
DYNAMIC ANALYSIS OF SOFTWARE SYSTEMS

USING

PATTERN MINING

DYNAMIC ANALYSIS OF SOFTWARE SYSTEMS

BASED ON

SEQUENTIAL PATTERN MINING

By
HOSSEIN SAFYALLAH, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree

M.A.Sc.

McMaster University
Copyright © by Hossein Safyallah, 2006

DEGREE: MASTER OF APPLIED SCIENCE (2006)

DEPARTMENT: Computing and Software

University: McMaster University, Hamilton, Ontario

TITLE: Dynamic Analysis of Software Systems based on
Sequential Pattern Mining

AUTHOR: Hossein Safyallah, B.Sc.

SUPERVISOR: Dr. Kamran Sarti pi

NUMBER OF PAGES: xi, 81

11

Abstract

Software system analysis for identifying software functionality in source code remains

as a major problem in the reverse engineering literature. The early approaches for

extracting softwares functionality mainly relied on static properties of software sys

tem. However the static approaches by nature suffer from the lack of semantic and

hence are not appropriate for this task.

This thesis presents a novel technique for dynamic analysis of software systems

to identify the implementation of certain software functionalities known as software

features. In the proposed approach, a specific feature is shared by a number of

task scenarios that are applied on the software system to generate execution traces.

The application of a sequential pattern mining technique on the generated execution

traces allows us to extract execution patterns that reveal the specific feature func

tionalities. In a further step, the extracted execution patterns are distributed over

a concept lattice to separate feature-specific group of functions from commonly used

group of functions. The use of lattice also allows for identifying a family of closely

related features in the source code. Moreover, in this work we provide a set of met

rics for evaluating the structural merits of the software system such as component

cohesion and functional scattering. We have implemented a prototype tool kit and

experimented with two case studies Xfig drawing tool and Pine email client with very

promising results.

lll

Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this masters

thesis possible. I wish to express my sincere thanks to my thesis supervisor, Dr.

Kamran Sartipi, for kindly providing guidance throughout the development of my

study and preparation of this thesis. I am greatly indebted to Dr. Kamran Sartipi

for his immense help in planning and executing this work in time. Gratitude also

goes to my second adviser, Dr. Jiming Peng, whose help and suggestions helped me

during my study.

My sincere thanks are due to the official referees, Dr. Frantisek (Franya) Franek,

and Dr. Mark Lawford, for accepting reviewing this thesis.

Finally, I would like to thank all whose direct and indirect support helped me

completing my thesis in time.

IV

Contents

1 Introduction 1

1.1 Problem Description 3

1.2 Proposed Solution . . 4

1.2.1 Proposed Framework 4

1.3 Thesis Contribution 7

1.4 Limitations of the Technique . 8

1.5 Thesis Overview 9

2 Related Work 11

2.1 Data Mining 11

2.2 Concept Lattice Analysis . 12

2.3 Dynamic Analysis . 13

3 Formal Definitions 15

3.1 Scenario Model 15

3.2 Software System Model . 16

3.3 Execution Pattern 18

3.4 Feature to Source Code Assignment 18

4 Techniques 20

v

4.1 Execution Pattern Mining 20

4.1.1 Execution Pattern 21

4.1.2 Algorithm 22

4.1.3 Sub-Pattern Elimination 25

4.2 Concept Lattice Analysis 27

5 Dynamic Analysis 33

5.1 Instrumentation . 35

5.2 Scenario Selection . 36

5.3 Execution Trace Generation 37

5.3.1 Preprocessing 0 • 0 • 37

5.3.2 Dynamic Call Tree Generation . 38

5.3.3 Dynamic Call Tree Pruning 40

5.4 Execution Pattern Generation 42

5.5 Execution Pattern Analysis 43

5.5.1 Categories of Functions in Execution Patterns 44

5.5.2 Sequential Pattern Mining Approach 45

5.6 Concept Lattice Analysis Approach . 48

5.6.1 Concept Lattice Construction 48

5.6.2 Concept Lattice Analysis . . . 49

6 Structural Evaluation of Software System 51

6.1 Metrics Computation . . . 52

6.1.1 Formal Definitions 53

6.2 Discussion 53

Vl

7 Experiments

7.0.1 Platform .

7.1 Dynamic Analysis of Xfig

7.1.1 Feature-Specific Scenario Generation

7.1.2 Execution Pattern Extraction

7.1.3 Concept Lattice Analysis .

7.1.4 Structural Evaluation .

7.1.5 Characteristics ..

7.2 Dynamic Analysis of Pine

8 Conclusion and Future Work

8.1 Discussion . .

8.2 Future Work .

A Tool Documentation

A.1 Architectural Design

A.2 Design Pattern . . .

A.3 User Interface Design .

Bibliography

Vll

55

55

56

56

56

57

58

60

62

67

68

68

70

70

73

74

84

List of Tables

4.1 An example of a relation table with 3 objects and 5 attributes.

4.2 Concepts of the context table in Table 4.1.

7.1 The result of execution trace extraction and execution pattern mining

29

30

for a collection of 7 Xfig feature families and their specific features. 57

7.2 Structural cohesion and feature functional scattering measures for three

different feature families of the Xfig. 60

7.3 Results of dynamic analysis on Xfig drawing tool. The core functions

(right column) correspond to the specific Xfig features (left column). . 62

7.4 The result of execution trace extraction and execution pattern mining

for a collection of 4 different Pine features. 63

7.5 Part of the results of dynamic analysis on Pine email client. The core

functions (right column) correspond to the specific Pine features (left

column). 64

7.6 Structural cohesion and feature functional scattering measures for four

different features the Pine email client. 65

viii

List of Figures

1.1 Proposed framework for identifying the implementation of the func

tional aspects of a software system in the source code as a means to

incorporate semantics into static analysis techniques. 5

4.1 An execution trace repository containing 7 execution traces. The four

shaded areas correspond to four execution patterns with minimum sup-

port 3. 21

4.2 Data structure that is used to represent a Trie node. 25

4.3 SubPattern elimination: (a) inserting execution patterns in Trie and

marking leaves as final and subPattern (b) final execution pattern ex-

traction, shaded areas correspond to final paths.

4.4 Corresponding concept lattice of Table 4.1 . . .

5.1 Proposed framework for identifying the implementation of the func

tional aspects of a software system in the source code as a means to

27

32

incorporate semantics into static analysis techniques. 35

5.2 Instrumentation: (a) sample function foo(), (b) extracted function en-

try/exit pairs for a sample execution of function foo(). 36

5.3 Grammar for parsing the Aprobe instrumentation data. 38

5.4 Data structure that is used to represent a graph node. . 39

ix

5.5 A dynamic call tree that is generated for an example execution of

Procedure Foo in Figure 5.2. 39

5.6 (a) A string containing repetitions. (b) Representation of (a) in the

form of one instance of string repetition. (c) Another possible repre-

sentation of (a) in the form of one instance of string repetition. 41

5. 7 A first generation pattern extracted of drawing a rectangle in Xfig with

the highlighted second generation patterns along with their support

counts. 47

7.1 A Feature-specific scenario set for Xfig drawing tool. The group of

scenarios apply the Flip operation on different graphical objects. . . . 58

7.2 Concept lattice representation of the extracted features and their cor

responding functions for the Xfig drawing tool. The group of concepts

corresponding to three feature families and the omnipresent functions

are shown by dashed ovals. 59

7.3 Concept lattice representation of the extracted features and their cor

responding functions for the Pine email client. 66

A.1 Component digram of the Dynamic Alborz plugin in the Eclipse envi-

ronment. 71

A.2 Observer design pattern used in the Dynamic Alborz plugin. 74

A.3 The Eclipse workbench with the Dynamic Alborz plugin installed. 77

A.4 Config Wizard page of the Dynamic Alborz plugin. 78

A.5 Welcome page, the first page in the Dynamic Alborz Run wizard. 78

A.6 History page, provides a history for the selected system in the Dynamic

Alborz Run wizard. 79

A. 7 Input page, provides an interface for adding a new feature to the system. 80

X

A.8 Data Mining page, user can select the minimum support for the data

mining operation. 81

A.9 Statistical Result page, provides statistical information about the ex-

tracted execution patterns. 82

A.lO Pattern Analysis page, provides an interface for selecting the analysis

type and the features that should be involved in a specific analysis

session 83

Xl

Chapter 1

Introduction

Software system analysis for extracting system functionality remains as a major prob

lem in the reverse engineering literature. The early attempts for extracting software

functionality mainly had a static nature and were centered on searching for patterns

of the system functionality based on program templates in a knowledge base [17].

However, static analysis suffers from the lack of enough semantics and hence is not

appropriate for functionality recovery. The static approaches are mostly useful for

extracting the structure of software systems and support specific reverse engineering

activities such as re-documentation, restructuring and re-engineering.

There is a growing attention towards the dynamic aspects of software systems

as a challenging domain in software reverse engineering [24, 13]. Dynamic analysis

deals with task scenarios that formulate the user-system interactions in an informal

or semi-formal manner. The approaches to dynamic analysis cover areas such as per

formance optimization [23], software execution visualization [21], and feature to code

assignment [12], where in this work, we address the latter problem. Typically, to

understand the implementation of a certain feature of a system, maintainers refer to

the documentation of the software system. However, in many cases the mapping of

1

CHAPTER 1. INTRODUCTION 2

features to the source code is poorly documented and one has to review the entire

source code to obtain the required knowledge for this task. In this thesis, we pro

pose a novel approach to dynamic analysis of software systems, in order to identify

the implementation of the software features in the source code. In this context, dy

namic analysis is performed by executing a group of well-defined task scenarios on

the software system and by observing the execution results. Dynamic analysis with

its characteristics to extract system functionality has several challenges compared to

static analysis: i) in static analysis usually a complete set of software facts are gener

ated through parsing or lexical analysis of the source code based on a domain model,

whereas in dynamic analysis only a small subset of the possible dynamic traces are

extracted; ii) obtaining meaningful knowledge from the extracted execution traces is a

difficult task that restricts the applicability of the dynamic analysis; and iii) the large

sizes of the execution traces caused by program loops and recursions may disable the

whole dynamic analysis.

In this work, we define and execute a set of task scenarios with a specific shared

feature on the software system in order to generate execution traces. The application

of a sequential pattern mining algorithm on the extracted execution traces allows

us to obtain high-frequency patterns of functions. In a further step, we analyze the

frequently appearing patterns, in order to identify the implementation of the software

features in the source code. Finally, in a post-processing step we separate the more

general patterns(e.g., starting/terminating operations and common utility functions)

from feature-specific patterns.

Upon identifying the implementation point of a certain software feature (i.e. the

group of feature-specific functions), we assess the impact of the feature on a por

tion of software structure that contributes to implement this feature. The proposed

structural assessment directly represents the cohesion of module(s) implementing a

CHAPTER 1. INTRODUCTION 3

specific feature; this measure of cohesion is much closer to the original definition of

cohesion ("relative functional strength of a module" [22]) than using static structural

techniques such as inter-/intra-edge connectivity of the components. Furthermore,

each group of core functions that implement a feature can be used to incorporate

semantics into the existing software architecture recovery techniques [25).

1.1 Problem Description

Software maintenance is the major activity in the software system life cycle and has a

critical importance in maintaining both legacy and newly developed software systems.

Software maintenance consists of activities including: corrective maintenance to di

agnosis and correct the errors, adaptive maintenance to modify the software system

to properly interface with changing environments (hardware and software), perfective

maintenance to enhance the functionality of the software, and finally preventive main

tenance to improve the future maintainability and reliability of the software system.

A prerequisite for each of the above mentioned activities is a comprehensive under

standing of the whole software system including its design and and run-time aspects.

Early attempts for program understanding mostly have been focused on static as

pects of the software system based on entities and dependencies in the source code

[34). However static analysis suffers from lack of semantics and is unable to extract

the runtime behavior of the software, thus it can not address problems that have a

dynamic nature such as identifying the implementation point of the software features,

finding the execution bottlenecks and/or the less frequently used part of the system,

and understanding the interactions among different software components. Based on

the above discussion, we define the problem of this study as:

devising required process, techniques, and supporting tools for identify-

CHAPTER 1. INTRODUCTION

ing the implementation of the functional aspects of a software system in

the source code as a means to incorporate semantics into static analysis

techniques.

1.2 Proposed Solution

4

This thesis presents a dynamic analysis approach for identifying the implementation

of software features that is based on the frequent patterns of function calls in execution

traces of the software system. It also proposes an evaluation metric for assessing the

structural merits of the software system based on the degree of functional scattering

of the software features among the structural modules.

1.2.1 Proposed Framework

Figure 1.1 illustrates different steps of the proposed framework for assigning software

features onto the system modules. The framework provides a means for reducing the

large sizes of execution traces, takes advantage of the relation discovery power of data

mining and concept lattice analysis, and allows us to measure the impact of individual

features on the structure of the system.

This process consists of four stages: Execution trace extraction; Execution pattern

mining; Execution pattern analysis; and Structural evaluation. In the rest of this

section these stages are briefly described.

• Execution trace extraction: important features of a software system are iden

tified by investigating the system's user manual, on-line help, similar systems

in the corresponding application domain, and also user's familiarity with the

system. A set of relevant task scenarios are selected that examine a single soft-

CHAPTER 1. INTRODUCTION 5

Feature
Feature-Specific

Scenario set
Selection

New Scenario Set Selection

Execution Pattern
Mining

Execution
Patterns

Scenario-Set un mrmr1
Traces Set 1 Set 2 Set 3

Omnipresent Pattern I
Feature-Specific
Pattern D Ail Execution

Patterns /<~~-::.:.:;1

,~;~\
A family of relevant
features (circle, ellipse, ...)

Assigning
Feature Functionality

to
System Modules

Measuring
Feature Impact on
System's Structure

Figure 1.1: Proposed framework for identifying the implementation of the functional
aspects of a software system in the source code as a means to incorporate semantics
into static analysis techniques.

ware feature. We call this set of scenarios as feature-specific scenario set. For

example, in the case of a drawing tool software system, a group of scenarios that

share the "move" operation to relocate a figure on the computer screen would

constitute such a feature-specific scenario set. In the next step, the software un

der study is instrumented1 to generate function names at the entrance and exit

of a function execution. By running each feature-specific scenario against the

instrumented software system a sequence of function invocations are generated

in the form of entry/exit pairs. To make the large size of the generated traces

manageable, in a preprocessing step we transform the extracted entry/ exit pairs

into a sequence of function invocations and also remove all redundant function

calls caused by the cycles of the program loops. The trimmed execution traces

1 Instrumentation refers to the process of inserting particular pieces of code into the software
system (source code or binary image) to generate a trace of the software execution.

CHAPTER 1. INTRODUCTION 6

are then fed into the execution pattern mining engine in the next stage. The

preprocessin · operation will be discussed in more details in Section 5.3.1.

• Execution pattern mining: in this stage, we reveal the common sequences of

function invocations that exist within the different executions of a program

that corresp nd to a set of task scenarios. We apply a sequential pattern min

ing algorith on the execution traces to discover such hidden execution patterns

and store them in a pattern repository for further analysis. This stage will be

discussed in ore details in Section 4.1.

• Execution pattern analysis: each execution pattern is a candidate group of func

tions that implement a common feature within a scenario set. We employ a

strategy to s otlight on functions in execution patterns corresponding to spe

cific features within a group of scenario sets. This is performed by identifying

those patter s that are specific to a single software feature within one scenario

set (namely f eature-specific patterns). Similarly, we identify the patterns that

are common among all sets of scenarios (namely omnipresent patterns) . In

Figure 1.1 a sketch of the scenario-set execution traces and feature-specific /

omnipresent patterns are shown. Even for a specific feature, a large group of

execution patterns are generated that must be organized (and some must be

filtered out) to identify core functions of a feature. We employ two different

mechanisms for this purpose: concept lattice analysis and second sequential

pattern mining technique. Concept lattice is an ideal tool for such a task, hence

we use the visualization power of concept lattice to generate clusters of functions

within feature-specific functions and omnipresent functions. Alternatively, we

CHAPTER 1. INTRODUCTION 7

apply the sequential pattern mining for the second t ime on the extracted exe

cution patterns of the previous steps to separate feature-specific patterns from

omnipresent patterns. This step is discussed in Section 5.5.

• Structural evaluation: in a further operation, by associating the functions of

feature specific patterns, which implement the corresponding feature, to the

system's structural modules, i.e., files of the system, two metrics for measuring

module cohesion and feature functional scattering are obtained that together

provide a means for measuring the impact of individual features on the structure

of the software system.

1.3 Thesis Contribution

This thesis presents an approach in dynamic analysis of software systems to asso

ciate software functionalities to source code and as a byproduct provides a means

for structural evaluation of software systems. The proposed approach takes advan

tage of dynamic analysis, data mining technique sequential pattern discovery, string

processing algorit m repetition pattern finding, as well as the visualization power

of the concept latt ice analysis to provide comprehensive information about the soft

ware system from different aspects. The contributions of this thesis to the software

maintenance field can be categorized as follows.

• Devised a novel pattern based approach to dynamic analysis of a software system

that employ. data mining techniques to extract valuable information out of

noisy executi n trace data.

• Proposed a t chnique to reduce the large sizes of the execution traces by elimi

nating the lo p-based repetitions.

CHAPTER 1. INTRODUCTION 8

• Proposed a ew technique for eliminating the sub-patterns that are generated

along with the execution patterns.

• Identified the set of core functions that implement both specific features and

common features of software systems.

• Provided a measure of scattering of the feature functionality to the structural

modules as well as a measure of cohesion for a structural module.

• Visualized the functional distribution of specific features on a lattice using con

cept lattice analysis.

As a result of this research, we implemented a prototype tool as an Eclipse [3]

plug-in using Java programming language. The implemented toolkit and the case

studies are discussed in Chapter 7.

1.4 Limitations of the Technique

The presented approach in this thesis has some limitations as follows.

Limitations pertinent to the dynamic analysis approach: the proposed dy

namic analy is is based on executing a group of feature-specific task scenarios

on the program under study and observing the runtime executions; hence, the

familiarity of the user with the application domain and t he subject system is re

quired. In addition, similar to any dynamic analysis technique the results of the

proposed dynamic analysis indicate the properties of the input task scenarios

rather than the properties of the entire system.

Limitations pertinent to the current implementation: there are many chal

lenges in dynamic analysis of a software system that might restrict the applica-

CHAPTER 1. INTRODUCTION 9

bility of the current implementation of the technique; among them, managing

the huge sizes of the execution traces (tens of thousands of function calls in

a medium si:~,e system) , dealing with large number of extracted patterns from

data mining operation, and identifying the real patterns from noise patterns,

are notable.

1. 5 Thesis Overview

The remaining chapters of this thesis are organized as belows.

Chapter 2: desc ibes an overview of the related work in the area of dynamic analysis

of the software system and feature to source code assignment.

Chapter 3: pro ides a detailed discussion of the formal definitions that are used

throughout the thesis.

Chapter 4: presents a discussion of the techniques and algorithms that are em

ployed throughout this study, including the sequential pattern mining algorithm,

execution pat tern post-processing algorithm, and concept lattice analysis tech

niques.

Chapter 5: presents the dynamic analysis approach for software feature to source

code assign ent. In this chapter, the steps of the proposed approach are ex

plained in detail.

Chapter 6: pro ides the proposed structural evaluation technique.

Chapter 7: pres nts the results of the experimentations with the Xfig drawing tool

and the Pine email system.

CHAPTER 1. INTRODUCTION 10

Chapter 8: provides a conclusion for the whole thesis and forms the basis for the

future research.

A ppendix: describes the implementation of the proposed prototype toolkit as an

Eclipse plug-in.

Chapter 2

Related Work

In this section, we briefly present the approaches in dynamic analysis of a software

system that relate to our works. In Section 2.1 we describe the approaches in software

reverse engineerin · that employ data mining techniques. Section 2.2 elaborates on

the existing approaches of application of concept lattice analysis in the software re

verse engineering, and finally, in Section 2.3 we present recent approaches in dynamic

analysis of software systems.

2.1 D ata M ining

Fayyad et al. [16] defines data mining in databases as the non-trivial process of

identifying valid, n vel, potentially useful, and ultimately understandable patterns in

the large database~. Data mining, in fact, aims at discovering unexpected, useful and

simple patterns, and it is an inter-disciplinary research area. Recently, the application

of data mining tee niques in the software reverse engineering has been investigated.

In static analysis of software systems, Montes and Carver [10] use association rule

mining to identify ubsystems in the database representation of the software system.

11

CHAPTER 2. REL ATED WORK 12

Sartipi [27] propo es a clustering method based on application of association rule

mining where the similarity values between the system entities are defined based on

the extracted association rules. In dynamic analysis of software systems, El-Ramly

et al. [14] applied a sequential pattern mining technique to find interaction patterns

between graphical ser interface components. Their algorithm, so-called IPM, discov

ers frequently occurring patterns in program's interface snapshots. Consequently, an

expert translates t e extracted patterns to a use-case scenario. In [35] a web-mining

technique is applie on program dynamic call graphs, where nodes represent classes

and edges represent method invocation. In this approaches, classes (nodes) that de

pend on many other classes are identified using the web mining algorithm HITS. As

a result , the classes in the software system that play an active role in the system

are identified thro gh this approach. In the presented approach in this thesis, we use

data mining algorithm sequential pattern mining in order to extract frequent patterns

of function calls. I this work, we utilize the "support" of each extracted pattern to

filter out the noisy patterns.

2.2 Concept Lattice Analysis

Concept lattice an lysis provides a way to identify groupings of objects that have com

mon attributes. T e mathematical foundation was laid by G. Birkhoff [7] in 1940.

In 1993, work on the application of concept lattice analysis in the area of reverse

engineering was initiated. Concept lattice analysis has been used for modulariza

tion of legacy code [28, 18, 31], where the relation between program functions and

their attribute val es (e.g. , global variables, used types) are the basis for concept

construction.

Recently, the application of concept lattice in dynamic analysis of software systems

CHAPTER 2. REL ATED WORK 13

has been investigated. Eisenbarth et al. [12, 13] proposed a formal concept lattice

analysis to locate c mputational units that implement a certain feature of the software

system. They define a relation between task scenarios and program functions, where

all the functions t at are invoked during execution of a task scenario is considered

as the attribute of that scenario. Similarly, we apply concept lattice analysis to the

relation between specific feature in a scenario and certain program functions invoked

during the scenari execution. However, we filter out noise functions by applying

sequential pattern mining which has a huge effect on reducing the complexity and

increasing the understandability of the concept lattice. Tonellan et al. [30] applied

concept lattice analysis on execution traces of a software system to mine the potential

program-aspects that exist in the software.

Concept lattic analysis and data mining techniques both extract maximal se

quences of executi n traces that contain important information to be analyzed. How

ever , sequential pattern analysis has the control over the number of generated common

traces using the minimum support. In the proposed technique we amalgam the ad

vantages of both techniques to explore the non-trivial execution patterns as a means

to explore the funct ionality of a specific software feature.

2 .3 Dynamic Analysis

In [6, 15], Bell and Ernst studied the characteristics of dynamic analysis of software

systems and compared the properties of dynamic analysis technique with those of

a static analysis. A typical approach to dynamic analysis of a software systems is

based on executin a set of task scenarios on the software system and analyzing

the corresponding xecution traces. In an approach to software understanding using

execution traces P uw et al. [21] visualized the execution traces of object-oriented

CHAPTER 2. REL ATED WORK 14

programs and provided a set of navigational and analytical techniques to facilitate

the execution trace exploration in various abstraction levels. Fischer et al. [19] used

execution traces as clues for tracing the evolution of a software system. In [36] a

heuristic exploration to execution traces has been proposed that aims at clustering

the program functions based on their invocation frequency. Execution traces are also

used in performance analysis of software systems. In [20, 33, 8] performance analysis

of parallel system is studied by using execution traces of the software systems. In

[8, 33] a program's execution trace is searched for certain predefined patterns that in

dicate inefficient behavior. In [11 J a time interval analysis is applied to the execution

traces to locate components that implement a certain feature in a distributed appli

cat ion. Traces of xecution within the intervals with and without a specific feature

being active are compared to locate the code component that implement that specific

feature. Although this method is quite interesting, but since activation of a feature

might be interleaved with other functionalities of the software, determining an exact

time interval for activation of a specific feature is not always feasible.

N. Wilde et al. [32] proposed a set difference approach for locating software fea

tures in the source code; where the set of functions in the related scenario executions

(those that execut a specific feature) are differentiated from scenario executions that

do not invoke that specific feature in order to extract the specific feature 's function

ality. In our appr ach, we also use the notion of feature specific scenarios, however

we extract patterns of execution traces as evidences of the feature functionality.

In contrast to the above techniques, our approach exploits a novel analysis tech

nique to handle lar e sizes of the execution traces, and allows an intuitive and promis

ing process of feat re to component allocation that consequently leads us to measure

the functional scatt ering and cohesiveness of the software structural units.

Chapter 3

Form al Definitions

In this chapter, we define the common terminology that we use throughout this

thesis to describe the execution pattern mining and pattern analysis aspects of the

proposed approach . We provide a model for representing the task scenarios in Section

3. 1. In Section 3.2 a representation for a software execution using dynamic call tree

is provided. In Section 3.3 we present the definitions for execution pattern mining.

Finally, Section 3.4 uses the definitions presented in this chapter in order to model

the feature to source code assignment problem.

3 .1 Scenario Model

In the context oft is work, we model a scenario as a sequence of relevant features of

the software syste . In this way, each software feature is considered as the building

blocks of the task scenarios.

• feature ¢ is a unit of software requirement that describes a single functionality

in the software system under study. <I> is the set of all features in the system.

15

CHAPTER 3. FORMAL DEFINITIONS 16

• scenario s is a sequence of features ¢ E <I>; thus

s = [¢1 , ¢2 , ... , c/Jnl· Also S is the set of all applicable scenarios on the system.

• feature-specific scenario set S¢ is a set of scenarios that share specific feature ¢;

thus1

s ¢ = { s I s E s 1\ :J ¢' E s • ¢' = ¢}.

3 .2 Software System Model

Based on the static dependencies that exist in the source code of a software system,

one can model the oftware system with a call graph, where nodes represent functions

and edges represent function calls. In this representation each scenario execution on

the software syste corresponds to a traverse on the system call graph. In order to

formalize the dynamic aspects of the software system in this work, we represent this

source graph trave sal with a dynamic call tree. In this representation, two different

invocations of a si gle function are represented with two different nodes and edges of

the tree are representing the function calls.

• Let F be the set of all function names in the subject software system.

• Let :F' be the set of all invocations (calls) of functions f E F. In this context,

two different invocations of a single function f E F are represented as Ji and

Jl(i#j).

• Dynamic Call Tree (DCT) is a tree which represents the execution of a scenario

on the software system. In this representation, nodes represent functions and

1 We use set membership operator E as a sequence membership operator as well .

CHAPTER 3. Fo MAL DEFINITIONS 17

edges represent function calls. DCT =< :F' , E >, where E is a set of ordered

pairs 2such t at: E c :F' x :F'

• Dynamic call tree preprocessor II is a tree pruning operation which removes

multiple instances of identical subtrees in a dynamic call tree that are repeated

under a particular parent node. II : DCT ~ DCT

In this work, d. namic call trees are obtained from execution of task scenarios on

the instrumented s ftware system. We model a software system as a set of all possible

dynamic call trees that each corresponds to one task scenario execution. We also

model a scenario xecution as a look up operation which returns the corresponding

dynamic call tree of a scenario in the software system.

• Let software system 'l1 be the set of all possible dynamic call trees.

• Let scenario execution £ (s) on software system 'l1 be a look up function which

returns the c rresponding dynamic call tree of scenario s. £ : S ~ 'l1

We transform a dynamic call tree to an execution trace for further analysis in this

work. Each executiOn trace is represented with a sequence of function names. In this

formalism, execution traces are built by the depth first traversal of the dynamic call

trees.

• Execution Trace Tis a sequence of function names from F.

• A dct E DCT is mapped to an execution trace t E T using a depth first traversal

D FT on the ct, where the sequence of visited nodes in this traversal constitute

execution trace t. DFT: DCT ~ T

2Note that E pres rves the required constraints of a tree.

CHAPTER 3. FOH.MAL DEFINITIONS 18

3 .3 Execution Pattern

In this work, we define an execution pattern as a contiguous part of an execution trace

that exists in certain number of execution traces, namely the support of the pattern.

• Let repositoriJ Rsq, be the set of all extracted execution traces according to the

execution of task scenarios in feature--specific scenario set S¢. Thus we would

have:

Rsq, = DFT(IT(E(S¢)))

• An executio pattern p E T is defined as a contiguous sequence of functions

f E :F that is supported by at least M inSupport number of execution traces in

the repositor. Rsq, .

• An executio trace t supports execution pattern p iff p is a subsequence of t ,

such that: 3i Vj (0 :S i 1\ i :S j < (i + IPI) ---+ p[j - i] = t[j]).

• Let support . et of pattern p be the set of all execution traces that support

execution pat tern p.

• An execution pattern miner Y n(Rsq,) is a function which extracts all execution

patterns that are supported by at least n% of execution traces in Rsq, .

Yn: Powerset(T)---+ Powerset(T)

3 .4 Feature to Source Code Assignment

Depending on the l vel that functions are participating in execution patterns of differ

ent feature-specific scenario sets, we define two categories of functions: f eature-specific

functions and omn ·present functions.

CHAPTER 3. FORMAL DEFINITIONS

• Function f i associated with feature-specific scenario set S¢ such that:

3p E 'In(Rs<l>) • f E p.

19

• A function is categorized as an omnipresent function iff it is associated with

almost every feature-specific scenario set.

• A function f is a feature-specific function for feature 4> iff f is associated with

only the uni ue feature-specific scenario set S¢.

In this context, the group of all feature-specific functions for feature 4> constitute

the mapping of feature 4> to the software system source code.

Chapter 4

Techniques

In this chapter , we discuss the major techniques that are used throughout this thesis.

We briefly present the application of sequential pattern mining in Section 4.1 and

mathematical concept lattice analysis in Section 4.2. The former is used to extract

highly repeated ex cution patterns as a result of applying sequential pattern mining

on the pruned execution traces. The later is applied on the extracted execution

patterns in order to cluster the functions that exist within common / feature-specific

patterns.

4 .1 Execution Pattern Mining

In this section, we describe the application of a data mining technique to discover

sequences of functions in a software system that correspond to certain system features.

In the data mining literature, sequential pattern mining is used to extract frequently

occurring patterns among the sequences of customer transactions [5]. In this context,

the sequence of all transactions corresponding to a certain customer (already ordered

by increasing transaction-time) is referred to as a customer-sequence. A customer-

20

CHAPTER 4. TECHNIQUES 21

::
Figure 4.1: An ex cution trace repository containing 7 execution traces. The four
shaded areas correrpond to four execution patterns with minimum support 3.

sequence supports a sequence s if s is a sub-sequence of this customer-sequence. A

frequently occurri g sequence of transactions (namely a pattern) is a sequence that

is supported by a user-specified minimum number of customer-sequences known as

the minimum support of this pattern, namely M inSupport the pattern.

4 .1.1 Execut ion P attern

In this study we u e a modified version of the sequential pattern mining algorithm

by Agrawal [5] , w ere an execution pattern is defined as a contiguous part of an

execution trace that is supported by MinSupport number of execution traces. In this

analysis we use an xecution trace as a customer-sequence defined above. The formal

definition of an exe ution pattern has been provided in Section 3.3. In this formalism,

each execution pat tern is associated with a set of feature-specific task scenarios and

reveals the commo functionality that is invoked within these scenarios.

In Figure 4.1 a example of an execution trace repository and its corresponding

execution patterns is shown. In this example the MinSupport is 3.

A typical sequential pattern mining algorithm allows extracting noncontiguous

sequences of function calls. In most cases, this characteristic drastically increases

the time/space co plexity of the pattern mining algorithm and will complicate the

dynamic analysis. [n the presented approach, each extracted sequential pattern is a

CHAPTER 4. TECHNIQUES 22

contiguous sequence of function calls that exists in different execution traces. This

strategy produces meaningful execution patterns that correspond to core functions

implementing specific functionalities of the system. Whereas, as we got from our

experiments, extra ting execution patterns that contain noncontiguous function invo

cat ions would generate an overwhelming number of meaningless patterns that consist

of unrelated parts f the execution traces.

4.1.2 Algorithm

In the following a overview of the proposed execution pattern mining algorithm is

provided. This algorithm consists of two main procedures: candidate two-items pat

tern generation (Procedure cpGenerator) and pattern extension (Procedure DoExtend) .

Procedure cpGenerator accepts the repository Rs"' as input and simply generates all

two-items patterns. Among the generated two-items patterns those that meet the

MinSupport constraint are stored in the candidate pattern repository.

Procedure DoExtend increases the length of the patterns of the pattern repository

iteratively. This procedure uses the operation extend to extend the patterns. In the

following an overvi w of the operation extend is provided:

A pattern p can be extended by a candidate pattern cp if p ends exactly

where cp starts. The resulting extended pattern p' is constructed by con

catenating p nd cp. The support set of this pattern consists of traces in

the intersecti n of support sets of cp and p that also support p' .

The pattern extension stage starts with storing all candidate patterns in a pattern

repository (see Procedure DoExtend). This procedure iterates as long as any pattern

can be extended. In each iteration, for each pattern p in the pattern repository,

it checks if p can be extended using candidate patterns in the candidate pattern

CHAPTER 4. TECHNIQUES 23

Procedure cpG nerator
Input : Set Rs

9

Result: Set C R //CPR is the candidate pattern repository.

1 Variable: MultiSet MS //A multiset is a set for which repeated elements are

considered. begin
2 CPR+-- empty set; MS +--empty set;
3 foreach t E Rsq, do
4 // t is an execution trace;

s for i +-- 0 to JtJ - 2 do
6 add t [i .. i + 1] toMS ;
7 end
s end
9 foreach m E MS do

10 if Multiplicity(ms) :2: MinSupport then
u add ms to CPR;
12

13 end
14 end

repository. If p can not be extended in an iteration then it is stored as an execution

pattern. When no ore patterns can be extended in an iteration Procedure DoExtend

terminates.

One drawback of the mentioned execution pattern mining algorithm is that it gen

erates certain sub- ubsequences of a final execution pattern, that drastically increases

the number of generated execution patterns. Note that the pattern extend operation

extends pattern p from end of the p. In this case, all sub-sequences of pattern p that

terminate at end of the p may be generated along with p.

Suppose the following situation:

P1={2,3,4} cp={4,5} p~= {2,3,4 , 5}

p2 = { 1, 2, 3, 4} cp = { 4, 5} p; = { 1, 2, 3, 4, 5}

in this case pattern p~ would not grow up more, whereas pattern p2 grows and becomes

a super-sequence for pattern p~.

CHAPTER 4 . TE HNIQUES

P rocedure DoExtend
Input: Set CPR I IC P R is the candidate pattern repository.

Result : Set E R IIEPR is the resulting execution pattern repository.

1 Variable : Set P R IIPR corresponds to the set of growing patterns.

2 Variable: Set Temp
3 begin
4 EPR ~empty set;
5 PR~CPR;

6 while P R has an element do
7 Temp ~ empty set;
8 foreach p E PR do
9 extendedOnce ~FALSE;

10 foreach c E CPR do
11 p' ~ p + C I I operator + denotes to operation pattern extend.;

1 2 if support(p') 2: MinSupport then
1 3 extendedOnce ~TRUE;
14 add p' to Temp;
15

16

17

18

19

end
if ex endedOnce = FALSE then

add p to EPR;

20 end
2 1 PR ~Temp
22 end
23 end

24

CHAPTER 4. TECHNIQUES

TheN ode{

}

String
Mark
TrieNode

functionN arne;
mark;
parent;

Figure 4 2: Data structure that is used to represent a Trie node.

25

We apply a no el sub-pattern elimination operation that has a major impact on

enhancing the pattern analysis performance. The sub-pattern elimination operation

is discussed in more details in the following discussion.

4.1.3 Sub-Pattern Elimination

In order to identi , and eliminate sub-patterns of a final execution pattern, we use

a Trie data structure and annotate its nodes with the function names. A Trie is a

tree data structure that stores the information about the contents of each node in

the path from the root to the node, rather than the node itself. In Figure 4.2 the

data structure that we used for representing the tree nodes in Trie data structure is

shown. Each Trie ode has an enumerated type "Mark" that can have values "finaf'

or "subPattern", where "Mark" is used to eliminate the sub-patterns.

In doing so, th sequence of functions in each execution pattern p is stored along

a path from the ro t to the leaf of the Trie, and the corresponding leaf is marked as

final if it does not already exist in the Trie. In this setting, all sub-sequences of p

that terminate at the end of p are inserted in the Trie as well. The leaf nodes that

correspond to these paths are marked as subPattem. Procedure Trielnsert illustrates

an overview of the above mentioned operation.

Figure 4.3(a) depicts the Trie data structure after inserting final execution patterns

p1 = {F3, F8, F9, 12} and p2 = {F8 , F9, F13}.

CHAPTER 4. TECHNIQUES

Procedure Trielnsert
Input : Patter P

1 Global Variable: Trie trie;
Result: Inserting pattern P along with all its sub-patterns that terminate at

end of P to the trie data structure.
2 begin
3 start t-- 0; mark t-- "final";
4 while start< IPI do
5 TrieNode t t-- trie.root;
6 index t-- start;
1 while i dex < IPI and t.hasChild(P[index]) do
8 t t-- t.getChild(P[index]);
9 inde , = index + 1;

10 end
11 // check to see if P is already in Trie.;

12 if index = IPI then
13 //change node 's mark only from "final" to "subPattern";

14 if mark "subPattern" then
15 l\!Iark t as "subPattern";
16 exit ;
17 // add the remainder of the input pattern to the Trie;

18 while i ,dex < I PI do
19 //add a child to the t and return the newly added child;

20 t t-- t .addChild(P[index]);
21 inde;;.: = index + 1;
22 end
23 Mark t as mark;
24 // add all subsequences of the input pattern to the Trie;

25 start = start + 1;
26 mark t-- "subPattern";
21 end
28 end

26

CHAPTER 4. TECHNIQUES

/'~ /. A@~
/ CE~ ck

wJ
(a) Inserting execution patterns (b) Final path extraction

execution patterns

F3, FS, F9, F12
FS, F9, F12
F9, F12
FS, F9, F13

0 Final node

0 subPattern node

27

Figure 4.3: SubP ttern elimination: (a) inserting execution patterns in T'rie and
marking leaves as final and subPattern (b) final execution pat tern extraction, shaded
areas correspond to final paths.

We call a path that starts from an arbitrary node of the Trie and ends at a leaf

that is marked as final, a final path. Procedure TrieExtmct illustrates an overview of

the operation of ex tracting all final paths that start from node t. This procedure is a

simple depth first t raversal on the Trie that stores the visited nodes in a stack, thus at

any node t' the nodes in the stack represent a path from t to t' . By extracting all final

paths that start from the root of the Trie, we will generate all final patterns. Figure

4.3(b) depicts the nal paths, as two shaded areas, corresponding to final execution

patterns p = {F3 , 8, F9 , F12} and p2 = {F8 , F9 , F13}.

4 .2 Concept Lattice Analysis

Mathematical concept analysis was first introduced by Bir khoff in 1940 [7]. In this

formalism, a binary relation between a set of "objects" and a set of "attribute-values"

is represented as lattice. A concept is a maximal collection of objects sharing

maximal common ttribute-values. A concept lattice can be composed to provide

CHAPTER 4. TE HNIQUES

Procedure Tri Extract
Input: TrieNo e t
Result : Extracting all final paths starting from t .
Data: Stack stack

1 begin
2 stack.push(t);
3 if t is a Le f then
4 if t is .arked as "final " then
s { stack contains one final path now};
6

7 else
s forall children oft do
9 Call TrieExtract;

10 end
11 end
12 stack.pop() ;
13 end

28

significant insight into the structure of a relation between objects and attribute-

values such that each node of the lattice represents a concept. In a binary relation

R ~ 0 x A between a set of objects 0 and their attributes A, the triple C = (0, A, R)

is called a formal context. For any set of objects 0 C 0 , we define shared attributes

o-(0) as the set of attributes that are shared among objects in 0.

o-(0) ={a E AlVa E 0 • (o,a) E R}

Similarly, for any set of attributes A C A, the set of common objects is defined as

shared objects T(A).

T(A) = {o E OIVa E A • (o,a) E R}

A formal conte can be visualized with a relation table, where each row represents

an object and each column represents an attribute. An object oi and an attribute a1

are in the relation (i.e., object oi has attribute a1) iff the cell at row i and column j is

marked in the relation table. In Table 4.1 an example of a formal context is provided.

CHAPTER 4. TECHNIQUES 29

II n I r2 I £3 I £4 I rs I
sl X X X

s2 X X X

s3 X X

Table 4.1: A example of a relation table with 3 objects and 5 attributes.

The following equations hold for this context table:

o-({ sl, s2}) = {fl, f2}

T({fl}) = {sl,s2,s3}

A concept cis efined as a pair c =< 0, A> such that:

0 = T(A) 1\ A= o-(0)

where 0 is called the extent of c, denoted by Ext(c), and A is called the intent of c,

denoted by Int(c). Such a concept corresponds to a maximal rectangle in its context

table. Table 4.2 pr sents all concepts of the relation table in Table 4.1.

The infimum of two concepts is computed by joining their intents and intersecting

their extents.

The infimum descr ibes a set of common attributes of two sets of objects. Therefore

the infimum of two concepts can be rewritten as:

The supremum is computed by joining the extends and intersecting the intents of two

concepts:

CHAPTER 4. TE HNIQUES 30

Cx < Ext(cx), Int(cx) >
cl <{s1,s2,s3}, {!1} >
C2 <{s1,s2}, {f1,f2}>
C3 < { s1 }, {!1, f2 , f5} >
C4 < {s2}, {f1,j2,f4} >
cs < { s3}, {!1, f3} >

Table 4.2: Concepts of the context table in Table 4.1.

The supremum de~cribes the set of objects that share all the attributes in the in-

tersection of two ·ets of attributes. Hence the supremum of two concepts can be

represented as:

A concept lattice is an acyclic directed graph where nodes represent concepts and

edges represent subconcept relations. A concept (0 0 , A0) is a subconcept of concept

(01 , A1), if 0 0 c 0 1 . This relationship defines a complete partial order over the set of

all concepts of a given formal context C, that can be represented as a concept lattice

£ (C).

Complete information of each concept c (i.e. node) in the concept lattice is pro

vided by the pair < Ext(c), Int(c) >. However, the same information can be repre

sented in a more c ncise form by marking a concept c with an attribute a E Int(c)

or with an object E Ext(c). The unique node in the concept lattice that is marked

by attribute a is c mputed by function J.L(a) as follows:

J.L(a) = V { c E £ (C) Ia E Int(c)}

in doing so, each attribute a will label the most general concept that has a in its

intent. As a result those attributes that are shared among most of the objects will

appear in the upper region of the lattice, and those that are more specific label the

concepts in the lower region of the lattice.

CHAPTER 4. TECHNIQUES 31

The unique node that is marked by object o is:

1(o) = (\{c E £(C)Io E Ext(c)}

analogously, o will label the most specific concept that has o in its extent.

Visualizing the concept lattice following the above mentioned labeling mechanism

provides certain characteristics for the lattice as follows .

• Each lattice node (i.e., a concept) might be labeled with objects and attributes.

• Every object has all attributes that are defined at that node or above it in the

lattice (direct ly above or separated by some links).

• Every attribute exists in all objects that are defined at that node and nodes in

the sub-lattice below it (directly below or separated by some links).

A concept lattice can be used to collect the set of shared attributes contained in

a set of objects such that the shared attributes appear in the nodes that are located

in the upper regio of the lattice. Consequently, the nodes in the lower region of the

lattice collect the attributes that are specific to the individual objects in that region.

In Section 5.5, we exploit this property to cluster the functions of the extracted

execution patterns.

Figure 4.4 depicts the corresponding concept lattice of the formal context of Table

4.1. In this lattice, ode with label h represents the concept c2 = < { s1 , s2 }, {!I , h} >.

Note that Ext(c2) is obtained by collecting the objects that are shown in the nodes

below it. Similarly, the intent of c2 contains all the attributes that are labeled the

nodes above it .

CHAPTER 4. TECHNIQUES

[) Attribute

[§] Object

_ Subconcept
Relation

Figure 4.4: Corresponding concept lattice of Table 4.1

32

Chapter 5

Dynamic Analysis

A typical approac to dynamic analysis deals with extract ing software execution

traces corresponding to a set of carefully selected task scenarios and reveals the re

alization of the scenarios' functionalities within the software system components. In

this thesis, we pro ose an approach to dynamic analysis of software systems based

on the frequently appearing patterns in execution traces, in order to identify the im

plementation of the software features in the source code. We execute a set of task

scenarios with asp cific shared feature, referred to as feature-specific scenario set S¢,

on the software system in order to generate execution traces. The application of a

sequential pattern mining algorithm on the extracted execut ion traces allows us to

highlight the featu e related system functionality. Based on the proposed framework

in Chapter 1 that is repeated below and the definitions of Chapter 3, we define this

process with the following steps.

1. Define featur specific scenario set S¢.

2. Execute the cenarios in S¢ on the subject software system and generate the

corresponding dynamic call trees such that DCTsq, is the set of all dynamic call

33

CHAPTER 5. DY AMIC ANALYSIS 34

trees for the scenario set S¢. Each dynamic call tree represents an unpruned

call trace after execution of the software system:

DCTs<t> = £(8¢)

where £ is t e scenario execution operation.

3. Preprocess the extracted dynamic call trees DCTs<t> in order to eliminate the

loop-based r .petitions and extract the corresponding execution traces Rs<t> :

Rs<t> = DFT(IT(DCTs<t>))

where IT represents preprocessing and D FT represents the depth first traversal

operations.

4. Apply the ex cution pattern mining Y n described in Section 4.1 and extract the

set of execution patterns Ps<t> that exist in Rs<t> .

Ps<t> = Yn(R <~>)

We apply the above process on different features of the software system and extract

groups of execution patterns that each reflect the software functionality correspond

ing to the experim nted features. In this context, a post-processing of the generated

execution patterns will allow us to extract patterns that exclusively correspond to

a single feature-specific scenario set from those that are shared between all feature

specific scenario sets. This chapter is structured as follows. An overview of the

program instrumentation is presented in Section 5.1. In Section 5.2 we discuss the

feature-specific scenario set selection. A detailed discussion of execution trace gen

eration is provide in Section 5.3. Finally in Section 5.4, we will discuss the the

execution pattern extraction and execution pattern analysis.

C HAPTER 5. DY~AMIC ANALYSIS

Feature
Feature-Specific

Scenario set
Selection

on Instrumented
System

.--- Pattern Repository ----,

New Scenario Set Sel ct ion IWI Scenario- Set un Traces

Omnipresent Pattern I
Feature- Specific 0 Pattern

Set 1 Set 2 Set 3

All Execution
Patterns

Execution Pattern
Mining

Execution
Patterns

Assigning
Feature Functionality

to
System Modules

35

Measuring
Feature Impact on

System's Structure

Figure 5.1: Proposed framework for identifying the implementation of the functional
aspects of a software system in the source code as a means to incorporate semantics
into static analysis techniques.

5 .1 Instrumentation

Instrumentation refers to the process of inserting particular pieces of code in the

subject software system in order to acquire specific information about the execution

of the software system. Instrumentation can be performed both at the source code

and at the binary image level. In the proposed approach, we adopt Aprobe [29]

which is a binary l vel software instrumentation tool. Aprobe inserts patches, namely

probes, within the binary image of the executable program. In this work, we used a

pre-defined probe (namely trace) that generates text messages at both entrance and

exit points of each function. Therefore, by executing the subject software system a

function entry/ exit pairs is obtained that is represented as a dynamic call tree. In

Figure 5.2(a) an e ·ample function is shown. Extracted function entry/ exit pairs for

a sample execution of this function are shown in Figure 5.2(b).

C HAPTER 5. DY AMIC ANALYSIS

Procedure foo
begin

Call F1 ;
while (condition) do

Call F1 ;
Call F2;

end
end

(a) An ex2lmple program function

execution

•

36

I
Enter Foo

Enter F1 ~
Enter F10)>

Exit F10 ::s
ID

Enter F11 ><
Exit F11

I»
3

Enter F12 'C

Exit F12 CD'
0

Exit F1
Enter F1 c:

::s
Enter F10 0 -Exit F10 a·

::s
Exit F1 ID

::s
Enter F2 -

Enter F20 ~
Exit F20 >< ;:;:

Exit F2 'C
I»
~·

Exit Foo _j

Figure 5.2: Instru entation: (a) sample function foo() , (b) extracted function en
try/exit pairs for sample execution of function foo() .

5.2 ScenaJ io Selection

Important feature of the subject software system are identified by investigating the

system's user manual, on-line help, similar systems in the corresponding application

domain, and also ser's familiarity with the system. For each particular feature ¢ we

select a set of rele ant task scenarios where feature ¢ is shared among all scenarios.

We call this set of scenarios a feature-specific scenario set. For example, in the case

of a drawing tool software system such as Xfig, a group of scenarios that share the

operation "move" t.o relocate a drawn figure on the computer screen would constitute

such a feature-specific scenario set. Bellow a set of five feature-specific scenarios for

the operation "mo e" on Xfig drawing tool is presented:

start, draw rectangle, move, exit

start , draw ellipse, move, exit

start, draw circle, move, exit

start, draw arc, move, exit

start , draw polygon, move, exit

CHAPTER 5. DY AMIC ANALYSIS 37

By executing t e scenarios of the feature-specific scenario set S¢ on the instru

mented software s. stem, a group of function entry/ exit pairs (dynamic call trees)

is extracted that should be preprocessed and converted to execution traces for the

further analysis.

5 .3 Execution Trace Generation

In this section, we discuss the steps for generating execution traces. We start with a

detailed discussion about the rationals for execution traces preprocessing. Then we

describe the prepr cessing mechanism which includes dynamic call tree generation

and dynamic call tree pruning.

5.3.1 Prepro cessing

Dynamic analysis fa medium size software system using execution traces can produce

very large traces ranging to thousands or tens of thousands of function calls. This

would be a main source of difficulty in a typical dynamic analysis technique. The

effective trace of f nctions for the intended scenario is cluttered by a large number

of function calls from operating system, initialization and termination operations,

utilities, repetition of sequences caused by the loops, and also noise functions that are

interleaved within a sequence. Thus, prior to using the extracted function entry/ exit

pairs in further steps, the redundancies in the trace that are produced by program

loops and recursive function calls should be eliminated. For our current state of

analysis in this w rk, we ignore recursive function traces and focus on pruning the

loop-based redund· ncies.

In this operation, we transform the function entry/exit pairs that is generated

by instrumenting the software system into a dynamic call t ree (Section 3.2) , where

CHAPTER 5. DY.\fAMIC ANALYSIS 38

S := 'Enter' ID S 'Exit' ID S E

I D := Letter (Letter I Digit I '-')*
Letter:= [['a' .. 'z'] + ['A' .. 'Z']]
Digit := ['O' .. '9']

Figure 5.3 : Grammar for parsing the Aprobe instrumentation data.

nodes represent fu ctions and edges represent function calls. Since each loop resides

in the body of a function, the loops will form identical subtrees as the children of the

parent function. In this context, the loop redundancy removal problem is reduced

to identification of identical subtrees that are repeated under a particular node. In

Procedure Foo a pi ece of code that produces a long trace with repetitions of "Fl, Ff!'

is shown. The foll wing subsections elaborate the dynamic call tree generation and

dynamic call tree pruning, respectively.

Procedure Foo: A dummy procedure which generates loop-based repetitions.

1 begin
2 Call Fl ;
3 while condition do
4 Call Fl ;
5 Call F2;
6 end
1 end

5.3.2 Dynamic Call Tree Generation

The output of the software instrumentation using A probe (function entry I exit pairs)

can be transformed into a dynamic call tree of the running program. In Figure 5.3,

we present the context free grammar that we use for parsing the function entry I exit

pairs.

In Figure 5.4 t e data structure that we used for representing the dynamic call

CHAPTER 5. DY AMIC ANALYSIS

GraphNode{

}

String
Integer
GraphNode

name;
ID ;
parent;

Figure 5.4: Data structure that is used to represent a graph node.

~~
7 1IJF1 11F2 10F1 F211 F110 F211
~1 !

6 / 4! '\ 1 J 1 I 8 ! ! 12 F1~ ! 12
F10 F10 F10 r-10 ~0 F10 F20 F20

39

Figure 5.5: A dynamic call tree that is generated for an example execution of Proce
dure Foo in Figure 5.2.

tree nodes is shown. Each GraphN ode in addition to its name and its parent has

an integer I D. In the following , we give an overview of the proposed parser , namely

callTreeParser, th· t parses the input function entry/ exit pairs and generates the

corresponding dynamic call tree. Procedure callTreeParser also assigns an integer I D

to each tree node, where roots of identical subtrees have identical IDs. This procedure

uses two auxiliary functions , N extToken and GetN extToken, where N extToken

returns true if the lexical analyzer has another token in its input and GetN extToken

finds and returns the next complete token from the lexical analyzer. One main duty

of callTreeParser IS to find the identical subtrees and to tag them with identical

integer IDs. For this operation, we use a hash-table implementation which uses the

I D values of the i put GraphN ode's children to generate the output I D value. This

mapping is done b a call to idR epository.geti D.

Figure 5.5 illust rates a small portion of a dynamic call tree which is generated for

an example execution of Procedure Foo in Figure 5.2. Each node in this call tree is

also annotated with its I D. Note that function F1 is called by function Foo several

C HAPTER 5. DY AMIC ANALYSIS

P rocedure call TreeParser
Result: This rocedure parses the input function entry/exit pairs and

gener tes the dynamic call tree.
1 I I Before the firs t call to this procedure, we set variable currentN ode to an instance of

GraphNode, namely root of the tree;

2 begin
3 while NextToken() = 'Enter ' do
4 getNext Token() ;
5 GraphNode newChild f--- new GraphNode;
6 add ne Child to the children of the currentN ode;
7 currentNode f--- newChild;
s callTreeParser();
9 if NextToken() =I= 'Exit' then

10 Exit on Error;
11 getNextToken();
12 I D f--- idRepository.geti D(newChild);
13 label newChild with I D ;
14 currentNode f--- currentNode.getParent();
15 end
16 end

times, however it cquires different IDs depending on its runtime behavior.

5.3.3 Dynamic Call Tree Pruning

40

In this section, we present an implementation for the dynamic call tree preprocessor

II (dct) described in Section 3.2. As mentioned in previous subsection, we label each

subtree with a unique integer I D where identical subtrees possess identical IDs,

which has a great significance in localizing the loop-based redundancy elimination

at the proper chil ren of each node in the dynamic call tree. The dynamic call tree

preprocessor intends to remove the multiple instances of identical subtrees that are

repeated as the c ildren of a particular node. In this operation, we first generate

a string represent tion of I D values of these sibling subtrees. Then by applying a

repetitive string fi der algorithm (Crochemore [9]) we transform the original string

CHAPTER 5. D AMIC ANALYSIS 41

(with repetitions) in the form of a new string with no repetitions. In this new string,

each group of repetitions is shown as one instance of the repetition that is labeled with

the number of the repetitions. For example, in Figure 5.6(a) the string F1 ,F2, F1 ,F2,

... , Fl , F2 is transformed into (F1 ,F2r in Figure 5.6(b). There may exist more than

one pattern of repe titions for a given string and hence we apply the following heuristic

in order to select the dominant pattern.

The repetitive pattern with the highest power generates a pattern that is

resulted fro a program loop.

As a result , we keep subtrees that correspond to a single instance of each loop,

which greatly reduces the complexity of the dynamic call tree. Finally, by traversing

the loop-free dynamic call tree in a depth-first order and keeping the visited nodes in

a sequence, a loop-free execution trace is generated .

. . . , Foo , Fl, Fl , F2, Fl, F2, ... , Fl, F2, ...
(a)

... , Foo , Fl, (Fl , F2)n , ...
(b)

... , Foo, (F1) 2 , (F2, Fl)n-1, F2, ...
(c)

Figure 5.6: (a) A string containing repetitions. (b) Representation of (a) in the form
of one instance of string repetition. (c) Another possible representation of (a) in the
form of one instance of string repetition.

In Procedure Foo a piece of code that produces a long trace with repetitions of

"Fl , Ff:!' is shown. Figures 5.6(a) and 5.6(b) represent the parts of execution trace

that is produced by Procedure Foo, and the result of applying Crochemore algorithm,

respectively. In Figure 5.6(c) another representation for the string F1 ,F2,F1,F2, ... ,

CHAPTER 5. DY AMIC ANALYSIS 42

F 1, F2 is shown. By following the above heuristic we would choose the loop free

representation in Figure 5.6(b).

Procedure Pru e describes the graph pruning algorithm. In this procedure, the

string representation for the I D values of the input node's children is obtained by a

call to the getChildrenl Ds method. By applying the repetitive string finder algo

rithm Crochemore (calling the procedure findRepetitions), we identify the locations

of the repeated items in this string, and consequently we remove them from the tree.

By running this p ocedure on the root of the dynamic call tree, we will prune the

whole dynamic call tree.

P rocedure Prune (GraphNode node)
Input: Graph ode node
Result: pruned tree rooted at input GraphNode node

1 //Procedure find epetiticms is an implementation of the Crochemore algorithm, which

returns the locati · ns of the repeated items in its input. ;

2 begin
3 Sf-- node.getChildrenl Ds();
4 indices f-- f indRepetitions(S);
5 foreach i E indices do
6 delete c rresponding child to i;
7 end
s foreach ch1ld E node.getChildren() do
9 Prune(child);

10 end
11 end

5 .4 Execution Pattern Generation

In Section 4.1 we presented an implementation for the execution pattern miner

Y n(Rsq,) which ta es a repository of pruned execution traces Rs"' and generates the

corresponding exe ution patterns Psq, . Each execution pattern reveals the common

CHAPTER 5. DY AMIC ANALYSIS 43

sequences of function invocations that exist within the different executions of a pro

gram that correspond to a set of task scenarios. In this context, we define a group

of scenarios that all share a specific feature¢ of the subject software system (namely

a feature-specific cenario set Sq,) and execute them on the instrumented software

system.

The group of lo p-free execution traces, that are generated in the previous prepro

cessing steps, const itute the trace repository Rsq,. We apply our sequential pattern

miner Yn on Rsq, where minimum support is set to 80% * IRsq, l· In this setting

the extracted execution patterns Psq, discover frequent sequences of function calls

that exist in the majority of the execution traces (80% of them) and thus reveal the

implementation of the feature(s) that exist in majority of task scenarios.

5 .5 Execution Pattern Analysis

One characteristic f the aforementioned sequential pattern mining technique is that

the extracted exec tion patterns Psq, reflect both the implementation point of the

specific feature ¢ and the implementation points of the features that are necessary

to set up every typical task scenario (examples of such features are initializing and

termination of the software system). We employ a strategy to focus on execution

patterns corresponding to specific features within each group of scenario sets. In

order to do this , w first examine different features of the software system and store

their corresponding execution patterns in a pattern repository. In a further analysis

we identify those execution patterns that are specific to a single software feature

within one scenari set, as well as those that are common among all sets of scenarios.

In this section we first define two different types of functions that exist in execution

patterns: feature-specific functions and omnipresent functions. Then two mechanisms

CHAPTER 5. DY AMIC ANALYSIS 44

for extracting each type of feature-specific/omnipresent functions are presented in

Subsections 5.5.2 nd 5.6, respectively.

5.5.1 Categories of Functions in Execution Patterns

An execution pattern is treated as a sequence of functions that implement common

functionalities within a scenario set. In the following, the different kinds of patterns

that exist in extracted execution patterns along with the corresponding extraction

mechanisms are presented.

• Feature-sp cific patterns

A feature-specific pattern corresponds to the core functions that implement a

targeted feat re cp of a feature-specific scenario set S<P. Such a pattern exists in

the majority of patterns of S<P . In order to extract a feature-specific pattern, we

should increase the level of MinSupport of the generated execution patterns to

a number that covers the majority of the scenarios in S<P .

• Omnipresent patterns

An omnipres nt pattern is common to almost every task scenario of the soft

ware system (e.g., software initialization / termination operations, or mouse

tracking). Such a pattern exists in every execution trace of every scenario-set

S<P. Therefore, it is extracted along with the feature-specific patterns mentioned

above. In order to extract such a pattern, we should use a filtering mechanism

(e.g. concept lattice in Section 4.2) to filter out the feature-specific patterns

from this group of patterns.

Although each of the above categories may be required in a particular analysis

task, the first category reveals the implementation of the feature that is targeted by

CHAPTER 5. DY.'JAMIC ANALYSIS 45

the set of task scenarios and hence is considered as the more relevant type of dynamic

analysis. Extracti n of the feature-specific patterns and omnipresent patterns can be

performed through two different strategies, as described below:

Strategy 1) given a feature-specific scenario set Sq, (sharing a specific feature ¢)

those sequences of functions that are executed during the majority of the scenarios

are implementing t he targeted feature(s) of the scenario set Sq,. In this strategy, we

should increase th level of MinSupport of the generated execution patterns to a

number that cover the majority of the scenarios in the corresponding scenario set.

In this context, the extracted execution patterns correspond to both feature-specific

and omnipresent patterns.

Strategy 2) giv .n a group of two or more feature-specific scenario sets, each with

a different specific feature, the extracted execution patterns which are shared among

the majority of th scenarios implement the common features of the software system.

In the rest of this chapter, we present two different filtering mechanisms to separate

the omnipresent p tterns from feature-specific ones. In Section 5.5.2, we discuss a

filtering mechanisr that is based on the second application of sequential pattern

mining technique. In Section 5.6, we employ the visualization power of the concept

lattice analysis to cluster feature-specific patterns corresponding to each particular

feature.

5.5.2 Sequential Pattern Mining Approach

The generated ex cution patterns during the above-mentioned Strategy 1 are not

pure, in the sense that they do not exclusively contain the functions related to the

functionality of th specific feature of the scenario set. The omnipresent patterns

mentioned above are also embedded within extracted patterns which must be identi-

CHAPTER 5. DY AMIC ANALYSIS 46

fied and be separat d. In doing this, we apply the sequential pattern mining algorithm

for the second time on the result of the first execution pattern mining obtained from

Strategy 1. The characteristics of the second pattern mining are described below:

Input characteristics:

• Each "e. ecution pattern" in the result of the first pattern mining is consid

ered as an "execution trace" for the second pattern mining, note each first

generation pattern corresponds to highly repeated sequence of function

calls in the original execution traces.

• The siz of the input traces in the second pattern mining are much smaller

than those in the first pattern mining.

Output characteristics:

In the result of the second pattern mining:

• functions that are participating in the patterns with small support are the

feature-specific patterns.

• pattern with a large support correspond to the common sub-patterns in

the first generated patterns that relate to omnipresent patterns mentioned

above.

Omnipresent patterns may be embedded in feature-specific patterns and one has

to identify and remove them. In doing so, we identify the locations of the second

generation pattern, within a first generation pattern, and record the number of ap

pearances of functions in each second generation pattern within the first generation

pattern. This number indicates the support count for each function. Note that this

number is different from support of each execution pattern (i.e. size of support set of

CHAPTER 5. DY AMIC ANALYSIS 47

the execution pattern) since the functions in the overlap areas are counted. Thus, the

support count of e ch function f reflects the level that f is shared among the different

scenario sets. In this form, extracting functions that have fewer support count (e.g.,

,.-----------Execution pattern for drawing a rectangle ----------,

Omnipresent patterns

~~1~

Invocation Time

Figure 5.7: A first generation pattern extracted of drawing a rectangle in Xfig with
the highlighted second generation patterns along with their support counts.

less than 5% of th e number of the first generation patterns) signifies the extracted

core functions of a specific feature within each original execution pattern. The ra-

tionale is as follow,' : these low-supported functions of execution patterns correspond

to the singled-out targeted features of a scenario set that were extracted during the

first pattern gener tion process. Similarly, the functions in second generation pat-

terns with high support counts (e.g., more than 25% of the first generation patterns)

signify the high frequency functions (utility operations) in a first generation pattern.

Figure 5.7 depicts a part of a first generation pattern with the highlighted second

generation pattern.' along with their support counts. The original execution pattern

in this figure is e tracted from a feature-specific scenario set that target the Xfig

ability to draw a r ctangle. The functions with bold fonts posses small support and

perform significant role in specifying the boundary region for drawing a new rectangle

on the screen.

CHAPTER 5. DY AMIC ANALYSIS 48

An advantage of the method is that different groups of utility functions are ex

tracted in different spots that enables the expert users to distinguish their function

ality. Moreover, one can locate the extracted feature-specific/common patterns in

the original execution traces and annotate the original t race with the corresponding

extracted functionalities.

5 .6 Concept Lattice Analysis Approach

We employ a strategy to spotlight on the execution patterns corresponding to specific

features within a group of scenario sets. In this context, we use concept lattice analysis

to cluster the group of functions in patterns that exclusively correspond to a shared

feature of a scenario set; also to cluster the group of functions in patterns that are

common to every ,·cenario set .

5.6.1 Conce t Lattice Construction

In Section 4.2, we define a formal context C = (0, A, R) as a triple which represents

the relation R between objects 0 and their attribute values A. In this chapter, we

apply concept lattice analysis to represent the relation between features and functions

such that <I> = 0 · nd :F _ A . In our setting for concept lat tice analysis, an object

is a targeted feature ¢ E <P of a feature-specific scenario set Sif>, and an attribute

is a function f that participates in the execution patterns corresponding to S¢. We

focus our analysis on a subset of all features of the software system, and define <I>' to

be the set of all analyzed features in this analysis. We construct the formal context

C' = (<P', :F' , R') as belows:

• Let Ps,p be t he set of all execution patterns that are extracted with respect to

CHAPTER 5. DY AMIC ANALYSIS 49

feature-speci c scenario set Sq;.

• Let Fq; be th set of all functions that exist in the extracted patterns Ps¢.

• Construct th relation R q; with respect to specific feature <P such that:

R q; ={(¢,!) If E Fq;}.

• Create a for al context C' = (<I>', :F' , R') such that:

R' = U¢E~' Rq; and :F' = U¢E~' Fq;.

5.6.2 Concept Lattice Analysis

Applying concept lattice analysis to the formal context described above will result

in separation of omnipresent functions from functions that are specific to certain

features. Since omnipresent functions are executed through almost every task scenario

of the software syst em, these functions exist in the intent of almost every concept of

the lattice and co sequently appear in upper region of the lattice. On the other

hand, functions that are specific to certain features of the software (feature-specific

functions) are located in lower region of the lattice.

Moreover, a co cept whose extent consists of a single object (feature¢) collects

functions that exclusively implement feature ¢. In other words, these functions rep

resent the logical module that implement feature <P in the software system. In the

following, we define the group of concepts that are relevant to feature-specific function

clusters.

• Feature-specific concept cq; is a concept whose extent consists of a single feature

¢.

• We define F¢ to be the set of functions that label cq; on the concept lattice,

CHAPTER 5. DY AMIC ANALYSIS 50

thus:

where J-L(f) is the function that returns the most general concept that has f in

its intent (see Section 4.2).

In the generated lattice all the common functions are clustered in the upper region

of the lattice, however disables the analysis to distinguish different group of common

functions that are associated with different functionalities. As opposed to the sec

ond pattern generation mechanism which requires the user interaction to decide the

functionality of each group of extracted core functions, concept lattice clusters the

feature-specific fu ctions within feature-specific concepts. Consequently, functional

ity of the extracted functions can be easily identified using the specific feature of the

corresponding feat re-specific concept.

Chapter 6

Structu al Evaluation of Software

System

Software systems re continuously evolving throughout their lifetime from early de

velopment to their maintenance and retirement. During the maintenance phase the

software system is still changing through activities such as bug-fixing, migration to

new platforms, an adding new features which were not planned from the beginning.

Therefore, even a icely designed and accurately implemented software system will

probably incur several changes to its functionality and consequently to its structural

design. This common scenario is the main cause of structural damage, high main

tenance cost , and eventually retirement of a legacy system. To help this situation,

the task of the software maintainers is to measure the impact of the newly added

features on the str cture of the software system. In this context , the maintainers can

make sure that the newly added features will not damage the original structure of

the software system.

One approach t o address this problem is to assess the structural merit of the

software system based on the degree of functional scattering of software features

51

C HAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM 52

among the struct ral modules. In this context, the functionality of the system is

represented as a set of features that are implemented within the software modules

and are manifested as constituents of different scenarios to be run on the software

system. In additi n, the functional cohesion of each system module can also be

investigated as a means to monitor the healthiness of the software system.

In this chapter, we provide two metrics to assess the structural merit of the soft

ware system: feat re functional scattering and structural cohesion. The proposed

feature functional scattering metric examines the distribution of a set of functions

that implement a ·pecific feature over the structural units (i.e., files) of the system.

Hence, it represents the degree of scattering of the implementation of software features

among the structural modules. On the other hand, the structural cohesion assess

ment directly repr sents the cohesion of module(s) implementing a specific feature

based on the functional relativeness of the functions that reside in each structural

unit (module); this measure of cohesion is much closer to the original definition of

cohesion ("relative functional strength of a module" [22]) than using static structural

techniques such as inter-/intra-edge connectivity of the components.

6 .1 Metrics Computation

In order to measure the feature functional scattering of feature ¢, we assess the

degree of distributi n of collected functions of logical module F~ over the structure of

the system. Moreover, we compute the functional relativeness of the functions that

reside in each mod le in order to evaluate the module structural cohesion. In doing

so, the set of funct ions that implement a certain feature 4> are extracted from the

above discussed concept lattice analysis (i.e. F~). Then, the source files in which

these functions ar defined are identified and the ratio of the number of functions

CHAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM 53

that are used fro each file to the number of functions that are defined in that file

is calculated. Thi ratio is a measure of structural cohesion of the system files that

contribute to implementing the feature under study.

6.1.1 Formal D efinitions

In this subsection. we provide exact definitions for the aforementioned structural

merit evaluation 1etrics, where SCp(m) denotes structural cohesion of module m

with respect to logical module F¢ and F S(¢) denotes functional scattering of feature

¢.

• Let M <l> = {rn1,m2, ... ,mk} be the set of modules where all the functions in F¢

are defined in elements of M <l> .

• Let Fm denotes the set of functions that are defined in module m.

• Structural c hesion of module m with respect to logical module F/p, namely

SC<t> (m) , is defined as:

• Functional scattering of feature ¢, namely FS(¢), is defined based on the dis-

tribution of functions in F¢ over modules in Mas:

6 .2 Discussion

A software system with high structural cohesion SC<t>(m) for its individual modules

and low functional scattering FS(¢) among its structure represents a modular system

that requires less aintenance efforts. However , a high degree of functional scattering

CHAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM 54

corresponding to feature ¢ directly signifies a high structural impact that is caused

by that feature. Hence the system requires more maintenance efforts to tackle with

the consequences f propagated change to other software modules.

Note that feature functional scattering and structural cohesion metrics are not

standalone metric and must be considered as a whole. A low degree of functional

scattering corresp nding to feature ¢ solely do not imply a good modular structure

whereas ¢ could be defined in more than one highly cohesive module.

Chapter 7

Experiments

In this chapter, we apply the proposed dynamic analysis technique on two medium

size open source systems that are discussed in the following sections . The developed

dynamic analysis t ol is an Eclipse plug-in [3] and has been developed as an extension

to the Alborz reverse engineering toolkit [26] to enhance the scope of Alborz to cover

both static and dynamic analysis of a software system. In Section 7.1, we discuss the

results of our analysis using the Xfig [1] drawing tool. In Section 7.2 the results of

our analysis using Pine [2] email client are presented.

7.0.1 Platform

The hardware platform for the experiments consists of a Pentium II with 440 MHZ

CPU and 512M bytes memory which runs a Red Hat Linux 7.3. This machine is used

for instrumenting the subject systems, executing the feature-specific scenarios, and

capturing the raw function entry/ exit pairs. The actual analysis process for extracting

the execution patterns and performing pattern analysis is done on a Windows XP

professional edition which runs on a laptop with a 1.5GHZ Centrino processor, 512M

bytes memory, an 1G bytes virtual memory.

55

CHAPTER 7. Ex ERIMENTS 56

7.1 Dynamic Analysis of Xfig

Xfig 3.2.3d [1] is an open source, medium-size (80 KLOC) , menu driven, C language

drawing tool under X Window system. Xfig has the ability to interactively draw

and manipulate gr phical objects (circle, ellipse, line, spline, rectangle, and polygon)

through operation such as copy, move, delete, edit , scale, and rotate. In the following

we discuss the steps of applying the proposed dynamic analysis technique on the Xfig

drawing system.

7.1.1 Feature-Specific Scenario Generation

In order to extract the core functions that implement a specific feature (e.g., flip

in Table 7.1) we define a group of feature-specific scenarios to target this feature

and execute on th instrumented Xfig system to obtain the corresponding function

entry/ exit pairs. Figure 7.1 depicts the adopted strategy to single out a targeted

feature by means fa set of task scenarios. In this setting, a group of seven scenarios

have been selected that all begin from the start up operation and finish in the ter

minate operation. Each scenario has a distinct path within the Drawing component,

but shares the sa e path (i.e., flip operation) within the Editing component. The

group of task seen rios shown in Figure 7.1 form a feature specific scenario set, where

the flip operation is the specific feature. We apply the above strategy to generate

feature-specific scenario sets that each target one feature of the Table 7.1.

7 .1. 2 Execut ion Pattern Extraction

For each feature-s ecific scenario set S,p, we execute the scenarios of S,p on the instru

mented Xfig syste and obtain the corresponding function entry/ exit pairs. After

pruning the extracted entry/exit pairs from loop-based function calls (Section 5.3. 1)

CHAPTER 7. Ex ERIMENTS 57

~;p ~.w w~ ~~ ::;3'1:1> '"dtrlZ ;?~ s ~ ()q (t) ~ s Ill (t)

Ill 8 (;1 Ill X ~ rt (t)
(') (') >-; ;:::: q s rt >-;

~~ ':r.l - · ~ o" (t) Ill (') ::l >-; ~~ '< >-; (t) ~
-· (t)

(f.)()q (t) (t) Ill (t) Ill o" Cll Ill (') 0 >-;
-· (t)

(f.) p. ()q g g_ ~ ::l (t)

rt V1 0
N

- · (t)
(f.)

~
(t) N V1 (t) N.

>-;
.....,

(t) P.o
(t)

....., (t)

Circle-Diameter 10 7234 2600 46 33
Draw Circle-Radius 10 8143 2463 48 32

Ellipse Ellipse-Diameter 10 6405 2536 41 37
Ellipse-Radius 10 7351 2549 39 35
Move Objects 4 11887 3166 31 53

Copy Copy Objects 4 11460 3269 37 50
Closed Interpolated 10 18635 4434 58 63

Draw Interpolated 10 15469 4038 66 49
Spline Approximated 10 15057 5362 61 47

I Scale I Center Scale 4 8088 1541 30 47

I Flip I Flip up-Right 4 7296 1378 29 46
I Rotate I Rotate Clockwise 4 6974 1544 28 44

I Delete I Delete Objects 4 6580 1181 19 56

Table 7.1: The result of execution trace extraction and execution pattern mining for
a collection of 7 Xfig feature families and their specific features.

we apply the exec tion pattern mining process to obtain the patterns of function

call sequences. Table 7.1 presents the statistical information for the experimented

features of the Xfi · system.

7.1.3 Concept Lattice Analysis

In this analysis, we supply the resulting execution patterns of the Xfig experiments to

a concept lattice generation tool (concept explorer [4]) in order to view the distribution

of the feature functions on the lattice. As it was discussed in Section 5.5 the feature-

specific concepts (i .e., a concept whose extent consists of a single feature) remain in

the lower region of the lattice, and collect the functions that exclusively implement

specific features. Similarly, concepts with omnipresent functions (i.e., a concept which

is labeled with functions that are shared among a majority of concepts) appear in

CHAPTER 7. EX ERIMENTS

(Move
(Edit

58

Figure 7.1: A Feat ure-specific scenario set for Xfig drawing tool. The group of sce
narios apply the Flip operation on different graphical objects.

the upper region of the lattice. Viewing the distribution of the concepts and their

functions throughout the concept lattice allows to get insight into the structure of

the feature-specific concepts and their functions.

Consequently, it allows us to collect the group of functions that correspond to

different feature-f milies. In Figure 7.2 three dashed circles at the bottom illustrate

the group of concepts and their functions that implement the core functionality of

the feature familie of ellipse, copy, and spline.

7.1.4 Structural Evaluation

Finally, based on inspecting the source files of Xfig, we measure the structural cohesion

of corresponding source files, as well as the feature functionality scattering of the

features under study. The results of this evaluation for three feature families Draw

Ellipse, Copy, and Draw Spline are presented in Table 7.2.

For the three entioned feature families we inspect the Xfig source files that define

CHAPTER 7. Ex ERIMENTS

Ellipse
Family

Omnipresent
Functions

Copy
Family

········ .. ·······

?~;····~~·~

Spline
Family

59

Figure 7.2: Conce t lattice representation of the extracted features and their corre
sponding functions for the Xfig drawing tool. The group of concepts corresponding
to three feature fa ilies and the omnipresent functions are shown by dashed ovals.

the functions that implement the corresponding logical module of that feature family.

The results of me uring the structural cohesion SC,p (m) of these files are presented

in Table 7.2. These results indicate that file d_ellipse has high cohesion with respect

to logical module of feature family Ellipse; files e_copy, and e_move are also highly

cohesive with respect to feature family Copy; and finally, file d_spline is cohesive with

respect to feature family Spline. However, study of the feature functional scattering

measures allows u to better interpret the characteristics of these logical modules.

For example, in th case of Ellipse a portion of the logical module is located in a large

structural module u_elastic which results in a high functional scattering measure.

Whereas, in the c e of Copy feature family, the logical module almost covers two

CHAPTER 7. EXPERIMENTS 60

Feature I Contributed IFml IFm n F¢1 Structural Functional
¢ File (m) Cohesion Scattering

SCq,(m) FS(¢)
d_ellipse.c 16 12 75%

Ellipse u_elastic.c 67 8 12% 57%

I Copy
I e_copy.c 5 3 60%

e_move.c 4 3 75% 32%

dJine.c 9 2 22%
Spline d..spline.c 6 5 83%

u_bound.c 19 2 11%
u_draw.c 75 14 19% 66%

Table 7.2: Structural cohesion and feature functional scattering measures for three
different feature fa ilies of the Xfig.

structural modules e_copy and e_move which indicates low scattering.

In the case of pline, the logical module is almost equally scattered among four

structural modules each covering a small portion of the structural modules and hence

indicating high functional scattering. The results in Table 7.2 are promising in the

sense that they reflect meaningful measures with respect to the sizes of logical and

structural module · shown. Regarding the results of our structural evaluations, we

can predict high aintenance activities regarding any change to the feature families

Ellipse and Spline. Similarly, changes to the Copy feature family would not propagate

throughout the sy tern which indicates less maintenance activities.

7 .1. 5 Characteristics

In the followings, we discuss the important properties of the proposed pattern based

dynamic analysis technique using the Xfig case study.

• Mapping logical modules onto structural modules

Table 7.3 demonstrates the results of experimentation with Xfig tool to reveal

the core functions for three Xfig features. We focus on drawing a figure in the

CHAPTER 7. Ex ERIMENTS 61

ellipse family includes circle, ellipse and such that each figure can be drawn in

two different ways, i.e., by-radius and by-diameter. Furthermore, we expand our

experiments nan editing operation of the Xfig tool (i.e. , copy graphical objects)

as well as another family of graphical objects (i.e., spline) . The extracted logical

modules are shown in Table 7.3 and according to the Xfig naming convention

it is clear th t the logical modules truly reflect the core functions of the feature

families.

• Focusing on the important sub-traces

Table 7.1 represents the attributes of a group of feature-specific scenario sets

that we use i the analysis process. This table illustrates a major characteristic

of the prop sed dynamic analysis with regard to reducing the scope of the

analysis front huge sizes of the execution traces (Average Trace Size) to the

manageable sizes of the execution patterns (Average Pattern Size).

• Separating common patterns from feature-specific patterns

Figure 7.2 illustrates the mapping of extracted Xfig's feature related functions

on the cone pt lattice. In this lattice, the upper nodes collect omnipresent

functions of Xfig corresponding to common patterns, including: software ini

tialization and termination, mouse pointer handling, canvas view updating, and

side ruler management. In addition, the specific functions that exclusively im

plement a fe ture are located in the lower region of the concept lattice through

feature-specific concepts. Table 7.3 represents the core functions that imple

ment the cert ain family features of Xfig (i.e., Copy Object, Draw Ellipse, Draw

Spline).

CHAPTER 7. EXPERIMENTS

Feature
Family

Ellipse

Copy

Spline

Extracted Core Functions
representing logical module F<Pq,

init_circlebyradius_drawing, elastic_cbr, resizing_cbr, create_circlebyrad,
circlebyradius_drawing...selected, init_circlebydiameter_drawing,
elastic_cbd, resizing_cbd, create_circlebydia, circlebydiame-
ter _dra ving...selected, init_ellipsebydiameter _drawing, elastic_ebd,
resizing_ebd, create_ellipsebydia, ellipsebydiameter _drawing...selected,
iniLelli sebyradius_drawing, elastic_ebr, resizing_ebr
create_ellipsebyrad, ellipsebyradius_drawing...selected, add_ellipse,
pw _cur e, create_ellipse, center _marker , draw _ellipse, redisplay _ellipse,
ellipse_bound, lisLadd_ellipse, setJatestellipse, toggle_ellipsemarker ,
list_delete_ellipse
copy ...selected, iniLcopy, init_arb_copy, setJastlinkinfo, iniLarb_move,
init_move, move...selected, setJastposition, seLnewposition, movingJine,
initJinedragging, adjusLpos, placeJine, translateJine, adjustJinks,
placeJine..x
spline_drawing...selected, init...spline_drawing, getjntermediatepoint,
elastic ine, unconstrainedJine, toggle...splinemarker, h_blend, g_blend,
draw ...spline, spline_bound, step_computing, point_computing,
spline...segmenLcomputing, poinLadding, create...splineobject , re
display ...spline, negative...s2jnfiuence, next...spline_found, valid
splinej _mask, init_trace_drawing, init...spline_drawing2, last...spline
list_ad ...spline, create...spline, make...sfactors, create...sfactor, add...spline,
setJate tspline, positive...s2jnfiuence, positive...sljnfiuence, com
pute_open...spline, Lblend, negative...sljnfiuence, general...spline_bound,
aprox...spline_bound, compute_closed...spline

62

Table 7.3: Results of dynamic analysis on Xfig drawing tool. The core functions
(right column) cor espond to the specific Xfig features (left column).

7.2 Dynamic Analysis of Pine

Pine 4.4.0 [2] is a open source, medium-size (207 KLOC), C language email client.

Pine is a tool for reading, sending, and managing electronic messages. Feature func-

tionalities of Pine an be categorized as belows.

• Online help specific to each screen and context.

• Message index showing a message summary which includes the status, sender,

size, date and subject of messages.

• Commands t view and process messages: Forward, Reply, Save, Export , Print ,

CHAPTER 7. Ex ERIMENTS 63

;p.w w~ ~~ t?>-cJ> '"OMZ ~~ ~ ro ~ s ~ ro ~ :>< >= ~ ro
~ n. (") ..., ~ 2 ;;; ~...,

..., ~ ~ o" ro ~ (") t:l ..., ;::::~s f!l~ ~-co (/)(Jq ro ro ~ ro ~ o" (1) (") 0 ..., -· ro (/) p. (Jq g ~ f!l t:l ro
UJ 0 N

- · ro (/) ro N UJ ro No,
ro P.o, ro

Compose 8 90081 24636 95 172
Folder List 4 48335 11205 25 491
Message Index 5 67741 19529 44 345
Address Book 3 59221 16024 71 212

Table 7.4: The res lt of execution trace extraction and execution pattern mining for
a collection of 4 different Pine features.

Delete, capt re address, and search.

• Message composer with easy-to--use editor and spelling checker.

• Address book for saving long complex addresses and personal distribution lists

under a nickname.

• Message att chments via the Multipurpose Internet Mail Extensions (MIME)

specification. MIME allows sending/receiving non-text objects, such as binary

files , spreads eets , graphics, and sound.

• Folder management commands for creating, deleting, listing, or renaming mes-

sage folders. Folders may be local or on remote hosts.

In our case st dies, we examine four different features of the Pine for compos-

ing emails , managing the folder lists, address book, and message index. In order

to extract the core functions implementing a specific feature, we define a group of

scenarios to target that feature and consequently extract the corresponding group of

functions through xecution pattern extraction process (see Table 7.4). By repeating

this process and targeting other features of the system with proper sets of scenarios,

we would incrementally explore the system's overall functionality. By spreading the

CHAPTER 7. EXPERIMENTS 64

extracted execution patterns over a concept lattice (see Figure 7.3), we separate the

omnipresent functions from specific functions that implement experimented features

(see Table 7.5). Fi ally, based on inspecting the source code of the Pine, we measure

the distribution of functions implementing each examined feature over the structural

units (see Table 7.).

Feature
Family
Address book

Folder list

Message index

Extracted Core Functions
representing logical module

ab...resize addr_book addr _book...screen adrbk_check...alLvalidity _now
adrbk_check_andJix adrbk_checkJocaLvalidity adrbk_check_validity
adrbk_num_fromJineno adrbk_write ae calculateJield_widths
cur _addr _book cur js_open display _book dlc..next dlc_prev
dlc...siblings draw _canceL..keymenu end_adrbks entry js...addkey en-
try js_askserver entry js_clickable entry jsJistent erase_checks
era e...selections file_attrib_copy firstJine flush_dlc_from_cache
get_display Jine geLtop_dLoLadrbk hashtable...size in_dir
iniLadrhash...array intr J:J.andling_on intr _proc is_empty
me u_clear_cmd_binding menujniLbinding paintJine rd_check...remvalid
renameJile skip_to..next..nickname tempfilejn...same_dir temp_nam
wa.:-_nonexistenLtmp_name writeJ:J.ashJ:J.ea.der writeJ:J.ash_table
writeJ:J.ash_trailer write...single_abook_entry write...single_entryref
compare_names context ...screen end bold folder Jister
folder Jisterkm...rnana.ger folder Jist _handle folder Jist_text
folder Jist_ write folder Jist_ write_prefix folder _processor
folder ...screen folder ...selecLpreserve folder ...select ...restore free _handle
freeJ:J.andleJoca.tions handle_on_pa.ge new _handle q...status...rnessage2
re raw ...scrolLtext refresh _folder Jist reseLcontext_folders
scrollJ:J.andle_obscured scrollJ:J.a.ndle...setJoc selected_folders
body _parameter body _type ..names clear _cur _embedded_color
col r _a_quote decode_ text describe...rnime formaLblip...seen for
ma t...rnessage format ...mime ...size format...size_guess gLcontrolJilter
gLescapeJilter gfJine_test gfJine_test_freejns gfJine_tesLopt
maiL view ...screen nexLa.ttachment percentage pine _header ...standard
rfc l738...scan rfc223Lget_para.m rfc2369....editorial so..nputs strsquish
type_desc urlJ:J.ilite urlJ:J.iliteJ:J.dr view _writec view _writec_destroy
view _writecjnit view _writec....killbuf webJ:J.ost...scan zero...atmts

Table 7.5: Part o..: the results of dynamic analysis on Pine email client. The core
functions (right column) correspond to the specific Pine features (left column).

For each feature in Table 7.4 we inspect the Pine source files that define the func

tions that implement the corresponding logical module. The results of measuring the

structural cohesion SC,p (m) of these files are presented in Table 7.6. These results

CHAPTER 7. EXPERIMENTS 65

Feature Contributed IFml IFm n F¢1 Structural Functional
¢ File (m) Cohesion Scattering

SC¢(m) FS(¢)
context.c 13 2 16%
bldaddr.c 78 9 12%

Compose send.c 99 57 56%
reply.c 65 12 19% 74%

I Folder L1st I folder.c 88%

adrbklib.c
Address Book addrbook.c 80%

I Message Index I pine/mailview.c 126 83%

Table 7.6: Structural cohesion and feature functional scattering measures for four
different features the Pine email client.

indicate high degree of scattering and low coupling among the examined feature fam-

ilies of Pine. Files context, bldaddr, and reply has low cohesion with respect to logical

module of feature Compose; file send shows high cohesion with respect to feature

Compose. However , study of the feature functional scattering measures allows us to

better interpret th characteristics of these logical modules. For example, in the case

of Compose a port ion of its logical module is located in a large structural module

send which results in a high functional scattering measure.

CHAPTER 7. EXPERIMENTS 66

I addressBook I ' I folderlist I

Figure 7.3: Conce t lattice representation of the extracted features and their corre
sponding functions for the Pine email client.

Chapter 8

Conclusion and Future Work

In this thesis, we proposed a novel approach to dynamic analysis and structural as

sessment of a soft are system that takes advantage of frequent patterns of execution

traces that exist within the executions of a set of carefully designed task scenarios.

The proposed approach benefits from the discovery nature of data mining techniques

and concept lattic analysis to extract both feature specific and common functions

that implement important features of a software system. The resulting execution

patterns provide discovery of valuable information out of noisy execution traces. The

proposed approac is centered around a set of task scenarios that share a specific sys

tem feature and i traduces a means for measuring the impact of individual features

on the structure of the software system. The whole process consists of several steps

such as: software mstrumentation; feature-specific scenario set selection; loop-based

execution trace elimination; execution pattern extraction; and finally structural as

sessment of the s ftware system. The proposed technique has been applied on two

medium size inter ctive software systems with very promising results in extracting

both feature-specific and common functions. Moreover, the level of "structural co

hesion" and "feature functional scattering" are measured that provide a way for

67

CHAPTER 8. Co CLUSION AND FUTURE WORK 68

assessing the structure of the experimented tools .

8 .1 Discussion

In this section, we iscuss the characteristics of the proposed sequential pattern anal

ysis. With regard to our definition for an execution pattern as a continuous sequence

of function calls, " 'e extract core functions that implement specific functionalities of

the system. By extending the definition of the execution pattern to include noncon

tinuous function i vocations, we can extract function patterns that implement more

general functionali ties; however such an expansion may result in extracting mean

ingless execution atterns (by joining unrelated parts of the execution trace to form

a new pattern) and generating an overwhelming number of patterns. The general

algorithms for seq ential pattern mining in the data mining literature would allow

extracting patterns that have functions interleaved with the extracted patterns. The

study of trade-off etween discovering execution patterns that implement more gen

eral functionality and dealing with an overwhelming number of extracted patterns

would be a more c allenging problem that is listed in our future work tasks.

Moreover, we can employ other pattern mining techniques such as tree-pattern

mining, where the pattern miner looks for identifying patterns that exist among dy

namic call trees as opposed to our technique that identifies patterns among execution

traces.

8.2 Future Work

Currently, we apply our technique to the problem of feature identification, however

the application of execution patterns in software architecture recovery by augment-

CHAPTER 8. Co CLUSION AND FUTURE WORK 69

ing the current static analysis technique must also be considered. This will make

a hybrid technique that enhances the power of static analysis techniques such as

clustering, pattern matching, and concept lattice analysis with dynamic analysis in

formation of the s ftware under investigation. The result of the proposed dynamic

analysis technique can be used to incorporate semantics to the existing static analy

sis techniques. The future tasks include the investigation of noncontinuous execution

patterns as well as proposing effective pruning methods at the execution trace gener

ation to allow analysis of very large traces over lOOK functions. (e.g. Apache, MySql) .

Appendix A

Tool D ocumentation

We design the Dy amic Alborz toolkit as a data centralized and user interface driven

architecture. Six components are designed to collaborate with each other and fulfill

the functionalities of the system. These components are User Interface (UI); Datas

tore; Preprocessing; Pattern Mining; Post-processing; and Environment. Figure A.l

is a standard UML component diagram which describes the detail of each component

and relationships among them. The environment component in the diagram does not

represent a concret e component in the system, but some external tools used by the

system, e.g. instr mentation tools used for extracting execution traces and concept

lat tice tool used f r lattice visualization.

A.l Architectural Design

In the following sections, we elaborate the functionalities and interface of each com

ponent.

User Interface Component

UI closely collaborates and controls other components within the Dynamic Alborz

70

A PPENDIX A . T OOL DOCUMENTAT ION

I

I

<< Component>>
Ul

-Trace data extraction wizard
-Data mining wizard
-Perspectives
-Views, menu, and toolbar 0 <- - - - - - - - ~ - - - - L__---r-------.- ----.:--'

Concept lattice visualization I Y

<< Component>>
Environment

VJ 0
Pre-processing System data

retr val

<< Component>>
Data Store

'
'

-- --- -- -33> 0
Pattern Analysis

<<Component>>
Post-Processing

<\- -concept lattice analysis

71

External tools:
-Instrumentation tool (Aprobe)
-Concept explorer

-Raw execution traces
,.--1-- ---1 -Pumed execution traces Pattern ' -Second seauential pattern mining

retrieval '>!-------,------------'

' ' I
' I <: -- ...

' Formal Context ~
Storing Pattern Mining

Pattern Storing

I I

<<Component>>
Pre-Processing

-Dynamic call graph construction
- Loop-free execution trace generation

fl..
Pruned Trace

retrieval

fl..
'- ---- -

--- - -- - -- ---

<< Component >>
Data Mining

-Sequential pattern mining
-Sub-pattern ellimination

L_ _________ ___,

F igure A.l: Com onent digram of the Dynamic Alborz plugin m the Eclipse envi
ronment.

plugin and interacts with the user throughout the analysis phases. Almost all the

events and requests in the system are emitted from this component. UI consists of

the following part :

• Dynamic Alborz Run Wizard: This wizard helps the user to perform the main

task of the ynamic Alborz. This wizard consists of the following parts:

Trace data extraction page: which controls the operations of the prepro-

cessing component by guiding the operations within the toolkit. It allows

the user to: i) extract execution traces for dynamic analysis; ii) preprocess

execution t races and eliminate loop-based redundancies; vi) store system

data in the local Datastore to be used for the further analysis phases.

APPENDIX A. T OOL DOCUMENTATION 72

- Data mining page: that assists the user throughout the steps for the se

quential pattern mining operation, such as: minimum support selection.

Pattern Analysis page: that controls the pattern analysis process and al

lows the user to select system features that should be included in a specific

analysi session.

• Config Wizard: This wizard helps the user to set up the environmental variables

of the Dynamic Alborz, such as: system work path, and path to the Concept

lattice analysis tool.

• Perspectives, vzews, menus and tool-bars: a series of standard Eclipse user

interface elements used for integrating Dynamic Alborz with the Eclipse plat

form, such as: system data navigator, feature view, pattern analysis result view.

Datastore C mponent

Datastore is the c nter of the Dynamic Alborz structure and allows the system com

ponents to communicate with each other through this component 's interfaces. Files

are used for stori g: raw execution traces; pruned execution traces; raw execution

patterns; formal contexts; and results of the entire dynamic analysis. This compo

nent acts as an int rmediate object which connects other components in the system.

All other compon .nts which need to store data or retrieve data communicate with

this component through its interfaces. Internally, the datastore component stores

everything in a dir ctory structure which uses the local data store as its underlaying

media.

Post-processing Component

Encapsulates all the functionalities that are required in the pattern analysis phase

including:

APPENDIX A. TOOL DOCUMENTATION 73

• execution pat tern translation, that provides statistical information about the

extracted execution patterns such as number of extracted patterns and aver

age pattern length, it also locates each execution pattern in its corresponding

execution traces

• formal conte. t generation, that parses the generated execution patterns and

generates formal context tables

• second pattern generation, that parses the generated execution patterns and

applies the second sequential pattern mining.

Preprocessing Component

The preprocessing component encapsulates the functionalities and algorithms re

quired for dynamic call graph construction and loop-free execution trace construction.

An implementation of the Crochemore string processing algorithm is used for finding

the loop-based execution traces.

Data m ining Component

Provides an implementation of the sequential pattern mining algorithm that parses

the pruned execution traces and extracts sequential patterns among them. It also

prunes the generated execution patterns and eliminates sub-patterns.

A.2 Design Pattern

In this section, we discuss the approach that we used for enhancing the structure of

the prototype Dynamic Alborz system and hence obtaining the extensibility. Fig

ure A.2 describes ow Observer pattern is used when we integrate Dynamic Alborz

toolkit with Eclipse platform. The interface IProgressMonitor is the observer and

IRunableWithProgress is the subject to be observed.

APPENDIX A. TOOL DOCUMENTATION 74

<< interrace >> '
·<-< iphrfu-re >>

IProgreSsMo~of
.IJfyrraUeCorltext

+ Tl!n(. ,.rumJa.bJe; IRL!r~abJewithProgress)lloid
II\

fi.
'

WizardD i.alog <·q1t.erfillce >>·
... JRur'i.il blew~ttllroJ1~ ...

+run(m onitor: I P rogressM onitor): void

i
Atborm¢NdDialclg

Figure A.2: Observer design pattern used in the Dynamic Alborz plugin.

A.3 User Interface Design

Dynamic Alborz is designed as an Eclipse plugin that makes its usage and deployment

an easy task. The Dynamic Alborz plugin constructs the following user interface parts

in order to integrate with the Eclipse environment:

1. Dynamic Alborz Menu

2. Dynamic Alborz Perspective which includes System Navigator view, Feature

view, Pattern Analysis view, and Progress view

3. Config Wiza d that provides a wizard-based user interface that eases the con

figuration of the system

4. Dynamic Alborz Run Wizards that performs the analysis process.

APPENDIX A. TOOL DOCUMENTATION 75

Figure A.3 provides a comprehensive overview of the Dynamic Alborz plugin inside

the Eclipse environment. In the following we explain the Dynamic Alborz Run wizard

and Config wizard. respectively.

Config Wizard

The Dynamic Alborz Config wizard is designed to ease the configuration of the dy

namic analysis. Using this wizard the user can set the path for the current working

directory of the system as well as the directory path of the Concept Explorer toolkit.

Figure A.4 depicts this wizard inside the Eclipse environment .

Dynamic Alborz Run Wizard

The Dynamic Alborz Run wizard provides a wizard-based user interface that utilizes

the dynamic analysis . Using this wizard the user can create a new subject system

for analysis or sel ct an already analyzed system (see Figure A.5). It also provides

a history of the a alyzed features of the selected system (see Figure A.6) that gives

the user the choice between adding a new feature to the analyzed features of the

selected system or starting the pattern analysis process for the selected system. In

Figure A. 7 the wiz rd page that provides the interface for importing a new feature for

analysis in the syst em is shown. In this page the user provides the name of the new

feature, a description of the feature and its corresponding feature-specific scenarios,

and the path to th pruned execution traces for this new feature. After providing the

required informati n for the new feature the system prunes the execution traces and

stores them in its internal data structures. In the next step the user can select the

minimum support of the data mining operation (see Figure A.8). The results of the

pattern mining op ration is shown in the "Statistical Results" page (see Figure A.9).

In this page the user again has the choice between starting the pattern analysis process

or adding a new feature for analysis to the system. In the "Pattern Analysis" page

the user has the choice to choose among the analyzed features of the current system

APPENDIX A. TOOL DOCUMENTATION 76

and specify a specific analysis session consisting of the selected features. Currently,

the system implements the Concept Lattice Analysis however in the near future the

required components for the Second Pattern Mining would be added (see Figure

A.lO).

A PPENDIX A. TOOL DOCUMENTATION 77

Features·

i±l-- [l;J AddressBook

8-~1£~
· · i Number of Traces= 8

i Average Unpruned Trace Size

~e~tute:

~qmp'dsei

i. Average Pruned Trace· Size=< •• .._., __ "" T
'~"':~1"-· "1. : ~aces; ~ : i. Number of Patterns = 95

i Average Pattern Size= 172

i±l ~ folderlist

i±l·· ~ messageindax

Ll Patt~rn Analysis Sessions

···· i Pine_aii_Fe -tures

El~ Xfig

El·u Features
. 8:1-~ cirde8yDiameter

(fJ ··[l;J circleByRadius
lfl -[;;] copy

i±J -~ delete
i±l· (;;] edit --color

i±J--~ ellipseDiameter

~ -~ ellipseRadiu~
i±l~ - Fiip
[t}~ Move

rB · [{;] Rectangle

&1 [l;j Rotate

lf.l· [l;j Scale

riJ·· [l;j SplineApproximation

$ ·· ~ ·spflneApproximationCiosed

i±l·· ~ ·spfineinterp"Jiation

t±H~ · spfinelnterp"JiationCiosed
!±I u Patt~rn Analysis Sessions

test

9 O::'Q:8·'1s

2'4"63:6.
95

A'letage Pattem size: 17 2:<
PatJ'I Tocth~ Trahslateqi'at~rns:'·
G:\Docume~ts and' Settings\Hosse1n\Desktop\Data\Pin~\traces\Compose\Trans1ation

[22 :58~19]4
[22:58: 19]5

. [22:58: 19] successful
[22 :58: 19] pattern translation
[22 :58:20] file to parse:C:\Documents and Settings\Hossein\Desktop\Data/test/Traces/te!

, [22:58:20] file to parse:C:\Documents and Settings\Hossein\Desktop\Data/test/Traces/te!
[22:58:20] file to parse:C:\Documents and Settings\Ho·ssein\Desl<top\Data/test/Traces/te!
[22:58:20] done.!!!

Figure A.3: Th Eclipse workbench with the Dynamic Alborz plugin installed.

A PPENDIX A. TOOL DOCUMENTATION

Dynamic Alborz stores the analyzed systems in a directory structure. called a worl<path.
Choose a worl<path d rectory for this analysis.

I :::\Documents and Settings\Hossein\Desl<top\Datal 'erowse • .;.l
C~ept ~p!orer ilath: I C :\Documents and Settings\Hossein\My Docunents\My Resear~h\ T ools\cqnexp-1 .2\conexp-1 .2\conexp. jar Brp~e, .• '!

Figure .4: Config Wizard page of the Dynamic Alborz plugin.

Welcome Page

Select the system that you. wan~ to start analyzing, or enter a new system name.

t~st
X fig

Figure A.5 : Welcome page, the first page in the Dynamic Alborz Run wizard.

78

A PPENDIX A . T OOL DOCUMENTATION

History Page

This page provide- a brief histori for the selected.system.
You can either add a new feature to the selected system1 or st~rt the pattern

N'ame. of the; systern :

:P:in.e.

AddtessBook
Compose
folder list
mc;s.5aqetnde:<

N~Xt step -------- --------- ----------,

& Adcr~~~-w··e~·aiui;¢1
~-····· ·· · ·······- · ·· · ····· · ·· · ,)

(" Start pattern An!:!lysi.~

79

Figure A.6: History page, provides a history for the selected system in the Dynamic
Alborz Run wizard.

APPENDIX A. TOOL DOCUMENTATION

Input Trace Data

Enter the descripti n of the new fe-ature which you want to analyze ;

N~e,"o~1tt),.e' ~yst~to ::
Pine
feature name:

Scenarh descriptio

f Attach

Compose email, attach , send
reply email, attach, send

- lnput> trace.:--------c-::~-----:-:---=-=--------=---.,-----;

lngut 'lyp~: I Entr dExit listing

InJ?ut path:· I C:\Documents and Settings\Hossein\Desktop\trace repository\Pine\c(. · f~~~n%~i;7,J

80

Figure A. 7: Input page, provides an interface for adding a new feature to the system.

APPENDIX A. TOOL DOCUMENTATION 81

S~quential Pattern Mining

Please specify the level of minimum support

· Name-·of-'the s.ysten:

P,iiiet
F~atur.e'l'

s::..t-1''. ' ~"!J

·A.::b1ia·e,h
'7, "

Figure A.8: Data Mining page, user can select the minimum support for the data
mining operation.

A PPENDIX A. TOOL DOCUMENTATION

Statistical Results

The result of sequential pattern mining; You can either add a new feature to the selected
system, or start-the pattern analysis.

Nqme-,o~.the system:

· Fe·4ture:

At~·tach
,,

Number of Trac:es: 3

Avetage Trace· Size: 9
'

·Average Prurted Trace Size: 9
<:-~'\

2
M~r·:ag~ P~tteyn:Si~e : 5
Path To'the;Translat.3d Patterns:

<Back .. ,- f::l.ext_.>

82

Figure A.9: Statistical Result page, provides statistical information about the ex
tracted execution atterns.

A PPENDIX A. TOOL DOCUMENTATION 83

Pattern Analysis

You can select the features which. you want to indude in ·analysis process .

Anal•tsis Type~ JCancept Lattice Analysis
·-~ .. ~· .,

Figure A.lO: Pattern Analysis page, provides an interface for selecting the analysis
type and the features that should be involved in a specific analysis session.

Bibliography

[1] Xfig version 3.2.3. http:/ jwww.xfig.org/.

[2] Pine email eli nt version 4.4.0. http:/ jwww.washington.edu/pinej.

[3] Eclipse versio 3.0. http:/ jwww.eclipse.org.

[4] Formal concept analysis toolkit version 1.0.1.

http:/ /source orge.netjprojectsjconexp.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

ICDE '95: Pmceedings of the Eleventh International Conference on Data Engi

neering, pages 3- 14, Washington, DC, USA, 1995. IEEE Computer Society.

[6] Thoms Bell. The concept of dynamic analysis. In ESEC/FSE-7: Pmceedings

of the 7th European software engineering conference held jointly with the 7th

ACM SIGSO T international symposium on Foundations of software engineer

ing, pages 216- 234, London, UK, 1999. Springer-Verlag.

[7] Garrett Birk off. Lattice Theory. American Mathematical Society, 1st edition,

1940.

84

BIBLIOGRAPHY 85

[8] Harold W. Cain, Barton P. Miller, and Brian J. N. Wylie. A callgraph-based

search strategy for automated performance diagnosis (distinguished paper). Lec

ture Notes in Computer Science, 1900:108+, 2001.

[9] Maxime Croc emore. An optimal algorithm for computing the repetitions in a

word. Jnf. Pr cess. Lett., 12(5):244- 250, 1981.

[10] Carlos Monte ' de Oca and Doris L. Carver. A visual representation model for

software subs. stem decomposition. In Proceedings of the Working Conference

on Reverse E gineering, pages 231- 240, 1998.

[11] Dennis Edwa ds, Sharon Simmons, and Norman Wilde. An approach to feature

location in distributed systems. Technical report, Software Engineering Research

Center (SERC) , 2004.

[12] Thomas Eise barth, Rainer Koschke, and Daniel Simon. Derivation of feature

component m ps by means of concept analysis. Fifth European Conference on

Software Maintenance and Reengineering, March 2001.

[13] Thomas Eise barth, Rainer Koschke, and Daniel Simon. Locating features in

source code. IEEE Transactions on Software Engineering, 29:210 - 224, March

2003.

[14] Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Recovering software

requirements rom system-user interaction traces. In SEKE '02: Proceedings of

the 14th international conference on Software engineering and knowledge engi

neering, page 447- 454, New York, NY, USA, 2002. ACM Press.

[15] M. Ernst. Static and dynamic analysis: synergy and duality, 2003.

BIBLIOGRAPHY 86

[16] Usama M. F yyad. Advances in knowledge discovery and data mining. MIT

Press, Menlo Park, Calif., 1996.

[17] David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. Recognizers

for extracting architectural features from source code. In Proceedings of Second

Working Conference on Reverse Engineering, pages 252- 261, Toronto, Canada,

July 14-16 19 5.

[18] Christian Lindig and Gregor Snelting. Assessing modular structure of legacy code

based on mathematical concept analysis. In Proceedings of the 19th International

Conference on Software Engineering, pages 349-359, 1997.

[19] Alok Mehta nd George T. Heineman. Evolving legacy systems features using

regression test cases and components. In IWPSE '01 : Proceedings of the 4th

International Workshop on Principles of Software Evolution, pages 190- 193, New

York, NY, USA, 2001. ACM Press.

[20] Bhatia Nikhil, Moore Shirley, Wolf Felix, Dongarra Jack, and Mohr Bernd. A

pattern-based approach to automated application performance analysis. Pro

ceedings of the Workshop on Patterns in High Performance Computing (patHPC

2005), 2005.

[21] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Execution

patterns in object-oriented visualization. In Proceedings Conference on Object

Oriented Technologies and Systems (COOTS 'gB), pages 219- 234. USENIX,

1998.

[22] Roger S. Pressman. Software Engineering, A Practitioner Approach. McGraw

Hill, third edition, 1992.

BIBLIOGRAPHY 87

[23] Erik Putrycz. Using trace analysis for improving performance in cots systems.

In GASCON 04: Proceedings of the 2004 conference of the Centre for Advanced

Studies on C llaborative research, pages 68- 80. IBM Press, 2004.

[24] Tamar Richner and phane Ducasse. Recovering high-level views of object

oriented applications from static and dynamic information. In ICSM '99:

Proceedings of the IEEE International Conference on Software Maintenance,

page 13, Washington, DC, USA, 1999. IEEE Computer Society.

[25] K. Sartipi, N. Dezhkam, and H. Safyallah. An orchestrated multi-view soft

ware architecture reconstruction environment. In WCRE '06: Proceedings of the

Thirteenth Working Conference on Reverse Engineering, 2006.

[26] Kamran Sartipi. Alborz: A query-based tool for software architecture recovery.

In Proceeding, of the IEEE International Workshop on Program Comprehension

(IWPC'01), ages 115- 116, Toronto, Canada, May 2001.

[27] Kamran Sart1pi. Software Architecture Recovery based on Pattern Matching.

PhD thesis, S hool of Computer Science, University of Waterloo, Waterloo, ON,

Canada, 2003.

[28] Michael Siff and Thomas Reps. Identifying modules via concept analysis. IEEE

Transactions on Software Engineering, 25(6):749- 768, Nov./Dec. 1999.

[29] OC Systems. Aprobe version 4.2 for unix, 2003.

[30] Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept

analysis of execution traces. In WCRE '04: Proceedings of the 11th Working

Conference on Reverse Engineering (WCRE'04), pages 112- 121 , 2004.

BIBLIOGRAPHY 88

[31] Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and

concept analy is. In Proceedings of the ICSE 1999, pages 246- 255, 1999.

[32] Norman Wilde and Michael C. Scully. Software reconnaissance: mapping pro

gram features to code. Journal of Software Maintenance, 7(1):49-62, 1995.

[33] Felix Wolf, Bernd Mohr, Jack Dongarra, and Shirley Moore. Efficient pattern

search in large traces through successive refinement. In Proceedings of the Euro

pean Conference on Parallel Computing (Euro-Par), Pisa, Italy, 2004.

[34] Kenny Wong. Software understanding through integrated structural and run

time analysis. In GASCON '94: Proceedings of the 1994 conference of the Centre

for Advanced Studies on Collaborative research, page 73 . IBM Press, 1994.

[35] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Applying

webmining techniques to execution traces to support the program comprehen

sion process. In CSMR '05: Proceedings of the Ninth European Conference on

Software Maintenance and Reengineering (CSMR'05) , pages 134- 142, Washing

ton, DC, USA, 2005. IEEE Computer Society.

[36] Andy Zaidman and Serge Demeyer. Managing trace data volume through a

heuristical clu tering process based on event execution frequency. In CSMR '04:

Proceedings o the Eighth Euromicro Working Conference on Software Mainte

nance and Reengineering (CSMR '04), page 329, Washington, DC, USA, 2004.

IEEE Computer Society.

