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Abstract 

Software system analysis for identifying software functionality in source code remains 

as a major problem in the reverse engineering literature. The early approaches for 

extracting softwares functionality mainly relied on static properties of software sys

tem. However the static approaches by nature suffer from the lack of semantic and 

hence are not appropriate for this task. 

This thesis presents a novel technique for dynamic analysis of software systems 

to identify the implementation of certain software functionalities known as software 

features. In the proposed approach, a specific feature is shared by a number of 

task scenarios that are applied on the software system to generate execution traces. 

The application of a sequential pattern mining technique on the generated execution 

traces allows us to extract execution patterns that reveal the specific feature func

tionalities. In a further step, the extracted execution patterns are distributed over 

a concept lattice to separate feature-specific group of functions from commonly used 

group of functions. The use of lattice also allows for identifying a family of closely 

related features in the source code. Moreover, in this work we provide a set of met

rics for evaluating the structural merits of the software system such as component 

cohesion and functional scattering. We have implemented a prototype tool kit and 

experimented with two case studies Xfig drawing tool and Pine email client with very 

promising results. 
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Chapter 1 

Introduction 

Software system analysis for extracting system functionality remains as a major prob

lem in the reverse engineering literature. The early attempts for extracting software 

functionality mainly had a static nature and were centered on searching for patterns 

of the system functionality based on program templates in a knowledge base [17]. 

However, static analysis suffers from the lack of enough semantics and hence is not 

appropriate for functionality recovery. The static approaches are mostly useful for 

extracting the structure of software systems and support specific reverse engineering 

activities such as re-documentation, restructuring and re-engineering. 

There is a growing attention towards the dynamic aspects of software systems 

as a challenging domain in software reverse engineering [24, 13]. Dynamic analysis 

deals with task scenarios that formulate the user-system interactions in an informal 

or semi-formal manner. The approaches to dynamic analysis cover areas such as per

formance optimization [23], software execution visualization [21], and feature to code 

assignment [12], where in this work, we address the latter problem. Typically, to 

understand the implementation of a certain feature of a system, maintainers refer to 

the documentation of the software system. However, in many cases the mapping of 

1 



CHAPTER 1. INTRODUCTION 2 

features to the source code is poorly documented and one has to review the entire 

source code to obtain the required knowledge for this task. In this thesis, we pro

pose a novel approach to dynamic analysis of software systems, in order to identify 

the implementation of the software features in the source code. In this context, dy

namic analysis is performed by executing a group of well-defined task scenarios on 

the software system and by observing the execution results. Dynamic analysis with 

its characteristics to extract system functionality has several challenges compared to 

static analysis: i) in static analysis usually a complete set of software facts are gener

ated through parsing or lexical analysis of the source code based on a domain model, 

whereas in dynamic analysis only a small subset of the possible dynamic traces are 

extracted; ii) obtaining meaningful knowledge from the extracted execution traces is a 

difficult task that restricts the applicability of the dynamic analysis; and iii) the large 

sizes of the execution traces caused by program loops and recursions may disable the 

whole dynamic analysis. 

In this work, we define and execute a set of task scenarios with a specific shared 

feature on the software system in order to generate execution traces. The application 

of a sequential pattern mining algorithm on the extracted execution traces allows 

us to obtain high-frequency patterns of functions. In a further step, we analyze the 

frequently appearing patterns, in order to identify the implementation of the software 

features in the source code. Finally, in a post-processing step we separate the more 

general patterns( e.g., starting/terminating operations and common utility functions) 

from feature-specific patterns. 

Upon identifying the implementation point of a certain software feature (i.e. the 

group of feature-specific functions), we assess the impact of the feature on a por

tion of software structure that contributes to implement this feature. The proposed 

structural assessment directly represents the cohesion of module(s) implementing a 
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specific feature; this measure of cohesion is much closer to the original definition of 

cohesion ("relative functional strength of a module" [22]) than using static structural 

techniques such as inter-/intra-edge connectivity of the components. Furthermore, 

each group of core functions that implement a feature can be used to incorporate 

semantics into the existing software architecture recovery techniques [25). 

1.1 Problem Description 

Software maintenance is the major activity in the software system life cycle and has a 

critical importance in maintaining both legacy and newly developed software systems. 

Software maintenance consists of activities including: corrective maintenance to di

agnosis and correct the errors, adaptive maintenance to modify the software system 

to properly interface with changing environments (hardware and software), perfective 

maintenance to enhance the functionality of the software, and finally preventive main

tenance to improve the future maintainability and reliability of the software system. 

A prerequisite for each of the above mentioned activities is a comprehensive under

standing of the whole software system including its design and and run-time aspects. 

Early attempts for program understanding mostly have been focused on static as

pects of the software system based on entities and dependencies in the source code 

[34). However static analysis suffers from lack of semantics and is unable to extract 

the runtime behavior of the software, thus it can not address problems that have a 

dynamic nature such as identifying the implementation point of the software features, 

finding the execution bottlenecks and/or the less frequently used part of the system, 

and understanding the interactions among different software components. Based on 

the above discussion, we define the problem of this study as: 

devising required process, techniques, and supporting tools for identify-
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ing the implementation of the functional aspects of a software system in 

the source code as a means to incorporate semantics into static analysis 

techniques. 

1.2 Proposed Solution 

4 

This thesis presents a dynamic analysis approach for identifying the implementation 

of software features that is based on the frequent patterns of function calls in execution 

traces of the software system. It also proposes an evaluation metric for assessing the 

structural merits of the software system based on the degree of functional scattering 

of the software features among the structural modules. 

1.2.1 Proposed Framework 

Figure 1.1 illustrates different steps of the proposed framework for assigning software 

features onto the system modules. The framework provides a means for reducing the 

large sizes of execution traces, takes advantage of the relation discovery power of data 

mining and concept lattice analysis, and allows us to measure the impact of individual 

features on the structure of the system. 

This process consists of four stages: Execution trace extraction; Execution pattern 

mining; Execution pattern analysis; and Structural evaluation. In the rest of this 

section these stages are briefly described. 

• Execution trace extraction: important features of a software system are iden

tified by investigating the system's user manual, on-line help, similar systems 

in the corresponding application domain, and also user's familiarity with the 

system. A set of relevant task scenarios are selected that examine a single soft-
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Feature 
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Figure 1.1: Proposed framework for identifying the implementation of the functional 
aspects of a software system in the source code as a means to incorporate semantics 
into static analysis techniques. 

ware feature. We call this set of scenarios as feature-specific scenario set. For 

example, in the case of a drawing tool software system, a group of scenarios that 

share the "move" operation to relocate a figure on the computer screen would 

constitute such a feature-specific scenario set. In the next step, the software un

der study is instrumented1 to generate function names at the entrance and exit 

of a function execution. By running each feature-specific scenario against the 

instrumented software system a sequence of function invocations are generated 

in the form of entry/exit pairs. To make the large size of the generated traces 

manageable, in a preprocessing step we transform the extracted entry/ exit pairs 

into a sequence of function invocations and also remove all redundant function 

calls caused by the cycles of the program loops. The trimmed execution traces 

1 Instrumentation refers to the process of inserting particular pieces of code into the software 
system (source code or binary image) to generate a trace of the software execution. 
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are then fed into the execution pattern mining engine in the next stage. The 

preprocessin · operation will be discussed in more details in Section 5.3.1. 

• Execution pattern mining: in this stage, we reveal the common sequences of 

function invocations that exist within the different executions of a program 

that corresp nd to a set of task scenarios. We apply a sequential pattern min

ing algorith on the execution traces to discover such hidden execution patterns 

and store them in a pattern repository for further analysis. This stage will be 

discussed in ore details in Section 4.1. 

• Execution pattern analysis: each execution pattern is a candidate group of func

tions that implement a common feature within a scenario set. We employ a 

strategy to s otlight on functions in execution patterns corresponding to spe

cific features within a group of scenario sets. This is performed by identifying 

those patter s that are specific to a single software feature within one scenario 

set (namely f eature-specific patterns). Similarly, we identify the patterns that 

are common among all sets of scenarios (namely omnipresent patterns) . In 

Figure 1.1 a sketch of the scenario-set execution traces and feature-specific / 

omnipresent patterns are shown. Even for a specific feature, a large group of 

execution patterns are generated that must be organized (and some must be 

filtered out) to identify core functions of a feature. We employ two different 

mechanisms for this purpose: concept lattice analysis and second sequential 

pattern mining technique. Concept lattice is an ideal tool for such a task, hence 

we use the visualization power of concept lattice to generate clusters of functions 

within feature-specific functions and omnipresent functions. Alternatively, we 
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apply the sequential pattern mining for the second t ime on the extracted exe

cution patterns of the previous steps to separate feature-specific patterns from 

omnipresent patterns. This step is discussed in Section 5.5. 

• Structural evaluation: in a further operation, by associating the functions of 

feature specific patterns, which implement the corresponding feature, to the 

system's structural modules, i.e., files of the system, two metrics for measuring 

module cohesion and feature functional scattering are obtained that together 

provide a means for measuring the impact of individual features on the structure 

of the software system. 

1.3 Thesis Contribution 

This thesis presents an approach in dynamic analysis of software systems to asso

ciate software functionalities to source code and as a byproduct provides a means 

for structural evaluation of software systems. The proposed approach takes advan

tage of dynamic analysis, data mining technique sequential pattern discovery, string 

processing algorit m repetition pattern finding, as well as the visualization power 

of the concept latt ice analysis to provide comprehensive information about the soft

ware system from different aspects. The contributions of this thesis to the software 

maintenance field can be categorized as follows. 

• Devised a novel pattern based approach to dynamic analysis of a software system 

that employ. data mining techniques to extract valuable information out of 

noisy executi n trace data. 

• Proposed a t chnique to reduce the large sizes of the execution traces by elimi

nating the lo p-based repetitions. 
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• Proposed a ew technique for eliminating the sub-patterns that are generated 

along with the execution patterns. 

• Identified the set of core functions that implement both specific features and 

common features of software systems. 

• Provided a measure of scattering of the feature functionality to the structural 

modules as well as a measure of cohesion for a structural module. 

• Visualized the functional distribution of specific features on a lattice using con

cept lattice analysis. 

As a result of this research, we implemented a prototype tool as an Eclipse [3] 

plug-in using Java programming language. The implemented toolkit and the case 

studies are discussed in Chapter 7. 

1.4 Limitations of the Technique 

The presented approach in this thesis has some limitations as follows. 

Limitations pertinent to the dynamic analysis approach: the proposed dy

namic analy is is based on executing a group of feature-specific task scenarios 

on the program under study and observing the runtime executions; hence, the 

familiarity of the user with the application domain and t he subject system is re

quired. In addition, similar to any dynamic analysis technique the results of the 

proposed dynamic analysis indicate the properties of the input task scenarios 

rather than the properties of the entire system. 

Limitations pertinent to the current implementation: there are many chal

lenges in dynamic analysis of a software system that might restrict the applica-
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bility of the current implementation of the technique; among them, managing 

the huge sizes of the execution traces (tens of thousands of function calls in 

a medium si:~,e system) , dealing with large number of extracted patterns from 

data mining operation, and identifying the real patterns from noise patterns, 

are notable. 

1. 5 Thesis Overview 

The remaining chapters of this thesis are organized as belows. 

Chapter 2: desc ibes an overview of the related work in the area of dynamic analysis 

of the software system and feature to source code assignment. 

Chapter 3: pro ides a detailed discussion of the formal definitions that are used 

throughout the thesis. 

Chapter 4: presents a discussion of the techniques and algorithms that are em

ployed throughout this study, including the sequential pattern mining algorithm, 

execution pat tern post-processing algorithm, and concept lattice analysis tech

niques. 

Chapter 5: presents the dynamic analysis approach for software feature to source 

code assign ent. In this chapter, the steps of the proposed approach are ex

plained in detail. 

Chapter 6: pro ides the proposed structural evaluation technique. 

Chapter 7: pres nts the results of the experimentations with the Xfig drawing tool 

and the Pine email system. 
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Chapter 8: provides a conclusion for the whole thesis and forms the basis for the 

future research. 

A ppendix: describes the implementation of the proposed prototype toolkit as an 

Eclipse plug-in. 



Chapter 2 

Related Work 

In this section, we briefly present the approaches in dynamic analysis of a software 

system that relate to our works. In Section 2.1 we describe the approaches in software 

reverse engineerin · that employ data mining techniques. Section 2.2 elaborates on 

the existing approaches of application of concept lattice analysis in the software re

verse engineering, and finally, in Section 2.3 we present recent approaches in dynamic 

analysis of software systems. 

2.1 D ata M ining 

Fayyad et al. [16] defines data mining in databases as the non-trivial process of 

identifying valid, n vel, potentially useful, and ultimately understandable patterns in 

the large database~. Data mining, in fact, aims at discovering unexpected, useful and 

simple patterns, and it is an inter-disciplinary research area. Recently, the application 

of data mining tee niques in the software reverse engineering has been investigated. 

In static analysis of software systems, Montes and Carver [10] use association rule 

mining to identify ubsystems in the database representation of the software system. 

11 
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Sartipi [27] propo es a clustering method based on application of association rule 

mining where the similarity values between the system entities are defined based on 

the extracted association rules. In dynamic analysis of software systems, El-Ramly 

et al. [14] applied a sequential pattern mining technique to find interaction patterns 

between graphical ser interface components. Their algorithm, so-called IPM, discov

ers frequently occurring patterns in program's interface snapshots. Consequently, an 

expert translates t e extracted patterns to a use-case scenario. In [35] a web-mining 

technique is applie on program dynamic call graphs, where nodes represent classes 

and edges represent method invocation. In this approaches, classes (nodes) that de

pend on many other classes are identified using the web mining algorithm HITS. As 

a result , the classes in the software system that play an active role in the system 

are identified thro gh this approach. In the presented approach in this thesis, we use 

data mining algorithm sequential pattern mining in order to extract frequent patterns 

of function calls. I this work, we utilize the "support" of each extracted pattern to 

filter out the noisy patterns. 

2.2 Concept Lattice Analysis 

Concept lattice an lysis provides a way to identify groupings of objects that have com

mon attributes. T e mathematical foundation was laid by G. Birkhoff [7] in 1940. 

In 1993, work on the application of concept lattice analysis in the area of reverse 

engineering was initiated. Concept lattice analysis has been used for modulariza

tion of legacy code [28, 18, 31], where the relation between program functions and 

their attribute val es (e.g. , global variables, used types) are the basis for concept 

construction. 

Recently, the application of concept lattice in dynamic analysis of software systems 



CHAPTER 2. REL ATED WORK 13 

has been investigated. Eisenbarth et al. [12, 13] proposed a formal concept lattice 

analysis to locate c mputational units that implement a certain feature of the software 

system. They define a relation between task scenarios and program functions, where 

all the functions t at are invoked during execution of a task scenario is considered 

as the attribute of that scenario. Similarly, we apply concept lattice analysis to the 

relation between specific feature in a scenario and certain program functions invoked 

during the scenari execution. However, we filter out noise functions by applying 

sequential pattern mining which has a huge effect on reducing the complexity and 

increasing the understandability of the concept lattice. Tonellan et al. [30] applied 

concept lattice analysis on execution traces of a software system to mine the potential 

program-aspects that exist in the software. 

Concept lattic analysis and data mining techniques both extract maximal se

quences of executi n traces that contain important information to be analyzed. How

ever , sequential pattern analysis has the control over the number of generated common 

traces using the minimum support. In the proposed technique we amalgam the ad

vantages of both techniques to explore the non-trivial execution patterns as a means 

to explore the funct ionality of a specific software feature. 

2 .3 Dynamic Analysis 

In [6, 15], Bell and Ernst studied the characteristics of dynamic analysis of software 

systems and compared the properties of dynamic analysis technique with those of 

a static analysis. A typical approach to dynamic analysis of a software systems is 

based on executin a set of task scenarios on the software system and analyzing 

the corresponding xecution traces. In an approach to software understanding using 

execution traces P uw et al. [21] visualized the execution traces of object-oriented 
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programs and provided a set of navigational and analytical techniques to facilitate 

the execution trace exploration in various abstraction levels. Fischer et al. [19] used 

execution traces as clues for tracing the evolution of a software system. In [36] a 

heuristic exploration to execution traces has been proposed that aims at clustering 

the program functions based on their invocation frequency. Execution traces are also 

used in performance analysis of software systems. In [20, 33, 8] performance analysis 

of parallel system is studied by using execution traces of the software systems. In 

[8, 33] a program's execution trace is searched for certain predefined patterns that in

dicate inefficient behavior. In [11 J a time interval analysis is applied to the execution 

traces to locate components that implement a certain feature in a distributed appli

cat ion. Traces of xecution within the intervals with and without a specific feature 

being active are compared to locate the code component that implement that specific 

feature. Although this method is quite interesting, but since activation of a feature 

might be interleaved with other functionalities of the software, determining an exact 

time interval for activation of a specific feature is not always feasible. 

N. Wilde et al. [32] proposed a set difference approach for locating software fea

tures in the source code; where the set of functions in the related scenario executions 

(those that execut a specific feature) are differentiated from scenario executions that 

do not invoke that specific feature in order to extract the specific feature 's function

ality. In our appr ach, we also use the notion of feature specific scenarios, however 

we extract patterns of execution traces as evidences of the feature functionality. 

In contrast to the above techniques, our approach exploits a novel analysis tech

nique to handle lar e sizes of the execution traces, and allows an intuitive and promis

ing process of feat re to component allocation that consequently leads us to measure 

the functional scatt ering and cohesiveness of the software structural units. 



Chapter 3 

Form al Definitions 

In this chapter, we define the common terminology that we use throughout this 

thesis to describe the execution pattern mining and pattern analysis aspects of the 

proposed approach . We provide a model for representing the task scenarios in Section 

3. 1. In Section 3.2 a representation for a software execution using dynamic call tree 

is provided. In Section 3.3 we present the definitions for execution pattern mining. 

Finally, Section 3.4 uses the definitions presented in this chapter in order to model 

the feature to source code assignment problem. 

3 .1 Scenario Model 

In the context oft is work, we model a scenario as a sequence of relevant features of 

the software syste . In this way, each software feature is considered as the building 

blocks of the task scenarios. 

• feature ¢ is a unit of software requirement that describes a single functionality 

in the software system under study. <I> is the set of all features in the system. 

15 
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• scenario s is a sequence of features ¢ E <I>; thus 

s = [¢1 , ¢2 , ... , c/Jnl· Also S is the set of all applicable scenarios on the system. 

• feature-specific scenario set S¢ is a set of scenarios that share specific feature ¢; 

thus1 

s ¢ = { s I s E s 1\ :J ¢' E s • ¢' = ¢}. 

3 .2 Software System Model 

Based on the static dependencies that exist in the source code of a software system, 

one can model the oftware system with a call graph, where nodes represent functions 

and edges represent function calls. In this representation each scenario execution on 

the software syste corresponds to a traverse on the system call graph. In order to 

formalize the dynamic aspects of the software system in this work, we represent this 

source graph trave sal with a dynamic call tree. In this representation, two different 

invocations of a si gle function are represented with two different nodes and edges of 

the tree are representing the function calls. 

• Let F be the set of all function names in the subject software system. 

• Let :F' be the set of all invocations (calls) of functions f E F. In this context, 

two different invocations of a single function f E F are represented as Ji and 

Jl(i#j). 

• Dynamic Call Tree ( DCT) is a tree which represents the execution of a scenario 

on the software system. In this representation, nodes represent functions and 

1 We use set membership operator E as a sequence membership operator as well . 
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edges represent function calls. DCT =< :F' , E >, where E is a set of ordered 

pairs 2such t at: E c :F' x :F' 

• Dynamic call tree preprocessor II is a tree pruning operation which removes 

multiple instances of identical subtrees in a dynamic call tree that are repeated 

under a particular parent node. II : DCT ~ DCT 

In this work, d. namic call trees are obtained from execution of task scenarios on 

the instrumented s ftware system. We model a software system as a set of all possible 

dynamic call trees that each corresponds to one task scenario execution. We also 

model a scenario xecution as a look up operation which returns the corresponding 

dynamic call tree of a scenario in the software system. 

• Let software system 'l1 be the set of all possible dynamic call trees. 

• Let scenario execution £ ( s) on software system 'l1 be a look up function which 

returns the c rresponding dynamic call tree of scenario s. £ : S ~ 'l1 

We transform a dynamic call tree to an execution trace for further analysis in this 

work. Each executiOn trace is represented with a sequence of function names. In this 

formalism, execution traces are built by the depth first traversal of the dynamic call 

trees. 

• Execution Trace Tis a sequence of function names from F. 

• A dct E DCT is mapped to an execution trace t E T using a depth first traversal 

D FT on the ct, where the sequence of visited nodes in this traversal constitute 

execution trace t. DFT: DCT ~ T 

2Note that E pres rves the required constraints of a tree. 
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3 .3 Execution Pattern 

In this work, we define an execution pattern as a contiguous part of an execution trace 

that exists in certain number of execution traces, namely the support of the pattern. 

• Let repositoriJ Rsq, be the set of all extracted execution traces according to the 

execution of task scenarios in feature--specific scenario set S¢. Thus we would 

have: 

Rsq, = DFT(IT(E(S¢))) 

• An executio pattern p E T is defined as a contiguous sequence of functions 

f E :F that is supported by at least M inSupport number of execution traces in 

the repositor. Rsq, . 

• An executio trace t supports execution pattern p iff p is a subsequence of t , 

such that: 3i Vj (0 :S i 1\ i :S j < (i + IPI) ---+ p[j - i] = t[j]). 

• Let support . et of pattern p be the set of all execution traces that support 

execution pat tern p. 

• An execution pattern miner Y n(Rsq, ) is a function which extracts all execution 

patterns that are supported by at least n% of execution traces in Rsq, . 

Yn: Powerset(T )---+ Powerset(T) 

3 .4 Feature to Source Code Assignment 

Depending on the l vel that functions are participating in execution patterns of differ

ent feature-specific scenario sets, we define two categories of functions: f eature-specific 

functions and omn ·present functions. 
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• Function f i associated with feature-specific scenario set S¢ such that: 

3p E 'In(Rs<l> ) • f E p. 
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• A function is categorized as an omnipresent function iff it is associated with 

almost every feature-specific scenario set. 

• A function f is a feature-specific function for feature 4> iff f is associated with 

only the uni ue feature-specific scenario set S¢. 

In this context, the group of all feature-specific functions for feature 4> constitute 

the mapping of feature 4> to the software system source code. 



Chapter 4 

Techniques 

In this chapter , we discuss the major techniques that are used throughout this thesis. 

We briefly present the application of sequential pattern mining in Section 4.1 and 

mathematical concept lattice analysis in Section 4.2. The former is used to extract 

highly repeated ex cution patterns as a result of applying sequential pattern mining 

on the pruned execution traces. The later is applied on the extracted execution 

patterns in order to cluster the functions that exist within common / feature-specific 

patterns. 

4 .1 Execution Pattern Mining 

In this section, we describe the application of a data mining technique to discover 

sequences of functions in a software system that correspond to certain system features. 

In the data mining literature, sequential pattern mining is used to extract frequently 

occurring patterns among the sequences of customer transactions [5]. In this context, 

the sequence of all transactions corresponding to a certain customer (already ordered 

by increasing transaction-time) is referred to as a customer-sequence. A customer-

20 
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:: 
Figure 4.1: An ex cution trace repository containing 7 execution traces. The four 
shaded areas correrpond to four execution patterns with minimum support 3. 

sequence supports a sequence s if s is a sub-sequence of this customer-sequence. A 

frequently occurri g sequence of transactions (namely a pattern) is a sequence that 

is supported by a user-specified minimum number of customer-sequences known as 

the minimum support of this pattern, namely M inSupport the pattern. 

4 .1.1 Execut ion P attern 

In this study we u e a modified version of the sequential pattern mining algorithm 

by Agrawal [5] , w ere an execution pattern is defined as a contiguous part of an 

execution trace that is supported by MinSupport number of execution traces. In this 

analysis we use an xecution trace as a customer-sequence defined above. The formal 

definition of an exe ution pattern has been provided in Section 3.3. In this formalism, 

each execution pat tern is associated with a set of feature-specific task scenarios and 

reveals the commo functionality that is invoked within these scenarios. 

In Figure 4.1 a example of an execution trace repository and its corresponding 

execution patterns is shown. In this example the MinSupport is 3. 

A typical sequential pattern mining algorithm allows extracting noncontiguous 

sequences of function calls. In most cases, this characteristic drastically increases 

the time/space co plexity of the pattern mining algorithm and will complicate the 

dynamic analysis. [n the presented approach, each extracted sequential pattern is a 
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contiguous sequence of function calls that exists in different execution traces. This 

strategy produces meaningful execution patterns that correspond to core functions 

implementing specific functionalities of the system. Whereas, as we got from our 

experiments, extra ting execution patterns that contain noncontiguous function invo

cat ions would generate an overwhelming number of meaningless patterns that consist 

of unrelated parts f the execution traces. 

4.1.2 Algorithm 

In the following a overview of the proposed execution pattern mining algorithm is 

provided. This algorithm consists of two main procedures: candidate two-items pat

tern generation (Procedure cpGenerator) and pattern extension (Procedure DoExtend) . 

Procedure cpGenerator accepts the repository Rs"' as input and simply generates all 

two-items patterns. Among the generated two-items patterns those that meet the 

MinSupport constraint are stored in the candidate pattern repository. 

Procedure DoExtend increases the length of the patterns of the pattern repository 

iteratively. This procedure uses the operation extend to extend the patterns. In the 

following an overvi w of the operation extend is provided: 

A pattern p can be extended by a candidate pattern cp if p ends exactly 

where cp starts. The resulting extended pattern p' is constructed by con

catenating p nd cp. The support set of this pattern consists of traces in 

the intersecti n of support sets of cp and p that also support p' . 

The pattern extension stage starts with storing all candidate patterns in a pattern 

repository (see Procedure DoExtend). This procedure iterates as long as any pattern 

can be extended. In each iteration, for each pattern p in the pattern repository, 

it checks if p can be extended using candidate patterns in the candidate pattern 
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Procedure cpG nerator 
Input : Set Rs

9 

Result: Set C R //CPR is the candidate pattern repository. 

1 Variable: MultiSet MS //A multiset is a set for which repeated elements are 

considered. begin 
2 CPR+-- empty set; MS +--empty set; 
3 foreach t E Rsq, do 
4 // t is an execution trace; 

s for i +-- 0 to JtJ - 2 do 
6 add t [i .. i + 1] toMS ; 
7 end 
s end 
9 foreach m E MS do 

10 if Multiplicity(ms) :2: MinSupport then 
u add ms to CPR; 
12 

13 end 
14 end 

repository. If p can not be extended in an iteration then it is stored as an execution 

pattern. When no ore patterns can be extended in an iteration Procedure DoExtend 

terminates. 

One drawback of the mentioned execution pattern mining algorithm is that it gen

erates certain sub- ubsequences of a final execution pattern, that drastically increases 

the number of generated execution patterns. Note that the pattern extend operation 

extends pattern p from end of the p. In this case, all sub-sequences of pattern p that 

terminate at end of the p may be generated along with p. 

Suppose the following situation: 

P1={2,3,4} cp={4,5} p~= {2,3,4 , 5} 

p2 = { 1, 2, 3, 4} cp = { 4, 5} p; = { 1, 2, 3, 4, 5} 

in this case pattern p~ would not grow up more, whereas pattern p2 grows and becomes 

a super-sequence for pattern p~. 
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P rocedure DoExtend 
Input: Set CPR I IC P R is the candidate pattern repository. 

Result : Set E R IIEPR is the resulting execution pattern repository. 

1 Variable : Set P R IIPR corresponds to the set of growing patterns. 

2 Variable: Set Temp 
3 begin 
4 EPR ~empty set; 
5 PR~CPR; 

6 while P R has an element do 
7 Temp ~ empty set; 
8 foreach p E PR do 
9 extendedOnce ~FALSE; 

10 foreach c E CPR do 
11 p' ~ p + C I I operator + denotes to operation pattern extend.; 

1 2 if support(p') 2: MinSupport then 
1 3 extendedOnce ~TRUE; 
14 add p' to Temp; 
15 

16 

17 

18 

19 

end 
if ex endedOnce = FALSE then 

add p to EPR; 

20 end 
2 1 PR ~Temp 
22 end 
23 end 

24 
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TheN ode{ 

} 

String 
Mark 
TrieNode 

functionN arne; 
mark; 
parent; 

Figure 4 2: Data structure that is used to represent a Trie node. 
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We apply a no el sub-pattern elimination operation that has a major impact on 

enhancing the pattern analysis performance. The sub-pattern elimination operation 

is discussed in more details in the following discussion. 

4.1.3 Sub-Pattern Elimination 

In order to identi , and eliminate sub-patterns of a final execution pattern, we use 

a Trie data structure and annotate its nodes with the function names. A Trie is a 

tree data structure that stores the information about the contents of each node in 

the path from the root to the node, rather than the node itself. In Figure 4.2 the 

data structure that we used for representing the tree nodes in Trie data structure is 

shown. Each Trie ode has an enumerated type "Mark" that can have values "finaf' 

or "subPattern", where "Mark" is used to eliminate the sub-patterns. 

In doing so, th sequence of functions in each execution pattern p is stored along 

a path from the ro t to the leaf of the Trie, and the corresponding leaf is marked as 

final if it does not already exist in the Trie. In this setting, all sub-sequences of p 

that terminate at the end of p are inserted in the Trie as well. The leaf nodes that 

correspond to these paths are marked as subPattem. Procedure Trielnsert illustrates 

an overview of the above mentioned operation. 

Figure 4.3(a) depicts the Trie data structure after inserting final execution patterns 

p1 = {F3, F8, F9, 12} and p2 = {F8 , F9, F13}. 
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Procedure Trielnsert 
Input : Patter P 

1 Global Variable: Trie trie; 
Result: Inserting pattern P along with all its sub-patterns that terminate at 

end of P to the trie data structure. 
2 begin 
3 start t-- 0; mark t-- "final"; 
4 while start< IPI do 
5 TrieNode t t-- trie.root; 
6 index t-- start; 
1 while i dex < IPI and t.hasChild(P[index]) do 
8 t t-- t.getChild(P[index]); 
9 inde , = index + 1; 

10 end 
11 // check to see if P is already in Trie.; 

12 if index = IPI then 
13 //change node 's mark only from "final" to "subPattern"; 

14 if mark "subPattern" then 
15 l\!Iark t as "subPattern"; 
16 exit ; 
17 // add the remainder of the input pattern to the Trie; 

18 while i ,dex < I PI do 
19 //add a child to the t and return the newly added child; 

20 t t-- t .addChild(P[index]); 
21 inde;;.: = index + 1; 
22 end 
23 Mark t as mark; 
24 // add all subsequences of the input pattern to the Trie; 

25 start = start + 1; 
26 mark t-- "subPattern"; 
21 end 
28 end 

26 
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Figure 4.3: SubP ttern elimination: (a) inserting execution patterns in T'rie and 
marking leaves as final and subPattern (b) final execution pat tern extraction, shaded 
areas correspond to final paths. 

We call a path that starts from an arbitrary node of the Trie and ends at a leaf 

that is marked as final, a final path. Procedure TrieExtmct illustrates an overview of 

the operation of ex tracting all final paths that start from node t. This procedure is a 

simple depth first t raversal on the Trie that stores the visited nodes in a stack, thus at 

any node t' the nodes in the stack represent a path from t to t' . By extracting all final 

paths that start from the root of the Trie, we will generate all final patterns. Figure 

4.3(b) depicts the nal paths, as two shaded areas, corresponding to final execution 

patterns p = {F3 , 8, F9 , F12} and p2 = {F8 , F9 , F13}. 

4 .2 Concept Lattice Analysis 

Mathematical concept analysis was first introduced by Bir khoff in 1940 [7]. In this 

formalism, a binary relation between a set of "objects" and a set of "attribute-values" 

is represented as lattice. A concept is a maximal collection of objects sharing 

maximal common ttribute-values. A concept lattice can be composed to provide 
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Procedure Tri Extract 
Input: TrieNo e t 
Result : Extracting all final paths starting from t . 
Data: Stack stack 

1 begin 
2 stack.push(t); 
3 if t is a Le f then 
4 if t is .arked as "final " then 
s { stack contains one final path now}; 
6 

7 else 
s forall children oft do 
9 Call TrieExtract; 

10 end 
11 end 
12 stack.pop() ; 
13 end 
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significant insight into the structure of a relation between objects and attribute-

values such that each node of the lattice represents a concept. In a binary relation 

R ~ 0 x A between a set of objects 0 and their attributes A, the triple C = (0, A, R ) 

is called a formal context. For any set of objects 0 C 0 , we define shared attributes 

o-(0) as the set of attributes that are shared among objects in 0. 

o-(0) ={a E AlVa E 0 • (o,a) E R} 

Similarly, for any set of attributes A C A, the set of common objects is defined as 

shared objects T(A). 

T(A) = {o E OIVa E A • (o,a) E R} 

A formal conte can be visualized with a relation table, where each row represents 

an object and each column represents an attribute. An object oi and an attribute a1 

are in the relation (i.e., object oi has attribute a1) iff the cell at row i and column j is 

marked in the relation table. In Table 4.1 an example of a formal context is provided. 



CHAPTER 4. TECHNIQUES 29 

II n I r2 I £3 I £4 I rs I 
sl X X X 

s2 X X X 

s3 X X 

Table 4.1: A example of a relation table with 3 objects and 5 attributes. 

The following equations hold for this context table: 

o-( { sl, s2}) = {fl, f2} 

T({fl}) = {sl,s2,s3} 

A concept cis efined as a pair c =< 0, A> such that: 

0 = T(A) 1\ A= o-(0) 

where 0 is called the extent of c, denoted by Ext( c), and A is called the intent of c, 

denoted by Int(c). Such a concept corresponds to a maximal rectangle in its context 

table. Table 4.2 pr sents all concepts of the relation table in Table 4.1. 

The infimum of two concepts is computed by joining their intents and intersecting 

their extents. 

The infimum descr ibes a set of common attributes of two sets of objects. Therefore 

the infimum of two concepts can be rewritten as: 

The supremum is computed by joining the extends and intersecting the intents of two 

concepts: 
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Cx < Ext(cx), Int(cx) > 
cl <{s1,s2,s3}, {!1} > 
C2 <{s1,s2}, {f1,f2}> 
C3 < { s1 }, {!1, f2 , f5} > 
C4 < {s2}, {f1,j2,f4} > 
cs < { s3}, {!1, f3} > 

Table 4.2: Concepts of the context table in Table 4.1. 

The supremum de~cribes the set of objects that share all the attributes in the in-

tersection of two ·ets of attributes. Hence the supremum of two concepts can be 

represented as: 

A concept lattice is an acyclic directed graph where nodes represent concepts and 

edges represent subconcept relations. A concept ( 0 0 , A0 ) is a subconcept of concept 

(01 , A1), if 0 0 c 0 1 . This relationship defines a complete partial order over the set of 

all concepts of a given formal context C, that can be represented as a concept lattice 

£ (C). 

Complete information of each concept c (i.e. node) in the concept lattice is pro

vided by the pair < Ext( c), Int(c) >. However, the same information can be repre

sented in a more c ncise form by marking a concept c with an attribute a E Int(c) 

or with an object E Ext(c). The unique node in the concept lattice that is marked 

by attribute a is c mputed by function J.L(a) as follows: 

J.L(a) = V { c E £ (C) Ia E Int(c)} 

in doing so, each attribute a will label the most general concept that has a in its 

intent. As a result those attributes that are shared among most of the objects will 

appear in the upper region of the lattice, and those that are more specific label the 

concepts in the lower region of the lattice. 
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The unique node that is marked by object o is: 

1(o) = (\{c E £(C)Io E Ext(c)} 

analogously, o will label the most specific concept that has o in its extent. 

Visualizing the concept lattice following the above mentioned labeling mechanism 

provides certain characteristics for the lattice as follows . 

• Each lattice node (i.e., a concept) might be labeled with objects and attributes. 

• Every object has all attributes that are defined at that node or above it in the 

lattice (direct ly above or separated by some links). 

• Every attribute exists in all objects that are defined at that node and nodes in 

the sub-lattice below it (directly below or separated by some links). 

A concept lattice can be used to collect the set of shared attributes contained in 

a set of objects such that the shared attributes appear in the nodes that are located 

in the upper regio of the lattice. Consequently, the nodes in the lower region of the 

lattice collect the attributes that are specific to the individual objects in that region. 

In Section 5.5, we exploit this property to cluster the functions of the extracted 

execution patterns. 

Figure 4.4 depicts the corresponding concept lattice of the formal context of Table 

4.1. In this lattice, ode with label h represents the concept c2 = < { s1 , s2 }, {!I , h} >. 

Note that Ext(c2 ) is obtained by collecting the objects that are shown in the nodes 

below it. Similarly, the intent of c2 contains all the attributes that are labeled the 

nodes above it . 
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[) Attribute 

[§] Object 

_ Subconcept 
Relation 

Figure 4.4: Corresponding concept lattice of Table 4.1 
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Chapter 5 

Dynamic Analysis 

A typical approac to dynamic analysis deals with extract ing software execution 

traces corresponding to a set of carefully selected task scenarios and reveals the re

alization of the scenarios' functionalities within the software system components. In 

this thesis, we pro ose an approach to dynamic analysis of software systems based 

on the frequently appearing patterns in execution traces, in order to identify the im

plementation of the software features in the source code. We execute a set of task 

scenarios with asp cific shared feature, referred to as feature-specific scenario set S¢, 

on the software system in order to generate execution traces. The application of a 

sequential pattern mining algorithm on the extracted execut ion traces allows us to 

highlight the featu e related system functionality. Based on the proposed framework 

in Chapter 1 that is repeated below and the definitions of Chapter 3, we define this 

process with the following steps. 

1. Define featur specific scenario set S¢. 

2. Execute the cenarios in S¢ on the subject software system and generate the 

corresponding dynamic call trees such that DCTsq, is the set of all dynamic call 

33 
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trees for the scenario set S¢. Each dynamic call tree represents an unpruned 

call trace after execution of the software system: 

DCTs<t> = £(8¢) 

where £ is t e scenario execution operation. 

3. Preprocess the extracted dynamic call trees DCTs<t> in order to eliminate the 

loop-based r .petitions and extract the corresponding execution traces Rs<t> : 

Rs<t> = DFT(IT(DCTs<t> )) 

where IT represents preprocessing and D FT represents the depth first traversal 

operations. 

4. Apply the ex cution pattern mining Y n described in Section 4.1 and extract the 

set of execution patterns Ps<t> that exist in Rs<t> . 

Ps<t> = Yn(R <~> ) 

We apply the above process on different features of the software system and extract 

groups of execution patterns that each reflect the software functionality correspond

ing to the experim nted features. In this context, a post-processing of the generated 

execution patterns will allow us to extract patterns that exclusively correspond to 

a single feature-specific scenario set from those that are shared between all feature

specific scenario sets. This chapter is structured as follows. An overview of the 

program instrumentation is presented in Section 5.1. In Section 5.2 we discuss the 

feature-specific scenario set selection. A detailed discussion of execution trace gen

eration is provide in Section 5.3. Finally in Section 5.4, we will discuss the the 

execution pattern extraction and execution pattern analysis. 
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Measuring 
Feature Impact on 

System's Structure 

Figure 5.1: Proposed framework for identifying the implementation of the functional 
aspects of a software system in the source code as a means to incorporate semantics 
into static analysis techniques. 

5 .1 Instrumentation 

Instrumentation refers to the process of inserting particular pieces of code in the 

subject software system in order to acquire specific information about the execution 

of the software system. Instrumentation can be performed both at the source code 

and at the binary image level. In the proposed approach, we adopt Aprobe [29] 

which is a binary l vel software instrumentation tool. Aprobe inserts patches, namely 

probes, within the binary image of the executable program. In this work, we used a 

pre-defined probe (namely trace) that generates text messages at both entrance and 

exit points of each function. Therefore, by executing the subject software system a 

function entry/ exit pairs is obtained that is represented as a dynamic call tree. In 

Figure 5.2( a) an e ·ample function is shown. Extracted function entry/ exit pairs for 

a sample execution of this function are shown in Figure 5.2(b). 
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Procedure foo 
begin 

Call F1 ; 
while (condition) do 

Call F1 ; 
Call F2; 

end 
end 

(a) An ex2lmple program function 

execution 

• 
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I 
Enter Foo 

Enter F1 ~ 
Enter F10 )> 

Exit F10 ::s 
ID 

Enter F11 >< 
Exit F11 

I» 
3 

Enter F12 'C 

Exit F12 CD' 
0 

Exit F1 .... .... 
Enter F1 c: 

::s 
Enter F10 0 -Exit F10 a· 

::s 
Exit F1 ID 

::s 
Enter F2 -

Enter F20 ~ 
Exit F20 >< ;:;: 

Exit F2 'C 
I» 
~· 

Exit Foo _j 

Figure 5.2: Instru entation: (a) sample function foo() , (b) extracted function en
try/exit pairs for sample execution of function foo() . 

5.2 ScenaJ io Selection 

Important feature of the subject software system are identified by investigating the 

system's user manual, on-line help, similar systems in the corresponding application 

domain, and also ser's familiarity with the system. For each particular feature ¢ we 

select a set of rele ant task scenarios where feature ¢ is shared among all scenarios. 

We call this set of scenarios a feature-specific scenario set. For example, in the case 

of a drawing tool software system such as Xfig, a group of scenarios that share the 

operation "move" t.o relocate a drawn figure on the computer screen would constitute 

such a feature-specific scenario set. Bellow a set of five feature-specific scenarios for 

the operation "mo e" on Xfig drawing tool is presented: 

start, draw rectangle, move, exit 

start , draw ellipse, move, exit 

start, draw circle, move, exit 

start, draw arc, move, exit 

start , draw polygon, move, exit 
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By executing t e scenarios of the feature-specific scenario set S¢ on the instru

mented software s. stem, a group of function entry/ exit pairs (dynamic call trees) 

is extracted that should be preprocessed and converted to execution traces for the 

further analysis. 

5 .3 Execution Trace Generation 

In this section, we discuss the steps for generating execution traces. We start with a 

detailed discussion about the rationals for execution traces preprocessing. Then we 

describe the prepr cessing mechanism which includes dynamic call tree generation 

and dynamic call tree pruning. 

5.3.1 Prepro cessing 

Dynamic analysis fa medium size software system using execution traces can produce 

very large traces ranging to thousands or tens of thousands of function calls. This 

would be a main source of difficulty in a typical dynamic analysis technique. The 

effective trace of f nctions for the intended scenario is cluttered by a large number 

of function calls from operating system, initialization and termination operations, 

utilities, repetition of sequences caused by the loops, and also noise functions that are 

interleaved within a sequence. Thus, prior to using the extracted function entry/ exit 

pairs in further steps, the redundancies in the trace that are produced by program 

loops and recursive function calls should be eliminated. For our current state of 

analysis in this w rk, we ignore recursive function traces and focus on pruning the 

loop-based redund· ncies. 

In this operation, we transform the function entry/exit pairs that is generated 

by instrumenting the software system into a dynamic call t ree (Section 3.2) , where 
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S := 'Enter' ID S 'Exit' ID S E 

I D := Letter ( Letter I Digit I '-' )* 
Letter:= [['a' .. 'z'] + ['A' .. 'Z' ]] 
Digit := [ 'O' .. '9' ] 

Figure 5.3 : Grammar for parsing the Aprobe instrumentation data. 

nodes represent fu ctions and edges represent function calls. Since each loop resides 

in the body of a function, the loops will form identical subtrees as the children of the 

parent function. In this context, the loop redundancy removal problem is reduced 

to identification of identical subtrees that are repeated under a particular node. In 

Procedure Foo a pi ece of code that produces a long trace with repetitions of "Fl, Ff!' 

is shown. The foll wing subsections elaborate the dynamic call tree generation and 

dynamic call tree pruning, respectively. 

Procedure Foo: A dummy procedure which generates loop-based repetitions. 

1 begin 
2 Call Fl ; 
3 while condition do 
4 Call Fl ; 
5 Call F2; 
6 end 
1 end 

5.3.2 Dynamic Call Tree Generation 

The output of the software instrumentation using A probe (function entry I exit pairs) 

can be transformed into a dynamic call tree of the running program. In Figure 5.3, 

we present the context free grammar that we use for parsing the function entry I exit 

pairs. 

In Figure 5.4 t e data structure that we used for representing the dynamic call 
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GraphNode{ 

} 

String 
Integer 
GraphNode 

name; 
ID ; 
parent; 

Figure 5.4: Data structure that is used to represent a graph node. 
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Figure 5.5: A dynamic call tree that is generated for an example execution of Proce
dure Foo in Figure 5.2. 

tree nodes is shown. Each GraphN ode in addition to its name and its parent has 

an integer I D. In the following , we give an overview of the proposed parser , namely 

callTreeParser, th· t parses the input function entry/ exit pairs and generates the 

corresponding dynamic call tree. Procedure callTreeParser also assigns an integer I D 

to each tree node, where roots of identical subtrees have identical IDs. This procedure 

uses two auxiliary functions , N extToken and GetN extToken, where N extToken 

returns true if the lexical analyzer has another token in its input and GetN extToken 

finds and returns the next complete token from the lexical analyzer. One main duty 

of callTreeParser IS to find the identical subtrees and to tag them with identical 

integer IDs. For this operation, we use a hash-table implementation which uses the 

I D values of the i put GraphN ode's children to generate the output I D value. This 

mapping is done b a call to idR epository.geti D. 

Figure 5.5 illust rates a small portion of a dynamic call tree which is generated for 

an example execution of Procedure Foo in Figure 5.2. Each node in this call tree is 

also annotated with its I D. Note that function F1 is called by function Foo several 
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P rocedure call TreeParser 
Result: This rocedure parses the input function entry/exit pairs and 

gener tes the dynamic call tree. 
1 I I Before the firs t call to this procedure, we set variable currentN ode to an instance of 

GraphNode, namely root of the tree; 

2 begin 
3 while NextToken() = 'Enter ' do 
4 getNext Token() ; 
5 GraphNode newChild f--- new GraphNode; 
6 add ne Child to the children of the currentN ode; 
7 currentNode f--- newChild; 
s callTreeParser(); 
9 if NextToken() =I= 'Exit' then 

10 Exit on Error; 
11 getNextToken(); 
12 I D f--- idRepository.geti D(newChild); 
13 label newChild with I D ; 
14 currentNode f--- currentNode.getParent(); 
15 end 
16 end 

times, however it cquires different IDs depending on its runtime behavior. 

5.3.3 Dynamic Call Tree Pruning 

40 

In this section, we present an implementation for the dynamic call tree preprocessor 

II (dct) described in Section 3.2. As mentioned in previous subsection, we label each 

subtree with a unique integer I D where identical subtrees possess identical IDs, 

which has a great significance in localizing the loop-based redundancy elimination 

at the proper chil ren of each node in the dynamic call tree. The dynamic call tree 

preprocessor intends to remove the multiple instances of identical subtrees that are 

repeated as the c ildren of a particular node. In this operation, we first generate 

a string represent tion of I D values of these sibling subtrees. Then by applying a 

repetitive string fi der algorithm ( Crochemore [9]) we transform the original string 
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(with repetitions) in the form of a new string with no repetitions. In this new string, 

each group of repetitions is shown as one instance of the repetition that is labeled with 

the number of the repetitions. For example, in Figure 5.6(a) the string F1 ,F2, F1 ,F2, 

... , Fl , F2 is transformed into (F1 ,F2r in Figure 5.6(b). There may exist more than 

one pattern of repe titions for a given string and hence we apply the following heuristic 

in order to select the dominant pattern. 

The repetitive pattern with the highest power generates a pattern that is 

resulted fro a program loop. 

As a result , we keep subtrees that correspond to a single instance of each loop, 

which greatly reduces the complexity of the dynamic call tree. Finally, by traversing 

the loop-free dynamic call tree in a depth-first order and keeping the visited nodes in 

a sequence, a loop-free execution trace is generated . 

. . . , Foo , Fl, Fl , F2, Fl, F2, ... , Fl, F2, ... 
(a) 

... , Foo , Fl, (Fl , F2)n , ... 
(b) 

... , Foo, (F1) 2 , (F2, Fl)n-1, F2, ... 
(c) 

Figure 5.6: (a) A string containing repetitions. (b) Representation of (a) in the form 
of one instance of string repetition. (c) Another possible representation of (a) in the 
form of one instance of string repetition. 

In Procedure Foo a piece of code that produces a long trace with repetitions of 

"Fl , Ff:!' is shown. Figures 5.6(a) and 5.6(b) represent the parts of execution trace 

that is produced by Procedure Foo, and the result of applying Crochemore algorithm, 

respectively. In Figure 5.6(c) another representation for the string F1 ,F2,F1,F2, ... , 
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F 1, F2 is shown. By following the above heuristic we would choose the loop free 

representation in Figure 5.6(b). 

Procedure Pru e describes the graph pruning algorithm. In this procedure, the 

string representation for the I D values of the input node's children is obtained by a 

call to the getChildrenl Ds method. By applying the repetitive string finder algo

rithm Crochemore (calling the procedure findRepetitions ), we identify the locations 

of the repeated items in this string, and consequently we remove them from the tree. 

By running this p ocedure on the root of the dynamic call tree, we will prune the 

whole dynamic call tree. 

P rocedure Prune ( GraphNode node) 
Input: Graph ode node 
Result: pruned tree rooted at input GraphNode node 

1 //Procedure find epetiticms is an implementation of the Crochemore algorithm, which 

returns the locati · ns of the repeated items in its input. ; 

2 begin 
3 Sf-- node.getChildrenl Ds(); 
4 indices f-- f indRepetitions(S); 
5 foreach i E indices do 
6 delete c rresponding child to i; 
7 end 
s foreach ch1ld E node.getChildren() do 
9 Prune(child); 

10 end 
11 end 

5 .4 Execution Pattern Generation 

In Section 4.1 we presented an implementation for the execution pattern miner 

Y n(Rsq, ) which ta es a repository of pruned execution traces Rs"' and generates the 

corresponding exe ution patterns Psq, . Each execution pattern reveals the common 
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sequences of function invocations that exist within the different executions of a pro

gram that correspond to a set of task scenarios. In this context, we define a group 

of scenarios that all share a specific feature¢ of the subject software system (namely 

a feature-specific cenario set Sq, ) and execute them on the instrumented software 

system. 

The group of lo p-free execution traces, that are generated in the previous prepro

cessing steps, const itute the trace repository Rsq,. We apply our sequential pattern 

miner Yn on Rsq, where minimum support is set to 80% * IRsq, l· In this setting 

the extracted execution patterns Psq, discover frequent sequences of function calls 

that exist in the majority of the execution traces (80% of them) and thus reveal the 

implementation of the feature(s) that exist in majority of task scenarios. 

5 .5 Execution Pattern Analysis 

One characteristic f the aforementioned sequential pattern mining technique is that 

the extracted exec tion patterns Psq, reflect both the implementation point of the 

specific feature ¢ and the implementation points of the features that are necessary 

to set up every typical task scenario (examples of such features are initializing and 

termination of the software system). We employ a strategy to focus on execution 

patterns corresponding to specific features within each group of scenario sets. In 

order to do this , w first examine different features of the software system and store 

their corresponding execution patterns in a pattern repository. In a further analysis 

we identify those execution patterns that are specific to a single software feature 

within one scenari set, as well as those that are common among all sets of scenarios. 

In this section we first define two different types of functions that exist in execution 

patterns: feature-specific functions and omnipresent functions. Then two mechanisms 



CHAPTER 5. DY AMIC ANALYSIS 44 

for extracting each type of feature-specific/omnipresent functions are presented in 

Subsections 5.5.2 nd 5.6, respectively. 

5.5.1 Categories of Functions in Execution Patterns 

An execution pattern is treated as a sequence of functions that implement common 

functionalities within a scenario set. In the following, the different kinds of patterns 

that exist in extracted execution patterns along with the corresponding extraction 

mechanisms are presented. 

• Feature-sp cific patterns 

A feature-specific pattern corresponds to the core functions that implement a 

targeted feat re cp of a feature-specific scenario set S<P. Such a pattern exists in 

the majority of patterns of S<P . In order to extract a feature-specific pattern, we 

should increase the level of MinSupport of the generated execution patterns to 

a number that covers the majority of the scenarios in S<P . 

• Omnipresent patterns 

An omnipres nt pattern is common to almost every task scenario of the soft

ware system (e.g., software initialization / termination operations, or mouse 

tracking). Such a pattern exists in every execution trace of every scenario-set 

S<P. Therefore, it is extracted along with the feature-specific patterns mentioned 

above. In order to extract such a pattern, we should use a filtering mechanism 

(e.g. concept lattice in Section 4.2) to filter out the feature-specific patterns 

from this group of patterns. 

Although each of the above categories may be required in a particular analysis 

task, the first category reveals the implementation of the feature that is targeted by 
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the set of task scenarios and hence is considered as the more relevant type of dynamic 

analysis. Extracti n of the feature-specific patterns and omnipresent patterns can be 

performed through two different strategies, as described below: 

Strategy 1) given a feature-specific scenario set Sq, (sharing a specific feature ¢) 

those sequences of functions that are executed during the majority of the scenarios 

are implementing t he targeted feature(s) of the scenario set Sq,. In this strategy, we 

should increase th level of MinSupport of the generated execution patterns to a 

number that cover the majority of the scenarios in the corresponding scenario set. 

In this context, the extracted execution patterns correspond to both feature-specific 

and omnipresent patterns. 

Strategy 2) giv .n a group of two or more feature-specific scenario sets, each with 

a different specific feature, the extracted execution patterns which are shared among 

the majority of th scenarios implement the common features of the software system. 

In the rest of this chapter, we present two different filtering mechanisms to separate 

the omnipresent p tterns from feature-specific ones. In Section 5.5.2, we discuss a 

filtering mechanisr that is based on the second application of sequential pattern 

mining technique. In Section 5.6, we employ the visualization power of the concept 

lattice analysis to cluster feature-specific patterns corresponding to each particular 

feature. 

5.5.2 Sequential Pattern Mining Approach 

The generated ex cution patterns during the above-mentioned Strategy 1 are not 

pure, in the sense that they do not exclusively contain the functions related to the 

functionality of th specific feature of the scenario set. The omnipresent patterns 

mentioned above are also embedded within extracted patterns which must be identi-
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fied and be separat d. In doing this, we apply the sequential pattern mining algorithm 

for the second time on the result of the first execution pattern mining obtained from 

Strategy 1. The characteristics of the second pattern mining are described below: 

Input characteristics: 

• Each "e. ecution pattern" in the result of the first pattern mining is consid

ered as an "execution trace" for the second pattern mining, note each first 

generation pattern corresponds to highly repeated sequence of function 

calls in the original execution traces. 

• The siz of the input traces in the second pattern mining are much smaller 

than those in the first pattern mining. 

Output characteristics: 

In the result of the second pattern mining: 

• functions that are participating in the patterns with small support are the 

feature-specific patterns. 

• pattern with a large support correspond to the common sub-patterns in 

the first generated patterns that relate to omnipresent patterns mentioned 

above. 

Omnipresent patterns may be embedded in feature-specific patterns and one has 

to identify and remove them. In doing so, we identify the locations of the second 

generation pattern, within a first generation pattern, and record the number of ap

pearances of functions in each second generation pattern within the first generation 

pattern. This number indicates the support count for each function. Note that this 

number is different from support of each execution pattern (i.e. size of support set of 
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the execution pattern) since the functions in the overlap areas are counted. Thus, the 

support count of e ch function f reflects the level that f is shared among the different 

scenario sets. In this form, extracting functions that have fewer support count (e.g., 

,.-----------Execution pattern for drawing a rectangle ----------, 

Omnipresent patterns 

~~1~ 

Invocation Time 

Figure 5.7: A first generation pattern extracted of drawing a rectangle in Xfig with 
the highlighted second generation patterns along with their support counts. 

less than 5% of th e number of the first generation patterns) signifies the extracted 

core functions of a specific feature within each original execution pattern. The ra-

tionale is as follow,' : these low-supported functions of execution patterns correspond 

to the singled-out targeted features of a scenario set that were extracted during the 

first pattern gener tion process. Similarly, the functions in second generation pat-

terns with high support counts (e.g., more than 25% of the first generation patterns) 

signify the high frequency functions (utility operations) in a first generation pattern. 

Figure 5.7 depicts a part of a first generation pattern with the highlighted second 

generation pattern.' along with their support counts. The original execution pattern 

in this figure is e tracted from a feature-specific scenario set that target the Xfig 

ability to draw a r ctangle. The functions with bold fonts posses small support and 

perform significant role in specifying the boundary region for drawing a new rectangle 

on the screen. 
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An advantage of the method is that different groups of utility functions are ex

tracted in different spots that enables the expert users to distinguish their function

ality. Moreover, one can locate the extracted feature-specific/common patterns in 

the original execution traces and annotate the original t race with the corresponding 

extracted functionalities. 

5 .6 Concept Lattice Analysis Approach 

We employ a strategy to spotlight on the execution patterns corresponding to specific 

features within a group of scenario sets. In this context, we use concept lattice analysis 

to cluster the group of functions in patterns that exclusively correspond to a shared 

feature of a scenario set; also to cluster the group of functions in patterns that are 

common to every ,·cenario set . 

5.6.1 Conce t Lattice Construction 

In Section 4.2, we define a formal context C = (0, A, R ) as a triple which represents 

the relation R between objects 0 and their attribute values A. In this chapter, we 

apply concept lattice analysis to represent the relation between features and functions 

such that <I> = 0 · nd :F _ A . In our setting for concept lat tice analysis, an object 

is a targeted feature ¢ E <P of a feature-specific scenario set Sif>, and an attribute 

is a function f that participates in the execution patterns corresponding to S¢. We 

focus our analysis on a subset of all features of the software system, and define <I>' to 

be the set of all analyzed features in this analysis. We construct the formal context 

C' = ( <P', :F' , R') as belows: 

• Let Ps,p be t he set of all execution patterns that are extracted with respect to 
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feature-speci c scenario set Sq;. 

• Let Fq; be th set of all functions that exist in the extracted patterns Ps¢. 

• Construct th relation R q; with respect to specific feature <P such that: 

R q; ={(¢,!) If E Fq;}. 

• Create a for al context C' = (<I>', :F' , R') such that: 

R' = U¢E~' Rq; and :F' = U¢E~' Fq;. 

5.6.2 Concept Lattice Analysis 

Applying concept lattice analysis to the formal context described above will result 

in separation of omnipresent functions from functions that are specific to certain 

features. Since omnipresent functions are executed through almost every task scenario 

of the software syst em, these functions exist in the intent of almost every concept of 

the lattice and co sequently appear in upper region of the lattice. On the other 

hand, functions that are specific to certain features of the software (feature-specific 

functions) are located in lower region of the lattice. 

Moreover, a co cept whose extent consists of a single object (feature¢) collects 

functions that exclusively implement feature ¢. In other words, these functions rep

resent the logical module that implement feature <P in the software system. In the 

following, we define the group of concepts that are relevant to feature-specific function 

clusters. 

• Feature-specific concept cq; is a concept whose extent consists of a single feature 

¢. 

• We define F¢ to be the set of functions that label cq; on the concept lattice, 
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thus: 

where J-L(f) is the function that returns the most general concept that has f in 

its intent (see Section 4.2). 

In the generated lattice all the common functions are clustered in the upper region 

of the lattice, however disables the analysis to distinguish different group of common 

functions that are associated with different functionalities. As opposed to the sec

ond pattern generation mechanism which requires the user interaction to decide the 

functionality of each group of extracted core functions, concept lattice clusters the 

feature-specific fu ctions within feature-specific concepts. Consequently, functional

ity of the extracted functions can be easily identified using the specific feature of the 

corresponding feat re-specific concept. 



Chapter 6 

Structu al Evaluation of Software 

System 

Software systems re continuously evolving throughout their lifetime from early de

velopment to their maintenance and retirement. During the maintenance phase the 

software system is still changing through activities such as bug-fixing, migration to 

new platforms, an adding new features which were not planned from the beginning. 

Therefore, even a icely designed and accurately implemented software system will 

probably incur several changes to its functionality and consequently to its structural 

design. This common scenario is the main cause of structural damage, high main

tenance cost , and eventually retirement of a legacy system. To help this situation, 

the task of the software maintainers is to measure the impact of the newly added 

features on the str cture of the software system. In this context , the maintainers can 

make sure that the newly added features will not damage the original structure of 

the software system. 

One approach t o address this problem is to assess the structural merit of the 

software system based on the degree of functional scattering of software features 

51 
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among the struct ral modules. In this context, the functionality of the system is 

represented as a set of features that are implemented within the software modules 

and are manifested as constituents of different scenarios to be run on the software 

system. In additi n, the functional cohesion of each system module can also be 

investigated as a means to monitor the healthiness of the software system. 

In this chapter, we provide two metrics to assess the structural merit of the soft

ware system: feat re functional scattering and structural cohesion. The proposed 

feature functional scattering metric examines the distribution of a set of functions 

that implement a ·pecific feature over the structural units (i.e., files) of the system. 

Hence, it represents the degree of scattering of the implementation of software features 

among the structural modules. On the other hand, the structural cohesion assess

ment directly repr sents the cohesion of module(s) implementing a specific feature 

based on the functional relativeness of the functions that reside in each structural 

unit (module); this measure of cohesion is much closer to the original definition of 

cohesion ("relative functional strength of a module" [22]) than using static structural 

techniques such as inter-/intra-edge connectivity of the components. 

6 .1 Metrics Computation 

In order to measure the feature functional scattering of feature ¢, we assess the 

degree of distributi n of collected functions of logical module F~ over the structure of 

the system. Moreover, we compute the functional relativeness of the functions that 

reside in each mod le in order to evaluate the module structural cohesion. In doing 

so, the set of funct ions that implement a certain feature 4> are extracted from the 

above discussed concept lattice analysis (i.e. F~ ). Then, the source files in which 

these functions ar defined are identified and the ratio of the number of functions 
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that are used fro each file to the number of functions that are defined in that file 

is calculated. Thi ratio is a measure of structural cohesion of the system files that 

contribute to implementing the feature under study. 

6.1.1 Formal D efinitions 

In this subsection. we provide exact definitions for the aforementioned structural 

merit evaluation 1etrics, where SCp(m) denotes structural cohesion of module m 

with respect to logical module F¢ and F S( ¢) denotes functional scattering of feature 

¢. 

• Let M <l> = {rn1,m2, ... ,mk} be the set of modules where all the functions in F¢ 

are defined in elements of M <l> . 

• Let Fm denotes the set of functions that are defined in module m. 

• Structural c hesion of module m with respect to logical module F/p, namely 

SC<t> (m) , is defined as: 

• Functional scattering of feature ¢, namely FS( ¢), is defined based on the dis-

tribution of functions in F¢ over modules in Mas: 

6 .2 Discussion 

A software system with high structural cohesion SC<t>(m) for its individual modules 

and low functional scattering FS( ¢) among its structure represents a modular system 

that requires less aintenance efforts. However , a high degree of functional scattering 
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corresponding to feature ¢ directly signifies a high structural impact that is caused 

by that feature. Hence the system requires more maintenance efforts to tackle with 

the consequences f propagated change to other software modules. 

Note that feature functional scattering and structural cohesion metrics are not 

standalone metric and must be considered as a whole. A low degree of functional 

scattering corresp nding to feature ¢ solely do not imply a good modular structure 

whereas ¢ could be defined in more than one highly cohesive module. 



Chapter 7 

Experiments 

In this chapter, we apply the proposed dynamic analysis technique on two medium

size open source systems that are discussed in the following sections . The developed 

dynamic analysis t ol is an Eclipse plug-in [3] and has been developed as an extension 

to the Alborz reverse engineering toolkit [26] to enhance the scope of Alborz to cover 

both static and dynamic analysis of a software system. In Section 7.1, we discuss the 

results of our analysis using the Xfig [1] drawing tool. In Section 7.2 the results of 

our analysis using Pine [2] email client are presented. 

7.0.1 Platform 

The hardware platform for the experiments consists of a Pentium II with 440 MHZ 

CPU and 512M bytes memory which runs a Red Hat Linux 7.3. This machine is used 

for instrumenting the subject systems, executing the feature-specific scenarios, and 

capturing the raw function entry/ exit pairs. The actual analysis process for extracting 

the execution patterns and performing pattern analysis is done on a Windows XP 

professional edition which runs on a laptop with a 1.5GHZ Centrino processor, 512M 

bytes memory, an 1G bytes virtual memory. 

55 
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7.1 Dynamic Analysis of Xfig 

Xfig 3.2.3d [1] is an open source, medium-size (80 KLOC) , menu driven, C language 

drawing tool under X Window system. Xfig has the ability to interactively draw 

and manipulate gr phical objects (circle, ellipse, line, spline, rectangle, and polygon) 

through operation such as copy, move, delete, edit , scale, and rotate. In the following 

we discuss the steps of applying the proposed dynamic analysis technique on the Xfig 

drawing system. 

7.1.1 Feature-Specific Scenario Generation 

In order to extract the core functions that implement a specific feature (e.g., flip 

in Table 7.1) we define a group of feature-specific scenarios to target this feature 

and execute on th instrumented Xfig system to obtain the corresponding function 

entry/ exit pairs. Figure 7.1 depicts the adopted strategy to single out a targeted 

feature by means fa set of task scenarios. In this setting, a group of seven scenarios 

have been selected that all begin from the start up operation and finish in the ter

minate operation. Each scenario has a distinct path within the Drawing component, 

but shares the sa e path (i.e., flip operation) within the Editing component. The 

group of task seen rios shown in Figure 7.1 form a feature specific scenario set, where 

the flip operation is the specific feature. We apply the above strategy to generate 

feature-specific scenario sets that each target one feature of the Table 7.1. 

7 .1. 2 Execut ion Pattern Extraction 

For each feature-s ecific scenario set S,p, we execute the scenarios of S,p on the instru

mented Xfig syste and obtain the corresponding function entry/ exit pairs. After 

pruning the extracted entry/exit pairs from loop-based function calls (Section 5.3. 1) 
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Circle-Diameter 10 7234 2600 46 33 
Draw Circle-Radius 10 8143 2463 48 32 

Ellipse Ellipse-Diameter 10 6405 2536 41 37 
Ellipse-Radius 10 7351 2549 39 35 
Move Objects 4 11887 3166 31 53 

Copy Copy Objects 4 11460 3269 37 50 
Closed Interpolated 10 18635 4434 58 63 

Draw Interpolated 10 15469 4038 66 49 
Spline Approximated 10 15057 5362 61 47 

I Scale I Center Scale 4 8088 1541 30 47 

I Flip I Flip up-Right 4 7296 1378 29 46 
I Rotate I Rotate Clockwise 4 6974 1544 28 44 

I Delete I Delete Objects 4 6580 1181 19 56 

Table 7.1: The result of execution trace extraction and execution pattern mining for 
a collection of 7 Xfig feature families and their specific features. 

we apply the exec tion pattern mining process to obtain the patterns of function 

call sequences. Table 7.1 presents the statistical information for the experimented 

features of the Xfi · system. 

7.1.3 Concept Lattice Analysis 

In this analysis, we supply the resulting execution patterns of the Xfig experiments to 

a concept lattice generation tool (concept explorer [4]) in order to view the distribution 

of the feature functions on the lattice. As it was discussed in Section 5.5 the feature-

specific concepts (i .e., a concept whose extent consists of a single feature) remain in 

the lower region of the lattice, and collect the functions that exclusively implement 

specific features. Similarly, concepts with omnipresent functions (i.e., a concept which 

is labeled with functions that are shared among a majority of concepts) appear in 



CHAPTER 7. EX ERIMENTS 

(Move 
( Edit 

58 

Figure 7.1: A Feat ure-specific scenario set for Xfig drawing tool. The group of sce
narios apply the Flip operation on different graphical objects. 

the upper region of the lattice. Viewing the distribution of the concepts and their 

functions throughout the concept lattice allows to get insight into the structure of 

the feature-specific concepts and their functions. 

Consequently, it allows us to collect the group of functions that correspond to 

different feature-f milies. In Figure 7.2 three dashed circles at the bottom illustrate 

the group of concepts and their functions that implement the core functionality of 

the feature familie of ellipse, copy, and spline. 

7.1.4 Structural Evaluation 

Finally, based on inspecting the source files of Xfig, we measure the structural cohesion 

of corresponding source files, as well as the feature functionality scattering of the 

features under study. The results of this evaluation for three feature families Draw 

Ellipse, Copy, and Draw Spline are presented in Table 7.2. 

For the three entioned feature families we inspect the Xfig source files that define 
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Figure 7.2: Conce t lattice representation of the extracted features and their corre
sponding functions for the Xfig drawing tool. The group of concepts corresponding 
to three feature fa ilies and the omnipresent functions are shown by dashed ovals. 

the functions that implement the corresponding logical module of that feature family. 

The results of me uring the structural cohesion SC,p (m) of these files are presented 

in Table 7.2. These results indicate that file d_ellipse has high cohesion with respect 

to logical module of feature family Ellipse; files e_copy, and e_move are also highly 

cohesive with respect to feature family Copy; and finally, file d_spline is cohesive with 

respect to feature family Spline. However, study of the feature functional scattering 

measures allows u to better interpret the characteristics of these logical modules. 

For example, in th case of Ellipse a portion of the logical module is located in a large 

structural module u_elastic which results in a high functional scattering measure. 

Whereas, in the c e of Copy feature family, the logical module almost covers two 
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Feature I Contributed IFml IFm n F¢1 Structural Functional 
¢ File (m) Cohesion Scattering 

SCq,(m) FS(¢) 
d_ellipse.c 16 12 75% 

Ellipse u_elastic.c 67 8 12% 57% 

I Copy 
I e_copy.c 5 3 60% 

e_move.c 4 3 75% 32% 

dJine.c 9 2 22% 
Spline d..spline.c 6 5 83% 

u_bound.c 19 2 11% 
u_draw.c 75 14 19% 66% 

Table 7.2: Structural cohesion and feature functional scattering measures for three 
different feature fa ilies of the Xfig. 

structural modules e_copy and e_move which indicates low scattering. 

In the case of pline, the logical module is almost equally scattered among four 

structural modules each covering a small portion of the structural modules and hence 

indicating high functional scattering. The results in Table 7.2 are promising in the 

sense that they reflect meaningful measures with respect to the sizes of logical and 

structural module · shown. Regarding the results of our structural evaluations, we 

can predict high aintenance activities regarding any change to the feature families 

Ellipse and Spline. Similarly, changes to the Copy feature family would not propagate 

throughout the sy tern which indicates less maintenance activities. 

7 .1. 5 Characteristics 

In the followings, we discuss the important properties of the proposed pattern based 

dynamic analysis technique using the Xfig case study. 

• Mapping logical modules onto structural modules 

Table 7.3 demonstrates the results of experimentation with Xfig tool to reveal 

the core functions for three Xfig features. We focus on drawing a figure in the 
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ellipse family includes circle, ellipse and such that each figure can be drawn in 

two different ways, i.e., by-radius and by-diameter. Furthermore, we expand our 

experiments nan editing operation of the Xfig tool (i.e. , copy graphical objects) 

as well as another family of graphical objects (i.e., spline) . The extracted logical 

modules are shown in Table 7.3 and according to the Xfig naming convention 

it is clear th t the logical modules truly reflect the core functions of the feature 

families. 

• Focusing on the important sub-traces 

Table 7.1 represents the attributes of a group of feature-specific scenario sets 

that we use i the analysis process. This table illustrates a major characteristic 

of the prop sed dynamic analysis with regard to reducing the scope of the 

analysis front huge sizes of the execution traces (Average Trace Size) to the 

manageable sizes of the execution patterns (Average Pattern Size). 

• Separating common patterns from feature-specific patterns 

Figure 7.2 illustrates the mapping of extracted Xfig's feature related functions 

on the cone pt lattice. In this lattice, the upper nodes collect omnipresent 

functions of Xfig corresponding to common patterns, including: software ini

tialization and termination, mouse pointer handling, canvas view updating, and 

side ruler management. In addition, the specific functions that exclusively im

plement a fe ture are located in the lower region of the concept lattice through 

feature-specific concepts. Table 7.3 represents the core functions that imple

ment the cert ain family features of Xfig (i.e., Copy Object, Draw Ellipse, Draw 

Spline). 



CHAPTER 7. EXPERIMENTS 

Feature 
Family 

Ellipse 

Copy 

Spline 

Extracted Core Functions 
representing logical module F<Pq, 

init_circlebyradius_drawing, elastic_cbr, resizing_cbr, create_circlebyrad, 
circlebyradius_drawing...selected, init_circlebydiameter_drawing, 
elastic_cbd, resizing_cbd, create_circlebydia, circlebydiame-
ter _dra ving...selected, init_ellipsebydiameter _drawing, elastic_ebd, 
resizing_ebd, create_ellipsebydia, ellipsebydiameter _drawing...selected, 
iniLelli sebyradius_drawing, elastic_ebr, resizing_ebr 
create_ellipsebyrad, ellipsebyradius_drawing...selected, add_ellipse, 
pw _cur e, create_ellipse, center _marker , draw _ellipse, redisplay _ellipse, 
ellipse_bound, lisLadd_ellipse, setJatestellipse, toggle_ellipsemarker , 
list_delete_ellipse 
copy ...selected, iniLcopy, init_arb_copy, setJastlinkinfo, iniLarb_move, 
init_move, move...selected, setJastposition, seLnewposition, movingJine, 
initJinedragging, adjusLpos, placeJine, translateJine, adjustJinks, 
placeJine..x 
spline_drawing...selected, init...spline_drawing, getjntermediatepoint, 
elastic ine, unconstrainedJine, toggle...splinemarker, h_blend, g_blend, 
draw ...spline, spline_bound, step_computing, point_computing, 
spline...segmenLcomputing, poinLadding, create...splineobject , re
display ...spline, negative...s2jnfiuence, next...spline_found, valid
splinej _mask, init_trace_drawing, init...spline_drawing2, last...spline 
list_ad ...spline, create...spline, make...sfactors, create...sfactor, add...spline, 
setJate tspline, positive...s2jnfiuence, positive...sljnfiuence, com
pute_open...spline, Lblend, negative...sljnfiuence, general...spline_bound, 
aprox...spline_bound, compute_closed...spline 
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Table 7.3: Results of dynamic analysis on Xfig drawing tool. The core functions 
(right column) cor espond to the specific Xfig features (left column). 

7.2 Dynamic Analysis of Pine 

Pine 4.4.0 [2] is a open source, medium-size (207 KLOC), C language email client. 

Pine is a tool for reading, sending, and managing electronic messages. Feature func-

tionalities of Pine an be categorized as belows. 

• Online help specific to each screen and context. 

• Message index showing a message summary which includes the status, sender, 

size, date and subject of messages. 

• Commands t view and process messages: Forward, Reply, Save, Export , Print , 
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Compose 8 90081 24636 95 172 
Folder List 4 48335 11205 25 491 
Message Index 5 67741 19529 44 345 
Address Book 3 59221 16024 71 212 

Table 7.4: The res lt of execution trace extraction and execution pattern mining for 
a collection of 4 different Pine features. 

Delete, capt re address, and search. 

• Message composer with easy-to--use editor and spelling checker. 

• Address book for saving long complex addresses and personal distribution lists 

under a nickname. 

• Message att chments via the Multipurpose Internet Mail Extensions (MIME) 

specification. MIME allows sending/receiving non-text objects, such as binary 

files , spreads eets , graphics, and sound. 

• Folder management commands for creating, deleting, listing, or renaming mes-

sage folders. Folders may be local or on remote hosts. 

In our case st dies, we examine four different features of the Pine for compos-

ing emails , managing the folder lists, address book, and message index. In order 

to extract the core functions implementing a specific feature, we define a group of 

scenarios to target that feature and consequently extract the corresponding group of 

functions through xecution pattern extraction process (see Table 7.4). By repeating 

this process and targeting other features of the system with proper sets of scenarios, 

we would incrementally explore the system's overall functionality. By spreading the 
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extracted execution patterns over a concept lattice (see Figure 7.3), we separate the 

omnipresent functions from specific functions that implement experimented features 

(see Table 7.5). Fi ally, based on inspecting the source code of the Pine, we measure 

the distribution of functions implementing each examined feature over the structural 

units (see Table 7. ). 

Feature 
Family 
Address book 

Folder list 

Message index 

Extracted Core Functions 
representing logical module 

ab...resize addr_book addr _book...screen adrbk_check...alLvalidity _now 
adrbk_check_andJix adrbk_checkJocaLvalidity adrbk_check_validity 
adrbk_num_fromJineno adrbk_write ae calculateJield_widths 
cur _addr _book cur js_open display _book dlc..next dlc_prev 
dlc...siblings draw _canceL..keymenu end_adrbks entry js...addkey en-
try js_askserver entry js_clickable entry jsJistent erase_checks 
era e...selections file_attrib_copy firstJine flush_dlc_from_cache 
get_display Jine geLtop_dLoLadrbk hashtable...size in_dir 
iniLadrhash...array intr J:J.andling_on intr _proc is_empty 
me u_clear_cmd_binding menujniLbinding paintJine rd_check...remvalid 
renameJile skip_to..next..nickname tempfilejn...same_dir temp_nam 
wa.:-_nonexistenLtmp_name writeJ:J.ashJ:J.ea.der writeJ:J.ash_table 
writeJ:J.ash_trailer write...single_abook_entry write...single_entryref 
compare_names context ...screen end bold folder Jister 
folder Jister ....km...rnana.ger folder Jist _handle folder Jist_text 
folder Jist_ write folder Jist_ write_prefix folder _processor 
folder ...screen folder ...selecLpreserve folder ...select ...restore free _handle 
freeJ:J.andleJoca.tions handle_on_pa.ge new _handle q...status...rnessage2 
re raw ...scrolLtext refresh _folder Jist reseLcontext_folders 
scrollJ:J.andle_obscured scrollJ:J.a.ndle...setJoc selected_folders 
body _parameter body _type ..names clear _cur _embedded_color 
col r _a_quote decode_ text describe...rnime formaLblip...seen for
ma t...rnessage format ...mime ...size format...size_guess gLcontrolJilter 
gLescapeJilter gfJine_test gfJine_test_freejns gfJine_tesLopt 
maiL view ...screen nexLa.ttachment percentage pine _header ...standard 
rfc l738...scan rfc223Lget_para.m rfc2369....editorial so..nputs strsquish 
type_desc urlJ:J.ilite urlJ:J.iliteJ:J.dr view _writec view _writec_destroy 
view _writecjnit view _writec....killbuf webJ:J.ost...scan zero...atmts 

Table 7.5: Part o..: the results of dynamic analysis on Pine email client. The core 
functions (right column) correspond to the specific Pine features (left column). 

For each feature in Table 7.4 we inspect the Pine source files that define the func

tions that implement the corresponding logical module. The results of measuring the 

structural cohesion SC,p (m) of these files are presented in Table 7.6. These results 
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Feature Contributed IFml IFm n F¢1 Structural Functional 
¢ File (m) Cohesion Scattering 

SC¢(m) FS(¢) 
context.c 13 2 16% 
bldaddr.c 78 9 12% 

Compose send.c 99 57 56% 
reply.c 65 12 19% 74% 

I Folder L1st I folder.c 88% 

adrbklib.c 
Address Book addrbook.c 80% 

I Message Index I pine/mailview.c 126 83% 

Table 7.6: Structural cohesion and feature functional scattering measures for four 
different features the Pine email client. 

indicate high degree of scattering and low coupling among the examined feature fam-

ilies of Pine. Files context, bldaddr, and reply has low cohesion with respect to logical 

module of feature Compose; file send shows high cohesion with respect to feature 

Compose. However , study of the feature functional scattering measures allows us to 

better interpret th characteristics of these logical modules. For example, in the case 

of Compose a port ion of its logical module is located in a large structural module 

send which results in a high functional scattering measure. 
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I addressBook I ' I folderlist I 

Figure 7.3: Conce t lattice representation of the extracted features and their corre
sponding functions for the Pine email client. 



Chapter 8 

Conclusion and Future Work 

In this thesis, we proposed a novel approach to dynamic analysis and structural as

sessment of a soft are system that takes advantage of frequent patterns of execution 

traces that exist within the executions of a set of carefully designed task scenarios. 

The proposed approach benefits from the discovery nature of data mining techniques 

and concept lattic analysis to extract both feature specific and common functions 

that implement important features of a software system. The resulting execution 

patterns provide discovery of valuable information out of noisy execution traces. The 

proposed approac is centered around a set of task scenarios that share a specific sys

tem feature and i traduces a means for measuring the impact of individual features 

on the structure of the software system. The whole process consists of several steps 

such as: software mstrumentation; feature-specific scenario set selection; loop-based 

execution trace elimination; execution pattern extraction; and finally structural as

sessment of the s ftware system. The proposed technique has been applied on two 

medium size inter ctive software systems with very promising results in extracting 

both feature-specific and common functions. Moreover, the level of "structural co

hesion" and "feature functional scattering" are measured that provide a way for 

67 
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assessing the structure of the experimented tools . 

8 .1 Discussion 

In this section, we iscuss the characteristics of the proposed sequential pattern anal

ysis. With regard to our definition for an execution pattern as a continuous sequence 

of function calls, " 'e extract core functions that implement specific functionalities of 

the system. By extending the definition of the execution pattern to include noncon

tinuous function i vocations, we can extract function patterns that implement more 

general functionali ties; however such an expansion may result in extracting mean

ingless execution atterns (by joining unrelated parts of the execution trace to form 

a new pattern) and generating an overwhelming number of patterns. The general 

algorithms for seq ential pattern mining in the data mining literature would allow 

extracting patterns that have functions interleaved with the extracted patterns. The 

study of trade-off etween discovering execution patterns that implement more gen

eral functionality and dealing with an overwhelming number of extracted patterns 

would be a more c allenging problem that is listed in our future work tasks. 

Moreover, we can employ other pattern mining techniques such as tree-pattern 

mining, where the pattern miner looks for identifying patterns that exist among dy

namic call trees as opposed to our technique that identifies patterns among execution 

traces. 

8.2 Future Work 

Currently, we apply our technique to the problem of feature identification, however 

the application of execution patterns in software architecture recovery by augment-
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ing the current static analysis technique must also be considered. This will make 

a hybrid technique that enhances the power of static analysis techniques such as 

clustering, pattern matching, and concept lattice analysis with dynamic analysis in

formation of the s ftware under investigation. The result of the proposed dynamic 

analysis technique can be used to incorporate semantics to the existing static analy

sis techniques. The future tasks include the investigation of noncontinuous execution 

patterns as well as proposing effective pruning methods at the execution trace gener

ation to allow analysis of very large traces over lOOK functions. (e.g. Apache, MySql) . 



Appendix A 

Tool D ocumentation 

We design the Dy amic Alborz toolkit as a data centralized and user interface driven 

architecture. Six components are designed to collaborate with each other and fulfill 

the functionalities of the system. These components are User Interface (UI); Datas

tore; Preprocessing; Pattern Mining; Post-processing; and Environment. Figure A.l 

is a standard UML component diagram which describes the detail of each component 

and relationships among them. The environment component in the diagram does not 

represent a concret e component in the system, but some external tools used by the 

system, e.g. instr mentation tools used for extracting execution traces and concept 

lat tice tool used f r lattice visualization. 

A.l Architectural Design 

In the following sections, we elaborate the functionalities and interface of each com

ponent. 

User Interface Component 

UI closely collaborates and controls other components within the Dynamic Alborz 
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<< Component>> 
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External tools: 
-Instrumentation tool (Aprobe) 
-Concept explorer 

-Raw execution traces 
,.--1-- ---1 -Pumed execution traces Pattern ' -Second seauential pattern mining 

retrieval '>!-------,------------' 

' ' I 
' I <: -- ... 

' Formal Context ~ 
Storing Pattern Mining 

Pattern Storing 

I I 

<<Component>> 
Pre-Processing 

-Dynamic call graph construction 
- Loop-free execution trace generation 

fl.. 
Pruned Trace 

retrieval 

fl.. 
'- ---- -

--- - -- - -- ---

<< Component >> 
Data Mining 

-Sequential pattern mining 
-Sub-pattern ellimination 

L_ _________ ___, 

F igure A.l: Com onent digram of the Dynamic Alborz plugin m the Eclipse envi
ronment. 

plugin and interacts with the user throughout the analysis phases. Almost all the 

events and requests in the system are emitted from this component. UI consists of 

the following part : 

• Dynamic Alborz Run Wizard: This wizard helps the user to perform the main 

task of the ynamic Alborz. This wizard consists of the following parts: 

Trace data extraction page: which controls the operations of the prepro-

cessing component by guiding the operations within the toolkit. It allows 

the user to: i) extract execution traces for dynamic analysis; ii) preprocess 

execution t races and eliminate loop-based redundancies; vi) store system 

data in the local Datastore to be used for the further analysis phases. 
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- Data mining page: that assists the user throughout the steps for the se

quential pattern mining operation, such as: minimum support selection. 

Pattern Analysis page: that controls the pattern analysis process and al

lows the user to select system features that should be included in a specific 

analysi session. 

• Config Wizard: This wizard helps the user to set up the environmental variables 

of the Dynamic Alborz, such as: system work path, and path to the Concept 

lattice analysis tool. 

• Perspectives, vzews, menus and tool-bars: a series of standard Eclipse user

interface elements used for integrating Dynamic Alborz with the Eclipse plat

form, such as: system data navigator, feature view, pattern analysis result view. 

Datastore C mponent 

Datastore is the c nter of the Dynamic Alborz structure and allows the system com

ponents to communicate with each other through this component 's interfaces. Files 

are used for stori g: raw execution traces; pruned execution traces; raw execution 

patterns; formal contexts; and results of the entire dynamic analysis. This compo

nent acts as an int rmediate object which connects other components in the system. 

All other compon .nts which need to store data or retrieve data communicate with 

this component through its interfaces. Internally, the datastore component stores 

everything in a dir ctory structure which uses the local data store as its underlaying 

media. 

Post-processing Component 

Encapsulates all the functionalities that are required in the pattern analysis phase 

including: 
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• execution pat tern translation, that provides statistical information about the 

extracted execution patterns such as number of extracted patterns and aver

age pattern length, it also locates each execution pattern in its corresponding 

execution traces 

• formal conte. t generation, that parses the generated execution patterns and 

generates formal context tables 

• second pattern generation, that parses the generated execution patterns and 

applies the second sequential pattern mining. 

Preprocessing Component 

The preprocessing component encapsulates the functionalities and algorithms re

quired for dynamic call graph construction and loop-free execution trace construction. 

An implementation of the Crochemore string processing algorithm is used for finding 

the loop-based execution traces. 

Data m ining Component 

Provides an implementation of the sequential pattern mining algorithm that parses 

the pruned execution traces and extracts sequential patterns among them. It also 

prunes the generated execution patterns and eliminates sub-patterns. 

A.2 Design Pattern 

In this section, we discuss the approach that we used for enhancing the structure of 

the prototype Dynamic Alborz system and hence obtaining the extensibility. Fig

ure A.2 describes ow Observer pattern is used when we integrate Dynamic Alborz 

toolkit with Eclipse platform. The interface IProgressMonitor is the observer and 

IRunableWithProgress is the subject to be observed. 
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Figure A.2: Observer design pattern used in the Dynamic Alborz plugin. 

A.3 User Interface Design 

Dynamic Alborz is designed as an Eclipse plugin that makes its usage and deployment 

an easy task. The Dynamic Alborz plugin constructs the following user interface parts 

in order to integrate with the Eclipse environment: 

1. Dynamic Alborz Menu 

2. Dynamic Alborz Perspective which includes System Navigator view, Feature 

view, Pattern Analysis view, and Progress view 

3. Config Wiza d that provides a wizard-based user interface that eases the con

figuration of the system 

4. Dynamic Alborz Run Wizards that performs the analysis process. 
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Figure A.3 provides a comprehensive overview of the Dynamic Alborz plugin inside 

the Eclipse environment. In the following we explain the Dynamic Alborz Run wizard 

and Config wizard. respectively. 

Config Wizard 

The Dynamic Alborz Config wizard is designed to ease the configuration of the dy

namic analysis. Using this wizard the user can set the path for the current working 

directory of the system as well as the directory path of the Concept Explorer toolkit. 

Figure A.4 depicts this wizard inside the Eclipse environment . 

Dynamic Alborz Run Wizard 

The Dynamic Alborz Run wizard provides a wizard-based user interface that utilizes 

the dynamic analysis . Using this wizard the user can create a new subject system 

for analysis or sel ct an already analyzed system (see Figure A.5). It also provides 

a history of the a alyzed features of the selected system (see Figure A.6) that gives 

the user the choice between adding a new feature to the analyzed features of the 

selected system or starting the pattern analysis process for the selected system. In 

Figure A. 7 the wiz rd page that provides the interface for importing a new feature for 

analysis in the syst em is shown. In this page the user provides the name of the new 

feature, a description of the feature and its corresponding feature-specific scenarios, 

and the path to th pruned execution traces for this new feature. After providing the 

required informati n for the new feature the system prunes the execution traces and 

stores them in its internal data structures. In the next step the user can select the 

minimum support of the data mining operation (see Figure A.8). The results of the 

pattern mining op ration is shown in the "Statistical Results" page (see Figure A.9). 

In this page the user again has the choice between starting the pattern analysis process 

or adding a new feature for analysis to the system. In the "Pattern Analysis" page 

the user has the choice to choose among the analyzed features of the current system 
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and specify a specific analysis session consisting of the selected features. Currently, 

the system implements the Concept Lattice Analysis however in the near future the 

required components for the Second Pattern Mining would be added (see Figure 

A.lO). 
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Figure A.3: Th Eclipse workbench with the Dynamic Alborz plugin installed. 
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Dynamic Alborz stores the analyzed systems in a directory structure. called a worl<path. 
Choose a worl<path d rectory for this analysis. 
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Figure .4: Config Wizard page of the Dynamic Alborz plugin. 
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Figure A.5 : Welcome page, the first page in the Dynamic Alborz Run wizard. 
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History Page 
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Figure A.6: History page, provides a history for the selected system in the Dynamic 
Alborz Run wizard. 
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Input Trace Data 
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Figure A. 7: Input page, provides an interface for adding a new feature to the system. 



APPENDIX A. TOOL DOCUMENTATION 81 

S~quential Pattern Mining 

Please specify the level of minimum support 
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Figure A.8: Data Mining page, user can select the minimum support for the data 
mining operation. 
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Statistical Results 
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Figure A.9: Statistical Result page, provides statistical information about the ex
tracted execution atterns. 
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Pattern Analysis 

You can select the features which. you want to indude in ·analysis process . 

Anal•tsis Type~ JCancept Lattice Analysis 
·-~ .. ~· ., 

Figure A.lO: Pattern Analysis page, provides an interface for selecting the analysis 
type and the features that should be involved in a specific analysis session. 
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