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Abstract 

The Black-Scholes model introduced by Black and Scholes (1973) and Merton (1973) 

has become synonymous with modern finance theory. It assumes that the dynamics of 

stock prices is well described by exponential Brownian motion, which is not consistent 

with empirical stock price returns, and then the dependence structure of stock price 

returns has been at the center of intense scrutiny for the last 30 or more years. This 

project studies modified fractional Brownian motions and shows that two different 

classes of modified fractional Brownian motions are equivalent to Brownian motion. 

We discuss option pricing under the hypothesis that the underlying asset price process 

satisfies a stochastic differential equation driven by a modified fractional Brownian 

motion. Parameter estimation and simulation methods are given. In particular, we 

investigate the ability of the self-similarity parameter H to explain the discrepancy 

between the Black-Scholes model and the reality of the market. The proposed method 

is applied to a real data set. The empirical results indicate that the model is better 

than the Black-Scholes model. 
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Chapter 1 

Introduction 

1.1 Black-Scholes Model 

We consider a market consisting of one bank account and one stock that pays no div­

idends. Borrowing and short-selling are allowed, the borrowing rate is equal to the 

lending rate, and it is possible to buy and sell any fraction of stock shares. Moreover, 

there exist no transaction costs and stock shares can be bought and sold at the same 

price. The bank account is a riskless security, where one always gets back the invest­

ment, plus interest which can be fixed, or which can vary with time. Shares of stock 

can be bought or sold in the market. Their price is subject to a large number of factors 

and it can go up or go down. The stock is considered a risky asset since we cannot be 

sure if the price will go up or down. The price of the stock at timet, St, is modeled 

as a random variable. 

We are going to consider options on the stock. An option is security which gives its 

holder the right to sell or to buy the underlying asset (for example shares, currency) 
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within a stated period (American option), or at the end of the stated period (European 

option) at a predetermined price. The options providing the right to buy are referred 

to as call options. If a contract gives the right to sell, it is called as put option. 

We consider a standard European call option which gives its holder the right to buy 

at a given time T (expiry date) fixed in the future, a stock for price K (strike) pointed 

out in the contract. If the random price of the stock is described by the process (St), 

then the gain of the holder at timeT equals max(Sr- K, 0). (If Sr > K, the holder 

buys the stock for the price K and sells it for the spot price Sr. In this case, he gains 

Sr - K. If Sr < K, it makes no sense to use the right given to him by the option of 

the contract.) 

Let us start with the basic results of Black and Scholes (1973). Assume that the 

Bank account Sf and the stock price St satisfy the following stochastic differential 

equation 

dSf = rSfdt, sg = 1, (1.1) 

(1.2) 

where r denotes the riskless interest rate which is assumed to be constant, J.L denotes 

the average rate of stock return, a denotes the volatility coefficient which is assumed 

to be a positive constant, and B is the standard Brownian motion. 

The solution to the above equation is given by 

Sf= ert, 

St = So exp { J.Lt + a Bt - ~
2 t} . 

2 
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and thus the discounted stock price 

St e-rt St 

So exp { (J.l - r - ~
2 

) t + a Bt} . 

Let 

Rr = exp { aBt - ~a2T} , Bt = Bt - at 

where a = r~J.L· Define Q by dQ = RrdP. Then by Girsanov's theorem, Q is a 

probability measure equivalent toP. We then have 

A 1 2 

S- - C' Bt--U t 
t - uoe 2 ' 

and Bt is a Brownian motion under Q. Then, it can be shown that the market 

consisting of the geometric Brownian motion and a bank account is complete. 

Consider a European call option in this market with striking price K and terminal 

time T. Then completeness of the market tells us (see Kallianpur and Karandikar, 

1999, Theorem 9.2) that the price Ct of the call option at time t is given by the 

following expression: 

C = E* [e-r(T-t) max(S - K 0)] t t T , ' (1.5) 

where E; is the conditional expectation under the equivalent martingale measure to P 

given all information available at time t. In such a model, one may obtain an explicit 

option price Ct at time t as the following 

where 
log~+ (r + u;) (T- t) 

h(St,t,a) = ~ , 
a T- t 
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and ¢ is the standard normal distribution function: 

<f;(x) = - e-Y 12dy. 1 lx 2 

v'2n -oo 

1.2 Dependence Structure of Stock Returns 

The Black-Scholes model introduced by Black and Scholes (1973) and Merton (1973) 

has become synonymous with modern finance theory. It assumes that the dynam-

ics of stock prices is well described by exponential Brownian motion; that is, stock 

returns behave like a sequence of independently identical distributed (i.i.d.) Gaus-

sian random variables. However, that is not consistent with empirical stock returns, 

and so the dependence structure of stock returns has been at the center of intense 

scrutiny for the last 30 or more years. Early investigations into the dependence struc-

ture of asset returns (e.g., by Fama (1965, 1970)) concluded that successive returns 

could be assumed to be independent. Later on, Lo and Mackinlay (1988) revisited 

this random walk hypothesis; after a careful analysis of market from a 25-year period 

(1962-1987), they found substantial short-range dependence in the data and strongly 

rejected the hypothesis that asset returns are i.i.d. Mandelbrot (1967) and Greene 

and Fielitz (1977) presented the empirical findings of long-term memory in common 

stock returns. Huang and Yang (1995) discussed the fractal structure in multinational 

stock returns. Recently, using the CRSP (Center for Research in Security Prices) daily 

stock return data, Willinger, Taqqe and Teverovsky (1999) revisited the question of 

whether or not actual stock market prices exhibit long-range dependence. They found 

empirical evidence of long-range dependence in stock returns. 

Hurst parameter His commonly used to measure long-range dependence. The frac-
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tional Brownian motion is a typical long-range dependent process with Hurst parame-

ter H. It is a natural generalization of well-known Brownian motion. Correspondingly, 

fractional Gaussian noise generated by fractional Brownian motion is a generalization 

of white Gaussian noise (i.e., a sequence of independently identical distributed Gaus­

sian random variables). 

Since the stock return processes are long-term dependent, it is not reliable for 

us to assume that the underlying asset prices follow geometric Brownian motions for 

option pricing. Based on this fact, we assume that asset price process follows a log 

Gaussian process with long-range dependence. That is, we replace the sequence of 

i.i.d. with a dependent sequence for underlying asset price return model. A natural 

choice of such a dependent process is a fractional Brownian motion. However, the 

fractional Brownian motion admits arbitrage. Therefore, we consider a modification 

of the fractional Brownian motion. 

1.3 Fractional Brownian Motion 

We let {Bt, t E ~} be a standard Brownian motion, then the fractional Brownian 

motion {Bf, t E ~}with self-similarity parameter HE (0, 1) is defined by 

(1.7) 

where 

(1.8) 

and 
1 

CH = { 2~ + fooo ('PH(l + s)- 'PH(s)) 2ds} -
2 

(1.9) 
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The process BH is clearly a zero-mean Gaussian process, and the constant CH chosen 

to normalize the covariance structure neatly: 

The correlation of successive increments is given as 

E[-B!!SB~] = 22H-1- 1 
E[(B~)2] • 

(1.10) 

(1.11) 

When H = ~, the correlation is zero, as expected for the independent increments of 

classical Brownian motion. When H < ~, the correlation is negative. When H > ~, 

the correlation is positive. 

Obviously, the fractional Brownian motion can be defined by a zero-mean Gaussian 

process such that (1.10) holds. Also the fractional Brownian motion path is a fractal 

curve with dimension (2- H). 

It is inconvenient that the fractional Brownian motion does not have a derivative. 

The derivative of smoothed Brownian motion is just the sequence of uncorrelated Gaus-

sian random variables referred to as white Gaussian noise. Similarly, the derivative of 

smoothed fractional Brownian motion will be referred to as fractional Gaussian noise. 

Let BH be a fractional Brownian motion and let 8 > 0. Define 

(1.12) 

and 

(1.13) 

Then we call { ( Bfl)' (8), t E ~} a fractional Gaussian noise. It is a stationary process 

with the autocovariance below 

Cav ( (B{i_.)' (i5), (B{')'(i5)) = ~i528-2 
{ ( ~ + 1) 

28 

+ I~ -f -2 ( ~) 
28

} . {114) 
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Other properties of fractional Brownian motion can be seen in Mandelbrot and Van 

Ness (1968). 

1.4 Arbitrage in Fractional Brownian Motion Mod­

els 

In Lispster and Shiryaev (1989), Lin (1995), Rogers (1997) and Cheridito (2003) it 

is shown for H E (0, ~) U (~, 1), fractional Brownian motion is not a semimartingale. 

Moreover Rogers (1997), Shiryaev (1998), Salopek (1998), Kallianpur and Karandikar 

(1999), Cheridito (2001) presented arbitrage strategies for fractional Brownian motion 

models. 

Rogers (1997) constructed arbitrage for the following model: 

S~ = 1, St = So + a Bfl. (1.15) 

His strategy consists of a combination of buy and hold strategies and works for all 

parameters H E (0, ~) U (~, 1). The drawbacks of this model are that St can become 

negative and the returns are lower for higher stock prices. 

In Shiryaev (1998) only the case HE (~, 1) was treated. For the model: 

S~ = 1, St =So+ J-Lt + aBfl, (1.16) 

one can choose a c > 0 and set 

to obtain a self-financing arbitragy. 

7 



For the model: 

(1.18) 

one can set for all c > 0, 

1r0 (t) = cS0 ( 1- exp {2(tt- r)t + 2aBfl}) 1r(t) = 2c ( exp { (tt- r)t + aBfl}- 1) 

(1.19) 

to obtain a self-financing arbitragy. 

In Kallianpur and Karandikar (1999), for H E (~, 1), the integral with respect to 

fractional Brownian motion is defined in terms of L 1 convergence of Riemann sums. 

Assume that the bank account S2 and the stock price St satisfy the following stochastic 

differential equation 

dS~ = rS~dt, 

dSt = ttStdt + a StdBfl. 

The solution to the above equation is given by 

s~ = ert, 

St = SoeJ.~.t+uBfl. 

Set 

Then 1r is a self-financing arbitrage strategy. 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

Cheridito (2003) constructed strong arbitrage strategies for the following models: 

~p =v(t)+aB[i, HE (o,~)u(~,1) (1.25) 

8 



and 

(1.26) 

1.5 Fractional Black-Scholes Option Pricing Model 

In Black-Scholes model, if the ordinary Brownian motion is replaced by fractional 

Brownian motion, then the model is called fractional Black-Scholes model. That is, 

the stock price satisfies the following equation 

Since BH is not a semimaringale, the usual Ito integral cannot be used. As shown 

in Section 1.4, the models based on fractional Brownian motion and related pathwise 

integral will admit arbitrage. However, some authors such as Hu and 0ksendal (2003) 

and Elliot and van der Hoek (2003) insist on using fractional Black-Scholes model. In 

order to overcome arbitrage, Hu and 0ksendal (2003) and Elliot and van der Hoek 

(2003) defined the stochastic integral based on the Wick product. In Hu and 0ksendal 

( 2003), only the case H E ( ~, 1) was considered. Elliot and van der Hoek ( 2003) 

extend that of Hu and 0ksendal (2003) to the case H E (0, 1). The framework of 

their theory is to take the underlying probability space to be (S'(~), F) the space of 

tempered distributions, with F the Borel field. A probability measure P is given on 

(S'(~), F) by the Bochner-Minlos theorem. Fractional Brownian motion BH is defined 

for H E (~, 1) by the Bochner-Minlos theorem in Hu and 0ksendal (2003), and for 

H E (0, 1) by fractional transforms in Elliot and van der Hoek (2003). The fractional 

Black-Scholes market is shown to be complete in Hu and 0ksendal (2003) and Elliot 

and van der Hoek (2003). Therefore, a fractional Black-Scholes formula for a European 

9 



call with strike price K is given by 

Ct E; [e-r(T-t) max(Sr- K, 0)] 

Bt</>(hH(St, t, 0"))- Ke-r(T-t)</> ( hH(St, t, 0")- O"VT2H- t2H) (1.27) 

where E; is the conditional expectation under the equivalent martingale measure to 

P given all information available at timet, 

and </> is the standard normal distribution function. Similar results have also been 

obtained by Benth (2003), Biagini and 0ksendal (2003) and Biagini et al. (2002). 

10 



Chapter 2 

Modified Fractional Brownian 

Motion and Option Pricing 

2.1 Introduction 

Why do we consider the modified fractional Brownian motion? According to earlier 

literature cited in Section 1.4, arbitrage opportunities exist with fractional Brownian 

motion, and then fractional Brownian motion is an absurd candidate for stock price 

process. On the other hand, as cited in Section 1.5, fractional Black-Scholes market 

has no arbitrage, and therefore a fractional Black-Scholes formula is obtained as the 

Black-Scholes formula. Clearly, the latter is not compatible with the former. More 

recently, Bjork and Hult (2005) resolved this contradiction and concluded that the 

fractional Black-Scholes theory are not economically meaningful by pointing out that 

the definition of the self-financing trading strategies and/or the definition of the value 

of a portfolio used by the authors does not have a reasonable economic interpretation. 

11 



We need to modify fractional Brownian motion. 

2.2 Modified Fractional Brownian Motion 

To avoid arbitrage, we can change the convolution kernel in the Mandelbrot-van Ness 

representation of fractional Brownian motion such that the process is a semimartingale 

with a distribution similar to the one of fractional Brownian motion. Rogers ( 1997) 

constructed such a Gaussian process with the same long-range dependence as fractional 

Brownian motion. We define 

(2.1) 

where cp(O) =f. 0 and cp(t) = 0 for t < 0 such that c~~o) is equivalent to Brownian 

motion, and 

1 

Ccp = {11 

cp2 (1- s)ds + /_
0

00 

(cp(1- s)- cp( -s))2ds} -
2

, (2.2) 

then M'P is called a modified fractional Brownian motion associated with the kernel cp. 

Clearly, M'P is a centered Gaussian process. The increment M'tt8 - Mt is a stationary 

Gaussian process with the variance and the autocovariance below, respectively 

(2.3) 

where 

and 

(2.5) 

12 



where 

1 
/cp(t- s, 8) = 2(Vcp(jt- s- 8j) + Vcp(it- s + 81)- 2Vcp(it- si)). (2.6) 

If !.p E C 2 (R+), l.fJ(O) -=f. 0, l.fJ'(O) = 0 and limt__.oo !.fJ
11 (t)d-H < oo, then M'~' is a Gaussian 

process with the same long-range dependence as the fractional Brownian motion and 

becomes a semimartingale because in this case, M'~' can be expressed as 

M'f {t (fs , ) 
Ccp = l.fJ(O)Bt + Jo -oo !.p (s- v)Bvdv ds. (2.7) 

So, we have the following theorem. 

Theorem 2.2.1. Assume that 1.fJ E C 2 (R+), l.fJ(O) -=f. 0, !.fJ1(0) = 0 and limt__.00 !.fJ
11 (t)d-H < 

oo. Set 

1 /s , 
h(s) = l.fJ(O) -oo !.p (s- v)Bvdv. 

Let the probability measure Q satisfy 

dQ { {T 1 {T } 
dP = exp lo h(s)dBs- 2 lo h2 (s)ds . 

Then c~~o) is a standard Brownian motion under Q for 0 :::; t :::; T. 

Proof. Note that 

(2.8) 

and h( s) has a normal distribution with mean 0 and variance a; where for s 2: 0, 

a; < (l.fJ(0))-2
{

8

00

[1.fJ" (s- v)] 2 jvjdv 

(l.fJ(0))-2 fo00

[1.fJ" (u)] 2 js- ujdu 

< (l.fJ(0))-2 (s fo00

[1.fJ" (u)] 2du + fo00

[1.fJ" (u)] 2udu) 

From limt__.00 !.fJ11 (t)t~-H < oo, there exists a positive number N such that fort 2: N 

13 



for some constant c1 , and then we have that 

and 

Hence, 

for some constant c2 . Since for 8 < 2!2 
and 0 ~ 8 ~ T, 

then there exists 8 > 0 and a positive constant c3 such that 

for each 8 E [0, T]. 

Note that 

14 



From Corollary 7.2.2. and Theorem 7.1.3 (Girsanov) in Kallianpur (1980), we complete 

the proof of this theorem. 

A natural choice of cp is as follows: 

In the special case of c = 0 and H = ~, we recover the well-known Black and Scholes 

model. 

We have shown that this class of processes is equivalent to Brownian motion. How-

ever, Cheridito (2001) pointed out that such modification of fractional Brownian mo-

tion is not enough to ensure that the model is arbitrage-free. By regularising fractional 

Brownian motion, Cheridito gave a class of processes which have a unique equivalent 

martingale measure. If the kernel function cp satisfies the following condition: 

(2.9) 

then the Gaussian process generated by the kernel cp is equivalent to Brownian motion. 

Set for HE (0, 1), a E ~and b > 0, 

{ 

a+ 'PH(b)-at 

cpj/(t) = b ' 

'PH(t), 

t E [O,b] 

t E (-oo,O) U (b,oo). 

The Gaussian process generated by the kernel cpj/ is called as regularized fractional 

Brownian motion. Cheridito (2001) figured out that the functions cpj/(t) satisfy (2.9), 
ab 

and concluded that M'Pli is equivalent to Brownian motion for the case a =/= 0. Let's 

give another proof for this case. 

Theorem 2.2.2. Assume that a =I= 0. Then 

M'P"i/ lot 
----;b,...-- = Bt + h(s)ds 
C a,b'{J~ (0) 0 

'PH 

(2.10) 

15 



where 

Proof. Note that the derivative of ~.pj/(t) is given by 

t E (O,b) 

t E ( -oo, 0) U (b, oo). 

For convenience of composition, we write tpj/ as <p without confusing. 

For 0 ~ t ~ b, 

since 

/_
0

00 

(<p(t- s)- tp( -s)) dEs+ lot <p(t- s)dEs 

/_: (<p(t- s)- tp( -s)) dEs+ I:b (<p(t- s)- tp( -s)) dEs 

+ 1° (<p(t- s)- <p( -s)) dEs+ {t <p(t- s)dEs 
t-b lo 

1-b ( rt ) lt-b (lt rs+b ) 
-oo lo tp'(v-s)dv dEs+ -b s+btp'(v-s)dv+ lo ~.p'(v-s)dv dEs 

+ 1:b (fat tp'(v- s)dv) dEs+ lot (it tp'(v- s)dv) dEs+ tp(O)Et 

lot (/_: <p1 
( V- S )dEs) dv +lot (f_vb-b i.p

1 
( V- s )dEs) dv 

+lot ( 1~~b i.p1 
( v - s )dEs) dv + lot (l:b i.p

1 
( V - s )dEs) dv 

+lot (fov tp'(v-s)dEs)dv+tp(O)Et 

fat (f_v~b tp'(v- s)dEs) dv +lot (1~b tp'(v- s)dEs) dv + tp(O)Et 

fat (f_v~b tp'(v- s)dEs + 1~b tp'(v- s)dEs) dv + tp(O)Et 

<p(O) { Et +loth( s )ds} 

1v 1 tpH(b) -a 
tp(v-s)dEs= b (Es-Es-b), 

v-b 

16 



where his defined by (2.11). 

Fort> b, 

~M'P c t 
'P 

/_
0

00 

(cp(t- 8)- cp( -8)) dEs+ lot cp(t- 8)dEs 

j_: (cp(t- 8)- cp( -8)) dEs+ j_
0

b (cp(t- 8)- cp( -8)) dEs 

+ ft-b (cp(t- 8)- cp( -8)) dEs+ lt cp(t- 8)dEs 
lo t-b 

j_: (fat cp' ( v - 8 )dv) dEs 

+ 1° ( ft cp'(v- 8)dv + {b+s cp'(v- 8)dv) dEs 
-b Jb+s lo 

+ fot-b (1:s cp'(v- 8)dv + cp(b)) dEs+ l~b (1t cp'(v- 8)dv + cp(o)) dEs 

lot (j_: cp'(v- 8)dEs) dv +fob (j_vb-b cp'(v- 8)dEs) dv 

+ 1t (j_ob cp'(v- 8)dEs) dv +fob (1~b cp'(v- 8)dEs) dv 

+ 1t ( fov-b cp' ( V - 8 )dEs) dv + cp(b )Et-b 

+ lt (lv cp'(v- 8)dEs) dv + cp(O)(Et- Et-b) 
t-b t-b 

1t (j_: cp'(v- 8)dEs) dv +fob (j_: cp'(v- 8)dEs) dv 

+ 1t (j_vb-b cp'(v- 8)dE8 ) dv +fob (j_vb-b cp'(v- 8)dEs) dv 

+fob (1~b cp'(v- 8)dEs) dv + cp(b)Et-b 

+ lt (lv cp'(v- 8)dEs) + cp(O)(Et- Et-b) 
t-b t-b 

lot (f_v~b cp' ( V - 8 )dEs) dv 

{b 'PH(b) -a 
+ Jo b ( -Ev-b)dv + 'PH(b)Et-b 

+ lt 'PH(bi -a (Ev - Et-b)dv + a(Et- Et-b) 
t-b 
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fat ( j_v~b 4?1 
( V - S )dBs) dv 

l b 'PH(b) -a 'PH(b) -a lt 
- b Bv-bdv + b Bvdv 

0 t-b 

+'PH(b)Bt-b- ('PH(b)- a)Bt-b + a(Bt- Bt-b) 

lot (j_v~b 'f?1(v- s)dBs) dv 

+ 'PH(bi- a (l~b Bvdv -fob Bv-bdv) + aBt 

aBt +lot (j_v~b 'P'(v- s)dBs) dv 

'PH(b)- a ( {t {t-b 1t ) + b Jo (Bv- Bv-b)dv- Jo Bvdv + b Bv-bdv 

aBt +lot (j_v~b 'P'(v- s)dBs + 'PH(bi- a(Bv- Bv-b)) dv 

'P(O) { Bt +fat h(s)ds}. 

a b( ) a,b Theorem 2.2.3. Let 'PH 0 =I 0. Define Q'PH by 

dQ'P';/ { {T 1 {T } 
dP = exp Jo h(s)dBs- "2 Jo h

2
(s)ds . 

a,b 

Then c M"'~.6 ( ) is a standard Brownian motion under Q'P';/ for 0 ::; t ::; T. 
a,b'PH 0 

"'H 

Proof. By Theorem 2.2.2, 

M'Pc:/ r 
------=b- = Bt + Jo h(s)ds. 
C a,b'f?# (0) 0 'PH 

(2.12) 

Note that h(s) has a normal distribution with mean 0 and variance a; where for s ~ 0, 

"; < 2(<p(OW2 
{ J:~'['P'(s- v}Pdv + ( 'PH(bi- a)\} 

2(<p(OW2 
{ J:~' ( H- D 2 

(s- v) 2<H-~ldv + ( 'PH(bi- a) 2 b} 
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2(10(0W2 { { ( H-D 2 u2H-'dv + ( \OH(bi- a) 2 b} 

2( (0))-2 {(H- ~)2 b2H-2 + ('PH(b)- a)2 b} 
<p 2 2- 2H b 

Since for 6 < 2~4 and s ;::: 0, 

then there exists 6 > 0 and a positive constant c5 such that 

for each s E [0, T]. 

Note that forT< oo, 

From Corollary 7.2.2. and Theorem 7.1.3 (Girsanov) in Kallianpur (1980), we complete 

the proof of this theorem. 
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2.3 Option Pricing with Modified Fractional Brow­

nian Motion 

Let the bank account S2 and the stock price St satisfy the following stochastic differ­

ential equation: 

dS? = rS?dt, 

dSt = f.-lStdt + (J StdM'f, 

(2.13) 

(2.14) 

where r denotes the interest rate (for the sake of simplicity and to be able to compare 

this model with the Black-Scholes model, r is assumed to be constant); f.-l denotes 

the average rate of stock return; CJ denotes the volatility coefficient of stock return 

(assumed to be positive and constant) and S0 is a given constant. 

By Theorem 2.2.1 and 2.2.3, for both <p = <p~ and <p = rp'J/, c;,~o) are equivalent to 

Brownian motion. Therefore, for each case, there exists a unique probability measure 

P* which is equivalent to P such that the discount stock price process { St, 0 ::; t ::; T} 

is a martingale under P*. 

We consider now a standard European call option with the payment function fr = 

max(Sr- K, 0), where Tis the expiration time, and K is the striking price. Then the 

price Ct of the call option at time t is given by 

Ct E; [e-r(T-t)max(Sr- K, 0)] 

St¢(h(St, t, CJ~))- Ke-r<T-t)¢ (h(St, t, CJ~)- CJ~../T- t) 

20 



where E; denotes the conditioned expectation under the risk neutral probability P* 

given all information available at timet, acp = aCcp'P(O), and his defined as in Section 

1.1. 
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Chapter 3 

Parameter Estimation and 

Simulation Methods 

3.1 Parameter Estimation 

Assume that the underlying asset price process St follows the model: 

(3.1) 

where Mt·H is a modified fractional Brownian motion generated by the kernel <p~. We 

focus on estimating parameters f..l, a, H. A discrete approximation of (3.1) is given by 

~log(St) = f..l~t + a~Mt·H. 

Choose c to be a small positive number such as 0.1, 0.01, 0.001 and so on. We need to 

estimate f..l, a and H based on the data set { Sti, i = 1, · · · , n}. 
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Let n be number of annual trading days and N be days in year. Let 

and 

Then 

(3.2) 

where 8 = 1/ N. 

Method 1: R/S Analysis and Moment Estimation. 

H can be estimated by the R/ S analysis. Let 

(3.3) 

and 

(3.4) 

Then 

(3.5) 

We have an estimator of H: 

H _ L~=m+l(log k-~ L~=m+llogi)(log(Qk)- ~ L~=m+llog(Qk)) 
- L~=m+l (log k - n~m L~=m+llogi)2 

(3.6) 

Using method of moments, we have that 

(3.7) 

and 

(3.8) 
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Method II: Maximum Likelihood Estimation. 

Note that the joint distributed density of r 1 , r 2, · · ·, rn is 

f(ri, r2, · · ·, rniJ-l, a, H)= (2na2)-~ I~H~-~ exp {- 2~2 (r- ~1) T ~i/ (r- ~1)}, 
(3.9) 

where 

The log likelihood function is 

n n 2 1 1 ( J-l )T 1 ( J-l ) ln(J-l, a, H)= - 2 log(2n)- 21og(a)- 2log(I~HI)-
2
a 2 r- N1 ~H r- N1 . 

(3.10) 

Solving the likelihood equations 

and 

gives 

and 

Substituting J-l* and a* into the expression of ln, we get 
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Hence, the likelihood estimators of p,, a 2
, H are given by 

( r - ~ 1) T L.[/ ( r - ~ 1) 
n 

and 

fi = argmino<H<l { -ln(H)}. 

Remark: If we replace Mc,H with M~P';/, then for fixed a and b we can derive maximum 

likelihood estimators for parameters p,, a, H. For example, take a= 'PH(b) and b =b. 

3.2 Simulation Methods 

Step 1: Generate the long-range dependent path by simulating the multivariate nor-

mal distribution with the specified covariance matrix. 

Let t0 = 0, t1 = D.t, · · · , ti = il::l.t, · · · , tn = T, n = T / D.t, and b = D.t. Let 

~i = M~,H- M~~, i = 1, · · · n. Then vector (6, · · ·, ~n)T follows n-dimensional normal 

distribution N(O, ~) where ~ = (aii) with aii = l'if(li -jib, b). One can use the 

Cholesky decomposition for ~ to simulate (6, · · ·, ~nf· Note that the Cholesky de-

composition for~ produces a matrix L which is lower triangular satisfying LLT = ~-

Let Z follow N(O, 1). Then LZ follows N(O, ~). 

Step 2: Generate underlying asset price path. 

Direct discretization gives 

(3.11) 
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Step 3: Simulate option price (in term of the risk-neutral measure) by the standard 

Monte Carlo method. 

For example, to estimate a European call option C0 , we simulate ST repeatedly N 

times, then 

A 1 ~ -rT k 
Co= N ~e max(ST- K,O). 

k=l 

To evaluate our numerical method, we compare the difference between the price 

obtained by Black-Sholes formula and that obtained by the proposed method. 

Price a European call. Let expiration time T = 1, riskless interest rate r = 0.1, 

drift J..l = r, volatility a= 0.2. Consider different S0 and K: S0 =50, 60, 70, 80, 90, 100, 

K = 55, 68, 75, 85, 100, 112. The results are shown in Table 3.1 based on 50 replications. 

Table 3.1: Comparison between Black-Scholes Formula and Simulated Option Pricing 

So K B-S H=0.5 JeJ 

50 55 4.091526 4.088164 0.003361736 

60 68 4.113892 4.061760 0.052132364 

70 75 6.625005 6.547680 0.077324623 

80 85 7.914147 7.907729 0.006418274 

90 100 6.948979 6.928210 0.020769289 

100 112 7.365854 7.266830 0.099024434 

In all cases, JeJ < 0.1, so we conclude that our numerical method works well. 
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Chapter 4 

Simulation Studies 

4.1 Option Prices and Parameter H 

We investigate the relationship between option price and parameter H. Consider 

a European call. Let expiration time T = 1, strike price K = 55, S0 = 50, riskless 

interest rate r = 0.1, volatility a = 0.2. Assume that the underlying asset price process 

follows as 

dSt = f.LStdt + aStdMf'H. 

Consider different H for the model. Applying the modified fractional Black-Scholes 

option pricing formula to these cases, we obtain results shown in Table 4.1 and Figure 

4.1. One can see that the option price is decreasing on H. Therefore, the Black­

Scholes option pricing overestimates option in comparison with the modified fractional 

Black-Scholes option pricing with H > 1/2. 
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Table 4.1: Option Prices and Parameter H (50 = 50, K =55) 

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Co 6.02 5.60 5.15 4.64 4.09 3.49 2.84 2.15 1.41 

4.2 Implied Volatility 

A key implication of the Black-Scholes formula is that all standard European options 

on the same underlying asset with the same time-to-expiration should have the same 

implied volatility. Indeed, this idea is so ingrained in practice that options are com­

monly sold not by quoting price but by quoting implied volatility. And it becomes 

a way of testing the validity of the Black-Scholes formula to see if implied volatili­

ties are the same independent of strike price. The relation between implied volatility 

and strike price is termed the implied volatility smile or skew. In practice, uncertainty 

about future volatility and potential jump movements in the underlying asset price are 

probably the most important reasons why option prices have volatility smiles which 

are inconsistent with the Black-Scholes formula. 

Now we consider a European call option pricing where the underlying price process 

satisfies a stochastic differential equation driven by a modified fractional Brownian 

motion. Next we calculate European call option prices based on this model and use it 

to explain the skew and smile effect of the implied volatilities. 

As Belkacem (1997) mentioned, the implied volatility of a given European call 

option price is the volatility that equals the European call option price given by the 

Black-Scholes model to that price. It is a volatility implicitly reflected in the option 
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pnce. In the Black and Scholes model, if we know the option price, the stock price, the 

expiration time and the interest rate, we can extract from formula (1.6) the volatility of 

the stock return implied to the call option. Unfortunately, the Black-Scholes formula 

cannot be inverted analytically to solve for implied volatility. Nonetheless, the formula 

can be quickly solved with numerical techniques to obtain a good approximation. In 

particular, we can implement a Newton-Raphson search, which typically converges in 

about three guesses to a close approximation of the true volatility. 

We consider European calls. Let So= 100, expiration timeT= 1, riskless interest 

rater= 0.1, volatility a= 0.2. Assume that the underlying asset price process follows 

as 

dSt = ~-tStdt + aStdM:·H. 

Calculate the option pricing for different H E (0, 1) with different striking prices, and 

then estimate implied volatilities. The results are shown in Tables 4.2-9 and Figures 

4.2-9. One can see that the implied volatilities display skew and smile which frequently 

occur in the market. 
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Table 4.2: Option Prices and Implied Volatilities for H = 0.1 

K Option Price Implied Volatility 

70 37.300775 0.2979360 

75 33.243189 0.2979360 

80 29.393087 0.2979356 

85 25.786693 0.2979358 

90 22.452038 0.2979357 

95 19.407378 0.2979359 

100 16.660891 0.2979359 

105 14.211405 0.2979361 

110 12.049802 0.2979360 

115 10.160765 0.2979361 

120 8.524599 0.2979359 

125 7.118926 0.2979359 

130 5.920138 0.2979359 

135 4.904562 0.2979360 

140 4.049334 0.2979360 
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Table 4.3: Option Prices and Implied Volatilities for H = 0.2 

K Option Price Implied Volatility 

70 37.111441 0.2766129 

75 32.964320 0.2766128 

80 29.012791 0.2766126 

85 25.300566 0.2766131 

90 21.863759 0.2766127 

95 18.727993 0.2766127 

100 15.907170 0.2766127 

105 13.403718 0.2766130 

110 11.209961 0.2766131 

115 9.310133 0.2766128 

120 7.682635 0.2766130 

125 6.302231 0.2766133 

130 5.141961 0.2766132 

135 4.174698 0.2766132 

140 3.374299 0.2766131 

32 



Table 4.4: Option Prices and Implied Volatilities for H = 0.3 

K Option Price Implied Volatility 

70 36.945586 0.2533419 

75 32.704523 0.2533422 

80 28.640852 0.2533425 

85 24.806842 0.2533419 

90 21.249033 0.2533421 

95 18.003324 0.2533423 

100 15.092076 0.2533421 

105 12.523357 0.2533424 

110 10.292009 0.2533422 

115 8.381932 0.2533423 

120 6.768976 0.2533419 

125 5.423889 0.2533423 

130 4.314982 0.2533422 

135 3.410289 0.2533420 

140 2.679168 0.2533424 
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Table 4.5: Option Prices and Implied Volatilities for H = 0.4 

K Option Price Implied Volatility 

70 36.812889 0.2278669 

75 32.477690 0.2278673 

80 28.292852 0.2278672 

85 24.319395 0.2278669 

90 20.616975 0.2278674 

95 17.236037 0.2278672 

100 14.211927 0.2278670 

105 11.561973 0.2278673 

110 9.285587 0.2278672 

115 7.366693 0.2278671 

120 5.777533 0.2278668 

125 4.482882 0.2278673 

130 3.443987 0.2278672 

135 2.621777 0.2278668 

140 1.979207 0.2278670 
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Table 4.6: Option Prices and Implied Volatilities for H = 0.6 

K Option Price Implied Volatility 

70 36.6760740 0.1696962 

75 32.1905858 0.1696965 

80 27.7704161 0.1696963 

85 23.4792997 0.1696961 

90 19.4039654 0.1696961 

95 15.6416437 0.1696966 

100 12.2813752 0.1696961 

105 9.3862020 0.1696965 

110 6.9824860 0.1696964 

115 5.0588194 0.1696961 

120 3.5729944 0.1696963 

125 2.4632686 0.1696963 

130 1.6600401 0.1696964 

135 1.0952789 0.1696962 

140 0.7086218 0.1696964 
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Table 4.7: Option Prices and Implied Volatilities for H = 0.7 

K Option Price Implied Volatility 

70 36.6626118 0.13709611 

75 32.1450046 0.13709601 

80 27.6490242 0.13709577 

85 23.2164529 0.13709569 

90 18.9283047 0.13709603 

95 14.9052048 0.13709603 

100 11.2860953 0.13709607 

105 8.1914953 0.13709579 

110 5.6894055 0.13709608 

115 3.7802338 0.13709640 

120 2.4047357 0.13709585 

125 1.4669616 0.13709582 

130 0.8600349 0.03079045 

135 0.4857826 0.13709618 

140 0.2650602 0.13709606 
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Table 4.8: Option Prices and Implied Volatilities for H = 0.8 

K Option Price Implied Volatility 

70 36.66138757 0.10237136 

75 32.13734517 0.10237120 

80 27.61489821 0.10237156 

85 23.10351633 0.10237092 

90 18.64173193 0.05621663 

95 14.33265455 0.10237135 

100 10.36329874 0.10237095 

105 6.96370865 0.10237131 

110 4.31090471 0.10237150 

115 2.44684514 0.10237158 

120 1.27195712 0.10237129 

125 0.60662912 0.10237121 

130 0.26641528 0.02594019 

135 0.10826449 0.10237125 

140 0.04093211 0.10237120 

37 



Table 4.9: Option Prices and Implied Volatilities for H = 0.9 

K Option Price Implied Volatility 

70 3.666138e+01 0.07627822 

75 3.213719e+01 0.06495548 

80 2. 761301e+01 0.06474575 

85 2.308885e+01 0.06474574 

90 1.856583e+01 0.06205170 

95 1.406016e+01 0.06474568 

100 9.679152e+00 0.06474574 

105 5. 762641e+00 0.06474596 

110 2.817184e+00 0.06474565 

115 1.088338e+00 0.06474552 

120 3.261592e-01 0.06474572 

125 7.5 70083e-02 0.02438365 

130 1.373425e-02 0.02383378 

135 1.977474e-03 0.06474565 

140 2. 299734e-04 0.06474566 
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Figure 4.2: Implied Volatilities when H = 0.1 
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Figure 4.6: Implied Volatilities when H = 0.6 
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We consider the following four call options studied by Belkacem (1997): 

(1) Some stock option, H = 0.8, r = 8%, a = 15%, S0 = 70, T = 1, K = 

60,65,68,70,73, 75,77,80,84,88; 

(2) NYSE index option, H = 0. 75, r = 7%, a = 46%, S0 

K = 80,85,90,95,100,105,110,115,118,120; 

100, T = 0.5, 

(3) CAC40 index option, H = 0.85, r = 8%, a = 52%, S0 = 100, T = 0.25, 

K = 85,90,95,100,105,108,110,113,115,118; 

(4) CAC40 index option, H = 0.85, r = 8%, a = 52%, S0 = 100, T = 0.5, 

K = 85,90,95,100,105,108,110,113,115,118. 

The results are shown in Tables 4.10-13 and Figures 10-13. 
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Table 4.10: Option Prices and Implied Volatilities for Some Stock 

K Option Price Implied Volatility 

60 14.61454943 0.07677805 

65 10.03885711 0.02633231 

68 7.40674245 0.07677850 

70 5.77859859 0.07677857 

73 3.66265356 0.07677847 

75 2.53685076 0.07677874 

77 1.66292636 0.07677833 

80 0.79212830 0.07677841 

84 0.24002439 0.02173405 

88 0.05782948 0.07677834 
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Table 4.11: Option Prices and Implied Volatilities for NYSE Index 

K Option Price Implied Volatility 

80 23.493111 0.4470354 

85 19.358743 0.3825094 

90 15.604741 0.3157222 

95 12.299976 0.2334549 

100 9.481735 0.1346165 

105 7.152723 0.2185467 

110 5.285239 0.2615025 

115 3.829786 0.2839489 

118 3.128973 0.2869092 

120 2.724994 0.2811354 
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Table 4.12: Option Prices and Implied Volatilities for CAC40 Index (T=0.25) 

K Option Price Implied Volatility 

85 16.8792990 0.518257930 

90 12.4232598 0.388540804 

95 8.5128191 0.215600834 

100 5.3777236 0.006350021 

105 3.1144201 0.345782029 

108 2.1507616 0.395300951 

110 1.6510519 0.422045823 

113 1.0820129 0.454842889 

115 0.8026180 0.024694220 

118 0.5002408 0.492970153 
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Table 4.13: Option Prices and Implied Volatilities for CAC40 Index(T=0.5) 

K Option Price Implied Volatility 

85 18.954260 0.34978663 

90 14.866740 0.27173000 

95 11.250754 0.16944628 

100 8.201666 0.13893899 

105 5.757023 0.22565800 

108 4.572831 0.25476486 

110 3.893410 0.26969079 

113 3.026122 0.28659331 

115 2.540330 0.03036273 

118 1.934125 0.04095779 
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Figure 4.10: Implied Volatilities for Some Stock Option 
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Chapter 5 

Application to Stock Study 

To assess the performance of the modified fractional Black-Scholes formula, we compare 

the option pricing for the modified fractional model with the Black-Scholes formula 

using stock data. 

5.1 Data 

The stock and option data are from http:/ /quote.yahoo.com. The data consist of 

historical prices of the AMZN stock from Feb. 08, 2005 to Feb. 9, 2006, shown in 

Figure 5.1, and the call options on the stock on Feb. 9, 2006, shown in Table 5.1. 
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2006 
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Table 5.1: AMZN Call Options on Feb. 9, 2006 

Strike 30 32.5 35 37.5 40 42.5 45 47.5 

Matured on Feb. 17, 2006 - - 3.1 1 0.15 0.05 0.05 0.05 

Matured on Mar. 17, 2006 8.9 - 3.8 1.9 0.75 0.2 0.1 0.05 

Matured on Apr. 21, 2006 9.3 5.6 4.2 2.5 1.34 0.8 0.3 0.1 

5.2 Examination of Black-Scholes Assumption 

Let r 1 , r 2 , · · · , r n be defined as in Section 3.1. Then, under Black-Scholes assumption, 

r 1, r 2 , · · ·, rn are i.i.d. In this section, our goal is to test H0 : r 1 , r 2 , · · ·, rn are i.i.d. 

The time series plot of AMZN stock return and its ACF are shown in Figures 5.2-3, 

respectively. For the AMZN stock return sequence, using Box-Pierce test, we get that 

X-squared = 7.69 and p-value = 0.005553. From the figure and testing results, one can 

see that we reject the hypothesis H0 . We conclude that the Black-Scholes assumption 

doesn't hold for the AMZN stock price process. 

5.3 Comparison with Black-Scholes Formula 

To assess the proposed models and methods, we do comparison the modified fractional 

Black-Scholes formula with Black-Scholes formula. To estimate options, we first need 

to estimate parameters. Using the method presented in Section 3, we get 

H = 0.67, a-= 0.58 
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Figure 5.2: Time Series Plot of AMZN Stock Return, from Feb. 08, 2005 to Feb. 09, 

2006 
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Figure 5.3: ACF of AMZN Stock Return, from Feb. 08, 2005 to Feb. 09, 2006 
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based on the stock data. Then, using the methods presented in Section 2.3, we consider 

pricing AMZN stock call options on Feb. 9, 2006. The option prices computed by 

Black-Scholes formula and the modified fractional Black-Scholes formula are presented 

in Tables 5.2-4, respectively. Figures 5.4-6 show actual prices, Black-Scholes' pricing 

and modified fractional Black-Sholes pricing for AMZN stock call options. From the 

figures, one can see that the modified fractional option pricing model is better than 

the Black-Scholes model based on our studies. 

Table 5.2: AMZN Stock Call Options on Feb. 9, 2006 (Matured on Feb. 17, 2006) 

Strike 30 32.5 35 37.5 40 42.5 45 47.5 

Price - - 3.1 1 0.15 0.05 0.05 0.05 

B-S - - 3.14 1.20 0.25 0.03 0.00 0.00 

H=0.67 - - 3.08 0.97 0.10 0.03 0.00 0.00 

Table 5.3: AMZN Stock Call Options on Feb. 9, 2006 (Matured on Mar. 17, 2006) 

Strike 30 32.5 35 37.5 40 42.5 45 47.5 

Price 8.9 - 3.8 1.9 0.75 0.2 0.1 0.05 

B-S 8.32 - 3.93 2.32 1.22 0.57 0.24 0.09 

H=0.67 8.29 - 3.60 1.84 0.75 0.24 0.06 0.01 
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Table 5.4: AMZN Stock Call Options on Feb. 9, 2006 (Matured on Apr. 21, 2006) 

Strike 30 32.5 35 37.5 40 42.5 45 47.5 

Price 9.3 5.6 4.2 2.5 1.34 0.8 0.3 0.1 

B-S 8.75 6.61 4.76 3.25 2.11 1.30 0.77 0.44 

H=0.67 8.60 6.29 4.23 2.57 1.41 0.70 0.31 0.13 
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Figure 5.4: AMZN Stock Call Option Pricing on Feb. 9, 2006 (Matured on 17 /02/06) 

63 



0 
T""" 

co 

!::.. 
C\1 • 
0 

30 35 

!::.. 

• 
40 

Strike 

!::.. • 

+ Actual 
t::.. 8-S 
• H=0.67 

45 

Figure 5.5: AMZN Stock Call Option Pricing on Feb. 9, 2006 (Matured on 17 /03/06) 

64 



0 ...... 

+ 
i 

co 

6. + Actual ... 
(0 6. 8-S 

+ ... H=0.67 
m 
(.) 6. 

v • 
6. 

• 
C\1 6. 

• 6. 

i 6. 

• 6. 
0 .. 

30 35 40 45 

Strike 

Figure 5.6: AMZN Stock Call Option Pricing on Feb. 9, 2006 (Matured on 21/04/06) 
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Chapter 6 

Conclusion 

This study provides an extension of the classical Black and Scholes model for option 

pricing. We have studied modifications of fractional Brownian motion and option 

pricing under the hypothesis that the underlying asset price satisfies a stochastic dif­

ferential equation driven by a modified fractional Brownian motion with long-term 

dependence. We have obtained modified pricing formula for European call option 

and an estimation of the implied volatility due to a misspecification of the underly­

ing stock's return that fits well empirical results obtained on the market. We have 

investigated in particular the ability of the self-similarity parameter H to explain the 

discrepancy between the Black-Scholes model and the reality of the market. We con­

clude that the modified fractional model is better than the Black-Scholes model for 

option pricing based on our study. 
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