
attribute indicating if they are private or not, an enabling guard, and a
progress guard. Actions also have a series of Assignments which have a
left side, a right side and a type, which is of the type AssignmentType, an
enumeration of the two strings :=and oneof. We also model an ActionCable
and a VariableCable for action and variable synchronization, respectively.

All the elements that need to have a name attribute inherit from the
CNamedElement, which defines only this attribute.

Finally, a Design can have an Invariant, establishing the properties that
the state of the Design must meet.

Next, we present a simplified model for connectors, as seen in Figure 3.4.

3A new edition of the EMF book should be out before the end of the year; this will be
a big help for current and future developers of the editor.

47 McMaster - Computing and Software

-~- Ac.tionCable

·-·­

§Variable
'

§ VarlableCable

c type

J J !.

§ At:.tion

c enabllngGuard

c private

c progressGuard

--~~---

__[;l Aulgnmt!_~!
c lef!Side

c rlghtSide

c type
--------'----­
,------------~~-

1::J VarUst -~--------~-___,_______
---------­ ~~--------­

~·"'"'

/_//

/ __.....--•'"
./

!"_~..-­

At:.tionUst

§ Design

§ Invariant

CJ value

Figure 3.3: The Design Model

§ Instance

c design

Figure 3.4: The Connector Model

48 MSc Thesis- Jorge Santos

13 lnsu.ncellst 13 Conflguratlo 13 Attil.chmentl.lst

-­

13 Atta.chm&nt

c dest

CJ source
""--......._~~

,.,.,...._""i l
13 Instance

c design
··--­

1-------­

13 Connector 13 Architecture -­ i
13 FleldREf

!'<;,_

I/'

l'/,/­

1 §~·· r 13 DeslgnRole 13 ConnectorR<>Ie-

o so-urce

c dest

-·

I

Figure 3.5: The Architecture Model

Connectors can also be named, so they inherit from CNamedElement, they
have a Design that acts as the glue, and they also have several DesignRoles
which should have a name and refer back to a Design.

They also have a Configuration, which has an InstanceList for enu­
merating the Instances, which have an attribute name via CNamedElement
to give an instance name to the role instances (not shown in the dia­
gram). The Configuration also has an AttachmentList. This defines an
Attachment for every two designs that are to be connected and each of them
can have one or more FieldRefs to define the way the variables and actions
will connect to each other.

Finally, we describe the part of the model that deals with architectures.
A graphical representation can be found in Figure 3.5.

The Architecture can have zero or more ConnectorRoles, which inherit
from CNamedElement the name attribute. They each have a reference to a
Connector, which themselves refer back to a Design.

Additionally, an Architecture can have DesignRoles, which also inherits
from CNamedElement (not shown in the diagram) and, again, they refer back
to the Designs. Configuration has InstanceLists, that name instances of
Designs. They also have AttachmentLists which have attachments between
roles of the connectors and designs and specify the refinements between them
via FieldRefs.

This completes the model for an architecture. With this model created,
EMF is capable of producing a tree-based editor for the model. There is also

49 McMaster - Computing and Software

a generator model that allows the modification of several characteristics of
the generated editor. Additionally, the generated editor code can be modified
until we get exactly what we want. We can see in Figure 3.6 an example of
this editor showing part of the printing architecture from section 2.1.1.

After we have a model for our application, we can model the graphical
editor with EMF, defining the graphical representations of the elements, the
tools used for creating them and so forth and EMF will generate a generator
model for a graphical editor. This editor, in a way analogous to the way
in which we can modify the EMF editor generator model mentioned previ­
ously, can be modified to alter the behavior of the generated editor. A tree
representation for part of this model can be seen in Figure 3.7.

The graphical model consists (with some simplifications) of a Gallery of
Figure Descriptors, which contain Figures, which can contain Labels, a
collection of Nodes, Connections, Compartments and Diagram Labels. The
basic idea is that the Figures describe the graphical representation of the
Nodes, which are going to be linked with the domain elements in the mapping
model.

There is also a simpler model for the tool palette that goes with the dia­
gram editor. It consists of ToolGroups which contain the different Creation
Tools. Complete documentation for this model can be found at the GMF
web site [36].

Next, it is necessary to create the model mapping the domain model to
the graphical editor model. The tree representation for part of this model
can be seen in Figure 3.8.

The purpose of this model is to link which elements of the domain model
will correspond with which features of the graphical editor. It specifies what
the effects of the actions performed there will have in the model domain.
For example, at the bottom of Figure 3.8 we can see how the ActionCable
Connection from the graphical editor model will represent the ActionCable
element of the domain model, with the source and dest references of this
element being set to the source and destination of the Connection. This will
translate in the graphical editor to setting the source and dest references of
the ActionCable element in the model to be set to the source and destination
of a graphical arrow drawn in the screen.

From this model, a model is automatically generated from which the final
product will be generated. This model describes in detail the graphical editor
that will be generated and thus allows customizing how it is created. In our
case there was no need to modify it, although further refinement of the editor

0

Right Side

Type

I@ ps

II§:=

t'1j

~-
('!)

w
0')

>::s
2;­
t":l
g:

a ci-

Ei
('1)

t_:rj
p,......
C"'­

~

v

/CommUnlty/printlng.community

+ Document Root

v + Architecture printing

+ Connector Role async

v + Design Role laptop

v 	+ Design laptop

v + var Ust

+ Varlable outflle

11- + Var Ust

v + Action Ust

v + Action save_ps

+ ~~ij~frieftd~~eJ
+ Ass[gnment saved

11- + Action save_pdf

+ Action send

v + Design Role printer

11> + Design primer

v + Configuration

v 	{> Instance Ust

{> Instance laptopl

+ Instance primerl

+ Instance asyncl

II> .;;, Attachmem Ust

Q1

~
t":l

~
Bl
~·

~
~
('1)

~

<:"I­

~

51 McMaster - Computing and Software

T -¢' Canvas community

T -¢- Figure Gallery Default

II> <0- Figure DescriptOr ActlonFigure

II> <0- Figure DescriptOr ActlonUstFigure

T {» Flgure DescriptOr DeslgnFlgure

,. {> Rounded Rectangle RoundedDeslgnFlgure

+ Label DesignNameFlgure

<} Child Access getFigureDesignNameFlgure

(I> -¢' Figure DescriptOr ActlonCableFigure

<} Node Action (Action Figure)

<} Node ActionUst (ActlonllstFigure)

<} Node Design (DeslgnFigure)

<} Connection ActlonCableConnectlon

<} Compartment ActlonUstCompartment (DeslgnFigure)

<} Compartment ActionCompartment (ActlonFigure)

<} Compartment lnVarsCompartment

<0- Diagram Label Action Name

<0- Diagram Label DesignName

Figure 3.7: The COMMUNITY Graphical Editor Model

'9' <0- Mapping

'9' ~J Top Node Reference <component:DesignRoie/DesignRole>

T Il Node Mapping <DesignRole/DesignRole>

8!i Feature Label Mapping false

'Y ~J Child Reference <design:Design/Design>

1' Il Node Mapping <Design/Design>

8!i Feature Label Mapping false

'Y ~J Child Re?erence <actlons:ActionUst/Actionllst>

'Y Il Node Mapping <ActlonUst/ActionUst>

II> ~J Child Reference <actlon:Actlon/Actlon>

e:l Compartment Mapping <ActionCompartment>

(I> () Child Reference <inVars:VarUst/lnVars>

e:l Compartment Mapping <ActionUstCompartment>

e:l Compartment Mapping <lnVarsCompartment>

e:l Compartment Mapping <DesignCompartment>

<Unk Mapping <IVariable.connectlon:Variable)IVarConnectlon>

<Unk Mapping <VariableCable!Variableeable.source:Variable->VarlableCable.destVarlablel/VarlableCableConnectlon>

<Unk Mapping <ActlonCabie(ActlonCabie.source:Action->ActlonCable.dest:Actloni/ActlonCableConnectlon>

ITiill Canvas Mapping

Figure 3.8: Mapping model

52 MSc Thesis- Jorge Santos

may make it necessary.
A screenshot of a sample editing session with the graphical editor can be

seen in Figure 3.9.

3.2.4 Comparison with CommUnity Workbench

Although the COMMUNITY Workbench was a good start for working and
experimenting with COMMUNITY designs, it proved to be too limiting when
it came to extending the language. We believe that with the foundations
established with the new COMMUNITY Workbench, it will be possible to
implement extensions to the COMMUNITY language in a more modular way
and without having to modify the core implementation.

This has been accomplished through the use of solid and proven frame­
works from well established development communities. This has the advan­
tage of providing a solid foundation for our work, one that we know will be
maintained and kept relevant as the technologies evolve and mature. It also
allows us to make use of the present and future ecosystem of tools devel­
oped around Eclipse, which will allow us to enhance the user experience in
a way which would not be possible by developing a stand-alone application,
especially considering that the resources available for its development will
probably fluctuate with time.

More specifically, extensibility will be allowed by creating extensions to
the base domain model by taking advantage of EMF extensibility features.
In particular, the extensions may be created by extending the XML Schema
description of COMMUNITY; thanks to EMF's design this will allow for the
reuse of the common code between our original implementation and the ex­
tension to COMMUNITY. Furthermore, the work created for the graphical
editor for COMMUNITY architectural descriptions can be extended in the
same way (by extending the models created for the COMMUNITY editor).

In the old workbench, in contrast, each extension had to be approached
in an ad-hoc way, and it usually involved modification of the existing code
and/or reimplementation of existing features.

On the other hand, our editor lacks some characteristics of the original
Workbench; in particular, there is no syntax checking of the expressions used
in an action's assignments. It is also not possible yet to get the colimit of
an architecture and, of course, it is not possible to "execute" the design. It
also does not implement the export of CoMMUNITY designs to X-Klaim,
although it is unclear if this feature is in use anymore. It should be noted

53
M

cM
aster -

C
o

m
p

u
tin

g
 an

d
 S

oftw
are

! ! j I i
-
·
-
-
-
-
-
-
-
·

aJi

!!!~
-
·
·
·

-
­

/•'
~
-
-
·
-

···­
...

·
·
-
~
-

.
~
-
-
-
-
-
y
-
-
-
-
-
-
-
1
~
-
-
-
-
-
-

[]]

~
~
=
=
=
=
~
=
=
=
=
=
=
=
=
=
=
=
=
=
~

F
igure 3.9: T

h
e C

oM
M

U
N

IT
Y

G
raphical E

ditor

54 MSc Thesis - Jorge Santos

that the design of the tool allows for a clean incorporation of these facilities.
Also of note is the fact that the design's representation in-file is different

for the two tools. With the old Workbench using a mixture of the traditional
CoMMUNITY design syntax for the designs themselves and an ad-hoc syntax
for the rest of the architectural constructs. Our tool uses a more uniform
XML syntax for all constructs, with the disadvantage that it would be harder
to modify by hand because of its verbosity. It is nevertheless hoped that
this editing will not be generally necessary since graphical editing tools are
provided. FUrthermore, it would be possible to develop text-driven editors
that may render the new format using the old syntax and allow manipulation
in this form.

3.2.5 Extending the CommUnity Model

Basing our basic CoMMUNITYModel in well-defined standards such as XML
Schema and Ecore provides us with mechanisms for the easy extensibility of
these models to add new constructs to the language.

Additionally, using EMF and related technologies allows us to also cleanly
extend the implementation of said model to support the new characteristics
of the extension. As an example of the extensibility possible we will describe
a model created to represent DynaComm (section 2.2.2), reusing what was
already built for CoMMUNITY. In Figure 3.10 we can see a graphical rep­
resentation of the model created for representing the language described in
section 2.2.2.

We added the necessary constructs to represent new DynaComm ele­
ments such as Subsystem and Connector. These elements inherit from the
Design element of COMMUNITY's model, so that model information com­
mon to them and the core derived from that information is inherited in the
DynaComm model without repetition.

Similarly to the way it was done with COMMUNITY, it is straightforward
to generate a tree editor for working with DynaComm models and, with the
creation of the corresponding models, it is possible to also create a graphical
(boxes and arrows) editor for the language.

Additionally, thanks to the implementation generated by EMF and its
dynamic characteristics, it is possible to programmatically load (deserialize),
create and manipulate, and save (serialize) instances of the CoMMUNITY
Model and its extensions to perform transformations and analysis on them.

To further test the extendibility of our work an extension to edit location

55 McMaster - Computing and Software

~--t>t==j~----
/'\ """'./

§ Connector

o constraints

o refines

!:j_Role

-~-

----~

I
I

1

v~·-· i
Figure 3.10: DynaComm Model

aware CoMMUNITY designs was developed. The model for this extension is
depicted in Figure 3.11.

We created two new types: LocAction and LocVar that inherit from
Action and Variable, respectively and add a location reference that is of
type Variable.

Additionally, we added a new LocArchi tecture, which inherits from
Architecture and adds a location reference, this reference is of type
Location, which has reaches, touches and type attributes.

This new model allows us to model all of Location Aware COMMUNITY

properties.
Finally a model uniting the DynaComm and location aware COMMUNITY

models was created. A graphical representation of this model can be seen
in Figure 3.12. It is simply a new type LocSubsystem that inherits both
from Subsystem and LocArchitecture; in this way, it has the references
and attributes of both systems. This last system was not created from an
XML Schema, since XML Schema does not allow for multiple inheritance;
instead, an Ecore model was created directly. EMF takes care of things on
the Java side by generating the necessary (repeated) code, since Java does
not support multiple inheritance either.

§ Panic I pant

o referenceName

///
,.

,/

§ VarMap
!:j Subsystem § lnterfac.e

o fleldName
c constraints

o referenceName

-­ --­

§ ~;ocl;;;;;; § t.lorphl•m

o component o componentName

o subsystem o subsystemName

----­

56 MSc Thesis- Jorge Santos

£:J reaches

£:J touches

I:J type

Figure 3.11: Location aware COMMUNITY Model

--,"-~,.,,
'<,, .//,/'

§ LocSub•yst"m

Figure 3.12: DynaComm plus Location aware COMMUNITY Model

57 McMaster - Computing and Software

This last example illustrates the extensibility of our approach. As before,
the new model can be modified independently of the others (as long as the
modifications do not affect the references from this model to the others) and
all the code for working with the models this new model builds upon is reused
for the new one.

58 MSc Thesis- Jorge Santos

Chapter 4

Conclusions and Further Work

This chapter contains a brief review of the work contained in this thesis.
Additionally, it discusses some possible future directions that additional work
may take.

4.1 Review of the work

We have presented the motivation behind Architecture Description Lan­
guages (ADLs) and the tools necessary to work with them. Furthermore,
we examined some of these tools and the possibility of extending them for
our own purposes.

We also gave a brief explanation of the CoMMUNITY ADL and the ways
in which it has been extended. We also discussed how this extensions were
implemented using the existing COMMUNITY Workbench and the shortcom­
ings it has for this purpose.

Finally, we presented the design of the new system and the foundations
that give it its extensibility. This was possible thanks to the use of tech­
nologies such as EMF and GMF. The use of these frameworks will allow for
continued development of the Workbench and a solid base for its extensibil­
ity. Although initially the need to learn about the metamodel language and
its application may seem like a cumbersome requirement, the time saved by
the code generation features and the maintainability, flexibility and exten­
sibility of the resulting system makes it a worthwhile effort. Additionally
the use of a model-driven development approach allows for the generation
of code, allowing both a faster development and easier maintainability. The

59

60 MSc Thesis- Jorge Santos

experience of trying to extend ArchStudio made us realize that it is wise to
base our own efforts on a widely used platform with a proven record-track of
extensibility and flexibility.

This lead us to the implementation of a new editor for COMMUNITY de­
signs. This editor is rooted in a well defined model for the language and
uses Eclipse and EMF to have a more solid and extensible base. The be­
ginnings of a graphical, boxes-and-arrows editor was produced to show the
feasibility of the task and also an extension of the COMMUNITY model to
the DynaComm one was produced, from which the corresponding tree-based
and boxes-and-arrows editors may be developed. Similarly, a model for Lo­
cation Aware COMMUNITY was developed, and a final one combining this
two models is used to illustrate the extensibility capabilities of our approach.

Although not all the functionality of the old CoMMUNITY Workbench has
been implemented, thanks to the design and development strategy adopted, it
is our belief that the work performed will allow for an easier implementation
of these capabilities and more as extensions. Furthermore, our work will
form a solid base in which future development of tools for CoMMUNITY's
extensions may be based.

4.2 Future Work

As future work, we can suggest the development of the remaining missing
functionality of the old COMMUNITY Workbench (where this functionality
is still deemed important and useful). The development of these extensions,
in addition to providing valuable tools, may reveal useful refactorings of our
models, making the new workbench all the more useful and reliable. This
refactoring will be facilitated by the model-driven approach adopted for the
development, since this would not involve the rewrite and careful editing
of large and widely dispersed snippets of code, as is often the case with
refactoring of large code bases.

As a larger and harder project, it may be useful to reimplement other
ADLs such as xArch and ACME using the approach adopted for this work,
namely, using a model-driven development strategy. In particular, it might
prove fruitful for the developers of tools such as ACME Studio and ArchStu­
dio to adopt GMF as a basis for their tool development, as this may simplify
maintenance work and enhance usability.

Appendix A

Ecore models for CommUnity
and friends

Note that some formatting was necessary to make the lines short enough to
fit the page. As a result some strings (attributes' values) expand several lines
when they should be all in the same line

A.l CommUnity Model
<?xml version="l.O" encoding="utf-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns :xmi="http: //www. omg. org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

name="community"

nsURI="http://www.cas.mcmaster.ca/ADL/2007/CommUnity"

nsPrefix="community">

<eClassifiers xsi:type="ecore:EClass" name="Action"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http: Illorg/eclipse/emfI ecore/util/ExtendedMetaData">
<details key="name" value="Action" />
<details key="kind" value="elementOnly" />

<IeAnnotations>
<eStructuralFeatures xsi:type="ecore:EReference"
name=" assignment" lowerBound="l" upperBound="-1"
eType="#//Assignment" containment="true"
resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="assignment" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute"
name="enablingGuard"
eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

61

http://www.eclipse.org/emf/2003/XMLType#//String

62 MSc Thesis- Jorge Santos

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="enablingGuard" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="private"
eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//Boolean"
unsettable="true" >

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="private" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute"
name="progressGuard"
eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="progressGuard" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ActionCable"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="ActionCable" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="source"

lowerBound="1" eType="#//Action">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="source" />

<IeAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="dest"

lowerBound="1" eType="#//Action">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="dest" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Actionlist">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="ActionList" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="action"

lowerBound="1" upperBound="-1" eType="#//Action"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="action" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>

http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//Boolean

63 McMaster - Computing and Software

<eClassifiers xsi:type="ecore:EClass" name="Architecture"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Architecture• />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference•

name="connector" upperBound="-1" eType="#//ConnectorRole"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name• value="connector" />

<IeAnnotat ions>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference•

name="component• upperBound="-1" eType="#//DesignRole"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="component" />

<IeAnnotat ions>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="configuration" lo~erBound="1" eType="#//Configuration"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="configuration" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="variableCables" upperBound="-1" eType="#//VariableCable"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="variableCables• />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="actionCables" upperBound="-1" eType="#//ActionCable"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="actionCables• />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type=•ecore:EClass" name="Assignment">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Assignment" />
<details key="kind" value="empty" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute•

name="leftSide"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http: I I I org/eclipse/emfI ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />

http://www.eclipse.org/emf/2003/XMLType#//String

64 MSc Thesis- Jorge Santos

<details key="name" value="leftSide" />
</eAnnotations>

</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute"
name="rightSide"
eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="rightSide" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type"

eType="#//AssignmentType" defaultValueLiteral=":="

unsettable="true">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="type" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="AssignmentType">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="AssignmentType" />

</eAnnotations>

<eLiterals name="-" literal=":=" />

<eLiterals name="oneof" value="l" />

</eClassifiers>

<eClassifiers xsi:type="ecore:EDataType"

name="AssignmentTypeObject"

instanceClassName="org.eclipse.emf.common.util.Enumerator">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="AssignmentType:Object" />
<details key="baseType" value="AssignmentType" />

</eAnnotations>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Attachment">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Attachment" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="fields"

lowerBound="l" upperBound="-1" eType="#//FieldRef"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="fields" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dest"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="dest" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="source"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String

65 McMaster - Computing and Software

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="source" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="AttacbmentList">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="AttacbmentList" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="attacbment" lowerBound="l" upperBound="-1"

eType="#//Attacbment" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="attacbment" />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CNamedElement"
abstract="true">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="CNamedElement" />
<details key="kind" value="empty" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="name" />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi :type="ecore:EClass" name="Configuration">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Configuration" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="instances" lowerBound="l" eType="#//InstanceList"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="instances" />

<IeAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="attacbments" lowerBound="1" eType="#//AttacbmentList"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="attacbments" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>

http://www.eclipse.org/emf/2003/XMLType#//String

66 MSc Thesis- Jorge Santos

<eClassifiers xsi:type="ecore:EClass" name="Connector"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Connector" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="role"

lowerBound="1" upperBound="-1" eType="#//DesignRole"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="role" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="configuration" lowerBound="1" eType="#//Configuration"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="configuration" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="glue"

lowerBound="1" eType="#//Design">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="glue" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ConnectorRole"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="ConnectorRole" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="connector" lowerBound="1" eType="#//Connector">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="connector" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Design"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Design" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="inVars"

eType="#//VarList" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="inVars" />

</eAnnotations>

</eStructuralFeatures>

67 McMaster - Computing and Software

<eStructuralFeatures xsi:type="ecore:EReference" name="outVars"

eType="#//VarList" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="outVars" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="prvVars"

eType="#//VarList" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="prvVars" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="invariant" eType="#//Invariant" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="invariant" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="actions"

eType="#//ActionList" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="actions" />

<IeAnnotat ions>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="DesignRole"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="DesignRole" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="design"

lowerBound="1" eType="#//Design" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="design" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="DocumentRoot">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="" />

<details key="kind" value="mixed" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="mixed"

unique="false" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="elementWildcard" />
<details key="name" value=":mixed" />

http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry

68 MSc Thesis- Jorge Santos

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xMLNSPrefixMap" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry"
transient="true" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="attribute" />

<details key="name" value="xmlns:prefix" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xSISchemaLocation" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry"
transient="true" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="attribute" />

<details key="name" value="xsi:schemaLocation" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="actionCable" upperBound="-2" eType="#//ActionCable"
volatile="true" transient="true" derived="true"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="actionCable" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="architecture" upperBound="-2" eType="#//Architecture"
volatile="true" transient="true" derived="true"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="architecture" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="connector" upperBound="-2" eType="#//Connector"
volatile="true" transient="true" derived="true"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="connector" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="design"
upperBound="-2" eType="#//Design" volatile="true"
transient="true" derived="true" containment="true"
resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="design" />

http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry
http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry

69 McMaster - Computing and Software

<details key="namespace" value="##targetNamespace" />
</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="variableCable" upperBound="-2" eType="#//VariableCable"

volatile="true" transient="true" derived="true"

containment=•true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="variableCable" />
<details key="namespace" value="##targetNamespace" />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="FieldRef">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="FieldRef" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="source"

lowerBound="l"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="source" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="dest"

lowerBound="l"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="dest" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Instance"
eSuperTypes="#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Instance" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="design"

lowerBound="l"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="design" />

<IeAnnotat ions>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="InstanceList">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="InstanceList" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String

70 MSc Thesis- Jorge Santos

name="instance" lowerBound="1" upperBound="-1"

eType="#//Instance" containment="true" resolveProxies="false 11 >

<eAnnotations source=11http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >
<details key="kind 11 value=11 element" />
<details key= 11name" value= 11 instance 11 />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type= 11 ecore:EClass 11 name="Invariant 11 >

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >
<details key="name 11 value=" Invariant 11 />
<details key= 11kind" value=11 empty 11 />

</eAnnotations>

<eStructuralFeatures xsi:type= 11 ecore:EAttribute 11 name=11 value 11

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String11 >

<eAnnotations source= 11 http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >

<details key= 11 kind" value= 11 attribute 11 />
<details key="name 11 value= 11 value 11 />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type= 11 ecore:EClass 11 name= 11Variable"
eSuperTypes= 11 #//CNamedElement 11 >

<eAnnotations source= 11 http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >
<details key="name 11 value="Variable 11 />
<details key= 11 kind 11 value="empty 11 />

</eAnnotations>

<eStructuralFeatures xsi:type= 11 ecore:EReference 11

name= 11 connection" upperBound="-1 11 eType="#//Variable 11 >

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >

<details key= 11kind 11 value="attribute 11 />
<details key= 11name" value="connection 11 />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type=11 ecore:EAttribute" name= 11 type"

eType= 11 ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String11 >

<eAnnotations source= 11 http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >
<details key= 11kind11 value= 11 attribute 11 />
<details key= 11name" value=11 type 11 />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type= 11 ecore:EClass" name= 11 VariableCable 11

eSuperTypes="#//CNamedElement 11 >
<eAnnotations source= 11http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >

<details key= 11name 11 value= 11 VariableCable 11 />
<details key="kind 11 value= 11 element0nly" />

</eAnnotations>

<eStructuralFeatures xsi:type= 11 ecore:EReference 11 name= 11 source 11

lowerBound= 11 1" eType= 11 #//Variable 11 >

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData11 >

<details key= 11kind 11 value=11 element 11 />
<details key= 11name 11 value= 11 source" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type= 11 ecore:EReference 11 name= 11dest"

lowerBound="1 11 eType= 11#//Variable 11 >

http://www.eclipse.org/emf/2003/XMLType#//String11
http://www.eclipse.org/emf/2003/XMLType#//String11

71 McMaster - Computing and Software

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element• />
<details key="name" value="dest" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass• name="VarList">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="VarList" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference•

name="variable" lowerBound="1" upperBound="-1"

eType="#//Variable" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="variable" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
</ecore:EPackage>

A.2 The DynaComm Model
<?xml version="1.0" encoding="utf-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns :xmi="http: I /www. omg. org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="dynacomm"

nsURI="http://www.example.org/dynacomm" nsPrefix="dynacomm">

<eClassifiers xsi:type="ecore:EClass" name="Associations"

eSuperTypes=" . ./ •. I ca.mcmaster. cas. community/model/community. ecore#//CNamedElement" >

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="Associations" />
<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="component" unique="false" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="component• />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="subsystem" unique="false" lowerBound="1" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="subsystem" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="morphism" lowerBound="1 • eType="#/ /Morphism"

http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String

72 MSc Thesis- Jorge Santos

containment="true" resolveProxies="false">
<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="morphism" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Component"
eSuperTypes=" •. / •. /ca.mcmaster.cas.community/model/community.ecore#//Design">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="Component" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="parameters" lowerBound="1"

eType="ecore:EClass .. / . ./ca.mcmaster.cas.community/model/community.ecore#//VarList"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="parameters" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Connector"
eSuperTypes="#//Component">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="Connector" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="glue"

lowerBound="1" eType="#//Glue" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="glue" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="role"

lowerBound="1" upperBound="-1" eType="#//Role"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="role" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="connections" lowerBound="1"
eType="ecore:EClass •. / . ./ca.mcmaster.cas.community/model/community.ecore#//Configuration"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="element" />

<details key="name" value="connections" />

<details key="namespace" value="##targetNamespace" />

73 McMaster - Computing and Software

<leAnnotations>

<leStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name=" constraints"

eType="ecore:EDataType http:llwww.eclipse.orglemfi2003IXMLType#IIString">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="constraints" I>

<leAnnotations>

<leStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute• name="refines"

eType="ecore:EDataType http:llwww.eclipse.orglemfi2003IXMLType#IIString">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="refines" I>

<leAnnotations>
<leStructuralFeatures>

<leClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="DocumentRoot">

<eAnnotations source="h'ctp: I I lorgleclipselemflecorelutiliExtendedMetaData">

<details key="name" value="" I>

<details key="kind" value="mixed" I>

<leAnnotations>

<eStructuralFeatures xsi: type="ecore: EAttribute" name="mixed •

unique="false" upperBound="-1"

eType="ecore:EDataType http:llwww.eclipse.orglemfi20021Ecore#IIEFeatureMapEntry">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="elementWildcard" I>
<details key="name" value=" :mixed" I>

<leAnnotations>
<leStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xMLNSPrefixMap" upperBound="-1"
eType="ecore:EClass http:llwww.eclipse.orglemfi20021Ecore#IIEStringToStringMapEntry"
transient="true" contaimnent="true" resolveProxies="false">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="xmlns:prefix" I>

<leAnnotations>
<leStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xSISchemaLocation" upperBound="-1"
eType="ecore:EClass http:llwww.eclipse.orglemfi2002IEcore#IIEStringToStringMapEntry"
transient="true" containment="true" resolveProxies="false">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="xsi:schemaLocation" I>

<leAnnotations>

<leStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="subsystem" upperBound="-2" eType="#IISubsystem"

volatile="true" transient="true• derived="true"

containment="true" resolveProxies="false">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="element" I>
<details key="name" value="subsystem" I>
<details key="namespace" value="##targetNamespace" I>

http:llwww.eclipse.orglemfi2002IEcore#IIEStringToStringMapEntry
http:llwww.eclipse.orglemfi20021Ecore#IIEStringToStringMapEntry
http:llwww.eclipse.orglemfi20021Ecore#IIEFeatureMapEntry
http:llwww.eclipse.orglemfi2003IXMLType#IIString
http:llwww.eclipse.orglemfi2003IXMLType#IIString

74 MSc Thesis- Jorge Santos

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Glue"
eSuperTypes=" •• / .• /ca.mcmaster.cas.community/model/community.ecore#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="name" value="Glue" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="parameters" lowerBound="1"

eType="ecore:EClass •. / .. /ca.mcmaster.cas.community/model/community.ecore#//VarList"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="kind" value="element" />

<details key="name" value="parameters" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="connections" lowerBound="1"
eType="ecore:EClass •. / .. /ca.mcmaster.cas.community/model/community.ecore#//Configuration"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="kind" value="element" />

<details key="name" value="connections" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Interface">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="name" value="Interface" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference" name="varMap"

lowerBound="1" eType="#//VarMap" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="kind" value="element" />

<details key="name" value="varMap" />

<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Morphism">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="name" value="Morphism" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="connections" lowerBound="1"

eType="ecore:EClass .. / .. /ca.mcmaster.cas.community/model/community.ecore#//Configuration"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/Extended.MetaData">

<details key="kind" value="element" />

<details key="name" value="connections" />

75 McMaster - Computing and Software

<details key="namespace" value="##targetNamespace" I>
<leAnnotations>

<leStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="componentName"

eType="ecore:EDataType http:llwww.eclipse.orglemfi2003IXMLType#IINCName">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="componentName" I>

<leAnnotations>

<leStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="subsystemName"

eType="ecore:EDataType http:l/www.eclipse.orglemfi2003IXMLType#I/NCName">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="subsystemName" I>

<IeAnnotations>
<leStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Participant"
eSuperTypes=" .. l .. lca.mcmaster.cas.communitylmodellcommunity.ecore#/ICNamedElement">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">

<details key="name" value="Participant" I>

<details key="kind" value="empty" I>

<leAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="referenceName"

eType="ecore:EDataType http:llwww.eclipse.orglemfi2003IXMLType#IIString">

<eAnnotations source="http:l/lorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="attribute" I>
<details key="name" value="referenceName" I>

<IeAnnotations>
</eStructuralFeatures>

<leClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Role"
eSuperTypes="#IIGlue">

<eAnnotations source="http:lllorg/eclipselemflecorelutiliExtendedMetaData">

<details key="name" value="Role" I>

<details key="kind" value="elementOnly" I>

<leAnnotations>
<leClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Subsystem"
eSuperTypes="#IIComponent">

<eAnnotations source="http:lllorgleclipselemflecorelutiliExtendedMetaData">

<details key="name" value="Subsystem" I>

<details key="kind" value="elementOnly" I>

<leAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="associations" lowerBound="l" eType="#IIAssociations"

containment="true" resolveProxies="false">

<eAnnotations source="http:l/lorgleclipselemflecorelutiliExtendedMetaData">
<details key="kind" value="element" I>
<details key="name" value="associations" I>
<details key="namespace" value="##targetNamespace" I>

<leAnnotations>

<leStructuralFeatures>

http:llwww.eclipse.orglemfi2003IXMLType#IIString
http:l/www.eclipse.orglemfi2003IXMLType#I/NCName
http:llwww.eclipse.orglemfi2003IXMLType#IINCName

76 MSc Thesis- Jorge Santos

<eStructuralFeatures xsi:type="ecore:EReference"

name="participants" lowerBound="1" upperBound="-1"

eType="#//Participant" containment="true"

resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="participants" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name=" constraints"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMI.Type#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="constraints" />
<details key="namespace" value="##targetNamespace" />

</&Annotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="interface" lowerBound="1" eType="#//Interface"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="interface" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="VarMap"
eSuperTypes=" .. / .. /ca.mcmaster.cas.community/model/community.ecore#//CNamedElement">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="name" value="VarMap" />
<details key="kind" value="empty" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="fieldName"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//NCName">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="fieldName" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="referenceName"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//NCName">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="referenceName" />

</&Annotations>
</eStructuralFeatures>

</eClassifiers>
</ecore:EPackage>

http://www.eclipse.org/emf/2003/XMLType#//NCName
http://www.eclipse.org/emf/2003/XMLType#//NCName
http://www.eclipse.org/emf/2003/XMI.Type#//String

77 McMaster - Computing and Software

A.3 Location Aware CommUnity Model
<?xml version="1.0" encoding="utf-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance•

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

name="locammunity" nsURI="http://www.example.org/locammunity"

nsPrefix="locammunity">

<eClassifiers xsi:type="ecore:EClass" name="DocumentRoot">
<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="" />

<details key="kind" value="mixed" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="mixed"

unique="false" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="elementWildcard" />
<details key="name" value=" :mixed" />

<IeAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference•
name="xMLNSPrefixMap" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry•
transient="true" contaimnent="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute• />
<details key="name" value="xmlns:prefix" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xSISchemaLocation" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry•
transient="true" containment="true• resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute• />
<details key="name" value="xsi: schemaLocation" />

<IeAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="locArchitecture" upperBound="-2"

eType="#//LocArchitecture• volatile="true" transient="true"

derived="true" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element• />
<details key="name" value="locArchitecture" />
<details key="namespace" value="##targetNamespace• />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="LocAction"

eSuperTypes=" .. / •. /ca.mcmaster.cas.community/model/community.ecore#//Action">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="LocAction" />

<details key="kind" value="elementOnly" />

</eAnnotations>

http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry�
http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry�
http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry

78 MSc Thesis- Jorge Santos

<eStructuralFeatures xsi:type="ecore:EReference"

name="location" lowerBound="1"

eType="ecore:EClass •. / •. /ca.mcmaster.cas.community/model/community.ecore#//Variable"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="location" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="LocArchitecture"
eSuperTypes=" .. / .. /ca.mcmaster.cas.community/model/community.ecore#//Architecture">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="LocArchitecture" />

<details key="kind" value="elementOnly" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EReference"

name="location" lowerBound="1" eType="#//Location"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="location" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Location">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="Location" />

<details key="kind" value="empty" />

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="reaches"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="reaches" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="touches"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="neme" value="touches" />

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type"

eType="ecore:EDataType http://www.eclipse.org/emf/2003/XMLType#//String">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="kind" value="attribute" />

<details key="name" value="type" />

<IeAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="LocVar"
eSuperTypes=" .. / •. /ca.mcmaster.cas.community/model/community.ecore#//Variable">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String
http://www.eclipse.org/emf/2003/XMLType#//String

79 McMaster - Computing and Software

<details key="name" va.lue="LocVar" />
<details key="kind" va.lue="elementOnly" />

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EReference"
name="location" lowerBound="1"
eType="ecore : EClass .. I . .I ca.mcmaster. cas. community/model/community. ecore#//Variable"
containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="location" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
</ecore:EPackage>

A.4 	 DynaComm plus Location Aware
CommUnity Model

<?xml version="1.0" encodingc"utf-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

name="locammunity" nsURI="h-ttp://www.example.org/locammunity"

nsPrefix="locammunity">

<eClassifiers xsi:type="ecore:EClass" name="DocumentRoot">
<eAnnotations source="h·~tp: I I /org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="" />

<details key="kind" value="mixed" />

<IeAnnotations>

<eStructuralFeatures xsi :type="ecore:EAttribute" name="mixed"

unique="false" upperBound="-1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="elementWildcard" />
<details key="name" value=" :mixed" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xMLNSPrefixMap" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry"
transient="true" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="xmlns:prefix" />

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference"
name="xSISchemaLocation" upperBound="-1"
eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry"
transient="true" containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="attribute" />
<details key="name" value="xsi:schemaLocation" />

http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry
http://www.eclipse.org/emf/2002/Ecore#//EStringToStringMapEntry
http://www.eclipse.org/emf/2002/Ecore#//EFeatureMapEntry

80 MSc Thesis- Jorge Santos

</eAnnotations>

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference"

name="locSubsystem" upperBound="-2" eType="#//LocSubsystem"

volatile="true" transient="true" derived="true"

containment="true" resolveProxies="false">

<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
<details key="kind" value="element" />
<details key="name" value="locArchitecture" />
<details key="namespace" value="##targetNamespace" />

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="LocSubsystem"
eSuperTypes=" .. / .. /ca.mcmaster.cas.locammunity/model/locammunity.ecore#//LocArchitecture

.. / . ./ca.mcmaster.cas.dynacomm/model/dynacomm.ecore#//Subsystem">
<eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">

<details key="name" value="LocArchitecture" />

<details key="kind" value="elementOnly" />

</eAnnotations>
</eClassifiers>

</ecore:EPackage>

Bibliography

[1] 	 R. Allen. A Formal Approach to Softwaare Architecture. PhD thesis,
Carnegie Mellon, School of Computer Science, January 1997. Issued as
CMU Technical Report CMU-CS-97-144.

[2] 	 L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, second edition, 2003.

[3] 	 Lorenzo Bettini, Michele Loreti, and Rosario Pugliese. An Infrastructure
Language for Open Nets. In Proc. ofSAC, Special Track on Coordination
Models, Languages and Applications, pages 373-377. ACM Press, 2002.
URL http: I /music. dsi. unif i. i t/papers/SAC02-open-nets. ps. gz.

[4] 	 Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling
Framework. Pearson Education, 2003. ISBN 0131425420.

[5] 	 K. M. Chandy and J. Misra. Parallel Program Design-A Foundation.
Addison-Wesley, 1988.

[6] 	 Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. An
infrastructure for the rapid development of xml-based architecture de­
scription languages. In ICSE '02: Proceedings of the 24th Inter­
national Conference on Software Engineering, pages 266-276, New
York, NY, USA, 2002. ACM Press. ISBN 1-58113-472-X. doi:
http://doi.acm.org/10.1145 /581339.58137 4.

[7] 	 CoMMUNITY Workbench development team. COMMUNITY

workbench, August 2007 (accessed). URL
http://ctp.di.fct.unl.pt/ co/setupcw/install.htm.

81

http:http://ctp.di.fct.unl.pt

82 MSc 	Thesis- Jorge Santos

[8] 	 J. L. Fiadeiro and M. Wermelinger A. Lopes. A mathematical semantics
for architectural connectors. Generic Programming, no. 2793 in LNCS,
pages 190-234, 2003.

[9] 	 D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architec­
tural design environments. Proceedings of SIGSOFT'94: Foundations
of Software Engineering, pages 175-188, 1994.

[10] 	 D. Garlan, J. Ockerbloom, and D. Wile. EDC architecture and genera­
tion cluster (http:/ jwww.cs.cmu.edu;-spok/adl/index.html), 1998.

[11] 	 David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural
description of component-based systems. In Gary T. Leavens and Murali
Sitaraman, editors, Foundations of Component-Based Systems, pages
47-68. Cambridge University Press, 2000.

[12] 	 Object Managment Group. Mof 2.0 / xmi map­
ping specification, v2.1, August 2007 (accessed). URL
http://www.omg.org/technology/documents/formal/xmi.htm.

[13] 	 C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[14] 	 James Ivers. Wright analysis tutorial, September 1998. URL
http://www.cs.cmu.edu/afs/cs/project/able/www/wright/
wright_tools .html.

[15] 	 javacc development team. javacc: Javacc home, August 2007 (accessed).
URL https : I I j avacc . dev. java. net/.

[16] 	 jaxb development team. jaxb: JAXB reference implementation, August
2007 (accessed). URL https ://jaxb.dev. java.net/.

[17] 	 K.L. McMillan. The SMV system. Technical Report
CMU-CS-92-131, Carnegie Mellon University, 1992. URL
citeseer.ist.psu.edu/mcmillan92smv.html.

[18] 	 Formal Systems (Europe) Limited. FDR2 download page, August 2007
(accessed). URL http: I /www. fsel. com/software. html.

[19] 	 Xiang Ling. Dynacomm: The extension of community to support dy­
namic reconfiguration. Master's thesis, McMaster University, 2007.

http:java.net
http://www.cs.cmu.edu/afs/cs/project/able/www/wright
http://www.omg.org/technology/documents/formal/xmi.htm

83 McMaster - Computing and Software

[20] 	 D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture using rapide.
IEEE Transactions on Software Engineering, 21(4):336-355, 1995.

[21] 	 J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In Proceedings of the Fifth European Software
Engineering Conference {ESEC'95}, 1995.

[22] 	 N. Medvidovic and D. S. Rosenblum. Assessing the suitability of a
standard design method for modeling software architectures. In Pro­
ceedings of the First Working IFIP Conference on Software Architecture
{WICSA1}, pages 161-182, 1999.

[23] 	 N. Medvidovic and R.N. Taylor. A classification and comparison frame­
work for software architecture description languages. Software Engi­
neering, 26(1):7Q-93, 2000. URL http://citeseer.csail.mit.edu/
medvidovic97classification.html.

[24] 	 N. Medvidovic, P. Oreizy, J. E. Robbins, and R.N. Taylor. Using object­
oriented typing to support architectural design in the c2 style. In Pro­
ceedings of ACM SIGSOFT'96: Fourth Symposium on The Foundations
of Software Engineering {FSE4), pages 24-32, 1996.

[25] 	 Crist6vao Oliveira. The COMMUNITY Workbench User Manual, 2005.

[26] 	 Crist6vao Oliveira and Michel Wermelinger. The CoMMUNITY work­
bench, 2005.

[27] 	 J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S. Rosenblum.
Integrating architecture description languages with a standard design
method. In Proceedings of the 20th International Conference on Software
Engineering {ICSE'98}, pages 209-218, 1998.

[28] 	 Bradley Schmerl and David Garlan. Acmestudio: Supporting style­
centered architecture development. In Proceedings of the 26th Interna­
tional Conference on Software Engineering {ICSE'04}, 2004.

[29] 	 M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Ze­
lesnik. Abstractions for software architecture and tools to support them.
In lEE Transactions on Software Engineering, pages 314-335, April
1995.

http:http://citeseer.csail.mit.edu

84 MSc 	Thesis- Jorge Santos

[30] 	 AcmeStudio Development Team. Acmestudio
download page, August 2007 (accessed). URL
http://acme.able.cs.cmu.edu/acmeweb/download.php.

[31] 	 AcmeStudio Development Team. Acmestudio forum page, Au­
gust 2007 (accessed). URL http://acme.able.cs.cmu.edu/forum/
viewforum.php?f=2&sid=32d15a4320e2ec573fc1e734ec4323ed.

[32] 	 AcmeStudio Development Team. Acmelib license, May
2007. URL http: I /acme. able. cs. emu. edu/forum/
viewtopic.php?p=152&sid=a9afce99cf38da0cb600778af992e4b1.

[33] 	 ArchStudio Development Team. Archstudio 4 gen­
eral - what is archstudio?, August 2007 (accessed). URL
http://www.isr.uci.edu/projects/archstudio/whatis.html.

(34] 	 Eclipse Modeling Framework Development Team. The eclipse
modeling framework (emf) overview, August 2007 (accessed).
URL http://dev.eclipse.org/viewcvs/indextools.cgi/
org.eclipse.emf/doc/org.eclipse.emf.doc/references/
overview/EMF.html.

(35] Graphical Editing Framework Development Team.
tools gef project, August 2007 (accessed).
http://www.eclipse.org/gef/overview.html.

Eclipse
URL

[36] Graphical Modeling Framework Development Team.
ical modeling framework, August 2007 (accessed).
http://www.eclipse.org/gmf/.

Graph­
URL

[37] 	 Rapide Design Team. Rapide: Toolset release, August 2007 (accessed).
URL http: I /pavg. stanford. edu/rapide/tools-release. html.

(38] 	 Rapide Design Team. Draft guide to the rapide 1.0 language reference
manuals, 1997. URL http: I I citeseer. ist. psu. edu/280921. html.

[39] 	 UniCon Development Team. Unicon toolset page, August 2007 (ac­
cessed). URL http: I /www. cs. emu. edu/ UniCon/toolset. html.

[40] 	 Wright Development Team. Wright toolset
downloads, August 2007 (accessed). URL
http://acme.able.cs.cmu.edu/able-cgi/wright-register-new.

http://acme.able.cs.cmu.edu/able-cgi/wright-register-new
http://dev.eclipse.org/viewcvs/indextools.cgi
http://www.isr.uci.edu/projects/archstudio/whatis.html
http://acme.able.cs.cmu.edu/forum
http://acme.able.cs.cmu.edu/acmeweb/download.php

85 McMaster - Computing and Software

[41] 	 Michel Wermelinger and Jose Luiz Fiadeiro. Algebraic software architec­
ture reconfiguration. In ESEC / SIGSOFT FSE, pages 393-409, 1999.

3755 14

	Structure Bookmarks
	Contents
	Figure 1.4: Representations and Properties of a Component
	Figure 3.1: ArchStudio Infrastructure tools and their relationships
	Figure 3.3: The Design Model
	Figure 3.4: The Connector Model
	Figure 3.5: The Architecture Model
	Figure 3.9: The CoMMUNITYGraphical Editor
	Figure 3.10: DynaComm Model

