DYNAMIC ANALYSIS OF SOFTWARE SYSTEMS
USING
PATTERN MINING

DYNAMIC ANALYSIS OF SOFTWARE SYSTEMS
BASED ON
SEQUENTIAL PATTERN MINING

By
HOSSEIN SAFYALLAH, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

M.A.Sc.

McMaster University
Copyright (¢©) by Hossein Safyallah, 2006

DEGREE: MASTER OF APPLIED SCIENCE (2006)
DEPARTMENT: Computing and Software
University: McMaster University, Hamilton, Ontario

TITLE: Dynamic Analysis of Software Systems based on
Sequential Pattern Mining

AUTHOR: Hossein Safyallah, B.Sc.

SUPERVISOR.: Dr. Kamran Sartipi

NUMBER OF PAGES: xi, 81

ii

Abstract

Software system analysis for identifying software functionality in source code remains
as a major problem in the reverse engineering literature. The early approaches for
extracting softwares functionality mainly relied on static properties of software sys-
tem. However the static approaches by nature suffer from the lack of semantic and
hence are not appropriate for this task.

This thesis presents a novel technique for dynamic analysis of software systems
to identify the implementation of certain software functionalities known as software
features. In the proposed approach, a specific feature is shared by a number of
task scenarios that are applied on the software system to generate execution traces.
The application of a sequential pattern mining technique on the generated execution
traces allows us to extract execution patterns that reveal the specific feature func-
tionalities. In a further step, the extracted execution patterns are distributed over
a concept lattice to separate feature-specific group of functions from commonly used
group of functions. The use of lattice also allows for identifying a family of closely
related features in the source code. Moreover, in this work we provide a set of met-
rics for evaluating the structural merits of the software system such as component
cohesion and functional scattering. We have implemented a prototype tool kit and
experimented with two case studies Xfig drawing tool and Pine email client with very

promising results.

iii

Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this masters
thesis possible. I wish to express my sincere thanks to my thesis supervisor, Dr.
Kamran Sartipi, for kindly providing guidance throughout the development of my
study and preparation of this thesis. I am greatly indebted to Dr. Kamran Sartipi
for his immense help in planning and executing this work in time. Gratitude also
goes to my second adviser, Dr. Jiming Peng, whose help and suggestions helped me
during my study.

My sincere thanks are due to the official referees, Dr. Frantisek (Franya) Franek,
and Dr. Mark Lawford, for accepting reviewing this thesis.

Finally, I would like to thank all whose direct and indirect support helped me

completing my thesis in time.

iv

Contents

1 Introduction

1.1 Problem Description
1.2 Proposed Solution

1.2.1 Proposed Framework
1.3 Thesis Contribution
1.4 Limitations of the Technique
1.5 Thesis Overview

2 Related Work

2.1 Data Mining
2.2 Concept Lattice Analysis
2.3 Dynamic Analysis

3 Formal Definitions

3.1 Scenario Model
3.2 Software System Model
3.3 Execution Pattern

3.4 Feature to Source Code Assignment

4 Techniques

O 0 N e e W

11
11
12
13

15
15
16
18
18

20

4.1 Execution Pattern Mining 20

4.1.1 Execution Pattern 21
4.1.2 Algorithm 22
4.1.3 Sub-Pattern Elimination 25
4.2 Concept Lattice Analysis 27
Dynamic Analysis 33
5.1 Imstrumentation L o L. 35
5.2 Scenario Selection 36
5.3 Execution Trace Generation 37
5.3.1 Preprocessing 37
5.3.2 Dynamic Call Tree Generation 38
5.3.3 Dynamic Call Tree Pruning 40
5.4 FExecution Pattern Generation 42
5.5 Execution Pattern Analysis 43
5.5.1 Categories of Functions in Execution Patterns 44
5.5.2 Sequential Pattern Mining Approach 45
5.6 Concept Lattice Analysis Approach 48
5.6.1 Concept Lattice Construction 48
5.6.2 Concept Lattice Analysis 49
Structural Evaluation of Software System 51
6.1 Metrics Computation o 52
6.1.1 Formal Definitions 53
6.2 Discussiono o3

vi

7 Experiments

701 Platform
7.1 Dynamic Analysisof Xfig,
7.1.1 Feature-Specific Scenario Generation
7.1.2 Execution Pattern Extraction
7.1.3 Concept Lattice Analysis
7.1.4 Structural Evaluation
7.1.5 Characteristics
7.2 Dynamic Analysisof Pine

A Tool Documentation

A1 Architectural Design

A2 DesignPattern

A3 User Interface Design

Bibliography

vii

55
95
96
56
o6
a7
58
60
62

67
68
68

70
70
73
74

84

List of Tables

4.1
4.2

7.1

7.2

7.3

7.4

7.5

7.6

An example of a relation table with 3 objects and 5 attributes.

Concepts of the context table in Table 4.1.

The result of execution trace extraction and execution pattern mining
for a collection of 7 Xfig feature families and their specific features.

Structural cohesion and feature functional scattering measures for three
different feature families of the Xfig.
Results of dynamic analysis on Xfig drawing tool. The core functions
(right column) correspond to the specific Xfig features (left column). .
The result of execution trace extraction and execution pattern mining
for a collection of 4 different Pine features.
Part of the results of dynamic analysis on Pine email client. The core

functions (right column) correspond to the specific Pine features (left

Structural cohesion and feature functional scattering measures for four

different features the Pine email client.

viii

29
30

o7

62

63

64

List of Figures

1.1

4.1

4.2
4.3

4.4

5.1

5.2

9.3
5.4

Proposed framework for identifying the implementation of the func-
tional aspects of a software system in the source code as a means to

incorporate semantics into static analysis techniques.

An execution trace repository containing 7 execution traces. The four

shaded areas correspond to four execution patterns with minimum sup-

Data structure that is used to represent a Trienode.
SubPattern elimination: (a) inserting execution patterns in Trie and
marking leaves as final and subPattern (b) final execution pattern ex-
traction, shaded areas correspond to final paths.

Corresponding concept lattice of Table4.1

Proposed framework for identifying the implementation of the func-
tional aspects of a software system in the source code as a means to
incorporate semantics into static analysis techniques.
Instrumentation: (a) sample function foo(), (b) extracted function en-
try/exit pairs for a sample execution of function foo().
Grammar for parsing the Aprobe instrumentation data.

Data structure that is used to represent a graph node.

ix

27
32

35

9.9

5.6

5.7

7.1

7.2

7.3

Al

A2
A3
A4
A5
A6

AT

A dynamic call tree that is generated for an example execution of
Procedure Foo in Figure 5.2. 39
(a) A string containing repetitions. (b) Representation of (a) in the
form of one instance of string repetition. (c¢) Another possible repre-
sentation of (a) in the form of one instance of string repetition. 41
A first generation pattern extracted of drawing a rectangle in Xfig with
the highlighted second generation patterns along with their support

COUNLS. e e e e e e e e 47

A Feature-specific scenario set for Xfig drawing tool. The group of
scenarios apply the Flip operation on different graphical objects. . . . 58
Concept lattice representation of the extracted features and their cor-
responding functions for the Xfig drawing tool. The group of concepts
corresponding to three feature families and the omnipresent functions
are shown by dashed ovals. 59
Concept lattice representation of the extracted features and their cor-

responding functions for the Pine email client. 66

Component digram of the Dynamic Alborz plugin in the Eclipse envi-

ronment. oL Lo e e e e e e e e e e 71
Observer design pattern used in the Dynamic Alborz plugin. 74
The Eclipse workbench with the Dynamic Alborz plugin installed. . . 77
Config Wizard page of the Dynamic Alborz plugin. 78
Welcome page, the first page in the Dynamic Alborz Run wizard. . . 78

History page, provides a history for the selected system in the Dynamic
Alborz Run wizard. 79

Input page, provides an interface for adding a new feature to the system. 80

A.8 Data Mining page, user can select the minimum support for the data
mining operation. Lo e e
A.9 Statistical Result page, provides statistical information about the ex-
tracted execution patterns.
A.10 Pattern Analysis page, provides an interface for selecting the analysis
type and the features that should be involved in a specific analysis

SESSION. . . . v o e e e e e e e e e e e

xi

Chapter 1

Introduction

Software system analysis for extracting system functionality remains as a major prob-
lem in the reverse engineering literature. The early attempts for extracting software
functionality mainly had a static nature and were centered on searching for patterns
of the system functionality based on program templates in a knowledge base [17].
However, static analysis suffers from the lack of enough semantics and hence is not
appropriate for functionality recovery. The static approaches are mostly useful for
extracting the structure of software systems and support specific reverse engineering
activities such as re-documentation, restructuring and re-engineering.

There is a growing attention towards the dynamic aspects of software systems
as a challenging domain in software reverse engineering [24, 13]. Dynamic analysis
deals with task scenarios that formulate the user-system interactions in an informal
or semi-formal manner. The approaches to dynamic analysis cover areas such as per-
formance optimization [23], software execution visualization [21], and feature to code
assignment [12], where in this work, we address the latter problem. Typically, to
understand the implementation of a certain feature of a system, maintainers refer to

the documentation of the software system. However, in many cases the mapping of

CHAPTER 1. INTRODUCTION 2

features to the source code is poorly documented and one has to review the entire
source code to obtain the required knowledge for this task. In this thesis, we pro-
pose a novel approach to dynamic analysis of software systems, in order to identify
the implementation of the software features in the source code. In this context, dy-
namic analysis is performed by executing a group of well-defined task scenarios on
the software system and by observing the execution results. Dynamic analysis with
its characteristics to extract system functionality has several challenges compared to
static analysis: 1) in static analysis usually a complete set of software facts are gener-
ated through parsing or lexical analysis of the source code based on a domain model,
whereas in dynamic analysis only a small subset of the possible dynamic traces are
extracted; ii) obtaining meaningful knowledge from the extracted execution traces is a
difficult task that restricts the applicability of the dynamic analysis; and iii) the large
sizes of the execution traces caused by program loops and recursions may disable the
whole dynamic analysis.

In this work, we define and execute a set of task scenarios with a specific shared
feature on the software system in order to generate execution traces. The application
of a sequential pattern mining algorithm on the extracted execution traces allows
us to obtain high-frequency patterns of functions. In a further step, we analyze the
frequently appearing patterns, in order to identify the implementation of the software
features in the source code. Finally, in a post-processing step we separate the more
general patterns(e.g., starting/terminating operations and common utility functions)
from feature-specific patterns.

Upon identifying the implementation point of a certain software feature (i.e. the
group of feature-specific functions), we assess the impact of the feature on a por-
tion of software structure that contributes to implement this feature. The proposed

structural assessment directly represents the cohesion of module(s) implementing a

CHAPTER 1. INTRODUCTION 3

specific feature; this measure of cohesion is much closer to the original definition of
cohesion (“relative functional strength of a module” [22]) than using static structural
techniques such as inter-/intra-edge connectivity of the components. Furthermore,
each group of core functions that implement a feature can be used to incorporate

semantics into the existing software architecture recovery techniques [25].

1.1 Problem Description

Software maintenance is the major activity in the software system life cycle and has a
critical importance in maintaining both legacy and newly developed software systems.
Software maintenance consists of activities including: corrective maintenance to di-
agnosis and correct the errors, adaptive maintenance to modify the software system
to properly interface with changing environments (hardware and software), perfective
maintenance to enhance the functionality of the software, and finally preventive main-
tenance to improve the future maintainability and reliability of the software system.

A prerequisite for each of the above mentioned activities is a comprehensive under-
standing of the whole software system including its design and and run-time aspects.
Early attempts for program understanding mostly have been focused on static as-
pects of the software system based on entities and dependencies in the source code
[34]. However static analysis suffers from lack of semantics and is unable to extract
the runtime behavior of the software, thus it can not address problems that have a
dynamic nature such as identifying the implementation point of the software features,
finding the execution bottlenecks and/or the less frequently used part of the system,
and understanding the interactions among different software components. Based on

the above discussion, we define the problem of this study as:

devising required process, techniques, and supporting tools for identify-

CHAPTER 1. INTRODUCTION 4

ing the implementation of the functional aspects of a software system in
the source code as a means to incorporate semantics into static analysis

techniques.

1.2 Proposed Solution

This thesis presents a dynamic analysis approach for identifying the implementation
of software features that is based on the frequent patterns of function calls in execution
traces of the software system. It also proposes an evaluation metric for assessing the
structural merits of the software system based on the degree of functional scattering

of the software features among the structural modules.

1.2.1 Proposed Framework

Figure 1.1 illustrates different steps of the proposed framework for assigning software
features onto the system modules. The framework provides a means for reducing the
large sizes of execution traces, takes advantage of the relation discovery power of data
mianing and concept lattice analysis, and allows us to measure the impact of individual
features on the structure of the system.

This process consists of four stages: Erecution trace extraction; Execution pattern
mining, Ezecution pattern analysis; and Structural evaluation. In the rest of this

section these stages are briefly described.

e Fzecution trace extraction: important features of a software system are iden-
tified by investigating the system’s user manual, on-line help, similar systems
in the corresponding application domain, and also user’s familiarity with the

system. A set of relevant task scenarios are selected that examine a single soft-

CHAPTER 1. INTRODUCTION 5

Functi Set of
| Feature-Specific Scenario Execution | Entry—Exit Execution
Feature Scenario set on Instrumented [Pairs Pre-Processing | Traces | Execution Pattern
At »l Selection System Mining
,
,
' Pattern Repository
' $4 4 ¢ €<
1
' Executl
| NowScanario SatSelectin | %j % g g - Patms
Scenario-Set cenario cenatio séen%ué
Traces Set 1 Set2 Set3
Second Pattern
Omnipresent Pattern Generation
Feature-Specific All Execution A~
Pattern Patterns V \ \\; ey
R T
X< Py i Assigning Measuring
Concept Lattice | Y e ! #-{ Featurs Functionality —#| Feature Impact on
Analysis to System’s Structure
Sy Modul

A family of relevant
features (circle, ellipse, ...)

Figure 1.1: Proposed framework for identifying the implementation of the functional
aspects of a software system in the source code as a means to incorporate semantics
into static analysis techniques.

ware feature. We call this set of scenarios as feature-specific scenario set. For
example, in the case of a drawing tool software system, a group of scenarios that
share the “move” operation to relocate a figure on the computer screen would
constitute such a feature-specific scenario set. In the next step, the software un-
der study is instrumented! to generate function names at the entrance and exit
of a function execution. By running each feature-specific scenario against the
instrumented software system a sequence of function invocations are generated
in the form of entry/exit pairs. To make the large size of the generated traces
manageable, in a preprocessing step we transform the extracted entry/exit pairs
into a sequence of function invocations and also remove all redundant function

calls caused by the cycles of the program loops. The trimmed execution traces

Instrumentation refers to the process of inserting particular pieces of code into the software
system (source code or binary image) to generate a trace of the software execution.

CHAPTER 1. INTRODUCTION 6

are then fed into the execution pattern mining engine in the next stage. The

preprocessing operation will be discussed in more details in Section 5.3.1.

e FExecution pattern mining: in this stage, we reveal the common sequences of
function invocations that exist within the different executions of a program
that correspend to a set of task scenarios. We apply a sequential pattern min-
ing algorithm on the execution traces to discover such hidden execution patterns
and store them in a pattern repository for further analysis. This stage will be

discussed in more details in Section 4.1.

e FEzecution pattern analysis: each execution pattern is a candidate group of func-
tions that implement a common feature within a scenario set. We employ a
strategy to spotlight on functions in execution patterns corresponding to spe-
cific features within a group of scenario sets. This is performed by identifying
those patterns that are specific to a single software feature within one scenario
set (namely feature-specific patterns). Similarly, we identify the patterns that
are common among all sets of scenarios (namely omnipresent patterns). In
Figure 1.1 a sketch of the scenario-set execution traces and feature-specific /
omnipresent patterns are shown. Even for a specific feature, a large group of
execution patterns are generated that must be organized (and some must be
filtered out) to identify core functions of a feature. We employ two different
mechanisms for this purpose: concept lattice analysis and second sequential
pattern mining technique. Concept lattice is an ideal tool for such a task, hence
we use the visualization power of concept lattice to generate clusters of functions

within feature-specific functions and omnipresent functions. Alternatively, we

CHAPTER 1. INTRODUCTION 7

apply the sequential pattern mining for the second time on the extracted exe-
cution patterns of the previous steps to separate feature-specific patterns from

omnipresent patterns. This step is discussed in Section 5.5.

e Structural evaluation: in a further operation, by associating the functions of
feature specific patterns, which implement the corresponding feature, to the
system’s structural modules, i.e., files of the system, two metrics for measuring
module cohesion and feature functional scattering are obtained that together
provide a means for measuring the impact of individual features on the structure

of the software system.

1.3 Thesis Contribution

This thesis presenss an approach in dynamic analysis of software systems to asso-
ciate software functionalities to source code and as a byproduct provides a means
for structural evalunation of software systems. The proposed approach takes advan-
tage of dynamic analysis, data mining technique sequential pattern discovery, string
processing algorithm repetition pattern finding, as well as the visualization power
of the concept lattice analysis to provide comprehensive information about the soft-
ware system from different aspects. The contributions of this thesis to the software

maintenance field can be categorized as follows.

e Devised a novel pattern based approach to dynamic analysis of a software system
that employs data mining techniques to extract valuable information out of

noisy execution trace data.

e Proposed a technique to reduce the large sizes of the execution traces by elimi-

nating the loop-based repetitions.

CHAPTER 1. INTRODUCTION 8

e Proposed a rew technique for eliminating the sub-patterns that are generated

along with the execution patterns.

e Identified the set of core functions that implement both specific features and

common features of software systems.

e Provided a measure of scattering of the feature functionality to the structural

modules as well as a measure of cohesion for a structural module.

e Visualized the functional distribution of specific features on a lattice using con-

cept lattice analysis.

As a result of this research, we implemented a prototype tool as an Eclipse [3]
plug-in using Java programming language. The implemented toolkit and the case

studies are discussed in Chapter 7.

1.4 Limitations of the Technique

The presented approach in this thesis has some limitations as follows.

Limitations pertinent to the dynamic analysis approach: the proposed dy-
namic analysis is based on executing a group of feature-specific task scenarios
on the program under study and observing the runtime executions; hence, the
familiarity of the user with the application domain and the subject system is re-
quired. In addition, similar to any dynamic analysis technique the results of the
proposed dynamic analysis indicate the properties of the input task scenarios

rather than the properties of the entire system.

Limitations pertinent to the current implementation: there are many chal-

lenges in dynamic analysis of a software system that might restrict the applica-

CHAPTER 1. INTRODUCTION 9

bility of the current implementation of the technique; among them, managing
the huge sizes of the execution traces (tens of thousands of function calls in
a medium size system), dealing with large number of extracted patterns from
data mining operation, and identifying the real patterns from noise patterns,

are notable.

1.5 Thesis Overview

The remaining chapters of this thesis are organized as belows.

Chapter 2: describes an overview of the related work in the area of dynamic analysis

of the software system and feature to source code assignment.

Chapter 3: provides a detailed discussion of the formal definitions that are used

throughout the thesis.

Chapter 4: presents a discussion of the techniques and algorithms that are em-
ployed throughout this study, including the sequential pattern mining algorithm,
execution pastern post-processing algorithm, and concept lattice analysis tech-

niques.

Chapter 5: presents the dynamic analysis approach for software feature to source
code assignment. In this chapter, the steps of the proposed approach are ex-

plained in detail.
Chapter 6: provides the proposed structural evaluation technique.

Chapter 7: presents the results of the experimentations with the Xfig drawing tool

and the Pine email system.

CHAPTER 1. INTRODUCTION 10

Chapter 8: provides a conclusion for the whole thesis and forms the basis for the

future research.

Appendix: describes the implementation of the proposed prototype toolkit as an

Eclipse plug-in.

Chapter 2

Related Work

In this section, we briefly present the approaches in dynamic analysis of a software
system that relate to our works. In Section 2.1 we describe the approaches in software
reverse engineering that employ data mining techniques. Section 2.2 elaborates on
the existing approaches of application of concept lattice analysis in the software re-
verse engineering, and finally, in Section 2.3 we present recent approaches in dynamic

analysis of software systems.

2.1 Data Mining

Fayyad et al. [16 defines data mining in databases as the non-trivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in
the large databases. Data mining, in fact, aims at discovering unexpected, useful and
simple patterns, and it is an inter-disciplinary research area. Recently, the application
of data mining techniques in the software reverse engineering has been investigated.
In static analysis of software systems, Montes and Carver [10] use association rule

mining to identify subsystems in the database representation of the software system.

11

CHAPTER 2. RELATED WORK 12

Sartipi [27] proposes a clustering method based on application of association rule
mining where the similarity values between the system entities are defined based on
the extracted association rules. In dynamic analysis of software systems, El-Ramly
et al. [14] applied a sequential pattern mining technique to find interaction patterns
between graphical user interface components. Their algorithm, so-called IPM, discov-
ers frequently occurring patterns in program’s interface snapshots. Consequently, an
expert translates the extracted patterns to a use-case scenario. In [35] a web-mining
technique is applied on program dynamic call graphs, where nodes represent classes
and edges represent method invocation. In this approaches, classes (nodes) that de-
pend on many other classes are identified using the web mining algorithm HITS. As
a result, the classes in the software system that play an active role in the system
are identified through this approach. In the presented approach in this thesis, we use
data mining algorithm sequential pattern mining in order to extract frequent patterns
of function calls. In this work, we utilize the ”support” of each extracted pattern to

filter out the noisy patterns.

2.2 Concept Lattice Analysis

Concept lattice analysis provides a way to identify groupings of objects that have com-
mon attributes. The mathematical foundation was laid by G. Birkhoff [7] in 1940.
In 1993, work on the application of concept lattice analysis in the area of reverse
engineering was initiated. Concept lattice analysis has been used for modulariza-
tion of legacy code [28, 18, 31], where the relation between program functions and
their attribute values (e.g., global variables, used types) are the basis for concept
construction.

Recently, the application of concept lattice in dynamic analysis of software systems

CHAPTER 2. RELATED WORK 13

has been investigated. Eisenbarth et al. [12, 13] proposed a formal concept lattice
analysis to locate computational units that implement a certain feature of the software
system. They define a relation between task scenarios and program functions, where
all the functions that are invoked during execution of a task scenario is considered
as the attribute of that scenario. Similarly, we apply concept lattice analysis to the
relation between specific feature in a scenario and certain program functions invoked
during the scenario execution. However, we filter out noise functions by applying
sequential pattern mining which has a huge effect on reducing the complexity and
increasing the understandability of the concept lattice. Tonellan et al. [30] applied
concept lattice analysis on execution traces of a software system to mine the potential
program-aspects that exist in the software.

Concept lattice analysis and data mining techniques both extract maximal se-
quences of execution traces that contain important information to be analyzed. How-
ever, sequential pattern analysis has the control over the number of generated common
traces using the minimum support. In the proposed technique we amalgam the ad-
vantages of both techniques to explore the non-trivial execution patterns as a means

to explore the functionality of a specific software feature.

2.3 Dynarmic Analysis

In [6, 15], Bell and Ernst studied the characteristics of dynamic analysis of software
systems and compared the properties of dynamic analysis technique with those of
a static analysis. A typical approach to dynamic analysis of a software systems is
based on executing a set of task scenarios on the software system and analyzing
the corresponding execution traces. In an approach to software understanding using

execution traces Pauw et al. [21] visualized the execution traces of object-oriented

CHAPTER 2. RELATED WORK 14

programs and provided a set of navigational and analytical techniques to facilitate
the execution trace exploration in various abstraction levels. Fischer et al. [19] used
execution traces as clues for tracing the evolution of a software system. In [36] a
heuristic exploration to execution traces has been proposed that aims at clustering
the program functions based on their invocation frequency. Execution traces are also
used in performance analysis of software systems. In [20, 33, 8] performance analysis
of parallel system is studied by using execution traces of the software systems. In
[8, 33] a program’s execution trace is searched for certain predefined patterns that in-
dicate inefficient behavior. In [11] a time interval analysis is applied to the execution
traces to locate components that implement a certain feature in a distributed appli-
cation. Traces of execution within the intervals with and without a specific feature
being active are compared to locate the code component that implement that specific
feature. Although this method is quite interesting, but since activation of a feature
might be interleaved with other functionalities of the software, determining an exact
time interval for activation of a specific feature is not always feasible.

N. Wilde et al. [32] proposed a set difference approach for locating software fea-
tures in the source code; where the set of functions in the related scenario executions
(those that execute a specific feature) are differentiated from scenario executions that
do not invoke that specific feature in order to extract the specific feature’s function-
ality. In our approach, we also use the notion of feature specific scenarios, however
we extract patterns of execution traces as evidences of the feature functionality.

In contrast to the above techniques, our approach exploits a novel analysis tech-
nique to handle large sizes of the execution traces, and allows an intuitive and promis-
ing process of feature to component allocation that consequently leads us to measure

the functional scattering and cohesiveness of the software structural units.

Chapter 3

Formal Definitions

In this chapter, we define the common terminology that we use throughout this
thesis to describe she execution pattern mining and pattern analysis aspects of the
proposed approach. We provide a model for representing the task scenarios in Section
3.1. In Section 3.2 a representation for a software execution using dynamic call tree
is provided. In Section 3.3 we present the definitions for execution pattern mining.
Finally, Section 3.4 uses the definitions presented in this chapter in order to model

the feature to source code assignment problem.

3.1 Scenario Model

In the context of this work, we model a scenario as a sequence of relevant features of
the software systern. In this way, each software feature is considered as the building

blocks of the task scenarios.

e feature ¢ is a unit of software requirement that describes a single functionality

in the software system under study. ® is the set of all features in the system.

15

CHAPTER 3. FORMAL DEFINITIONS 16

e scenario s is a sequence of features ¢ € ®; thus

s = [¢1,¢P2,...,¢n]. Also S is the set of all applicable scenarios on the system.

o feature-specific scenario set Sy is a set of scenarios that share specific feature ¢;

thus!

Sy={s|s€eS NI ese ¢ =09}

3.2 Software System Model

Based on the static dependencies that exist in the source code of a software system,
one can model the software system with a call graph, where nodes represent functions
and edges represent function calls. In this representation each scenario execution on
the software systera corresponds to a traverse on the system call graph. In order to
formalize the dynamic aspects of the software system in this work, we represent this
source graph traversal with a dynamic call tree. In this representation, two different
invocations of a single function are represented with two different nodes and edges of

the tree are representing the function calls.

o Let F be the set of all function names in the subject software system.

e Let 7' be the set of all invocations (calls) of functions f € F. In this context,

two different invocations of a single function f € F are represented as f' and

f7 (i # j)-

e Dynamic Call Tree (DCT) is a tree which represents the execution of a scenario

on the software system. In this representation, nodes represent functions and

1We use set membership operator € as a sequence membership operator as well.

CHAPTER 3. FORMAL DEFINITIONS 17

edges represent function calls. DCT =< F', E >, where E is a set of ordered

pairs 2such that: E C F' x F'

e Dynamic call tree preprocessor Il is a tree pruning operation which removes
multiple instances of identical subtrees in a dynamic call tree that are repeated

under a part.cular parent node. Il : DCT — DCT

In this work, dynamic call trees are obtained from execution of task scenarios on
the instrumented software system. We model a software system as a set of all possible
dynamic call trees that each corresponds to one task scenario execution. We also
model a scenario execution as a look up operation which returns the corresponding

dynamic call tree of a scenario in the software system.

e Let software system ¥ be the set of all possible dynamic call trees.

e Let scenario execution £(s) on software system ¥ be a look up function which

returns the corresponding dynamic call tree of scenario s. £ : S — ¥

We transform a dynamic call tree to an execution trace for further analysis in this
work. Each execution trace is represented with a sequence of function names. In this
formalism, execution traces are built by the depth first traversal of the dynamic call

trees.

e Execution Trace T is a sequence of function names from F.

e A dct € DCT is mapped to an execution trace t € 7 using a depth first traversal
DF'T on the dct, where the sequence of visited nodes in this traversal constitute

execution trace t. DFT : DCT — T

2Note that E preserves the required constraints of a tree.

CHAPTER 3. FORMAL DEFINITIONS 18
3.3 Execution Pattern

In this work, we define an execution pattern as a contiguous part of an execution trace

that exists in certain number of execution traces, namely the support of the pattern.

e Let repository Rgs, be the set of all extracted execution traces according to the
execution of task scenarios in feature-specific scenario set S4. Thus we would

have:

Rs, = DFT(II(£(Sy)))

e An execution pattern p € 7 is defined as a contiguous sequence of functions
f€ F that is supported by at least MinSupport number of execution traces in

the repository Rg,.

e An execution trace t supports execution pattern p iff p is a subsequence of ¢,

such that: 31 Vj (0<i A i<j<(i+|p)) — plj—1i]=t[).

e Let support set of pattern p be the set of all execution traces that support

execution pattern p.

o An ezecution pattern miner T,(Rs,) is a function which extracts all execution
patterns that are supported by at least n% of execution traces in Rg,.

Y,: Powerset(7T) — Powerset(T)

3.4 Feature to Source Code Assignment

Depending on the level that functions are participating in execution patterns of differ-
ent feature-specific scenario sets, we define two categories of functions: feature-specific

functions and omnipresent functions.

CHAPTER 3. FORMAL DEFINITIONS 19

e Function f is associated with feature-specific scenario set S, such that:

Jp € To(Rs,) e f €p.

e A function is categorized as an omnipresent function iff it is associated with

almost every feature-specific scenario set.

e A function f is a feature-specific function for feature ¢ iff f is associated with

only the unicue feature-specific scenario set Sy.

In this context, the group of all feature-specific functions for feature ¢ constitute

the mapping of feature ¢ to the software system source code.

Chapter 4

Techniques

In this chapter, we discuss the major techniques that are used throughout this thesis.
We briefly present the application of sequential pattern mining in Section 4.1 and
mathematical concept lattice analysis in Section 4.2. The former is used to extract
highly repeated exccution patterns as a result of applying sequential pattern mining
on the pruned execution traces. The later is applied on the extracted execution
patterns in order to cluster the functions that exist within common / feature-specific

patterns.

4.1 Execution Pattern Mining

In this section, we describe the application of a data mining technique to discover
sequences of functions in a software system that correspond to certain system features.
In the data mining literature, sequential pattern mining is used to extract frequently
occurring patterns among the sequences of customer transactions [5]. In this context,
the sequence of all transactions corresponding to a certain customer (already ordered

by increasing transaction-time) is referred to as a customer-sequence. A customer-

20

CHAPTER 4. TECHNIQUES 21

Figure 4.1: An execution trace repository containing 7 execution traces. The four
shaded areas correspond to four execution patterns with minimum support 3.

sequence supports a sequence s if s is a sub-sequence of this customer-sequence. A
frequently occurring sequence of transactions (namely a pattern) is a sequence that
is supported by a user-specified minimum number of customer-sequences known as

the minimum support of this pattern, namely MinSupport the pattern.

4.1.1 Execution Pattern

In this study we use a modified version of the sequential pattern mining algorithm
by Agrawal [5], where an execution pattern is defined as a contiguous part of an
execution trace that is supported by MinSupport number of execution traces. In this
analysis we use an execution trace as a customer-sequence defined above. The formal
definition of an execution pattern has been provided in Section 3.3. In this formalism,
each execution pattern is associated with a set of feature-specific task scenarios and
reveals the common functionality that is invoked within these scenarios.

In Figure 4.1 an example of an execution trace repository and its corresponding
execution patterns is shown. In this example the MinSupport is 3.

A typical sequential pattern mining algorithm allows extracting noncontiguous
sequences of function calls. In most cases, this characteristic drastically increases
the time/space complexity of the pattern mining algorithm and will complicate the

dynamic analysis. In the presented approach, each extracted sequential pattern is a

CHAPTER 4. TECHNIQUES 22

contiguous sequence of function calls that exists in different execution traces. This
strategy produces meaningful execution patterns that correspond to core functions
implementing specific functionalities of the system. Whereas, as we got from our
experiments, extracting execution patterns that contain noncontiguous function invo-
cations would generate an overwhelming number of meaningless patterns that consist

of unrelated parts of the execution traces.

4.1.2 Algorithm

In the following ar overview of the proposed execution pattern mining algorithm is
provided. This algorithm consists of two main procedures: candidate two-items pat-
tern generation (Procedure cpGenerator) and pattern extension (Procedure DoFEztend).
Procedure cpGenerator accepts the repository Rg, as input and simply generates all
two-items patterns. Among the generated two-items patterns those that meet the
MinSupport constraint are stored in the candidate pattern repository.

Procedure DoEzrtend increases the length of the patterns of the pattern repository
iteratively. This procedure uses the operation extend to extend the patterns. In the

following an overview of the operation extend is provided:

A pattern p can be extended by a candidate pattern cp if p ends exactly
where cp starts. The resulting extended pattern p’ is constructed by con-
catenating p and cp. The support set of this pattern consists of traces in

the intersection of support sets of ¢p and p that also support p’.

The pattern extension stage starts with storing all candidate patterns in a pattern
repository (see Procedure DoFEzxtend). This procedure iterates as long as any pattern
can be extended. In each iteration, for each pattern p in the pattern repository,

it checks if p can be extended using candidate patterns in the candidate pattern

CHAPTER 4. TECHNIQUES 23

Procedure cpGenerator
Input: Set Rg,
Result: Set C PR //CPR is the candidate pattern repository.

1 Variable: MultiSet MS //A muitiset is a set for which repeated elements are
considered. begin

2 CPR — empty set; MS «— empty set;
3 foreach t € Rg, do

4 // t is an execution trace;

5 for i — 0 to |[t| —2 do

6 add t[i..i + 1] to MS;

7 end

8 end

9 foreach ms € MS do
10 if Multiplicity(ms) > MinSupport then
11 add ms to CPR,;

12

13 end

14 end

repository. If p can not be extended in an iteration then it is stored as an execution
pattern. When no more patterns can be extended in an iteration Procedure DoFExtend
terminates.

One drawback of the mentioned execution pattern mining algorithm is that it gen-
erates certain sub-subsequences of a final execution pattern, that drastically increases
the number of generated execution patterns. Note that the pattern extend operation
extends pattern p from end of the p. In this case, all sub-sequences of pattern p that
terminate at end of the p may be generated along with p.

Suppose the following situation:

p=1{2,3,4} cp=1{4,5} p;=1{2,34,5}

Pa = {172’37 4} cp = {4’5} p,2 o= {172a3a4a 5}

in this case pattern p} would not grow up more, whereas pattern p, grows and becomes

a super-sequence for pattern p.

CHAPTER 4. TECHNIQUES 24

Procedure DoExtend

Input: Set CFR //CPR is the candidate pattern repository.

Result: Set FPR //EPR is the resulting execution pattern repository.
1 Variable: Set PR //PR corresponds to the set of growing patterns.
2 Variable: Set Temp

3 begin
4 EPR «— empty set;
5 PR «— CPR,
6 while PR has an element do
7 Temp < empty set;
8 foreach p € PR do
9 extendedOnce «— FALSFE;
10 foreach c € CPR do
11 p/ «— p-+c //operator + denotes to operation pattern extend.;
12 if support(p’) > MinSupport then
13 extendedOnce «— TRUF,
14 add p’ to Temp;
15
16 end
17 if extendedOnce = FALSE then
18 add p to EPR,
19
20 end
21 PR — Temp
22 end

23 end

CHAPTER 4. TECHNIQUES 25

TrieNode{
String functionName;
Mark mark;
TrieNode parent;

Figure 4 2: Data structure that is used to represent a Trie node.

We apply a novel sub-pattern elimination operation that has a major impact on
enhancing the pattern analysis performance. The sub-pattern elimination operation

is discussed in more details in the following discussion.

4.1.3 Sub-Pattern Elimination

In order to identify and eliminate sub-patterns of a final execution pattern, we use
a Trie data structure and annotate its nodes with the function names. A Trie is a
tree data structure that stores the information about the contents of each node in
the path from the root to the node, rather than the node itself. In Figure 4.2 the
data structure that we used for representing the tree nodes in Trie data structure is
shown. Each Trie/Node has an enumerated type “Mark” that can have values “final’
or “subPattern”, where “Mark” is used to eliminate the sub-patterns.

In doing so, the sequence of functions in each execution pattern p is stored along
a path from the root to the leaf of the Trie, and the corresponding leaf is marked as
final if it does not already exist in the Trie. In this setting, all sub-sequences of p
that terminate at the end of p are inserted in the Trie as well. The leaf nodes that
correspond to these paths are marked as subPattern. Procedure Trielnsert illustrates
an overview of the above mentioned operation.

Figure 4.3(a) depicts the Trie data structure after inserting final execution patterns

p1 = {F3, F8 F9, 712} and p, = {F8, F9, F13}.

CHAPTER 4. TECHNIQUES

Procedure TricInsert

Input: Patterr P
1 Global Variable: Trie trie;
Result: Inserting pattern P along with all its sub-patterns that terminate at
end of P to the trie data structure.
2 begin
3 start «— 0; mark «— ” final”;
4 while start < |P| do
5 TrieNode t «— trie.root;
6 index «—— start;
7 while index < |P| and t.hasChild(P[index]) do
8 t «— t.getChild(Plindez));
9

indexr = inder + 1;
10 end
11 // check to see if P is already in Trie.;
12 if index = |P| then
13 // change node’s mark only from "final” to ”subPattern”;
14 if mark = ” subPattern” then
15 Mark t as "subPattern”;
16 exit;
17 // add the remainder of the input pattern to the Trie;
18 while index < |P| do
19 //add a child to the t and return the newly added child,
20 t «— t.addChild(P[index]);
21 index = index + 1,
22 end
23 Mark t as mark;
24 // add all subsequences of the input pattern to the Trie;
25 start = start + 1;
26 mark «—- " subPattern”;

27 end
28 end

CHAPTER 4. TECHNIQUES 27

F13)
(a) Inserting execution patterns (b) Final path extraction

execution patterns

F3, F8, F9, F12 Final node
subPattern node

F8, F9, F12
F9, F12
F8, F9, F13

Figure 4.3: SubPattern elimination: (a) inserting execution patterns in Trie and
marking leaves as final and subPattern (b) final execution pattern extraction, shaded
areas correspond to final paths.

We call a path that starts from an arbitrary node of the Trie and ends at a leaf
that is marked as final, a final path. Procedure TrieEztract illustrates an overview of
the operation of extracting all final paths that start from node t. This procedure is a
simple depth first traversal on the Trie that stores the visited nodes in a stack, thus at
any node ¢’ the nodes in the stack represent a path from ¢ to ¢. By extracting all final
paths that start from the root of the Trie, we will generate all final patterns. Figure
4.3(b) depicts the final paths, as two shaded areas, corresponding to final execution

patterns p = {F'3, 78, F'9, F12} and p, = {F8, F9, F13}.

4.2 Concept Lattice Analysis

Mathematical concept analysis was first introduced by Birkhoff in 1940 [7]. In this
formalism, a binary relation between a set of “objects” and a set of “attribute-values”
is represented as & lattice. A concept is a maximal collection of objects sharing

maximal common attribute-values. A concept lattice can be composed to provide

CHAPTER 4. TECHNIQUES 28

Procedure TrizExtract
Input: TrieNode ¢
Result: Extracting all final paths starting from t¢.
Data: Stack stack

1 begin

2 stack.push(t);

3 if t is a Lecf then

4 if t is marked as "final” then
5 { stack contains one final path now};
6

7 else

8 forall children of t do

9 Call TrieExtract;

10 end

11 end

12 stack.pop();

13 end

significant insight into the structure of a relation between objects and attribute-
values such that each node of the lattice represents a concept. In a binary relation
R C O x A between a set of objects O and their attributes A, the triple C = (O, A, R)
is called a formal context. For any set of objects O C O, we define shared attributes

o(0) as the set of attributes that are shared among objects in O.
0(0)={a€ AlVoe€ O e (0,a) € R}

Similarly, for any set of attributes A C A, the set of common objects is defined as

shared objects T(A).
7(A) ={o€ O|Va € Ae(0,a) € R}

A formal context can be visualized with a relation table, where each row represents
an object and each column represents an attribute. An object o; and an attribute a;
are in the relation (i.e., object o; has attribute a;) iff the cell at row 7 and column j is

marked in the relation table. In Table 4.1 an example of a formal context is provided.

CHAPTER 4. TECHNIQUES

[fA[R[B[H]5]

sl || x | x X
s2 || X | x X
s3 || x

Table 4.1: Ar example of a relation table with 3 objects and 5 attributes.

The following equations hold for this context table:

a({s1,s2}) = {f1, f2}

T({f1}) = {s1, 52, 53}

A concept c is defined as a pair ¢ =< O, A > such that:

0 =171(A)

AN A=0(0)

29

where O is called the extent of ¢, denoted by Ezt(c), and A is called the intent of c,

denoted by Int(c). Such a concept corresponds to a maximal rectangle in its context

table. Table 4.2 presents all concepts of the relation table in Table 4.1.

The infimum of two concepts is computed by joining their intents and intersecting

their extents.

aaNeo = < Ezxt(e)) N Ext(cz),o(r(Int(e;) U Int(cy))) >

The infimum describes a set of common attributes of two sets of objects. Therefore

the infimum of two concepts can be rewritten as:

aaNea = < Ezxt(cy) N Ext(cp),0(Ext(c;) N Ext(cy)) >

The supremum is computed by joining the extends and intersecting the intents of two

concepts:

caVe, = <7(0(Ext(c;)U Ext(cs))), Int(cy) N Int(cy) >

CHAPTER 4. TECHNIQUES 30

¢z | < Ezt(cz), Int(cg) >
a | <{s1,s2,s3}, {f1} >
co | < {s1,s2}, {f1,f2}>
cs | < {sl}, {f1,f2,f5}>
e | < {s2}, {f1,f2, f4} >
cs | < {s3}, {f1,f3}>

Table 4.2: Concepts of the context table in Table 4.1.

The supremum describes the set of objects that share all the attributes in the in-
tersection of two sets of attributes. Hence the supremum of two concepts can be

represented as:
et Ve = <7(Int(er) N Int(ep)), Int(cr) N Int(cy) >

A concept lattice is an acyclic directed graph where nodes represent concepts and
edges represent subconcept relations. A concept (Op, Ag) is a subconcept of concept
(O, A1), if Og C O;. This relationship defines a complete partial order over the set of
all concepts of a given formal context C, that can be represented as a concept lattice
L(CY,

Complete information of each concept ¢ (i.e. node) in the concept lattice is pro-
vided by the pair < Ezt(c), Int(c) >. However, the same information can be repre-
sented in a more concise form by marking a concept ¢ with an attribute a € Int(c)
or with an object ¢ € Ext(c). The unique node in the concept lattice that is marked

by attribute a is computed by function u(a) as follows:

w(a) = V{c € L(C)|a € Int(c)}

in doing so, each attribute a will label the most general concept that has a in its
intent. As a result. those attributes that are shared among most of the objects will
appear in the upper region of the lattice, and those that are more specific label the

concepts in the lower region of the lattice.

CHAPTER 4. TECHNIQUES 31

The unique node that is marked by object o is:

(o) = N\{c € L(C)lo € Ext(c)}

analogously, o will label the most specific concept that has o in its extent.
Visualizing the concept lattice following the above mentioned labeling mechanism

provides certain characteristics for the lattice as follows.
e Each lattice node (i.e., a concept) might be labeled with objects and attributes.

e Every object has all attributes that are defined at that node or above it in the

lattice (directly above or separated by some links).

e Every attribute exists in all objects that are defined at that node and nodes in

the sub-lattice below it (directly below or separated by some links).

A concept lattice can be used to collect the set of shared attributes contained in
a set of objects such that the shared attributes appear in the nodes that are located
in the upper region of the lattice. Consequently, the nodes in the lower region of the
lattice collect the attributes that are specific to the individual objects in that region.
In Section 5.5, we exploit this property to cluster the functions of the extracted
execution patterns.

Figure 4.4 depicts the corresponding concept lattice of the formal context of Table
4.1. In this lattice, node with label f, represents the concept ¢2 =< {s1, s2}, { f1, f2} >.
Note that Ext(c) is obtained by collecting the objects that are shown in the nodes
below it. Similarly, the intent of ¢, contains all the attributes that are labeled the

nodes above it.

CHAPTER 4. TECHNIQUES

c2=<{sl, s2}, {fl, 12}>

Attribute

's; | Object

_.. Subconcept
Relation

Figure 4.4: Corresponding concept lattice of Table 4.1

32

Chapter 5

Dynamic Analysis

A typical approach to dynamic analysis deals with extracting software execution
traces corresponding to a set of carefully selected task scenarios and reveals the re-
alization of the scenarios’ functionalities within the software system components. In
this thesis, we propose an approach to dynamic analysis of software systems based
on the frequently appearing patterns in execution traces, in order to identify the im-
plementation of the software features in the source code. We execute a set of task
scenarios with a specific shared feature, referred to as feature-specific scenario set Sy,
on the software system in order to generate execution traces. The application of a
sequential pattern mining algorithm on the extracted execution traces allows us to
highlight the feature related system functionality. Based on the proposed framework
in Chapter 1 that 's repeated below and the definitions of Chapter 3, we define this

process with the following steps.

1. Define feature-specific scenario set Sy.

2. Execute the scenarios in Sy on the subject software system and generate the

corresponding dynamic call trees such that DCTs, is the set of all dynamic call

33

CHAPTER 5. DYNAMIC ANALYSIS 34

trees for the scenario set Sy. Each dynamic call tree represents an unpruned
call trace after execution of the software system:

where £ is the scenario execution operation.

3. Preprocess the extracted dynamic call trees DCTs, in order to eliminate the
loop-based repetitions and extract the corresponding execution traces Rs,:
Rs, = DFT(II(DCTs,))
where II represents preprocessing and D F'T represents the depth first traversal

operations.

4. Apply the execution pattern mining Y,, described in Section 4.1 and extract the
set of execution patterns Ps, that exist in Rg, .

Ps, = Tp(Rs,)

We apply the above process on different features of the software system and extract
groups of execution patterns that each reflect the software functionality correspond-
ing to the experimented features. In this context, a post-processing of the generated
execution patterns will allow us to extract patterns that exclusively correspond to
a single feature-specific scenario set from those that are shared between all feature-
specific scenario sets. This chapter is structured as follows. An overview of the
program instrumentation is presented in Section 5.1. In Section 5.2 we discuss the
feature-specific scenario set selection. A detailed discussion of execution trace gen-
eration is provided in Section 5.3. Finally in Section 5.4, we will discuss the the

execution pattern extraction and execution pattern analysis.

CHAPTER 5. DYNAMIC ANALYSIS 35

F Set of

i Entry-Exit Execution
Feature-Specific Scenario Execution
R
Feature Scenario set on Instr ted | Pairs Pre-Pr ing| Traces _ | Execution Pattern
SR BE > Selection System Mining
H
'
] Pattern Repository
: $ 8 & Ltk
i Execution
S Py W] %% % ggég - Patterns
Scenar s
Scenario-Set enario enario en
Traces Set 1 Set 2 Set 3
_ | Second Pattern

Omnipresent Pattern Generation

Feature-Specific All Execution

Pattern Patterns |

Assigning Measuring
Concept Lattice V Feature Functionality # Feature Img on
Analysis to System’s Structure
< Modul
Yy

A f.amlly of relevant
features (circle, ellipse, ...)

Figure 5.1: Proposed framework for identifying the implementation of the functional
aspects of a software system in the source code as a means to incorporate semantics
into static analysis techniques.

5.1 Instrumentation

Instrumentation refers to the process of inserting particular pieces of code in the
subject software system in order to acquire specific information about the execution
of the software system. Instrumentation can be performed both at the source code
and at the binary image level. In the proposed approach, we adopt Aprobe [29]
which is a binary level software instrumentation tool. Aprobe inserts patches, namely
probes, within the binary image of the executable program. In this work, we used a
pre-defined probe (namely trace) that generates text messages at both entrance and
exit points of each function. Therefore, by executing the subject software system a
function entry/exii pairs is obtained that is represented as a dynamic call tree. In
Figure 5.2(a) an example function is shown. Extracted function entry/exit pairs for

a sample execution of this function are shown in Figure 5.2(b).

CHAPTER 5. DYNAMIC ANALYSIS 36

Enter Foo
Enter F1
Enter F10
Exit F10
Enter F11
Exit F11
Procedure foo Enter F12
begin Exit F12
Call F1; , Exit F1
while (condition) do _ €xecution Enter F1
—>
Call F1; Enter F10
c:" F2; Exit F10
end Exit F1
end Enter F2

Enter F20
Exit F20

Exit F2

(a) An example program function

L saied 3xa/A13ua uoouny jo ajdwexa uy (q) J

Exit Foo

Figure 5.2: Instrumentation: (a) sample function foo(), (b) extracted function en-
try/exit pairs for a sample execution of function foo().

5.2 Scenario Selection

Important features of the subject software system are identified by investigating the
system’s user mannal, on-line help, similar systems in the corresponding application
domain, and also user’s familiarity with the system. For each particular feature ¢ we
select a set of relevant task scenarios where feature ¢ is shared among all scenarios.
We call this set of scenarios a feature-specific scenario set. For example, in the case
of a drawing tool software system such as Xfig, a group of scenarios that share the
operation “move” to relocate a drawn figure on the computer screen would constitute
such a feature-specific scenario set. Bellow a set of five feature-specific scenarios for

the operation “move” on Xfig drawing tool is presented:

start, draw rectangle, move, exit
start, draw ellipse, move, exit
start, draw circle, move, exit
start, draw arc, move, exit

start, draw polygon, move, exit

CHAPTER 5. DYNAMIC ANALYSIS 37

By executing the scenarios of the feature-specific scenario set S4 on the instru-
mented software system, a group of function entry/exit pairs (dynamic call trees)
is extracted that should be preprocessed and converted to execution traces for the

further analysis.

5.3 Execution Trace Generation

In this section, we discuss the steps for generating execution traces. We start with a
detailed discussion about the rationals for execution traces preprocessing. Then we
describe the preprocessing mechanism which includes dynamic call tree generation

and dynamic call tree pruning.

5.3.1 Preprocessing

Dynamic analysis of a medium size software system using execution traces can produce
very large traces ranging to thousands or tens of thousands of function calls. This
would be a main source of difficulty in a typical dynamic analysis technique. The
effective trace of functions for the intended scenario is cluttered by a large number
of function calls from operating system, initialization and termination operations,
utilities, repetition of sequences caused by the loops, and also noise functions that are
interleaved within a sequence. Thus, prior to using the extracted function entry/exit
pairs in further steps, the redundancies in the trace that are produced by program
loops and recursive function calls should be eliminated. For our current state of
analysis in this work, we ignore recursive function traces and focus on pruning the
loop-based redundancies.

In this operation, we transform the function entry/exit pairs that is generated

by instrumenting the software system into a dynamic call tree (Section 3.2), where

CHAPTER 5. DYNAMIC ANALYSIS 38

S:= 'Enter’ ID S 'Exit ID S | ¢
ID := Letter (Letter | Digit | '/)*
Letter .= [['a’ .."2' | + ['A' ..'2Z"]]

Digit == [0 ..]

Figure 5.3: Grammar for parsing the Aprobe instrumentation data.

nodes represent, functions and edges represent function calls. Since each loop resides
in the body of a function, the loops will form identical subtrees as the children of the
parent function. In this context, the loop redundancy removal problem is reduced
to identification of identical subtrees that are repeated under a particular node. In
Procedure Foo a piece of code that produces a long trace with repetitions of “F1, F2’
is shown. The following subsections elaborate the dynamic call tree generation and

dynamic call tree pruning, respectively.

Procedure Foo. A dummy procedure which generates loop-based repetitions.

1 begin
Call F1;
while condition do
Call F1;
Call F2;
end
end

N O s W

5.3.2 Dynamic Call Tree Generation

The output of the software instrumentation using Aprobe (function entry/exit pairs)
can be transformed into a dynamic call tree of the running program. In Figure 5.3,
we present the context free grammar that we use for parsing the function entry/exit
pairs.

In Figure 5.4 the data structure that we used for representing the dynamic call

CHAPTER 5. Dy~NAMIC ANALYSIS 39

GraphNode{
String name;
Integer ID;
GraphNode parent;

Figure 5.4: Data structure that is used to represent a graph node.

Foo

P

%1 Vg2 10p1 TF211 F110 F211

6/:{\1 8F110 15}20 81 l 18 lo12

12
F10 F10 F10 F10 F20° F10 F2

Figure 5.5: A dynamic call tree that is generated for an example execution of Proce-
dure Foo in Figure 5.2.

tree nodes is shown. Each GraphNode in addition to its name and its parent has
an integer I D. In the following, we give an overview of the proposed parser, namely
callTreeParser, that parses the input function entry/exit pairs and generates the
corresponding dynamic call tree. Procedure callTreeParser also assigns an integer I D
to each tree node, where roots of identical subtrees have identical / Ds. This procedure
uses two auxiliary functions, NextToken and GetNextToken, where NextToken
returns true if the lexical analyzer has another token in its input and Get NextT oken
finds and returns the next complete token from the lexical analyzer. One main duty
of callTreeParser s to find the identical subtrees and to tag them with identical
integer I Ds. For this operation, we use a hash-table implementation which uses the
1D values of the input GraphNode’s children to generate the output I D value. This
mapping is done by a call to id Repository.qgetlD.

Figure 5.5 illustrates a small portion of a dynamic call tree which is generated for

an example execution of Procedure Foo in Figure 5.2. Each node in this call tree is

also annotated with its ID. Note that function F'I is called by function Foo several

CHAPTER 5. DYNAMIC ANALYSIS

40

Procedure callTreeParser

Result: This procedure parses the input function entry/exit pairs and

generates the dynamic call tree.

1 // Before the firsi call to this procedure, we set variable currentNode to an instance of

3
4
5
6
y
8
9

10
11
12
13
14
15

16 end

GraphNode, namely root of the tree;
2 begin
while NeztToken() = ’Enter’ do

getNextToken();
GraphNode newChild +— new GraphNode;
add newChild to the children of the currentNode;
currentNode «+— newChild,
callTreeParser();
if NexztToken() # ’Ezit’ then
Exit on Error;
getNextToken();
ID «—— idRepository.get] D(newChild);
label newChild with ID;
currentNode «— currentNode.get Parent();

end

times, however it acquires different I Ds depending on its runtime behavior.

5.3.3 Dynamic Call Tree Pruning

In this section, we present an implementation for the dynamic call tree preprocessor

I1(dct) described in Section 3.2. As mentioned in previous subsection, we label each

subtree with a unique integer ID where identical subtrees possess identical IDs,

which has a great significance in localizing the loop-based redundancy elimination

at the proper children of each node in the dynamic call tree. The dynamic call tree

preprocessor intends to remove the multiple instances of identical subtrees that are

repeated as the children of a particular node. In this operation, we first generate

a string representation of ID values of these sibling subtrees. Then by applying a

repetitive string finder algorithm (Crochemore [9]) we transform the original string

CHAPTER 5. DYNAMIC ANALYSIS 41

(with repetitions) in the form of a new string with no repetitions. In this new string,
each group of repetitions is shown as one instance of the repetition that is labeled with
the number of the repetitions. For example, in Figure 5.6(a) the string F1,F2,F1,F2,
..., F1, F2is transformed into (F1,F2)" in Figure 5.6(b). There may exist more than
one pattern of repetitions for a given string and hence we apply the following heuristic

in order to select the dominant pattern.

The repetitive pattern with the highest power generates a pattern that is

resulted from a program loop.

As a result, we keep subtrees that correspond to a single instance of each loop,
which greatly reduces the complexity of the dynamic call tree. Finally, by traversing
the loop-free dynamic call tree in a depth-first order and keeping the visited nodes in

a sequence, a loop-free execution trace is generated.

...,Foo,F1,F1,F2, F1,F2,... F1,F2,...
(a)

...,Foo,F1,(F1,F2)", ...
(b)

..., Foo,(F1) (F2,F1)" 1, F2,...
()
Figure 5.6: (a) A string containing repetitions. (b) Representation of (a) in the form

of one instance of string repetition. (c) Another possible representation of (a) in the
form of one instance of string repetition.

In Procedure Foo a piece of code that produces a long trace with repetitions of
“F1, F2" is shown Figures 5.6(a) and 5.6(b) represent the parts of execution trace
that is produced by Procedure Foo, and the result of applying Crochemore algorithm,

respectively. In Figure 5.6(c) another representation for the string F1,F2,F1,F2, ...,

CHAPTER 5. DYNAMIC ANALYSIS 42

F1, F2 is shown. By following the above heuristic we would choose the loop free
representation in Figure 5.6(b).

Procedure Prune describes the graph pruning algorithm. In this procedure, the
string representation for the 1D values of the input node’s children is obtained by a
call to the getChildrenl Ds method. By applying the repetitive string finder algo-
rithm Crochemore (calling the procedure findRepetitions), we identify the locations
of the repeated items in this string, and consequently we remove them from the tree.
By running this procedure on the root of the dynamic call tree, we will prune the

whole dynamic call tree.

Procedure Prune(GraphNode node)
Input: GraphNode node
Result: pruned tree rooted at input GraphNode node
1 //Procedure findRepetitions is an implementation of the Crochemore algorithm, which

returns the locations of the repeated items in its input.;
2 begin
S «— node.getChildrenl Ds();
indices «— findRepetitions(S);
foreach i € indices do
delete corresponding child to 1;
end
foreach child € node.getChildren() do
Prune(child);
10 end
11 end

© 00 N O oo W

5.4 Execution Pattern Generation

In Section 4.1 we presented an implementation for the execution pattern miner
T,.(Rs,) which takes a repository of pruned execution traces Rg, and generates the

corresponding execution patterns Ps,. Each execution pattern reveals the common

CHAPTER 5. DYNAMIC ANALYSIS 43

sequences of function invocations that exist within the different executions of a pro-
gram that correspond to a set of task scenarios. In this context, we define a group
of scenarios that all share a specific feature ¢ of the subject software system (namely
a feature-specific scenario set Ss) and execute them on the instrumented software
system.

The group of loop-free execution traces, that are generated in the previous prepro-
cessing steps, constitute the trace repository Rs,. We apply our sequential pattern
miner Y, on Rg, where minimum support is set to 80% # |Rg,|. In this setting
the extracted execution patterns Ps, discover frequent sequences of function calls
that exist in the majority of the execution traces (80% of them) and thus reveal the

implementation of the feature(s) that exist in majority of task scenarios.

5.5 Execution Pattern Analysis

One characteristic of the aforementioned sequential pattern mining technique is that
the extracted execution patterns Ps, reflect both the implementation point of the
specific feature ¢ and the implementation points of the features that are necessary
to set up every typical task scenario (examples of such features are initializing and
termination of the software system). We employ a strategy to focus on execution
patterns corresponding to specific features within each group of scenario sets. In
order to do this, we first examine different features of the software system and store
their corresponding execution patterns in a pattern repository. In a further analysis
we identify those execution patterns that are specific to a single software feature
within one scenaric set, as well as those that are common among all sets of scenarios.
In this section we first define two different types of functions that exist in execution

patterns: feature-specific functions and omnipresent functions. Then two mechanisms

CHAPTER 5. DYNAMIC ANALYSIS 44

for extracting each type of feature-specific/omnipresent functions are presented in

Subsections 5.5.2 end 5.6, respectively.

5.5.1 Categories of Functions in Execution Patterns

An execution pattern is treated as a sequence of functions that implement common
functionalities within a scenario set. In the following, the different kinds of patterns
that exist in extracted execution patterns along with the corresponding extraction

mechanisms are presented.

e Feature-specific patterns
A feature-specific pattern corresponds to the core functions that implement a
targeted feature ¢ of a feature-specific scenario set S,. Such a pattern exists in
the majority of patterns of Sy. In order to extract a feature-specific pattern, we
should increase the level of MinSupport of the generated execution patterns to

a number that covers the majority of the scenarios in Sy.

e Omnipresent patterns
An omnipresent pattern is common to almost every task scenario of the soft-
ware system (e.g., software initialization / termination operations, or mouse
tracking). Such a pattern exists in every execution trace of every scenario-set
Se. Therefore, it is extracted along with the feature-specific patterns mentioned
above. In order to extract such a pattern, we should use a filtering mechanism
(e.g. concept lattice in Section 4.2) to filter out the feature-specific patterns

from this group of patterns.

Although each of the above categories may be required in a particular analysis

task, the first category reveals the implementation of the feature that is targeted by

CHAPTER 5. DYNAMIC ANALYSIS 45

the set of task scenarios and hence is considered as the more relevant type of dynamic
analysis. Extraction of the feature-specific patterns and omnipresent patterns can be

performed through two different strategies, as described below:

Strategy 1) given a feature-specific scenario set S, (sharing a specific feature ¢)
those sequences of functions that are executed during the majority of the scenarios
are implementing the targeted feature(s) of the scenario set Sy. In this strategy, we
should increase the level of MinSupport of the generated execution patterns to a .
number that covers the majority of the scenarios in the corresponding scenario set.
In this context, the extracted execution patterns correspond to both feature-specific
and omnipresent patterns.

Strategy 2) given a group of two or more feature-specific scenario sets, each with
a different specific feature, the extracted execution patterns which are shared among
the majority of the scenarios implement the common features of the software system.

In the rest of this chapter, we present two different filtering mechanisms to separate
the omnipresent patterns from feature-specific ones. In Section 5.5.2, we discuss a
filtering mechanisin that is based on the second application of sequential pattern
mining technique. In Section 5.6, we employ the visualization power of the concept
lattice analysis to cluster feature-specific patterns corresponding to each particular

feature.

5.5.2 Sequential Pattern Mining Approach

The generated execution patterns during the above-mentioned Strategy 1 are not
pure, in the sense that they do not exclusively contain the functions related to the
functionality of the specific feature of the scenario set. The omnipresent patterns

mentioned above are also embedded within extracted patterns which must be identi-

CHAPTER 5. DYNAMIC ANALYSIS 46

fied and be separated. In doing this, we apply the sequential pattern mining algorithm
for the second time on the result of the first execution pattern mining obtained from

Strategy 1. The characteristics of the second pattern mining are described below:

Input characteristics:

e Each “execution pattern” in the result of the first pattern mining is consid-
ered as an “execution trace” for the second pattern mining, note each first
generation pattern corresponds to highly repeated sequence of function

calls in the original execution traces.

e The size of the input traces in the second pattern mining are much smaller

than those in the first pattern mining.

Output characteristics:

In the result of the second pattern mining:

e functions that are participating in the patterns with small support are the

feature-specific patterns.

e patterns with a large support correspond to the common sub-patterns in
the first generated patterns that relate to omnipresent patterns mentioned

above.

Omnipresent patterns may be embedded in feature-specific patterns and one has
to identify and remove them. In doing so, we identify the locations of the second
generation patterns within a first generation pattern, and record the number of ap-
pearances of functions in each second generation pattern within the first generation
pattern. This number indicates the support count for each function. Note that this

number is different from support of each execution pattern (i.e. size of support set of

CHAPTER 5. DYNAMIC ANALYSIS 47

the execution pattern) since the functions in the overlap areas are counted. Thus, the
support count of each function f reflects the level that f is shared among the different

scenario sets. In this form, extracting functions that have fewer support count (e.g.,

Execution pattern for drawing a rectangle

Omnipresent patterns

= &
= =
= -
= = s — . - g o
- L P . ¢ e . <t — ey
= BERS T oz BEAY w5 ¥ o5 ZERT i rd 2=
S R0 K= e 88 SRS % = e R i {ITW = =
STES8ET XS cHZ¥SRET ES2F SoE¥R8ET EIEY A TE w'E
TISEESC SR TESE 2 =SSR TESEERE T TIR2E 58
% gaF,E‘—WF_",,, BTl E P f ol E T BT L E L fe BT P E DT) S E- RS
BEEEY Syt n IS78 BB EE Y 155 8g2 EF 888 E IST8092 528 I EFR8R 0
i g R e R R R e B R R
a’é-‘ie;:é,%53*-’:5%EEEEE,E,Qégé,%ggxgzé,é5353?,:,9,?:5%5E*E”éé,%ggéégzi,%§§8§
EEEEE R R PR EEE G SR IR PR R PR EEE R PR B
=

Invocation Time

Figure 5.7: A first generation pattern extracted of drawing a rectangle in Xfig with
the highlighted second generation patterns along with their support counts.

less than 5% of the number of the first generation patterns) signifies the extracted
core functions of a specific feature within each original execution pattern. The ra-
tionale is as follows: these low-supported functions of execution patterns correspond
to the singled-out targeted features of a scenario set that were extracted during the
first pattern generation process. Similarly, the functions in second generation pat-
terns with high support counts (e.g., more than 25% of the first generation patterns)
signify the high frequency functions (utility operations) in a first generation pattern.
Figure 5.7 depicts a part of a first generation pattern with the highlighted second
generation patterns along with their support counts. The original execution pattern
in this figure is extracted from a feature-specific scenario set that target the Xfig
ability to draw a rectangle. The functions with bold fonts posses small support and
perform significant role in specifying the boundary region for drawing a new rectangle

on the screen.

CHAPTER 5. DYNAMIC ANALYSIS 48

An advantage of the method is that different groups of utility functions are ex-
tracted in different spots that enables the expert users to distinguish their function-
ality. Moreover, one can locate the extracted feature-specific/common patterns in
the original execution traces and annotate the original trace with the corresponding

extracted functionalities.

5.6 Concept Lattice Analysis Approach

We employ a strategy to spotlight on the execution patterns corresponding to specific
features within a group of scenario sets. In this context, we use concept lattice analysis
to cluster the group of functions in patterns that exclusively correspond to a shared
feature of a scenario set; also to cluster the group of functions in patterns that are

common to every scenario set.

5.6.1 Concept Lattice Construction

In Section 4.2, we define a formal context C = (O,.A, R) as a triple which represents
the relation R between objects O and their attribute values .A. In this chapter, we
apply concept lattice analysis to represent the relation between features and functions
such that ® = O and F = A. In our setting for concept lattice analysis, an object
is a targeted feature ¢ € ® of a feature-specific scenario set S;, and an attribute
is a function f that participates in the execution patterns corresponding to Ss. We
focus our analysis on a subset of all features of the software system, and define ®’ to

be the set of all analyzed features in this analysis. We construct the formal context

C'= (¥, F,R') as belows:

o Let Ps, be the set of all execution patterns that are extracted with respect to

CHAPTER 5. DYNAMIC ANALYSIS 49
feature-specific scenario set Sy.
o Let F; be the set of all functions that exist in the extracted patterns Ps,.

e Construct the relation Ry with respect to specific feature ¢ such that:

Ry ={(¢, f)If € Fy}.

e Create a formal context C' = (®’, F', R’) such that:

R'=Usea Bs and F' = yeq Fo-

5.6.2 Concept Lattice Analysis

Applying concept lattice analysis to the formal context described above will result
in separation of omnipresent functions from functions that are specific to certain
features. Since omnipresent functions are executed through almost every task scenario
of the software system, these functions exist in the intent of almost every concept of
the lattice and consequently appear in upper region of the lattice. On the other
hand, functions that are specific to certain features of the software (feature-specific
functions) are located in lower region of the lattice.

Moreover, a concept whose extent consists of a single object (feature ¢) collects
functions that exclusively implement feature ¢. In other words, these functions rep-
resent the logical module that implement feature ¢ in the software system. In the
following, we define the group of concepts that are relevant to feature-specific function

clusters.

o Feature-specific concept c, is a concept whose extent consists of a single feature

&,

e We define F), to be the set of functions that label ¢4, on the concept lattice,

CHAPTER 5. DYNAMIC ANALYSIS 50

thus:

Fy ={f € Fylu(f) = c}

where p(f) is the function that returns the most general concept that has f in

its intent (see Section 4.2).

In the generated lattice all the common functions are clustered in the upper region
of the lattice, however disables the analysis to distinguish different group of common
functions that are associated with different functionalities. As opposed to the sec-
ond pattern generation mechanism which requires the user interaction to decide the
functionality of each group of extracted core functions, concept lattice clusters the
feature-specific functions within feature-specific concepts. Consequently, functional-
ity of the extracted functions can be easily identified using the specific feature of the

corresponding feature-specific concept.

Chapter 6

Structural Evaluation of Software

System

Software systems are continuously evolving throughout their lifetime from early de-
velopment to their maintenance and retirement. During the maintenance phase the
software system is still changing through activities such as bug-fixing, migration to
new platforms, and adding new features which were not planned from the beginning.
Therefore, even a nicely designed and accurately implemented software system will
probably incur several changes to its functionality and consequently to its structural
design. This common scenario is the main cause of structural damage, high main-
tenance cost, and eventually retirement of a legacy system. To help this situation,
the task of the software maintainers is to measure the impact of the newly added
features on the structure of the software system. In this context, the maintainers can
make sure that the newly added features will not damage the original structure of
the software systen.

One approach to address this problem is to assess the structural merit of the

software system based on the degree of functional scattering of software features

o1

CHAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM 52

among the structural modules. In this context, the functionality of the system is
represented as a set of features that are implemented within the software modules
and are manifested as constituents of different scenarios to be run on the software
system. In addition, the functional cohesion of each system module can also be
investigated as a means to monitor the healthiness of the software system.

In this chapter, we provide two metrics to assess the structural merit of the soft-
ware system: feature functional scattering and structural cohesion. The proposed
feature functional scattering metric examines the distribution of a set of functions
that implement a specific feature over the structural units (i.e., files) of the system.
Hence, it represents the degree of scattering of the implementation of software features
among the structural modules. On the other hand, the structural cohesion assess-
ment directly represents the cohesion of module(s) implementing a specific feature
based on the functional relativeness of the functions that reside in each structural
unit (module); this measure of cohesion is much closer to the original definition of
cohesion (“relative functional strength of a module” [22]) than using static structural

techniques such as inter-/intra-edge connectivity of the components.

6.1 Metrics Computation

In order to measure the feature functional scattering of feature ¢, we assess the
degree of distribution of collected functions of logical module Fj over the structure of
the system. Moreover, we compute the functional relativeness of the functions that
reside in each module in order to evaluate the module structural cohesion. In doing
so, the set of functions that implement a certain feature ¢ are extracted from the
above discussed concept lattice analysis (i.e. Fj). Then, the source files in which

these functions are defined are identified and the ratio of the number of functions

CHAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM o3

that are used from each file to the number of functions that are defined in that file
is calculated. This ratio is a measure of structural cohesion of the system files that

contribute to implementing the feature under study.

6.1.1 Formal Definitions

In this subsection. we provide exact definitions for the aforementioned structural
merit evaluation metrics, where SC4(m) denotes structural cohesion of module m

with respect to logical module F; and F'S(¢) denotes functional scattering of feature

o.

o Let My = {my,my,...,my} be the set of modules where all the functions in F}

are defined in elements of M.
e Let F,, denotes the set of functions that are defined in module m.

e Structural cohesion of module m with respect to logical module Fj, namely
SCys(m), is defined as:
SCs(m) = M
| Fon
e Functional scattering of feature ¢, namely FS(¢), is defined based on the dis-
tribution of functions in F over modules in M as:

> mem, SCs(m)
| My|

FS(¢) =1~

6.2 Discussion

A software system with high structural cohesion SC4(m) for its individual modules
and low functional scattering F'S(¢) among its structure represents a modular system

that requires less maintenance efforts. However, a high degree of functional scattering

CHAPTER 6. STRUCTURAL EVALUATION OF SOFTWARE SYSTEM 54

corresponding to feature ¢ directly signifies a high structural impact that is caused
by that feature. Hence the system requires more maintenance efforts to tackle with
the consequences of propagated change to other software modules.

Note that feature functional scattering and structural cohesion metrics are not
standalone metrics and must be considered as a whole. A low degree of functional
scattering correspcnding to feature ¢ solely do not imply a good modular structure

whereas ¢ could be defined in more than one highly cohesive module.

Chapter 7

Experiments

In this chapter, we apply the proposed dynamic analysis technique on two medium-
size open source systems that are discussed in the following sections. The developed
dynamic analysis tool is an Eclipse plug-in [3] and has been developed as an extension
to the Alborz reverse engineering toolkit [26] to enhance the scope of Alborz to cover
both static and dynamic analysis of a software system. In Section 7.1, we discuss the
results of our analysis using the Xfig [1] drawing tool. In Section 7.2 the results of

our analysis using Pine [2] email client are presented.

7.0.1 Platform

The hardware platform for the experiments consists of a Pentium II with 440 MHZ
CPU and 512M bytes memory which runs a Red Hat Linux 7.3. This machine is used
for instrumenting the subject systems, executing the feature-specific scenarios, and
capturing the raw function entry/exit pairs. The actual analysis process for extracting
the execution patterns and performing pattern analysis is done on a Windows XP
professional edition which runs on a laptop with a 1.5GHZ Centrino processor, 512M

bytes memory, anc 1G bytes virtual memory.

95

CHAPTER 7. EXPERIMENTS 56
7.1 Dynamic Analysis of Xfig

Xfig 3.2.3d [1] is an open source, medium-size (80 KLOC), menu driven, C language
drawing tool under X Window system. Xfig has the ability to interactively draw
and manipulate graphical objects (circle, ellipse, line, spline, rectangle, and polygon)
through operations such as copy, move, delete, edit, scale, and rotate. In the following
we discuss the steps of applying the proposed dynamic analysis technique on the Xfig

drawing system.

7.1.1 Feature-Specific Scenario Generation

In order to extract the core functions that implement a specific feature (e.g., flip
in Table 7.1) we define a group of feature-specific scenarios to target this feature
and execute on the instrumented Xfig system to obtain the corresponding function
entry/exit pairs. Figure 7.1 depicts the adopted strategy to single out a targeted
feature by means of a set of task scenarios. In this setting, a group of seven scenarios
have been selected that all begin from the start up operation and finish in the ter-
minate operation. Each scenario has a distinct path within the Drawing component,
but shares the same path (i.e., flip operation) within the Editing component. The
group of task scenerios shown in Figure 7.1 form a feature specific scenario set, where
the flip operation is the specific feature. We apply the above strategy to generate

feature-specific scenario sets that each target one feature of the Table 7.1.

7.1.2 Execution Pattern Extraction

For each feature-specific scenario set Sy, we execute the scenarios of Sy on the instru-
mented Xfig system and obtain the corresponding function entry/exit pairs. After

pruning the extracted entry/exit pairs from loop-based function calls (Section 5.3.1)

CHAPTER 7. EXPERIMENTS 87

°7 B¢ HEEERECEIES
Eg | RE EE|85 [EE3|28E |83
- & 2 2.3 w03 O oo 8 g|s®
£ 8, |§° |2~%|E22%|a”
& E 3 "R | K§
o - | @
Circle-Diameter 10 7234 2600 46 33
Draw | Circle-Radius 10 8143 2463 48 32
Ellipse | Ellipse-Diameter 10 6405 2536 41 37
Ellipse-Radius 10 7351 2549 39 35
Move Objects 4 11887 | 3166 31 53
Copy | Copy Objects 4 11460 | 3269 37 50
Closed Interpolated | 10 | 18635 | 4434 58 63
Draw | Interpolated 10 | 15469 | 4038 66 49
Spline | Approximated 10 | 15057 | 5362 61 47
| Scale | Center Scale | 4 [8088 [15641 | 30 [47 |
[Flip | Flip up-Right | 4 | 7296 | 1378 | 29 | 46 |
| Rotate | Rotate Clockwise | 4 | 6974 | 1544 | 28 | 44 |
| Delete | Delete Objects | 4 [6580 [1181 [19 [56 |

Table 7.1: The result of execution trace extraction and execution pattern mining for
a collection of 7 Xfig feature families and their specific features.

we apply the execution pattern mining process to obtain the patterns of function

call sequences. Table 7.1 presents the statistical information for the experimented

features of the Xfig system.

7.1.3 Concept Lattice Analysis

In this analysis, we supply the resulting execution patterns of the Xfig experiments to
a concept lattice generation tool (concept explorer [4]) in order to view the distribution
of the feature functions on the lattice. As it was discussed in Section 5.5 the feature-
specific concepts (i.e., a concept whose extent consists of a single feature) remain in
the lower region of the lattice, and collect the functions that exclusively implement
specific features. Similarly, concepts with omnipresent functions (i.e., a concept which

is labeled with functions that are shared among a majority of concepts) appear in

CHAPTER 7. EXPERIMENTS 58

) [Start Up]
Drawing
3 %/ Rectangle
Disheter ::undod Comer
I' .
Closed Afp‘x)nxln‘:nelcd (Circle) Polyline
ilmxim:‘:;: : L Polygon
Inte lated Spline
Bitng . Sy VA
opy
,
Fli

Terminate

—
e’

Figure 7.1: A Feature-specific scenario set for Xfig drawing tool. The group of sce-
narios apply the Flip operation on different graphical objects.

the upper region of the lattice. Viewing the distribution of the concepts and their
functions throughout the concept lattice allows to get insight into the structure of
the feature-specific concepts and their functions.

Consequently, it allows us to collect the group of functions that correspond to
different feature-families. In Figure 7.2 three dashed circles at the bottom illustrate
the group of concepts and their functions that implement the core functionality of

the feature families of ellipse, copy, and spline.

7.1.4 Structural Evaluation

Finally, based on inspecting the source files of Xfig, we measure the structural cohesion
of corresponding source files, as well as the feature functionality scattering of the
features under study. The results of this evaluation for three feature families Draw
Ellipse, Copy, and Draw Spline are presented in Table 7.2.

For the three mentioned feature families we inspect the Xfig source files that define

CHAPTER 7. EXPERIMENTS 59

Omnipresent
Functions

Figure 7.2: Concept lattice representation of the extracted features and their corre-
sponding functions for the Xfig drawing tool. The group of concepts corresponding
to three feature families and the omnipresent functions are shown by dashed ovals.

the functions that implement the corresponding logical module of that feature family.
The results of measuring the structural cohesion SCy(m) of these files are presented
in Table 7.2. These results indicate that file d_ellipse has high cohesion with respect
to logical module of feature family FEllipse; files e_copy, and e_move are also highly
cohesive with respect to feature family Copy; and finally, file d_spline is cohesive with
respect to feature family Spline. However, study of the feature functional scattering
measures allows us to better interpret the characteristics of these logical modules.
For example, in the case of Ellipse a portion of the logical module is located in a large
structural module u_elastic which results in a high functional scattering measure.

Whereas, in the case of Copy feature family, the logical module almost covers two

CHAPTER 7. EXPERIMENTS 60

Feature Contributed | |F,,| | |[F, N Fy| | Structural | Functional
o File (m) Cohesion | Scattering
5Cs(m) FS(¢)
d_ellipse.c 16 12 75%
Ellipse u_elastic.c 67 8 12% 57%
e_copy.c 5 3 60%
Copy e_move.c 4 3 75% 32%
d_line.c 9 2 22%
Spline d_spline.c 6 5 83%
u_bound.c 19 2 11%
u_draw.c 75 14 19% 66%

Table 7.2: Structural cohesion and feature functional scattering measures for three
different feature families of the Xfig.

structural modules e_copy and e_move which indicates low scattering.

In the case of Spline, the logical module is almost equally scattered among four
structural modules each covering a small portion of the structural modules and hence
indicating high functional scattering. The results in Table 7.2 are promising in the
sense that they reflect meaningful measures with respect to the sizes of logical and
structural modules shown. Regarding the results of our structural evaluations, we
can predict high maintenance activities regarding any change to the feature families
Ellipse and Spline. Similarly, changes to the Copy feature family would not propagate

throughout the system which indicates less maintenance activities.

7.1.5 Characteristics

In the followings, we discuss the important properties of the proposed pattern based

dynamic analysis technique using the Xfig case study.

e Mapping logical modules onto structural modules
Table 7.3 demonstrates the results of experimentation with Xfig tool to reveal

the core functions for three Xfig features. We focus on drawing a figure in the

CHAPTER 7. EXPERIMENTS 61

ellipse family includes circle, ellipse and such that each figure can be drawn in
two different ways, i.e., by-radius and by-diameter. Furthermore, we expand our
experiments on an editing operation of the Xfig tool (i.e., copy graphical objects)
as well as another family of graphical objects (i.e., spline). The extracted logical
modules are shown in Table 7.3 and according to the Xfig naming convention
it is clear thet the logical modules truly reflect the core functions of the feature

families.

e Focusing on the important sub-traces
Table 7.1 represents the attributes of a group of feature-specific scenario sets
that we use in the analysis process. This table illustrates a major characteristic
of the proposed dynamic analysis with regard to reducing the scope of the
analysis from huge sizes of the execution traces (Average Trace Size) to the

manageable sizes of the execution patterns (Average Pattern Size).

e Separating common patterns from feature-specific patterns
Figure 7.2 illustrates the mapping of extracted Xfig’s feature related functions
on the concept lattice. In this lattice, the upper nodes collect omnipresent
functions of Xfig corresponding to common patterns, including: software ini-
tialization and termination, mouse pointer handling, canvas view updating, and
side ruler management. In addition, the specific functions that exclusively im-
plement a feeture are located in the lower region of the concept lattice through
feature-specific concepts. Table 7.3 represents the core functions that imple-
ment the certain family features of Xfig (i.e., Copy Object, Draw Ellipse, Draw

Spline).

CHAPTER 7. EXPERIMENTS

Feature
Family

Extracted Core Functions
representing logical module Fy,

Ellipse

init_circlebyradius_drawing, elastic_cbr, resizing_cbr, create_circlebyrad,

circlebyradius_drawing selected, init_circlebydiameter_drawing,
elastic_cbd, resizing_cbd, create_circlebydia, circlebydiame-
ter_drawing_selected, init_ellipsebydiameter_drawing, elastic_ebd,

resizing_ebd, create_ellipsebydia, ellipsebydiameter_drawing_selected,
init_ellinsebyradius_drawing, elastic_ebr, resizing_ebr
create_ellipsebyrad, ellipsebyradius_drawing_selected, add_ellipse,
pw_curve, create_ellipse, center_marker, draw_ellipse, redisplay_ellipse,
ellipse_bound, list_add_ellipse, set_latestellipse, toggle_ellipsemarker,
list_delete_ellipse

Copy

copy_selected, init_copy, init_arb_copy, setlastlinkinfo, init_arb_move,
init_move, move_selected, set_lastposition, set_newposition, moving_line,
init_linedragging, adjust_pos, place line, translate line, adjustlinks,
place line_x

Spline

spline_crawing_selected, init_spline_drawing, get_intermediatepoint,
elastic_line, unconstrained_ line, toggle splinemarker, h_blend, g_blend,
draw _spline, spline_bound, step_computing, point_computing,
spline_segment_computing, point_adding, create_splineobject, re-
display spline, negative s2_influence, next_spline_found, valid-
spline_in_mask, init_trace_drawing, init_spline_drawing2, last_spline
list_add_spline, create_spline, make sfactors, create_sfactor, add_spline,
set_latestspline, positive_s2_influence, positive_sl_influence, com-
pute_open_spline, f_blend, negative_sl_influence, general spline_bound,
aprox_spline_bound, compute_closed_spline

62

Table 7.3: Results of dynamic analysis on Xfig drawing tool. The core functions
(right column) correspond to the specific Xfig features (left column).

7.2 Dynamic Analysis of Pine

Pine 4.4.0 [2] is an open source, medium-size (207 KLOC), C language email client.

Pine is a tool for reading, sending, and managing electronic messages. Feature func-

tionalities of Pine can be categorized as belows.

e Online help specific to each screen and context.

e Message index showing a message summary which includes the status, sender,

size, date and subject of messages.

e Commands to view and process messages: Forward, Reply, Save, Export, Print,

CHAPTER 7. EXPERIMENTS 63

-
% HEEERIECEIEEH
= 8 BEE|88 |§Es|8x8e g8
B8 ES | mh |[855 (852|588
a o =t

8 ;31 ;N; [¢] g) Q_q(% é % .‘3 @ @

® =e |8

" Compose 8 | 90081 | 24636 95 172
| Folder List 4 | 48335 | 11205 25 491
| Message Index 5 67741 | 19529 44 345
_Address Book 3 59221 | 16024 i § 212

Table 7.4: The result of execution trace extraction and execution pattern mining for
a collection of 4 different Pine features.

Delete, capture address, and search.
e Message composer with easy-to-use editor and spelling checker.

e Address book for saving long complex addresses and personal distribution lists

under a nickname.

e Message attachments via the Multipurpose Internet Mail Extensions (MIME)
specification. MIME allows sending/receiving non-text objects, such as binary

files, spreadsheets, graphics, and sound.

e Folder management commands for creating, deleting, listing, or renaming mes-

sage folders. Folders may be local or on remote hosts.

In our case studies, we examine four different features of the Pine for compos-
ing emails, managing the folder lists, address book, and message index. In order
to extract the core functions implementing a specific feature, we define a group of
scenarios to target that feature and consequently extract the corresponding group of
functions through execution pattern extraction process (see Table 7.4). By repeating
this process and targeting other features of the system with proper sets of scenarios,

we would incrementally explore the system’s overall functionality. By spreading the

CHAPTER 7. EXPERIMENTS 64

extracted execution patterns over a concept lattice (see Figure 7.3), we separate the
omnipresent functions from specific functions that implement experimented features
(see Table 7.5). Finally, based on inspecting the source code of the Pine, we measure
the distribution of functions implementing each examined feature over the structural

units (see Table 7.6).

Feature Extracted Core Functions

Family representing logical module

Address book | ab_resize addr_book addr_book_screen adrbk_check_all_validity now
adrbk_check_and_fix adrbk_check local validity —adrbk_check_validity
adrbk_num_from_lineno adrbk_write ae calculate_field_widths
cur_addr_book cur_is_open display_book dlc_next dlc_prev
dlc siblings draw_cancel keymenu end_adrbks entry_is_addkey en-
try is_askserver entry_is_clickable entry_is_listent erase_checks
erase_selections file_attrib_copy first_line flush_dlc_from_cache
get_display_line get_top_dl_of_adrbk hashtable_size in_dir
init_adrhash_array intr_handling_on intr_proc is_empty
menu_clear_cmd_binding menu_init_binding paint_line rd_check _remvalid
rename file skip_to_next_nickname tempfile_.in_same_dir temp_nam

was_nonexistent_tmp_name write_hash_header write_hash_table
write_hash_trailer write_single_abook_entry write single_entryref

Folder list corapare_names context_screen endbold folder lister
folder_lister_km_manager folder_list_handle folder list_text
folder_list_write folder_list_write_prefix folder_processor

folder_screen folder_select_preserve folder select restore free_handle
frec_handle_locations handle_on_page new_handle q_status_message2

redraw_scroll_text refresh_folder _list reset_context_folders
scroll_handle_obscured scroll_handle_set_loc selected_folders
Message index | body_parameter body_type_names clear_cur_embedded _color

color.a_quote decode_text describe.mime format_blip_seen for-
mat_message format_mime size format_size_guess gf_control filter
gf_escape filter gf line test gf line_test_freeins gf_line_test_opt
mail_view_screen next_attachment percentage pine_header standard
rfcl738 scan rfc2231 get_param rfc2369_editorial so_nputs strsquish
type-desc url hilite wurl hilite_hdr view_writec view_writec_destroy
view_writec_init view_writec_killbuf web_host_scan zero_atmts

Table 7.5: Part o° the results of dynamic analysis on Pine email client. The core
functions (right column) correspond to the specific Pine features (left column).

For each feature in Table 7.4 we inspect the Pine source files that define the func-
tions that implement the corresponding logical module. The results of measuring the

structural cohesion SC;(m) of these files are presented in Table 7.6. These results

CHAPTER 7. EXPERIMENTS 65

Feature Contributed | [Fy,| | [F:n N Fy| | Structural | Functional
) File (m) Cohesion | Scattering
5Cs(m) FS(¢)
context.c 13 2 16%
bldaddr.c 78 9 12%
Compose send.c 99 57 56%
reply.c 65 12 19% 74%
[Folder List [folder.c [121 | 15 | 12% [8% |
adrbklib.c 88 12 14%
Address Book | addrbook.c 75 20 27% 80%
| Message Index | pine/mailview.c | 126 | 21 | 17%] 83% |

Table 7.6: Structural cohesion and feature functional scattering measures for four
different features the Pine email client.

indicate high degree of scattering and low coupling among the examined feature fam-
ilies of Pine. Files context, bldaddr, and reply has low cohesion with respect to logical
module of feature Compose; file send shows high cohesion with respect to feature
Compose. However, study of the feature functional scattering measures allows us to
better interpret the characteristics of these logical modules. For example, in the case
of Compose a portion of its logical module is located in a large structural module

send which results in a high functional scattering measure.

CHAPTER 7. EXPERIMENTS

66

'
t
'
.
[

3
H
&
i
i
¥
%
1
i
'
»
'
¥
2
1

Figure 7.3: Concent lattice representation of the extracted features
sponding functions for the Pine email client.

'
'
v
3
'

and their corre-

Chapter 8

Conclusion and Future Work

In this thesis, we proposed a novel approach to dynamic analysis and structural as-
sessment of a software system that takes advantage of frequent patterns of execution
traces that exist within the executions of a set of carefully designed task scenarios.
The proposed approach benefits from the discovery nature of data mining techniques
and concept lattice analysis to extract both feature specific and common functions
that implement important features of a software system. The resulting execution
patterns provide discovery of valuable information out of noisy execution traces. The
proposed approach is centered around a set of task scenarios that share a specific sys-
tem feature and introduces a means for measuring the impact of individual features
on the structure of the software system. The whole process consists of several steps
such as: software nstrumentation; feature-specific scenario set selection; loop-based
execution trace elimination; execution pattern extraction; and finally structural as-
sessment of the software system. The proposed technique has been applied on two
medium size interactive software systems with very promising results in extracting
both feature-specific and common functions. Moreover, the level of “structural co-

hesion” and “feature functional scattering” are measured that provide a way for

67

CHAPTER 8. CONCLUSION AND FUTURE WORK 68

assessing the strucsure of the experimented tools.

8.1 Discussion

In this section, we discuss the characteristics of the proposed sequential pattern anal-
ysis. With regard to our definition for an execution pattern as a continuous sequence
of function calls, we extract core functions that implement specific functionalities of
the system. By extending the definition of the execution pattern to include noncon-
tinuous function irvocations, we can extract function patterns that implement more
general functionalities; however such an expansion may result in extracting mean-
ingless execution patterns (by joining unrelated parts of the execution trace to form
a new pattern) and generating an overwhelming number of patterns. The general
algorithms for sequential pattern mining in the data mining literature would allow
extracting patterns that have functions interleaved with the extracted patterns. The
study of trade-off between discovering execution patterns that implement more gen-
eral functionality and dealing with an overwhelming number of extracted patterns
would be a more challenging problem that is listed in our future work tasks.
Moreover, we can employ other pattern mining techniques such as tree-pattern
mining, where the pattern miner looks for identifying patterns that exist among dy-
namic call trees as opposed to our technique that identifies patterns among execution

traces.

8.2 Future Work

Currently, we apply our technique to the problem of feature identification, however

the application of execution patterns in software architecture recovery by augment-

CHAPTER 8. (CONCLUSION AND FUTURE WORK 69

ing the current static analysis technique must also be considered. This will make
a hybrid technique that enhances the power of static analysis techniques such as
clustering, pattern matching, and concept lattice analysis with dynamic analysis in-
formation of the software under investigation. The result of the proposed dynamic
analysis technique can be used to incorporate semantics to the existing static analy-
sis techniques. The future tasks include the investigation of noncontinuous execution
patterns as well as proposing effective pruning methods at the execution trace gener-

ation to allow analysis of very large traces over 100K functions. (e.g. Apache, MySql).

Appendix A

Tool Documentation

We design the Dynamic Alborz toolkit as a data centralized and user interface driven
architecture. Six components are designed to collaborate with each other and fulfill
the functionalities of the system. These components are User Interface (UI); Datas-
tore; Preprocessing; Pattern Mining; Post-processing; and Environment. Figure A.1
is a standard UML component diagram which describes the detail of each component
and relationships among them. The environment component in the diagram does not
represent a concrese component in the system, but some external tools used by the
system, e.g. instrumentation tools used for extracting execution traces and concept

lattice tool used for lattice visualization.

A.1 Architectural Design

In the following sections, we elaborate the functionalities and interface of each com-
ponent.
User Interface Component

UI closely collaborates and controls other components within the Dynamic Alborz

70

APPENDIX A. ToOL DOCUMENTATION

71

<< Component >>
ul

I.___J

—Trace data extraction wizard

&

Concept lattice visualization !
|

Pre-processing

<< Component >>
Environment

External tools:

-Data mining wizard
—Perspectives
-Views, menu, and toolbar | _ _ _ _ _ _ _ _ s O
: : * Pattern Analysis
Y e
\
System data Raw Trace \\
retrieval tra \
\
N
<< Component >> 3 % << Component >>
Data Store Post-Processing
-Raw execution traces {- - —Concept lattice analysis
—Purned execution traces Pattern “ | -Second seauential pattern mining

—-Instrumentation tool (Aprc
—Concept explorer

)

Pruned Execution Trace

A

—Execution patterns
—Formal context table

retrieval

N

aw Execution Trace
Refival pattern Storing

A

<< Component >>
Pre-Processing

-Dynamic call graph construction
-Loop-free execution trace generation

I_O<

Pruned Trace
etrieval

1
I
N
- =

Formal Context

Storing Pattern Mining

<< Component >>
Data Mining
—-Sequential pattern mining
—Sub-pattern ellimination

Figure A.1: Component digram of the Dynamic Alborz plugin in the Eclipse envi-

ronment.

plugin and interacts with the user throughout the analysis phases.

Almost all the

events and requests in the system are emitted from this component. Ul consists of

the following parts:

e Dynamic Alborz Run Wizard: This wizard helps the user to perform the main

task of the Dynamic Alborz. This wizard consists of the following parts:

Trace data extraction page: which controls the operations of the prepro-

cessing component by guiding the operations within the toolkit. It allows

the user to: i) extract execution traces for dynamic analysis; ii) preprocess

execution traces and eliminate loop-based redundancies; vi) store system

data in the local Datastore to be used for the further analysis phases.

APPENDIX A. TooL DOCUMENTATION 72

— Data mining page: that assists the user throughout the steps for the se-

quential pattern mining operation, such as: minimum support selection.

— Pattern Analysis page: that controls the pattern analysis process and al-
lows the user to select system features that should be included in a specific

analysis session.

e Config Wizard: This wizard helps the user to set up the environmental variables
of the Dynamic Alborz, such as: system work path, and path to the Concept

lattice analysis tool.

e Perspectives, views, menus and tool-bars: a series of standard Eclipse user-
interface elerents used for integrating Dynamic Alborz with the Eclipse plat-

form, such as: system data navigator, feature view, pattern analysis result view.

Datastore Component
Datastore is the center of the Dynamic Alborz structure and allows the system com-
ponents to communicate with each other through this component’s interfaces. Files
are used for storing: raw execution traces; pruned execution traces; raw execution
patterns; formal contexts; and results of the entire dynamic analysis. This compo-
nent acts as an intermediate object which connects other components in the system.
All other components which need to store data or retrieve data communicate with
this component through its interfaces. Internally, the datastore component stores
everything in a directory structure which uses the local data store as its underlaying
media.

Post-processing Component
Encapsulates all the functionalities that are required in the pattern analysis phase

including;:

APPENDIX A. TooL DOCUMENTATION 73

e execution pattern translation, that provides statistical information about the
extracted execution patterns such as number of extracted patterns and aver-
age pattern length, it also locates each execution pattern in its corresponding

execution traces

e formal context generation, that parses the generated execution patterns and

generates formal context tables

e second pattern generation, that parses the generated execution patterns and

applies the second sequential pattern mining.

Preprocessing Component
The preprocessing component encapsulates the functionalities and algorithms re-
quired for dynamic call graph construction and loop-free execution trace construction.
An implementation of the Crochemore string processing algorithm is used for finding
the loop-based execution traces.

Data mining Component
Provides an implementation of the sequential pattern mining algorithm that parses
the pruned execution traces and extracts sequential patterns among them. It also

prunes the generated execution patterns and eliminates sub-patterns.

A.2 Design Pattern

In this section, we discuss the approach that we used for enhancing the structure of
the prototype Dynamic Alborz system and hence obtaining the extensibility. Fig-
ure A.2 describes how Observer pattern is used when we integrate Dynamic Alborz
toolkit with Eclipse platform. The interface IProgressMonitor is the observer and

[RunableWithProgress is the subject to be observed.

APPENDIX A. TooL DOCUMENTATION 74

9 <= interfacs >»
kbl g IProgresshionitor
IRunahieContext
+runi.. runnable: IRurnaklegWithProgressl void ¢
L]
WizardDialog <2 interface »=
IRunableWithP rogress

+runfmonitor:IProgresshonitor): void

AlhorzWizardDialog

Figure A.2: Observer design pattern used in the Dynamic Alborz plugin.

A.3 User Interface Design

Dynamic Alborz is designed as an Eclipse plugin that makes its usage and deployment
an easy task. The Dynamic Alborz plugin constructs the following user interface parts

in order to integrate with the Eclipse environment:

1. Dynamic Alborz Menu

2. Dynamic Alborz Perspective which includes System Navigator view, Feature

view, Pattern Analysis view, and Progress view

3. Config Wizard that provides a wizard-based user interface that eases the con-

figuration of the system

4. Dynamic Alborz Run Wizards that performs the analysis process.

APPENDIX A. TooL DOCUMENTATION 75

Figure A.3 provides a comprehensive overview of the Dynamic Alborz plugin inside
the Eclipse environment. In the following we explain the Dynamic Alborz Run wizard
and Config wizard. respectively.

Config Wizard
The Dynamic Alborz Config wizard is designed to ease the configuration of the dy-
namic analysis. Using this wizard the user can set the path for the current working
directory of the system as well as the directory path of the Concept Explorer toolkit.
Figure A.4 depicts this wizard inside the Eclipse environment.

Dynamic Alborz Run Wizard
The Dynamic Alborz Run wizard provides a wizard-based user interface that utilizes
the dynamic analysis. Using this wizard the user can create a new subject system
for analysis or select an already analyzed system (see Figure A.5). It also provides
a history of the analyzed features of the selected system (see Figure A.6) that gives
the user the choice between adding a new feature to the analyzed features of the
selected system or starting the pattern analysis process for the selected system. In
Figure A.7 the wizard page that provides the interface for importing a new feature for
analysis in the system is shown. In this page the user provides the name of the new
feature, a description of the feature and its corresponding feature-specific scenarios,
and the path to the pruned execution traces for this new feature. After providing the
required information for the new feature the system prunes the execution traces and
stores them in its internal data structures. In the next step the user can select the
minimum support of the data mining operation (see Figure A.8). The results of the
pattern mining operation is shown in the ”Statistical Results” page (see Figure A.9).
In this page the user again has the choice between starting the pattern analysis process
or adding a new feature for analysis to the system. In the ”Pattern Analysis” page

the user has the choice to choose among the analyzed features of the current system

APPENDIX A. TOOL DOCUMENTATION 76

and specify a specific analysis session consisting of the selected features. Currently,
the system implements the Concept Lattice Analysis however in the near future the
required components for the Second Pattern Mining would be added (see Figure

A.10).

APPENDIX A. TOOL DOCUMENTATION 77

i #-[3% AddressBoal:

Number of Traces = 8
Average Unpruned Trace Size
Average Pruned Trace Size =2
Mumber of Patterns = 95
Average Pattern Size = 172
@ folderList

G {E % messageIndax

’”! 2:] Pattern Analysis Sessions
- i Pine_all_Feztures

¥ % € %
Wte fks Jewis Jewis eede

= (&th
= 71 Features:
B {&cwdesyometer

i
gi
i
|
|
|

é; ‘spinelnterpolation
i . SplineInterpolationClosed
ZJ : Pattem Analysis Sessions

20] file to parse:C:\Documents and Settings\Hossein|Desktop\Datajtest/ Traces/tes
20] file to parse:C:\Documents and SettingsiHossein\DesktopiDatajtest Traces/tes
: 20% gl;'t: ﬁ?ﬂm:&\oocunents and Settings\Hossein\Desktop\Dataftest/Traces/tes

Figure A.3: The Eclipse workbench with the Dynamic Alborz plugin installed.

APPENDIX A. TOOL DOCUMENTATION 78

suxes Config Workpath
Dynamic Alborz stores the analyzed systems in a directory structure called a workpath. '
Choose a workpath drectory for this analysis.

Figure A.4: Config Wizard page of the Dynamic Alborz plugin.

Welcome Page
Select the system that you want to start analyzing, or enter a new system name.

Figure A.5: Welcome page, the first page in the Dynamic Alborz Run wizard.

APPENDIX A. TooL DOCUMENTATION 79

History Page

This page provides a brief history for the selected system,
You can either add a new feature to the selected system, or start the pattern

Figure A.6: History page, provides a history for the selected system in the Dynamic
Alborz Run wizard.

APPENDIX A. TooL DOCUMENTATION 80

{l Input Trace Data
Enter the description of the new fFeature which you want to analyze,

[attach
| Compose email, attach , send
| reply email, attach, send

Figure A.7: Input page, provides an interface for adding a new feature to the system.

APPENDIX A. TooL DOCUMENTATION 81

Sequential Pattern Mining
Please specify the level of minimum support

Figure A.8: Data Mining page, user can select the minimum support for the data
mining operation.

APPENDIX A. TOOL DOCUMENTATION 82

Statistical Results

The result of sequertial pattern mining; You can either add a new feature to the selected
system, or start the pattern analysis,

Figure A.9: Statistical Result page, provides statistical information about the ex-
tracted execution patterns.

APPENDIX A. TooL DOCUMENTATION 83

Pattern Analysis

You can select the features which you want to include in analysis process.

Figure A.10: Pattern Analysis page, provides an interface for selecting the analysis
type and the features that should be involved in a specific analysis session.

Bibliography

[1] Xfig version 3.2.3. http://www.xfig.org/.
[2] Pine email client version 4.4.0. http://www.washington.edu/pine/.
[3] Eclipse version 3.0. http://www.eclipse.org.

[4] Formal concept analysis toolkit version 1.0.1.

http://source’orge.net/projects/conexp.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
ICDE ’95: Proceedings of the Eleventh International Conference on Data Engi-
neering, pages 3—14, Washington, DC, USA, 1995. IEEE Computer Society.

[6] Thoms Bell. The concept of dynamic analysis. In ESEC/FSE-7: Proceedings
of the 7th European software engineering conference held jointly with the 7th
ACM SIGSOFT international symposium on Foundations of software engineer-

ing, pages 216-234, London, UK, 1999. Springer-Verlag.

(7] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1st edition,
1940.

84

BIBLIOGRAPHY 85

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Harold W. Cain, Barton P. Miller, and Brian J. N. Wylie. A callgraph-based
search strategy for automated performance diagnosis (distinguished paper). Lec-

ture Notes in Computer Science, 1900:108+-, 2001.

Maxime Crochemore. An optimal algorithm for computing the repetitions in a

word. Inf. Process. Lett., 12(5):244-250, 1981.

Carlos Montes de Oca and Doris L. Carver. A visual representation model for
software subsystem decomposition. In Proceedings of the Working Conference

on Reverse Engineering, pages 231-240, 1998.

Dennis Edwards, Sharon Simmons, and Norman Wilde. An approach to feature

location in distributed systems. Technical report, Software Engineering Research

Center (SERC), 2004.

Thomas Eiserbarth, Rainer Koschke, and Daniel Simon. Derivation of feature
component maps by means of concept analysis. Fifth European Conference on

Software Maintenance and Reengineering, March 2001.

Thomas Eiserbarth, Rainer Koschke, and Daniel Simon. Locating features in
source code. /EEE Transactions on Software Engineering, 29:210 — 224, March
2003.

Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Recovering software
requirements ‘rom system-user interaction traces. In SEKE ’02: Proceedings of
the 14th international conference on Software engineering and knowledge engi-

neering, pages 447-454, New York, NY, USA, 2002. ACM Press.

M. Ernst. Static and dynamic analysis: synergy and duality, 2003.

BIBLIOGRAPHY 86

[16]

[17]

18]

[19]

[20]

[21]

[22]

Usama M. Fayyad. Advances in knowledge discovery and data mining. MIT
Press, Menlo Park, Calif., 1996.

David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. Recognizers
for extracting architectural features from source code. In Proceedings of Second

Working Conference on Reverse Engineering, pages 252-261, Toronto, Canada,

July 14-16 1995.

Christian Lindig and Gregor Snelting. Assessing modular structure of legacy code
based on mathematical concept analysis. In Proceedings of the 19th International

Conference on Software Engineering, pages 349-359, 1997.

Alok Mehta end George T. Heineman. Evolving legacy systems features using
regression test cases and components. In IWPSE ’01: Proceedings of the jth
International Workshop on Principles of Software Evolution, pages 190-193, New
York, NY, USA, 2001. ACM Press.

Bhatia Nikhil, Moore Shirley, Wolf Felix, Dongarra Jack, and Mohr Bernd. A
pattern-based approach to automated application performance analysis. Pro-

ceedings of the Workshop on Patterns in High Performance Computing (patHPC
2005), 2005.

Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Execution
patterns in object-oriented visualization. In Proceedings Conference on Object-
Oriented Technologies and Systems (COOTS °98), pages 219-234. USENIX,
1998.

Roger S. Pressman. Software Engineering, A Practitioner Approach. McGraw-

Hill, third edition, 1992.

BIBLIOGRAPHY 87

[23]

24]

[25]

[26]

[27]

[28]

[29]

[30]

Erik Putrycz. Using trace analysis for improving performance in cots systems.
In CASCON 04: Proceedings of the 2004 conference of the Centre for Advanced
Studies on Collaborative research, pages 68-80. IBM Press, 2004.

Tamar Richner and phane Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. In ICSM ’99:
Proceedings of the IEEE International Conference on Software Maintenance,

page 13, Washington, DC, USA, 1999. IEEE Computer Society.

K. Sartipi, N. Dezhkam, and H. Safyallah. An orchestrated multi-view soft-
ware architecture reconstruction environment. In WCRE ’06: Proceedings of the

Thirteenth Working Conference on Reverse Engineering, 2006.

Kamran Sartipi. Alborz: A query-based tool for software architecture recovery.
In Proceedings of the IEEFE International Workshop on Program Comprehension
(IWPC’01), pages 115-116, Toronto, Canada, May 2001.

Kamran Sartipi. Software Architecture Recovery based on Pattern Matching.
PhD thesis, School of Computer Science, University of Waterloo, Waterloo, ON,
Canada, 2003.

Michael Siff and Thomas Reps. Identifying modules via concept analysis. IEEE
Transactions on Software Engineering, 25(6):749-768, Nov./Dec. 1999.

OC Systems. Aprobe version 4.2 for unix, 2003.

Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept
analysis of execution traces. In WCRE '04: Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE’04), pages 112-121, 2004.

BIBLIOGRAPHY 88

[31]

[32]

[33]

[34]

[35]

[36]

Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and

concept analysis. In Proceedings of the ICSE 1999, pages 246255, 1999.

Norman Wilde and Michael C. Scully. Software reconnaissance: mapping pro-

gram features to code. Journal of Software Maintenance, 7(1):49-62, 1995.

Felix Wolf, Bernd Mohr, Jack Dongarra, and Shirley Moore. Efficient pattern
search in large traces through successive refinement. In Proceedings of the Euro-

pean Conference on Parallel Computing (Euro-Par), Pisa, Italy, 2004.

Kenny Wong. Software understanding through integrated structural and run-
time analysis. In CASCON ’9): Proceedings of the 1994 conference of the Centre
for Advanced Studies on Collaborative research, page 73. IBM Press, 1994.

Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Applying
webmining techniques to execution traces to support the program comprehen-
sion process. In CSMR ’05: Proceedings of the Ninth European Conference on
Software Maintenance and Reengineering (CSMR’05), pages 134-142, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

Andy Zaidman and Serge Demeyer. Managing trace data volume through a
heuristical clustering process based on event execution frequency. In CSMR ’04:
Proceedings of the Eighth Euromicro Working Conference on Software Mainte-
nance and Reengineering (CSMR’04), page 329, Washington, DC, USA, 2004.
IEEE Computer Society.

