
Accurate Prediction of Maritime Trajectories From

Historical AIS Data Using Grid-Based Methods

ACCURATE PREDICTION OF MARITIME TRAJECTORIES

FROM HISTORICAL AIS DATA USING GRID-BASED METHODS

BY

PAUL WILSON, B.Eng.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Paul Wilson, February 2017

All Rights Reserved

Master of Applied Science (2017) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Accurate Prediction of Maritime Trajectories From His-

torical AIS Data Using Grid-Based Methods

AUTHOR: Paul Wilson

B.Eng., (Electrical Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. T. Kirubarajan

NUMBER OF PAGES: xi, 60

ii

To my parents, for all their love and support over the course of my life.

Abstract

In order to aid prediction of future maritime vessel trajectories, it is useful to examine

historical vessel information. It is mandatory for large maritime vessels to broadcast,

among other fields, spatial, speed, and course information using Automatic Identi-

fication System (AIS) transponders. By processing a large historical dataset, it is

possible to predict future vessel trajectories. The region of interest is discretized into

a grid. Then, using offline computations, the historical data are used to determine

second-order transition probabilities and speed information. Predictions will be car-

ried out as an online process. If the destination is known, Dijkstra’s Algorithm is used

to predict the vessel’s path. If the destination is not known, a path can still be de-

termined using transition probabilities, but the prediction will be less accurate. The

path is then smoothed using a line of sight algorithm to produce more realistic paths.

Finally, the speed information is used to predict travel times. Real data were used to

build the graph structure, and predictions were judged against real trajectories.

iv

Acknowledgments

I would first like to thank my supervisor, Dr. Kirubarajan, for his support, guidance,

and encouragement. I would also like to thank Dr. Tharmarasa for offering feedback

and helping me with my code. I don’t think I could have completed this work without

his help. I also thank the ECE department’s graduate administrative assistant Cherly

Gies for all the work she does and her great sense of humour. I would also like to thank

Dr. Bruce and Dr. Jeremic for sitting on my defense committee and offering helpful

comments on my thesis. Many thanks to all of my friends in the ECE department.

Particular thanks go to Krishanth Krishnan for his input on my work.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Motivation and Problem Statement 2

1.2 Previous Work . 3

1.3 Proposed Approach . 4

1.4 Contribution and Significance . 5

1.5 Organization of the Thesis . 6

2 Graph Theory and Shortest Path Planning Methods 7

2.1 Graph Theory . 7

2.1.1 Second Order Dependencies 8

2.2 Shortest Path Problem . 11

2.2.1 Dijkstra’s Algorithm . 12

2.2.2 Bidirectional Dijkstra’s Algorithm 13

2.2.3 A* Algorithm . 14

2.2.4 Bellman-Ford Algorithm . 16

vi

2.2.5 Genetic Algorithm . 16

2.3 Algorithm Selection . 19

3 Methodology 21

3.1 AIS Processing . 21

3.2 Graph Structure . 22

3.2.1 Transition Probabilities . 23

3.2.2 Cost Function . 25

3.2.3 Landmass Avoidance . 26

3.3 Speed Graph . 27

3.4 Path Prediction . 29

3.4.1 Path Prediction Using Dijkstra’s Algorithm 29

3.4.2 Path Prediction with Unknown Destination 30

3.5 Path Smoothing . 31

3.6 Speed Prediction . 34

3.7 Discussion . 36

3.7.1 Computational Complexity . 36

4 Results 38

4.1 Procedure . 38

4.1.1 Error Evaluation . 41

4.2 Results . 41

4.3 Discussion . 49

5 Conclusions 52

5.1 Future Work . 53

vii

A In Polygon Test 54

viii

List of Figures

1.1 Shortest path given destination layout 4

2.1 Illustration of an undirected graph 9

2.2 Illustration of a directed graph . 9

2.3 Illustration of a memory-less system 11

2.4 Illustration of a system with memory 11

3.1 Neighborhood of cell m . 23

3.2 Speed distribution in a single grid cell 28

3.3 Unsmoothed path prediction . 32

3.4 Path prediction after smoothing . 32

3.5 Speed transition . 36

4.1 Density map of the coast of Mexico region 39

4.2 Density map of vessels of class 70 . 40

4.3 Predicted and actual ship path . 42

4.4 Over time, distance between actual and predicted path 43

4.5 The averaged error for 100 runs . 45

4.6 Error histogram for t = 22 hours . 46

4.7 Average error for 100 runs, with outliers filtered out 47

4.8 Comparison of error when considering vessel class 48

ix

4.9 Density map of Florida region . 49

4.10 Average error in the Florida region, with outliers filtered out 50

x

List of Algorithms

1 Dijkstra’s algorithm . 13

2 Bellman-Ford algorithm . 17

3 Path prediction with destination . 30

4 Path prediction without destination 31

5 Smoothing algorithm . 33

6 Walkable function . 34

xi

Chapter 1

Introduction

Maritime transport accounts for roughly 80% of global trade by volume [27]. This high

volume of maritime activity makes maritime situational awareness and surveillance

important areas of interest. This thesis will leverage historical data to create long-

term vessel motion predictions.

Automatic Identification System (AIS) is a monitoring system designed for mar-

itime vessels, for the purposes of surveillance and reducing ship collisions [2]. Accord-

ing to the International Convention for the Safety of Life at Sea (SOLAS) [16], use of

AIS is mandatory for ships above 300 gross tonnage on international voyages, cargo

ships above 500 gross tonnage not involved in international voyages, and all passen-

ger ships, while smaller ships may optionally use AIS. Because of these regulatory

requirements, use of AIS is widespread, creating a wealth of data that can be used to

improve long-term predictions.

An AIS transmission contains many pieces of information: the Maritime Mobile

Service Identity (MMSI), which serves as a unique identifier for each vessel; position,

in latitude and longitude; Speed Over Ground (SOG), in knots (nautical miles per

1

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

hour); Course Over Ground (COG), in degrees clockwise from North; destination;

Estimated Time of Arrival (ETA); etc. All of these fields are innacurate to some de-

gree. The accuracy of the position, SOG, and COG vary depending on the equipment

of the vessel in question. A previous study by Harati-Mokhtari et al.[14] found that,

when an AIS field is in error, in 80 to 85% of instances, human error is to blame. This

makes ETA particularly challenging, because it is often based on the navigator’s best

guess. Furthermore, ETA is an optional field, so in many cases it is simply blank or

may even be set to the ETA of a previous voyage. Harati-Mokhtari et al. found that

49% of sampled AIS messages contained obviously erroneous ETAs or destination in-

formation, such as times in the past, numbers instead of port names, blank fields, etc.

In at least one case they found a destination reading “to Hell”. Since the destination

and ETA fields are entered manually, they can be considered highly unreliable.

1.1 Motivation and Problem Statement

AIS messages can be received by a multitude of devices, including coastal stations,

aircraft, and satellites. Only coastal stations provide near-continuous coverage, how-

ever, their range is limited. Satellites are the predominant source of AIS messages.

Due to the sheer size of maritime regions, satellites still cannot provide full coverage

[25]. For the case of tracking vessel movements, reliance on AIS will obviously lead to

significant gaps in vessel movements. Therefore, it is desirable to create an algorithm

that could predict where vessels will travel throughout these coverage gaps. This is

the problem that forms the basis of this thesis.

The assumed input to the problem is an AIS message containing position, speed

over ground, course over ground and time information. The destination may or

2

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

may not be provided. The output is the predicted vessel track, including position,

velocity, and time information. A slightly different method of prediction is used if

the destination is not provided. The expectation is that providing the destination

will yield better results. Before making actual predictions, traffic patterns must first

be learned. In order to accomplish this, a database of historical AIS messages is

processed.

1.2 Previous Work

There have been several different approaches to similar problems. [23] proposed a

method they named Traffic Route Extraction and Anomaly Detection (TREAD) for

classification and anomaly detection. TREAD works by extracting waypoints from

each vessel trajectory within a bounding box. These waypoints are stationary points,

entry points and exit points. The waypoints are linked to form paths. Then these

waypoints are clustered together using Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN). DBSCAN [9] clusters points that are close together and

discards points in low density regions. TREAD is effective, but is computationally

expensive.

A grid based approach to predict future behaviour was attempted in [3]. An

outstar learning law to determine weights between nodes. The issue with this method

is that it does not scale well to larger regions, and it was used for very short prediction

windows. Their paper presented results for just 15 minutes in the future.

A grid based approach was also adopted by [37] to determine high density regions.

In this work, a region of interest was discretized into a grid to determine traffic

patterns and identify high density areas. The scope of the paper did not, however,

3

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Path Prediction

Smoothing

Time Prediction

GraphDatabase

Speeds

Input AIS

Prediction

Figure 1.1: Shortest path given destination layout

include vessel prediction.

Ground vehicle prediction using GPS rather than AIS data is a related problem.

An algorithm called Sub-Trajectory Synthesis (SubSyn) was created for predicting

paths based on historical GPS data [32]. This algorithm makes use of a Markov

Model to predict likely paths and destinations vehicles will take. This algorithm was

demonstrated using historical GPS data from taxis in Beijing.

1.3 Proposed Approach

This thesis uses grid-based and shortest path planning methods from graph theory

to predict the path and arrival time of a specific vessel, based on its starting point,

course, and speed as well as its destination, if it is known.

The process is illustrated in Figure 1.1. A database of historical AIS messages is

mined, first to determine which regions of an area are frequently traveled. Then, this

information is used to create a directed, weighted graph. It is also used to determine

4

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

the expected speed in each region. A shortest path algorithm is applied to the graph

in order to predict the path the vessel will follow. Then the path is smoothed. Finally,

the speed information is used to predict how fast the vessel will traverse this path,

and thus the times along the path and the expected time of arrival.

1.4 Contribution and Significance

To compare runtime complexity, O-notation (commonly pronounced as “big-oh” no-

tation) will be used [4]. The purpose of O-notation is to represent an upper bound

of the growth rate of the runtime depending on the size of the input. Formally,

f(n) = O(g(n)) holds if and only if there exists positive constants c and n0 such that:

0 ≤ f(n) ≤ cg(n) for all n ≥ n0 (1.1)

To the best of this author’s knowledge, shortest path methods are a novel approach

to this problem. For example, [23] performed route predictions by clustering similar

vessel routes. Each route was defined by a series of physical locations, and clustered

based on location, speed and vessel type using DBSCAN. Unfortunately, DBSCAN

has a high runtime of O(n log n) [9], with n being individual trajectories in this case.

On the other hand, the method presented in this thesis requires only a runtime of

O(n) in the data processing stage. Also note that this is not a particularly well-

studied problem. The authors of [23] focused on anomaly detection, while [3] looked

at shorter term predictions.

5

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

1.5 Organization of the Thesis

This thesis is divided into five chapters. Chapter 2 discusses graph theory and various

methods used to find the shortest path between two nodes. Chapter 3 presents the

proposed approach to constructing a graph based on an AIS data-set and using it to

predict a vessel’s motion and arrival time, both with and without a given destination.

Chapter 4 presents results and discussion. Chapter 5 consists of conclusions and

future work.

6

Chapter 2

Graph Theory and Shortest Path

Planning Methods

In this thesis, a directed graph is constructed and used to construct the shortest

path between the source and destination nodes. Good knowledge of graph theory

and shortest path planning is required to understand this process. So in this chapter,

some relevant background material pertaining to graph theory and shortest path

planning will be presented. There are a variety of potential shortest path planning

algorithms that may be used, so a selection of algorithms will be examined with a

focus on their respective advantages and disadvantages for this problem.

2.1 Graph Theory

According to the explanation found in [12], a graph is a structure containing two sets:

a set of nodes and a set of edges. This is denoted by G = (N,E). Nodes are denoted

by ni. A connection between nodes is called an edge, and if two nodes are connected,

7

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

they are called neighbors. An edge between nodes ni and nj is denoted by ei,j. An

unweighted graph is a graph in which the edges are all binary. In other words, the

nodes are either neighbors or they are not, and travel between the two nodes is either

possible or not. A weighted graph will be considered in this thesis. It is a graph in

which each edge has an associated weight. For edge ei,j, the associated weight will be

wi,j. The weights can be considered as the cost of travel. The cost may or may not

be related to the physical distance between the two nodes. For example, consider a

graph representing a road map. Most cars would tend to prioritize the fastest route,

so a freeway would likely have a lower cost than a city street, even if the city street

had a shorter distance. Unconnected nodes, or nodes that are not neighbors, may be

thought of as having a cost of ∞.

The direction of travel may also be important. An undirected graph is one in

which the direction of travel results in the same weight between nodes. This concept

is illustrated in Figure 2.1. In an undirected graph, the cost of travel between nodes

is considered the same regardless of direction. As its name implies, a directed graph

is a graph in which the weight between nodes may be different depending on the

direction of travel. This is illustrated in Figure 2.2. In the case of maritime shipping

routes, direction turns out to have a big impact, so directed graphs will be used in

this thesis.

2.1.1 Second Order Dependencies

The problem with using graph structures, as shown in Figure 2.2, is that no history is

preserved. In the case of maritime vessels, at a given node there is information about

which node the vessel is likely to transition to but no information about where the

8

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

n0 n1

n2

n3 n4 n5 n6

w3,2

w2,0

w0,1

w3,4 w4,5 w5,6

w 1,
2

w
4,2

Figure 2.1: Illustration of an undirected graph

n0 n1

n2

n3 n4 n5 n6

w3,2 w2,3

w2,0 w0,2

w0,1

w1,0

w3,4

w4,3

w4,5

w5,4

w5,6

w6,5

w 1,
2

w 2,
1

w
4,2

w
2,1

Figure 2.2: Illustration of a directed graph

9

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

vessel is coming from. In other words, the system is memoryless. This is problematic

because shipping lanes may intersect. So it is necessary to construct a graph in

which the nodes do not simply represent an object’s current spatial location, but

the location it is coming from at a previous time step. Graphs with higher order

dependencies has been used to produce better results on various types of network

related tasks [31]. Specifically, improvements have been demonstrated on random

walk simulations between shipping ports, using clustering to identify shipping ports,

and ranking websites.

Therefore, rather than using first order dependencies to only represent a ship’s

current location, second order dependencies are used in order to also represent a ship’s

location at the previous time-step. In other words, second order dependencies add

memory to the system. Similar to the method used in [31], the difference between first

and second order dependencies is illustrated in Figures 2.3 and 2.4. In memory-less

structures, as in Figure 2.3, a physical location has a one-to-one relationship with a

node in the graph structure. In structures with memory, as in Figure 2.4, one physical

location is mapped to multiple nodes.

The main component of the edge weights are the transition probabilities between

nodes. If the location of a vessel at time t is represented as a random variable Xt,

the probability of transitioning from node i to node j at time step t+ 1 is given as:

P (Xt+1 = it+1|Xt = it) =
W (it → it+1)∑

j W (it → j)
(2.1)

A second order model does not just consider the current node i, but also considers

the previous location h. So the current state will be i|h. Similar to Equation 2.1, if

the current state at time t is i|h, the probability of transitioning to node j in time

10

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

0

1

2

3

4

W0→2

W1→2

W2→3

W2→4

Figure 2.3: Illustration of a memory-less system

0

1

2|0

2|1

3

4

W2|0→3

W2|0→4

W2|1→3

W2|1→4

Figure 2.4: Illustration of a system with memory

step t+ 1 is given as:

P (Xi+1 = j|Xt = i|h) =
W (i|h→ j)∑
kW (i|h→ k)

(2.2)

2.2 Shortest Path Problem

The shortest path problem is finding the shortest path between two points in a graph.

The starting node is called the source, s, and the end node is called the target, t. For

the purposes of this thesis, it is somewhat misleading to talk about the shortest path,

since the path with the shortest distance is not always the desired path. Rather,

the desired path is the one with the lowest cost. The cost is determined based on

historical traffic density. However, since the literature uses the term shortest path,

this will be the terminology used in this thesis.

11

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

In this thesis, a weighted, directional graph is used. Weighted, because historical

traffic densities are used. Either directed or undirected graphs could have been used,

but weighted graphs were chosen because it was observed that ships travel differently

depending on direction of travel. Therefore different routes will be generated based

on direction of travel.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm is one of the earliest shortest path algorithms[8], but is still very

relevant to this day [17], [26], [33]. Many other shortest path algorithms build upon

Dijkstra’s Algorithm.

Intuitively, Dijkstra’s Algorithm works by traversing the graph, marking nodes as

they are visited, starting with s. The nodes that have been visited are kept track of,

as well as each node’s distance, d, from s. Initially, s is set to the current node and

its distance is marked as 0. All other nodes are set to unvisited and set to a distance

of ∞. On each iteration, the unvisited node with the smallest distance is set as the

current node. Then, looking at the unvisited neighbors of the current node, tentative

distances are calculated as the sum of the current distance and the edge weight, e,

to the neighbor. Each neighbor’s distance is set to the smaller of its current distance

and the tentative distance:

dneighbor = min(dneighbor, dcurrent + ecurrent→neighbor) (2.3)

The current node is then set to visited before moving on to the unvisited node

with the smallest distance. The algorithm terminates when t has been visited or when

all tentative distances have been found to be ∞. In the latter case, this indicates t is

12

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

unreachable from s. The pseudocode of this algorithm is detailed in Algorithm 1.

Algorithm 1 Dijkstra’s algorithm

Input: s - source node t - target node
1: for each node n in graph do
2: dist[n]←∞
3: prev[n]← NULL
4: add n to unvisited
5: end for
6: dist[s]← 0
7: while TRUE do
8: v ← n in unvisited with min dist[n]
9: if v = t then
10: return prev[v]
11: end if
12: remove v from unvisited
13: for each neighbour n of v do
14: altDist← dist[v] + length(n, v)
15: if altDist < dist[n] then
16: dist[n]← altDist
17: prev[n]← v
18: end if
19: end for
20: end while

2.2.2 Bidirectional Dijkstra’s Algorithm

It can be shown that the runtime of Dijkstra’s Algorithm is O(n log n) on average,

where n is the number of nodes in the generated path. It is possible to significantly

speed this up without sacrificing quality of the path, using a bidirectional search

method [21]. In essence, this algorithm consists of alternating between forward and

backward searches running Dijkstra’s Algorithms. So the forward distances, df , and

backward distances, db, must be kept track of. The forward search starts at s and

moves towards t, while the backwards search starts at t and moves towards s. Note

13

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

that because the graph is directed, the edge weights for the backward search must be

reversed. Execution is terminated when the same node, x, has been visited by both

searches. However, x may not actually be in the shortest path. In order to find the

actual shortest path, the node y that minimizes the total resulting distance will be

found:

arg min
y

[df (y) + db(y)] (2.4)

Then the forward path s→ y is simply concatenated with the reverse path y → t.

Bidirectional Dijkstra’s Algorithm usually, though not always, results in visiting

significantly fewer total nodes. On average, this leads to a runtime of O(
√
n log n),

which is an improvement from the O(n log n) average runtime of the regular Dijkstra’s

Algorithm.

2.2.3 A* Algorithm

The A* Algorithm [15] is another extension to Dijkstra’s Algorithm. It can be much

faster than Dijkstra’s Algorithm, although it will not always produce the shortest

path. It is widely used in many applications [5], [10], [19], [36]. It functions in much

the same way as Dijkstra’s Algorithm, the main difference being that A* calculates

the cost of a node, n, in a different fashion. Dijkstra’s Algorithm merely takes the

cost of n as the cost of the path coming from s. A* incorporates a heuristic function

to find an estimate of the cost of the path from n→ t:

f(n) = g(n) + h(n) (2.5)

14

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

where f(n) is the cost of n, when coming from s and going towards t. g(n) is

the cost of the path coming from s. h(n) is the estimate of the cost of the path

n→ t. Everything else proceeds the same as Dijkstra’s Algorithm. h(n) is a heuristic

function that estimates the cost of the remainder of the path. The difficulty lies in

the choice of h(n). Note that if h(n) = 0, then the algorithm is the same as Dijkstra’s

Algorithm. In other words, it will find the shortest path, and will not result in a

performance increase. The ideal case is when h(n) is the true cost of n → t. In

this case, the shortest path will be found, and it will be found much faster than

with naive Dijkstra. In practice, however, it is difficult to choose h(n) in such a way.

Thankfully, one can still get significant improvements even when h(n) is not optimal.

[15] proved that as long as h(n) remains less than the actual cost of the shortest path

from n→ t, A* will produce the shortest path. In this case, h(n) is called admissible.

Furthermore, in order to guarantee that no node will be expanded twice, h(n) should

be monotonic. That is, for all adjacent nodes i and j, h(i) ≤ d(i, j) + h(j). If h(n) is

allowed to be greater than the actual cost of the shortest path, then it will result in

a significant speed-up but may not always result in the shortest path.

A suitable heuristic function is possible in many cases, but it is not very use-

ful if it does not have a constant runtime. In video game pathfinding, the A* may

use a euclidean heuristic [5], that is a heuristic based on the euclidean distance be-

tween points. The edge weights in this application are more complicated, so a simple

euclidean distance heuristic will do little good.

15

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

2.2.4 Bellman-Ford Algorithm

This section will refer to the description of the Bellman-Ford Algorithm found in [4].

Unlike Dijkstra’s Algorithm, the Bellman-Ford Algorithm can deal with negative edge

weights, and will detect if there exists a path with a negative edge cyle. A negative

edge cycle indicates no solution. Allowing negative edge weights means that it is a

much more flexible algorithm, in the sense that it can be used for a greater variety

of applications with less modification. The downside is that Bellman-Ford is much

slower than Dijkstra’s Algorithm. Dijkstra’s Algorithm has a runtime of O(n log n),

compared to Bellman-Ford’s runtime of O(e ·n), where n is the number of nodes and

e is the number of edges.

Bellman-Ford is also a much simpler algorithm to implement. First, the source

distance is set to 0, and all other distances to ∞. Then, each node is scanned and

updated if its neighbour’s distance to the source is smaller. Each update corresponds

to incrementing the shortest path length. Therefore, the loop must be repeated n− 1

times, since the longest possible shortest path will go through every node. Finally,

all edges are scanned once more and if an update occurs, this means a negative edge

cycle has been found. This process is detailed in Algorithm 2.

2.2.5 Genetic Algorithm

Genetic algorithms are inspired by biological evolution [30]. The data structures

involved are made to resemble chromosomes. These algorithms are initialized with

a series of randomized solutions to the problem. Then the solutions are typically

recombined, evaluated with a fitness function where the solutions with the lowest

fitness are removed. The remaining solutions are randomly crossed with each to create

16

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Algorithm 2 Bellman-Ford algorithm

Input: N - nodes W - edge weights s - source
1: for each vertex v ∈ N do
2: distance[v] =∞
3: predecessor[v] = NULL
4: end for
5: distance[s] = 0
6: for i = 1 to N.size− 1 do
7: for each edge(u, v) ∈ E do
8: if distance[v] > distance[u] + E(u, v) then
9: distance[v] = distance[u] + E(u, v)
10: predecessor[v] = u
11: end if
12: end for
13: end for
14: for each edge(u, v) ∈ E do
15: if distance[v] > distance[u] + E(u, v) then
16: return FALSE
17: end if
18: end for
19: return TRUE

17

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

new solution. This continues for a set number of iterations or until an acceptable

solution has been found. One problem with genetic algorithms is the solution(s) found

can be biased if one is not careful implementing the initialization step. They also use

few assumptions about the problem, which means they can often be outperformed by

other optimization methods.

Genetic algorithms have been previously adapted for use in the shortest path

problem [38]. First a set of initial solutions are found. This stage cannot be fully

random. It must begin with node s, end at node t, with all intermediate nodes sharing

edges. So, the path initially contains only node s. Then the path is populated with

a random neighbor of the end-node until t is reached. Note that a node cannot be

repeated in a path. If a repeated path is found, or if all of the neighboring nodes have

been visited before reaching t, the path is re-initialized.

To decide which solutions to propagate, genetic algorithms determine the fitness

of a solution. To accomplish this, a fitness function is used. The fitness function for

an individual ind, representing the path P is given as:

fitness(ind) = [
∑

(u,v)∈P

E(u, v)]−1 (2.6)

This is calculated for all paths, and the paths with the lowest fitness are eliminated.

This step is the core of genetic algorithms. Genetic algorithms produce new

solutions by mixing two solutions together. This process is called crossover and

simulates crossing over chromosomes in biological reproduction. For the purposes of

shortest path applications, two paths containing common nodes are chosen randomly

as parent nodes for crossover. These nodes are represented by the sum of sub-paths:

18

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

P1(s, t) = P1(s, ncommon) + P1(ncommon + t)

P2(s, t) = P2(s, ncommon) + P2(ncommon + t)

(2.7)

Then two child paths are generated by mixing the sub-paths of the parent paths:

P3(s, t) = P1(s, ncommon) + P2(ncommon, t)

P4(s, t) = P2(s, ncommon) + P1(ncommon, t)

(2.8)

2.3 Algorithm Selection

Any of these methods can be suitable choices. Genetic algorithms have proven to

be computationally expensive [18], but they may provide multiple optimal paths,

since a different result may be generated at each iteration. However, this will be

a large increase in computational complexity, as well as being much more difficult

to implement than other shortest path algorithms. For the purposes of this thesis,

one path will suffice, so these are not good trade-offs. The Bellman-Ford algorithm

is computationally expensive, but can handle negative edge weights. This could be

advantageous for this thesis, since the goal is to prioritize high edge weights, while

using shortest path algorithms. But as it will be seen in Section 3.2, there is a simpler

way to handle negative edge weights in this case. Since probabilities are being used,

1− p can be used in order to treat high probabilities as low costs. The A* algorithm

results in a significant speed-up, but a poor choice of heuristic can result in a sub-

optimal path, so this choice will be avoided. For bidirectional Dijkstra, the difficulty

19

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

comes in determining which node to merge the two paths. If an incorrect node is

chosen, a sub-optimal path may be returned.

Dijkstra’s Algorithm, however, is a greedy algorithm that has been proven to find

an optimal path [4]. So this algorithm will be chosen, but note that other shortest path

algorithms, such as those mentioned in the previous sections, could be substituted,

if sufficient attention is paid to the trade-offs. There is not much that can be done

to improve the computational complexity costs of the genetic algorithm or Bellman-

Ford. However, the sub-optimal concerns in A* and bidirectional Dijkstra could be

overcome, given enough care. This thesis will focus on the end results more than the

computational complexity. Dijkstra’s Algorithm will therefore be chosen to guarantee

optimal paths.

20

Chapter 3

Methodology

Now that the background knowledge for graph theory and the shortest path problem

has been established, it can be put into practice to predict maritime vessel trajectories

and arrival times. First, the graph structure is constructed from historical AIS and

landmass data in Sections 3.1 and 3.2. Then the speed graph is constructed in Section

3.3. Path Prediction is performed in Section 3.4, and the path is smoothed in Section

3.5. Finally, the Speed Graph is used to generate speed and arrival time predictions

in Section 3.6.

3.1 AIS Processing

The available AIS data are contained in a PostgreSQL database. First, the database

is queried for AIS messages within the region of interest. Then, the messages are

separated based on the MMSI values, and ordered by the timestamp in ascending

order. This allows the AIS messages to be represented as vessel tracks. As in [23], a

vessel track, V, can be represented as a series of state vectors vi across T time steps:

21

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

V = {v1,v2, ...,vT} (3.1)

Where i = 1, 2, ..., T is the index of each track at each time step up to T . The

state vector, vi is defined by its position component, (ϕ, λ), and velocity component,

(s, θ) to form a four-dimensional state vector:

vi = [ϕi, λi, s, θ]
T (3.2)

Where ϕ and λ are latitude and longitude, respectively. s is speed, in knots

(nautical miles / hour). θ is the course, in degrees clockwise from North.

3.2 Graph Structure

In preparation to construct the graph, the region of interest is discretized into a grid

of L × H cells. Each node in the graph represents a cell in the grid, and nodes are

considered neighbors if they are spatially adjacent. The region of interest is denoted

by R. For each cell m in region R, let N = {n1, n2, ..., nk} denote the neighborhood

of m. That is, the surrounding cells that are reachable from m. For the purposes

of this thesis, each cell is considered to have eight neighbors, in order to simplify

implementation. This is illustrated in Figure 3.1. In principle, there could be more

neighbors for each cell, and the cells are not required to be uniform in size, though

this is not the case in this thesis. The more cells there are, the higher the resolution

of the grid and the more accurate the predicted paths should be. However, more cells

will obviously increase computation time.

22

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

n1 n2 n3

n4 m n5

n6 n7 n8

Figure 3.1: Neighborhood of cell m

3.2.1 Transition Probabilities

If only first order transitions are considered, each node in the graph would directly

map to a cell in the grid mentioned above, and edges would be constructed between

neighboring cells. An edge weight from position i to position j would be denoted as

W (i → j). However, this work considers second order transitions are considered, in

a method similar to [31]. This will be more complicated than the first order case. In

the second order case, each node in the graph is denoted as ni|j, that is position i

given that the trajectory is coming from position j. So, the edge weights are given

by W (i|j → k).

Based on the vessel tracks found in Section 3.1, transition counts, ci|j→k can

be determined. j can be found directly if there are two consecutive messages in

neighboring cells.

23

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Otherwise, it is found based on the course information for the first message found

in i. Given the initial position i = (ϕi, λi), the course from North θ, and the Radius

of the Earth R, then the previous position, j = (ϕj, λj), can be estimated using a

variation of the Haversine formula [7].

ϕj = arcsin(sin(ϕi · cos δ + cosϕi · sin δ · cos(θ − π)) (3.3)

λj = λi + arctan2(sin(θ − π) · sin δ · cosϕi, cos δ − sinϕi · sinϕj) (3.4)

θ− π is the reverse course, since the location the vessel is coming from is desired.

δ is the angular distance found using d/R. d is the distance traveled, which is taken

as the distance between the respective centers of two grid cells.

From there, it is straightforward enough to detect a transition between two cells

if there are two consecutive messages in neighboring cells, and increment ci|j→k ac-

cordingly. Unfortunately, due to the variable update rate of AIS transponders[14],

updates may occur in non-neighboring cells. For example, some vessels send updates

an hour apart. For cells with diagonal lengths of 5 nautical miles and a vessel traveling

in a straight line at 20 knots, the updates would come 4 cells apart. This a common

enough scenario that a substantial amount of information would be thrown away if

only transitions between adjacent cells were accepted. Therefore, linear interpola-

tion is used to determine intermediate transitions when non-neighboring updates are

observed. This is not a completely accurate solution, as a vessel may perform some

maneuvers between the updates. However, it is far worse to have a sparse amount of

data in the graph. The amount of total vessels in each node, ci|j, is also determined.

24

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Once transition counts have been obtained, transition probabilities are found as:

P (i|j → k) =
ci|j→k∑
t ci|j→t

(3.5)

3.2.2 Cost Function

Once the transition probabilities have been found, they can be used to determine the

costs to be used as the edge weights. The cost is meant to be unit-less. It is a weighted

sum of two components: the probability cost and the time cost. The motivation for

the probability cost is fairly obvious: the less likely path should have a higher cost.

The time cost is meant to give some penalty to paths that are possible but do not

make physical sense, for example, a path that traverses a long distance when a short

one is available. This is rare, but it can occasionally occur when the time cost is not

incorporated. The cost is calculated as:

Ci|j→k = α · [1− P (i|j → k)] + (1− α)
di,k
vi

vmin

dmax

(3.6)

where α is a weighting factor, di,k is the distance between i and k, dmax is the maximum

distance between two cells, vi is the average speed in i, and vmin is the minimum

average speed in a cell. 1 − P (i|j → k) is used because the goal is to have a higher

cost for a less likely path. P (i|j → k) is in the range [0, 1], so it can be safely

subtracted from 1.

In order to determine the time cost, time is determined through dividing distance

by speed. In order to find a unit-less value, a ratio is formed between
di,k
vi

and a

maximum time value. The maximum time value is found by taking the maximum

possible distance between two cells, dmax, and a minimum speed, vmin, that is the

25

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

minimum speed for a vessel to be considered to be in a cruising motion. In this

thesis, the minimum speed is set to 5 knots. This is somewhat arbitrary. The goal is

to make the quantity unit-less, so the exact value is unimportant.

α is used to determine how to weigh the probability and time costs, and will be

in the range [0, 1]. It makes sense to weigh the probability cost higher, since there

are many situations where the physically shorter path may not be the most likely

path. For example, a hazardous region may be a faster route that is uncommon, so

α should normally be above 0.5. For this thesis, 0.8 was used so as to give most of

the weight to the probability.

3.2.3 Landmass Avoidance

For the most part, this graph will avoid landmasses without further modification,

since vessels will not send out AIS updates from land. Therefore cells enclosed by a

landmass should have zero density. However, due to AIS errors the graph may some-

times contain non-zero densities within landmasses. Also, due to AIS data sparsity in

some regions, some actual routes may contain cells with zero density values. So zero

density cells should not be excluded from the path planning algorithm. Otherwise

unsolvable paths may be found. With this scheme, it is possible to have paths passing

through land.

In order to solve this, shapefiles are used. Shapefiles were designed by the Envi-

ronmental Systems Research Institute. Their detailed specifications can be found in

[1]. The shapefiles were obtained courtesy of the GSHHG database [29]. Landmasses

are extracted from the shapefiles. These landmasses are treated as polygons defined

by points, which form boundaries of the landmasses. In order to determine if a cell

26

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

is within a landmass, the ray-crossing test described in [13] and [11] is used to deter-

mine if a cell lies within a polygon. The implementation used in this thesis is given

in Appendix A. If a cell is fully contained in a landmass, it is marked as being within

land, and will not be considered to be a neighbor of any other cell. In this way, cells

within landmasses will be excluded from the path-planning algorithm.

3.3 Speed Graph

Next, a structure describing the speed of ships in each region is constructed. Similar

to Section 3.2, the region of interest is discretized into a grid of M cells, and the time

into T intervals. Note that because the density grid and the speed grids are separate

data structures, they do not have to be the same size or discretize the region in the

same fashion. In other words, the M value in this section is not necessarily the same

as the M in Section 3.2.

The speed distribution of a sample cell is shown in Figure 3.2. The distribution is

assumed to be Gaussian, even though it is clearly not exactly Gaussian. Therefore,

the mean, µ, and the variance, σ2 in each grid cell will be calculated as in [34]. Given

the number of vessels, n, and vessel speeds, vi:

µ =

∑
i∈R vi

n
(3.7)

σ2 =

∑n
i=1(vi − µ)2

n− 1
(3.8)

However, it is preferable to have an online method of calculating variance to

provide a system that can adapt to new information. So, the following iteratives

27

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 3.2: Speed distribution in a single grid cell

estimates from [20] are used:

µi = µi−1 +
vi − µi−1

i
(3.9)

σ2
i =

(i− 1)σ2
i−1 + (vi − µi−1)(vi − µi

i
(3.10)

28

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

3.4 Path Prediction

Now that the transition and speed information has been extracted from the historical

AIS data, a prediction can be generated given an AIS message. The required fields

for the AIS message are the position, speed, and course over ground. The initial

course and speed are taken to be more reliable than the predicted path, so, initially,

the track is propagated forward in a straight line, depending on the starting course

and speed. This is done for an initial propagation time tpropogate, or until land is

encountered, based on the landmass information found in Section 3.2.3. Note that

since cells determined to fall within landmasses were previously marked, there is no

need to once again access the shapefiles. This is a big advantage, since iterating

through all the polygons within the shapefiles is computationally expensive.

3.4.1 Path Prediction Using Dijkstra’s Algorithm

If a destination is not provided, Dijkstra’s Algorithm, as found in Section 2.2.1, can

be used to generate a path. As described, Dijkstra’s Algorithm should work with

only a minor modification. Dijkstra’s Algorithm normally exits when the target node

has been reached. In this case, there is no single target node. For target position t,

without direction considerations, Dijkstra’s Algorithm would exit when t is reached.

Because second order transitions are considered instead, it will exit when t|i is reached,

for any node i.

As a note for implementation, in line 9, finding the node with the minimum

distance can be a significant source of inefficiency depending on implementation.

If the distances are simply stored in an unsorted array, this leads to a worse case

runtime of O(N2+E), since the entire array has to be examined to find the minimum

29

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

value. However, if a min-heap is used instead, the runtime can be further reduced to

O(N logN + E) [4].

It should be noted that Dijkstra’s Algorithm could be substituted with any of the

other shortest path algorithms outlined in Chapter 2, with similar results. The other

algorithms should give optimal or worse results. Note that there is not necessarily

a single optimal path. The best substitutes would be Bidirectional Dijkstra and

A* Search, because they would be computationally cheaper. The main concern is

producing lower quality paths. This can be minimized with careful modifications to

the algorithms, but since this thesis is more focused on the end result and less on

efficiency, Dijkstra’s Algorithm was used. In this way, optimal paths are guaranteed.

Algorithm 3 Path prediction with destination

Input: start, end
1: path← dijkstra(start, end)
2: smooth(path)
3: track← predictTime(path) return track

3.4.2 Path Prediction with Unknown Destination

If a destination is not provided, a prediction can still be made. However, the destina-

tion is a valuable piece of information, so the expectation should be that predictions

without the destination will have significantly higher error. Dijkstra, and other short-

est path algorithms, cannot be used here because they require the destination as an

input. An alternate algorithm has been designed to find the most likely path. The

algorithm is given in Algorithm 4.

30

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Algorithm 4 Path prediction without destination

Input: start, time to predict
1: current← start
2: track.add(current)
3: while time < time to predict do
4: next← n in current.neighbors with min cost[n]
5: next.time+ = timeToTraverse(current, next)
6: tracks.add(next)
7: current← next
8: end while
9: smooth(tracks) return track

This algorithm is essentially a Markovian process, conducted similar to [31]. With-

out a destination, the next node is determined by examining the neighbors and se-

lecting the one with the highest weight. The timeToTraverse function determines

the time to travel between the two nodes, in the same fashion as Section 3.6. Then

the smoothing algorithm, detailed in Section 3.5, is applied to make the path appear

more natural.

3.5 Path Smoothing

Dijkstra’s Algorithm, as well as Algorithm 4, can produce unnatural looking paths in

a staircase shape. Such a prediction is shown in Figure 3.3. Jagged paths like these

should be smoothed, as maritime vessels would not be making such sharp turns in

reality. One might think that this would produce sub-optimal paths. This could be

the case, but often jagged paths have very similar costs, so it is best to have a slightly

less optimal path if it better aligns with the obvious fact that ships prefer to travel

in straight lines.

To smooth the path, it is post-processed with a smoothing algorithm [6]. This

31

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 3.3: Unsmoothed path prediction

Figure 3.4: Path prediction after smoothing

32

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

algorithm is detailed in Algorithm 5. In essence, the smoothing algorithm iterates

through each point along the path, and deletes any points that are unnecessary. It

determines this by checking if the differences between weights of the points between

the the current and next point are within a threshold, which will be referred to as

the Smoothing Threshold Tsm. If the points fall within the threshold, the endpoint

is considered unnecessary and will be deleted from the path. These checks will be

accomplished using the walkable function given in Algorithm 6. The walkable function

checks all points between the current and next point to see if their costs are similar

enough to be considered walkable. Linear interpolation is used to determine which

points fall between the current and next point.

Figure 3.4 shows the result of the smoothing algorithm after having been run on

the path in Figure 3.3 with a smoothing threshold of 0.2. As can be seen, most of

the perturbations have been eliminated from the path. The choice of a smoothing

threshold is a balance between smoothing the path and preserving meaningful turns.

If the smoothing threshold is too low, there will be too many unnatural perturbations

in the path. If the smoothing threshold is too high, the path will simply be a series

of straight lines, avoiding only land. 0.2 was found to be a good compromise for the

test dataset.

Algorithm 5 Smoothing algorithm

1: current← path.begin
2: while Point.next 6= NULL do
3: if walkable(current, current.next) then
4: delete current.next
5: else
6: current← current.next
7: end if
8: end while

33

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Algorithm 6 walkable Function used by the Smoothing Algorithm

1: course← tan−1 slope
2: for distance = 0 : distanceBetween(P1, P2) do
3: x← P1.x+ distance× cos course
4: y ← P1.y + distance× sin course
5: if |wx,y − wP1| ≥ Tsm OR inLand(x, y) then return false
6: end if
7: end for
8: return true

3.6 Speed Prediction

In order to evaluate arrival times from paths generated in Section 3.4, the structure

generated in Section 3.3 is used. Essentially, the vessel’s movement is simulated

through the path prediction generated in Section 3.5 to generate the predicted arrival

time. First, waypoints along the vessel’s path are generated using interpolation,

making sure that the waypoints do not skip cells. This way more speed information

is generated.

To determine the arrival time, it then becomes a simple matter of the elementary

formula time = speed× distance, for each pair of waypoints, i and j, then summing

them. The only wrinkle is finding the distance, since we are dealing with longitude,

λ, and latitude, ϕ, rather than Cartesian coordinates. Locations i and j will have

latitude-longitude coordinates (ϕi, λi) and (ϕj, λj), respecitvely. In geospatial analysis

[7], the Cosine formula may be used:

dij = R · arccos[sinϕi · q sinϕj + q cosϕi · q cosϕj · q cos(λi − λj)] (3.11)

where R is the radius of the Earth. However, in practice, the Haversine formula is

34

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

more commonly used to reduce computational errors:

dij = 2R · arcsin(
√

sin2(A) + sin2(B) · cosϕi · cosϕj) (3.12)

where:

A =
ϕi − ϕj

2
, B =

λi − λj
2

(3.13)

Unfortunately, the stored mean speeds turn out to have a wide variance with an

unclear distribution type, as seen in Figure 3.2. This means potentially inaccurate

predictions of the vessels’ speeds will be generated. To partially compensate for this,

the initial speed of the vessel will be used for earlier points in time. Then, the longer

the prediction is carried out, the more the predicted speed will tend towards the mean

speed. At position i and time t, the speed is calculated as:

vi(t) =

vinitial t ≤ t1

vinitial +
(vi,mean−vinitial)(t−t1

t2−t1 t1 < t ≤ t2

vmean,i t > t2

(3.14)

where t1 is the time to use the initial speed vinitial until, and t2 is the time after

which to use the previously calculated mean speed vmean. When t1 < t ≤ t2, linear

interpolation is used to find a value between vinitial and vmean. This is illustrated in

Figure 3.5.

35

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

vinitial

vmean

t1 t2

Figure 3.5: Speed transition

3.7 Discussion

Because the runtime when processing the AIS data is relatively long, it was stored in

a separate PostgreSQL database, so it could be loaded when predictions needed to be

performed. This allows for more refined predictions based on different factors. The

database could contain multiple entries depending on desired factors to be controlled

for, if such data was available. Weather, time of year, and vessel type, for example,

may be used as different factors. The provided dataset was relatively small, so only

the vessel type was tested for.

3.7.1 Computational Complexity

In terms of computational complexity, several factors are at play: the amount of AIS

messages to be processed, nais; the number of grid nodes, N ; and the number of edges,

E.

For building the graph in Sections 3.1 - 3.3, nais will be the most important variable

that affects runtime. For one of the tested regions, over a three month period 476,541

36

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

AIS messages had to be processed. However, each message will only need to be

queried once, so the computation time will be only O(nais). Additionally, the AIS

messages were queried from a PostgreSQL database. Due to the size of the database,

the query can take a significant amount of time. But speeding up this query time

is not the focus of this algorithm. Another computationally expensive aspect is the

shapefile processing in Section 3.2.3. Even using low resolution shapefiles, there will

be hundreds of polygons to process, and each location will have to be compared

against each polygon. Fortunately, this process is considered a pre-processing, offline

stage. In a real system, it would not be needed for real-time predictions, so the

computational cost is not a core concern compared with the online portion.

For prediction in Section 3.4, N and E will be important. As was mentioned in

Section 3.4.1, Dijkstra’s algorithm has a runtime of O((N + E) logN) in the worst

case with an efficient implementation. In practice, the closer the destination is to

the starting point, the faster the algorithm will perform. The smoothing algorithm

in Section 3.5 will depend on the number of points along the predicted path. This

will be significantly smaller than the number of edges accessed, so it will be overall

negligible. Similarly, the arrival time prediction in Section 3.6 will only depend on the

size of the smoothed path. The average speed in each cell has been pre-computed, so

the computational cost of finding arrival time grows linear with the size of the path.

37

Chapter 4

Results

4.1 Procedure

The first step in the procedure was to build a density map as outlined in Section 3.2.

This was performed using C++ from a historical dataset that is detailed below. Once

the graph construction was completed, it was exported to a PostgreSQL database for

use in the prediction phase.

A dataset consisting of AIS messages over a three month period was used. This

dataset was provided courtesy of help from the exactEarth company. The dataset was

stored in a PostgreSQL database. The database is queried to return all AIS messages

within the area of interest. The messages are then sorted by MMSI and timestamp

to allow for the grid construction procedure. A region off the coast of Mexico was

selected. Most of the destinations given in the AIS messages are vague, completely

incorrect, or simply not present, and the amount of data in the database was limited

in size. Therefore, for prediction with known destination, the destination was taken

as the next zero-speed point in the track. The density map for the messages in this

38

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.1: Density map of the coast of Mexico region

region is shown in Figure 4.1.

In this region, the most common vessel type in the dataset is type 70, which

corresponds to general cargo ships [2]. Figure 4.2 shows the density map for ships of

just class 70. Clearly, the traffic patterns are very different if the class is filtered out.

In this case, the patterns are more distinct. Therefore, it makes sense to separately

examine the effect when only one vessel type is considered. To do this, when the

graph structure is being built, only messages from vessels of type 70 were used, and

tested against vessels of type 70.

The relevant model parameters are given in Table 4.1.

39

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.2: Density map of vessels of class 70

Parameter Value

Longitude Range [−120◦,−105◦]
Latitude Range [20◦, 32◦]

Diagonal Cell Width 10 nautical miles
Smoothing Threshold 0.2

Initial Velocity Time, t1 2 hours
Mean Velocity Time, t2 3 hours

Table 4.1: Experiment Parameters

40

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

4.1.1 Error Evaluation

To evaluate the prediction, the distance between the predicted and actual position

was found at every time step. The frequency of the predicted track can be controlled.

The prediction model assumes linear paths, so given predicted positions p1 and p2,

at times t1 and t2, it is easy to find px, where t1 ≤ tx < t2. The difficulty comes with

the actual data. Some of the tracks have updates of an hour or more apart. A similar

linear interpolation scheme could be performed, but the data is infrequent enough

that it could produce misleading results. For example, the Figure 4.3 shows a vessel

passing straight through land. This is almost certainly not the case. In reality, it

likely maneuvered around the land between updates.

4.2 Results

Figure 4.3 shows a prediction of a single MMSI, along with the corresponding truth.

This is a long-term prediction over 80 hours. In this long-term prediction, the vessel

successfully maneuvering around the landmass is clearly demonstrated. By inspection

it can be seen that the path is reasonably close to the true path. However, when

the corresponding error over time is plotted in Figure 4.4, it can be seen that the

distance error grows significantly over time. This is due mostly to the error in the

speed prediction portion of the prediction. There is no better alternative to deal

with this error without more information about the scenario. There are too many

factors affecting a vessel’s speed to compute an accurate offline prediction over the

long-term, such as weather and avoiding other vessels. This is also a good example to

illustrate the peculiarities in many of the AIS messages. Note that, although the AIS

41

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.3: Predicted and actual ship path

message appears to cross over land, this is not actually the case. The update rate of

AIS messages is variable, and Google Earth attempts to fill in the gaps. Most likely,

the vessel sent out an update, traveled around the landmass, then sent out another

update. Google Earth displays this as a straight line through the landmass.

Next, the average error for 100 predictions was found. 100 tracks were randomly

selected from the database, and predictions were conducted both for known and

unknown destinations. The average error in both cases is shown in Figure 4.5. They

42

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.4: Over time, distance between actual and predicted path

43

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

are very close early in the run, but the unknown destination error increases for longer

journeys. The error for the unknown destination case is much higher, particularly as

time increases. This should be expected, because the destination is a valuable piece

of extra information. Near the beginning of a journey, the vessel is likely to travel in

a straight line, and may maneuver further into the journey. It is difficult to predict

such maneuvers without knowing the vessel’s endpoint.

Also notice the spikes in the graphs. This is largely due to erroneous tracks. Some

tracks were noted to do very strange things, such as moving back and forth, seemingly

at random. Others displayed high spikes in speed, beyond what is reasonable. Still

others would jump around, clearly in error. So this leads to average errors higher

than should be reasonably expected. This can be seen in the histogram for t = 22

hours, shown in Figure 4.6. In Figure 4.5, there is a spike at t = 22h. However,

in the histogram, it can be seen that there is an error of 115 skewing the mean.

When the offending MMSI was examined, the vessel was apparently teleporting across

large distances. Tracks such as this are clearly in error and should not be used for

comparison purposes. When the most inaccurate 10% of tracks are excluded from

consideration, the results in Figure 4.7 are generated. As can be seen, the average

error drops significantly.

Figure 4.8 shows the average error when only vessels of class 70 are considered,

both for the training and prediction phase. As can be seen, a small improvement is

demonstrated when class information is included.

Moreover, the Florida region was also examined to see if different traffic patterns

had an effect on the results. In Figure 4.9, different traffic patterns are apparent.

The same grid size was used. When experiments were run, the error results were

44

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.5: The averaged error for 100 runs

45

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.6: Error histogram for t = 22 hours

46

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.7: Average error for 100 runs, with outliers filtered out

47

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.8: Comparison of error when considering vessel class

48

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.9: Density map of Florida region

demonstrated in Figure 4.10. It can be seen that the error is higher in this region.

Different regions may have different traffic rules [23], so it makes sense that different

error rates would be observed.

4.3 Discussion

Evidently, the prediction with a known destination performs better over the long

term. It is interesting to note that the unknown destination prediction performs on

par with the known destination prediction in the short term. In fact, it appears to

perform slightly better in some cases. This is likely because it is more sensitive to

the initial course. So it might give better results at first, but as the vessel performs

maneuvers, according to shipping lanes, a prediction with a known destination will

49

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

Figure 4.10: Average error in the Florida region, with outliers filtered out

50

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

produce better results.

The error ends ups being quite large, at 50 nautical miles after 50 hours. There are

two main sources of error: the error in the path prediction and the error in the speed

prediction. It is difficult to quantify the two separately. For the path prediction, the

main drawback of the grid-based method is that the predicted path will travel along

the grid cells. In some cases, it was observed that the prediction traveled parallel to

the actual path, but introduced a large error because it was at the edge of the cell.

For this experiment, with grid cell sizes of 10 nautical miles, this could mean an error

of 5 nautical miles right, even if the predicted cell was correct.

The second source of error is the speed prediction. The main cause of this is the

variability in the average speed. As discussed in Section 3.3, there is a high amount

of variability in the average speed of each cell. Assuming a near-constant velocity

model also creates a high amount of variability [22]. So there will be a limit on how

accurate the speed prediction can be.

A significant drawback for this thesis was the lack of data available to construct

the graph. Ideally, more data would be available with which to analyze. With more

data, it should be possible to further refine predictions based on information such as

time of year. As is, with a relatively small dataset, it was difficult to get enough data

to meaningfully refine and test the impact of such factors.

51

Chapter 5

Conclusions

This thesis has presented a novel approach to predicting maritime ship paths using a

large amount of historical AIS data. This was accomplished by discretizing a region of

interest into a grid, then determining the density in each grid cell offline. The novelty

of this work comes in the online prediction phase through the use of shortest-path

planning algorithms, such as Dijkstra’s Algorithm to determine the optimal path

to use for the prediction. This method is much more simple and computationally

cheap than other methods, such as [23]. Shapefile data was used to ensure landmass

avoidance, and a good distance was maintained from such landmasses. Using vessel

class information was shown to somewhat improve prediction accuracy. The two

sources of error were the path prediction and speed prediction. The path prediction

error was tied to the resolution of the grid. The speed prediction error was tied to

the wide uncertainty in the historical data.

The potential for this method was demonstrated by predicting the path and arrival

time of vessels with reasonable accuracy. However, it should be noted that it is difficult

to find a benchmark to evaluate the accuracy of these predictions. This is not a

52

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

conventional estimator, so it is difficult to determine a theoretical error bound, such

as a Cramer Rao Lower Bound. Additionally, other papers do not present average

error for their predictions or are focused on other aspects such as anomaly detection

[23] [24] [28]. Long-term prediction based on AIS is not a well studied problem, so

these results could serve as a point of comparison for future work.

5.1 Future Work

Recently, a method was published detailing long-term prediction of vessel speeds using

mean-reverting processes in [22]. They found that maritime vessels tend to travel

around a particular mean speed. This could be one avenue to improve the speed

prediction used in this thesis. For previously observed vessels, the speed prediction

could be adjusted based on their previously determined mean speeds.

It would also be beneficial if the grid size was not fixed. There are sparse amounts

of data in some regions, and dense amounts of data in other regions. The issue is

that, with grid cells too small, sparse data leads to cells with little or no density data.

Meanwhile, if grid cells are too large, some of the path information may be lost as

different trajectories are grouped together in the same cell. Ideally, large grid cells

would be used for sparse regions and fine cells would be used in the dense regions.

Due to the amount of data involved, computation time becomes an issue, partic-

ularly as the problem is scaled to larger regions or a grid with finer resolution. So

it would be beneficial if this problem could be tackled from a big data and cloud

computing perspective. It could also be useful to determine alternate paths, using

k-shortest path algorithms such as Yen’s Algorithm [35].

53

Appendix A

In Polygon Test

The C++ function, based on [11], to determine if a point lies within a polygon is given

below. This function was used in Section 3.2.3 to determine if a point lies within a

landmass.

i n t inLandMass (std : : vector<point>& landmass , double long i tude , double l a t i t u d e)

{

i n t i , j , c = 0 ;

f o r (i = 0 , j = landmass . s i z e () − 1 ; i < landmass . s i z e () ; j = i++) {

i f (((landmass [i] . l a t i t ude>l a t i t u d e) != (landmass [j] . l a t i t ude>l a t i t u d e)) &&

(long i tude < (landmass [j] . l ong i tude − landmass [i] . l ong i tude) ∗

(l a t i t u d e − landmass [i] . l a t i t u d e) /

landmass [j] . l a t i t u d e − landmass [i] . l a t i t u d e)

+ landmass [i] . l ong i tude))

{

c = ! c ;

}

}

r e turn c ;

}

54

Bibliography

[1] ESRI shapefile technical description. Technical report, Environmental Sys-

tems Research Institute, July 1998. URL: https://www.esri.com/library/

whitepapers/pdfs/shapefile.pdf (accessed on Sept 8, 2016).

[2] Recommendation m.1371-5: Technical characteristics for an automatic identifi-

cation system using time-division multiple access in the VHF maritime mobile

band. Technical report, International Telecommunication Union (ITU), February

2014. URL: https://www.itu.int/rec/R-REC-M.1371/en (accessed on Jan 29,

2017).

[3] N. A. Bomberger, B. J. Rhodes, M. Seibert, and A. M. Waxman. Associative

learning of vessel motion patterns for maritime situation awareness. In Proceed-

ings of the 9th International Conference on Information Fusion, pages 1–8, July

2006.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to

Algorithms, chapter 24. McGraw-Hill Higher Education, 2nd edition, 2001.

[5] X. Cui and H. Shi. A*-based pathfinding in modern computer games. Interna-

tional Journal of Computer Science and Network Security, 11(1):125–130, 2011.

55

https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.itu.int/rec/R-REC-M.1371/en

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

[6] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning

on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[7] M. J. de Smith, M. F Goodchild, and P. Longley. Geospatial analysis: a compre-

hensive guide to principles, techniques and software tools. Troubador Publishing

Ltd, 2007.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[9] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the

2nd International Conference on Knowledge Discovery and Data Mining, pages

226–231, 1996.

[10] E. Fernandes, P. Costa, J. Lima, and G. Veiga. Towards an orientation enhanced

astar algorithm for robotic navigation. In Proceedings of 2015 IEEE International

Conference on Industrial Technology, pages 3320–3325, March 2015.

[11] W. R. Franklin. PNPOLY - point inclusion in polygon test. URL: https://www.

ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html (accessed on Sept

12, 2016).

[12] R. P. Grimaldi. Discrete and Combinatorial Mathematics. Pearson Education,

5 edition, 2006.

[13] E. Haines. Point in polygon strategies. In Graphics Gems IV, pages 24–46.

Academic Press, 1994.

56

https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

[14] A. Harati-Mokhtari, A. Wall, P. Brooks, and J. Wang. Automatic Identifica-

tion System (AIS): Data Reliability and Human Error Implications. Journal of

Navigation, 60:373, August 2007.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, July 1968.

[16] International Maritime Organization (IMO). Chapter V: safety of navigation,

regulation 19. International Convention for the Safety of Life At Sea, December

2002.

[17] J. R. Jiang, H. W. Huang, J. H. Liao, and S. Y. Chen. Extending Dijkstra’s

shortest path algorithm for software defined networking. In Proceedings of the

16th Asia-Pacific Network Operations and Management Symposium, pages 1–4.

IEEE, 2014.

[18] Y. Kambayashi, H. Yamachi, Y. Tsujimura, and H. Yamamoto. Dijkstra beats

genetic algorithm: Integrating uncomfortable intersection-turns to subjectively

optimal route selection. In Proceedings of the 2009 IEEE International Confer-

ence on Computational Cybernetics, pages 45–50, Jan 2009.

[19] D. Klein and C. D. Manning. A* parsing: fast exact Viterbi parse selection. In

Proceedings of the 2003 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics on Human Language Technology, volume 1,

pages 40–47. Association for Computational Linguistics, 2003.

57

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

[20] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fun-

damental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 1997.

[21] M. Luby and P. Ragde. A bidirectional shortest-path algorithm with good

average-case behavior. Algorithmica, 4(1):551–567, 1989.

[22] L. M. Millefiori, P. Braca, K. Bryan, and P. Willett. Long-term vessel kinemat-

ics prediction exploiting mean-reverting processes. In Proceedings of the 19th

International Conference on Information Fusion, pages 232–239, July 2016.

[23] G. Pallotta, M. Vespe, and K. Bryan. Traffic knowledge discovery from AIS data.

In Proceedings of the 16th International Conference on Information Fusion, pages

1996–2003, July 2013.

[24] B. Ristic, B. la Scala, M. Morelande, and N. Gordon. Statistical analysis of

motion patterns in AIS data: Anomaly detection and motion prediction. In

Proceedings of the 11th International Conference on Information Fusion, pages

1–7, June 2008.

[25] A. N. Skauen. Quantifying the tracking capability of space-based AIS systems.

Advances in Space Research, 57(2):527 – 542, 2016.

[26] K. Uchida. Optical ray tracing based on Dijkstra algorithm in inhomogeneous

medium. In Proceedings of the 9th International Conference on Broadband

and Wireless Computing, Communication and Applications, pages 371–376, Nov

2014.

58

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

[27] UNCTAD. Review of maritime transport 2015. URL: http://unctad.org/en/

pages/PublicationWebflyer.aspx?publicationid=1374 (accessed on Jan 29,

2017).

[28] M. Vespe, I. Visentini, K. Bryan, and P. Braca. Unsupervised learning of mar-

itime traffic patterns for anomaly detection. In Proceedings of the 9th IET Data

Fusion Target Tracking Conference, pages 1–5, May 2012.

[29] P. Wessel and W. H. F. Smith. A global, self-consistent, hierarchical, high-

resolution shoreline database. Journal of Geophysical Research, 101(B4):8741–

8743, April 1996.

[30] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85,

1994.

[31] J. Xu, T. L. Wickramarathne, and N. V. Chawla. Representing higher-order

dependencies in networks. Science Advances, 2(5), 2016.

[32] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. Destination predic-

tion by sub-trajectory synthesis and privacy protection against such prediction.

In Proceedings of the 2013 IEEE International Conference on Data Engineering,

ICDE ’13, pages 254–265, Washington, DC, USA, 2013. IEEE Computer Society.

[33] S. Yang and C. Li. An enhanced routing method with Dijkstra algorithm and

AHP analysis in GIS-based emergency plan. In Proceedings of the 18th Interna-

tional Conference on Geoinformatics, pages 1–6, June 2010.

[34] R. D. Yates and D. J. Goodman. Probability and stochastic processes: a friendly

introduction for electrical and computer engineers. John Wiley & Sons, 2005.

59

http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=1374
http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=1374

M.A.Sc. Thesis - Paul Wilson McMaster - Electrical Engineering

[35] J. Y. Yen. Finding the k shortest loopless paths in a network. Management

Science, 17(11):712–716, 1971.

[36] W. Zeng and R. L. Church. Finding shortest paths on real road networks:

The case for A*. International Journal of Geographical Information Science,

23(4):531–543, April 2009.

[37] F. Zhu. Mining ship spatial trajectory patterns from AIS database for mar-

itime surveillance. In Proceedings of the 2nd IEEE International Conference on

Emergency Management and Management Sciences, pages 772–775, Aug 2011.

[38] X. Zhu, W. Luo, and T. Zhu. An improved genetic algorithm for dynamic

shortest path problems. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 2093–2100, July 2014.

60

	Abstract
	Acknowledgments
	Introduction
	Motivation and Problem Statement
	Previous Work
	Proposed Approach
	Contribution and Significance
	Organization of the Thesis

	Graph Theory and Shortest Path Planning Methods
	Graph Theory
	Second Order Dependencies

	Shortest Path Problem
	Dijkstra's Algorithm
	Bidirectional Dijkstra's Algorithm
	A* Algorithm
	Bellman-Ford Algorithm
	Genetic Algorithm

	Algorithm Selection

	Methodology
	AIS Processing
	Graph Structure
	Transition Probabilities
	Cost Function
	Landmass Avoidance

	Speed Graph
	Path Prediction
	Path Prediction Using Dijkstra's Algorithm
	Path Prediction with Unknown Destination

	Path Smoothing
	Speed Prediction
	Discussion
	Computational Complexity

	Results
	Procedure
	Error Evaluation

	Results
	Discussion

	Conclusions
	Future Work

	In Polygon Test

