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Abstract 

We consider a number of generalizations of the following question originally 

posed by Claude Berge in 1966. Let Sn denote the set of all strings made of l%1 
white coins and l%J black coins. Berge asked what is the minimum number of 

moves required to sort an alternating string of Sn by taking 2 adjacent coins to 

2 adjacent vacant positions on a one-dimensional board of infinite length such 

that the sorted string has all white coins immediately followed by all black 

coins (or visa versa). 

We survey and present results dealing with the first generalization of Berge 

sorting which allows Berge k-moves, i.e., taking k adjacent coins to k adjacent 

vacant positions. We then explore a further generalization which asks for any 

pair of strings in Sn what is the minimum number of Berge k-moves needed 

to transform one string into the other. This induces a natural metric on the 

set Sn called the Berge k-metric. We examine bounds for the diameter of Sn 

allowing Berge k-moves. In particular, we present lower and upper bounds 

for Berge 1-metric and explore some aspects of Berge 2-metric along with 

computational results. 
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Notations 

Sn: the set of all strings made of l~l white coins and l~J black coins. 

Sn: a generic string in Sn. 

Tn,o: the string made of ~~l white coins followed by l~J black coins. 

Tn,•: the sorted string made of l~J black coins followed by ~~l white coins. 

Tn: either Tn o or Tn •. 
' ' 

An,o: the string made of alternating l~l white coms and l~J black coms 

beginning with a white coin. 

An,•: the string made of alternating l ~ J black coins followed by f ~ l white 

coins beginning with a black coin. 

An: either An 0 or An •· 
' ' 

S 1 ---+k S 2 : transform S 1 into S 2 using Berge k-moves. 

hn,k(S1
, S 2

): minimum number of Berge k-moves needed to transform S 1 into 

S2. 

A solution in hn,k(S\ 5 2
) move(s) is called optimal. 

Bn,k(S1
, 5 2

): a solution, i.e., an ordered set of Berge k-moves to transform S 1 

into 5 2
. 

Hn,k(Sn) = maX(sl,S2)ESnhn,k(S1
, S 2

): diameter of the set Sn. 

Dsn: disorder of Sn, i.e. the number of coins with a right neighbour of a 

different colour or empty. 

D~n: disorder of Sn after i Berge k-moves are performed. 

mi(S\ 5 2
): the number of matching coins between strings S\ S2 E Sn for 

some shift i ( i = -n, ... ' n) of S1
. 
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Chapter 1 

Introduction 

1.1 Original Berge Problem 

Claude Berge (1926 - 2002) was a well recognized French mathematician 

who is considered to be one of the modern founders of combinatorics and graph 

theory. Among his many contributions, Claude Berge edited a series of open 

problems which appeared in the Revue Fran<_;aise de Recherche Operationelle 

(French Journal of Operations Research), under the title Problemes plaisans et 

delectables (Pleasant and delectable problems) between 1962 and 1966. This 

series was in tribute to the 17th century work of Bachet [3]. 

In the last issue of the series, Berge [4] stated problem 41, the problem of 

interest in this thesis, which is defined as follows. Given a string of alternating 

l~l white coins and l~J black coins on a one-dimensional board of infinite 

length, we are required to sort the coins into a string consisting of l~l white 

coins followed immediately by l ~ J black coins (or visa versa) by taking 2 

adjacent coins to 2 adjacent vacant positions on the board. 

1 
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0 • 0 • 0 

0 • 0 • 0 

0 • • 0 0 

0 0 0 • • 

Figure 1.1: A solution for sorting A 5 using Berge 2-moves. 

Let An be the string made of alternating l%l white and l%J black coins, 

and let Tn be the string made of l%l white coins followed by l%J black coins 

or visa versa. Let hn,2(An, Tn) denote the minimum number of moves taking 

2 adjacent coins to 2 adjacent vacant positions, called Berge 2-moves, needed 

to sort An (into Tn) up to translation. 

Berge [4] noted that h5,2(A5 , T5 ) = h6 ,2(A6 , T6 ) = 3 and h7,2(A7, T7) = 

4. Figure 1.1 demonstrates a solution for sorting A 5 in 3 Berge 2-moves. 

Moreover, Berge asked if hn,2(An, Tn) is a increasing function. 

This was the last article of the series with no solution published by the 

journal. Given the popularity of Berge and his problems, problem 41 was 

most likely examined and solved within the last forty years. However, the first 

published solution to Berge's original question might have been given by Avis 

and Deza [2] in 2006 proving that for k = 2 and n 2: 5, hn,2(An, Tn) = l%l 

This problem appeared in the 12th Prolog Programming Contest [14] held 

in Seattle in 2006. In the statement of the problem, it is noted that this result 

is surprising given that half of the white coins and half of the black coins are 

incorrectly positioned. Indeed, this is an unexpected result. Moreover, as we 

2 
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will see in the next section, Deza and Hua [6] conjectured that the minimum 

number of moves needed to sort An is independent of the number of adjacent 

coins being moved. This leads us to the first generalization of Berge sorting. 

1. 2 Generalized Berge k-moves 

We begin with a one-dimensional board of infinite length where the string 

initially lies in positions 1 through n. A Berge k-move takes k adjacent coins 

to k adjacent vacant positions on the board. More specifically, a single Berge 

k-move will be denoted as { j i } which indicates that adjacent coins in posi­

tions i, i + 1, ... , i + k -1 are moved to vacant positions j, j + 1, ... , j + k- 1. 

In Figure 1.2, the first Berge 2-move used in sorting An takes the pair of coins 

beginning in position 3 and moves the coins to the beginning of position -1 

which is denoted as { -1 3 }. 

. . . -2 -1 0 1 2 3 4 5 6 7 ... 

0 • 0 • 0 

0 • 0 • 0 

Figure 1.2: The first Berge 2-move in this solution is expressed as { -1 3 }. 

A sequence of successive moves are joined via union symbol { j i }U{ l k } 

indicating that { j i } is the first move and { l k } is the next move. If a 

move fills vacant positions which were created by the previous move, that 

is, { j i } U { i k }, then we can simplify the notation as { j i k }. For 

example, the solution for sorting A 5 using Berge 2-moves in Figure 1.3 is 

expressed as { -1 3 } U { 3 0 } U { 0 4 } = { -1 3 0 4 } . 

3 
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. . . -2 -1 0 1 2 3 4 5 6 7 ... 

0 • 0 • 0 

0 • 0 • 0 

0 • • 0 0 

0 0 0 • • 

Figure 1.3: A solution for sorting A 5 using Berge 2-moves is { -1 3 0 4 }. 

The generalized Berge problem asks what is hn,k(An, Tn), that is, what is 

the minimum number of Berge k-moves needed to sort An. A solution in 

hn,k(An, Tn) move(s) is called optimal. Here, we briefly outline some results 

for hn,k(An, Tn) which are explored in greater depth in Chapter 2. 

Deza and Hua [6] showed for k ~ 1 and n ~ 3, hn,k(An, Tn) ~ l~J. The 

authors showed that for k = 1 and n ~ 3, 

and 

hn,l(An, Tn) = l~J for n- 3 (mod 4) 

where the latter result implies that lower bound previously stated is tight. 

They improved the lower bound to the following: 

As already noted, fork= 2 and n ~ 5, Avis and Deza [2] showed 

4 
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Fork= 3 and n ~ 5, Deza and Hua [6] proved that 

and Deza and Xie [7] showed 

Deza and Hua [6] conjectured that fork~ 2 and n ~ 2k + 11, 

This is substantiated in [6] where the authors computed values of hn,k(An, Tn) 

for k :::; 14 and k + 2 :::; n :::; 50. The computed values taken from [8] are 

shown in Table 1.1. As mentioned earlier, this conjecture, substantiated by 

significantly large values of n and k, which states that sorting An using Berge 

k-moves is independent of k is quite surprising. A natural extension of the 

generalized Berge sorting is to examine the behaviour of transforming generic 

strings into other generic strings using Berge k-moves. This question was 

originally raised in [6] and brings us to the primary focus of this thesis. 

1.3 Berge k-metric 

Let Sn be the set of all strings made of ~~l white coins and l~J black coins. 

A further generalization of the Berge sorting problem asks for any pair of 

strings S 1
, S 2 E Sn what is hn,k(Sl, S 2), that is, what is the minimum number 

of Berge k-moves needed to transform S 1 into S 2 (up to translation). 

5 
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5 6 7 8 9 10 11 12 13 14 15 16 l7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 1 42 43 44 45 46 47 48 49 50 

21 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 I 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 I I I I 1 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 I I I 1 2 I I 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

k I 1 I 3 3 2 2 1 2 I 0 I l 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 4 3 2 2 l 2 I l 1 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 (j 5 3 2 2 2 I J I I 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o I 
10 10 4 4 2 3 2 2 l 2 I I l I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I I 11 6 4 3 2 3 I 2 I 2 1 I 0 I 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 15 7 5 3 3 2 3 2 I 1 1 1 I I J 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 14 9 5 4 3 3 2 2 I I I I 1 I 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 21 9 7 4 4 3 3 2 2 2 2 I l 0 I 0 I 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 1.1: Table represents hn,k(An, Tn) - 1%1 for k ::::; 14 and k + 2 < n ::::; 50. Grey highlighted entries 

substantiate the conjecture that hn,k(An, Tn) = l%l for n 2: 2k + 11. 
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For example, if S 1 = {• • o o oe} and S2 = {o • o o ••}, then what is 

hn,2 (S 1
, S2)? For illustrative purposes, we place the string we wish to achieve, 

S2 , directly above the string we wish to transform, S1 , with both strings 

initially lying in positions 1 through 6. For general n, both strings initially 

lying in positions 1 through n. A possible solution is illustrated in Figure 1.4 

where hn,2 (Sl, S2) = 2 and this is the minimum as clearly one move is not 

enough. 

I s'l .. ·1-ZI-l I 
0 

I :I :I :I: I: I: 1
7

1
8

1
9

1
10 

Ill 1 .. ·1 
Sl • • 0 0 0 • 

0 0 0 • • • 
0 • 0 0 • • 

Figure 1.4: Solution for transforming S 1 into S2 using Berge 2-moves. 

A natural setting is to view hn,k ( S 1
, S2

) as the shortest path between any 

pair of strings of Sn. Let Sl, S2
, S3 E Sn, and hn,k(S1

, S2
) = min{ S1 --+k S 2

} 

be the minimum number of Berge k-moves required to transform S 1 into S2
. 

We have 

hn,k(S1
, S2

) o {::::=:} S 1 = S2 (0) 

hn,k(Sl, S2
) > 0 (1) 

hn,k(Sl, S2
) hn,k(S2

, S 1
) (2) 

hn,k(S1
, S2

) < hn,k(Sl, S 3
) + hn,k(S3

, S2
) (3). 

The first two properties are trivial. If we transform S1 to S2 , then we can 

always transform S2 back to S1
. This gives us property (2). The final property 

7 
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is the triangle inequality. 

We first verify that we can go from one string to another in a finite number 

of moves, i.e, hn,k(S1
, S 2

) < oo, for k = 1 and k = 2. This can be verified by 

showing that any string of Sn can be sorted (into Tn) in a finite number of 

moves. Then by symmetry of hn,k(S1
, S 2

), we have that Tn can be transformed 

into any string of Sn. Thus, using the triangle inequality, we can transform 

any pair of strings of Sn into one another by going through Tn in a finite 

number of moves. Thus, we consider the associated Berge k-metric between a 

pair of strings of Sn which is the minimum number of Berge k-moves required 

to transform one string into other. In particular, we show that for strings 

S 1
, S 2 E Sn, hn,l (S1

, S 2
) ::; '(}n and hn,2(Sl, S 2

) ::; 2n in Chapter 3 and 

Chapter 4, respectively. 

In thesis, we examine the diameter of Sn allowing Berge k-moves, denoted 

Hn,k(Sn), which is defined as 

1.4 Intuition on Bounds for Hn,k(Sn) 

Deza and Hua [6] showed that the lower bound for sorting An into Tn us­

ing Berge k-moves is ~~l, i.e., hn,k(An, Tn) ~ ~~l By the lower bound of 

hn,k(An, Tn) and the definition of Hn,k(Sn), we have that 

8 
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In terms of an upper bound for Hn,k(Sn), we are interested in exploring the 

question if Hn,k(Sn) = ~~l, that is, are An and Tn antipodal? In order to 

address this question, we focus on hn,l ( S 1
, S 2

) for S 1
, S 2 E Sn in Chapter 3 

and explore some aspects of hn,2 (Sl, S2
) for S 1

, S2 E Sn in Chapter 4. 

With this thesis, we hope to encourage further study of the Berge metrics 

from both theoretical and computational approaches. 

9 
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Chapter 2 

Berge Moves 

2.1 Lower Bound for Sorting An 

In order to establish a lower bound on sorting An, we need the following 

definition. Define the disorder of a string, Sn E Sn, after the i- th move, 

denote Dkn, as the number of coins whose right neighbour is not a coin of the 

same colour or empty. For example, Dt =nand D~n = 2. 

The disorder of a string between successive moves can either increase by 

at most 2 or decrease by at most 2. In other words, IDkn- D~~1 1 ::; 2. This 

property can be verified by examining all possible moves. In general, for Berge 

k-moves, the disorder is only affected at the ends of the k adjacent coins. For 

instance, if we are moving coins in positions i, i + 1, ... , i + k- 1, then the 

coin in position i may change the disorder depending on the coin in position 

i - 1 and the coin in position i + k - 1 may change the disorder depending on 

the coin in position i + k. Next we examine the change in disorder for moving 

coins in positions i, i + 1, ... , i + k- 1. 

11 
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1. Assume the ( i -1)- th and i- th coins are different and the ( i + k -1)- th 

and ( i + k) - th coins are different. 

a. Move coins in positions i, i + 1, ... , i + k- 1 to n + 1, ... , n + k: 

if the n - th coin and the i - th coin are same, then the disorder 

decreases by one; otherwise the disorder stays the same. 

b. Move coins in positions i, i + 1, ... , i + k -1 to left end of the string, 

i.e., to positions 1 - k, ... , 0: similar analysis as in 1a. 

c. Move coins in positions i, i + 1, ... , i + k- 1 to the right or left of 

the string such that there are vacant positions between the moved 

coins and the original string: the disorder does not change. 

d. Move coins in positions i, i + 1, ... , i + k- 1 to fill vacant positions 

j, j + 1, ... 'j + k- 1: 

* if the (j - 1) - th coin and the i - th coin are same and the 

(j + k)- th coin and if the (i + k- 1)- th coin are the same, 

then the disorder decreases by two. 

* if either one of them is different, then the disorder decreases by 

one. 

* if they are both different, then the disorder stays the same. 

2. Assume the (i-1)-th and i-th coins are different and the (i+k-1)-th 

and ( i + k) - th coins are of the same colour. 

a. Move coins in positions i, i + 1, ... , i + k - 1 to right end of the 

string, i.e., in positions n + 1, ... , n + k: if then- th coin and the 

i- th coin are same, then the disorder doesn't change and if they 

are different, then the disorder increases by one. 

12 
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b. Move coins in positions i, i + 1, ... , i + k- 1 to left end of the string, 

i.e., to positions 1 - k, ... , 0: similar analysis as in 2a. 

c. Move coins in positions i, i + 1, ... , i + k- 1 to the right or left of 

the string such that there are vacant positions between the moved 

coins and the original string: the disorder does not change. 

d. Move coins in positions i, i + 1, ... , i + k- 1 to fill vacant positions 

j,j + 1, ... ,j + k- 1: 

* if the (j - 1) - th coin and the i - th coin are same and the 

(i + k- 1)- th coin and if the (j + k)- th coin are the same, 

then the disorder decreases by one. 

* if one of them is different, then the disorder stays the same. 

* if they are both different, then the disorder increases by one. 

3. Assume the ( i - 1) - th and i - th coins are the same colour and the 

( i + k - 1) - th and ( i + k) - th coins are different. (Similar to 2.) 

4. Assume the ( i - 1) - th and i - th coins are the same colour and the 

(i + k- 1)- th and (i + k)- th coins are the same colour. 

a. Move coins in positions i, i + 1, ... , i + k - 1 to right end of the 

string, i.e., in positions n + 1, ... , n + k: if then- th coin and the 

i - th coin are same, then the disorder increases by one and if they 

are different, then the disorder increases by two. 

b. Move coins in positions i, i + 1, ... , i + k -1 to left end of the string, 

i.e., to positions 1 - k, ... , 0: similar analysis as in 4a. 

c. Move coins in i, i + 1, ... , i + k- 1 to the right or left of the string 

such that there are vacant positions between the moved coins and 

13 
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the original string: the disorder increases by two. 

d. Move coins in positions i, i + 1, ... , i + k- 1 to fill vacant positions 

j, j + 1, ... 'j + k- 1: 

* if the (j - 1) - th coin and the i - th coin are same and the 

(i + k- 1)- th coin and if the (j + k)- th coin are the same, 

then the disorder does not change. 

* if one of them is different, then the disorder increases by one. 

* if they are both different, then the disorder increases by two. 

In sorting An, we are required to decrease the disorder from n to 2 in the 

least number of moves. Adopting common terminology from [2] and [6], we 

say that D~n-Dt1 = 2 is an optimal move, D~n- D~~1 = 1 is a suboptimal 

move, and D~n - Dt1 = 0 is a neutral move. 

Lemma 2.1. {6] Fork 2': 1 and n 2: 3, hn,k(An, Tn) 2: l~J. 

We recall the proof for Lemma 2.1. First note that the initial disorder is 

n, i.e., D~n = n, and the final disorder when i equals the minimum number 

of moves is 2, i.e., D~:,k(An,Tn) = 2. The first move can at most decrease the 

disorder by one because the only reasonable option is to take coins from the 

interior of the string and adjoin them to one of the ends. Since we have that 

ID~n - D~~1 1 ::; 2, each of the other moves satisfy D~n - D~~1 < 2. This 

implies that hn,k(An, Tn) 2: l~J. 

Later in this chapter, we will see that hn,1 (An, Tn) = l~J for n- 3 (mod 4), 

implying Lemma 2.1 is tight. Moreover, the lower bound can be tightened to 

the following lemma. 

14 
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Lemma 2.2. (6] Fork ~ 2 and n ~ 5, hn,k(An, Tn) ~ l%1· 

We recall the proof of Lemma 2.2 for k = 2 [2] for completeness. If n is 

even, then l%1 = l%J = %· Assume n is odd and hn,2(An, Tn) = l%J. This 

implies that moves i = 2 to i = hn,2(An, Tn) are all optimal, and thus, decrease 

the disorder by 2. Without loss of generality, assume the first move is to the 

right. After the first move which is suboptimal, we have the board illustrated 

in Figure 2.1. 

1 2 3 i -1 i+1 i+2 n-1 n n+1 n+2 

D~n =n 0 • 0 • 0 • 0 • 0 

D1n = n -1 0 • 0 • 0 • 0 0 • 

Figure 2.1: Board after the first suboptimal move for Berge 2-moves on An for 

n odd. 

Since the subsequent moves are optimal, we need fill the vacant po­

sitions created by the previous move. The vacant positions will alternate 

between • _ _ o and o _ _ •. The coins in the last 3 positions after the first 

move, o o •, cannot fill • __ o with an optimal move. Thus, another sub­

optimal move is necessary to sort the last 2 coins. This implies that we need 

l%J + 1 = l%1 Berge 2-moves. 

2.2 Optimal Solutions for Sorting An 

In this section, we exhibit optimal solutions for Berge 1-moves, 2-moves, and 

3-moves. These optimal solutions for sorting An are constructed inductively, 

and thus, are depend on the colour of the first coin. 

15 
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Let An,o E Sn be an alternating string whose first coin is white and let 

An,• E Sn be an alternating string beginning with a black coin. Similarly, let 

Tn,o E Sn to be the string with f~l white coins followed by l~J black coins and 

Tn,• E Sn to be the string with l~J black coins followed by f~l white coins. 

Let Bn,k(An, Tn) denote a solution, that is, an ordered set of Berge k-moves 

needed to sort An (into Tn). 

2.2.1 Optimal Solutions for Sorting An by Berge 1-moves 

The optimal solutions presented in this section can be found in [6]. 

Case 1: For n _ 3 (mod 4), the following is a solution in l~J Berge 

1-moves. 

The base case is B3,1 (A3,o, T3 ) = { 4 1 }. Let n = 4i + 3 fori~ 1. Assume 

we have a solution B4i-l,l (A4i-l,o, T4i-d taking l4
i;-l J moves. We ignore coins 

in positions 1, 2, 4i + 2, and 4i + 3, and sort the remaining 4i - 1 coins 

using the solution of B4i-l,l(A4i-l,o, T4i-d· We complete the solution by the 

following 2 moves: { 3 4i + 2 1 } . Thus, the total number of moves needed is 

l4i;-1 J + 2 = l4it3 J = l~J. Figure 2.2 illustrates this constructive induction. 

We can apply B4i-1,1 (A4i-l,o, T 4i-d while ignoring the coins in positions 1, 2, 

4i + 2, and 4i + 3 because by induction these coins are not among the entries 

of B4i-I,I(A4i-l,o, T4i-I) in the first 2i- 1 moves fori~ 1. 

Case 2: For n- 1 (mod 4), the following is a solution in f~l Berge 

1-moves. 

16 
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1···1° I ~1: 1:1:1:1: I :lsl ... l 

Ignore coins in 1, 2, 6 and 7, and re-number the positions to use the solution 

of B3,1 (A3,o, T3). 

... 0 t ~ i l l ~ 1 l . .. 

¢ ~ 0 • 0 ~ ¢ 

¢ ~ • 0 ~ ¢ 0 

.JJ-

Complete the solution with { 3 6 1 }. 

. . . 0 1 2 3 4 5 6 7 8 ... 

0 • 0 • 0 • 0 

0 • • 0 • 0 0 

17 
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The base case is B5,1 (A5,o, T5 ) = { 6 3 4 1 }. Let n = 4i + 1 for i > 1. 

Assume we have a solution B4i-3,1 (A4i-3,o, T4i-3) taking l 4i;-31 moves. Ignore 

coins in positions 1, 2, 4i, and 4i + 1. Sort the remaining 4i- 3 coins using the 

solution of B4i-3,1 (A4i-3,o, T4i_3). We complete the solution by the following 

2 moves: { 3 4i 1 }. Thus, the total number of Berge 1-moves required is 

l4i;-31 + 2 = l4iil1 = l~l 

Case 3: For n- 2 (mod 4), the following is a solution in 1~1 Berge 

1-moves. 

The base case is B6,1(A6,o, T6) = { 7 3 6 1 }. Let n = 4i + 2 for i > 1. 

Assume we have a solution B4i-2,1(A4i-2,o, T4i-2) taking f4i;-21 moves. Ignore 

coins in positions 1, 2, 4i + 1, and 4i + 2, and sort the remaining 4i- 2 coins 

using the solution of B4i-2,1 (A4i-2,o, T4i-2). Finally, we complete the solution 

by the following 2 moves: { 3 4i + 2 1 } . Thus, the total number of moves 

needed is l4i;-21 +2= l4ii21 = ~~l 

Case 4: For n 0 (mod 4), the following is a solution in 1~1 Berge 

1-moves. 

The base case is B4,1(A4,o, T4) = { 5 2 1 }. Let n = 4i + 4 for i 2::: 1. 

Assume we have a solution B4i,1(A4i,o, T4i) which takes 1~1 moves. We ignore 

coins in positions 1, 2, 4i + 3, and 4i + 4, sort the remaining 4i coins using the 

first ~- 1 = 2i- 1 moves of B4i,1(A4i,o, T4i), and then complete the solution 

by the following 3 moves: { 4 4i + 3 2 1 } . Thus, the total number of moves 

needed is r4i;-21 + 3 = r4i-i+61 = 1~1· 

18 
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In summary, fork= 1 and n;:::: 3, 

and 

2.2.2 Optimal Solutions for Sorting An by Berge 2-moves 

In this section, we develop recursive expressions from [2] for optimal solu­

tions of sorting An using Berge 2-moves. For simplicity, let Bn,k(An,o, Tn) be 

denote by Bn,k· Define B~,k as the i- th entry in the solution for sorting An,o· 

Case 1: For n = 4j, j > 2, the following is a solution in ~ Berge 

2-moves. 

The base case is B8,2 = { 9 2 5 8 1 }. Define B 41,2 as follows: 

• Bl· 2 = 4j + 1 and Bl· 2 = 2 J, J, 

• For 2 < i < ~' 

- if i < j + 1 and 

* i is even, then Bi1,2 = Bi1_4,2 + 2 

* i is odd, then Bi1,2 = Bij-4,2 

- if i = j + 1 and 

* j is even, then Bi1,2 = 2j + 1 

* j is odd, then Bi1,2 = 4j - 1 

- if i = j + 2 and 
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. . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 

0 • 0 • 0 • 0 • 0 • 0 • 
0 • 0 • 0 • 0 • 0 • • 0 

0 0 • • 0 • 0 • 0 • • 0 

0 0 • • • 0 0 • 0 • • 0 

0 0 • • • • 0 0 0 • • 0 

0 0 • • • • • • 0 0 0 0 

• • • • • • 0 0 0 0 0 0 

Figure 2.3: An optimal solution for sorting A12,o using Berge 2-moves. 

* j is even, then Blj,2 = 4j - 3 

* j is odd, then Blj,2 = 2j 

- if i > j + 2 and 

. . h Bi B(i-2) 2 * z 1s even, t en 4j,2 = 4j-4,2 + 

. . dd th Bi B(i-2) * z 1s o , en 4j,2 = 4j-4,2 

B(~) 4. d B(~)+l 1 • 4·2= Jan 4·2 = J, J, 

For example, if we want to find B12,2, then we have Bi2,2 = (4)(3) + 1 = 13 

and Br22 = 2. Next for 2 < i < 6, we have B{22 = B{2_42 = B~ 2 = 5, 
' ' ' ' 

Bi2 2 = 4(3) - 2 and Bf2 2 = 2(3). Finally, we can find Bf2 2 = 4(3) = 12 , , , 

and B{2,2 = 1. This gives B12,2 = { 13 2 5 10 6 12 1 } whose solution is 

illustrated in Figure 2.3. 
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Bs2 { 9 2 5 1 } 
' 

B12 2 { 13 2 5 10 1 } 
' 

B 16 2 { 17 2 5 12 9 1 } 
' 

B 2o,2 { 21 2 5 14 9 18 1 } 

B 24 2 { 25 2 5 16 9 20 13 1 } 
' 

B 2s 2 { 29 2 5 18 9 22 13 26 1 } 
' 

Table 2.1: Optimal solutions for sorting An,o in ~ Berge 2-moves for n = 4j, 

2:::; j:::; 7. 

This recursive expression can be used to find solutions for the first 6 values 

of j given in Table 2.1. Reading one column at a time in Table 2.1 perhaps 

gives a better sense of how to recursively construct the next solution from 

the previous solution. The middle entries which form the V-shape within the 

solution can also be found by adding 4 to the diagonal entry of j - 2 if j is 

even and by adding 8 to the diagonal entry of j - 2 if j is odd for entries along 

the left diagonal (entries highlighted in light grey in Table 2.1). To complete 

the right diagonal (entries highlighted in medium grey in Table 2.1), we add 

5 to the diagonal of entry j - 2 for even j and add 5 to the diagonal of entry 

j - 2 for odd values of j. 

Case 2: For n = 4j + 2, j > 2, the following is a solution in ~ Berge 

2-moves. 

The base case is B 10,2 = { 11 2 7 4 10 1 }. Define B 4J+2,2 as follows: 
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• For 3 < i :S ~, 

- if i < j + 2 and 

* i is even and Bi1_ 2,2 = 2j - 2, then BlJ+2,2 

otherwise BlJ+2,2 = Blj-2,2, 

* i is odd, then BlJ+2,2 = Bi1_2,2 + 4 

- if i = j + 2 and 

* j is even, then BlJ+2,2 = 2j 

* j is odd, then BlJ+2,2 = 2j + 5 

- if i = j + 3 and 

* j is even, then BlJ+2,2 = 2j + 6 

* j is odd, then Bi1,2 = 2j - 1 

- if i > j + 3 and 

. . h Bi B(i-2) * ~ 1s even, t en 41+2,2 = 4J-2,2 

. . dd th Bi B(i-2) 4 * ~ 1s o , en 4J+2,2 = 4j-2,2 + 

B(~)+l- 1 • 4j,2 -

BlJ-2,2 + 2; 

Table 2.2 has the first few solutions of An for n = 4j + 2 where 2 :::; j :::; 7. 

The diagonal entries (highlighted in light and medium grey) for n = 4j + 2 can 

be constructed by adding 4 to the j - 2 diagonal entry of the corresponding 

diagonal. 

The following properties were observed by Avis and Deza [2]. The first 

property for n even is that the solutions given in Tables 2.1 and 2.2 are always 
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... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . .. 

0 • 0 • 0 • 0 • 0 • 0 • 0 • 
0 • 0 • 0 • 0 • 0 • 0 • • 0 

0 0 • • 0 • 0 • 0 • 0 • • 0 

0 0 • • 0 • • 0 0 • 0 • • 0 

0 0 • • 0 0 • • • 0 0 • • 0 

0 0 • • • • • 0 0 0 0 • • 0 

0 0 • • • • • • • 0 0 0 0 0 

• • • • • • • 0 0 0 0 0 0 0 

Figure 2.4: An optimal solution for sorting A14,o using Berge 2-moves. 

B10,2 { 11 2 7 4 1 } 

B14 2 { 15 2 9 6 11 1 } 
' 

B1s 2 { 19 2 11 6 15 8 1 } 
' 

B 22 ,2 { 23 2 13 6 19 10 15 1 } 

B 26 2 { 27 2 15 6 23 10 19 12 1 } 
' 

B3o 2 { 31 2 17 6 27 10 23 14 1 } 
' 

Table 2.2: Optimal solutions for sorting A n,o in ~ Berge 2-moves for n = 4j +2, 

2 ::; j ::; 7. 
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shifted to the right by two positions. A second property is that all of the 

black coins are positioned to the immediate left of all the white coins. A 

third property is that first r ~ l moves create pairs of black coins and pairs of 

white coins. In Tables 2.1 and 2.2, these moves are the ones to the left of and 

including the light grey diagonal. The remaining l~J moves position the black 

pairs of coins among the black sequence of coins positioned in 3 to n~4 and 

the white pairs among positions n~6 through n + 2. These moves correspond 

to the entries that are to the right of and including the medium grey diagonal 

presented in Tables 2.1 and 2.2. Another important property of the recursion 

for n even is that the coins in positions n - 1 and n are never moved which 

ensures that the following recursion for n odd holds true. 

Case 3: For n 2: 9 odd, the following is a solution in 1~1 Berge 

2-moves. 

The following definition is taken from [2]. Define Bn,2 = { n+1 1 }U~n-1 

where 

~~- 1 = B~_ 1 2 + 2 for B~_ 1 2 ~ n - 3 , , 

and 

~~- 1 = B~_ 1 ,2 + 3 for B~_12 2: n- 1. 

For example, B11,2 = { 12 1 } U ~10 . If Bf0 ,2 ~ 8, then ~io = Bf0,2 + 2. As 

well, if Bf0 ,2 2: 10, then ~io = Bf0 ,2 + 3. Using these facts and the solution 

of B 10,2 given in Table 2.2, we have B11 ,2 = { 12 1 } U { 14 4 9 6 13 3 }. 

The solution of B11 ,2 is illustrated in Figure 2.5. Since this recursion uses the 

solution for n- 1 which is even, the coins in positions n- 2 and n- 1 are not 
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. . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 

0 • 0 • 0 • 0 • 0 0 • 
0 • 0 • 0 • 0 • 0 • 0 

0 • 0 • 0 • 0 0 • • 0 

0 0 • • 0 • 0 0 • • 0 

0 0 • • • 0 0 0 • • 0 

0 0 • • • • • 0 0 0 0 

• • • • • 0 0 0 0 0 0 

Figure 2.5: An optimal solution for sorting Au,o using Berge 2-moves. 

used in the solution of Bn- 1,2 according to the property mentioned above for 

n even, and therefore, makes the solution Bn-1,2 possible. 

2.2.3 Optimal Solutions for Sorting An by Berge 3-moves 

Cases 1 to 3 are optimal solutions given by Deza and Hua [6] for sorting 

An where n ¢. 0 (mod 4) using Berge 3-moves. Case 4 is an optimal solution 

given by Deza and Xie [7] for n _ 0 (mod 4). 

Case 1: For n _ 1 (mod 4), the following is a solution in 1~1 Berge 

3-moves. 

The base case is B5,3 (A5,o, T5 ) = { 6 2 5 1 }. Let n = 4i + 1 for i ?: 2, 

and assume B4i-3,3(A4i-3,o, T4i-3) has a solution in l 4i~ 3 l moves. Ignore 

coins in positions 1, 2, 2i + 3 and 2i + 4. Sort the remaining coins using 

B4i-3,3(A4i-2,o, T4i-2) and complete the solution with the following 2 moves: 
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{ 3 2i + 4 1 } . Therefore, the total number of Berge 3-moves needed is 

f4
i;-

3
l + 2 = f4

i-i+4l = f4
it

1
l as desired. Moreover, we can use the solu­

tion B4i-3,3(A4i-3,o, T 4i_3) while ignoring coins in positions 1, 2, 2i + 3 and 

2i + 4 because B4i+l,3(A4i+l,o, T4i+l) does not have any of -1, 0, 2j + 1 or 

2i + 2 among its entries in the first 2j - 1 moves for i > 0. 

Case 2: For n = 2 (mod 4), the following is a solution in 1~1 Berge 

3-moves. 

The base case is B6,3 (A6,o, T6 ) = {7 2 6 1 }. Let n = 4i + 2 for i 2:: 2, 

and assume B4i-2,3(A4i-2,o, T4i-2) has a solution in f4
i;-

2
l moves. We ignore 

coins in positions 1 ,2, 2i + 3 and 2i + 4 and sorting the remaining coins using 

the solution of B4i-2,3(A4i-2,o, T4i-2) together with the following three moves 

{ 3 2i + 4 1 } to complete the solution. In total, we have f 4i;-2l + 2 = f 4it2l 
moves are needed. The steps in this case are demonstrated in Figure 2.6. As in 

the previous case, we can use the solution B 4i-2,3(A4i-2,o, T 4i_2) while ignoring 

coins in positions 1, 2, 2i + 3 and 2i + 4 because B 4i+2,3(A4i+2,o, T 4i+2) does not 

have any of -1, 0, 2j + 1 or 2i + 2 among its entries in the first 2j - 1 moves 

fori> 0. 

The following lemma is needed in finding an optimal solution for the case 

n = 3 (mod 4) because it uses Bn,3(An,o, Tn) for n = 3 (mod 4). Lemma 2.3 

can be checked by induction. 

Lemma 2.3. {6] (i) For n 2 (mod 4), the solutions Bn,3(An, Tn) shift the 

final string three positions to the right. 

(ii) For n- 2 (mod 4), the solutions Bn,3(An, Tn) sort An,• into Tn,• and An,o 

into Tn 0 • , 

26 



M.Sc. Thesis- Sandra Gregov McMaster- Computing and Software 

I I 

0 

I : I ~ I : I : I : I : I : I : I : I ~0 I II I 

12 

I 

13 

I I 

Ignore coins in 1, 2, 7 and 8, and re-number the positions to use the solution 

of B6,1(A6,o, n). 

. . . 0 t ~ i l l i 7 $ l .1{{6 x7 ,1-2"'8 ~9 ... 

¢ , 0 • 0 • ¢ , 0 • 
¢ , 0 ¢ , 0 • • 0 • 
¢ , 0 • • 0 ¢ , 

0 • 
¢ , 0 ¢ , 

0 0 • • • 

-IJ. 

Complete the solution with { 3 8 1 }. 

. . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 

0 • 0 • 0 • 0 • 0 • 
0 • 0 0 • 0 • • 0 • 
0 • 0 • • 0 0 • 0 • 
0 • 0 0 • 0 0 • • • 

Use original positions for the solution: 

Bw,3(Aw,o, Tw) = { 11 4 10 3 8 1 }. 

Figure 2.6: Example of sorting A 10,o using Berge 3-moves. 
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Case 3: For n- 3 (mod 4), the following is a solution in 1~1 Berge 

3-moves. 

The base case is B7,3 (A7,o, T7 ) = { -2 4 - 1 3 - 2 }. Let n = 4i + 3 

for i 2 2. The first move is { -2 4i }. Next we ignore the coin in position 

4i + 3 and use the solution of B4i+3,3 (A4i+3,., T4i+3,.) to complete the solution. 

Lemma 2.3 ensures the validity of B4i+2,3 (A4i+2,o, T4i+2). The number of moves 

need is 14it21 + 1 = ln~11 + 1 = ln~11 = l~l 

Case 4: For n = 0 (mod 4), the following is a solution in l~J Berge 

3-moves. 

A solution for n - 0 (mod 4) taking 1~1 moves was established by Deza 

and Xie [7]. The induction technique used in this case differs from the previous 

cases by incorporating extra moves at various stages. The first stage moves 

coins of alternating colours, i.e., o • o, • o •. The second stage moves coins of 

mixed colours such as o o •, o • •, • • o, and • o o. The final stage moves coins 

of the same colour, o o o and • • •. There are two key coin positions which are 

important in the sorting process. One of them are called pivots which are the 

coins that remain fixed (never moved in the optimal solution). The other is 

the anchor point which refers to k consecutive coins (k = 3 in this case) which 

are surrounded by pivots such that they are vacant at the end of the first stage 

and filled at the beginning of stage 3. For example, Figure 2. 7 shows the pivots 

of A2o,o which are in positions 5, 11, 16, and 20 and the anchor point which 

includes positions 17, 18, and 19. 
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Figure 2. 7: The solution with the different stages for A2o,o · The pivots are highlighted in medium grey and 

the anchor point is highlighted in light grey. 
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Given the solution of A2o,o, we can use it to find the solution of A28,0 • We 

use stage 1 of A2o,o plus one extra move to vacate the anchor point. Next we 

use the first 2 moves of stage 2 for A2o,o with two additional moves. Then 

we finish stage 2 with the last two moves of A2o,o· The first move of stage 3 

vacates the anchor point and the next move refills it. This adds an additional 

two moves. Finally, we finish the solution with the last moves of A2o,o in stage 

3. The solution of A28 ,o is illustrated in Figure 2.8 and the extra moves needed 

at each stage are indicated by an asterisk in the stage column. 

In general, 

and 

h32+8t,3(A32+8t,o, Tn) = 16 + 4t 

for t ~ 0. We have omitted the proofs for these cases because they are similar 

to previous proofs. The basis of this technique is to first find a base case with 

the proper anchor point and pivots. For larger n, we ignore proper coins and 

use the solution from previous case. The extra moves are needed to fill the 

anchor point at the end of stage 1, for the extra moves needed to obtain the 

correct anchor coin in stage 2, and to vacate the anchor point at the beginning 

of stage 3. How to choose the proper coins are explained further in [7], but 

they essential depend on the value oft. 

An advantage of this technique is that it may be extended to larger values 

of k since many solutions for sorting An exhibit this recurrence with pivots, 

anchor points and stages. However, a further refinement of this technique is 

still needed in order to have a general solution for larger k. 
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Chapter 3 

Berge 1-metric 

3.1 Matching up to Shifting 

Transforming a string by moving one coin at a time is equivalent to moving 

the misplaced coins. Let m(81
, 8 2

) =maxi mi(81
, 8 2

) where mi(81
, 8 2

) is the 

number of matching coins between a pair of strings 8 1 , 8 2 E Sn for some shift 

i, (i = -n, ... , n) of 8 1
. If m(81

, 8 2
) = p, then hn,1(8\ 8 2

) = n- p. See 

Figure 3.1. If m(81, 8 2
) = m 0 (81, 8 2

) = p, then hn, 1(8\ 8 2
) = (n- p) + 1 

(an extra move is required). See Figure 3.2. In general, finding m(81
, 8 2

) is 

equivalent to finding the minimum number of moves needed to transform a 

generic string of Sn into another. 

3.2 Sorting a Generic String 

The generalized Berge sorting deals with sorting An using Berge k-moves. 

Recall that hn,l(An, Tn) = ~~l for n "¢ 3 (mod 4) and hn,l(An, Tn) = l~J for 

n 3 (mod 4). In this section, we evaluate the upper bound on hn,1(8n, Tn) 
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. . . -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 

S2 
: 

0 0 • 0 • 0 • • • 0 

sl . 0~ • 0 • • 0 • 0 1.< 0 • 
0 0 • 0 • • • 0 0 • 
0 0 • 0 • • • 0 0 • 
0 0 • 0 • 0 • • 0 • 
0 0 • 0 • 0 • • • 0 

Figure 3.1: A solution in 4 moves for m(Sl, S 2) = 6. 

... -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . .. 
,. 

S2 0 0 ... • 0 • 0 0 • • 
Sl 0 o,· • . , ''·' 

0 • 0 • 0 • 
·. ,.' 
0 10 • • •• 0' • • 0 

'd ·'·. :'·. 
0 

., .. • • 0 • '.• 0 . .. 

e' . o 
· . 

···•··· 0 0 • • 0 0 • .. ';~ 
Figure 3.2: A solution in 3 moves for m(S1 , S 2 ) = m0 (S1

, S 2
) = 8. 
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for any string Sn E Sn. 

Lemma 3.1. Let Sn E Sn. If n is even, then hn,l(Sn, Tn) :S: ~-

Proof. Assume n is even. This implies that the number of matching 

coins between any pair of strings is always even for shift i = 0. If~ is odd, 

then there is no initial matching of~ coins. Assume m 0 (Sn, Tn,o) 2:: ~ + 1. 

Then hn,l(Sn, Tn,o) :S: n- (% + 1) + 1 = %· Next, assume mo(Sn, Tn,o) :S: ~ -1. 

Then mo(Sn, Tn,•) > n- (%- 1) =% + 1. Thus, 

hn I(Sn, Tn .) < n- (~ + 1) + 1 = ~-, ' - 2 2 

Next assume % is even. If m 0 (Sn, Tn,o) > %, then this implies that 

mo(Sn, Tn,o) 2:: ~ + 2 since there is always an even number of matching coins 

fori = 0. Moreover, we have hn,l(Sn, Tn,o) :S: n- (~ + 2) + 1 = %- 1. If 

mo(Sn, Tn,o) < ~ :S: % - 2, then mo(Sn, Tn,•) > n- (%- 2) > % + 2 implying 

hn I(Sn, Tn .) < n- (~- 2) + 1 = ~- 1. 
' ' - 2 2 

If mo(Sn, Tn,o) = %, then we also have that mo(Sn, Tn,•) %· So, 

shift Sn to the right one position. Now there are n- 1 coins to compare. If 

ml(Sn, Tn,o) = p, then m1(Sn, Tn,•) = (n- 1)- p. Thus, for p < l n~l J, 

ln-1J jn-1l m 1(Sn, Tn,•) = (n- 1)- p 2:: (n- 1)- -
2

- = ~-2-
n 

2 

since n is even implying hn,1 (Sn, Tn,•) :S: ~- Q.E.D. 

Lemma 3.2. Let Sn E Sn. Ifn is odd, then hn,l(Sn,Tn) :S: ~~l· 

Proof. Assume n is odd. Note for n odd, the initial matching will 

always be odd. If mo(Sn, Tn,o) 2:: l%1, then 

35 



M.Sc. Thesis- Sandra Gregov McMaster- Computing and Software 

Next assume mo(Sn, Tn,o) < 1~1 :S l~J. If n = 4i + 5, then l~J zs even 

implying mo(Sn, Tn,o) :S l~J - 1. Then 

which implies that 

Ifn = 4i+3, then l~J is odd. We separate mo(Sn, Tn,o) :S l~J into two 

cases. If mo(Sn, Tn,o) < l~J :S l~J - 2 (since the initial matching is always 

odd), then 

This implies hn,l ( Sn, Tn,•) :S I~ 1 moves. If mo ( Sn, Tn,o) = l ~ j , then 

However, this contradicts the fact the initial matching is odd because I~ 1 zs 
even. Thus we need to split up the analysis as follows. Ifmo(Sn, Tn,o) = l~J 

and the ~~1 - th coin of Sn is white (implying it is a matching in both Tn,o 

and Tn,.), then 

mo(Sn,Tn,•) = (n -1)- (l~J -1) + 1 = ~~1 + 1. 

Ifmo(Sn, Tn,o) = l~J and the 1~1- th coin of Sn is black, then 

mo(Sn, Tn,•) = (n- 1) -l~J = l~J. 

Thus we need to shift Sn to the right one position. 

Ifml(Sn,Tn,o) 2: 1~1, then we have a solution is at most 1~1 moves. 

If m1 ( Sn, Tn,o) < I~ 1 :S l ~ j , then 

mo(Sn, Tn,•) > n -l~J = ~~1 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

T15,o 0 0 0 0 0 0 0 0 • • • • • • • 
Sl • • 0 0 0 0 • • • 0 0 0 0 • • 

Tt4,• • • • • • • • 0 0 0 0 0 0 0 0 

Figure 3.3: An example of a string in S15 requiring f1{l = 8 Berge 1-moves. 

giving a desired matching that ensures a solution in at most f ~ l Berge 1-moves. 

Q.E.D 

Recall that h4i+3,1(An, Tn) = l~J. However, for n = 15, 19, and 23, 

computational results shows there exists strings in Sn which require l~l Berge 

1-moves. For example, take the string S 1 shown in Figure 3.3 which has 

m(S\ Tn,o) = m(S1
, Tn,•) = 7, thus requires at least 8 moves. 

Corollary 3.1. For any pair of strings S\ S2 E Sn, hn,1(S\ S2
):::; n + 1. 

Proof. Let S\ S2 E Sn. Using triangle inequality of hn,t (S\ S 2
), we 

have 

By symmetry, we obtain 

Lemma 3.1 and 3. 2 imply 

Therefore, for any pair of strings in Sn, we can transform one string into 

another in a finite number of Berge 1-moves. Q.E.D. 
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3.3 Upper Bound for Hn,1(Sn) 

The following proof was given by Peter Sziklai [13]. 

Lemma 3.3. Hn,l (Sn) :S l3
: J. 

Proof. Let 81, 8 2 E Sn. Since each white coin is matched [ ~ l times 

and each black coin is matched l ~J times, we have 

For at least one io, mio (81, 82
) > ~

2 

x 2~ = :;f. Since mio (81, 8 2
) zs 

an integer, wehavemi0 (8 1,82
) ~ [:;fl Thus, hn,1(81,82

) :Sn- [:;fl = l 3
4nj 

Therefore, Hn,l(Sn) :S l3
: J. Q.E.D. 

Noticing that for Iii ~ ~' the value of mi(81, 8 2
) is at most (n- Iii), we 

consider k :S ~ and write 

2 -(n-k) (n-k) n 

~ = L mi(81, 8 2
) + L mi(81, 8 2

) + L mi(81, 8 2
). 

i=-n i=-(n-k) i=(n-k) 

In the first and third term, mi(81, 8 2 ) is less than (n- Iii). Thus we have 

(n-k) n 

2:: mi(81, 8 2
) + 2 L i. 

i=-(n-k) i=(n-k) 

This simplifies to 

2 (n-k) 

~ - k (k + 1) :S L mi(81, 8 2
). 

i=-(n-k) 

The right hand side of the inequality has 2 ( n - k) + 1 terms. It yields that 

its smallest term is at least 

~-k(k+l) 
2 (n- k) 

38 



M.Sc. Thesis - Sandra Gregov McMaster- Computing and Software 

If we choose k = ~, we get that the smallest term is at least ~. Choosing k = ~ 

giVes 
7n2 

- 16 - 7n 
3n 24 
2 

The following was suggested by P olik [ 11] to find the best fraction (ignoring 

that n is an integer). We begin by letting k = f ( n). We wish to show that 

Dividing by n2
, 

n 2
- 2k2 n 2

- 2j2(n) 
---;-----;- = rv en 
4(n-k) 4(n-f(n)) · 

n2
- 2f2 (n) 

4n (n- f(n)) 

1-2(~r 
4 ( 1- ( f~n)) )" 

Note f(n) <nand 0 < !~) < 1. Assume liiDn--oo !~) =a. Then 

1-2(~)
2 

4 ( 1- e~n))) 
1- 2a2 

---+ 4(1 _a) as n---+ oo. 

To maximize, we take its derivative in a and solve when equal to zero. After 

simplification, we have 

giving 

_4(.;_1_-_4_a_+_2a_2_;_) = 
0 

16(1- 2a- a2) 

1- 4a + 2a2 = 0 

with a maximum at a = 1 - V{. If f(n) = log(n), then limn--+oo f~n) = 0 

implies 

1-2(~r 
4 (1- e~))) 
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If f(n) = anb with b < 1, then we also get ~- For b = 1, we get a = 1 - :{} 

and plugging this in gives the ratio 

n 2 
- 2 ( 1 - :{j-r n 2 

4 ( n - ( 1 - '?) n) 
n2 

- 2n2 + 2v'2n2 
- n2 

2v'2n 

By choosing k = ( 1 - '?) n, we get that there exists a shift i such that 

mi(S\ S2
) > ( 1- '?) n implying Hn,1 (Sn) ::; n- ( 1- '?) n = '?n. 

This approach proposed by Peter Sziklai could easily be extended to a set 

of strings made of xn white coins and ( 1 - x) n black coins where 0 ::; x ::; 1. 

Then for any pair of such strings P 1 , P 2 , 

n-1 

L mi(P1
, P 2

) = (xn) 2 + ((1- x) n) 2
• 

i=-n+l 

3.4 Lower Bound for Hn,1(Sn) 

In this section, we are trying to identify a class of strings requiring the 

most number of moves. In doing so, we construct strings which have the 

least number of matching coins between each other for any shift i. We first 

note that transforming Tn,o into Tn,•, we need exactly 1~1 moves because 

m(Tn,o, Tn,•) = ~~1 for shift i = l~J. 

Now imagine we slice Tn,o and Tn,• in thirds such that the outer left and 

right slices have l~J coins respectively and the middle slice has 1~1 coins. 

Now we swap the position of the black and white coins in the middle slice of 

Tn,o as shown in Figure 3.4. 
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no. of coins l~J l~l l~J 
Tn• • . . . • • ... • • 0 0 . . . 0 0 . .. 0 , 

Tno 0 ... 0 • . .. • • 0 0 . . . 0 • . .. • , 

,. 

Figure 3.4: Slicing the board into thirds 

In the middle slice, we already have l~l matching coins for shift i = 0. The 

matching in the middle slice is the best matching of the three slice. As well, if 

we shift Tn,o, then the best matching is still ~~l Using this example, our goal 

will be to minimize the number of matching coins by minimizing the number 

of coins in the outer slices and minimizing the number of matching coins in 

the middle slice. 

3.4.1 Lower Bound for Hn,1(Sn) for n even 

We divide up the values of n into 3 groups: n = 6 + 6i, n = 8 + 6i and 

n = 16 + 6i for i ~ 0. 

For n = 6 + 6i, i ~ 0, we will show that there exist strings s;, s; E Sn such 

that m(S;,s;) = l~J -ltJ· We begin by letting string s;,s; E Sn as shown 

in Figure 3.5(A). If ltJ = 0, then we need to make one swap of the white and 

black coin in positions ~ and ~ + 1 of string S! as shown in Figure 3.5(B). 

This will ensure that no matter how we shift s; we can only get a ~ matching. 

In general for n = 6 + 6i, i ~ 0, we need to make 3 x l~J pairs of alternating 

white and black coins in S! about the center of the string giving an alternating 

sequence of white and black coins oflength 2 x 3 x l~J (Figure 3.5(C)). This 

reduces the number of initial matchings in the center slice to be less than or 
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equal to the number of coins in the outer slices of s;. As a consequence, this 

also restricts the number of matching coins we can obtain for any shift i of s;. 
For instance, the maximum number of matching coins among the center slice 

is achieved by shifting s; to the left or right by 3 x ltJ positions in which case 

m(s;, s;) = ~- ltJ matchings. 

In a similar manner, we can construct strings s;, s;_ E Sn for n = 16 + 6i, 

i;::::: 0, such that m(s;,s;) = l~J -ltJ· The only difference is that we need 

to have 1 + (3 x ltJ) pairs of alternating white and black coins in the center 

slice about the ~- th position of s; as illustrated in Figure 3.7(A). 

To find the value of a in Figure 3.7(A), we note that the center slice has a 

length of 

Solving for a, we get 

Note that for n = 10, the least number of matching coins is l1
; J + 1 = 4 for 

strings s; and s;_ given in Figure 3.6. For this reason, we begin this case at 

n = 16. 

Next we examine n = 8 + 6i, i ;::::: 0. The string Sz has l~J - l i~3 j white 

coins, followed by l~l + l i~3 J black coins, followed by l~l + l i~3 J white coins, 

and finally, followed by the remaining l ~ J - l i~3 J black coins. Note the for 

i = 0, 1, 2, l i~ 3 J is negative. The reason for the i - 3 is that the first three 

values of n need to have l ~ J + 1 coins in the outer slices to minimize the number 

of matchings. Fori= 0, 1, 2, s; = Tn,•· If we start at values of n which satisfy 
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positions 1 n liJ !!:_1 n !!:+1 !!:+2 n-!!:- liJ n . . . 3 . . . 2 2 2 2 . . . 3 ... 
Sl 

* • . . . • • . . . • • 0 0 ... 0 0 . .. 0 

S2 
* 

0 . . . 0 • . . . • • 0 0 . . . 0 • ... • 
(A) 

positions 1 n liJ Il-l n !!:+1 !!:+2 n-!!:- liJ n . . . 3- . . . 2 2 2 2 ... 3 ... 

Sl 
* • . . . • • . . . • 0 • 0 . . . 0 0 . .. 0 

S2 
* 

0 . . . 0 • . . . • • 0 0 ... 0 • . .. • 
(B) 

no. of coins l~J - liJ ~-(3xliJ) 2 X 3 X liJ ~ - (3 X liJ) l~J - liJ 
sl 

* • . . . • • . . . • 0 • . . . 0 • . . . 0 • 0 . .. 0 0 . .. 0 

S2 
* 

0 . . . 0 • . . . • • • . . . • 0 . .. 0 0 0 . .. 0 • . .. • 
(C) 

Figure 3.5: (A) shows the initial layout of the two strings, (B) shows the swap of the two middle coins in S!;, 

and (C) gives the general setting for larger n where n = 6 + 6i, i 2: 0. 
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1 2 3 4 5 6 7 8 9 10 

s~ 
* • • • • • 0 0 0 0 0 

s2 
* 

0 0 0 0 • 0 • • • • 

Figure 3.6: Two strings, s;,s; E S10 such that m(S;,s;) = 4. 

l i~3 J = 0, then we need have two pairs of alternating white and black coins 

about the center position of s;. For values of i that satisfy l i~3 J = 1, we need 

to have 4 pairs of alternating white and black coins about the ~- th position 

in s;. Continuing in this manner, we need have have ( 3 x l i~3 J) + 2 pairs of 

alternating white and black coins in the center slice. Thus, we can construct 

the following strings s; and s; as illustrated in Figure 3. 7(B). 

The center slice has r~l + 2 X l i~ 3 J white and black coins. To calculate the 

value of b, we set-up the following equation and solve for b: 

2b + 2 ( ( 3 X l i ~ 3 J ) + 2) = I i l + 2 X l i ~ 3 J . 
After simplification of the above equation, we get that 

rnl li- 3j b = I 6 - 2 X -5- + 2. 

3.4.2 Lower Bound for Hn,l (Sn) for n odd 

To construct strings s; and s; for n = 5 + 6i, i 2: 0, we use the strings from 

n = 6 + 6i and delete the first black coin in s; and the last black coin in s;. 
This gives us the correct number of black and white coins in both strings. As 

well, since the first one third slice of n = 5 + 6i has the same number of white 

coins as n = 6 + 6i, we have that for n = 5 + 6i, m(S;, Sl) = l~J - liJ. 
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no. of coins l~J - ltJ a 2 X (1 + 3 X ltJ) a l~J - ltJ 
Sl 

* • . . . • • . . . • 0 • . . . 0 • . . . 0 • 0 . .. 0 0 . .. 0 

S2 
* 

0 . . . 0 • . . . • • • . .. • 0 . .. 0 0 0 . . . 0 • ... • 
(A) 

no. of coins l~J-li~3J b 2 X ( ( 3 X l i~3 J ) + 2) b l~J-li~3J 
sl 

* • . . . • • . . . • 0 • . . . 0 • . .. 0 • 0 . . . 0 0 ... 0 

s2 
* 

0 . . . 0 • . . . • • • . . . • 0 . . . 0 0 0 . . . 0 • . .. • 
(B) 

Figure 3.7: (A) has the worst case for n = 16 + 6i where i = 0, 1, 2, ... , and (B) shows the worst case for 

n = 8 + 6i fori= 0, 1, 2, ... for Berge 1-moves. 



M. Sc. Thesis - Sandra Gregov McMaster- Computing and Software 

The same idea also holds for n = 7 + 6i, i ;?: 0. Deleting the first coin 

and last coin of s; and s; constructed for n = 8 + 6i, respectively, gives 

m(Sl,S;) = l~J -li~3 J for n = 7+6i,i;?: 0. 

As well, for n = 15 + 6i, we begin by using strings Sl and Sz constructed 

for n = 16 + 6i and delete the first coin of S 1 and last coin of S 2• Then 

m(Sz,Sl) = l~J -ltJ for 15+6i,i;?: 0. 

If we express i in terms of n for each n = 5 + 6i, 6 + 6i, 7 + 6i, 8 + 6i, 

15 + 6i, and 16 + 6i, i ;?: 0 and take the minimum over all values of i, we have 

the following lemma. 

Lemma 3.4. There exist strings Sl, Sz E Sn such that m(Sl, Sz) = l~J -l;oJ 
which implies Hn,l(Sn) ;?: 12;1 + l~J · 

Combining the upper and lower bounds for Hn,1 (Sn), we have 

0.700n ~ Hn,l(Sn) ~ 0.707n. 
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Chapter 4 

Berge 2-metric 

4.1 Upper Bound for Hn,2(Sn) 

We begin by considering the associated Berge 2-metric of Sn- Assume that 

we can transform any string Sn E Sn into Tn,o in a finite number of moves, 

i.e., hn,2(Sn, Tn,o) :s; an for some a. Fix b coins in the first b positions, and 

transform the remaining n - b coins. Then 

where c is the number of moves need to merge the fixed b coins into the sorted 

string on n - b coins. Taking a = 1, b = 4 and c = 4 gives us the following 

lemma. 

Proof. Inductive hypothesis: It takes less than n to sort any string 

Sn E Sn into Tn,o for n :s; 4m and the result is shift by two positions to the 

right. Base Case: Form = 2, any string Sn E Sn for n = 5, 6, 7, 8 can be 
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1 2 3 4 5 6 7 8 ... rn~4l -2 rn~4l-1 rn~4l l n~4 J ... n+1 n+2 
0 0 • • 0 0 . .. 0 0 0 • . .. • • 
0 0 • • 0 0 0 0 ... 0 • ... • • 
0 0 0 0 0 0 . .. 0 • • • . .. • • 

0 0 0 0 0 0 ... 0 • • • ... • • 

1 2 3 4 5 6 7 8 ... rn~4l-2 rn~4l-1 rn~4l l n~4 J ... n+1 n+2 

• • 0 0 0 0 ... 0 0 0 • . .. • • 
• • 0 0 0 0 0 0 ... 0 • . .. • • 

0 0 0 0 0 0 ... 0 • • • ... • • 

Figure 4.1: Solutions when the first 4 coins are o o ee ore e oo. 

sorted into Tn,o in at most n moves shifted two positions to the right. The 

solutions of these strings are given in Appendix A. Induction: m --+ m + 1. 

Ignore the first 4 coins of Sn and sort Sn-4 into Tn-4,o using the induction 

(i.e. in n - 4 moves and it is shifted by 2). 

Next we merge the first 4 untouched coins into the Tn-4,o· For this, we have 

six cases to consider. The first 4 coins can be positioned as follows: e e oo, 

o o ee o e eo, eo oe , eo eo oro e oe. The first two cases are shown in Figure 

4.1 with solutions taking less than 4 moves and shifted to 2 positions to the 

right. 

The solutions with o e eo and eo oe as the first four coins are given in Figure 

4-2 and need at most 4 moves with the final string shifted to the right by two 

positions. 

The last two cases need 4 moves such that the final strings are shifted to the 

right by two positions. Their solutions are given in Figure 4.3. 
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1 2 3 4 5 6 7 8 ... ~n~4l -2 ~n~4l -1 ~n~4l l n~4 J . .. n+1 n+2 

0 • • 0 0 0 ... 0 0 0 • . .. • • 
0 • • 0 0 0 0 0 ... 0 • . .. • • 
0 0 0 0 0 0 ... 0 • • • . .. • • 
0 0 0 0 0 0 ... 0 • • • . .. • • 

0 0 0 0 0 0 ... 0 • • • . .. • • 

1 2 3 4 5 6 7 8 ... ~n~4l-2 ~n~4l-1 ~n~4l ln~4J . .. n+1 n+2 

• 0 0 • 0 0 ... 0 0 0 • ... • • 
0 • • 0 0 0 ... 0 0 0 • . .. • • 

0 0 0 • • 0 0 0 ... 0 • . .. • • 
0 0 0 0 0 0 ... 0 • • • . .. • • 

0 0 0 0 0 0 ... 0 • • • . .. • • 

Figure 4.2: Solutions when the first 4 coins are o e eo and e o oe. 

1 2 3 4 5 6 7 8 ... ~n~4l-2 ~n~4l -1 ~n~4l l n~4 J . .. n+1 n+2 

• 0 • 0 0 0 . .. 0 0 0 • . .. • • 
• 0 0 • 0 0 ... 0 0 0 • . .. • • 
• • 0 0 0 0 . .. 0 0 0 • . .. • • 
• • 0 0 0 0 0 0 ... 0 • . .. • • 

0 0 0 0 0 0 ... 0 • • • . .. • • 

1 2 3 4 5 6 7 8 ... ~n~4l -2 ~n~4l-1 ~n~4l l n~4 J ... n+1 n+2 

0 • 0 • 0 0 ... 0 0 0 • . .. • • 
0 • • 0 0 0 ... 0 0 0 • . .. • • 
0 0 0 • • 0 0 0 ... 0 • . .. • • 
0 0 0 0 0 0 0 ... • • • . .. • • 

0 0 0 0 0 0 0 ... • • • ... • • 

Figure 4.3: Solutions when the first 4 coins are eo eo and o e oe. 
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Therefore, at most 4 moves are needed to merge the first four coins giving a 

total of (n- 4) + 4 = n Berge 2-moves. Q.E.D. 

By Lemma 4.1, we have the following upper bound on Hn,2(Sn)· 

Lemma 4.2. Hn,2(Sn) ~ 2n. 

Proof. Let 8 1 ,82 E Sn. By definition, we have 

Hn 2(Sn) = max hn 2(8\ S2). 
' (Sl,S2ESn) ' 

Using the triangle inequality of hn,2 ( 8 1
, 8 2), we obtain 

By distribution and using symmetry of hn,2 (8 1
, 8 2

), we get 

max hn2(81 ,Tno)+ max hn2(Tno,82) 
(S1 ESn) ' ' (S2ESn) ' ' 

max hn 2(81
, Tn o) + max hn 2(82, Tn o) 

(S1 ESn) ' ' (S2ESn) ' ' 

By Lemma 4.1, maX(SlESn)hn,2(81
, Tn,o) ::; n and max(S2ESn)hn,2(82, Tn,o) ~ n 

implying 

Q.E.D. 

4.2 Exploiting Symmetries of Sn 

Unlike Berge 1-metric, it is much more difficult to compute Hn,k(Sn) for 

k > 1. The size of Sn is 
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This implies that for Hn,k(Sn) we need to make 

2 

computations. Thus, we have a combinatorial explosion. As a result, Hn,k(Sn) 

is only computable for small values of n. 

For n even, we can compute Hn,k(Sn) for strings beginning with a white 

coin. Then by interchanging the white and black coins, we will get a solution 

for transforming strings beginning with a black coin. For example, if we can 

transform o • o o •• into o o • o ••, then we can transform • o • • oo into • • o • oo. 

However, exploiting the symmetry of Sn is not enough to significantly reduce 

the computation time. 

4.3 Preliminary Computations 

4.3.1 Computing H6,2(S6), Hs,2(Ss) and Hw,2(S10) 

The computational results for the first few even values of n give interesting 

insight into Berge 2-metric (Table 4.1). In particular, the extreme case for 

n = 6 is transforming A6 ,. into A6 ,o which requires a minimum of 6 Berge 

2-moves. For example, one solution is 

B6,2(A6,•, A6,o) = {-1 3 0} u {7 4} U {0 6} U {4 -1} U {6 1}. 

This may be due to the fact that there is small set of possible moves required 

to correct 6 misplaced coins. In contrast to k = 1, hn,l ( An,•, An,o) = 1 for all 

n. 
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n Hn,2(Sn) 

6 6 

8 6 

10 6 

Table 4.1: Computed Hn,2 (Sn) for even values of n, 6::::; n::::; 10. 

As n increases, transforming An,o into An,• has a nice inductive solution 

requiring ~ + 1 Berge 2-moves which is given in section 4.3.2. Given that 

Hw,2(S10 ) = 6 = 1
2° + 1, Hn,k(Sn) does not tend to fluctuate up and down, and 

Hn,2 (Sn) should be close for both odd and even values of n, it is probable that 

Hn,2 (Sn) = ~+1. However, this is merely speculation and further computation 

is necessary. 

4.3.2 Transforming An,• into An,o 

Case 1: For n = 8 + 4i, i 2:: 0, the following is a solution in ~ + 1 

Berge 2-moves. 

The base case is B8 ,2 (A8 ,., A8,o) = { -1 2 5 1 4 7 }. Let n = 8 + 4i, i > 0 

and assume B4+4i,2 (A4+4i,•' A4+4i,o) has a solution in 4
it

4 + 1 = 2i + 3 moves. 

Ignore coins in positions 2i+3, 2i+4, 4i+ 7, and 4i+8 of An,•· Next, transform 

the remaining coins using the first 2i + 1 moves of B4+4i,2 (A4+4i,•, A4+4i,o)· We 

complete the solution with the following 4 moves: 

1. For i = 1, we complete the solution with { 1 2i+2 4i+5 2i+4 4i+7 }. 

2. For i > 1, we use { 4i + 3 2i + 2 4i + 5 2i + 4 4i + 7 }. 
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Bs,2(As,., As,o) { -1 2 5 1 4 7 } 

B12,2(A12,•, A12,o) { -1 2 7 1 4 9 6 11 } 

B16,2(A16,•, A16,o) { -1 2 9 1 4 11 6 13 8 15 } 

B2o,2(A2o,., A2o,o) { -1 2 11 1 4 13 6 15 8 17 10 19 } 

Table 4.2: Solutions for transforming An,• into An,o using Berge 2-moves for 

n = 8 + 4i, 0 ~ i ~ 3. 

The solution of As+4i,• takes (2i + 1)+4 moves which equals ~+1 (take i = n~s 

and plug into (2i + 1) + 4). The first few values of n = 8 + 4i, i 2:: 0, are given 

in Table 4.2. We also demonstrate this induction for transforming A12,. into 

A12,o using the solution of As,. in Figure 4.4. 

Case 2: For n = 10 + 4i, i 2:: 0, the following is a solution in ~ + 1 

Berge 2-moves. 

The base case is B 10,2 (A10,., A10,a) = { -1 2 5 0 7 4 9 }. For i > 0, we 

let n = 10 + 4i and assume Bn-4,2(An-4,•, An-4,a) has a solution in 

n-4 
-2- + 1 = 4+2i 

moves. Ignore coins in positions 4i+ 1, 4i+2, 4i+9, and 4i+ 10. Then we trans­

form the remaining coins using the first 2i + 2 moves of Bn-4,2 ( An-4,•, An-4,o). 

Then we complete the solution with the following 4 moves: 

{ 4i + 5 2i + 2 4i + 7 2i + 4 4i + 9 } . 

Thus, to transform A10+4i,• into A10+4i,o we need (2i + 2) + 4 moves, or equiva­

lently, ~ + 1 moves. Table 4.3 has the first few solutions for n = 10 + 4i where 

i 2:: 0. 
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I I _, I 
0 

I ~ I : I : I : I : I : I : I : I : I ~ 1'.' 1': I I 
-U-

Ignore coins in 5, 6,11 and 12, and re-number the positions to use the first 

three moves of Bs,2(As,., As,o). 

. . . -1 0 1 2 3 4 ~ ~ / l i ,1{(8 m Jlf ... 

• 0 • 0 ~ p • 0 • 0 ~ p 

0 • • 0 ~ p • 0 • 0 ~ p 

0 • • • 0 0 ~ p • 0 ~ p 

0 • 0 0 ~ p • • • 0 ~ p 

-U-

Complete the solution with { 1 4 9 6 11 }. 

. . . -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 

• 0 • 0 • 0 • 0 • 0 • 0 

0 • • 0 • 0 • 0 • 0 • 0 

0 • • • 0 0 • 0 • 0 • 0 

0 • 0 0 • 0 • • • 0 • 0 

0 • 0 • 0 0 • • • 0 • 0 

0 • 0 • 0 • 0 0 • • • 0 

0 • 0 • 0 • 0 • 0 • • 0 

0 • 0 • 0 • 0 • 0 • 0 • 

Use original positions for the solution: 

B12,2(A12,•, A12,o) = { -1 2 7 1 4 9 6 11 }. 

Figure 4.4: A solution transforming A 12,. into A 12,o using Berge 2-moves. 
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Bw.2(Aw,., Aw,o) { -1 2 5 0 7 4 9 } 

B14,2(A14,•, A14,o) { -1 2 7 0 9 4 11 6 13 } 

B1s,2(A1s,., Als,o) { -1 2 9 0 11 4 13 6 15 8 17 } 

B22,2(A22,., A22,o) { -1 2 11 0 13 4 15 6 17 8 19 10 21 } 

Table 4.3: Solutions for transforming An,• into An,o using Berge 2-moves for 

n = 10 + 4i, 0 ::::; i ::::; 3. 

Next, we examine the lower bound for transforming An,• into An,o using 

Berge 2-moves. First observe that initially all black coins of An,• lie in an odd 

position and all white coins of An,• lie in an even position. However, for An,o, 

it is the opposite. Initially, all white coins of An,o lie in an odd position and 

all black coins of An,o lie in an even position. In order to transform An,• into 

An,o, we need to move all of black coins of An,• to an even position and all 

white coins of An,• to an odd position. Since k = 2, we can correct the position 

of at most two coins of An,• with each Berge 2-move. Given that we need to 

correct the position of n coins of An,•' this indicates that hn,2 (An,., An,o) 2:: ~­

Combining this observation with the solution of transforming An,• into An,o, 

it seems to indicate that for even values of n 2:: 8 

n n 
2 ::::; h(An,•, An,o) ::::; 2 + 1. 

For odd values of n ::::; 9, Hn,2(Sn) = ~~l (Table 4.4). These values of 

n are relatively small and leave open the possibility of Hn,2(Sn) increasing 

with larger n. However, this seems unlikely since there is a greater degree of 

freedom in choosing which coins to move for larger n which aids in reducing 
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n Hn,2(Sn) 

5 3 

7 4 

9 5 

Table 4.4: Computed Hn,2 (Sn) for odd values of n, 5 :::; n:::; 9. 

the number of moves required. It seems probable that Hn,2 (Sn) = f~l for 

n > 9, as extreme cases tend to appear for small n. 
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Chapter 5 

Conclusion 

In this thesis, we present a framework for Berge metrics for binary strings. 

In particular, we consider the associated Berge k-metric, hn,k(Sl, 8 2
), between 

a pair of strings 5 1 , 8 2 E Sn which is the minimum number of Berge k-moves 

needed to transform one string into another. 

We begin by surveying the first generalization of the original Berge problem 

which allows Berge k-moves for sorting the alternating string An; that is, for 

transforming An into the sorted string Tn. Since the conjecture stating that 

hn,k(An, Tn) = 1% l for k 2: 2 and n 2: 2k + 11 

holds for k = 1, 2, 3 and for k ~ 14 and k + 2 ~ n ~ 50, we believe that 

hn,k(An, Tn) is independent of k. We address the following additional question: 

are An and Tn antipodal, i.e., the furtherest away pair in Sn? 

For Berge 1-metric, An and Tn are not antipodal. In particular, we exhibit 

strings s;, s; E Sn such that hn,1 ( s;, s;) 2: 0. 700n. Observing that trans­

forming a pair of strings in Sn using Berge 1-moves amounts to finding the 
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maximum number of matching coins between two strings up to shifting, we 

have Hn,l (Sn) ::::; 0. 707n. 

For Berge 2-metric, we have I~ l ::::; Hn,2 (Sn) ::::; 2n. From preliminary 

computations, we conjecture that Hn,2 (Sn) ::::; I~ l + 1 for n 2: 10 since the 

degree of freedom in choosing moves increases as n increases. If this conjecture 

holds, then An and Tn are close to being antipodal for Hn,2(Sn)· 

As observed in this thesis, Hn,l (Sn) and Hn,2(Sn) behaviors are quite dif­

ferent. This leads us to believe that Hn,k(Sn) may be k dependent. More 

specifically, we believe that Hn,k(Sn) ::::; I~ l + ck for some Ck dependent only 

on k. 
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Appendix A 

Bn,2(Sn, Tn,o) < n, Sn E Sn for 

n == 5, 6, 7, 8 

Solutions for transforming general strings of Sn into Tn,o using Berge 2-

moves in at most n moves and shifted to the right by 2 positions. A white 

coin is represented by 1 and a black coin is represented by 0. 

85 E Ss no. of moves B5,2(85, n,o) 

00111 1 {6 1} 

01011 5 {641}U{8368} 

01101 4 {62461} 

01110 5 {641351} 

10011 3 {6 2 41} 

10101 3 {6 3 51} 

10110 5 {642531} 

11001 2 {6 3 1} 

11010 3 {6 2 51} 

11100 2 {6 4 1} 
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s6 E s6 no. of moves B6,2(S5, T6,o) 

000111 5 {7 1 4 2 5 1} 

001011 3 {7 3 6 1} 

001101 3 {7 4 6 1} 

001110 1 {7 1} 

010011 4 {72461} 

010101 5 {7 2 53 6 1} 

010110 3 {7 2 6 1} 

011001 5 {7 3 52 6 1} 

011010 5 {7 5 1 4 6 1} 

011100 4 {74261} 

100011 3 {7 3 5 1} 

100101 3 {7 2 5 1} 

100110 3 {7 2 4 1} 

101001 4 {7 1 4 6 1} 

101010 5 {7 1 4 2 6 1} 

101100 2 {7 51} 

110001 4 {72641} 

110010 2 {7 3 1} 

110100 4 {74631} 

111000 2 {7 4 1} 
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s1 E s1 no. of moves B1,2(S7, T7,o) 

0001111 5 {8 1 52 6 1} 

0010111 3 {8 3 7 1} 

0011011 3 {8 4 7 1} 

0011101 3 {8 57 1} 

0011110 1 {8 1} 

0100111 4 {8 2 4 7 1} 
81 E s1 no. of moves B1,2(S7, T7,o) 

0101011 4 {82571} 
1011100 2 {8 6 1} 

0101101 5 {8 2 6 3 7 1} 
1100011 4 {8 2 7 4 1} 

0101110 3 {8 2 7 1} 
1100101 4 {8 5 7 3 1} 

0110011 5 {8 4 1 3 6 1} 
1100110 2 {8 3 1} 

0110101 5 {8 3 6 2 7 1} 
1101001 4 {8 2 7 5 1} 

0110110 5 {8 3 5 2 7 1} 
1101010 4 {8 4 7 3 1} 

0111001 5 {8 5 1 4 6 1} 
1101100 4 {8 6 2 4 1} 

0111010 4 {84271} 
1110001 4 {83751} 

0111100 4 {85271} 
1110010 2 {8 4 1} 

1000111 3 {8 3 6 1} 
1110100 3 {8 6 3 1} 

1001011 4 {82641} 
1111000 2 {8 51} 

1001101 3 {8 2 6 1} 

1001110 3 {8 2 4 1} 

1010011 3 {8 4 6 1} 

1010101 5 {8 5 2 7 4 1} 

1010110 5 {8 1 4 2 7 1} 

1011001 4 {8 1 57 1} 

1011010 5 {8 1 52 7 1} 
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SsE Ss no. of moves Bs,2(Ss, Ts,o) 

00001111 3 {9 3 7 1} 
SsE Ss no. of moves Bs,2(Ss, Ts,o) 

00010111 4 {9 2 5 7 1} 
01100011 5 {9 4 2 6 8 1} 

00011011 4 {9 2 6 8 1} 
01100101 4 {9 4 2 7 1} 

00011101 3 {9 2 7 1} 
01100110 5 {9 4 1 3 6 1} 

00011110 4 {9 7 2 8 1} 
01101001 5 {9 5 1 4 8 1} 

00100111 3 {9 4 7 1} 
01101010 5 {9 3 6 2 8 1} 

00101011 5 {938571} 
01101100 5 {9 3 5 2 8 1} 

00101101 3 {9 3 8 1} 
01110001 4 {9 52 7 1} 

00101110 4 {9 1 3 6 1} 
01110010 5 {9 5 1 4 6 1} 

00110011 3 {9 5 7 1} 
01110100 4 {94281} 

00110101 3 {9 4 8 1} 
01111000 4 {9 5 2 8 1} 

00110110 4 {9 1 4 6 1} 
10000111 4 {92741} 

00111001 3 {9 58 1} 
10001011 5 {9 2 57 3 1} 

00111010 5 {9 1 4 2 6 1} 
10001101 4 {9 1 3 8 1} 

00111100 1 {9 1} 
10001110 3 {9 3 6 1} 

01000111 5 {9 4 1 3 7 1} 
10010011 4 {9 2 7 5 1} 

01001011 5 {9 2 6 3 8 1} 
10010101 5 {9 2 4 7 3 1} 

01001101 4 {92481} 
10010110 4 {9 2 6 4 1} 

01001110 5 {9 2 8 3 7 1} 
10011001 5 {9 2 4 8 5 1} 

01010011 5 {9 2 6 4 8 1} 
10011010 3 {9 2 6 1} 

01010101 4 {92581} 
10011100 3 {9 2 4 1} 

01010110 5 {9 2 8 4 7 1} 
10100011 5 {9 4 1 5 7 1} 

01011001 4 {96271} 
10100101 4 {9 1 4 8 1} 

01011010 5 {9 2 8 5 7 1} 

01011100 3 {9 2 8 1} 
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S8 E S8 no. of moves Bs,2(Ss, Ts,o) 

10100110 3 {9 4 6 1} 

10101001 4 {9 3 8 6 1} 

10101010 5 {9 3 8 2 6 1} 

10101100 4 {9 7 3 6 1} 

10110001 4 {9 1 58 1} 

10110010 4 {9 53 6 1} 

10110100 4 {97461} 

10111000 2 {9 6 1} 

11000011 4 {9 3 7 5 1} 

11000101 4 {9 2 8 4 1} 

11000110 4 {9 3 6 4 1} 

11001001 4 {9 58 3 1} 

11001010 5 {9 3 6 2 4 1} 

11001100 2 {9 3 1} 

11010001 4 {92851} 

11010010 4 {9 52 6 1} 

11010100 4 {9 4 8 3 1} 

11011000 4 {92861} 

11100001 4 {93851} 

11100010 4 {94261} 

11100100 2 {9 4 1} 

11101000 3 {9 6 3 1} 

11110000 2 {9 51} 
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