DEVELOPING METHODOLOGIES FOR THE SYNTHESIS OF HETEROCYCLIC LIBRARIES: PARALLEL SYNTHESIS OF FLAVONES, MALEIMIDES, α, β-UNSATURATED- $\boldsymbol{\gamma}$-BUTYROLACTAMS AND ISOQUINOLINES.

By
EMELIA AWUAH, Hons. B.Sc.

A Thesis

Submitted to School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

McMaster University
(C) Copyright by Emelia Awuah, 2011. Isoquinolines.

AUTHOR: Emelia Awuah, Hons. B.Sc. (University of Cape Coast, Ghana)

SUPERVISOR: Dr. Alfredo Capretta

NUMBER OF PAGES: XIII, 190

Abstract

Parallel synthesis technologies that allow for rapid generation of compound collections that can be screened and quickly provide useful structure-activity relationships are needed to probe and understand biological systems. Synthetic strategies that are robust and allow the rapid access to a library of flavones, maleimides, α, β -unsaturated- γ-butyrolactams and isoquinolines are described.

A $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ catalyst system incorporating the $1,3,5,7$-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (PA-Ph) ligand permits the generation of a library of substituted flavones via sequential microwave-assisted copper free Sonogashira and carbonylation annulation reactions under mild conditions. Application of this protocol is described for several aryl iodides and bromides with TMS-acetylenes allowing for the "one pot" synthesis of a diverse collection of substituted flavones.

Synthetic strategies that led to the generation of libraries of bisaryl-maleimides, anilinoaryl-maleimides and bisanilino-maleimides as well as bisaryl substituted α, β -unsaturated- γ-butyrolactams are described. The reaction protocol also takes advantage of Pd-cross-coupling reactions using the catalytic system mentioned above as well as Michael addition / elimination reactions. Reaction conditions that allow for the control necessary for the synthesis of a library of symmetrical and non-symmetrical 3,4disubstituted maleimides from N -(p-methoxybenzyl)-3,4-dibromomaleimide as well as symmetrical and non-symmetrical 3,4 -disubstituted α, β-unsaturated- γ-butyrolactams from 3,4-dibromo-1-(4-methoxybenzyl)-1H-pyrrol-2(5H)-one are presented. Protocol for
facile deprotection of the p-methoxybenzyl group to generate the final products of both 3,4-disubstituted maleimides and 3,4-substituted α, β-unsaturated- γ-butyrolactams is also described.

A robust parallel synthetic strategy that makes use of simple, cheap and readily available precursors is described for the preparation of a library of substituted isoquinolines. The approach involves microwave-assisted Pictet-Spengler and BischlerNapieralski cyclizations. In addition, a Pd-catalyzed cross-coupling reaction protocol using the $\mathrm{Pd} / \mathrm{PA}-\mathrm{Ph}$ provides access to a diverse collection of C 1 and C 4 substituted isoquinolines via the activation of an isoquinolin- $1(2 \mathrm{H})$-one scaffold.

A protocol for the Pd- catalyzed α-arylation of active methylene compounds using the palladium complex of 1,3,5,7-tetramethyl-6-(isobutyl)-2,4,8-trioxa-6-phosphaadamantane ($\mathrm{PA}-\mathrm{iBu}$) to generate products that served as precursors for a diverse collection of substituted isoquinolines is also described.
Chapter 1: Introduction 1
1.1 Chemical Library Synthesis 1
1.1.1 Background.1
1.1.2 Objectives 5
1.1.3 Literature Review 5
1.1.3.1 Palladium-Catalyzed Cross-Coupling Reactions 5
1.1.3.2 Mechanistic Studies of Palladium (0) Catalyzed Reactions 7
1.1.3.3 The use of Phosphine Ligands in Pd-catalyzed reactions. 9
1.1.3.4 Use of Pd-catalyzed Cross-Coupling in Library Synthesis 14
1.1.4 Microwave-Assisted Reactions 17
1.1.4.1 Microwave-Assisted Synthesis of Heterocyclic Compounds 18
1.1.4.2 Use of Microwave-Assisted Chemistry and Pd-Catalyzed Cross-Coupling in the Preparation of Heterocyclic Libraries 20
1.1.5 Flavones, Isoquinolines and Maleimides 21
1.1.5.1 Flavones 21
1.1.5.2 Maleimides and α, β-Unsaturated- γ-Butyrolactams 23
1.1.5.3 Isoquinolines 27
1.1.6 References 34
Chapter 2 45
2.1.1 Access to Flavones via a Microwave-assisted, "One Pot" Sonogashira
Carbonylation-Annulation Reaction 45
2.1.2 Abstract 45
2.1.3 Introduction 45
2.1.4 Conclusion 52
2.1.5 Experimental 52
2.1.6 References 62
Chapter 3 65
3.1.1 Development of Methods for the Synthesis of Libraries of Substituted 65
Maleimides and α, β-Unsaturated- $\boldsymbol{\gamma}$-Butyrolactams. 65
3.1.2 Abstract 65
3.1.3 Introduction 66
3.1.4 Results and Discussion 67
3.1.5 Conclusions 77
3.1.6 Experimental 77
3.1.7 References 126
Chapter 4 130
4.1.1 Strategies and Synthetic Methods Directed Towards the Preparation of Libraries of Substituted Isoquinolines. 130
4.1.2 Abstract 130
4.1.3 Introduction 131
4.1.4 Results and Discussion 132
4.1.5 Conclusions 141
4.1.6 Experimental Section. 142
4.1.7 References 166
Chapter 5 170
5.1.1 Palladium-Catalyzed Arylation of "active methylene" Compounds as Precursors for the Synthesis of Substituted Isoquinolines 170
5.1.2 Introduction 170
5.1.3 Results and Discussions 172
5.1.4 Experimental 177
5.1.5 References. 183
Chapter 6 184
6.1.1 General Conclusion 184
6.1.2 Future Work 187
6.1.3 References 190
List of Figures
Figure 1.1. A generalized Pd cross-coupling catalytic cycle. 9
Figure 1.2. Examples of bulky electron rich phosphine ligands 10
Figure 1.3. Selected members of PA-R ligand libraries 12
Figure 1.4. Biologically active Maleimide and α, β-unsaturated- ψ-butyrolactam analogues23
Figure 1.5. Some examples of biologically active isoquinolines 30
Figure 1.6. Isoquinoline with antitumor activity. 31
Figure 1.7. Simple isoquinoline as inhibitors of human monoamine oxidases A and B. 31
Figure 1.8. 1,4-substituted acylisoquinoline as GFAT inhibitors 32
Figure 3.1: Systems containing maleimide and $\underline{\alpha}, \underline{\beta}$-unsaturated- $\underline{\chi}$-butyrolactam substructures 67
Figure 3.2. p-Methoxybenzylamine protected 3,4-diamino maleimides 73
Figure 3.3. Trapping of the p-Methoxybenzyl Cation 73
Figure 4.1. Approaches to Substituted Isoquinolines 131
List of Schemes
Scheme 1.1. Kwon et al. synthetic strategy to generate 29.000 discrete compounds comprising of 10 discrete polycyclic skeletons using DOS 2
Scheme 1.2. A general scheme for Diverted Total Synthesis 3
Scheme 1.3. Specific examples of Pd catalyzed reactions. 6
Scheme 1.4. Oxidative addition of a molecule of $\mathrm{X}-\mathrm{Y}$ to $\mathrm{Pd}(0)$. 7
Scheme 1.5. Transmetallation of Y-P-X. 8
Scheme 1.6. Reductive elimination of Y-Pd(II)-R. 8
Scheme 1.7. Derivatization of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantane (PA-H) into structurally diverse trisubstituted phosphine ligands. 12
Scheme 1.9. Suzuki coupling between 1-bromododecane and phenylboronic acid. 14
Scheme 1.10. Generation of various substituted isoquinolines via palladium catalyzed Sonogashira reaction by Larock et al. 15
Scheme 1.11. Synthesis of a library of 3,4,5-trisubstitutedisoxazoles from 4- iodoisoxazoles via palladium cross-coupling reactions by Larock et al. 15
Scheme 1.12. A diverse library of 3-substituted-2-pyrazolines via palladium cross- coupling reactions by Grimm et al. 16
Scheme 1.13. Intramolecular microwave-assisted Heck reaction. 18
Scheme 1.14. Microwave-assisted nickel catalyzed cyclotrimerization 18
Scheme 1.15. Microwave-assisted synthesis of flavones. 19
Scheme 1.16. Microwave assisted coordination reaction of ruthenium and ligand 51 and
52. 20
Scheme 1.17. Pd catalyzed flavone synthesis from o-iodophenol and alkyne 22
Scheme 1.18. Processes involved in flavone and aurone formation 22
Scheme 1.19. Bisindole maleimide synthesis by Faul et. al 24
Scheme 1.20. Synthesis of maleimide analogues by Lewis acid mediated annulation of isonitrile and allenic esters 25
Scheme 1.21. Synthesis of non-symmetrical maleimide by Dubernet et al 25
Scheme 1.22. Synthesis of non-symmetrical maleimide via triorganoindium reagents 26
Scheme 1.23. General mechanism for Pictet-Spengler 27
Scheme 1.24. General mechanism for Bischler-Napieralski. 28
Scheme 1.25. Microwave assisted Pictet-Spengler reaction by Chu et al. 29
Scheme 1.26. Microwave assisted Pictet-Spengler reaction by Besson et al. 29
Scheme 1.27. Microwave Bischler-Napieralski reaction 29
Scheme 1.28. GFAT activity in the hexosamine pathway 32
Scheme 4.1. Synthesis of Isoquinolines Utilizing a Microwave-assisted Pictet-Spengler reaction. 134
Scheme 4.2. Synthesis of Isoquinolines Utilizing a Microwave-assisted Bischler- Napieralski reaction. 137
Scheme 4.3. Microwave-assisted Bischler-Napieralski reactions with aryl acetic acid derivatives 137
Scheme 4.4: Synthetic route to 6,7-Dimethoxyisoquinolone. 139
Scheme 4.5: Access to C4-substituted Isoquinolones. 139
Scheme 4.6. C1-derivatization of 6,7-dimethoxy-4-phenylisoquinolin-1 2 H$)$-one. 140
Scheme 4.7. C 1 and C 4 derivatization of 4-bromo-6,7-dimethoxyisoquinolin-1(2H)-one. 140
Scheme 4.8. C1 Derivatization of 6,7-dimethoxy-1-oxo-1,2-dihydroisoquinoline-4- carbonitrile 141
Scheme 5.1. General mechanism for palladium catalyzed arylation of ethyl cyanoacetate.170
Scheme 5.2. Synthesis of Isoquinolines using Pd catalyzed arylated of active methylene171
Scheme 5.3. Bischler-Napieralski cyclization of ethyl 3-amino-2-(3,4- dimethoxyphenyl)propanoate 175
Scheme 5.4. Pd-Catalyzed arylation of ketone products. 176
Scheme 6.1. Immobilization of the PA-H system onto a solid phase. 189

List of Tables

Table 2.1. Optimization of Pd-catalyzed carbonylation-annulation conditions 47
Table 2.2. Flavones via a Pd-catalyzed carbonylation/cyclization reactions 48
Table 2.3. Microwave-assisted Sonogashira reactions 50
Table 2.4. Flavones via a microwave-assisted Sonogashira/carbonylation/cyclization reaction 51
Table 3.1. Optimization of reaction parameters for the arylation of a maleimide scaffold via a Heck reaction 68
Table 3.2. Optimization of reaction parameters for monoarylated-maleimide synthesis via
Suzuki chemistry 69
Table 3.3. Nonsymmetrical bisaryl maleimides via Suzuki chemistry 70
Table 3.4. Symmetrical bisaryl maleimides via Suzuki chemistry 71
Table 3.5. 3-Amino-4-aryl substituted maleimides 72
Table 3.6. Nonsymmetrical bisamino maleimides. 74
Table 3.7. Optimization of reaction parameters for the synthesis of substituted α, β - unsaturated- γ-butyrolactams 75
Table 3.8. 3,4-Diaryl α, β-unsaturated- γ-butyrolactams 76Table 4.1. Optimization of reaction parameters for the Microwave-assisted Pictet-
Spengler Reaction 133
Table 4.2. Optimization of reaction parameters for the Microwave-assisted Bischler-
Napieralski reaction 136
Table 5.1. Optimization of Pd-catalyzed arylation of ethyl cyanoacetate. 173
Table 5.2. Pd-catalyzed arylation of ethyl cyanoacetate and malononitrile 174

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Chapter 1: Introduction

1.1 Chemical Library Synthesis.

1.1.1 Background.

Traditionally, natural products have served as the main source for pharmacologically active molecules. ${ }^{1}$ The pharmacological properties of compounds derived from Nature and their derivatives are especially useful as medicinal agents. Their structures and substructures have been selected by evolution to render them the most optimized for use as leads in the drug discovery process. ${ }^{2}$ Issues related to the availability, isolation, identification, de-replication, patentability and synthesis of natural products, however, have led pharmaceutical companies to look for alternate sources for their lead generation programs. In the mid-1990s, technological advances in robotics and liquid handling facilitated the utilization of combinatorial chemistry and high throughput screening as a new means for the discovery of biologically active agents. Large numbers of compounds could be prepared in a combinatorial fashion ${ }^{3}$ then rapidly screened to provide leads for the drug discovery pipeline. Over time, however, the approach was shown to be less than successful ${ }^{4}$ due in part to the inability of combinatorial chemistry to provide the diverse architectures (available with natural products) needed for effective biological activity. Methods for lead discovery and the place of library synthesis in medicinal chemistry needed to be re-evaluated.

Over the past two decades, both industrial and academic researchers have been active in the development of methods suitable for the generation of small molecule libraries that allow for either diverse or focused compound collections. A number of strategies have been described. As the name implies, methods based on DiversityOriented Synthesis (DOS) ${ }^{5-7}$ strive to generate libraries that can sample large volumes of chemical space by maximizing structural diversity and stereochemical complexity. These synthetic protocols can involve standard solution-phase methodologies, solid-phase methodologies or a combination of both protocols. For example, Kwon et al. generated

Scheme 1.1. Kwon et al. synthetic strategy to generate 29.000 discrete compounds comprising of 10 discrete polycyclic skeletons using DOS.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

29,400 discrete compounds comprising 10 discrete polycyclic skeletons. ${ }^{8}$ Their synthetic strategy involved using several dienes and dienophiles in a one-bead-one-stock solution technology that builds products having a central skeleton with between two and four rings and up to six stereocenters via consecutive Diels-Alder cycloaddition reactions. (Scheme 1.1). Alternatively, Diverted Total Synthesis (DTS) describes a process wherein an advanced intermediate (B) in the total synthesis of a natural product (bearing the features necessary for activity) is chosen and synthetically modified to generate several analogues. ${ }^{9}$ (Scheme 1.2). This process of library synthesis allows the introduction of structural variations which permit "molecular editing" of unnecessary structural complexity.

Scheme 1.2. A general scheme for Diverted Total Synthesis.

In some instances, DTS has resulted in the generation of simple analogues having higher activity than the parent natural product itself. For example, Danishevsky et al. used DTS in the synthesis of a small eight-membered compound library based on the natural
product migrastatin, an anti-angiogenesis agent. ${ }^{10}$ During their total synthesis Danishevsky et al. chose an advanced intermediate and carried out synthetic modifications to this intermediate to generate eight simplified compounds in only two steps. These simplified analogues were more potent than the parent migrastatin. Strategies that combine in silico and synthetic approaches are important in the drug discovery process and have been demonstrated to accelerate the rate of discovery and reduce the need for expensive laboratory work and clinical trials. ${ }^{11}$ In silico approaches can be used to prioritize compounds that are more likely to be active at a particular target. Synthetic efforts can then be undertaken to generate libraries of compounds based on the in silico leads in an effort to maximize diversity and uncover new leads.

In contrast, libraries based on Target-Oriented Synthesis (TOS) approaches aim to prepare more focused libraries. ${ }^{5}$ This approach has been utilized to great effect in the study of structure-activity relationships (SAR) in the pharmaceutical industry. The preparation of libraries of organic molecules centered on a lead core-structure allows for rapid identification of key structural features that are required in a target molecule for a specific biological activity.

The TOS library approach has been used in the field of chemical biology. Chemical biology has demonstrated itself to be a powerful method for the study of living systems ${ }^{12}$ and the utilization of compound collections represents an important tool in the field. Using small organic molecules as perturbants of biological function, researchers can modulate activity within cells and, ultimately, unravel and control complex biological
processes. The rapid expansion of chemical biology has driven the need for novel, convenient synthetic methods for the production of unique, small organic molecule probes, yet developing and implementing protocols for library preparation remains a critical challenge. These approaches need to provide rapid and efficient access to the target molecule and need to be robust so as to allow for the inclusion of a variety of functionality into the final focused compound collection.

1.1.2 Objectives

In the last few decades, palladium-catalyzed cross-coupling reactions have been shown to be powerful, versatile reactions used routinely by synthetic chemists for $\mathrm{C}-\mathrm{C}^{13-}$ ${ }^{16}$ and C-heteroatom ${ }^{17,18}$ bond formation. Concurrently, the use of microwave irradiation to facilitate chemical reactions has also been used to great effect in the synthetic organic community. ${ }^{19}$ The present thesis seeks to determine the utility and scope of applicability of Pd cross-coupling (specifically those reactions based on a catalytic system that includes ligands prepared from a 1,3,5,7-tetramethyl-2,4,8-triox-6-phosphaadamantane (PA-H) scaffold) and microwave chemistry in the preparation of heterocyclic compound libraries. Synthetic protocols for the facile preparation of substituted flavones, maleimides and isoquinolines will be presented.

1.1.3 Literature Review

1.1.3.1 Palladium-Catalyzed Cross-Coupling Reactions

Broadly defined as the formation of a bond between two reaction partners involving metal catalysis, coupling reactions have been described in the chemical literature as far back as the mid- $19^{\text {th }}$ century (Wurtz coupling, for example). ${ }^{20}$ The pioneering work of Richard Heck in 1972, ${ }^{13}$ however, described a practical vinylic substitution of aryl halides and marked the beginning of Pd-catalyzed cross-coupling chemistry. Since then, a

reactions.
derivatives of tin are used), ${ }^{24} \alpha$-arylation of enolates (where compounds containing active methylenes are used), ${ }^{25}$ Buchwald amination (where primary or secondary amines are used), ${ }^{18}$ Negishi

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

(where carbon-based nucleophiles such as aryl, vinyl or alkyl derivatives of zinc are used) ${ }^{26}$ and Kumada-Corriu reactions (where carbon-based nucleophiles such as aryl, vinyl or alkyl derivatives of magnesium are used). ${ }^{27}$

These powerful, versatile reactions are now used routinely by synthetic chemists for C - C and C -heteroatom bond formation. Their widespread applicability stems from their ease of use and wide functional group tolerance. These reactions generally do not require any special handling and, in many cases, can tolerate oxygen and moisture. Furthermore, a number of palladium sources required for these reactions (including $\operatorname{Pd}(I I)$ complexes such as palladium (II) acetate $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ and palladium (II) chloride $\left(\mathrm{PdCl}_{2}\right)$ and $\operatorname{Pd}(0)$ complexes such as tri(dibenzylideneacetone)dipalladium (0) $\left[\mathrm{Pd}_{2}\left(\mathrm{dba}_{)_{3}}\right.\right.$ $\left.\mathrm{CHCl}_{3}\right]^{28}$ and tetrakis(triphenylphosphine) palladium (0) $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{29}$ are commercially available.

1.1.3.2 Mechanistic studies of palladium (0) catalyzed reactions.

Palladium (Pd) exists predominantly in either +2 or 0 oxidation state. The interchange between these two oxidation states is responsible for the rich chemistry that Pd exhibits. ${ }^{30,31}$

$$
\mathrm{Pd}(0)+X-Y \longrightarrow X-P d-(I I)-Y
$$

Scheme 1.4. Oxidative addition of a molecule of $\mathrm{X}-\mathrm{Y}$ to $\mathrm{Pd}(0)$.

Mechanistically, Pd-catalyzed cross-coupling reactions involve initial oxidative addition of a molecule of X-Y to $\operatorname{Pd}(0)$ with homolytic bond cleavage of its covalent bond to form a new ionic bond to $\mathrm{Pd}(0)$ leading to $\mathrm{Pd}(\mathrm{II})$ species. ${ }^{31}$ (Scheme 1.4).

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Several X-Y molecules are capable of undergoing oxidative addition to $\operatorname{Pd}(0)$ with the most common being those containing a $\mathrm{C}-\mathrm{X}(\mathrm{X}=$ halogen and pseudo-halogen), $\mathrm{C}-\mathrm{H}, \mathrm{C}-$ $\mathrm{O}, \mathrm{Si}-\mathrm{H}, \mathrm{M}-\mathrm{H},(\mathrm{M}=$ main group metals $)$ and $\mathrm{H}-\mathrm{H}$ bonds. Among these, the most frequently used are vinylic and aryl halides. The general rate of oxidative addition of these organic halides decreases from $\mathrm{C}-\mathrm{I}>\mathrm{C}-\mathrm{OTf}>\mathrm{C}-\mathrm{Br} \gg \mathrm{C}-\mathrm{Cl} \ggg \mathrm{C}$-F. Oxidative addition is not limited to sp^{2} hybridized carbons but also suitably activated sp^{3} carbons undergo oxidative addition to $\operatorname{Pd}(0)$ species. ${ }^{14,32,33}$ A transmetallation step occurs after oxidative addition as illustrated in Scheme 1.5. In this step, organometallic compounds (M-R) and hydrides ($\mathrm{M}-\mathrm{H}$) of main group metals such as $\mathrm{B}, \mathrm{Mg}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Al}, \mathrm{Hg}$ and Si exchange with the X in the $\mathrm{X}-\mathrm{Pd}(\mathrm{II})-\mathrm{Y}$ complexes.

Scheme 1.5. Transmetallation of Y-P-X.
The final step involves a reductive elimination. This step is a unimolecular decomposition involving the loss of two groups of cis configuration from the Pd center combining to give a single organic product. (Scheme 1.6).

$$
\mathrm{Y}-\mathrm{Pd}-(I I)-\mathrm{R} \longrightarrow \mathrm{R}-\mathrm{Y}+\mathrm{Pd}(0)
$$

Scheme 1.6. Reductive elimination of Y-Pd(II)-R.

Reductive elimination regenerates the $\operatorname{Pd}(0)$ species which undergoes another round of oxidative addition in the full catalytic cycle. (Figure 1.1).

Figure 1.1. A generalized Pd cross-coupling catalytic cycle.

1.1.3.3 The use of Phosphine Ligands in Pd catalyzed reactions.

Key to the success of Pd catalyzed cross-coupling reactions is the choice of ligands used in these reactions. For example the initial use of PPh_{3} as a ligand by Suzuki limited the reaction to aryl iodides and aryl bromides. ${ }^{34}$ In addition, reactions with hindered aryl bromides such as mesityl bromide and naphthyl bromide occurred slowly under these reaction conditions. Phosphine ligands are the most important class of metal ligands used. ${ }^{35,36}$ They act as both σ donors and π acceptors. The nature of R groups on the phosphorus determines its ability to donate or accept electron density.

In the last few years, attention has been focused on the discovery and optimization of phosphine ligands that increase catalytic turnovers and efficiency. ${ }^{35,37}$ Among these, the most promising ligands are the electron-rich, sterically bulky tertiary phosphines. Electron-rich phosphines have been shown to accelerate the "oxidative addition" by increasing the electron density on the central metal (Pd). In addition, the bulkiness of these ligands assists facile reductive elimination. As a result, previously
unsuccessful coupling reactions (for example, those reactions involving unactivated or hindered substrates) can now be carried out. Buchwald et al. reported in 1998 that using bulky electron-rich 2^{\prime}-(dicyclohexylphosphanyl-biphenyl-2-yl)dimethylamine (5) led to the facile Suzuki coupling of several boronic acids with a variety of aryl chlorides. ${ }^{38}$

5

6

7

8

Figure 1.2 Examples of bulky electron rich phosphine ligands.

Even with electron rich aryl chlorides, good yields of the coupled products were obtained under mild reaction conditions (some at room temperature) in the presence of 0.5-2.0 mol $\% \mathrm{Pd}$ and $0.75-3.0 \mathrm{~mol} \%$ of ligand. Littke and Fu reported the used of bulky electronrich tri-tert-butylphosphine (6) as ligand for Suzuki coupling reaction of several boronic acids and a variety of aryl chlorides. ${ }^{39,40}$ Deactivated and hindered aryl chlorides were suitable substrates. In their initial studies, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$ and dioxane were used as catalyst, base and solvent, respectively. They determined that using KF as a base rather than $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ allowed the Suzuki cross-coupling reaction of activated aryl chlorides to occur at milder reaction conditions. Hartwig and Fu reported separately that sterically hindered and electron rich aryl chlorides can been used effectively in a Heck reaction when tri-tert-butylphosphine ($\mathbf{6})^{41}$ and $\operatorname{di}\left(\right.$ tert-butylphosphino)ferrocene (8) ${ }^{42}$ are used as ligands. Beller et al. reported that di-1-adamantyl- n-butylphosphine (7) is also an
effective ligand for reactions involving electron rich non activated aryl chlorides in Suzuki cross-coupling reactions. ${ }^{43}$ Several research groups have described other phosphine ligands with high catalytic turnovers ${ }^{44}$ permitting the successful coupling of even the least active coupling partners in Pd-catalyzed cross-coupling reactions such as Suzuki, Stille, Sonogashira, Heck, Buchwald amination, α-arylation of ketones and other coupling reactions.

Over the past eight years the Capretta group has developed a phosphine ligand that is air stable, easily to handle and can successfully be employed in several organopalladium cross-coupling reactions. This catalytic system incorporating an airstable 1,3,5,7-tetramethyl-2,4,8-triox-6-phenyl-6-phosphaadamantane (PA-Ph) (11) has been used successfully in Suzuki cross-coupling of a variety of aryl halides and boronic acids under mild conditions. ${ }^{45,46}$ Unlike other reported adamantyl phosphorus ligands, ${ }^{43}$ 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (PA-Ph) (11) for example, has the phosphorus atom entrenched within the adamantane framework. The PA-Ph (11) has been shown to be an effective versatile ligand useful for Sonogashira reactions, ${ }^{46}$ the α-arylation of ketones ${ }^{46}$ and amination reactions ${ }^{47}$ generating the coupled product in high yields under mild conditions.

Chemistry has been developed that allows for the derivatization of the secondary PA-H (9) scaffold. For example a palladium-catalyzed P-arylation of the secondary PA-H $(9)^{48}$ with an aryl halide in the presence of a base $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and refluxing the in
xylene yields the tertiary PA-R (10). ${ }^{33,49}$ (Scheme 1.7). P-alkylation was also facile and allowed the generation of alkyl substituted PA-R ligands. ${ }^{50}$

Scheme 1.7. Derivatization of 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane ($\mathrm{PA}-\mathrm{H}$) into structurally diverse trisubstituted phosphine ligands.

This chemistry has allowed for the production of a library of structurally diverse tertiary phospha-adamantanyl ligands (selected members shown in Figure 1.3) each with unique steric and electronic properties. Parallel screening of these ligands allows rapid

Figure 1.3. Selected members of PA-R ligand libraries.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

approach, attention was turned to the development of protocols suitable for the $\mathrm{sp} 3-\mathrm{sp} 3$ Suzuki coupling. Suzuki reactions involving sp3-bonded alkyl halides and tosylates with aryl or alkyl boronic acids have been largely avoided as useful synthetic methods. This may be attributed to the slower rate of oxidative addition of the alkyl halides to palladium and the ability of these complexes to easily undergo β-hydride elimination rather than produce the desired coupling product. Fu et al. demonstrated that these reactions can be facilitated with a palladium catalyst system incorporating bulky electron-rich alkyl phosphine ligands. ${ }^{51}$ For example using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PCy}_{3}$ and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in THF, a Suzuki cross-coupling reaction involving 1-bromododecane (23) and B-n-octyl-9-BBN (24) yielded the desired product in 85% yield with less than 2% of the β-hydride elimination product. ${ }^{51}$ (Scheme 1.8).

Scheme 1.8. 1-bromododecane and B-n-octyl-9-borabicyclo[3.3.1]nonane in Suzuki coupling reaction by Fu et al.

However, Suzuki cross-coupling reactions involving alkyl tosylates yielded the desired coupling product when di-tert-butyl-methylphosphine ($\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Me}$) rather than PCy_{3} was used as the ligand.

With this precedent at hand, the Capretta group screened a collection of twelve PA-R ligands (Figure 1.3) and quickly determined that using a catalytic system of $\mathrm{Pd}(\mathrm{OAc})_{2}$ incorporating 2,4-dimethoxyphenylphosphaadamantane ligand (15) facilitated the cross-coupling of alkyl bromides, alkyl chlorides and alkyl tosylates with alkyl
boranes as well as aryl boronic acids under mild conditions. ${ }^{33}$ For example, a Suzuki cross-coupling reaction between 1 -bromododecane and phenyl boronic acid using the catalytic system of $\mathrm{Pd}(\mathrm{OAc})_{2} / 2,4$-dimethoxyphenylphosphaadamantane and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ as the base and dioxane as the solvent, yielded the cross-coupled product in 97% yield. (Scheme 1.9). With this catalytic system only a slight excess of the ligand (5\%) over the palladium (4\%) was required for facile reaction compared to Fu's reaction conditions which required a ligand to palladium ratio of $2: 1$.

Scheme 1.9. Suzuki coupling between 1-bromododecane and phenylboronic acid. The 2,4-dimethoxyphenylphosphaadamantane ligand (15) was also shown to facilitate the coupling of various aryl chlorides with alkyl boranes as well as alkyl tosylates with alkyl boranes in good yield under mild conditions.

1.1.3.4 Use of Pd-catalyzed Cross-Coupling in Library Synthesis

Developing methodologies for the preparation of compound collections remains a critical challenge and forms an integral part of research in our laboratory. The methodology developed for library synthesis must provide rapid and efficient access to the targeted molecules and must be robust enough to allow the incorporation of varied functionality into the compound collections.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Protocols involving palladium-catalyzed reactions in library generation of compounds have been reported. For example, Larock et al. described the generation of a library of substituted isoquinolines via palladium catalyzed Sonogashira reaction involving various alkynes and o-halo-benzaldehydes (28). ${ }^{52}$ Cyclizations of tertbutylimino alkynes (30) by various electrophiles then yielded the substituted isoquinolines (e.g. 31, 32). (Scheme 1.10).

Scheme 1.10. Generation of various substituted isoquinolines via palladium catalyzed Sonogashira reaction by Larock et al.

Larock et al. also utilized various palladium-catalyzed cross-coupling reactions such as carbonylative amidation, Suzuki, Heck and Sonogashira reactions in the

Scheme 1.11. Synthesis of a library of 3,4,5-trisubstituted isoxazoles from 4iodoisoxazoles via palladium cross-coupling reactions by Larock et al.
synthesis of a library of 3,4,5-trisubstituted isoxazoles from 4-iodoisoxazoles. ${ }^{53}$ (Scheme 1.11).

Furthermore, Grimm et al. generated a library of 3-substituted-2-pyrazolines by taking advantage of palladium-catalyzed cross-coupling reactions such as Suzuki, Sonogashira, Stille and Negishi reactions. ${ }^{54}$ (Scheme 1.12).

Scheme 1.12. A diverse library of 3 -substituted-2-pyrazolines via palladium cross-coupling reactions by Grimm et al.

A Pd-based catalytic system incorporating 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (PA-Ph) (11) will be shown to be ideal for library generation as it allows for convergent strategies in high yields with low catalyst loading. ${ }^{55,56}$ Furthermore, PA-R Pd catalyst systems allow the coupling of substrates

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

containing heteroatoms (especially nitrogen), which is problematic with most of the popular ligands reported in the literature as they often poison the catalytic system. ${ }^{57,58}$

1.1.4 Microwave Assisted Reactions.

The utilization of microwave irradiation has been proven to be an important, effective technology helping to facilitate organic synthesis. Unlike conventional heating, energy transfer in a microwave reactor occurs by dielectric loss either via dipole rotation or ionic conduction. ${ }^{19}$ These phenomena are dependent on the ability of a specific material (solvent or reagent) to absorb microwave energy and convert this into heat. These effects enable microwave heating to reduce chemical reaction times from hours to minutes, selectively activate or suppress reaction pathways, increase yields and improve reproducibility.

Over the past decade, a number of researchers have reported enhanced reactivity and increased yields in a variety of organic transformations including C-C bond formations; (the Heck reaction, ${ }^{59-61}$ Suzuki reaction, ${ }^{57,62}$ Sonogashira reaction, ${ }^{53,63}$ Stille reaction, ${ }^{53,64}$ carbonylation reaction, ${ }^{65,66}$) as well as $\mathrm{C}-\mathrm{O}^{67}$ and $\mathrm{C}-\mathrm{N}$ bond formation. ${ }^{68,69}$ Cao et al., for example, used microwave assisted Suzuki cross-coupling reactions to generate several analogues of pyridazinones in good yield within a short reaction time. ${ }^{57}$ Hay et al. also improved the yields of their products in the synthesis of 3-alkyl-1,2,4-benzotriazine-1-oxide (BTOs), an anticancer agent, through a microwave-assisted Stille reaction. ${ }^{64}$

1.1.4.1 Microwave-assisted synthesis of heterocyclic compounds

Microwave heating in the preparation of heterocyclic compounds has been used extensively in the past decade. Using microwave irradiation reduces reaction times as well as increasing yields of products. For example, Gracias et al. described a sequence wherein the product obtained from an Ugi four-component reaction (41) was subjected to a microwave-assisted Heck reaction to allow for the synthesis of highly functionalized seven-membered lactams (e.g. 42) in 98% yield in 25 minutes. ${ }^{60}$ (Scheme 1.13). They observed that when the reaction was carried out under conventional heating, complete reaction was observed in 18 h with a 73% yield of the product (42).

Scheme 1.13. Intramolecular microwave-assisted Heck reaction.
Deiters et al. reported a rapid and efficient microwave-assisted nickel catalyzed

Scheme 1.14. Microwave-assisted nickel catalyzed cyclotrimerization.
$[2+2+2]$ cyclotrimerization to yield (44), a precursor for the synthesis of the isoquinoline, illudinine (47). ${ }^{70}$ (Scheme 1.14). Conducting the $[2+2+2]$ cyclotrimerization in refluxing solvent led to a mixture of the aromatized and linear polymeric products after 24 h . Using microwave irradiation, however, led to a complete reaction in 5 minutes at $82^{\circ} \mathrm{C}$. With this protocol in hand several fused bicyclic analogues were generated from various diynes and alkynes.

Microwave irradiation was also used by Seijas et al. in the synthesis of flavones (50) from phloroglucinol (48) and β-ketoesters (49). ${ }^{71}$ (Scheme 1.15). The reactions were carried out in the absence of solvent. They compared reactions carried out under conventional heating to those carried out with microwave irradiation and observed a 4fold increase in yield of product for reaction carried out in the microwave.

Scheme 1.15. Microwave-assisted synthesis of flavones.
Pagano et al. used microwave irradiation to effect a coordination reaction between ruthenium and lactam ligands (51) and (52) to yield the coordinated product (53), a GSK3 inhibitor. ${ }^{72}$ They observed that under conventional heating, the coordination reaction was extremely sluggish and no coordinated product was formed. However, a facile reaction was observed when the reaction was carried out using microwave irradiation in DMF at $80^{\circ} \mathrm{C}$ for 10 minutes. (Scheme 1.16).

$$
\begin{aligned}
& 51\left(X=\mathrm{CO}, \mathrm{Y}=\mathrm{CH}_{2}\right) \\
& 52\left(\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Y}=\mathrm{CO}\right)
\end{aligned}
$$

53

Scheme 1.16. Microwave assisted coordination reaction of ruthenium and ligand 51 and 52.

1.1.4.2 Use of Microwave-Assisted Chemistry and Pd-Catalyzed Cross-Coupling in the Preparation of Heterocyclic Libraries

As outlined above, both microwave-assisted chemistry and Pd-catalyzed crosscoupling reactions are powerful tools for the organic synthetic chemist. Given that the present thesis seeks to determine the utility and scope of applicability of Pd crosscoupling and microwave chemistry in the preparation of heterocyclic compound libraries, three heterocyclic families were chosen as targets for our studies. Substituted flavones, isoquinolines and maleimides are currently of interest for a number of biological studies currently under investigation in the Capretta lab. In addition, these heterocyclic architectures are found throughout Nature and present in some highly biologically active compounds.

1.1.5 Flavones, Isoquinolines and Maleimides.

1.1.5.1 Flavones

Flavones also known as 2-phenylchromones constitute one of the major classes of naturally occurring products. They are a major group of secondary metabolites found in the plant kingdom and are present in biologically active compounds and drugs. ${ }^{73-75}$ They possess antioxidant, antiviral and anticancer properties. ${ }^{76,77}$ Over the past few decades, flavones have been found to be active towards several targets of biomedical interest such as estrogen receptors (ERs), ${ }^{78}$ heat shock proteins (Hsp-90), ${ }^{79}$ cyclo-oxygenase (COXs), ${ }^{80}$ P-glycoproteins (PgPs$)^{81}$ and phosphodiesterases (PDEs) ${ }^{82}$ Traditionally, flavones are obtained by cyclization of 1,3-diphenylpropane-1,3-diones which are prepared from 2hydroxyacetophones and a benzoylating reagent or benzaldehydes. ${ }^{83,84}$ Reported procedures to prepare flavone have also included treatment of a 2-hydroxyacetophenone and benzaldehyde under Claisen-Schmidt conditions to yield a 2 -hydroxychalcone that can be oxidatively cyclized to yield the flavone system. ${ }^{85,86}$ Most of these reported syntheses suffer from harsh reaction conditions such as strong bases and acids, elevated temperature and low yields.

More recently, a particularly attractive alternate approach to flavone systems has been described that involves the Pd-catalyzed carbonylation/ cyclization reaction between 2-iodophenols and terminal alkynes. ${ }^{87-89}$ In most of the Pd-catalyzed carbonylation/ cyclization protocols reported, the six membered flavone (54) was obtained along with a five membered aurone (55) via 6 -endo-dig and 5-exo-dig ring closures
respectively. (Scheme 1.17). ${ }^{87}$

Scheme 1.17. Pd-catalyzed flavone synthesis from o-iodophenol and alkyne. These two compounds have been shown to form by different processes and the experimental conditions have been proved to have a significant effect on the cyclization of the intermediate 1-(2-hydroxyary)-3-aryl-2-propyn-1-ones (56). (Scheme 1.18). ${ }^{87}$

Scheme 1.18. Processes involved in flavone and aurone formation.

Ortar et al. demonstrated that the cyclization step of 1-(2-hydroxyaryl)-3-aryl-2-propyn1 -ones (56) leading to flavones or aurones is influenced by both the $\operatorname{Pd}(0)$ complex and the base used ${ }^{89,90}$ While a reaction involving $\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DPPF})_{2}$ and DBU yielded exclusively the flavone in 92% yield, the use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and AcOK yielded no flavone product but only the aurone in 75% yield. Yang et al. addressed the issue of aurone formation by addition of an extra step to their synthesis by converting o-iodophenols to o iodophenol acetates. ${ }^{87}$ Fathi and Yang later reported a reaction protocol in aqueous media
that permitted the generation of flavone exclusively, however, their reported protocol required higher catalytic loading, $5 \mathrm{~mol} \%$ of PdCl_{2} and $10 \mathrm{~mol} \%$ of $\mathrm{PPh}_{3} .{ }^{88}$

Our approach to the synthesis of flavones (described in Chapter 2) takes advantage of the Pd-cross-coupling approach described above but also demonstrates that a sequential application of a microwave-assisted Sonogashira and carbonylative annulation is suitable for the preparation of substituted flavone libraries.

1.1.5.2 Maleimides and α, β-Unsaturated- γ-Butyrolactams

Maleimides and $\alpha_{4} \beta$-unsaturated- γ-butyrolactams are contained within important families of natural products and synthetic products with valuable pharmacological

64: JAK3 $\mathrm{IC}_{50}=3 \mathrm{nM}$
Figure 1.4. Biologically active Maleimide and α, β-unsaturated- γ-butyrolactam analogues.
properties. ${ }^{91,92}$ They possess a wide range of biological activities including protein kinase inhibition (an important target in cancer chemotherapy, ${ }^{92}$ where some are in clinical
trials as anticancer drugs ${ }^{93,94}$), as well as antibacterial, antiviral and antigenic activities. ${ }^{95,96}$ For example, compound (61) and its analogues are shown to be potent PARP-1 [poly(ADP-ribose) polymerase-1] inhibitors. ${ }^{97,98}$ Disubstituted maleimide (62) (SB 216763) has been shown to be a highly effective inhibitor of glycogen synthase kinase-3 (GSK-3), ${ }^{96,99,100}$ while α, β-unsaturated- γ-butyrolactam analogue (63) (a staurosporine derivative) represents a larger group of indolocarbazoles with potent inhibitory effects on mixed lineage kinase 1 and 3 (MLK1/3), ${ }^{101}$ and analogue (64) has been shown to inhibit janus kinase 3 (JAK-3) with an IC_{50} of 3 nM . ${ }^{102}$ (Figure 1.4).

Synthetic protocols to these important heterocycle compounds described in the chemical literature generally require multi-step sequences through linear synthetic

66

70

69

Scheme 1.19. Bisindole maleimide synthesis by Faul et al.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
approaches forming the maleimide ring in the last step of the synthesis. For example, Faul et al. at Eli Lilly described the synthesis of bisindolyl-maleimides (69) and butyrolactam (70) (potent inhibitors of $\mathrm{PKC} \beta$) via a reaction protocol that involves the base condensation of indole-3-acetamide (65) with indolyl-3-glyoxylate (66). ${ }^{103}$ (Scheme 1.19).

Yang and Wang developed a Lewis acid catalyzed annulation of isonitrile and allenic esters (71) precursors followed by deprotection using aminolysis and photo induced oxidative 6π-electrocyclization to generate non-symmetrical maleimide analogues. ${ }^{104}$ (Scheme 1.20).

Scheme 1.20. Synthesis of maleimide analogues by Lewis acid mediated annulation of isonitrile and allenic esters.

Dubernet et al. synthesized 3,4-bisheteroaryl-maleimide via palladium catalyzed Suzuki coupling reaction using 3,4-diodomaleimides as the starting precursor.

Scheme 1.21. Synthesis of non symmetrical maleimide by Dubernet et al.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

From their synthetic route, the symmetrical disubstituted coupled product was obtained in only 15% yield. ${ }^{105}$ In addition, attempts to generate non-symmetrical maleimides using this approach were unsuccessful as the requisite monoarylated product could not be obtained in practical yield. An alternate strategy was developed and the non-symmetrical maleimides were generated from coupling 3-bromomaleimide (75) with 2 -furaldehyde diethyl acetal (74) to yield the coupled product, (76) in 55\% yield. Conversion to the final non-symmetrical disubstituted maleimide (77) was achieved in 17% overall yield. (Scheme 1.21).

Sarandeses et al. recently reported Pd catalyzed synthesis of non-symmetrical maleimide via the use of triorganoindium reagents. ${ }^{106}$ (Scheme 1.22). Though mono arylation was controlled by this protocol and product obtained in good yield, organoindium reagents are expensive and not cost effective in library synthesis. Clearly, there is still the need for facile, cost-effective routes to substituted maleimides.

Scheme 1.22. Synthesis of non-symmetrical maleimide via triorganoindium reagents.

A major research focus within the Capretta laboratory is the development of selective kinase inhibitors. For these studies, facile access to 3,4-disubstituted maleimides is needed. Furthermore, the synthetic protocol developed must allow for the introduction

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
of a broad variety of functionality. Taking advantage of palladium catalyzed crosscoupling reactions developed in our lab, this thesis seeks to develop protocols that allow the control necessary to generate a non-symmetrical and symmetrical 3,4-disubstituted maleimide library. (see Chapter 3). Control of the preparation of non-symmetrical derivatives is crucial. The method developed will also be applied to the synthesis of analogous α, β-unsaturated- γ-butyrolactam systems.

1.1.5.3 Isoquinolines

The isoquinoline core is an important heterocyclic moiety present in a variety of natural products and pharmaceuticals. ${ }^{107-109}$ The Pictet-Spengler ${ }^{110-112}$ and BischlerNapieralski ${ }^{113}$ reactions have traditionally been used for preparing isoquinoline derivatives. The Pictet-Spengler reaction, first described in $1911,{ }^{110}$ involves a Mannichtype reaction wherein a β-arylethylamine derivative (81) is treated with an aldehyde under acidic conditions to generate an iminium ion (82) that can ring close to a tetrahydroisoquinoline (84) and this is subsequently oxidized to an isoquinoline (85). (Scheme 1.23).

Scheme 1.23. General mechanism for Pictet-Spengler.

The Bischler-Napieralski ${ }^{113}$ reaction involves the conversion of an N-acyl- β arylethylamine (86) into the corresponding dihydroisoquinoline (89). (Scheme 1.24). The ring closure in both cases involves an electrophilic aromatic substitution, hence substrates that incorporate an electron-rich substituent on the aromatic ring at a position para to the cyclization site tend to give the best yields. Both Pictet-Spengler and Bischler-

Scheme 1.24. General mechanism for Bischler-Napieralski.

Napieralski reaction protocols reported in the literature have involved harsh reaction conditions such as the use of neat acids and long reaction times to produce products in moderate overall yields. Most recently, protocols utilizing microwave irradiation in the Pictet-Spengler ${ }^{112,114-117}$ and the Bischler-Napieralski ${ }^{117}$ reactions have been described. Chu et al. carried out a microwave-assisted Pictet-Spengler reaction of tryptophan methyl ester (90) with various aldehydes and ketones in [bdmin][PF_{6}] ionic liquid to yield carboline (91). ${ }^{114}$ (Scheme 1.25).

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Scheme 1.25. Microwave assisted Pictet-Spengler reaction by Chu et al.

Besson et al. utilized a microwave assisted Pictet-Spengler reaction in the synthesis of melatonin analogues. The formaldehyde required for the Pictet-Spengler cyclization was provided by thermal decomposition of DMSO. ${ }^{112}$ (Scheme 1.26).

Scheme 1.26. Microwave assisted Pictet-Spengler reaction by Besson et al.

Giri et al. carried out a microwave assisted Bischler-Napieralski reaction using neat POCl_{3} towards their synthesis of β-carboline (95). ${ }^{117}$ (Scheme 1.27).

Scheme 1.27. Microwave Bischler-Napieralski reaction.

Isoquinoline containing compounds have been shown to possess a variety of potent biological activities. For example, compound (96) has been shown by Fish et al. to
be a potent inhibitor of urokinase-type plasminogen activator (UPA) and is able to inhibit chronic wound fluid $\left(\mathrm{IC}_{50}=0.89 \mu \mathrm{M}, \mathrm{Ki}=10 \mathrm{nM}\right)$ with no adverse effect on wound healing parameters. ${ }^{118}$ Compound (97) was found to display significant antimicrobial activity against two Gram positive (Staphylococcus aureus, Bacillus subtilis) bacteria, two Gram negative (Salmonella enteritidis, Escherichia coli) bacteria and one fungus (Candida albicans) with MIC values ($\mu \mathrm{g} / \mathrm{mL}$) 3.9, 3.9, 3.9, 15.6 and 3.9 respectively. Compound (97) therefore appeared to be a useful lead compound for further development of antimicrobials. ${ }^{119}$

Compound (98) was identified as an orally active inhibitor of tyrosine kinase p561ck, (lck) with IC_{50} of $0.023 \mathrm{nM} .{ }^{120,121}$

The broad biological effect of isoquinolines prompted Steglich et al. to use them as chelating, nonleaving ligands in cis platinum (II) antitumor complexes. During their

96

97

98

Figure 1.5. Some examples of biologically active isoquinolines.
studies they showed that compound (99) was potent against L1210 murine leukemia cells with IC_{50} value of $0.88 \mu \mathrm{M}$, two times more effective then the well-established antitumor compound cisplatinum. ${ }^{122}$

99

Abell and his group have also demonstrated that a series of simple isoquinoline alkaloids (100), (101) and (102), (Figure 1.7) showed substantial inhibition of human monoamine oxidases A and Figure 1.6. Isoquinoline with antitumor activity. B. ${ }^{109}$ Monoamine oxidases A and B are outer mitochondrial membrane flavoenzymes catalyzing the degradation of neurotransmitters and xenobiotic aryl alkyl amines.

100

101

102

Figure 1.7. Simple isoquinoline as inhibitors of human monoamine oxidases A and B.

The Capretta group's interest in this heterocyclic family stems from the inhibitory activity of certain isoquinolines against the enzyme glutamine fructose-6-phosphate amidotransfaerase, (GFAT). GFAT is the rate limiting enzyme in the hexosamine pathway. It catalyzes the first step in the hexosamine metabolism by converting frutose-6-phosphate (103) into glucosamine-6-phosphate (105) using glutamine (104) as source of ammonia. ${ }^{123-125}$ (Scheme 1.28). Type II diabetes patients with secondary diabetic
complications have elevated levels of GFAT activity and much remains to be elucidated about GFAT's role in diabetes complications.

Scheme 1.28. GFAT activity in the hexosamine pathway.

Bolin et al. have shown that 1,4-substituted acylisoquinoline analogues (107), (108) and (109) (Figure 1.8) are GFAT inhibitors with CI_{50} values ranging between 1 nM and $100 \mu \mathrm{M} .{ }^{126}$

107

108

109

Figure 1.8. 1,4-substituted acylisoquinoline as GFAT inhibitors

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

A methodology that allows for the rapid access to a 1,4 -substituted isoquinoline library is worth investigating. These compounds can then be tested and used to determine which moieties in the lead isoquinoline series are needed for inhibition. Ideally, more potent inhibitors may be designed based on the SAR information gained. Furthermore, effective inhibitors can be used as a standard of comparison or control in the development of new GFAT assays. Chapter 4 describes protocols that utilize microwave assisted variants of the Pictet-Spengler and Bischler-Napieralski reactions to generate a library of 1,4 -substituted isoquinolines. Also outlined is the more combinatorial approach that builds an isoquinoline library from an isoquinoline-1(2H)-one scaffold using Pdcatalyzed cross-coupling chemistry. Chapter 5 describes preliminary efforts to prepare isoquinolines from suitably functionalized β-arylethylamines generated via ketone arylation cross-coupling followed by a reductive amination. The methodologies represent a new route to 1,3,4-trisubstituted isoquinolines useful in our GFAT studies and unavailable via our previously developed route.

1.1.6 References

(1) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461-477.
(2) Lipinski, C.; Hopkins, A. Nature 2004, 432, 855-861.
(3) Mitscher, L. A.; Aubé, J.; Dutta, A.; Golden, J. E.; Abraham, D. J. Combinatorial Chemistry and Multiple Parallel Synthesis; John Wiley \& Sons, Inc., New York, 2003.
(4) Mullin, R. $C \& E N$ 2004, 82, 23-32.
(5) Schreiber, S. L. Science 2000, 287, 1964-1969.
(6) Tan, D. S. Nat. Chem. Biol. 2005, 1, 74-84.
(7) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 1017410175.
(8) Kwon, O.; Park, S. B.; Schreiber, S. L. J. Am. Chem. Soc. 2002, 124, 13402-13404.
(9) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. Chem. Rev. 2009, 109, 3012-3043.
(10) Njardarson, J. T.; Gaul, C.; Shan, D.; Huang, X.-Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 1038-1040.
(11) Bleicher, K. H.; Bohm, H.-J.; Muller, K.; Alanine, A. I. Nat. Rev. Drug Discov. 2003, 2, 369-378.
(12) Schreiber, S. L. Nat. Chem. Biol. 2005, 1, 64-66.
(13) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320-2322.
(14) Bartoccini, F.; Cabri, W.; Celona, D.; Minetti, P.; Piersanti, G.; Tarzia, G. J. Org. Chem. 2010, 75, 5398-5401.
(15) Ghosh, R.; Adarsh, N. N.; Sarkar, A. J. Org. Chem. 2010, 75, 5320-5322.
(16) Friscourt, F. d. r.; Boons, G.-J. Org. Lett. 2010, 12, 4936-4939.
(17) Yoo, E. J.; Wasa, M.; Yu, J.-Q. J. Am. Chem.Soc. 2010, 132, 1737817380.
(18) Zimmermann, V.; Bräse, S. J. Com. Chem. 2007, 9, 1114-1137.
(19) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
(20) Kochi Jay, K. In Industrial and Laboratory Alkylations; Am. Chem. Soc.: 1977; Vol. 55, p 167-185.
(21) Fujihara, T.; Yoshida, S.; Terao, J.; Tsuji, Y. Org. Lett. 2009, 11, 21212124.
(22) Kim, D.-S.; Ham, J. Org. Lett. 2010, 12, 1092-1095.
(23) Gao, G.-L.; Niu, Y.-N.; Yan, Z.-Y.; Wang, H.-L.; Wang, G.-W.; Shaukat, A.; Liang, Y.-M. J. Org. Chem. 2010, 75, 1305-1308.
(24) Verniest, G.; Wang, X.; Kimpe, N. D.; Padwa, A. J. Org. Chem. 2009, 75, 424-433.
(25) Spergel, S. H.; Okoro, D. R.; Pitts, W. J. Org. Chem. 2010, 75, 53165319.
(26) Kienle, M.; Knochel, P. Org. Lett. 2010, 12, 2702-2705.
(27) Mentzel, U. V.; Tanner, D.; Tønder, J. E. J. Org. Chem. 2006, 71, 58075810.
(28) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253-266.
(29) Choueiry, D. Stoichiometric Synthesis and Some Notable Properties of Organopalladium Compounds of Pd(0) and Pd(II); John Wiley \& Sons, Inc., New York, 2003.
(30) Malatesta, L.; Ugo, R.; Cenini, S. In Werner Centennial; Am. Chem. Soc.: 1967; Vol. 62, p 318-356.
(31) Stahl, S. S. Angew. Chem. Int. Ed. 2005, 117, 1020-1021.
(32) Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 19451947.
(33) Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 7635-7639.
(34) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513-519.
(35) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895-904.
(36) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741-2770.
(37) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461-1473.
(38) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722-9723.
(39) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 1998, 37, 3387-3388.
(40) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020-4028.
(41) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989-7000.
(42) Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 2123-2132.
(43) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem. Int. Ed. 2000, 39, 4153-4155.
(44) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534-1544.
(45) Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953-955.
(46) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082-5086.
(47) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 8319-8321.
(48) Epstein, M.; Buckler, S. A. J. Am. Chem. Soc. 1961, 83, 3279-3282.
(49) Kraatz, H.-B.; Pletsch, A. Tetrahedron Asymm. 2000, 11, 1617-1621.
(50) Robertson, A.; Bradaric, C.; Frampton, C. S.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2001, 42, 2609-2612.
(51) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099-10100.
(52) Huang, Q.; Larock, R. C. J. Org. Chem. 2002, 68, 980-988.
(53) Waldo, J. P.; Mehta, S.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Com. Chem. 2008, 10, 658-663.
(54) Grimm, J. B.; Wilson, K. J.; Witter, D. J. J. Org. Chem. 2009, 74, 63906393.
(55) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210-3213.
(56) Awuah, E.; Capretta, A. J. Org. Chem. 2010, 75, 5627-5634.
(57) Cao, P.; Qu, J.; Burton, G.; Rivero, R. A. J. Org. Chem. 2008, 73, 72047208.
(58) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Process Res. Dev. 2009, 14, 30-47.
(59) Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864-3870.
(60) Gracias, V.; Moore, J. D.; Djuric, S. W. Tetrahedron Lett. 2004, 45, 417420.
(61) Donets, P. A.; Van der Eycken, E. V. Org. Lett. 2007, 9, 3017-3020.
(62) Sharma, A. K.; Gowdahalli, K.; Krzeminski, J.; Amin, S. J. Org. Chem. 2007, 72, 8987-8989.
(63) Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 89088915.
(64) Pchalek, K.; Hay, M. P. J. Org. Chem. 2006, 71, 6530-6535.
(65) Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 8410-8415.
(66) Salvadori, J.; Balducci, E.; Zaza, S.; Petricci, E.; Taddei, M. J. Org. Chem. 2010, 75, 1841-1847.
(67) Thasana, N.; Worayuthakarn, R.; Kradanrat, P.; Hohn, E.; Young, L.; Ruchirawat, S. J. Org. Chem. 2007, 72, 9379-9382.
(68) Rolfe, A.; Hanson, P. R. Tetrahedron Lett. 2009, 50, 6935-6937.
(69) Chen, S.; Huang, H.; Liu, X.; Shen, J.; Jiang, H.; Liu, H. J. Com. Chem. 2008, 10, 358-360.
(70) Teske, J. A.; Deiters, A. J. Org. Chem. 2007, 73, 342-345.
(71) Seijas, J. A.; Vázquez-Tato, M. P.; Carballido-Reboredo, R. J. Org. Chem. 2005, 70, 2855-2858.
(72) Pagano, N.; Wong, E. Y.; Breiding, T.; Liu, H.; Wilbuer, A.; Bregman, H.; Shen, Q.; Diamond, S. L.; Meggers, E. J. Org. Chem. 2009, 74, 8997-9009.
(73) Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J. J.; Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M.; Smith, G. C. M. J. Med. Chem. 2004, 48, 569-585.
(74) Guz, N. R.; Stermitz, F. R.; Johnson, J. B.; Beeson, T. D.; Willen, S.; Hsiang, J.-F.; Lewis, K. J. Med. Chem. 2000, 44, 261-268.
(75) Galietta, L. J. V.; Springsteel, M. F.; Eda, M.; Niedzinski, E. J.; By, K.; Haddadin, M. J.; Kurth, M. J.; Nantz, M. H.; Verkman, A. S. J. Biol. Chem. 2001, 276, 19723-19728.
(76) Kosmider, B.; Osiecka, R. Drug Dev. Res. 2004, 63, 200-211.
(77) Havsteen, B. Biochem. Pharmacol. 1983, 32, 1141-1148.
(78) Milligan, S. R.; Kalita, J. C.; Heyerick, A.; Rong, H.; De Cooman, L.; De Keukeleire, D. J. Clin. Endocrinol. Metab. 1999, 84, 2249-.
(79) Hadden, M. K.; Galam, L.; Gestwicki, J. E.; Matts, R. L.; Blagg, B. S. J. J. Nat. Prod. 2007, 70, 2014-2018.
(80) Hyup Joo, Y.; Kwan Kim, J.; Kang, S.-H.; Noh, M.-S.; Ha, J.-Y.; Kyu Choi, J.; Min Lim, K.; Hoon Lee, C.; Chung, S. Bioorg. Med. Chem. Lett. 2003, 13, 413-417.
(81) Boumendjel, A.; Di Pietro, A.; Dumontet, C.; Barron, D. Med. Res. Rev. 2002, 22, 512-529.
(82) Shin, H. J.; Kim, H. J.; Kwak, J. H.; Chun, H. O.; Kim, J. H.; Park, H.; Kim, D. H.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2002, 12, 2313-2316.
(83) Baker, W. J. Chem. Soc. (Resumed) 1933, 1381-1389.
(84) Mahal, H. S.; Venkataraman, K. J. Chem. Soc. (Resumed) 1934, 17671769.
(85) Hemanth Kumar, K.; Perumal, P. T. Tetrahedron 2007, 63, 9531-9535.
(86) Yao, N.; Song, A.; Wang, X.; Dixon, S.; Lam, K. S. J. Com. Chem. 2007, 9, 668676.
(87) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765-1768.
(88) Lian.g, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem 2005, 70, 6097-6100.
(89) Ciattini, P. G.; Morera, E.; Ortar, G.; Rossi, S. S. Tetrahedron 1991, 47, 6449-6456.
(90) Torii, S.; Okumoto, H.; Xu, L. H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.; Kalinin, V. N. Tetrahedron 1993, 49, 6773-6784.
(91) Sanchez, C.; Mendez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 10071045.
(92) Davis, P. D.; Hill, C. H.; Lawton, G.; Nixon, J. S.; Wilkinson, S. E.; Hurst, S. A.; Keech, E.; Turner, S. E. J. Med. Chem. 1992, 35, 177-184.
(93) Kanzawa, F.; Nishio, K.; Kubota, N.; Saijo, N. Cancer Res. 1995, 55, 2806-2813.
(94) Prudhomme, M. Eur. J. Med. Chem. 2003, 38, 123-140.
(95) Hudkins, R. L.; Johnson, N. W.; Angeles, T. S.; Gessner, G. W.; Mallamo, J. P. J. Med. Chem. 2007, 50, 433-441.
(96) Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.; Yates, J. W.; Pearce, N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Roxbee Cox, L.; Mills, D.; Brown, M. J.; Haigh, D.; Ward, R. W.; Smith, D. G.; Murray, K. J.; Reith, A. D.; Holder, J. C. Chem. Biol. 2000, 7, 793-803.
(97) Dunn, D.; Husten, J.; Ator, M. A.; Chatterjee, S. Bioorg. Med. Chem. Lett. 2007, 17, 542-545.
(98) Wells, G. J.; Bihovsky, R.; Hudkins, R. L.; Ator, M. A.; Husten, J. Bioorg. Med. Chem. Lett. 2006, 16, 1151-1155.
(99) Engler, T. A.; Malhotra, S.; Burkholder, T. P.; Henry, J. R.; Mendel, D.; Porter, W. J.; Furness, K.; Diefenbacher, C.; Marquart, A.; Reel, J. K. Bioorg. Med. Chem. Lett. 2005, 15, 899-903.
(100) Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.; Saunders, M.; Slingsby, B. P.; Stacey, R.; Ward, R. W. Bioorg. Med. Chem. Lett. 2001, 11, 635-639.
(101) Hudkins, R. L.; Diebold, J. L.; Tao, M.; Josef, K. A.; Park, C. H.; Angeles, T. S.; Aimone, L. D.; Husten, J.; Ator, M. A.; Meyer, S. L.; Holskin, B. P.; Durkin, J. T.; Fedorov, A. A.; Fedorov, E. V.; Almo, S. C.; Mathiasen, J. R.; Bozyczko-Coyne, D.; Saporito, M. S.; Scott, R. W.; Mallamo, J. P. J. Med. Chem. 2008, 51, 5680-5689.
(102) Yang, S.-M.; Malaviya, R.; Wilson, L. J.; Argentieri, R.; Chen, X.; Yang, C.; Wang, B.; Cavender, D.; Murray, W. V. Bioorg. Med. Chem. Lett. 2007, 17, 326-331.
(103) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. J. Org.Chem. 1998, 63, 6053-6058.
(104) Li, Y.; Zou, H.; Gong, J.; Xiang, J.; Luo, T.; Quan, J.; Wang, G.; Yang, Z. Org. Lett. 2007, 9, 4057-4060.
(105) Dubernet, M.; Caubert, V.; Guillard, J.; Viaud-Massuard, M.-C. Tetrahedron 2005, 61, 4585-4593.
(106) Bouissane, L.; Sestelo, J. P. r.; Sarandeses, L. A. Org. Lett. 2009, 11, 1285-1288.
(107) Croisy-Delcey, M.; Croisy, A.; Carrez, D.; Huel, C.; Chiaroni, A.; Ducrot, P.; Bisagni, E.; Jin, L.; Leclercq, G. Bioorg. Med. Chem. 2000, 8, 2629-2641.
(108) Batra, S.; Sabnis, Y. A.; Rosenthal, P. J.; Avery, M. A. Bioorg. Med. Chem. 2003, 11, 2293-2299.
(109) Bembenek, M. E.; Abell, C. W.; Chrisey, L. A.; Rozwadowska, M. D.; Gessner, W.; Brossi, A. J. Med. Chem. 1990, 33, 147-152.
(110) Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030-2036.
(111) Nielsen, T. E.; Diness, F.; Meldal, M. Curr. Opin. Drug Discovery Dev. 2003, 6, 801-814.
(112) Mesangeau, C.; Yous, S.; Peres, B.; Lesieur, D.; Besson, T. Tetrahedron Lett. 2005, 46, 2465-2468.
(113) Bischler, A. Ber. Dtsch. Chem. Ges. 1893, 26, 1891-1903.
(114) Yen, Y.-H.; Chu, Y.-H. Tetrahedron Lett. 2004, 45, 8137-8140.
(115) Kuo, F.-M.; Tseng, M.-C.; Yen, Y.-H.; Chu, Y.-H. Tetrahedron 2004, 60, 1207512084.
(116) Campiglia, P.; Gomez-Monterrey, I.; Lama, T.; Novellino, E.; Grieco, P. Mol. Divers. 2004, V8, 427-430.
(117) Pal, B.; Jaisankar, P.; Giri, V. S. Synth. Commun. 2003, 33, 2339-2348.
(118) Fish, P. V.; Barber, C. G.; Brown, D. G.; Butt, R.; Collis, M. G.; Dickinson, R. P.; Henry, B. T.; Horne, V. A.; Huggins, J. P.; King, E.; O'Gara,M.; McCleverty, D.; McIntosh, F.; Phillips, C.; Webster, R. J. Med. Chem. 2007, 50, 2341-2351.
(119) Iwasa, K.; Moriyasu, M.; Tachibana, Y.; Kim, H.-S.; Wataya, Y.; Wiegrebe, W.; Bastow, K. F.; Cosentino, L. M.; Kozuka, M.; Lee, K.-H. Bioorg. Med. Chem. 2001, 9, 2871-2884.
(120) Snow, R. J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; Dong, Y.; Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med. Chem. 2002, 45, 3394-3405.
(121) Goldberg, D. R.; Butz, T.; Cardozo, M. G.; Eckner, R. J.; Hammach, A.; Huang, J.; Jakes, S.; Kapadia, S.; Kashem, M.; Lukas, S.; Morwick, T. M.; Panzenbeck, M.; Patel, U.; Pav, S.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Snow, R. J.; Sellati, R.; Takahashi, H.; Tan, J.; Tschantz, M. A.; Wang, X.-J.; Wang, Y.; Wolak, J.; Xiong, P.; Moss, N. J. Med. Chem. 2003, 46, 1337-1349.
(122) von Nussbaum, F.; Miller, B.; Wild, S.; Hilger, C. S.; Schumann, S.; Zorbas, H.; Beck, W.; Steglich, W. J. Med. Chem. 1999, 42, 3478-3485.
(123) Srinivasan, V.; Sandhya, N.; Sampathkumar, R.; Farooq, S.; Mohan, V.; Balasubramanyam, M. Clin. Biochem. 2007, 40, 952-957.
(124) Sage, A. T.; Walter, L. A.; Shi, Y.; Khan, M. I.; Kaneto, H.; Capretta, A.; Werstuck, G. H. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E499-511.
(125) Kaneto, H.; Xu, G.; Song, K.-H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G. C. J. Biol. Chem. 2001, 276, 31099-31104.
(126) Bolin, D. Robert.; Chen, S.; Mischke, S. G.; Qian, Y. PCT Int. Appl. 2005, pp 40, PCT \# WO 2005/040150 A2

Chapter 2

2.1.1 Access to Flavones via a Microwave-assisted, "One Pot" Sonogashira Carbonylation-Annulation Reaction.'

Emelia Awuah and Alfredo Capretta

2.1.2 Abstract

Palladium complexes of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6phosphaadamantane (PA-Ph) are shown to be effective catalytic systems facilitating the sequential application of a microwave-assisted Sonogashira and a carbonylative annulation reaction for the preparation of flavones.

2.1.3 Introduction

Flavones ${ }^{1}$ are a major group of secondary metabolites found throughout the plant kingdom and have been shown to possess a wide variety of biological activity. ${ }^{2} \mathrm{~A}$ number of classical synthetic approaches to this family of compounds exist. The Baker-

[^0]
PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Venkataraman ${ }^{3}$ methodology involves the conversion of 2-hydroxyacetophenones into benzoyl esters, rearrangement in base to 1,3 -diphenylpropane-1,3-diones followed by cyclization in acid to yield the flavone ring system. ${ }^{4}$ Alternatively, treatment of a 2hydroxyacetophenone and benzaldehyde under Claisen-Schmidt conditions yields a 2 hydroxychalcone that can be oxidatively cyclized to yield the flavone system. ${ }^{5}$ Both approaches utilize harsh conditions such as strong bases, acid and elevated temperatures. A particularly attractive alternate approach involves the Pd-catalyzed carbonylation ${ }^{6}$ / cyclization reaction between 2-iodophenols and terminal alkynes. ${ }^{7}$ Given our work with palladium complexes of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (PA-Ph) and their ability to readily catalyze the coupling of aryl halides with terminal acetylenes ${ }^{8}$, we envisioned a reaction sequence wherein the product of a Sonogashira reaction could then undergo Pd-catalyzed carbonylative annulation with a 2 -iodophenol to yield a flavone scaffold. The present paper describes a microwave-assisted, "one pot" method that allows for the efficient and mild preparation of flavones from aryl halides and 2-iodophenol derivatives.

Our initial effort focused on the Pd-catalyzed carbonylation annulation reaction between 2-iodophenol and 1-hexyne using the PA-Ph ligand. The screening of various Pd sources, solvents, temperatures and bases is presented in Table 2.1. Reagents were combined in a reaction vessel and the reaction carried out under an atmosphere of CO gas. These experiments quickly revealed that using DMF as the solvent with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ or DBU as the base at 50C resulted in 91 and 93% isolated yield, respectively, of the desired
flavone (Table 2.1 entry 13 and 14). Under these conditions we produced the flavone products exclusively and did not observe any of the aurone byproduct.

Table 2.1. Optimization of Pd-catalyzed carbonylation-annulation conditions

entry	Pd source	solvent	base	temp/ time	\% yield
1	PdCl_{2}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$	25C/2h	0
2	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	MeCN	$(i \mathrm{Pr})_{2} \mathrm{EtN}$	25C / 2h	42
3	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$	25C / 2 h	0
4	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	MeCN	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	25C/2h	54
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	dioxane	$(i \operatorname{Pr})_{2} \mathrm{EtN}$	25C/2h	0
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	toluene	$(i \operatorname{Pr})_{2} \mathrm{EtN}$	25C/2h	0
7	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	THF	$(i \mathrm{Pr})_{2} \mathrm{EtN}$	25C/2h	20
8	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	25C/14h	40
9	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	toluene THF	$(i \mathrm{Pr})_{2} \mathrm{EtN}$	25C/2h	0
10	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	toluene / MeCN	$(i \operatorname{Pr})_{2} \mathrm{EtN}$	25C/2h	0
11	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DMSO	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	25C/14h	20
12	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DMF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	25C/14h	76
13	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DMF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50C/4h	91
14	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DMF	DBU	50C/4h	93

Reactions were carried out using 0.50 mmol 2 -iodophenol and 0.75 mmol 1 -hexyne.

The relatively low catalyst loading (1.5 \% mol equivalent of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and 3% mol equivalent of PA-Ph), short reaction time, high conversion and mild temperatures render our catalytic system more efficient than previously reported protocols. ${ }^{7}$ With the optimal set of conditions in hand, we proceeded to generate a small library of flavones (Table 2.2). Overall, the method works well and tolerates a variety of
functional groups.
With entries 2 and 5 , desilylation during the annulation step proceeds without the need for any additional reagents. Entries 8 and 9 required longer reaction times (12
hours). The lower yield observed for entry 8 was not due to desilylation as might be expected; rather, under the conditions employed, significant amounts of starting material

Table 2.2. Flavones via a Pd-catalyzed carbonylation / cyclization reaction

enry	iocophenol	alkne	product	yield ${ }^{\circ}$
$1^{\text {c }}$	Cr^{\prime}	-	20.0	81
$2^{\text {c }}$	$\mathbb{T X}_{01}^{\prime}$	${ }^{1}{ }_{\text {mus }}$	(2)	86
$3^{\text {c }}$	motar	M		83
$4^{\text {c }}$	$\text { moo } \mathcal{R}_{2}^{\prime}$	Mol	moincoin	82
$5^{\text {c }}$	$\operatorname{mos}^{\circ} \mathrm{CO}_{0}^{\prime}$	" ${ }_{\text {rus }}$	woing	79
$6^{\text {c }}$		(i)	Nix.	92
$7{ }^{\text {c }}$	${ }^{\circ}$	H	nio	76
$8^{\text {d }}$		H	$\text { nowe } 1$	31
$9^{\text {d }}$		9		86

Reactions were carried out using 0.50 mmol of the substituted 2 iodophenol and 0.75 mmol of the alkyne; ${ }^{\mathrm{b}}$ Isolated yield; ${ }^{\mathrm{c}} 50 \mathrm{C}$, 4 h ; ${ }^{\text {d }} 50 \mathrm{C}, 12 \mathrm{~h}$.
remain unreacted. It is likely that the electron donating substituents on the aryl iodide slow the rate of oxidative addition with the Pd-catalyst system.

Microwave-assisted organic synthesis has demonstrated itself to be superior in many instances when compared to reactions carried out using conventional heating. ${ }^{9}$ The use of microwave irradiation often helps to reduce reaction times, minimize side products, increase yields and improve reproducibility. A number of examples of microwave-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

assisted carbonylation reactions have been described in the literature. ${ }^{10}$ These previous approaches have generally utilized $\mathrm{Mo}(\mathrm{CO})_{6}$ and, as a result, require elevated temperatures to induce the decomposition of the molybdenum reagent and liberation in situ of CO gas. Given the relatively mild temperatures used above and the efficacy of the PA-Ph ligand, we examined the effect of microwave heating on our reaction conditions. We determined, ultimately, that comparable yields for the carbonylation-annulation reaction could be obtained when the reaction mixture was irradiated in a microwave at 90 C using a shortened reaction time of only 30 minutes. However, a much improved yield of 68% was obtained when the microwave-assisted conditions were applied to preparation of the TBDMS-protected flavone (Table 2.2, entry 8). While the use of a CEM gas addition unit ${ }^{11}$ greatly facilitated the introduction of CO into the reaction vessel, we also found that simply bubbling CO gas into the reaction prior to microwave irradiation allowed for an equally efficient reaction and avoided the need for $\mathrm{Mo}(\mathrm{CO})_{6}$.

The alkyne required for the Pd-catalyzed carbonylative annulation developed above could be generated via a Sonogashira reaction. Using our previously developed protocol as a starting point, ${ }^{8}$ we modified the reaction conditions so as to integrate with those developed for the carbonylation-annulation reaction. In this way, we found that the optimal conditions ($\left.1.5 \% \quad \mathrm{Pd}_{2}(\mathrm{dba})_{3} ; 3 \% \mathrm{PA}-\mathrm{Ph}, \mathrm{DMF}, \mathrm{DBU}\right)$ using microwave irradiation allowed for a reduction in reaction times and the elimination of the CuI co-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
catalyst generally required by the Sonogashira reaction (see Table 2.3). For example, the

Table 2.3. Microwave-assisted

Sonogashira reactions

Entry	aryl halide	alkyne	product	yield ${ }^{\text {b }}$
1				94
2				96
3				92
4				89
5				93
6				85
7				96
8				94
9				96

Reactions were carried out using 1.0 mmol aryl halide and 1.5 mmol alkyne; ${ }^{\mathrm{b}}$ Isolated yield.
coupling of p-iodotoluene with phenylacetylene (entry 2) could be achieved in 30 minutes in 96% yield. When arylbromides were used (entries $6-8$) as coupling partners, an increase in temperature (to 120 C) allowed for excellent yields with comparable reaction times.

Having established the conditions and scope of both the microwave-assisted, Pd-catalyzed carbonylative- annulation and the Sonogashira reaction, a natural extension of the work involves a sequential combination of the two reactions effectively allowing for a "one-pot" flavone synthesis. In all cases, the initial microwavemediated Sonogashira reaction

PhD Thesis－E．Awuah，McMaster University－Department of Chemistry

involved an aryl halide and TMS acetylene．The products from this reaction were then

Table 2．4．Flavones via a microwave－assisted
Sonogashira／carbonylation／cyclization reaction

Entry	aryl halide	iodophenol	product	yield ${ }^{\text {b }}$
1	$M_{0} \leqslant y^{\prime}$	\mathbb{x}_{OH}	$\stackrel{i}{\circ}$	67
2	$\text { moo } 1 \hat{1} \frac{1}{\prime}$	$\mathbb{V O H}_{\mathrm{OH}}$	$⿻ 上 丨_{0}^{\circ}$	56
3	$\mathrm{me}_{0} 1 \underline{y^{\prime}}$	wooira	1×1	63
4	$\text { Moo } \mathbb{1 0} \boldsymbol{y}^{\prime}$	$\text { noo } \mathfrak{i}_{1 Y_{01}^{\prime}}$	$\infty .1$	46
5	$\left.\Delta^{s}\right\rangle^{B r}$	$\widehat{N}_{\mathrm{OH}}^{\prime}$	2	65
6	$\square^{\text {s }}{ }^{8 r}$	nooic	12	71
7	$B^{8 r}$	$\mathbb{1 F}^{-1}$		62
8	$T^{8 r}$		$i_{1} x_{1}$	58

Reactions were carried out using 1.0 mmol aryl halide， 1.5 mmol alkyne and 0.5 mmol substituted 2 －iodophenol；${ }^{\text {b }}$ Isolated yield over two steps based on starting amount of substituted 2－iodophenol used．
introduced into a reaction vessel containing the iodophenol，fresh $\mathrm{Pd} /$ PA－Ph catalyst system，solvent and base．Introduction of CO followed by microwave irradiation allowed for the preparation of the flavones listed in

Table 2．4．It should be noted that addition of TBAF in the second step allowed for deprotection of the TMS group and made for a smoother，more reproducible

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

annulation reaction. The yields of the isolated flavone range from moderate to very good with the entire sequence completed in approximately an hour.

2.1.4 Conclusion

Overall, the synthetic method developed above for the preparation of substituted flavones involves mild reaction conditions, relatively short reaction times and provides good yields of the desired products. Given the range of commercially available components for this protocol (aryl iodides and bromides as well as substituted oiodophenols), the method should prove valuable in the preparation of combinatorial libraries of flavones.

2.1.5 Experimental

General procedure for flavone synthesis using conventional heating. (Tables 2.1 and 2.2): $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(7.8 \mathrm{mg}, 0.0075 \mathrm{mmol})$, $\mathrm{PA}-\mathrm{Ph}(4.4 \mathrm{mg}, 0.0150 \mathrm{mmol}), 2-$ iodophenol (0.5 mmol) and DMF (1.5 mL) were placed in a round bottom flask and the mixture degassed by sparging with argon. The reaction vessel was capped with a rubber septum placed under an atmosphere of CO (using a balloon of CO gas). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, $112 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) and the alkyne (0.75 mmol) were then added via a syringe. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h at which time the solvent was evaporated in vacuo. The reaction was then purified using column chromatography ($20-30 \%$ ethyl acetate in hexane) to yield the desired flavones.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

2-Butyl-4H-chromen-4-one (Table 2.1). Column chromatography (20\% ethyl acetate in hexane) allowed for isolation of the title compound which showed identical spectroscopic properties to those previously reported. ${ }^{12}$

2-Phenyl-4H-chromen-4-one (Table 2.2, Entry 1). Column chromatography (20\% ethyl acetate in hexane) yielded 81% of the title compound as white solid. The compound showed identical spectroscopic properties to those previously reported. ${ }^{13}$

4H-chromen-4-one (Table 2.2, Entry 2). Column chromatography (20\% ethyl acetate in hexane) yielded 86% of the title compound. The compound showed identical spectroscopic properties to those previously reported. ${ }^{12}$

Methyl 2-butyl-4-oxo-4H-chromene-6-carboxylate (Table 2.2, Entry 3). Column chromatography (30% ethyl acetate in hexane) yielded 83% of the title compound. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.29\left(\mathrm{dd}, J_{1}=6.8, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}$, $2 \mathrm{H}), 0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 177.8,170.2,165.9,159.0$, 134.1, 128.3, 127.5, 123.5, 118.4, 110.3, 52.5, 34.0, 28.8, 22.2, 13.8; HRMS (CI) for [$\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}\right]$ calculated 260.1627 , found 260.1627

Methyl 4-oxo-2-phenyl-4H-chromene-6-carboxylate (Table 2.2, Entry 4) Column chromatography (30% ethyl acetate in hexane) yielded 82% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 2 \mathrm{H},), 7.67-7.76(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

MHz): δ 177.8, $165.9,163.7,158.8,134.6,132.1,131.3,129.2,128.3,127.3,126.4$, 123.7, 118.7, 108.0, 52.6; HRMS (CI) for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}\right]$ calculated 280.0736, found 280.0748 .

Methyl 4-oxo-4H-chromene-6-carboxylate (Table 2.2, Entry 5). Column chromatography (30% ethyl acetate in hexane) yielded 79% of the title compound as white solid. $8.90(\mathrm{~s}, 1 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=6.8, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right) 7.87(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) 6.39(\mathrm{~d}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta$ $176.1,164.9,158.1,154.6,133.6,127.5,126.5,123.7,117.9,112.7,51.7 ; \mathrm{MS}(\mathrm{CI}), \mathrm{m} / \mathrm{z}$ (RI\%): 204 (55), 173 (100), 145 (26), 89 (14).

8-Methoxy-4-Oxo-2-phenyl-4H-chromene-6-carbaldehyde (Table 2.2, Entry 6). Column chromatography (30% ethyl acetate in hexane) yielded 92% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, $7.96-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 190.9,177.6,163.6,150.3,133.3,132.2,131.2,129.3,126.5,125.0$, 122.9, 110.2, 107.9, 56.7; HRMS (CI) for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}\right]$ calculated 280.0736, found 280.0733 .

2-Butyl-8-methoxy-4-oxo-4H-chromene-6-carbaldehyde (Table 2.2, Entry 7). Column chromatography (30% ethyl acetate in hexane) yielded 76% of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}): ~ \delta 191.0,177.5,170.3,150.0,133.4,132.9,128.9,124.8,123.1,110.6,109.9$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
56.7, 34.1, 28.9, 22.3, 13.9; HRMS (CI) for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}\right]$ calculated 260.1050 found 260.1049.

2-Butyl-6-((tert-butyldimethylsilyloxy)methyl)-8-methoxy-4H-chromen-4-one

2.2, Entry 8). Column chromatography (10% ethyl acetate in hexane) yielded 31% of the title compound. Alternatively, if CO gas was bubbled through the reaction mixture (prepared as described in the general procedure above) for 5 minutes or added using the CEM gas addition unit then microwaved at $90{ }^{\circ} \mathrm{C}$ for 30 minutes, a yield of 68% was obtained after column chromatography. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.26$ $(\mathrm{s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.45(\mathrm{~m}, 2 \mathrm{H}), 0.97$ (overlap, 12 H), $0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.5$, 169.7, 148.9, 138.4, 129.1, 124.4, 113.2, 112.6, 109.9, 64.7, 56.4, 34.1, 29.1, 26.1, 22.3, 18.5, 13.9, -5.1 ; HRMS (ES) for $\left[\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}\right][\mathrm{M}+1]$, calculated 377.2148 found 377.2134
(2E)-Ethyl 3-(4-oxo-2-phenyl-4H-chromen-6-yl)acrylate (Table 2.2, Entry 9). Column chromatography (30% ethyl acetate in hexane) yielded 86% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.90-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.54(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{.13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.0,166.7,163.2$. 149.7, 147.7, 143.3, 131.9, 131.5, 129.2, 126.5, 125.0, 119.6, 117.2, 112.4, 107.6, 60.8, 56.5, 14.4; HRMS (CI) for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}\right]$ calculated 350.1140 found 350.1140 .

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

General Procedure for Microwave-assisted Sonogashira Reaction (Table 2.3): A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3},(0.015 \mathrm{mmol}), \mathrm{PA}-\mathrm{Ph}(0.03 \mathrm{mmol})$, the aryl halide (1 mmol) (if solid) and DMF (1.5 mL) were placed in a microwave vial and the mixture degassed by sparging with argon. DBU (1.5 mmol), the alkyne (1.5 mmol) and the aryl halide (if liquid) were added, the vial capped and the reaction mixture microwaved at $90^{\circ} \mathrm{C}$ for 30 mins for aryl iodides and at $120^{\circ} \mathrm{C}$ for 30 mins for aryl bromides). The reaction mixture was purified by column chromatography using hexane.

Trimethyl (2-p-tolylethynyl) silane (Table 2.3, Entry 1). Column chromatography (hexane) yielded 94% of title compound as light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ MHz): $\delta 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 138.7,132.0,129.1,120.2,105.5,93.3,21.6,0.16 ; \mathrm{MS}(\mathrm{CI})$, m/z (RI\%): 188 (22), 173 (100), 143 (5).

1-(2-p-tolyethynyl) benzene (Table 2.3, Entry 2). Column chromatography (hexane) yielded 96% of the title compound as white solid. The compound showed identical spectroscopic properties to those previously reported. ${ }^{8}$
(2-(4-Ethylphenyl)ethynyl)trimethylsilane (Table 2.3, Entries 3 and 6). Column chromatography (hexane) yielded 92% for entry 3 and 85% for entry 6 of title compound as light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 145.0,132.1,127.9,120.4,105.5,93.3,29.0,15.5,0.17$; MS (CI), $\mathrm{m} / \mathrm{z}(\mathrm{RI} \%): 202(23), 187(100), 172(5)$.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
(2-(4-Methoxyphenyl)ethynyl)trimethylsilane (Table 2.3, Entry 4). Column chromatography (2% ethyl acetate in hexane) yielded 89% of the title compound as light yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 159.9,133.6,130.5$, 115.4, 113.9, 105.3, 55.4, 0.22; MS (CI), m/z (RI\%): 204 (32), 189 (100), 174 (6), 146 (6).

1-(2-(4-methoxyphenyl)ethynyl)benzene (Table 2.3, Entry 5). Column chromatography (hexane) yielded 93% of the title compound as white solid. The compound showed identical spectroscopic properties to those previously reported. ${ }^{8}$

Trimethyl(2-(thiophene-2-yl)ethynl)silane (Table 2.3, Entry 7). Column chromatography (hexane) yielded 96% of the title compound as light yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 1 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 132.7,127.4,127.0,123.3,98.8,97.8,0.0 ; \mathrm{MS}(\mathrm{ES}), \mathrm{m} / \mathrm{z}(\mathrm{RI} \%): 181$ (8), 174 (46), 172 (100).

1-(Hex-1-ynyl)-4-methylbenzene (Table 2.3, Entry 8). Column chromatography (hexane) yielded 94% of the title compound as light yellow liquid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0,2 \mathrm{H}), 2.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.46-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 137.6,131.5,121.1$, 89.7, 80.6, 31.1, 22.2, 19.3, 13.8; MS (CI), m/z (RI\%): 172 (47), 157 (57), 129 (100), 102 (6).

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

1-(4-(2-phenylethynyl)phenyl)ethanone (Table 2.3, Entry 9). Column chromatography (20% ethyl acetate in hexane) yielded 96% of the title compound as white solid. The compound showed identical spectroscopic properties to those previously reported. ${ }^{8}$

General Procedure for "one pot" flavone synthesis (Table 2.4): A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, (0.015 mmol), $\mathrm{PA}-\mathrm{Ph}(0.03 \mathrm{mmol})$, the aryl halide (1 mmol) (if solid) and DMF (1.5 mL) were placed in a microwave vial and the mixture degassed by sparging with argon. DBU (1.5 mmol), ethynyltrimethylsilane (1.5 mmol) and the aryl halide (if liquid) were added, the vial capped and the reaction mixture microwaved (at $90^{\circ} \mathrm{C}$ for 30 mins for aryl iodides and at $120^{\circ} \mathrm{C}$ for 30 mins for aryl bromides). The contents were added to another microwave vial containing a mixture of substituted 2 -iodophenol (0.5 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(7.8 \mathrm{mg}, 0.0075 \mathrm{mmol}), \mathrm{PA}-\mathrm{Ph}(4.4 \mathrm{mg}, 0.0150 \mathrm{mmol})$, DBU $(224 \mu \mathrm{~L}$, 1.5 mmol), TBAF (1 M solution in THF, $1 \mathrm{~mL}, 1 \mathrm{mmol}$) and DMF (0.5 mL). In a wellvented fume hood, CO gas was bubbled through the reaction mixture for 5 minutes. Alternatively, CO gas could be introduced via a CEM gas addition unit. The vial was then sealed and microwaved at $90{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was concentrated in vacuo and purified using column chromatography (20-30\% ethyl acetate in hexane) to yield the desired flavone.

2-p-Tolyl-4H-chromen-4-one (Table 2.4, Entry 1). Column chromatography (20\% ethyl acetate in hexane) yielded 67% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 200 MHz): $\delta 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.86(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}) 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.7,163.9,156.4,142.5,133.8,129.9,129.1,126.4,125.8$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

125.3, 124.1, 118.2, 107.1, 21.7; HRMS (CI) for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}\right]$ calculated 236.0837 found 236.0836 .

2-(4-methoxyphenyl)-4H-chromen-4-one (Table 2.4, Entry 2). Column chromatography (20% ethyl acetate in hexane) yielded 56% of the title compound as white solid. The compound showed identical spectroscopic properties to those previously reported. ${ }^{14}$

Methyl 4-oxo-2-p-tolyl-4H-chromene-6-carboxylate (Table 2.4, Entry 3). Column chromatography (30% ethyl acetate in hexane) yielded 63% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.36\left(\mathrm{dd}, J_{1}=6.6, J_{2}=2 \mathrm{~Hz}\right.$, 1 H), 7.83 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (d, $J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 7.34$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (s, $1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 177.0,165.0,163.1,157.9$, $141.9,139.5,133.6,129.1,126.4,125.5122 .8,117.7,106.4,51.6,20.8$. HRMS (ES) for [$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}$] calculated 295.0970; found $\mathrm{M}+1$ 295.0960.

Methyl 2-(4-methoxyphenyl)-4-oxo-4H-chromene-6-carboxylate (Table 2.4, Entry 4). Column chromatography (30% ethyl acetate in hexane) yielded 46% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): ~ \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=6.8\right.$, $\left.J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, 2H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 177.9,166.0,162.8,158.8$, 153.2, 134.4, 131.1, 129.1, 128.3, 123.7, 118.6, 114.7, 106.6, 55.7, 52.6; HRMS (ES) for [$\left.\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{5}\right]$ calculated 311.0919; found $\mathrm{M}+1$ 311.0919.

2-(Thiophen-2-yl)-4H-chromen-4-one (Table 2.4, Entry 5). Column chromatography (20% ethyl acetate in hexane) yielded 65% of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 8.20\left(\mathrm{dd}, J_{1}=6.6, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38-7.74(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.71$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.1,159.2,156.1,135.3,133.9,130.4,128.7$, 125.9, 125.4, 118.1, 106.4; $\mathrm{HRMS}(\mathrm{CI})$ for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\right]$ calculated 228.0245; found 228.0238.

Methyl 4-oxo-2-(thiophene-2-yl)-4H-chromene-6-carboxylate (Table 2.4, Entry 6). Column chromatography (30% ethyl acetate in hexane) yielded 71% of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.90(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}) 3.96(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 177.3,165.9,159.4,158.5,134.6,130.9,129.0$, $128.8,128.3,127.4,123.8,118.5,106.5,52.6$; HRMS (CI) for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}\right]$ calculated 286.0300; found 286.0292.

2-(4-ethylphenyl)-4H-chromen-4-one (Table 2.4, Entry 7). Column chromatography (20% ethyl acetate in hexane) yielded 62% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.20\left(\mathrm{dd}, J_{1}=6.8, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right) 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ $\left(\mathrm{dd}, J_{1}=5.4, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right) 7.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.8(\mathrm{~s}, 1 \mathrm{H})$, $2.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.6$, $163.8,156.4,148.6,133.8,129.3,128.7,126.5,125.8,125.3,124.1,118.2,107.1,29.0$, 15.4; $\mathrm{HRMS}(\mathrm{CI})$ for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}\right]$ calculated 250.0994; found 250.0994 .

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Methyl 2-(4-ethylphenyl)-4-oxo-4H-chromene-6-carboxylate (Table 2.4, Entry 8). Column chromatography (30% ethyl acetate in hexane) yielded 58% of the title compound as white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.91(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (dd, $\left.J_{1}=7.0, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, \mathrm{H}) 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 178.0,166.0,164.1,158.8,149.1,134.5,132.0,128.8$, 128.3, 127.3, 126.6, 123.7, 118.7, 107.4, 52.6, 29.0, 15.4; HRMS (ES) for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}\right]$ calculated 308.1049; found [M+1] 309.1134

2.1.6. References

(1) Andersen, Ø. M.; Markham, K. R. Flavonoids: Chemistry, Biochemistry, and Applications; CRC Press: Boca Raton, Fla., 2006.
(2) (a) Galietta, L. J. V.; Springsteel, M. F.; Eda, M.; Niedzinski, E. J.; By, K.; Haddadin, M. J.; Kurth, M. J.; Nantz, M. H.; Verkman, A. S. J. Biol. Chem. 2001, 276, 19723-19728; (b) Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J. J.; Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M.; Smith, G. C. M. J. Med. Chem. 2005, 48, 569-585; (c) Guz, N. R.; Stermitz, F. R.; Johnson, J. B.; Beeson, T. D.; Willen, S.; Hsiang, J. F.; Lewis, K. J. Med. Chem. 2001, 44, 261-268; (d) Henry, E. C.; Gasiewicz, T. A. Archives of Biochemistry and Biophysics 2008, 472, 77-88; (e) Hyup Joo, Y.; Kwan Kim, J.; Kang, S.-H.; Noh, M.-S.; Ha, J.-Y.; Kyu Choi, J.; Min Lim, K.; Hoon Lee, C.; Chung, S. Bioorg. Med. Chem. Lett. 2003, 13, 413-417; (f) Yang, X.; Sun, Y.; Xu, Q.; Guo, Z. Organic \& Biomolecular Chemistry 2006, 4, 2483-2491.
(3) (a) Baker, W. J. Chem. Soc. 1933, 1381 - 1389; (b) Mahal, H. S.; Venkataraman, K. J. Chem. Soc. 1934, 1767-1769.
(4) (a) Lee, K. S.; Seo, S. H.; Lee, Y. H.; Kim, H. D.; Son, M. H.; Chung, B. Y.; Lee, J. Y.; Jin, C.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2005, 15, 2857-2860; (b) Zembower, D. E.; Zhang, H. J. Org. Chem. 1998, 63, 9300-9305.
(5) (a) Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.; Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Ceráin, A. L.; Sagrera, G.; Seoane, G.; Cerecetto, H.; González, M. Bioorg. Med. Chem. 2007, 15, 3356-3367; (b) Hemanth Kumar, K.; Perumal, P. T. Tetrahedron 2007, 63, 9531-9535; (c) Yao, N.; Song, A.; Wang, X.; Dixon, S.; Lam, K. S. J. Comb. Chem 2007, 9, 668-676.
(6) Barnard, C. F. J. Organometallics 2008, 27, 5402-5422.
(7) (a) Ciattini, P. G.; Morera, E.; Ortar, G.; Rossi, S. S. Tetrahedron 1991, 47, 64496456; (b) Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 6097-6100; (c) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 17651768; (d) Torii, S.; Okumoto, H.; Xu, L. H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.; Kalinin, V. N. Tetrahedron 1993, 49, 6773-6784.
(8) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082-5086.
(9) (a) Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists - Strategies, Instruments, and Protocols, Wiley-VCH: Weinheim, 2009; (b) Loupy, A. (ed.) Microwaves in Organic Synthesis, Wiley-VCH: Weinheim, 2002.
(10) (a) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750-5753; (b) Wannberg, J.; Kaiser, N.-F. K.; Vrang, L.; Samuelsson, B.; Larhed, M.; Hallberg, A. J. Comb. Chem.

2005, 7, 611-617; (c) Gremmen, C.; Willemse, B.; Wanner, M. J.; Koomen, G. J. Org. Lett. 2000, 2, 1955-1958; (d) Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4-6; (e) Wu, X.; Ekegren, J. K.; Larhed, M. Organometallics 2006, 25, 1434-1439.
(11) Available from CEM Corporation, P. O. Box 200, 3100 Smith Farm Road, Matthews, North Carolina, USA 28106.
(12) Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem 2005, 70, 6097-6100.
(13) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765-1768.
(14) Kumar, K. H.; P. T. Perumal. Tetrahedron 2007, 63, 9531-9535.

Chapter 3

3.1.1 Development of Methods for the Synthesis of Libraries of Substituted Maleimides and α, β-Unsaturated- γ-Butyrolactams. ${ }^{2}$

Emelia Awuah and Alfredo Capretta

3.1.2 Abstract

Synthetic methods for the preparation of maleimide and α, β-unsaturated- γ butyrolactam compound collections are described. These routes take advantage of Pd-cross-coupling and conjugate addition / elimination reactions to permit the facile production of bisaryl-maleimides, anilinoaryl-maleimides and bisanilino-maleimides while allowing control over the synthesis of symmetrical or nonsymmetrical derivatives. Similarly, the chemistry developed allows for the generation of bisaryl substituted α, β -unsaturated- γ-butyrolactams. The scope and limitations of the approaches are presented.

[^1]
PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

3.1.3 Introduction

The maleimide motif is featured in a variety of natural products including the arcyriaflavin ${ }^{1}$, arcyriarubin ${ }^{2}$, himanimide ${ }^{3}$, polycitrin ${ }^{4}$ and rebeccamycin ${ }^{5}$ families. Biological properties of these compounds and their analogues include antibacterial and antiviral activity, angiogenesis inhibition ${ }^{6}$ as well as kinase inhibition. ${ }^{7}$ For example, groups from SmithKline Beecham ${ }^{8,9}$, Eli Lilly ${ }^{10}$, and Johnson \& Johnson ${ }^{11}$ among others, have demonstrated that bisaryl-maleimides are potent inhibitors of glycogen synthase kinase-3 (GSK-3). In fact, compounds SB 216763 and SB 415286 (Figure 3.1) have been shown to inhibit the α-isoform of GSK-3 in an ATP-competitive manner with a K_{i} of 9 and 31 nM , respectively. ${ }^{8}$ The syntheses of these maleimide inhibitors often involve multi-step sequences that do not lend themselves readily to combinatorial approaches.

As part of a program aimed at the design and synthesis of selective kinase inhibitors, we required a route that could access chemically diverse families of substituted maleimides. We determined that Pd-catalyzed cross coupling chemistry developed in our laboratory ${ }^{12-17}$ is particularly well suited for this purpose allowing for efficient derivatization at the 3 and 4-positions of maleimide heterocyclic core. Furthermore, inspired by the biological activity of staurosporine, ${ }^{18,19}$ Figure 3.1, we have developed a general method that allows for the synthesis of substituted α, β-unsaturated-γ-butyrolactam analogues. An ideal synthetic method should allow for the preparation of bisaryl-maleimides, anilinoaryl-maleimides and bisanilino-maleimides; be amenable for the parallel synthesis of maleimide libraries; and allow for the control necessary to permit symmetrical or nonsymmetrical derivatives.

Figure 3.1: Systems containing maleimide and α, β-unsaturated $-\gamma$ butyrolactam substructures.

3.1.4 Results and Discussion

Our initial work focused on the most straightforward approach to the target compounds involving two sequential Heck reactions onto a maleimide core to permit derivatization at the 3- and 4-positions. Exploratory experiments revealed that N protection was necessary and N-(p-methoxybenzyl)-maleimide (1) ${ }^{20}$ was chosen as a suitable substrate as a number of mild deprotection strategies have been reported. ${ }^{21-24}$ The initial screening of reaction conditions involved the coupling of 1 with p-iodotoluene utilizing microwave heating and examined the effect of different ligands, ${ }^{13}$ solvents, temperatures, palladium sources and bases. As illustrated in Table 3.1, elevated temperatures ($140{ }^{\circ} \mathrm{C}$ for 55 min) were required to effect coupling in good yields. When 6 equivalents of the aryl halide were used, many of the conditions screened (entries 1-8) allowed for the production of mono-arylated product (Table 3.1, a) predominantly. However, use of the 1, 3, 5, 7-tetramethyl-2, 4, 8-trioxa-6-o-methoxyphenyl-6phosphaadamantane ligand ($2, \mathrm{R}=\mathrm{OMe}$) and $\mathrm{Cy}_{2} \mathrm{NMe}$ as the base allowed for a
substantial increase in the diarylated product (Table 3.1, b) in dioxane (entry 9) and DMF (entry 10). Unfortunately, increasing reactions times, temperature or the number of

to be more synthetically viable enabling access to the aryl-substituted maleimides under milder conditions. Using N-(p-methoxybenzyl)-3,4-dibromomaleimide (3) ${ }^{26,27}$ as the scaffold, a series of experiments quickly determined the optimal reaction conditions (Pd source, base and solvent) for monoarylation of the maleimide core. The results are presented in Table 3.2. The best yields were obtained when using the $1,3,5,7$ -

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

tetramethyl-2, 4, 8-trioxa-6-phenyl-6-phosphaadamantane ligand (PA-Ph: 2, $\mathrm{R}=\mathrm{H}$) and $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ at room temperature with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF.

However, despite using only one equivalent of boronic acid, a small amount of

Table 3.2. Optimization of reaction parameters for monoarylated-maleimide synthesis via Suzuki Chemistry

		$\xrightarrow[\substack{3 \mathrm{~mol} \% \mathrm{Pd} \\ 6 \mathrm{~mol} \% \text { PA-Ph } \\ \text { base, solvent, r.t. }}]{\mathrm{Ar} \text { 2h }}$		Cos	
	$\mathrm{Ar}-\mathrm{B}(\mathrm{OH})_{2}$	Pd source	base	solvent	yield (\% a : \%b)
1		Pd(OAc) ${ }_{2}$	CsOH	THF	15:10
2		$\mathrm{Pd}(\mathrm{OAc})_{2}$	CsOH	toluene	15:0
3		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	CsOH	THF	15:10
4		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	CsOH	toluene	10:0
5		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	CsOH	dioxane	10:0
6		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	CsF	THF	50:35
7		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	THF	50:23
8		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	55:23
9		Pd ${ }_{2} \mathrm{dba}_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	$78: 15$
10		$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	58:25

diarylation product (Table 3.2, b) was always generated. This byproduct was easily separated from the desired monoarylated compound (Table 3.2, a) via chromatography; however, for the sake of convenience, the reaction mixture could be taken forward and subjected to a second

Suzuki reaction.
With the monoarylated-malemides in hand (Table 3.3, a), introduction of a second aryl moiety (to give Table 3.3, b) was shown to be facile and high yielding. Deprotection with TFA in anisole (in a 1:1 ratio) using microwave irradiation gave the desired bisarylated maleimides (Table 3.3, c).

Table 3.3. Nonsymmetrical Bisaryl Maleimides

 via Suzuki Chemistry(
under microwave irradiation was employed. High yields of the desired bisarylmaleimides were obtained in all cases except for entry 5 (in Table 3.4) where product decomposition occurred under all deprotection conditions attempted.

A number of potent kinase inhibitors are anilinoaryl-maleimides (SB415286 in Figure 3.1, for example) and we next explored routes for the parallel synthesis of these systems. Exploratory experiments quickly determined that the order of introduction of the aryl and amino vectors was important and that the most facile route to the 3-amino, 4-aryl substituted maleimides involved amination before a Suzuki arylation. In this way, treatment of the N-(p-methoxybenzyl)-3,4-dibromomaleimide (3) with 1 equivalent of an amine (primary or secondary aliphatic; anilines or N-monosubstituted anilines) at room

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

temperature in THF allowed for a rapid conjugate addition / elimination reaction to provide high yields of the monosubstituted maleimide (Table 3.5, a). In fact, under these

Table 3.4. Symmetrical Bisaryl Maleimides via Suzuki Chemistry

	$\mathrm{Ar}-\mathrm{B}(\mathrm{OH})_{2}$	\% yield a	\% yield b
1		93	91
2	C1-8(OH)2	91	89
3	MOO- $-2-\mathrm{BOH}$	95	88
4	N- \sim^{-8}	96	75
5	$\mathrm{NC}-2-\mathrm{BOH}$	96	0

conditions and in the presence of excess amine, the mono-aminated maleimide product is formed exclusively. It would appear that the installation of an amino group alters the electronic nature of the neighbouring site such that a second conjugate addition does not occur at room temperature. However, utilization of the Suzuki
chemistry developed above allowed for facile arylation (to give Table 3.5, b) and, after deprotection, access to 3 -amino-4-aryl substituted maleimides (Table 3.5, c) in good overall yields. A number of complications were encountered when attempting to introduce a second amino moiety onto the mono-aminated maleimide scaffold. We determined that these reactions were controlled by the subtle interplay between the electron donating ability of the first amine introduced and the nucleophilicity of the second amine. For example, treatment of 3-bromo-1-(4-methoxybenzyl)-4-(phenylamino)-maleimide (Table 3.5, entry 11, a) with series of amines (3 equivalents) and using microwave irradiation ($100^{\circ} \mathrm{C}$ for 30 minutes) resulted in diamino-maleimide
products only with primary and secondary aliphatic systems such as n-butylamine, piperidine and morpholine to give 4, 5 and 6, respectively (Figure 3.2). Anilinic or N -substituted-anilinic amines failed to couple. It would appear that once mono-aminated, the electrophilicity of the carbon bearing the Br is drastically reduced as it is now the terminus of an enamine system as well as an α, β-unsaturated amide. It is not surprising, therefore, that a second conjugate addition / elimination reaction only takes place under

Table 3.5. 3-Amino-4-aryl Substituted Maleimides

forcing conditions with the more nucleophilic primary or secondary aliphatic amines. In addition, both 3-bromo-1-(4-methoxybenzyl)-4-(methyl(phenyl)amino)- 1 H -pyrrole-2,5-dione (Table 3.5, entry 8 , a) and 3-bromo-1-(4-methoxybenzyl)-4-morpholino-maleimide (Table 3.5 , entry 2 , a) were shown to couple with piperidine (to give 7 and 8, respectively) while morpholine and other aromatic amines failed to react. In
effect, bisamination of the maleimide scaffold $\mathbf{3}$ was only successful in cases where the
addition of a less nucleophilic amine (lower pKa , less electron rich) is followed by reaction with a more nucleophilic amine (higher pKa , more electron rich).

4

5

6

7

8

Figure 3.2. p-methoxybenzylamine protected 3,4-diamino maleimides

As a result, symmetrical bisaminated maleimides could not be generated using this approach. It should be noted that attempts to introduce the second amine via a palladium catalyzed amination reaction were unsuccessful with only the dehalogenated product recovered. In addition to these limitations, deprotection of the methoxybenzyl protecting group for these systems was also problematic. In systems bearing a piperidine moiety, deprotection under the conditions developed above using AlCl_{3} / anisole at room temperature resulted in trapping of the p-methoxybenzyl cation generated by the piperidine nitrogen to give systems 9 and 10 (from 5 and 7, respectively, as shown in Figure 3.3). These results are very peculiar as trapping of the p-methoxybenzyl cation
R=H, $=\mathrm{Ph}$
$\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}$

Figure 3.3. Trapping of the p-Methoxybenzyl Cation

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

under microwave irradiation. Attempts at deprotection using oxidative cleavage protocols involving CAN^{28} or DDQ^{29} were unsuccessful.

It became clear that a different protecting group was needed; ideally, one that could alter the electronics of the maleimide system and thereby help facilitates the second amination reaction. N-(p-nitrophenyl)-3,4-dibromomaleimide (11), prepared by treating maleic anhydride with p-nitroaniline in acetic acid, was identified as an ideal substrate. Its deprotection is realized by treating with methanolic ammonia at room temperature.

Once again, the order of addition of the two amino vectors is important. As presented in Table 3.6, addition of the first amine vector to $\mathbf{1 1}$ to give system a could be

Table 3.6. Nonsymmetrical

Bisamino Maleimides
(
achieved in high yields (as evidence by TLC) in a few minutes. The mono-aminated compound (a) was not isolated but used directly in the next step. Addition of a second, more nucleophilic amino moiety allowed for the requisite conjugate addition / elimination reaction (to give b), achieved using microwave heating a $50{ }^{\circ} \mathrm{C}$ for 30 minutes. Finally, treatment with methanolic ammonia at room temperature for

12 hours provided the desired bisamino maleimides (Table 3.6, c). Note that treatment of

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

11 with primary amines, such as n-butylamine, resulted in a complex mixture of products that included those wherein the p-nitrophenyl moiety is substituted with the primary amine introduced.

Our attention was then turned to the application of the chemistry developed above for the syntheses of substituted α, β-unsaturated- γ-butyrolactams. These systems represent analogues of the maleimide derivatives with a deleted carbonyl group and can be used to provide further information about the nature of inhibitor binding. A suitable scaffold was generated via the treatment of mucobromic acid with 4-methoxybenzyl amine under

Table 3.7. Optimization of Reaction Parameters for the Synthesis of Substituted α, β-Unsaturated- γ-butyrolactams

reductive amination conditions similar to those described by Zhang and coworkers ${ }^{30}$ to give 3,4-dibromo-1-(4-methoxybenzyl)- 1 H -pyrrol-2(5H)-one (12) in 78% yield. Once again, optimization of the reaction parameters necessary for the
introduction of a single aryl moiety via a Suzuki reaction was investigated (Table 3.7).

As expected, the first arylation takes place at the β-position of the unsaturated $-\gamma$ butyrolactam 12 (to give a in Table 3.7) thus allowing for control over the substitution pattern in the final product. The best yields were obtained when using the PA-Ph ligand and $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ with KF in toluene. Furthermore, unlike the conditions used for the first arylation in the maleimide series, the initial Suzuki coupling involving 12 required elevated temperatures $\left(60^{\circ} \mathrm{C}\right)$. In addition, despite using only one equivalent of the boronic acid, a small amount of diarylation product (Table 3.7, b) was generated.

Carrying the reaction mixture forward, a second aryl vector could be introduced into the butyrolactam system (to give Table 3.8, b) under the similar conditions with an increase

Table 3.8. 3.4-Diaryl α, β-Unsaturated- γ-butyrolactams

1		Mo- $\sim^{2}-\mathrm{BOH2}$	78	84
2		$=-$	75	86
3	$\mathrm{Cl}-\mathrm{BOH} \mathrm{C}_{2}$	$\text { mo - }- \text { - }$	81	82
4			84	81
5	Moo- $-3-\mathrm{BOH}$		85	86
6	$\mathrm{Cl}-\mathrm{BOO} \mathrm{H}_{2}$		82	87

in temperature (to $80^{\circ} \mathrm{C}$) and reaction time (to 12 h). Deprotection to the desired lactam systems (Table 3.8, \mathbf{c}) was accomplished using TFA / anisole and microwave irradiation at $150{ }^{\circ} \mathrm{C}$ for 30 min. with no significant change in
yield observed when the $\mathrm{AlCl}_{3} /$ TFA deprotection protocol was used. Finally, entries 4 6 in Table 3.8 represent systems with the same aryl moiety at the α - and β-positions of
the lactam and were prepared by treating 12 with 2.2 equivalents of the appropriate boronic acid followed by deprotection.

Exploratory experiments aimed at the introduction of amine vectors into $\mathbf{1 2}$ quickly revealed that the approach developed above was inappropriate for the amination of the butyrolactam series. For example, treatment of $\mathbf{1 2}$ with morpholine gave a mixture of multiple products. This was not surprising as it is well known that the methylene moiety at C 5 is enolizable ${ }^{31,32}$ and treatment with basic amines precludes the conjugate addition / elimination reaction.

3.1.5 Conclusions

The methods developed above allow for rapid and facile access to symmetrical and nonsymmetrical, aryl and amino substituted maleimides and α, β-unsaturated $-\gamma$ butyrolactams. Furthermore, the utilization of other organopalladium cross-coupling chemistries (including such reactions as the Sonogashira, Stille, ketone arylations, Negishisi, etc.) should allow for introduction of a variety of structurally diverse vectors and, thereby, an increased mapping of the chemical space probed by these compound collections.

3.1.6 Experimental

\boldsymbol{N}-(p-Methoxybenzyl)-maleimide (l). ${ }^{20}$ To a solution of maleic anhydride ($1.6 \mathrm{~g}, 16.3$ mmol) in acetic acid (15 mL) was added p-methoxybenylamine ($2.1 \mathrm{~mL}, 16.3 \mathrm{mmol}$). The mixture was refluxed for 5 h , cooled to room temperature then concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel
using 20% ethylacetate in hexane as the eluent afforded 1 in 79% yield ($2.8 \mathrm{~g}, 12.9$ $\mathrm{mmol})$. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 170.6,159.4,134.2,130.1,128.6,114.2,55.4,41.0$; (HRMS) CI: calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}\right) 217.0739$ found 217.0735.

Synthesis of 1-(4-Methoxybenzyl)-3-p-tolyl-1H-pyrrole-2,5-dione (Table 3.1, a) and 1-(4-Methoxybenzyl)-3,4-di-p-tolyl-1H-pyrrole-2,5-dione (Table 3.1, b) via a Heck Reaction. To a mixture of N-(p-methoxybenzyl)-maleimide (1) ($100 \mathrm{mg}, 0.46 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(23.8 \mathrm{mg}, 0.023 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{PA}-\mathrm{Ph},(2, \mathrm{R}=\mathrm{OMe}, 7.7 \mathrm{mg} .0 .023$ mmol, $5 \mathrm{~mol} \%$), $\mathrm{Cy}_{2} \mathrm{NMe}(494 \mu \mathrm{~L}, 2.3 \mathrm{mmol}, 5 \mathrm{eq}$.), 4-iodotoluene ($300.9 \mathrm{mg}, 1.38$ mmol, 6 eq.), was added dried DMF (3 mL). The mixture was degassed, placed under an atmosphere of argon and microwaved at $140{ }^{\circ} \mathrm{C}$ for 55 minutes. The solvent was evaporated under reduced pressure and the reaction mixture was purified by column chromatography on silica gel using 30% ethylacetate/hexane.

1-(4-Methoxybenzyl)-3-p-tolyl-1H-pyrrole-2,5-dione (Table 3.1, Entry 10, Compound a) showed; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 7.24 (d, $J=2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 170.7,170.4,159.3,143.9,141.9$, 130.1, 129.8, 128.9, 128.7, 126.2, 122.8, 114.1, 55.39, 41.1, 21.7; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}\right) 307.1208$ found 307.1208.

1-(4-Methoxybenzyl)-3,4-dip-tolyl-1H-pyrrole-2,5-dione (Table 3.1, Entry 10, Compound b) showed; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.8,159.3,140.1,135.6,130.5,129.9$, $129.4,129.1,128.5,126.1,114.1,55.4,41.5,21.6$; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3}\right) 397.1676$ found 397.1678 .

General Procedure for the Mono-arylation of 1-(4-Methoxybenzyl)-3,4-dibromo-1H-pyrrole-2,5-dione (3) (Table 3.2). To a mixture of 1-(4-methoxybenyl)-3,4-dibromo-1 H -pyrrole-2,5 dione (3) ${ }^{27}$ ($187 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3} . \mathrm{CHCl}_{3}(15.5 \mathrm{mg}, 0.015 \mathrm{mmol}, 3\right.$ $\mathrm{mol} \%$), PA-Ph, ($\mathbf{2}, \mathrm{R}=\mathrm{H}, 8.8 \mathrm{mg} .0 .03 \mathrm{mmol}, 6 \mathrm{mmol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(366.0 \mathrm{mg}, 1.125$ mmol, 2.25 eq .) and the aryl boronic acid ($1.1 \mathrm{eq}, 0.55 \mathrm{mmol}$) was added dried THF (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred at room temperature for $2-8 \mathrm{~h}$. The solvent was evaporated under reduced pressure and the reaction mixture was purified by column chromatography on silica gel.

1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione (Table 3.2,

 Entry 8, Compound a). Using 4-methoxylphenylboronic acid ($83.6 \mathrm{mg}, 0.55 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1 H-pyrrole-2,5-dione was obtained in 55% yield ($110.3 \mathrm{mg}, 0.275$ mmol) after purification by column chromatography using 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}$,$2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.0,165.8,161.9,159.6,138.9,131.7$, $130.5,128.4,120.5,119.7,114.3,55.6,55.5,42.2,29.9$; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{4}\right) 401.0263$ found 401.0252 .

1-(4-Methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-pyrrole-2,5-dione (Table 3.2, Entry 8, Compound b). Isolated as byproduct from the synthesis of 1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione (Table 2, Entry 8, Compound a) in 23% yield ($49.4 \mathrm{mg}, 0.115 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.44$ (overlap, 6H), $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.2,160.8,159.3,134.2,131.6,130.5,129.1$, $114.2,55.4,41.4$; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{5}\right)$ [M+1] 430.1654 found 430.1640.

1-(4-Methoxybenzyl)-3-bromo-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.2, Entry 9, Compound a). Using 4-methylphenylboronic acid ($75.0 \mathrm{mg}, 0.55 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H-pyrrole-2,5dione was obtained in 78% yield ($150.1 \mathrm{mg}, 0.38 \mathrm{mmol}$) after purification by column chromatography on silica gel using 10% diethyl ether in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 168.8,165.7,159.6,141.7,130.5,130.0,129.7$, $129.5,128.6,128.3,125.1,121.6,55.5,42.2,21$; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{3}\right) 385.0314$ found 385.0312 .

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

1-(4-Methoxybenzyl)-3,4-dip-tolyl-1H-pyrrole-2,5-dione (Table 3.2, Entry 9, Compound b). Isolated as byproduct from the synthesis of 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl1 H -pyrrole-2,5-dione (Table 2, Entry 9, Compound a) in 15% yield ($29.8 \mathrm{mg}, 0.075$ mmol) and showed identical spectral properties to Table 1, Entry 10, Compound b.

3-Bromo-4-(4-(dimethylamino)phenyl)-1-(4-methoxybenzyl)-1H-pyrrole-2,5-dione

(Table 3.2, Entry 10, Compound a). Using 4-(dimethylamino)phenylboronic acid (90.3 $\mathrm{mg}, 0.55 \mathrm{mmol}$) and the general procedure described above, 3-bromo-4-(4-(dimethylamino)phenyl)-1-(4-methoxybenzyl)-1 H -pyrrole-2,5-dione was obtained in 58% yield ($120.4 \mathrm{mg}, 0.29 \mathrm{mmol}$) after purification by column chromatography using 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 6.72(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 6 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $169.5,166.4,159.4,151.9,138.7,131.4,130.3,128.6,115.5,114.6,114.1,111.4,55.4$, 41.9, 40.1; (HRMS) EI: calculated for $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}\right) 414.0579$ found 414.0572 .

1-(4-Methoxybenzyl)-3,4-bis(4-dimethlyaminophenyl)-1H-pyrrole-2,5-dione (Table 3.2, Entry 10, Compound b). Isolated as a byproduct from the synthesis of 3-Bromo-4-(4-(dimethylamino)phenyl)-1-(4-methoxybenzyl)-1H-pyrrole-2,5-dione (Table 2, Entry 10, Compound a) in 25% yield ($56 \mathrm{mg}, 0.125 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$ $\mathrm{MHz}) \delta 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}) 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
$\delta 171.9,159.1,150.8,132.3,131.1,130.3,129.5,117.3,114.0,111.7,55.4,41.1,40.2$; (HRMS) CI: calculated for $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 455.2209$ found 455.2203 .

General Procedure for Synthesis of Non-Symmetrical Bisaryl Maleimides (Table 3.3, Compound b). To a mixture of the mono-arylated maleimide (0.2 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(6.21 \mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{PA}-\mathrm{Ph},(2, \mathrm{R}=\mathrm{H}, 3.52 \mathrm{mg} .0 .012$ $\mathrm{mmol}, 6 \mathrm{mmol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(162.9 \mathrm{mg}, 0.45 \mathrm{mmol})$ and the arylboronic acid (1.2 eq. 0.24 mmol) was added dried THF (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred at $40^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated under reduced pressure and the reaction mixture was purified by column chromatography on silica gel.

1-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.3,

 Entry 1, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H -pyrrole-2,5dione ($77.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-methoxyphenylboronic acid ($37.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-p-tolyl1 H -pyrrole-2,5-dione was obtained in 92% yield ($76.0 \mathrm{mg}, 0.184 \mathrm{mmol}$) after purification by column chromatography on silica gel using 30% ethylacetate in hexane as the eluent. The compound showed; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.36-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.9,160.8,159.2,139.9,135.1,134.3,131.5$, 130.3, 129.7, 129.3, 128.9, 126.1, 121.2, 114.0, 55.3, 41.3, 21.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}\right) 413.1627$ found 413.1628 .
PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

4-(1-(4-Methoxybenzyl)-3-(2,4-dimethoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 2, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H-pyrrole-2,5-dione ($77.2 \mathrm{mmol}, 0.2 \mathrm{mmol}$), 2,4-dimethoxyphenylboronic acid ($43.8 \mathrm{mg}, 0.24$ mmol) and the general procedure described above, 4-(1-(4-methoxybenzyl)-3-(2,4-dimethoxyphenyl)-4-p-tolyl-1 H-pyrrole-2,5-dione was obtained in 95% yield (84.3 mg , 0.195 mmol) after purification by column chromatography using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.32-7.42$ (m, 5H), $7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=2.2 \& 6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.2,171.0,162.6,159.3$, $158.8,140.0,136.3,133.4,132.4,130.5,129.3,129.0,128.5,128.0,114.1,111.3,105.2$, 99.3, 55.6, 55.5, 55.2, 41.5, 21.7; (HRMS) CI: calculated for $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{5}\right) 443.1733$ found 443.1730.

1-(4-Methoxybenzyl)-4-o-tolyl-3-p-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 3, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1H-pyrrole-2,5-dione (77.2 mmol, 0.2 mmol), 2-methylphenylboronic acid ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-4-o-tolyl-3-p-tolyl-1H-pyrrole-2,5-dione was obtained in 91% yield ($72.3 \mathrm{mg}, 0.182 \mathrm{mmol}$) after purification by column chromatography using 20% ethylacetate in hexane as the eluent and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.40-7.43$ (overlap, 4 H$), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.1,2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 170.9,170.6,159.3,143.4,130.4$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
129.5, 129.4, 129.1, 128 5. 126.2, 125.5, 114.1, 55.4, 41.5, 21.6, 20.2 (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{3}\right) 398.1756$ found 398.1738 .

1-(4-Methoxybenzyl)-3-(4-chlorophenyl)-4-p-tolyl-H-pyrrole-2,5-dione (Table 3.3, Entry 4, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H -pyrrole-2,5dione (77.2 mg mmol, 0.2 mmol), and 4-chlorophenylboronic acid ($37.5 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-(4-chlorophenyl)-4-p-tolyl- H-pyrrole-2,5-dione was obtained in 90% yield ($77.9 \mathrm{mg}, 0.180 \mathrm{mmol}$) after purification by column chromatography using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $176 \mathrm{MHz}) \delta 170.5,159.4,140.7,136.8,136.0,134.2,131.3,130.5,129.9129 .6,129.0$, 128.8, 127.4, 114.2, 55.4, 41.6, 21.7; (HRMS) ES: calculated for $\left(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClNO}_{3}\right)[\mathrm{M}+1]$ 418.1210 found 418.1209.

1-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-4-o-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 5, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1 H -pyrrole-2,5-dione ($80.2 \mathrm{mmol}, 0.2 \mathrm{mmol}$) and 2-methylphenylboronic acid ($32.6 \mathrm{mg}, 0.24$ mmol) and the general procedure, 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-o-tolyl1 H -pyrrole-2,5-dione was obtained in 91% yield ($74.8 \mathrm{mg}, 0.181 \mathrm{mmol}$) after purification by column chromatography using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.44(\mathrm{t}, J=9.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.21-7.289$

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
(m, 3H), 6.87 (d, $J=8.6 \mathrm{H} \mathrm{z}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.0,170.8,161.1,159.3,136.9,135.2$, 131.4, 130.9, 130.4, 129.9, 129.4, 129.0, 126.2, 121.8, 114.1, 55.4, 41.5, 20.2; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}\right) 413.1627$ found 413.1628 .

1-(4-methoxybenzyl)-3-(4-dimethylamino)phenyl)-4-o-tolyl-1H-pyrrole-2,5-dione

(Table 3.3, Entry 6, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-(4-dimethylamino)phenyl)-1 H -pyrrole-2,5-dione ($82.8 \mathrm{mmol}, \quad 0.2 \mathrm{mmol}$), and 2methylphenylboronic acid ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-(4-dimethylamino)phenyl)-4-o-tolyl-1 H -pyrrole-2,5-dione was obtained in 94% yield ($80.1 \mathrm{mg}, 0.188 \mathrm{mmol}$) after purification by column chromatography using 30% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700\right.$ MHz) $\delta 7.47$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (overlap, 2 H), 7.22 (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $2.97(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 171.6,171.3,159.3,151.3$, 137.1, 131.6, 131.2, 130.7, 130.4, 130.3, 130.0, 129.3, 129.1, 126.2, 117.0, 114.1, 111.6, 55.4, 41.4, 40.1, 20.3; (HRMS) ES: calculated for $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}\right)[\mathrm{M}+1] 427.2022$ found 427.2015 .

General Procedure for the Deprotection of Non-Symmetrical Bisaryl Maleimides using TFA in Anisole (Table 3.3, Compound c). To a solution of the p-methoxybenzyl protected maleimide (0.1 mmol) in anisole (1 mL) was added TFA (1 mL). The reaction mixture was microwaved at $140^{\circ} \mathrm{C}$ for $30-60 \mathrm{~min}$. The solvent was evaporated under
reduced pressure and the reaction mixture was purified by column chromatography on silica gel.

3-(4-methoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 1, Compound c). Using 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione (41.3 $\mathrm{mg}, 0.1 \mathrm{mmol}$) and the general procedure, 3-(4-methoxyphenyl)-4-p-toly1- $1 H$-pyrrole-2,5-dione was obtained in 84% yield ($24.5 \mathrm{mg}, 0.084 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.72(\mathrm{~b}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 171.1,171.0,161.1,140.0,136.2,135.5,131.8,129.8,129.6,126.0,121.1$, 114.3, 55.5, 21.7; (HRMS) EI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}\right) 293.1052$ found 293.1057.

3-(2,4-Dimethoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 2,

 Compound c). Using 4-(1-(4-methoxybenzyl)-3-(2,4-dimethoxyphenyl)-4-p-tolyl-1H-pyrrole-2,5-dione ($44.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) and the general procedure described above, 3 -(2,4-dimethoxyphenyl)-4-p-tolyl-1 H -pyrrole-2,5-dione was obtained in 82% yield (26.5 $\mathrm{mg}, 0.082 \mathrm{mmol}$) after purification by column chromatography on silica gel using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ MHz) $\delta 7.36(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $171.0,170.7,162.6,158.7,140.0,137.2,134.5,132.2,129.0,127.5,110.9,105.2,99.3$, 55.6, 55.2, 21.6; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4}\right) 323.1158$ found 323.1158 .4-o-Tolyl-3-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 3, Compound c). Using 1-(4-methoxybenzyl)-4-o-tolyl-3-p-tolyl-1 H-pyrrole-2,5-dione ($39.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) and the general procedure described above, 4-o-tolyl-3-tolyl-1H-pyrrole-2,5-dione was obtained in $86 \%(34.2 \mathrm{mg}, 0.086 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.69(\mathrm{~b}, 1 \mathrm{H})$, 7.015-7.39 (m, 8H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.7$, $170.5,140.9,138.4,137.8,136.9,131.0,130.0,129.8,129.7,129.6,128.9,126.4,126.2$, 21.7, 20.3; (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}\right) 277.1103$ found 277.1103.

3-(4-Chlorophenyl)-4-p-tolyl-H-pyrrole-2,5-dione (Table 3.3, Entry 4, Compound c).

 Using 1-(4-methoxybenzyl)-3-(4-chlorophenyl)-4-p-tolyl-H-pyrrole-2,5-dione (41.7 mg, 0.1 mmol) and the general procedure described above, 3-(4-chlorophenyl)-4-p-tolyl- H -pyrrole-2,5-dione was obtained in $81 \%(24.1 \mathrm{mg}, 0.081 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.53(\mathrm{~b}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta$ $170.2,140.9,137.7,136.3,135.1,131.3,129.9,129.7,129.5,129.1,127.1,125.3,21.7 ;$ (HRMS) EI: calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{2}\right) 297.0552$ found 297.0553.3-(4-methoxyphenyl)-4-o-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 5, Compound c). Using 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-o-tolyl-1H-pyrrole-2,5-dione (41.3 $\mathrm{mg}, 0.1 \mathrm{mmol}$) and the general procedure described above, 3-(4-dimethoxyphenyl)-4-o-tolyl- $1 H$-pyrrole-2,5-dione was obtained in 86% yield ($25.2 \mathrm{mg}, 0.086 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.64(\mathrm{~b}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.35$ $(\mathrm{m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$\delta 171.0,170.7,161.4,137.9,136.9,136.2,131.5,131.0,129.8,129.7,129.1,126.4$, 121.6, 114.4, 55.5, 20.2; (HRMS) EI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}\right) 293.1052$ found 293.1057.

3-(4-Dimethylamino)phenyl)-4-o-tolyl-1H-pyrrole-2,5-dione (Table 3.3, Entry 6, Compound c). Using 1-(4-methoxybenzyl)-3-(4-dimethylamino)phenyl)-4-o-tolyl-1 H -pyrrole-2,5-dione ($42.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and the general procedure described for deprotection using AlCl_{3} /anisole, 3-(4-dimethylamino)phenyl)-4-o-tolyl-1 H -pyrrole-2,5dione was obtained in $86 \%(26.3 \mathrm{mg}, 0.086 \mathrm{mmol})$ and showed; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700\right.$ $\mathrm{MHz}) \delta 7.45$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31-7.34 (overlap, 2H), 7.21-7.27 (overlap, 2H), 6.55 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.5$, $170.9,151.4,138.1,137.0,132.4,131.3,130.8,130.129 .9,129.3,116.7,111.6,40.1$, 20.2, (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}\right) 306.1368$ found 306.1370.

General Procedure for Synthesis of Symmetrical Bisaryl Maleimides (Table 3.4, Compound a). To a mixture of 1-(4-methoxybenyl)-3,4-dibromo-1 H -pyrrole-2,5-dione (3) ($60.0 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(6.6 \mathrm{mg}, 0.006 \mathrm{mmol}, 4 \mathrm{~mol} \%), \mathrm{PA}-\mathrm{Ph},(2, \mathrm{R}$ $=\mathrm{H}, 3.7 \mathrm{mg} .0 .013 \mathrm{mmol}, 8 \mathrm{mmol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(208.0 \mathrm{mg}, 0.64 \mathrm{mmol} 4 \mathrm{eq})$ and the arylboronic acid ($0.35 \mathrm{mmol}, 2.2$ eq.) was added dried THF (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred at $40^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated under reduced pressure and the reaction mixture was purified by column chromatography on silica gel.

1-(4-Methoxybenzyl)-3,4-dip-tolyl-1H-pyrrole-2,5-dione (Table 3.4, Entry 1, Compound a). Using 4-methylphenylboronic acid ($47.5 \mathrm{mg}, 0.35 \mathrm{mmol}, 2.2 \mathrm{eq}$.) and the general procedure described above, 1-(4-methoxybenzyl)-3,4-dip-tolyl-1 H -pyrrole-2,5-dione was obtained in 93% yield ($59.2 \mathrm{mg}, 0.149 \mathrm{mmol}$) after purification by column chromatography using 10% ethylacetate in hexane as the eluent. Spectral identical to compound found in Table 1, Entry 10, compound b.

1-(4-Methoxybenzyl)-3,4-bis(4-chlorophenyl)-1H-pyrrole-2,5-dione (Table 3.4, Entry 2, Compound a). Using 4-chlorophenylboronic acid ($54.7 \mathrm{mg}, 0.35 \mathrm{mmol}, 2.2$ eq.) and the general procedure above, 1-(4-methoxybenzyl)-3,4-bis(4-chlorophenyl)-1 H -pyrrole-2,5dione was obtained in 91% yield ($63.8 \mathrm{mg}, 0.146 \mathrm{mmol}$) after purification by column chromatography using 10% ethylacetate in hexane as the eluent. The compound showed:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.40(\mathrm{t}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}) 6.89(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 170.1,156.5$, 136.5, 135.4, 131.3, 130.5, 129.2, 128.6, 126.9, 114.2, 55.4, 41.7; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right) 437.0580$ found 437.0582 .

1-(4-Methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-pyrrole-2,5-dione (Table 3.4, Entry

 3, Compound a). Using 4-methoxyphenylboronic acid ($53.5 \mathrm{mg}, 0.35 \mathrm{mmol}, 2.2 \mathrm{eq}$.) and the general procedure described above, 1-(4-methoxybenzyl)-3,4-bis(4-methoxyphenyl)$1 H$-pyrrole-2,5-dione was obtained in 95% yield ($65.3 \mathrm{mg}, 0.152 \mathrm{mmol}$) after purification by column chromatography on silica gel using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.44$ (overlap, 6 H), 6.86 (d, $J=$PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$8.6 \mathrm{~Hz}, 6 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$ $\mathrm{MHz}) \delta 171.2,160.8,159.3,134.2,131.6,130.5,129.1,114.2,55.4,41.4$; (HRMS) CI: calculated for $\left.\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{5}\right)(\mathrm{M}+1) 430.1654$ found 430.1640 .

1-(4-Methoxybenzyl)-3,4-bis(4-dimethlyaminophenyl)-1H-pyrrole-2,5-dione (Table 3.4, Entry 4, Compound a). Using 4-(dimethylamino)phenylboronic acid ($57.8 \mathrm{mg}, 0.35$ mmol, 2.2 eq.) and the general procedure described above, 1-(4-methoxybenzyl)-3,4-bis(4-dimethlyaminophenyl)-1H-pyrrole-2,5-dione was obtained in 96% yield (70.1 mg , 0.154 mmol) after purification by column chromatography using 30% ethylacetate in hexane as the eluent. The spectral data is identical to that of Table 2, Entry 10, Compound b).

1-(4-Methoxybenzyl)-2,5-dihydro-4-(4-isocyanophenyl)-2,5-dioxo-1H-pyrrol-

3yl)benzonitrile (Table 3.4, Entry 5, Compound a). Using 4-cyanophenylboronic acid ($51.4 \mathrm{mg}, 0.35 \mathrm{mmol}, 2.2$ eq.) and the general procedure described above, 1-(4-methoxybenzyl)-2,5-dihydro-4-(4-isocyanophenyl)-2,5-dioxo-1H-pyrrol-3yl)benzonitrile was obtained in 96% yield ($64.5 \mathrm{mg}, 0.154 \mathrm{mmol}$) after purification by column chromatography using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 168.1,159.6,136.2,132.6,132.4,130.6,128.0,118.0,114.2,55.4,42.0$; (HRMS) CI: calculated for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} 419.1270$ found 419.1270.

General procedure for deprotection of symmetrical maleimides using AlCl $_{3}$ in anisole, (Table 3.4, Compound b). To a solution of the p-methoxybenzyl protected maleimide (0.1 mmol) in 1 mL anisole was added $5-8$ equivalents of AlCl_{3}. The reaction mixture was microwaved at $140^{\circ} \mathrm{C}$ for $30-55$ minutes and then poured into water (5 mL). The mixture was extracted with $\mathrm{DCM}(3 \times 6 \mathrm{~mL})$ and the organic layer dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solvent under a reduced pressure and purification using column chromatography on silica gel with 30% ethylacetate in hexane as the eluent yielded the deprotected product.

3,4-Di-p-tolyl-1H-pyrrole-2,5-dione (Table 3.4, Entry 1, Compound b). Using 1-(4-methoxybenzyl)-3,4-dip-tolyl-1 H -pyrrole-2,5-dione ($39.8 \mathrm{mg}, 0.1 \mathrm{mmol}$), AlCl_{3} (66.5 $\mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.) and the general procedure described above, 3,4-dip-tolyl- 1 H -pyrrole-2,5-dione was obtained in 91% yield ($25.2 \mathrm{mg}, 0.091 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.50(\mathrm{~b}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, $2.40(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.9,140.4,136.5,129.9,129.5,125.8,21.7$. (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}\right)$ 277.1103 found 277.1106.

3,4-Bis(4-chlorophenyl)-1H-pyrrole-2,5-dione (Table 3.4, Entry 2, Compound b). Using 1-(4-methoxybenzyl)-3,4-bis(4-chlorophenyl)-1 H -pyrrole-2,5-dione $\quad(43.7 \mathrm{mg}, \quad 0.1$ $\mathrm{mmol}), \mathrm{AlCl}_{3}(106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 5 \mathrm{eq})$ and the general procedure described above, $3,4-$ bis(4-chlorophenyl)-1 H -pyrrole-2,5-dione was obtained in 89% ($28.3 \mathrm{mg}, 0.089 \mathrm{mmol}$) yield and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.82(\mathrm{~b}, 1 \mathrm{H}), 7.39(\mathrm{q}, J=5.0 \mathrm{~Hz}, 8 \mathrm{H})$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

> ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.7,136.8,136.2,131.3,129.3$, 126.7. CI (HRMS): calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{C}_{12} \mathrm{NO}_{2}\right) 317.0010$ found 317.0010 .

3,4-Bis(4-methoxyphenyl)-1H-pyrrole-2,5-dione, (Table 3.4, Entry 3, Compound b). ${ }^{33}$ Using 1-(4-methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-pyrrole-2,5-dione ($43 \mathrm{mg}, 0.1$ mmol), AlCl_{3} ($66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.) and the general procedure described above, 3,4-bis(4-methoxyphenyl)-1 H -pyrrole-2,5-dione was obtained in 88% ($27.2 \mathrm{mg}, 0.088$ mmol) yield and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.47(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.88$ (d, $J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.9,161.0,135.1$, 131.6, 121.2, 114.3, 55.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}\right) 309.0998$ found 309.1001.

3,4-Bis(4-dimethlyaminophenyl)-1H-pyrrole-2,5-dione (Table 3.4, Entry 4 Compound b). Using 1-(4-methoxybenzyl)-3,4-bis(4-dimethlyaminophenyl)-1 H -pyrrole-2,5-dione, $\mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq})$ and the general procedure described, 3,4-bis(4-dimethlyaminophenyl)- 1 H -pyrrole-2,5-dione was obtained in 75% ($25.1,0.075 \mathrm{mmol}$) yield and showed: ${ }^{1} \mathrm{H}$ NMR (DMSO, 700 MHz$) \delta 10.8(\mathrm{~b}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H})$, $6.68(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.7,150.5,132.4$, 130.6, 116.5 111.4, 40.1; (HRMS) CI: calculated for $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 335.1634$ found 335.1630.

General Procedure for the Synthesis of Mono-amino Substituted Maleimides. (Table 3.5, Compound a). To a mixture of 1-(4-methoxybenyl)-3,4-dibromo-1 H -pyrrole-2,5-
dione (3) ($150 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(134 \mathrm{mg}, 1 \mathrm{mmol}, 2.5 \mathrm{eq}$) in THF (6 mL) was added the amine ($0.42 \mathrm{mmol}, 1.05 \mathrm{eq}$.). The reaction mixture was stirred at room temperature for 30 min . and up to 2 h . depending on the amine used (monitored via TLC) at which time the solvent was evaporated under a reduced pressure. The residue was taken up in DCM (40 mL), washed with water ($2 \times 10 \mathrm{~mL}$) and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of DCM under reduced pressure yielded the mono amino substituted maleimide after purification by column chromatography on silica gel.

1-(4-Methoxybenzyl)-3-bromo-4-(butylamino)-1H-pyrrole-2,5-dione (Table 3.5, Entry 1, Compound a). Using butyl amine ($42 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$), and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-(butylamino)-1H-pyrrole-2,5-dione was obtained in 92% yield ($134.7 \mathrm{mg}, 0.368 \mathrm{mmol}$) after purification by column chromatography on silica gel using 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.28(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~b}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 167.7,165.8,159.3,143.3,130.1,128.6,114.1,55.3,42.9$, 41.7, 32.8, 19.7, 13.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}\right) 366.0579$ found 366.0576.

1-(4-methoxybenzyl)-3-bromo-4-morpholino-1H-pyrrole-2,5-dione (Table 3.5, Entry 2, Compound a). Using morpholine ($36.5 \mathrm{ul}, 0.42 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-morpholino-1 H-pyrrole-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

2,5-dione was obtained in 98% yield ($156 \mathrm{mg}, 0.41 \mathrm{mmol}$) after purification by column chromatography using 20% ethylacetate/hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700\right.$ $\mathrm{MHz}) \delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 4 \mathrm{H}$), 3.77 (overlap, 7 H), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 166.4,165.9,159.4,144.0$, 130.3, 128.6, 114.1, 82.5, 67.1, 55.4, 48.5, 41.7; (HRMS) ES: calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{4}\right)[\mathrm{M}+1] 381.0450$ found 381.0464 .

1-(4-Methoxybenzyl)-3-bromo-4-piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.5, Entry

 7, Compound a). Using piperidine ($42 \mu \mathrm{l}, 0.42 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-piperidin-1-yl)-1H-pyrrole-2,5-dione was obtained in 94% yield ($142 \mathrm{mg}, 0.375 \mathrm{mmol}$), after purification using by column chromatography on silica gel using 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$ $\mathrm{MHz}) \delta 166.8,165.9,144.8,130.2,128.2,114.0,55.3,82.3,49.8,41.5,26.7,24.1$, (HRMS) CI: calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}\right) 378.0579$ found 378.0577.
1-(4-Methoxybenzyl)-3-(N-methyl-N-phenylamino)-4-bromo-1H-pyrrole-2,5-dione

(Table 3.5 Entry 8, Compound a). Using N-methylaniline ($45.5 \mu \mathrm{l}, 0.42 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and the general procedure described above, the reaction mixture was warmed to $40^{\circ} \mathrm{C}$ for 2 h. 1-(4-Methoxybenzyl)-3-(N -methyl- N -phenylamino)-4-bromo-1 H -pyrrole-2,5-dione was obtained in 95% yield ($160.4 \mathrm{mg}, 0.40 \mathrm{mmol}$) after purification by column chromatography on silica gel using 10% ethylacetate in hexane as the eluent. The
compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.34-$ $7.41(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$ $\mathrm{MHz)} \delta 166.5,165.7,159.2,144.3,144.0,130.2,129.1,126.7,125.2,114.0,87.6,55.3$, 41.8, 41.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{3}\right) 400.0423$ found 400.0420 .

1-(4-Methoxybenzyl)-3-bromo-4-(phenylamino)-1H-pyrrole-2,5-dione (Table 3.5, Entry 11, Compound a). Using aniline ($38.5 \mu 1,0.42 \mathrm{mmol}, 1.05$ eq.) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-(phenylamino)-1H-pyrrole-2,5-dione was obtained in 92% yield ($148.8 \mathrm{mg}, 0.385 \mathrm{mmol}$) and used in the next reaction with no purification.

General Procedure for the Synthesis of 3-Amino-4-Aryl Maleimides (Table 3.5, Compound b). To a mixture of the mono aminated maleimide (0.2 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(6.21 \mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{PA}-\mathrm{Ph},(3.52 \mathrm{mg} .0 .012 \mathrm{mmol}, 6$ $\mathrm{mmol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(162.9 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the arylboronic acid (1.2 eq, 0.24 mmol) was added dried THF (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred at $60^{\circ} \mathrm{C}$ for 2 h . THF was evaporated under reduced pressure and the reaction mixture was purified by column chromatography on silica gel.

1-(4-Methoxybenzyl)-3-(butylamino)-4-p-tolyl-H-pyrrole-2,5-dione (Table 3.5, Entry 1, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-(butylamino)-1 H -pyrrole-2,5dione ($73 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-methylphenyl boronic ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure, 1-(4-methoxybenzyl)-3-(butylamino)-4-p-tolyl-H-pyrrole-2,5-dione
was obtained in 86% yield and showed; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.26 ($\mathrm{s}, 4 \mathrm{H}$), $6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~b}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $3.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.74-0.81$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.3,167.8,159.2,142.1,137.2$, $130.3,130.2,129.3,128.7,127.2,114.0,99.3,55.4,44.1,41.1,31.9,21.4,19.7,13.7$; (HRMS) CI: calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 378.1943$ found 378.1940.

1-(4-methoxybenzyl)-3-morphilono-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 2,

 Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-morpholino-1 H -pyrrole-2,5-dione ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-methylphenyl boronic acid ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-morpholino-4-p-tolyl-1H-pyrrole-2,5-dione was obtained in 93% yield ($71.4 \mathrm{mg}, 0.185 \mathrm{mmol}$) after purification using column chromatography on silica gel with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 4 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.9,167.8,159.2,142.9$, $137.7,130.4,130.1,129.2,128.9,127.7,114.0,105.9,66.8,55.4,46.1,40.9,21.4$. (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right) 392.1736$ found 392.1782 .1-(4-Methoxybenzyl)-2,5-dihydro-4-morpholine-2,5-dioxo 1H-pyrrol-3-yl))benzonitrile, (Table 3.5, Entry 3, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-morpholino1 H -pyrrole-2,5-dione ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4 -cyanophenyl boronic ($35.3 \mathrm{mg}, 0.24$ mmol) and the general procedure described, 1-(4-methoxybenzyl)-2,5-dihydro-4-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
morpholine-2,5-dioxo 1 H -pyrrol-3-yl))benzonitrile was obtained in 72% yield (58.5 mg , 0.145 mmol) after purification using column chromatography with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.65(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.9$, $166.8,159.3,144.2,135.8,131.8,131.8,130.6,130.4,128.8,118.8,114.0,110.9,102.6$, 66.8, 55.4, 49.6, 41.1; (HRMS) CI: calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}\right) 403.1532$ found 403.1530.

1-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-4-morphholine-1H-pyrrole-2,5-dione (Table 3.5, Entry 4, Compound b). Using 1-(4-methoxybenzy)-3-bromo-4-morpholino-1 H -pyrrole-2,5-dione ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-methoxyphenyl boronic ($36.5 \mathrm{mg}, 0.24$ mmol) and the general procedure described, 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-morphholine-1 H-pyrrole-2,5-dione was obtained in 88% yield ($71.9 \mathrm{mg}, 0.176 \mathrm{mmol}$) after purification using column chromatography with 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{q}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.1$, $167.9,159.2,142.6,131.2,130.4,129.3,122.8,114.0,113.7,105.9,66.9,55.4,49.0$, 40.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right) 408.1685$ found 408.1683 .

1-(4-Methoxybenzyl)-3-(4-chlorophenyl)-4-morphholine-1H-pyrrole-2,5-dione (Table 3.5, Entry 5, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-morpholino-1 H -

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
pyrrole-2,5-dione ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-chlorophenyl boronic ($37.5 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)-3-(4-chlorophenyl)-4-morphholine-1 H -pyrrole-2,5-dione was obtained in 85% ($70.0 \mathrm{mg}, 0.170 \mathrm{mmol}$) yield after purification using column chromatography with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.51(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.5,167.4,159.2$, $143.4,133.7,131.5,130.3,129.2,129.0,128.4,114.0,104.0,66.8,55.3,49.2,41.0$; (HRMS) CI: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}\right) 412.1190$ found 412.1190 .

1-(4-Methoxybenzyl)-3-morpholino-4-o-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 6,

 Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-morpholino-1 H -pyrrole-2,5-dione ($76.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-methylphenyl boronic ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-morpholino-4-o-tolyl-1H-pyrrole-2,5-dione was obtained in 91% yield ($71.4 \mathrm{mg}, 0.182 \mathrm{mmol}$) after purification using column chromatography with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.86$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=4,4 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.4,167.6,159.1,143.7,138.1,131.2$, 130.7, 130.2, 129.2, 128.6, 125.7, 114.0, 104.9, 66.8, 55.3, 48.2, 40.9, 20.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\right) 392.1736$ found 392.1782 .1-(4-Methoxylbenzyl)-3-piperidin-1-yl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.5,
Entry 7, Compound b). Using -(4-methoxybenzyl)-3-bromo-4-piperidin-1-yl)-1H-pyrrole-2,5-dione ($75.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) 4-methylphenyl boronic ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxylbenzyl)-3-piperidin-1-yl)-4-p-tolyl-1H-pyrrole-2,5-dione was obtained in 89% yield ($69.4 \mathrm{mg}, 0.178 \mathrm{mmol}$) after purification using column chromatography with 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{q}$, $J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.57(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 171.3,168.0$, $159.5,144.1,137.2,130.4,130.2,130.1,128.8,128.6,114.0,55.4,50.4,40.8,26.2,24.1$, 21.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 390.1943$ found 390.1941 .

1-(4-Methoxybenzyl)-3-(N-methyl-N-phenylamino)-p-tolyl-1H-pyrrole-2,5-dione,

(Table 3.5, Entry 8, Compound b). Using 1-(4-methoxybenzy)-3-(N-methyl- N -phenylamino)-4-bromo-1 H -pyrrole-2,5-dione ($80.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-methylphenyl boronic ($32.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)- -tolyl-1 H -pyrrole-2,5-dione was obtained in 91% yield ($74.9 \mathrm{mg}, 0.182 \mathrm{mmol}$) after purification using column chromatography with 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.96-6.99$ (overlap, 3 H), $6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $4.64(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta$

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$170.9,167.8,159.2,145.1,141.7,138.1,130.5,129.3,128.9,128.5,126.7,124.2,121.7$, 114.3, 114.1, 55.4, 41.1, 40.7, 21.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 412.1787$ found 412.1790 .

1-(4-Methoxybenzyl)-3-(N-methyl-N-phenylamino)-4-(4-methoxyphenyl)-1H-pyrrole-

 2,5-dione (Table 3.5, Entry 9, Compound b). Using 1-(4-methoxybenzyl)-3-(N-methylN -phenylamino)-4-bromo-1 H -pyrrole-2,5-dione $(80.2 \mathrm{mg}, \quad 0.2 \mathrm{mmol})$ and 4 methoxyphenyl boronic ($36.5 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)-4-(4-methoxyphenyl)-1 H -pyrrole-2,5dione was obtained in 87% yield ($74.1 \mathrm{mg}, 0.173 \mathrm{mmol}$) after purification using column chromatography with 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.39$ (overlap, 3 H), $6.95(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 171.0,168.1,159.6,159.3,144.9,140.8,130.7,130.5,129.4$, $128.8,123.9,122.0,121.2,116.2,115.0,114.1,113.3,55.4,41.1,40.2$; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right) 428.1736$ found 428.1734 .1-(4-Methoxybenzyl)-3-(N-methyl-N-phenylamino)-4-(4-chlorophenyl)-1H-pyrrole-2,5dione (Table 3.5, Entry 10, Compound b). Using 1-(4-methoxybenzyl)-3-(N-methyl- N -phenylamino)-4-bromo- 1 H -pyrrole-2,5-dione ($80.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-chlorophenyl boronic ($37.5 \mathrm{mg}, \quad 0.24 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)-4-(4-chlorophenyl)-1 H -pyrrole-2,5-dione

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

was obtained in 84% yield ($72.6 \mathrm{mg}, 0.168 \mathrm{mmol}$) after purification using column chromatography with 10% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.01$ (0verlap, 3H), $6.89(\mathrm{~d}, J=7.7,2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.66(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta$ 170.6, 167.6, 159.3, 144.7, 142.3, 133.6, 130.5, 129.2, 128.9, 128.2, 127.7, 125.0, 110.4, 55.4, 41.2, 40.9; (HRMS) CI: calculated for $\left(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{CLN}_{2} \mathrm{O}_{3}\right) 432.1241$ found 432.1245 .

1-(4-Methoxybenzyl)-3-(phenylamino)4-p-o-tolyl-1H-pyrrole-2,5-dione, (Table 3.5, Entry 11, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-(phenylamino)-1 H -pyrrole-2,5-dione ($77.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-methylphenyl boronic ($32.6 \mathrm{mg}, 0.24$ mmol) and the general procedure described above, 1-(4-methoxybenzyl)-3-(phenylamino)4-p-o-tolyl-1 H -pyrrole-2,5-dione was obtained in 76% yield (74.9 mg , 0.153 mmol) after purification using column chromatography with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.39(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~b}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 4 \mathrm{H})$, $6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.71$ (s, 2H), 3.79 (s, 3H), 2.26 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 172.2,168.5,159.4,137.4,136.5,135.6,130.3$, 129.8, 129.0, 128.4, 128.1, 126.5, 124.4, 121.5, 114.1, 103.2, 55.4, 41.4, 21.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 398.1630$ found 398.1628 .

3-(Butylamino)-4-p-tolyl-1H-pyrrole (Table 3.5, Entry 1, Compound c). Using 1-(4-methoxybenzyl)-3-(butylamino)-4-p-tolyl-H-pyrrole-2,5-dione ($38.8 \mathrm{mg}, 0.1 \mathrm{mmol}$),

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

$\mathrm{AlCl}_{3}(106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ eq.) and the general procedure described for deprotection of symmetrical maleimides, 3-(butylamino)-4-p-tolyl- 1 H -pyrrole was obtained in 84% $(21.7 \mathrm{mg}, 0.084 \mathrm{mmol})$ after purification using column chromatography with 20% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700\right.$ $\mathrm{MHz}) \delta 7.20(\mathrm{q}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.26(\mathrm{~b}, 1 \mathrm{H}), 3.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.32-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 172.1,167.9,142.4,137.6,130.4,128.9,126.9,100.6,44.9,31.9,21.4,19.8$, 13.7; (HRMS) CI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 258.1368$ found 258.1364 .

3-Morpholino-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 2, Compound c). Using 1-(4-methoxybenzyl)-3-morpholino-4-p-tolyl-1 H -pyrrole-2,5-dione ($39.2 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.$) and the general procedure for deprotection of$ symmetrical maleimides, 3 -morpholino-4-p-tolyl-1 H-pyrrole-2,5-dione was obtained in 84% ($22.9 \mathrm{mg}, 084 \mathrm{mmol}$) yield after purification using column chromatography with 30% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.19(\mathrm{~s}, 4 \mathrm{H}), 3.68$ (t, $J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ 170.6, 168.1, 143.1, 138.1, 130.2, 129.0, 127.5, 107. 2, 66.9, 49.0, 21.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 272.1161$ found 272.1147 .

4-(2,5-dihydro-4-morpholine-2,5-dioxo 1H-pyrrol-3-yl))benzonitrile (Table 3.5, Entry 3, Compound c). Using 1-(4-methoxybenzyl)-2,5-dihydro-4-morphholine-2,5-dioxo-1 H -pyrrol-3-yl))benzonitrile ($40.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8 \mathrm{eq}$.) and the general procedure described for deprotection of symmetrical maleimides, 4-(2,5-
dihydro-4-morphholine-2,5-dioxo $1 H$-pyrrol-3-yl))benzonitrile was obtained in 82% yield ($23.2 \mathrm{mg}, 0.082 \mathrm{mmol}$) after purification using column chromatography with 30% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.2,167.0,144.3,135.5,132.0,131.9,130.8,118.7,111.4,66.8$, 49.6, (HRMS) CI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 283.0957$ found 283.0958 .

3-(4-Methoxyphenyl)-4-morpholine-1H-pyrrole-2,5-dione, (Table 3.5, Entry 4,

 Compound c). Using 1-(4-methoxybenzyl)-3-(4-methoxyphenyl)-4-morphholine-1 H -pyrrole-2,5-dione ($40.8 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.) and the general procedure described for deprotection of symmetrical aryl maleimides, 3-(4-methoxyphenyl)-4-morphholine-1 H -pyrrole-2,5-dione was obtained in 85% yield (24.8 $\mathrm{mg}, 0.085 \mathrm{mmol}$) after purification using column chromatography on silica gel with 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=4.4$ $\mathrm{Hz}, 4 \mathrm{H}), 3.51(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 170.6,168.0,159.3,142.7,131.4,128.5,122.4,113.7$, 107.0, 66.8, 55.3, 48.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ [M+1] 289.1257 found 289.1257.3-(4-chlorophenyl)-4-morpholino-1H-pyrrole-2,5-dione (Table 3.5, Entry 5, Compound c). Using 1-(4-methoxybenzyl)-3-(4-chlorophenyl)-4-morphholine-1 H -pyrrole-2,5-dione ($41.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.) and the general procedure for deprotection of symmetrical maleimides, 3-(4-chlorophenyl)-4-morpholino-1H-pyrrole-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

2,5-dione was obtained in 87% yield ($24.6 \mathrm{mg}, 0.087 \mathrm{mmol}$) after purification using column chromatography with 30% ethylacetate in hexane as the eluent and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=$ $4 \mathrm{~Hz}, 4 \mathrm{H}), 3.53(\mathrm{t}, J=4 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.2,167.6,143.5$, 134.1, 131.5, 129.0, 105.3, 66.8, 49.2; (HRMS) CI: calculated for $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}\right)$ 292.0615 found 292.0615 .

3-Morpholino-4-o-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 6, Compound c). Using 1-(4-methoxybenzyl)-3-morpholino-4-o-tolyl-1 H-pyrrole-2,5-dione ($39.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), AlCl_{3} ($106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8 \mathrm{eq}$.) and the general procedure for deprotection of symmetrical maleimides 3 -morpholino-4-o-tolyl-1 H -pyrrole-2,5-dione was obtained in 88% yield ($24 \mathrm{mg}, 0.088 \mathrm{mmol}$) after purification using column chromatography with 30% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ 7.17-7.28(m, $4 \mathrm{H}), 3.65(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.52(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 170.5,168.0,143.9,138.1,131.2,130.3,128.8,128.5,125.9,106.1,66.9,48.2$, 20.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}\right) 272.1161$ found 272.1147 .

3-(Piperidin-1-yl)-4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 7, Compound c.) Using 1-(4-methoxylbenzyl)-3-piperidin-1-yl)-4-p-tolyl-1 H-pyrrole-2,5-dione (39.0 mg , 0.1 mmol), AlCl_{3} ($106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ eq.) and the general procedure for deprotection of symmetrical maleimides 3-(piperidin-1-yl)-4-p-tolyl-1 H-pyrrole-2,5-dione was obtained in 91% ($24.7 \mathrm{mg}, 0.091$) after purification using column chromatography with 20% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.18(\mathrm{q}, J=5.6$
$\mathrm{Hz}, 4 \mathrm{H}), 3.43(\mathrm{t}, J=5.6,4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.61(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 176\right.$ $\mathrm{MHz}) \delta 170.9,168.2,144.2,137.5,130.1,128.9,128.3,105.6,50.3,26.2,24.0,21.5$; (HRMS) CI: calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 271.1361$ found 271.1361.

3-(N-Methyl-N-phenylamino)-p-o-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 8,

 Compound c). Using 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)- p-o-tolyl- 1 H -pyrrole-2,5-dione ($41.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$.) and the general procedure for deprotection of symmetrical maleimides, 3-(N-methyl- N-phenylamino)- p -o-tolyl-1 H -pyrrole-2,5-dione 85% yield ($24.8 \mathrm{mg}, 0.085$) after purification using column chromatography with 20% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 7.34(\mathrm{~b}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-7.01$ (overlap, 3 H), $6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 170.6,167.9,145.0,142.0,138.4,130.8,129.4,128.9,128.5,126.4,124.4$, 121.6, 121.4, 115.3, 40.7, 21.5; CI (HRMS): calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 292.1212$ found 292.1210.
3-(N-Methyl-N-phenylamino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione (Table 3.5,

 Entry 9, Compound c). Using 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione ($42.8 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5$ eq.) and the general procedure for deprotection of symmetrical maleimides 3-(N-methyl-N-phenylamino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione was obtained in 87% yield ($26.8 \mathrm{mg}, 0.087 \mathrm{mmol}$) after purification using column chromatography with 20% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta$ 7.13-7.15 (overlap,$3 \mathrm{H}), 7.09(\mathrm{~b}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.6,168,159.7,144.6$, 130.7, 129.9, 128.9, 125.4, 121.7, 121.3, 113.4, 55.4, 40.2, 29.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right) 308.1161$ found 308.1166 .

3-(N-Methyl-N-phenylamino)-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione (Table 3.5, Entry 10, Compound c). Using 1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)-4-(4-chlorophenyl)-1 H -pyrrole-2,5-dione ($43.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), AlCl_{3} ($106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ eq.) and the general procedure described above, for deprotection of symmetrical maleimides 3-(N -methyl- N -phenylamino)-4-(4-chlorophenyl)-1 H -pyrrole-2,5-dione 81% yield ($25.3 \mathrm{mg}, 0.081 \mathrm{mmol}$) after purification using column chromatography with 20% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.11(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H), 7.08 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (overlap, 3H), 6.21 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (s, 3H), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.0,167.6,144.5,142.5,133.9,130.6,129.0,128.0$, 127.8, 125.2, 122.6, 114.0, 111.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right) 312.0666$ found 312.0664 .

3-(Phenylamino)4-p-tolyl-1H-pyrrole-2,5-dione (Table 3.5, Entry 11, Compound c). Using 1-(4-methoxybenzyl)-3-(phenylamino)4-p-tolyl-1 H-pyrrole-2,5-dione, AlCl_{3} ($106.4 \mathrm{mg}, 0.8 \mathrm{mmol}, 8 \mathrm{eq}$.) and the general procedure for deprotection of symmetrical maleimides, 3-(Phenylamino)4-p-tolyl-1H-pyrrole-2,5-dione was obtained in 73\% yield ($20.3 \mathrm{mg}, 0.073$) after purification using column chromatography with 30% ethylacetate in hexane and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.38(\mathrm{~b}, 1 \mathrm{H}), 7.20(\mathrm{~b}, 1 \mathrm{H}), 7.05(\mathrm{t}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (overlap, 4 H), $6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 171.8,168.5,137.7,136.3,135.7,129.8,128.4,128.2,126.2$, 124.6, 121.6, 104.4, 21.5. (HRMS) CI: calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 278.1055$ found 278.1055.

General Procedure for the Synthesis of PMB-protected diamino maleimides, Figure

 3.2. Mono-aminated, PMB-protected maleimide (0.2 mmol) in DMF (0.5 mL) was treated with the amine ($0.6 \mathrm{mmol}, 3 \mathrm{eq}$.) and TEA ($84 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) the microwaved at $100{ }^{\circ} \mathrm{C}$ for 30 mins . The reaction mixture was taken up in DCM (10 mL) and washed with water ($2 \times 5 \mathrm{ml}$). The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced vacuum. Purification of the residue by column chromatography on silica gel using 20% ethylacetate in hexane as the eluent yielded the diamino products.1-(4-methoxybenzyl)-3-(butylamino)-4-(phenylamino)-1H-pyrrole-2,5-dione (4). Using 1-(4-methoxybenzyl)-3-bromo-4-(phenylamino)-1H-pyrrole-2,5-dione (77.2 mg, 0.2 mmol) and butyl amine ($60 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-(butylamino)-4-(phenylamino)-1H-pyrrole-2,5-dione was obtained 84% yield ($63 \mathrm{mg}, 0.167 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ $7.20-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.89$ (b, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.45(\mathrm{~m}, 2 \mathrm{H})$, $0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.0,168.1,159.3,145.9,130.0$, 129.9 , 129.4, 125.7, 119.8, 118.9, 114.8, 114.1, 55.4, 43.3, 41.0, 32.8, 19.8, 13.7: (HRMS) ES: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ [$\left.\mathrm{M}+1\right] 380.1969$ found 380.1960 .

Using 1-(4-methoxybenzyl)-3-bromo-4-(phenylamino)-1H-pyrrole-2,5-dione (77.2 mg , 0.2 mmol), piperidine ($59 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-(phenylamino)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione was obtained in 94% yield ($73.5 \mathrm{mg}, 0.188 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.19-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.84$ (overlap, 3 H), $6.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.63(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1-40-1.46(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.0,168.2,159.2,143.1,130.7,130.1,129.3,129.1,120.1$, $1165,114.0,110.5,55.4,48.7,40.7,26.2,24.2$; (HRMS) CI: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ 391.1896 found 391.1896.

1-(4-methoxybenzyl)-3-morpholino-4-(phenylamino)-1H-pyrrole-2,5-dione (6). Using 1-(4-methoxybenzyl)-3-bromo-4-(phenylamino)-1 H -pyrrole-2,5-dione ($77.2 \mathrm{mg}, 0.2$ mmol), morpholine ($52 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described above, in the 1-(4-methoxybenzyl)-3-morpholino-4-(phenylamino)-1H-pyrrole-2,5-dione, was obtained in 89% yield ($69.9 \mathrm{mg}, 0.178 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700\right.$ MHz) $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48$ $(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.34\left((\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.2,168.3$, $159.3,141.4,130.1,129.2,126.3,121.5,117.5,114.2,114.1,67.0,55.5,48.1,40.9$; (HRMS) CI: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}\right) 393.1689$ found 393.1685 . ($80.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), piperidine ($59 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-N-methyl-N-phenylamino)-4-(piperidin-1-yl)-1H-pyrrole was obtained in 91% yield ($73.7 \mathrm{mg}, 0.182 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.87(\mathrm{~m}$, $3 \mathrm{H}), 6.66(\mathrm{~d}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 1.50-$ $1.57(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.2,167.0,159.1,147.4,139.9,130.3$, $129.5,129.2,118.3,114.0,113.5,109.9,55.4,48.8,40.6,38.6,26.5,24.2$; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 405.2052$ found 405.2050 .

1-(4-methoxybenzyl)-3-morpholono-4-(piperidine-1-yl)-1H-pyrrole-2,5-dione (8). Using 1-(4-methoxybenzyl)-3-bromo-4-morpholono-1 H -pyrrole-2,5-dione $\quad(76.0 \mathrm{mg}, \quad 0.2$ mmol), piperidine ($59 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-morpholono-4-(piperidine-1-yl)-1H-pyrrole-2,5-dione,was obtained in 81% yield ($62.4 \mathrm{mg}, 0.162 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right.$) $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.52(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.35(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-1.59(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 168.9,168.2,159.1,130.7,130.2,129.6,122.1,114.0,67.4$, 55.4, 49.6, 40.2, 26.6, 24.3; (HRMS) CI: calculated for $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}\right) 386.2080$ found 386.2075.

1-(2,5-Dioxo-4-(phenylamino)-2,5-dihydro-1H-pyrrol-3-yl)-1-(4methoxybenzyl)

 piperidinium chloride (9). Using 1-(4-methoxybenzyl)-3-(phenylamino)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione ($39.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), AlCl_{3} ($66.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{eq}$), anisole $(2 \mathrm{~mL})$ and stirring the reaction at room temperature for 12 h , yielded compound 9 in 89% yield ($34.9 \mathrm{mg}, 0.089 \mathrm{mmol}$) after purification using 30% ethylacetate in hexane as the eluent. The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), 7.15-7.27 (overlap, 4H), 6.64-6.88 (overlap, 4H), 4.67 (s, 1), 4.55 (s, 3H), 3.75 (s, 3H), 2.31-2.33 (m, 4H), 1.41-1.45 (m, 6H), ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 176.0,175.6$, 159.3, 149.4, 131.0, 129.8, 127.7, 126.1, 124.3, 120.4, 114.1, 78.9, 56.7, 55.3, 48.5, 42.3, 25.8, 24.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 392.1969$ found 392.1966 .
1-(4-Methoxybenzyl)-1-(4-(methyl(phenyl)amino)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

 yl)piperidinium chloride (10). Using1-(4-methoxybenzyl)-3-(N-methyl- N-phenylamino)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione ($40.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), AlCl_{3} ($66.5 \mathrm{mg}, 0.5 \mathrm{mmol}$, 5 eq) and the general procedure above but stirring the reaction at room temperature for 12 h , yielded compound 10 in 91% yield ($0.091 \mathrm{mg}, 36.9 \mathrm{mg}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.23$ (overlap, 4H), 6.75-6.79 (overlap, 3H), $6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}$, $159.3,150.4,131.0,130.0,127.9,126.0,123.5,118.5,114.1,107.1,77.9,61.9,55.3$, 48.6, 42.2, 33.4 25.8, 24.5; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 406.2125$ found 406.2115 .

3,4-Bromo-1-(4-nitrophenyl)-1H-pyyrole-2,5-dione (11). To a mixture of 3,4dibromomaleic anhydride ($1.95 \mathrm{~g}, 7.65 \mathrm{mmol}$) in acetic acid (25 mL) was added p nitroaniline ($1.16 \mathrm{~g}, 8.4 \mathrm{mmol}$). The reaction mixture was refluxed for 8 hours. Evaporation of the solvent under reduced pressure was followed by column chromatography on silica gel using 30% ethylacetate in hexane as the eluent, 3,4-Bromo-1-(4-nitrophenyl)-1H-pyyrole-2,5-dione was obtained in 75% yield ($2.13 \mathrm{~g}, 5.7 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=9.1 \mathrm{~Hz}$,
 calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{BrN}_{2} \mathrm{O}_{4}\right) 373.8538$ found 373.8538 .

General Procedure for the Synthesis of Bisamino Substituted Maleimides (Table 3.6, Compound b). To a mixture of 3,4-dibromo-1-(4-nitrophenyl)-1 H -pyrrole-2,5-dione, compound (11) ($93 \mathrm{mg}, 0.25 \mathrm{mmol}$), TEA ($88 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 2.5 \mathrm{eq}$) in DMF (0.5 mL) was added the amine ($0.26 \mathrm{mmol}, 1.05 \mathrm{eq}$.). The reaction mixture was stirred at room for 3 min . at which time additional TEA ($88 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and the second amine ($0.38 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were added. The reaction mixture was microwaved at $50^{\circ} \mathrm{C}$ for 30 min., then taken up in DCM (10 mL) and washed with water ($2 \times 5 \mathrm{~mL}$). The organic extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the mixture using column chromatography on silica gel with 20% ethylacetate in hexane as the eluent yielded the diamino substituted maleimides.

3-Morpholino-1-(4-nitrophenyl)-4-(phenylamino)-1H-pyrrole-2,5-dione (Table 3.6, Entry 1, Compound b). Using aniline ($24.6 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) as the first amine,
morpholine ($33.2 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general procedure described, 3-morpholino-1-(4-nitrophenyl)-4-(phenylamino)-1 H -pyrrole-2,5-dione was obtained in 93% yield ($91.5 \mathrm{mg}, 0.23 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta$ $8.30(\mathrm{~d}, J=9.1,2 \mathrm{H}), 7.70(\mathrm{~d}, J=9.1,2 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.90(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 167.3,166.5,145.6,140.1,137.8,129.3,124.9$, 124.7, 124.5, 122.5, 118.4, 115.8, 66.9. 48.4. (HRMS): CI: calculated for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}\right)$ 394.1277 found 394.1275.

1-(4-Nitrophenyl)-3-(phenytamino)-4-piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6, Entry 2, Compound b). Using aniline ($24.6,0.26 \mathrm{mmol}$) as the first amine, piperidine ($37.6 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general procedure described above, 1-(4-nitrophenyl)-3-(phenylamino)-4-piperidin-1-yl)-1 H -pyrrole-2,5-dione was obtained in 95% yield ($93.3 \mathrm{mg}, 0.238 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 8.29(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91,(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 167.6,166.4,145.4,141.8,138.1,129.2,128.8,124.9,124.4,121.5$, 117.4, 112.3, 46.0, 26.2, 24.1; (HRMS) CI: calculated for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}\right) 392.1482$ found 392.1485.

3-(N-Methyl-N-phenylamino)-4-morpholino-1-(4-nitrophenyl)-1H-pyrrole-2,5-dione

(Table 3.6, Entry 3, Compound b). Using N-methyl aniline ($28.3 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) as the first amine, morpholine ($33.2 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

procedure described above, 3 -(N-methyl- N - phenylamino)-4-morpholino-1-(4-nitrophenyl)-1 H -pyrrole-2,5-dione was obtained in 91% yield ($93.1 \mathrm{mg}, 0.228 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 8.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 4 \mathrm{H}), 3.56(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 166.8$, 165.2, 146.1 145.7, 137.7, 137.2, 129.5, 125.3, 124.4, 119.7, 114.4, 113.1, 67.0, 48.1, 38.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}\right) 408.1434$ found 408.1432 .

3-(N-Methyl-N-phenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)-1H-pyrrole-2,5-

dione (Table 3.6, Entry 4, Compound b). Using N-methyl aniline ($28.3 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) as the first amine, piperidine ($37.6 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general procedure above, 3-(N -methyl- N - phenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)- 1 H -pyrrole-2,5-dione was obtained in 96% yield ($97.5 \mathrm{mg}, 0.24 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 8.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.26$ $(\mathrm{s}, 3 \mathrm{H}), 1.52-1.59(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 167.0,165.3,146.8,145.5$, $139.1,138.0,129.4,125.7,125.3,124.4,124.3,119.1,114.0,111.2,49.1,38.5,29.9$, 26.5, 24.1; (HRMS) CI: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}\right) 406.1641$ found 406.1638 .

3-(4-Methoxyphenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

 (Table 3.6, Entry 5, Compound b). Using 4-methoxy aniline ($32.2 \mathrm{mg}, 0.26 \mathrm{mmol}$) as the first amine, piperidine ($38 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general procedure described above, 3-(4-methoxy phenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)-1 H -pyrrole-2,5-dione was obtained in 91% yield $(96.0 \mathrm{mg}, 0.228 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 8.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, 1.47-1.50(m, 2H), 1.39-1.42(m, 4H), ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 167.6,166.8,155.2$, $145.3,138.2,134.0,125.1,124.7,1124.4,119.9,115.9,114.4,55.8,49.4,26.1,24.1 ;$ (HRMS) CI: calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}\right) 422.1590$ found 422.1587 .

3-Morpholino-1-(4-nitrophenyl)-4-piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6,

Entry 6, Compound b). Using morpholine ($23.0 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) as the first amine and piperidine ($38 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as the second amine and the general procedure described above, 3-morpholino-1-(4-nitrophenyl)-4-piperidin-1-yl)-1H-pyrrole-2,5-dione was obtained in 92% yield $(88.8 \mathrm{mg}, 0.23 \mathrm{mmol})$ and showed: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H})$, $3.43(\mathrm{t}, J=4.9 \mathrm{~Hz}), 1.65(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 166.7,166.2,145.4$, 137.9, 130.8, 125.4, 124.3, 122.1, 67.4, 49.6, 49.4, 26.3; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}\right) 386.1590$ found 386.1588 .

General Procedure for the Deprotection of Nitroaniline-protected Diamino Maleimides by Aminolysis (Table 3.6, Compound c). Ammonia gas was bubbled through a solution of the nitroaniline-protected maleimide (0.15 mmol) in methanol (3 mL). The reaction mixture was stirred at room temperature for 12 hours. Concentration of the methanol under reduced pressure and purification using column chromatography on silica gel with 20% ethylacetate in hexane as the eluent yielded the diamino substituted maleimides.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

3-Morpholino-4-(phenylamino)-1H-pyrrole-2,5-dione (Table 3.6, Entry 1, Compound c). Using 3-morpholino-1-(4-nitrophenyl)-4-(phenylamino)-1 H -pyrrole-2,5-dione (59.2 $\mathrm{mg}, 0.15 \mathrm{mmol}$) and the general procedure described above, 3-morpholino-4-(phenylamino)-1H-pyrrole-2,5-dione was obtained in 84% yield ($34.7 \mathrm{mg}, 0.127 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.29(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~b}, 1 \mathrm{H}), 6.91(\mathrm{t}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=2.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.38(\mathrm{t}, J$ $=2.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 168.9,168.2,141.2,129.2,126.9,121.7$, 117.6, 114.9, 66.9, 48.0; (HRMS) EI: calculated for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 273.1113$ found 273.1129.

3-(Phenylamino)-4-piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6, Entry 2, Compound c). Using 1-(4-nitrophenyl)-3-(phenylamino)-4-piperidin-1-yl)-1 H-pyrrole-2,5-dione ($58.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) and general procedure described above, 3-(phenylamino)-4-piperidin-1-yl)-1 H -pyrrole-2,5-dione was obtained in 93% yield (38.0 $\mathrm{mg}, 0.14 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{~b}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=5.6 .0 \mathrm{~Hz}, 4 \mathrm{H})$, $1.50-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.46(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 168.4,168.2$, 142.9, 131.3, 129.2, 120.7, 116.6, 111.2, 48.7, 26.3, 24.2; (HRMS) EI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ 271.1323 found 271.1321.

3-(N-Methyl-N-phenylamino)-4-morpholoine-1H-pyrrole-2,5-dione (Table 3.6, Entry 3, Compound c). Using 3-(N-methyl- N-phenylamino)-4-morpholoine-1-(4-nitrophenyl)-1 H -pyrrole-2,5-dione ($60.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the general procedure described above, 3-
(N-methyl- N-phenylamino)-4-morpholoine-1 H -pyrrole-2,5-dione was obtained in 81% yield ($34.8 \mathrm{mg}, 0.121 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.26(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{~b}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=4.2$ $\mathrm{Hz}, 4 \mathrm{H}), 3.55(\mathrm{t}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 168.6$, 166.9, 146.6, 138.5, 129.5, 119.1, 113.9, 112.8, 67.0, 47.7, 38.5; (HRMS) EI: calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 287.1270$ found 287.1273.

3-(N-Methyl-N-phenylamino)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6, Entry

 4, Compound c). Using 3-(N-methyl- N-phenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)- 1 H -pyrrole-2,5-dione ($61.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) and general procedure described above, 3-(N-methyl- N - phenylamino)-4-(piperidin-1-yl)-1 H -pyrrole-2,5-dione was obtained in 96% yield ($41.1 \mathrm{mg}, 0.144 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.20(\mathrm{~m}$, $2 \mathrm{H}), 6.89(\mathrm{~b}, 1 \mathrm{H}), 6.69-6.83(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.56(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 168.8,167.0,147.2,140.4,129.3,118.5,113.5$, 110.9, 48.7, 38.6, 26.6, 24.2. (HRMS): EI calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 285.1477$ found 285.1477.3-(4-Methoxyphenylamino)-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6, Entry 5, Compound c. Using 3-(4-methoxyphenylamino)-1-(4-nitrophenyl)-4-(piperidin-1-yl)1 H -pyrrole-2,5-dione ($63.3 \mathrm{mg}, 0.15 \mathrm{mmol}$) and general procedure described above, 3-(4-methoxyphenylamino)-4-(piperidin-1-yl)-1 H -pyrrole-2,5-dione in 89% yield (39.2 mg , $0.13 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.47-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.40(\mathrm{~m}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

$4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 169.1,168.5,154.7,135.1,127.3,119.0,114.9$, 114.4, 55.8, 49.0, 26.1, 24.2; (HRMS) EI: calculated for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 301.1426$ found 301.1439.

3-Morpholino-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione (Table 3.6, Entry 6, Compound

 c). Using 3-morpholino-1-(4-nitrophenyl)-4-piperidin-1-yl)-1H-pyrrole-2,5-dione (58.4 $\mathrm{mmol}, 0.15 \mathrm{mmol}$) and general procedure described above, 3-morpholino-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione was obtained in 82% yield ($32.6 \mathrm{mg}, 0.123 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 3.72(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.53(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.77(\mathrm{t}, J$ $=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 168.6,168.1,131.3,122.9$, 67.4, 49.5, 49.4, 26.6, 24.3; (HRMS) EI: calculated for $\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}\right) 265.1426$ found 265.1426.1-(4-Methoxybenzyl)-3,4-dibromo-1H-pyrrol-2-(5H)-one (12). To a mixture of mucobromic acid ($1.32 \mathrm{~g}, 5.2 \mathrm{mmoL}$) in $\mathrm{DCM}(25 \mathrm{~mL})$ and acetic acid $(15 \mathrm{~mL})$ was added p-methoxybenylamine ($744 \mu \mathrm{~L}, 5.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.30 \mathrm{~g}, 15.6$ $\mathrm{mmol}, 3 \mathrm{eq}$. .) The reaction mixture was stirred at room temperature for 24 h at which time the mixture was taken up in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and washed with water ($2 \times 50 \mathrm{~mL}$). The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under a reduced pressure and purified using column chromatography on silica gel with 30% ethylacetate in hexane as the eluent. Compound $\mathbf{1 2}$ was obtained in 76% yield ($1.4 \mathrm{~g}, 4 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.90$ ($\mathrm{s}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.0,159.4,133.6,129.3,127.8$,
120.6, 114.2, 56.8, 55.6, 47.4. (HRMS) CI: calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{2}\right) 358.9157$ found 358.9155 .

General procedure for Mono Arylated of α, β-Unsaturated- γ-Butyrolactams (Table 3.7,

 Compound a). To a mixture of 1-(4-methoxybenzyl)-3,4-dibromo-1 H -pyrrol-2-(5H)-one compound (12) ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$), aryl boronic acid ($0.31 \mathrm{mmol}, 1.1 \mathrm{eq}$), KF (48.7 $\mathrm{mg}, 0.84 \mathrm{mmol}, 3 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(11.4 \mathrm{mg}, 0.011 \mathrm{mmol}, 4 \mathrm{~mol} \%), \mathrm{PA}-\mathrm{Ph},(6.4 \mathrm{mg}$. $0.022 \mathrm{mmol}, 8 \mathrm{mmol} \%$), in a reaction flask was added dried toluene (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred at $60^{\circ} \mathrm{C}$ for 9 h . Toluene was evaporated under reduced pressure and the reaction mixture was purified by column chromatography using 30% ethylacetate in hexane as the eluent.
1-(4-Methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1H-2(5H)-one (Table 3.7, Entry 6,

 Compound a). Using 4-methoxyphenylboronic ($48.6 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure, 1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1H-2(5H)-one was in 55% yield ($59.6 \mathrm{mg}, 0.154 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.74$ (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.67(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 167.4$, 161.1, 159.4, 147.3, 130.9, 129.8, 124.0, 114.4, 114.3, 111.6, 55.6, 52.6, 46.7; (HRMS) CI : calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}_{3}\right) 387.0470$ found 387.0462 .1-(4-Methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-2(5H)-one (Table 3.7, Entry 6, Compound b). Compound was the by-product in the synthesis of 1-(4-Methoxybenzyl)-

3-bromo-4-(4-methoxyphenyl)-1H-2(5H)-one (Table 7, Entry 6, Compound a) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.6,5 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4,2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta 171.2,160.2,159.4,159.2,146.2$, $130.9,130.6,130.3,129.7,129.0,128.6,125.6,124.7,114.2,114.0,55.3,51.8,45.9$. CI (HRMS): calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}\right) 415.1784$ found 415.1786 .

1-(4-Methoxybenzyl)-3-bromo-4-p-tolyl-1H-2(5H)-one (Table 3.7, Entry 7, Compound a). Using 4-methylphenylboronic ($42.5 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H -2(5H)-one was obtained in 68% yield ($70.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 167.3,159.5,147.9,140.8,129.8,129.7,128.9,128.8,127.0,114.5,113.0,55.5$, 52.7, 46.8, 21.7; (HRMS) CI: calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}_{2}\right) 371.0521$ found 371.0520 .

1-(4-Methoxybenzyl)-3,4-dip-tolyl-1H-2(5H)-one (Table 3.7, Entry 7, Compound b).

 Compound was the by-product in the synthesis of 1-(4-Methoxybenzyl)-3-bromo-4-p-tolyl-1H-2(5H)-one (Table 7, Entry 7, Compound a) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ MHz) $\delta 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.05$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.89 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.36$ ($\mathrm{s}, 3 \mathrm{H}$), $2.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.0,159.2,147.1,139.3,137.9$,PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
131.7, 130.6, 129.8, 129.7, 129.6, 129.4, 129.3, 129.2, 127.6, 114.3, 55.4, 52.0, 46.0, 21.5, 21.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}\right) 383.1885$ found 383.1891 .

1-(4-Methoxybenzyl)-3-bromo-4-(4-chlorophenyl)-1H-2(5H)-one (Table 3.7, Entry 8, Compound a). Using 4-chlorophenylboronic acid ($48.5 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)-3-bromo-4-(4-chlorophenyl)-1H-2(5H)-one was in 54% yield ($58.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 7.70$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}) 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 166.8,159.5$, 149.5, 136.3, 129.8, 129.2, 128.5, 114.4, 60.6, 55.4, 52.5, 46.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrClNO}_{2}\right) 390.9970$ found 390.9971 .

1-(4-Methoxybenzyl)-3,4-bis(4-chlorophenyl)-1H-2(5H)-one (Table 3.7, Entry 8, Compound b). Compound was isolated as a byproduct in the synthesis of 1-(4-Methoxybenzyl)-3-bromo-4-(4-chlorophenyl)-1H-2(5H)-one (Table 7, Entry 8, Compound a) in 15% yield ($18 \mathrm{mg}, 0.043 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta$ 7.12-7.36 (overlap, 10H), $6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.1,159.4,146.8,135.5,134.5,131.9$, $131.5,131.0,130.2,129.8,129.2,129.0,128.9,114.4,55.4,51.9,46.1$; (HRMS) CI: calculated for $\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right) 423.0793$ found 423.0804 .

General Procedure for the Preparation of Bisaryl Substituted α, β-Unsaturated- γ Butyrolactams (Table 3.8, Compound b). To a mixture of the mono-arylated 3-bromo-

1 H - pyrrol-2-(5 H)-one compound (0.1 mmol), aryl boronic acid ($0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$), KF $(17.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 3 \mathrm{eq}),. \mathrm{Pd}_{2}$ (dba) $)_{3} . \mathrm{CHCl}_{3}(4.1 \mathrm{mg}, 0.004 \mathrm{mmol}, 4 \mathrm{~mol} \%$), $\mathrm{PA}-\mathrm{Ph},(2.3$ mg. $0.008 \mathrm{mmol}, 8 \mathrm{mmol} \%$) was added dried toluene (3 mL). The mixture was degassed, placed under an atmosphere of argon and stirred $80^{\circ} \mathrm{C}$ for 12 h . Toluene was evaporated under reduced pressure and the reaction mixture was purified by column chromatography using with 30% ethylacetate in hexane as the eluent.

1-(4-methoxybenzyl)-4-(4-methoxyphenyl)-3-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 1, Compound b) Using 1-(4-methoxybenzyl)-3-bromo-4-(4-methoxyphenyl)-1 H -2(5H)-one ($38.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 4-methylphenylboronic acid ($16 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the general procedure described above, 1-(4-methoxybenzyl)-4-(4-methoxyphenyl)-3-p-tolyl$1 H-2(5 \mathrm{H})$-one was obtained in 78% yield ($31.2 \mathrm{mg}, 0.078 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 200 \mathrm{MHz}\right) \delta 7.18-7.32(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.69(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176\right.$ $\mathrm{MHz}) \delta 170.1,160.1,159.1,146.5,137.7,130.8,129.7,129.6,129.5,129.4,129.2$, $128.9,125.7,114.1,114.0,55.3,51.7,45.8,21.4$; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{3}\right) 399.1834$ found 399.1823 .

1-(4-Methoxybenzyl)3-o-tolyl-4-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 2, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-p-tolyl-1 H -2(5H)-one ($37.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4-methylphenyl boronic acid ($16 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzyl)3-o-tolyl-4-p-tolyl-1 $\mathrm{H}-2(5 \mathrm{H}$)-one was obtained in 75% yield (28.8 $\mathrm{mg}, 0.075 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ 7.19-7.30 (overlap, 6 H),

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$7.01(\mathrm{~s}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 171.0,159.1,147.4,139.5,136.9,132.6$, $130.4,130.1,129.9,129.6$ 129.3, 126.8, 126.1, 114.2, 55.3, 51.4, 45.9, 21.3, 19.9; (HRMS) CI: calculated for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}\right) 383.1885$ found 383.1893.

1-(4-Methoxybenzyl)-4-(4-chlorophenyl)-3-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 3, Compound b). Using 1-(4-methoxybenzyl)-3-bromo-4-(4-chlorophenyl)-1H-2(5H)-one ($39.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4-methylphenylboronic acid ($16 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the general procedure, $\quad 1$-(4-methoxybenzyl)-4-(4-chlorophenyl)-3-p-tolyl-1H-2(5H)-one was obtained in 81% yield ($32.7 \mathrm{mg}, 0.081$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD} \mathrm{Cl}_{3} 700 \mathrm{MHz}$) $\delta 7.30$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=9.1$, $2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7,2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.1,2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 170.5,159.2,145.4,138.2,134.9,132.9$, 131.8, 129.7, 129.3, 128.9, 128.7, 114.2, 55.3, 51.7, 45.9, 21.4; (HRMS) CI: calculated for $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClNO}_{2}\right) 403.1339$ found 403.1345.

1-(4-Methoxybenzyl)-3,4-dip-tolyl-1H-2(5H)-one (Table 3.8, Entry 4, Compound b). Using 4-methylphenylboronic acid ($42.1 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure described, 1-(4-methoxybenzy)-3,4-dip-tolyl-1 H -2(5H)-one was obtained in 84% yield $(45.3 \mathrm{mg}, 0.118 \mathrm{mmol}$) and showed identical spectral properties to those of Table 7, Entry 7, Compound b.

1-(4-Methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-2(5H)-one (Table 3.8, Entry 5, Compound b). Using 4-methoxylphenylboronic acid ($48.6 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure, 1-(4-methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-2(5H)-one was obtained in 85% yield ($49.4 \mathrm{mg}, 0.119 \mathrm{mmol}$) and showed identical spectral properties to those of Table 7, Entry 6, Compound b.

1-(4-Methoxybenzyl)-3,4-bis(4-chlorophenyl)-1H-2(5H)-one (Table 3.8, Entry 6, Compound b). Using 4-chlorophenylboronic acid ($48.6 \mathrm{mg}, 0.31 \mathrm{mmol}$) and the general procedure, 1-(4-methoxybenzyl)-3,4-bis(4-chlorophenyl)-1 H -2(5H)-one was obtained in 82% yield ($48.7 \mathrm{mg}, 0.115 \mathrm{mmol}$). Compound showed identical spectral properties as those of Table 7, Entry 8, Compound b.

1-(4-Methoxyphenyl)-3-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 1, Compound c). Using 1-(4-methoxybenzyl)-4-(4-methoxyphenyl)-3-p-tolyl-1 H -2(5 H)-one ($28 \mathrm{mg}, 0.07 \mathrm{mmol}$), TFA (1 mL) anisole (1 mL) and the general procedure above, 1-(4-methoxyphenyl)-3-p-tolyl- $1 \mathrm{H}-2(5 \mathrm{H})$-one was obtained in 84% yield ($14.0 \mathrm{mg}, 0.059 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.15-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$) $8174.8,160.5,149.7,138.0,131.0$, 129.6, 129.5, 129.3, 129.2, 125.9, 114.3, 55.7, 48.1, 21.7 CI (HRMS): calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}\right) 279.1259$ found 279.1257.

3-o-Tolyl-4-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 2, Compound c). Using 1-(4-methoxybenzyl)-3-o-tolyl-4-p-tolyl-1H-2(5H)-one ($26.8 \mathrm{mg}, 0.07 \mathrm{mmol}$) TFA/anisole (1

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$\mathrm{mL}: 1 \mathrm{~mL}$) and the general procedure described, 3-o-tolyl-4-p-tolyl- $1 \mathrm{H}-2(5 \mathrm{H})$-one was obtained in 86% yield ($15.8 \mathrm{mg}, 0.06 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ 7.55 (b, 1H), 7.24-7.11 (overlap, 4H), 7.06 (s, 4H), 4.45 (s, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.1$ (s, 3H), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 174.8,150.4,139.9,137.0,132.5,132.4,130.3,129.9$, $129.8,129.6129 .5,128.5,127.0,126.9,126.4,48.0,21.5,20.0$; (HRMS) CI: ($\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$) calculated for 263.1310 found 263.1308 .

4-(4-Chlorophenyl)-3-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 3, Compound c). Using 1-(4-methoxybenzyl)-4-(4-chlorophenyl)-3-p-tolyl-1 H -2(5H)-one ($28.3 \mathrm{mg}, 0.07 \mathrm{mmol}$) TFA/anisole ($1 \mathrm{~mL}: 1 \mathrm{~mL}$) and the general procedure described, 4-(4-chlorophenyl)-3-p-tolyl- $1 \mathrm{H}-2(5 \mathrm{H})$-one was obtained in $82 \%(16.3 \mathrm{mg}, 0.0575 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.25(\mathrm{q}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 174.1,148.5,138.5,135.3$, $133.0,132.0,130.3,129.5,129.4,129.1,129.0,48.0,21.5$; (HRMS) CI: ($\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}$) calculated 283.0764 found 283.0762 .

3,4-Di-p-tolyl-1H-2(5H)-one (Table 3.8, Entry 4, Compound c). Using 1-(4-methoxybenzyl)-3,4-dip-tolyl-1 $\mathrm{H}-2\left(5 \mathrm{H}\right.$)-one ($26.8 \mathrm{mg}, 0.07 \mathrm{mg}$), $\mathrm{AlCl}_{3}(46.6 \mathrm{mg}, 0.35$ mmol) in anisole (2 mL) and the general procedure described, 3,4-dip-tolyl-1 $\mathrm{H}-2(5 \mathrm{H}$)one was obtained in 81% yield ($15.0 \mathrm{mg}, 0.057 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $700 \mathrm{MHz}) \delta 7.65(\mathrm{~b}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{q}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}) 7.08(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 175.0$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
150.1, 139.5, 137.9, 131.8, 130.6, 129.5, 129.4, 129.1, 127.6, 48.4, 21.5; (HRMS) CI: $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}\right)$ calculated for 263.1310 found 263.1310.

3,4-Bis(4-methoxyphenyl)-1H-2(5H)-one (Table 3.8, Entry 5, Compound c). Using 1-(4-methoxybenzyl)-3,4-bis(4-methoxyphenyl)-1H-2(5H)-one (29.1 mg, 0.07 mmol), $\mathrm{AlCl}_{3}(46.6 \mathrm{mg}, 0.35 \mathrm{mmol})$ in anisole (2 mL) and the general procedure described above, 3,4-bis(4-methoxyphenyl)-1 $\mathrm{H}-2(5 \mathrm{H}$)-one was obtained in 86% yield (17.7 mg , $0.06 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 175.0,160.4,159.5,149.3,149.3,149.2$, $130.9,130.5,129.1,125.9,124.5,114.2,55.4,48.1$; (HRMS) CI: calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}\right)$ 295.1203 found 295.1201.

3,4-Bis(4-chlorophenyl)-1H-2(5H)-one (Table 3.8, Entry 6, Compound c). Using 1-(4-methoxybenzyl)-3,4-bis(4-chlorophenyl)- $1 \mathrm{H}-2\left(5 \mathrm{H}\right.$)-one ($29.7 \mathrm{mg}, 0.07 \mathrm{mmol}$) AlCl_{3} ($74.5 \mathrm{mg}, 0.056 \mathrm{mmol}, 8 \mathrm{eq}$) in anisole (2 mL) and the general procedure described, 3,4-bis(4-chlorophenyl)-1 $\mathrm{H}-2(5 \mathrm{H}$)-one was obtained in 87% yield ($18.6 \mathrm{mg}, 0.061 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.65(\mathrm{~b}, 1 \mathrm{H}), 7.18-7.34$ (overlap, 8 H), 4.34 (s, 2H), ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 173.7,149.7,135.6,134.4,131.3,130.8,129.8$ 129.2, 129.0, 128.9, 48.2; (HRMS) CI: $\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}\right)$ calculated for 303.0214 found 303.0218 .

3.1.7 References

(1) Steglich, W. Pure Appl. Chem. 1989, 61, 281-288.
(2) Steglich, W.; Steffan, B.; Kopanski, L.; Eckhardt, G. Angew. Chem. Int. Ed. 1980, 19, 459-460.
(3) Selles, P. Org. Lett. 2005, 7, 605-608.
(4) Burtoloso, A. C.; Garcia, A.; Miranda, K.; Correia, C. R. Synlett 2006, 3145-3149.
(5) Nettleton, D. E.; Doyle, T. W.; Krishnan, B.; Matsumoto, G. K.; Clardy, J. Tetrahedron Lett. 1985, 26, 4011-4014.
(6) Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schachtele, C.; Marme, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271-1281.
(7) Trapp, J.; Jochum, A.; Meier, R.; Saunders, L.; Marshall, B.; Kunick, C.; Verdin, E.; Goekjian, P.; Sippl, W.; Jung, M. J. Med. Chem. 2006, 49, 7307-7316.
(8) Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.; Yates, J. W.; Pearce, N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Roxbee Cox, L. Mills, D.; Brown, M. J.; Haigh, D.; Ward, R. W.; Smith, D. G.; Murray, K. J.; Reith, A. D.; Holder, Julie, C. Chem. Biol. 2000, 7, 793-803.
(9) Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.; Saunders, M.; Slingsby, B. P.; Stacey, R.; Ward, R. W. Bioorg. Med. Chem. Lett. 2001, 11, 635-639.
(10) Engler, T. A.; Malhotra, S.; Burkholder, T. P.; Henry, J. R.; Mendel, D.; Porter, W. J.; Furness, K.; Diefenbacher, C.; Marquart, A.; Reel, J. K. Bioorg. Med. Chem. Lett. 2005, 15, 899-903.
(11) O'Neill, D. J.; Shen, L.; Prouty, C.; Conway, B. R.; Westover, L.; Xu, J. Z.; Zhang, H.-C.; Maryanoff, B. E.; Murray, W. V.; Demarest, K. T.; Kuo, G.-H. Bioorg. Med. Chem. 2004, 12, 3167-3185.
(12) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082-5086.
(13) Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953-955.
(14) Brenstrum, T.; Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, J.; Robertson, A. J.; McNulty, J.; Capretta, A. Org. Lett. 2006, 8, 103-105.
(15) Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 7635-7639.
(16) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 8319-8321.
(17) Gerritsma, D. A.; Robertson, A.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 7629-7631.
(18) Funato, N.; Takayanagi, H.; Konda, Y.; Toda, Y.; Harigaya, Y.; Iwai, Y.; Omura, S. Tetrahedron Lett. 1994, 35, 1251-1254.
(19) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. (Tokyo) 1977, 30, 275-282.
(20) Noth, J.; Frankowski, K. J.; Neuenswander, B.; Aube, J.; Reiser, O. J. Comb. Chem. 2008, 10, 456-459.
(21) Lowinger, T. B.; Chu, J.; Spence, P. L. Tetrahedron Lett. 1995, 36, 83838386.
(22) Shimshock, S. J.; Waltermire, R. E.; DeShong, P. J. Amer. Chem. Soc. 1991, 113, 8791-8796.
(23) Smith, A. B.; Rano, T. A.; Chida, N.; Sulikowski, G. A.; Wood, J. L. J. Amer. Chem. Soc. 1992, 114, 8008-8022.
(24) Wood, J. L.; Stoltz, B. M.; Goodman, S. N. J. Amer. Chem. Soc. 1996, 118, 10656-10657.
(25) Botella, L.; N.jera, C. Tetrahedron Letters 2004, 45, 1833-1836.
(26) Dubernet, M.; Caubert, V.; Guillard, J.; Viaud-Massuard, M.-C. Tetrahedron 2005, 61, 4585-4593.
(27) Choi, D.-S.; Huang, S.; Huang, M.; Barnard, T. S.; Adams, R. D.; Seminario, J. M.; Tour, J. M. J. Org. Chem. 1998, 63, 2646-2655.
(28) Bull, S. D.; Davies, S. G.; Fenton, G.; Mulvaney, A. W.; Prasad, R. S.; Smith, A. D. J. Chem. Soc., Perkin Trans. 1 2000, 3765-3774.
(29) Miki, Y.; Hachiken, H.; Kashima, Y.; Sugimura, W.; Yanase, N. Heterocycles 1998, 48, 1-4.
(30) Zhang, J.; Blazecka, P. G.; Davidson, J. G. Org. Lett. 2003, 5, 553-556.
(31) Blazecka, P. G.; Belmont, D.; Curran, T.; Pflum, D.; Zhang, J. Org. Lett. 2003, 5, 5015-5017.
(32) Das Sarma, K.; Zhang, J.; Curran, T. T. J. Org. Chem. 2007, 72, 33113318.
(33) Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Sch $\sqrt{ }$ §chtele, C.; Marm $\sqrt{\text { © }}$, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271-1281.

Chapter 4

4.1.1 Strategies and Synthetic Methods Directed Towards the Preparation of

Libraries of Substituted Isoquinolines. ${ }^{3}$

Emelia Awuah and Alfredo Capretta

4.1.2 Abstract

Strategies for the production of substituted isoquinoline libraries were developed and explored. Routes involving microwave-assisted variants of the Bischler-Napieralski or Pictet-Spengler reaction allowed for cyclization of substituted β-arylethylamine derivatives. The dihydroisoquinolines and tetrahydroisoquinolines thus generated could then be oxidized to their corresponding isoquinoline analogues. An alternate strategy, however, involving the preparation and activation of isoquinolin- $1(2 H)$-ones is demonstrated to be a more practical, rapid and efficient route to C 1 and C 4 substituted isoquinoline libraries.

[^2]
4.1.3 Introduction

The isoquinoline ring is a common structural motif found in a variety of natural products and biologically-active compounds. Access to this heterocyclic system has historically involved the application of either the Bischler-Napieralski or Pictet-Spengler reaction. The Bischler-Napieralski ${ }^{1}$ reaction sees the conversion of an N-acyl- β-arylethyl amine into its corresponding dihydroisoquinoline then oxidation to the isoquinoline. ${ }^{2}$ The Pictet-Spengler reaction ${ }^{3}$ involves a Mannich-type reaction wherein a β-arylethylamine derivative is treated with an aldehyde under acidic conditions to generate an imine that can ring close to a tetrahydroisoquinoline and subsequently be oxidized to an isoquinoline. ${ }^{4}$ Given that, in both cases, ring closure involves an electrophilic aromatic substitution, substrates that incorporate electron-rich aromatic systems tend to give the best yields. Most recently, protocols utilizing microwave irradiation in the PictetSpengler ${ }^{5-10}$ and the Bischler-Napieralski ${ }^{9}$ reactions have been described. Alternatively, the Larock isoquinoline synthesis involves the coupling of o-iodoaldimines and alkynes in the presence of a palladium catalyst to permit access to C 3 and C 4 substituted systems. ${ }^{11-13}$

Figure 4.1. Approaches to Substituted Isoquinolines.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Our interest in these reactions grew out of a need for a library of substituted isoquinolines required for biological studies currently being conducted in our laboratory. Specifically required were systems wherein substitution could be introduced at the C 1 and C 4 positions of the isoquinoline core (compound (i), Figure 4.1). Two synthetic strategies were investigated: one wherein functionality is installed prior to cyclization (route a) and another wherein a suitable scaffold is activated then derivatized (route b). While both Bischler-Napieralski or Pictet-Spengler approaches allow for installation of functionality at C 1 , introduction of C 4 derivatization requires an appropriately functionalized β-arylethylamine (ii) which we envisioned could be prepared via a conjugate addition onto nitroalkene (iv), for example, to give (iii) followed by reduction. Alternatively, the desired isoquinolines could be generated from a heterocycle of the general type (v), which could be prepared from an isoquinolin-1(2H)-one utilizing Bischler-Napieralski chemistry then activated and subsequently functionalized. Both approaches (routes a and \mathfrak{b}) were explored with an eye to the development of general, robust synthetic methods suitable for the synthesis of libraries of isoquinolines from readily available precursors.

4.1.4 Results and Discussion

We focused our initial attention on the development of appropriate BischlerNapieralski and Pictet-Spengler protocols for the cyclization of β-arylethylamines. Exploratory experiments revealed that classical reaction conditions for these transformations gave poor to moderate yields and were unsuitable for parallel synthesis
reaction approaches. Efforts were, therefore, focused on the development of microwave-

Table 4.1. Optimization of Reaction Parameters for the Microwave-assisted Pictet-Spengler Reaction ${ }^{\text {a }}$

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{2}$ Reactions were carried out using Biotage Initiator ${ }^{\mathrm{TM}}$ microwave synthesizer in a sealed microwave reaction vial using 1 mmol of amine and 1.2 mmol of aldehyde.
assisted methods. A series of experiments was designed to determine the optimal parameters for a microwaveassisted Pictet-Spengler reaction and were carried out to quickly ascertain the effects of solvent, acid concentration, temperature and time (see Table 4.1). Entries 1 - 5 indicated that the reactions were best performed in the absence of solvent or in toluene. Raising the reaction temperature from $90^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ (entries $6-$
9) allowed for a marked improvement on the yields. Simply increasing the reaction time from 15
minutes (entries 6 and 7) to 30 minutes (entries 8 and 9) provided the optimal set of reaction conditions and the best overall yields. Entries $10-17$ illustrate the subtle interplay between equivalents of acid, temperature and time. Xylene was shown to be a suitable solvent for the reaction as well (entry 18).

A number of protocols were investigated for the oxidation of the tetrahydroisoquinolines to their corresponding isoquinoline derivatives including those involving the use of IBX ${ }^{14}$ and sulfur. ${ }^{15}$ In our hands, the method described by Buchs and Brossi ${ }^{16,17}$ involving dehydrogenation using Pd / C showed itself to be the most general

Conditions: (i) 8 eq. TFA, toluene, MW $140{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$. ; (ii) $10 \% \mathrm{Pd} / \mathrm{C}$, toluene, reflux, $2-6 \mathrm{~h}$

Scheme 4.1. Synthesis of Isoquinolines Utilizing a Microwave-assisted Pictet-

 Spengler reaction.and gave the best yields. For example, 1-(3,4-dimethoxyphenyl)-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (4a) was dehydrogenated using Pd / C in toluene to give 98% of the corresponding isoquinoline (4b). With the microwave-assisted Pictet-Spengler and oxidation reactions in hand, sequential application of the two protocols (without isolation

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

of the intermediate tetrahydroisoquinoline) was applied to the parallel synthesis of a small collection of isoquinolines (Scheme 4.1). The overall yields after both steps are shown and ranged from fair to very good. It should be noted that a number of commercially-available microwave systems offer the ability to process samples in either a serial or parallel fashion enabling rapid production of compound libraries.

The development of a microwave-assisted Bischler-Napieralski reaction protocol was then undertaken. Ideally, a reaction wherein the amide formation and cyclization to the 3,4-dihydroquinoline occurs in "one-pot" would be ideal. Using 2-(3,4dimethoxyphenyl)ethylamine and POCl_{3}, a series of exploratory reactions were carried out so as to quickly ascertain the effects of solvent, temperature and time (see Table 4.2). Optimal conditions involved treating the amine and carboxylic acid with POCl_{3} in toluene and irradiating the mixture in a microwave at $140^{\circ} \mathrm{C}$ for 30 minutes. It is worth noting that carrying out the reaction above using conventional heating required upwards of 8 hours for complete consumption of starting materials. Oxidation of the 3,4dihydroisoquinoline derivatives to their corresponding isoquinoline derivatives using dehydrogenation with Pd / C in toluene (as used for the oxidation of tetrahydroisoquinolines) was slow and did not give full conversion of starting material. Yields obtained after 72 hours of refluxing in toluene with Pd / C ranged between $40-60 \%$. Comparable yields were obtained when 3,4-dihydroisoquinolines derivatives were
heated in the presence of IBX ${ }^{14}$ in DMSO at $45^{\circ} \mathrm{C}$ for 24 hours. While disappointing, the Table 4.2. Optimization of Reaction Parameters for results were not the Microwave-assisted Bischler-Napieralski reaction ${ }^{\text {a }}$ unprecedented. A review

				$\gtrless_{\mathrm{OH}}^{\circ}$			
entry	R^{1}	R^{2}	Solvent		$\begin{aligned} & \text { temp } \\ & \text { (emp } \end{aligned}$	$\begin{aligned} & \text { (ime } \\ & (\min) \end{aligned}$	yiedd (\%)
1	H	H	MeCN	4	120	30	${ }^{23}$
2	H	н	MeCN	4	140	30	50
3	H	н	Toluene	4	140	30	97
4	H	Noz	meCN	4	120	30	45
5	H	NO_{2}	mecn	4	140	30	60
6	H	Noz	Toluene	4	140	30	85
7	н	cl	MeCN	4	120	30	31
8	н	cı	MeCN	4	140	30	74
9	${ }^{\text {H }}$	${ }^{\text {Cl }}$	Toluene	4	140	30	79
10	H	Br	Toluene	4	140	30	81
11	оме	н	Toluene	4	140	30	56
12	H	${ }^{\text {Br }}$	Toluene	6	140	30	82
13	н	$\mathrm{Br}^{\text {r }}$	Toluene	8	140	30	89
14	н	${ }^{\text {Br }}$	Toluene	10	140	30	89
15	${ }^{\text {H }}$	${ }^{\text {cl }}$	Toluene	10	140	${ }^{30}$	${ }^{79}$
16	${ }^{\text {H }}$	NO_{2}	Toluenc	10	140	30	85
17	оме	н	toluene	10	140	30	90
18	н	H	toluene	10	140	30	89

${ }^{\text {a }}$ Reactions were carried out using Biotage Initiator ${ }^{\mathrm{TM}}$ microwave synthesizer in a sealed microwave reaction vial using 1 mmol of amine and 1 mmol of carboxylic acid. of the relevant literature shows that these oxidations often require forcing conditions such as Pd / C in decaline at 230 ${ }^{\circ} \mathrm{C}^{18}$ or MnO_{2} in refluxing benzene. ${ }^{19}$ The best results were obtained when the dehydrogenation was carried out with Pd / C in the absence of solvent and heating at $150{ }^{\circ} \mathrm{C}$ for 30 minutes. ${ }^{20}$ For example, when 6,7-dimethoxy-1-phenyl-3,4dihydroisoquinoline
(Table 4.2, entry 18) was oxidized using this protocol, 97% of the corresponding isoquinoline was isolated.

Conditions: (i) POCl_{3}, toluene, MW $140^{\circ} \mathrm{C}, 30$ mins.; (ii) $\mathrm{Pd} / \mathrm{C}, 150^{\circ} \mathrm{C}, 30 \mathrm{~min}$ Scheme 4.2. Synthesis of Isoquinolines Utilizing a Microwave-assisted Bischler-Napieralski reaction.

With the microwave-assisted Bischler-Napieralski and oxidation protocols in hand, the two reactions were applied to the synthesis of a small collection of isoquinolines (Scheme 4.2, with overall yields reported). When the reaction was carried out using aryl acetic acid derivatives, however, facile air oxidation of the benzylic methylene resulted in the keto-imine product $\mathbf{1 4 - 1 9}$. Oxidation of these compounds allows for the series of acylisoquinolines shown in Scheme 4.3.

Conditions: (i) POCl_{3}, toluene, MW $140{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$.; (ii) air; (iii) $\mathrm{Pd} / \mathrm{C}, 150^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 4.3. Microwave-assisted Bischler-Napieralski reaction with aryl acetic acid derivatives.

With the cyclization and oxidations procedures developed, the feasibility of the nitroalkene approach to substituted β-arylethylamines (route a) was examined. We found
that the requisite nitroalkenes could be generated via an ultrasound-promoted, Henry condensation ${ }^{21}$ and that there was ample literature precedence for conjugate addition onto the nitroalkenes. ${ }^{22-24}$ While useful for the synthesis of individual isoquinoline derivatives, in practice, this chemistry is less than ideal for the preparation of large libraries of substituted isoquinolines mainly due to issues surrounding the conjugate addition onto the nitroalkenes; specifically, the relatively narrow scope of useful functionality that can be introduced at the C4-position using this approach. In addition, while oxidation of either the tetrahydroisoquinolines or the 3,4-dihydroisoquinoline could be achieved in excellent yields, the protocol using Pd / C does not lend itself to library synthesis. An alternate strategy (Figure 4.1 , route b) using an isoquinolin-1(2H)-one scaffold as a starting point was, therefore, examined. This approach proved itself to be more practical and also takes advantage of the Pd-catalyzed cross-coupling chemistry developed in our laboratory. ${ }^{25-29}$

6,7-Dimethoxyisoquinolone (22) was identified as a suitable building block for our initial studies. While a number of syntheses to the isoquinolin- $1(2 H)$-one system have been reported, ${ }^{30,31}$ a particularly attractive route takes advantage of chemistry developed by Chern and Li^{32} and the dehydrogenation protocol developed above. As illustrated in Scheme 4.4, treatment of 2-(3,4-dimethoxyphenyl)ethylamine with ethyl chloroformate provided carbamate 20 which could be cyclized smoothly in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{POCl}_{3}$ and hexamethyldisiloxane using microwave irradiation to give 6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (21) in 96% yield. Finally, use of Pd / C allowed for oxidation to the desired 22 in 98% yield. Given the facile access to 3,4 -
dihydroisoquinolines demonstrated by Wang 33 and others, the approach should be applicable for the preparation of other isoquinolin-1 2 H$)$-one scaffolds.

Conditions: (i) ethyl chloroformate, TEA, DCM (96\%); (ii) $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{POCl}_{3}$, hexamethyldisiloxane, MW $150^{\circ} \mathrm{C}, 40 \mathrm{~min}$. (96%); (iii) $\mathrm{Pd} / \mathrm{C}, 150^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (98%).

Scheme 4.4: Synthetic route to 6,7-Dimethoxyisoquinolone.

Protocols allowing for rapid and efficient activation and functionalization of the heterocycle were then explored. As presented in Scheme 4,5, bromination of 22 provides the vinyl bromide 23, a substrate capable of undergoing a variety of reactions permitting derivatization at C4. Palladium-mediated cross-coupling chemistry, for example, allowed for the arylation of compound $\mathbf{2 3}$ in 98% yield using a Suzuki reaction to give 24 using a catalytic system incorporating the 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6phosphaadamantane (PA-Ph) ligand. ${ }^{26-29,34}$ Alternatively, treatment of 23 with CuCN in 1-methylpyrrolidinone provided the 4 -nitrile derivative (25) in 66% yield.

Conditions: (i) $\mathrm{Br}_{2}, \mathrm{AcOH}(96 \%)$; (ii) $\mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}, \mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{PA}-\mathrm{Ph}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, MW 90 ${ }^{\circ} \mathrm{C}$, 30 min . (98\%); (iii) CuCN , 1-methylpyrrolidinone, MW $200^{\circ} \mathrm{C}, 40 \mathrm{~min}$ (86%)

Scheme 4.5: Access to C4-substituted Isoquinolones.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

With functionality introduced at C 4 , activation of the C 1 position was readily achieved via conversion to a bromo-imine moiety.

 27

Conditions: (i) 3 eq. $\mathrm{POBr}_{3}, \mathrm{DCM}, \mathrm{MW} 120^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (98\%); (ii) $\mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}, \mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{PA}-\mathrm{Ph}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, MW $90^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (95%); (iii) piperidine, $\mathrm{NaO}{ }^{\mathrm{t}} \mathrm{Bu}$, toluene, MW $180^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (64%)

Scheme 4.6. C1-derivatization of 6,7-dimethoxy-4-phenylisoquinolin-1(2H)-one.

Treatment of 6,7-dimethoxy-4-phenylisoquinolin-1(2H)-one with POBr_{3} in DCM using microwave irradiation (Scheme 4.6) yielded 26 in 98% yield. The bromo-imine then serves a substrate for a number of reactions allowing for arylation (to give 27 via a Suzuki reaction in 95\% yield) and amination (to give 28 in 66\% yield).

Alternatively, chlorination of 23 using POCl_{3} gives 29 (Scheme 4.7). ${ }^{35}$ Taking

Conditions: (i) POCl_{3}, MW, $100^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (98\%); (ii) $\mathrm{NaOEt} / \mathrm{EtOH}, \mathrm{MW}, 9{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}(87 \%)$; (iii) $\mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}, \mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{PA}-\mathrm{Ph}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, MW $100^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (93\%)

Scheme 4.7. Cl and C 4 derivatization of 4-bromo-6.7-dimethoxyisoquinolin-1(2H)one.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
advantage of the chemoselectivity at the two halogen sites allows for nucleophilic reaction at C 1 (for example, treatment with ethoxide to give 30) followed by crosscoupling at C 4 to give 31 .

Another interesting route for derivatization at Cl involves nucleophilic aroylation ${ }^{36,37}$ to give acylisoquinolines. As presented in Scheme 4.8, bromination of $\mathbf{2 5}$ in anisole using microwave irradiation allowed for the preparation of bromo-imine 32 in 89% yield. This 1 -bromoisoquinoline substrate could then be coupled with commercially-available aromatic aldehydes in the presence of 1,3-dimethylimidazolium iodide to generate compounds $\mathbf{3 3}, 34$ and $\mathbf{3 5}$ in excellent yields. Finally, $\mathbf{3 2}$ could be used as a partner in a Suzuki coupling to give systems such as $\mathbf{3 6}$.

Conditions: (i) 3 eq. POBr_{3}, DCM , MW $150^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (89%); (ii) 1,3-dimethylimidazolium iodide, NaH , DMF, room temperature, $1-2 \mathrm{~h}$; (iii) $\mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}, \mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{PA}-\mathrm{Ph}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MW} 90^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Scheme 4.8. C1 Derivatization of 6,7-dimethoxy-1-oxo-1,2-dihydroisoquinoline-4carbonitrile.

4.1.5 Conclusions

Microwave-assisted variants of the Bischler-Napieralski or Pictet-Spengler reaction were developed and used in the production of isoquinolines. An alternate
strategy presented involving the preparation and activation of isoquinolin- $1(2 \mathrm{H})$-ones, however, is clearly a more practical, rapid and efficient route to substituted isoquinoline libraries. Furthermore, the chemistry developed for derivatization allows for the installation of a diverse collection of vectors at the C 1 and C 4 position of the isoquinoline core and, therefore, a library capable of a more comprehensive exploration of chemical space. Work is currently underway to further determine the scope of the approach and prepare larger libraries of substituted isoquinolines using this chemistry.

4.1.6 Experimental Section.

General procedure for the microwave-assisted Pictet-Spengler synthesis of 1,2,3,4tetrahydroisoquinolines. Amine (1 mmol), aldehyde (1.2 mmol), TFA (8 mmol) and toluene (1 mL), were placed in microwave vial, capped and irradiated in a microwave for 30 minutes at $140^{\circ} \mathrm{C}$. The solvent was then evaporated under reduced pressure and the crude reaction mixture suspended in cold water (3 mL), treated with aqueous $\mathrm{NaOH}(2$ M) to pH 8 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic extracts was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel using $3-5 \% \mathrm{MeOH}$ in dichloromethane to afford the corresponding tetrahydroisoquinoline.

1,2,3,4-tetrahydro-6,7-dimethoxy-1-phenylisoquinoline (1a). Using 3,4dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), benzaldehyde ($100 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and the general procedure, 1a was obtained in 98% yield ($264 \mathrm{mg}, 0.98 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$,
$3.88(\mathrm{~s}, 3 \mathrm{H}) 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.77-3.25(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~b}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ 147.6, 147.1, 144.6, 129.6, 128.9, 128.4, 127.6, 127.4, 111.4, 110.9, 61.3, 55.8, 41.7, 29.2; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+1) 270.1495$, found 270.1495 .

1-(4-fluorophenyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (2a). ${ }^{1}$ Using 3,4dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-fluorobenzaldehyde ($128 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and the general procedure yielded 1-(4-flurophenyl)-1,2,3,4-tetrahydro-6,7dimethoxyisoquinoline in $97 \%(278.5 \mathrm{mg}, 0.97 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 200 MHz): $\delta 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.93-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.73-3.20(\mathrm{~m}, 4 \mathrm{H}) ; \delta{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 162.3$ (d, $J=246.2 \mathrm{~Hz}$), 148.0, 147.3, 139.2, 130.7 (d, $J=7.9 \mathrm{~Hz}$), 128.6, 127.1, 115.3 (d, $J=$ 21.3 Hz), 111.3, 110.7, 60.4, 55.9, 41.5, 28.5; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FNO}_{2}$ $(\mathrm{M}+1) 288.1355$, found 289.1428 .

1,2,3,4-tetrahydro-6,7-dimethoxy-1-(3-methoxyphenyl)isoquinoline (3a). ${ }^{2}$ Using 3,4dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 3-methoxybenzaldehyde ($132 \mu \mathrm{~L}, 1.2$ mmol) and the general procedure described yielded 1,2,3,4-tetrahydro-6,7-dimethoxy-1-(3-methoxyphenyl)isoquinoline in 97% yield ($290.2 \mathrm{mmol}, 0.97 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}$, $1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.73-3.22(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz})$, 159.7, 147.8, 147.2, 145.1, 129.4, 128.5, 127.1, 121.5, 114.5, 113.3, 111.3, 110.8, 110.2, 61.0, 55.9, 55.3, 41.4, 28.6; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+1)$ 300.1555 , found 300.1591 .

1,2,3,4-tetrahydro-6,7-dimethoxy-1-(3,4-dimethoxyphenyl)isoquinoline (4a). ${ }^{3}$ Using 3,4-dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 3,4-dimethoxybenzaldehyde (166.2 $\mathrm{mg}, 1.2 \mathrm{mmol}$) and the general procedure described yielded 1,2,3,4-tetrahydro-6,7-dimethoxy-1-(3,4-dimethoxyphenyl)isoquinoline in 65% yield (214 mg 0.65 mmol) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.84(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}$, 1 H), 3.88 (s, 6H), 3.83 (s, 3H), 3.65 (s, 3H), 2.68-3.27, (m, 4H), 1.77, (b, 1H); ${ }^{13} \mathrm{C}$ $(\mathrm{CDCl} 3,50 \mathrm{MHz}): \delta 149.1,148.5,147.7,147.1,137.5,130.3,127.7,121.3,111.9,111.5$, 110.8, 61.6, 56.0, 42.4, 29.4; HRMS (CI): calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}(\mathrm{M}+1) 330.1661$, found 330.1687 .

4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)benzonitrile (5a) was prepared and used without purification in the synthesis of 4-(6,7-dimethoxyisoquinolin-1yl)benzonitrile ($\mathbf{5 b}$, see below).

1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-methoxyphenyl)isoquinoline (6a). ${ }^{4}$ Using 3,4dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-methoxybenzaldehyde ($132 \mu \mathrm{~L}, 1.2$ mmol) and the general procedure described yielded 1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-methoxyphenyl)isoquinoline in 88% yield ($263.3 \mathrm{mg}, 0.88 \mathrm{mmol}$) and showed: 1 H NMR (CDCl3, 200 MHz): $\delta 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}$, $1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.70-3.21(\mathrm{~m}, 4 \mathrm{H})$, $2.59(\mathrm{~b}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDClB, 50 MHz): $\delta 159.0,147.8,147.2,136.2,130.4,129.7$, 127.9, 113.8, 111.4, 110.9, 60.9, 56.1, 55.9, 55.3, 41.6, 28.9; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+1) 300.1555$, found 300.1591 .

1,2,3,4-tetrahydro-6,7-dimethoxy-1-p-tolylisoquinoline (7a). ${ }^{5}$ Using 3,4dimethoxyphenethylamine ($166.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-methylbenzaldehyde ($146 \mu \mathrm{~L}, 1.2$ mmol) and the general procedure described yielded 1,2,3,4-tetrahydro-6,7-dimethoxy-1-p-tolylisoquinoline ($252 \mathrm{mg}, 0.89 \mathrm{mmol}$) in 89% yield and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 7.16(\mathrm{~s}, 4 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}) 3.87(\mathrm{~s}, 3 \mathrm{H}) 3.64(\mathrm{~s}, 3 \mathrm{H})$, 2.76-3.20 (m, 4H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~b}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 147.6$, $147.0,141.7,137.0,129.8,129.1,128.8,127.6,111.3,110.9,61.0,55.9,41.7,29.2,21.0 ;$ HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$ (M+1) 284.1606, found 284.1596.

1,2,3,4-tetrahydro-6-methoxy-1-phenyl-isoquinoline (8a). ${ }^{6}$ Using 2-(3methoxyphenyl)ethanamine ($140 \mu \mathrm{~L}, 1 \mathrm{mmol}$), benzaldehyde ($100 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and the general procedure described yielded 1,2,3,4-tetrahydro-6-methoxy-1-phenyl-isoquinoline in 94% yield ($224.8 \mathrm{mg}, 0.94 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.22-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 6.62-6.69(\mathrm{~m}, 3 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.81-3.26(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl} 3,50 \mathrm{MHz}$): $\delta 157.9,145.2,136.8,130.7,129.3,129.0,128.5$, 127.4, 113.4, 112.1, 61.7, 55.3, 42.3, 30.2; HRMS (CI): calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+1)$ 240.1388, found 240.1381 .

1,2,3,4-tetrahydro-6,7-dimethoxy-4-methyl-1-phenylisoquinoline (9a). ${ }^{7}$ Using 2-(3,4-dimethoxyphenyl)propan-1-amine ($195.3 \mathrm{mg}, 1 \mathrm{mmol}$), benzaldehyde ($100 \mu \mathrm{~L}, 1.2$ mmol) and the general procedure described yielded 1,2,3,4-tetrahydro-6,7-dimethoxy-4-methyl-1-phenylisoquinoline in yield 90% ($255 \mathrm{mg}, 0.9 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.20-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

3H) $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~b}, 1 \mathrm{H})$ $1.30(\mathrm{~d}, J=4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 147.9,147.0,144.6,133.1,129.5$ 129.1, 128.9, 128.5, 127.5, 110.9, 110.2, 61.8, 56.0, 55.9, 49.5, 32.2, 20.2; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+1)$ 284.1651, found 284.1645.

General procedure for the synthesis of isoquinolines via a microwave-assisted PictetSpengler / oxidation method. Amine (0.5 mmol), aldehyde (0.6 mmol), TFA (4 mmol) and toluene (1 mL) were placed in microwave vial, capped and irradiated in a microwave for 30 minutes at $140^{\circ} \mathrm{C}$. Additional toluene (5 mL) was added and the reaction mixture transferred to a vial containing $10 \% \mathrm{Pd} / \mathrm{C}(70.0 \mathrm{mg})$ in toluene (4 mL). The mixture was left to reflux for $2 \mathrm{~h}-12 \mathrm{~h}$ at which time the Pd / C was filtered off and the Pd / C residue washed with hot toluene $(20 \mathrm{~mL})$. The solvent was evaporated under a reduced pressure and the residue purified by flash column chromatography on silica gel using 2-5\% MeOH in dichloromethane to obtain the isoquinoline derivatives. 6,7-Dimethoxy-1phenylisoquinoline (lb). Using 3,4-dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), benzaldehyde ($50 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure described, 1 b was obtained in 74% yield ($98 \mathrm{mg}, 0.37 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.49(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.8 \& 2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $4.05(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 158.5,152.8,150.1,141.6$, 140.2, 133.9, 129.7, 128.6, 122.7, 118.9, 105.7, 105.1, 56.2, 56.0; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+1)$ 266.1136, found 266.1103.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

1-(4-fluorophenyl)-6,7-dimethoxyisoquinoline
 (2b)
 Using
 3,4-

 dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 4-fluorobenzaldehyde ($64 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure yielded 1-(4-fluorophenyl)-6,7-dimethoxyisoquinoline in 88% yield ($124.6 \mathrm{mg}, 0.44 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.45(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}) 7.65-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 163.0(\mathrm{~d}, J=$ $247.7 \mathrm{~Hz}), 157.3,152.8,150.3,141.4,136.2,133.9,131.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 122.6,119.0$, 115.6 (d, $J=21.5 \mathrm{~Hz}$) 105.3, 105.2, $56.2,56.0$; $\mathrm{HRMS}(\mathrm{CI})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNO}_{2}$ (M+1) 284.1042, found 284.1097.6,7-dimethoxy-1-(3-methoxyphenyl)isoquinolines
(3b)
Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 3-methoxybenzaldehyde ($73 \mu \mathrm{~L}, 0.6$ mmol) and the general procedure yielded 6,7-dimethoxy-1-(3methoxyphenyl)isoquinoline in 90% yield ($0.45 \mathrm{mmol}, 132.8 \mathrm{mg}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.47(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 3 \mathrm{H})$, $6.99(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 159.7$, $158.0,152.6,149.9,141.2,133.7,129.3,122.4,122.0,118.8,114.7,114.6,105.5,104.9$, 56.0, 55.9, 55.3; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+1)$ 296.1242, found 296.1239.

6,7-dimethoxy-1-(3,4-dimethoxyphenyl)isoquinolines (4b). ${ }^{8}$ Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 3,4-dimethoxybenzaldehyde ($83 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ and the general procedure yielded 6,7-dimethoxy-1-(3,4-

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

dimethoxyphenyl)isoquinoline in 61% yield ($0.31 \mathrm{mmol}, 99.2 \mathrm{mg}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} \delta): \delta 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 158.1,152.7,150.1,149.4,149.1,141.4,134.0,132.9$, 122.4, 118.6, 113.0, 111.0, 105.9, 105.1, 56.1; HRMS (CI): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}$ $(\mathrm{M}+1) 326.1348$, found 326.1396 .

4-(6,7-dimethoxyisoquinolin-1-yl)benzonitrile (5b). 3,4-dimethoxyphenethylamine (83 $\mu \mathrm{L}, 0.5 \mathrm{mmol}$), 4-formylbenzonitrile ($78.6 \mathrm{mg}, 0.6 \mathrm{mmol}$) and the general procedure yielded 4-(6,7-dimethoxyisoquinolin-1-yl)benzonitrile in 24% yield ($34.8 \mathrm{mg}, 0.12$ mmol) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.51(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (s, $4 \mathrm{H}), 7.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.16,(\mathrm{~s}, 1 \mathrm{H}), 4.06,(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 156.1,153.1,150.7,144.8,141.6,134.1,132.5,130.6,122.4$, 119.8, 118.9, 112.4, 105.3, 104.5, 56.3, 56.1; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M+1) 291.1081, found 291.1108.

6,7-dimethoxy-1-(4-methoxyphenyl)isoquinoline (6b). ${ }^{9} \quad$ Using \quad 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 4-methoxybenzaldehyde ($66 \mu \mathrm{~L}, 0.6$ mmol) and the general procedure yielded 6,7-dimethoxy-1-(4methoxyphenyl)isoquinoline in 67% yield ($98.9 \mathrm{mg}, 0.34 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.03-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 156.9,158.1,152.6,150.0,141.5,133.9,132.7,131.0,122.6$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$118.5,113.9,105.8,105.1,56.2,56.0,55.5$; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}$ (M+1) 296.1242 found, 296.1247.

6,7-dimethoxy-1-p-tolyisoquinoline (7b). Using 3,4-dimethoxyphenethylamine ($83 \mu \mathrm{~L}$, 0.5 mmol), 4-methylbenzaldehyde ($73.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure yielded 6,7 -dimethoxy-1-p-tolyisoquinoline in 78% yield ($108.9 \mathrm{mg}, 0.39 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.47(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}),, 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.50$ $(\mathrm{m}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ MHz): $\delta 158.3,152.6,149.9,141.3,138.2,137.1,133.1,129.5,129.1,122.5,118.5$, 105.7, 105.0, 56.0, 55.9, 21.3; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+1)$ 280.1374, found 280.1303 .

6-methoxy-1-phenylisoquinoline (8b). Using 2(3-methoxyphenyl)ethanamine (70 $\mu \mathrm{L}$, 0.5 mmol), benzaldehyde ($50.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and the general procedure yielded 6 -methoxy-1-phenylisoquinoline in 89% yield ($104.5 \mathrm{mg}, 0.45 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.55(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.72$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$, $\delta 160.7,160.3,143.0,139.8,139.1,130.0,129.6,128.7,128.5,122.5,120.1,119.4$, 104.6, 55.6; $\mathrm{HRMS}(\mathrm{CI}):$ calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}(\mathrm{M}+1)$ 236.1112, found 236.1161 .
6,7-dimethoxy-4-methyl-1-phenylisoquinoline (9b). ${ }^{10} \quad$ Using \quad 2-(3,4- dimethoxyphenyl)propan-1-amine ($97.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), benzaldehyde ($50.0 \mu \mathrm{~L}, 0.6$ mmol) and the general procedure yielded 6,7-dimethoxy-4-methyl-1-phenylisoquinoline 56% yield ($78 \mathrm{mg}, 0.28 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.36(\mathrm{~s}, 1 \mathrm{H})$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$7.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3 H), $2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 157.1,152.5,149.7,141.6,140.4$, $133.0,129.8,128.5,128.4,125.3,122.1,106.3,102.0,56.2,56.0,16.5$; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+1) 280.1338$ found, 280.1341.

General procedure for the microwave-assisted Bischler-Napieralski synthesis of 3,4dihydroisoquinolines. Amine (1 mmol), carboxylic acid (1 mmol), $\mathrm{POCl}_{3}(4 \mathrm{mmol})$ and toluene (2 mL) were placed in microwave vial, capped and irradiated in a microwave for 30 minutes at $140^{\circ} \mathrm{C}$. The solvent was then evaporated under reduced pressure and the crude reaction mixture suspended in cold water (3 mL), treated with aqueous $\mathrm{NaOH}(2$ M) to pH 8 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel using 3-5\% MeOH in dichloromethane to afford the corresponding 3,4dihydroisoquinolines. 3,4-dihydro-6,7-dimethoxy-1-phenylisoquinoline (Table 4. 2, Entry 3). Using 3,4-dimethoxyphenethylamine ($166 \mu \mathrm{~L}, 1 \mathrm{mmol}$), benzoic acid (122 mg , 1 mmol) and the general procedure described, 3,4-dihydro-6,7-dimethoxy-1phenylisoquinoline was obtained in 97% yield ($259.0 \mathrm{mg}, 0.97 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.58-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}$, $1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 166.8,151.0,147.1,139.1,132.6,129.4,128.8,128.2,121.6,111.7$, 110.3, 56.2, 56.1, 47.6, 26.0; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+1)$ 268.1338, found 268.1323 .

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

3,4-dihydro-6,7-dimethoxy-1-(4-nitrophenyl)isoquinoline (Table 4.2, Entry 6). ${ }^{11}$ Using 3,4-dimethoxyphenethylamine ($166.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-nitrobenzoic acid ($167.1 \mathrm{mg}, 1$ mmol) afforded 3,4-dihydro-6,7-dimethoxy-1-(4-nitrophenyl)isoquinoline in 85% yield ($265.3 \mathrm{mg}, 0.85 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.86$, (t, $J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 165.1,151.4$, $148.4,147.4,145.4,132.6,129.7,123.5,120.7,110.7,110.5,56.2,56.1,48.0,25.8 ;$ HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1)$ 313.1188, found 313.1191.

1-(4-chlorophenyl)-3,4-dihydro-6,7-dimethoxyisoquinoline (Table 4.2, Entry 9). ${ }^{12}$ Using 3,4-dimethoxyphenethylamine ($166.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-chlorobenzoic acid (156.6 $\mathrm{mg}, 1 \mathrm{mmol}$) afforded 1-(4-chlorophenyl)-3,4-dihydro-6,7-dimethoxyisoquinoline in 79\% yield ($237.9 \mathrm{mg}, 0.79 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.56(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ; 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.8$, 151.1, 147.2, 137.6, 135.4, 132.7, 130.2, 128.4, 121.2, 111.2, 110.4, 56.2, 56.1, 47.7, 26.0; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNO}_{2}(\mathrm{M}+1) 302.0903$, found 302.0864.

1-(4-bromophenyl)-3,4-dihydro-6,7-dimethoxyisoquinoline, (Table 4.2, Entry 10). ${ }^{13}$ Using 3,4-dimethoxyphenethylamine ($166.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 4-bromobenzoic acid (201 mg , 1 mmol) gave 1-(4-bromophenyl)-3,4-dihydro-6,7-dimethoxyisoquinoline in 81% yield ($279.5 \mathrm{mg}, 0.81 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.56(\mathrm{q}, J=4.4 \mathrm{~Hz}$, 4H), $6.78(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

$J=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.9,151.2,147.3,138.2,132.7,131.5$, 130.5, 123.7, 121.3, 111.2, 110.4, 56.3, 56.2, 47.8, 26.0; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{2}(\mathrm{M}+1) 346.0398$, found 346.0288 .

3,4-dihydro-6,7-dimethoxy-1-(2-methoxyphenyl)isoquinolines (Table 4.2, Entry 17). ${ }^{13}$ Using 3,4-dimethoxyphenethylamine ($166.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), 2-methoxybenzoic acid (152.2 $\mathrm{mg}, 1 \mathrm{mmol}$) gave 3,4-dihydro-6,7-dimethoxy-1-(2-methoxyphenyl)isoquinoline in 90% yield ($267.4 \mathrm{mg}, 0.9 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.35-7.43(\mathrm{~m}$, 2H), 6.92-7.07 (m, 2H), $6.73(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.92(\mathrm{~m}, 11 \mathrm{H}), 2.78(\mathrm{t}, J=7 \mathrm{~Hz}$ $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 165.8,157.2,151.0,147.3,131.0,130.5,130.3$, 128.6, 122.7, 120.9, 111.1, 110.1, 56.2, 56.1, 55.6, 47.7, 25.8; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}(\mathrm{M}+1)$ 298.1398, found 298.1398.

General procedure for the synthesis of isoquinolines via a microwave-assisted Bischler-

 Napieralski reaction / oxidation method (Scheme 4.2). Amine (0.5 mmol), carboxylic acid (0.5 mmol), $\mathrm{POCl}_{3}(2 \mathrm{mmol})$ and toluene (2 mL) were placed in microwave vial, capped and irradiated in a microwave for 30 minutes at $140^{\circ} \mathrm{C}$. The solvent was then evaporated under reduced pressure and the crude reaction mixture suspended in cold water (3 mL), treated with aqueous $\mathrm{NaOH}(2 \mathrm{M})$ to pH 8 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 10 mL). The combined organic extracts was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under a reduced pressure. $10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg})$ was then added to the residue, mixed together with a spatula and heated to $150^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was cooled to room temperature and suspended in dichloromethane $(20 \mathrm{~mL}) . \mathrm{Pd} / \mathrm{C}$ was removed via filtrationPhD Thesis - E. Awuah, McMaster University - Department of Chemistry
and the filtrate concentrated before purification by flash column chromatography on silica gel using $2-3 \% \mathrm{MeOH}$ in dichloromethane.

1-(4-bromophenyl)-6,7-dimethoxyisoquinoline (10). Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 4-bromobenzoic acid ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the general procedure described, 10 was obtained in 80% yield ($137 \mathrm{mg}, 0.4 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.69(\mathrm{~m}, 5 \mathrm{H})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 157.1$, $152.9,150.4,141.5,139.1,134.0,131.8,131.4,122.9,122.5,119.2,105.2,56.3,56.1$; HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrNO}_{2}(\mathrm{M}+1) 344.0187$ found, 344.0208 .

6,7-dimethoxy-1-(4-nitrophenyl)isoquinoline (11). ${ }^{14} \quad$ Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 4-nitrobenzoic acid ($83.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) afforded 6,7-dimethoxy-1-(4-nitropheny)isoquinoline in 80% yield ($124.0 \mathrm{mg}, 0.4$ $\mathrm{mmol})$ and showed ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.51(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 155.7,153.2,150.8,148.0$, 146.6, 141.6, 134.1, 130.8, 128.5, 123.9, 119.9, 105.3, 104.4, 56.3, 56.1; HRMS (CI): calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}\right)(\mathrm{M}+1) 311.0968$, found 311.0986.

6,7-dimethoxy-1-phenylisoquinoline (12). Using 3,4-dimethoxyphenethylamine ($83 \mu \mathrm{~L}$, 0.5 mmol), benzoic acid ($61.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the general procedure described yielded 6,7-dimethoxy-1-phenylisoquinoline in 80% yield ($106.0 \mathrm{mg}, 0.4 \mathrm{mmol}$). For characterization see 1b above.
(13). Using 3,4dimethoxyphenethylamine ($83.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-methoxybenzoic acid ($76.1 \mathrm{mg}, 0.5$ mmol) and the general procedure described, gave in 80% ($118.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 8.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.53(\mathrm{~m}, 3 \mathrm{H})$, 7.03-7.15 (m, 3H), $6.94(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}): \delta 156.2,155.7,151.9,149.0,140.6,132.4,130.6,129.2,128.1,122.9,120.2$, $118.2,110.4,105.2,104.0,55.3,55.1,54.8$; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}$ $(\mathrm{M}+1)$ 296.1242, found 296.1242 .

6,7-dimethoxyisoquinolin-1-yl)(3,4-dimethoxyphenyl)methanone (14). ${ }^{15}$ Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-(3,4-dimethoxyphenyl) acetic acid (98.1 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and the general procedure described in scheme 2 , gave $6,7-$ dimehtoxyisoquinolin-1-yl)(3,4-dimethoxyphenyl)methanone in 78% yield ($137 \mathrm{mg}, 0.39$ $\mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.87$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 194.2$, $154.0,153.4,151.2,149.2,140.3,134.2,130.1,128.6,127.2,123.1,121.5,112.0,110.1$, 105.0, 104.3, 56.3; HRMS (CI): calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{5}(\mathrm{M}+1)$ 354.1297, found 354.1297.

6,7-dimethoxyisoquinolin-1-yl)(3,4,5-trimethoxyphenyl)methanone (15). Using 3,4dimethoxyphenethylamine ($83.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-(3,4,5-trimethoxyphenyl) acetic acid $(113.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the general procedure described in scheme 2 gave $6,7-$

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
dimethoxyisoquinolin-1-yl)(3,4,5-trimethoxyphenyl)methanone in 55% yield (105.6 mg , $0.28 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 195.3,153.4,153.0,151.3$, $143.1,140.1,134.2,132.2,123.3,121.8,108.6,107.3,105.0,104.2,61.1,56.4 ;$ HRMS (ES): calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6}(\mathrm{M}+1) 384.1447$, found 384.1468 .
(4-fluorophenyl)(6,7-dimethoxyisoquinolin-1-yl)methanone (16). Using 3,4dimethoxyphenethylamine ($83.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-(4-fluorophenyl)acetic acid (77 mg , 0.5 mmol) and the general procedure described in scheme 2 gave (4-flurophenyl)(6,7-dimethoxyisoquinolin-1-yl)methanone in $60 \%(93.3 \mathrm{mg}, 0.3 \mathrm{mmol})$ yield and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.45(\mathrm{~d}, J=8.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.99(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.14-7.23 (m, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 189.8,167.0(\mathrm{~d}, J=258.8 \mathrm{~Hz}), 156.3$, $153.0,149.2,136.6,134.0,133.8(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 132.6,123.1,122.7,116.4(\mathrm{~d}, J=22.8)$, 105.5, 104.4, 56.9, 56.6; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}_{3}(\mathrm{M}+1) 312.1036$, found 312.1041 .
(4-chlorophenyl)(6,7-dimethoxyisoquinolin-1-yl)methanone (17). ${ }^{16 \quad \text { Using 3,4- }}$ dimethoxyphenethylamine ($83.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-(4-chlorophenyl)acetic acid (85.3 mg , 0.5 mmol) and the general procedure described in scheme 2 gave (4-chlorophenl)(6,7-dimethoxyisoquinolin-1-yl)methanone gave in 72% yield ($117.7 \mathrm{mg}, 0.36 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.57(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56,(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 194.2,153.4,152.3,151.5,140.2,140.0,135.7$, 134.3, 132.4, 128.8, 123.3, 122.1, 105.0, 104.0, 56.2; HRMS (CI): calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNO}_{3}(\mathrm{M}+1)$ 328.0696, found 328.0696 .

6,7-dimethoxyisoquinolin-1-yl)(p-tolyl)methanone
(18).

Using 3,4dimethoxyphenethylamine ($83.0 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-p-tolylacetic acid ($75.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the general procedure described in scheme 2 gave 6,7-dimethoxyisoquinolin-1-yl)(ptolyl)methanone in 80% yield ($123.3 \mathrm{mg}, 0.4 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 8.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 2 \mathrm{H}) 7.30(\mathrm{~s}$, $2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 195.3,153.3,151.2,144.6,140.3$, 134.7, 134.1, 131.1, 129.3, 123.1, 121.6, 105.0, 104.2, 56.3, 21.9; HRMS (ES): calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+1)$ 308.1287, found 308.1283.

6,7-dimethoxyisoquinolin-1-yl)(naphthalen-ly)methanone (19). Using 3,4dimethoxyphenethylamine ($83 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), 2-(naphthalene-5-yl)acetic acid (93.1 mg , 0.5 mmol) and the general procedure described in scheme 2 gave 6,7-dimethoxyisoquinolin-1-yl)(naphthalen-ly)methanone in 68% yield ($116 \mathrm{mg}, 0.34 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.69(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$, $4.08(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 198.3,153.3,151.7,140.6$, $135.7,134.3,134.2,133.4,131.9,131.6,128.7,128.2,126.6,126.0,124.5,123.5,122.2$, 105.0, 104.3, 56.3 ; HRMS (CI): calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+1) 344.1287$, found 344.1300 .

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Ethyl 3,4-dimethoxyphenethylcarbamate (20). To a solution of 3,4dimethoxyphenethylamine ($0.55 \mathrm{~mL}, 3.3 \mathrm{~mol}$) and triethylamine ($0.51 \mathrm{~mL}, 3.6 \mathrm{mmol}$) in DCM (10 mL) cooled at $0^{\circ} \mathrm{C}$ was added ethyl chloroformate ($0.35 \mathrm{~mL}, 3.6 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and stirred for 12 h . The precipitate formed was filtered and the filtrate washed with distilled water (8 mL). The organic fraction was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel using 30% ethyl acetate in hexane to afford 20 in 96% yield ($802 \mathrm{mg}, 3.17 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$): $\delta 6.69-6.82(\mathrm{~m}, 3 \mathrm{H})$, $4.69(\mathrm{~b}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right): \delta 156.6,149.0$, 147.7, 131.3, 120.7, 112.0, 111.4, 60.7, 55.9, 55.8, 42.2, 35.7; HRMS (CI): calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}(\mathrm{M}+1)$ 254.1348, found 254.1390.

3,4-Dihydro-6,7-dimethoxyisoquinolin-1(2H)-one

(21).

Ethyl
3,4dimethoxyphenethylcarbamate 20 ($229 \mathrm{mg}, 1 \mathrm{mmol}$) was treated with $\mathrm{POCl}_{3}(6 \mathrm{~mL}, 60$ mmol), hexamethyldisiloxane ($6 \mathrm{~mL}, 27.6 \mathrm{mmol}$) and $\mathrm{P}_{2} \mathrm{O}_{5}(892 \mathrm{mg}, 6 \mathrm{mmol})$. The reaction mixture was capped and irradiated in a microwave for 40 minutes at $150^{\circ} \mathrm{C}$. The reaction mixture was concentrated and then poured on ice, neutralized with NaOH (2M) and extracted with DCM. The DCM extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel using 50% ethyl acetate in hexane to give 21 in 96% yield ($199 \mathrm{mg}, 0.96 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ $7.57(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~b}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$;

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
> ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 166.4,152.4,148.2,132.7,121.5,110.4,109.7,56.2,40.7$, 28.2; HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+1)$ 208.0927, found 208.0957.

6,7-Dimethoyisoquinolin-1(2H)-one (22). A mixture of 3,4-dihydro-6,7-dimethoxyisoquinolin-1(2H)-one $21(198.8 \mathrm{mg}, 0.96 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ was ground to fine powder before heating at $150{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was suspended in DCM $(100 \mathrm{~mL})$ before filtering to remove the Pd / C. Evaporation of the solvent under reduced pressure yielded 22 in 98% yield ($194 \mathrm{mg}, 0.945 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 11.40(\mathrm{~b}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 163.8,153.8$, $149.4,134.0,126.8,120.0,107.0,106.3,56.5,56.3$; HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{3}(\mathrm{M}+1)$ 206.0772, found 206.0739.

4-Bromo-6,7-dimethoxyisoquinolin-1(2H)-one (23). To a stirred solution of 6,7-dimethoxyisoquinolin-1(2H)-one 22 ($205 \mathrm{mg}, 1 \mathrm{mmol}$) in glacial acetic acid (1.2 mL) at room temperature was added dropwise a solution of $\mathrm{Br}_{2}(51 \mu \mathrm{~L}, 1 \mathrm{mmol})$ in glacial acetic acid $(760 \mu \mathrm{~L})$. The mixture was stirred for 1 hour at room temperature. The reaction mixture was poured into ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford 23 in 96% yield ($271 \mathrm{mg}, 0.96 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 200 \mathrm{MHz}$): $\delta 11.45(\mathrm{~b}, 1 \mathrm{H})$ $7.62(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, $50 \mathrm{MHz}): \delta 160.3,153.6,149.2,130.9,128.0,120.0,107.5,106.0,97.1,55.7$; HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNO}_{3}(\mathrm{M}+1)$ 283.9878, found 283.9846.

6,7-Dimethoxy-4-phenylisoquinolin-1(2H)-one (24). To a mixture of 4-bromo-6,7-dimethoxyisoquinolin-1(2H)-one $23(100 \mathrm{mg} 0.35 \mathrm{mmol})$, phenylboronic acid (64.6 mg , $0.52 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(84.5 \mathrm{mg}, 0.26 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(7.2 \mathrm{mg}, 0.007 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), $\mathrm{PA}-\mathrm{Ph}$, ($4.1 \mathrm{mg}, 0.014 \mathrm{mmol}, 4 \mathrm{mmol} \%$) was added toluene (3 mL). The reaction mixture was degassed, placed under an argon atmosphere then irradiated in a microwave for 30 min at $90^{\circ} \mathrm{C}$. Toluene was evaporated under a reduced pressure and the residue purified by flash column chromatography on silica gel using ethyl acetate as the eluent to give 24 in 98% yield $(96 \mathrm{mg}, 0.34 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 11.27(\mathrm{~b}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.04$ $(\mathrm{s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 163.4,153.7,149.2,136.9,133.1$, $129.9,128.9,127.8,125.8,119.9,107.4,105.3,56.4,56.1$; HRMS (ES): calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+1)$ 282.1130, found 282.1130.

6,7-Dimethoxy-1-oxo-1,2-dihydro-isoquinoline-4-carbonitrile (25). To solution of 4-bromo-6,7-dimethoxyisoquinolin-1(2H)-one $23(0.96 \mathrm{mmol}, 270.7 \mathrm{mg})$ in N -methyl-2pyrrolidone (4 mL) was added ($193.8 \mathrm{mg}, 2 \mathrm{mmol}$) CuCN . The mixture was irradiated in a microwave for 40 min at $200^{\circ} \mathrm{C}$. The reaction mixture was concentrated under a reduced pressure and the residue purified by flash column chromatography on silica gel using a gradient of 50% ethyl acetate in hexane to 100% ethyl acetate. Compound 25 was obtained in 86% yield ($198 \mathrm{mg}, 0.86 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 200$ $\mathrm{MHz}) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 50 \mathrm{MHz}\right) \delta 160.5,154.2,149.6,138.4,129.2,118.7,116.7,107.4,103.9$,
87.9, 56.0, 55.8. HRMS (CI): calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+1) 231.0725$ found 231.0773.

1-Bromo-6,7-dimethoxy-4-phenylisoquinoline (26). To a mixture of 6,7-dimethoxy-4-phenylisoquinolin-1 $(2 \mathrm{H})$-one $24(80 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{POBr}_{3}(253.7 \mathrm{mg}, 0.84 \mathrm{mmol})$ in a microwave vial was added DCM (3 mL). The mixture was irradiated in a microwave for 30 minutes at $120^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with saturated aqueous sodium bicarbonate solution (5 mL), then with brine (5 mL). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give 1-bromo-6,7-dimethoxy-4-phenylisoquinoline 26 (98\%) which was used for the synthesis of $\mathbf{2 7}$ and $\mathbf{2 8}$ without further purification.

6,7-Dimethoxy-1,4-diphenylisoquinoline (27). To a mixture of 1-bromo-6,7-dimethoxy-4-phenylisoquinoline $\mathbf{2 6}$ ($0.107 \mathrm{mmol}, 36.7 \mathrm{mg}$), phenylboronic acid ($0.161 \mathrm{mmol}, 16.6$ $\mathrm{mg}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.24 \mathrm{mmol}, 78.2 \mathrm{mg}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2.3 \mathrm{mg}, 0.0021 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, PA-Ph, (1.3 mg . $0.0043 \mathrm{mmol}, 4 \mathrm{mmol} \%$), was added toluene (1.5 mL). The mixture was degassed, placed under an argon atmosphere then irradiated in a microwave for 30 min at $90{ }^{\circ} \mathrm{C}$. Toluene was removed and residue purified by flash column chromatography on silica gel using ethyl acetate to give 27 in 95% yield ($35 \mathrm{mg}, 0.10$ mmol) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.45-7.57 (m, 8H), $7.25(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $157.8,152.7,149.9,141.5,140.2,137.9,132.1,131.6,130.1,129.8,128.9,128.6,128.0$,
122.6, 106.0, 103.6, 56.1; HRMS (ES): calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+1) 342.1494$, found 342.1482.

6,7-Dimethoxy-4-phenyl-1-(piperidin-1-yl)isoquinoline (28). To a mixture of 1-bromo-6,7-dimethoxy-4-phenylisoquinoline $26(36 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2.3 \mathrm{mg}$, $0.0021 \mathrm{mmol}, 2 \mathrm{~mol} \%$), PA-Ph, ($1.3 \mathrm{mg} .0 .0043 \mathrm{mmol}, 4 \mathrm{mmol} \%) \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu},(14.4 \mathrm{mg}$, 0.15), in a microwave vial was added toluene (2 mL). The mixture was degassed with and place under an atmosphere of argon. Piperidine ($15 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added and the mixture was irradiated in a microwave for 30 min at $180^{\circ} \mathrm{C}$. Toluene was evaporated under reduced pressure and the residue purified by flash column chromatography on silica gel using $2 \% \mathrm{MeOH}$ in DCM to yield 28 in 64% yield ($22 \mathrm{mg}, 0.064 \mathrm{mmol}$). The compound showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 5 \mathrm{H}), 7.14(\mathrm{~s}$, $2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=5 \mathrm{~Hz}, 4 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 160.9,152.3,149.0,139.9,138.3,132.9,130.1,128.7,127.8$, 127.4, 117.4, 104.8, 104.1, 55.8, 52.7, 26.6, 25.0; HRMS (ES): calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1)$ 349.1916, found 349.1935 .

4-Bromo-1-chloro-6,7-dimethoxyisoquinoline (29). 4-Bromo-6,7-dimethoxyisoquinolin-1(2H)-one 23 ($283 \mathrm{mg}, 1 \mathrm{mmol}$) was treated with $\mathrm{POCl}_{3}(2 \mathrm{~mL}, 20 \mathrm{mmol})$ and then irradiated in a microwave for 30 minutes at $100^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the residue poured onto ice, made basic to pH 8 and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The DCM extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 29 in 98% yield ($296 \mathrm{mg}, 0.98 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.29(\mathrm{~s}$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
$1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $154.5,151.6,148.5,141.6,132.9,123.3,117.4,105.0,104.7,56.4$; HRMS (ES): calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br} \mathrm{ClNO}_{2}(\mathrm{M}+1)$ 301.9583, found 301.9609.

4-Bromo-1-ethoxy-6,7-dimethoxyisoquinoline (30). To a solution of 4-bromo-1-chloro-6,7-dimethoxyisoquinoline 29 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) in ethanol (2 mL) was added NaOEt $(46.7 \mathrm{mg}, 0.33 \mathrm{mmol})$. The reaction mixture was irradiated in a microwave for 30 minutes at $90^{\circ} \mathrm{C}$. The mixture was diluted with DCM $(10 \mathrm{~mL})$ washed with distilled water (5 mL). The DCM was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent and purification by flash column chromatography on silica gel using 20% ethyl acetate in hexane yielded 30 in 87% yield ($45 \mathrm{mg}, 0.144 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.04$ $(\mathrm{s}, 1 \mathrm{H}), 7.5(\mathrm{~s}, 1), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 1.50$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 159.1,153.6,150.1,139.8,132.7$, 115.6, 110.3, 105.1, 103.3, 62.4, 56.3, 14.8; HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{3}$ 311.0157, found 311.0154.

1-Ethoxy-6,7-dimethoxy-4-phenylisoquinoline (31). Using 4-bromo-1-ethoxy-6,7dimethoxyisoquinoline $30(30 \mathrm{mg}, 0.096 \mathrm{mmol})$, phenylboronic acid ($17.9 \mathrm{mg}, 0.144$ mmol) and procedure as described for compound 24, 1-ethoxy-6,7-dimethoxy-4phenylisoquinoline 31 was obtained in 93% yield ($29 \mathrm{mg}, 0.092 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 159.1,152.7,149.3,138.3,138.1,132.7,130.0,128.6,127.3,126.9,114.2$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

103.7, 103.1, 62.0, 56.1, 55.9, 14.9; HRMS (ES): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}(\mathrm{M}+1)$ 310.1443, found, 310.1437.

1-Bromo-6,7-dimethoxyisoquinoline-4-carbonitrile (32). To a mixture of 6,7-dimethoxy-1-oxo-1,2-dihydro-isoquinoline-4-carbonitrile 25 (150.1 mg 0.652 mmol) and $\mathrm{POBr}_{3}(0.59 \mathrm{~g}, 1.956 \mathrm{mmol})$ was added dichloromethane $(4 \mathrm{~mL})$. The reaction mixture was irradiated in a microwave for 30 min . at $150^{\circ} \mathrm{C}$. The anisole was removed under reduced pressure and the residue added slowly to ice then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL). The combined organic fractions were washed with saturated aqueous bisodium carbonate solution (5 mL), then with brine (5 mL). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield 32 in 89% yield (169 mg , $0.58 \mathrm{mmol})$. The compound showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.58$ $(\mathrm{s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 155.9$, 152.6, 147.4, 145.7, 133.0, 124.4, 116.1, 107.5, 104.8, 103.0, 57.0, 56.6; HRMS (CI): calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+1)$ 292.9926, found 292.9902.

General procedure for coupling of 1-bromo-6,7-dimethoxyisoquinoline-4-carbonitrile with aldehydes via nucleophilic aroylation. To a stirred solution of 1-bromo-6,7-dimethoxyisoquinoline-4-carbonitrile 32 ($30.1 \mathrm{mg}, 0.102 \mathrm{mmol}$), aldehyde (0.15 mmol), and (0.15 mmol) of 1,3-dimethylimidazolium iodide in DMF (1.5 mL) was added (0.15 mmol) NaH . The mixture was stirred at room temperature. After 2 h , water (4 mL) was added and the reaction mixture was extracted with chloroform ($3 \times 8 \mathrm{~mL}$). The organic

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue was purified by flash column chromatography on silica gel using a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 50% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the coupled product.

6,7-Dimethoxy-1-(4-methoxyphenylcarbonyl)isoquinoline-4-carbonitrile (33). Using 1-bromo-6,7-dimethoxyisoquinoline-4-carbonitrile 32 (30.1 mg, 0.102 mmol), 4methoxybenzaldehyde ($20 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the procedure described above yielded 33 in 99% yield ($35 \mathrm{mg}, 0.102 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.79(\mathrm{~s}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) 4.12(\mathrm{~s}$, $3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ 192.7, 164.7, 157.2, 155.7, $152.2,150.2,145.2,133.4,128.9,122.0,116.5,114.1,105.6,104.8,102.7,56.8,56.5$, 55.8; HRMS (CI): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1) 349.1144$ found 349.1153 .

6,7-Dimethoxy-1-(4-methoxynaphthalene-1-carbonyl)isoquinoline-4-carbonitrile (34).

 Using 1-bromo-6,7-dimethoxyisoquinoline-4-carbonitrile 32 ($30.1 \mathrm{mg}, 0.102 \mathrm{mmol}$), 4-methoxynaphthalene-1-carbaldehyde ($27.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the procedure described above yielded 34 in 91% yield ($37 \mathrm{mg}, 0.093 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 9.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.77(\mathrm{~m}$, $5 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 195.0,160.8,159.0,155.6,152.2,145.4,137.2,133.6,133.1,129.6,126.4$, $126.0,125.4,122.6,122.1,116.5,105.3,104.9,102.7,102.4,56.8,56.5,56.1 ;$ HRMS (CI): calculated $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1) 399.1345$, found 399.1337.1-(3,4-Dimethoxyphenylcarbonyl)-6,7-dimethoxyisoquinoline-4-carbonitrile
Using 1-bromo-6,7-dimethoxyisoquinoline-4-carbonitrile 32 ($30.1 \mathrm{mg}, 0.102 \mathrm{mmol}$), 3,4dimethoxybenzaldehyde ($24.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the procedure described above yielded 3595% yield ($0.097 \mathrm{mmol}, 36 \mathrm{mg}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ 8.78 (s, 1H), 7.68 (s, 1H), 7.45 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26-7.30 (m, 1H), 6.85 (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}) 3.96(\mathrm{~s}, 6 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 192.7$, 157.1, 155.7, 154.6, 152.2, 149.4, 145.1, 133.7, 129.0, 127.2, 122.0, 116.4, 111.6, 110.1, 105.5, 104.8, 102.7, 56.8, 56.5, 56.3, 56.2; HRMS (CI): calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+1)$ 379.1266 found 379.1249.

6,7-Dimethoxy-1-phenylisoquinoline-4-carbonitrile (36). Using the cross-coupling procedure described for compound 24 with 1-bromo-6,7-dimethoxyisoquinoline-4carbonitrile 32 ($20 \mathrm{mg}, 0.068 \mathrm{mmol}$) and phenylboronic acid ($13 \mathrm{mg}, 0.102 \mathrm{mmol}$) yielded 6,7- dimethoxy-1-phenylisoquinoline-4-carbonitrile 36 in 95% yield (19 mg , $0.065 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 200 \mathrm{MHz}\right): \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.71(\mathrm{~m}$, $5 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta$ $161.9,154.7,151.2,146.4,138.7,135.6,133.3,132.7,129.6,128.7,128.0,121.8,117.0$, 106.3, 102.8, 56.6, 56.1; HRMS (ES): calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1)$ 291.1134, found 291.1143.

4.1.7 References

(1) Bischler, A.; Napieralski, B. Ber. Dtsch. Chem. Ges. 1893, 26, 1903-1908.
(2) Bergstrom, F. W. Chem. Rev. 1944, 35, 77-277.
(3) Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030-2036.
(4) Nielsen, T. E.; Diness, F.; Meldal, M. Curr. Opin. Drug Discovery Dev. 2003, 6, 801-14.
(5) Mesangeau, C.; Yous, S.; Peres, B.; Lesieur, D.; Besson, T. Tetrahedron Lett. 2005, 46, 2465-2468.
(6) Yen, Y.-H.; Chu, Y.-H. Tetrahedron Lett. 2004, 45, 8137-8140.
(7) Kuo, F.-M.; Tseng, M.-C.; Yen, Y.-H.; Chu, Y.-H. Tetrahedron 2004, 60, 1207512084.
(8) Campiglia, P.; Gomez-Monterrey, I.; Lama, T.; Novellino, E.; Grieco, P. Mol. Div. 2004, 8, 427-430.
(9) Pal, B.; Jaisankar, P.; Giri, V. S. Synth. Commun. 2003, 33, 2339-2348.
(10) Gitto, R.; Ferro, S.; Agnello, S.; De Luca, L.; De Sarro, G.; Russo, E.; Vullo, D.; Supuran, C. T.; Chimirri, A. Bioorg. Med. Chem. 2009, 17, 3659-3664.
(11) Huang, Q.; Larock, R. C. J. Org. Chem. 2002, 68, 980-988.
(12) Roesch, K. R.; Larock, R. C. J. Org. Chem. 1998, 63, 5306-5307.
(13) Yu, X.; Wu, J. J. Comb. Chem. 2009, 11, 895-899.
(14) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew. Chem. Int. Ed. 2003, 42, 4077-4082.
(15) Still, W. J.; McNulty, J. J. Chem. Soc., Perkin Trans. 1 1994, 1329-1337.
(16) Buchs, P.; Brossi, A. Helv. Chim. Acta 1981, 64, 681-686.
(17) Bembenek, M. E.; Abell, C. W.; Chrisey, L. A.; Rozwadowska, M. D.; Gessner, W.; Brossi, A. J. Med. Chem. 1990, 33, 147-152.
(18) Batra, S.; Sabnis, Y. A.; Rosenthal, P. J.; Avery, M. A. Bioorg. Med. Chem. 2003, 11, 2293-2299.
(19) Janin, Y. L.; Roulland, E.; Beurdeley-Thomas, A.; Decaudin, D.; Monneret, C.; Poupon, M.-F. J. Chem. Soc. Perkin Trans. 1 2002, 529-532.
(20) Buu-Hoï, N. P.; Roussel, O.; Jacquignon, P. J. Chem. Soc. 1964, 708-711.
(21) McNulty, J.; Steere, J. A.; Wolf, S. Tetrahedron Lett. 1998, 39, 8013-8016.
(22) Schafer, H.; Seebach, D. Tetrahedron 1995, 51, 2305-2324.
(23) Yao, C.-F.; Kao, K.-H.; Liu, J.-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin, Y.M.; Lin, W.-W.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shiue, J.-L. Tetrahedron 1998, 54, 791-822.
(24) Rai, V.; Namboothiri, I. N. N. Eur. J. Org. Chem. 2006, 2006, 4693-4703.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
(25) Brenstrum, T.; Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, J.; Robertson, A. J.; McNulty, J.; Capretta, A. Org. Lett. 2006, 8, 103-105.
(26) Ohnmacht, S. A.; Brenstrum, T.; Bleicher, K. H.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 5661-5663.
(27) Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 7635-7639.
(28) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082-5086.
(29) Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953-955.
(30) Sakamoto, T.; Miura, N.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1986 34, 2760-2765.
(31) Kondo, Y.; Imai, J.; Inoue, H. J. Chem. Soc. Perkin Trans. 11980 911-918.
(32) Chern, M.-S.; Li, W.-R. Tetrahedron Lett. 2004, 45, 8323-8326.
(33) Wang, X.-J.; Tan, J.; Grozinger, K. Tetrahedron Lett. 1998, 39, 6609-6612.
(34) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 8319-8321.
(35) Sercel, A. D.; Sanchez, J. P.; Showalter, H. D. H. Synth. Commun. 2007, 37, 4199 - 4208.
(36) Yumiko, S.; Tomonori, T.; Akira, M.; Masayuki, S. Chem. Pharm. Bull. 2006, 12, 1653-1658.
(37) Suzuki, Y.; Ota, S.; Fukuta, Y.; Ueda, Y.; Sato, M. J. Org. Chem. 2008, 73, 24202423.

Chapter 5

5.1.1 Palladium catalyzed arylation of "active methylene" compounds as Precursors

 for the Synthesis of Substituted Isoquinolines .
5.1.2 Introduction

Compounds containing "active methylenes", such as ketones, aldehydes, esters,

Scheme 5.1. General mechanism for palladium-catalyzed arylation of ethyl cyanoacetate. cyanoacetates and malononitrile have been coupled with aryl halides using palladium catalysis. ${ }^{1-3}$ A plausible catalytic cyclic for the addition of the enolate to aryl halide using ethyl cyanoacetate, for example, is shown in

Scheme 5.1. The catalytic cyclic begins with an initial oxidative addition of the aryl halide to the palladium to form an aryl palladium (II) complex. Substitution of the halide with the enolate nucleophile (transmetallation) and reductive elimination of the resulting palladium enolate complex yield the arylated product. The products from these reactions are important as they serve as precursors for the preparation of bioactive compounds ${ }^{4}$ and several heterocyclic compounds ${ }^{5,6}$

We aimed at determining the efficacy of our catalytic system incorporating the 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantane (PA-R) framework in arylation of ethyl cyanoacetate and malononitrile. We became interested in the products of these reactions as they represent useful synthons for the preparation of substituted isoquinolines. As illustrated in Scheme 5.2, the approach takes advantage of protocols recently developed for microwave-assisted Bischler-Napieralski or Pictet-Spengler reactions followed by oxidation to yield isoquinolines ${ }^{7}$ suitable for a library format.

Both processes rely on a suitably functionalized β-arylethylamine that we envisioned could be generated via two different routes utilizing cross-coupling chemistry. For example (as outlined in Scheme 5.2), Pd-catalyzed arylation of a nitrile possessing an α-methylene provides compound 2 that can be reduced to the β-arylethylamine 3 .

Scheme 5.2. Synthesis of Isoquinolines using Pd-catalyzed arylated of active methylene Products.

Application of our cyclization / oxidation protocol ${ }^{7}$ (presented in chapter 4) would then lead to substituted isoquinolines 4. Alternatively, Pd-catalyzed arylation of a

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

ketone provides compounds of the general type 5 . Reductive amination would supply 6 that could be elaborated to give compounds of the general type 7. Preliminary studies are described below.

5.1.3 Results and Discussion

Development of Route A, wherein arylation with ethyl cyanoacetate or malononitrile represents the key step, was first examined. Initial screening involved optimization of reaction conditions using both 3 - and 4-iodoanisole as the model substrates so as to find the best solvent, base, palladium source and ligand needed to obtain the maximum yield of the arylated product. The results are presented in Table 5.1. These studies revealed that optimal yields are obtained when $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ was used as the palladium source and 1,3,5,7-tetramethyl-6-(isobutyl)-2,4,8-trioxa-6-phosphaadamantane ($\mathrm{PA}-\mathrm{iBu}$) was used as the ligand. NaH proved to be the best base. Among all the solvents tried, THF was optimal. For example, a facile reaction was observed when 5 mol equivalents of the base and 3 mol equivalents of the ethyl cyanoacetate were used. (Table 5.1, entries 3 and 12).

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Table 5.1. Optimization of Pd-catalyzed arylation of ethyl cyanoacetate

entry	aryl halide	Pd source	ligand	solvent	base	yield
1	3-iodoanisole	PdCl_{2}	$\mathrm{PA}-i \mathrm{Bu}$	pyridine	$\mathrm{NaH}^{\text {b }}$	0\%
2	3-iodoanisole	PdCl_{2}	PA-Ph	pyridine	$\mathrm{NaH}^{\text {b }}$	0\%
3	4-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{PA}-i \mathrm{Bu}$	THF	$\mathrm{KO}^{\text {b }}{ }^{\text {b }}{ }^{\text {b }}$	60\%
4	3-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{PA}-i \mathrm{Bu}$	THF	$\mathrm{NaH}^{\text {c }}$	69\%
5	4-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PA-Ph	THF	$\mathrm{NaH}^{\text {b }}$	50\%
6	3-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PA-Ph	dioxane	$\mathrm{NaH}^{\text {c }}$	60\%
7	3-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PA-Ph	DMSO	$\mathrm{NaH}^{\text {b }}$	0\%
8	3-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	PA-Ph	THF	$\mathrm{KO}^{\text {b }}{ }^{\text {b }}$	0\%
9	4-iodoanisole	PdCl_{2}	PA-Ph	THF	$\mathrm{NaH}^{\text {b }}$	30\%
10	3-iodoanisole	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{PA}-i \mathrm{Bu}$	pyridine	$\mathrm{NaH}^{\text {b }}$	40\%
11	3-iodoanisole	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{PA}-i \mathrm{Bu}$	pyridine	$\mathrm{NaH}^{\text {b }}$	40\%
12	4-iodoanisole	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	$\mathrm{PA}-i \mathrm{Bu}$	THF	$\mathrm{NaH}^{\text {c }}$	89\%

[^3]Having obtained the optimal set of reaction conditions, the cross-coupling was carried out using several aryl iodides and aryl bromides having electron donating and withdrawing groups with ethyl cyanoacetate and malononitrile to generate the arylated compounds in good to moderate yield (see Table 5.2). Reactions with aryl bromides were comparatively slow.

Attention was then turned to the development of a protocol that would allow for the reduction of the nitrile functionality to yield the β-arylethylamine substrate necessary

Table 5.2. Pd-catalyzed arylation of ethyl cyanoacetate and malononitrile

2

3

4

$\mathrm{NC} \xlongequal{-} \mathrm{CO}_{2} \mathrm{Et}$

NC CN

5

6

$\mathrm{NC}^{-} \mathrm{CN}^{\mathrm{N}}$

7

$\mathrm{NC} \widehat{\mathrm{CN}}^{\mathrm{CN}}$

$\mathrm{NC}-\mathrm{CO}_{2} \mathrm{Et}$

9

$\mathrm{NC} \widehat{\mathrm{CN}}^{\mathrm{CN}}$

$\mathrm{NC}-\mathrm{CO}_{2} \mathrm{Et}$

10

$\mathrm{NC} \wedge_{\mathrm{CO}_{2} \mathrm{Et}}$
85

11

30

$\mathrm{NC}^{-} \mathrm{CN}^{\mathrm{CN}}$

for the Bischler-Napieralski or

Pictet-Spengler
cyclizations.
Several reduction strategies involving hydrogenation of the nitrile in both ethyl 2-cyano-2-(3-methoxyphenyl) acetate and ethyl 2-cyano-2(3,4-dimethoxyphenyl) acetate were examined. Among these, hydrogenation in the presence of Raney nickel allowed for complete consumption of the nitrile but resulted in several side products in addition to the desired amine. As purification of the requisite amine proved problematic, the reaction sequence was

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
continued without isolation of the intermediate. In this way (Scheme 5.3), the reaction mixture from the reduction of 2-cyano-2(3,4-dimethoxyphenyl) acetate (without purification) was dissolved in toluene and treated with 2-(naphthalene-1-yl)ethanoic acid and POCl_{3} then subjected to the microwave-assisted Bischler-Napieralski followed by oxidation by dehydrogenation with Pd / C (as described in Chapter 4). As the resultant isoquinoline (11) was obtained in a poor yield of 4% from the starting nitrile, this approach was abandoned.

Scheme 5.3. Bischler-Napieralski cyclization of ethyl 3-amino-2-(3,4dimethoxyphenyl)propanoate.

Focus shifted to the development of a protocol involving ketone arylation followed by reductive amination to yield a β-arylethylamine suitable for Pictet-Spengler or Bischler-Napieralski cyclizations. (Route B, Scheme 5.2). Previous screening in our lab, revealed that a Pd-catalytic system employing the $1,3,5,7$-tetramethyl- 6 -phenyl-

2,4,8-trioxa-6-phospha-adamantane (PA-Ph) ligand allows for the facile arylation of ketones bearing an active α-methylene. ${ }^{8}$ Using the optimized protocol compounds in scheme 5.4 were generated in good yield.

Scheme 5.4. Pd-Catalyzed arylation of ketone products.

A preliminary experiment (carried out by another student working on this project in our lab) for the reductive amination of these arylated ketone products via titanium (IV) isopropoxide mediated imine formation followed by reduction of the imine in situ using NaBH_{4} yielded β-arylethylamines in good yields. Work involving the Pictet-Spengler and Bischler-Napieralski cyclizations with these substrates is continuing.

Future work in this project will involve the application of the protocols developed for the synthesis of a substituted isoquinoline library. In this way, we envision several ketones will be used to obtain the various ketone arylation products that can be converted to primary and secondary β-arylethylamines suitable for microwave-assisted BischlerNapieralski or Pictet-Spengler cyclization ${ }^{7}$ to generate a library of $1,3,4$-substituted isoquinolines.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

5.1.4 Experimental

General procedure for palladium catalyzed arylation of ethyl cyanoacetate and malononitrile. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(20.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $\mathrm{PA}-\mathrm{iBu}(10.9 \mathrm{mg}, 0.04$ $\mathrm{mmol}, 4 \mathrm{~mol} \%$) were added to a flame-dried flask. The contents were degassed. THF (1 mL) was added and the reaction mixture stirred at room temperature for 30 minutes. At this time, the aryl halide (1 mmol) was added. The reaction mixture was transferred to another flask containing the nucleophile prepared by adding $\mathrm{NaH}(200 \mathrm{mg}, 5 \mathrm{mmol})$ to THF (3 mL) under argon followed by the addition of ethyl cyanoacetate or malononitrile (3 mmol). The reaction mixture was allowed to reflux under argon for 14-18 hours after which the reaction mixture was filtered through a short pad of silica and washed with ethyl acetate. Removal of the ethyl acetate under reduced pressure was followed by purification of the residue on silica gel using 10% to 30% ethylacetate in hexane as the eluant.

Ethyl 2-cyano-2-(4-methoxyphenyl) acetate. Table 5.2, Entry 1. Using 1-iodo-4methoxybenzene ($234.0 \mathrm{mg}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2-(4-methoxyphenyl) acetate was obtained in 89% yield ($195.0 \mathrm{mg}, 0.89 \mathrm{mmol}$). For characterization, (see reference). ${ }^{9}$

2-(4-methoxyphenyl)malononitrile, Table 5.2, Entry 2. Using 1-iodo-4-methoxybenzene ($234 \mathrm{mg}, 1 \mathrm{mmol}$), malononitrile ($188.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, 2-(4methoxyphenyl)malononitrile was obtained in 69% yield ($118.7 \mathrm{mg}, 0.69 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$,
$5.00(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 161.1,128.7,117.9,115.5$, 112.1, 55.6, 27.6; (HRMS) CI: calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) 172.0637$ found 172.0635.

Ethyl 2-cyano-2-(4-methoxyphenyl) acetate, Table 5.2, Entry 3. Using 1-bromo-4methoxybenzene ($234.0 \mathrm{mg}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2-(4-methoxyphenyl) acetate was obtained in 40\% yield $(87.6 \mathrm{mg}, 0.4 \mathrm{mmol})$. For characterization (see reference). ${ }^{9}$

Ethyl 2-cyano-2-(3-methoxyphenyl) acetate. Table 5.2, Entry 4. Using 1-iodo-3methoxybenzene ($120.1 \mu \mathrm{~L}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2-(3-methoxyphenyl) acetate was obtained in 69% yield $(151.0 \mathrm{mg}, 0.69 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.29-7.37(\mathrm{~m}$, $1 \mathrm{H}), 6.90-7.04(\mathrm{~m}, 3 \mathrm{H}) 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.0,160.3,131.3,130.5,120.2,115.7,115.0$, $113.6,63.5,55.5,43.8,14.0$. CI (HRMS): calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}\right) 219.0895$ found 219. 0893.

2-(3-methoxyphenyl)malononitrile. Table 5.2, Entry 5. Using 1-iodo-3-methoxybenzene $(120.1 \mu \mathrm{~L}, 1 \mathrm{mmol})$, malononitrile $(188.0 \mu \mathrm{~L}, 3 \mathrm{mmol})$ and the general procedure, 2-(3methoxyphenyl)malononitrile was obtained in 95% yield ($163.4 \mathrm{mg}, 0.95 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.36-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.09(\mathrm{~m}, 3 \mathrm{H}) 5.03(\mathrm{~s}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 160.7,131.2,127.5,119.4,116.0,113.0$, 111.8, 55.6, 28.1. CI (HRMS), calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) 172.0637$ found 172.0632.

2-p-tolylmalononitrile. Table 5.2, Entry 6. Using 1-iodo-4-methylbenzene ($218.8 \mathrm{mg}, 1$ mmol), malononitrile ($188.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, 2-ptolylmalononitrile was obtained in 79% yield ($123.3 \mathrm{mg}, 0.79 \mathrm{mg}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.31-7.40(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta 140.8,130.8,127.2,123.4,112.1,27.9,21.3$. CI (HRMS): calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right) 156.0687$ found 156.0700 .

2-o-tolymalononitrile. Table 5.2, Entry 7. Using 1-iodo-2-methylbenzene ($122.0 \mu \mathrm{~L}, 1$ mmol), malononitrile ($188.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, 2-otolymalononitrile was obtained in 70% yield ($109.2 \mathrm{mg}, 0.7 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.30-7.56(\mathrm{~m}, 4 \mathrm{H}) 5.06(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 136.1,131.9,130.8,128.2,127.7,124.8,111.6,26.4,19.2 . \mathrm{CI}$ (HRMS): calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right) 156.0687$ found 156.0700 .

Ethyl 2-cyano-2-(4-cyanophenyl)acetate. Table 5.2, Entry 8. Using 4-iodobenzonitrile ($229.0 \mathrm{mg}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2-(4-cyanophenyl)acetate was obtained in 30% yield ($64.2 \mathrm{mg}, 0.3 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.76,7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.63,7.59(\mathrm{~d}$, $2 \mathrm{H}, J=8 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.32(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 164.0,134.9,133.2,129.0,117.9,114.7,113.7,64.1,43.7,24.9$, 14.0. CI (HRMS): calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 214.0742$ found 214.0742.

2-(3,4-dimethoxyphenyl)malononitrile. Table 5.2, Entry 9. Using 4-bromo-1,2dimethoxybenzene ($144.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), malononitrile ($188.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the
general procedure, 2-(3,4-dimethoxyphenyl)malononitrile was obtained in 22% yield $(45.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 6.90-7.07(\mathrm{~m}, 3 \mathrm{H})$, $5.01(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 150.7,150.2$, $120.1,118.2,112.1,111.9,109.9,56.3,56.3,27.8$. CI (HRMS): calculated for $\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ 202.0742 found 202.0742.

Ethyl 2-cyano-2(3, 4-dimethoxyphenyl) acetate. Table 5.2, Entry 10. Using 4-bromo-1,2-dimethoxybenzene ($144.0 \mu \mathrm{~L}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2(3, 4-dimethoxyphenyl) acetate was obtained in 30% yield $(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 6.85-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.3,149.8,149.5,122.2,120.6,116.0,111.6,110.6,63.3,56.1$, 43.4, 14.0. CI (HRMS): calculated for $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}\right) 249.1001$ found 249.1011.

Ethyl 2-cyano-2(naphthalen-6-yl) acetate. Table 5.2, Entry 11. Using 2bromonaphthalene ($125 \mu \mathrm{~L}, 1 \mathrm{mmol}$), ethyl cyanoacetate ($320 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, ethyl 2-cyano-2(naphthalen-6-yl) acetate was obtained in (202 mg , $0.85 \mathrm{mmol}) 85 \%$ yield and showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.94-8.037(\mathrm{~m}, 3 \mathrm{H})$, 7.48-7.47, (m, 4), $5.38(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.1,134.1,130.3,129.2,127.6,127.5,126.3,125.5,122.7$, $116.063 .5,41.5,24.8$, 13.9. CI (HRMS): calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}\right) 239.0954$ found 239.0946.

2-(naphthalen-6-yl) malononitrile. Table 5.2, Entry 12. Using 2-bromonaphthalene $(125.0 \mu \mathrm{~L}, 1 \mathrm{mmol})$, malononitrile ($188.0 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the general procedure, 2-(naphthalen-6-yl) malononitrile was obtained in 52% yield ($100.4 \mathrm{mg}, 0.52 \mathrm{mmol}$) and showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.56-8.039(\mathrm{~m}, 7 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 134.2,131.8,129.8,128.4,127.3,127.2,125.6,121.7,111.8,26.5$. CI (HRMS): calculated $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2}\right) 192.0687$ found 192.0691.

Compound 11. To a mixture of ethyl 2-cyano-2(3, 4-dimethoxyphenyl) acetate (74.7 mg , 0.3 mmol) and Raney nickel (40.0 mg) in ethanol (2 mL) was attached a balloon of hydrogen gas. The mixture was stirred at room temperature for 24 h . The reaction mixture was poured on a celite pad and was washed with methanol. Methanol was removed under reduced pressure. To the residue was added (2 -naphthalen- 6 -yl) acetic acid ($71.0 \mathrm{mg}, 0.39 \mathrm{mmol}$), $\mathrm{POCl}_{3}(138.0 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and toluene $(1 \mathrm{~mL})$. The mixture was microwaved at $140{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was basified with $\mathrm{NaOH}(\mathrm{pH}=8)$ and extracted with DCM . The DCM was removed under reduced pressure. Heating the residue with $10 \% \mathrm{Pd} / \mathrm{C}$ at $140^{\circ} \mathrm{C}$ for 2 h and purification using 10 $\%$ methanol/DCM yield compound 11 in 4% yield. ($5.4 \mathrm{mg}, 0.013 \mathrm{mmol}$). The product showed: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}$, $1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.67(\mathrm{~m}$, $4 \mathrm{H}), 4.53(\mathrm{q}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 196.4,166.1,157.5,154.1,150.7,143.7,133.4,132.2,130.9$,

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry
128.1, 128.0, 126.2, 125.4, 123.8, 122.7, 103.7, 103.4, 61.0, 55.8, 55.6, 13.8; (HRMS) CI: calculated for $\left(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{5}\right) 415.1420$ found 415.1420 .

For the general procedure for synthesis and characterization of 2-(3,4-dimethoxyphenyl) 1-phenylpropan-1-one and 2-(3-methoxyphenly) 1-phenylpropan-1-one, please refer to (reference 8).

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

5.1.5 References

(1) Wang, X.; Guram, A.; Bunel, E.; Cao, G.-Q.; Allen, J. R.; Faul, M. M. J. Org. Chem. 2008, 73, 1643-1645.
(2) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051-5053.
(3) Schnyder, A.; Indolese, A. F.; Maetzke, T.; Wenger, J.; Blaser, H.-U. Synlett 2006, 3167-3169.
(4) Zeevaart, J. G.; Parkinson, C. J.; de Koning, C. B. Tetrahedron Lett. 2004, 45, 4261-4264.
(5) Cativiela, C.; Diaz-de-Villegas, M. D.; Galvez, J. A. J. Org. Chem. 1994, 59, 2497-2505.
(6) Attanasi, O. A.; Filippone, P.; Fiorucci, C.; Foresti, E.; Mantellini, F. J. Org. Chem. 1998, 63, 9880-9887.
(7) Awuah, E.; Capretta, A. J. Org. Chem. 2010, 75, 5627-5634.
(8) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082-5086.
(9) Jiang, Y.; Wu, N.; Wu, H.; He, M. Synlett. 2005, 2731,2734.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

Chapter 6

6.1.1 General Conclusion.

As described in Chapter 2 (Org. Lett., 2009, 11, 3210-3213), a sequential, "one pot" microwave-assisted, copper-free Sonogashira, Pd-catalyzed carbonylation/cyclization protocol was developed and allowed for the production of a flavone library. Various terminal acetylenes generated by coupling aryl iodides and aryl bromides with TMS-acetylenes in situ were carried forward in the synthesis of flavones in good yield with relatively low catalyst loading.

A synthetic protocol suited for efficient derivatization at the $\mathrm{C}-3$ and $\mathrm{C}-4$ positions of maleimides and the α, β-unsaturated- γ-butyrolactam heterocyclic core was explored (Chapter 3, manuscript in press., J. Org. Chem. 2010). Using a palladium complex containing the PA-Ph ligand permitted the generation of symmetrical and nonsymmetrical 3,4-disubstituted maleimides in good yield. The methodology developed allowed for rapid access to a library of bisaryl-maleimides and anilinoaryl-maleimides as well as bisaryl- α, β-unsaturated $-\gamma$-butyrolactams after a microwave-assisted deprotection of the p-methoxybenzyl group (PMB) using $\mathrm{AlCl}_{3} /$ anisole or $\mathrm{TFA} /$ anisole. Bisanilinomaleimides were also generated via a Michael addition-elimination protocol after deprotection via aminolysis.

The microwave-assisted Pictet-Spengler and Bischler-Napieralski cyclization reactions developed in Chapter 4 (J. Org. Chem. 2010, 75 (16) pp 5627-5634) allowed 184

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

for synthesis of a library of substituted isoquinolines. In evaluating the possible synthetic strategies for the production of C 1 and C 4 substituted isoquinolines, protocols involving the elaboration of an isoquinoline-1(2H)-one scaffold were shown to be the most practical. In an effort to broaden the scope of the isoquinoline library and provide an alternate synthetic strategy to isoquinolines, a reaction protocol which will allow easy access to $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-4$ substituted isoquinoline analogues is being developed (as described in Chapter 5). The approach involves the generation of substituted β arylethylamines via reductive amination of ketone arylation products. These substrates will then undergo microwave-assisted Pictet-Spengler and Bischler-Napieralski cyclizations using the previously developed protocol.

Overall, the palladium complexes containing the phospha-adamantane (PA) ligands developed in our laboratory have demonstrated themselves to be remarkably effective in the preparation of libaries of heterocyclic compounds. In a recent article (Slagt, V. F.; et al. Org. Process Res. Dev. 2009, 14, 30-47.), Kellogg and co-workers noted that many of the popular ligands described in the literature are problematic when coupling substrates containing heteroatoms (especially nitrogen) as these compounds often poison the catalytic systems. This is clearly not the case with the PA ligands. The libraries of flavones, isoquinolines and maleimides described in this thesis were generated under relatively mild conditions in good yields with low catalyst loadings in many cases attesting to the utility of the PA ligand system.

In addition to the fact that these systems are air stable and relatively inexpensive to produce, the parent, secondary phospha-adamantane scaffold is easily derivatized. The resultant library provides a number of different PA ligands each with different structural and electronic properties. The ligand set currently described in the chemical literature for Pd-catalyzed cross-coupling reactions is far from ideal. While certain phosphines accelerate one reaction, the same phosphine may have little effect on a different crosscoupling. This makes it impossible to identify a priori the best ligand for a particular reaction. As demonstrated in the thesis, parallel screening of the PA ligand toolkit allows rapid identification of the best ligand, temperature, solvent, and Pd-source for a given reaction.

Perhaps the major criticism leveled against the use of Pd-catalyzed cross-coupling reactions in library syntheses is the cost of the palladium itself. This is actually not the case. In protocols where low catalytic loadings of Pd are required, the approach is actually rather cost effective. For example, in applying the methodology described in Chapter 3 for generating a 12 -membered library of non-symmetrical 3,4-disubstituted maleimides via two sequential Suzuki reactions, 0.5 mmol of PMB-protected 3,4dibromomaleimide was utilized in each reaction. On this scale, a total of 372 mg of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ is needed for all 24 Suzuki reactions in the library preparation; that is, $15.5 \mathrm{mg}(3 \mathrm{mmol} \%)$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ for each Suzuki reaction. As presented in the current Strem chemical catalogue (for 2010), 2 g of $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}\right)_{3} \mathrm{CHCl}_{3}$ can be purchased for $\$ 99.00$. This means that the cost for the Pd in the library described above is $\$ 18.40$
which is actually cheap. For larger libraries, bulk purchases should help to drive down the cost.

It should be noted that no attempt was made to re-cycle the palladium after the reactions. While Capretta et al. have previously demonstrated the viability of such recycling (Org. Lett., 2003, 5, 953.), given the overall cost of the Pd , the scale of the libraries generated and the work associated with Pd recovery, we felt that such recycling did not make economic sense. Discussions regarding the use of immobilized catalyst systems are presented in the future work below.

The use of microwave irradiation in organic synthesis is shown to facilitate reaction rates and improved product yields. Currently, at McMaster University the microwave systems available permit reactions to be irradiated one at a time, however, it should be noted that there are a number of commercially available microwave systems that offer the ability for processing samples in parallel function allowing the rapid generation of large compound libraries.

6.1.2 Future Work.

The compounds generated in Chapters 2, 3, 4 and 5 will be used in some of the more biologically oriented investigations currently underway in the Capretta lab. The library of isoquinoline compounds generated in Chapter 4 and 5, for example, will be screened for their ability to modulate or inhibit GFAT activity using an assay developed

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

by a member in our group. Any hits obtained from the screening will then be optimized for structure activity relationship study.

The maleimide compound library generated in Chapter 3 will be screened for protein kinase inhibitory activities. As with most ATP-competitive inhibitors, the maleimide families exploit similar binding motifs and as a result suffer from kinase selectivity issues. ${ }^{1}$ However, regions of protein structure near the binding cleft show higher structural diversity between members of the kinase family than the ATP-binding regions. These regional differences will be exploited to develop compound collections that will increase inhibitor selectivity.

Immobilized catalytic systems are effective in carrying out a variety of reactions in a "greener" manner by allowing for catalyst recycling as well as ease of purification of products. In order to expand the utility of the phospha-adamantyl ligand scaffold, a synthesis that allows for the immobilization of the PA-H system onto a solid phase (as presented in Scheme 6.1) is being explored by the Capretta group. Taking advantage of previously developed chemistry functionalization of 1, 3, 5, 7-tetramethyl-2, 4, 8-trioxa-6-phospha-adamantane (PA-H) with a suitably substituted aryl halide equipped with a tethering moiety 2 should allow for the preparation of 3 . The tethered tertiary PA can be linked to a solid support (for example, via an ether linkage to a Merrifield resin) to give 4. Introduction of palladium should generate an immobilized catalytic system that can then be tested for catalytic efficiency in Pd cross-coupling reactions involving various heterocyclic systems.

Scheme 6.1. Immobilization of the PA-H system onto a solid phase.

Reusability of the immobilized (PA-R) Pd catalytic system will be determined in solid-phase catalytic reactions or in flow chemistry mode. Over the past few years, there have been developments where organic reactions have been carried out successfully in continuous flow processes. ${ }^{2}$ Flow chemistry replaces the traditional glassware with columns and cartridges that can be pre-packed with immobilized reagents and catalyst or through the use of reaction chips that control mixing and precise temperatures of reaction sequences. Recently, researchers have utilized microwave irradiations to promote turbulent flow in a continuous flow process in organic synthesis. ${ }^{3,4}$ For example Organ et al. have demonstrated the use of microwave-assisted continuous flow organic synthesis (MACOS) in the synthesis of a small library of quinolinones and tetrasubstituted amino furans via a three component coupling reaction. ${ }^{4}$

The immobilized PA-R Pd catalytic systems that would be developed will be explored in developing a MACOS technology for the synthesis of diverse library of bioactive compounds from readily available precursors.

PhD Thesis - E. Awuah, McMaster University - Department of Chemistry

6.1.3 References

(1) Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. J. Med. Chem. 2009, 53, 2681-2694.
(2) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 2566-2568.
(3) Shore, G.; Morin, S.; Organ, M. G. Angew. Chem. Int. Ed. 2006, 45, $2761-$ 2766.
(4) Bremner, W. S.; Organ, M. G. J. Comb. Chem. 2006, 9, 14-16.

[^0]: ${ }^{1}$ Reproduce with permission from American Chemical Society. Originally published as Awuah, E.; Capretta, A. Access to Flavones via a Microwave-assisted, "One-Pot" Sonogashira-Carbonylation-Annulation Reaction. Organic Letters, 2009, 11, 3210-3213.

[^1]: ${ }^{2}$ Reproduced with permission from American Chemical Society. Originally submitted as Awuah, E.; Capretta, A. Development of Methods for the Synthesis of Libraries of Substituted Maleimides and α, β-Unsaturated- γ-Butyrolactams. Journal of Organic Chemistry, in press, 2010.

[^2]: ${ }^{3}$ Reproduced with permission from American Chemical Society. Originally published as Awuah, E.; Capretta, A. Strategies and Synthetic Methods Directed Towards the Preparation of Libraries of Substituted Isoquinolines. Journal of Organic Chemistry, 2010, 75, (16), 5627-5634.

[^3]: ${ }^{\mathrm{b}}$ Reactions were carried out using 3 eq. of base and 1.25 eq. of ethyl cyanoacetate; ${ }^{\mathrm{c}}$ Reactions were carried out using 5.0 eq . of base and 3.0 eq. of ethyl cyanoacetate.

