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Abstract 

This dissertation is concerned with the development of a linear control strategy for sta­

bilization of unstable solutions of the lD Kuramoto-Sivashinsky equation in a periodic 

domain. This equation serves as a simple model for hydrodynamic system. The Kuramoto­

Sivashinsky equation is solved using a spectral method in both steady and unsteady regime, 

which is described. Computational results show the existence of several families on steady 

solutions, some of which are unstable. The unstable solutions are stabilized using the 

Linear-Quadratic-Gaussian algorithm. The feedback operators are determined by solving 

the matrix Riccati equation. In the thesis we also analyze computationally the effectiveness 

of the feedback stabilization algorithm depending on various parameters. 
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Chapter 1 

Introduction 

1.1 Motivation 

As we know that infinite dimensional systems (i.e., PDEs) model many important physical 

phenomena such as traffic signal, weather prediction, hydrodynamics, transport in porous 

media, geomechanics, aerodynamics, biological and molecular dynamics, and charged par­

ticle transport emphasizing the linking of quantum, statistical and fluid mechanical states 

to name a few. In practice, steady solutions of a PDE have many good properties, such as 

turbulence vs. small drag, fluctuations in laminar flows etc., that unsteady solutions don't 

have. However, steady solutions are often unstable. Hence, they need to be stabilized in 

order to better understand the behavior of the physical phenomena that the PDE governs. 

For stabilization of unstable solutions of the PDE system we need to apply the well known 

mathematical tools called control theory. We will use the linear control theory, the sim­

plest approach in control theory. In this project our aim is to study the instabilities that arise 

in the hydrodynamic systems such modeling the turbulence in fluid mechanics. We know 

that the Navier-Stokes equation (NSE) is the governing equation in hydrodynamics. This 

is a highly nonlinear PDE system. So far now it does not have any analytical solutions. 
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Therefore, we need to investigate its numerical solutions. Nevertheless, the complete nu­

merical investigation of NSE is often very complicated. In order to alleviate this difficulty 

for studying this equation numerically we consider some of its ideal cases. 

Motivated by this goal we have considered the Kuramoto-Sivashinsky Equation (KSE), 

a simple nonlinear partial differential equation as will be given in section 1.5. This equation 

is a good model for the NSE. Its solutions have multiscale, chaotic, and pattern forming be­

havior in periodic domains. Moreover, this equation has similar type of nonlinearity( energy­

preserving) that the NSE has. Thus this equation has gained a rapid popularity from sci­

entists and engineers. The steady solutions of KSE for different ranges of the parameter 

contained in it have good properties but they are unstable. Therefore we need to stabilize 

its steady fixed point (i.e. stationary) solutions. This requires to simplify the nonlinear 

infinite dimensional KSE system into a linear infinite dimensional system using the trans­

formation of the solution u(x, t) of KSE of the form u(x, t) = ii(x) + ev(x, t) where ii is the 

stationary solution of KSE and v(x,t) is some arbitrary perturbation from ii. However, in 

practice the implementation of linear control theory for an infinite dimensional system is 

inconvenient. Therefore to avoid this difficulty we further need to project the infinite di­

mensional solution space of KSE into a finite dimensional solution space. This means that 

we need to discretize the infinite dimensional KSE system using some standard numerical 

techniques such as spectral Galerkin method and eventually we get the finite dimensional 

system. Hence the motivation of our present study arose from the necessity of stabilizing 

the steady but unstable solution of KSE. 

Another motivation of our present study came from Armaou et al. [1] and Christofides 

et al. [2]. They stabilized the unstable laminar (zero solution) solution of KSE using various 

feedback law. In our present study we want to analyze different properties of the feedback 
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gain operator that is responsible for stabilizing the system. 

1.2 The Idea of Feedback Control 

Control mechanisms have widespread application in nature as well as in our every day life. 

For examples, organs in our body use control mechanisms to keep the essential biologi­

cal variables, for instance, cholesterol levels, blood sugar levels and body temperature at 

certain points. Such mechanisms are systematically studied by a discipline called control 

theory. This subject develops a bridge between the real world problem and the mathemati­

cal theory. It has a wide variety of applications in science, engineering, and commerce such 

as in the design of robotic systems, the flight of spacecrafts, the satellite communications, 

the regulation of chemical and biological systems, manufacturing companies, and financial 

markets to name a few. 

Control theory can be studied in different aspects. Among them are the classical control 

theory and modern control theory. Classical control theory is one that limits its discussion 

on the transfer functions and frequency domain approach. It deals with the systems that are 

linear and with constants coefficients. In practice there are very few physical phenomena 

that can be modeled by such a linear constant coefficient systems except for some ideal 

cases. Therefore, for studying those systems we need to study another branch of control 

theory called modem control theory. The modem control theory originates on the state­

space approach. In this approach a higher order ordinary differential equation, or a partial 

differential equation representing a physical model is being written as dynamical system 

with respect to the state variables involved. Therefore some differences between the clas­

sical and modem control theory are in order. The former handles with only linear, constant 

coefficient system where the transfer functions can be easily computed but the later one 
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can be more easily extended to nonlinear, time-varying systems which cannot be easily de­

scribed by transfer functions (see E. D. Sontag [3], & W. L. Brogan [4]). In addition to the 

above, another advantage of modem control theory over the classical one is that it ensures 

optimality and robustness of solutions to the problem under consideration. 

Mathematical control theory is a branch of applied mathematics that deals with the 

analysis and design of a control system together with its implementation. It develops so­

phisticated theories to efficiently handle the control problems that arise in practice. The 

main purpose of controlling an object is to influence its behavior in order for it to achieve 

certain properties. For controlling the object under consideration these influences can be 

implemented in different ways. For examples mathematician implement these influences 

using various mathematical techniques designed for the respective mathematical models 

while engineers do them building devices, such as electric heating pad, automobiles, in­

dustrial robots and airplane autopilots, that incorporate various mathematical techniques. 

Briefly, we can say that the objective of control is to manipulate the available inputs of a 

dynamical system to cause the system to behave in a more desirable manner than the one 

without control. For instance, every movement that our body makes is the result of appli­

cation of a control algorithm. Most of them can be characterized as the feedback control of 

different means. This idea of control can easily be generalized to our physical world (see 

E. D. Sontag [3], & K. T. Lee [5]). 

There are two major types of control namely open-loop control and closed loop control. 

In an open-loop control system, there is no information path (or control loop) from the 

system, say X, to the control input, say u(t). The control input, u(t), is generated by some 

dynamic processes without regard to the measured or estimated output, say y(t), external to 

the system itself and then is applied to the system. The input, or the control, u(t) is selected 
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based on the particular goals one needs to achieve for the system and all available a priori 

information about the system. There is no direct or indirect influence on the input by the 

measured output of the system. Fig. 1.1 depicts a general representation of how an open­

loop control system works. It is to be noted that when unexpected noise or disturbances 

act upon an open-loop system, or when its behavior is not understood completely, then the 

output of the system may behave unexpectedly. 

Mathematically an open-loop control is constructed using optimization method. This is 

why optimal design and control of systems in industrial processes has long been of concern 

to the applied scientists and engineers. The practical attainment of an optimum control 

design for a physical system is generally the result of the combination of mathematical 

analysis, empirical information, and the subjective experience of the scientist and engineer. 

The formulation of a dynamic process or control system design is done by using a trial and 

error procedure, in which primarily some measurements or estimates are made and then 

information is sought from the system to determine its improvements. Throughout this 

process if a sufficient mathematical characterization of the system is achieved, then one 

can conclude about the effect of changes about a preliminary design (seeM. M. Denn [6], 

& W. L. Brogan [4]). 

Properties of open-loop control are: 

• The effects of only known disturbances can be mitigated. 

• Once the controlled system is stable, it remains stable for ever. 

• The controller does not care about the output of the system rather it drives the system 

in a very specific way. 
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Controllable inputs Disturbances 

s r ss 

~ ~ ~ 
P oce output 

Goals u (t) ~ Dynamic y(t) .... - Control Law Process -

Figure 1.1: An open-loop control system. For a certain goal, a specific input u(t), deter­
mined, for instance, by an optimization procedure, is applied to the system, resulting in a 
response y(t). Note that noise and/or system uncertainties may alter this output. 

Another kind of control systems is termed as the closed-loop control system about 

which we are particularly interested in order to apply into our present problem. Fig. 1.2 

depicts the idea of how a closed-loop system does its functioning. In closed-loop system 

there is always an information path (or control loop) from the system, X, to the control 

input, u(t). In this system, the input or control u(t) is modified via this control loop from 

the information about the behavior of the measured or estimated system output. A closed­

loop system is better adjustable with the unexpected disturbances and uncertainties about 

the dynamic behavior of the system (see W. L. Brogan [4]). This type of control is referred 

to asfeedbackcontrol since the outputs, after some suitable transformations, are fed back to 

the input and then compared with the desired response. The resulting error, for instance the 

error between the measured output and the desired response, is the basis for the application 

of the control to the system. The controller generates the control signal on the basis of the 

error thus computed. If a mechanical signal has to be applied to the system, it is generated 

by an actuator from the output of the controller. In this arrangement, the control signal 

takes the actual controlled variable into account including noise or disturbances if any. The 

system is then driven (by the control signal) until the error is reduced to a certain tolerable 

limit. The procedure thus illustrated is called the feedback control law in which feedback 
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is negative (see G. P. Rao [7]). 

There are many reasons why a feedback control rule is preferable to that of an open-loop 

control. For instance, one can see that sometimes a feedback rule is simpler in comparison 

to an open-loop scheme in that it may require a fair amount of computation and com­

plex implementation. Moreover a feedback can automatically adjust to unforeseen system 

changes or to unexpected system noise/disturbances and thus can increase the stability of 

the system dynamics (see W. L. Brogan [4] & K. T. Lee [5]). Feedback control law can be 

divided into two categories such as Linear and nonlinear feedback law. For practical appli­

cation a linear feedback control is widely used due to its simplicity. However in rigorous 

cases nonlinear feedback control may be used. 

General advantages/properties of feedback control are: 

• closed loop operation done with negative feedback 

• applicable in the presence of noise and/or system uncertainties 

• provide an adjustable degree of robustness, i.e. stabilize the system in the presence 

of noise and/or system uncertainties 

• optimality, attain the above goal with the least effort possible. 

Linear feedback control is again of two kinds, namely state feedback control and out­

put feedback control. When all the state variables of a system are available to form its 

output signals, then the state feedback control is applied to such a system. In this case 

the input is constructed by multiplying the states by an operator (matrix), generally called 

feedback operator, and then is supplied to the system as a new input. On the other hand, 

output feedback control is applied based on incomplete information about the state of the 
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Figure 1.2: A closed-loop control system. For certain goal some input u(t), determined 
by a control law, is applied to the system, even in the presence of some disturbances, and 
produces some response y(t) which is measured by some sensors and then this is again 
applied to the system as an input unless the desired response is achieved. 

system obtained through some observation operator. In this case the input is constructed 

by multiplying the outputs by an operator (matrix), called feedback operator as before, and 

then is fed back to the system as the new input. It is to be noted that the state variable 

feedback serves only the academic interest because the outputs are only the signals that are 

accessible to the system. State feedback in contrast to output feedback has the following 

advantages: 

(i) The state contains all available information about the system under consideration. 

Thus a feedback can be obtained from the available state information for stabilizing 

the unstable solutions of the system if any. 
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(ii) Often there are some situations for which the state variables are all measurable. In 

this case the state variables can be used to form the output. 

(iii) Many optional control rule can take the form of a state feedback control law. 

(iv) There are efficient ways to reconstruct or measure the state variables from the avail­

able control inputs and control outputs. 

We will present a more formal discussion with the appropriate mathematical setting regard­

ing the control theoretic issues so far mentioned in Chapter 2. 

In our study we are interested in infinite dimensional system, i.e., partial differential 

equations (PDEs) . Control theory exists for both finite and infinite dimensional systems. 

Infinite dimensional formulation is possible (see Lions [8]) but implementation is very diffi­

cult which needs discretization of an infinite dimensional operator equation. This difficulty 

leads us to apply an alternative approach. In this approach we project the solution of the 

PDE from an infinite dimensional solution space to a finite dimensional space. In other 

words, we discretize the PDE using some standard numerical techniques and then apply 

the finite dimensional theory. However an obvious question may arise regarding the dis­

cretization issues. Does the solution obtained in the discrete case approach, for increased 

resolution, the infinite-dimensional solution? This is an important question, but is very dif­

ficult to answer. Later we will provide some numerical characterization that will partially 

answer this question. 

We often encounter the infinite dimensional systems modeled by partial differential 

equations and delay differential equations or finite dimensional systems modeled by ordi­

nary differential equation that come from real world problems. In such cases to serve our 

practical purposes we need to investigate the stability, or well-posedness of the solution. In 
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those cases efficient application of control strategy may play a vital role. A mathematical 

model representing a physical phenomenon may appear to be a linear, nonlinear, deter­

ministic, or stochastic differential equations. Different mathematical models lead scientist 

to develop different controls strategies. For instance, a nonlinear mathematical model of 

a robotic system leads to apply linear and/or nonlinear control; incorporating models for 

uncertainty expressed in probabilistic or statistical terms leads to stochastic models, a sub­

ject which require much research activity. Another area of control theory is robust control 

which is mathematically different but closely related to stochastic model. Robust control 

deals with the design of control laws which are guaranteed to perform in the presence of 

disturbances and uncertainties. The area of adaptive control, which differs from robust 

control interms of the mathematics employed, deals with the control of partially unknown 

systems (see E. D. Sontag [3]). 

Thus, the consequences of the continued practical, theoretical, and philosophical inter­

ests have been the development of the aforementioned control including many other such as 

statistical control, optimal control, sampled data control, multivariable control etc. Among 

all other controls linear feedback control has received a special attention in the literature 

and in applications because it is comparatively easy to implement into the system linearized 

about a state. Therefore in our present model we concentrate only to apply linear feedback 

control for stabilization purposes. 

1.3 An Example 

In order to explain the mechanism how the feedback control strategy is applied to a system 

to achieve a more desirable goal, let us consider one of the simplest problems in robotics, 

namely, that of controlling the position of a single-link rotational joint using a motor placed 
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Figure 1.3: A Pendulum. A torque u(t ) is applied at the pivot that makes an angular 
displacement 9(t) from the equilibrium position of the pendulum. 

at the pivot. This example is taken from [3] . In mathematical terms, this problem can be 

considered as a pendulum to which one can apply a torque as an external force u(t ) to 

control the arm position of the pendulum (see Fig. 1.3). 

For simplicity, let us assume that there is no friction acting on the system, a mass m is 

attached to the end of a rod of unit length, g denotes the acceleration due to gravity, and 9 

denotes the angular displacement in counterclockwise direction of the arm of the pendul urn 

with respect to the vertical. Then from the Newton 's law for rotational motion, we obtain 

the following second-order nonlinear differential equation: 

(1.1 ) mS(t ) +mg sin9(t ) = u(t), 

where u(t ), called the input or control function, denotes the value of the external torque at 

timet. 
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Note that the vertical stationary position (8 = n, 9 = 0) represents an equilibrium point 

in the absence of the control (i.e., when u = 0), however, a small deviation from the equilib-

rium position will result in an unstable motion. Now assume that we want to apply torques 

(external forces u(t)) as needed to correct for such deviations. But for small 8 -1t, we have 

sin8 = -(8 -n) + o(8 -n). 

where the "little-o" notation: o(x) defined for some function f(x) for which 

lim f(x) = 0. 
x--->0 X 

Dropping the nonlinear term o( 8 -1t), and assuming <1> : = 8 - 1t as our new variable, equa­

tion (1.1) reduces to the following linear differential equation 

(1.2) $(t)- <!>(t) = u(t), 

which is an open-loop equation. 

Our aim is now to force <1> and~ to zero, for any nonzero <j>(O) , ~(0) in equation (1.2) so 

that it takes least control efforts. Now if we are to the left of the vertical (see Fig. 1.4), that 

is, if <1> = 8 -1t > 0, then we want to move to the right, and therefore, we apply a negative 

torque. Similarly if we are to the right, we apply a positive(i.e. counterclockwise) torque. 

In other words, we want to apply the followingproportionalfeedback 

(1.3) u(t) = -a<j>(t), 

where a is some positive real number, called the feedback gain. 

Now we can form the obtain the closed-loop equation after the control given by equa-

tion (1.3) into the open-loop equation (1.2), i.e., 
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Figure 1.4: An Inverted pendulum. A small deviation <j>(t) from the equilibrium position 
causes an unstable motion of the pendulum. 

(1.4) ~(t) + (a- 1) <j>(t) = 0. 

For this closed-loop system, the associated characteristic equation is given by 

(1.5) 

whose solution can be written as 

r=±Jf=a. 

Note that if a< 1, then all of the solutions of the above closed-loop equation except for 

those with 

~(0) = -<j>(O)v'1- a 

diverges to ±oo, if a> 1, the solutions are oscillatory, since r = ±iva=l, and finally if 
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a= 1, then each set of initial values with ~(0) = 0 is an equilibrium point of the closed­

loop system. Therefore, none of the three cases guarantees the desired configuration. This 

shows that proportional control does not work for the linearized model, and hence for 

the original nonlinear equation (1.1). These behavior of the closed-loop system can be 

explained physically in the following manner. For a < 1, let us consider the initial condition 

as <j>(O) = k where k > 0 but small real number, and ~(0) = 0. Then the solution of (1.4) 

becomes 

<j>(t) = ~ (ev1=at -e-vl-ar), 

and thus the pendulum moves away with time t, rather than toward, the vertical position. 

When a > 1, the solution then is 

<j>(t) = kcos v'a -1 t, 

which shows that even though the torque is being applied in order to mitigate the instability 

of the pendulum, but this feedback produces much inertia. As a result when the pendulum is 

close to <j>(O) = 0 but moves with a relatively large speed, the controller (1.3) starts pushing 

toward the vertical, and thus overshoot and finally oscillation result. 

In order to remedy these problem we take a > 1 and modify the controller (1.3) so that 

it has a control over the velocities, i.e., we need to add a damping or diffusion term to the 

system which results the following proportional-derivative( PD ), feedback law, 

(1.6) u(t) = -a<j>(t)- ~~(t), 

where a > 1 and ~ > 0. In practice, implementation of such a controller require mea­

surement of both the angular displacement and the velocity of the system. However, for 
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instance, if only the angular displacement is available, then to implement the control algo-

rithm one needs to estimate or measure the velocity which gives an idea of observer that 

is a means of performing such an estimation. Therefore, considering ~ is measurable, the 

resulting closed-loop system with the above PD controller can be simplified as 

(1.7) ~(t) +~~(t) + (a-1)<J>(t) = 0. 

whose auxiliary equation has the following roots 

both of which have negative real parts. Therefore all the solutions of equation (1.2) con­

verges to zero. Hence the system has been stabilized under feedback law (1.6). To avoid the 

oscillatory behavior of the solutions if any we further can impose the following condition 

(1.8) ~2 >4(a-I) , 

which kills the oscillations and thus the solutions have only decaying properties. 

We therefore conclude from the above discussions that through a suitable choice of 

the controller gains a and ~ one can achieve the desired behavior for the linearized model 

of the given nonlinear problem. But even though most control systems are designed and 

implemented using linear feedback strategies, there are lot of cases in which the nonlinear-

ities of the system must be taken into account to get a better result for the application of 

control approach, for example, in the automatic control of spacecraft attitude or in the de­

sign of autonomous robots. However, the design and analysis of nonlinear control systems 

requires more sophisticated mathematical tools than are typically used for linear systems. 
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That is why nonlinear control theory draws on a wide variety of topics, including dynam­

ical systems theory, differential geometry, the study of Lie algebras, and Lagrangian and 

Hamiltonian systems. Research aspects in this field involves questions of stability, output­

stability and detectability for nonlinear systems, primarily focusing on the notion of input 

to state stability (see E. D. Sontag [3]). 

1.4 Mathematical and computational challenges in con­
trol theory 

It is well recognized that there is an increasing demand for the application of control theory 

in our real world problem. This widespread demand has led researchers in control com­

munity to develop many sophisticated theories for use in control. However there are many 

technical problems when one needs to implement them in practice. For solving the prac­

tical problems it has been found that even though the theories exist but often they become 

very difficult to apply. Most physical phenomena that are to be controlled are modeled by 

infinite dimensional system such as partial differential equations (PDE). Since implemen­

tation of many control theories that are developed for the infinite dimensional problems is 

inconvenient, therefore, practically we solve such problems using some standard numerical 

approach, i.e., by some finite dimensional formalism. Therefore a very natural question is 

in order - does the solution of the finite dimensional control problem (based on the dis­

cretization of a PDE) converge to a solution of the continuous problem? There is some 

evidence that for certain classical systems this is not the case (see E. Zuazua [9]). Hence, 

the formulation of a finite dimensional problem to ensure that the above hold is a challenge 

for the implementation of the control theory in practice. 

In another study by E. Lauga et al. in [10] has provided numerical evidence that in a 
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finite-dimensional discretization of a PDE controllability is systematically lost as numerical 

resolution is refined. These are some numerical evidences that address some challenging 

mathematical and computational issues of control theoretic applications. 

1.5 KSE as a model system 

In this study our aim is to develop an algorithm for stabilizing the unstable solutions of 

a partial differential equation that exhibits chaotic behavior by using the feedback con­

trol strategy. Therefore we have selected the Kuramoto-Sivashinsky Equation (KSE), a 

simple nonlinear dissipative partial differential equation with first order in time but fourth 

order in space, that exhibits a very rich nontrivial dynamical behavior which is temporally 

complex/chaotic but spatially coherent patterns. This equation has been considered as a 

model problem for simulating the development of turbulence in physical systems. More­

over extensive numerical simulations for this KSE system has been done by a number of 

researchers and have shown the existence of periodic cellular patterns. It can be written in 

many different forms depending on the normalization of the parameter involved. Here we 

have chosen the one that is used by Hyman et al. [11]: 

(1.9) X E .Q, t E [O,T] 

subject to the periodic boundary conditions 

(1.10) a~v(O,t) = a~v (L, t ) , t E [0, T], i = 0, . . . , 3, I 

and the initial condition 
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(1.11) v(x,O) = vo(x), xEO, 

where the subscripts t and x denote the time and the space derivative, respectively, v, 

sometimes called the instability parameter, is positive, the solution v(x, t) E H~(Q) rep­

resents the state of the system, H~ ( Q) denotes the Hilbert space of functions with square­

integrable second derivatives that satisfy the boundary conditions of equation (1.9) (i.e. 

H~(Q) = {v E H 2 (Q): a~v(O,t) = a~v(L,t), i = 0, ... ,2}), vo(x) E H~(Q), H2 denotes 

the sobolev space of functions with square-integrable second derivatives and a~ ~ :~. For 

simplicity we assume that Q ~ [O,L] where L = 2n is the length of a typical pattern cell 

and vo is an L-periodic spatial function. 

Kuramoto-Sivashinsky equation (KSE) has been derived by many scientists to model 

different physical phenomena such as it appeared to model the Belousov-Zhabotinskii re-

action patterns in the aspect of angular-phase turbulence for reaction-diffusion systems, 

thermal instabilities with diffusion in laminar frame fronts, interfacial instabilities between 

two viscous fluid systems, the perturbations of a Poiseuille flow of a film layer down on a 

vertical or inclined plane, among others (see Greene et al. [12] & Kevrekidis et al. [13] and 

the references therein). This equation is widely studied by the researchers as a prototype 

due to its chaotic and pattern-forming behavior to forecast the spatio-temporal complexities 

that exist in the dynamical system. 

As in [11] introducing the renormalized dimensionless natural bifurcation parameter 

l = L/(2nJV), normalizing the KSE in an interval of length L = 2n, setting the incipient 

instability parameter v = 4 as proposed by Sivashinsky, and hence introducing the new 

bifurcation parameter a = 4f2, where L is the size of a cell forming a typical pattern along 

spatial coordinates, we can write (1.9), (1.10), and (1.11) as 
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(1.12) xEQ, t E [O,TJ 

subject to the periodic boundary conditions 

(1.13) a~v(O , t) = a~v(2n, t ), t E [0, T], i = 0, 0 0 0,3, 

and the initial condition 

(1.14) v(x,O) = vo(x), xE Q , 

where the new time scaling is defined as at := ~at 

Now integrating the above system over Q in the light of [14], the evolution of the 

mean of v can be simplified as at JJn vdx = -(a/2) JJn(axv)2dx =I Oo That is why, it is 

often convenient to transform the given system into a different form which is obtained by 

first differentiating it with respect to x and then re-expressing it in terms of a new variable 

u = axv such that the new system becomes: 

(1.15) X E [0,2n], t E [O,TJ 

subject to the periodic boundary conditions 

(1.16) a~u(O ,t) = a~u(2n,t), t E [0, T], i = 0, 0 0 0,3 , 

and the initial condition 
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(1.17) u(x,O) = uo(x), x E [0,2n] 

where u(x,t) is continuous and periodic with the same period as v(x,t), and uo(x) = dxvo(x). 

Now integrating u(x,t) = dxv(x,t), and using the boundary condition (1.13) fori= 0, 

we obtain 

(1.18) k u(x,t)dx = 0, 'lit. 

One can observe here that u(x,t) = C, a constant, satisfies (1.15). AgainC= 0 due to (1.18). 

Moreover u(x,O) = uo(x) is 2nperiodic for allxE Q, and< uo >= 2~ fnuo(x)dxrepresents 

the mean value of the initial solution and hence integrating ( 1.15) over the domain Q yields, 

:r~nu(x,t)dx=O, i.e., 2~/nu(x,t)dx=<uo>. 
It follows from (1.18) that< uo >= 0. This shows that the mean of the solution remains 

conserved with respect to time. In other words, we can say that the "dynamics" of u(x,t) 

satisfying (1.15) are centered around the mean value of the initial data. Therefore, we can 

assume the following conditions 

• the solution u(x,t) is periodic on Q, with the periodic initial condition u(x,O) = uo(x) 

• fn uo(x)dx = 0. 

The system of equations (1.15)- (1.18) is our final version of the Kuramoto-Sivashinsky 

Equation (KSE) which we want to study in terms of control-theoretic tools. Here it is 

worth mentioning that the fourth derivative term is responsible for damping, the second 
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derivative term is responsible for instabilities, and the nonlinear term redistributes energy 

across wave numbers through mode coupling, and the parameter a has a similar meaning 

to the Reynold's number in fluid dynamics. It is clear from the expression a= 4P that 

a increases with the periodicity length L. The flow of energy in the system can be easily 

understood in terms of the spatial Fourier harmonics of the solution. Taking the Fourier 

transform of (1.15) we see that the fourth order spatial derivative term is proportional to the 

fourth power of the wave number and second order spatial derivative term is proportional 

to the square of the wave number. This suggests that short wave modes lose energy to sinks 

outside the model but the long wave modes are driven. Then the energy in the long wave­

length modes propagates to the short wavelength modes through the nonlinear coupling. 

Through this nonlinear interaction, energy balance of each mode can be reached, which 

leads to nontrivial steady states. 

1.6 Organization of Dissertation 

1.6.1 Objectives 

In this study our main objective is to develop an algorithm for stabilizing the unstable solu­

tions of Kuramoto-Sivashinsky equation applying the idea of linear control theory. In order 

to do this we need a systematic presentation of the underlying mathematical procedures. 

The major accomplishment of this thesis can be categorized as: 

• Implementation of unsteady and steady KSE simulations 

• Analysis of multiplicity of steady state solutions, and 

• Development and implementation of a linear feedback stabilization strategy. 
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1.6.2 Organization of the Dissertation 

We have organized this dissertation as follows. In Chapter 1 we introduce the problem, in 

particular present: 

• motivation of our research problem 

• underlying idea of control theory 

In Chapter 2 we discuss the numerical methods used in our computational study of the 

Kuramoto-Sivashinsky equation, in particular 

• derivation and properties of spectral methods 

• implementation of spectral Galerkin methods for both unsteady and steady KSE 

• time discretization of KSE using Euler scheme 

• Newton's method for solving finite dimensional nonlinear steady KSE obtained upon 

discretization 

• results of steady and unsteady KSE 

In Chapter 3 we introduce concepts of the control theory and computational results, in 

particular 

• introduction to Linear Quadratic Regulator problem 

• formulation of controlled KSE using actuator applied both in physical and Fourier 

space 

• derivation of matrix Riccati equation for KSE 



• some useful results concerning the solution of matrix Riccati equation 

• important results that we have obtained for feedback stabilization of KSE 

Finally in Chapter 4 we provide conclusions. 
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Chapter 2 

Computational Characterization of 
Kuramoto-Sivashinsky Equation (KSE) 

In this study our model equation is an infinite dimensional partial differential equation, 

namely Kuramoto-Sivashinsky Equation(KSE). We want to solve this system numerically. 

However as we know that the solution of an infinite dimensional problem by a numerical 

technique is impossible. Therefore we consider here the corresponding finite dimensional 

approximation of the solutions of KSE. We want to solve the KSE by a fairly common 

numerical method, known as the Spectral method. Hence in this chapter we will present 

some key material that is the basis of this method. 

2.1 Mathematical Framework, Basic definitions and Use­
ful Theorems 

This section is devoted to introduce some background materials to work with when studying 

the spectral methods (seeR. Peyret [15]) for the solution of KSE. 

24 
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2.1.1 Spectral Methods 

In this section our aim is to present the background material for constructing a finite di­

mensional approximation of the solution to a continuous problem. The Spectral method 

that lies in the general class of weighted residuals methods is one of the very well known 

numerical methods that best suits for the problems with smooth solutions on a periodic and 

bounded domain. In this method the approximation is defined as a truncated series expan­

sion in terms of polynomials that are orthogonal with respect to some weight, so that some 

quantity (usually referred to as residual or error) which should be exactly zero is forced 

to be zero only in an approximate sense. The principal advantage of this method is the 

exponential decay rate, called spectral or infinite accuracy, of the error between the exact 

solution and the calculated one when the degree of the polynomials is increased. Due its 

very high accuracy it allows one to consider problems which would require a large num­

ber of mesh points by finite differences discretization, with very much fewer degrees of 

freedom. Often spectral method is useful to model the flow with shock waves or fronts. 

Now consider a set B = { <l>k(x)} k=O of functions defined on an interval Q = [a, b]. Then 

the set B is said to be a basis for a function space H 2 (Q) (e.g., Hilbert space) if the span of 

B is dense in H 2 ( Q). The most convenient basis functions are those which are orthogonal 

to each other. The set B of basis functions is said to be orthonormal if the norm of the 

basis functions is normalized to unity, i.e., (<l>m ,<l>n)w = 1 where w(x), defined on Q, is 

the weight associated with the orthogonality of the basis functions in B. The set B = 

{ e2nik.x}, for example, forms an orthonormal basis for of the complex space L2 ([0, 1]). This 

is fundamental to the study of Fourier series. B is said to be orthogonal with respect to the 

weight w(x) defined on Q if 
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(2.1) 

where ( <l>k, <l>t)w = J: <l>k<l>twdx denotes the inner product of <l>k(x) and <j>1(x), ck denotes some 

constant, and cSi denote the Kronecker delta. 

Now assume that a function u(x) defined on Q can be approximated by a truncated 

series of the form 

(2.2) 
N 

uN(x) = L fik<l>k(x), x E .Q, 
k=O 

where <l>k(x) are some basis functions and uk are some unknown coefficients. Basing on 

the choice of basis functions and their domain we obtain different approximation series as 

follows: 

• If the chosen basis functions are <l>k(x) = eikx (i =H) on Q = [0,2n], then the 

resulting spectral method is called Fourier spectral method or simply Fourier method. 

• If the basis functions are Chebyshev polynomials defined on the bounded domain 

Q = [ -1, 1], the method is called Fourier Chebyshev method with respect to the 

weight w(x) = (1-x2)-L 

• If the basis functions are Legendre polynomials defined on the bounded domain Q = 

[ -1, 1], the method is called Fourier Legendre method and the weight in this case is 

w(x) = 1. 

• In a similar fashion other Fourier methods such as Fourier Bessel method, Fourier 

Laguerre method etc. are defined. 
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Later on we will state some theorems regarding the accuracy of representation of equa­

tion (2.2) in some special cases. Now if uN(x) is a finite dimensional approximation to 

u(x), the residual is defined as 

Analogously the residual for a differential equation Lu = f, for instance, can be defined as 

R(x) = f -LuN. 

where Lis a differential operator. 

The weighted residual method can be constructed by canceling the residual RN in an 

approximate sense, i.e., setting the inner product 

(2.3) 

where \jfn(x) are the test (or weighting) functions, IN is some finite index set, and w* is the 

weight related to the method and trial functions. Depending on the test functions \jf n (x) and 

the associated weights w*, we can define the following weighted residuals methods: 

• The Galerkin method obtained by setting 

(2.4) \jfn = <!>n and w* = w, 

where <!>n(x) are the basis functions and w(x) is the weight for which the basis func­

tions <!>n(x) are orthogonal. 

• The collocation method obtained by setting 
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(2.5) 'lfn = B(x-xn) and w* = 1, 

where xn, n = 1, 2, ... ,N represent the collocation points defined on Q, and 8 repre-

sents the Dirac delta-function. 

Using equation (2.3) in (2.5) we obtain the following identity characterizing the collocation 

methods 

(2.6) 

Therefore, basing on the construction of these two approximation methods we may con-

elude that in collocation method, the residual is exactly zero at the collocation points 

whereas in the Galerkin-type method the residual is zero in the mean with respect to 

some weights. Thus we can say that collocation method gives rise to interpolation method 

whereas Galerkin method gives rise to an approximation method- a more typical classi-

fication. 

2.1.2 Approximation of a given function using Galerkin approach 

Galerkin method consists of setting in equation (2.4) the basis function <l>n (x) as the trigono­

metrical functions { eikx}f=1, called Fourier basis, and the weight w(x) = 1 as the associated 

weight for the Fourier basis functions. If uN(x) is an approximation to u(x), then the resid-

ual 

(2.7) 
N 

RN(x) =u-uN=u- Luk<!>k 
k=O 
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is forced to zero via (2.3) 

(RN ,<l>n )w = h (u- ±uk<l>k)<l>nwdx =O, n=O, . . . ,N. 
Q k=O 

(2.8) 

Note that we have considered the index set IN = {0, ... ,N} to calculate theN+ 1 coeffi-

cients Uk that are present in (2.8). These coefficients can be explicitly calculated by using 

the so-called orthogonality relation (2.1): 

(2.9) uk = 2_ f u<j>kwdx, k = 0, ... ,N. 
Ck }Q 

2.1.3 Approximation of a given function using the Collocation approach 

In the collocation method the residual RN = u - UN is made equal to zero at the N + 1 

collocation points Xn , n = 0, .. . ,N , so that IN= 0, . . . ,Nand 

(2.10) UN(Xn) = u(xn), n = 0, ... ,N , 

This relation indicates that the collocation method is an interpolation method. But we know 

that uN(x) = :Lt=ouk<l>k (xn ), so we have 

(2.11) 
N 

L uk<l>k(xn ) = u(xn), n = 0, .. . ,N . 
k=O 

It is a system of N + 1 algebraic equations with N + 1 unknowns ukl k = 0, ... ,N which 

has a unique solution provided that det{ <l>k(xn )} = 0. Alternatively one can also solve this 

system using a discrete orthogonality property of the trial functions <!>k associated to set 

of collocation points {xn} which is equivalent to the evaluation of a numerical integral in 

equation (2.9) by the Gauss formula. 
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2.1.4 Fourier Spectral Method 

This is a very popular method and is extensively used for approximating the solution of 

a periodic problem. This is constructed by considering the trigonometric functions as the 

basis functions. Such a basis is adapted to periodic functions. Thus, if the initial and 

boundary conditions of partial differential equation (PDE) on a bounded domain are peri­

odic then we can apply the spectral method to compute the solutions of the PDE. However, 

if the initial and boundary conditions of a PDE are not periodic, then we have a different 

problem and therefore a different method should be used. In this new problem the initial 

and boundary conditions of the PDE are made homogeneous using some transformations 

so that they are satisfied by the basis functions <l>k of the approximation of the solutions of 

the PDE. In such cases it is guaranteed that the solutions of the PDE can be approximated 

by a series of the form (2.2). 

However if it is not possible to make the initial and boundary conditions of the PDE 

homogeneous, then still the traditional Galerkin method may be applied by constructing, 

from the orthogonal basis functions { (j>k}, a new basis { ljlk} satisfying the boundary condi­

tions; this can be done generally by defining 'Ilk as a linear combination of some (j>~s. But 

still there might be a problem that the new basis functions are not orthogonal. In such a 

case it is inconvenient to use the Galerkin method. Therefore, to avoid this complexity, a 

new method, called the "tau method", is developed. This is a modification of the Galerkin 

method that allows the use of trial functions not satisfying the homogeneous initial and/or 

boundary conditions. 

Now suppose we want to approximate a function u(x) defined on a domain .Q = [a, b] by 

Fourier spectral method. If the function is not periodic and/or not continuous, then Fourier 

spectral method can, in principle, still be applied. But, in this case the convergence of 
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the associated series becomes nonuniform near the boundaries and the Gibbs oscillations 

may contaminate the whole domain. That is why to use this method we impose some 

restrictions that the functions to be approximated should be smooth enough and periodic. 

In this respect we assume for simplicity that our function u(x) is 2n-periodic defined on the 

interval Q = [0,2n]. 

2.1.5 Calculation of Fourier coefficients using spectral Galerkin tech­
nique 

Now we consider the above function u(x) is real valued and is represented by a finite 

trigonometric series instead of (2.2) as 

(2.12) 

which contains 2N + 1 unknown complex coefficients uk. The complex form (2.12) is 

useful for applying the Fast Fourier Transform (FFT). Obviously uo is real and since u(x) 

is real valued, so the following complex conjugacy relation holds for every two Fourier 

coefficients, with an opposite value of k, that is to say, 

(2.13) 

where(.) denotes the complex conjugate. 

Therefore using (2.13) we need to compute only 2N + 1 unknown real coefficients 

of (2.12). Now using the Galerkin-type method as in section 2.1.2 and the orthogonal­

ity property for the complex exponential functions 
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(2.14) {2n '(k- ) {2n if k = n Jo ez n xdx = 
0 0 if k =!= n, 

we obtain the following expression for the Fourier coefficients 

(2.15) 

In practice, the complex coefficients uk are calculated fork= 0, 1, ... ,Nand the remaining 

coefficients are obtained from (2.13). 

2.1.6 Calculation of Fourier coefficients using Collocation technique 

Here we want to compute the discrete Fourier coefficients Uk present in Fourier series ex-

pansion (2.12) by using the collocation technique as discussed before. To do this let us 

denote the two end points of the domain of definition of u(x) by xo = 0 and XM = 2n, then 

the collocation points associated with the Fourier series are defined by 

(2.16) 
XM-XO 2nn 

Xn= M n= M, n=O, ... ,M, 

Since u(x) is assumed to be periodic, so it satisfies u(xo) = u(xN) and similar equalities 

for its derivatives. The collocation coefficients are now computed by setting the residual 

RN(x) = u(x)- uN(x) to zero at the collocation points, i.e., 

(2.17) 

or 
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N 

(2.18) ~~ikxn- ( ) -1M L.J uke - u Xn , n - , . .. , . 
k= -N 

But since u(x) is real, so as before, this equation contains 2N + 1 real unknowns instead 

of 2N + 1 complex unknown coefficients. In order to calculate them we must have 2N + 1 

equations, in other words, we set M = 2N + 1. Note that one can show that the matrix :M 

associated with the system (2.18) is unitary up to the factor M, i.e., :M*:M = M1I (where 

:M* is the conjugate transpose of :M and II is the identity matrix) so that its determinant 

satisfies idet:MI = MM/2. This suggests that :M is invertible and hence the system (2.12) 

has a unique solution. Therefore, with the aid of discrete orthogonality relation 

(2.19) f ei(k-t ) 'lM- = { 
n= l 

M if k-l=mM, m=0, ±1 , ±2, .. . , 

0 otherwise. 

we obtain the following discrete Fourier transform 

(2.20) 
1 M 

~ - ~ ( ) -ikxn k - N N Uk - M L.J u Xn e , - - , ... , . 
n= l 

2.1.7 Some convergence results of the spectral method 

For approximating a function using this method it is required that the Fourier coefficients 

should have sufficient decay properties. Therefore it is essential to present some results 

on the convergence of this method. Assume that the function u(x) defined on [0, 2n] is 

periodic, continuous including its derivatives u(P) up to the order m- 1 and with the m-th 

derivative absolutely integrable, the well known result of the decay of Fourier coefficients 

(R. Peyret [15]) is given by 
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(2.21) 

When the total variation of the m-th derivative is bounded, the above result reduces to 

(2.22) 

These results show that the convergence of the spectral method depends on the regu­

larity of the function u(x) under consideration. In other words, we can say that the more 

regular is the function u, the more rapid is the convergence toward zero of its Fourier coef­

ficients when k --t =. The error estimate based on the LP(O, 21t)-norm of the convergence 

of the approximation UN is given by [15] 

(2.23) 

where 1 < p < oo and Cis an arbitrary constant independent of N. For p = 1 or p = =, the 

above inequality holds for a constant C(1 + logN) instead. 

Therefore from (2.23) we may conclude that for an infinitely differentiable function, 

the approximation error is smaller than any integral power of 1/ N, i.e., the convergence is 

exponential. This decay property is commonly called " spectral" or "infinite" accuracy. 

However, it should be mentioned that in the presence of singularity, the rate of convergence 

of the Fourier series approximation to a function is only algebraic (R. Peyret [15]). 

Relation between Galerkin and Collocation coeffi cients that gives rise to aliasing error 

If we analyze the continuous and discrete orthogonality relation given by (2.14) and (2.19) 

which are respectively, 
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r2Tt { 2n Jo ei(k-n )xdx = 0 
if k= n 

if k# n 

and 

f ei(k-t )¥;- = { 
n=l 

M if k-l=mM, m=0,±1,±2, ... , 

0 otherwise. 

we observe that the former one is not zero for k- l = 0, while the later on is not zero for 

k- l = mM, m = 0, ±1 , ±2, .... This is an error that arises from discretization and is 

closely related to the question of sampling. This distinction shows that two trigonometrical 

functions with different frequencies, eik1x and eik2x, are equal at collocation points Xn = 

2nn/M when kz -kt = mM, m = 0 , ±1 , ±2, .. .. Therefore, the same set of values at 

collocation points may represent either eik1 x or ei(k1+mM)x. This phenomenon is known as 

"aliasing". 

An interesting question, however, may arise if a smooth signal (or function) u(x) de­

fined on [0, 2n] is sampled as u(xn) at discrete collocation points Xn = 2nn/ M, where 

n = 1, ... , M. To investigate the answer of this question let us denote the Galerkin-type 

coefficients by uf as defined by the integral (2.15) and by u~ the collocation-type coeffi­

cients given by the sum in (2.20). For convenience let us repeat (2.15) and (2.20) which are 

in tum: 

(2.24) uf = 2~ lozn u(x)e-ikxdx, k = -N, . .. ,N . 

and 

(2.25) AC _ 1 ~ ( ) -ikxn k _ N N uk - M L... u Xn e , _ - , ... , . 
n=l 

Consider the infinite Fourier series expansion of u(x) as 
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(2.26) u(x) = L afeik.x 
k=-= 

Now substituting the value of u(xn) obtained after evaluating the sum (2.26) at the discrete 

collocation points Xn = 2nn/ M, n = 1, ... , M, in (2.25) we obtain 

(2.27) 

ak = - L L a~ e'PXn e-lk.xn' 1M(oo ·), 
M n=l p=-= 

k=-N, ... ,N, 

= 2_ ~ a~ ( f ei(p-k)xn) ' 
M p=-= n=l 

assuming the series is absolutely convergent 

= af + L af+mM' k = -N, ... ,N, using the relation (2.19) 
mEZ\{0} 

where the sum 

Laf+mM' k = -N ... N 
m 

that characterizes the aliasing error through the difference between the coefficients ak and 

af, is called "alias". Its presence is a consequence of the sampling phenomenon mentioned 

before. It is noticed that the modes appearing in the alias term correspond to frequencies 

larger than the cut-off frequency N. Therefore, the discrete mode k collects all the energy 

from all the periodic images of mode k in the continuous spectrum. This is the reason 

it is important that the wave amplitudes decay rapidly, and that we have a large enough 

value of M: if both of these are true, then the contribution from the other periodic modes 

is extremely small. However, if u(x) is not a smooth enough function, or M is not large 

enough, then modes for small values of k will contain energy from higher modes. This is 

called aliasing error". More precisely, it can be shown that the L2-norrn of the aliasing 

error (R. Peyret [15]) 
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(2.28) EA = k~N ( ~ uf+mM) eikx 

is bounded by CKml lu(m) 1 1~ (0 ,2n) · 

2.2 Steady and unsteady solutions 

It has been illustrated [ 11] that the dynamics of KSE (1.15) is equivalent to the dynamics of 

a low- dimensional system and the solutions of KSE transition to chaos for different ranges 

of the parameter a. Hyman et al. in [11] numerically integrated the KSE in time for a given 

periodic initial condition and then categorized different behavior of the solutions includ­

ing laminar (trivial), periodic, chaotic. Analysis of chaotic behavior of KSE by different 

researchers is briefly summarized in (J. M. Greene et al. [12]). 

However, the study of the steady states of KSE and their stability play a vital role for 

the foundation of understanding the underlying dynamics of the system (J. M. Greene et 

al. [12]). In addition the study of the unsteady states of KSE gives an understanding of the 

solutions about the transition to chaos. Hence it is interesting to consider both the steady 

and unsteady problems of KSE. The solutions of an ordinary or partial differential equation 

which do not depend on time are usually termed as steady while those which depend on 

time are called unsteady . Therefore, the unsteady solutions of KSE are obtained by solving 

equation (1.15) subject to the boundary conditions (1.16) and the initial condition (1.17) 

whereas the steady solutions of KSE are obtained by solving the equation (1.15) after set­

ting dru(x, t ) = 0. Note that the former problem is a parabolic problem which can be solved 

by any numerical time integration scheme but the later one is an elliptic problem having 

only the boundary conditions. Therefore, this problem has to be solved by an iterative 

method such as Newton' method. 
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2.3 Discretization of KSE and the solution method 

2.3.1 Discretization of unsteady KSE 

The behavior of the solution of KSE is quite varied and complicated due to the presence 

of both second and fourth order spatial derivative terms. The second derivative term a.a;u 

is antidissipative (or antidiffusive) and it maintains the excitation in the absence of any 

external excitation. Hence this term introduces energy into the system and therefore has 

a destabilizing effect. In addition, the nonlinear term a.uaxu transfers energy from low to 

high wave numbers where the stabilizing fourth derivative viscosity term 4a~u dominates. 

In fact, the presence of the nonlinear term in KSE ensures the boundedness of the solution 

u(x,t) as t ----too. Now linearize the KSE (1.15) about the laminar state a= 0 we obtain 

(2.29) 

The eigenfunctions (Fourier modes) of the solution u(x,t) of (2.29) are given by eikx, k E Z 

and the the corresponding eigenvalues are given as Aa(k) = k2 ( a- 4k2), fork E N. The 

typical distinction between small and large wave numbers is illustrated by the dispersion 

relation for the linear KSE (2.29) as shown in the Fig. 2.1. 

From the eigenvalue analysis of this linear part of KSE it is clear that the laminar so­

lution a = 0 is stable if Vaf4 < 1, and the two new degenerate unstable modes appear 

at every successive integer of Vaf4. Hence we conclude that the new branches bifurcate 

at the integer values of Vaf4 and the eigenvectors of the bifurcated modes at Vaf4 = n 

as given above are eikx, k E Z. Therefore the set of these eigenvectors can be written as 

{ coskx, sinkx} = { cosnx, sinnx} (since at the bifurcation points k = ± Vaf4). 
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Figure 2.1: Dispersion relation for the linear part of the KSE. From the graph we notice that 
if k < 1 (or equivalently if VCif4 < 1 ), then the laminar solutions of KSE are stable. If k = 1 
(or equivalently VCif4 = 1 ), then the eigenvalues of linearized matrix about laminar states 

are zero. If k > 1 (or equivalently VCif4 > 1), then the laminar solutions are unstable. 

Therefore, laminar solutions change stability and hence bifurcate at VCif4 = 1. 
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Now before the discretization of the KSE (1.15) we need to say few words about the 

truncation of Fourier series approximation of the solution. Since the closure of the Fourier 

basis with respect to the topology induced by the L2 norm contains all the 2n-periodic 

functions, so the solution to the KSE for fixed time can be approximated, at least in the L2 

sense, to any accuracy by a Fourier series. Again due to the presence of a strong diffusion 

term for higher wave numbers, a rapid convergence of the Fourier series is expected , and 

hence the truncation of the Fourier series to a finite set of coordinates is reasonable. Besides 

here we assume that the solution of KSE is smooth and the initial data is spatially periodic 

with period 2n which also support the representation of the solution by a truncated Fourier 

series. 

The existence, uniqueness, regularity, and the nonlinear stability for all time t of the 

solution of KSE system (1.15)- (1.18) are well understood and are studied by R. Temam 

in [16]. The author in his book proved that the solution u(x,t) of KSE system remains 

bounded for all time. This mathematical result validates the finite dimensional representa­

tion of the solution of the KSE by truncation of higher frequencies. The appropriate size 

of the truncation can be determined by numerical study of the decay rate of the associated 

Fourier coefficients. Therefore, we can now approximate the solution u(x,t) of our model 

KSE system as uN(x,t) by the following truncated Fourier series 

(2.30) 
k=N 

uN(x,t) = L Cikeikx, 
k=-N 

where the expansion coefficients Cik = Cik(t) are functions of timet, t E [0, T]. By the 

conservative nature of KSE (1.15), Cio(t) remains constant, i.e., 
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d 1 d r2n 
dtuo(t) = 2ndt lo u(x,t)dx 

(2.31) 

1 {21t 
= 2nlo d1u(x,t)dx 

1 lo21t = -- (aui1xu+aa;u+4iJ!u)dx, 
2n o 

since u(x, t) is 2n-periodic 

=0 

But in fact, uo (t) = 0 as we see from the straightforward calculation that 

1 {21t 
uo = 21t Jo u(x)dx = 0, 

since u(x) = dxv(x) and v(x) is periodic with period 2n. 

Denoting the residual of the solution by RN(x, t) defined on the domain [0, 2n] x [0, T] 

we have 

(2.32) 

The Galerkin method consists of setting to zero the scalar product 

where 'lfn = einx, n = -N, -N + 1, ... ,N -1,N, form the Fourier basis and w(x) = 1 is 

the weighting function associated with the orthogonality of the basis functions 'If n. both of 

which are defined on the given spatial domain Q = [0, 2n]. Therefore we have the following 

Galerkin conditions 

(2.33) 



where n = -N, ... ,N 

Now the Fourier series expansion of the nonlinear product 

can be written as 

(2.34) 

N N 
FN = L uq(t)eiqx ax L Up(t)eipx 

q=-N p=-N 

N 
= i L pupuqei(p+q)x 

p,q=-N 

2N N 

= i L L pupuqeikx, 
k=-2N p,q=-N 

p+q=k 

where up= uq = 0, for jpj, jqj > N 
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Using (2.34) in (2.32) and expressing different terms of (2.32) by their corresponding 

Fourier series, and then substituting (2.32) in (2.33), we have 

(2.35) 
2N N lo2n + ai L L pupuq ei(k-n)xdx = 0, 

k=-2N p,q=-N 0 

where n = -N, -N + 1, ... ,N- 1,N, and u, = 0, for jrj > N. Finally, due to the 

orthogonality relation (2.14) we obtain the Galerkin equations 

(2.36) 

where 
N 

Wk = i L PUpUq 
p,q=-N 
p+q=k 
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To describe the time integration method, let us first discretize the equation ( 1.15) in 

space, and then in time with a very simple semi-implicit scheme. If we denote by u'fv the 

Fourier series approximation UN of the solution of KSE (1.15) at time tn = nM, n = 0, 1, . .. , 

where M is the time steps, then the equation (1.15) first discretized in space, and then in 

time so that the residual RN becomes 

(2.37) 

where we considered 

• the nonlinear term explicitly to avoid costly iterations 

• the linear terms implicitly to allow one to mitigate the stability restrictions on the 

time step !!:.! that arises from the discretization of equation (1.15) 

• the first-order accurate explicit/implicit Euler scheme just to make the discretization 

simpler. 

Therefore after the obvious implementation of the time discretization the Galerkin 

equations (2.36) then take the form 

(2.38) az+1 = (u'k- a!!:.tw'k)/{1 +!!:.t(4k4 - a/?)}, k = -N, -N + 1, ... ,N -1 ,N 

where 
N 

W'k = i 2: pa;a~ 
p,q=-N 
p+q=k 
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Note that in system (2.38) u'k is the approximation of uk at the time nM. Therefore knowing 

the initial value u2, which is the Fourier transform of the initial condition (1.17), we can 

compute the solution u'k directly from (2.38) without any iteration. 

However an interesting question may appear regarding the evaluation of the convolu-

tion sum w'k which must be computed as efficiently as possible. This is obtained through 

the so-called "pseudo spectral technique". This technique consists of performing the dif­

ferentiations in the spectral space (the space of coefficients u'k, k = -N, ... ,N) and the 

products in the physical space (the space of the values uN(xj) at the collocation points 

Xj = 2njjM, j = 1, ... ,M = 2N + 1). Note that the calculation of w'k in Fourier space 

requires O(N2) operations, but the transition between the two spaces is made by the FFT 

(Fast Fourier Transform) which costs "only" O(Nlog(N)) operations. The algorithm is 

then given as follows: 

1. calculate (using inverse FFT) u'fv(xj), j = 1, ... ,M from u'k, k = -N, ... ,N, 

2. calculate (using inverse FFT) axu'fv(xj), j = 1, ... ,M from iku'k, k = -N, ... ,N, 

3. calculate the product w'fv(xj) = u'fv(xj)axu'fv(xj), j = 1, ... ,M 

4. calculate (using FFT) Wk• k = -N, ... ,N from w'fv(xj), j = 1, ... ,M 

where because of the aliasing phenomenon the quantity w'k is different from 

N 

w'k = i L pu~u~ 
p,q=-N 
p+q=k 

However there is an efficient way to remove the aliasing error that arises in the spectral 

discretization of the product of two functions. The rule of aliasing removal is called 3/2-

rule. To discuss this approach let us consider two 2n-periodic functions 
N 

bN(x) = L bkeikx 
k=-N 
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Then after simplification the coefficient of the product w(x) = a(x)b(x) are found to be 

N N 

wk = wk+ L aplJq+ L aphq , 
p,q=-N p,q=-N 

p+q=k+M p+q=k- M 

where Wk are the coefficients of the convolution sum that we want to obtain only. Then the 

following algorithm addresses the issue of aliasing removal. 

1. Extend the spectra ak and bk to a~ and b~ according to 

a.k if lkl ~ N bk if lkl ~ N 

0 if N < lkl ~ N' 0 if N < lkl ~ N' 

where N' = 3N /2. 

2. Calculate(via FFf) aN and bN in real space on the extended grid x~ = 2nnjM, n = 

1,2, . . . ,M = 2N' + 1: 

N' N' 
aN(x~) = L a~eild, , bN(x~) = L b~eild, 

k=-N' k= -N' 

4. Calculate( via FFf) the Fourier coefficients of the product w' (~): 

Taking the later quantity fork= -N, ... ,N gives an expression for the convolution sum 

free of aliasing errors (R. Peyret [15]). 



46 

2.3.2 Discretization of steady KSE 

The steady KSE which is obtained by simply setting o1u = 0 in the time dependent equa­

tion (1.15) is 

(2.39) a(a;u + uoxu) + 4o1u = 0, x E [0, 2n] 

where u = u(x) and u E H~(O, 2n) (the associated solution space is defined in section 1.5). 

Approximating the solution of equation (2.39) by the truncated Fourier series as in the pre-

vious section, except that here the expansion coefficients are constants, rather than function 

of time, we have the following discretized steady state equation: 

(2.40) 
N 

Fk := (4k4-al?)uk+ai L pupuk-p =0, k= -N, ... ,N 
p=-N 

It has been noticed that the expansion coefficient for the zeroth mode uo is indeter­

minate from the equation (2.40), but we deduced as before that uo = 0. Hence, using the 

complex conjugate relation (2.13), we obtain the following system of M (lettingN -1 = M) 

nonlinear equations 

(2.41) k= 1,2, ... ,M, lk+ PI:::;; M 

k-1 M M 

Fk = ( 4k4 - a!?)ak + ai L pupuk-p + ai L pupfip-k- ai L pftpuk+p 
p=l p=k+l p=l 
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provided that ak+p = 0, for k + p > M . The equation (2.41) represents a system of M 

nonlinear equations in M expansion coefficients a 1, .. . , aM to be determined. 

There are many well established numerical methods to solve such a nonlinear system 

of equations. Among them Newton 's method is an attractive possibility because it is fairly 

straightforward to implement and has good convergence properties. The formula for solv­

ing the system of equations (2.41 ) is given by 

where n denotes the iteration count, u0 = [a?, .. . , a~f is an initial guess of the solution to 

the given system, [F~(un )r 1 is the inverse of the Jacobian matrix F~(un) computed at the 

n-th iteration, and Fk(un ) is the value of the vector function at the present iteration under 

certain assumptions. The convergence rate of this method is quadratic. 

Now in order to solve the above system using the Newton's method we need to com­

pute the Jacobian of the system evaluated at every iteration. Note that the vector function 

Fk: eM -----* eM is a complex valued function and contains the conjugate of every complex 

variable a 1, . •. , aM. Because of the presence of complex conjugates, the function F k is not 

formally differentiable, therefore Jacobian cannot be defined properly. This necessitates 

transformation of the above system into a form for which F: JR2M-----* JR2M is differentiable 

and the Jacobian can be defined, where Fk and Fi are real and complex part of Fk respec­

tively, and F := [Fk F~f 

This can be done by using the substitution ak = ~k + illk> k = 1, 2, .. . , M in equa­

tion (2.41 ), using the complex conjugate relation for the real valued solution, and finally 

splitting real and complex parts of the original system. Hence after simplification we obtain 

the following system of 2M nonlinear algebraic equations in terms of real variables ~k and 

llk fork= 1, ... , M 
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(2.42) [~]~o, k~1,2,. ,M 

where 

and 

are explicitly given by 

k-1 

Fk: - (4k4
- ak2)~k- a L, p(~pflk-p + ~k-p'Ylp) 

p=1 
M M 

+a L p(~pllp-k- ~p-kl'Jp) +a L p(~p'Ylk+p- ~k+pllp) 
p=k+1 p=1 

k-1 

F~: = (4k4 -aP)llk+aL,p(~p~k-p-llp'Ylk-p) 
p=1 

M M 
(2.43) +a L, p(~p~p-k +llpllp-k)- a L, p(~p~k+p +llp'Ylk+p) 

p=k+1 p=1 

provided that ~k+p = 'Ylk+p = 0, fork+ p > M. 

The corresponding Jacobian matrix J, calculated at some fixed point (~k, 'Ylk), having 

dimension 2M for the system of equations (2.42) is 

(2.44) 

where each entry of J is a block matrix of size M x M and they are respectively given by 
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aFk 4 , 2 k 
a~;q = ( 4k -a~ )8q- akrlk- q- akrlk+q + akrlq-kl 

(2.45) 

aFr 
drl~ = -ak~k-q + ak~k+q - akl;q_kl 

aFi 
a~ = ak~k-q + ak~k+q + akl;q-k, 

aFt 4 , ?. k 
drlq = ( 4k -a~ )8q- akrlk-q + akrlk+q + akrlq-kl 

where k , q = 1, 2, . . . , M . Note that we have obtained the equations (2.45) after applying 

the complex conjugacy relations for uk = ~k + i'Ylk> k = 1, 2, . . . , M. Therefore we will 

compute (2.45) where k,q = 1, 2, ... ,M and 0 < k- q::; M and 0 < q- k::; M. 

2.4 Bifurcation Patterns for the Steady Solutions 

In our investigation we want to study stabilization of different solutions at the same value 

of the parameter a in the KSE model which requires some knowledge about bifurcation. 

For better presentation we would like to mention the definition of bifurcation along with 

some examples. 

Bifurcation is 

• the phenomenon of the change of the type of a solution of a nonlinear problem and 

• related to existence and appearance of multiple solutions of the same nonlinear prob-

lem. 

In particular, interest centers on how to detect, calculate and classify points where there 

is a change in the type of solution of the nonlinear problem. In other words, bifurcations 

occur for dynamical systems if the phase portraits undergo some topological qualitative 
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changes. More briefly, there is no continuous deformation of the curves of one phase 

portrait to the curves of the other phase portrait. All local bifurcations are related to non­

hyperbolic critical points but the global bifurcations are not so related. Let us discuss them 

by the following two examples: 

Example 1 Consider the following vector field: 

(2.46) y' = g(y,A) = Ay-i, y E R, A E lR 

Note that g(O, 0) = 0 and dyg(O, 0) = 0. The equilibrium points of (2.46) are given by y = 0 

and y = A. But A = 0, y = 0 is the only nonhyperbolic equilibrium point. If A < 0, the 

equilibrium pointy = 0 is stable but y = A is unstable. If A = 0 then the two equilibrium 

points coincide and hence there is a change in stability. If A > 0, the solution y = 0 is 

unstable andy = J.t is stable. Therefore, there occurs a bifurcation at A = 0, called the trans­

critical bifurcation. 

Now consider the second example: 

Example 2 Suppose the vector field is given by 

(2.47) y'=g(y,A)=A-y3, yElR, AElR 

Obviously, g(O, 0) = 0 and dyg(O, 0) = 0, and the only nonhyperbolic equilibrium point 

is y = 0, at A= 0. But in this case the dynamics of the equation (2.47) remains same when 

jAJ > 0 and hence there is no bifurcation at the nonhyperbolic point (0,0). 

The study of the bifurcation points of a vector field helps us in understanding the dy­

namical behavior of the vector field. This means that a small perturbation of a vector field 

at a bifurcation point characterizes all possible dynamical behavior of the system under 

consideration in a small neighborhood of the bifurcation point. Bifurcations are divided 

into two categories, namely, local and global. Local bifurcations can be studied analyti­

cally whereas global bifurcations are very difficult to deal with analytically. The former 
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ones can be determined by studying the eigenvalues and the Taylor series expansion but the 

later ones can not be determined in this way (seeS. Wiggins [17]). 

2.5 Computational results for steady state 

The steady solutions are obtained by Newton's method. In this method an initial solution 

is iterated until it converges to a solution up to certain accuracy. The converged solution is 

then considered as a steady state solution of the KSE system. In Fig. 2.2(a) we summarized 

the convergence of the steady state results as the resolution is refined. As a reference point 

we have chosen a= 12. From this figure we observe that the more we refine the resolutions 

the smoother steady states we have. The long dashed line represents the solution for N = 8, 

the dotted line represents solution for N = 16, the dashed line represents the solution for 

N = 32, the dashed spaced line represents the solution for N = 64, and finally the solid 

line represents the solution for N = 128. A magnification of Fig. 2.2(a) is provided in 

Fig. 2.2(b ). 

An account of the decay of the solution error in Newton's method for the steady states 

is portrayed in Fig. 2.3 . From the stability analysis of the linear problem 

d2u d4 u 
adx2 + 4dx4 =0 

defined on x E [0, 2n] obtained after linearizing the nonlinear steady KSE about the laminar 

state a = 0 we know that at every integer point of Vaf4 there is a bifurcation. Since at 

every bifurcation point the stability matrix J has at least one vanishing eigenvalue, so the 

matrix J is singular there and hence its inverse does not exist. Therefore, as the bifurcation 

parameter a approaches its bifurcation value, the conditioning of the Jacobian J deterio­

rates and therefore finding solution of the problem becomes more difficult. This is reflected 

in Fig. 2.3. For example, a = 4 and a= 16 are two bifurcation points of the laminar state 
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Figure 2.2: Steady state u as a function of x. (a) Display of convergence of the steady 
state results as discretization is refined. (b) A magnification of Fig. 2.2(a). Display of 
convergence of the steady state results as discretization is refined. 
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and a= 8 is far from bifurcation points. The convergence of Newton 's iteration is much 

faster when the solution is calculated at point a far from its bifurcation values. 
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We define energy of the steady state KSE (2.39) as 

where uk represents the k-th Fourier mode of the Fourier series expansion of u(x) over the 

interval Q = [0 , 2n]. Since a steady state bifurcates at every integer VCiJ4 = n, therefore 

the new state at bifurcation consists of the eigenvectors cosnx and sinnx. We call the steady 

state that bifurcates at VCiJ4 = n an n-cell state. 

The calculated solutions are found to be extremely sensitive to the choice of initial 

guess. Since we are interested in the periodic solutions ofKSE, so the preferred initial guess 

is also assumed to be periodic. We have chosen the initial guess (IG) as a sine function with 

adjustable frequency. By numerical observations we have developed an empirical relation 

between the amplitude and the angular frequency of the IG. For computing ann-cell steady 

state of KSE the best IG is chosen to be An sinnx where An = 2n + 1 (empirical formula). 

When a converged solution is found by the Newton's method for a given a, we then increase 

or decrease the parameter a successively to obtain a complete branch of steady states. We 

call this procedure a continuation technique. For VCiJ4 = n < 1 the laminar solution is 

stable and for any choice of initial guess we have numerically shown that the converged 

solution is a trivial solution. Therefore we call this branch a trivial branch as shown in 

Fig. 2.4. The n-cell branch of steady states exists for n ~ 1. 
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Figure 2.4: Energy of steady states KSE as a function of the bifurcation parameter JCil4. 
The bold solid line is a trivial solution, the solid and dotted lines are n-cell solutions. The 
solid line accounts for stable branches and the dotted line accounts for unstable branches. 
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First we have computed different branches of steady states of KSE reproducing the 

investigation done in [11], [12], and [13]. The resolution here we have taken is N = 128. 

We have presented the n-cell steady states in details in Fig. 2.4 by plotting energy E of the 

steady states as a function of the bifurcation parameter a.. Since the laminar state bifurcates 

at every integer value of y'(i/4, for better presentation we have labeled the horizontal axis 

as yfi]4. Similarly after scaling energy E by a. we have labeled the vertical axis as E j a.. 

In Fig. 2.4 we have plotted trivial branch, 1-cell, 2-cell, 3-cell, and some part of 4-cell 

branches of the steady states in terms of their energies. 

The trivial branch ends on 1-cell branch and all other nontrivial n-cell branches end on 

2n-cell branches. From the figure it is obvious that there is a good resemblance among 

the nontrivial branches. The laminar state in Fig. 2.4 is represented by the horizontal axis, 

since it's energy is zero for any value of a.. The bold solid line shows that the trivial branch 

is stable when y'(i/4 < 1 i.e., when a. < 4. The solid lines indicate the ranges of a. in 

which the nontrivial branches are stable and the dotted lines indicate the ranges of a. in 

which the nontrivial branches are unstable. These results are confirmed by the information 

of the eigenvalues as shown in the Fig. 2.5(a) and Fig. 2.5(b) of the linear stability matrix 

J (computed via (2.44)). 

We have observed from Fig. 2.4 that 1-cell branch is stable in the interval (4, 13) 

of a. along the solid line and unstable on [13, 16.125] along the dotted line. The 2-cell 

branch becomes unstable on ( 16, 22.5], stable on (22.5. 30.375), and then again unsta­

ble on [30.375, 64.5]. Similarly the 3-cell branch is unstable on [36, 50.875], stable on 

(50.875, 66.875), and again unstable on [66.875, 144]. As already mentioned that stability 

ofthe different solutions presented in Fig. 2.4 has been determined based on the data shown 

in Fig. 2.5. This figure presents the maximum real parts of the eigenvalues of the linearized 
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operator as a function of /(i]4. In fact, in the intervals redefined as stable the real parts of 

all the eigenvalues were very close to zero and a few of the eigenvalues has their real parts 

actually greater than zero. We believe that this is an artifact related to numerical calculation 

of the eigenvalues. However if we had considered these eigenvalues as zero, then the sta­

bility of the solutions that we have categorized here as stable would become inconclusive. 

This special problem requires further study of stability analysis which is beyond the scope 

of our thesis. Similar conclusions can be drawn for other branches of steady states. This 

confirms the results reported in (Hyman et al. [11]). 

From the energy curves in Fig. 2.4 we have noticed that steady states of KSE are non 

unique. This means that for the same value of the parameter a we get different n-cell 

steady states. To address this issue we have chosen here some representative cases, for 

instance, when a= 16.1, a= 37.75, and a= 64.25. Fig. 2.6(a) shows 1-cell and 2-cell 

steady states. Note that for a = 16.1 there are three steady states, namely laminar state 

(trivial solution), 1-cell and 2-cell states. The laminar state is identical with the horizontal 

axis because its energy is zero. From the energy curve plotted in Fig. 2.4 or from the 

eigenvalue curve plotted in Fig. 2.5 we conclude that all the three states - laminar, 1-cell, 

and 2-cell, are unstable for a= 16.1. In Fig. 2.6(a) the solid line represents 1-cell state and 

the dotted line represents 2-cell state. We have observed from the energy plot that 1-cell 

steady state ends at immediately after a= 16 whereas the 2-cell steady state starts from 

a = 16. Since 1-cell steady state is bifurcated to 2-cell steady state at a = 16, therefore 

there is a competition between 1-cell and 2-cell steady states close to the bifurcation point. 

Hence the 1-cell steady state appears to be a 2-cell steady state near the bifurcation point. 

However there is a clear difference visible from the figure between the 1-cell and 2-cell 

steady states. This difference is reflected from the maxima and minima of the 1-cell and 
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Figure 2.6: Steady state u as a function of x. The laminar state is identical with horizontal 
axis. (a) Steady states at a= 16.1. The solid line shows the 1-cell state and the dotted 
line shows the 2-cell state. (b) Steady states at a= 37.75. The dotted line shows the 2-cell 
state. The dashed line shows the 3-cell state. (c) Steady states at a= 64.25. The dotted 
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2-cell steady states. Again in its domain a 2-cell steady state has 2-waves whereas a 1-cell 

steady state is dominated by 1-wave. Hence we may conclude that they are different steady 

states at the same value of the parameter. 

2.6 Computational results for the unsteady state 

From the study of steady state results of KSE we have observed that some states are stable 

for all time but some are not. These observations has tempted us to explore the properties 

of the unsteady KSE system. The unsteady KSE system is extensively studied by Hyman 

et al. [11]. They categorized alternating windows of a containing laminar behavior (fixed 

points) and windows of oscillatory and/or chaotic behavior of the unsteady solutions of 

KSE. As shown below we have reproduced different solutions as described in (Hyman et 

al. [11]). Now we define the L2 norm of the solution as its energy E=E(t): 

{ 2n N 
E = llu(x,t)I IL = Jo u2(x,t )dx= L lukl2

, 
0 k=-N 

where uk (t) is the Fourier transform of u(x, t). 

We have discretized the unsteady KSE in space using spectral Galerkin method as de-

scribed in section 2.3 and in time we have used a finite difference method. The time inte-

gration of the finite dimensional KSE has been done by Runge-Kutta-Wray (RKW) method 

because of its higher order accuracy compared to other time integration methods such as the 

Euler scheme. The resolution here we have taken is N = 128. As illustrated in the previous 

sections, the solutions of KSE are extremely sensitive to the initial conditions. Therefore 

special care has been taken to the right choice of initial condition. Here we have taken 

the initial condition uo (x) = sinx of period 2n. This is a quite good choice for producing 

results of unsteady KSE having similar behavior to n-cell steady state solutions of KSE. 
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For numerical time integration we have taken 1.5 x 105 time steps. We have recalculated 

different solutions several times using different grid resolutions and got similar results. 

We have systematically produced the attracting solution manifolds for the unsteady 

KSE. Here we have selected some representative values of a to analyze the corresponding 

unsteady solutions of KSE. For example, we have taken a= 10 (where 1-cell steady state 

is stable), a= 14 (where 1-cell steady state is unstable), and a= 37.75 (where both 2-cell 

and 3-cell steady states are unstable) (details are discussed in Fig. 2.4). For the unsteady 

KSE if the solution trajectories are attracted as time evolves to some fixed points dominated 

by n full waves we call it n-modal solutions. 

From the (x,t) contour plot drawn in Fig. 2.7(a) for a= 10 it has been noticed that ex­

cept for some transients at the beginning the unsteady solution of KSE is globally attracted 

to a unimodal fixed point. This is confirmed by the energy curve plotted in Fig. 2.7(b). 

This shows that after certain time at the beginning the energy of the unsteady solution re­

mains the same. The initial condition here is chosen as uo(x) = sinx to make sure that our 

attracting manifold becomes unimodal for a= 10. 

It is worthwhile to mention that if we choose the initial condition of unsteady KSE as 

uo(x) = sinx for a= 10 then after a transient the unsteady solution is attracted to a globally 

unimodal fixed point. However if we take the initial condition as a steady state, at the 

same value of a the unsteady solution remains on the 1-cell attractor without any transient 

change in the solution. This is evident from Fig. 2.8. Since 1-cell steady solution at a= 10 

is stable, so it remains steady and stable forever for the unsteady KSE. 

Now we consider the unsteady KSE with initial condition taken as a 1-cell steady state 

solution for a= 14 at which the steady state is unstable as we have illustrated before (see 

Fig. 2.4 and Fig. 2.5). This is a very interesting case from the view of the application of 
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Figure 2.7: Unsteady solution of KSE at a= 10 with initial condition uo(x) = sinx. (a) 
The solution u is a function of space x and timet. The (x,t) contour plot of the solution of 
KSE shows that the solution is globally attracted to a unimodal fixed point. (b) Energy as 
a function of time t. The energy of the solution of KSE shows that the attracting manifold 
remains the same as time evolves. 
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Figure 2.8. Unsteady solution of KSE at a= 10 with initial condition taken as the steady 
1-cell solution at the same value of a. (a) Solution u as a function of space x and time t 
The (x, t) contour plot of the solution of KSE shows that the solution gets globally attracted 
to a unimodal fixed point. (b) Energy is a function of timet The energy of the solution of 
KSE shows that the solution stays on the attractor. 
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control theory. Such issues become our primary concern throughout this project. From 

Fig. 2.9(a) we notice that the unsteady solution is locally attracted to a unimodal solution 

for certain time but soon after that the solution transitions to a traveling periodic wave 

regime. However, from the steady state results we have seen that at a= 14 the solution is a 

1-cell steady state but unstable. This means the unsteady trajectory is for some time ( t ::; 5) 

attracted to the unstable 1-cell solution and before it transitions to a traveling periodic wave 

regime (see Fig. 2.9(a)). From the figure we see that for any time after t = 5 the unimodal 

solution is no longer seen since this is unstable. Fig. 2.9(b) shows that the energy E of 

the unsteady solution stabilizes at E ~ 1.0. The unstable unimodal solution that we have 

observed here is the type of solution we will try to stabilize below. It should be mentioned 

here that the characterization of bifurcations of the unstable n-cell steady state solution of 

KSE to new solutions requires calculation of the steady state traveling wave solutions of 

KSE. In our study we have simply ignored this case. 

The next case for a = 37.75 samples the oscillatory unsteady solution of KSE starting 

with same initial condition uo(x) = sinx. Note that the steady state solution of KSE at this 

value of a is unstable. From Fig. 2.10(a) we see that the unsteady solution of KSE gets 

attracted to oscillatory orbits. From Fig. 2.1 O(b) we see that the energy of the solution has 

periodic bursts. Here we are going to present one more result in Fig. 2.11 for unsteady 

KSE at a= 72. At this value of a, we have seen that the 4-cell steady state is unstable (see 

Fig. 2.4 ). From Fig. 2.11 (a) we notice that the trajectory of unsteady KSE gets attracted to 

chaotic orbits. Fig. 2.11 (b) shows that there is a chaotic burst in the energy of the sol uti on. 

From practical point of view it is often advantageous to obtain solutions that are well­

behaved (i.e. , laminar, steady). Hence they need to be stabilized. Therefore the importance 

of stabilizing an unstable solution of KSE has further led us to study the control approach in 
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details. This requires a systematic study of control theory for the KSE system. In Chapter 3 

first we will present the detailed control theoretic approach for KSE system starting from 

some basic materials in this subject. Later in that chapter we will provide some results of 

KSE for certain values of a after application of control approaches. 
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Figure 2.9: Unsteady solution of KSE at a = 14 with initial condition taken as a 1-cell 
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Figure 2.10: Unsteady solution of KSE at a= 37 75 with initial condition uo(x) = sinx. 
(a) Solution u as a function of space x and time t The (x , t) contour plot of the solution of 
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Figure 2.11 Unsteady solution of KSE at a= 72 with initial condition uo(x) = sinx. (a) 
Solution u as a function of space x and timet The (x, t) contour plot of the solution of KSE 
shows that the solution is attracted to the chaotic orbits. (b) Energy is a function of time t 
This shows that the energy of the solution as time evolves becomes more oscillatory 



Chapter 3 

Feedback Stabilization of Steady 
Kuramoto-Sivashinsky Equation KSE 

In this chapter we will discuss the procedure of finding the feedback control for our model 

system (KSE). We will present an approach known as the Linear Quadratic Regulator 

(LQR). 

3.1 Preliminaries of Control theory 

Consider the finite dimensional representation of our model problem KSE which is ob­

tained by using spectral method as discussed in Chapter 2. Now with the addition of a 

control term this system can be more generally written as 

(3.1) 
. K 
X= f(t,X,u), X(O) = Xo E ffi. , 

where f: ffi. x JRK x JRL --4JRK, X E ffi.K is the state variable vector, Xo E ffi.K is the initial 

state, u E ffi.L is the control vector function, and t E IR+ = { 't E JR. : 't ;:::: 0} is the time. In 

control theory, it is common to complement this with an output equation, that is, a function 
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of the state of the system: 

Y = h(t , X,u) 

Therefore, a more general nonlinear control system has the form 

(3.2a) 
. K 
X= f(t,X , u) , X(O) = Xo E lR , 

(3.2b) Y = h(t,X, u) 

After linearization of the above system about a fixed point we consider the following linear 

time-invariant system, 

(3.3a) 

(3.3b) 

X= AX+Bu, X(O) = Xo E JRK , 

Y=CX+Du 

where X E JRK, Y E JRM, u E JRL, A: JRK ~ JRK, B: JRL ~ JRK, C: JRK ~ JRM, and D: JRL ~ 

JRM . In control theory literature, the dimension L of u is called the number of inputs, and 

the dimension M of Y is called the number of outputs. 

But we are interested only in state feedback control of KSE, therefore setting C = TI, 

and D = 0 we obtain the state feedback equation 

(3.4) X= AX+Bu, X(O) = Xo E JRK, 

As discussed earlier one distinguishes controls of two types: open loop and closed loop. An 

open loop control does not depend on the state of the system, whereas closed loop control 

does. Formally these two type of controls are defined as follows: 
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Open loop control: An open loop control is defined as an arbitrary function u : [0, oo) ~ 

JRL, for which the equation 

(3.5) X= f(X,u,t), t 2:0, X(O) = Xo E JRK, 

has a well defined solution. In open loop control u depends on the initial state and the 

system parameter if any. 

Closed loop control: A closed loop control, however, can be identified with a mapping 

k : JRK ~ JRL, which may depend on t 2: 0, such that the equation 

(3.6) X=f(X,k(X),t), t2:0, X(O)=XoElRK, 

has a well defined solution. The mapping k is called feedback. In closed loop control k 

depends on the current state, or the current output of the system. Controls are called inputs, 

and the corresponding solutions of equation (3.5) or (3.6) are outputs of the system. 

One of the main aims of control theory is to find a control strategy such that the cor­

responding output has desired properties. Before this can be done, an appropriate charac­

terization of the system in question is necessary. A system is controllable if it is possible 

to devise a control function u that will take it from one position in state space to another 

position in state space in a given time. A state Z E JRK for the system (3.4) is said to be 

attainable or reachable from a state Xo at time t f if there exists a control u and a time 

t f > 0 such that Xr 1 = Z. We sometimes say that Xo can be steered to state X1 1 at time t f, 

or that the control u transfers state Xo to state Xr 1 at time t f. In the special case we say that 

the system (3.4) is controllable, or that the pair (A, B) is controllable, if an arbitrary state 

Xr 1 is attainable from any state Xo at time t f. 
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Problems that originate from controllability are those of optimal control, a control that 

is robust to perturbations of the system, and .finite horizon control, a control reaching a state 

in minimal time, among other. An equally important issue is that of stabilizability. Assume 

that for some open loop control u and some state X, f(X, u) = 0. A stabilizing feedback 

is a function k: ffi.K ~ ffi.L, with k (X) = u, that is such that X is a stable equilibrium for 

the closed loop control system. In many applications, one does not observe the state X 

of the system itself but the output Y. In our present study we have considered the output 

Y = X. Observation is a dual problem to control. It can be posed as, knowing a control u 

and an output Y, is it possible for one to determine the initial condition Xo uniquely, then 

the system is observable. 

Now consider the nonhomogeneous linear differential equation with variable coeffi­

cients given below: 

(3.7) X= A(t)X+ B(t), X(to) = Xo E ffi.K , 

Let the fundamental solution of the associated homogeneous equation X(t) = A(t)X of (3.7) 

be ~r. then the matrix R (t, to) is said to be the resolvent set of (3. 7) if R(t , to) = ~t~;;; 1• 

Then we have the following theorem (J. Arino [18]): 

Theorem 1 If R(t , to) be the resolvent of the associated homogeneous equation X(t) = 
A(t)X, then the solution X to equation (3.7) is given by: 

X= R (t,to)Xo+ fat R (t ,s)B(s)ds 

Denoting R (t, 0) by R (t), we define the controllability matrix for the system (3.4) as 



74 

where Q1 is symmetric (Qj = Q1) and nonnegative definite (i.e., (Q1X,X) 2:: 0 for all 

X E IRK where (., .) denotes the inner product of two vectors). Denote [AJB] the matrix 

[B AB ... AK- 1B] ofsizeKxKLconsistingofthecolumnsofmatricesB AB ... AK- 1B 

written consecutively. Then we have the following result (J. Arino [18]): 

Theorem 2 The following conditions are equivalent. 

i) An arbitrary state z E IRK is attainable from 0. 

ii) System (3.4) is controllable (or that the pair(A,B) is controllable). 

iii) System (3.4) is controllable at a given timet f > 0. 

iv) The matrix Q1 is nonsingular for any t > 0. 

v) rank [AJB] = K. (This is called Kalman rank condition, or simply the rank condition.) 

vi) The matrix [A- A.JI B] has full row rank at every eigenvalue A of A. 

Note that condition ( v) is very important. It gives a necessary and sufficient condition for 

system (3.4) to be controllable that is relatively easy to compute. 

3.2 Linear Quadratic Regulator Problem 

In this section our aim is to characterize the Linear Quadratic Regulator Problem (LQR). 

We want to find a control function u(t) defined on [0, ttl, which can be a function of the 

state X, such that the state X is driven to a neighborhood of origin at time t f. This is called 

the regulator problem. An obvious question, however, may appear whether is it possible 

to construct such a controller for the regulator problem? The answer is positive, if the 

system (3.4) is completely controllable, i.e., if the control u drives any nonzero state X to 

zero as fast as possible. For practical engineering implementation, an upper bound is set on 

the magnitude of various variables in the system. One might ask if the state X1 1 is bounded, 

the control energy for u, or the state x(t) is bounded for any time t E [0, ttl over which the 
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control is being exercised. This suggests that we have to impose certain measure on these 

variables. These sorts of measure can be defined in several ways; for example they are 

respectively, 

• a measure for the final state X(t f): 

where Po is a symmetric positive semidefinite matrix. 

• a measure for the magnitude of the control u(t ): 

or, some weighted norm 

for some constant weighting matrix Wu . 

• a measure for the transient state X(t): 

IIWxXIIdt, IIWxXII 2dt, sup IIWxXII lo
t! lot! 

0 0 tE [O,tJJ 

for some weighting matrix Wx 

Typically we can take W1 = ~x&PoXt1 as a measure of the final state, Wz = ~ f~1 uTRudt 

as a measure for the control u(t) where R is a symmetric positive definite matrix, and 

W3 = ~ f~1 XT QXdt as a measure of the transient response X for t E [0, t Jl where Q is a 

symmetric positive semidefinite matrix. 
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Hence the regulator problem can be posed as an optimal control problem with certain 

combined performance index on u and X. For our present problem we shall be concerned 

exclusively with quadratic performance problem. Moreover, we shall focus on the infinite 

time regulator problem (i.e., t f - oo ). In this case, our problem is as follows: 

The LQR problem: Find a feedback control u ( t) defined on [ 0, oo) such that the state X 

is driven to the origin as t - oo and the following functional is minimized: 

(3.8) tf J = WI(X(tJ),tt) + Jo .L(X,u(t),t)dt, 

subject to: 

(3.9) X= AX+Bu, X(O) = Xo 

where the function 

is the cost associated with the error in the terminal state at timet f• and the function 

or (in the form that includes the cross-term 2uTSX) 

penalizes for transient state errors and control effort in which Po and Q are symmetric and 

positive semidefinite, R is symmetric positive definite, and the dimension of S is compatible 

with Q and R. 
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This problem is traditionally called a Linear Quadratic Regulator problem or, simply, 

an LQR problem, since our aim is to control or regulate the state vector X so that it goes 

to zero without any large control effort as fast as possible. In fact this LQR problem is an 

optimal state regulator problem. In a similar fashion one can formulate an output regulator 

problem for the control problem (3.3). In each case, the purpose of the quadratic form in 

u (t) is to ensure, by suitable choice of the elements of R, that in satisfying the objective 

the control variable u(t ) is not required to be impractically large. Since the terms in equa­

tion (3 .8) are all quadratic forms, and since equation (3.8) can be thought of as a measure 

of the way in which the system behaves, J in equation (3.8) is usually called a quadratic 

performance index or cost functional. It should be admitted that the wide spread use of 

a quadratic performance index is due to the relative ease with which it can be handled 

mathematically and to the fact that it results in linear feedback (see [19], [20], and [21]). 

3.3 Derivation of the Linear Quadratic Regulator Prob­
lem for KSE 

Consider values of the parameter a in the time dependent KSE (1.15) for which the solution 

u = u(x , t ) is unstable. As shown before at every integer value of Vaf4 a cascade of 

bifurcations occur and the steady state solution changes qualitatively. It was also shown 

that for small perturbations some steady solutions are stable but others (e.g. u = 0) are 

unstable. Later we will provide some quantitative data about this issue. For stabilizing the 

unstable solutions let us add some forcing <j>(x,t) to the KSE : 

(3.10) 

where <!> = <j>(x, t). Here we have considered two possible forms of the forcing term 
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• localized in physical space: 

L L 
(3.11) <PP(x,t) ~ <P(x,t) = L ut(t)8(x-xt) = L Ut<Pt 

t=1 tETit 

where <Pt = 8(x-xt) is a Dirac-delta function, and TI1 is an index set. 

• localized in Fourier space 

L 

(3.12) <PF(k,t) ~ <P(k,t) = L Ut(t)'Jft(k), 
t=1 

where 

ifl =k and 1, k E Tit 

otherwise 

where Tit is a nonempty index set specifying the Fourier modes that the control actu-

ation Ut is acting on. 

Here u with suffix 1 (i.e. Ut) is different from the solution u = u(x,t) and indicates the 1-th 

control actuator. The ways how the forcing function <PP applied in physical space and <PF 

applied in Fourier space are illustrated in the following Fig. 3.1 and Fig. 3.2 respectively. 

Assuming the above structure of the control and that the perturbation of the stationary 

solutions are small, we want to derive and implement a feedback control strategy that will 

stabilize the stationary solutions. If we put 

(3.13) u = u+Ew, 

in (3.10) where u := u(x) is the steady solution that we want to stabilize, and w := w(x,t) 

is the perturbation, then we obtain upon neglecting terms proportional to £2 the following 

linear perturbation equation 
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<t>3 

u 

X 

Figure 3.1: Form of the Control function Q> p at some particular time t = 't implemented in 
physical space 

(3.14) 
atw+a(a;w+ax(aw)) +4a!w = Q> 

w(x,O) = wo 

which describes evolution of perturbations w superimposed on the base state a. We search 

for a feedback control 

Q> = -.7(w, 

where .7( is the feedback operator that will be determined so as to drive arbitrary perturba-

tions w to zero, thereby stabilizing the state a. 

Now considering the forcing~~ in physical space defined by (3 .11) we can write the 

controlled KSE as: 



I\ 
u 

1 2 3 
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k 
4 5 

Figure 3.2: Form of the Control function <I>F at some particular timet= 't' implemented in 
Fourier space 

(3.15) 
L 

atw+a(a;w+ax(uw)) +4a~w = L Ut(t)<l>t(x) 
l=l 

subject to the periodic boundary conditions: 

(3.16) a1w(O,t) = a1w(2n,t), t E [0, T],j = 0, ... ,3, 

and the initial condition 

(3.17) w(x,O) = wo(x), x E [0,2n] 

L is the number of manipulated inputs (i.e., variables that can be manipulated externally to 

modify the dynamics of equation (3.15) in a desired fashion), ut(t) is the l-th manipulated 
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input, <j>1 (x) is the actuator distribution function (i.e. , <1>1 (x) determines how the control 

action computed by the l-th control actuator, u1(t) , is distributed in the spatial interval 

[0 , 2n]). We note that in the case of point actuation which influences the system at x1 (i.e. , 

<!>t (x) = 8(x- xt) where 8(.) is the standard Dirac function), we approximate the function 

8(x- xt) by the finite value 1/ (2E) in the interval [x1 - E, x1 + E] (where E > 0 is a small 

real number) and zero elsewhere in [0, 2n]. 

Now for spectral discretization let us approximate the solution w(x, t) of the perturba­

tion equation (3.15) by the truncated Fourier series 

N 

WN(x, t ) = L uk(t )eikx , 
k=-N 

the actuator distribution function <j>1 (x) = 8(x- xt ) defined in (3.11) by the truncated Fourier 

series 
N 

<!>t (x) = L bkeikx 
k= -N 

This truncated series represents a periodic sequence of 8-functions with period 2n. Note 

that after taking the Fourier transform of the control term in (3.15) with respect to x, we 

have 

where 

Using the spectral Galerkin technique as illustrated in section 2.3 together with the 

substitution Uk = ~k + iT] k> k = 1, 2, . . . , M = N- 1, the above controlled KSE (3 .15) yields 

the following form : 



(3.18) 

d 
dtX=AX+Bu 

X(O) = Xo 
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where X E JRK, A: JR.K---+ JR.K, B: JRL---+ JRK, and u E JRL with K =2M such that the state 

vector X in Fourier coordinates can be represented as 

the system matrix A is given by 

[

ilF' 

- ~ A-- ilF' 
_k 

a~ 

~1 

~2 

X= ~M 
'111 

'112 

YJM 

p,q,k= 1,2, ... ,M 

computed at the stationary solution a in Fourier coordinates, the control matrix B (localized 

in physical space) is given by 

1 [ cos(kxz)] 
B = 2n - sin(kxz) 

k= 1,2, ... ,M l = 1,2, ... ,L 

with x1 = 2nl/(2N + 1), and finally the control u(t) is given by 



U= 

UJ (t) 

uz(t) 

UL(t) 
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It is interesting to mention that the straightforward calculation of system matrix A for 

the system (3.18) is difficult due to the presence of the term u(x) in (3.15). However, the 

system matrix A corresponding to the homogeneous system of (3.18) is the same as the 

Jacobian matrix J calculated in (2.44) for the linearized system of (2.41) with a change of 

sign. Therefore, without any loss of generality we can adopt this Jacobian as our system 

matrix A for (3 .18) with a change of sign, provided that A is calculated at the stationary 

solution u(x) while J is calculated at every Newton iteration. This greatly simplifies the 

amount of computations required. 

A stabilizing linear feedback control u = -?(X can be found by solving a Linear 

Quadratic Regulator problem (LQR) where 1( : JRK ~ JRL. Note that substitution of 

u =-?(X in the system (3.18) gives 

(3.19) X= (A- B?()X, X(O) = Xo 

Hence our final LQR problem can be read as follows: (see [3], [20], and [21]) 

The LQR problem for KSE: Find the control u(t) = -?(X on [0, t Jl such that the state X is 

driven to the origin as t ~ t f and the following cost functional is minimized: 

(3.20) 

subject to: 
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(3.21) X= (A- B:J()X, X(O) = Xo 

where the term !X~PoX11 is the cost associated with the error in the terminal state at time 

t 1, the term ! (XT QX + uTRu) penalizes for transient state errors and control effort, Po is 

a nonnegative definite matrix, Q is symmetric nonnegative definite matrix, R is symmetric 

positive definite matrix and all are having real constant entries. This is a classical and well 

understood problem as will be discussed in next section 3.4. 

Enforcing the constraints, construct the Lagrangian (i.e., the augmented functional) 

where A. is the Lagrangian multiplier ("adjoint variable"). The optimality conditions which 

minimizes the cost functional in problem (3.20) are: 

(3.22) 

a£ =0 
a A. 
a£ =0 
ax 
a£ =0 
au 

which together imply the following equations 
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(3.23a) X= AX+Bu, X(O) = Xo 

(3.23b) 
. T 

-A= A X+QX, A(tt) = PoXr1 

(3.23c) Ru=BTA 

Using equation (3.23c) we can express the optimal control as : 

Then putting together (3.23a) and (3 .23b) we have 

(3.24a) d [X] [A -BR-
1
BT] [X] [X(O)l [ Xo l 

dt A = -Q -AT A A(t1) = PoXr
1 

This is a two-point boundary value problem and is very difficult to solve. It can be consid­

erably simplified by expressing the terminal conditions 

for the whole time interval [0, ttL i.e., we obtain the following "ansatz"(i.e. there exists a 

matrix P(t) such that) 

A=PX. 

Thus the control is given as 

which immediately gives 

(3 .25) 



An equation characterizing P(t) is obtained as follows: Differentiating the equation 

A.= P(t)X 

with respect to time t, we have 

PX=i-PX 

(3.26) = -QX-ATA.-P(AX-BR- 1BTA.) 

= (-Q-ATP-PA+PBR- 1BTP)X 

which after simplification gives 

(3.27) 
P= -Q-ATP-PA+PBR-lBTP 

P(t1)=Po 
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Equation (3.27) is called the matrix differential Riccati equation for the matrix P(t). Con-

sidering the infinite time horizon (t f ---+ oo ), we get the following algebraic Riccati equation 

(3.28) 

where now Pis independent of timet. It should be worthwhile to mention that in this setting 

x&PoXr1 is irrelevant. Since all of A, B, Q, and Rare real constant matrices, therefore the 

solution P of equation (3.28) is constant as well and hence from (3.25) we obtain a constant 

feedback operator 1(. 

3.4 Solutions of the Riccati Equation 

The well-known scalar Riccati equation is given by 

w= ew2 + fw+g, 
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where e, f, and g are scalar functions of t. Analogously, the matrix Riccati equation is 

defined as: 

(3.29) W(t) = W(t)E(t)W(t) + D(t)W(t) + W(t)F(t) + G(t) , 

where D(t) , E(t), F(t), and G(t) are given n x n matrices the elements of which are real 

continuous functions of the real variable t on some interval [to , t Jl· 
It is well known (see E. D. Sontag [3] and S. Barnett [20]) that the solution to the 

problem described by (3.8) and (3.9) (assuming S(t) = 0, for simplicity) is given by the 

linear feedback control 

(3.30) u = -R- 1 (t)BT (t)P(t)X, 

where P(t) is the symmetric matrix which satisfies 

(3 .31) P(t) = P(t)B(t)R- 1(t)P(t)- AT (t)P(t)- P(t)A(t ) - Q(t) 

subject to P(tJ) =Po. Clearly equation (3.31) is a special case of equation (3.29) and 

represents ~n(n + 1) scalar equations for the ~n(n + 1) unknown entries of P(t). Notice 

that even if A, B, Q and R are all independent oft, the matrix P will still be a function 

of time, so that the optimal control (3.30), although linear in X, will be time-varying. The 

unique solution of the nonhomogeneous equation (3.31) is given by the following theorem 

(seeS. Barnett [20]): 

Theorem 3 There exists a unique symmetric solution Il(t), defined fortE [O,t rL satisfying 
equation (3.31) subject to Il (tJ) =Po. Further, the minimum value of (3 .8) is 2X6TI(O)Xo. 
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Riccati algebraic equations 

Riccati algebraic equations for the LQR problem (3.8)- (3.9) are obtained by considering 

t f ---t oo. In this case the term W1 in (3.8) is irrelevant, since our aim is to make X approach 

zero as t ---t oo, it no longer makes sense to include a terminal expression in the performance 

index, so we simply set Po= 0 in (3.8) to get rid of the W1 term and hence we obtain the 

following important result (see S. Barnett [20]): 

Theorem 4 If (3.9) is controllable and Po= 0, then in Theorem 3lim1r-_,=TI(t,tt) = P(t) 
exists for all t and is a solution of the Riccati equation (3 .31 ). 

Now if we consider the matrices in equations (3.8) and (3.9) to be real and constant (i.e., 

independent oft), so that the optimization problem becomes (letting S = 0) the following: 

LQR problem: Choose u so as to minimize 

(3.32) 

subject to: 

(3.33) X= AX+Bu, X(O) = Xo. 

Since Q and R are symmetric positive definite constant matrices, so the limiting ma­

trix P(t) in Theorem 4 is constant. Therefore, we obtain the following theorem (see S. 

Barnett [20]): 

Theorem 5 The solution to the problem (3.32) and (3.33) is given by 

(3.34) 

where, if the pair [A, B] is controllable, the constant symmetric matrix P is the unique 
positive definite solution of the algebraic matrix Riccati equation 

(3.35) PBR- 1P-ATP-PA-Q =0, 

and the minimum value of (3.32) is iX6PXo. 
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Since the solution P of (3.35) is the limiting solution of the corresponding differential 

equation, so (3.35) is sometimes called as the "steady state" Riccati equation. Now for 

ensuring that the solution to (3.35) is positive definite, and hence unique, we need to impose 

the controllability criterion. The resulting optimal system when (3.34) is applied to (3.33) 

is 

(3.36) 

and therefore we have following very useful result: 

Theorem 6 The closed loop system (3.36), where Pis given by Theorem 5, is asymptoti­
cally stable. 

Therefore, we have observed that the equation (3.35) is the same as (3.28) which we 

want to solve for Pin order to compute the optimal control u. However, we have established 

the existence and uniqueness of the solution of (3.35) and hence of (3.28). We can solve 

the quadratic equation (3.28) using linear matrix algebra (the more detailed discussion can 

be found in [20]). 

3.5 Computational results of unsteady KSE obtained ap­
plying control technique 

In this chapter we have developed control strategies for stabilizing the unstable solutions 

of KSE using the standard linear control theory. In section 2.5 we have presented results 

for steady state KSE and in section 2.6 we have presented some results for unsteady KSE. 

There we have noticed that some steady state solutions of KSE are unstable and bifurcate 

to more complicated regimes. Since these steady laminar solutions are in many cases more 
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interesting, therefore we want to stabilize them by applying the control tools developed 

earlier. Here we have produced the results using control forces applied in physical space. 

The control forces are applied at points uniformly distributed over the one dimensional 

periodic domain Q = [0,2n]. We have found that if a steady state is stable for some a then 

it remains stable for all time whether we apply the control technique or not. However when 

a steady state is unstable we need to apply controls in order to stabilize it. There are many 

control laws for application of control as discussed in Chapter 1 but we have considered 

only linear state feedback law due to its simplicity. For calculation of control we have 

solved a linear quadratic regulator problem (LQR). In order to compute feedback operator 

we have solved a matrix differential Riccati equation in infinite time horizon as discussed 

in section 3.3. 

In this section we want to present the feedback control results for the selected values of 

a= 14, a= 37.75, and a= 72 where the steady states of KSE are unstable as presented 

in Fig. 2.4. At a= 14 we have seen from Fig. 2.9 that the unsteady solution get attracted 

to a periodic orbit and therefore 1-cell steady state becomes unstable. For stabilizing this 

unstable solution we obtain the feedback gain, '1(, using only one actuator placed localized 

at a point xo in the physical space. It was observed in our calculation that one actuator is 

sufficient for stabilizing this unstable 1-cell steady state. 

In order to investigate how the control acts in time, we have studied cases when control 

is switched on at different time levels when we were integrating the unsteady KSE in time. 

For a= 14 we have applied the control forcing at timet ;:::: 5, and t ;:::: 10. For the sake 

of comparison we have presented the control results together with uncontrolled results. 

We have portrayed the contour plot of uncontrolled KSE system with an initial condition 

uo(x) = sinx in Fig. 2.9. This again displayed in Fig. 3.3(a). The contour plot of controlled 
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unsteady KSE at timet= 5 is displayed in Fig. 3.3(b). The initial condition for controlled 

unsteady KSE is taken as a 1-cell steady state solution ofKSE. From Fig. 3.3(a) we see that 

the instabilities of the unsteady solution are developing mildly from time t = 0 and then 

become worse after timet= 5. 

After applying the control to the unsteady KSE system we expect that the control force 

will act against the development of instabilities of the unsteady solution. This would reduce 

the perturbation w(x,t) as defined via equation (3.13) to zero and thereby stabilize the 

system to the steady state u(x). At the same time we also expect that it will take less control 

effort if we apply the control authority when the instabilities are not so strong. These results 

are reflected in following figures . From Fig. 3.3 we observe that the instabilities grow 

severely after timet = 5. Therefore it will take less control effort if we apply the control 

forcing at t = 5. For comparing the results we have provided uncontrolled solution of KSE 

in Fig. 3.3(a) and controlled solution of KSE in Fig. 3.3(b). 

The energy of the solution of uncontrolled and controlled KSE are plotted as function 

of time t in Fig. 3.4. From Fig. 3.4(a) it is noticed that apart from some oscillations at 

the beginning the energy remains constant for some time but later it is increasing with 

time and hence instabilities result. But from Fig. 3.4(b) we see that energy is is increasing 

before applying the control at time t = 5 but diminishing with time after control forcing 

is taken into action at timet = 5. The figures Fig. 3.5(a) and Fig. 3.5(b) account for the 

behavior of control forcing CJ (defined in section 3.3) and perturbation energy Ep (defined 

as Ep := llu(x,t ) - u(x)l l~ where u(x,t) and u(x) are unsteady and steady solutions ofKSE 

respectively) with time after applying the control forcing. These two phenomena behave 

quite in the same manner as we expected. Fig. 3.5(a) shows that we need more control 

efforts at the beginning of the application of control forcing to tackle the instabilities but 
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less control efforts for later time. Fig. 3.5(b) shows that the perturbation energy Ep is 

diminishing with time t and hence the solution of KSE system is tending towards its steady 

states. 

Similar interpretation of the results drawn in Fig. 3.6-Fig. 3.8 of controlled KSE hold 

for when we apply the control forcing at time t = 10. The only exception in this case is 

that there is change of phase shift in the stabilized steady states as visible if we compare 

Fig. 3.3(b) and Fig. 3.6(b). However to check that the stabilized steady states is indeed a 1-

cell steady state we have calculated the energy of perturbation solution w(x, t) in Fig. 3 .8(b) 

which shows that E P is diminishing to zero after time t = 10 where control forcing is 

applied. This shows the same results as we obtained for control forcing applied at time 

t =5. 

Now we would like to present some more interesting results when a= 37.75. For this 

value of a two nontrivial steady states, namely 2-cell and 3-cell steady states, exist but are 

unstable. These solutions have been sketched in Fig. 2.6(b ). The unsteady solution of KSE 

for a= 37.75 is attracted to oscillatory orbits and was presented in Fig. 2.10. Note that 

2-cell steady state was obtained using the initial guess u0 (x) = 3 sinx and 3-cell steady state 

was obtained using the initial guess u0(x) = 5 sin2x. We have computationally observed 

that stabilization of a 2-cell steady states requires only one actuator placed at a point in the 

physical space for a= 37.75. However this is not the case for stabilizing a 3-cell steady 

state for the same value of a. In this case we have noticed that this requires two actuators 

placed at points uniformly distributed over the domain in the physical space. Stabilization 

results for unstable 2-cell steady state are presented in Fig. 3.9-Fig. 3.11 and unstable 3-cell 

steady states are presented in Fig. 3.12- Fig. 3.14 
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(a) 

(b) 

Figure 3.3: Unsteady solution of KSE at a= 14 with initial condition taken as a 1-cell 
steady state solution of KSE at the same value of a after the control forcing applied at 
t ~ 5. (a) Uncontrolled (x, t) contour plot. (b) Controlled (x, t) contour plot. 
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Figure 3.4: Energy E as a function of time tfor unsteady solution of KSE at a= 14 with 
initial condition taken as a ]-cell steady state solution of KSE at the same value of a after 
the control forcing applied at t ~ 5. (a) Energy for uncontrolled KSE. This shows that the 
instabilities are developing as time evolves. (b) Energy for controlled KSE. This shows 
that after execution of control forcing the energy of the system is reducing and therefore no 
instabilities develop further. 
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Figure 3.5: Unsteady solution of KSE at a = 14 with initial condition taken as a ]-cell 
steady state solution of KSE at the same value of a after the control forcing applied at 
t ~ 5. (a) Control forcing c 1 as a function of time t. This shows that initially we need more 
control efforts for stabilization. (b) Energy Ep of the perturbation solution of KSE as a 
function of time t. This indicates that the perturbation energy is decreasing with time soon 
after the control forcing is applied at time t = 5. 



(a) 

(b) 

Figure 3.6: Unsteady solution of KSE at a = 14 with initial condition taken as a 1-cell 
steady state solution of KSE at the same value of a after the control forcing applied at 
t ~ 10. (a) Uncontrolled (x,t) contour plot. (b) Controlled (x,t) contour plot. 
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Figure 3.7: Energy E as a function of time tfor unsteady solution of KSE at a= 14 with 
initial condition taken as a ]-cell steady state solution of KSE at the same value of a after 
the control forcing applied at t 2: 10. (a) Energy for uncontrolled KSE. This shows that the 
instabilities are developing as time evolves. (b) Energy for controlled KSE. This shows that 
the instabilities are developing until the control is applied at time t 2: 10. When the control 
is applied at time t 2: 10 the energy of the control is reducing to the energy of steady state 
and thereby stabilizing the system. Henceforth no instabilities develop further. 
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Figure 3.8: Unsteady solution of KSE at a = 14 with initial condition taken as a 1-cell 
steady state solution of KSE at the same value of a after the control forcing applied at 
t 2:: 10. (a) Control forcing CJ as a function of time t. This shows that initially we need 
more control efforts for stabilization. (b) Energy Ep of the perturbation solution of KSE 
as a function of time t. This indicates that the perturbation energy is decreasing with time 
soon a er the control orcin is a lied at time t = 10. 
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(b) 

Figure 3.9: Unsteady solution of KSE at a= 37.75. (a) Uncontrolled (x,t) contour plot 
with initial condition is uo(x) = sinx. (b) Controlled (x, t) contour plot with initial condition 
taken as a 2-cell steady state solution of KSE at the same value of a 
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Figure 3.10: Energy for unsteady solution of KSE at a.= 37.75 (a) Uncontrolled energy 
shows periodic bursts with initial condition is uo(x) = sinx. (b) Controlled energy without 
any periodic bursts with initial condition taken as a 2-cell steady state solution of KSE at 
the same value of a. This shows that the energy is reduced to that of the initiall-cell steady 
state solution for all time. 



101 

1.0 1- perturbatiooenergy 
0.8 

0.6 

0.4 

0.2 

llf 0.0 

-0.2 

-0.4 

-0.6 

-0.8 

· 1.0 
0 10 15 

(a) 

(b) 

Figure 3.11 : For controlled unsteady solution of KSE at a= 37.75 with initial condition 
taken as a 2-cell steady state solution of KSE at the same value of a . (a) Energy of pertur­
bation solution . It shows that perturbation energy is reduced with time and hence drives 
the system to the steady state regime. (b) Control force responsible for stabilization is 
oscillating with time but with magnitude close to zero. 
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Figure 3.12. Unsteady solution of KSE at a= 37 75. (a) Uncontrolled (x ,t) contour plot 
obtained with initial condition uo(x) = sinx. (b) Controlled (x ,t) contour plot obtained 
with initial condition taken as a 3 -cell steady state solution of KSE at the same value of a . 
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Figure 3.13: Energy for unsteady solution of KSE at a= 37.75. (a) Uncontrolled energy 
obtained for solution of KSE with initial condition uo(x) = sinx. This shows there are 
periodic bursts in the energy. (b) Controlled energy obtained for the solution of KSE with 
initial condition taken as a 3-cell steady state solution of KSE at the same value of a. This 
shows that there is no chaotic bursts observed in the energy of the controlled system. 



104 

1.0 I - perturbation energy 
0.8 

0.6 

0.4 

0.2 

~ 0.0 

-0.2 

-0.4 

-0.6 

-0.8 

-1.0 
0 10 15 

(a) 

3.5e-IO 

3.e-IO 

2.5e-IO 

2.e-IO 
<)" 

I.Se-10 

J.e-10 

5.e-11 

0.0 
0 10 15 

(b) 

Figure 3.14: For controlled unsteady solution of KSE at a= 37.75 with initial condition 
taken as a 3 -cell steady state solution of KSE at the same value of a. (a) Energy of pertur­
bation solution. It shows that perturbation energy is reduced with time and hence drives 
the system to the steady state regime. (b) Control force responsible for stabilization is 
oscillating with time but its magnitude approaches to zero with time. 



Chapter 4 

Conclusions 

4.1 Discussion 

In this dissertation we have presented the necessary mathematical basis for an extensive 

study of Kuramoto-Sivashinsky Equation (KSE). Our main achievements in this work can 

be arranged as follows: 

• Development of efficient numerical method for the study of steady, unsteady, and 

controlled KSE. The three problems, including the control problem, were solved in 

Fourier space. 

• Numerical study of the bifurcations of steady KSE, and presence of cells and their 

stabilizing confirm results for the literatures. These give a validation of our ap­

proaches. 

• Algorithm for efficient stabilization of unstable steady solutions of KSE. Even though 

the control we have applied is linear, it also works for significant magnitudes of the 

perturbation. This confirms robustness of the approaches. 
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4.2 Future Directions 

While working with this problem we have not resolved some of the important issues. For 

the moment we have left them as open problems. They can be studied for further un­

derstanding of the dynamics of KSE. Resolving these problems may provide some new 

directions of work concerning KSE. The new problems can be presented below: 

• loss of controllability for increasing values of the parameter a of KSE 

• need for a larger number of actuators for stabilizations 

• numerical analysis of the convergence of the feedback kernels as the resolution is 

refined 

• investigation of the forcing term localized in Fourier space, and 

• properties of the linear feedback operator 
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