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Abstract 
Fault detection can be used to improve the reliability and safety of industrial 

system. An important component of fault detection is filtering for parameter and state 
estimation. The challenge is to create a filter that is robust and stable in light of modeling 
uncertainties and parametric changes due to fault conditions. 

The Smooth Variable Structure Filter (SVSF) is a recently defined predictor­
corrector filter based on the Sliding Mode Control concepts. The SVSF defines a 
hyperplane and then applies a discontinuous corrective action that forces the estimate to 
go back and forth cross that plane. The discontinuous action results in chattering. To 

overcome chattering, the SVSF uses a saturated function with an associated fixed-width 
smoothing boundary layer. The SVSF is useful in applications that require robustness due 
to modeling uncertainties. 

In this thesis, the SVSF concepts are explored and further investigated. The 
chattering signals are used to establish a monitoring and reconstructing algorithm that can 
be used to detect and extract changes and added uncertainties in the system. However, its 
ability to determine the source of the added uncertainty is limited to cases involving 
abrupt step changes. 

There are limitations to the SVSF due to the use of the Luenberger method in 
terms of sensitivity to noise and modeling errors. A novel strategy using the Toeplitz and 
the Observability matrices is proposed to overcome the SVSF's limitations. This strategy 
is generalized to high order systems with multiple measurements using new proposed the 
General System Toeplitz and the General Observability matrices. This strategy is linked 
to the SVSF and improves its performance in terms of robustness and accuracy. 

A novel parameter estimation technique referred to as the Iterative Bi­

Section/Shooting Method (IBSS) is derived and is linked to the SVSF to estimate model 

parameters and states for systems in which only the model structure is known. 

The benefits of the proposed estimation methods are demonstrated by using 
example studies involving an electro-hydrostatic actuator proposed in (Habibi, 2007) and 
a three-degree of freedom mass-spring-damper system. 
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Chapter One: 

Introduction 

1.1. Introduction to estimation 

Generally, a system's dynamics can be captured by physical models that consist of 
parameters that reflect the system's make up, e.g. mass, elasticity, capacitance and 

resistanc,e. States describe the operation and the dynamic behaviour of the system given 

an input and/or a disturbance. The latter term is referred to as the system (process) noise. 
To study the system, to describe it and to control it, certain knowledge is needed 
regarding its parameters and states. The source of this knowledge can be prior knowledge 
and empirical characterization. The former one is related to the available information 

about the system such as its order and structure, and its environment (e.g. the system 

noise distribution). The empirical knowledge is a model generated using measured signals 

or measurements. Due to the sensor limitations, measurements may contain 

measurement noise. The system and measurement noise are stochastic signals that can be 
characterized by probability distribution functions with their exact values at a particular 

time being unknown. However, it is possible to extract both states and the parameters 

from measurements using a process referred to as estimation, which combines the prior 
and the empirical knowledge [(VanDer Heidan, Duin, de Ridder, & Tax, 2004), (Habibi, 

2005), (Grewal & Andrews, 2001) and (Bar-Shalom, Li, & Kirubarajan, 2001)]. The 

estimation process can be divided into three basic categories, (Haykin, 2002): 

1- Filtering: The filtering process is used to extract the quantity of interest (e.g. state) 

at a current time (t) from noisy measurements obtained in the past up to and 

including the current value. 

2- Smoothing: The smoothing process is used to obtain a better estimated value for 
the quantity of interest by processing an entire segment of the measurement 

consisting of past, current and future measured data points (i.e. start at t - r and 

end at t + r). Therefore, it is not suitable for real-time application. 

3- P1rediction: The aim of the prediction process is to provide information about the 

quantity of interest at some time in the future ( t + r). This information is obtained 

by using the past measured data points up to and including the current point. 

The estimation process is obtained by an estimator that may be model-based. 
Applying the estimator provides an opportunity to extract more information from a signal. 

If the signal contains noise, then the estimator needs to filter-out the noise, henceforth 

referred to as filter (Grewal & Andrews, 2001). Filters are widely used in signal 
1 
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processing, communications, image processing, radar tracking, satellite systems, 

aerospace applications, weather forecasting, economics, navigation, dynamic positioning 

tracking systems, fault detection and monitoring, and prediction [ (Welch & Bishop, 
2006) and (Haykin, 2002)]. 

Several filtering techniques have been developed in order to cover numerous 

applications. These techniques share the same purpose of estimating the information 
content i1n a signal while reducing noise effects. However, each method uses different 
criteria to improve the estimate, i.e. optimality, robustness and stability. The creation 

and/or development of the estimation techniques generally require the following: 

Lnderstanding the application, and identifying and defining the goal to be 

achieved: for example, radar tracking problems are different than fault detection 

problems. The main goal of the former is to track the object and predict its 

trajectory with an acceptable level of accuracy. As such, the filter must have some 

le:vel of optimality. While in the latter, early detection of faults and stability are the 
primary concerns. As such, the filter must have some level of robustness. 

Defining the input and the output ofthe system, and the form of uncertainties. 

Modeling the system, such as finding its transfer function, based on an a priori 
understanding of the system: the estimators and the filters considered in this thesis 

are model-based. Modeling and model integrity are therefore important 

considerations. 

Choosing the filter that best fits the application: some filters may not be suitable 
for fast real-time applications due to their computational complexity. Others may 
not be applied to systems that change their structure and/or parameters because of 
lack of robustness and possible instabilities. 

1.2. Historical background 

"From earliest time, people have been concerned with interpreting observations 

and making estimates and predictions." Kailath said in (Kailath, 1974) and continued by 

"Neugebauer has noted that the Babylonians used a rudimentary form of Fourier series 
for such purposes." The beginning of the "theory of estimation" can be tracked back to 

1632, when Galileo tried to minimize the error of some functions (Kailath, 1974). In 
1795, Gauss introduced and used the method of least squares to locate the asteroid Ceres, 
although Legendre first published it independently in 1805 [ (Kailath, 1974) and 

(Sorenson, 1970)]. These were followed by numerous investigations and studies 
pertaining to the least squares method, leading to the pioneering work of Wiener in the 

2 



PhD Thesis - Mohammad Al-Shabi McMaster - Mechanical Engineering 

1940's [(Kailath, 1974), (Chen, 2003) and (Simon, 2006)]. In 1942, Wiener gave the first 

explicit solutions for the problem of estimating a stochastic process using the least 

squares method, referred to as the Wiener Filter [(Kailath, 1974), (Chen, 2003), (Simon, 
2006) and (Bar-Shalom, Li, & Kirubarajan, 2001)]. In (Kailath, 1974), Kailath gave a 

brief history of the estimation problem focusing on the period from 1930s to 1960s. In 

that article, he summarized the history of optimal filters up to the Kalman Filter (KF) 
which was one of the earliest filters that was implemented in a predictor-corrector form. 

The history of estimation was continued in (Chen, 2003) focusing on the period 

from 1960s to 2000s. He specifically considered the non-linear Bayesian filtering 
problems that include the Particle Filter. The Bayesian approach was applied to 

estimation in stochastic processes in 1964 by Ho and Lee [(Chen, 2003) and (Ho & Lee, 
1964)]. They introduced the iterative Bayesian filtering and explored the concepts of "the 

sequential state estimation problem" (Chen, 2003). Later in the 1980's and the 1990's, the 
Bayesian filtering was expanded to include the state space structure. During the twentieth 
century, the "optimality" derivatives were formulated specifically in the Bayesian 

framework. The notion of optimality relies on minimizing a measure referred to as the 

cost function (Chen, 2003). This type of filter seeks optimality and is discussed in chapter 

two. 

Simultaneously with the development of the optimal filters, another type of filter 
started to rise and take place in estimation utilising the principles of the Variable 
Structure System and Control as well as the Sliding Mode Control. These filters and 

observers are referred to as Sliding Mode Observers (SMO). These observers are used 
widely in fault detection and signal reconstruction problems due to their robustness and 
stability against uncertainties. Recently, the sliding mode observer has been formulated in 

a predictor-corrector form referred to as the Variable Structure Filter, (Habibi & Burton, 

2002). In 2007, a new form of the Variable Structure Filter, referred to as the Smooth 
Variable Structure Filter (SVSF), was proposed, (Habibi, 2007). This type of filter is 

robust to uncertainties and is discussed further in chapter three. The SVSF is the core of 

this research. Its principles and concepts are explored mathematically, and its structure is 
reformulated to accommodate more general cases. 

1.3. Problem formulation 

Fault detection is an important application for filtering. This application is based 

on monitoring system parameters and giving an indication (warning) if they exceed their 
thresholds. Usually system parameters are not directly measured and they are extracted 
from the measurements; hence filtering is needed. Monitoring the faults is needed to 
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minimize the equipment (system) breakdown cost, and to improve the safety of the 
system. One of the most popular approaches for fault detection is by using model-based 
filters. By applying the system's input to the filter model and comparing the expected 
output to the output obtained from the system, the fault can be detected, (Tang & Wang, 

20 I 0). However, once a fault occurs, large changes in the system behaviour will cause 
substantial departure from the expected behaviour captured by the filter model, leading to 
numerical instability. Therefore, the filter (in such applications) must be robust to 

uncertainties. One of the most robust filters that can be used for these applications are the 
SMOs and the SVSF. 

The SVSF is a recent estimation technique proposed in (Habibi, 2007) for state 
and parameter estimation. This filter overcomes the KF limitations in terms of robustness, 
and stability. In (Habibi, 2007), the gain of the SVSF was derived and the filter stability 

and robustness were proven. Moreover, the basic principles and properties of the filter 
were established. However, the derived SVSF has some limitations when applied to 
systems with a measurement matrix of partial rank. The major limitation is the use of the 
Luenberger method that transforms the estimation problem into a simple algebraic 
problem involving sub-matrices from the system and input matrices (discussed later in 

chapter five). The Luenberger method has the following limitations: 

It is compatible with an observer rather than a filter as it assumes that the noise 
does not exist in the input or the output. Therefore, the estimate of the SVSF 
becomes sensitive to noise amplitude. 

It extracts the quantity of interest (i.e. hidden state/parameter) by using the inverse 
of the system model (the inversion is done with respect to the quantity of interest) 
and the measurement. The inversion process is obtained by taking the inverse of 
some sub-matrices from the system and input matrices. These sub-matrices may 
not be square matrices, thus the inversion process may consists of a pseudo­
inverse operator which add some limitations to the Luenberger process. 

An inherent element of variable structure control and of the SVSF is chattering. 

To overcome chattering, the SVSF uses a saturated function with an associated 
smoothing boundary layer. The SVSF as published in (Habibi, 2007) uses a smoothing 
boundary layer that has a fixed width. In this thesis, a time-varying smoothing boundary 
layer width is proposed for improving performance. 

This thesis considers two applications; the first involves a third order linear 
system referred to the electro-hydrostatic actuator (Habibi & Goldenberg, 2000), and the 
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second is a three degrees of freedom mass-spring-damper system. Both systems' 
parameters are made to change from time to time randomly. When the parameters change, 
the modeling errors increase and the filter stability is affected. This issue is the major 
limitation of the KF and most other estimation techniques. Some filters have refinement 
techniques associated with them such as the SMO where the modeling errors can be 
reconstructed by using the chattering signal. However, these techniques are limited to 
special uncertainty structures (as discussed later in chapter three), and require filtering of 
the chattering signal by a low pass filter. Moreover, the SMOs do not consider noise 
during their processing, a matter that impacts the estimates and the reconstructed signals, 
[(Edwards, 2004) and (Edwards, Spurgeon, & Patton, 2000)]. 

To sum up the problem, modeling errors effects must be reduced and the filter's 
model needs to be updated once a fault occurs. The filter should be able to detect the 
instance when the change occurs, track the change in parameters while remaining stable. 

1.4. Hypothesis, objectives, contributions and novelties 

1.4.1. Research objectives and hypothesis 

A target application for this thesis is fault detection that requires tracking and 
monitoring of system parameters. Therefore, the objective of this research can be defined 
as the development of a state estimation strategy for fault detection that can: 

Extract the full state vector from noisy measurements. 

Detect parametric changes in the system once they occur. In order to do so, the 
filter must have a tool that is capable of sensing these changes. 

Self-tune the model according to the reconstructed modeling errors. 

Be robust and stable to parametric uncertainties. 

Have a fast convergence rate and be applicable for online applications. 

Have some extra performance criteria; i.e. minimizing the diagonal elements in the 
error covariance matrix and reduce the states' sensitivity to noise. 

In order to achieve these objectives, a recently proposed estimation strategy 

referred to as the Smooth Variable Structure Filter will be reformulated with a 
model representation referred to as the General Toeplitz and Observability 
matrices. An indicator of performance in the SVSF is a chattering vector associated 
with the estimated state vector. The information contents of the chattering vector is 
investigated. A simple algebraic technique using the chattering vector is developed 
for the adaptation of the filter model. This will allow the filter to accommodate 
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parametric variations and to estimate the system's model when changes occur. 
Further, the filter's gain is associated with a new smoothing boundary layer vector 
that has a time-varying width to improve performance. 

1.4.2. Contributions and novelties 

The novel contributions of this thesis are as follows: 

The SVSF concepts are explored in further detail. It is noted that there are two 
existence subspaces rather than the one proposed in (Habibi, 2007). This research 
describes these subspaces and develops mathematical formulas for them. 

The characteristics of the existence subspaces are investigated. The relations 
between the smoothing boundary layer and the estimation errors are established 

and mathematically derived. A new time-varying smoothing boundary layer is 

proposed to improve the SVSF's performance. 

It has been noticed that two types of chattering are present in the SVSF associated 
each with the a priori and the a posteriori estimates. These chattering signals are 
mathematically formulated and their amplitudes are linked to the source and level 
of model uncertainties. 

The chattering equations are used to detect the parametric changes once they 

occur, and then to reconstruct modeling errors and uncertainties, thereby a method 
for monitoring and refining the model is established. 

System Toeplitz and Observability matrices for systems with multiple-degrees of 
freedom and/or multiple measurements are proposed. In this thesis, the developed 
matrices are referred to as the General System Toeplitz and the General 
Observability matrices. These matrices link the available measurements with the 
state vector. If the system model is represented in a specific canonical form 
referred to as the General Observability Canonical Form (GOCF), then these 

matrices become devoid of modeling errors, and the quality of the estimates is 
improved. Moreover, the estimation process becomes robust and stable. 

The SVSF is combined with the General System Toeplitz and Observability 
matrices to estimate the full state vector. These matrices provide the SVSF with an 
alternative measurement vector that has a measurement matrix with full rank. 
This process replaces the Luenberger method in the SVSF, thereby the limitations 
of the SVSF due to the use of the Luenberger method are eliminated. The 
combined algorithm between the SVSF and the General system Toeplitz and 
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Observability matrices is referred to as the General Toeplitz/Observability SVSF 
and it has an algorithm that is similar to the SVSF's algorithm for a measurement 
matrix with full rank. 

A special case of the General Toeplitz/Observability SVSF referred to as the 
Toeplitz/Observability SVSF is obtained for systems with one measurement that 
are represented in their Observability canonical form. 

The concepts of both the Toeplitz/Observability SVSF and the General 
Toeplitz/Observability SVSF are explored. The a priori and the a posteriori 

existence subspaces are mathematically formulated as well as the chattering in the 
a priori and the a posteriori estimates. 

A novel monitoring and reconstructing method is developed based on the a priori 
chattering to detect parametric changes, and to tune the filter's model. 

A novel iterative method is proposed based on two numerical techniques, which 
are the Bi-Section and the Shooting methods. This method is used to estimate 
model parameters for systems in which only the model structure is known. This 
method is referred to as the Iterative Bi-Section/Shooting method (IBSS) and is 

applicable to systems with small orders. 

The IBSS with the SVSF (IBSS/SVSF) are combined for state and parameter 
estimation. For comparison, the IBSS is combined with the KF (IBSS/KF). The 
two methods are compared in terms of robustness and accuracy. 

1.5. Thesis outline 

This chapter provided a brief introduction to estimation. The contributions and 
novelties of this work were described. 

Due to the numerous estimation algorithms developed in the last century, the 
literature review is divided into two chapters. In chapter two, optimal strategies are 
considered. These include the Wiener Filter, the Kalman Filter (KF) and its variants 

such as the Steady State KF, the Extended KF, the Perturbation KF, and the Unscented 
KF. The chapter also lists some earlier works developed to overcome the KF limitations 
such as: 

Integrating the KF with an intelligent algorithm; e.g. Fuz..--y logic. 

The use of an adaptive technique with the KF; e.g. the Multiple Model. 

Improving the robustness of the KF; e.g. adding fictitious process noise to system 
model and using the fading memory with the KF covariance matrices. 
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Chapter three discusses robust estimation algorithms. These include several forms of the 
SMO. The chapter discusses the SMO concepts and their limitations and benefits. 

Chapter four reviews the recently proposed SVSF. The chapter links the SVSF to 
the SMO and describes the previous forms of the SVSF such as the Variable Structure 
Filter (VSF) and the Extended Variable Structure Filter (EVSF). The concepts of the 
SVSF applied to linear systems with a full rank measurement matrix are explored, and 
mathematically formulated. Proof of the SVSF stability is provided. A simple algebraic 
process is developed to detect and then to extract the modeling errors from the chattering 
signal. A new time-varying smoothing boundary layer is proposed in order to improve the 
performance of the SVSF. The new boundary layer minimizes the diagonal elements of 

the error covariance matrix which results in reducing the estimation error. This improves 
the performance ofthe SVSF compared to its corresponding performance obtained with a 
fixed-width smoothing boundary layer. The features obtained from the chattering and the 
time-varying smoothing boundary layers are tested by applying the SVSF to an electro­
hydrostatic actuator, (Habibi, 2007). 

New forms of the system Toeplitz and the Observability matrices are developed in 
chapter five. These new matrices, which are referred to as the General System Toeplitz 
and the General Observability matrices, are used in conjunction with the SVSF to extract 

the full state vector from multiple measurements. The chapter derives the conditions that 
need to be satisfied for eliminating the effects of modeling errors on the estimates. The 
resultant existence subspaces of this algorithm are explored and mathematically 
formulated. Similarly to chapter four, a simple algebraic process is derived for monitoring 
and reconstructing the modeling errors. This process is applied to a three-degree of 
freedom mass-spring-damper system. 

The IBSS is derived in chapter six as a novel iterative parameter estimation 
technique. The concepts, algorithm, and limitations of this method are discussed. The 

IBSS is combined with the SVSF in order to be able to estimate the states and model 
parameters for systems in which only the model structure is known. This method takes its 
strength from using the SVSF secondary indicator of performance to detect changes 
resulting in modeling errors. 

Chapter seven contains the concluding remarks. It summarizes the benefits and 
limitations of using the SVSF with time-varying smoothing boundary layer, the General 
Toeplitz/Observability SVSF, and the IBSS/SVSF. 
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Chapter Two: 

Literature Review Part I - The Wiener and Kalman Filters 

2.1 Introduction 

This chapter presents a literature review on optimal state and parameter estimation 
techniques. The notion of optimality relies on minimizing a measure referred to as the 
cost function, (Chen Z. , 2003). Common optimal methods used in estimation are as 
follows, [(Chen, 2003), (Simon, 2006), (Bar-Shalom, Li, & Kirubarajan, 2001), (Barakat, 

2005) and (VanDer Heidan, Duin, de Ridder, & Tax, 2004)]: 

1- Minimum mean squared error (MMSE) where the error is usually measured 
between the estimates and their actual values as temporal functions. The cost 
function is defined as follows: 

2.1 

Where xk and xk are the state and its estimate at time k, and Zo ... k represents the 

past measurement vectors up to and including the time k. 

2- Maximum a posteriori (MAP), where the target is to find the posterior 
probability mode (local and global maxima) that minimizes the following cost 
function: 

2.2 

Where 8 is a small threshold value and lxk:lixk-xkll~o(xk) is an indicator function 

that is defined as follows: 

llxk-xk II :::; 8 
Ollxk-.Xkll > 8 

2.3 

The chapter is organized as follows. In section 2.2 the Wiener Filter is reviewed. 

Section 2.3 discusses the Kalman Filter principles, limitations and various forms of 
implementations that improve its performance. 

2.2 The Wiener Filter 

In 1942, Wiener gave the first explicit solution for the problem of state estimation 
for a stochastic process using the least squares method, referred to as the Wiener Filter 
(WF) as shown in Fig 2.1, [(Kailath, 1974), (Chen, 2003) and (Simon, 2006)]. 
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WF 
x{t) 

The solution of the WF is based 
on scalar observations and stationary 
signals with known spectral properties 

subject to white noise. The target of the 
WF is to extract information from noisy 
observations using the frequency Fig 2.1: The Wiener Filter, (Simon, 2006). 
domain perspective. 

The Wiener Filter algorithm can be summarized as follows, (Simon, 2006). 

Ifthe observation z(t) is a function ofthe noise free signal, x(t), and the noise v(t) such 
that: 

z(t) = x(t) + v(t) 

then the estimated signal x(t) can be obtained as: 

x(t) = KwF(t) * z(t) 

2.4 

2.5 

Where the terminology (*) is the convolution operator, and KwF(t) is the Wiener gain 
defined as: 

KwF(t) = :F-1 [Sz ~ Sv] 2.6 

The terminology ('F-1
) means the inverse Fourier Transformation, and Sz and Sv are the 

Fourier Transforms of the observation and noise autocorrelations (their power spectrums), 
respectively. 

The WF is limited in its application to stationery processes. It was extended to 
non-stationary processes by Kalman, (Simon, 2006). 

2.3 The Kalman Filter 

In 1960 Rudolf Kalman presented the Kalman Filter (KF), as a recursive, optimal 

and model based estimator, that falls under the predictor/corrector category for linear 
systems, [(Bar-Shalom, Li, & Kirubarajan, 2001), (Grewal & Andrews, 2001), (Barker, 
Brown, & Martin, 1995), (Welch & Bishop, 2006), (Maybeck, 1979) and (Kalman, 
1960)]. The KF is an optimal filter for linear Gaussian problems as it minimizes the mean 
square error between the actual and the estimated state (MMSE). Its gain satisfies two 
optimality principles; unbiased of the filter (expectation of the state error is zero) and 
orthogonality between the state's a posteriori error and the measurement's a priori error, 
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[(Bar-Shalom, Li , & Kirubarajan, 200 I), (Anderson & Moore, 1979) and (Arasaratnam, 

Haykin, & Elliott, 2007)]. 

The KF is referred to as a predictor/corrector filter because it uses a mathematical 

model of the system represented in equation (2.7) to obtain an a priori estimate of the 

state in a period referred to as the prediction step. The a priori estimates represent the 

noise-free state/parameter at that time step. The a priori estimation errors are due to 

uncertainties as well as noise effects. The KF then uses the measurements and an optimal 

gain to refine the a priori estimates to an a posteriori form in what is referred to as an 

update step. The KF process and equations are given in Fig 2 .2. 

xk = Ak-1xk-1 + Bk-1uk-1 + wk-1 
2.7 

I k = 0, Polo ,Xolo I t uk-1 

I I Prediction Stage 
xklk-1 = Ak-1xk-1lk-1 + Bk-1 uk-1 .... ~ ., 

Pklk-1 = Ak-lPklk-lAk-1 
T + Q,_1 

I I 
k=k+1 

I 

I I w ,---

-T(- -T rl zk 
Update Stage I Kk = Pklk-1Hk HkPklk-1Hk + Rk 

xkik = xklk-1 + Kk(zk- Rkxklk-1) ~ 

Pklk = ( 1- KkHk)Pklk-1 

Fig 2.2 : The Kalman Filter Steps, (Simon, 2006). 

Where Ak-v Bk_1 and Hk are the system, input and measurement matrices, respectively 

and their estimated matrices used by the filter are Ak_1, Bk_1 and Hk, respectively. 

wk_ 1 and vk are the process (system) and measurement noise vectors, respectively. The 

subscripts klk- 1 and klk represents the quantity ' s a priori and the a posteriori value, 

respectively. Kk is the KF gain and P, Q and R are the error, process noise and the 

measurement noise covariance matrices, respectively. 

The KF assumes that the system model is known and is linear, system and 

measurement noise are white, and the states have initial conditions that are modeled as 

random variables with known means and variances, [(Simon, 2006) and (Bar-Shalom, Li , 

& Kirubarajan, 2001 )]. However, these assumptions do not always hold in real 
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applications. If one of these assumptions is violated, the KF performance becomes sub­
optimal and could potentially become unstable. The KF's limitations can be summarized 
as follows, [(Simon, 2006), (Fitzgerald, 1971) and (Bar-Shalom, Li, & Kirubarajan, 
2001)]: 

1. It provides only an implicit mechanism for dealing with modeling uncertainties. 

2. It assumes that noise is white. 

3. It is prone to instability due to numerical errors (i.e., round-off errors and 
inversions of ill-conditioned matrices). 

In the last few decades, many researchers have proposed improvements to the KF. 
These are presented in the following subsections. 

2.3.1 Improving the KF robustness due to modeling error 

Modeling errors add uncertainties and impact the stability and optimality of the 
KF. Taking into account modeling uncertainties, the a priori covariance matrix equation 

differs from its original equation. Assuming the input uk-l is zero, the a priori and the a 
posteriori covariance matrices can be obtained as follows, (Bar-Shalom, Li, & 
Kirubarajan, 2001): 

2.8 

and 

original Pklk 

2.9 

To reduce the effects of modeling errors, various techniques have been proposed. 
These are outlined in sub-sections (2.3.1.1) and (2.3.1.2). 

2.3.1.1 Adding fictitious process noise. 

A fictitious process noise is added to tune the process noise covariance matrix and 

adapt the differences between the filter and system models. By setting the process noise 
12 
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covariance matrix to be Qnewk_
1 

defined in equation (2.1 0), the filters performance is 

improved, [(Simon, 2006) and (Bar-Shalom, Li, & Kirubarajan, 2001)]. 

[ 
T ~ T 

Qnewk- 1 2:: Qk-1 + Ak-l O"xk-t,Xk-1 Ak-l +A k-l O"xk-l,exk-llk-1 ~Ak-l 

+ ~Ak-l O"xk-1,exk-llk-1 Ak-l T] 

2.10 

The tuning is done by trial and error because the modeling errors are usually 

unknown. One of this method's limitations is that ifthere is a modeling error in the input 

matrix and the input is valid, the resultant covariance matrices depend on the input 

properties which may violate the assumption of Gaussian noise, [ (Simon, 2006) and 
(Bar-Shalom, Li, & Kirubarajan, 2001)]. 

2.3.1.2 Using fading memory 

The a priori covariance equation in the KF is modified by multiplying the term 

that includes Pk-llk-l with positive constant, 8, that is slightly larger than one, as 

follows, [(Simon, 2006) and (Bar-Shalom, Li, & Kirubarajan, 2001)]: 

2.11 

This results in a larger a priori covariance matrix and subsequently a higher gain value 

that gives more emphasis to the current measurement and less attention to the old 

measurement, (Simon, 2006). This improves the filter performance in terms of robustness 

against modeling error. The idea of this method is to use a temporal correction factor 

instead of a constant one as the previous method in section (2.3.1.), (Bar-Shalom, Li, & 
Kirubarajan, 2001). 

2.3.2 Improving the KF performance numerically 

The KF has some numerical limitations that could be summarized as follows, [ 

(Simon, 2006) and (Bar-Shalom, Li, & Kirubarajan, 2001)]: 

1- The covariance matrix should be positive definite to guarantee the convergence of 

the filter. However, the covariance matrix may not be positive definite because of 

round off errors further impacting numerical accuracy of the matrix inversion used 

in its iterative calculation as shown in Fig 2.2. 

2- The inversion operator may result in ill-conditioned matrices which would cause 

instability. 

13 
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Recovering the covariance matrix properties (i.e. symmetry and positive 
definiteness) and increasing the arithmetic precision (i.e. reducing the round off error) 

have received attention by many researchers to improve the filter stability and recover its 

optimality. This has resulted in different versions ofthe Kalman Filter, such as the forms 

presented in sub-sections (2.3.2.1 ), (2.3.2.2), (2.3.2.3) and (2.3.2.4). 

2.3.2.1 Joseph Stabilized KF 

The a posteriori covariance equation is rearranged in a form called Joseph 
stabilized form to ensure the symmetry of the error covariance matrix, [ (Simon, 2006), 
(Bar-Shalom, Li, & Kirubarajan, 2001) and (Grewal & Andrews, 2001)]. The advantages 

of this form are that the subtraction part in the a posteriori covariance equation is squared 
and written in a way that stores it as a symmetric matrix as follows, (Grewal & Andrews, 

200 I): 

Pklk =(I- KkHk)Pklk- 1 (1- KkHkf + KkRkK/ 

2.3.2.2 Forcing the covariance matrix to be symmetric 

2.12 

The covariance matrix is forced to be symmetric by simple methods, such as, 
(Simon, 2006): 

• Taking the average of the covariance matrix and its transpose at each time step as 

follows: 

2.13 

• Forcing the terms under the diagonal to have the same values as the terms above 
the diagonal. 

• Using an appropriate initial covariance matrix that will not experience large 
changes later. 

2.3.2.3 The Sequential KF 

The sequential KF is a version of the KF that is applicable to systems with 

multiple measured states. The KF equations are rewritten in a way that uses the a priori 

covariance matrix and states as initial starting condition. These are then updated several 

times, instead of once, according to the number of measurements, m, as shown in Fig 2.3, 

[ (Simon, 2006) and (Li & Li, 2007)], where xklk(r) and Pklk(r) are the a posteriori 

estimate and the error covariance matrix after r updates, respectively. Rrrk is the rth 

diagonal element in R, Hk(r) is the rth row in H, and Zrkis the rth row in zk· 

14 
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k-1 

x.~t.t(o)- x.lj.\.-1 

PJ&A.(o)- P.lj.\.-1 

_z1• z_.., Zm 
~ ~A: k 

• + • 
x~(1)-.i,u(2) __. ... -.i.u(m) 
P.u(l)-. P.u(2)-. ··· _. P~(~) 

k 

Fig 2.3: The Sequential Kalman Filter, (Simon, 2006). 

At each update session, the output from the previous session, xk
1
k(r - 1), is 

considered as the a priori estimate and it is updated using one of the measurements. The a 

posteriori estimate from the last session is the filter a posteriori estimate as shown in Fig 

2.4. By taking a single measurement at each iteration, the KF equations deal with scalar 

values instead of matrices which overcome the matrix invers ion problems in terms of 

computational time, existence and complexity. 

xk
1
k(o) = xk lk-1 

Pklk(O) = Pk \k-t 

r=O 

x klk-1 = A k-1xk-l \k-1 + Bk-1uk-l 
- - T 

Pk \k-1 = A k-1 p k lk - 1A k-1 + Qk-t 

K k(r) = Pklk(r- 1)Hk(r)r /(Rk(r)Pk lk(r- 1)Hk(rf + RrrJ 

xk lk(r) = xk lk(r- 1) + Kk(r) ( Zrk - Rk(r)xklk(r- 1)) 

Pklk(r) = ( 1- K k(r) Rk(r)) Pk lk(r- 1) 

Fig 2.4: The Sequential KF Algorithm, [(Simon, 2006) and (Li & Li, 2007)]. 

The limitation of this method is that the measurement noise covariance matrix, R, 

must be diagonal. If it is not a diagonal matrix then a transform is done to the KF 

equations to make it diagonal. However, this method is insufficient if R is not diagonal or 

constant as it would result in a prohibitively large computational time. 

2.3.2.4 The Information Filter 

In the Information Filter, the covariance calculation is replaced by the 

information matrix calculation, ~' which is the inverse of the covariance matrix (~ = 
p- 1 ). By rearranging the KF equations according to the information matrix, as shown in 

Fig 2.5, the subtraction operator in the a posteriori equation is converted to an addition 
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operator; thereby the positive definiteness of the covariance matrix, P, is reserved, 
(Simon, 2006), (Tylavsky & Sohie, 1986) and (Bar-Shalom, Li, & Kirubarajan, 2001)]: 

l k = 0, x0 10, 3 0 10 J ... 
I k-k+l L - I 

+ 
xklk-1 = Ak-1xk-1lk-1 + Bk-1uk-1 

-1 -1- ( - T -1- ) -
1

- T -1 
~klk-1 = Qk-1 - Qk-1 Ak-1 ~k-1lk-1 + Ak-1 Qk-1 Ak-1 Ak-1 Qk-1 

+ 
~klk = ~klk-1 + u/ Rk -

1
ok 

-1- T -1 
Kk = ~klk Hk Rk 

xklk = xklk + Kk(zk- Hkxklk-1) 

Fig 2.5: The information Filtering Algorithm, [(Simon, 2006) and (Bar-Shalom, Li, & 

Kirubarajan, 2001)]. 

On the other hand, the computational time depends on the noise covariance 
matrices. If these matrices are constant then the computational time of this method 
becomes significantly faster, [ (Simon, 2006) and (Bar-Shalom, Li, & Kirubarajan, 
2001)]. 

2.3.3 The Kalman Filter with steady state gain 

If the system model and the system and measurement noise covariance matrices 
are time invariant, then the steady state KFs (SSKFs) can be used instead ofthe KF. The 
SSKFs give results that are similar to the KF in such cases with the advantages of fewer 
computations, less complexity and avoiding inversion problems. However, they give poor 
estimation performance during the transient period and are not optimal if the noise is non­
stationary, [(Simon, 2006), (Bar-Shalom, Li, & Kirubarajan, 2001) and (Grewal & 

Andrews, 2001)]. 

The SSKFs use a constant gain that can be obtained by using several methods 
such as the following, [(Simon, 2006), (Bar-Shalom, Li, & Kirubarajan, 2001), (Painter, 
Kerstetter, & Jowers, 1990), (Ogle & Blair, 2002), (Yo & Kim, 2003) and (Ogle & Blair, 
2004)]: 

• Numerical simulation: The final value that the gain approaches in time varying KF 
is determined. This value is then used as the KF steady state gain, (Simon, 2006). 
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• Alpha-Beta Filter: This is a simple filter that uses a pre-computed fixed gain for 

estimation. This filter is used in tracking problems involving one measurement 
and a second order Newtonian system defined as follow, [(Simon, 2006) and (Bar­
Shalom, Li, & Kirubarajan, 2001)]: 

_ [1 Ts] [Ts 2 /2] xk - 0 1 xk-1 + Ts wk-1 
2.14 

zk = [1 O]xk + vk 

Where T5 is the sampling time. The a priori and a posteriori error covariance 

matrices, and the KF gain, KaP• are assumed to be constant and computed as 

functions of two parameters; a and {3, as follows, [(Simon, 2006) and (Bar­
Shalom, Li, & Kirubarajan, 2001)]: 

Kap =[a {3/T F 2.15 

l 
aQ 

1-a 
P a{i',klk-1 = {JQ 

T5 (l- a) 

2.16 

[ 

aR fJR/~ ] 
p afi',klk = {JR/Ts (!!_ _ _.!!__) {JQ 

T5 2T5 T5 (1- a) 
2.17 

Where P aP.klk-1 and P aP,kik are the a priori and the a posteriori covariance 

matrices obtained by the Alpha-Beta KF. Q = E(wkwkT) and R = E(vkvkT) are 
the system and measurement noise covariance matrices, respectively. a and {3 are 

functions of the ratio between Q and R, p = QT/ fR, as follows, [(Simon, 2006) 

and (Bar-Shalom, Li, & Kirubarajan, 2001)]: 

a = ~1 (P 
2 

+ 8p - (p + 4)../ p2 + 8p) 

{3 = ~ (P2 + 4p - p.} p2 + 8p) 

2.18 

2.19 

• Alpha-Beta-Gamma Filter: This filter is similar to the Alpha-Beta filter. 
However, it is used in tracking problems involving one measurement and for third 
order Newtonian systems as follows, [(Simon, 2006) and (Bar-Shalom, Li, & 
Kirubarajan, 2001)]: 
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x, = [~ ~ T,tlxk~t + [T'?}H 
2.20 

zk = [1 0 O]xk + vk 

The a posteriori error covariance matrices, P a,B,kik• and the KF gain, Ka,By• are 

assumed to be constant and functions of these parameters: a, {3 and y as follows, 

[(Simon, 2006) and (Bar-Shalom, Li, & Kirubarajan, 2001)]: 

Pa/f,kik = 

Kapy =[a fJ/Ts yj2T/( 

aR 

yRf2T5 
2 

{JR/Ts 

_sa_fJ_+----;;y(:-fJ_-_2_a_-_4_) R 
ST/(1- a) 
{3(2{3-y) R 

4T5
3 (1- a) 

yRf2T5 
2 

_{J---,(2:--{J_-_Y_) R 
4T5 

3(1- a) 

y(2{J- y) R 

4T/(1- a) 

2.21 

2.22 

a, {3 and y are functions of the ratio between the process and the measurement 

noise covariance matrices, p = QT5 
2 I R, as follows, (Simon, 2006): 

a = 1 - (a - 3ba - ~f 2.23 

2.24 

y = 2p (a -~- :_) 
3a 3 

2.25 

Where a= [---d+__,_ __ '--

and e = p/2 + 3. 

The Alpha-Beta and Alpha-Beta-Gamma KF have advantages in terms of 

computational time, complexity and avoiding inversion problems. However, they are only 

applicable to certain system models, and they give poor performance in non-stationary 

application, (Simon, 2006). 

2.3.4 Modifying the KF to make it applicable to non-linear systems. 

Several implementations have been applied to the KF to make it applicable to non­

linear systems defined as follows, [(Simon, 2006) and (Kreyszig, 2000)]: 
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xk = f(xk-v uk-1) + wk-1 
zk = g(xk) + vk 

2.26 

These implementations vary according to their objectives, i.e. increasing accuracy, 

stability and/or robustness, reducing computational time and/or complexity, and handling 

non-Gaussian noise distributions. In this subsection, a selected number of 

implementations for discrete non-linear systems are discussed. 

2.3.4.1 The Perturbation Kalman Filter 

In the Perturbation KF (PKF), also known as the Linearized KF, the nonlinear 

model of the system is replaced by its linearized form about a nominal state trajectory and 

input by using the first order Taylor Series Approximation, as follows, [(Barker, Brown, 

& Martin, 1995). (Ormsby, Raquet, & Maybeck, 2006) and (Negenborn, 2003)]: 

l:J.xk = <l>k-1/J.xk-1 +Ttk-1/J.uk-1 + wk-1 
2.27 

f:J.zk = Hk!:J.xk + vk, 

i)f i)g i)f 
Where <l>k-1 =;-I x=Xk-1 nom, Hk = -lx=xk , llk-1 =-I x=xk-1 nom, l:J.xk = Xk -

uX ' i)x ,nom au ' 
U=Uk-1,nom U=Uk-1,nom 

xk,nomand !:J.uk-1 = uk-1- uk-1,nom· 

The PKF estimates the derivatives with respect to the nominal values as shown in 

Fig 2.6. This filter is not suitable for systems that are highly non-linear where the first 

Taylor Series Approximation is not sufficiently accurate. Moreover, this filter needs the 

nominal state trajectory for linearization which may be unavailable or may differ from the 

actual trajectory due to modeling errors and noise. 

k = 0, Polo ,Xolo I ~ uk-1 ! 
I j Prediction Stage 

Llxklk-1 = «i>k-1Llxk-1lk-1 + fik-1Lluk-1 

pklk-1 = «i>k-1pk-1lk-1 «i>k-1 
T 

+ Qk-1 

l k=k+1 I 
I .. 

& ~ T (~ T r1 
Kk = Pklk-1Hk HkPklk-1Hk + Rk 

Llxklk = Llxklk-1 + Kk(zk- g(xk,nom)- HkLlxklk-1) 

Pklk = (I- KkHk)Pklk-1 
Update Stage j xkik = Llxkik + xk,nom 

Fig 2.6: The Perturbation Kalman Filter, (Negenborn, 2003). 
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2.3.4.2 The Extended Kalman Filter 

A revised version of the LKF was later proposed and was referred to as the 
Kalman-Schmidt Filter or the Extended Kalman Filter (EKF), [ (Simon, 2006), (Grewal 
& Andrews, 2001), (Lary & Mussa, 2004) and (Leu & Baratti, 2000)]. This filter uses the 
non-linear model of the system to predict the a priori estimates. The system model is then 
linearized around the a posteriori estimate from the previous time step, and the 
measurement equation is linearized around the a priori estimation in order to calculate the 
Kalman gain, and the a priori and the a posteriori covariance matrices. This gives better 

performance than the PKF, (Simon, 2006). The EKF process is summarized in Fig 2.7, 

h 
~ of ag 

W ere <l>k-1 = ax lx=xk-1,k-1 and Hk = ax lx=xklk-1 · 
u=uk-1 

I + 
k = O,POIO ,XOIO I 

xklk-1 = l(xk-1lk-1> uk-1) 

Pklk-1 = <i>k-1 Pk-1lk-1 <i>k-1 
T 

+ Qk-1 
!Prediction Stage J 

+ 
lk=k+1 ~ T (~ ~ T 

Kk = Pklk-1Hk HkPklk-1Hk + 

Update Stage I + 
xklk = xklk-1 + Kk ( zk - g(xklk-1)) 

Pklk = (I - KkHk)Pklk-1 

Fig 2.7: The Extended Kalman Filter, (Simon, 2006). 

2.3.4.3 The Iterated Extended Kalman Filter 

I uk-1 

I 

I ,---

zk 

T 

The EKF linearizes the measurement matrix using the Taylor Series 
Approximation around the a priori estimate, even though its value is not quite accurate. 
To improve the filter performance, the Iterated Kalman Filter (IKF) is used, [ (Simon, 
2006), (Bar-Shalom, Li, & Kirubarajan, 2001 ), (Shojaie, Ahmadi, & Shahri, 2007), 
(Zhang, Zhou, & Duan, 2006) and (Hyland, 2002)]. At the first iteration, the IKF 
procedure is similar to the EKF. Later on, the base of deriving the measurement matrix is 
replaced by the a posteriori estimate from the previous iteration, xk

1
k(r- 1), as shown in 

Fig 2.8. The process is repeated for several iterations, N. This method reduces the error 
due to the linearization process where it uses a refined base of derivation which is more 
accurate than an a priori estimate. However, the filter performance becomes poor for 
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highly non-linear systems that cannot be represented by a first-order Taylor Series 
Approximation, (Simon, 2006). 

- a{ 
«!>k-1 = ax lx=xk-l,k-1 

u=uk-1 

Xklk-1 = f(xk-1lk-V Uk-1) 

p - [~k-1pk-1lk-1 ~k-1 T] 
klk-1 - Q 

+ k-1 

xk1k = xk1k(N) 

Pklk = Pklk(N) 

r = o, xk1k(O) = xklk-1• Pk
1
k(O) = 

pklk-1 

No 

Fig 2.8: The Iterated Kalman Filter, (Simon, 2006). 

2.3.4.4 Higher Order Extended Kalman Filter 

The Higher order EKF is used to reduce the error due to choosing the first order 
Taylor Series Approximation as a linearizing process. When the system is highly non­
linear, higher order terms of Taylor Series Approximation are used to reduce the 
truncation error due to the neglected terms. However, adding these terms makes the filter 
more complicated and requires more computational time. For example, the second-order 
EKF in [ (Simon, 2006), (Dungate, Theobald, & Nurse, 1999), (Bayard & Kang, 2003) 
and (Athans, Wishner, & Bertolini, 1968)] needs to calculate the second derivative of the 

measurement and the system matrices, and to calculate additional correctives terms, n:u 
and n:2,b that are added to the a priori and the a posteriori estimate equations due to the 

additional Taylor Series Approximation terms as follows, (Simon, 2006): 

Xklk-1 = f(xklk-V Uk-1) + Tru 

2.28 
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[

0 . . . 0 1 0 . . . 0] T _ 

Where <l>i = -1. , nl.k = ~ L:~1 <l>i Tr [::~ lx=xk_ 11 k_ 1 Pk-1lk-1], and 
ith column ' 

1 [ az- ] 
Ttz,k = 2 Kk L:f;1 <l>i Tr ax~ lx=xklk- 1 Pklk-1 · 

l 

As the system non-linearity increases, this method becomes unfeasible in terms of 

computational time. 

2.3.4.5 The Sigma-point Kalman Filter 

The Sigma-point Kalman Filter (SPKF) draws a certain number of points, called 

sigma points, from the probability distribution function projected for the states. Then the 

SPKF projects these points by using the system's nonlinear model to obtain an a 

posteriori estimate for the state ' s probability distribution hence avoiding the requirement 

for linearization. The SPKF is based on the weighted statistical linear regression method 

which linearizes the non-linear model statistically, [ (Simon, 2006), (Van Der Merwe & 
Wan, 2004), (Ambadan & Tang, 2009), (Wang, Wang, Liao, & Liu, 2009), (Sadhu, 

Monda!, Srinivasan, & Ghoshal, 2006), (Schenkendorf, Kremling, & Mangold, 2009) and 

(Ali , Deriche, & Landolsi, 2009)] . This leads to a more accurate linearization technique 

than the Taylor Series Approximation with the advantages of eliminating the need to 
calculate the Jacobian matrices and the accommodation of noise distributions that are not 

Gaussian, (Tang, Zhao, & Zhang, 2008). The SPKFs family includes: 

• The Unscented KF (UKF) described in [(Simon, 2006), (VanDer Merwe & Wan, 

2004), (Ambadan & Tang, 2009), (Wang, Wang, Liao, & Liu, 2009), (Sadhu, 

Monda!, Srinivasan, & Ghoshal, 2006), (Schenkendorf, Kremling, & Mangold, 

2009) and (Ali, Deriche, & Landolsi, 2009)]. The UKF obtains a minimal set of 

sigma points around the mean, as shown in Fig 2.9 and table 2.1 , using one of the 

e sigma point 

Fig 2.9: Sigma-Points for n = 2, 

(Van Der Merwe & Wan, 2004 ). 

many unscented transformations that have been 

proposed, i.e. unscented (Simon, 2006), general 
unscented [ (Simon, 2006) and (Ambadan & 

Tang, 2009)] , simplex unscented [ (Simon, 

2006), (Tang, Zhao, & Zhang, 2008), (Kim & 

Shin, 2005) and (Julier, 2003)] or spherical 
unscented [ (Simon, 2006), (Tang, Zhao, & 

Zhang, 2008), (Kim & Shin, 2005) and (Julier, 

2003)] transformations. 
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By propagating these points through the non-linear system model and by using 

an associated weight factor, the mean and the covariance of the system are 

approximated; e.g. Fig 2.10 shows that the estimated mean and covariance obtained 

by using the sigma points (for a system that consists of two states and a nonlinear 

output matrix) approximate the actual system mean and covariance, where xi and zi 
are the estimated state and measurement vectors ofthe ith sigma point. 

(a) 

actual da:apoit;!. . • · ~ · • 
X , . :. J •• : •• 

: .· , .. . . . 
covariance 

0 

mean 

covariance 

z = g(x) 

Fig 2.10 : (a) The actual system states and their nonlinear measurement (b) The Sigma­

Point KF's estimates, (VanDer Merwe & Wan, 2004). 

The unscented transformations share similar principles although they differ in 

terms of the number of sigma points, how to choose these points, and how to 
calculate their weights. The unscented transformation gives accurate results up to a 

third order Taylor Series Approximation for Gaussian distributions, (Simon, 2006), 

and second order Taylor Series Approximation for non-Gaussian distributions, (Van 

Der Merwe & Wan, 2004). Conversely, the general unscented transformation gives a 

chance to improve the results by using a designing factor, A., that improves the 

approximation accuracy to a higher order Taylor Series Approximation. The simplex 

unscented transformation is used to reduce the computational time and uses almost 

half of the sigma points. However, it has stability limitations when systems are of 

high order, [ (Simon, 2006) and (Julier, 2003)]. The spherical unscented 
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transformation is used to overcome the simplex unscented transformation stability 
problem by rearranging the sigma points and their weights. Fig 2.11 summarizes 

these unscented methods and table 2.1 summarizes their parameters (Wi, (h and Q2 ). 

Note that q is the number of the sigma points, P1 = Pk-1 lk-1 , P2 = Pklk-1 , (a)i is 

the i row of a, Wi, Xi and Zi are the assigned weight, the estimate and its 

measurement for the ith sigma point, respectively, and Q1 and Qz are the selection 

parameters of the sigma points for the a priori and a posteriori estimates, 
respectively. 

Prediction Stage I ~k=k+lJ II Update Stage I 
8----Initial x010 and P01o Pre - Processing 

- fori= 0,1, ... ,q k=O II uk-1 ~ xiklk-1 = xklk-1 + (Qz)i • ziklk-1 = g ( x;klk-J 
Pre - Processing 

end for i = 0,1, ... ,q 
zklk-1 = Lf=o W; ziklk-1 

xik-1lk-1 = "k-1Jk-1 + Ce1)i 
A Priori Estimation 

Calculate Wi from table 2.1 
~ 

q (~ (~ r 
xiklk-1 = i ( xik-1lk-1' uk-1) p = I ~- ziklk-1 ) ziklk-1 + R 

• ZZ I ~ ~ k 
end i=o -zklk-1 -zklk-1 

A Priori Estimation q ~ Z T 

~ - :Lq ~ pxz = I wi ( X;klk-1 ) ( ~klk-1 ) 
Xklk-1 - i=O Wi Xiklk-1 

q (X ) X )r 
i=O -xklk-1 -zklk-1 

Kk = Pxz Pzz 
-1 

p = I ~- iklk-1 ( iklk-1 + Q kJk-1 I ~ ~ k-1 
xklk = xklk-1 + Kk(zk- zklk-1) i=O -xklk-1 -xklk-1 

I Pklk = (Pklk-1 - Kk PzzK/) 

t 
Fig 2.11: The Unscented Kalman Filter, (Simon, 2006). 
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0 

(p;;)iT 1:5i:5n 

-(F)iT n + 1 :5 i :5 2n 

(Qj)i 
0 i = 0 

T 
(jcn + .1)Pj )i 1:5i:5n 

= 
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As Pin is obtained recursively as follows: 
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superscript is the recursive index) 

for l = 2, ···, n (number of the states) 

[Po~- 1 ] i = 0 

[ 
p~~l ]1 :5 i :5 l 

Pi 1 = ~ y2Wt+1 
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Ot-
1
1x1 l 

i=l+1 
.J2Wt+1 

Similar to the simplex UKF except that 
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] i = 0 

[ 
p~~l ]1 :5 i :5 l 

Pit= .jl(l + 1)W1 
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o1-1x1 l 
l i=l+1 

.jl(l + 1)W1 

wi =!~ 
i = 0 

i * 0 2n 

i=O 
{ 1 U!: _ n+-1 

i- 2(n ~ .1) i * 0 

W0 is chosen as W0 E [0, 1) 

wi 
= f2-n(~ - W0 ) 1 :5 i :5 2 

zt-ncwl) i > 2 

W0 is chosen as W0 E [0, 1) 
1- W0 U':· =--

! n+ 1 

Table 2.1: The differences between the UKF methods, (Simon, 2006). 
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• The Sigma-Point Central Difference KF (CDKF) described in [(Nrgaard, Poulsen, 
& Ravn, 2000), (Zhang, Gao, & Tian, 2008) and (Jihua, Nanning, Zejian, & Qiang, 

2009)]. This filter shares a similar principle to the UKF as it uses 

2n + 1 sigma points, (Jihua, Nanning, Zejian, & Qiang, 2009), propagates these point 
through the nonlinear system, and uses the linear weighted regression to 

calculatexklk-l• zklk-v Pxx and, Pzz· However, the idea of CDKF is to approximate 

the system model by linearizing the nonlinear matrices using the Taylor Series 

Approximation (as done in the EKF) and then replacing the derivatives with their 
numerical Stirling's polynomial interpolation forms (NSPI), (Sadati & Ghaffarkhah, 

2007), that represent the derivative as central divided differences as follows, 

(Henrici, 1964): 

2.29 

As a consequence of using the NSPI, the CDKF method differs from the UKF 

method in terms of selecting the sigma points and their weights, and calculating the 

covariance matrices, as shown in Fig 2.12. The CDKF has several advantages over 

the EKF and the UKF: 

• Accuracy: it has been found that the CDKF method gives superior performance 
over the UKF and EKF, [(Chen, 2003), (Simon, 2006) and (Van Der Merwe, 

2004)]. 

• Ease of tuning: the CDKF uses one control parameter, T,d, which is easy to be 

obtained as shown in (Van Der Merwe, 2004), e.g. it is set to be Ted = ,[3 for 

Gaussian distributions. On the other hand, the UKF has at least one control 

parameter that needs to be tuned, i.e. W0 for the simplex and the spherical UKF, 

and il for the general UKF. Moreover, the tuning process varies according to the 

application which makes the UKF tuning process not unique. 
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Pre-Processing 

Xok-1lk-1 = xk-1lk-1 

Fori= 1, ... , n 

Xik-tlk-1 = Xk-1lk-1 + (hJPk-1lk-1)iT 

xi+nk-1lk-1 = "k-1lk-1 - (h.,/Pk-1lk-1\ T 

xiklk-1 = i (xik-1lk-1' uk-1) 

xi+nklk-1 = i ( xi+nk-llk-1' uk-1) 
end 

A Priori Estimation 

McMaster - Mechanical Engineering 

Update Sta_qe 

Pre-Processing 

Fig 2.12: The Sigma-Point Central Difference Kalman Filter, [ (VanDer Merwe, 2004) 

and (Van Der Merwe, 2004)]. 

2.3.5 Combination of the KF with intelligent techniques. 

The KF has been combined with intelligent techniques, i.e. fuzzy logic [(Nguyen 
& Walker) and (Yager & Zadeh, 1992)], to improve its performance in term of robustness 

and stability. Examples of these algorithms are discussed in this subsection. 

2.3.5.1 Carrasco's Fuzzy Observer/EKF method 

A fuzzy observer was implemented by R. Carrasco et al. in (Carrasco, Cipriano, & 

Carelli, 2005 ). It was used for estimating a simple mobile robot posture defined by two 

coordinates (x,y) and a heading angle, <p. The nonlinear model was approximated using 

Takagi-Sugeno fuzzification with the heading angle as an input, as shown in Fig 2.13. 

Five linearized systems were obtained, L11 L2 , ••• , L5, where each Li is obtained by 
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linearizing the system around one of five 

values of the heading angle, which were (in 

degrees): 40, 490, 4-90, 4180 and 4-180. 

Each value of the angle represents the peak 

ofthe corresponding fuzzification member­

ship as shown in Fig 2.14. The shapes of 

the fuzzy membership functions were 

optimized using a genetic algorithm. For 

each linearized model , a KF was used to 

McMaster - Mechanical Engineering 

Fig 2.13: The Carrasco ' s Fuzzy nonlinear 

model , (Carrasco, Cipriano, & Carelli , 

2005) . 

.: •• 0 , 

Htading Angel [rad] 

Fig 2. 14: The Fuzzy membership function, (Carrasco, Cipriano, & Carelli , 2005). 

estimate the states (including the 

heading angel). At each time step, the 

estimated heading angle, which is the 

average of the filters ' heading angles at 

that time step, is used as an input to the 

fuzzy system to obtain the other 

estimated states (x, y) as shown in Fig 

2.15. The resultant error covariance 
matrix is a linear combination of the Fig 2 .15: The Carrasco's Fuzzy Kalman Filter, 

filters ' error covariance matrices. The (Carrasco, Cipriano, & Carelli , 2005). 

resultant observer is more accurate, robust and easier to tune compared to the EKF. 

2.3.5.2 Simon's Fuzzy IKF method 

D. Simon in (Simon, 2003) represented the nonlinear system with Takagi-Sugeno 

fuzzy models. By breaking the nonlinear model into approximated fuzzy piecewise linear 

models, the estimation problem becomes simpler and fits with the KF approach . Each of 
28 
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these models is then estimated using a KF with steady state gain. By combining the 
filters' outputs, the estimates are then retrieved. The input for the fuzzy system is a 

function of the states at the previous time step, while the resultant fuzzification weights 
are used as part of the estimation process for each fuzzy model. 

In this method, the time-varying KF is represented by combining the KFs with 
steady state gains. The advantage ofthis method is that it reduces the computational time 
and complexity. The steady state gain is obtained before the experiment starts; thereby 
there is no need to calculate or update the error covariance matrices. Another advantage is 
that the fuzzy system approximates the nonlinearity in the system without the need to 
linearize it by using the Taylor Series Approximation. 

2.3.5.3 Matia's Fuzzy IKF method 

The Matia's Fuzzy-Kalman Filter was implemented by F. Matia et al. in (Matia, 
Jimenez, Rodriguez-Losada, & AI-Hadithi, 2004). This filter uses the possibility 

distribution (obtained from the fuzzy membership functions) instead of Gaussian 
distribution to accommodate unsymmetrical noise distributions. The basic idea is to 
represent the uncertainties by fuzzy logic, i.e. asymmetric trapezoidal membership 
functions for the error in states and for the noise, to overcome the EKF limitations in 
terms of non-Gaussian and asymmetric uncertainties. The resulting membership functions 
that represent the states, noise and measurements are then propagated through the 
nonlinear model. At each time step, the a posteriori estimates are considered as the center 
of gravity of the resultant compound membership function. According to (Matia, Jimenez, 
Rodriguez-Losada, & AI-Hadithi, 2004), this method gives a better estimation for the 

states of non-linear systems than the EKF. Using the fuzzy approach has benefits over the 
Gaussian assumptions in terms of approximating the noise, handling larger modeling 
errors, rejection of outliers, and having less sensitivity to errors in initial conditions. 

2.3.6 Using adaptive techniques. 

2.3.6.1 Noise level adjustment 

The noise level adjustment method (proposed in (Bar-Shalom, Li, & Kirubarajan, 
2001)) is an adaptive technique that changes the process noise covariance matrix settings 

for the filter. This method starts by assuming a low level of process noise. The efficiency 
of the current noise level is tested using one of the innovation tests described in (Bar­
Shalom, Li, & Kirubarajan, 2001) such as the following: 

Test 1: Normalized innovation squared (NIS) presented in [(Bar-Shalom, Li, & 

Kirubarajan, 2001), (Jilkovand & Li, 2002) and (chan, Hu, & Plant, 1979)]. 
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This test uses the ratio between the covariance of the innovation, (E(uk Tuk)), 

and the calculated covariance matrix of the output's estimation error, Sk, as 
follows, (Bar-Shalom, Li, & Kirubarajan, 2001): 

NISk = uk Tsk -tuk 

Where uk is the innovation vector and it is defined as follows: 

uk = zk - Hkxklk-1 

and sk is defined as follows: 

~ ~ T 

Sk = HkPklk-1 Hk + Rk 

The NIS value is tested to be less than a threshold, E. 

2.30 

2.31 

2.32 

Test 2: Moving average presented in (Bar-Shalom, Li, & Kirubarajan, 2001). This test 

takes a window that contains l successive state points from k - l + 1 to k, and 
slides forward in time. The NIS is calculated for each point and then the mean 

of the resultant NIS values is tested against the threshold E. 

If the test fails; i.e. the value of NIS exceeds the threshold E, then the process 
covariance matrix is scaled up using a scaling factor, known as a fudge factor. The 
process is repeated until the test method condition is satisfied. 

2.3.6.2 Noise level switching 

The noise level switching method described in (Bar-Shalom, Li, & Kirubarajan, 
2001) is similar to the noise level adjustment method, except that there are two known 
levels of process noise to choose from. The choice is obtained according to the mentioned 
innovation testing methods in section (2.3.6.1 ), where two threshold values are used; 
upcrossing and downcrossing thresholds. If the process starts with a low process noise 
level (has small covariance matrix), and the innovation test fails; i.e. its value exceeds the 

upcrossing threshold, then a higher process noise level (has large covariance matrix) is 
used. The new level holds until the test value falls below the downcrossing threshold, 
then the process noise level is changed back to the lower level. 

2.3.6.3 Multiple Models (hybrid system) 

The Multiple Models approach (MM) (presented in [(Bar-Shalom, Li, & 
Kirubarajan, 2001), (Li & Bar-Shalom, 1996), (Li X., 2000), (Li, Zwi, & Zwang, 1999), 
(Li, Zwang, & Zwi, 1999), (Li & Zwang, 2000), (Li, Jikov, & Ru, 2005) and (Ainsleigh, 
2007)]) assumes a finite number of models, r, where the system can be anyone of them. 
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These models, M1 ... Mn include all possible system structures and/or parameters. The 
system model is assumed to be fixed during the estimation. Each model at time k has the 
following: 

1- The likelihood function (Ai,k) is defined as the Gaussian probability density 

function (PDF) of the model i innovation (uik) assuming a zero mean and a 

covariance matrix of Sik (defined in equation (2.32)), and it has the following 

form: 

2.33 

Where .f.J( x; :ij, Pj) is the Gaussian PDF with average of :ij and covariance of Pj. 

2- A prior probability, lli,k-v is used to update the a posteriori probability, !li,k, of 

the model i (Mi) as follows, (Bar-Shalom, Li, & Kirubarajan, 2001): 

Ai,k lli,k-1 
lli,k = "'r A 

L....j=1 j,kllj,k-1 
2.34 

The posterior estimate of Mi, xi,kik' and its error covariance matrix,Pi,klb are 

calculated for each model using a bank of r Kalman Filters, and then they are combined 
as follows [(Bar-Shalom, Li, & Kirubarajan, 2001) and (Ainsleigh, 2007)]: 

xklk = "'r llj,kxj,kik 
L.,j=1 

Pklk = I~=1 1lj,k [Pj,klk + (.xj,klk- xklk)(xj,klk- xkidr] 

2.35 

2.36 

The multiple model method is summarized in Fig 2.16. This method is limited to 
include a small number of models that are close to the system model [(Li & Bar-Shalom, 
1996), (Li X. , 2000) and (Li X. , 2000)]. If the number of models is increased, the 
computational time increases and the performance may not improve because some 
unwanted models would corrupt the results. 
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xl,OIO = ... = Xr,OIO = XoiO 
Pl,OIO = ... = Pr,OIO = Polo 

1!1,0 = · · · = llr,o = llo 
k=O 

Obtain the system's estimates & Covariance 
using equations (2.35) & (2.36) 

llr,k 

Update the a posteriori probabilities 

using equation (2.34) 

Xr,klk 

Pr,klk 

Fig 2.16: The Multiple Model algorithm, (Bar-Shalom, Li, & Kirubarajan, 2001 ). 

2.3.6.4 Model Switching 

The Model Switching (MS) 
approach (proposed in [(Bar-Shalom, Li, & 

Kirubarajan, 2001), (HoT. , 2008), (Li X. , 
2000), (Li, Zwi, & Zwang, 1999), 
(Ainsleigh, 2007) and (Chang & Athans, 
1978)]) assumes a finite number of models 
and the system's model can be anyone of 
them at time k. This means that there is a 
chance of the model changing during the 
operation. A procedure similar to the 

multiple models approach is used, while o 1 2 k time 

taking into account predefined changing Fig 2.17: The Model Switching Approach 
sequences. Each possible sequence is for r = 2 at time k, (Chang & Athans, 
considered as a path as shown in Fig 2.17 1978). 
(assuming x~1 

... d; is the estimate at time i using model sequence of Md
1 

... Md
1 

as its path 

and d 1 ... di for this example have values of 1 or 2). The number of paths increases 
exponentially with respect to time. For example, if the system has a model from N 
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available models at every time step, then at the beginning (time 0) the system path has a 

probability space of N. At the next time step, the system path has a probability space of 

N x N possible sequences. The same principle holds during the next time step, which 

leads toNk possible sequences at timek. 

The states of each complete path are calculated using the Kalman Filter, and the 

resultant states are fused together to obtain the system states at any given time. This 

algorithm is an optimal algorithm. However, it is obvious that this method can be 

computationally very demanding. 

2.3.6.5 Interacting Multiple Models 

The Interacting Multiple Models (IMMs) method (described in [(Bar-Shalom, Li, 

& Kirubarajan, 2001), (Johnston & Krishnamurthy, 2001), (Mihaylova, Lefebvre, Stafetti, 

Btuyninckx, & De Schutter, 2002) and (Li & Bar-Shalom, 1994)]) calculates a mixture 

with different weights, referred to as mixing probabilities, for each possible model and 

calculates the corresponding previous a posteriori estimate using the likelihood functions. 

The mixing probability is calculated at each time step as follows, (Bar-Shalom, Li, & 
Kirubarajan, 200 1 ): 

~ilj,k-1lk-1 = ""~ n 11 . 
L..t=1 'rijr-t,k-1 

Pr··~; k-1 
I} '• 

2.37 

Where ~ilj.k- 1 lk- 1 is the mixing probability of the path sequence Mi at time k - 1 to Mj 

at time k, Prij is the probability of switching to the model Mj from the current model Mb 

and ~i.k- 1 is the probability that the model Mi is the actual system model. By interacting 

these estimates and covariance matrices with the mixing probabilities, new modified 

values of the initial estimate and covariance matrix for the model Mj 

(i.e. Xo,j,k- 11k-1 and Po.j,k-11k-1, respectively) are obtained for each corresponding 

possible model as follows, (Bar-Shalom, Li, & Kirubarajan, 2001): 

Xo,j,k-llk-1 = ""'r Xo,i,k-llk-l~ilj,k-llk-1 
Li=l 

r [ ( ~ ) ( ~ )T] xi,k-1lk-1 xi,k-1lk-1 
Po,j,k-1lk-1 = "'"' ~ilj,k-1lk-1 Pi,k-1lk-1 + _ ~ . _ ~ . L Xo; k-1lk-1 Xo 1 k-1lk-1 i=l I I I I 

2.38 

2.39 

The values of Xo.j,k- 1lk-1 and Po,j,k-1lk-1 summarize the old history of the model 

Mj up to the time k - 1. The model probability, ~j.k-v is then updated as follows, (Bar­

Shalom, Li, & Kirubarajan, 2001): 
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~j,k = "'r A "'r n 
£..j=1 j £..i=1 'rij~i,k-1 

2.40 

Using the a posteriori value of each filter; xj,k-1lk-1 and Pj,k-1lk-1, and the corresponding 

model probability; ~j,k• then the system a posteriori estimate and covariance matrix; 

xk- 1lk-1and Pk_ 11k_ 1, can be calculated using equations (2.35) and (2.36). This method 

is summarized in Fig 2.18. 

~ 
I 

k=k+l I 

J 
x1,0IO = ... = Xr,OIO = XoiO + + 
Pl,OIO = ··· = Pr,OIO = PolO xl,k-1lk-1 

... Xr,k-1lk-1 

!11,0 = · · · = llr,o = llo pl,k-1lk-1 Pr,k-1lk-
xl,klk k=O ... .. -• P1,klk 

Interacting/Mixing 

+ + Xr,klk 

Xo,1,k-1lk-1 Xo,r,k-1lk-1 Pr,klk 

p 0,1,k-1lk-1 P o,r,k-1lk-1 

-• ZH-I Al,k 
I 

:: Ar,k I L Ml Mr J 

• ... • 
x1,klk Xr,klk 

P1,klk 
... 

Pr,klk 

• • 
xklk Obtain the system's estimates & Covariance 

pklk using equations (2.35) & (2.36) 

i lll,k ... llr,k i 
Update the a posteriori probabilities 

using equation (2.40) 

Fig 2.18: The Interacting Multiple Model Algorithm, (Li & Bar-Shalom, 1994). 
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Chapter Three: 

Literature Review Part II - Sliding Mode Observers 

3.1. Introduction to Variable Structure and Sliding Mode Control and 
Systems 

In the 1940's, variable structure theory became popular in Soviet literature. They 
were based on systems that contained discontinuities in the differential equations. The 
systems make use of a discontinuity hyperplane that divides the state space into regions 

where the dynamic equations are continuous. These systems are referred to as variable 

structure systems, since their state space is segmented and the system dynamics changes 
as the state trajectories cross the discontinuity hyperplanes. Variable structure control 
(VSC) is a method that switches the control gain according to state space segment in 

which the state trajectory resides; thus ~·: . k m 
resulting in a discontinuous control input, [ ) c sign(.i) 

(Utkin, Guldner, & Shi, 1999), (Utkin, ~ 
t 

A mechanical system with Coulomb 

Friction as shown in Fig 3.1-a is a good 
example of a variable structure system, 
where the discontinuity part is shown in Fig 

3 .1-b and is presented as follows, (Utkin, 

Goldner, & Shi, 1999): 

mx + kx + C X sgn(x) = 0 3.1 

Where m, k and c are the mass, the spring 

stiffness and the damping constant, respect­

ively, and xis the system displacement. 

(b) 

Fig 3.1: (a) Mechanical System with 
Coulomb Friction, (b) Discontinuously 

Coulomb Friction, (Utkin, Guldner, & Shi, 

1999). 

A popular method referred to as the sliding mode control (SMC) is a special form 
of the VSC. It makes use of a discontinuous control input in a manner that forces the state 

trajectory towards the switching hyperplane. A switching gain forces the state trajectory 

to remain close to the hyperplane, and slide along it. SMC has been demonstrated to be 

very robust to uncertainties and external disturbances. Prior to the 1980's, VSC and SMC 

methodologies were only considered in the continuous time domain. It wasn't until 1985 

that a discrete sliding mode approach was presented, [ (Milosavljevic, 1985) and 
(Monsees, 2002)]. Later, a stability condition for a discrete SMC was clearly formulated, 
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and is now commonly used in the design 
of discrete controllers, [ (Utkin, Guldner, & 
Shi, 1999), (Monsees, 2002) and (Utkin, (a) 
1977)]. 

(b) 

Given Course 
.... ~~ 

An early example of sliding mode 
control (SMC) was presented by Nikolski 
in the 1930's, where a relay controller is 
applied to manage a ship's course, (Utkin, 
Guldner, & Shi, 1999). The proposed ship 
model is a second order system that 
consists of the course and Rudder angles as 
shown in Fig 3.2-a. Using the SMC, the 
trajectories are forced to follow a pre­

described pattern, which is represented by 

the sliding surface 5: {8 + c1 0 = 0} as 
shown in Fig 3.2-b. 

Fig 3.2: (a) Ship Model and its states, (b) 
Sliding Mode Control of Ship's Course, 

(Utkin, Guldner, & Shi, 1999). 

3.2. The Sliding Mode Control 

The SMC is used to derive the state 
trajectory of a plant to reach a sliding surface and 
thereafter to slide along it. While on the sliding 
surface and subjected to bounded disturbances, the 
system can be shown to be stable and robust in its 
performance. While on the sliding surface, the 
system is less sensitive to uncertainties and 
perturbation under ideal conditions, (Utkin, 
Guldner, & Shi, 1999). The sliding surface for a 
system is defined usually in terms ofthe demanded 
and actual state trajectories. While in sliding 
mode, the error dynamics are governed by the 
sliding surface properties. For example, Fig 3.3-b 
shows how a sliding surface can be used as part of 
an SMC to stabilize an unstable second order 

subsystem (in phase-variable canonical form). 
Once the state trajectory reaches the sliding 
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Fig 3.3:(a) Unstable 2nd order 
Subsystem, (b) SMC effectiveness, 

(Utkin, Guldner, & Shi, 1999). 
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surface, the system changes its dynamic behaviour to that defined by the sliding surface 
and the state trajectory slides along the surface to reach the destination. In sliding mode 
control, a discontinuous input signal that switches between two values (e.g. c, -c) is used 
to direct the state trajectory towards the switching surface and then to retain them on the 
surface. Ifthe switching frequency is not infinite, or ifthere are delays in switching, then 
the state trajectory chatters in the vicinity ofthe 
sliding surface in the region ({J defined in Fig 
3.4. This condition is referred to as the "real" 
sliding mode. Other factors contributing to 
chattering and the real-sliding mode condition 
are: dead zone, hysteresis and delays, and the 
bandwidth of the actuator system. The 
chattering is considered to be the main 

drawback of the SMC and it results in reducing 
accuracy which affects the system's stability, 
as it excites the un-modelled system dynamics, 
and wear or higher losses due to its high­
frequency switching, [(Utkin, Guldner, & Shi, 

1999) and (Perruquetti & Barbot, 2002)]. 

c 

-(/1 

s 

-c 

Fig 3.4: Real Discontinuous Control 
Signal- Chattering, (Utkin, Guldner, & 

Shi, 1999). 

The chattering effect in SMC applications can be reduced by using a smoothing 
boundary layer where the control signal is interpolated according to the distance of the 

state trajectory with respect to the sliding surface when within specified boundary layer, 
(Utkin, Guldner, & Shi, 1999). This action and the smoothing boundary layer properties 
are further discussed later in chapter four. 

3.3. Sliding Mode Observer 

3.3.1. Introduction 

Sliding Mode Observers (SMOs) were developed in the 1980s as robust 

estimation techniques against parametric uncertainties and systematic nonlinearity. These 
types of observers were developed as a natural extension to the Variable Structure (VSC) 
and Sliding mode (SMC) control, [(Spurgeon, 2008) and (Rolink, Boukhobza, & Sauter, 
2006)]. Since the properties of the SMC are necessary for certain applications (i.e. fault 
construction and detection) and due to the duality between the control and the observer 
theories, a series of investigations have been reported on the SMO based on the SMC, 
(Hakiki, Mazari, Liazid, & Djaber, 2006). 
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An early example of the SMO was done by Slotine in 1986 and 1987. In (Slotine, 

Hedrick, & Misawa, 1987) and (Slotine, Hedrick, & Misawa, 1986), Slotine et al. 
modified the Luenberger Observer by adding a discontinuous element that tolerates the 
nonlinearity in the system. They described their observer using the SMC mold and 

explored the effectiveness of its gains mathematically. At the same period, Walcott eta!. 
published a landmark paper, (Walcott, Corless, & Zak, 1987), on the linear SMO 

algorithm and its design methodologies. In that paper, Walcott et al. divided the system 

into linear and nonlinear subsystems, and then developed the SMO foundations. They 

specified the conditions that the linear and nonlinear parts of the system should satisfy in 

order to make the SMO applicable and stable. The basic idea of their work was to solve 

the constrained Lyapunov problem using algebraic tools. Later in 1994, Edwards et a!. 
expanded the design algorithm to a more general form using symbolic manipulation and 
defined an explicit design algorithm, [(Edwards, Spurgeon, & Patton, 2000) and 
(Edwards & Spurgeon, 1994)]. At the beginning of the 21st century, Tan and Edwards 

presented their observer as an extended version of the Walcott and Zak observer. The 

proposed observer has less constraint and involves a simpler design method with a 

different sliding surface, (Tan & Edwards, 2003). These observers have been further 

modified lately in terms of their gains, the applicable constraints, the sliding hyperplane 

definition, and the complexity of their target application. 

The main limitation of the above mentioned observers was that they were 

formulated to deal with either nonlinearities or uncertainties in the system. This raised 
several issues that have led to different forms and implementations based on the Walcott 
and Zak, and Tan and Edwards observers. Edwards et a!. used Linear Matrix Inequality to 

optimize their design, (Edwards, 2004). Jing et al. manipulated the observer's gains to 

investigate the separation process between nonlinearity and uncertainties in the system, 

(Jing, Jing, Changfan, & Cheng, 2008). 

3.3.2. SMO principles 

In general, the SMO defines a hyperplane, which is referred to as the sliding 

surface, and applies a discontinuous force on the estimate to make it reach the 
hyperplane. The estimates then remain within a subspace surrounding the sliding 

hyperplane, referred to as the Existence Subspace. This leads to a motion that consists of 
three phases; Reachability, Injection and Sliding, (Qaiser, Bhatti, Samar, Iqbal, & Qadir, 

2008). The former phase takes place first; as its aim is to bring the estimates to the 
hyperplane from their initial conditions in finite time. Once the first phase is complete, 

the other phases are activated simultaneously. The injection phase prevents the estimate 
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from leaving the existence subspace, while the sliding phase forces the estimated errors to 

slide along the hyperplane towards the origin. Fig 3.5 illustrates these phases for a second 

order system considering the error in the first and the second states are e1 and e2 , 

respectively . 

The reachability phase is 

considered the most important phase and 

it should be designed carefully as it 

impacts the other phases. If during 

reachability, the SMO is designed to 

have a small gain, the observer will have 

a slow response and may not converge 

to the sliding hyperplane. This may 

result in poor performance and may 

cause instability. Otherwise, with a large 

gain, the observer will have a fast 

response and its robustness will be 

enhanced. However, the observer's 

performance becomes more sensitive to 

~njectionl 
If 

Sliding Surface 

Fig 3.5: Sliding Mode Observer's Phases. 

measurement noise. During the injection phase large gains contribute to the creation of an 

artificial noise referred to as Chattering. Under this circumstance, when this method is 

used as a feedback to the SMC, chattering adds a high-frequency element to the control 

input that is highly undesirable and may excite high frequency dynamics, (Edwards, 

Spurgeon, & Patel, 2007). 

The action of the injection phase under ideal conditions gives the observer the 

necessary robustness against uncertainties, modeling errors, and/or nonlinearities in the 

system, [(Edwards, Spurgeon, & Patel, 2007) and (Spurgeon, 2008)]. The average value 

of the discontinuous action, which is referred to as the equivalent injection signal, 
contains information that can be used to extract the magnitude of uncertainties, modeling 

errors and/or nonlinearities in the system, (Spurgeon, 2008). The equivalent injection 

signal is obtained by filtering the discontinuous switching action signal using a digital 

filter, (Hashimoto, Utkin, Xu, Suzuki, & Harashima, 1990). The various forms of sliding 

mode observers, the equivalent injection signal, and information extraction as mentioned 

above are reviewed in the following sections. 
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3.4. Discontinuous observer 

The discontinuous observer is an observer that feeds back the output error 
between the observer and the system as a discontinuous signal, [(Edwards, Spurgeon, & 
Patel, 2007), (Hernandez & Barbot, 1996) and (Drakunov & Utkin, 1995)]. It is 
considered as an equivalent output error injection SMO type that is applied on a 

continuous linear system with the following structure: 

x(t) = Ax(t) + Bu(t) 

z(t) = Hx(t) 

3.2 

3.3 

Where the system, input and output matrices are time invariant and the output matrix 
should have the following form, (Edwards, Spurgeon, & Patel, 2007): 

H = [Omx(n-m) Imxm] 3.4 

If the output matrix does not have the structure of equation (3.4), a coordinate 

transformation, T, is applied on the states to convert the output matrix structure to 
equation (3.4), (Haskara, Ozguner, & Utkin, 1996). The resultant transformed system is 
defined as follow, (Edwards, Spurgeon, & Patel, 2007): 

y(t) = A'y(t) + B'u(t) 

z(t) = H'y(t) 

3.5 

3.6 

Where y(t) = T-1x(t) = [y1(t)], A'= T-1AT =[Au A12
], B' = T-1B = [B1], 

Yz(t) Az1 Azz Bz 

H' = HT = [Omx(n-m) Imxm], Au E IR{(n-m)x(n-m), A21 E lRl.mx(n-m), A12 E 

IR{(n-m)xm, Azz E IR{mxm, Bl E ~(n-m)xl, Bz E ~mxt, y1(t) E ~(n-m)xl, Yz(t) E ~mxl 

and z(t) = y2 (t). 

The discontinuous observer has a structure that is similar to the system structure, 
which is described in equations (3.5) and (3.6). A discontinuous term, which consists of a 
gain, K 5 , and of a sign function of the output error, N, is added to obtain the transformed 

state vector estimate as follows: 

Y(t) = [A11 A12] [!1Ct)] + [B1] u(t) + KsN 
Az1 Azz Yz(t) Bz 

3.7 

Where K 5 = [
1
Ks,l ], K5,1 E ~(n-m)xm, N = psign( ey

2
) and the output error is defined 

mxm 
as ey

2
(t) = y2 (t)- y2 (t). From equations (3.6) and (3.7) the estimated error is defined 

as follows: 
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[ 
~1 (t)] (t) = [All A12 ] [ el (t)] _ KsN 
ey

2
(t) A21 A22 ey

2
(t) 

3.8 

Where e1 = ey
1

• As discussed in section (3.3.2), the scalar p should be large enough to 

force the estimated trajectory to reach the sliding surface in finite time, where the sliding 

surface is defined to be equal to ey2 , (Haskara, Ozguner, & Utkin, 1996). Once the 

estimated trajectory reaches the sliding surface, it starts to slide along it (sliding phase) 
and never leave it (injection phase). The equivalent output error injection is obtained 

during the sliding motion, ( ey
2 

= ey
2 

= 0). It represents the average energy applied on 

the estimate to maintain it on the sliding surface and it is obtained by filtering the 

discontinuous gain, N, by using a low pass filter. Using equation (3.8) and the condition 

ey
2 

= ey
2 

= 0, the equivalent output error injection value is proposed as follows, 

(Edwards, Spurgeon, & Patel, 2007): 

3.9 

By substituting equation (3.9) into equation (3.8), the vector e1 can be obtained as 
follows, (Edwards, Spurgeon, & Patel, 2007): 

3.10 

The term (All- K5 ,1A 21 ) must have stable eigenvalues to guarantee the SMO stability, 

[(Edwards, Spurgeon, & Patel, 2007) and (Drakunov & Utkin, 1995)]. In addition to 

stability, the gain K5,1 impacts the convergence speed and the dynamic response of the 

observer, [(Haskara, Ozguner, & Utkin, 1996) and (Edwards, Spurgeon, & Patel, 2007)]. 

Hahimoto et al. proposed an observer that is similar to the Discontinuous 
Observer. However, they ignored the condition of equation (3.4) and assumed that the 
output matrix could be time varying with fixed rank. They proposed a method that maps 
the output to the hidden states by taking the output for several time steps and then 
mapping them to the states using the output and the system matrices (i.e. by using the 
Observability matrix), (Hashimoto, Utkin, Xu, Suzuki, & Harashima, 1990). 

Their observer design can be used for unknown input signal reconstruction and 
fault detection and isolation. 

The discontinuous observers have several limitations that can be summarized as 
follows, [(Edwards, Hebden, & Spurgeon, 2005) and (Edwards, 2004)]: 
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• This type of observer assumes that the system and the measurement noise do not 
exist. Presence of noise impacts the efficiency and the performance of the 
observer. 

• They are sensitive to the design parameter, p. If p has a small value, it will result 
in a slow convergence rate to the sliding surface, or lead to instability. On the 

other hand, a large value of p leads to chattering. 

• This type of observer assumes that the nonlinear system consists of a linear part, 

which is considered to be the true system's structure, and a nonlinear part, which 
is considered to be the uncertainties. This assumption holds if the linear part is 
dominant. In other words, the ratio between the dynamic contribution of the 
nonlinear part over the linear part is small, (Madani & Benallegue, 2007). This 
assumption is not valid for all applications. For systems that are nonlinear, their 
model is linearized around the previous estimate (Bandyopadhyay, Gandhi, & 
Kurode, 2009). The linearization increases computational complexity and adds to 
estimation error. 

3.5. Observer with linear and discontinuous injection 

The type of observers with linear and discontinuous corrective terms entails a 
simple modification that is applied to the discontinuous observer. This modification 
ensures that the observer has fast convergence to the surface and reduces chattering, 
(Edwards, Spurgeon, & Patel, 2007). The sliding patch is defined as the area in the 
estimated error trajectories in which the sliding and injection phases occurs. From Fig 3.5, 
the sliding patch is the region on the sliding surface that is bounded by I e2 1 ~ K1,5 and 

e1 = 0. Slotine et al. in (Slotine, Hedrick, & Misawa, 1987) and Walcott and Zak in 
(Walcott & Zak, 1987) provided the earliest published examples ofthis type of observers. 
Their observer designs consisted of a linear gain and the output error. Although they 
worked independently, their observer gains, K, have the same structure which is defined 
as follows: 

3.11 

where K1 E ~nxm, is the proportional gain and it is designed to satisfy requirements 

related to dynamic response as well as convergence rate and optimality (Slotine, Hedrick, 
& Misawa, 1987). The gain K1 forces the term (A'- K1H') to have negative eigenvalues 
and guarantees stability given bounded uncertainties, [(Aurora & Ferrara, 2007) and 
(Chaal, Jovanovic, & Busawon, 2009)]. 
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Adding the gain K1 increases the complexity ofthe observer's design, nonetheless 
it improves the observer performance in terms of robustness and stability (Spurgeon, 
2008). In the following sub-sections, three specific forms of this type of observer are 
discussed in detail, namely the Slotine et al. observer, the Walcott and Zak observer, and 
the Convex Parameterization. 

3.5.1. Slotine et al. Observer 

Slotine et al. presented a combined observer with a gain that is composed of a linear and a 
discontinuous term, (Slotine, Hedrick, & Misawa, 1987). This observer can be applied to 
nonlinear systems that have the following canonical form: 

0 1 
0 

where A= 

0 0 

x(t) = Ax(t) + Bu(t) + B!l(t, z, u) 

z(t) = Hx(t) 

0 0 
1 

0 
0 0 

0 
0 
0 
1 
0 

and it has dimensions of A E ~nxn, 

3.12 

3.13 

B=m with 
dimensions of BE ~nx1, H = [1 0 0] with dimensions of HE ~lxn, and 

fl(t, z, u) is an unknown nonlinear function with dimensions of fl(t, z, u) E ~lxl. 

Slotine et al. explored the mathematical background behind using the gains K1 and 
K 5 , and tested their effectiveness on the observer's performance. They did their 

investigations on a second order system with the same structure of equations (3.12) and 

(3.13). The observer has the following form: 

i(t) = Ax(t) + Bu(t) + Bil(t, z, u) + K 1ez + K 5 N 

z(t) = Hx(t) 

3.14 

3.15 

where fl(t, z, u) is a nonlinear estimated function for fl(t, z, u), ez = e1 = z - i, N = 

sgn(ez) with N E ~lxl, K1 = [~1' 1 ], K 5 = [~5' 1 ], and the error in (t(t, z, u), l::.fl, is 
1,2 5,2 

assumed to be bounded by K5 ,2 • Slotine et al. reported the following. 

• If the observer's gains K1,v K1,2 and K5,1 are designed to have zero values, and the 

gain K5,2 is set to have a value greater than l!::.fll, then the SMO's behaviour is 

bounded-input bounded-output stable and oscillated with a magnitude that 

depended on the initial conditions and the value of K5,2 as shown in Fig 3.6. 
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• The addition of the gain K5,1 results in 

two types of motions; one before 

reaching the sliding patch and the other 

in the sliding mode, as shown in Fig 

3.7. The first type of motion forces the 

trajectory towards the sliding patch 

which represents the reachability phase. 

Once the trajectory reaches that region, 

which is on the e2 -axis and bordered by 

the interval ( -K5 ,1 , K5 ,1 ) , the sliding 

and injection phases occur. The gain 

K5 ,1 affects the reachability phase, as 

the convergence to the patch becomes 

faster when K5 1 is increased, as shown 

in Fig 3.8. 

McMaster - Mechanical Engineering 

Fig 3.6: The Slotine et al. Observer 

behaviour for Ku = K~,2 = K5,1 = 0 

and K5 ,2 ::::: b.f..l.. 

Fig 3.7: The Slotine et al. Observer behaviour for K5 ,1 -=/= 0. 
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--small~.1 

-small ~.1 

- large Ks.1 

chattering of large ~.1 

chattering of small ~.1 

Fig 3.8: The effect ofthe gain K5 ,1 . 

• The sliding motion inside the patch depends on the gains K5 ,1 and K5 ,2 as follows: 

o The dynamics on the patch decays exponentially with the ratio Ks,z I K . I J s ,l 

o The chattering amplitude depends only on the value K5 ,1 , and is proportional 

to K5,1 's magnitude. 

• The gain Ku increases the size of the " Direct Attraction", (Slotine, Hedrick, & 

Misawa, 1987). From Fig 3.7, the observer switches direction around the axis Ks,l> 

for positive e1 , and -Ks,l> for negative e1 . By adding the gain K1,1 , these axes 

start to have a slope and they are not horizontal anymore, as shown in Fig 3.9. In 

(Slotine, Hedrick, & Misawa, 1987), the slopes of these axes have the same values 

as the added gains as shown in Fig 3.7. This leads to a faster reachability without 

affecting the sliding patch and motion. Moreover, it does not affect the chattering 

amplitude. 
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Fig 3.9: The effect of the gain Ku. 

• The gain K12 affects the reachability of the observer as shown in Fig 3.1 0. As the 

gain value is increased, the convergence of the observer becomes slower. 

However, this has a negligible impact on the size of the sliding patch. 

• with K~2 

Fig 3.10: The effect of the gain K1,2 . 
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• Designing the gains K1,1 and K1,2 is dependent on the application. For example, 

Slotine et al. in (Slotine, Hedrick, & Misawa, 1987) used two methods; the 
Kalman Filter's gain and the Luenberger Observer's gain. 

3.5.2. The Walcott and Zak Observer 

Walcott and Zak presented their observer design as a modified form of the 
discontinuous observer to accommodate a multi-input signal as well as the 
nonlinearities/uncertainties in the system, [ (Edwards, Spurgeon, & Patel, 2007), 
(Spurgeon, Edwards, & Foster, 1996) and (Spurgeon, 2008)]. In this method, the system 
is assumed to consist of a linear part and of a bounded unknown nonlinear part, Jl(t, z, u), 

as follows: 

x(t) = Ax(t) + Bu(t) + B!l(t,z, u) 

z(t) = Hx(t) 

3.16 

3.17 

Where u(t) and !l(t, z, u) are a multi-input signal and a multi-dimensional nonlinear 

function, respectively, and u(t), ll(t,z,u)EJRPx 1, and !l(t,z,u) is bounded by 

p(t, z, u) such that llfl(t, z, u)ll :::;; p(t, z, u). 

The measurement matrix is subjected to the condition of equation (3.4). Otherwise 
a transformation, T, is applied and the resultant transformed system, y, has the following 
structure: 

y(t) = A'y(t) + B'u(t) + B'11(t, z, u) 

z(t) = H'y(t) 

3.18 

3.19 

Where H' = HT = [Omx(n-m) lmxm], y(t) = T-1x(t) = r;~~g], A'= T-1AT, B' = 

T-ls, Yt (t) E ~(n-m)xl, Yz(t) E ~mxl, and B' E ~nxp. 

The Walcott and Zak observer has a structure that is similar to the Slotine 
observer in equation (3 .11 ). However, the discontinuous part in that equation, K5 N, and 
the linear proportional gain, Kb have different forms. The matrices N, K 5 and Kh are 
defined as follows: 

Where: 

N = p(t, z, u)sign(Cez) 

Ks = p-lH'T(T 

[ 
A12 ] Kt= s 

Azz- Azz 
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P is a square positive definite matrix with size of P E Iffi.nxn and is chosen to satisfY the 

following condition: 

3.23 

C is a design matrix with a size of (E Iffi.Pxm, and is used to define the sliding surface as 

Cey, while subject to the following condition: 

PB' = (CH')T 3.24 

Ah is a design matrix that has the same size as A22 and with negative eigenvalues. The 

Walcott and Zak observer has several limitations as its applications are limited due to the 
numerous conditions that must be satisfied. These include the conditions of equations 
(3.23) and (3.7), in addition to the following, (Spurgeon, 2008) and (Edwards, Spurgeon, 

& Patel, 2007): 

o rank(HB) = p, where pis the length of J.l· If this condition is satisfied, then the 
outputs are linked to the source of uncertainties (observable). 

o The matrix A22 must have negative eigenvalues. 

o The system transfer function defined as G(s) = H(slnxn- A)-1 B, must not have 
any invariant positive zeros or poles. 

3.5.3. Convex Parameterization/Tan and Edwards's Observer 

In 2003, Tan and Edwards presented their observer as a modified form of the 
Walcott and Zak's observer, (Tan & Edwards, 2003). Their main aim was to make it 

applicable to more general problems with the added advantages of having extra degrees 

of freedom and requiring less design effort [ (Edwards, Spurgeon, & Patel, 2007) and 

(Spurgeon, 2008)]. Later, the Tan and Edwards observer was referred to as the Convex 
Parameterization (Edwards, Spurgeon, & Patel, 2007). In their design, the 
uncertainties/nonlinearities' matrix has a more general form and it is not limited to 

multiplication by the input matrix. The system is assumed to have the following form: 

x(t) = Ax(t) + Bu(t) + DJ.t(t, z, u) 

z(t) = Hx(t) 

3.25 

3.26 

Where D = [°Cr;;:)xq] with dimensions ofD E Iffi.nxq, H = [Omx(n-m) To], u(t) E Iffi.PXl 

is the input and J.t(t, z, u) E Iffi.qxl is a nonlinear function bounded by p(t, z, u) such that 

II J.t(t, z, u) II ::; p(t, z, u). 
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From equations (3.25) and (3.26), the measurement matrix, H, and the 

uncertainties/nonlinearities input matrix, D1 must have specific forms. If the system does 

not have this canonical form, a coordinate transformation, T, is applied to the system's 

equations, and the resultant system structure is redefined as follows: 

y(t) = A'y(t) + B'u(t) + D'1J.(t1 Z1 u) 

z(t) = H'y(t) 

3.27 

3.28 

Where y(t) = r'xCtl = [~:i:iJ, A'= r'AT =[\A":[!:::]} ~::]. 8' = 
T- 1B H' HT [0 To] D' = T-10 = (°Cn-q)xq] T E 111lmxm D E 111lqxq 

1 = = mx(n-m) 1 

02 
1 0 l.l\). ' 2 l.l\). ' 

A E ~(n-m)x(n-m) A E 111lmx(n-m) A E ~(n-m)xm A E ~mxm 
11 ' 21 l.l\). ' 12 ' 22 ' A211 E 

~(m-q)x(n-m) A E ~qx(n-m) y (t) E ~Cn-m)x1 andy (t) E ~mx1 
' 212 ' 1 ' 2 . 

According to Walcott and Zak, the system must satisfy the following conditions in 

order to have a solution: 

• rank(HD) = q, i.e. the uncertainties/nonlinearities are explicitly linked to the 
measurement hence they are Observable. 

• The system transfer function, defined as G(s) = H(slnxn- A)-1B, must not have 
any invariant positive poles. 

The Convex Parameterization observer has a structure that is similar to the 

Slotine's, and the Walcott and Zak's observers. However, its discontinuous part, K5 N, has 

a different form with N defined as: 

( ) I [Ocm-q)xq] I . ( ) N = p tl Z1 u P0 T0 
02 

Sign ez 3.29 

Where the matrix P0 is a symmetric positive definite matrix defined as a function of 
another positive definite matrix P E ~nxn defined as: 

p-[ 
- -[Ks,1 

-Pt[Ks,1 Ocn-m)xq] ] 

P2 + [Ks,1 Ocn-m)xqJTP1 [Ks,1 Ocn-m)xq] 
3.30 

P is chosen to satisfy the condition of equation (3.23). The matrix P0 is defined as: 

P0 = T0 P2T0 T 3.31 

Note that T0 is the lower portion of the measurement matrix. 

49 



PhD Thesis - Mohammad Al-Shabi McMaster - Mechanical Engineering 

The sliding surface is defined in terms of the output error. The gain K5 has a 

different structure from the other observers and is defined as follows: 

Ocn-m)xq]T/] p -1 

ToT o 

3.32 

where the gain Ks,t is chosen to force the term (Au- K5,1A2u) to be stable. 

To obtain the linear proportional gain, K1, another transformation, TL, is applied to 
the states to transform the measurement matrix into an identity matrix as follows: 

TL = [Icn-m)x(n-m) 
Omx(n-m) 

Ocn-m)xq ]l-1 

To 

TL converted the system's equations (3.22) and (3.23) to the following: 

~(t) = A"~(t) + B"u(t) + D"!l(t, z, u) 

z(t) = H"~(t) 

3.33 

3.34 

3.35 

where 7 (t) = T - 1y(t) = [~1 (t)] A"= T - 1A'T = [A'11 A'12] B" = T - 1B' H" = 
., L ~z(t) ' L L A'z1 A'zz ' L ' 

H'TL = [Omx(n-m) Imxm], D" = TL - 1D' = [0~:~):q]. and A'11,A'12,A'21 and A'zz had the 

same dimensions as Au, A12, A21 and A22 , respectively. The gain K1 is defined as 
follows: 

K _ [ A'tz ] 
1

- A'zz -Ah 
3.36 

where Ah is a design matrix that has negative eigenvalues. The discontinuous gain, K5 , 

has a simpler form and is defined as follows: 

K = [O(n-m)xm] 
s Po -1 

3.37 

This observer needs less design effort as compared to the Walcott and Zak 
observer. Its applications are however limited due to numerous conditions that must be 
satisfied, and due to the fact that there are no system and measurement noise. A revised 
and simpler version of this observer was proposed in 1996. The revised version uses the 
sliding surface of the Walcott and Zak observer. However, the matrix C has a fixed value 

that depends on the matrices P2, D2 and T0 . The gain K5 and the matrix D are chosen to 

be equal to the input matrix, B, (Spurgeon, Edwards, & Foster, 1996). 
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3.6. SMO applications 

The SMO is robust to uncertainties, nonlinearities, modeling errors, and noise as 
shown experimentally by Kim et a!., (Kim, Kim, & Y oun, 2006). Moreover, the 

discontinuous part in the SMO gain can provide additional information for estimation. 

Therefore, the SMO has been used in applications where robustness and signal 

reconstruction are of primary concern such as the applications in the following sub­

sections. 

3.6.1. Fault detection and isolation 

The main aims of fault detection and isolation algorithms are to detect unusual 
changes in the system's condition (e.g. faults), and to identity their source or location. 

Using the sliding mode observer with the equivalent output error injection techniques, a 

fault can be detected and tracked. A common strategy for fault detection and diagnosis is 
to assume that the fault condition results in additive dynamic effects. For example, if a 

system fault results in the additive term /l(t, z, u) and a sensor fault results in 111 (t, z, u), 
these additive terms can be extracted as, [ (Hakiki, Mazari, Liazid, & Djaber, 2006) and 

(Tan & Edwards, 2004)]: 

( 
T )-l T Jl(t, z, u) = D2 Dz Dz Neq (t, z, u) 3.38 

Jl1 (t,z, u) = (A2z- A21A11 -
1A12f 1

Neq(t,z, u) 3.39 

Where Neq(t, z, u) is the equivalent output error injection obtained by filtering the 

discontinuous signal, A 11, A12, A21 and A22 are sub-matrices from the system matrix, 

and D2 is a sub-matrix from the fault's input matrix (refer to section 3.5.3 for further 

details). A digital filter can be used for obtaining the signal Neq· This has however two 

disadvantages: 

• The filtered signal will lose some of its information. 

• The filtered signal will be phase shifted in real time applications. 

The SMO for fault detection and isolation can be found in the following 
applications: 

o Tan and Edwards used their observer to detect and identity faults caused by 

parametric uncertainties in a DC motor, (Tan & Edwards, 2004 ). 
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o In (Hakiki, Mazari, Liazid, & Djaber, 2006), an observer that is similar to the Tan 
and Edwards observer was used to reconstruct the system and sensor faults for an 
inverted pendulum attached to a cart. 

o Drakunov et al. used the discontinuous SMO to reconstruct an electro-motive 
force of a car's electric circuit, (Drakunov, Utkin, Zarei, & Miller, 1996). 

o Chen and Moskwa used the SMO to obtain a cylinder pressure in a nonlinear 
multi-cylinder engine based on measurements of the crankshaft dynamics, (Chen 

& Moskwa, 1997). Their observer relied on linearizing the system matrix for 
greater simplicity, and applied the EKF gain instead ofthe proportional gain in the 
SMO. The attempt of optimality impacted robustness and the observer reportedly 
diverged when subjected to large modeling errors. 

o Zhao et al. used the SMO to obtain the road grade and bank angles as well as 
estimating the lateral and longitudinal velocities of a vehicle on a 'non-flat road', 
(Zhao, Liu, & Chen, 2009). The nonlinearities were linearized around the 
estimates and used in the functional definition of the discontinuous gain. Despite 
linearization, the observer provided robust performance. 

3.6.2. Sensorless control scheme. 

For sensorless control applications, an observer is needed to extract the hidden 

states form measurements, and then feed these to the control scheme. The observer must 
be robust; otherwise the stability and performance of the controller are compromised. It 
should be noted that for this kind of application, the observer's model must be close to 
that ofthe system's. Otherwise, the results are compromised. Examples of the SMO used 
in sensorless control are as follows. 

• McCann et al. used the SMO in its discontinuous form to estimate the position 
and the velocity of a rotor and feed these back to control a switched reluctance 
motor in an automotive hydraulic brake system, [(McCann & Husain, 1997) and 

(McCann, Islam, & Husain, 2001)]. 

• Yan and Utkin used the SMO to estimate the stator current and the hidden rotor 
flux of an Induction machine using the equivalent output error injection method, 
(Yan & Utkin, 2002). 
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• Bandyopadhyay et al. used the SMO to 
estimate and feedback the states of a 
container's slosh-free motion (as shown in Fig 
3.11, [ (Band yopadhyay, Gandhi, & Kurode, 
2009) and (Kurode, Bandyopadhyay, & 

Gandhi, 2009)]. Due to the nonlinearity in the 
system matrix, the error equation was 
linearized around the current measurement 
error. The measurement signal was filtered 
using a digital filter to improve the observer 
performance. However, filtering leads to delay 
in time. The SMO showed fast response and 
convergence rate, and high robustness 
performance despite linearization truncation 

f .. 
Fig 3.11: Slosh mass example, 
(Bandyopadhyay, Gandhi, & 

Kurode, 2009). 

error, modelling errors, noise and filtering techniques. 

• Chao and Shen used the SMO on a highly nonlinear system referred to as the 
"three axis four wire type pickup actuator" (this actuator is used in high data­
density optical disks), (Chao & Shen, 2009). The Slotine's observer (presented in 
section (3.5.1)) was used on the linearized system matrix. The observer 
demonstrated high resolution and performance around the required positional 
accuracy in the nano-meter range, (Chao & Shen, 2009). 

3.6.3. Parameter estimation. 

Observers can be used to estimate system parameters as well as states. This can be 
done by defining the investigated parameter as a dummy state resulting in a nonlinear 
model representation. The SMO for parameter estimation can be found in the following 
applications: 

•!• Hasan and Husain used the SMO for parameter estimation for an induction motor, 
(Hasan & Husain, 2009). The observer that they used is similar to that of the Tan 
and Edwards (presented in section (3.5.3)), where the uncertainty function, 

J!(t, z, u), is defined as the error in the system matrix and the states, LlAx(t). 
Their method was based on the equivalent output error injection and the 
Lyapunov's second method for stability. The proposed observer had advantages 
over the EKF as it did not require linearization, it was simpler and it had a faster 
response. 
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•!• Aurora and Ferrara designed a more complex observer than Hasan and Husain's 

to accommodate higher modeling errors (with errors up to 150% of the nominal 

values), (Aurora & Ferrara, 2007). Their observer consisted of the following: 

• A discontinuous switching term that is a function of the estimates and 
measurements. 

• A proportional term that is linked to the output error. 

• An integral of the discontinuous term. 

In this method, the choice of the Lyapunov function allows a functional definition 

of the parameters in a differential equation form. These equations are used in 

reformulating the system model to obtain an augmented state vector consisting of 
the original states and the parameters, [ (Aurora & Ferrara, 2007) and (Aurora, 
Ferrara, & Levant, 2001)]. 
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Chapter Four: 

The Smooth Variable Structure Filter for Systems with Full Ranked Measurement 
Matrix 

4.1 Historical and mathematical background 

4.1.1 The Variable Structure Filter 

In 2003, a new estimation method referred to as the Variable Structure Filter 
(VSF) was proposed for its applications to linear systems. This method is a recursive 

predictor-corrector filter that is based on the sliding mode concept. The VSF defines a 

hyperplane and then applies a corrective action that forces the estimate to go back and 

forth cross that plane. Although this method uses a discontinuous corrective action, it has 
a different structure than other Sliding Mode Observers (SMO) [ (Habibi & Burton, 
2002), (Habibi & Burton, 2003), (Wang, Burton, & Habibi, 2009), and (Habibi, Burton, 

& Chinniah, 2002)]. The VSF's advantages are its predictor-corrector form and its 

stronger physical meaning for the uncertainties and noise compared to the SMO [ (Habibi 
& Burton, 2003), (Habibi & Burton, 2004) and (Habibi & Burton, 2007)]. The VSF has 
been developed for the systems described by the following equation: 

xk = Axk-1 + Buk-1 + wk-1 
4.1 

zk = Hxk + vk 

Where A, B and H are the time invariant system, input and measurement matrices. The 
VSF is a predictor corrector method and can be summarized as follows, (Habibi & 

Burton, 2003): 

1 - Prediction Stage: 

The a priori state estimate is obtained by using an estimated model of the system 

as follows: 

2 - Correction Stage: 

xklk-1 = Axk-1lk-1 + Buk-1 

zklk-1 = fixklk-1 
4.2 

A corrective gain is calculated and used for refining the a priori estimate into its a 

posteriori form as follows: 

xklk = xklk-1 + KvsFk 

zklk = fixklk 
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The term KvsFk is the VSF's gain and is defined as follows, (Habibi & Burton, 2003): 

KvsFk = A- 1H+ [(IHAI{YIH+IIezklk-tl + IA-1H+(HAH+- HAH+)maxzkl 

+ [IH+I + IA-1H+I ((HA~:_=-+HAH+)max)] (v)max 
+HAH + Imxm 4.4 

+ IA-1H+(HB- HB)maxukl 

+ [IA-11 + IA-1H+(H- H)maxiJ (w)max}) osgn ( ezklk-J] 

Where ezklk-1 is the a priori estimation error and it is defined as ezklk-1 = zk - zklk-1 , 

Y E ~nxn is a diagonal matrix with Yu ~ 1, the notation (.)max represents the upper 

bound of the element inside the bracket, and sgn ( ezklk-1 ) is a vector defined as follows: 

4.5 

From equation (4.4), the terms [IH+I + IA-1H+I ((HA~::+HAO+)max)] (v)max 
+HAH + Imxm 

and [IA-11 + jA-10+(H- H)maxiJ (w)max are related to the measurement and the system 

noise, respectively. The terms jA-10+(HAH+- HAO+)maxzkj and jA-10+(HB­

HB) uk I are functions of the uncertainties in the system, input and measurement max 
matrices. The gain of the VSF has some similarities with previously considered SMO 

methods. The first term of the VSF gain, A-10+ [(IOAiviO+Iezklk-J], is the proportional 

gain, while the remaining terms result in a discontinuous gain which is large enough to 
overcome the effect of the uncertainties. The advantages of using the gain of equation 

(4.4) can be summarized as follows: 

- The VSF gain is explicitly linked to upper bounds of uncertainties and noise levels. 

- The VSF design process is simpler compared to the SMO strategies previously 

outlined. Note that once the upper bounds of the uncertainties and noise level are 

established, the gain can be readily calculated. 

The disadvantages ofthe VSF can be summarized as follows: 
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- The estimate is not optimal 

- It is only applicable to linear systems with time invariant models. 

- Chattering presents. 

The VSF gain is discontinuous and can lead to chattering. Chattering can be 

eliminated by using a smoothing boundary layer, 'P. The boundary layer is designed to 
have a larger width than the upper bound of uncertainties. The VSF's smoothing 
boundary layer has a different form than the SMO and has a constant width as follows, 
(Habibi & Burton, 2003): 

4.6 

Using the boundary layer reduces the accuracy of the estimate. The relationship between 
the estimated error and the boundary layer width has been described in (Habibi & Burton, 

2003). They are directly related and the estimation error increases as the boundary layer 
width is increased. 

4.1.2 The Extended Variable Structure Filter 

In 2006, a revised version of the VSF, referred to as the Extended Variable 
structure Filter (EVSF), was proposed for nonlinear systems with linear measurement 
matrices. Similarly to the EKF, the EVSF linearizes the system model using the previous 
a posteriori estimates, and uses a nonlinear system model to obtain the a priori estimates. 
It then calculates the EVSF gain using the linearized system matrix to obtain the a 
posteriori values, (Habibi, 2006). 

The EVSF assumes that the nonlinear system and measurement equations are 
described in their discretized form by the following equations: 

xk = f(xk-l• uk-l) + wk-l 4.7 
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Note that the measurement matrix is a time invariant linear matrix. The EVSF process is 
similar to the VSF's, and it is summarized as follows, (Habibi, 2006). 

1 -Prediction Stage: 

The a priori state estimate is obtained by using the nonlinear model of the system as 
follows: 

2 - Correction Stage: 

xklk-1 = f(xk-1ik-11 uk-1) 

zklk-1 = u.xklk-1 
4.8 

A corrective gain is calculated and used for refining the a priori estimate into its a 
posteriori form as follows: 

xklk = xklk-1 + KEvsFk 

zklk = Hxklk 

The KEvsFk is the EVSF's gain and it is defined as follows, (Habibi, 2006): 

KEvsFk = (j;k-1-
1
0+ [{l(u)maxiiC«f;)maxl [Y ICu+)maxllezklk-11 

+ I («f;-1 )max II ( f(xk-11 uk-1) - f(xk-1ik-11 uk-1)) mJ 

+ [IC«f;- 1)maxi1Cu+)maxl + (u+)maJ (v)max 

+ IC(f;-1)maxl (w)max]}osgn ( ezklk-J] 

4.9 

4.10 

Where (j)k is the linearized system matrix around the a posteriori estimate and is obtained 

by using the Taylor Series approximation, (j)k = !! lx=xklk. The EVSF has the same 

advantages and disadvantages as the VSF. A further disadvantage of the EVSF is that it 
uses a linearized system model at each time step to calculate the corrective gain. 

4.1.3 The Smooth Variable Structure Filter 

In 2007, a revised version of the VSF, referred to as the Smooth Variable 
Structure Filter (SVSF), was proposed, (Habibi, 2007). The SVSF is a predictor corrector 
filter that is based on the SMC principles and can be applied to both linear and nonlinear 
systems. A requirement of this filter is that the system is differentiable and hence the 
word "smooth" is used to name this filter. The filter also requires that the system under 
consideration be observable, (Habibi, 2007). 
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The SVSF's derivation depends on the rank of the measurement matrix (number 

of independent measurements compared to the number of states). lf the measurement 
matrix has partial rank (number of independent measurements is fewer than the number 
of states), the SVSF's gain is calculated by using Luenberger's reduced order technique 

as discussed later in chapter five, (Habibi, 2007). This chapter considers the case of 

systems that have full rank measurement matrix (number of independent measurements is 
equal to the number of states). For these systems, the SVSF process can be summarized 

as follows: 

-The filter's model (linear or nonlinear) is used to obtain the a priori estimate. The 

filter's structure for linear systems is given in equation (4.2) and for nonlinear 

systems in equation (4.8). Similarly to the EVSF, the SVSF requires that the 
measurement matrix be linear. 

-The SVSF then refines the a priori estimate into an a posteriori form by applying the 

SVSF's gain as follows: 

xklk = xklk-1 + KsvsFk 4.11 

The KsvsFk for a measurement matrix with full rank is defined as follows: 

KsvsFk = Hk + ( y lezk-1lk-11 + lezklk-11) osgn ( eZklk-J 4.12 

Where y E !Rl.nxn is a diagonal matrix with Yii :::;; 1, and ezklk-1 and ezk_11k_1 are the a 

priori and the a posteriori output estimation error vectors and are defined as follows: 

eZklk-1 = Zk - Zklk-1 

eZk-1lk-1 = Zk-1 - zk-1lk-1 

- The a posteriori estimated output is obtained as follows: 

zklk = Rkxklk 

4.13 

4.14 

The SVSF has two sets of indicators of performance associated with each state. 

The primary indicators of performance are the estimated errors, and the secondary 

indicators of performance are chattering signals resulting from the application of the 
discontinuous gains. This gives the SVSF the ability to explicitly point out and extract 
information on modeling uncertainties. 
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4.2 The SVSF's stability and gain derivations 

The SVSF is a robust recursive predictor-corrector estimation method that can 
effectively deal with uncertainties associated with initial conditions and modeling errors. 
It guarantees bounded-input bounded-output stability and the convergence of the 
estimation process by using the Lyapunov stability condition. The derivation of SVSF's 

gain and its stability conditions can be found in (Habibi, 2007) and are summarized in the 
following subsections. 

4.2.1 The Lyapunov stability theorem 

Let Mk be a Lyapunov function defined in terms of the a posteriori estimation 
error, such that: 

Mk = ezklk T ezklk > 0 

The estimation process is stable if: 

4.15 

4.16 

where ilMk represents the change in the Lyapunov function and in this case is defined as 
follows: 

4.17 

By substituting equation ( 4.17) into equation ( 4.16) and then rearranging, the following 
equation is obtained: 

4.18 

Equation ( 4.18) is satisfied using the following equation: 

4.19 

To remove the absolute operator, I I, both sides are expressed in the form of diagonal 
matrices and then they are multiplied with their transpose as follows: 

diag ( ezklk) diag ( ezklkf < diag ( ezk-tlk-J diag ( ezk-tlk-lf 

Where diag ( ezklk) is the diagonal matrix of ezklk" 

4.20 

From equation ( 4.1 ), the a posteriori output estimation error is obtained as follows 
(assuming the output matrix is well known): 

By substituting equation ( 4.21) into equation ( 4.20), equation ( 4.22) is obtained as: 
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diag ( Hkexklk) diag ( Hkexklk) diag ( Hk-1 exk-llk-J diag ( Hk-1 exk-llk-J 

+diag(vk)diag(vk) +diag(vk_1)diag(vk_1) 

+diag ( Hkexklk) diag(vk) < +diag ( Hk-1 exk-llk-J diag(vk_1) 
4.22 

+diag(vk)diag ( Hkexk
1
J +diag(vk_1)diag ( Hk-1 exk-llk-J 

Ifthe measurement noise is stationary white, then by taking the expectation of both sides, 
equation ( 4.22) is transformed to equation ( 4.23). 

E [diag ( Hkexklk) diag ( Hkexklk)] < E [diag ( Hk-1 exk-llk-J diag ( Hk-1 exk-llk-J] 423 
+diag(vk)diag(vk) +diag(vk_1)diag(vk-1) 

Where E [diag (nkexklk) diag(vk)] and E [diag(vk)diag (Hkexklk)] vanish due to the 

white noise assumption. For a diagonal, positive and time-invariant measurement matrix, 
equation (4.23) is reduced to equation (4.24). 

4.24 

Note that the assumptions pertaining to the measurement matrix are realistic since most 
applications use linear sensors as feedback in their operations. Moreover, these sensors 
are well calibrated and their structures are well known, (Habibi, 2007). Equation (4.24) is 

equivalent to the following: 

4.25 

From equation ( 4.25), the expectation of the a posteriori estimation error is reduced in 
time (it converges towards the origin) which means that the filter is stable. 

4.2.2 The derivation of the SVSF's gain 

The SVSF' s gain is derived to guarantee the stability condition of equation ( 4.19). 
Moreover, the gain must be larger than the uncertain dynamics of the estimation process, 
yet it should be bounded for bounded-input bounded-output stability. 

Let y be a diagonal positive matrix with dimensions y E ~nxnand with elements 

less than unity, i.e. 0 < Yii < 1, then: 

Y lezk-111<:-11 < lezk-1lk-11 4.26 

Adding the term I ezklk:-11 to both sides leads to the following: 

y lezk:-tJk:-11 + lezk:Jk:-11 < lezk-1Jk-11 + lezk:lk:-11 4.27 
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The absolute value of the SVSF gain multiplied by the measurement matrix is set to be 

equal to the left hand side of equation (4.27) as follows: 

4.28 

The sign of the gain is made equal to the sign of the a priori estimation error, ezklk-1. This 

leads to: 

4.29 

Note that the proposed gain satisfies the conditions of being larger than the a priori 

estimation error. By applying the gain to the a priori estimate, and by substituting 

equations ( 4.29) and ( 4.12) in equation ( 4.11 ), the a posteriori estimated measurement is 

obtained as follows: 

zkik = zklk-1 + ( Y lezk-1lk-11 + lezklk-11) osgn ( ezklk-J 

Subtracting equation ( 4.30) from the measurement zk leads to the following: 

4.30 

4.31 

Equation ( 4.31) can be rewritten in a simpler form by substitutinglezklk-11 osgn ( ez"lk-J 

by ez"
1
"_1 as follows: 

eZkjk = eZkjk-1 - y leZk-1jk-11 °SgD ( eZkjk-J - eZkjk-1 

= -y leZk-1jk-11 °Sgll ( eZkjk-J 
4.32 

By taking the absolute of both sides of equation (4.32), equation (4.33) is obtained as 

follows: 

4.33 

Equation ( 4.33) proves that the error decays in time, which means that equations ( 4.19) 
and (4.25) are satisfied and the filter is stable. 
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4.3 Application of the SVSF to systems with a measurement matrix of full 
rank 

In this section, the application of the SVSF to linear systems that have a 
measurement matrix with full rank is considered in further detail. The novel contributions 
of research reported in this section are the following: 

It is noted that there are two existence subspaces. One as previously reported for 
the a priori estimate and one newly determined for the a posteriori estimate. This 
research describes these subspaces and develops mathematical formulas for them. 
The mathematical formula of the a priori existence subspace is different than the 

previously reported one. This work is listed in subsection ( 4.3.1 ). 

The characteristics of the smoothing boundary layer are investigated, and a time­

varying smoothing boundary layer is proposed in section (4.3.2) to improve the 
SVSF's performance. 

Two explicit equations are obtained for chattering in the a priori and the a 
posteriori estimates using the SVSF sense. These equations link the chattering 
amplitude to the source and level of model uncertainties. 

The chattering equations can be used for calculating and obtaining modeling 
errors and uncertainties, thereby establishing a method for model refinement. This 

method is developed in subsection ( 4.3.3). 

4.3.1 The SVSF's existence subspaces 

The SVSF forces the estimate towards the true state trajectory and then retains it 
within a subspace, referred to as the existence subspace. This occurs both for the a priori 
and the a posteriori estimates as shown in Fig 4.1. The widths of the existence subspaces 
are functions of the uncertainties, errors in the initial conditions, and/or modeling errors. 
This means that the widths are unknown and time varying as shown in Fig 4.2 for the a 

priori existence subspace. The a posteriori existence subspace defines a region that 
surrounds and encloses the true trajectory in which the estimate may exist in its a 
posteriori form. Its width is equal to the difference between the width of the a priori 
existence subspace and the amplitude of the corrective gain, as shown in Fig 4.1. In the 
following subsections, these two subspaces are considered in detail. 
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the a Posteriori Estimated Trajectory 
States the a Priori Estimate.d Trajectory 

~--------------~~--------------------~Tnne 

Fig 4. 1: The Definition of the Existence Subspace, (Habibi I, 2008). 

~XJStelllce Subspace Boundaries 

Fig 4.2: The Existence Subspace versus time. 

4.3.1.1. The a priori existence subspace 

In this section, an equation is derived to quantify the width of the a priori 

existence subspace. 

The a priori estimation error is defined as follows: 
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eZklk-1 = zk - zklk-1 = Hkxk + vk - Hkxklk-1 

Substituting equation (4.2) into equation (4.34) results in the following: 

ez"
1
"_ 1 = Hk(Ak-1xk-1 + Bk-1uk-1 + wk-1) 

- Hk(.Ak-1xk-1lk-1 + Bk-1uk-1) + vk 

Substituting equations ( 4.1) and ( 4.2) into equation ( 4.35) gives the following: 

ez"
1
"_1 = Hk(Ak-1Hk -

1
Zk-1- Ak-1Hk -

1
Vk-1 + Bk-1uk-1 + wk-1) 

- Hk (.Ak-1Hk -
1
Zk-1lk-1 + Bk-1uk-1) + vk 

4.34 

4.35 

4.36 

From equations (4.30) and (4.34), the estimated measurement is obtained as follows: 

Zk-1lk-1 = Zk-1 + y leZk-2lk-21 oSgfl ( eZk-1lk-2) 

Substituting equation (4.37) into equation (4.36) yields the following: 

ez"l"-1 = Hk(Ak-1Hk -
1
Zk-1 + Bk-1uk-1 + wk-1- Ak-1Hk -

1
Vk-1) 

4.37 

- Hk (.Ak-1Hk -
1
Zk-1 + Bk-1uk-1) + vk 4.38 

- HkAk-1Hk -
1
Y leZk-2lk-21 osgn ( eZk-1lk-2) 

Rearranging equation (4.38) and substituting equation (4.33) results in the following: 

ez"
1
"_1 = ( HkAk-1Hk -

1 
- HkAk-1fjk -

1
) zk-1 + (HkBk-1 - HkBk-1)uk-1 

+ Hkwk_1 + vk- HkAk_1Hk - 1vk_1 4.39 

- HkAk-1fjk -
1
Y lezk-2lk-21 osgn ( eZk-1lk-J 

Further to equation ( 4.32) the a posteriori estimation error is related to the initial 

condition as follows: 

eZk-1lk-1 = -y I eZk-Zik-21 osgn ( eZk-llk-2) 

= -y 1-v I eZk-3lk-31 osgn ( eZk-2lk-3) I osgn ( eZk-1lk-2) 

= -yZieZk-3lk-31 °Sgfl ( eZk-llk-2) 

= -vzl-v I eZk-4lk-41 osgn ( eZk-3lk-4) I osgn ( eZk-llk-2) 

= -v3
1 eZk-4lk-41 °Sgfl ( eZk-llk-2) 

Substituting equation (4.40) into equation (4.39) yields the following: 
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ezklk-1 = ( HkAk-1Hk -
1 

- HkAk-1Hk -
1
) zk-1 + (HkBk-1 - HkBk-1)uk-1 

+ Hkwk-1 + vk- HkAk-1Hk -
1Vk-1 4.41 

- HkAk-1Hk -1yk-1lezolol osgn ( eZk-1lk-2) 

The existence subspace is then defined as follows: 

exklk-1 = ( Ak-1 Hk -
1 

- Hk -
1 

HkAk-1 Hk -
1
) zk-1 

+ (Bk-1- Hk -
1
HkBk-1)uk-1 + Wk-1- Ak-1Hk -

1
Vk-1 4.42 

-"k -1HkAk-1Hk -1yk-1 lezoiO I osgn ( eZk-1lk-J 

IfHk = Hk, then equation (4.42) is reduced to the following: 

4.43 

Note that equation ( 4.43) is defined in terms of the state vector and takes into account the 

switching action. By the inclusion of this term, it differs from the existence subspace 

reported in (Habibi, 2007) that is defined in terms of the measurement vector. From 

equation (4.42), the terms C(Ak_1 Hk - 1 - Hk - 1HkAk_ 1 Hk -
1
)zk_1 ) and C(Bk-1 -

Hk - 1HkBk_1 )uk_1 ) capture the influence of the modeling errors. The term (wk_1 -

Ak_1 Hk - 1 vk_1 ) quantifies the impact of the system and measurement noise. The last term 

in equation ( 4.42), (Hk - 1 HkAk_ 1 Hk -
1
yk- 1 jez010 j osgn ( ezk_11k_z)), describes the effects of 

the uncertainty in initial conditions and its impact on the a priori existence subspace. 
According to the latter term, the effect of the error in initial conditions decays in time at a 

rate ofHk - 1 HkAk_1 Hk -\k-1, and becomes negligible ask~ oo. Then, the width ofthe a 

priori existence subspace becomes a function of the uncertainties, noise, and modeling 

errors. 

The a priori existence subspace represents the error in the a priori estimate. In 

other words, it describes the chattering of the a priori estimate around the true trajectory. 
In this research, the magnitude of the resultant chattering is referred to as the a priori 
chattering. Because of the predictor-corrector nature ofthe SVSF and its gain, the a priori 
chattering is different from the chattering observed in other SMOs. The differences are 

summarized in table 4.1. 
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The SMO's chattering The SVSF's a priori chattering 

Chattering is caused by applying a large Chattering is caused by the magnitude of 
corrective action on the estimate. uncertainties and modeling errors. 

Chattering amplitude is equal to the ! Chattering amphtude is hnked to the 
difference between the amplitude of the ! width ofthe a priori existence subspace 
corrective action and the filter's I 
uncertainties and modeling errors 

Chattering affects the estimate as it adds I The SVSF's gain removes the a pnon 1 

an artificial noise to it. I chattering as discussed later in section I 
1 (4.~.1.2). Therefore, it does not affect the I 
1 estimate. j 
' ~ 

I Some uncertainties and modeling errors i Chattering contains the uncertainties and I 
may be reconstructed from chattering by ~~· modeling errors, and can be extracted for i 
filtering the discontinuous corrective model refinement as will be discussed in 
action using a low pass filter (referred to 1 section (4.3.3). I as the equivalent injection signal). j I 
Table 4.1: The differences between chattering of SMO and the SVSF a priori chattering. 

4.3.1.2. The a posteriori existence subspace 

As discussed earlier, the corrective action must have a magnitude that is larger 
than the uncertain dynamics of the estimation process in order to guarantee the filter 
stability. The difference between the width of the a priori existence subspace and the 
SVSF's gain is equal to the width of the a posteriori existence subspace, and has a 
different sign from the a priori existence subspace, as shown in Fig 4.1. The a posteriori 
existence subspace is derived in this section. 

Further to equations ( 4.40) and ( 4.32), the a posteriori estimation error at time k is 
defined as follows: 

eZklk = eZklk-1- {HkKSVSFk = ( y leZk-1lk-11 + lezklk-11) osgn ( eZklk-J} 

= -y leZk-1lk-11 osgn ( eZklk-J = -yk lezolo I osgn ( eZklk-J 
4.44 

Note that equation ( 4.44) shows that the a priori chattering does not affect the a posteriori 
estimate as it is removed by the corrective gain. The a posteriori existence subspace for 
the state vector is defined as follows: 
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4.45 

Equation ( 4.44) shows that the a posteriori estimate chatters around the 

measurement. This chattering decays with time until the estimated output converges to 

the measured output. Equation (4.44) is further proof of the filter's stability. Note that the 

estimated output converges to the measurement which contains the true trajectory blurred 

with measurement noise. Therefore, the estimation is sensitive to the measurement noise 

as shown in equation (4.45). In this research, the resultant chattering is referred to as the a 

posteriori chattering. The differences and similarities between this chattering and that of 

the SMOs' are summarized in table 4.2 . 

The SMO's chattering The SVSF' s a posteriori chattering 

l Chatte~ing 
i corrective 

i estimate. 

is caused by applying the 1 Chattering is caused by applying the i 

action on the previous j corrective action on the a priori estimate. J 

i i 
i i i 

Chattering's amplitude is equivalent to Chattering amplitude is linked to the 

the difference between the corrective difference between the corrective action 

action and the filter's uncertainties and and the a priori existence subspace. 
modeling errors. 

! Chattering affects the estimate as it adds ! Chattering affects the estimate as it adds ! 
,
1
' an artificial noise to it. ! an artificial noise to it. However, it !

1 I d · h · j j ecays wit time. j 
: : ! I Chattering is sensitive to system and I Ch.attering is sensitive to measurement I 
l measurement noise. I noise. 1 
I ! 

Table 4.2: The differences and similarity between chattering of SMO and the SVSF's a 

posteriori chattering. 

The a posteriori chattering decays with time and becomes a function of 

measurement noise after a few time steps depending on the coefficient y. Henceforth, the 

a priori chattering will be considered for information extraction, and the a posteriori 

chattering will be used for the design of the smoothing boundary layer width. 

4.3.2 The smoothing boundary layer 

As discussed earl ier, the estimate has two levels of chattering; the a priori and the 

a posteriori chattering. Although the latter decays with time, it causes the a posteriori 

estimate to become more sensitive to measurement noise. In order to eliminate the a priori 
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and the a posteriori chattering, and to reduce the sensitivity to noise, the sign function in 

equation (4.12) is replaced by a smoothing function with a known boundary layer referred 

to as the smoothing boundary layer. Inside the smoothing boundary layer, the corrective 

action is interpolated based on the ratio between the amplitude of the output's a priori 

estimation error and the smoothing boundary layer's width. Outside the smoothing 

boundary layer, the discontinuous corrective action with its full amplitude is applied. The 
SVSF assigns and requires one smoothing boundary layer per estimate. The following 

equation defines the SVSF's gain with the smoothing boundary layer: 

4.46 

Where 'Pk is a vector consisting of n -smoothing boundary layer widths at time k (one 
for each state), and sat is a vector of the saturation functions and it is defined as follows: 

... sat (ez , r.pnk)]T 
nklk-1 

4.47 

Where sat (ez. , r.pik), i = 1, ... , n is the saturation function and is defined as follows: 
'klk-1 

4.48 

The smoothing boundary layer must be larger than the uncertain dynamics 
associated with each estimate to remove the a priori and the a posteriori chattering, and 

smooth the a posteriori estimate. In order to understand the effectiveness of the smoothing 

boundary layer, the widths of the existence subspaces are mathematically examined for 

different smoothing boundary layer widths as follows. 

The gain in equation ( 4.46) is rewritten as follows: 

KsvsFk = Hk -lsat ( eZklk-1' 'l'k) ( ( y leZk-1lk-11 + lezklk-11) osgn ( ezklk-J) 4.49 

Where Satk ( ezklk-1, 'l'k) is a positive diagonal matrix and it is defined as follows: 

4.50 

Note that sat ( ezklk-1, 'l'k) = Sat ( ezklk-1, 'l'k) sgn ( ezklk-J. Further to the a posteriori 

estimation error of equation (4.31), and by using the gain KsvsFk defined in equation 

( 4.46), the resultant a posteriori estimated error is obtained as follows: 
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eZklk = ezklk-1 -Sat ( ezklk-1 1 'Pk) ( ( y lezk-1lk-11 + lezklk-11) osgn ( eZklk-J) 

= ( lnxn -Sat ( ezklk-1' 'Pk)) ezklk-1 4.51 

- ySat ( ezklk-1' 'Pk) (lezk-tlk-11 osgn ( ezklk-J) 

Note that equation ( 4.44) is not valid anymore because of the use of a smoothing 

boundary layer and the Sat function. 

The mathematical formula of equation ( 4.51) specifies the smoothing boundary 
layer properties. If the width of the smoothing boundary layer is smaller than the 

amplitude of the a priori estimation error, then the matrix Sat becomes as follows: 

4.52 

and equation (4.51) is reduced to equation (4.44). The existence subspaces and the 
chattering amplitudes remain unaffected. Conversely, if the smoothing boundary layer has 
a width that is more than ten times that of the a priori output estimation error's amplitude, 
then the filter's a priori and a posteriori estimates will have similar values as the 
corrective action becomes insignificant and negligible as follows: 

lim KsvsFk = 0 
Sat( ezklk-l''l'k )--+0 4.53 

Then, the a priori existence subspace will have the same width as that of the a posteriori 
existence subspace as follows: 

4.54 

Both subspaces would expand in time if the uncertainties and/or modeling errors are 

increased. Note that the a posteriori existence subspace affects the a priori existence 
subspace. Without the boundary layer, the a posteriori estimate would contain noise and 
an error term that decays in time (refer to equation (4.45)). By propagating this estimate, 
the a priori existence subspace is obtained, which is a function of uncertainties and 
modeling errors (refer to equation (4.42)). The corrective action overcomes uncertainties 
and will retrain the stability of the filter. If the error in the a posteriori error increases by 
applying a large smoothing function, then the error in the a priori also increases. If the 
corrective action is not large enough to overcome uncertainties, then the error increases 
with time and the filter becomes unstable. This can be proven by modifying equation 
(4.43) by using equations (4.34) and (4.51) to include the boundary layer effects as 
follows: 
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l 

(Ak-1Hk -
1

- Hk -
1
HkAk-1Hk -

1
) zk-1 1 

exklk = +(Bk-1 - Hk -
1
HkBk-1)uk-1 

+wk-1- Ak-1Hk -
1
Vk-1 + Hk -

1
HkAk-1Hk -

1
ezk-tlk-1 - KsvsFk 

4.55 

Where KsvsFk approaches zero as the function Sat approaches zero. Note that the a 

posteriori existence subspace accumulates with time; thereby it may become unstable. 

A larger width of the boundary layer causes a slower convergence rate and 

degrades filter performance as shown in Fig 4.3. These occur if the corrective action is 

not large enough to force the estimated trajectory to cross the actual trajectory as follows. 

• 
• 

* 
+ 

• • • • • • 

Smoothing Boundary Layer (SBL) effects 

• • • •• •• •• •• ••• 

·- ~ 
f. 

• ~ for large SBL 
f. 
Xwk for medium SBL 
f. 

0 ~ for smaD SBL 

••••••• 
•••••••••••••••••• 

time step k 

Fig 4.3: The Smoothing Boundary Layer Effects on the Convergence Rate. 

If two SVSFs are applied to a system, each with a boundary layer; i.e. lV1 and lV2 , and 

assuming lV1 > lJ12 and y 1 = y 2 = Onxn • then the a posteriori errors for these two filters 

are obtained as follows: 

ez,lk lk = ( Inxn - Sat ( ez,lklk-1, lV1)) ez,lklk-1 

ez,2klk = ( Inxn -Sat ( ez,2klk-1' lVz)) ez,2klk-t 

4.56 

4.57 

Where ez,iklk and ez,iklk-t' i = 1,2 are the a posteriori and the a priori errors pertaining to 

the estimation output at time k, respectively, and the subscript i signifies the choice of the 

filter. 
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For comparison purposes, the filters are assumed to have the same initial condition at 

time k 0 which indicates that they have the same a priori estimate at time k 0 + 1. Further 
to this assumption, the ratio between equations ( 4.56) and ( 4.57) is obtained as follows: 

diag (lez,2ko+1lko+11) diag (lez,1ko+1lko+ll) -1 

= ( Inxn- Sat ( ez,1ko+ 1 lko' 'l'z)) ( Inxn- Sat ( ez,1ko+1lko' '¥1)) -
1 4.58 

lf'¥1 > '1'2 , then '1'1 - 1 < '1'2 -
1

. Multiplying both sides with the absolute value of the 

output estimations error, lez,1ko+1lko j, leads to the following: 

4.59 

Rearranging equation ( 4.59) gives the following: 

4.60 

Further to equations (4.60) and (4.58), the following is obtained: 

4.61 

Equation (4.61) proves that the error increases by increasing the smoothing boundary 
layer resulting in a slower convergence rate. 

The width of the smoothing boundary layer affects the amplitude of the a 
posteriori chattering. If the width of the smoothing boundary layer increases then the 
chattering amplitude decreases, and vice versa. By increasing the width ofthe smoothing 

boundary layer, the amplitude of the discontinuous gain represented by the term 

Sat ( ezklk-1' '¥) y jezk_11k_1j osgn ( ezklk-J decreases around the sliding surface; hence the a 

posteriori chattering is reduced. If the same filters (1 and 2) are used with the following 
assumptions: 

'P1 > 'Pz 

Yt = Yz 
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then the discontinuous gain of filter 1 has a smaller energy than the corresponding 

discontinuous gain of filter 2 because Sat ( ez,lko+llko I '1'1) < Sat ( ez,2ko+llko I 'l'z). Therefore, 

the chattering amplitude decreases as the boundary layer width increases although the 
estimation error increases. 

If the width of the smoothing boundary layer is chosen to be larger than the width 
of the a priori existence subspace and the difference between them is made to be small, 
then chattering is removed and the error in the output estimation is limited. This implies 
that the smoothing boundary layer must be time varying and dependent on the width of 
the a priori existence subspace. In this sense, the width of the smoothing boundary layer 
can be designed to obtain a better performance in terms of the a posteriori estimation 
error as will be shown in section (4.3.2.1). 

When a smoothing boundary layer is used, the a priori chattering becomes equal to 
the difference between the width of the smoothing boundary layer and the amplitude of 
the output's a priori estimation error. Therefore, the width of the smoothing boundary 
layer determines the presence and the level of the a priori chattering. If the smoothing 
boundary layer is overestimated then chattering is removed. However, if due to changes 
in the system, additional uncertainties are added such that the amplitude of the output's a 
priori estimation error grows larger than the width of the smoothing boundary layer, then 
chattering will be observed, (Habibi, 2007). For example, the a priori chattering signal 
has been tracked for a second order system that is made to have parametric changes at 
time steps t1 = 4000 and t2 = 7000. These changes last for 1000 and 2500 time steps, 
respectively. The smoothing boundary layer was designed to enclose the existence 
subspace for the system before the parametric changes (t < 4000 time steps). Fig 4.4 
shows the a priori chattering when uncertainties are injected into the model at time 
t1 = 4000 and t 2 = 7000 time steps. Moreover, the figure shows the lasting period of 
each uncertainty injection. The SVSF is very sensitive to added uncertainties and exhibits 
chattering that can be used for detecting the inception of a change in the system. This 
capability is very useful for certain applications such as requiring early fault detection. 
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Fig 4.4: The a Priori Chattering as an indicator of parametric changes. 

4.3.2.1 The time varying smoothing boundary layer 

The width of the boundary layer has a large impact on the filter's performance. If 

it is too small it will result in chattering. If it is too large, it reduces estimation accuracy. 
The smoothing boundary layer can be designed to have time varying width while being 

linked to the a priori output estimation error, (Gadsden & Habibi, 2011). However, using 
the smoothing boundary layer implies an unknown increment in the width of the a priori 
existence subspace as shown in equation (4.55). In order to improve the filter's 
performance without affecting the existence subspace, a novel strategy is presented here 

for a time varying smoothing boundary layer by using two SVSFs. These are executed in 

parallel as shown in Fig 4.5. The first filter (the primary filter) uses a smoothing boundary 

layer with zero width, which means that the a priori existence subspace is described by 
equation (4.42). Further to section (4.3.1.2) and equation (4.44), the a posteriori 

chattering decays and becomes negligible ask ~ oo. As such, chattering is mainly present 

in the a priori estimate. This provides an exact indication of the existence subspaces' 

widths for the second filter (the secondary filter), and maintains the estimation stability. 
The secondary filter is then used to obtain another estimation vector with information 
derived from filter l as follows: 
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The primary filter's a posteriori estimate, which was obtained at its previous time 
step, is propagated through to the secondary filter's model to obtain its estimate in 

the a priori form. 

The secondary filter's a priori estimate is then refined using a corrective action 
with a time-varying smoothing boundary layer that is linked to the a priori 
existence subspace derived from filter 1. 

Note that the a posteriori estimate from the secondary filter is not used further in 
calculation of the a priori estimates for the next time interval, which ensures numerical 
stability of the estimation process. Moreover, the secondary filter and the primary filter 

share the same a priori existence subspace. 

Filter 2 

Fig 4.5: The time varying SVSF Structure. 

The time varying smoothing boundary layer, 'l'tvk' in this thesis is designed to 

minimize the expected value of the quadratic cost function fk with probabilities 
conditional on the measurement defined as follows, (Grewal & Andrews, 2001): 

4.62 

Where M is a weighting matrix that is a symmetric positive definite matrix with size of 
M E !Rl.nxn. This condition implies that the a posteriori estimation error is unbiased as 

follows: 

4.63 

~ E((xk- xklk)izo, ... ,k] = Onxl 

If no modeling errors are present, then the a posteriori estimation error for the secondary 
filter is defined by substituting the output's a priori estimation error of the primary filter 
(equation (4.41)) into the a posteriori estimation error of the secondary filter (equation 
(4.57)) as follows: 

75 



PhD Thesis - Mohammad Al-Shabi McMaster - Mechanical Engineering 

ex,2klk = ( ( Inxn- Sat ( eZ,2klk-1' 'l'tvk)) eZ,2klk-1 - vk) le.,zklk-1 =ez,lklk-1 

= ( Inxn- Sat ( eZ,lklk-1' 'l'tvk)) ez,lklk-1 - vk 4.64 

~ ( lnxn - s., ( Cu7~~::~~~;,_J '1',.,)) ( -H:~~::~~~;,J -v, 

The expectation of equation ( 4.64) is zero assuming that the system and measurement 
noise are white. Therefore, the a posteriori estimation error is unbiased. The gain Sat can 
be obtained by minimizing the expectation of the following quadratic cost function: 

4.65 

Note that the expectation of the cost function hk represents the diagonal error covariance 

matrix. Therefore, the diagonal gain Sat can only minimize the diagonal error covariance 
matrix. To derive this gain the following procedure is used. 

Taking the expectation for equation (4.65), gives the following: 

E(f2J = E [ (xk- Xklk)(xk- Xklk)T] 0 1nxn 4.66 

Substituting equation ( 4.64) into equation ( 4.66) gives the following: 

Taking the derivative of equation (4.67) with respect to Sat (for the diagonal elements 
only) and setting it to zero leads to the following: 

4.68 

Rearranging equation (4.68) gives the following: 

4.69 
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Further to equation ( 4.41) and using the white noise assumption, the term E [ ez,lklk-l vk T] 
is obtained as follows: 

[(

( HkAk_1Hk -
1

- HkAk_1Hk -
1

) zk-1) l 
E[ez,lklk-tvkr]=E +(HkBk-1-HkBk-1)uk-1 vkT =E[vkvkT]=Rk 

+Hkwk-1 + vk- HkAk-1Hk -
1

Vk-1 

4.70 

Note that equation (4.70) is independent of the modeling errors. Substituting equation 
(4.70) into equation (4.69) gives the following: 

( -Pzz,lklk-1 (1nxn- Sat ( ez,tklk-1' 'l'tvk) r + 2Rk 

- ( Inxn- Sat ( eZ,lklk-1' 'l'tvk)) Pzz,lklk-1 T) 0

1nxn = Onxn 

4.71 

Where Pzz,tklk-1 is the output's a priori error covariance matrix and is defined as 

Pzz,lklk-1 = E [ez,lklk-1ez,lklk-/]. Since Sat is diagonal, equation (4.71) can be reduced to 

the following: 

4.72 

Rearranging equation (4.72) gives the following: 

4.73 

The time-varying smoothing boundary layer is obtained by substituting equation (4.50) 
into equation (4.73) as follows: 

4.74 

If no modeling errors are present and the measurement matrix is the identity matrix, then 

equation (4.74) can be rewritten using equation (4.41) as follows: 

diag('P tvk) = diag (I ez,lklk-11) ( ( Qk-1 + Rk + Ak-1 Rk-1Ak-1 T)olnxn) 

x ((Qk-1 +Ak-1Rk-1Ak_/) 0 Inxnr
1 

Substituting equation (4.75) into equation (4.73) yields the following: 
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The time-varying smoothing boundary layer of equations (4.74) and (4.75) 
provide the SVSF with significant advantages over strategies such as the KF as follows: 

Stability is achieved, despite modeling uncertainties. 

The inversion operator of equations (4.73) and (4.74) is involved with diagonal 
positive matrices, which simplifies calculations and overcomes issues of the KF 
regarding the inversion operator. 

Unlike the KF, there is no need to predict and correct the error covariance matrix 
at each time step for the proposed gain as it depends only on Qk_1 and Rk_1. This 
reduces the filter complexity. 

If the system is linear and is stationary, the measurement matrix is the identity 

matrix, and its model is accurately estimated, then the term Sat ( ez,1k
1
k_

1
, 'Ptvk) 

becomes time invariant, and it can be calculated offline as follows: 

Sat ( ez,1klk-1 ' '~'tvk) = ((Q + ARAT)olnxn) x ((Q + R + ARAT) 01nxnf
1 

4.77 

This improves the filter performance in terms of its complexity and computation 
time. 

The proposed algorithm does not depend on the error due to initial conditions as it 
becomes negligible with increasing time steps (depending on the matrix y). If y is 
set to be zero, then the error due to initial conditions is eliminated in one time 
step. Moreover, the gain depends on the output's initial conditions which are 
available. On the other hand, the KF depends on the initial estimate and 
covariance matrices as they should be accurately estimated; otherwise its 
convergence is affected. 

If modeling errors are present, the time-varying smoothing boundary layer can be 
obtained by taking an a priori chattering segment with large width at a time and assuming 
the following: 

1. The measurement and system noise are white and are stationary. 

2. The matrix Sat is constant during that segment. 
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The output's a priori and a posteriori variance matrices of the segment; O'e 2 and 
Zdld-1 

O'ezdld 
2

, respectively, are obtained by taking the variance of the output's a priori and a 

posteriori estimation error signals, respectively, as follows: 

4.78 

And the noise mean and variance are obtained from its expectation and covariance, using 

the Law of Large Numbers. 

Lemma 4.1 -The Law of Large Numbers 

The Law of Large Numbers states that: if d stationary uncorrelated random 

variables, such as V;, i = 1 ... d, share the same expectation value, then their average 

tends towards its expected value as d ~ oo as follows, (Bar-Shalom & Li, 1993): 

4.79 

Where ~ I1=1 vi is the average of the random variables. The previous lemma can be 

extended to include the variance as follows: if d stationary uncorrelated random variables 

have zero means and share the same covariance value, then the variance of the random 

variables together tends towards the covariance matrix as d ~ oo. This statement implies 

the following: 

4.80 

With a segment, the time-varying function Sat is assumed stationary and is 

obtained by minimizing the variance of the segment's a posteriori estimation error, 

O'e 
2

, which is defined as follows: 
X did 

a.,," 2 
= d ~ 1 L~=> [ ( e,,,, - ~ L~=> 0•111) ( e,,,, - ~ L~=> "'Ill) rl 4.81 
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Further to the law of large numbers, any segment from the measurement noise has 

variance that converges to the measurement noise covariance matrix when the segment's 

length becomes large. Moreover, if both the noise and the input are white signals, then the 

following are obtained: 

1Id 1Id lim -d wi = lim -d v i = Onx l 
d-HlO i=l d--+00 i=l 

lim O"vk wk = lim O"zk wk = Onxn 
d -+oo ' d-+oo ' 

4.82 

lim O"uk vk = lim O"uk wk = lim O"uk zk = Olx n 
d-+00 1 d-HX) 1 d-+ 00 1 

Where cra,b is the covariance between a and b. Substituting equations (4.64) and (4.82) 

into equation (4.81) and rearranging give the following: 

d 

(J 2 __ _ 1 I 
exdl d - d- 1 

i=l 

( ( lnxn- Sat ( ez,t 111_ 1, 'I' tv;)) ( ez,lili-1 -e) - Vk) 

X ( ( Inx n -Sat ( ez,lili-1' '~'tvi)) ( ez,lili-1 -e) - vk) T 
Where e is the average of the output's a priori estimation error segment. 

4.83 

Taking the derivative of equation (4.83) with respect to Sat (for the diagonal elements 

only) and setting it to zero lead to the following: 

ocr 2 "1 exdld n xn 

()Sat 

= _ 1_ f ( e,,1,1,_, - e) ( ( lnxn - s., ( e,,1,,_,, 'I',.))( e,,1,,_, - e) - v, )' 

d -
1 

i=l + ( ( Inx n -Sat ( eZ,lili-1' '~'tv;)) ( ez,lili-1 -e) -vi) ( ez,lili-1 - e) T 

4.84 

Rearranging equation (4.84) and using the diagonal principles and equation (4.82) give 

the following: 

j~",!, (ila•·;C•xn) = ( (rnxn- s., ( e,,,1,_,, '1',,)) a.,,,"_' 2 - R) 0 1nxn 4.85 

= Onx n 

Where cre 2 is the variance of the output's a priori estimation error (or the a priori 
Z,ldld-1 

chattering) of the first filter. Rearranging equation ( 4.85) gives the following: 
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S e 'P = a 2 - R 01 a 201 ( ) (( ) ) ( )

-1 

at z,lili-1 ' tv; ez,ldld-l nxn ez,ldld-l nxn 4.86 

The time-varying smoothing boundary layer is obtained by substituting equation (4.50) 

into equation (4.73) as follows: 

diag('Ptvk) = diag (lez,lklk-11) ( aez,ldld-1 2olnxn) ( ( aez,ldld-1 2 - R) olnxn) -1 4.87 

The boundary layer width in equation (4.87) is time varying although the function 

Sat is stationary. Note when there are modeling errors, the function Sat starts to approach 

the identity matrix as R becomes significantly smaller than ae 1 
2 . 

Z, d[d-1 

The algorithm in Fig 4.5 can be extended to accommodate modeling errors when 

they present as shown in Fig 4.6. A threshold is created using the maximum absolute 

value of the output's a priori estimation error in equation (4.41) (when no modeling errors 

are present) as follows: 

6 = IAk-tii(V)maxl + I(W)maxl + I(V)maxl 4.88 

The output's a priori estimation error obtained from filter 1 is tested using the threshold 

of equation (4.88). If it is smaller than the threshold then the secondary filter uses the 

boundary layer of equation (4.75) (as no modeling errors are present). If the a priori 

estimation error is larger than the threshold, then the secondary filter takes a segment of 

that error and obtains the smoothing boundary layer by using equation (4.87) (as 

modeling errors are present). 

Filter 2 with boundary 
layer obtained from 
equation (4.75). 

Yes 

x2,klk obtained by using 'l'tvk 

Take a segment of length d from the 
chattering signal. 

Filter 2 with boundary 
layer obtained from 
equation ( 4.87). 

Fig 4.6: The SVSFs with time-varying smoothing boundary layer including the effects of 

modeling errors. 
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4.3.3 The chattering amplitudes and its information content 

As discussed earlier, the a priori and the a posteriori estimates chatter within their 
respective existence subspaces. In order to eliminate chattering, a smoothing boundary 
layer is used. If the smoothing boundary layer has a width that is quite larger than the a 
priori existence subspace's width, then the a priori chattering, which is a function of the 
discrepancy between the smoothing boundary layer's width in comparison to the a priori 
existence subspace's width, is eliminated. Moreover, the corrective action is refined and 
its energy is reduced. By refining the corrective action, the estimate is forced towards the 
sliding hyper-plane without the necessity to cross it, or to cross it with smaller amplitude. 
This behavior reduces the a posteriori chattering amplitude and frequency. By refining the 
a posteriori chattering, the filter avoids and reduces the propagation of the chattering term 
through the two stages of the filter. 

Conversely, if the smoothing boundary layer has a width that is smaller than the a 
priori existence subspace's width, then the a priori chattering occurs with an amplitude 
that is equivalent to the difference between the output's a priori estimation error and the 
smoothing boundary layer's width, (Habibi, 2007). The a posteriori chattering remains 
equal to equation (4.44) as the corrective action is applied with its full energy (the 
function sat becomes sgn). 

The a priori chattering can be used to point out the source and amplitude of 
modeling errors. Chattering gives an indication that the current filter's model is uncertain 
and it needs to be re-estimated or tuned. Chattering thus provides an opportunity for 
combining the SVSF with adaptive techniques for model refinement as discussed later in 
chapter six. 

According to equation ( 4.39), the SVSF has n-a priori chattering signals, one 
associated with each estimate. Thus, (assuming that the measurement matrix has full rank 
and is equal to the identity matrix) each chattering signal points out the modeling errors in 
the corresponding row of the system and input matrices. As such, the a priori chattering 
contents provide a means for extracting the modeling error explicitly. In this study, two 
approaches are presented depending on the input and measurement signal properties as 
follows: 

The first method uses the expectation operator of the a priori chattering and it is 
used for systems with non-stationary input and measurement. 
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The second method is based on using the covariance between the a priori 
chattering signal and the measurement and the covariance between the a priori 
chattering and the input. 

I~ order for these two methods to work, the measurement and system noise signals must 
be stationary (expectation and covariance matrix are time invariant). Since the 
expectation and the covariance matrix are not directly available, a segment of the a priori 
chattering is taken and its statistics are calculated; i.e. mean and variance. Using the law 
of large numbers, the means and variance matrices of the measurement and system noise 
in the a priori chattering segment approach their expectations and covariance matrices, 
respectively, and hence they are known. 

4.3.3.1 Obtaining the chattering contents for non-stationary input using the 
average 

The first method involves obtaining the modeling errors of a time invariant system 
from the a priori chattering signals by using an averaging technique. This can be done by 

taking a segment of length d (starting from the time step l, when the term y1 becomes 
negligible, to time step l + d - 1) from the output's a priori estimation error, the input 
and the measurement signals, and then calculating their averages. From equation (4.39), 
the average of the output's a priori estimation error segment is obtained as follows 
(assuming a time invariant model): 

l+d-1 l+d-1 l+d-1 

1 """' - 1 ( + ~~~+) """' 1 ( ~~) """' d L., ezili-l- d HAH - HAH L., zi_1 +d HB- HB L., 
i=l i=l i=l 

l+d-1 4.89 

1 """' + + d L., (Hwi-1 + vi - HAH vi_1 ) 

i=l 

If d is chosen to be large enough to satisfy equations (4.79) and (4.80), then the 
averages of the measurement and system noise converge to their expectations which are 
zero (zero-mean assumption) as follows: 

4.90 

The a prior chattering at time i, Chili-1 , is then equal (when present) to the difference 

between the output's a priori estimation error and the smoothing boundary layer width as 
follows: 
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lez... I< '1'1·. hlt-1 ' 4.91 

If the measurement matrix is the identity matrix, system and measurement noise are 
white, and the smoothing boundary layer is set to have zero width, then equation (4.89) is 
simplified to the following: 

Ji."!( ~~~' Ch,IH) = J~( ~(A-A)'~' z,_, +~(B -ll) '~' u,_,) 
4.92 

= J~ ( ~M 't,' z,_, + ~AB '~' u,_,) 
Equation (4.92) (for systems with single input) has (n + 1) x n unknowns which 

are the following: 

n x n modeling errors in the system matrix, !1A. 

n X 1 modeling errors in the input matrix, !1B. 

To solve these unknowns, (n + 1) x n equations are needed. Each segment provides 
(n + 1) data points that represent the average values of n -measurement and one-input in 

h Th c . "d d . f [Lf:!:f-1 
Zi-1] t at segment. eretore usmg n segments prov1 es n ata pomts o vector l~d- 1 , 

.Li=l ui-1 
which gives (n + 1) x n equations. This allows the problem to be solved. Using these 
vectors, equation (4.92) is then revised as follows: 

1 
lim 

d-->oo d 

ll+d-1 

I Chili-1 
i=ll 

ln+d-1 

I Chili-1 
i=ln 

T 

= [.1A .18] lim 
d-->00 

ln+d-1 

I Zi-1 

i=ln 
ln+d-1 

I ui-1 
i=ln 

4.93 

Where li, i = 1, ... , n represents the beginning of the ith segment. Equation ( 4.93) is 
expressed in a simpler form as follows: 

CH = [!1A f1B] [~] 4.94 
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( [ 
It +d-1 ]T) Li=lt Chili-1 

Where CH = limd--.oo ~ : , 
d "'ln+d-1 

L..i=ln Chili-1 

U= 

( [
"'It +d-1 ]T) L..i=Zt ui-1 

limd--.oo ~ : . Note that the input must not be stationary. From equation 
"'ln+d-1 
L..i=ln ui-1 

( 4.94) the modeling errors can be obtained as follows: 

[LlA LlB] = CH mr1 

4.95 

Equation ( 4.95) can be used to adapt the filter's model. Due to the expectation 
operator, the extracted parameters may differ from their real values. If the refined model 
is close to the system model, then the a priori chattering due to modeling error becomes 
negligible. Therefore, the a priori chattering becomes a function of the measurement and 
system noise, and its upper bound is obtained by equation (4.88). This upper bound is 
then used as the SVSF' s new smoothing boundary layer. If the refined model differs from 
the system model due to the expectation operator, then the output's a priori estimation 
error exceeds the smoothing boundary layer and thus a priori chattering appears and 
indicates that the filter model needs to be re-tuned. The refinement's procedure is then 
repeated. Due to the choice of the segment length and the usage of the expectation 
operator, the refinement procedure may be repeated several times. Once the filter is tuned, 
the SVSF's smoothing boundary layer width changes according to equation (4.88). If 

modeling errors are present again, the smoothing boundary layer width is set to be zero in 
order to enable the refinement's process. After the refinement procedure is completed, the 
boundary layer is changed back to equation (4.88) using the new model parameters. 

4.3.3.2 Obtaining the chattering contents for stationary random input with zero 
mean using the covariance 

The drawback of the first method is that if the input is white (in the sense of 
E(uk) = 0 and E(ukuk_ 1 ) = 0), then the inversion matrix in equation (4.95) becomes 
invalid and the modeling errors cannot be obtained. To overcome this issue, another 
method is proposed that involves obtaining the modeling errors of a time invariant system 
from the a priori chattering signals by using the variance technique. This can be done by 

taking a segment of length d time steps (starting from the time step l, when the term y 1 

becomes negligible, to the time step l + d- 1) and then calculating the covariance 

between the a priori chattering, Chili-1 , and the measurement zi_1 for this segment. If the 
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measurement matrix is set to the identity matrix, and the smoothing boundary layer is set 

to have zero width, then the covariance between Chili_1 and zi-1 , ( O'chdld-1,zd_1), is 

defined as follows: 

_ 1 '\'l+d-1 _ _ T 
0chdld-1.zd-1- d _ 1 Li=t ( (Chili-1- Chklk-1)Czi-1- zk-1) ) 

l+d-1 
1 I 

i=l 

~A(zi-1- Zk-1)(zi-1- Zk-1)T 

+~B(ui-1- Uk-1)(zi-1 - Zk-1)T 

+Cwi-1 - wk-1)(zi-1 - zk-1l 
+(vi- vk)(zi-1- zk-1l 

-A(vi-1- Vk-1)(zi-1 - Zk-1)T 

4.96 

Where the notation a; represents the average of the segment around time i of the 

parameter a. If the segment length is consistent with the law of large numbers, and 

assuming that the noise and the input have zero means, then the following relationships 
are obtained: 

Substituting equation (4.97) into equation (4.96) gives the following: 

d~~ ( °Chdld-1·zd-1) = ~Ad~~ ( O'zd-1 
2

) - AR 

4.97 

4.98 

2 - 1 '\'l+d-1(( - )( - )T) Th d r . h Where O'zd_1 - d-
1 

.t....i=l zi-1 - zk_1 zi_1 - zk_1 . e mo e mg errors m t e 

system matrix are then obtained by rearranging equation (4.98) as follows: 

~A= (J~ ( °Chdld-1·Zd-1) + AR) u~ ( O'zd-1 
2
)- R) -

1 
4.99 

To estimate the input matrix from the chattering equation, the same segment is 
used and the cross-variance between the a priori chattering and the input signals for that 
segment is obtained. Further to the a priori chattering equation (equation (4.91)), and 
assuming the noise and the input are white signals with zero means, then the following is 
obtained: 
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1 ,l+d-1 
0 chdld-1•ud-1 = d _ 1 Li=t ( ( Chili-1 - Chklk-1)ui-1 r) 

1 t+d-1 ( (A- .A)(zi_1 - zk_1)ui-/ ) 

= d -1 I +(B- 8)ui-1ui-/ 
i=l . . T . . T _ . . T +w

1
_ 1u

1
_ 1 + v

1
u

1
_ 1 Av

1
_ 1u

1
_ 1 

4.100 

The law of large numbers implies that if the input and the noise are uncorrelated, then 
for d ~ oo the following relationships are obtained: 

4.101 

Substituting equation ( 4.101) into equation ( 4.100) gives the following: 

4.102 

Where aud_1 
2 is the input's variance value. The modeling errors in the input matrix is then 

obtained as follows: 

4.103 

This algebraic algorithm can be used to refine the filter's model. The benefit of 
this algorithm over the first algorithm is that only one segment of length d is needed, thus 
reducing complexity and computation time. However, better knowledge of the noise is 
needed and an input signal that is white in nature is required. If the noise covariance 
matrices are wrongly estimated, then the modeling errors are not accurately reconstructed. 
In other words, this method is more sensitive to the noise model as compared to the first 
outlined algorithm. 

4.3.3.3 Obtaining the chattering contents for non-stationary biased input with 
zero mean over the segment using the cross-correlation 

The first method needs the mean of the input to be non-zero and the second 
method applies to an input signal that is white. If the input is a non-stationary biased 
signal such that its expectation is not zero, and it is varying with time but its mean is zero 
over the segment, then the previous two methods are not applicable. For example, the 
multi-steps input in Fig 4.7 has two levels; 1 for the first half of the segment and -1 for 

the second half. The mean of the segment is zero, but its autocorrelation, E(ukuk_ 1), is 
not zero. 
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Fig 4.7: Multi-step input. 

To solve this problem, another method is proposed that involves obtaining the 
modeling errors of a time invariant system from a segment of the a priori chattering 
signals by using the cross-correlation between chattering and the measurement signal that 

is delayed by two time steps, Cchdld-t•zd_2, and between chattering and the input signal that 

is delayed by two time steps, Cchdld-t.ud_2, as follows: 

lZ+d-1 lZ+d-1 (.:lA(zi-lzi_/) + .:lB(ui-lzi_/)) 

Cchdld-l·zd-2 = d I ( Chili-lzi_/) = d I +(wi-lzi_/) 
i=l i=l +(vizi_/)- A(vi-lzi_/) 

4.104 

lZ+d-1 lZ+d-1 (.:lA(zi-1 ui_/) + .:lB(ui-1 ui_/)) 
Cchdld-l•ud-2 = d I (Chili-lui_/)= d I +(wi-lui-2T) 

i=l i=l +(viui_/)- A(vi_1ui_2T) 
4.105 

Using the law of large numbers, the terms that contain the system and measurement noise 
vanish as d--+ oo. Therefore; equations (4.104) and (4.105) are simplified as follows: 

j~ ( Cchdld-t•Zd-2) = .:lA j~~(Czd-vZd-2) + .:lB j~(Cud-l.zd_J 

J~ ( Cchdld-l·ud-2) = .:lA J~~ ( Czd-l•ud-2) + .:18 J~~ ( Cud-l.ud-2) 

Wh C _ 1 ~!+d-1( T) _ 1 ~!+d-1( T) 
ere zd-vzd-2 - "d .t...i=l Zi-1zi-2 ' Cud-vzd-2 - d .t...i=l ui-1zi-2 , 

1 ~l+d-1( T) d 1 ~l+d-1( T) d .t...i=l zi-1 ui-2 an Cud-vud_2 = d .t...i=l ui-1 ui-2 · 

4.106 

4.107 

The modeling errors can be reconstructed by rearranging equations ( 4.106) and ( 4.107), 
as follows: 

.:lA= 4.108 
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( 

lim (c ) (lim (c ))-
1 

lim (c ) ) d--+oo Chdld-t•Zd-2 d--+oo Zd-vZd-2 d--+oo Zd-Vlld-2 

( )-1 ( ) ( )-1 x lim (c ) - lim c lim (c ) d--+oo lld-t,Ud-2 d--+oo Chdld-t•Ud-2 d--+oo lld-vlld-2 

(

lim (c ) (lim (c ))-
1 

lim (c )) X d--+oo Ud-t·Zd-2 ~--+oo Zd-vZd-2 _

1 

d--+oo Zd-t•Ud-2 

X (j~~ ( Cud-vud-2)) - l 

.68 = 4.109 

Note that Cud_1,ud-z must not be zero. 

This method shares the same advantages and disadvantages as the second method, 

as it needs only one segment to reconstruct the modeling errors while being more 

sensitive to the noise. 

This chapter has explored the information contained in the chattering signal for a 

system that has a measurement matrix with full rank. It presents a method that can be 

used for extracting modeling uncertainties explicitly. In the next chapter, the information 

contained in the a priori chattering is investigated for a system with a measurement matrix 
that is not full rank. 

4.3.4 Application of the SVSF to an electro-hydrostatic actuator that has a full­
rank measurement matrix 

The Electro-Hydrostatic Actuator (EHA) is a "pump controlled hydraulic system" 
that is used in the aerospace industry; i.e. airplanes aileron, (Wang S., 2007). The EHA is 

an integrated unit that consists of an electrical motor, bi-directional pump, pressure and 
position sensors, and a linear actuator. Its hydraulic circuit is shown in Fig 4.8, [(Habibi 

& Burton, 2007) and (Habibi, Burton, & Sampson, 2006)]. In this thesis, the EHA 
developed in (Habibi & Burton, 2007) as shown in Fig 4.9 is used as a benchmark to test 

the performance and the stability of the SVSF with a time varying boundary layer, and to 

test the algorithms proposed for extraction of the information contained in the chattering 

signal. 

The proposed EHA has been modeled and verified experimentally in (Habibi, 

Burton, & Sampson, 2006) and is characterized as a piece-wise linear system as follows: 

b' 
G (s) = ---,-,::------=­

s(s2 + 2~wns + Wn2) 
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Fig 4.8: The components of the EHA proposed in (Habibi & Burton, 2007). 

Fig 4.9: The prototype of the EHA proposed in (Habibi & Burton, 2007). 

Where b' = ZDp/JeAe, wn = ZfJeA/, ( =.!. J eVo+LfJeM) and their parameters are 
MVo MVo 22MVo/JeA/ 

defined in table 4.3. This table shows that the effective bulk modulus (which is hard to be 
measured) may vary with time. (Habibi & Burton, 2007) and (Habibi, 2007) used the 
VSF and the SVSF to estimate the effective bulk modulus of the proposed EHA, 
respectively. The EHA model of equation (4.111) can be represented in a discretized state 

space form (including the system noise) as follows: 

4.111 

The measurement equation (including measurement noise) is represented as follows: 
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[:~:::] = [~ ~ ~] [;~:::] + ~~~:::] 
Z3k+1 0 0 1 X3k+1 V3k+1 

4.112 

Where x1k' x2" and x3" represent the piston's position, velocity and acceleration, 

respectively. 

Symbol Description Value 

Ae Piston Area 5.05 x 10 4 m2 

Be Load Friction 760 Nsfm 

Dp Pump Displacement 1.69 x 10-7 m3 frad 

L Leakage Coefficient 2.5 x 10 11m 3f(Pa.s) 

M Load Mass 20Kg 

Vo Chamber Volume 6.85 x 10-5 m3 

fle Effective Bulk Modulus 1.5 X 108 - 2 X 108 Pa 

Table 4.3: The parameters of the EHA proposed m (Habtbi & Burton, 2007). 

In this section, the SVSF is used to: 

Estimate the states of the EHA using the SVSF with a time varying smoothing 
boundary layer as described in section (4.3.2.1). 

Estimate the states and parameters of the EHA using the information extracted 
from the chattering signal as discussed in section ( 4.3.3). 

4.3.4.1. The SVSF with time-varying smoothing boundary layer 

4.3.4.1.1. Simulation setup 

The SVSF with the time-varying smoothing boundary layer is applied to the EHA 
described in equations (4.111) and (4.112). It is assumed that the effective bulk modulus 

has a value of 1.82 x 108 Pa, and that the other parameters have their original values as 
listed in table 4.3. The sampling time is T5 = 0.001 sec. The system can be represented 
as follows: 

[;~:::] = ~~ l ~ ] ~;~:] + [ ~ ] uk: + ~:~:] 
X3k+1 0 -67.7585 0.8956 X3" 0.0227 W3" 

4.113 

The measurement and system noise are white with a noise-to-signal ratio of 10% of their 
corresponding states. Equal weight is placed on both the system and the measurement 
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[
8.2 X 10-

12 
0 0 l 

noise with the following variances, O'w 
2 = av 2 = 0 2.2 x 10-10 0 . 

0 0 3 X 10-6 

Further to section (4.3.2), two SVSFs are used, both using a coefficient matrix y with a 
value of y = 0.02 x 13 x 3 . The first SVSF has a smoothing boundary layer with zero 
width, while the second SVSF uses a smooth boundary layer that is designed to have a 
time varying width described in equation (4.75). The states' initial condition vector is set 
to x0 svsF = z0 for both filters. The input consists of a random signal superimposed on 
step changes as shown in Fig 4.1 0. For comparison purposes, the simulation is repeated 
using the KF. The initial covariance matrix is set to be P0 = R, the states' initial 
condition vector is chosen to be x0 KF = z0 , and the system and measurement noise 
covariance matrices are defined as Q = R = aw 2 • 

input vs time 
12.--------.--------.--------.--------,--------. 

~~------~--------~------~--------~------~ 
0 500 1000 1500 

time step k (sec x 10-3) 

Fig 4.10: The input signal. 
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4.3.4.1.2. Simulation results 

The results of the SVSF with the time-varying smoothing boundary layer 
compared to the KF are shown in Figs (4.11) to (4.13). The two methods, the SVSF and 
the KF, are compared in terms of the root mean square error (RMSEj), which is defined as 
follows: 

~length(x)( . _ ~. ) 2 

"'i=l YJi YJi 
RMSE1· = C ) for y = x11 x2 , and x3 length x 

4.114 

and the maximum absolute error (MaxErroTj), which is equal to: 

MaxErro'Tj = max(IYh - Yh I) for y = x1 , x2 and x3, 4.115 

The comparison is summarized in table 4.4. The results show that the proposed time 
varying smoothing boundary layer width is a successful choice as the SVSF has a 
performance that is quite similar to the KF' s performance. The table shows that the KF is 
slightly better than the SVSF. Conversely, the SVSF has a superior performance when 
modeling errors are present, as discussed in section (4.3.2). 

RMSEj MaxErro'Tj 

X1KF 4.2 X 10-12 8.8 X 10-06 

XzKF 1.2 X 10-10 3.6 x 10-05 

X3KF 1.4 X 10-06 4.3 X 10 °3 

x1SVSF 6.2 X 10-12 9.5 X 10-06 

xlVSF 1.7 X 10-10 4.7 x 10-05 

X3SVSF 1.8 X 10-06 4.9 X 10-03 

Table 4.4: The root mean square error and the maximum absolute error of the estimated 
states. 
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4.3.4.2. The SVSF with tuning process based on information contents in 
chattering 

4.3.4.2.1. Simulation setup 

The SVSF' s chattering signal can be used to tune the filter model in order to 
reduce the modeling errors. This has been tested and verified by applying the SVSF to an 
EHA with an effective bulk modulus that is made to change it value from time to time 
where each change holds for a period of time. The other EHA parameters are assumed to 
have their original values from table 4.3. If the sampling time is T5 = 0.001 sec then the 
system has the following structure: 

o.~o1 o.go1 ] ~;~:] 
-3.723Pe X 10-7 1- (0.038 + 3.65Pe X 10-7) X3k 

+ [ ~ ] uk + ~:~:] 
1.25Pe X 10-10 W3k 

4.116 

The effective bulk modulus, Pe, is made to change nine times and each change to last for 
at least 3000 time steps as shown in table 4.5. During the simulation time, the filter's 
model suffers from modeling errors that vary between 7 - 340% as shown in table 4.6. 

Region Beginning .time Ending time Region Beginning time Ending time 
# step step # step step 
1 1 4656 6 25329 30482 
2 4657 9044 7 30483 34317 
3 9045 14438 8 34318 39786 
4 14439 19600 9 39787 43999 
5 19601 25328 

Table 4.5: The beginning and ending of each region for the tuning process simulation. 

The measurement and system noise are white noise with a noise-to-signal ratio of 
10% of their corresponding states, and with the following variances, O'w 2 = av 2 -

[
8.2 X 10-12 0 0 l 

0 2.2 x 10-10 0 . The SVSF's coefficient matrix y has a value of 
0 0 3 X 10-6 

y = 0.02 x 13x3 and its smooth boundary layer is designed as 'I'= ~~ ~ ~~=:]. The input 
1 X 10-2 

consists of a random signal superimposed on step changes as shown in Fig 4.14. 
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region region region region region region region region region 
1 2 3 4 5 6 7 8 9 

- - - - - - - - -
<1> <1> <1> <1> <1> <1> <1> <1> <1> 
"'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 
"'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 
0 0 0 0 0 0 0 0 0 
"'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 "'1 - - - - - - -
<f. <f. ::R 0 ::R 0 ::R 0 ::R 0 ::R 0 ::R 0 ::R 0 

Pe 340 17 9 100 54 8 100 54 7 

a32 340 17 9 100 54 8 100 54 7 

a33 25 3 1 5 6 1 5 6 1 

b3 340 17 9 100 54 8 100 54 7 

Table 4.6: The % of the error between the system and the filter parameters for the tuning 

process simulation. 

input vs time 
12 ~---r----~--~----~--~----~--~----~--~ 

10 

8 

5 4 
Q. 

.!: 

2 

0 

~~--~----~--~~--~----~--~----~----~--~ 
0 0.5 1 1.5 2 2.5 3 3.5 4 

time step k (sec x 10-3) 

Fig 4.14: The input vs. time for the tuning process simulation. 
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4.3.4.2.2. Simulation results 

The results of the SVSF that use the information contained in the chattering signal 
to tune the filter model are shown in Figs ( 4.15) to ( 4.20). These results show that the 
SVSF is a robust and stable filter that detects parametric changes once they occur (note 
that the latter property cannot be found in the KF or its other forms). The filter then uses a 
sample consisting of 500 points from the chattering signal to extract the modeling errors 
as discussed in section (4.3.3) (sample length satisfies the law of large numbers, and the 
noise vectors of the sample have errors in means and variances that are less than 5% 
compared to their expected values). Once the filter's model is tuned, the filter continues 
estimating the states. During the model reconstructing process, the results show that the 
stability is not affected by modeling errors. 

The detection process in this section is based on the occurrence of chattering. If 
the width of the smoothing boundary layer is well-estimated, then chattering is removed. 
However, if modeling errors are present, then the amplitude of the output's a priori 
estimation error becomes larger than the width of the smoothing boundary layer and 
chattering is observed. Therefore, chattering can be used to detect modeling errors when 
they are present (as discussed in section (4.3.2)). The detection process is sensitive to the 
width of the smoothing boundary layer. If the smoothing boundary layer has a very small 
width (compared to the noise uncertainties and the system matrix), then many false 
alarms will be detected; e.g. false alarm detected in Figs ( 4.19) and ( 4.20) at time step 
7489. A false alarm causes extra computation (as the tuning process is applied when it is 
not needed), and may increase the root mean square errors (as the variance of the 
estimated parameter increases and the reconstruction's sample at the false position may 
have parametric changes within it). As the width of the smoothing boundary layer is 
increased, the number of false alarms is reduced. However, this may cause a delay in 
detecting modeling errors. Fig 4.18 shows that it takes seven time steps to detect 
modeling errors in the third time interval that starts at time step 9,045. This causes the 
errors in these parameters to look like spikes at the beginning of the intervals. The delay 
factor depends on the differences between the smoothing boundary layer width and the a 
priori existence subspace width (which depends on the system matrix and the noise 
vectors, as shown in equation (4.42)). The SVSF detects parametric changes at time steps 
as summarized in table 4.7, which demonstrates the speed of the detection process. Table 
4.8 summarizes the root mean square errors (defined in equation ( 4.117)) for the 
estimated states and parameters. This shows that the modeling errors are recoverable by 
using the chattering signal. 

Llength(x)( . _ ~. ) 2 

i=1 YJi YJi r d b' 
() for y = x11 x2,x3,..,,Wn an 

length x 
4.117 
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Region# Time step of fault being detected 

1 1 

2 4659 

3 9052 

4 14440 

5 19602 

6 25330 

7 30484 

8 34319 

9 39790 

Table 4.7: The estimated beginning of each region for the tuning process simulation. 

RMSE 

x1 5.3 X 10-12 

x2 1.43 X 10-10 

x3 2.14 X 10 °6 

a3z = -wn2Ts 0.2809 

a 33 = 1 - 2{wnTs 5.1 X 10-07 

b~ = b'T5 
3.2 X 10-os 

Table 4.8: The root mean square error of the tunmg process simulation. 
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Chapter Five: 

The Toeplitz/Observability Smooth Variable Structure Filters for Systems with 
Measurement Matrix that is not Full Rank 

5.1 Historical and mathematical background 

Chapter four discussed the SVSF concepts and behaviour when it is applied to a 

system that has a measurement matrix of full-rank. However in most real applications, the 

measurement matrix does not have a full rank. Moreover, not all of the states are 
accessible and physically measurable, (Habibi, 2007). If the measurement matrix does not 
have a full rank, the SVSF is then combined with a reduced order technique that is similar 

to Luenberger' s approach. The reduced order technique extracts the hidden states from 

the available measurements, and then uses them to compensate for the missing 
measurements. Thus, Luenberger' s approach allows the application of the SVSF using the 

same algorithms that were described in chapter four. In order to apply Luenberger's 

reduced order form to the SVSF, the system must be observable and differentiable. The 

reduced order algorithm differs in approach for linear systems compared to nonlinear 
systems and it is discussed in the following subsections. 

5.1.1 The SVSF algorithm for linear systems with partially ranked 
measurement matrices 

The reduced order algorithm that is discussed in this subsection is based on 
(Habibi, 2007), and it is applicable for linear systems with the following time invariant 

measurement matrix: 

Hk = H = [lmxm Omx(n-m)] 5.1 

If the measurement (output) matrix does not have the structure of equation (5.1), a 

coordinate transformation, T, is applied on the states to convert it to equation (5.1). The 

resultant transformed time-invariant system is defined as follow: 

Yk = A'Yk-1 + B'uk-1 + w' k-1 
5.2 

zk = H'yk + vk 

Where Yk = T-1xk = [y1
k], A' = T-1AT = [A11 A12], B' = T-18 = [81

], H' = 
Yzk A21 Azz Bz 

HT = [lmxm Omx(n-m)], A11 E ~mxm, A21 E ~(n-m)xm, A12 E ~mx(n-m), A22 E 

~(n-m)x(n-m) B E ~mx1 B E ~(n-m)x1 y E ~mx1 y E ~Cn-m)x1 w'k = 
' 1 ' 2 ' 1k ' 2k ' 

T-1
wk, and zk = Y1k + vk. 
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For the system that is described by equation (5.2), the SVSF's structure is as 

follows: 

I- Prediction Stage: 

The a priori state estimate is obtained by using an estimated model of the system as 

follows: 

2 - Corrective Stage: 

Ykik-1 = A'Yk-1lk-1 + B'uk-1 

zklk-1 = H':Yklk-1 
5.3 

A corrective gain is calculated and used for refining the a priori estimate into its a 

posteriori form as follows: 

Ykik = Ykik-1 + KsvsF-llk 

zklk = H':Yklk 
5.4 

where KsvsF-llk is the SVSF's gain for a reduced order linear system and is defined as 

follows: 

5.5 

The upper partition of the gain, K1k, is the SVSF's gain for the states that are directly 

linked to measurements and is defined as follows: 

K1k = fj'+ (lezklk-11 + Y1 lezk-11k-11) osgn ( ezklk-J 

= (lezklk-11 + Y1 leZk-1lk-11) osgn ( ezklk-1) 
5.6 

The lower partition K 2k is the SVSF' s gain for the lower partition of the states that are not 

directly related to the measurements. This gain is obtained using the Luenberger's method 

as follows: 

Further to the Luenberger method, the system described by equation (5.2) is rewritten by 

using a revised state vector, Y1 
k' as follows: 

I 1 I 1 1 I [ Vk-1 ] [ Vk ] 
y k = A y k-1 + B uk-1 + w k-1 -A Oc ) + Oc ) n-m x1 n-m xl 

5.7 

[ zk] _A' [zk-1] + 8 , + , _A' [ vk-1 ] + [ vk ] 
Yzk - Yzk- 1 "k-1 w k-1 Ocn-m)x1 Ocn-m)xl 
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Both the a priori and the a posteriori estimates and their revised vectors (y' klk- 1 and 

~' . 1 . . d ~ [Y1klk-1] ~ [Y1klkl ~' y klk• respective y) are partlttone as Yklk-1 = ~ , Yklk = ~ , Y klk-1 = 
Yzklk-1 Yzklk 

[
zklk-1] d ~' _ [ zk ] Wh ~ ~ ~ tmmx1 d ~ ~ 
~ an Y klk - y~ · ere Y1klk-1' zklk-11 Y1klk E .1!\> an Yzklk-1' Yzklk E 
Yzklk-1 2klk 

~Cn-m)x 1 . Further to the above discussion and by defining a revised measurement matrix 

as the identity matrix, equation (5.3) is rewritten as follows: 

5.8 

Subtracting equation (5.8) from (5.7) gives, (Habibi, 2007): 

[ 
ezklk-1 ] [ zk - zklk-1 ] ~, [ 0 ] 
e = ~ = A e + dk-1 

Y2klk-1 Yzk - Yzklk-1 Y2k-1lk-1 
5.9 

[
All A12] [ Omx1 ] [d1k-1] 

= Az1 Azz ey2k-1lk-1 + dzk-1 

Where All E ~mxm, Az1 E ~(n-m)xm, A12 E ~mx(n-m)' Azz E ~(n-m)x(n-m)' 

d 1k_1 E ~mxt, d 2k_1 E ~(n-m)x 1 and dk_1 represents uncertainties and modeling errors 

and it is defined as follows: 

Further to equation (5.9) and using equation (5.8), the a posteriori and the a priori 

estimation errors are obtained as follows: 
~ -1 ~ -1 

e = A12 e - A12 d 1 Y2k-1lk-1 Zklk-1 k-1 
5.11 

The measured component of equation (5.11) is used as the switching hyperplane for the 
lower partition, thus the lower gain is defined as follows, (Habibi, 2007): 

Substituting equations (5.12) and (5.6) into equation (5.5) gives the following: 

5.13 
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Where y1 and y 2 are diagonal matrices with elements less than one and size of y1 E 

!Rl.mxmand y 2 E JRl.Cn-m)x(n-m), respectively. The mapping function (A12) needs to be 

invertible. Modelling errors in A12 and A22 impact the accuracy of the estimate. Even 
though the filter is stable (because the upper partition maintains the states close to the 
measurement), its performance is compromised. To improve the performance of this 
filter, a novel revised version of SVSF referred to as the Toeplitz/Observability SVSF is 

proposed in section (5.2). 

5.1.2 The SVSF algorithm for non-linear systems with partially ranked 
measurement matrix 

In (Habibi, 2007), an algorithm that is applicable to a nonlinear system with fewer 

measurements compared to the number of states was proposed. The proposed algorithm 
assumes the system has the structure of equation (4.7). If the measurement matrix does 
not have that structure, a coordinate transformation, T, is applied on the states to convert 
the measurement matrix structure to equation (5.1 ). The resultant transformed system is 
defined as follow: 

, [f1k (Yk-v "k-1, wk-1)] 
Yk = f (Yk-v "k-v wk-1) = f ( ) 

zk Yk-1, "k-v wk-1 5.14 

zk = H'yk 

Where H' = HT = [Imxm Omx(n-m)], Yk = T-1xk = [yY
1
,k] I f"(Yk-V "k-V wk-1) = 

2,k 

T-1 (f(Yk-V "k-1• Vk-1) + Wk-1), Y1k' f1k E 1Rl.mx1, Yzk' fzk E JRl.Cn-m)x1, and Zk = Y1k· 

To obtain the SVSF's gain, a methodology similar to the linear case is used. The 
system described by equation (5.14) is rewritten using the measurement vector as follows: 

5.15 

By rearranging equation (5.15), the following is obtained: 

Yzk_1 = f1k -
1
(Zk-1• zk, "k-v vk-v vk, wk-1) 

5.16 
Y2k-1 = fzk -

1
( Zk-v Yzk, "k-v vk-v wk-1) 

Where f 1k -
1 and f 2k -

1are mapping functions that uniquely extract the states y2k-t from 

zk, zk_1 and uk_1. Using equation (5.16), a temporary estimate, :::k_1, is obtained as 

follows: 
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5.17 

A -1 
Where f 1 is an estimated mapping function that uniquely extracts the hidden temporary 

states vector E2k_
1 

from zk, zk_1 and uk_ 1. The intermediate E variables are used as 

projected measurements for the reduced order nonlinear SVSF. In this research, the 
projected measurements are referred to as the alternative measurements. The SVSF 
structure is outlined as follows: 

1 - Prediction Stage: 

The a priori state estimate is obtained by using an estimated model of the system as 
follows: 

2 - Corrective Stage: 

[
zklk-1] 

Y
1

klk-1 = y~ 
2klk-1 

5.18 

A corrective gain is calculated and used for refining the a priori estimate into its a 
posteriori form as follows: 

Yklk = Yklk-1 + KsvsF-IIIk 

5.19 

where KsvsF-Illk is the SVSF's gain for a reduced order nonlinear system and is defined 

as follows, (Habibi, 2007): 

5.20 

Where eYkik and eYklk-t are the a posteriori and the a priori estimation error, respectively, 

and they are defined as follows: 

5.21 

In real applications, the measurement and system noise are unknown. Because of 
that and due to modeling errors, the alternative measurements vector, Ek, contain a higher 
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level of noise due to differentiation. This means that the smoothing boundary layer will 
be large. The disadvantage of this algorithm is that it leads to a large existence subspace 
for the states that do not have an explicit measurement associated with them. 

5.2 The Toeplitz/Observability SVSF 

5.2.1. Introduction to the Toeplitz and Observability matrices 

The Observability matrix is a mathematical tool that can be used to determine if 
the states can be uniquely extracted from a finite number of measurements. It is derived 
from the system and measurement matrices. The Observability matrix, 0, for a linear time 

invariant systems with n-states and one-measurement is defined as follows, (Kailath, 
1980): 

5.22 

If the Observability matrix is of full rank, then in the absence of noise, the system 
is observable, and the states can be uniquely extracted from measurements using the 
following equation, (Kailath, 1980): 

xk = o-1([zk zk+1 ... zk+n-1V- To[uk uk+1 ... uk+n-1]T) 

Where: 

l 
0 

HB 

T0 = H~B 

HAn-28 

0 
0 

HB 
~ ::: ~ 1 
0 ... 0 

HB 0 

5.23 

5.24 

In the presence of system and measurement noise, equation (5.23) can be restated as: 

_ _1 ([ z::1 j [ u::1 j [ v::1 j [ w::1 ]) xk - 0 : - T0 : - : - Tw : 

zk+n-1 uk+n-1 Vk+n-1 Wk+n-1 

5.25 

Where: 
01xn 01xn 01xn 01xn 

H 01xn 01xn 01xn 

Tw = HA H 01xn 01xn 5.26 

HAn-2 HAn-3 H 01xn 

Proof: 

The measurement equation defined in equation (5.2) can be written in recursive form as 
follows, (Hsu, 1995): 
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5.27 

Further to equation (5.27), the measurement at time step l is linked to the state at time 

step k as follows: 

Zt ~ H ( A1-kxk + ~ ( AH-t(Bu, + w,))) + v, 5.28 

For a vector of measurements starting from time step k to time step l = k + n- 1, and 

by using equation (5.28), the following is obtained: 

Hxk + vk 

5.29 

Rearranging equation (5 .29) gives the following: 

+ [vk:~J 
5.30 

+ [ ~ ] xk 
HAn-1 

By expanding the summation term in equation (5.30) and rewriting it in a matrix form, 

the following is obtained: 

5.31 

Where T0 and Tw are lower triangular Toeplitz matrices that have the forms of equations 

(5.24) and (5 .26), respectively. Equation (5.25) is then obtained by rearranging equation 

(5.31) and multiplying it with the inverse of the Observability matrix . Note that the 

Observability matrix should be invertible, otherwise equation (5.25) is invalid and the 

states or their expectation cannot be obtained. 

From equations (5.23) and (5.25), the inputs are mapped to the states through the 

matrix, T0 . In this research, the matrices T0 and Tw are referred to as the system Toeplitz 
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and the noise Toeplitz matrices, respectively. The estimated state vector of equation 
(5.25), X.Tok' is then obtained as follows: 

~ _ ~- 1 ([ z::1 ] ~ [ u::1 ]) XTok - 0 : -To : 

zk+n-1 uk+n-1 

5.32 

Where 0 and 'i~ are the estimated Observability and system Toeplitz matrices, 
respectively. Note that the error in estimation is equal to the following: 

_ ~ _ 0 -1 ([ z::1 ]- T [ u::1 ]- [ v::1 ]-..., [ w::1 ]) Xk XTok - : o : : •w : 

zk+n-1 uk+n-1 Vk+n-1 Wk+n-1 
~- 1 ([ z::1 ] ~ [ u::1 ]) -0 : -T0 : 

zk+n-1 uk+n-1 

5.33 

If 0 and T0 are equal to 0 and T0 , respectively, then equation (5.33) is reduced to the 
following: 

5.34 

5.2.2. The Toeplitz/Observability SVSF 

The SVSF needs the measurement matrix to have full rank. If this condition is not 
valid, then the SVSF is combined with a method similar to the Luenberger algorithm as 
discussed in section ( 5.1). However, this method has some limitations due to the 
Luenberger algorithm as discussed in sections (1.3) and (5.1). Therefore, a new form of 

the SVSF is developed in this section to solve the problem associated with a lower 
number of measun~ments compared to the number of states. 

From equation (5.34), if the system's Observability and Toeplitz matrices are 
exactly known, then the vector X.Tok is simply extracted from the measurement and the 

input, and it contains the vector xk' s information blurred with measurement and system 

noise, and their dt::rivatives. Therefore, the vector X.TOk can be used to compensate the 

missing (n - 1) measurements. For an observable system with only one measurement 
such that: 

H = [h1 01x(n-1)] 5.35 

then a new measurements vector, zTOk' can be defined as follows: 

zTOk = HkxTok 5.36 
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Where Zrok is the estimated measurement vector obtained by the Observability and 

Toeplitz matrices and has dimensions of Zrok E Iffi.nxt. iik is the new measurement 

matrix with dimensions of Hk E lffi.nxn and has the following form: 

Rk = ~~1 ~1 ·.. ~ ~ j 
0 0 hl 0 
0 0 0 hl 

5.37 

For the special case where h1 = 1, then the new measurement matrix reduces to a unity 

matrix such that Hk = Inxn· In this research, the vectors Xrok and Zrok will be referred to 

as the alternative states and alternative measurements, respectively. 

If the Observability and Toeplitz matrices are exactly known, this implies that the 
output matrix is also exactly known. Nonetheless modeling errors may be present in the 
system and the input matrices; e.g. if the system model is described in its Observability 
canonical form and the measurement represents the first state and its function is well 
known, then the Observability and the Toeplitz matrices are independent of the system 
parameters. In this research, the output matrix, H, is assumed to be known as it is part of 

the SVSF assumption. 

The vectors Xrok and Zrok are stochastic signals and require filtering strategies; 

i.e. the SVSF, for state and parameter estimation. In this section, the SVSF is applied by 

using the alternative measurements and their matrix, Hk, as follows: 

1- Prediction Stage: 

Further to equation (5.3), the a priori state estimate is obtained by using an estimated state 
space model of the system and replacing the measurement vector with the alternative 
measurement vector as follows: 

2 - Update Stage: 

xklk-1 = Ak-1xk-1lk-1 + 8k-1uk-1 

zklk-1 = Hkxklk-1 

5.38 

A corrective gain is calculated and used for refining the a priori estimate into its a 
posteriori form as follows: 

xklk = xklk-1 + Kerok 

zklk = Hkxklk 
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where Kerok is the SVSF's gain for the Toeplitz/Observability SVSF and is defined as 

follows: 

5.40 

5.2.3. Application of the Toeplitz/Observability SVSF into an electro­
hydrostatic actuator 

The Toeplitz/Observability SVSF has been tested on an electro-hydrostatic 
actuator described in chapter four, which has a third order system with the following 
system, input and measurement matrices: 

A=[~ 
Ts 

0 l 1 Ts 
-wn2Ts 1- 2(wnTs 5.41 

B = [0 0 BTsf 

H = [1 0 0] 

Where Wn = 260.3 Hz, B = 22.7 m and ( = 0.2. The sampling time is 0.001 sec. 
secxrad 

The measurement noise is white noise with a noise-to-signal ratio of 5% with respect to 

the first state, and with a variance of (Jv 
2 = [1.2 x 10-15]. The process noise is white 

with a noise-to-signal ratio of 5% of the state amplitudes, and with a variance of (Jw 
2 = 

[
2 X 10-

15 
0 0 l 

0 5 x 10-10 0 . For comparison purposes, the results of the 
o o 1 x lo-s 

proposed algorithm are compared to corresponding results obtained from the KF. The 
system and measurement noise covariance matrices are defined as Q = (Jw 

2 and R = (Jv 
2

, 

respectively, and the initial covariance matrix has a value of P0 = 13 x3 . The SVSF's 
coefficient matrix y has a value of y = 0.02 x 13 x 3 and the SVSF's smoothing boundary 

layer is designed as 'I' = [~ ~ l~=:J. The input consists of a random signal superimposed 

on step changes. The same simulation is performed again assuming that the model 
parameters are inaccurate and with values of Wn, B and ( are equal to 545.75 Hz , 

10 m and 0.302, respectively. Note that the modeling errors vary between 50 -
secxrad 

110% of their actual values as shown in table 5.1. 
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Actual 

B 22.7 10 

260.3 545.75 

0.2 0.302 

McMaster - Mechanical Engineering 

56% 

110% 

51% 

Etror 

Table 5.1: Actual and Estimated system parameters. 

5.2.3.1. Simulation results 

Two cases are considered in this section; the first one involves a known model 
without parametric uncertainties. The second involves an uncertain model with large 
parametric uncertainties as presented in table 5.1. 

5.2.3.1.1. Results using an accurate model (No modeling errors) 

The results of the Toeplitz/Observability SVSF compared to the KF for a known 
model are shown in Figs (5.1) to (5.3). These figures show that the KF gives slightly 
better estimated results for the states than the proposed algorithm when no modeling 
errors are presented (refer to table 5.2). The estimated states obtained by the 

Toeplitz/Observability SVSF are more sensitive to the noise and its derivatives than the 
ones obtained by the KF. Therefore, the proposed method is limited to small noise-to­
signal ratios (as rule of thumbs, the noise-to-signal ratio of noise's derivatives to their 
corresponding states should be less than 10% ). The sensitivity could be reduced by 
increasing the width of the smoothing boundary layer at the expense of accuracy as 
discussed in section (4.3.2). The two methods; the Toeplitz/Observability SVSF and the 
KF, are compared in terms of the root mean square error (RMSEj) defined in equation 

(4.114). Table 5.2 summarizes the RMSEj results for both methods. 

KF I Toeplitz/Observability SVSF 

Position RMSE 8.6 X 10-16 3.2 X l0-1s 

Velocity RMSli 1.5 X 10-9 1.6 X 10-9 

Acceleration RMSE 5.6 x lo-s 6.8 x lo-s 

Table 5.2: Comparison between the Toepl itz/Observability SVSF and the KF for a known 
estimated model. 
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5.2.3.1.2. Results using a non-accurate model 

The results of the Toeplitz/Observability SVSF compared to the KF for a system 

model with large parametric uncertainties as presented in table 5.1 are shown in Figs (5.4) 

to (5.6). These figures show that the Toeplitz/Observability SVSF gives better results than 

the KF (the RMSE of x1 , x2 and x3 obtained by the Toeplitz/Observability SVSF are 

smaller than their corresponding values obtained by the KF, by factors of 1/55, 1/400, 
and 1/2 times, respectively). The method is robust and it is not affected by the magnitude 

of the modeling errors. However, the estimates are sensitive to the noise amplitude and 
the width of the smoothing boundary layer. A confirmation of the conclusions is provided 
by a comparison of the root mean square errors as presented in table 5.3. 

KF J Toeplitl/Obserwability SVSF 
"" 

Position RMSE 4.7 X 10-13 8.5 X 10-15 

Velocity RMSE 3.3 X 10-6 8.7 X 10-9 

ti! 

Acceleration RMSE 0.3747 0.187 

Table 5.3: Comparison between the Toeplitz/Observability SVSF and the KF for model 
with parameters uncertainties. 

The proposed algorithm is limited to systems that: 

Have a single measurement. 

Are observable. 

Have Observability and Toeplitz matrices that are correctly estimated. As 

mentioned before, this statement does not imply that no modeling errors are 
present. There may be modeling errors in the system and the input matrices. The 

measurement matrix must however be known. 

To remove these limitations, a general form is proposed in the following section 

that is referred to as the General Toeplitz/Observability SVSF. 
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5.3 The General Toeplitz/Observability SVSF 

5.3.1 Introduction to canonical forms representation 

The state space representation of a transfer function is not unique and can have an 
infinite number of forms. In this section, four well-known canonical forms including the 
observer, controller, Observability and controllability canonicals forms are summarized. 
These canonical forms are important in mechanical and electrical applications as their 
states have strong physical meanings, [ (Kailath, 1980) and (Nise, 2007)]. 

Consider the following system with a continuous transfer function as given in 
equation (5.42): 

5.42 

This system can also be represented in a state space form. The above mentioned state 
space canonical representations of the continuous system of equation (5.42) are given in 
table 5.4. 

Canonical Form 
Name 

Observer 

Controller 

Observability 

Controllability 

System matrix 

l 
Un-1 

-an-2 

-al 
-ao 

1 
1 

T 

[=~:=~ -al 
-ao 

1 
1 

1 

-a0 jT 
-al 
-a2 

1 -an-l 

-ao 1 -al 
-a2 

1 -an-l 

input 
matrix 

measurement 
matrix 

Table 5.4: The system, input and measurement matrices' of the continuous observer, 
controller, Observability and controllability canonical forms. 
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-1 

r
bn-11 bn-2 

bo 1 

If the system's transfer function does not have zeros (b1, b2 ... bn-l = 0), then the system 
Toeplitz matrix becomes trivial. The corresponding Observability and system Toeplitz 
matrices are summarized in Table 5.5. 

Canonical 
Form (CF) 

Observer 

Controller 

Observability 

Observability matrix 

[ 
-a~-1 ~ ... ~1 ] 

function of (a1 ... an_ 1 ) function ofCa2 ••• an_ 1 ) 

[: :, ... ~] 
bo 0 0 

Controllability b, [: ... 

0 
1 

function of(a2 .•• an_ 1 ) 

System Toeplitz 
matrix 

Table 5.5: The Observability and Toeplitz matrices' structures of the observer, controller, 
Observability and controllability canonical forms. 

According to table 5.5, if modeling errors are present, then the system should be 
presented in the Observability canonical form as the Observability and system Toeplitz 
matrices are independent of the system model parameters a0 , ••. , an_ 1 , b0 • As such, 

modeling errors would not impact the alternative states Xrok as shown in equation (5.34). 

5.3.2 Discrete Observability canonical form 

In order to reduce the estimation error due to modeling uncertainties, the system 
model with a single input is converted to its Observability canonical form. This implies 
that for a system with the transfer function of equation (5.42) and assuming 
(b1, b2 ... bn_1 = 0), the discretized system, measurement and input state space matrices 
have the following forms, (Nise, 2007): 
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A= 

1 
0 
0 

-ao~ -al~ -a2~ 

H = [h1 0 ... 0] 

B = [0 ... 0 boTsV 

Using the Observability representation leads to: 

5.43 

An Observability matrix that is time invariant, with the dimension n x n, and 

independent of the system's parameters, as follows: 

[ 1 Olx(n-1)] 

[ 1 Ts Olx(n-d 

0= 

[ 1 (n - 1)T, t, U - 2) r,' ... (n - 1)r,n-' r,n-•] 
5.44 

A system Toeplitz matrix with zero entries, as the terms (HB, ... , HAn-2 B) m 

equation (5.24) have values of zero. 

A noise Toeplitz matrix that is time invariant and is independent of the system 
parameters, as the terms (H, ... , HAn-2 ) in equation (5.26) are constants. 

An estimation error that is a function of noise as shown in equation (5.34). 

The above observations are illustrated by the following example: 

Example 5.1: 

If the system has the following transfer function: 

b0 557 X 103 

G(s) = 3 2 = 3 2 3 s + a2s + a1s + a0 s +60s + 28 X 10 s 
5.45 

and assuming the time step is 0.001 sec, then the discretized system, measurement, and 
input state space matrices have the following forms: 

[ 1 Ts 
0 l [1 

0.001 
ogo1] A= 0 1 Ts = 0 1 

-aoTs -a1Ts 1- a2Ts 0 -28 0.94 5.46 
H = [h1 0 0] = [1 0 0] 

B = [0 ... 0 boTsV = [0 0 557V 
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The observability, system Toeplitz and noise Toeplitz matrices are independent of the 
parameters of A and B, and are defined as follows: 

0 l [1 0 0 = 1 0.001 
T5 

2 1 0.002 

To= [ :B 0 
HAB HB l = [~ ~ ~] 

0 0 0 0 
5.47 

[

01x3 01x3 01x3] [0 0 0 0 0 0 0 0 0] 
Tw = H 01x3 01x3 = 1 0 0 0 0 0 0 0 0 

HA H 01x3 1 0.001 0 1 0 0 0 0 0 

5.3.3 General Observability Canonical Form 

The Observability canonical form reduces the error in the estimated states due to 
modeling errors in matrices A and B. However, the system's model cannot be reduced to 
the form of equation (5.43) for systems that have multiple measurements and/or multiple 
degrees of freedom. In order to accommodate such systems, an extended form of the 
Observability canonical form referred to as the General Observability Canonical Form 
(GOCF) is presented in this study as follows: 

The system is considered to consist of (NSUB) subsystems or NSUBth degrees of 
freedom. Assuming that each subsystem has an order of ni and a first state (in its 
continuous time form) as Xi(t), i = 1 ... NSUB then the overall system model is 
described by the following set of differential equations: 

5.48 

XNSUB (nNsus) (t) 

L

n1 Lnz , (1-1) , (1-1) 
=- a NSUB,1X1 (t)- a NSUB,l+n1Xz (t)- ... 

1=1 1=1 

L

nNSUB 
1 

( 1_ 1) 
1 

- a NSUB l+"'NSUB-1n XNSUB (t) + b NSUBu(t) 
1=1 ' £.!1 =1 l1 
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The phase variables X 1 ... X 1 (n1 -
1), ... , X NSUB ... X Nsus (nNsua-1) are assumed to be the 

states of the General Observability Canonical Form. They have a total number of 

n = If=1 n1 and are defined as follows: 

x1(t) = X1(t), Xz(t) = .i1(t), ... ,Xnl (t) = x1 (nl-l)(t), 

Xnl+l(t) = Xz(t), Xnl+z(t) = Xz(t), ... ,Xnl+nz(t) = x/n2
-

1)(t) 
5.49 

X.,.NSUB-ln +1 (t) = XNsus(t), ... ,X.,.Nsusn (t) = XNsUB(nNsus-
1
)(t) 

£..1=1 l "'l=l l 

For simplicity, new indices that specify the locations (rows) of the last states of each 
subsystem according to the system matrix are defined as follows: 

i 

ENDSUBi = Ln1,i = 1 ... NSUB 5.50 
1=1 

If m measurements are available for the system, then the measurement matrix is defined 
as follows: 

5.51 

Where HE !Rl.mxn and H1 ... Hm E !Rl.1xn. If each measurement is related to only one of the 
states, then each partition of the measurement matrix is defined as follows: 

Hi = [0 ... 0 1 0 ... 0], i = 1 ... m 

I 
. t 

ocatwn LMSi 
5.52 

Where LMSi is the location (column) of the measured state i. These locations are sorted 

in the output matrix such that LMS1 < LMS2 < ... < LMSm. Further to equation (5.51) 
and using the definition of equation (5.52), the measurement matrix is defined as follows: 

01x(n-LMS1) l 
01x(n-LMSm) 

5.53 

If the measurement matrix does not have the form of equation (5.53), then a special 
transformation can be applied to the measurements as discussed later in section (5.4). 

Using the definition of the states in equation (5.49) and the indices in equation (5.50), a 
revised form of the model is defined as follows: 
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X(t) = rx(t) + pu(t) 5.54 

Where: 

X(t) T 5.55 
= [xl (t) ·· · Xf:NDSUB1 (t) ··· Xf:NDSUBi-t +1 (t) ··· Xf:NDSUBJt) ··· Xf:NDSUBNSUB-t+l (t) ··· Xf:NDSUBNsu/t)] 

IJ= [0 ... 0 b'1 ... 0 ... 0 b';, 0 ... 0 b'Nsu8 ]T 

i i i 
location ENDSUB1 ENDSUB;, ENDSUBNsuB 

U(t) is the continuous input signal 

ENDSUB1 ENDSUBNSU"B 
i J. 

0 0 0 - a'1,1 0 0 0 - a'NsrJ"B,1 

1 0 0 - c/1;1. 0 0 0 - c/NSrJB,:Z 

... ... ... 
00 1 - c/ 1,£NDSU~1 0 0 0 -:,a! NSf.l~,£NDSU~1 

r= ... ... ... 
0 0 0 - .(/ t,ENDSUBNStiB-1 +1 0 0 0 -(/NSrJ~,£NDSU1JNsrJ•-1 +1 

00 0 - a' l.ENDSUBNstl•- 1 +2 1 0 0 - ,a' NSUB.ENDSUBNSrJB-1 +2 

·. ·. 
0 0 0 - c/1.ENDSUBNStiB 0 0 1 - .ctNSUlJ.ENDSrJBNStiB 

5.56 

5.57 

T 

5.58 

X(t) E !Rl.nx\ (3 E !Rl.nx\ U(t) E !Rl.lxl and r E !Rl.nxn . Further to equation (5.54), the 

discretized revised model can be defined as follows (assuming stationary parameters): 

5.59 

Where: 

X k = [xlk ··· X£NDSUB1k ··• XENDSUBi-1 +lk ··· XENDSUBik ·· · XENDSUBNSUB-1 +lk ··· XENDSUBNSUBkr 5.60 

A= 

B = [ o ... o bENDSUB1 ... o ... o bENDSUB, ... o ... o bENDSUBNSUBr 5.61 

1 0 0 aENDSU~1 .1 

T, 1 0 aENDsua1;;. 

· .. : 

0 0 0 aENDSUB1.ENDSUBNsll•- 1 +1 

0 0 0 .aENDSUB1.ENDSUi1Nstl•-1+2 

0 0 0 aENDSUB:vs!l••l 

0 0 0 aENDSr.ll!Ns~• •:Z 

1 0 0 aENDS~'BNsti•.ENDSUiiNstl•-1+1 
Ta 1 0 aENDSUB:vsr:a.ENDSUBNsti.B-1 +2 
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( ) ITDnxl TIDnxl ( ) TIDlxl ITDnxn d h xk = X tk , xk E 11\). , B E 11\). , uk = U tk , uk E 11\). , A E 11\). an t e parameters 

aENDSUB· 1· and bENDSUB· are defined as follows: 
~ ! 

{
1- a'ENDSUB;,jTs ENDSUBi = j . . 

aENDSUB;,j = _ , ·T. ENDSUB· .,t = 1 ... NSUB and;= 1 ... n 
a ENDSUB;,J s ! *} 

The above mentioned representation is illustrated by the following example. 
Example 5.2: 

The system in Fig 5.7 has three degrees of freedom and 
can be expressed by the following differential 
equations: 

M1i1(t) + Cc1 + Cz + c4)x1(t) + (k1 + kz + k4)x1(t) 
= c2x2(t) + c4x3 (t) + kzx2(t) 
+ k4 x3 (t) + b1u(t) 

Mzi2(t) + (cz + c3)xz(t) + (k2 + k 3)x2 (t) 

5.63 

5.64 

= c2x1 (t) + c3x3 (t) + k 2x1 (t) 5.65 
+ k3x3(t) + b2u(t) 

M3x3(t) + (c3 + c4)x3(t) + (k3 + k4)x3(t) 

b
1 
uT xJ .....,___,..----....---.-----~ 

= c3x2(t) + c4x1 (t) + k4x1(t) 
+ k 3x2 (t) + b3u(t) 

If the parameters have the following values: 

k1 = k2 = k3 = k4 = 103Njm, 

c1 = c2 = c3 = c4 = 103 N. secjm, 

b1 = b2 = b3 = 103 and M1 = M2 = M3 = 1 kg 

and assuming the states are defined as follows: 

xll = Xl, x12 = xl, Xzl = Xz, Xz2 = Xz' x31 = 

x3 and x32 = x3 

then the Observability canonical representation 

of the discretized system is obtained as follows: 

x 1lk+l 1 T5 0 0 0 0 
x 12k+l a21 azz a23 a24 azs az6 
Xzlk+l 0 0 1 T5 0 0 = 
Xz2k+l 

x 3lk+l 

x32k+l 

a41 a42 a43 a44 a45 a46 
0 0 0 0 1 ~ 
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c2 

5.67 b
3
J ~T ....__ __ ----~ 

xllk 

x12k 

Xzlk 

Xz2k + 
x3lk 

x32k 

Fig 5.7: Example 2- System 
with three degrees of freedom. 
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If the sampling time has a value of 0.001 sec, then equation (5.68) is reduced to the 
following: 

xllk+l 1 0.001 0 0 0 0 xltk 
0 

xlzk+l -3 -2 1 1 1 1 xlzk 1 
Xzlk+l 0 0 1 0.001 0 0 Xzlk 

+ 0 5.69 = uk 
Xzzk+l 1 1 -2 -1 1 1 Xzzk 1 
x31k+l 0 0 0 0 1 0.001 x3tk 0 

x3zk+l 
1 1 1 1 -2 -1 x3zk 1 

If the displacements for all three masses are measured, then the measurement vector is 
defined as follows: 

[;~:] = [~ ~ ~ ~ ~ ~] [x11 k X12k Xz 1 k Xz 2k X3 1k X32JT 

Z3k 0 0 0 0 1 0 
5.70 

Further to equations (5.61), (5.62) and (5.53), the indices m, LMS1 , LMS2 , LMS3 , and 

NSUB have values of 3,1 ,3 ,5 and 3, respectively. The indices ENDSUB11 ENDSUB2 

and ENDSUB3 have values of 2 ,4 and 6, respectively. 

5.3.3.1. The General Observability matrix 

As discussed in section (5.2.1 ), the full state vector at time k of an observable 

system can be extracted using successive data points of the system's measurement and 

input in conjunction with the Observability and the Toeplitz matrices. For an nth order 
observable single input - single output (SISO) system, n successive data points of the 

measurement and the input are needed to obtain the n states. If the system has multiple 
measurements and/or has multiple degrees of freedom as discussed in the previous 
section, then equation (5.22) cannot be applied and the definition of the Observability and 
the Toeplitz matrices must be modified. For systems with multiple measurements, a 
proposed matrix referred to as the General Observability matrix that can be obtained to 
map the states of the observable system to measurement data segments as follows: 
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5.71 

Where T09 and Tw
9 

are the General System and System Noise Toeplitz matrices. These 

are further discussed later in section (5.3.3.3). 0 9 is the General Observability matrix and 

it is defined as follows: 

09 =[H1 H1A ... H1ALM1 -
1 Hz ... HzALM2 -

1 ... Hm ... HmALMm-lf 5.72 

Where LMi represents the segment's length that is needed from the measurement zi 

(starting from time k to time k + LMi - 1) in order to extract LMi - 1 portions of the 
hidden states at time k (plus the first measured). For example, if at time k, LMi has a 
value of five, then a segment consisting of five time steps from the measurement zi, 

namely zik' zik+l' ... , zik+4' are needed to extract five of the states at time k from the 

measurement zi. 

Proof: 

By taking LMi successive data points from the measurement zi starting from time step k 
to time step k + LMi - 1, and mapping them to the system's state at time k using 
equations (5.27), (5.28), (5.29) and (5.30), the following is obtained: 

Hixk + vik 

k+LMi-2 

H,ALMi-1xk + H, '\' (Ak+LMi-z-j(Bu· + w·)) + v· . . L J J 1k+LM;-1 
j=k 

Rearranging equation (5.73) gives the following: 

133 

k+LMi-2 
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I=k 

5.73 

5.74 



PhD Thesis - Mohammad Al-Shabi McMaster - Mechanical Engineering 

By expanding the summation term in equation (5.74) and rewriting it in a matrix form, the 
following is obtained: 

[ 
z~k l=Toi[ ~k ]+[ v:k l+Twi[ ~k ]+Oixk 

zik+LMj-1 Uk+LMi-l Vik+LMi-1 Wk+LMi-l 
5.75 

i = l ... m 

Where T 0 i and Twi are the system and system noise Toeplitz matrices for the 

measurement i, and they are similar to equations (5.24) and (5.26), respectively. Oi is the 
Observability matrix of the measurement i and it has the following form: 

5.76 

Further to equation (5.76), the measurement segments are linked to the state by 
combining their Observability and Toeplitz matrices as follows: 

zlk uk vlk wk 

Z1k+LM1-1 

~ r:::J 
Uk+LM1-1 V1k+LM1-1 + [T~, l Wk+LM1-1 

+[dJ· + 5.77 
Zmk uk Vmk Twm wk 

Zmk+LMm-1 Uk+LMm-1 Vmk+LMm-1 Wk+LMm-l 

The matrices : and : have dimensions of : E JRl..(Lf;tLMi)x(Lf;tLMi) and [To 1 l [Tw1 l [Toll 
Tom Twm Tom 

: E JRl..(Lf;tLMi)x(nLf;tLM;), respectively. The size of these matrices can be [
Tw 1l 
Twm 

minimized by merging the resultant repeated input and system noise segments as follows: 

5.78 

Where ma is the maximum value of LMi. The resultant matrices; T0 and Tw, are referred 
to as the General System and General System Noise Toeplitz matrices and they have 
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dimensions of T E ~(Lf!.1LMi)xma and T E ~(Lf!.lLMi)x(nma) respectively. By 
Og Wg ' 

combining the Observability matrices and using equation (5.76), the General 
Observability matrix is obtained as follows: 

Og = [d:J = [(H, ... H,ALM,-1] ... [Hm ... HmALMm-l]r 5.79 

Substituting equations (5.78) and (5.79) into equation (5.77) gives the following: 

Z1k uk vlk wk 

Z1k+LM1-1 

= [T~ 1 l Uk+LM1-l V1k+LM1-1 +[T?] Wk+LM1-l +[:}· + 
Zmk Tom uk Vmk Twm wk 

Zmk+LMm-1 Uk+LMm-l Vmk+LMm-1 Wk+LMm-l 

5.80 
zlk vlk 

In order to obtain the full state vector, 09 must have rank of n. 

The General Observability matrix gives an opportunity to obtain the states of an 
observable system from data segments originating from more than one measurement 
signal. In this research, the mechanism that relates data segments associated with multiple 
measurement signals to system states using the new form of Observability and Toeplitz 
matrices is explored. Not only do these matrices accommodate multiple measurements 
but they also reduce the estimation error due to modeling errors. 

5.3.3.1.1. Derivation of the General Observability matrix 

From equation (5.22), the measurement's segment is mapped to the states through 
the Observability matrix. Therefore, the Observability matrix must have full rank for the 
system to be observable in order to obtain the full state vector from a segment of the 
measurement signal. For systems with multiple measurements, there are usually multiple 
segments available and the selection algorithm of these segments is more complicated 
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than the one presented in section (5.2.1) for the case of a single measurement. This is due 
to the overlap of information that can be extracted from the measurements. 

A segment from each of the measurements may be related to some of the states, 
and the length of each segment represents the number of the states that can be extracted 

from it. The connection between each segment and its corresponding states is obtained 
through a matrix referred to as the sub-Observability matrix. As long as this matrix is not 
singular, the states can be determined. Therefore, the choice of the segment length is 
based on the rank of the sub-Observability matrix and can be determined by the following 
heuristic rule: 

The segment length can be increased as long as the new data points provide 
new information, and the resultant sub-Observability matrix has full rank. 

Further to the above rule, the maximum length of the segment may be determined 

iteratively by increasing the segment length one data point at a time, and then checking 
the rank of the resultant sub-Observability matrix. If the new data point does not increase 
the rank of the sub-Observability matrix then the process is stopped, and the maximum 
segment length is made equal to the rank of the sub-Observability matrix as follows: 

5.81 

Note that the portion HiALMt does not provide any new information, thus it will not be 

included. This condition implies that the value of LMi represents the maximum segment 
length for the ith_measurement signal needed for extracting LMi number of states. Any 

additional length beyond this value will not provide any additional information. The 
following example illustrates the process for obtaining the segment maximum lengths. 

Example5.3 

If the system is a third order with the following system and measurement matrices: 

5.82 

and 

5.83 
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respectively, then two data segments may be used to extract the full state vector. Their 

corresponding lengths; LM1 and LM2 , are obtained using equation (5.81) and as follows. 

The maximum segment length of the first measurement, LM1 , is obtained as follows: 

Iteration 0: 

H1 = [1 0 0] 
5.84 

rank([H 1]) = rank(([1 0 o]]) = 1 

Iteration 1 : 

H1A = [1 Ts 0] 

rank ([H~~]) = rank ([g 0 0]]) - 2 
5.85 

Ts 0] -

Iteration 2: 

rank ([ ~~]) = rank ([ g ~ ~]2 ]) = 3 H1A [1 2Ts Ts ] 

5.86 

Iteration 3: 

5.87 

Iteration is stopped and LM1 = 3. 

The maximum segment length of the second measurement, LM2 , is obtained as follows. 

Iteration 0: 

H2 = [0 1 0] 

rank([H2]) = rank([[o 1 o]]) = 1 
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Iteration 1: 
H2A = [0 1 T5 ] 

rank ([u~~]) = rank ([{g J ~]]]) = 2 
5.89 

Iteration 2: 

5.90 

Iteration is stopped and LM2 = 2. 

Note that LM1 + LM2 = 3 + 2 > 3 which means that there is an overlap between the 
extracted information from the two segments. Therefore, more constraints are needed to 
reduce the information overlap. 

The condition of equation (5.81) may lead to overlaps between the information 
extracted from the segments originating from multiple measurements with the 
measurements' information themselves. Example 5.3 demonstrates that information from 
H1A in equation (5.85) overlaps with information from equations (5.84) and (5.88). 
Hence, it does not provide any additional information and can be omitted. Therefore, the 
condition of equation (5.81) can be modified to reduce the segment maximum length of 
the measurement i when its information overlaps the information provided by another 

measurement as follows. 

The maximum length of the segment is obtained iteratively by increasing the segment 
length by one successive data point at a time, and then checking the rank of a matrix that 
consists of combining the resulting sub-Observability and the measurement matrices. If 
the incremental data point at certain time does not increase the rank of the combined 
matrix then the process is stopped, and the maximum segment length is equal to the 
number of iterations as follows: 

Note that the rows in the measurement matrix contribute to obtaining the segment length 
of the measurement i. Therefore, the resulting length of this method is less than the length 
obtained by equation (5.81) as illustrated in the following example. 
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Example 5.4: 

Further to Example 5.3 and using the condition of equation (5.91), LM1 and LM2 are 

obtained as follows. 

The maximum segment length of the first measurement (position), LM1o is obtained as 

follows: 

Iteration 0: 

Iteration 1: 

H = [1 0 0] 
0 1 0 

rank([H]) = rank([[~ ~ ~]]) = 2 

rank ([H H A]) = rank ([ [~ ~ ~] ]) = rank([[~ ~ ~]]) = 2 
1 [1 Ts 0] 

5.92 

5.93 

Iteration is stopped and LM1 = 1. Note that H1A overlaps with the measurement 

information, hence, it is omitted. 

The maximum segment length of the second measurement (velocity), LM2 , is obtained as 

follows: 

Iteration 0, recalling equation (5.92): 

H = [~ ~ ~] 

rank([H]) = rank([[~ ~ ~]]) = 2 

5.92 

Iteration 1 : 

rank ([H H J) = rank ([ [~ ~ ~] ]) = 3 
2 ~ 1 ~] 

5.94 
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Iteration 2: 

[1 0 0] ]) 0 1 0 
[0 1 T5 ] = 3 

1- a1T/ 2T5 - azT/] 

5.95 

Iteration is stopped and LM2 = 2. Note that H2A2 does not add to the rank and is omitted. 

Note that the resulting segment lengths obtained in Example 5.4 are smaller than their 
corresponding lengths obtained in Example 5.3. Using the results of equations (5.93) and 
(5.95), the resultant rank is equal to the number of the states; therefore, the General 
Observability matrix is then defined using equation (5.72) as follows: 

0 9 = [H1 H2 H2AF = [~ ~ ~] 
0 1 T5 

5.96 

The relation between the measurement segment vector and the state vector is defined 
using equation (5.71) as follows: 

5.97 

Rearranging equation (5.97) gives the following: 

5.98 

The inverse of the General Observability matrix is obtained by using equation (5.96) as 
follows: 

0 0] 1 0 

-:s :s 5.99 

Equations (5.98) and (5.99) show that only the velocity segment is used to extract 
the third state (acceleration). This makes sense knowing that the acceleration is the 
second derivative of the position (and its uncertainties) and the first derivative of the 
velocity (and its uncertainties). In general, the first derivative of the velocity's 
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uncertainties has a lower bound than the second derivative of the position's uncertainties; 
therefore, the error in estimating the third state is reduced by using the velocity signal. 

The General Observability matrix should have a rank of n to be observable. This 
implies that it has dimensions of 0 E IR{nxn. However, choosing the segments' length 

using equation (5.91) alone may lead to overlaps between the segments' extracted 
information as shown in the following example. 

Example5.5 

Further to Example 5.2, the segments' lengths of the three measurements are chosen as 
follows. 

The segment length of the first measurement is obtained as follows: 

Iteration 0: 

[

1 0 0 0 0 0] 
H= 001000 

0 0 0 0 1 0 

rank([H]) =rank ([ [~ ~ ~ ~ ~ ~]]) = 3 

Iteration 1: 

H1A = [1 0.001 0 0 0 0] 

rank ([u~A]) =rank ([ [~ ~ ~ ~ Hlj) = 4 
[1 0.001 0 0 0 0] 

Iteration 2: 

rank ([:::z]) = rank 

0.001 0.001 0.001 

[
1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

[1 0.001 0 0 0 O] 
10-3 X (997 - 1 1 1 1 
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- Iteration 3: 

H1A3 = [1.002 0.005 -0.001 -0.001 -0.001 -0.001] 

[
1 0 0 0 0 0] 
0 0 1 0 0 0 

rank ([:!~ ]) = rank 
0 0 0 0 1 0 

[1 0.001 0 0 0 O] =5 

10-3 X [997 - 1 1 1 1 1] 
-1o-3 x [-1oo2 - 5 1111] 

Iteration is stopped and LM1 = 3. 

The segment length of the second measurement is obtained as follows: 

- Iteration 0, recall equation (5.100): 

[
1 0 0 0 0 0] 

H= 001000 
0 0 0 0 1 0 

rank([H]) =rank([[~~~~~ ~]]) = 3 
- Iteration 1: 

H2A = [0 0 1 0.001 0 0] 

rank ([u~A]) = rank ([ [H H Hl]) = 4 
[0 0 1 0.001 0 O] 

- Iteration 2: 

0.001 0.998 0 0.001 0.001] 

[
1 0 0 0 0 0] I 0 0 1 0 0 0 
0 0 0 0 1 0 

[0 0 1 0.001 0 0] 
[0.001 0.001 0.998 0 0.001 0.001] 
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- Iteration 3: 

H2A3 = [ -0.001 -0.001 1 0.003 0 10-6] 

- Iteration 4: 

[

1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

[0 0 1 0.001 0 O] 
[0.001 0.001 0.998 0 0.001 0.001] 
[ -0.001 - 0.001 1 0.003 010-6] 

H2A4 = [0.005 0.005 0.993 -0.003 0.002 0.002] 

rank 

H 
H2A 
HzA2 

HzA3 

HzA4 

=rank 

[

1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

[0 0 1 0.001 0 O] 
10-3 X [11 998 0 1 1] 

10-3 x[-1-11000 3 010-3 ] 

10-3 X [5 5 993 - 3 2 2] 

Iteration is stopped and LM2 = 4. 

The segment length of the third measurement is obtained as follows: 

- Iteration 0: 

[

1 0 0 0 0 0] 
H= 001000 

0 0 0 0 1 0 

rank([H]) = rank ([ ~~ ~ ~ ~ ~ ~]]) = 3 

- Iteration 1: 

H3A = [0 0 0 0 1 0.001] 

rank ([H~A]) = rank ([ ~~ ~ H Hl]) = 4 
[0 0 0 0 1 0.001] 

143 

5.106 
=6 

5.107 
=6 

5.108 

5.109 



PhD Thesis - Mohammad Al-Shabi McMaster - Mechanical Engineering 

- Iteration 2: 

H3A2 = [0.001 0.001 0.001 0.001 0.998 0] 

- Iteration 3: 

- Iteration 4: 

[
1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

[0 0 0 0 1 0.001] 
[0.001 0.001 0.001 0.001 0.998 0] 

-0.001 0 10-6 1 0.003] 

[
1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

[0 0 0 0 1 0.001] 
[0.001 0.001 0.001 0.001 0.998 0] 
[ -0.001 - 0.001 0 10-6 1 0.003] 

H3 A4 = [0.005 0.005 0.002 0.002 0.993 -0.003] 

H 
H3 A [

1 0 0 0 0 0] 
0 0 1 0 0 0 
0 0 0 0 1 0 

= rank [O 0 0 0 1 0.001] 

=5 

=6 

rank H3A2 

H3A3 
H3A4 

[0.001 0.001 0.001 0.001 0.998 O] 
[-0.001 -0.001 0 10-6 1 0.003] 

[0.005 0.005 0.002 0.002 0.993 - 0.003] 
=6 

Iteration is stopped and LM3 = 4. 

5.110 

5.111 

5.112 

Note that I.~=l LMi = 3 + 4 + 4 = 11 > 6, thus there are overlaps in the extracted 
information. The General Observability matrix is obtained using equation (5.72) as 
follows: 
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1 0 0 0 0 0 
1 10-3 0 0 0 0 

0.997 -10-3 10-3 10-3 10-3 10-3 

0 0 1 0 0 0 
0 0 1 10-3 0 0 

Og = 10-3 1o-3 0.998 0 10-3 10-3 5.113 
-10-3 -1o-3 1 3 X 10-3 0 10-6 

0 0 0 0 1 0 
0 0 0 0 1 10-3 

10-3 10-3 10-3 10-3 0.998 0 
-10-3 -1o-3 0 10-6 1 3 X 10-3 

To remove the overlapping information, the segments' lengths must be reduced. 

However, the reduced General Observability matrix is not unique. In this thesis, a novel 
method is used to reduce the segments' lengths to their minimum values (this reduces the 
uncertainties), and to obtain the General Observability matrix in a square matrix form. 

Note that the General Observability matrix in equation (5.113) is not a square 
matrix. Mathematically, this means that the number of equations is larger than the number 
of unknowns and this may result in one of the following problems: 

Adding extra source of uncertainties without improving the information provided by 

the segments. As the segment length increases, the amplitude of the uncertainties 
becomes significantly large as higher derivatives of the noise are included. 
Moreover, larger General Observability matrices need larger amounts of memory 
and computational time especially when the inverse matrix is calculated. 

The overlapped information signals may contradict one another especially when 
modeling errors are present. This may lead to a system of equations with no solution 
as illustrated in Example 5.6. 

Example 5.6: 

Assume that two unknowns a and bare described by the following three equations: 

2a + 2b = 1, 2a + b = 2 and a + 2b = 1 5.114 

Taking the first two equations, the solution of a and b are equal to 1.5 and -1, 
respectively. Note that the solution of the first two equations is not a solution for the third 

equation where 1.5 + 2 x -1 = -0.5 * 1. This means that there is no solution for this 
system of equations. Similarly, if the uncertainties are significantly large and/or modeling 
errors are present when obtaining equation (5.113), then the full state vector may not be 
extracted although the General Observability matrix has full rank. Therefore, the General 
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Observability matrix must be square matrix with rank equal to n and must consist of 

minimum segments' lengths in order to uniquely extract the full state vector from the 

measurement segments with minimum errors. In order to achieve these objectives, other 

conditions and constraints are needed. This matter is addressed in the following section. 

5.3.3.2. The selection of the General Observability matrix for overlapped 
information 

If the General Observability matrix leads to overlapping information, then the 

segment lengths (LMb = 1 ... m ) must be reduced such that a total length of n is 

obtained. This gives a possibility of several non-singular forms of the General 

Observability matrix depending on the combined choices of values for LMi . In this 

subsection, a novel general selection procedure is developed to obtain a General 

Observability matrix that is square with full rank and independent of system parameters. 

The proposed algorithm is based on the following observations. 

Further to examples (Example 5.2) and (Example 5.5) and using the same method 

of examples (Example 5.4) and (Example 5.5), the following observations can be made. 

Observation I: Further to Example 5.5, if the measurement matrix has a rank of I (only 

one measurement is available), then the General Observability matrix is singular unless 

the location of the measured state, LMS1 , has a value of 3 or 5 as shown in table 5.6. 

These values change as the system parameters change. 

Location of z1 (LMS1 ) 1 2 13 4 j 5 6 
I j 

Rank of [H H1A H1A2 H1 A3 H1 A4 H1A5f 4 4 !-6 
5 16 5 

I 
Table 5.6: The rank of the General Observability matrix of Example 5.2 given six states 

and one measurement; i.e. H = H1 . 

In conclusion. if a system has a fewer number of measurements. m. compared to its 

degrees of freedom. NSUB; i.e. m < NSUB. then the Observability matrix has a high 

probability of being singular. 

Observation 2: Further to Example 5.5, if the measurement matrix has a rank of 2 (two 

measurements are available), then selection of the LMS1 and LMS2 leads to the General 

Observability matrix having several forms , some of which are singular as shown in table 

5.7. These forms are summarized as follows : 

If both measurements belong to the same sub-system, then the General 

Observability has a high probability of being singular. 
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If the measurements belong to different sub-systems, then the General 

Observability' s singularity depends on the system parameters and is obtained by 

trial and error (iteration). For example 2, if the first measurement belongs to the 

second sub-system and the second measurement belongs to the third sub-system 

then the Observability matrix has full rank as shown in table 5.7. If the parameters 

change, these locations change as well. 

In conclusion, for a system with multiple degrees of freedom with m < NSUB, each 

possible length of the measurements' segments should be examined to obtain the full rank 

Observability matrix. 

Rank of Rank of Rank of Rank of Rank of 
N l' N l' H H H H H .... 0 N 0 
,.--..0 ,.--..0 H1A H1A H1A H1A H2 A 
t-~ t-~ 
:s:: cs· :s:: cs· HlAz HlAz HlAz H2A H2A2 
V)= V)= 
0o N 0 H1A3 H1A3 H2A HzAz HzA3 ...., ""-'...., 

H1A4 H2A HzAz HzA3 HzA4 
I 2 4 I 4 I 4 4 4 I 

I 3 5 I 6 
I 

5 6 6 _j 
I 4 5 i 6 I 6 6 i 6 i 
I 5 5 I 6 I 5 6 6 
I 6 5 I 6 I 6 6 6 
2 3 5 I 6 I 6 6 I 6 
2 4 5 6 5 6 6 
2 5 5 I 6 6 6 ' 6 

i 6 -----·--------+-2 6 5 5 6 6 
3 4 5 I 4 I 4 5 6 
3 5 6 I 6 5 6 I 6 
3 6 6 i 6 6 6 I 6 ! 

4 5 6 6 6 6 6 
4 6 I 6 i 6 5 6 I 6 j 

5 I 6 I 5 I 4 I 4 5 6 I 
Table 5.7: The rank of the General Observability matrix for example 2 given six states 

and two measurements i.e. H = [H1 H2F. 
Observation 3: if the measurement matrix has rank of 3 (equal to the number of the sub­

systems, NSU B, in the multiple degrees of freedom system), then the rank of the General 

Observability matrix depends on the location of the measured states as shown in table 5.8 

and must be outlined as follows : 
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If at least two measurements belong to the same sub-system, then the General 

Observability matrix has a high probability of being singular. 

If the measurements belong to different sub-systems, then the General 

Observability matrix has a high probability of having full rank, depending on the 

location of the measured states and the system' s parameters. From example 2,_jf 

the measured states are the first states of each corresponding sub-systems then the 

General Observability matrix is guaranteed to have full rank and is independent of 

the system's parameters. 

I 2 3 6 55 5 5 l 5 I 6 I 5 I 4 J 5 , 

I 2 6 6 55 56 5 i 6 l 5 l 4 1 5 j 

1 3 4 6 6~ ,-~5 - 5 5_j__~_ I -4 I 5 [}_I 2__J 
, 3 5 6 l , , 6 6 1 6 T 6 6 1 6 r~ 
I 3 6 L 6 . 6 I 6 6 6 I 6 6 I 6 I 6 6 I 
l 4 56 6 6 6 6 1 6 1 6 1 6 ] 6 1 6 1 
I 4 6 6 6 56 6 5 6 j 5 6 j 6 j 
I 56 6 5 j 6 55 6 4 1 5 1 5 1 5 1 

2 3 4 6 5 1 6 5 5 j 6 4 1 5 1 5 1 6 1 
2 3 5 , 6 6 5 6 6 1 6 1 6 1 6 1 6 1 6 1 

+ : r-f----~--- -~-- ---~- --~---· -- ~ I· ~ ---~- ~ -+-~--t---{-1 ~--1 
2 4 6 6 6 5 6 l 6 ! 6 l 6 l 6 l 6 l 6 ! 
2 56 6 5 l 6 l 5 56 4 5 5 l 6 j 

3 56 6 56 5 5 1 6 
4 1 5 6 6 5 6 5 5 1 6 

4 5 
4 5 

4 

4 

5 
5 

5 
5 

5 I 
6 I 

Table 5.8: The rank of the General Observability matrtx of example 2 gtven stx states and 
three measurements i.e. H = [H1 H2 H3F. 
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Example 5.7: 

Further to the system in Example 5.1, the General Observability matrix for different 

single measurement locations is obtained in table 5.9. It can be observed from table 5.9 

that the Observability matrix does not have full rank and is not independent of the 

parameters unless the measurement corresponds to the first state. The same conclusion is 

obtained from tables (5.7) and (5 .8). 

H = [1 0 0] H = [0 1 0] H = [0 0 1] 

General I I I [1 0 0] r 0 0 r [0 0 0 ]' I 
Observability 1 T5 0 I 1 1 1- 28T5 0 -28 -54.32 i 

I matrix I 1 2T5 T/ 0 T5 1.94T5 1 0.94 0.8836- 28T5 ! ·- I 

I Rank 3 
L I 

2 2 

Table 5.9: The General Observability matrix and its rank for example I given three states 

and one measurement. 

In conclusion, the General Observability matrix of the General Observability Canonical 

Form is guaranteed to have a full rank that is independent of the parameters if at least 

each sub-system's first state is measured. Otherwise the General Observability matrix's 

rank depends on the system's parameters, measurement signal locations, and the selection 

of the data segments' lengths. 

5.3.3.2.1. The General Observability matrix's conditions 

In order to force the resultant General Observability matrix to be fully ranked, 

time invariant and independent of the system's parameters, the measurement matrix must 

qualify the following: 

m ~ NSUB 5.115 

For any STSUBi E {STSUB1 , ... ,STSUBNsu8 } there is 

LMS1 E {LMS11 ... ,LMSm}whereSTSUBi = LMS1 
5.116 

Where LMS1 is the location of the measured state j and it is defined by equation (5.52), 

and STSUBi is the row that represents the beginning of the subsystem i . The conditions 

of equations (5 .115) and (5.116) imply that if a multi-degree of freedom system exists 

with order of NSUB, then at least one measurement from each subsystem is needed and 

this measurement should represent the first state in that subsystem. 
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5.3.3.2.2. The General Observability matrix's - Selection procedure 

If the system satisfies the conditions of equations (5.115) and (5.116), then the 

best selection of the General Observability matrix is obtained as follows. 

1- The measurement matrix is divided into blocks; each block is related to one of the 

sub-systems. 

2- To extract the hidden states, the measurements are taken in segments. The 

segment length of the measurement i, LMi, is defined as a function of the 

measured states' locations of the measurement signals i and i + 1; i.e. LMSi and 

LMSi+b respectively. This can be expressed as follows: 

LM· = {LMSi+l - LMSi 
1 n- LMSm + 1 

i < m 
i =m 

5.117 

Note that if the system qualifies equations (5.115) and (5.116), then the segment 

length can be obtained directly by equation (5.117) and there is no need to use the 

iterative process described in section (5.3.3.1.1). This reduces the time needed to 

prepare the segments. Moreover, the resultant General Observability matrix is a 

square matrix with rank of n. 

3- The General Observability matrix is then divided into m -blocks in a block­

diagonal form as shown in equation (5.118). 

I 
Osub1 OLM1 x(n-LM1) 

= OLM2 x(LMS2 -1) Os~bz 

OLMmX(LMSm-1) 

Each block consists of the following: 

... OLM2 x(n-LMS2 -LM2 +1)1 

Osubm 

5.118 

o An Observability matrix that is similar to equation (5.44) and has a size of 

LMi x LMi, where i is the block's order. This matrix is referred to as the 

sub-Observability matrix of block i, Osubi· This matrix has full rank and its 

location in the General Observability matrix starts at row and column equal 

to LMSi. 
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o Two zero matrices with sizes of LMi x (LMSi - 1) and LMi X 

(n- LMSi- LMi + 1). The former matrix is located to the left side of the 

sub-Observability matrix, Osubi' while the latter is located to its right side. 

Note that the sub-Observability and the zero matrices have the same number 
of rows, and the sum of their columns is equal to the number of states, n. 

4- The inverse of the General Observability matrix has size of 09 -
1 E ~nxn and it 

can be obtained by replacing each sub-Observability matrix with its inverse. 

[ 

Osub - 1 OLMtx(n-LMt) 
1 1 

Og -1 = OLMzX(LMSz-1) Osu~z-

OLMmX(LMSm-1) 

0 LMz x(n-LMSz-LMz + 1)j 

0 -1 
SUbm 

Example 5.8: 

Further to Example 5.2, if the measurement matrix is defined as follows: 

[

1 0 0 0 0 0] 
H= 001000 

0 0 0 0 1 0 

5.119 

5.120 

Then the locations of the measured states, LMSi> are set to the values of 1, 3 and 5. The 
segments' lengths are defined using equation (5.117) as follows: 

LM1 = LMS2 - LMS1 = 3 - 1 = 2 

LM2 = LMS3 - LMS2 = 5 - 3 = 2 

LM3 = n + 1 - LMS3 = 6 + 1 - 5 = 2 

The General Observability matrix is then defined using equation (5.72) as follows: 

0= 

[i ~J 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 

[i ~] 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 

[i ~] 

~]. 
If the measurement matrix is defined as follows: 
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H = ~~ ~ ~ ~ ~ ~] 
0 0 1 0 0 0 
0 0 0 0 1 0 

5.123 

Then LMSi, i = 1 ... 4 have values of 1, 2, 3 and 5, and the segments' lengths are defined 
using equation (5.117) as follows: 

LM1 = LMS2 - LMS1 = 2 - 1 = 1 

LM2 = LMS3 - LMS2 = 3- 2 = 1 

LM3 = LMS4 - LMS3 = 5 - 3 = 2 

LM4 = n + 1- LMS4 = 6 + 1-5 = 2 

The General Observability matrix is then defined using equation (5.72) as follows: 

[Hl] [1] 0 0 0 0 0 
[Hz] 0 [1] 0 0 0 0 ro=,, 01x1 01X2 01X2] 

0= [u~~] 0 0 [i ~] 0 0 - Olxl Osubz 01x2 01x2 

0 0 0 0 - Ozx1 Ozx1 Osub3 Ozxz 

[u~~] 0 0 0 0 [~ O] 02x1 02x1 Ozxz Osub4 
0 0 0 0 Ts 

Where Osubl = Osubz = [1] and Osub3 = Osub4 = [i ~]. 

5.124 

5.125 

5.3.3.2.3. The General Observability matrix's -Modified selection procedure 

If the system satisfies only the condition of equation (5.115); i.e. number of 
measurements is larger than the number of subsystems and at least one subsystem does 
not have a measurement related to its first state, then the best selection of the General 
Observability matrix is iteratively obtained as follows. 

STEP 1: The system matrix is divided into blocks; each block is related to one of the 
subsystems that starts at row SSUBi and ends at row ENDSUBi, i = 1 ... NSUB as shown 
in Fig 5.8. 
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Stepl 
1 Ts • - - SSUB1 

Bloc ~-7 1 Ts 

A 
a£.VDSUIJ ; ,1 ... aE.VDSUIJi • '!NDS!llJNsu • 

= 1 
+--ENDSU~ 

Bloc 
NSU 
~-9 B . aE.VDStl lJ:vs u 6 •1 ... 

·. 
1 Ts 

·. 
aEXDS!llJNs v 6,E NDSUIJ:vsrt6 

Fig 5.8: The modified selection procedure of the General Observability matrix - Step I: 

dividing the system matrix into blocks 

Example 5.9: 

Further to Example 5.2, where the system matrix is defined as follows : 

1T5 0 0 0 0 
a21 azz a23 a24 azs a26 

A= 0 0 1 Ts 0 0 
a41 a42 a43 a44 a4s a46 

0 0 0 0 1 Ts 
a61 a62 a63 a64 a6s a66 

the system is divided into three blocks. 

Block I starts at row SSU81 = 1 and ends at rows ENDSU81 = 2 

Block 2 starts at row SSU82 = 3 and ends at rows ENDSU82 = 4 

Block 3 starts at row SSU 8 3 = 5 and ends at rows EN DSU 8 3 = 6 

5.126 

STEP 2: From Fig 5.9, each block is assigned to a portion of the state vector located 

between rows SSU8i and ENDSU8i> i = 1 ... NSU8 , and it has length of ni defined as 

follows: 

_ fSSU8Si+l- SSU8Si 
ni - t n- SSU 8Si + 1 

Example 5.10: 

i < NSU8 
i = NSU8 ,i = 1 ... NSU8 5.127 

Further to Example 5.9, the lengths of the state vector portions are obtained as follows : 
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n1 = SSUBS2 - SSUBS1 = 3- 1 = 2 

n2 = SSUBS3 - SSUBS2 =5-3= 2 

n3 = n- SSUBS3 + 1 = 6- 5 + 1 = 2 

portion (sub-vector) 1 -
portion (sub-vecto 

I 
r) 

NSUB ~ 

Xl;c 

·~ 
. 

XE.VDSUB~:c 

: 
Xssus:.·sus:c 

'!) : 

X E.VDSUS:.•suB· 

+--ENDSU!1 

+--SSUB:-~:Ju• 

+---ENDSUIJ.-v:sv• 

5.128 

Fig 5.9: The modified selection procedure of the General Observability matrix - Step 2: 

dividing the state vector into sub-vectors according to step I blocks 

STEP 3: Using the relation between the states and the measurements described by 

equation (5.52) and using the state portions (sub-vectors) of step 2, the measurement 

vector can be divided into groups. Each group is assigned to one of the blocks using the 

location of the measured state as follows: 

5.129 

Each block has a number of measurements mi associated with it, where i = 1 ... N SUB. 

The measurement matrix defined by equations (5 .52) and (5.53) is sorted according to the 

location of the measured states. The measurement matrix is then divided into sub­

matrices according to mi. These sub-matrices are referred to as measurement blocks. 

Each measurement block is assigned to a portion of the measurement vector of length mi 

located between the row indices Ii:i m 1 + 1 and Il=1 m 1 of its corresponding 

measurement vector, zk as shown in Fig 5.1 0. The measurement sub-vector of block i is 

then defined as follows: 

Zsubik = [z(E!;;; im1)+1k z(E!;;;im1)+2k ··· z(E)=1 m1)JT 

The locations of the measured states, which are represented by 

defined as follows: 

LMS(~i-1 )+l' LMS(~i-1 )+z' ... , LMS(~i ) £.1=1 m1 £.1=1 m1 £.1=1 m1 
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measurement 
block 1 ~ 

H 

SSUB1 S L.\151< S ENDSUB1 

zk 

measurement ~ m
1 

sub-vector 1 ~ I, 

measurement 
blockNStJ"B I? 

SSUB1 S LMS,.,~ S E.VDSUB1 

SSUB::svs S LMS(r.~s:''-' mr)+t:c S E~DSUBssus 

SSUBssus S LMS{(t:~."'md=m}. S ENDSUB.vsus 

measurement 
sub-vector NSUB 

Fig 5.10: The modified selection procedure of the General Observability matrix- Step 3: 

Assigning the measurements sub-vectors 

For example, if the system has 2 measurements for the first sub-system, and one 

measurement for the second sub-system, then measurement sub-vector I has two 

measurements; i.e. (m1 = 2) and measurement sub-vector 2 has one measurement; i.e. 

(m2 = 1) . According to equations (5 .130) and (5.131), the measurements of sub-vector I 

are Z(L?=l mt)+lk = Zo+lk = Zlk and Z(rJ=l mt)k = Zm1 k = Zzk located at the rows 

LMS("o m1)+l = LMS0+1k = LMS1 and LMS("1 m) = LMSm = LMS2 , respectively. 
"-1=1 k "-1=1 1 k 1k 

The measurement of sub-vector 2 is zcrt=l mt)+lk = Zz+lk = z3k located at the row 

LMS(r[=l mt)+lk = LMSz+lk = LMS3. 

Example 5.11: 

Further to Example 5.9, if the measurement matrix is defmed as follows: 

[
1 0 0 0 0 0] ["1] H = 0 0 0 1 0 0 = Hz 
0 0 0 0 0 1 H3 

Then the measurement vector is divided into blocks as follows: 

z1 E Blok1 because SSUB1 :5 LMS1 k :5 ENDSUB1 

z2 E Blok2 because SSUB2 :5 LMS2k :5 ENDSUB2 

z3 E Blok3 because SSUB3 :5 LMS3k :5 ENDSUB3 

~ m 1 = 1, m 2 = 1 and m 3 = 1. 
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STEP 4: The initial segment length of each measurement is obtained by processing each 

block of the system matrix individually (later, this length may change). This can be done 

for block j by modifying equation (5.117) as follows: 

{ 

LMSi+l- LMSi 
LMi = . 

~
1 

n 1 - LMS"j + 1 
Ll=l "-'q=1mq 

i < ~j m1 
Ll=l 

i = ~j m1 
Ll=l 

fori = L.{:: m1 + 1, ... , L.{=1 m1 and j = 1 ... NSUB 

5.134 

Equation (5 .134) sets the initial block measurement segments' lengths to be similar to 

those obtained from the procedure in section 5.3.3.2.2; i.e. the initial segment length of 
the measurement i is the difference between the measured state locations LMSi and at 

LMSi+l as shown in Fig 5.11 (Note that the counter i starts in block j from the value 

L.{:: m1 + 1 and ends with the value I.{=1 m 1) . The last measurement in block j, zz:{=
1 

m
1
, 

has an initial segment length equal to the difference between the row that represents the 

end of the block and the location of the measured state represented by the measurement 

zd , LMS"j . 
"-'1=1 ml "-'1=1 ml 

Blockj of the system matri"< A with z. 
l' ""'~ 

{ 

SSUBi ~ 
Li ..., 

LMS(r{;;m;+t'J-

LMS(~!- t +.,) _ 
"-.: 1 ml -

LM(d · ) { LMS(r{;;m1+ il ) -
"- l=1mz.+ '1 -

LMS(r {;;mi+ iJ+t ) -

LM (2:{=
1 
mt)-+ {LMS(r{;;mr+m1)~ 

ENDSUBJ ~ 

I 
I 

I 
I 
I 

I 
11 

1 Ts 
: 

1 Ts 

. 
1 Ts 

. 
1 Ts 

1 Ts 

. 
1 Ts 

. 
aE.VDSUBj.l ••• aE."VDSUBp~ 

I 
I 

I 
I 
I 

I 
I 

Fig 5.11 : The modified selection procedure of the General Observability matrix- Step 4: 

Obtaining the initial measurement segments lengths. 
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Example 5.12: 

Further to Example 5.9, the initial General Observability matrix is obtained as follows. 

The initial segment lengths are obtained as follows: 

LM1 = "'
1 

n1 - LMS"i1- m + 1 = n 1 - LMS1 + 1 = 2- 1 + 1 = 2 Lt==1 q-1 q 

LM2 = "'
2 

n 1 - LMS"iz _ m + 1 = n1 + n2 - LMS2 + 1 = 4- 4 + 1 = 1 5.135 Lt==1 q-1 q 

LM3 = "'
3 

nt - LMS"iz _ m + 1 = n1 + n2 + n 3 - LMS3 + 1 = 6- 6 + 1 = 1 Lt==1 q-1 q 

And the initial General Observability matrix, 0
90

, is defined as follows: 

5.136 

STEP 5: The remaining states located in state's sub-vector j are between SSUBi and 

LMS....,j-1 
1

, which represents the difference between the beginning of this sub-vector 
"'1==1 m1+ 

and the location of the measured state obtained from its first measurement. These states 

have a length of Li obtained as follows: 

Li = LMS"'j-1 +1 - SSUBi,j = 1 ... NSUB 
"'1=1 mt 

5.137 

The resultant initial General Observability matrix, 0 9 0
, is then obtained from the initial 

segments and it has the following rank: 

"'\;NSUB 

rank ( 0 90 ) = n- Li=
1 

Li 5.138 

Note that if the first measurement in each block represents its first state, then 2.flf8 Li = 
0 and the General Observability matrix has full rank. Equation (5.138) shows that 

2.flf8 Li data points are needed to obtain the full state vector. To obtain these data points, 

the iterative procedure described in Fig 5.12 is used as follows. 

I. A list of the measurement segments is created. This list is referred to as the 
expandable segment list and it contains the measurement segments that can be 
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expanded to increase the rank of the initial General Observability matrix. Initially, 
all the segments are assumed to be expandable. 

II. The measurement with the shortest LMi (segment length) from the expandable 

segment list is taken first, and its segment is expanded by one time step, zik+LM .• 
! 

The rank of the combined matrix that consists of the initial General Observability 
matrix and the data of HiALMi is tested. If the rank increases, then the initial 

General Observability matrix is expanded as follows: 

0 = g lteratwn 
[
0 . ] 

g Iteration+l HiALMi 
5.139 

Where 0 9 is the new initial General Observability matrix for the next 
lteration+l 

iteration, and 0 9 is the old initial General Observability matrix. 
Iteration 

III. If the rank does not increase, then the selected measurement, zi> has the maximum 
segment length and it cannot be expanded, hence it is removed from the list of step 
I. 

IV. The rank of the resultant initial General Observability matrix is examined. If the 
rank is equal to the number of states, then the algorithm stops. Otherwise, steps 
(II), (III) and (IV) are repeated. 

V. Once the iteration stops, the General Observability matrix is then considered to be 
the last update of the initial General Observability matrix. 
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Stop iteration and 

Og = Og I rn-a ti. or. 

initialize the expandable segment list and Og 
0 

! II teration = 0 I 
Iteration= Iteration+ 1 

Create a list with all expandable measurement segments. 

From the list of the expandable segments, take the measurement segment 
T 

with the smallest length (LM;); i.e. [z:lc ... z i lc+LMi _ 1] , and add to it another 

data point form the measurement, i.e. z i lc+LM;· 

Yes 

Then LMi represent the maximum segment length of the measurement i and it 

cannot be expanded. Therefore, it is removed from the expandable segment list. 

Fig 5.12: The iterative procedure of increasing the segment length in order to obtain the 

General Observability matrix with full rank 
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Example 5.13: 

Further to Example 5.12, LMSi has values of 1, 4 and 6, and the initial General 
Observability matrix has rank of 4 and is defined as follows: 

o = [["~~l] = [G ~] ~ ~ ~ ~] 
Do [H2] 0 0 0 1 0 0 

[H 3] 0 0 0 0 0 1 

5.140 

Using equation (5.137), the remaining hidden states in each block, Lb have lengths of: 

L1 = (LMS...i-1 1 - SSUBj) II= 1 = LMS1 - SSUB1 = 1- 1 = 0 
"-1=1 mt+ 

L2 = (LMS'<:'i-1 1 - SSUBj) lj=z = LMS2 - SSUB2 = 4- 3 = 1 
"-1=1 mt+ 

5.141 

L3 = (LMS...i-1 1 - SSUBj) lj=3 = LMS3 - SSUB3 = 6- 5 = 1 
"-1=1 m1+ 

The initial General Observability matrix needs two more independent rows to become a 
General Observability matrix with full rank. From step 5 in the modified procedure, the 

expandable segment list is created and initially it contains LMt. LM2 and LM3 . 

Iteration 1 : 

Two segments have the shortest segment length (LMi) in the list, which are z2 and z3 with 
LM2 = 1 and LM3 = 1, respectively. Each one can be used at this point. In this example, 
the measurement z2 is used. Increasing the segment of z2 by one data point, H2A, 
increases the rank of the combined matrix (that consists of the initial General 

Observability matrix 0 90 and the new data H2A) by one as follows: 

([[[
1 o] o o o olj) 0 1 Ts 0 0 0 0 

rank ([H 9A]) =rank 0 0 0 1 0 0 = rank(090 ) + 1 = 5 
2 00 0001 

[1 1 -2 - 1 1 1] 

5.142 

The segment length of the z2 is then increased, and the new initial General Observability 
matrix becomes as follows: 

g ~ H~j 
-2 -1 1 
0 0 0 

5.143 
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The new initial General Observability matrix does not have full rank, so the procedure is 

repeated. 

Iteration 2: 

The expandable segment list is updated. The measurement with the shortest LMi becomes 

z3 with LM3 = 1. Increasing the segment of z3 by one data point, H3A, increases the rank 

of the combined matrix (that consists of the initial General Observability matrix 0 91 and 

the new data H3 A) by one as follows: 

r[~ ~] 0 0 0 0 
0 0 0 0 

rank ([~:A]) = rank 
0 0 1 0 0 = rank(09J + 1 = 6 5.144 
1 -2 -1 1 1 
0 0 0 0 1 

[1 1 1 1 -2 -1] 

The segment length of the z3 is then increased, and the new initial General Observability 

matrix becomes as follows: 

[n~~] [i ~J 
0 0 0 0 
0 0 0 0 

Og2 = [n~~] 0 0 0 1 0 0 5.145 = 1 1 -2 -1 1 1 

[n~~] 
0 0 0 0 0 1 
1 1 1 1 -2 -1 

The new initial General Observability matrix has full rank, so the iterative process is 

stopped and the General Observability matrix is defined as follows: 

[i ~] 
0 0 
1 1 
0 0 
1 1 

0 0 
0 0 
0 1 

-2 -1 
0 0 
1 1 

0 0 
0 0 
0 0 

1 1 
0 1 
-2 -1 

5.146 

The General Observability matrix of equation (5.146) depends on the system's 
parameters, thus the expanding algorithm may vary from system to system. If modeling 

errors are present, this will affect the states estimates. This research focuses on systems 

that follow the conditions of equations (5.115) and (5.116). Otherwise, the modeling 

errors cannot be constructed and the states will be wrongly estimated. 
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5.3.3.3. The General System and the General System Noise Toeplitz matrices 

Once the General Observability matrix is obtained, the segment length for each 
measurement is obtained and, the General System and the General System Noise Toeplitz 
matrices can be derived as discussed in section (5.2.2). The GOCF has the following 
General System and General System Noise Toeplitz matrices derived in section (5.3.3.1) 
(assuming that the General Observability matrix is sorted according to the measurement 
location as in equation (5.71)). 

01Xma 

H 18 01x(ma-1) 

H1ALM1-28 H1ALM1-38 01x(ma-LM1 +1) 

To = g 
01xma 

5.147 

Hm8 01x(ma-1) 

HmALMm-28 HmALMm-38 ... 01x(ma-LMm+1) 

01x(nxma) 

H1 01x(nx(ma-1)) 

Tw = 
H

1
ALMc2 H1ALM1-3 01x(nx(ma-LM1 +1)) 

g 
5.148 

01x(nxma) 

Hm 01x(nx(ma-1)) 

HmALMm-2 HmALMm-3 ... 01x(nx(ma-LMm+1)) 

Where ma is the maximum value of LMi. Note that both T09 and Tw
9 

are in block form 

and they have sizes of T E ~(l:f;1LM;)xma and T E ~(l:f;1LM;)x(nma) respectively 
Og Wg ' • 

To create these matrices, the segment lengths must be obtained first. Therefore, the 
General Observability matrix must be developed, then the General System and the 
General System Noise Toeplitz matrices are obtained by using the resulting segments and 
the equations (5.147) and (5.148). 

This research only considers systems that have measurement, input and system 
matrices of equations (5.53), (5.61) and (5.62), respectively, and that satisfy equations 
(5.115) and (5.116). The proposed General Observability and General System Toeplitz 
matrices divide the system into blocks; each block links some of the states to 
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measurements. Therefore, by taking consecutive points of that measurement, these states 
can be extracted. Using the definition of the General Observability matrix in equation 
(5.72) and the General System and the General System Noise Toeplitz matrices in 
equations (5.147) and (5.148), the states can be obtained as follows: 

0 -1 
xk = g 

The estimate vector, Xcrok' is obtained as: 

5.149 

5.150 

Where 0 9 -
1 and 09 -

1 
are the inverse of the General Observability matrix and its 

estimated inverse. If the system has measurement, input and system matrices of equations 
(5.53), (5.61) and (5.62), and satisfies equations (5.115) and (5.116), then these matrices 

(09 -
1 and 0 9 -

1
) are in block-diagonal form and the inverse is obtained by taking the 

inverse of each block's sub-Observability matrix individually as follows: 

[ 0 -l OLM1 x(n-LM1 ) sub1 

Og -1 = OLM2 x(LMS2 -1) Osub2 

-1 
0LM,,(n-LMS,-LM,+1) 1 

OLMmX(LMSm-1) 
0 -1 

subm 

Osub1 
-1 5.151 

OLM1 x(n-LM1 ) 

--1 OLM2 x(LMS2 -1) Dsub2 

-1 
OLM2 x(n-LMS2 -LM2 +1) 

Og = 

OLMmX(LMSm-1) Dsubm 
-1 

Each sub-Observability matrix has the form of equation (5.44). Therefore, the estimated 
General Observability matrix is independent of the parameters. On the other hand, the 
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General System Toeplitz matrix for these systems is a zero matrix. This means that the 
input signal is not needed to obtain the alternative states and measurements as discussed 

in section (5.2). The difference between the states and the alternative states, Xrok is a 

function of the noise as follows: 

5.152 

The alternative measurement, zGrok' is then defined as follows: 

5.153 

Equation (5 .153) can be rewritten as follows: 

5.154 

Where ak is the new measurement noise vector that has size of ak E JR{nx1 and is defined 
as follows: 

--1 
Og 5.155 

Note that if the measurement matrix has full rank, then ak becomes equal to the 

measurement noise vector, vk, whereas LM1 = LM2 = ... = LMm = 1, ii = H, 0 0 = H 

and Tw = Onxn· If the system has a single degree of freedom structure with only one 
measurement, then equations (5.147), (5.148), (5.149), (5.150) and (5.152) are reduced to 
equations (5.24), (5.26), (5.25), (5.32) and (5.34), respectively. 
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Once the alternative measurements are obtained, the SVSF can be used to estimate 
the states and the parameters as discussed in section (5.2.2). The combined algorithm 
between the General Observability and the General System Toeplitz matrix is referred to 
as the General Toeplitz/Observability SVSF and it has the algorithm described by 
equations (5.38), (5.39) and (5.40). The main difference between this method and the 
method described in section (5.2.2) is the procedure used to obtain the alternative states 
and measurements. 

5.4 Measurement matrix treatment 

In order to make the selection processes described in sections (5.3.3.2.3) and 
(5.3.3.2.2) applicable, the measurement matrix must have the structure of equation (5.53) 
(each measurement is only related to one state). Otherwise, the General Observability is 
obtained by trial and error (using the iterative method described in section (5.3.3.1)). The 
resultant General Observability matrix has several forms, and these forms have a high 
probability of being dependent on system parameters. In order to solve this problem, the 
following procedure (described by Fig 5.13) is used. 

The measurement matrix is divided into n column vectors as follows: 

H= 5.156 
i i i i 

vector 1 vector 2 vector 3 vector n 

A new vector is created that contains the locations of the zero columns in the 
measurement matrix. The first entry of the vector represents the location of the 
first zero column, the second entry of the vector represents the location of the 
second zero column, and so on. The resultant vector is referred to as the zeros 

location list, ZeLoLi, and it has sizes of ZeLoLi E ~zlxt. Where zl is the number 
of zero columns in the measurement matrix. 

If n- zl * m, then this procedure fails and the General Observability matrix can 
only be obtained by the iterative method of section (5.3.3.1). 

If n- zl = m, then a new square matrix can be created from the measurement 
matrix by taking its non-zero columns. The new matrix is referred to as the 
reduced measurement matrix, HR and it has size of HR E ~mxm. 
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The state vector can be reduced by eliminating the states that do not have a 
measurement associated with them. The reduced vector is referred to as the 

reduced state vector, xRk and it has size ofxRk E ~mxt. The measurement can be 

expressed using HR and xRk as follows: 

5.157 

The measurement vector can be rearranged to obtain a new measurement vector, 

Znewk' that has size of Znewk E ~mxl and is defined as follows: 

5.158 

Each member of Znewk is related to one state of xRk· Note that HR must be 

invertible, otherwise, equation (5.158) is invalid and this procedure fails. 

The identity matrix is then modified and expanded by adding the zero columns 
with locations obtained from the ZeLoLi (recovering the missing columns from 
the measurement matrix). The modified matrix is referred to as the new 

measurement matrix, Hnew' and it has size of Hnew E ~mxn. Using the new 
measurement matrix, the new measurement vector is obtained as follows: 

5.159 

Where Vnewk is the new measurement noise vector and it is defined as follows: 

5.160 

Each measurement in the resultant measurement vector is only related to one state. 
Therefore, procedures in sections (5.3.3.2.2) and (5.3.3.2.3) can be used as illustrated in 
the following example. 

Example 5.14: 

Further to Example 5.2, if the measurement matrix is defined as follows: 

[

1 0 1 0 1 0] 
H=405060 

7 0 8 0 10 0 
5.161 

Then ZeLoLi = [2 4 6f and zl = 3. The reduced measurement matrix, HR, is obtained 
as follows: 
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[1 1 1] 
HR = 4 5 6 

7 8 10 

and its inverse matrix is obtained as follows: 

[ 
2 -2 1 l 

HR -l = 2 3 -2 
-3 -1 1 

The new measurement matrix is then defined as follows: 

[
1 0 0 0 0 0] 

Hnew = 0 0 1 0 0 0 
0 0 0 0 1 0 

The new measurement vector is defined as follows: 

[

1 0 0 0 0 0] 
Znewk = 0 0 1 0 0 0 Xk + Vnewk 

0 0 0 0 1 0 

5.162 

5.163 

5.164 

5.165 

Note that the new measurement noise vector has different properties than the 

measurement noise vector. 

The selection procedures of sections (5.3.3.2.2) and (5.3.3.2.3) are applied to 
systems that have a measurement matrix with the structure of equation (5.53). The new 

measurement vector, Znewk' provides a measurement matrix that qualifies this equation 

and relates each measurement to only one state. Therefore, it is used to obtain the General 
Observability matrix instead of the old measurement vector, zk. 
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[[
hul [h1.i1 -1 10 [hl.i1 +1] [hl.izz-1]10] hl.izz+1] [hl.nl] 

H = h~,1 ··· h,.~,-1 ~ hm~,+1 "' hm~,· -1 -~ hm,:,,., ... h~~ 
i1 lz l 

Procedure Fails 

Create ZeLoLi = [i1 . .. izz1 

't' 

Define xR;. by eliminating the rows that have locations of ZeLoLi from 

XR, = [x1, ... X i -1 X: +1 ... X i z-1 Xi z+1 ... Xn• r 
K K l/( lie Z/( Zlc K 

• 
Define z~· :c 

Znew • = HR -:-1.zlc = lm x mXR. + HR -tvk 
i( i( 

+ 
Define Hnew by adding the zero columns to HR 

zne"·' = Hnewxk + HR -tvk 
i( 

Fig 5.13: Tranforming the measurement matrix to equation (5.53) 
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5.5 The General Toeplitz/Observability SVSF concepts for systems with 
measurement matrices that have partial rank 

The SVSF is combined with the general system Toeplitz and Observability 
matrices to estimate the states and parameters. In this section, the combined algorithm is 
discussed in further detail. This section is an extended discussion of sections ( 4.2) and 
(5.2) to accommodate the SVSF concept for linear systems that have multiple degrees of 
freedom and/or multiple measurements, and have a partially ranked measurement matrix. 
The contributions and novelties of this research in this section are as follows: 

Combining the SVSF with the General System Toeplitz and Observability 
matrices to estimate the state vector. These matrices provide the SVSF with an 
alternative measurement vector that result in a measurement matrix with full rank. 
To avoid the effects of modeling errors on the alternative measurements, the 
system must be presented in its GOCF and satisfy the conditions of equations 
(5.115) and (5.116). Using the alternative measurement, the General Toeplitz 
/Observability SVSF algorithm become similar to the algorithm in section (4.1.3). 

Defining the resultant existence subspaces (the a priori and the a posteriori 
existence subspaces) created by the General Toeplitz/Observability SVSF, and 
developing mathematical formulas that describe them. This work is listed later in 
subsection (5.5.2). 

Developing chattering in the a priori and the a posteriori estimates mathematically 
and using their contents to refine the filter's model. These steps are discussed later 
in subsection (5.5.4). 

5.5.1. The General Toeplitz/Observability SVSF 

The SVSF needs the measurement matrix to have full rank. In section (5.1), the 
SVSF is otherwise combined with a method similar to the Luenberger algorithm in order 
to solve this limitation. However, this method has some limitations due to the Luenberger 
algorithm. In section (5.2), the Toeplitz/Observability SVSF is developed to overcome 
these limitations when the system is described in its observability canonical form. 
However, systems with multiple degrees of freedom and/or multiple measurements 
cannot be expressed in a standard Observability canonical form. Therefore, a new form 
referred to as the General Observability Canonical form (GOCF) is proposed in section 
(5.3). The Toeplitz/Observability SVSF (developed in section (5.2.2)) is modified by 
combining SVSF with the General System Toeplitz and Observability matrices. In this 
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section, the combined algorithm is referred to as the General Toeplitz/Observability 
SVSF and is used to estimate the states and parameters. 

If the General System Toeplitz and Observability matrices are exactly known, then 
the vector XcTok can be extracted from the measurement and the input signals by using 

equation (5.150). X.cTok would contain the actual state vector information blurred with the 

noise vectors as shown in equation (5.152). Using the resultant alternative measurement 

matrix, H, the vector ZcTok can be used to compensate the missing (n- m) 

measurements. The alternative measurements are then used with the SVSF as follows. 

I - Prediction Stage: 

The a priori state estimate is obtained by equation (5.38) (described in section (5.2)) as 
follows: 

2 - Update Stage: 

xklk-1 = Ak-1xk-1lk-1 + Bk-1 uk-1 

zklk-1 = ux.klk-1 

5.38 

A corrective gain is calculated and used for refining the a priori estimate into its a 
posteriori form as follows: 

x.klk = xklk-1 + KeGTOk 

zklk = Rx.klk 

5.166 

where Kecrok is the SVSF's gain for the general Toeplitz/Observability SVSF and is 

defined as follows: 

5.167 

Note that if the system has a single degree of freedom with one measurement, then the 
general Toeplitz/Observability SVSF is reduced to the Toeplitz/Observability SVSF form, 

where Kecro I ezGro and ezGro become Kero I ezro and ezro , 
k klk-1 k-11k-1 k klk-1 k-11k-1 

respectively. 
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5.5.2. The General Toeplitz/Observability SVSF's existence subspaces 

As discussed in section (4.3.1), the SVSF has two existence subspaces; the a priori 
and the a posteriori existence subspaces. These subspaces enclose the state trajectory and 
prevent the estimate in its a priori and a posteriori forms from leaving the state's 
neighbourhood. The widths of the existence subspaces are unknown and time varying. In 
chapter four, these widths were explored for systems with a measurement matrix that has 
full rank. In the following subsections, these two subspaces are considered in detail for 
systems with a measurement matrix that has partial rank. The systems are represented in 
their General Observability Canonical Form. 

5.5.2.1. The a priori existence subspace for the General Toeplitz/Observability 
SVSF 

In order to obtain the a priori existence subspace for the General 
Toeplitz/Observability SVSF, the following procedure is used. 

The general a priori estimation error is defined by using equation (5.154) as follows: 

5.168 

Substituting equations (4.2) and (5.38) into equation (5.168) results in the following: 

ezGro = II(Ak-1xk-1 + Bk-1uk-1 + wk-1)- II(.Ak-1xk-1lk-1 + Bk-1"k-1) klk-1 5.169 
+ f)k 

Rearranging equation (5.169), and using equation (5.38) the following is obtained: 

ezGro = II(Ak-111-1zcrok + Bk-1uk-1 + wk-1- Ak-111-1-Bk-1) 
klk-1 5.170 

- II(.Ak-111-1zk-1lk-1 + 8k-1"k-1) + -Bk 

Further to equation (5.167) and using equation (5.168), the estimated measurement is 
related to the alternative measurement as follows: 

z = z +{HK = e +vie losgn(e )} k[k k[k-1 eGTOk ZGTOklk- 1 ZGTOk-1lk-1 ZGTOklk- 1 
5.171 

z - z + y I e I 0 Sgn (e ) k[k - GTOk-1 ZGTOk-11k-1 ZGTOklk-1 

Substituting equation (5.171) into equation (5.170) yields the following: 

ezGro = II(Ak-111-1zcrok 1 + Bk-1uk-1 + wk-1- Ak-111-1-Bk-1) klk-1 -
- II(.Ak-111-1zcrok_1 + 8k-1"k-1) + .ak 5.172 

- II.Ak-111-1y lezGTOk-2lk-21 osgn ( eZGTOk-1lk-J 
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Rearranging equation (5.172) gives the following: 

eZGTO = (8Ak-18-1 - 8.Ak-18-1)zGTOk 1 + (8Bk-1- 88k-1)uk-1 
klk-1 -

= = =-1 
+ Hwk-1 + -Bk- HAk-1H -Bk-1 5.173 

- 8.Ak-18-1y leZGTOk-21k-21 osgn ( eZGTOk-11k-J 

Further to equation ( 4.40), and using equation (5.161 ), the general a posteriori estimation 
error is related to the initial condition as follows: 

e =z -z =-yk-tle losgn(e ) 
ZGTOk-11k-1 GTO k-1 k-1lk-1 ZGTOOIO ZGTOk-11k-2 

Substituting equation (5.174) into equation (5.173) yields the following: 

eZGTOklk-1 = (8Ak-18-1- 8.Ak-18-1)zGTOk-1 + (8Bk-1- 88k-1)uk-1 
= = =-1 + Hwk-1 + -Bk- HAk-1H -Bk-1 

- 8.Ak-18-1yk-1 leZGTO I osgn (eZGTO ) 010 k-1lk-2 

The a priori existence subspace is then defined as follows: 

eXGTO = LlAk-18-
1

ZGTOk + LlBk-1uk-1 + wk-1- Ak-18-1-Bk-1 
klk-1 -1 

-A 8-1yk-lle I osgn (e ) k-1 ZGTOOIO ZGTOk-11k-2 

5.174 

5.175 

5.176 

From equation (5.176), the terms (LlAk_18-1
zGrok_) and (LlBk_1uk_1) capture the 

influence of the modeling errors in the system and input matrices. The term (wk_1 -

Ak_18-1-8k_1 quantifies the impact of the system and measurement noise. The last term 

in equation (5.176), (Ak_18-1yk-llezGro I 0 Sgn (ezGro )), describes the effects 010 k-11k-2 
of the uncertainty in initial conditions and its impact on the a priori existence subspace. 
According to the latter term, the effect of the error in initial conditions decays in time at a 

rate of Ak_18-1yk-t, and becomes negligible as k ~ oo. Then, the width of the a priori 

existence subspace becomes a function of the uncertainties, noise, and modeling errors. 

5.5.2.2. The a posteriori existence subspace for the General Toeplitz 
/Observability SVSF 

As discussed earlier in section ( 4.3.1.2), the difference between the width of the a 
priori existence subspace and the SVSF' s gain is equal to the width of the a posteriori 
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existence subspace, and has a different sign from the a priori existence subspace. The a 
posteriori existence subspace is derived in this section. 

The a posteriori estimation error at time k is defined as follows: 

5.177 

~e - vie 1°sgn(e ) ZGTOklk - - ZGTOk-11k-1 ZGTOklk-1 

Equation (5.177) can be written in a recursive way as follows: 

5.178 

The a posteriori existence subspace is then defined as follows: 

e - -yk I e I 0 Sgn (e ) - -8 
XGTOklk - ZGTOOIO ZGTOklk-1 k 5.179 

Equation (5.179) shows that the a posteriori existence subspace decays with time 
until the estimated output converges to the alternative measurement which contains the 
true trajectory blurred with alternative measurement noise. Therefore, the estimation is 
sensitive to the alternative measurement noise. 

5.5.3. The smoothing boundary layer 

As discussed in section (4.3.1), a smoothing function with a known smoothing 
boundary layer is used in the corrective action in order to eliminate the chattering signals, 
and to reduce the sensitivity to noise. The corrective action is interpolated based on the 
ratio between the amplitude of the general a priori measurement estimation error and the 
smoothing boundary layer's width. If the ratio is larger than one, then the corrective 
action is applied with its full amplitude. The SVSF' s gain is then defined as follows: 
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K - u-l(le I +vie l)osat(e 'I') eGTOk - ZGTOkjk-1 ZGTOk-1jk-1 ZGTOkjk-1' k 5.180 

Where 'l'k is a vector consisting of n -smoothing boundary layer widths at time k (one 
for each state), and sat is a vector of the saturation functions defined by equations (4.47) 

and (4.48). The gain can be expressed by using the positive diagonal matrix Satk 

(described by equation (4.50)) as follows: 

The width of the smoothing boundary layer must be chosen carefully as it must be 
larger than the uncertain dynamics to smooth the a posteriori estimate. However, it cannot 
be very large as the general estimation error increases when the width increases. As 
mentioned before, this research takes an interest in systems described in their GOCF and 
have a measurement matrix that satisfies equations (5.115) and (5.116). 

5.5.4. The chattering amplitudes and its information content 

If the system is described in its GOCF, the measurement matrix satisfies equations 

(5.115) and (5.116), and the smoothing boundary layer has a zero-width, then the a priori 

chattering vector has zero rows at the locations described by the following equation: 

ez = 0 for 
GTOiklk-1 

5.182 
i = 1, ... , (LMS2 - 2), ... , LMSd, ... , (LMSd+l - 2), ... , LMSm, ... , (n- 1) 

The rest of the rows contain the system modeling errors blurred by the alternative 
measurement and system noise. As discussed in chapter four, the a priori Chattering 
signal can be used to: 

Point out modeling uncertainties once they occur. 

Provide the information that is needed to tune the model. 

In this section, a method that is based on using the segment's mean of multiplication 
(cross correlation) between the a priori chattering signal and the alternative measurement 
and between the a priori chattering and the input is used to reconstruct the system 
modeling errors as follows. 

The a priori chattering signal of the General Toeplitz/Observability SVSF is defined as 
follows: 
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l
ezaro- I < '~'h 

'klk-1 

lezGro- I ~ '~'h 
'klk-1 

5.183 

For j = 1 ... n 

If the width of the smoothing boundary layer is set to zero, then equation (5.183) is 
reduced to the following: 

Chklk-1 = ezGro 
klk-1 

5.184 

Substituting equation (5.184) into equation (5.175) and assuming yk-t ~ Onxn lead to 
the following: 

Chklk-1 = (HAk_Ji-1 - HAk_1fi-1 )zcrok_1 + (HBk-1 - HBk_1)uk-1 5.185 
= = =-1 + Hwk-1 + ~k- HAk-1H ~k-1 

If H is the identity matrix, then the a priori chattering equation becomes as follows: 

Chklk-1 = LlAk-1zcrok_1 + LlBk-1uk-1 + wk-1 + ~k- Ak-1~k-1 5.186 

Multiplying both sides by uk_1 T gives the following: 

Chklk-1 uk-1 T = LlAk-1 Zcrok_1 uk-1 T + LlBk-1 uk-1 uk-1 T + wk-1 uk-1 T 

+ ~kuk-/- Ak-1~k-1uk-/ 
5.187 

Equation (5.187) describes the term Chklk-1 uk_1 T at each time step. Taking a segment of 

this signal with length of d (starts with the time step l and ends with the time step l + d -
1) and calculating the mean of Chklk-1 uk_1 T of that segment give the following: 

1II+d-1 
-d . Chili-1 ui-1 T 

L=l 

1 Il+d-1 1 Il+d-1 
= -d . LlAi-1 Zcroi_ 1 ui-1 T + -d . LlBi-1 ui-1 ui-1 T 

L=l L=l 

1II+d-1 
+-d . (wi-1ui-1T +fJiui-1T -Ai-1fJi-1ui-1T) 

L=l 

5.188 

This segment will be referred to as the information extraction segment (IES), to separate 

it from the segments used to obtain the General Observability matrix. The system and the 
input matrices are assumed to be constant inside the IES; hence the modeling errors are 
constant and defined as follows: 

5.189 
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Substituting equation (5.189) into equation (5.188) gives the following: 

1 I!+d-1 
-d . Chili-lui-/ 

t=l 

1 Il+d-1 1 Il+d-1 
= -d!::.At . Zcro,_1Ui-1r +-d!::.Bt . ui-lui-/ 

t=l t=l 

1Ll+d-1 
+ -d . (wi-1ui-/ + aiui-1 T- Ai-lai-1ui_/) 

t=l 

5.190 

N h d h 1 '\'l+d-1 T 1 '\'l+d-1 a T ate t at as ~ oo, t e vectors d. £..i=l wi-l ui-1 , d. £..i=l iui-l and 

~ Il!f-1 ai-l ui-/ approaches their expectations. lfthe noise vectors are white, then: 

(1 Il+d-1 ) (1 IZ+d-1 ) 
lim - Wi-1 Ui-1 T = lim -d aiui-1 T 
d-->oo d i=l d-->oo i=l 

(
liZ+d-1 ) = lim - ai-1 ui-1 T = Onx1 

d-->oo d i=l 

5.191 

Substituting equation (5.191) into equation (5.190) gives the following: 

(
lii+d-1 ) 

lim -d Chili-1ui-1 T 
d->00 i=l 

1 ( Il+d-1 Il+d-1 ) = -d lim !J.At zGTO·_ ui-1 r + !J.Bt ui-1 ui-1 r 
d->oo i=l ' 1 i=l 

5.192 

Now, the a priori chattering is multiplied by the alternative measurement Zcrok
1

_
1 
r as 

follows: 

5.193 

Where k1 is a time step that can be chosen as follows: 

5.194 

Where rna is the maximum LMi (segment length in the General Observability matrix). 
This assumption causes the following: 

5.195 
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Proof: 

Using equations (5 .154), the alternative measurement at time k1 - 1 is defined as follows: 

5.196 

where -3k
1

_ 1 is the alternative measurement noise at time k1 - 1 and is defined by using 

equation (5.155) as follows : 

5.197 

These equations show that zcTok
1

_
1 

and -3 k
1

_ 1 are functions of the measurement and the 

system noise vectors from time step (k1 - 1) to time step (k1 + ma - 2) as shown in Fig 

5.14. Note that the cross correlation between zcTok
1

_
1 

and wk-l vanishes if they are white 

signals, and their occurrence time steps have a difference that is larger than the maximum 
segment length in the General Observability matrix (equation (5.194)). This means that 

there is no overlap between these vectors as shown in Fig 5 .14, and the expectation of 

equation (5.195) becomes as follows: 

E [wk-lzcTok
1

_
1 
T] = E[wk-1ak

1
-/] = E [wk-1 [ wk;'-

1 
]T (H09 -

1
Tw f] = Onxn 

wkl+ma-2 

5.198 

Zero W~c-1 . ak-1 OR vk-1 

(kl-1 ••• ••• .~~-:l+ma-2) , k,+m,-l< k • 
1- I I .._:._ ,.. 

k1-z k1+m11 -1 · time 

Fig 5.14: The time steps of the measurement and system noise vectors that are used to 

obtain the alternative measurement vector at time k 1 - 1 compared to the measurement 

and system noise vectors at time k - 1. 

The same idea holds for the alternative measurement noise vector at time k- 1 and k. 

Thereby, E [akzcTok t-1 T] = E [ak-1zcTokt-1 T] = Onxn· 
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Taking an IES of the signal Chklk-1zcrok
1

_
1 

T with length d (starts with the time step l 

and ends with the time step l + d- 1) and calculating its mean give the following: 

5.199 

N h d h • 1 ~l+d-1 A 1 ~l+d-l_Q A d 
ote t at as ~ oo, t e matnces 'd L..i=l wi_ 1 zero;-.~k- 1 ' 'd L..i=l uiZeroi-t.k-1 an 

~Ll!?-1 {)i_ 1 zero;-t.k- 1 approach their respective expectations. If the noise vectors are 

white, then the following is obtained by using equation (5.195). 

5.200 

Substituting equation (5.200) into equation (5.199) gives the following: 

(
1 "\'!+d-1 ) 

J~IlJ, d Li=l Chili-1Zeroi-t.k-1 r 

1 (I!+d-1 ) = -d l!.Az lim Zero·_ Zero·-·k-1T 
d-+oo i=l ' 1 ' ~ 

5.201 

1 (Il+d-1 ) + -d l!.Bz lim ui-1 Zero ·-t.k-1 T 
d-+00 i=l ' 

Equations (5.192) and (5.201) can be rewritten as follows: 

lim (cchdld 1 ud 1) = Mz lim (czGTO ud 1) + LlBt lim (Cud ud ) d-+oo - • - d-+oo d-1' - d-+oo -1• -1 

5.202 

Where Cab.cd is the segment's mean of the multiplication (cross-correlation) between ac 

and beT and it is defined as follows: 

1Il+d-1 r 
Ca ,b = -d ache 

c e i=l 
5.203 

The modeling errors (LlA1 and LlB1) can be obtained by solving the system of equations 

shown in equation (5.203) and have the following form: 
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5.204 

( )
-1 

lim C d-+oo Ud-vUd-1 

Ifthe input is a white signal (i.e. E(uk) = 0 and E(ukuk_/) = 0), then the term 

limd-+oo ( Cud_1,zcrod-6k_J vanishes (this is valid as long as t::.k > rna)· In such a case, the 

modeling errors are obtained as follows: 

5.5.5. Application of the General Toeplitz/Observability SVSF 
degrees of freedom system 

5.205 

to a three 

The General Toeplitz/Observability SVSF has been tested on the three degrees of 
freedom system described in Example 5.2. 

5.5.5.1. Simulation setup 

If the system described in Example 5.2 has the following parameters: 

kN kN kN kN kN.sec 
k1 = 20-;:;, k2 = 1-;:;, k3 = 1-;:;, k4 = 400-;:;, c1 = 2-;;-,c2 = 
2 kN.sec - 2 kN.sec - 2 kN.sec b - 2 b - 1 b - 15 M - 10k M -m , C3 - m , C4 - --;;--- , 1 - , 2 - , 3 - · , 1 - 9, 2 - 5.206 

5kg and M3 = 500 kg 

and assuming the sampling time is equal to T5 = 0.001 sec, then the system has the 
following model: 
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xllk+l 1 0.001 0 0 0 0 
xllk 

0 
wllk 

x12k+1 -42.1 0.4 1 0.2 40 0.2 x12k 0.002 w12k 
Xzlk+l 0 0 1 0.001 0 0 Xzlk 

+ 0 
uk + 

Wzlk 5.207 
Xz2k+1 0.2 0.4 -0.4 0.2 0.2 0.4 Xz2k 0.001 Wz2k 
x31k+1 0 0 0 0 1 0.001 x31k 0 w31k 
x32k+1 0.8 0.004 0.002 0.004 -0.802 0.992 x32k 0.0015 w32k 

The measurement vector is defined as follows: 

[;~:] = [~ ~ ~ ~ ~ ~] [xllk xlzk xzlk xz2k x31k x32 kr + [~~:] 5.208 
Z3k 0 0 0 0 1 0 V3k 

The measurement and system noise vectors are white with a noise-to-signal ratio 

[
1.25 0 0 ] 

of 1% of their corresponding states, and with variances of av2 = 10-20 x o 4.635 o 
0 0 0.32 

1.4 0 0 0 0 0 
0 3.3 X 105 0 0 0 0 
0 0 4.8 0 0 0 fi f and ow 2 = 10-20 x 
0 0 0 

1.
2 

x 104 0 0 
, respectively. The 1rst derivative o 

0 0 0 0 0.35 0 
0 0 0 0 0 512 

v1k, v2kand v3 k have a noise-to-signal ratio of 5% of the states x12 k' x22 k and x32 k, 

respectively. The first derivative of w11 k, w21 kand w31 k have a noise-to-signal ratio of 

5% of the states x12 k' x22 k and x32 k' respectively. The SVSF' s coefficient matrix y has a 

value of y = 0.2 x 16x6 and the SVSF' s smooth boundary layer is designed as 'I' = 2 x 
[lo-s 10-3 10-s 10-2 lo-s 10-3]. The input consists of a random signal superimposed on 

step changes. The simulation time consists of ten regions. The system has some 

parametric changes (faults) in some of these regions. The faults include changes in at 
least one of the following: 

Spring stiffness. 

Damping coefficients. 

Masses. 

Input gains. 

These changes and their start and end time steps are listed in tables (5.10) and (5.11 ). 

Note that the modeling errors vary between 80- 320% of their actual values as shown in 

table 5.11. 
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Regi011 .. Beginning time Ending time Region Beginning time Ending time 
# step step # step step 
1 1 11664 6 70525 81858 
2 11665 25510 .· .· ... 7 81859 98361 
3 25511 40209 8 98362 113810 
4 40210 60080 9 113811 126038 
5 60081 70524 10 126039 142413 

Table 5.10: The beginning and the ending of the changes. 

region 1 2 3 4 5 6 7 8 . ·· ~ ... · . 10 

~ ~· ·~ 
r ---..·:· ;...,;.. 

(11 (11 (11 

I 
(11 (11 (11 (11 

"'' "'' "'' "'' "'' "'' =l "'' "'' =l "'' "'' "'' ..... "'' "'' "'' "'' ~ <::1 <::1 <::1 <::1 <::1 <::1 <::1 <::1 <::1 

"'' "''. "'' ..:::!.. "'' "''· "'' "'' "''. -
~ ·~ ~ ~ ~ ~·· '$.. 

.::.>: ;::R ~ 

a21 80 80 80 80 80 80 80 38 80 80 

a22 80 80 80 80 80 80 80 87 90 87 

a23 80 80 80 80 80 100 80 80 80 80 

I a24 80 80 80 80 80 80 80 80 100 100 

a2s 80 80 80 80 80 80 80 100 80 80 

a26 320 320 320 320 320 320 320 320 320 320 

•··· a41 80 80 80 80 80 100 80 80 80 80 

a42 80 80 80 80 80 80 80 80 100 100 

a43. 80 80 80 80 60 100 80 80 80 80 

a44 80 80 80 80 93 80 80 80 96 96 

a4s 80 80 80 80 100 100 80 80 80 80 

tl46 120 120 120 120 120 120 120 120 120 120 

a61 80 80 96 80 80 80 80 100 80 80 

a62 80 80 96 80 80 80 80 80 80 80 

a63 80 80 96 80 100 100 80 80 80 80 

a64 80 80 96 80 100 80 80 80 100 100 

·. a6s 80 80 96 80 80 80 80 95 80 80 

a66 0.645 0.645 4 0.645 0.241 0.645 0.645 0.645 0.241 0.241 

b2 100 100 100 100 100 100 100 100 100 100 

b4 100 100 100 100 100 100 100 100 100 100 

b6 100 100 100 100 100 100 100 100 100 100 

Table 5.11: The % of the error between the system and the filter parameters for the 
simulation regions. 

The system in equation (5.207) is represented by its GOCF, and the measurement 
matrix is described by equation (5.208) which satisfies the conditions of equations (5.115) 
and (5.116). Therefore, the General Observabilityffoeplitz SVSF can be used to estimate 
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the states and its chattering signal can be used to point out and extract modeling errors. 
The general Observability matrix is obtained using the algorithm in section (5.3.3.2.2). 
From Example 5.8, the locations of the measured states, LMSi, are set to the values of 1, 3 
and 5. The segments' lengths are defined in equation (5.121) as follows: 

LM1 = LMS2 - LMS1 = 3- 1 = 2 

LM2 = LMS3 - LMS2 = 5- 3 = 2 

LM3 = n + 1 - LMS3 = 6 + 1- 5 = 2 

The General Observability matrix is defined by equation (5.122) as follows: 

[H~~] [~ ~] 0 0 0 0 
0 0 0 0 [O,m, Ozx2 O,xzl 

Og = [H~~] 0 0 G ~] 
0 0 = 02X2 Osub2 02x2 = 0 0 0 0 

[H~~] 0 0 0 0 [~ ~] 
Ozxz 02x2 Osub3 

0 0 0 0 

The General System Toeplitz matrix is a zero matrix. 

5.5.5.2. Simulation results 

5.121 

5.122 

The results of the General Toeplitz/Observability SVSF are shown in Figs (5.15) 
to (5.41). These results show that the method gives good (the average absolute percentage 
errors of the states and parameters are less than 4%) robust performance. Although the 
second sub-system in the ninth region is unstable, the filter tracks the estimates with 
acceptable level of accuracy (the maximum absolute percentage errors of the states and 
parameters - except those of region 4 - are less than 2%), and the parameters are 
reconstructed by using the chattering signal. The filter detects parametric changes once 
they occur, and then uses a data segment consisting of 500 sampling points from the 
chattering to reconstruct the modeling errors as discussed in section (5.5.4). The sample's 
size qualifies the law of large numbers as discussed in section (4.3.4.2.2). Once the 
filter's model is tuned, the filter continues estimating the states. During the model tuning 
and reconstruction process, the results show that the stability is not affected by modeling 
errors. 

As discussed in section (4.3.4.2.2), the detection process is sensitive to the width 
of the smoothing boundary layer. The results of this simulation show that there is no 
occurrence of false alarms. However, delays in detecting modeling errors have been 
noticed at the beginning of regions 3, 4 and 5. Table 5.12 shows that the maximum delay 
period is around 20 time steps, and it occurs at the fourth time interval that starts at time 
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step 40,210. These delays mean that the width of the smoothing boundary layer is quite 
large and needs to be reduced. For regions 1, 2 , 6, 7, 8, 9 and 10, the results show that 
the algorithm detects parametric changes once they occur. 

Region··· Time step of fault being 
# ... · detected 

. Region Time step of fault being 
# ... H ·detected ' . ·. .·· 

1 1 6 70525 
2 11665 ·7 .. '. 81859 
3. 25521 8 98362 
4 40230 9 113811 
5 60085 .•· lff 126039 

Table 5.12: The estimated beginning of each region for the tuning process simulation. 

The estimated states are sensitive to the noise vectors and their derivatives. In 
order to reconstruct the modeling errors with acceptable levels of accuracy, these vectors 
should have noise-to-signal ratios that are less than 10%. If the ratios increase, the 

estimated error increases and the parameters need more iterations to converge to their 
actual values. For example, the noise vectors' ratios exceed 10% in the fourth region, and 

it has been noticed that the maximum absolute error increased to 75% for a41 and a45 • 

Although the errors increase in these two parameters, the filter remains stable. 

The root mean square error of the estimated states and parameters (described by 
equation (5.209)) are summarized in table 5.13. Note that no other published methods (up 
to this thesis) can replicate these results. 

5.209 

RMSE RMSE RMSE RMSE 

Xtt 8.7 X 10-15 
azz 1.7 X 10-06 a43 2.8 X 10-06 

a64 9.1 X 10-09 

Xt~ 2.64 X 10 11 
a23 2.26 X 10-07 

a44 1.3 X 10-os a6s 2.7 X 10-04 

Xzl 1.7 X 10-14 
a24 5.4 X 10-07 

a4s 5.8 x 10-05 a66 2.6 X 10-oa 

Xzz 4.6 X 10-10 azs 4.47 X 10-02 a46 6.6 X 10-06 bz 1.74 X 10-10 

X31 1 X 10-14 az6 1.1 X 10-07 
a6t 2.7 X 10-04 b4 2.13 X 10-11 

X3z 4.7 X 10 11 a41 6.35 X 10 °5 a6i 7.5 X 10 °9 b6 9.1 X 10 11 

azt 4.33 X 10 °2 a42 2.1 X 10-06 a63 6.7 X 10-09 

Table 5.13: The root mean square error of the estimated states and parameters obtained 
from the General Toeplitz/Observability SVSF's tuning process. 
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The proposed algorithm has some limitations which can be summarized as follows: 

The measurement matrix must specify certain conditions. 

The system must be described in its GOCF. 

The system and measurement noise vectors must have small noise-to-signal ratios, 
i.e. their derivatives have noise-to-signal ratios that are less than 10%. Higher 

ratios increase the errors in the constructed parameters. 

The estimates are sensitive to the noise amplitude and its derivatives. 
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Chapter Six: 

Iterative Bi-Section/Shooting Method for Parameter Estimation 

6.1. Introduction 

In this chapter, a novel parameter estimation technique, referred to as the Iterative 
Bi-Section/Shooting method (lliSS), is proposed as a searching technique to obtain the 
best parameters that fit given a known system structure. The chapter presents three 
methods as follows: 

The iterative Bi-Section/Shooting method - An exhaustive searching mechanism 
to estimate the system's parameters. 
The iterative Bi-Section/Shooting method with the KF- To estimate the system's 
states and parameters. 
The iterative Bi-Section/Shooting method with the SVSF - To estimate the 
system's states and parameters presenting an improved performance given the 
other two methods. 

Here, the mss method is combined with the SVSF to adapt and refine the filter's model 
and hence reduce the modeling errors. This combined method is referred to as the 
ffiSS/SVSF strategy. For comparison purposes, the lliSS is combined with the KF and 
the resultant algorithm is compared with the ffiSS/SVSF. Before presenting these new 
methodologies, the basic concepts are explained. 

6.2. The Bi-Section Method 

The Bi-Section method, also known as 
the binary-search method, is a well-known 
numerical root-finder for the equation 
f(x) = 0 and it is based on the following 
theorem: 

Theorem 6.1 zeros of continuous functions: 

If the function f(x) is continuous over the 
interval (ai, ae), and it satisfies f(aafCae) < 0 
then there is at least one point a in the interval 
with the property of f(a) = 0 as shown in 

Fig 6.1: The Bi-Section's Principle, 
(Kaw & Kalu, 2010). 

Fig 6.1, [(Kaw & Kalu, 2010) and (Quarteroni, Sacco, & Saleri, 2000)]. The Bi-Section 
method finds the point, a, by using the following algorithm, (Kaw & Kalu, 201 0): 
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The algorithm starts by defining an interval that contains the root (a) of the equation 
f(x) = 0, as follows: 

6.1 

Where ai and ae are the interval boundaries and they are chosen to satisfy the following 
condition: 

6.2 

Then the middle of the interval, am, is taken and the corresponding function's sign is 

examined. The point am divides the interval into two subintervals, and based on its 
function sign, one of these sub-intervals is chosen to be a new interval for the next 
iteration as follows: 

If f(aafCam) < 0 then the new interval is defined as (ai, am) 

Else the new interval is defined as Cam, ae)· 

The interval is then divided in 

half iteratively until the width of the 
interval becomes smaller than a 
threshold and the root is considered to 
be the half of the final interval. This 
algorithm is summarized in Figs (6.2) 
and (6.3). 

y 

a 

interval @ g iter. 
ioterval@ 2nd iter. 
interval@ 1st iter. 
initial iDtrVa1 --------

6.3 

If multiple zeros exist inside 
the interval, then only one of the zeros 

will be obtained depending on the 
interval size and its boundary values as 
shown in Fig 6.4. Therefore, this 
method is stable as it always converges 

Fig 6.2: The Bi-Section Steps, (Kaw & Kalu, 
2010). 

to one of the zeros. Moreover, the level of accuracy is controllable which has a maximum 
absolute value equal to half of the last interval (threshold). However, its disadvantages are 
its slow rate of convergence and its sensitivity to the size of the interval, (Kaw & Kalu, 

2010). Due to its stability and simplicity, this method has been used in many applications; 

i.e. computing the H oo Norm of transfer functions in (Boyd, Balakrishnan, & Kabamba, 
1989), and in system identification as in (Moore, 1984). 
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solutiot:I - : is a negative function value 
+ +B + : is a positive function value 

~ ~---~: . a~, ,~ t +· 

Fig 6.3: Reducing the solution interval using Bi-Section method. 

y 

+ 
a 

interval @ g iter. 

interval@ 2nd iter. 
interval@ 1st iter. 
initial intrval ---------

--
Fig 6.4: Multiple zeros and interval effects. 

6.3. The Shooting Method 

According to (Kaw & Kalu, 20 10), the Shooting method is a numerical technique 

used to solve a differential equation with boundary conditions (at time t1) defined as 

follows: 

If=oxCO(t) = x(n)(t) + xCn-l)(t) + ... + x(t) = Xp(t) 

For the boundaries [x(t1) ... xCn-l)(t1 )( = x1 

and convert it to an initial condition problem (at time t 0 ) as follows: 

If=oxCO(t) = x(n)(t) + xCn-l)(t) + ... + x(t) = Xp(t) 

For initial condition [x(t0 ) .. . xCn-l)(t0)( = x 0 

Where Xp is the input. 

6.4 

6.5 

The Shooting method has the same idea of hitting a target by a canon projectile. If 

a canon is used to hit a target, the muzzle angel must be adjusted properly; otherwise the 
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projectile does not hit its target. If the adjustment process is done manually, then several 

trials will be done to achieve the proper angle as shown in Fig 6.5 . The first trial is done 

by adjusting the muzzle by an initial angel, and then shooting the projectile. According to 

the projectile's final destination and its difference from the target location, the muzzle 

angel is adjusted, and another trial is done. The angle is adjusted several times (the trial is 
repeated) until the projectile hits its target. Similarly, the Shooting method starts by 

guessing initial conditions, x0 , for the system (e.g. the muzzle initial angle), then finding 

the solutions of the system's equation for the entire domain up to the final values, x1 as 

shown in Fig 6.6. By comparing the resultant final values with their actual values, x1, the 

initial guess is then refined and the process is repeated iteratively to minimize the error in 

the final (boundary) values. Once the error becomes smaller than a threshold value, 

iteration stops and the solution is adapted. 

-~----
ojectile curve for ;;ati~ --.....:. - -- Target 

Canon xf 

Fig 6.5: Adjusting the angle of the Canon Muzzle manually to hit a target. 
~=d ~ .................................... . 

ir.itw 
condition 
1th~ss 

:"r.nt~J 

BC = Bo=duy Conditi= 

First BC 

1' to l t£ 
~tim~ 

Fig 6.6: The Shooting method for one dimensional ordinary differential equation 
problem. 
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6.4. The Iterative Bi-Section/Shooting Method 

The Bi-Section/Shooting method is a combination used to iteratively extract 
model parameters from the measurements for systems in which only model structure is 
known. The maximum number of parameters that could be estimated for an nth order 
system using this method is n + 1. The system's parameters are assumed to be constant 
during the operation and they are divided into two groups; the first group is of size n and 
is obtained by the Shooting and Bisection methods, and the second group is extracted 
based on measurements and the parameters from the first group. It has a size equal to the 
number of observable parameters. The second group is extracted from noisy 
measurements. Therefore, they are stochastic variables with variances that are functions 
of noise and modeling errors pertaining to the parameters in the first group. For example, 
in second order systems, the gain and the natural frequency are the first group parameters, 
and the damping ratio is the second group parameter. The damping ratio may be extracted 
from measurements if the gain and the natural frequency are known. The estimate of the 
damping ratio becomes a stochastic variable with variance that is a function of the noise 
and the variance in the latter two parameters as shown in Fig 6.7. The figure shows that if 
the modeling errors are reduced, then the estimated parameter's variance is reduced, and 
its minimum value is obtained once the modeling errors become zero. Mathematically, 
the minimum variance of the curve in Fig 6.7 has a derivative with a zero value and the 
sign of the derivative changes across this point. By studying the sign of the derivative, the 
minimum variance could be obtained using the Bi-Section method. 

Parameter estimation is performed by defining a search interval (for each range of 
group one parameters), estimating group two parameters and obtaining their variances. 
Based on the variance of group two parameters, the intervals of group one parameters are 
reduced by using the Bi-Section method until a threshold is reached. For example, to 
implement this method for a first order system with two model parameters; i.e. X and Y, 
the following process is used. 

One of the two parameters is chosen first; i.e. X. An interval is specified for this 

parameter and five different values are arbitrarily chosen; i.e. X1 to X5 . These values are 
uniformly distributed along the interval and they are assumed to be the Shooting 
method's initial guesses. 

For each of these values, and using data segments of measurements and input, the second 
parameter, Yi, may be extracted. Note that the extracted parameter Yi is not constant and 
is a temporal function. Thus, five variance values of the second parameter Yi are obtained 
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one for each X1 to X5 from the Shooting method. As discussed earlier, each variance is a 

function of the noise as well as error in the first parameter estimate Xi. 
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0
/w

0
x100% . . . . 

.. ~......... . 
: ... : ..... ~ .... 

I , ... . , . . ' . 
,~' : , . , . . ... . ' 

.... .., I .. : ........ . 
... ~ : t .. , : .. ... .. ... ~ 

!' ' : ,: ... ': : ......... : 
'""'I : I, : "' .. 

0 
, , I )' I : •, ... 

Cl) i , . . 
I , I I 

"'C • ' 
;:, J , . 
-a !,' : 
E , .-: I 

~v5 ' 

.. , 
0 , 

-200 -100 

• """"I :--. . . . . . . - . 

' . ....... ~ . ' · 

100 

Cl) 2 "'C 
;:, -c.. 
E 

~vo 

tl8/Bx100% 

X 10
3 

' 
-50 0 50 100 

tl8/Bx100% 

Fig 6.7: The affection of Modeling errors on the extracted parameter, {, for a second 
order system. 

The variance values are distributed as shown in Fig 6.8. Note that these points have a 
parabolic shape. Taking the derivative of the shape function (to obtain the root of the 
derivative that represent the minimum variance) and using the Bi-Section method, a new 

subinterval is obtained. 

new interval 

old interval 

first parameter's nlues 

Fig 6.8: Refining the interval using the Bisection Method. 
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The algorithm is iteratively repeated until the width of the subinterval becomes smaller 
than a threshold. At each iteration, the first parameter is assumed to be half of the 
resultant interval, and the second parameter is chosen to be the mean of the corresponding 
extracted vector. 

For higher order system, the algorithm becomes nested and more complicated, and 
the number of nested loops depends on the size of the first group and is defined as follows 
(assuming that each sub-loop consists of five loops): 

number of loops= sCn-l) + 1 6.6 

These loops are used to search for the best combination of the first group parameters 
based on the second group profile (variance). For example, Second order systems have 
three parameters; Wn, (and B, and the IBSS requires six loops; S-inner and 1-outer loops. 
Third order systems have four parameters and the IBSS requires twenty six loops; 25-
inner and 1-outer. 

The algorithm of IBSS is demonstrated by the following example. 

Example 6.1 

This example demonstrates the application of the IBSS algorithm to a second 
order system. The parameters are divided into two groups as previously discussed. The 
first group consists of the gain and the natural frequency, and their estimation is 
performed by an outer loop and five inner loops. The second group consists of the 
damping ratio. Assuming the outer loop is related to the gain B and the inner loops are 
related to the natural frequency Wn· The computation loops are illustrated in Fig 6.9 and 
as follows. 

OUTER LOOP: 

1- The algorithm selects one of the parameters from the first group, e.g. B, for the 
outer loop. It relies on the availability of upper and lower bounds for it. If the 
parameter is the gain B, then the lower and upper bounds are defined as: 8 1 and 
8 5, respectively. 

2- The algorithm defines five intermediate values within the above range, i.e. 8 1 to 
8 5, where 8 1 is the lowest value, B5 is the highest value and the values of 8 2 to 
84 are evenly distributed between 8 1 and 8 5 • 
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3- For each value of Bi, an inner loop is created from the other parameter in group 

one, e.g. Wn- Therefore, five inner loops are created. Each one of the inner loops 
has the following process: 

INNER LOOP i. i = 1 ... 5: 

a. The algorithm selects the other parameter from the first group (which is in 
this example Wn) to construct the inner loop. Upper and lower bounds for 

it are denoted as: wis and wi
1

, respectively. 

b. The algorithm defines five intermediate values within the above range, i.e. 

Wi
1 

to wis• where Wi
1 

is the lowest value, wis is the highest value, and the 

values of ( Wi
2 
to Wi

4
) are evenly distributed between Wi

1 
and wis. 

c. Each value of wi. is assumed to be an initial guess for the shooting 
J 

method, where i and j denote the outer and inner loops, respectively. The 

pair ( Bi, wiJ are assumed to be the values of the unknown parameters B 

and Wn· Note that if B and Wn are known, the system satisfies the 

Observability condition for the estimation of the remaining parameters ( 0 
using the measurement. Therefore, the third parameter, tr can be 

extracted by using the measurement (z), the input (u), the sampling time 

T5 and the assigned pair of ( Bi, wiJ through filtering or by using the 

inverse model as follows: 

(. = B;uk-1-wij 2Tszlk-1-(z2k -z2k-1) 
1
j k-1 2w;jTsz2k-l 

6.7 

Where {i. is the extracted damping ratio at time k - 1 using the pair 
'k-1 

(Bi,wiJ· 

d. ~ij = [(ij k-d+l ··· (ij J is a stochastic variable segment that is a function 

of the system and measurement noise as well as modeling errors. The 

variance of each ~h a~. , is calculated for each corresponding wi· which 
J 'j J 

results in five values distributed as shown in Fig 6.8 (note the parabolic 
shape). The derivative of these values (differences between two successive 
variance points) is obtained and its sign is examined. Using the Bi-Section 
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method, a new subinterval is created from the old interval by reassigning 
the interval boundaries; Wi

1 
or/and wi

5 
as shown in table 6.1. Note that 

only one minimum value of the variance exists in the interval. The extreme 
cases (case 1 and case 5 in table 6.1) treat the location of the minimum 
variance value to be close to the interval boundaries. 

e. After defining the new interval, steps (b) to (d) are repeated iteratively 
until the width of the resultant interval of natural frequency is smaller than 
a threshold, E. 

f. Once the loop stops, the natural frequency, Wni' of that loop is assumed to 

be the half of the final resultant interval. 

END OF THE INNER LOOP i 

4- The algorithm uses the measurements, the input, the sampling time and the pairs 

( B i• wnJ to obtain the damping ratio (i for each inner loop as follows: 

{. = Biuk-1- Wni zrszlk-1- (zzk- Zzk_J 
t 2wni TsZzk-1 

6.8 

5- Equation (6.8) is used to estimate the damping ratio for each time step such that 

~i = [(ik-d+l ... (iJ· The variance of ~i• cr~i' is calculated for each 

corresponding pair ( Bi, wnJ and results in five values distributed as shown in Fig 

6.8. Similar to step (d), the derivative (difference) of these values is obtained and 
its sign is examined using the Bi-Section method. A new subinterval is then 
created for the gain B by reassigning the interval boundaries; B1 or/and B5 as 

discussed in step (d) and as shown in table 6.1 (by replacing wij with Bi). 

6- After defining the new interval, steps (2) to (5) are repeated iteratively until the 
width of the resultant interval of the gain B is smaller than a threshold, (}. 

END OF THE OUTER LOOP 
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Table 6.1: The new interval boundaries using the Bi-Section method. 
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.. .... 

8 and w are the best combination. 

- - -;, Shooting Method 
,." I 

.-" I 

Ti, i = 1 ... 5 is the width of 
the natural frequency's 
resulting subinterval in loop 
i, and p is its threshold. 
T is the width of the gain's 

resulting subinterval, and (! 

is it threshold 

Fig 6.9: The IBSS algorithm for second order system. 

Once the outer loop stops, the gain, B, is assumed to be half of its final interval. 

One more inner loop is done using the gain B and the steps (a) to (f) to obtain Wn· The 

damping ratio, (, is then obtained by using the measurement, the input, the pair ( B, wn) 
and the inverse model as follows: 
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6.9 

Increasing the number of parameters results in a more nested algorithm, where for 
each inner loop there will be five sub-inner loops (four parameters), and for each sub­
inner loop there will be a further five sub-sub-inner loops (five parameters), and so on. 
The algorithm's computational time grows exponentially when the number of parameters 
increases. This algorithm is only suitable for systems with low levels of complexity (first 
and second order systems). 

6.5. The Iterative Bi-Section/Shooting Method combined with the SVSF and 
theKF 

The IBSS is used to refine the estimated model. However, it does not estimate the 
states. Therefore, the IBSS needs to be combined with a filter such as the KF or the SVSF 
in order to estimate the states. This combination can also be used to estimate observable 
parameters. In this study, the combination of the SVSF with the IBSS is presented and is 
compared to the KF with the IBSS. 

6.5.1. The Iterative Bi-Section/Shooting KF 

The Iterative Bi-Section/Shooting method is combined with the Kalman Filter 
(IBSS/KF) to estimate the states and the parameters using data segments of the 
measurement signal. The segments are needed to excite the IBSS. As mentioned earlier, 
the parameters in the segments are assumed to be constant, otherwise the IBSS method 

will be misled. The IBSS element will be used to refine the filter's model to reduce the 
errors and then the KF is used to obtain the states. The main short coming of the IBSS/KF 
is that if the system's parameters change, the IBSS/KF will not know when this change 
has occurred. Therefore, a segment of the measurements is taken at a time, in which the 

parameters are assumed to be constant. The segment is processed using the IBSS to 
obtain the parameters. In the next step, the KF estimates the states as shown in Fig 6.10 
and as follows: 

1- The measurement signal is divided into segments. The parameters of the 
system are assumed to be constant within the segment. Each segment will be 
processed individually by the IBSS and the KF. The last time step value in a 
segment is considered as an initial condition to the next segment (for the KF). 

2- The IBSS is applied to the segment to achieve the best value of the filter's 

model parameters. The cost function (or criterion of the goodness) is the 
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lowest variance in the estimation of the damping ratio, ~~ (in case of second 

order system) which can be extracted using equation (6.9). 

3- The KF estimates the states of the system in the segment based on the new 
model ' s parameters from the IBSS . 

4- Steps 1 to 3 are repeated for all data segments. 

Estimates the states of the segment using the KF 

Fig 6.10: The IBSS/EKF algorithm for second order systems. 

6.5.2. The Iterative Bi-Section/Shooting SVSF 

The advantage of the combination of the IBSS with the SVSF is that the 

secondary indicators of performance of the SVSF can very accurately determine when a 

physical parameter has changes. This is very advantageous since the IBSS requires that 
parameters are constant during the interval that they are estimated. This provides a 
dynamic segmentation ability to the IBSS/SVSF that is not possible with the IBSS/KF. 
The combined IBSS/SVSF provides a remarkable algorithm that enables the estimation of 

both the states and the model parameters for low order systems. The combined robust 

stability of the SVSF and the interval definition can lead to a stable overall process. 

The Iterative Bi-Section/Shooting method is combined with the SVSF 

(IBSS/SVSF) to estimate the states and the parameters. Moreover, the SVSF's secondary 

indicators of performance are used to detect parametric changes in the system once they 
occur and pass that information to the IBSS for interval selection. As discussed in chapter 
four, if chattering occurs when the boundary layer is set to have a width that is a function 
of the upper bounds of uncertainties, then this means that the upper bound has been 

breached and at least one of the parameters changed. Hence, chattering can provide a 
good indicator of the system changes. Once chattering occurs, the IBSS refines the 

estimated model. The SVSF then uses the refined model to continue estimating the states 
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until chattering condition re-occurs. The combined algorithm is summarized in Fig 6.11 

and as follows. 

Take a segment from the measurement z 

Use mss to find Wn, (and B 

Estimates the states ( xklk) using the SVSF 

No 

Fig 6.11: The ffiSS/SVSF algorithm. 

I- A SVSF with an appropriate boundary layer is used to estimate the states as 

discussed in chapter four, and the a priori chattering is monitored. 

2- Once chattering occurs, the ffiSS takes a segment of the measurement and 
processes it to obtain the parameters and to refine the filter's model. 

3- The SVSF then continues to obtain the estimates until another chattering 

condition occurs. 

4- Steps I to 3 are repeated. 

6.6. Application of the IBSS/SVSF and the IBSS/KF to an electro-hydrostatic 
actuator 

In this study, the proposed algorithm has been tested on an electro-hydrostatic 
actuator (EHA) described in chapter four. The EHA can be described by a third order 

model defined in its discretized state space form as follows: 

rx, .. ,J r Ts 0 W'' l [ 0 l [w,, l Xzk+l = 0 1 Ts Xzk + 0 uk + Wzk 

X3k+1 0 -wn2Ts 1- 2(wnTs X3k BT5 W3k 
6.10 

zk+l = [~ 
0 

~] xk+t + vk+t 1 
0 
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Where Wn = w;:;z , B = ZDfJAE and ( = 1,..,( BEVo~)· The parameter f3 is the 
~"' ""'MV; MVo 2v2 .JMVo PAE2 

effective bulk modulus and its value is defined in the range (1 x 108 
- 3 x 108 )Pa. The 

effective bulk modulus is made to change randomly several times. As the effective bulk 
modulus changes, the parameters B, Wn and ( change. The number of parameters in the 
EHA system is similar to the number of parameters of the second order system. 
Therefore, the IBSS algorithm described in section (6.4) is used. The output signal has 
been divided into segments with a length equal to 200 time steps for the IBSS/KF. In the 
IBSS/SVSF, segmentation is not required. Here, the estimates remain within the 
smoothing boundary layer (which is large enough to encompass the existence subspace 
when there are no modeling errors). If a system parameter (model) changes, the filter 
estimates exit their smoothing boundary layer thus inducing chattering. This provides a 
very effective mechanism for detecting change in the system model at its inception and is 
utilized in the SVSF/IBSS formulation. As such, instead of taking segments continuously, 
a data segment of length 200 time steps is taken once chattering is detected. The changes 
in the parameters are randomly made and each change will last for more than 20000 time 
steps. Within the segment, the parameters are assumed to be constant. The IBSS will 
attempt to estimate the filter parameters Wn, ( and B, while the SVSF or the KF estimates 

the system states. The sampling time is 0.001 s. Wn, B, and (randomly vary between 100 

to 400Hz, 1 to 100 m and 0 to 1, respectively (since the bulk modulus has changed). 
radxsec 

The process and measurement noise vectors are assumed to be white with a noise-to-
signal ratio of 10% of their corresponding states, and with variances of O"w 2 = a/ = 

[
5 X 10-

14 
0 0 l o 1 x 10-12 o . For the KF, the system and measurement noise 

o o 1 x lo-s 
covariance matrices are defined as Q = R = aw2 , and the initial error covariance matrix 
has a value of P0 = I3 x3 • For the SVSF, the coefficient matrix y has a value ofy = 0.1 x 

13 x3 • The smoothing boundary layer is designed to have width of 'I' = [1~2 xx 
1~;~5]. The 

6 X 10-3 

input consists of a random signal superimposed on step changes as shown in Fig 6.12. 
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input vs time 

10 

8 

:;4 n. 
.S: 

2 

0 

50 100 150 200 
time step k (sec) 

Fig 6.12: The input signal to the IDSS simulation. 

6.6.1. Simulation results 

6.6.1.1. The ffiSS/KF 

250 

The results of the IDSSIKF are shown in Figs (6.13) to (6.18). The figures show 

that the IDSS/KF gives good stable and robust performance although modeling errors are 

present (the average absolute percentage errors of the states and parameters; i.e. 

L 
1
h ( ) 2::~~gth(yi)l (yi - .Ya/yd x 100% for Yi described by equation (6.11), are less 

engt Yi -

than 4%). The IDSS provides the KF with a tuned model while the KF uses this model to 

estimate the states. The system and measurement noise affect the results as the estimation 
error increases when the noise amplitudes increase. 
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6.6.1.2. The IBSS/SVSF 

The results of the IBSS/SVSF are shown in Figs (6.19) to (6.24). The figures 
show that the IBSS/SVSF similarly to the IBSS/KF gives good stable and robust 

performance although modeling errors are present (the average absolute percentage errors 

of the states and parameters; i.e. 
1 (y)L!:_~oth(yi)I(Yi -5\)/yd x 100% for 

length i -

Yi described by equation (6.11 ), are less than 4%). 
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6.6.1.3. Discussion 

The two methods; ffiSS/SVSF and ffiSS/EKF, are compared in terms of: 

The root mean square error (RMSEj ), which is defined as follows: 

RMSE. - 1 ~length(x)(y· - y~ )2 ~'or y - X X X J: '·' and B 6.11 
1 - ( ) £....t'-1 1· 1·· 1' - 1> 2• 3•., • UJn length x - t t 

The maximum absolute error (MaxErroTj), which is equal to 

MaxErrOTj = max(IYh- yhl) for y = x11 x2, x3 , {, Wn and B 6.12 

The variance in the error (VarErrorj) which is equal to 

V E 
1 length(x) ~ "'i=l Yh-yh ., 

( 

._,length(x)( _ ))2 
ar rror· = L· y· - y· - tOr 6 13 1 length(x)-1 t=1 1i 1i length(x) . 

y = x11 x2 , x3, {, Wn and B 

Table 6.2 summarizes the comparison. 

IBSS-KF IBSS- SVSF 

Computation Time 539.17 sec 42.8 sec 

Position RMSE 1.16 x 10-s 5.23 X 10-10 

Velocity RMSE 2.5 X 10-8 2.8 X 10-9 

Acceleration RMSE 6.16 X 10-6 8.92 X 10-7 

Damping Ratio RMSE 4.1 X 10 6 1.5 X 10 6 

Natural Frequency RMSE 2 X 10-2 1.2 X 10-3 

Gain RMSE 3.45 X 10-3 

I 1.86 X 10-4 

Position M axError 1.3 I 1 X 10 6 

Velocity MaxError 3.8 X 10-3 5.5 X 10-6 

Acceleration MaxError 5.8 X 10-1 1.6 X 10-3 

Damping Ratio MaxError 2 X 10-2 2 X 10-2 

-
Natural Frequency MaxError 100.26 99.97 

-
Gain Max Error 17.42 

I 
17.45 
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Position V arError 3.7 x lo-s 7.5 X 10 14 

---------
Velocity VarError 1.72 X 10-10 2.15 X 10-12 

Acceleration VarError 1.04 x lo-s 2.16 X 10-7 

Damping Ratio 4.7 X 10-6 5.9 X 10-7 

Natural Frequency VarError 109 4.5 X 10-l 
- -

Gain VarError 3.27 9.4 X 10-3 

Identify the Changing in the Parameters No I Yes 
! 

Computation Complexity Complex Simple 

Memory needed Large Low 

Segment Length Effects No-Effects 

Table 6.2: Comparison between the IBSS/EKF and the IBSS/SVSF. 

The IBSS/KF and the IBSS/SVSF yield good results on estimating the states and 
the parameters (the mean absolute percentage errors of the IBSS/KF and the IBSS/SVSF 
are less than 4%). However, there are some differences between the two algorithms. 

When the IBSS/KF is applied, the system cannot identify the positions where the 
parameters change. The algorithm divides the measurement signal into small segments 
and assumes that the segment is small enough, such that no changes happen within it. 
When a change happens within the segment, the error increases causing poor results for 
the parameters in that segment (the absolute percentage error may reach 120%) as shown 
in Fig 6.25. On the other hand, the IBSS/SVSF does not have this problem. Using the 
secondary indicators of performance allows the segment lengths to be adapted according 
to the time instance of change in the parameters. 

Further to Fig 6.25, the IBSS/KF and the IBSS/SVSF are both able to estimate the 
states and the parameters. However, their results differ in terms of adaptation, variance in 

the error and the time needed to estimate the parameters and the states, as shown in table 
6.2. The amplitude of noise affects the IBSS/KF more than the IBSS/SVSF, and the 
profiles of the estimated parameters are smoother in IBSS/SVSF than those of the 
IBSS/KF, as shown in Fig 6.26. 
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Fig 6.25: The error when changes happen within the segment. 

The IBSS/SVSF requires less time to estimate the states and the parameters 
compared to the IBSS/KF. Taking a segment each time and analyzing it takes a longer 
time than taking one segment per interval and analyzing it. This causes the IBSS/KF to 
take more than twelve times what is need for the IBSS/SVSF, as shown in table 6.2. This 

restricts using the IBSS/KF in on-line applications. Also, this problem leads to the use of 
a large amount of memory due to calculation of segmentation and analysis of data. On the 
other hand, the IBSS/SVSF needs less memory and computing resources. 

Changing the segment length does not affect the IBSS/SVSF, while it greatly 
impacts the IBSS/KF. For example, reducing the segment length to 100 time steps makes 
the IBSS/SVSF be 1.3 times faster than the reported value in table 6.2 without affecting 
its performance. However, this reduction can potentially reduce the overall RMSE of the 
IBSS/KF as the segments that have parametric changes within them become smaller. 
When the changes happen inside a segment, it means that the model is incorrectly 
estimated because it will be based on two partially different system models. If the 
segment is small, then the error effects of that segment becomes negligible in the overall 
RMSE. However, this is obtained at the expense of the computational time which is 
almost tripled. 
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Chapter Seven: 

Summary and Conclusion Remarks 

This thesis is concerned with the development of robust and model-based 
parameter and state estimation techniques for their application to fault detection. In 
model-based fault detection system parameters are monitored to give an indication of 
system state of health by comparing them against thresholds, (Tang & Wang, 2010). 
Faults usually result in un-modeled uncertainties in the filter model leading to numerical 
instability for this type of application. Therefore, filters must be robust to uncertainties 
and remain stable. One of the most robust types of filter that can be used for fault 
detection applications is the Sliding Mode Observer (SMO). Their equivalent output error 
injection component (filtering the output error signal by using low-pass filter) can be used 
to detect and extract modeling errors. However, this type of observer is severely impacted 
by noise and the usage of the digital filtering on the equivalent output error can result in 
excessive loss of information. 

A recently developed version of the SMO formulated in a predictor corrector 
form, referred to as the Smooth Variable Structure Filter (SVSF), was proposed in 
(Habibi, 2007). The SVSF is based on the Sliding Mode Control concept. It defines a 
hyperplane and then applies a discontinuous corrective action that forces the estimates to 
switch back and forth across that plane within an existence subspace. The discontinuous 
action gives the filter its robustness. However, it results in chattering. To remove 
chattering, the discontinuous action is refined by using a saturation function with an 
associated fixed-width smoothing boundary layer. The SVSF has two sets of indicators of 
performance; the primary indicators of performance, which are the estimation errors, and 
the secondary indicators of performance, which are the a priori chattering signal that can 
occur if the smoothing boundary layer width is smaller the existence subspace width. The 
latter is the major SVSF characteristic that is used in this thesis. The SVSF and its forms 
are discussed in chapters four and five including its proof of stability and its gain 
derivation. 

The application of the SVSF to a linear system with a full rank measurement 
matrix is explored in chapter four. It is noted that the SVSF has two existence subspaces. 
One as previously reported for the a priori estimate and one newly determined for the a 
posteriori estimate. These subspaces are mathematically formulated in sections (4.3.1.1) 
and ( 4.3.1.2). The a priori existence subspace's equation shows that its width is a function 
of all uncertainties including system and measurement noise, modeling errors and errors 
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in the initial conditions. Conversely, the mathematical formula of the a posteriori 
existence subspace shows that its width is a function of measurement noise and the errors 
in the initial conditions. The latter term becomes negligible in both subspaces after a few 
time steps (depending on the SVSF's coefficient matrix, y). This means that modeling 
errors in initial condition do not affect the SVSF's a posteriori estimate. 

The characteristics of the smoothing boundary layer are investigated. The 
proposed smoothing boundary layer in (Habibi, 2007) has a fixed-width. In this thesis, it 
is proven that if the smoothing boundary layer has a time-varying width linked to the a 
priori output estimation error, then the filter performance may be improved. In section 
( 4.3 .2.1 ), a novel strategy is presented to obtain a time varying smoothing boundary layer 
by using two SVSFs. The first filter is used to maintain the filter's stability and 
robustness. The a posteriori estimate of this filter is propagated to the second filter to 
obtain the time varying a posteriori estimate. The second filter is used to provide a time 
varying smoothing boundary layer to the first filter based on the diagonal elements of the 
error covariance matrix. This method has been tested on an electro-hydrostatic actuator in 
section (4.3.4.1). The results show that the proposed method is stable and has 
performance that exceeds that of the standard SVSF. 

If the smoothing boundary layer is designed properly, then chattering is removed. 
However, if fault-driven modeling errors are added such that the amplitude of the output's 
a priori estimation error grows larger than the width of the smoothing boundary layer, 
then chattering will be observed in the a priori estimate, (Habibi, 2007). The a priori 
chattering can be used to determine the source and the amplitude of modeling 
uncertainties. In section (4.3.3), it is proven that the a priori chattering contains the 
modeling errors information. Three methods are proposed to extract these modeling errors 
from the a priori chattering signal (assuming that the system and the measurement noise 
vectors are stationary). These methods are based on the law of large numbers, which 
states that the segment's mean and variance of a stationary signal approach its expectation 
and covariance as long as the segment's length is large. The first method involves taking 
n segments of the a priori chattering, the input, and the measurement, and then calculating 
the segments' means. According to the law of large numbers, the white noise vectors 
vanish in these calculations. The modeling errors are then obtained by using a simple 
algebraic algorithm (section (4.3.3.1)). The second method involves taking a segment of 
the a priori chattering, the input, and the measurement, and then calculating the segment's 
covariance between the a priori chattering and the measurement, and then between the a 
priori chattering and the input. Using these two equations, the modeling errors are 
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extracted (section (4.3.3.2)). This method requires a better knowledge of the noise and an 
input signal that is white. The third method is similar to the second method except that it 
uses the cross-correlation instead of the covariance calculation to remove the above 
mentioned short comings (section (4.3.3.3)). The proposed methods only consider cases 
involving abrupt step changes. An opportunity for further research is to relax this 
limitation and consider parameter estimation involving gradual and continuous change. 
The monitoring and reconstruction method is tested on an electro-hydrostatic actuator that 
is made to have nine parametric changes with errors of up to 340%. The results show the 
following: 

The SVSF is a robust and stable filter. 
The detection process is sensitive to the width of the smoothing boundary layer. 
Compared to the noise uncertainties and the system matrix, if the width of the 
smoothing boundary layer is 

o Small, then a false alarm may be detected. 
o Large, then a delay in detecting modeling errors may occur. 

In most real applications, the measurement matrix does not have a full rank. In 
such a case, the SVSF is combined with a reduced order technique that is similar to the 
Luenberger method. The reduced order technique extracts the hidden states from the 
measurements, and then uses them to compensate for the missing measurements. In order 
to apply the Luenberger method, the system must be observable and differentiable. Using 
the Luenberger method has limitations due to its compatibility with an observer rather 
than a filter and its sensitivity to noise. 

To overcome the Luenberger method's limitations, a novel algorithm referred to 
as the Toeplitz/Observability SVSF is proposed in section (5.2.2). The system Toeplitz 
and the Observability matrices could be used to extract the hidden states by using 
previously stored values of the measurement and the input signals. The 
Toeplitz/Observability SVSF is applicable to systems with one measurement signal and 
requires that the system Toeplitz and the Observability matrices are exactly known. If 
modeling errors are present, then the system must be presented in it Observability 
canonical form. If the system qualifies this condition, then the resulting system Toeplitz 
and Observability matrices are not linked to system parameters; thereby the estimation 
error is a function of the system and measurement noise vectors and their derivatives. The 
Toeplitz/Observability SVSF is tested on an electro-hydrostatic actuator in section (5.2.3) 
and compared to the KF, demonstrating its superior performance in the presence of 
modeling uncertainties. 
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The Toeplitz/Observability SVSF is modified in chapter five to accommodate 
systems with multiple-degrees of freedom and/or multiple-measurements. A new 
canonical form using newly defined matrices referred to as the General System Toeplitz 
and the General Observability matrices is proposed referred to as the General 
Observability Canonical Form. Each measurement should represent one state only and at 
least the first state of each sub-system must be measured. If these conditions are satisfied, 
then the General System Toeplitz and/or the General Observability matrices are 
independent of the system parameters. In this thesis, two algorithms are developed to 
obtain the General Observability matrix. 

The General Observability and the General System Toeplitz matrices are used for 
formulating a new method referred to as the General Toeplitz/Observability SVSF. The 
new method extends the extraction of modeling uncertainties from the chattering signals 
to observable systems with multiple measurements. 

A novel iterative parameter estimation technique, referred to as the Iterative Bi­
Section/Shooting method (IBSS), is proposed. The IBSS is a searching technique used to 
obtain model parameters for systems in which only the model structure is known. The 
IBSS is further combined with the SVSF and the KF. These methods are applied to an 
electro-hydrostatic actuator that is made to have changing parameters. The results show 
the superior performance of the IBSS/SVSF. Thus the SVSF/IBSS allow the extraction of 
all parameters and states in this order system using only the measurement vector. 

The work presented in this thesis allows the extraction of modeling uncertainties 
using the SVSF concepts in state and parameter estimation. It is fundamentally important 
to white box diagnostics and health monitor. 
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Appendix A: 

Nomenclature 

Italic-upper case letters are used to denote matrices and vectors, while their elements are 
denoted by italic lower case letters with subscripts i and/or j. 

SYMBOL COMMENTS 5J2E 

-1 + Notation denoting an inverse and a pseudo inverse, respectively. 

The upper bound of the element inside the bracket. 

S' The matrix/vectorS after applying the transformation matrix T. 

The bth derivative of a. 

I lABS Absolute value. 

1\ Estimation value. 

AoB Schur product between A and B. 

T Matrix Transpose. 

A, A The time-invariant system matrix and its estimate, respectively. nxn 

The time-variant system matrix at time k and its estimate, respectively. nxn 

B,B The time-invariant input matrix and its estimate, respectively. nxl 

The time-variant input matrix at time k and its estimate, respectively. nxl 

The input matrix of a continuous system. nxl 

The a priori chattering vector at time k. nxl 
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The a posteriori chattering vector at time k. 

Cai,b/ Segment's cross correlation between ai and b j. 

diag(a) 

!:la 

ENDSUB; 

eZGTOklk' 

eZGTOklk-1 

eXGTOklk' 

eXGTOklk-1 

eZTOklk' 

eZTOklk-1 

eXTOklk' 

eXTOklk-1 

The uncertainties vector of the SVSF at time k. 

Create a diagonal matrix with a's elements on its diagonal. 

Difference between a's actual and estimated values. 

Location of the last row in the ith sub-system according to the system 
matrix. 
The a posteriori and a priori output's estimation error vectors at time k, 
respectively. 
The a posteriori and a priori state's estimation error vectors at time k, 
respectively. 

The a posteriori and a priori output's estimation error vectors of the 
General Toeplitz/Observability SVSF at time k, respectively. 

The a posteriori and a priori state's estimation error vectors of the 
General Toeplitz/Observability SVSF at time k, respectively. 

The a posteriori and a priori output's estimation error vectors of the 
Toeplitz/Observability SVSF at time k, respectively. 

The a posteriori and a priori state's estimation error vectors of the 
Toeplitz/Observability SVSF at time k, respectively. 

E(a) The expectation operator of the element a. 

f,i The non-linear system matrix and its estimate, respectively. 

f" The transformed non-linear system matrix. 

r The system matrix of a continuous system. 

y The (VSF and EVSF)'s positive constant matrix. 

y The SVSF's positive constant matrix. 

H,H The time-invariant output matrix and its estimate, respectively. 

The time-variant ith portion of the output matrix at time k. 
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nxl 

mx 1 

nxl 

nxl 

nxl 

nxl 

nxl 

nxl 

nxl 

nxn 

nxm 

nxn 

mxn 

lxn 
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i,j 

k 

The time-variant output matrix at time k and its estimate, respectively. 

The alternative measurement matrix at time k. 

Subscripts used to identify elements of matrices and vectors. 

The identity matrix with dimensions of n x n. 

Cost functions. 

Time step value. 

The correction gain of the Variable Structure Filter at time k. 

The correction gain of the Extended Variable Structure Filter at time k. 

The correction gain of the Smooth Variable Structure Filter at time k 
for systems that have measurement matrix with full rank. 
The correction gain of the Smooth Variable Structure Filter at time k 
for systems that have measurement matrix with partial rank. 

The correction gain of the Toeplitz/Observability SVSF at time k. 

The correction gain of the General Toeplitz/Observability SVSF at 
time k. 

li-Tc a The value of a when b approaches c. 

m 

MaxError 

n 

Location of the measured state represented by the measurement i. 

The segment length of the measurement i needed for extraction 
purposes. 

Number of measurements. 

Number of the measurements related to the block i. 

The maximum absolute error. 

The maximum measurement segment length (LMS). 

A Lyapunov function. 

System's number of states. 
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mxn 

nxl 

lxl 

nxn 

lxl 

nxl 

nxl 

nxl 

nxl 

nxl 

nxl 

lXl 

lxl 

lxl 

lxl 

lxl 

lxl 

nxn 

lxl 
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NSUB 

0,0 

Number of states in the sub-system i in a multi-degree of freedom 
system. 

Number of sub-systems in a multi-degree of freedom system. 

The Observability matrix and its estimate, respectively. 

Osubi' Dsubi The ith sub-Observability matrix and its estimate, respectively. 

!Raxb 

RMSE 

sat(a, b) 

sat(a, b) 

The General Observability matrix and its estimate, respectively. 

The General Observability matrix at the ith iteration in the modified 
selection procedure. 

The system's Natural Frequency and its estimate, respectively. 

The a priori and a posteriori output's error covariance matrices at time 
k, respectively. 
The a priori and a posteriori error covariance matrices at time k, 
respectively. 
The error covariance matrix at time k and its initial condition, 
respectively. 

The alternative measurement noise vector at time k. 

The smoothing boundary layer vector at time k. 

The time-varying smoothing boundary layer vector at time k. 

The 1 acobian of the estimated system matrix at time k. 

The process noise covariance matrix at time k. 

The measurements noise covariance matrix at time k. 

Space dimension of size a X b, a is the number of rows and b is the 
number of columns. 

The root mean square error. 

The saturated function of a using the boundary layer b. 

The saturated function of element a using the boundary layer b. 

Is the absolute diagonal matrix of the function sat( a, b). 
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lXl 

lXl 

nxn 

nxn 

lXl 

mxm 

nxn 

nxn 

nxl 

nxl 

nxl 

nxn 

nxn 
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lxl 

lxl 
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I
c 

a· 
i=b ' 

sgn(a) 

sgn(a) 

STSUBi 

T 

U(t) 

XToklk' 

XTOklk-1 

XGTOklk' 

XGTOklk-1 

The summation of vector a from time b to time c. 

The covariance of ai and bj. 

The sign function of the vector a. 

The sign function of the element a. 

Location of the first row in the ith sub-system according to the system 
matrix. 

Coordinate transformation matrix. 

The system Toeplitz matrix and its estimate, respectively. 

The General System Toeplitz matrix and its estimate, respectively. 

The Toeplitz matrix of the system noise 

The General Toeplitz matrix of the system noise. 

Sampling time. 

The input at time k. 

The continuous input. 

The measurement noise at time k and its upper bound, respectively. 

The system noise at time k and its upper bound, respectively. 

The state vector at time k, and its initial and boundary conditions, 
respectively. 

The a posteriori and a priori estimates at time k, respectively. 

The a posteriori and a priori estimates of the Toeplitz/Observability 
SVSF at time k, respectively. 

The a posteriori and a pnon estimates of the General 
Toeplitz/Observability SVSF at time k, respectively. 

The transformed system's states . 

The transformed a posteriori and a priori estimates at time k, 
respectively. 
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lXl 

nxn 

nxn 

nxn 

lxl 

lxl 

lXl 

mx 1 

nxl 

nxl 

nxl 
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y' klk• y' klk-1 
The revised form of the a posteriori and a priori estimates using the 
measurement vector at time k, respectively. 

The output vector at time k and its initial value, respectively. 

Zsubik The measurement portion related to the block i at time k. 

Zroklk' 

Zroklk-1 

ZGTOklk' 

ZGTOklk-1 

The a posteriori and a priori output's estimation vectors at time k, 
respectively. 

The a posteriori and a priori output's estimation vectors of the 
Toeplitz/Observability SVSF at time k, respectively. 

The a posteriori and a priori output's estimation vectors of the General 
Toeplitz/Observability SVSF at time k, respectively. 

The alternative measurement vector of the original Smooth Variable 
Structure Filter. 

A matrix with dimension ax band zero elements. 

The system's Damping Ratio and its estimate, respectively. 

Table A.l - Nomenclature 
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