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Abstract 

In general, clustering involves partitioning a g1ve data set into sub­

sets based on the closeness or similarity among the data. Clustering analysis 

has been widely used in many applications arising from different disciplines, 

including market analysis, image segmentation, pattern recognition and web 

mmmg. 

Recently, a new optimization model, the so called 0-1 semidefinite pro­

gramming(SDP) has been introduced by Peng and Xia in [2]. It has been 

proved that several scenarios of clustering, such as classical K-means cluster­

ing, normalized-cut clustering, balanced clustering and semi-supervised clus­

tering can be embedded into the 0-1 SDP model. 

In this thesis, we try to extend the 0-1 SDP model to the scenario of 

weighted K-means clustering, where the instances in the data set are associated 

with some weights indicating the importance of the instance. We also develop 

a hierarchical approach to attack the unified 0-1 SDP model, in which each 

binary separation is achieved by the refined weighted K-means method in one 

dimensional space. Moreover, we apply the approach developed in this thesis 

to a particular industrial application, where the task is to extract a model to 

predict the children information of customers based on their buying behaviors. 

During the process of the model building, clustering analysis was applied as 

lll 



the first step to group customers with similar children information, and then 

the link between the segmentation of customers and their shopping behaviors 

was discovered. 

Numerical results based on our approach are reported in the thesis as 

well. 
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Chapter 1 

Introduction 

This chapteT will jiTst gives an introduction to clusteT·ing, and then discuss the 

ex·isting clusteTing methods, ·including paTt'itioning and hiemTchical clusteTing. 

Finally, the oTganization of the thesis is pTesented. 

1.1 Introduction to Clustering 

Clustering is the process to group objects that seem to fall naturally together 

based on some similarity/ dissimilarity measurements, such that objects within 

the group are similar to each other and objects that belong to different groups 

are dissimilar. There arc many kinds of clustering problems and algorithms, 

resulting from various choices of the measurements among entities in a data set. 

For a comprehensive introduction to the clustering, we refer to the book[ll; 
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35], and for more recent results, see survey papers [12] and [37]. In this section, 

we just give a brief introduction to clustering. 

To illustrate the concept of clustering, we take a point data set from 

[8] as example. The data set consists of 130 points showed in Figure1.1(a), 

it can be mainly partitioned into two groups. The left group has 90 points 

points displayed in circular rings, which can be further divided into outer 

and inner rings. The right group contains other 40 points that also can be 

further partitioned into upper and lower parts. Figure1.1 (b) shows the desired 

clustering result of points. In the later chapter of Numerical Experiments, we 

will give the detail process of clustering. 

~0 
0 0 

0 @ 

0 

~ 0 

o" co 0 

(a) 

0 • 

. .. 
.. '·· 

! . .. ... 
• • ')o. 

(b) 

Figure 1.1: Data Points Clustering 

Unlike classification, clustering is also known as unsupervised learning 

since the class label of each instance is unknown, and the number of clusters is 

need to be learned during the analysis. After grouping the given data, labels 

2 
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are assigned to instances. It means that the class label is data driven, solely 

learned from data. In order to measure the result of clustering, validation of 

clusters is needed. It is frequently approached by three ways. The first way 

is to visualize the clusters. For example, visualization is commonly used to 

demonstrate the effect of image segmentations. The second way is to measure 

the cohesion within a cluster. In other words, it is to test how objects arc 

correlated to others within a cluster. A cluster that has a high value of of 

cohesion is considered better than a cluster that has a lower value. The last 

way is to check the separation of clusters. The difference between clusters 

should be significant, such that clusters arc well-separated and represented in 

different manner. 

Currently clustering analysis has being widely studied in a number of 

research communities, including machine learning, statistics, social science, 

optimization and computational geometry. Here we list some typical exam-

pies. 

Market Analysis In business, clustering can help marketers discover dis­

tinct customer groups based on purchasing patterns, such that the profitable 

market share could be achieved effectively. For example, to determine the 

good location of a new business store, to predict the customer shopping taste, 
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and ctc[16]. 

Image Segmentation Many similarity measurements arc used to partition 

an input image into subgraphs, each of which is considered to be homogeneous 

with respect to some image property of interests, such as the spatial location 

of each pair of pixels, the feature information based on the intensity, color or 

texture information[8]. 

Web Mining Web Mining has been popular in document analysis, search 

engine and knowledge discovery in large volume of web documents, it may 

consist of text, images, audio, video, or structured records such as lists and 

tables [ 38]. 

Character Recognition To identify lexemcs in hand written text for the 

purpose of writer-independent handwriting recognition. The success of hand­

writing recognition is vitally dependent on its acceptance by users[12]. 

Biology Clustering Mainly used to build groups of genes with related ex­

pression patterns or group homologous sequences into gene familics[20]. 

4 
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1.2 Clustering Method 

In general, clustering methods can be mainly categorized into partitioning 

method and hierarchical method based on the similarity /dissimilarity mea­

surement adopted in the clustering analysis. In this section, we give a brief 

review of two main clustering approaches. 

1.2.1 Partitioning Method 

The partitioning method performs a disjoint cluster analysis, the observations 

arc partitioned into clusters such that every observation belongs to one and 

only one cluster. The clusters do not form a tree structure as they do in the 

hierarchical method. In practice, the Euclidean distance is mostly adopted 

for similarity measurement of observations. cluster centers arc based on least-

square estimation. 

K-means Algorithm 

Among the various partitioning methods, the classic K-mcans shown in Algo­

rithm (1) is by far the most popular clustering method used in scientific and 

industrial areas. Many variations of k-type clustering algorithms are extended 

from it, including K-medoids, K-modes and weighted K-mcans. The essential 

of K-rncans Algorithm is to use a criteria that minimizes the sum-of-squared 
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Euclidean distance from each object to its assigned cluster center, so called 

MSSC. More precisely, for a given data set S of n points in d-dimensional 

space denoted by 

S = {v;: v E :Rd i = 1 · · · n} 
2 ' ' ' 

the task of MSSC is to find an assignment of the n points into k disjoint 

clusters C = (C1 , · · · , Ck) centered at cluster centers ci (j = 1, · · · , k) based on 

the total sum-of-squared Euclidean distances from each point v; to its assigned 

cluster centroid c1 , i,e., 

k 

nun f(S, C)= L L llv;- cjll 2 (1.1) 
.J=l v,EC.i 

Algorithm 1 K-means Clustering Algorithm 
Step 1: Choose k cluster centers randomly generated in a domain containing 

all the points, 

Step 2: Assign each point to the closest cluster center, 

Step 3: Recompute the cluster centers using the current cluster member-

ships, 

Step 4: If a convergence criterion is met, stop; Otherwise go to step 2. 

K-means algorithm is efficient to handle the large data set since the 

complexity is only O(tkn), where tis the number oftimes we run the algorithm, 

k is the number of clusters and n is the number of instances. It gradually 

6 



Master Thesis - Huarong Chen - McMaster - Computing and Software 

improve the cluster centers and reduce the sum of the square error ( 1.1) at 

each iteration until the error can not be reduced anymore. Although K-rneans 

clustering is widely applied in practice, it also has some drawbacks listed as 

follows. 

1. K-means is sensitive to initial choice of cluster centers, the clustering can 

be very different by starting from different centers. 

2. K-means tends to converge to a local optimum, in most cases K-rneans 

can not find the global minimum of the measurement used in the model. 

3. There is no approximation bound available forK-means and its variants. 

4. K-means only works for numeric attributes. For categorical attributes, 

the transformation to numerical attributes is required 

5. K-means is sensitive to the outliers since outliers could significantly 

change the mean of clusters. 

Based on the analysis of K-rneans, some algorithms were developed to over­

come its shortcomings. For example, K-modes algorithm is extended to handle 

categorical attributes, K-medoids algorithm attacks the problem of outliers. In 

this thesis, the new framework for clustering analysis based on 0-1 semidefinite 

programming addresses the first three issues. Moreover, weighted K-means al­

gorithm is introduced to take into account the importance of observations. 

7 
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Weighted K-means Algorithm 

Weighted K-means algorithm is an extension of the classic K-means algorithm. 

In K-means clustering, each observation has the same weight. In other words, 

K-means algorithm treats each observation equally. However, this is not a fair 

way to measure the importance of observation sometimes. For example, If we 

like to group customers based on some similarities, the number of families in 

a postal region signifies the distribution of the population. In such case, the 

importance of each instance should be considered. Otherwise, any partitions 

of customers are not realistic. 

Similar to the classic K-means, the MSSC of weighted K-mean is cal-

culated by 

k 

nnn f(S, C)= L L d&u;- cJII 2
, (1.2) 

j=l v,.ECi 

where d; denotes the weight of an instance v;. In addition, the mean of all 

instances in a cluster is computed by taking account of weights, denoted by 

(1.3) 

1.2.2 Hierarchical Method 

Hierarchical clustering builds a a tree of clusters, also known as a dendrogram. 

Every cluster node contains child clusters. In other words, sibling clusters 

8 
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are covered by their common parent. For example, Figure 1.2 shows a tree 

structure of seven clusters labeled A, B, C, D, E, F and G, there arc three 

clusters formed at the level with the dot line. 

s 

- 1------- ---- -

i:t 

r ··-

I 
,~ I 

I 
I 
I 
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I 
I 

[; 
J D E F 

Figure 1.2: The dendrogram of clusters 

In terms of the way to construct the dendrogr-am hierarchical cluster-

mg 1s categorized into agglomerative method and divisive method. For the 

agglomerative approach, every observation is treated as single clusters at the 

beginning and recursively merges two most appropriate clusters. The divisive 

method works in the reverse way. The whole data set is first perceived as 

one cluster, and then it is separated into two clusters, the repeating process 
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continues until some stopping criteria are meet. 

There are three commonly used methods to measure the similarity of 

two clusters during the merging process, the centroid method, average linkage 

method, and the ward's minimum-variance method. Each method has its own 

features and weak points. The following part gives a brief discussion of three 

methods. 

Centroid Method 

In centroid method, the distance between two clusters Ck and C1 is defined as 

the squared Euclidean distance between their centroids or means, shown as 

where Ck and Cz denote the center of cluster ck and Cz respectively. The 

centroid method is tend to detect clusters with the spherical shape, it is less 

robust to outliers than other two methods. 

Average linkage 

In average linkage method, the distance between two clusters is defined as the 

average distance between each pair of observations, calculated by 

10 
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where Nk and Nz denote the number of observations in cluster Ck and Cz. The 

average linkage tends to join clusters with small variance, so that it is slightly 

biased toward producing clusters with the same variance. 

Ward's Minimum-Variance 

In ward's minimum-variance method, the distance between two clusters is 

computed by the ANOVA sum of squared Euclidean distance between the two 

clusters, i.e., 

It is easy to sec that ward minimum method tends to merge clusters with a 

small number of observations, and it is strongly biased on producing clusters 

with the roughly same number of observations. 

1.2.3 Other clustering methods 

Besides partitioning and hierarchical clustering methods, there arc also some 

other clustering methods proposed from different disciplines. These methods 

depict the ideas of different subjects and explore the natural multidisciplinary 

of clustering analysis. For a more comprehensive introduction, we refer to 

[12; 23]. In the following part, we just list some typical methods and their 

basic ideas. 

11 
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Density Based Clustering: In the process of the grouping, density based 

method absorbs the density-connected objects into clusters with respect to 

the density-rcachability. It is able to find arbitrary shape of clusters since the 

clustering detection is based on the density objects[16]. 

Graph-based Clustering: A number of clustering techniques that took a 

graph-based view of data arc used. Data objects are represented by nodes and 

the proximity between two data objects is represented by the weight of the 

edge between the corresponding nodcs[19]. 

Fuzzy Clustering: Unlike disjointed clustering methods, in which each in­

stance belongs to one and only one cluster. Fuzzy clustering tries to discover 

the probability or grade of membership of each object in clusters by using 

membership function[24]. 

K-Nearest Neighbor(KNN)Clustering: In this approach, each unlabeled 

pattern is assigned to the cluster of its k nearest labeled neighbors as long as 

the average distance to the k neighbors is below a threshold[21]. 

12 
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1.3 Organization of this thesis 

This thesis is organized as follows. In chapter 2, we transfer the weighted 

K-rneans clustering into a novel optimization model via semidefinite program­

ming, in which the eigenvalues of involved matrix argument must be 0 or 1, it 

is so called 0-1 SDP model. We also show how the problem of k-ways normal­

ized cut can be embedded into 0-1 SDP model. In chapter 3, we consider the 

approximate algorithms for solving the 0-1 SDP based on the relaxation. A 

new approximation method that extracts a feasible solution via PCA(Principal 

Component Analysis) of the projection of the affinity matrix is proposed. It 

has been shown that the algorithm can provide 2-approximation to the global 

solution of the original problem. In addition, we present a divisive hierarchical 

algorithm for clustering when k 2:: 3, where each binary separation is achieved 

by the refined weighted K-means method in one dimensional space. In chapter 

4, preliminary experiments are reported, the text problems include image seg­

mentations and the partition of regular data sets. In chapter 5, we discuss a 

project sponsored by MITACS and Roger-s Communication Inc .. The purpose 

of the project is to extract a pattern to predict the children information of 

customers based on their buying behaviors. Clustering analysis was applied 

as the first step to group customers in the perspective of children information, 

and then the interrelationship between the segmentation of customers and 

13 
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their shopping behaviors was discovered. In the last chapter, we summarize 

our contribution in this thesis, includes some concluding remarks. 

14 



Chapter 2 

0-1 SDP Model for clustering 

In this chapter, we first give a brief introduction to 0-1 semidefinite program­

ming(SDP), and then we show how the classical K-means clusteTing and the 

k-ways normalized cut problem can be embedded into 0-1 SDP model, finally 

we establish the eq'uivalence between weighted K-means dusteTing and the 0-1 

SDP model. 

2.1 0-1 Semidefinite Programming 

In general, SOP refers to the problem of optimizing a linear function over 

the convex cone of symmetric and positive semidefinite matrices, subjected to 

15 
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linear equality constraints. The canonical SDP takes the following form 

(SDP) 

mm Tr(WZ) 

S.T. Tr(BiZ) = bi for i = 1, · · · , m 

Z>:O 

Here Tr(.) denotes the trace of the matrix, and Z >::: 0 means that Z is positive 

semidefinite. If we further require that the eigenvalues of the matrix argument 

in the above model take values 0 or 1, which implies Z is a projection matrix 

satisfying the relation Z 2 = Z, then we end up with the following problem 

(0-1 SDP) 

mm Tr(WZ) 

S.T. Tr(BiZ) = bi for i = 1, · · · , m 

Z 2 = z.z = zr 

We call it 0-1 SDP owing to the similarity of the constraint Z 2 = Z to the 

classical 0-1 requirement in integer programming. It is easy to see that the 

SDP model is a relaxation of the 0-1 SDP model. 

2.2 0-1 SDP Model for K-means Clustering 

The equivalence between the MSSC in classic K-means clustering and 0-1 

SDP was first established in [2] and further discussed in [6]. However, for self­

completeness, we briefly describe how K-means clustering can be embedded 

16 
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into the 0-1 SDP model. 

Let X = [x:ij] E ?Rnxk be the assignment matrix defined by 

If V; is assigned to cluster Cj; 

Otherwise. 

in the feasible set Fk defined by 

where e is a all 1 vector in the suitable space. 

By rearranging some items, the objective function (1.1) can be rewritten as 

j(S,C) (2.1) 

If we define 

then we have 

Z 2 = Z, zr = Z, Z ;::: 0, Z e = e, Tr(Z) = k. 

It is easy to see that Z is a projection matrix. Based on properties of the 

projection matrix, we can rewrite (2.1) as 

where W E ?Rnxd denotes the data matrix whose i-th row represents an in-

stance v; E ?Rd. 

17 
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Therefore, we have the following 0-1 SDP model for MSSC of K-mcans clus­

tering. 

mm Tr(WWT(I- Z)) 

Ze = e, Tr(Z) = k, 

z 2 o, z = zr, Z2 = z. 

(2.2) 

2.3 0-1 SDP Model for graph-cut clustering 

In general, graph-cut clustering is refer to partition a given graph G(V, E) into 

disjointed subgraphs by removing some edges, such that each of which is con­

sidered to be homogeneous with respect to some interesting image properties. 

More rigorously, given a set of vertices V = {vi E !Rm, i = 1 · · · n}, we first 

define the weight matrix W = [wi1] where w;y =¢(vi, v1) for a kernel function 

¢(.), which can be further interpreted as the weight of an edge between two 

pixels vi and v7 , we then solve the graph-cut optimization problem according 

to the coefficient matrix. 

2.3.1 Weight Matrix 

Since cutting lines of the graph-cut clustering are non-linear separable in the 

input space, we need to transfer the input data into so-called kernel space via a 

18 
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nonlinear mapping and then perform the graph-cut clustering in the transfcred 

kernel space. In the following parts, We will discuss the two popular choices 

of kernel functions to construct a weighted matrix, Gaussian kernel and Image 

kernel introduced by Shi and Malik[8]. 

Gaussian Kernel Matrix 

The Gaussian kernel of a weight matrix is used to measure the spatial infor-

mation of any two points vi and v7, defined as 

d· 

w (i, j) = exp- ::;z-, a > 0 (2.3) 

where diJ = llvi- v1 11 2 is Euclidean distance, a is similar to the term of stan-

dard deviation, as it roughly translated to the sensitivity range of neighboring 

points. Empirically let a = r.c, where c = ~ 2.:.::i minj dij is the mean nearest-

neighboring distance, r is an integer parameter [13]. 

Weight Matrix for Images 

In the image segmentation, the weight matrix should reflects not only the 

spatial location of any two pixels, but also the likelihood of some feature 

19 
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factors based on the intensity, color or texture information[8]. It is defined by 

IIF,-Fjll 2 

w(i, j) = cxp a.f * (2.4) 

0 otherwise 

where the integer parameter T is the threshold of spatial location of pixels, it 

means that the weight w;1 becomes zero when any pair of pixel v; and vi arc 

more than r pixels apart. F; is a feature vector at the pixel v; defined as: 

• F; = 1, in the case of segmenting points sets, 

• F; = I (i), the intensity value, for segmenting brightness images, 

• F; = [v, v.s. sin(h), v.s. cos(h)](i), where h, s, v are the HSV values for 

color segmentations, 

• F; = [[I* h[, · · · , [I* fn[](i), where j; is the DOOG filters at various 

scales and orientations in the case of texture segmentation. 

2.3.2 Normalized Cut 

Recently the normalized k-cut has caught much attention in the machine learn-

ing community. It is first introduced by Shi and Malik [8] and later investi-

gated by Xing and Jordan[13]. The normalized cut computes the cut cost as 

a fraction of the total edges connections within subgraphs. In other words, 

20 
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the dissimilarity between subgraphs is measured by the cost of cutting edges, 

the similarity of a subgraph is measured by the total connections of edges in 

the subgraph. Mathematically, the normalized cut for a given graph G(V, E) 

partitioned into two disjointed subgraph V = AU B, is defined as 

N , (A B) = S(A, B) S(A, B) 
cut ' dA + dB ' (2.5) 

where S(A, B) = LiEA LjEB wij is the total weight of edges across the sub-

graph A and B, dA = LiE A di is the total weight of edges within the subgraph 

A, di = 2:::7= 1 wij is the total weight of edges that connected to the node vi. It 

is easy to see that minimizing the function 2.5 is equivalent to maximize the 

following 

S(A, A) S(B, B) 
----~ + . 

dA dB 

Furthermore, minimization of 2.5 can be rewritten as 

min (2.6) 

where D is diagonal matrix denoted by diag(d1, · · · , dn), hA is n x 1 vector, 

h(i) = 1 if the node vi belongs to A; otherwise, h(i) = 0. 

2.3.3 0-1 SDP Model for Normalized Cut 

Many interesting results about normalized cut have been reported [8; 13-

15; 17; 18; 25]. In particular, Dhilllon at [14] showed that the normalized 
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k-cut problem is equivalent to the weighted K-means clustering. Xing and 

Jordan at [13] considered an SDP relaxation on the normalized k-cut problem. 

We next show that the normalized k-cut can be embedded into the 0-1 SDP 

model. 

Let us first recall the model for the normalized k-cut problem[13] and 

the assignment matrix X defined before, and let d = Wen and D = diag (d) 

where W denotes the affinity matrix computed by (2.3) or (2.4) according to 

the type of images. The exact model for the normalized k-cut problem in 

[8; 13] can be rewritten as 

(2.7) 

If we define 

it is easy to find that 

Z 2 = Z, zT = Z, Z 2 0, Zd~ = d~, Tr(Z) = k. 

Therefore, we obtain the 0-1 SDP model for the normalized k-cut problem. 

mm (2.8) 

1 1 

Zd2 = d2, Tr(Z) = k, 

Z 2 0, Z 2 = Z, Z = zr. 
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2.4 0-1 SDP Model for Weighted K-means Clus-

tering 

Weighted K-means clustering is a variant of K-means clustering. Rcformula-

tion of weighted K-means clustering via semidefinite programming just requires 

some further efforts. However, this is never done before. In this section we 

show how to reformulate the MSSC of weighted K-means clustering (1.2) into 

0-1 SDP model in detail. 

Based on the assignment matrix X mentioned above, the weighted mean of 

all the points in a cluster cj (1.3) is calculated by 

in which d1 denotes the weight for the point V[. 

Moreover, the MSSC for weighted K-means clustering (1.2) can be represented 

as 

(2.9) 

(2.10) 
j=l 

n 

""'X > 1 (J. = 1 · · · k) L t]- ' ' 
(2.11) 

i=l 

X E {0 1} (i = 1 · · · n· ]. = 1 · · · k) 
t] ' ' ' ' ' ' 

(2.12) 
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The constraint (2.10) ensures that each point vi is assigned to one and only one 

cluster, and (2.11) ensures that there are exactly k clusters. By rearranging 

some items, the objective function (2.9) can be rewritten as 

j(S, C) (2.13) 

Let D = diag( d1 , · · · , dn) denote the diagonal weighted matrix. The first part 

of the objective function (2.13) can be rewritten by 

Since X is an assignmcntmatrix, we have 

Let 

it follows that the any element of Z is 

where 

1 1 

d2d2 
Zij=Pij_,_._J, wherei,jE{1,··· ,n} 

O:p 

If v; and v1 arc in the same cluster Cp, 

Otherwise; 
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Let M denotes the result of the matrix multiplication of D~ wwr D~ and Z, 

whose elements can be represented by 

where i,j E {1, · · · ,n}, 

we have 

Tr(M) 

which is equivalent to the second part of the objective function (2.13). As a 

result, the objective function can be rewritten by 

From the definition of matrix Z, we have that Z is a projection matrix by 

satisfying Z 2 = z and z = zr with nonnegative elements, the eigenvalue of 

Z is either 1 or 0. 

Since X e = e, we have 

This implies 
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D ~X ( XT X) -l XT e 

d~ 
' 

which means that s = d~ is the eigenvector of Z corresponding to its largest 

eigenvalue 1. Moreover, the trace of Z should equal to the rank of assignment 

matrix X, the number of clusters, i.e., 

Tr(Z) = k. 

Therefore, we have the following 0-1 SDP model for weighted K-means clus-

tering 

llllll (2.14) 

1 1 
Zd2 = d2, Tr(Z) = k, 

z 2': o, z = zr, Z 2 = z. 

Theorem 2.4.1. Finding a global solution of problem (2.9) equals to solving 

the 0-1 SDP problem {2.14). 

PToof. From the construction of the 0-1 SDP model (2.14), we know that any 

feasible solution for (2.9) can be easily transfered into a feasible solution of 

problem (2 .14). Therefore, it remains to show that from any feasible solution 
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for (2.14), we can construct a feasible assignment matrix X for (2.9). 

Suppose that Z is a feasible solution of (2.14). We can define a matrix Z = 

1 1 
D-2 ZD'i, it follows that 

-2 - - -
Z = Z,Ze = e,Z 2': 0. 

Let 

and define the index set 

Since Z2 = Z, we have 

n 

zid1 = I: zi1kzkj1 = I: zitkzkj1 

k=l kEJt 

which implies 

Since Ze = e, we have 

n 

L:zitk = 2:::: zitk = 1. 
k=l kE:Tt 

we can conclude that 
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This further implies 

zil] = L zi1kzkj = o, Vj rt ..J1. 
krfc.Jl 

Recall the definition of the matrix Z, we can decompose the matrix Z into a 

bock matrix with the following structure 

(2.15) 

where .J1 = {i: i tj! ..JI}. Now we claim that Z:r1 J 1 is a submatrix with rank 

1 for which all the elements in any column are equivalent. To see this, let 

us choose any column from the submatrix Z:~t:r1 and consider the minimum 

element in that column, i.e. for a fixed j E ..11 , 

Since Z2 = Z and Ze = e, we have 

ziLi = L zi1kzkj ::::- zi1j L zi1k = z;l], 

kEJ1 kEJ1 

this means that the equality holds if and only if all the elements in the column 

are equivalent. Thus, we have Tr (Z:r1:rJ = rank(Z:r1J 1) = 1. 

From the above discussion we can put all the points associated with the index 

set ..11 into one cluster, and reduce the corresponding 0-1 SDP model(2.8) to 

a smaller problem as follows 

min ( 2.16) 
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1 1 

Z.J1.J1 dj
1 

= d1, Tr(Z.J1.JJ = k- 1, 

By repeating the above process, we can reconstruct all the clusters from a 

solution of problem (2.14). This establishes the equivalence between model 

(2.9) and (2.14) 

It should be noted that the scalar vectors d introduced in (2.8) and 

(2.14) are different. In (2.8), d denotes the sum of each row of the coefficient 

matrix. whereas d presents the weight of each instance in (2.14). These results 

shows the power of our 0-1 SDP model, it is the underlying framework for 

numerous different-first-look clustering algorithms. 
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30 



Chapter 3 

Approximation Algorithms for 

0-1 SDP 

This chapter consists of fo'UT par-ts. In the fir-st section, a general scheme 

of approximation for solving 0-1 SDP is addr-essed. In the second section, 

we propose a new approximation method based on the SVD of the coefficient 

matr-ix in the projection space. In the third section, the eval'Uation of the 

new approximation 'is elaborated. In the last section, we present a divisive 

hierarchical algorithm, where each binary separation is achieved by the r-efined 

weighted K-means method 'in one dimensional space based on the bi-duster·ing 
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3.1 Relaxation Algorithm for Solving 0-1 SDP 

In this section, we discuss how to solve the 0-1 SDP model for clustering. For 

simplification of our discussion, we restrict ourselves to the following unified 

mode 

mln Tr(W(I- Z)) (3.1) 

Zs = s, Tr(Z) = k, 

z;::: o,z = zr,z2 = z, 

where s is a positive scalar vector satisfying llsll = 1. Throughout the paper, 

we further assume that the underlying matrix W is positive semidefinite. It 

is worthwhile mentioning that the affinity matrix defined by (2.3) or (2.4) is 

positive semidefinite, which guarantee the coefficient matrix derived from the 

the affinity matrix of the undertaking graph is positive semidefinite[8]. 

3.1.1 Approximation Algorithm Based on Relaxation 

Since finding the global solution of problem (3.1) is NP-hard as proved in [8], 

we starts with a generic scheme of approximation algorithms for (3.1), which 

is depicted in Algorithm 2. 

The relaxation step has an important role in the whole algorithm. For 

example, if the approximation solution obtained from Step 2 is feasible for 
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Algorithm 2 Approximation Algorithm Based on Relaxation 
Step 1: Choose a relaxation model for (3.1), 

Step 2: Solve the relaxed problem for an approximate solution, 

Step 3: Use a rounding procedure to extract a feasible solution to (3.1) 

from the approximate solution. 

(3.1), then it is exactly an optimal solution of (3.1). On the other hand, when 

the approximation solution is not feasible regarding (3.1), we have to usc a 

rounding procedure to extract a feasible solution. 

3.1.2 0-1 SDP Relaxation 

Various relaxations and rounding procedures have been proposed for solving 

(3.1) in the literature. For example, in [2], Peng ans Xia considered a relax-

ation of the classical K-means clustering based on linear programming and a 

rounding procedure was also proposed in the that work. Xing and Jordan [13] 

considered the SDP relaxation for normalized k-cuts and proposed a round-

ing procedure based on the singular value decomposition of the solution Z of 

the relaxed problem, i.e., Z = uru. In their approach, every row of ur is 

cast as a point in the new space, and then the weighted K-means clustering 

is performed over the new set of those points in ?)tk. Similar works for spec-

tral clustering can also be found in [15; 17; 18; 25; 28] where the singular 
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value decomposition of the underlying matrix W is used and a K-means-type 

clustering based on the eigenvectors of W is performed. 

The idea of using the singular value decomposition of the underlying 

matrix W is natural in the so-called principal component analysis (PCA) [26]. 

In [22], the link between PCA and K-means clustering was also explored and 

simple bounds were derived. In particular, Drineas et'al [32] proposed to usc 

singular value decomposition to form a subspace, and then perform K-means 

clustering in the subspace !J?k. They proved that the solution obtained by solv­

ing the K-means clustering in the reduced space can provide a 2-approximation 

to the solution of the original K-means clustering. 

There are several different ways to relax the 0-1 SDP model (3.1). 

First of all, the argument Z is stipulated to be a projection matrix, i.e., Z 2 = 

Z, which implies that the matrix Z is a positive semidefinite matrix whose 

eigenvalues arc either 0 or 1. A straightforward relaxation to ( 3.1) is replacing 

the requirement Z 2 = Z by the relaxed condition 

I>::: Z >::: 0. 

Moreover, the nonnegativity of Z indiates that there exists exactly one non­

negative eigenvector corresponding to its largest eigcnvalue(see Theorem 1.3.2 

of [3]). Recall the constraint Z s = s, it follows immediately that s is the 

nonnegative eigenvector of Z corresponding to the largest eigenvale 1. In this 
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circumstance, the constraint Z ~ I becomes superfluous and can be waived 

withoud any influence. Therefore, we need only to consider the following re-

laxed 0-1 SDP problem. 

mm Tr(W(I- Z)) 

Z:o = s, Tr(Z) = k, 

Z ~ O,Z ~ 0. 

(3.2) 

The above problem is feasible and bounded below. We can apply many ex­

isting optimization solvers such as interior-point methods to solve (3.2). It is 

known that an approximate solution to (3.2) can be found in polynomial time. 

However, we should point out that although there exist theoretically polyno­

mial algorithm for solving (3.2), most of the present optimization solvers arc 

unable to handle the problem in large size efficiently. 

Another interesting relaxation to (3.1) is to include I -Z ~ 0 that could 

be implied by the constraint zr = Z and Z s = s as we pointed early in this 

section, and further removing the nonnegative requirement on the clements of 

Z, we obtain the following simple SDP problem 

mm Tr(W(I- Z)) 

Tr(Z) = k, I ~ Z ~ 0, 
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3.2 A New Approximation Method 

In this section, we propose a new approximation algorithm based on another 

relaxation form of the model ( 3.1). Let us recall that in the relaxed model 

(3.2), we stipulate that s is an eigenvector of the final solution matrix Z. Since 

we already know this fact in advance, we can keep such a simple constraint 

in our relaxed model, and only remove the nonnegative requirement in (3.2). 

Therefore, we obtain the following SDP relaxation 

nun Tr(W(I- Z)) 

Zs = s, Tr(Z) = k, 

(I- Z) C:: 0. 

(3.4) 

In the sequel we discuss how to solve the above problem. For any feasible 

solution of ( 3.4), let us define 

It is easy to see that 

Z =(I- ssr)z = (I- ssT)Z(I- ssT), 
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i.e., Z represents the projection of the matrix Z onto the null subspace of 8. 

Moreover, since iisii = 1, it is easy to verify that 

Tr(Z) = Tr(Z) - 1 = k- 1. 

Let W denote the projection of the matrix W onto the null space of 8, i.e., 

(3.6) 

Then, we can reduce (3.4) to 

min Tr(W(I- Z)) (3.7) 

Tr(Z) = k- 1, 

It Z t 0. 

which can be solved by singular value decomposition of the symmetric matrix 

W. Denote 

where .\i are the eigenvalues of W in decreasing order, and U is an orthogonal 

matrix whose i-column is the eigenvector corresponding to to Ai. The optimal 

solution of (3. 7) can be achieved if and only if 

k-1 

Tr(Wz) = L >.i. (3.8) 
i=l 

This gives us an easy way to solve (3.7) and correspondingly (3.4). 
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Theorem 3.2.1. Let Z* be the global optimal solution of {3.1), and >..1, · · · , Ak-1 

be the fir·st largest eigenvalues of the matr-ix W, then we have 

k-1 

Tr(W(I- Z*)) 2: Tr(W)- sTWs- L )..i· 

i=1 

Proof. Let us denote Z* as an optimal solution for (3.7), from (3.8) we have 

k-1 

Z- - '""' 'U 'UT -- ~ i i. 

i=1 

Additionally, we know that (3.5) and Zs = s, which implies 

Therefore, we have 

Tr(W(I- Z*) 

T -z = ss + z. 

= Tr(W)- Tr(W(ssT + Z*)) 

= Tr(W)- sTWs- Tr(WZ*) 

11 k-1 

= Tr(W)- sTWs- L L AjUjUrUjUf 

i=1 j=1 

k-1 

= Tr(W)- sTWs- L \. 
i=1 

This finishes the proof of the theorem. 

From our above discussion, the algorithmic scheme for solving (3.4) can be 

described in Algorithm 3. 
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Algorithm 3 SVD of the Project Coefficient Matrix 

Step 1: Calculate the projection W via (3.6); 

Step 2: Use singular value decomposition method to compute the first k -1 

largest eigenvalues of the matrix W and their corresponding eigenvectors 

Step 3: Set 
k-1 

Z =ssT+ L uiu?. 
i=1 

Note that solving the relaxed problem (3. 7) can not provide a solution 

for the original problem (3.1). In the sequel we propose a rounding procedure 

to extract a feasible solution for (3.1) from a solution of the relaxed problem 

(3.7) provided by the SVD of the projection coefficient matrix. Let 

k-1 

Uk-1 = L wuT 
i=1 

be the solution obtained from the projected coefficient matrix, and 

1 

We can formulate a matrix in Rnx(k- 1) whose i-th column is .\2 ui· Then we 

cast each row in such a matrix as a point in Rk- 1 , and thus we obtain a data set 

of n points in Rk- 1 . After that we perform clustering task for the new data set. 

In other words, we need to solve the 0-1 SDP model (3.1) with a new coefficient 

matrix Wk_ 1 . Finally, we partition all the points in the original space based 
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on the obtained clusters from the new data set. The whole algorithm can be 

describe as follows. 

Algorithm 4 Approximation Algorithm based on the SVD of the Project 

Coefficient Matrix 
Step 1: Calculate the projection of the matrix W onto the null space of s, 

l.e.' 

Step 2: Use singular value decomposition method to compute the first k-1 

largest eigenvalues of the matrix W and their corresponding eigenvectors 

Step 3: Solve problem (3.1) with the coefficient matrix Wk-l and assign all 

the points in the original space based based on the obtained assignment. 

3.3 Estimation of Approximate Solution 

We next progress to estimate the solution obtained from Algorithm 4. 

Theorem 3.3.1. Suppose that Z* is a global solution to problem (3.1) and Z 

is the solut·ion provided by Algorithm 4. Then, we have 

Tr(W(I- Z))::; 2Tr(W(I- Z*)). 
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Pmof. Let Z* be a global solution to (3.1) and Z is the solution provided by 

Algorithm 4. From the choices of Uk-l and Uk it follows 

O· 
' 

(3.9) 

0. (3.10) 

From Theorem 3.2.1, we have 

Tr(W(I- Z*)) 2': Tr(W(I- U)). (3.11) 

It follows 

Tr(W(I- Z)) = Tr(W(I- U + U- Z)):::; Tr(W(I- Z*)) + Tr(W(U- Z)). 

The above relation implies that if 

Tr(W(U- Z)) :::; Tr(W(I- Z*)), (3.12) 

then 

Tr(W(I- Z)) :::; 2Tr(W(I- Z*)), 

i.e., in the worst case, the solution provided by Algorithm 4 is a 2-approximation 

to the original problem (3.1). 

In what follows we prove (3.12), which can be equivalently stated as 

Tr(W(I- Z* + Z- U)) 2': 0. (3.13) 
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By the choices of Z*, Z and U, it is easy to verify 

(I - Z* + Z - U)s = 0, (3.14) 

(I- ssT)(!- Z* + Z- U)(I- ssT) = (I- Z* + Z- U). (3.15) 

It follows immediately that 

Tr(W(I- Z* + Z- U)) Tr(W(I- Z* + Z- Uk)) 

Tr(Wk-1(1- Z* + Z- Uk)) 

+Tr((I- Z* + Z- Uk))(W- Wk-d 

Tr((Z- Z*)Wk_ 1) + Tr((I- Z* + Z)(W- Wk-d) 

> Tr(Wk-1(Z-Z*)) 

where the last equality is given by (3.9) and (3.10), and the last inequality is 

implied by the fact that I- Z* + Z C:: 0, W- Wk_ 1 C:: 0 Recall that Z is the 

global solution of problem (3. 7) with the coefficient matrix Wk_ 1 while Z* is 

only a feasible solution of (3.7), we therefore have 

which further implies (3.12). This finishes the proof of the theorem. 
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3.4 Divisive Hierarchical Approach 

In this section, we will first focus on solving the problem (3.1) in the special 

case where the affinity matrix W = vvT with v E !Rn and k = 2 by applying 

the refined weighted K-means method in one dimensional space, and then we 

propose a divisive hierarchical algorithm based on the binary separation. 

3.4.1 Refined Weighted K-means In One Dimensional 

Space 

Suppose that W is a positive semidefinite coefficient matrix in the 0-1 SDP 

model (3.1) with W = vvr, V E !Rnxd and s is a positive scaling vector. 

If we cast all the rows ( vi, i = 1, · · · , n) of the matrix V as vector in !Rd, 

then solving the 0-1 SDP modcl(3.1) equals to solving the following weighted 

k-means clustering problem 

n 

. ". {
2 11Vi 11 2 IIVi 11 2 } c~·ll~~k L nun si Si - c1 , · · · , Si - Ck . 

z=l 

(3.16) 

Note that for given candidate center c 1, · · · , ckl the weighted K-mcans assigns 

the scaled data points precisely in the manner as the classical K-means docs. 

This allows us to use the so-called Voronoi Partitions in computation geometry 

[29] to find the global optimal solution of problem (3.1). Based on Theorem 3 

and Theorem 5 in [29], the algorithm runs in O(ndk+l) time. 
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In what follows we discuss a special case of (3.1) when W = vvT with 

v E 3rn and k=2. In such the case, the (3.16) can be stated as 

(3.17) 

Since the weighted center of a cluster is calculated by 

minimizing of (3.17) is equivalent to maximize the following 

In addition, we can use the ordering of the scaled data points to design a 

more efficient algorithm to solve the bi-clustering problem, which is depicted 

in Algorithm (5). Obviously the complexity of Algorithm (5) is O(nlogn), 

this allows us to deal with large-scale data set efficiently. We also point out 

that a similar idea had been employed by Shi and Malik [8] in their seminal 

paper on normalized k-cut for image segmentation. In that case, the 0-1 SDP 

model takes the form as in (2.8) with k = 2. Since d~ is the eigenvector cor-

responding to the largest eigenvalue of the underlying coefficient matrix, Shi 

and Malik proposed to usc the eigenvector corresponding the second largest 

eigenvalue of the coefficient matrix to cluster the data set. Shi and Malik also 

suggested several simple heuristics to solve the underlying 0-1 SDP model in 
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Algorithm 5 Refined weighted K-means in One Dimensional space 

Step 1: Input the data set V = {v1 , v2 , · · · , vn} and scalar vectors, calculate 

the 'iJ = :':'.i. i = 1 · · · n· 
Si l l ' ' 

Step 2: Sort the sequence il;, such that fi; 1 :::: D;2 • · ·:::: D;n, where {i1 , · · · , in} 

is a permutation of the index set { 1, · · · , n}; 

Step 3: 

for l = 1 to n do 

calculate the center of two partitions, 

and calculate the objective function 

if f(l) < J(l- 1) then 

output C1 = { fi; 1 , · • • , D;,_J, C2 = { fi;1 , · · • , v;n} as the final solution 

end if 

end for 

one dimensional space. However, none of these heuristics in [8] can ensure to 

locate the global solution of the subproblem. On the other hand, in our algo-

rithm we need to perform a sorting first and then find the best breaking point 

in term of the objective function. As we shall see from our later discussion, 
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our algorithm allows us to obtain an approximation with guaranteed quality. 

Theorem 3.4.1. Suppose that W = vvT with v E Rd and k = 2. Then the 

0-1 SDP model (3.1} can be solved by the refined weighted K-means in one 

dimensional space. 

Proof. To prove the theorem, we first recall the interrelation between the 0-

1 SDP (3.1) and so-called weighted K-mcans stated in before, which implies 

that there exist two distinct weighted centers corresponding to the optimal 

solution of problem (3.1), denoted by C~ and Cj respectively. Without loss 

of generality, we can assume that CT > C~. From (3.17), we know that the 

optimal partition can be obtained by assigning the scaled data points to these 

two centers based on the distances from every point to the two points. Let 

us denote the final clusters by (C1 , CT), (C2 , C~). Since the data set is in one 

dimensional space, it is easy to see that 

which implies 

This further implies that the optimal partition can be obtained by making 

usc of the ordering information of the scaled data points. The proof of the 

theorem is finished. 

46 



Master Thesis - Huarong Chen - McMaster - Computing and Software 

Although the solution obtained from (5) is 2-approximation guaranteed, there 

may be a better assignment of points existed. The procedure of local search 

works for that purpose. Suppose that C1 and C2 arc output solution of (5), 

we have 

Procedure of Local Search 

Repeat 

1. Calculate the set 

.cl {vi :the objective value is decreased if moving Vi from cl to C2}, 

.c2 {vi :the objective value is decreased if moving Vi from c2 to Cl}; 

2. Update C1 and C2 

Until .C1 and .C2 are empty. 

3.4.2 Divisive Hierarchical Clustering 

Hierarchical clustering is mainly categorized into agglomerative methods and 

divisive methods in terms of the way to construct the tree of clusters. We 

have briefly given an introduction of an agglomerative clustering in the first 

chapter. Also, three commonly used methods to measure the similarity of two 

clusters during the merging process are discussed. In this section, we present 
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a divisive clustering method. Usually divisive hierarchical clustering is more 

difficult to develop than agglomerative clustering. In [27], Hansen provided 

an algorithm to partition a data set divisively in low dimension, the algorithm 

runs in 0( nd+ 1 log n )time, where d is the dimension of the space to which the 

entities belong. 

From Theorem (3.3.1) and (3.4.1), we know that the Algorithm (5) 

provides a 2-approximation solution for the 0-1 SDP model (3.1) for k = 2. 

When k 2:: 3, we employ the divisive hierarchical approach to partition a data 

set into k clusters as follows. We first cut the data set into a two parts by 

Algorithm (5). Then, we separate each subset into two parts based on the 

similar strategy. After that, the best cut is selected in term of the reduction of 

the value of the objective function. The process continues until the number of 

clusters k is reached or all subsets can not be divided any more. Algorithm(6) 

shows the whole procedure. 

Graph Model 

In this subsection, we use Figure (3.1) to illustrate how the divisive hierarchical 

algorithm works. When k = 2, the data set is divided into two parts by using 

the refined weighted K-mcans clustering in one dimension. When k = 3, 

both groups arc performed a binary separation through the same strategy, 

48 



Master Thesis - Huarong Chen - McMaster - Computing and SoftwaTe 

Algorithm 6 Divisive Hierarchical Clustering for k :;,. 3 
Step 1: Calculate the affinity matrix for a given graph or a data set by 

(2.4) or (2.3); 

Step 2: Repeat 

1. Calculate the projection of the coefficient matrix onto the null space 

of s, i.e., 

and obtain the corresponding largest eigenvector v, 

2. Usc s = d~ and v to obtain a binary separation of the graph or the 

data set by the Algorithm (5), 

3. Run the procedure of local search if necessary, 

4. Choose a suitable sub-partition to do further binary separation such 

that the objective value is minimal, 

5. Mark the sub-graph as unpartitionable if the size of sub-partition is 

too small or there is no splitting point found, 

Until k is reached or all subsets arc unpartitionable. 

the further separation is selected in term of the reduction of the value of the 

objective function. For example, the left separation with solid line is chosen, 

the right separation with dot line is stored in the memory for the next iteration. 
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The process continues until the number of clusters is reached. 

It is worth to point out that to get i-cut, we only need to perform the 

binary separation for two subsets which arc newly obtained from the (i-1)-th 

cut. 

K=2 

K=3 (~ 
:',., .. -- ..... -~~ .. ,~,~ 

~ : . . 
'~~ ........ __ .. _.,._.,.,,."' 

Figure 3.1: Graph for the Divisive Hierarchical Approach 

Complexity 

In the sequel we discuss briefly the complexity of Algorithm ( 4). First, we 

discuss the complexity on computing the largest eigenvector of the coefficient 

matrix. If we usc the power method [9] to calculate the largest eigenvector, it 

takes O(n2) time. If the matrix W has a certain sparsity, then we can use its 
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sparse structure to speed up process, especially this is for image segmentation. 

In the context of the classical K-means and weighted K-means clustering, we 

can sue the structure of the underlying matrix W to improve the process. 

Recall that we have W = Wv WJ where Wx E ~nxd is a matrix such that each 

row represents a point in ~d. In such case, it is not necessary to calculate the 

eigenvalues and corresponding eigenvectors of the matrix W directly. It can 

be proceed in the following way. We first compute a matrix W = WJ'Wv E 

~dxd, which takes O(nd2 ) time. It is easy to see that the matrix W has the 

same spectrum as that of the matrix vV. Thus, we can compute a singular 

decomposition o W directly such that 

- . T 
W = Vdwg()q, · · · , Ad)V , 

where V E ~dxd is an orthogonal matrix such that every column is an eigen-

vector of W. This takes O(d3 ). We then calculate the matrix U = WvV 

in O(nd2
). One can easily verify that the i-th column of the matrix U is 

an eigenvector of W corresponding to the eigenvalue Ai· Therefore, the total 

computational cost to calculate the eigenvalues and their corresponding eigen-

vector is O(nd2 + d3 ). If dis not very large, say m < 1000 (which is true for 

most data set in practice), then we can obtain the eigenvalues and eigenvectors 

of W very quickly. 

Next we discuss the complexity in solving the subproblems by Algo-
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rithm (6). The binary clustering can be done in O(nlogn) time by using the 

Algorithm (5). Therefore, the total time complexity of the algorithm will be 

0 ( kn log n + kn 2 ), in which the procedure of local search is not under the 

consideration. This allows us to cope with relatively large data set in high 

dimension. 
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Chapter 4 

Numerical Experiments 

In this chapter, we report some preliminary experiments based on the algorithm 

discussed before. It includes two parts. In the first part, test pmblems are focus 

on image segmentat·ion, which is solved by using 0-1 SDP model for normalized 

cut. In the second part, we partition regular data sets via 0-1 SDP model for 

K-means clustering. 

4.1 Numerical experiments for image segmen­

tation 

We have implemented our algorithms in matlab 6.5 combined with C language. 

The tests are done on a PC with AMD Athlon 1.24G CPU and 512M RAM. In 
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our implementation, the largest eigenvalue and its corresponding eigenvector 

of the coefficient matrix are computed by Lanczos tridiagonalization with the 

modified partial orthogonalization [10]. 

For companson, we have also tested the algorithm in [8] where the 

authors used a simple heuristics to attack the subproblem of Algorithm ( 4) in 

one-dimensional space. Also, we use SDPCut and Ncut to denote the algorithm 

in the thesis and the algorithm in [8] for convenience. 

We have tested our algorithm on several examples in the literature. 

These includes that the data point set from [8], an image from the Berkeley 

segmentation data set and benchmark 1, and two images from Adobe Photo­

shop for image segmentation. Due to the limit of the computational facility in 

our experiments, we resized all images proportional to their original sizes. To 

compare the performance of our algorithm on the test problems, the numerical 

results arc summarized in tables and figures. In the tables we list the values 

of the objective function obtained by our algorithm (SDPCut) and the algo­

rithm(Ncut) in [8] respectively. The CPU time used to obtain the partitioning 

is also reported. The figure visualizes the segmentations that can help us to 

better understand the practical performance of two algorithms. 

1 http:/ /www.eecs.berkeley.edu/R.esearch/Projects/CS /vision/ grouping/ segbench/ 
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Point Data Set 

The first test problem is the point data set in [8], which consists of 130 points 

in two-dimensional space, the detail description of the points has been given 

in the first chapter. Table ( 4.1) records the values of the objective functions 

and CPU time for both algorithm for k from 2 to 4. Although both algorithms 

have exactly same partition for the point data set when k = 4, the values of 

the objective function provided by SDPCut are better than what provided by 

Ncut when k = 2, 3. The numerical improvement has been confirmed by figure 

( 4.1), which shows that the cut provided by our algorithm separate the data 

set into two parts clearly when k = 2, while the separation provided by Ncut 

is unclear. When k = 3, though both methods manage to separate the data 

set, the final clusters arc different. 

Objective Value CPU Time (s) 

K SDPCut Ncut SDPCut Ncut 

2 0.000000000 0.134910574 0.44 0.27 

3 0.000666557 0.002806832 0.53 0.23 

4 0.0034 73389 0.003473389 0.63 0.27 

Table 4.1: Performance of Circle data 
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Figure 4.1: Partitions of circle data point set 
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Woman Face 

The second test problem is from the Berkeley segmentation data set and bench­

mark. Figure ( 4.2) shows is an image of a woman 's face with two hands on her 

cheek in gray format. The original size is 481 x 321 pixels and it was resized as 

139 x 91 pixels in the experiments. The similarity measure between each pair 

of pixels can be summarized in n x n weighted matrix W based on brightness 

and spatial features, where n is the total number of pixels in the image. Note 

that the weighted matrix W contains large number of zeros and near zeros due 

to the spatial proximity factor 

Figure 4.2 Woman Face Image 

Table (4.2) records the performance of segmentations of the woman 

face for k from 2 to 7 Figure ( 4.3) and ( 4.4) illustrates the whole cutting 

process for SDPCut and Ncut respectively Both algorithm are able to find 
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Objective Value CPU Time (s) 

K SDP Ncut Ncut SDP Ncut Ncut 

2 0.000373422 0.00267505 27.22 36.97 

3 0.000951509 0.01056890 44.45 35.81 

4 0.003592392 0.01115780 57.90 35.36 

5 0.012211270 0.05035214 74.00 33.09 

6 0.043300375 0.05025529 88.13 35.58 

7 0.070311355 0.16297105 95.49 34.44 

Table 4.2: Performance of Woman Face 

the boundary of the face and two eyeballs. However, SDPCut did a better 

job on extracting the shape of fingers of both hands than Ncut. It is easy to 

sec that SDPCut has better values of objective function than Ncut, especially 

when k = 2, 3, 4, 7, which can be validated via the process of segmentations. 

SDPCut extracted two eyeballs from the image at the beginning. After that, 

it figured the outline of the left face, Next, the right face is identified. Finally, 

SDPcut discovered the shape of fingers of both hands. On the other hand, Ncut 

partitioned the image in the different sequence, it started with both sides of 

the face, and then two eyeballs. Moreover, Ncut made a cut somewhere in the 

shadow, while SDPCut outlined the shape of the fingers. 
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(a) k=2 (b k=3 c k=4 

d) k=5 e) k=6 (f ) k= 7 

Figure 4.3. Segmentations of the Woman Face from k = 2 to 7 by SDPCut 

a) k=2 (b k= 3 c k= 4 

d) k=5 e k= 6 (f) k= 7 

Figure 4.4: Segmentations of the Woman Face from k = 2 to 7 by Ncut 
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Ducky Image 

The third test problem is from the sample pictures of Aclob Photoshop. Figure 

(4.5) shows a toy ducky with bright background. The original size is 546 x 500 

pixels, we proportionally resized it as 130 x 119 in our experiment clue to the 

computational facilities. 

Figure 4.5· Ducky Image 

Table (4.3) summarizes the performance of the two algorithms for the 

Ducky image when k from 2 to 7 It can be seen that the values of the 

objective function provided by SDPCut is always better that what obtained 

by Ncut, and the difference becomes prominent when k = 6, 7 This can also be 

verified via Figure (4.6) and (4.7) , which show that SDPCut clearly outlined 

the shape of the mouth and the contour of ducky 's stomach .for k = 6 and 

k = 7 respectively, while Ncut did not . 
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Objective Value CPU Time (s) 

K SDPCut Ncut SDPCut Ncut 

2 0.006035151 0.006252636 44.80 94.03 

3 0.010534337 0.012925502 77.80 86.23 

4 0.022542201 0.027505889 102.47 86.11 

5 0.033214296 0.042012681 121.35 82.22 

6 0.052768125 0.094367725 137.57 94.39 

7 0.108721513 0.199546366 147.52 83.69 

Table 4.3: Performance of Ducky Image 

I 
l.'.....;;.;..... =-___//_j l ~ ~.__.L. __ • ___ ,_._j 

a) k=2 (b k=3 c k= 4 

d) k=5 e k= 6 (f) k=7 

Figure 4.6: Segmentations of the Ducky from k = 2 to 7 by SDPCcut 
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a) k=2 (b k=3 c k=4 

d) k=5 e k= 6 (f) k=7 

Figure 4.7 Segmentations of the Ducky from k = 2 to 7 by Ncut 

Ranch House 

The last test problem of image segmentation is also from the sample pictures 

of Adobe Photoshop. Figure ( 4.8) is a gray level image of the scene of a ranch 

house . The original size is 692 x 589 pixels, we proportionally resized it as 

140 x 119 in our experiment. 
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Figure 4.8. Ranch House Image 

Objective Value CPU Time (s) 

K SDP Ncut Ncut SDP Ncut Ncut 

2 0.000618508 0.000830058 50.69 94 .34 

3 0.014763275 0.014937043 88.19 94.55 

4 0.044 782877 0.067792577 112.19 90.03 

5 0.078499524 0.108438306 126.78 84.45 

6 0.086836495 0.173986842 138.06 97.83 

7 0.095264966 0.182797317 149.09 95.44 

8 0.117966244 0.235106454 161.67 99.13 

Table 4.4: Performance of Ranch House 

Table ( 4.4) gives the performance of segmentations of the Ranch House 

image for k from 2 to 8. It indicates that SDPCut always has better com-
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putational results compared to Ncut. The results can be demonstrated by 

Figure( 4.9) and ( 4.10), which shows the partitioning process of two algorithms 

in detail. For example, the values of objective function provided by SDPCut 

are better than what obtained by Ncut even thought both algorithms have 

similar cuts when k = 2, 3. When k = 6, SDPCut was able to outline the 

contour of the shoes while Ncut drew out the shadow of the door. In addition, 

SDPCut gave a clearer shape of the shadow of the cloth than Ncut when k = 8. 
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a) k= 2 (b k=3 c k= 4 

d) k=5 e k= 6 (f ) k= 7 

(g) k= 8 

Figure 4.9· Segmentations of the Ranch House from k = 2 to 8 by SDPCcut 
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a) k= 2 (b k= 3 c k=4 

d) k=5 e k=6 (f) k=7 

(g) k= S 

Figure 4.10: Segmentations of the Ranch House from k = 2 to 8 by Ncut 

Local Search 

We also test our algorithm by applying local search. The test was only re­

stricted on three images in our experiments since the data point set was al­

ready separated clearly To compare the computational result on the test 
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examples between without applying the local search and with performing the 

local search, we still use tables to list the values of objective function and CPU 

time used to obtain the partitions. 

Objective Value CPU Time (s) 

K SDP Ncut Local Search SDP Ncut Local Search 

2 0.000373422 0.000373422 27.22 37.26 

3 0.000951509 0.000951509 44.45 72.60 

4 0.003592392 0.003328935 57.90 175.08 

5 0.012211270 0.011493237 74.00 275.32 

6 0.043300375 0.041677942 88.13 353.82 

7 0.070311355 0.065115482 95.49 384.52 

Table 4.5: Performance of Woman Face with Local Search 

Table (4.5) summaries the result of the Woman Face image. The ob­

jective value has no any changes for both algorithms when k = 2, 3. There 

arc some slight improvements on the objective value while applying the local 

search when K from 3 to 7, but the computational time is much more than 

what used without applying the local search. 

Table ( 4.6) records the testing performance of the Ducky image. The 

values of objective function provided by the algorithm with the local search 

is always better than what obtained without applying the local search, the 
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Objective Value CPU Time (s) 

K SDPCut Local Search SDPCut Local Search 

2 0.006035151 0.005952198 44.80 209.75 

3 0.010534337 0.010169767 77.80 279.02 

4 0.022542201 0.020623691 102.47 619.64 

5 0.033214296 0.030920484 121.35 671.81 

6 0.052768125 0.048302935 137.57 761.28 

7 0.108721513 0.102556240 147.52 776.78 

Table 4.6: Performance of Ducky Image with Local Search 

average improving is around 5%. However, its CPU time needed is more than 

five times that spent on the algorithm without the local search. 

Table ( 4. 7) shows the performance of both algorithms for the Ranch 

House image. The algorithm with applying local search took 24 minutes for 

the image segmentation when k = 3, which is more than 16 times that spent 

without local search. However, the objective value only has 4% enhancement. 

When k = 6, 7, 8, the objective values of two algorithm became almost same 

though there arc some progressive results after applying local search in the 

previous segmentations. 

From the above experiments, it can be seen that SDPNcut with local 

search can provide better local optimal with much longer running time. Also, 
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Objective Value CPU Time (s) 

K SDP Ncut Local Search SDP Ncut Local Search 

2 0.000618508 0.000618508 50.69 59.80 

3 0.014 763275 0.014176416 88.19 1418.57 

4 0.044782877 0.022385691 112.19 1559.27 

5 0.078499524 0.051795732 126.78 1627.99 

6 0.086836495 0.084 718791 138.06 1662.52 

7 0.095264966 0.093040816 149.09 1689.21 

8 0.117966244 0.111911743 161.67 1724.50 

Table 4.7: Performance of Ranch House with Local Search 

whether apply local search during the hierarchical approach depends on how 

to seek the trade-off between the quality of clustering and the CPU time. 

4.2 Numerical experiments for data sets 

In this section, we test the 0-1 SDP Model for K-means clustering on several 

data sets. For convenience, we denoted the algorithm by SDPKmeans in the 

thesis. For comparison, we also test those data sets by SDPcut, in which the 

affinity matrix is obtained by (2.3). Since the objective function of both algo­

rithm arc different, we compute values of the objective function by substituting 

the assignment matrix X into MSSC of K-means clustering (2.1). Moreover, 
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the procedure of local search arc applied in both algorithms. 

Soybean Data 

The first data set we use to test is Soybean data (small) from the UCI Machine 

Learning Repository 2
, see also [31]. This data set has 47 instances and each 

instances has 35 normalized attributes. It is known that the data set has 

4 cluster, the global optimun has already been reported in [2] by using a 

linear programming mode. Table ( 4.8) summaries the testing result of two 

algorithms. It shows that SDPKmcnas can find the optimum when k = 2, 3, 

but not in the case when k = 4. However, the optimum can be reached 

after applying the local search. In contrast, SDPNcut is able to discover the 

optimum in all k with or without executing the local search. 

-

SDPKmean~ SDPNcut 

K Objective CPU Local Search CPU Objective CPU Local Search CPU 

2 404.4593 0.08 404.4593 0.16 404.4596 0.34 404.4596 0.45 

3 246.4593 0.13 246.4593 0.23 246.4596 0.42 246.4596 0.76 

4 205.9637 0.14 205.9637 0.28 230.3923 0.47 205.9637 0.86 

Table 4.8: The Soybean Data 

2 http:/ /www.ics.uci.edu/mlearn/MLRepository.html 
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Ruspini Data 

The second test data is Ruspini data set from [34]. The data set consists of 75 

points in ~2 with four groups. it is popular for illustrating clustering technique 

[35]. Table ( 4.9) lists the numerical results of two algorithms. The values of 

objective function provided by SDPKmcans have significant improvement after 

applying the local search for all k, the consumed CPU time is twice over that 

in SDPKmcans without performing the local search. On the other hand, the 

values provided by SDPNcut arc exactly same with or without applying the 

local search. 

SDPKmeans SDPNcut 

K Objective CPU Local Search CPU Objective CPU Local Search CPU 

2 126400 0.09 123950 0.17 123950 0.36 123950 0.44 

3 62790 0.13 57430 0.25 57430 0.49 57430 0.72 

4 19408 0.14 15246 0.55 15246 0.52 15246 0.63 

Table 4.9: The Ruspini Data 

Spath postal Zones Data 

The last test data is the the Spath postal zones data from [33]. This data set 

contains 89 entities and each entity has 3 features. It is known that the data 
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set has 9 groups. 

SDPKmeans SDPNcut 

K Objective CPU Local Search CPU Objective CPU Local Search CPU 

2 6.026d011 0.13 6.026d011 0.17 7.54h1011 0.36 6.026d011 0.48 

3 3.637*1011 0.14 3.637d011 0.27 4.102d011 0.42 3.637*1011 0.98 

4 2.743d011 0.17 2.743d011 0.36 2.707*1011 0.52 2.743*1011 1.05 

5 2.428d011 0.22 2.428*1011 0.38 8.102*1010 0.61 2.428d011 1.14 

6 2.392d011 0.23 2.392d011 0.42 4.982d010 0.64 2.392*1011 1.19 

7 2.117*1011 0.27 2.113d011 0.44 4.800*1010 0.66 2.113*1011 1.25 

8 2.060d011 0.28 2.060*1011 0.52 2.224*1010 0.78 2.060d011 1.33 

9 2.01h1011 0.33 2.01hl011 0.55 1.546*1010 0.81 2.01h1011 1.44 

Table 4.10: The Spath's Postal Zone Data 

The performance of two algorithms are shown in Table (4.10). SDP­

Kmeans provided the same objective values for all k with or without perform­

ing the local search. SDPNcut is unable to reach the optimum when k = 2. 

With performing the local search, the objective values was improved when 

k = 2, 3. Nevertheless, the objective values became worse on the following 

partitions while applying the local search. The reason is that solution dis­

covered by SDPNcut is still local optimum even though the local search can 
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provide better separation in i-th iteration, the quality of the next partition 

based on the local search may not be better than that without performing the 

local search. 

In our experiments, we conclude that the procedure of local search 

should be used to derive the better solution without increasing the running 

time too much for SDPKmeans. For SDPNcut, it may not be a good option to 

perform the local search after each binary separation, we suggest that applying 

the local search after achieving the final partition. 
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Chapter 5 

Case Study 

In this chapter, we start discussing the project sponsoTed by MITACS and 

Rogers Communication Inc .. The p'Urpose of the project is to extract a pattern 

to predict the children information of customers based on their b'Uying behav­

iors. The project ma·inly incl'Udes three parts. In the first par-t, we prepaTed 

the data set for the model·ing, it contains the step of data collection and data 

preprocessing. In the second part, we applied the cl-ustering analysis to gro·up 

c'Ustomers with a similar children composition in postal code level according 

to the GenS demographic data, in which the 0-1 SDP model joT weighted K­

means dustering(2.14) was employed to segment customers. In the last part, 

we discovered the link between the segmentation of customers and the·ir- shop­

ping behaviors. 
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In today's competitive market, a company want to know what it should 

do to meet the demands from its customers or to attract new customers from 

a certain region, which kind of strategies should be employed by the company 

to maintain a profitable market share. The important information about cus-

tamers such as the customer expenditure, the customer family income, and 

the customers' family composition will help the company a lot in its decision 

making. 

The purpose of the project sponsored by MITACS and Rogers Com­

munication Inc. is to extract the interesting pattern to predict the children 

composition of customers based on their buying behaviors by using the combi­

nation of clustering analysis and classification. In addition, SAS language and 

and Enterprise Miner are required tools to build up the model. Although the 

model is particularly focused on customers of video stores in Calgary region, 

the methodologies of data mining applied in the project can be easily extended 

to detect other customer information. 

5.1 Data Preparation 

The first step of the process of modeling is data collection, it plays extremely 

important role of building a successful predictive model. In this section, we 

show how the time frame of data collection is determined and give the detail 
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description of three data sources. 

5.1.1 Time Frame 

The time element is critical to model building[16]. Usually it is separated into 

the past, the present and the future. The past data is used as historical data 

to build model, it further divided into training data set, testing data set and 

validation data set during the modeling process. The future data is what we 

are trying to predict, it used to score the model. The present data is the time 

that takes to gather data and develop the model. 

Observation Period Skip Prediction Retention 
Window Period 

1 1 1 
Jan. 2004 Dec. 2004 Feb. 2005 Apr. 2005 Aug. 2005 

Figure 5.1: Time Frame in Data Collection 

Figure (5.1) shows the time frame of the project. Since the project 

was started at May 2005, we assume that January 2005 is the present time 

to collect data. The transaction data of last 12 months are treated as the 

input data set to build up the model. The data between February and April 
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arc used as the scoring data set, which is to evaluate how well the model 

performs. Moreover, the model will be shaped by shifting the time frame one 

month recursively during the retention period. 

5.1.2 Data Source 

The project has three data sources, the customer information table, the cus­

tomer transaction table and the Gcn5 demographic data. 

Customer Transaction Table 

The transaction table contains dynamic information wrapped in 153592 cus­

tomers, including 4794919 transaction records within 20 different video stores. 

Table (5.1) lists the variables of the transaction table. Those variables are 

identified by three following perspectives of customer buying behaviors. 

• Recency: What is the customer most recent purchase? 

• Frequency: How often has the customer made a purchase in a prede­

fined length of time? 

• Monetary: How much money has the customer spent over the measured 

time period? 
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Variables Name Description 

CUSTOMER Customer ID (Primary Key) 

SITKJD Store ID (Primary Key) 

POSTCODE Customer postal code 

CUST_TYPE Customer type (BAS,EMP,VIP,RGC) 

TRA_DATE Transaction Date 

TRA_TIME Transaction Time (Morning, Afternoon, Evening) 

DEPARTMENT Department of items * 

SUB_DEPARTMENT Sub_Department of Items * 

CLASS Class of items * 

SUB_CLASS Sub_Class of Items * 

QUANTITY Number of items per transaction 

TOTAL_PAYMENT Total payment of the transaction 

TOT ALDIS COUNT Total discount of the transaction 

FREQUENCY Frequency of the transactions occurred 

Table 5.1: Transaction Variables for Video Customers 

Customer Information Table 

The customer information table contains all the static information of video 

customers in the city of Calgary, such as the name of customers, the living 
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address, the type of customers, and etc. It consists of 233875 records. Table 

(5.2) shows some important variables. 

Variables Name Description 

CUSTOMER Customer ID (Primary Key) 

SITE_ID Store ID (Primary Key) 

FIRS_ NAME LAST_NAME Customer Name 

POST_CODE Customer Postal Code 

CLIENT_ TYPE Client type (BAS,EMP,VIP,RGC) 

ENTER_DATE Start Membership date 

CC_TYPE Credit card type 

CC_NO Encrypted credit card number 

... . .. 
------

Table 5.2: Static Variables for Video Customers 

Gen5 Demographic Data 

Gen5 demographic data is a demographic and socio-economic marketing data 

file. It provides the census information of 2004 for over 3600 demographic 

variables, projected to the postal code level. The data file contains many 

kinds of information of households, including the information of expenditure, 

dwelling, education, employment and family composition. In the project we 
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arc only interested at variables that are relevant to the children information. 

Table ( 5.3) and ( 5.4) displays the direct and indirect variables respectively. 

Variables Name Description 

GHWCNC Common-law couples without children 

GHWMNC Married-couples without children 

GHWCWC1 Common-law couples with 1 child at home 

GHWMWC1 Married-couples with 1 child at home 

GFMLPF1 Lone female parent with 1 child 

GFMLPM1 Lone male parent with 1 child 

GHWCWC2 Common-law couples with 2 children at home 

GHWMWC2 Married-couples with 2 children at home 

GFMLPF2 Lone female parent with 2 children 

GFMLPM2 Lone male parent with 2 children 

GHWCWC3U Common-law couples with 3 children or more at home 

GHWMWC3U Married-couples with 3 children or more at home 

GFMLPF3U Lone female parent with 3 children or more 

GFMLPM3U Lone male parent with 3 children or more 

GC05FAM Proportion: Children 0 - 5 years in family 

. . . ... 

Table 5.3: Directed Children Variables in Gen5 Data 
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Variables Name Description 

GBANDHOUP proportion of total private Hhds - Band Housing 

GOWNDWLGP proportion of total private Hhds - Owned 

GRENTDWLP proportion of total private Hhds - Rented 

GSINGLEP never married proportions 

GMARRIEDP legally married proportions 

GWINDOWEDP Windowed Proportions 

GDIVORCEP Divorced Proportions 

GSEPARATP Separated Proportions, but still legally married 

GHHDSlPP proportion of household size for 1 person 

GHHDS2P proportion of household size for 2 persons 

GHHDS3P proportion of household size for 3 persons 

. . . ... 

Table 5.4: Correlated Children Variables in GenS Data 

5.2 Data Preprocessing 

Data preprocessing is to smooth the raw data such that the input data be­

comes easy and effective to handle for the modeling by any type of processing. 

For example, fixing the missing value, identifying or removing outliers, resolv­

ing inconsistencies records, and etc. The essential of operations is that any 
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processing taken should service the target of the project. Data preprocess­

ing is a fundamental part of whole modeling. If there is not qualified data 

provided, no one could trust the mining result. Usually data preprocessing 

occupies about 70% workload in a data mining task [16]. Since the missing 

value can be handled by SAS automatically, it is out of our operations. In this 

subsection, we discuss the process of data cleaning on variable creation and 

transformation, outliers detection and exclusion of irrelevant information. 

5.2.1 Variable Creation 

In the project, the variable creation is approached from three aspects. Firstly, 

since different type of families have different kind of children information in 

the demographic data, it is not efficient way to look at every single family 

with the specific children composition. Thus, new variables arc created to 

aggregate children information. For example, the variables of common-law 

couple with one child, married-couple with one child, lone female parent with 

one child, lone male parent with one child are integrated into the variable of 

a family with one child. Secondly, there may be exact transactions occurred 

during a time period. The variable called frequency is created to record such 

shopping behaviors in the transaction data. Finally, a shopping transaction 

may contain two or more items that belong to the same category. It is necessary 

83 



Master Thesis - Huarong Chen -McMaster- Computing and Software 

to add new variables to summarize the total amount of payment and discount 

a purchasing. 

5.2.2 Variable Transformation 

The variable of transaction time is represented in hhmmss format in the trans­

action table. Since the numerical format is not useful to analyze customers' 

shopping behaviors during a time period, we convert the variable into the cat­

egorical format with three values. The following shows the mapping of the 

transformation. 

Old Transaction Time New Transaction Time 

080000 ~ 120000 1dorning 

120000 ~ 170000 Afternoon 

170000 ~ 240000 Evening 

5.2.3 Outliers Detection 

Filtering extreme values and errant data from the data set tends to produce 

better models. In the data preprocessing, we choose extreme percentiles as the 

filtering method for numerical variables, in which observations with interval 

variables in the extreme pth percentiles are excluded. The default values of 

upper and lower thresholds arc specified as 0.5%. For categorical varibles, we 

use minimun frequency as the filtering method, any variables with a rare level 
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that has a count less than the minimum frequency are dropped. For example. 

the the cutoff value of minimun level of catigrorical variables in the transaction 

table is set as 2. Table(5.5) gives the result of filtering process. 

Table Before Filter After Filter Outliers Percentage 

Demographic Data 72153 70678 1475 2.04% 

Transaction Data 2327572 2286001 41571 1.79% 

Table 5.5: Result of Filtering 

5.2.4 Exclusion of Customer Information Data 

The objective of our project is to discover the interrelationship between cus­

tomers buying behaviors and their children composition. The scope of project 

is focused on regular customers, so that some special individuals or groups 

should be excluded. For example, the employees, the VIP customers, and the 

group of company are not under the consideration of the project. In the table 

of customer information, we remove such special customers from the analysis. 

Table (5.6) gives the result of exclusions. 

Table Before Excl. After Excl. Exclusives Percentage 

Customer Data 233875 230902 2973 1.27% 

Table 5.6: Result of Exclusion 
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5.3 Clustering Analysis 

On observations of customers' buying behaviors we find that there exists the 

interrelationship between customers' shopping tastes and their children infor­

mation. For example, families with similar information of children tend to 

rent some videos about kids or buy candy bars. In addition, the tendency of 

the purchasing behaviors arc varied with the different children information. 

Therefore, we like to know the nature grouping of customers in the perspec­

tive of children information before discovering the link between the customers' 

buying behaviors and their children composition. Clustering analysis is ap­

plied for that purpose. In this section, we first determine a good number of 

segmentation of customers. Then we partition customers on the good num­

ber of clusters, in which 0-1 SDP model for weighted K-means clustering is 

applied. In addition, the result is compared with the classical K-means clus­

tering. After that we validate the partition of customers. Finally, we select 

the most suitable segmentation of customers for the further analysis. 

5.3.1 Number of Cluster 

To find the good number k of clusters that match the natural structure of cus­

tomers is the first issue of clustering analysis. In the project, the potentially 

good number of clusters is determined by analyzing two statistic measure-
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mcnts from the agglomerative clustering history, called pseudo F statistic and 

pseudo t 2 statistic [7]. For convenience, they arc denoted as P SF and P S F2 

respectively, calculated by 

T-Pc 

PSF= G-l . 
...E!:L ' 
n-G 

where T denotes the total sum-of-squared Euclidean distance in whole data 

set. Pc denotes the total sum-of-squared Euclidean distance over clusters at 

the Gth level of the hierarchy. n is the number of observations. G represents 

the number of clusters at Gth level of the hierarchy. N K denotes the number of 

observation in cluster CK. BKL denotes WM- WK- WL if cluster CK and CL 

arc merged into the new cluster eM with the total sum-of-squared Euclidean 

distance W M. 

From the definition of two measurements, it is easy to understand that 

the relatively large values implies a good point of separation in PSF. For 

PSF2, a good number of cluster can be found at the first value which 1s 

markedly larger than the previous value and move back by one cluster. 

Table (5.7) shows the values of two measurements fork from 1 to 15. 

Three merging methods, centroid, average links and ward's minimum-variance, 

are adopted during the merging process. By the analysis of PSF and PSF2, 

we conclude that 5 and 12 are the good stopping points indicated by the 

centroid method, the ward method shows that the data set can be clustered 
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Method Centroid Ward Average Link 

NCL PSF PSF2 PSF PSF2 PSF PSF2 

15 327.0 8328.0 5455.0 461.0 1682.0 44.2 

14 296 692 5570 1913 1515 6049 

13 310 251 5688 3472 1164 4802 

12 334 33.8 5826 3385 1265 138 

11 351 277 6017 1059 1297 802 

10 274 999 6202 1859 486 8035 

9 297 435 6470 1438 545 23.6 

8 196 978 6803 3252 611 122 

7 151 463 7077 2888 544 964 

6 175 138 7528 1823 452 967 

5 217 5.9 8045 5269 550 58.3 

4 96.9 573 8089 5156 402 975 

3 121 41.3 8362 7424 363 476 

2 54.3 188 8665 7581 149 575 

1 54.3 8665 149 

Table 5. 7: Hierarchical Clustering History 

into 6 clusters or 15 clusters, the average link method suggests that the possible 

number of partitions is 8, 11 or 15. Because the children information is only 

composite of the age, the size, and the type of households, in other words 

that it can not be partitioned into many groups in reality, we choose 5, 6 and 
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8 as the number of clusters for the further clustering analysis, including the 

segmentation of customers and the validation of clustering. As a consequence, 

the most suitable number for clustering is 8. 

5.3.2 Segmentation 

We usc 0-1 SDP model for weighted K-means clustering (2.14) rather than 

the classical K-means clustering to segment customers in the perspective of 

children information for k = 8 that obtained from the last subsection. The 

reason is that the number of families of a postal region signifies the different 

distribution of the population, which means that it is not a realistic or fair 

way to segment customers by treating each instance of the demographic data 

equally. In the project, the weight attribute of instances is introduced by the 

number of families, which is taken into account while calculating the weighted 

MSSC (1.2) and the weighted center (1.3). 

To compare the performance of the weighted K-means clustering on 

the segmentation of customers, we also partition customers by the classical 

K-mean clustering. The numerical result is summarized in figures and tables. 

Figure (5.2) visualize the distribution of the population after the segmentation 

of customers. Table (5.8) shows the the level of differences between clusters. 
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Segmentation of customers based on 
children infonnation by classical K-Means 

T1 T2 T3 T4 T5 T6 T7 lB 

Cluster 

a) Classical k-means Clustering 

Segmentation of customers based on 
children infonnation by weighted K-Means 

T1 T2 T3 T4 T5 T6 T7 lB 

Cluster 

(b Weighted K-means Clustering 

Figure 5.2. Distribution of the Population 

From Figure (5.2), it is easy to sec that the distribut ion of the popula-

tion provided by the weighted K-Means clustering is more natural than that 

obtained by the classical K-Means clustering. 

On the other hand , we like to test whether clusters are well separated. 

The level of difference is measured by R2 that represents the proportion of 

variance accounted for variables from clusters , and R 2 
/ (1 R 2

) that indicates 

the ratio of between-cluster variance to within-cluster variance. 

Table (5.8) compares the difference of variables that mainly represent 

clusters for both algorithms. It shows that the difference between clusters 

provided by the weighted K-means clustering is more significant than what 

produced by the classical K-means clustering. 
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Classical K-Means Weighted K-Means 

Variable R2 R2 F Value R2 R2 F Value P Value (l-R2) (1-R2) 

GNOCHILD 0.4672 0.8767 7519 0.7084 2.4299 20839.9 < .0001 

G1CHILD 0.4812 0.9275 7954.53 0.5573 1.2591 10798.4 < .0001 

G2CHILD 0.3863 0.6295 5398.59 0.4911 0.9649 8275.43 < .0001 

G3UCHILD 0.1258 0.1439 1234.49 0.2630 0.3568 3060.03 < .0001 

GHHDS1PP 0.4635 0.864 7410.36 0.6353 1.7417 14937.8 < .0001 

GHHDS2PP 0.5632 1.2896 11060.3 0.3215 0.4738 4063.14 < .0001 

GHHDS3PP 0.4059 0.6831 5858.42 0.3641 0.5726 4910.85 < .0001 

GHHDS45PP 0.5676 1.3124 11256.1 0.6940 2.2681 19452.0 < .0001 

GHHDS6_PP 0.1615 0.1927 1652.38 0.2064 0.2600 2230.08 < .0001 

Table 5.8: Difference Between Clusters 

5.4 Consistency Testing 

General speaking, validation of prototype-based clusters is approached by mea-

suring the similarity within a cluster and the difference between clusters. As 

we sec that the difference between clusters has been examined in the last sub-

section. In this subsection, we validate the similarity by testing the consistency 

of some variables that mainly represent clusters. The measurement is based on 

the background knowledge that has been known already. Figure (5.3) shows 

the test, where the level of the confidence limit is set as 70% ""' 80% with 
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p-value less than 0.0001 

... ~ ... -~- .~ . 

a) (b c 
- ·-

d) e (f) 

Figure 5.3 : Correlation of Children Variables 

Now we give some explanations about what Figure(5.3) visualizes. The 

first four sub-figures discover the consistency of the direct ed children variables. 

Figure( a) shows the the negative correlation between the variable of single 

family and the variable of no children. Figure(b) gives the positive correla-

tion between the variable of one household and the variable of no children. 

Figure( c) indicates that the variable of 4 or 5 households is strongly positive 

correlated to the variable of 2 children , the same kind correlation is verified by 

Figure( d) for the variable of 6 or more households and the variable of 3 or more 
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children. Furthermore, Figure( e) shows that the married couples tend to own 

their house, Figure( d) indicates that the single families have less possibilities 

to buy houses. 

Profile of Clusters 

In order to better understand the segmentation of customers, the interpreta­

tion of clusters is needed. In the project, the interpretation is achieved by 

building a decision tree, in which the cluster label is set as the target variable, 

rules derived from the decision tree explain how to assign customers to the cor­

rect segmentation. The main characteristics of each cluster arc summarized 

as follows. 

Tl: The families have no children, and likely to be single family. 

T2: The families seem to have no or two children, more likely to have no 

children. If some families have children at home, their age is centered at 6 

rv14. 

T3: The families have two children at home, their age is centered at 6 "' 14. 

The percentages for children with age 0 "' 5 and 18 "' 24 arc very low. 
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T4: The families may have two children at horne, but very likely to have no 

or one child. Children age is centered at 0 "' 14. 

T5: The families may have one or two children at horne, but more likely to 

have no child. If there are children at horne, their age is centered at 6 rv14. 

T6: The families may have no or one child at horne, but more likely to have 

two children. Their age is centered at 6 "' 14. The percentage for children with 

age 15 "' 24 and having 3 children or more is higher than average. Moreover, 

the percentage for children with age 18 "' 24 is higher than the average. 

T7: The families may have one child at home, but more likely to have no or 

two children. Children age is centered at 0 "' 14. The percentage for children 

with age 18 "' 24 is around the average. 

T8: The families tend to one or two children at home, but very likely to have 

one children. 

5.5 Establish of Models 

Each post code contains an average of fourteen households. If we assign the 

label of the segmentation of customers as the target value into the transaction 
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data to form a new data set, the interrelationship between customers' buying 

behavior and their children composition could be discovered by applying a 

classification method that try to classify a set of instances or called objects 

into predefined classes. It is also known as supervised learning since the class 

label of each instance is known in advance. 

The predictive pattern could be extracted from the data set in two 

steps. In the first step, the data set is partitioned into three components, 

the training set, the test set, and the evaluation set. These components arc 

totally separated, there are no any objects in common. Typically, the training 

set is used to learn classification pattern which in turn to predict the future 

data. The testing set is used to refine the classification scheme, the refinement 

ensures that the classification model is more general and work well on unseen 

data. In the second step, the predictive model is estimated by the evaluation 

set. 

5.5.1 Model Voting 

Since there arc eight possibilities for values of the target, it is hard to distin­

guish between all the different types of output in one single model. Model 

voting provides the solution. The approach is to build a separate model in­

dicating the propensity of customers' shopping behaviors according to their 
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children information. There are many ways to combine the results. The sim­

plest way is to choose the classification rule with the highest propensity if 

more than one rules are agreed at the same time. In addition, model voting 

simplifies a matter of adding or removing one of the propensity models. 

Decision tree is adopted to build the separate model for each cluster. 

It is a good choice when the data mining task is classification of records or 

prediction of a outcome[30]. Moreover, it is primitively motivated by that the 

variables to describe categories of items arc nominal. We built six different 

decision trees for each model, the decision tree is varied by the splitting mea­

surement, Entropy[36] and Gini[30], each measurement allows 2-, 3-, or 4-way 

separation. After the evaluation of models, the one with the best performance 

is selected. 

5.5.2 Estimation of Performance 

The lift chart provides important insights into the models, as well as measur­

ing the performance of models, in which, the horizontal axis represents the 

percentage of the data set, usually it is divided into 10 bins. The vertical axis 

gives the corresponding lift value, if there is no model built for the prediction, 

the lift value is 1, denoted as the base line. Figure(5.4) shows the lift chart 

for each model. 
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(a) Tl (b) T2 (c) T3 

(d) T4 (e) T5 (f) T6 

(g) T7 (h) TS 

Figure 5.4: Lift Chart of Models 

From Figurc(5.4), we take the first two models as examples to sec how to 

examine the performance. Tl model indicates that the top 10% of the video 

customers are 3.2 times more likely to respond than the overall response, the 

performance provided all six decision is not very good, GIN4(Gini measure-
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ment with 4-way slplitting) seems to have more consistent performance than 

other decision trees. T2 model shows that the top 10% of the video customers 

arc 4. 7 times more likely to respond than the overall response, all six decision 

trees performed very well, EN2(Entropy measurement with 2-way splitting) 

provides the best performance among them. By following similar analysis of 

other lift charts, it is easy to sec that all models could provide the reasonably 

good performance. 

5.5.3 Scoring Models 

Finally, the model has to be scored. This actually introduces time-dependency 

into the modeling process because the score data set is more recent than the 

model set. The scoring data set is formed by the transaction data of 2005 

from February to April, which contains 939894 records wrapped into 165894 

customers. In fact, the model is going to be shaped by shifting one month 

repeatedly over the retention period. In such cases, measuring the model's 

accuracy is important in order to know when the model has to be rebuilt. 

During the scoring process, the cutoff value for the probability to clas­

sify objects is set as 75%. Table (5.9) gives the numerical result of the scoring 

data set. 
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Cluster Actual Rate(%) Predictive Rate(%) 

T1 9.28 5.00 

T2 13.23 10.88 

T3 3.70 1.64 

T4 12.16 10.09 

T5 13.97 13.08 

T6 15.61 11.86 

T7 10.66 7.45 

T8 21.40 15.47 

Table 5.9: Performance of the Scoring Data Set 

From Table (5.9), we conclude that the numerical result obtained from the 

scoring data set matches the performance evaluated from the input data set. 

It help us verify that the model is able to make the prediction of the children 

composition of customers according to their buying behaviors. 
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Chapter 6 

Conclusions and Future Work 

In this thesis, we reformulated weighted K-means clustering via semidefinite 

programming where the eigenvalues of involved assignment matrix is either 0 or 

1, so called 0-1 SDP. We also show how the unified framework can be employed 

in k-way normalized cut problem. An approximation method based on the 

singular value decomposition of the coefficient matrix in the projection space 

has been proposed to attack the underlying 0-1 SDP model. It is shown that 

the method can provide 2-approximation to the original problem. Moreover, 

we present a divisive hierarchical algorithm of clustering for k 2: 3, in which 

each binary separation is solved by the refined weighted K-means method 

in one dimensional space. Preliminary experiments illustrate that our new 

algorithms not only enjoys theoretical efficiency, but also performs well in 
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practice. 

In the case study, we have accomplished a project sponsored by MI­

TA CS and Rogers Communicat·ion Inc .. The objective of the project is to build 

a model to predict the children information of customers based on their buying 

behaviors. During the process of the model building, clustering analysis was 

applied as the first step to group customers with similar children information, 

and then the link between the segmentation of customers and their shopping 

behaviors was discovered. 

There are several open questions regarding the new 0-1 SDP model. 

First, we note that there arc several different ways to relax the 0-1 SDP model 

that have not been investigated. For example, we can solve the relaxed model 

(3.1) to find an approximation solution, which will give us a tighter bound that 

the relaxed based on SVD. However, it is unclear how to design a rounding 

procedure to extract a feasible solution and how to estimate the quality of the 

extracted solution. Secondly, the new approximation method require to solve 

the subproblems exactly, which turns out that it is still a challenge to estimate 

the quality of the solution when k 2 3. More study is necessary to address 

these questions. 
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