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Abstract 

In this thesis the surface reconstruction problem for radiation therapy is 

studied. The knowledge of the body's surface in the affected area is required to 

design and deliver proper radiation treatment for cancer patients. We develop 

an inexpensive non-contact optical 3D surface scanner prototype. It can easily 

be mounted on an x-ray treatment machine integrating unobtrusively into the 

current workflow. 

We start with preliminary information on radiation therapy, explaining 

how the patient's body surface is used in planning and treatment, and dis­

cussing the currently available methods. Then, we review the commonly used 

optical 3D surface measurement methods, and discuss the advantages of structured­

light techniques for the stated problem. In our method, the projected pattern 

is the regular rectangular grid of colour-coded circular spots. Images of the 

light pattern deformed on the surface are photographed by an off-the-shelf in­

expensive camera and analyzed by the developed software. 

Finally, we present the special purpose image processing and surface re­

construction algorithm, implemented as a MATLAB package, and provide the 

experimental results. Optimization procedures are used in the pattern recog­

nition code to process low-quality images efficiently. The software package can 

run on any standard PC and takes a couple of minutes to process one image. 
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Chapter 1 

Introduction 

In industry, art, science, and medicine it is often necessary to measure a 3D 

surface of an object with a good accuracy. In most applications, the surface 

is acquired either by using special devices, for example, range finders, or by 

recovering the 3D surface from one or more 2D images of the object. The lat­

ter utilizes image processing, pattern recognition, and surface reconstruction 

techniques that require the design of special purpose algorithms and extensive 

use of mathematical tools, such as, numerical computation, optimization, com­

putational geometry, linear and vector algebra, modelling, 3D visualization, 

etc. 

In this thesis, the problem of the patient's body 3D surface reconstruction 

arising in radiation therapy is studied. Although the particular conditions 

inherent in the given problem define the technical and algorithmic design, the 

developed 3D surface scanner prototype can be taken as a basis of surface 

reconstruction devices for other applications. 
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1.1 Surface Reconstruction in Radiation 
Therapy 

Radiation therapy (RT) is prescribed alone or in a combination with other treat­

ment methods, such as surgery, chemotherapy, or biologic therapy, to about half 

of all patients with cancer [16]. As high-energy radiation is employed to achieve 

the treatment effect in RT, it is especially important to plan doses, points and 

angles of entry of the radiation beams carefully. An exact patient's body sur­

face in the affected area has to be measured. Radiation is absorbed by tissues in 

the body, consequently, the dose decreases before radiation reaches cancer cells. 

Therefore, it is important to know the distance between the target area and 

the body's surface from any angle of rotation of the x-ray machine to be able 

to provide an efficient treatment plan. Section 2.2.3 explains the RT process in 

more detail. 

Section 2.3 describes Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), and mechanical contouring as the most widely used methods 

for surface reconstruction in RT. All these methods are characterized by slow 

data acquisition, and errors in repositioning a patient to a treatment machine. 

Firstly, some displacement can occur because imaging machines are separated 

from the treatment ones, and, secondly, body positions advantageous to treat­

ment are often not possible in the restricted volume of imaging machines. MRI 

and CT technologies are expensive, and contouring is a contact method, causing 

patient's displeasure and deforming soft tissues easily. 

Besides planning, the 3D surface can be used to provide the patient's 

position relative to a radiation source for each treatment procedure instead of 

using immobilizing devices and tattoo marks (see Section 2.2.3). And, finally, 
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having a way to inexpensively and quickly measure the surface each time will 

provide data for medical research on anatomical variations in patients during 

the course of treatment, and help to determine if re-planning or any corrections 

to the treatment plan are necessary. 

1.2 Project Objective 

Analyzing the disadvantages of the existing methods described in Section 2.3, 

the requirements of the radiotherapy team, and hardware constraints (see Sec­

tion 4.1.1), we propose an inexpensive, robust, rapid, non-contact portable 3D 

surface scanner, designed to integrate unobtrusively into the current workflow, 

using optical methods. 

The task of developing an industrial 3D surface scanner for RT treatment 

procedure has two successive steps: 

1. Designing a device with a software package that reconstructs the 3D 

body's surface in the area of treatment. 

2. Extending the software package by adding the modules for, but not lim­

ited to, maintaining a database with patients' surface scans, and compar­

ing the current scan with the previous data. This will provide possibili­

ties to make corrections to the patient's position, to analyze anatomical 

changes since the last visit in order to determine if the treatment replan­

ning is necessary, and to conduct some relevant medical research. 

In this thesis, the first problem is addressed, the problem of 3D body's sur­

face reconstruction. We develop a prototype 3D surface scanner device, design 

3 
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and implement algorithms for analyzing the acquired data and reconstructing 

a surface. More specific problem statement can be found in Section 2.4. 

1.3 Approach and Methodology 

Among the many optical 3D surface measurement methods (see Chapter 3), we 

use the well known method of structured light with a new specially designed 

light pattern. A structured light technique is inexpensive and flexible, and can 

provide fast full field measurement. In structured light the surface is illumi­

nated by a light pattern of some known structure, for example, lines, a grid , or 

circles, which deforms on the surface. Only a camera and a pattern projector 

are needed . By choosing an appropriate pattern it is possible to reconstruct the 

surface from a single image, although multiple images can be used to increase 

robustness and accuracy. In structured light, the surface is reconstructed by 

finding the 3D coordinates of the surface points from triangulation between a 

light source, a camera, and a surface. The correspondence between the pro­

jected and the observed in the images patterns has to be known. For more 

details see Sections 3.10 and 5.4. 

Technical design is defined by two main constraints: 

1. The 3D surface scanner must not interfere with the usual planning or 

treatment procedure. Consequently, the examined surface should always 

be visible to the device, independent of the machine's position. 

2. The device should not be expensive. 

Taking into consideration these two features, we aimed to construct a 

lightweight device, which can be easily attached to the rotating machine's head, 

4 
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using an existing carrier tray. We also use an existing light source inside the 

machine, a pattern mask and a small inexpensive camera to produce structured­

light images of the scene. As a result of the operating environment and choice 

of the camera, the captured images are low-light and noisy (see Chapter 4). In 

this thesis, we develop theoretically and implement in MATLAB a novel special 

purpose pattern recognition algorithm (see Chapter 5), which allows obtaining 

necessary information for surface reconstruction even from low-quality images. 

The novelty of the algorithm is in the following features: 

1. As the projected pattern, we use colour-coded round spots located on 

a regular rectangular grid and a black background. To our knowledge, 

nobody has previously used this kind of pattern. The detailed description 

and motivation for the chosen pattern is provided in Section 4.2. 

2. The incoherent light source is not as powerful and focused as a laser, and 

human skin diffuses light. Therefore the projected light pattern is dark 

and diffused in the images. To find the light pattern elements in the im­

age, which is necessary for surface reconstruction, we have to provide a 

good guess of their location. In addition to rectangularly located spots 

in the pattern, we also use a special hardware setup described in Sec­

tion 4.1 to create images with a certain structure, which helps to reveal 

the location of the pattern elements (see Chapters 4 and 5). 

3. Due to diffuse and low-light images, the image processing techniques, 

which can be applied, are limited. For example, we are unable to utilize 

commonly used edge detection to find the pattern elements and their 

shapes. Instead, we apply least-squares optimization procedure to fit the 
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acquired data to the inverse polynomial function, which we use to model 

the intensity distribution of the light spot. Related work on estimating 

spot parameters for rigit target detection was done by Korobkine [21], 

though in that case a polynomial model was used, which can give more 

error than the inverted polynomial due to its more free shape. 

4. Spots in our pattern are colour-coded to help to establish the correspon­

dence between the projected and the observed pattern. The problem is 

that with low light and diffuse skin properties, the colours change, and 

sometimes it is hard to define a colour of a spot. To solve this problem, 

we use a k-means clustering algorithm to separate the colours, which does 

not rely on the "ideal" colours but on the proximity information between 

the data points inside the group (see Section 5.3) . However, this is not 

enough because the k-means algorithm also does not assign all the colours 

correctly. We use heuristics based on the pattern structure and spatial 

information to correct the colour errors (see Section 5.3.2). 

1.4 Thesis Outline 

The thesis describes the theoretical background of the 3D surface scanner for 

RT, its technical and algorithmic design, and the implementation of the theoret­

ical results as a MATLAB software package. This predetermines the following 

organization of the thesis. 

In the current Chapter 1, we state the surface reconstruction problem in 

RT, the thesis project objective, and briefly describe chosen approach to solve 

the problem. Finally, the outline of the thesis is provided. 

6 
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Chapter 2 contains the background information on cancer treatment and 

the role of surface reconstruction in the treatment process. We also discuss the 

ongoing research and existing methods of body surface reconstruction for RT 

in detail, pros and cons analysis of which leads us to the problem formulation. 

Chapter 3 reviews optical 3D surface measurement methods, their princi­

ples of operation, advantages and disadvantages, and concludes with the struc­

tured light approach, which was chosen to solve the surface reconstruction 

problem. 

Chapter 4 is devoted to the technical design of the 3D surface scanner 

prototype. Technical and optical constraints determining the features of the 

scanner design are analyzed. Special attention is paid to the projected pattern 

design used for creation of the structured-light images. Our pattern design is 

based on characteristics of the human skin, and on camera and light parameters. 

An optimization model for the recognition procedure of the pattern elements 

is formulated. 

In Chapter 5 our algorithm for image processing, pattern recognition, 

and surface reconstruction is described step by step. Experimental results are 

provided to illustrate the algorithm stages. 

Finally, Chapter 6 contains concluding remarks and suggestions for future 

work. 

Appendix A contains the high-level documentation of our MATLAB soft­

ware package, which implements the algorithms of the 3D surface scanner con­

cept that we developed in this work. 

7 
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Chapter 2 

The Role of Surface 
Reconstruction in Cancer 
Treatment 

In this chapter we give some general information about cancer treatment and 

concentrate on the RT equipment and procedure. The use of the patient's body 

surface is explained. We discuss advantages and disadvantages of the currently 

employed surface reconstruction methods in RT, related research, and conclude 

by presenting the surface reconstruction problem. 

2.1 Cancer Treatment 

We start with giving some general information about cancer, what makes cancer 

cells so dangerous to human health and life, and a short review of different types 

of conventional therapy. 

9 
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2.1.1 Cancer Cells and Their Behaviour 

Cancer occurs when a group of cells start to divide and grow in an uncontrolled 

and disordered way. They form a tumour, which can invade surrounding tissues , 

start secondary tumours, and interfere with body functions. The causes for 

some cancers are known while those for others are not. The process of tumour 

formation is called carcinogenesis. 

The number of cells in a tissue depends on a balance of cell proliferation 

and programmed cell death. Sometimes, a group of cells disobeys the control 

mechanisms of a human body and that is how malignant transformations occur. 

Potentially, almost any cell in a human body can turn malignant. In order to 

develop into cancer, the genetic material (DNA) of a cell has to be damaged. 

Changes can be caused by chemical, viral, and physical agents. Cancer cells can 

be less genetically stable than the normal cells, which causes cell heterogeneity 

within any given tumour [16]. In most cases, presence of a tumour-promoting 

agent is needed to complete the process of carcinogenesis. 

In fact , there are two types of cancer causes. The nuclei of some cells have 

much stronger inherent predisposition to become malignant than the others -

a cause called a tendency. A second reason is the triggers that cause the actual 

genetic damage and push cells into becoming malignant [9]. 

In conclusion, the activity of cancer cells can be described by five prop­

erties [9]: 

1. Cancer cells grow and multiply when they are not supposed to. 

2. Cancer cells can invade surrounding areas. 

3. Cancer cells can get into the bloodstream, or lymph vessels and travel to 

distant locations in the body. 

10 
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4. Cancer cells can cause secondary tumours, called metastases, at those 

distant areas. 

5. Some cancer cells may produce substances that interfere with the body 

control functions and impact nerves, muscles, salt regulation, and other 

systems. 

2.1.2 Main Types of Conventional Therapy 

Three approaches are commonly used in cancer treatment: surgery, radiother­

apy, and chemotherapy. Recently, the new field of biologic therapy has been 

opened. This Section provides a short overview of these four therapy types in 

the order of invention [9]. 

Surgery 

This method has been utilized for more than two thousand years for cutting 

out individual tumours. Surgery is the best choice when cancer cells are totally 

contained in the area, which has to be removed, and there is a low probability 

of secondary tumours [9]. Sometimes, this procedure is a necessity if a tumour 

threatens important organs or tissues because of its size. 

Radiation Therapy 

This form of treatment was invented a hundred years ago, shortly after Curies' 

discovery of radium, a chemical element with a particular type of emission. 

This type of radiation, named gamma rays, was first used to treat cancer in 

France shortly after the discovery. In 1895 Wilhelm Conrad Rontgen invented 

a method of producing x-rays, which were used to image the human body [9]. 

Now, high-dose x-rays, or other similar types of rays, are used to kill tumour 

11 
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cells. The main advantage of the RT is that it can be precisely directed to the 

cancer area omitting other parts of the body. 

Chemotherapy 

Chemotherapy began in the late 1940s. During the First World War, mustard 

gas was used as a weapon because in high doses it caused destruction of the 

bone marrow. Later, it was found that a derivative of mustard gas- mustine 

- could kill growing cells, including cancer. This was the first chemotherapy 

drug. Afterwards, other components were added. At the same time, it was 

noted that certain hormones (or substances that resemble hormones) can also 

be used effectively to control cell growth [9]. The disadvantage of this method 

is that drugs are usually given orally or intra-venously, and therefore, circulate 

through the body before getting to the target. 

Biologic Therapy 

Over the last twenty years, researchers have been studying the ways body re­

sponds to cancer and trying to modify them in a certain controlled way to 

help the body fight the disease. Some substances can change the elements of 

the immune system so that it works more effectively against cancer. They are 

called biologic response modifiers, or BRMs. An example of an agent used in 

immunotherapy is Interferon. Other types of biological agents are being consid­

ered, for instance, it is possible to use antibodies to carry toxins or chemotherapy 

drugs or radioactive isotopes to cancer cells [9] but this mechanism still needs 

improvement. Examples of biological therapy also include gene therapy, vac­

cines and antiangiogenesis therapy where agents attack specific features of the 

cancer cells that are not present in normal cells. 

12 
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2.2 Radiation Therapy 

The primary application of the 3D surface scanner developed in this thesis is 

to assist in RT treatment. In order to understand specifics of the application 

and motivation for the design choices, it is necessary to discuss some back­

ground information in more detail, including principles of RT equipment, and 

radiotherapy planning and treatment procedures. 

2.2.1 Principles of Radiation Therapy 

RT is prescribed alone or in a combination with other treatment methods to 

about a half of cancer patients for cure, palliation (easing of symptoms), or the 

local control of a malignant disease [20]. Sometimes when a tumour has already 

been surgically removed, some cancer cells can still be left in the area. In this 

case, RT is prescribed to prevent a tumour recurrence. In some cases, RT is 

used to treat non-cancerous benign tumours. 

The advantages of RT is that, as opposed to chemotherapy, it is free of 

systemic toxicity because it does not require an absorption at a distant site, 

transportation via the blood vessels, or diffusing from vessels into the tissues. 

Also, it does not have anatomical restrictions as surgery does. Besides, pa­

tient's medical problems, such as cardiac or pulmonary disease, are usually not 

an obstacle for radiation treatment. After-treatment complications are reduced 

by the introduction of high-quality megavoltage equipment, better dosage mea­

surements, more careful, computer-assisted treatment planning, and advances 

in the understanding of radiation biology. Side effects are common to those of 

chemotherapy but are usually localized to the body site irradiated. For exam­

ple, alopecia, i.e., loss of hair, occurs only in the treatment field, and nausea 

13 
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o~------~--_.~~----~--------~ 
A B C 

Dose 

Figure 2.1: The relation between x-ray dose and outcome of radiotherapy 

and vomiting can occur after irradiation of the upper abdomen [16]. Also, a 

disadvantage of the method is that patients usually have to attend procedures 

on a daily basis , and the whole course of treatment can take up to two and a 

half months though the procedure itself takes minutes. 

Radiation Treatment Effect 

The rays used by RT can be created artificially using, for example, linear ac­

celerators, or given off by radioactive substances. The radiations can be electro­

magnetic (x-rays, gamma rays) or corpuscular (electrons, protons, heavy ions, 

neutrons, alpha particles) but their mechanisms of interaction with tissues are 

similar [16] . 

The main effect of radiation treatment 1s cancer cell death. Most cell 
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death results from misrepair or failure of repair of double-strand breaks in 

DNA, an injury which can lead to a cell death only when the cell is divid­

ing quickly (cells in division process are much more sensitive to x-rays) [16]. 

High-energy radiation deposits energy in body tissues through a process of ion­

ization, which creates positively and negatively charged particles. The ions 

cause chemical reactions in cells, and highly reactive free radicals are formed, 

which cause breaks in DNA. Double-strand breaks can occur after a single hit 

of dense ionization or be formed from two independent neighbouring single­

strand breaks. Single-strand breaks are usually repaired efficiently and are 

rarely lethal. Double-strand breaks can be repaired as well but are more prone 

to errors, which change the genome. The most common consequence is a cell's 

loss of reproductive ability [16]. 

Figure 2.1 represents the relation between an x-ray dose and probability of 

the tumour or normal tissues damage (see Fig. 7-1 on p. 56 in [16]). As implied 

by Figure 2.1, at any given dose there is a balance between cancer area control 

and damage to the normal tissues. An oncologist chooses the dose depending 

on the patient's condition, the treatment objective, and the characteristics of 

the normal and tumour tissues in the affected area. For example, choosing dose 

A does not harm healthy tissues but at the same time is not enough to cure 

cancer because with this dose only about 15 percent of cancer cells are killed. 

On the contrary, choosing dose C kills almost all the cancer cells but damage 

to the normal cells is too high. Dose B results in a lethal outcome for about 

half of the cancer cells with relatively small damage to the normal cells. 

15 
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Figure 2.2: X-ray treatment machine 

2.2.2 Radiation Therapy Types and Equipment 

In this Section the three main types of RT are described, that is external beams, 

brachytherapy, and large-field RT. They differ by the treatment area and the 

equipment. External beams is the most frequently used type of radiotherapy. 

16 
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Figure 2.3: Multileaf collimator 

External Beams 

Modern RT was made possible by equipment capable of precise generation 

and delivery of very high energy radiation. These energies are expressed as 

MeV (million electron volts potential) Radiations with energies greater than 

4 MeV are called supervoltage or megavoltage and used almost exclusively 

for external-beam therapy The most common source is a linear accelerator 

(LINAC) with the use of high-energy x-rays or high-energy electrons. Many 

facilities have dual energy linear accelerators [20] This means that the LINAC 

has two levels of high-energy x-rays: at the lower and at the higher ends of high­

energy spectrum. Superficial tumours, such as head and neck cancers, are best 

treated with lower energy beams, while deep tumours of the chest , abdomen, 

and pelvis are better treated with higher energy x-rays [20] Megavoltage beams 

have very important characteristics, such as skin sparing, reduced absorption 

in bone, high dose rates, and reduced lateral scattering into adjacent tissues. 

The penetration of a beam increases in direct proportion to the energy of the 

photons [16] 

Figure 2.2 shows an example of an x-ray treatment machine, CLINAC pro-
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duced by VARIAN Medical Systems (http:/ /www.varian.com). The machine 

can rotate around the table where the patient rests, which enables the exposure 

of the body's affected area to radiation from different angles. A high-energy 

x-ray source is located in the head of the machine. 

The beam is more intense in the center than near the edges. The best 

treatment effect is achieved with constant intensity across the field of irradi­

ation. This is why a flattening filter is put below the target. At the same 

time, if it is decided that a beam should be more intense on one side than the 

other, high atomic number filters, known as wedges are placed in the beam 

[30]. In order to be able to change the field of treatment, special high atomic 

number collimators are installed into the machine. They can vary the size from 

4 x 4 em to 40 x 40 em at a distance of 100 em from the target where most 

treatments are performed [30]. 

After opening the collimators to the desired radiation field size including 

the tumour some normal tissues in the field can still be shielded by placing 

blocks (or alloy), constructed of a combination of bismuth, tin , cadmium, and 

lead, in the path of the beam [30]. Then, it is possible to treat with a higher 

dose compared to the case where normal tissues were not covered. Some mod­

ern machines have multileaf collimators that are located in the linear accel­

erator's head and can adapt to the tumour's shape. Figure 2.3 demonstrates 

the principle of multileaf collimator's operation. The positions of the individ­

ual "leaves" are planned with a computer. To give an example, the VARIAN 

Medical Systems company produces MillenniumMLC multileaf collimators that 

offer 40 x 40 cm2 field, 0.5 em resolution and can have 52 , 80, and 120 "leaves" 

(http:/ /www.varian.com). 
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Brachytherapy 

Brachytherapy is an application of radioactive sources within or adjacent to 

the tumour [16]. It usually requires an operative procedure. The doses of ra­

diation in tissues containing a tumour are relatively high compared to those 

received by the surrounding normal tissues. As a source, radioactive isotopes 

generated in atomic reactors or cyclotrons are used, for example, 6°Co, 137 Cs, 

iridium 192, and iodine 125 [16]. The source is usually "afterloaded" into an 

adaptable, flexible, custom-made applicator by remote control. The advantages 

of this technique lie in the possibility to check radiographically the position of 

the applicator. Also, medical personnel are not exposed to radiation unneces­

sarily, and sources can be withdrawn temporarily to a special safe storage if 

needed [16]. 

Large-Field Radiation Therapy 

Total-body irradiation from an external source is used in treatment of lym­

phomas and leukemias and as a method of immunosuppression and eradication 

of bone marrow prior to the transplantation of donor bone marrow. It is also 

combined with chemotherapy for patients with high risk of metastases [16]. 

2.2.3 Radiation Treatment Procedure 

In the sequel, by RT we mean external beam RT because it is the primary field 

of application of the 3D surface reconstruction system developed in this thesis. 
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Measuring Radiation Absorption 

The precise measurement of the radiation dose is very important in the treat­

ment of cancer because the dose has to be high enough to kill cancer cells 

effectively and, at the same time, harm to normal cells should be minimized. 

Besides, the prescribed dose depends on the depth of the tumour in a body 

because radiation is absorbed by tissues. Also, as energy increases, the pene­

trative ability of the radiation beam increases and the skin dose decreases [30]. 

The dose of radiation absorbed correlates directly with the energy of the 

beam. The basic unit of radiation is gray ( Gy), which equals the amount of 

energy (joules) absorbed per unit mass (kg). In order to measure dose in a 

patient , one should first measure the ionization produced in air by a radiation 

beam. Then, the dose distribution can be corrected for the presence of soft 

tissue [30]. 

Radiation measurements in a water container make a good approximation 

for dose distribution in a patient's body. This approach is used not only to plan 

the radiation dose but also to calibrate x-ray machines weekly. 

Pretreatment Imaging 

To diagnose, and later to plan the treatment, accurate detailed images of the 

problematic area are required. Computed Tomography (CT) scans, bone or 

liver scans, arteriograms, Magnetic Resonance Imaging (MRI) scans can be 

used. The oncologist also checks what other organs or tissues are likely to 

be included in the field, for example, bowel, spinal cord , lungs, kidneys, skin, 

etc [9]. 
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Simulation 

After the oncologist analyzes the diagnostic images and the patient's condition, 

and RT is prescribed, a patient is sent for simulation. For this procedure, 

a patient is placed on a diagnostic unit that is identical geometrically and 

mechanically to an actual treatment machine. There is an x-ray source inside 

the simulator as well but of much lower energy as compared to the treatment 

machine. It is important that the patient's position is the same at simulation 

and each treatment procedure. After the position is set, tattoos or ink markers 

are put on the skin in the points where the red lasers, which go across the room, 

enter the body. These lasers are located at the same places in both simulation 

and treatment rooms. Sometimes, it may also be necessary to prepare a plastic 

mold or mask to immobilize the patient. 

The simulator is rotated around the patient and a series of 2D orthogonal 

x-ray images are made from different positions. Having several images, the 

oncologist chooses the best angles of radiation entry taking into account organs 

and tissues which are in the field and the proximity of a target area to the 

surface of the body. The reason for having many beams (usually two to four 

but possibly up to seven to nine) is that in this way the dose to a tumour 

can be maximized while surrounding tissues get a lower dose of radiation (all 

the beams intersect in the area containing a tumour and this way the tumour 

gets the maximum dose). Blocks that will shield any normal structures are 

drawn on the films. These fields are sent to the mold room, where blocks are 

constructed [30]. If the machine possesses a multileaf collimator, the optimal 

relative position of the collimator "leaves" is planned with a computer. 

Within the last decade, some cancer centres have combined CT and sim-
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ulation into one procedure. During this procedure a patient is placed on the 

CT-simulator unit and undergoes a CT scan. Then, the physician has the ca­

pability of outlining the tumour and normal structures on each CT slice. A 

computer performs 3D transformation of the data and creates a digitally recon­

structed radiograph (DRR). It can be manipulated to achieve better contrast 

and detail and viewed from any angle [30]. 

Treatment Planning 

At the planning stage, the radiation dose for each beam has to be computed. 

The location of the tumour (or the area with cancer cells left after the surgery) 

is already known from diagnostic or simulation x-ray images. As has already 

been mentioned, the radiation is absorbed by tissues so the dose in the tumour 

depends on its depth in the body. The further the tumour from the surface, the 

less radiation reaches it . A medical physicist or dosimetrist needs the digitized 

surface around the area of treatment to be able to estimate with a computer 

an accurate dose of radiation for any chosen x-ray machine's position. For 

example, Pinnacle software can be used for dose and angles planning. The 

surface data can be provided from the MRI or CT results, or acquired by the 

contouring machine. These methods are discussed in more detail in Section 2.3. 

A complete collection of data, including dose distribution in a body and 

beam profile information, is stored in the computer. Medical physicists can 

also assist the oncologist in deciding on the number of beams and angles of 

entry to a body. Several treatment plans can be generated, and the oncologist 

chooses the best one. Also, the oncologist plans how many fractions the whole 

radiation dose should be divided into. It depends on the size of the area and 
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the sensitivity of the surrounding tissues. For example, bone is relatively in­

sensitive to radiation and that is why the treatment to the small area near a 

bone can be given all in one fraction. Another example is breast cancer where 

treatment requires up to twenty or twenty-five fractions to maximize damage 

to the tumour while minimizing damage to the skin [9]. Breaks between the 

treatments are necessary for recovering of healthy tissues. 

Treatment Delivery 

All the data, such as beam-on time, beam angles, blocks, and wedges, are 

recorded in the patient's treatment chart and passed to the radiation therapist 

who will use this information together with skin marks to set up and treat the 

patient [30]. 

In many cases, radiation treatment is given in small fractions every work­

ing day. The whole course of treatment can take up to two and a half months. 

The treatment itself usually takes up to several minutes but taking into consid­

eration the setting up of the machine and finding exact position of a patient, 

it may take from 15 minutes to half an hour. 

Weekly port films are taken for each beam to ensure the correct placing 

of a patient, beams and blocks. Port films are images generated by the linear 

accelerator at energies of 6-20 MeV [30]. They have much poorer quality than 

the x-ray images from the simulator because of the high energies but are good 

enough for trained personnel to ensure the quality of setup and treatment. 
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2.3 Surface Reconstruction Methods 
for Radiation Therapy 

There are several ways to get a digitized surface. To spot the disease, some 

patients undergo MRI or a CT scan. For these people, the 3D surface of 

the body can be computed from scan information given that the radiation 

treatment is planned and delivered right after the scan. On the contrary, if there 

was a long time interval between the scan and RT, for example because another 

type of treatment was given first, the anatomy may change and rebuilding of 

the 3D body's surface is necessary. Sometimes, the positions advantageous for 

treatment cannot be realized in the restricted volume of an MRI or CT machine. 

In this case, to avoid repositioning errors, the 3D surface has to be measured 

in the treatment pose. Also, some patients are diagnosed with 2D images, for 

example, x-rays. Therefore, constructing a digitized surface is necessary for a 

number of patients. A short overview of MRI, CT, and mechanical contouring 

as the most commonly used methods for surface reconstruction is given in 

Sections 2.3.1 - 2.3 .3. 

2.3.1 Computed Tomography 

Computed Tomography or CT, also known as Computer Assisted Tomography 

or CAT, was introduced in the early 1970's by Hounsfield and Cormack [4]. It 

was the first imaging technology to allow 3D inner body images. In CT, x-ray 

images are used and processed on the computer to create virtual slices of the 

examined parts of the body. 

Bones absorb more of the x-rays passing through them than do the sur­

rounding tissues and that is why initially x-rays were used in medicine to image 
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Figure 2.4: CT scanner 

bones. Absorption of x-rays by other tissues and organs does not vary too much 

and they differ only slightly in the x-ray image. However , contrast material that 

can be swallowed or injected enhances the visibility of certain tissues and or­

gans by outlining them clearly on the film. For example, swallowed contrast 

material helps to outline stomach or bowel while injected contrast can reveal 

arterial or renal structure [4] 

In current machines, a fan beam of radiation sweeps through 360 degrees 

and detectors read radiation amount and degree [4] From multiple projections, 

it is possible to reconstruct a sectional display, or a slice. To build a 3D image of 

the examined body part, a number of slices are required, and this may be time­

consuming. Having several slices, 3D image of the body part can be produced, 

and 3D surface of it can easily be extracted to use in RT procedures. 

The recent National Survey of Selected Medical Imaging conducted by 

25 



M.Sc. Thesis- Olesya Peshko McMaster- Computing and Software 

the Canadian Institute for Health Information shows that on January 1, 2003 

the number of CT scanners in Canada was 326, which is 10.3 units per million 

population [4]. It is not time and cost efficient to use CT technology when only 

the surface is needed. The price of a CT scanner is about $1 million CAD [4]. 

Besides, since during a CT scan x-rays are utilized, it is better to cut down 

the number of scans to a necessary minimum because there is an increased 

lifetime cancer risk associated with CT [36]. A typical CT scanner is shown in 

Figure 2.4. 

2.3.2 Magnetic Resonance Imaging 

To create detailed images, Magnetic Resonance Imaging, or MRI, uses hydrogen 

atoms in the tissues , a strong external magnet, and intermittent radio waves. 

A patient is put in a strong magnetic field created by external magnet , and 

the magnetic moments of atoms in the body tend to align with the external 

field. A pulse of radio-frequency radiation is sent and it disturbs the alignment. 

When atoms return to their previous state they emit the energy that reveals 

their molecular environment and spatial location. For example, the nucleus of a 

hydrogen atom in a molecule of fat will emit a different signal than a hydrogen 

atom in the protein of muscle [4]. 

MRI can provide detailed images of all tissues except bone where the 

protons are tightly bound and less susceptible to magnetic influence. Received 

signals are processed by a computer and images are reconstructed similarly to 

CT. MRI images can also be enhanced by injecting agents analogous to the 

contrast materials in CT. 

MRI does not use ionizing radiation, so in this sense it is less harmful 
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Figure 2.5: Contouring machine 

than CT but there are drawbacks for this technology as well. First , the cost is 

high, the machine is twice as expensive as aCT scanner (over $2 million CAD), 

and there are fewer MRis than CTs in Canada. The total number of MRis in 

Canada is 147 according to the Recent National Survey of Selected Medical 

Imaging [4] Another inconvenience is noise produced during the scan. Some 

patients cannot have MRI, for example, those with pacemakers, those who 

have difficulty holding still for extended periods of time, and those susceptible 

to claustrophobia [4] 

2.3.3 Mechanical Approach: Contouring Machine 

The inconvenience of having MRI or CT scans for surface reconstruction of 

a patient 's body, discussed in Sections 2.3.1 - 2.3.2, led to the utilization of 
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the mechanical contouring approach. Many cancer centres have designed and 

successfully use mechanical contouring machines on a daily basis. Often, the 

machine works as a pantograph (see Section 3.1) , which makes the mechanical 

replication of the pointer motion along the surface. The more complicated 

variant is the machine capable of digitizing the patient's surface directly. One 

of such contouring machines (see Figure 2.5) was invented at the Juravinski 

Cancer Centre in Hamilton, where we conducted all of our experiments. It has 

a metallic pointer in the form of a hook, which is easily rotated and moved 

in 3D by a technician. It has a local coordinate system and can measure in 

a 50 x 50 x 50 cm3 space. The 3D coordinates of a point are reported to the 

computer if the distance from the current point to the previous one is greater 

than 2 mm in 3D. Accuracy in an individual point reaches 0.5 mm. So, the 

accuracy, resolution and robustness of this device are good enough. 

There are, however , some disadvantages associated with it. First of all , 

this is a contact method. It is unpleasant for a patient to feel the pointer 

on the skin. Besides, it can give some errors because skin is soft and can be 

easily pushed. Also, a patient can feel pain in the measured area. Another 

drawback is that the machine is manually operated, which is slow, and prone 

to errors because a patient can move slightly during the measurement. The 

contouring machine is separated from the treatment machine, which results in 

repositioning errors. 

All these lead us to conclude that some non-contact, inexpensive, quick, 

accurate, on-site 3D surface reconstruction method is needed to assist in RT. 
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2.3.4 Methods Under Development 

Recently, some techniques have been developed in research settings to efficiently 

build the surface for RT planning purposes and to use a reconstructed surface 

to evaluate and correct a patient's position. 

Krempien, et al. [22] use a structured-light surface scanner to obtain a 

number of surface points. The scanner projects a set of lines varying in width, 

changing sequentially, and several images are needed from each viewpoint. To 

evaluate a patient's position, the obtained surface is compared to the previ­

ously scanned one and the volume of congruency is computed. An error below 

1 mm is considered acceptable. In cases where set-up is not satisfactory a map 

of the surface comparison is evaluated showing the areas of missing alignment. 

According to this information a manual repositioning is performed. Authors 

report that no more than 3 repetitions are necessary to obtain an acceptable re­

sult. The whole procedure including registration, calculation and visualization 

takes about 20 sec for one repetition. 

Lilley et al. [26] use a twin-fiber interferometer to produce stripes on 

the surface. The surface is reconstructed from a single image by applying 

Fourier fringe analysis techniques. The locations of the interferometer and the 

camera are fixed, therefore the field of view of the device is limited. Extensive 

calibration provides good accuracy, which is important in medical applications. 

Some methods do not use surface reconstruction to control the patient's 

position. Johnson et al. [19] use two black-and-white CCD cameras, one mounted 

on the wall next to the left lateral lasers, and the other one on the ceiling, di­

rectly above the foot of the treatment table. Zoom lenses have to be utilized 

because of the distance between the cameras and a patient. Live subtraction 
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images are obtained by subtracting a reference image (i.e., an image of the 

patient in the correct position) from real-time video. Subtraction images re­

veal patient misalignment in multiple views. They provide the therapists with 

immediate feedback and allow correcting a patient's position before radiation 

is delivered. Intratreatment movement of patients also is dramatic and can be 

easily detected. The authors report reducing of positioning error to 1 to 3 mm 

against 5 to 7 mm error of aligning a body using skin marks and room red 

lasers. 

Berry and Aldrich [8] use the body's surface information to construct the 

compensators and to verify the patient's position from simulation to treatment 

and from one treatment to another. A series of narrow fan beams is projected 

to intersect the patient's surface. At simulation, the reference video image of 

the lines is stored. At treatment setup, video images are compared with the 

reference in real time. Operator adjustments to the patient's position are im­

mediately shown on the composite image, and a congruency value is calculated 

to help in this process of alignment. 

2.4 Problem Statement 

The initial idea of this thesis project came from the medical physicists of the 

Juravinski Cancer Centre in Hamilton, Ontario who felt the need for an alter­

native to the existing methods for surface reconstruction in RT. 

The choice of the method originates from the analysis of the existing 

methods. The cost of MRI and CT gives a constraint for the price of a future 

3D surface scanner. The scanner should be inexpensive not only to manufacture 

but also to operate. The second important issue is to have a non-contact 
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method to avoid patient's displeasure and decrease the errors coming from 

human interaction. This brings us to choosing optical methods discussed in 

Chapter 3. Since there are errors for all the methods in repositioning a patient 

to the treatment machine, it is desirable that the new device can be mounted on 

the machine. The machine rotates around the couch and the patient, and so will 

the device. Therefore, it should be simple, lightweight, preferably consisting of 

a minimum of parts. Another drawback inherent in all the earlier mentioned 

methods is slow data acquisition, thus the 3D surface scanner should do it 

quickly. 

To conclude, the objective of the work presented in this thesis is to choose 

a method which is optimal taking into account all discussed demands and re­

strictions, to create a prototype device by using simple inexpensive hardware, 

and to design and implement algorithms for surface reconstruction. The devel­

oped 3D surface scanner has to be inexpensive, non-contact, portable (can be 

mounted on a treatment machine), quick and accurate. 
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Chapter 3 

Optical Techniques for 
3D Surface Measurement 

In industry and art, there is a vast variety of applications where measuring the 

3D surface of objects with a good accuracy is necessary. Applications include, 

to name a few, control systems in robotics, stress/strain and vibration measure­

ment in materials, obstacle detection for vehicle guidance, 3D map building, 

inspection of industrial parts for quality, reverse engineering, computer assis­

tance in animation for rapid development of characters and their behaviour, 

and finally, the important and currently very active research area of medical 

applications. Since each application has its own specifics, there is also a large 

number of methods and their combinations to solve each task. Here, we describe 

briefly the most popular ones. 

3.1 Willeme's Invention 

The era of creating replicas of an object or a person began with the invention 

of photosculpture by Fran<;ois Willeme (1830-1905) in 1860. He patented his 

invention and opened photosculpture studios in Paris, London and New York. 
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Figure 3.1: Photosculpture process 

According to [2], photosculpture is a process in which, by means of a number 

of photographs simultaneously taken from different points of view on the same 

level , rough models of the figure or bust of a person or animal may be made with 

great expedition. An object was placed in a circular room and simultaneously 

photographed by 24 cameras placed equally around [32]. Each photographic 

plate was projected onto a screen using a magic lantern and an artisan would 

carve out 1/24 of a cylindrical portion of a clay figure by tracing the projected 

image with a pantograph. The pantograph is an instrument for copying a plane 

figure to a desired scale, consisting of styluses for tracing and copying mounted 

on four jointed rods in the form of a parallelogram with extended sides [3]. 

Figure 3.1 demonstrates an artisan carving out a figure using a projected im-
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Figure 3.2: Pantograph 

age and a pantograph. Figure 3.2 explains the principle of the pantograph's 

operation. A pointer is used to trace an original image, and a pen, or a cutting 

tool in the case of sculpture, produces the scaled copy of the drawing. With 

the pantograph in Figure 3.2 it is possible to draw a smaller copy of the image. 

The pen and the pointer can be switched to produce a larger copy. 

Willeme's studios stayed in operation until 1867 [5], when it was real­

ized that the photosculpture process was not more economical than traditional 

sculpture. Since only 24 profiles were supplied, a professional sculptor was 

needed to finish all the fine details. Besides, the process required quite an in­

vestment in terms of cameras, projection and reproduction systems, and skilled 

labour to operate them. The problem of automatic 3D surface reconstruction 

regained interest only with the invention of the computer. 

With time, many new devices, techniques and algorithms have been in­

vented, nevertheless 3D surface reconstruction remains important and needs 

further improvement and investigation. Various methods differ by their ap­

plication area, resolution, accuracy, restrictions, level of sophistication, equip­

ment, size of examined objects, sensitivity to errors, ability to measure dynamic 

scenes, etc. 
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3.2 Time-of-Flight Method 

Originally, this distance measuring technique was used in military and sur­

veying applications. The pulsed time-of-flight method is based on the direct 

measurement of the time of flight of a laser or other light source pulse. The 

pulse is reflected back from an examined surface to a sensor. A reference pulse 

is transmitted at the same time as the main one. It is passed through an 

optical fiber with known parameters and then received by the sensor, which 

allows us to compute the starting time easily. The time difference between the 

two pulses is converted to a distance. A typical resolution for this method is 

around a millimeter. To obtain 1 mm accuracy, the accuracy of the time interval 

measurement should be 6.7 ps [5]. Diode lasers with subpicosecond pulses and 

high-resolution electronics provide submillimeter resolution. Similar techniques 

can give up to several 11m resolution [10]. 

For short-range applications, this technique has the disadvantage of re­

quiring the measurement of extremely short times for good range accuracy. 

Another variant of the method is the continuous wave time-of-flight method, 

which uses a continuously modulated laser beam to indirectly measure time 

of flight. The advantage of the amplitude modulation approach is the pos­

sibility of tailoring the modulation wavelength to the range to be measured . 

With different wavelengths, long range and high resolution measurements can 

be achieved. Systems with frequency modulation can even resolve multiple tar­

gets, which is important in scenes where the main target is obscured by objects 

in front of it [15]. 

In addition to the need to use lasers, detectors and optics, the main 

disadvantage of the time-of-flight methods is that they provide one surface point 
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measurement at a time. Therefore, to cover the whole scene, measurements on 

two axes have to be performed, which increases the cost of the system and 

reduces the pool of its commercial applications. 

3.3 Laser Scanning 

Laser scanning is used for ultra-precise measurements to create 3D models 

and drawings, for complex geometries and free-form surfaces. Laser scanned 

images are widely used in virtual reality simulators and in reverse engineering 

applications. Equipment based on this method gained a broad recognition 

in many famous museums and art galleries because it gave the possibility of 

producing precise full-colour models of valuable antiquities and pieces of art, 

many of which may demand special storing conditions. With the 3D models, 

many people can study historical data and see the presentations of collections 

without risk of damage to the originals. 

The technique involves projecting a point or a line of laser light onto a 

surface and viewing it from an offset camera. Advantages of using laser light 

instead of a conventional incoherent light source are brightness and spatial 

coherence that enables the laser beam to "stay in focus" when projected on 

the scene [5]. Alterations of the line shape or point position correspond to the 

topography of the object. Triangulation is used to compute the 3D position 

of an individual point. Triangulation is a geometrical technique to determine 

a position of a point, which is viewed from two well-separated points, where 

their location and the angles between the line joining them and the lines to 

the distant point are known. The drawback of the laser scanning is similar to 

that of the time-of-flight method: it is slow and costly due to the necessity of 
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Figure 3.3: Laser scanning 

equipment, which moves the light to cover the whole object scanned, or the 

device has to be moved manually. The typical measurement range is ±5 to 

±250 mm with the accuracy of about 0.01% of the distance to the measured 

object. 

Figure 3.3 (left) demonstrates the laser scanner gantry positioned in front 

of Michelangelo's David. The white arrow shows a laser line on the forehead of 

the statue. Figure 3.3 (right) shows the reconstructed model of David. It was 

acquired over a period of 4 weeks by a crew of 22 people scanning 16 hours per 

day 7 days a week [24]. 
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Figure 3.4: Moire method 

3.4 Moire 

The word moire comes from the name of silk fabric with a wavy surface pat­

tern. The first paper describing moire interference was published in 1874 by 

Lord Rayleigh who predicted that the effect can be used as the test of irregular­

ity of gratings or deflection of one grating to second. Now it is also applied to 

inspection systems for locating missing or misaligned parts in a multicomponent 

assemblies, analysis of dynamic processes (vibrations), and optical contour ex­

traction of surfaces [6] In moire method two gratings are used, one is a master 

grating and the other is a reference grating, from superposing of which con­

tour fringes can be generated, photographed by a camera and analyzed. For 

surface reconstruction two initially identical gratings are often utilized. Master 

grating follows the deformation of the object, and a reference grating remains 

unchanged. Increased resolution is realized since the gratings themselves do 

not need to be resolved by a CCD camera, except for the logic-moire method, 

where the reference grating is computer generated. The price of high resolu-

39 



M Sc. Thesis - Olesya Peshko McMaster- Computing and Software 

Figure 3.5: Laser speckles 

tion is implementation complexity and the need for a high power light source 

as compared to a structured light technique (described in the sequel) To in­

crease the accuracy of reconstruction, one might want to use multiple images 

and several moire fringe patterns with different phase shifts. The typical mea­

surement range of the phase shifting moire method is from 1 mm to 0.5 m with 

the resolution at 1/10 to 1/100 of a fringe [10] 

Moire methods are commonly applied to 3D surface reconstruction tasks. 

Figure 3.4 shows moire fringes superimposed on model head (left) and super­

imposed gratings (right) [1] 

3.5 Laser Speckle Pattern Sectioning 

Laser light is very coherent in nature. Speckle (see Figure 3.5) is a mottled 

pattern which arises when the light reaches a non-specular reflecting surface. 

It scatters, and the waves collide. They can cancel each other out if their 

phases are opposite, and then a dark space occurs, or a light space otherwise. 
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For some kinds of lasers this effect is easily visible. Laser speckle pattern can 

also be called an interference pattern. 

The 3D Fourier transform relationship between optical wavelength (fre­

quency) space and the distance (range) space is used to measure the shape 

of an object. This approach utilizes the principle that the optical field in the 

detection plane corresponds to a 2D slice of the object's 3D Fourier transform. 

To get information for other 2D slices, the wavelength of the laser has to be 

changed. Images with different wavelengths are photographed by a digital cam­

era, and then added up to form a 3D array, to which 3D Fourier transform is 

applied in order to get the object's shape [10]. 

The measurement range can be from a micrometer to a few meters, which 

is very flexible. This method can give very precise results, for instance, in the 

measurement range of 10 mm the resolution of 1 to 10 11m is achievable. At 

the same time, if a relatively large object has to be measured, it takes more 

time to acquire the images with the different wavelengths [10], and changing 

wavelength demands some special equipment. 

3.6 Interferometry 

A surface with an interferometric pattern looks similar to one with a moire pat­

tern but the nature of the phenomenon and a measurement range are different. 

Interference can be observed when two (or more) waves come together. The 

effect can be used for measuring purposes. The basic principle of an interfer­

ometer lies in splitting off the light coming from one source into two parts by 

placing a system of mirrors to provide two coherent sources. Half of the light is 

directed to a measured object, and then, after being reflected, combined with 

41 



M.Sc. Thesis - Olesya Peshko McMaster- Computing and Software 

the other half. The waves interfere. At some places they add up (constructive 

interference) , at other places cancel each other (destructive interference) , which 

produces an interference pattern - alternation of light and dark stripes - in a 

photographed image. The shape and thickness of stripes change follows the 

topology of the object. 

Interferometric methods can provide very precise measurement of the sur­

face change, the resolution for most of them depending on the light wavelength. 

One of the methods, belonging to this group, is double heterodyne interferom­

etry, which uses frequency shift. It achieves 0.1 mm resolution with 100 m 

range. Combined with phase shifting analysis, interferometric methods and 

heterodyne techniques can have accuracies of 1/100 and 1/1000 of a fringe , 

respectively. With certain optical configuration design, accuracy can reach 

1/10,000 of a fringe [10]. 

The disadvantage of the method comes from its sensitivity - a highly sta­

ble environment is a necessity, which is usually provided by expensive equip­

ment. The other complex issue is providing coherent sources. Interferometry 

can be used for very precise measurements, for example, it can measure the 

structure of skin. 

3.7 Shape-From Techniques 

Shape-from techniques are a group of monocular approaches that recover rel­

ative depth of the surface from texture, shading, contours, motion, etc. To 

measure a surface, several images are acquired. Since the reconstruction error 

depends on the number and choice of viewpoints, some techniques has been 

developed to automatically control the choice of viewpoints [28] . 
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Left image Right image 

Left camera Right camera 

Figure 3.6: Stereo principle 

For example, to get a shape from silhouettes, one should first separate 

the object from the background on all the images. In controlled environments, 

this can be done by using a background of uniform colour Then, a bounding 

pyramid is constructed using the focal point of the camera and the silhouette 

points. Finally, all the pyramids, built from different points of view, are in­

tersected and form an approximation of the bounding volume [28] Accuracy 

and resolution depend mostly on the number and position of viewpoints. This 

method is not very practical because of the necessity of the special background 

and a large number of viewpoints for a good resolution. 
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3.8 Stereovision 

Stereovision simulates the human's vision system. In a classical version, two 

cameras are employed to make simultaneous shots of the object from different 

positions, though depending on the application more cameras can be utilized. 

First, the cameras need to be calibrated, that is, the exterior and interior para­

meters should be known. Then, the two acquired images have to be analyzed 

for correspondent points. Figure 3.6 illustrates the stereo principle. After the 

camera's parameters and a set of corresponding points are defined, the 3D co­

ordinates of the points on the surface are computed via triangulation as the 

intersection of the lines going through the optical centres of the cameras and 

the corresponding points on the image planes. The term triangulation actually 

refers to the fact that there is a triangle created by the three vectors: the vector 

between the cameras ' optical centres, and the two vectors connecting the cam­

eras ' optical centres and the surface point. The 3D coordinates of the surface 

point can be found from the relation between the three vectors. The necessary 

equations are provided in Section 5.4. 

Computation of the 3D coordinates of the surface points is easy but the 

difficulty of the stereovision technique is in finding corresponding points in the 

two images. Some points are visible only in one picture. 3D coordinates for 

those cannot be found precisely, only approximate coordinates relying on the 

neighbouring points and shading can be computed. The accuracy of the mea­

surement depends on the quality and accuracy of the camera and calibration 

techniques. 

However, the problem of finding the corresponding point in the second 

image for a certain point from the first image may be reduced to the problem of 
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Left image Object point Right image 

Left camera Epipolar line Right camera 

Figure 3. 7 Epipolar line 

finding the corresponding point on a line. With the precise setup of equipment, 

the corresponding point can only be located on the epipolar line, which is the 

intersection line of the second image plane with the plane going through the 

two cameras' optical centres and the point from the first image (see Figure 3. 7) 

3.9 Photogrammetry 

Originally, the photogrammetry approach was applied to make aerial surveys 

and maps. More recently, it has been adopted for close-range measurements. 

Photogrammetry can employ either stereo technique (most frequ~ntly), or de­

focus , shading and scaling [10] This method is good for feature type 3D mea­

surement and determining the orientation of the object because it uses some 

markers put on the surface such as retroreflective painted dots or LEDs. With 
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the camera flash turned on, the markers appear to be much brighter than a 

diffuse image of the surface. 

The basis of photogrammetry is triangulation. The 3D coordinates of 

the markers are revealed from the locations of the cameras and the angles 

between light rays from the objects and the camera image planes. Usually, some 

reference objects of known size are included in the scenes because photographic 

images are inherently non-dimensional (you cannot tell if an examined object is 

of 10 m or 20 m size) . For close-range photogrammetry it is not really necessary 

to measure the cameras' locations or orientations. It can be computed from a 

minimum number of markers appearing on all the photographs [29]. After the 

correspondence between the markers from different images is established, the 

bundle adjustment algorithm based on a least-squares procedure is applied to 

compute space locations. The accuracy achieved by this method can be as high 

as 0.001% or even 0.001% of a distance to the object [10]. 

In [11], human faces are measured by means of multi-image photogram­

metry. Five CCD cameras are used. To facilitate the establishment of corre­

spondences in the images, texture in the form of random patterns is projected 

from two directions onto the face. The multi-image matching process, based on 

a geometrical constrained least squares matching algorithm, produces a dense 

set of corresponding points in the five images. An accuracy of 0.1 - 0.2 mm 

can be achieved. The described method is quick and accurate but it demands 

resources in the form of random pattern projectors and sensitive cameras. 
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3.10 Structured Light 

Stereovision is an attractive method for 3D surface measurement but it has 

a serious drawback: the correspondence problem. To improve the situation, 

a method based on the structured light concept, or active triangulation, can 

be used. For structured light, a second stereo camera is replaced by a light 

source, which projects a known pattern of light on the surface. A single cam­

era photographs the illuminated scene. The required 3D information can be 

obtained by analyzing the deformation of the observed pattern with respect 

to the projected one [7]. The structured-light method includes both projected 

coded light and sinusoidal fringe techniques. Salvi at al. [35] have classified the 

known patterns for structured light. 

Figure 3.8 demonstrates the geometry of the structured-light technique. 

The angle 'Y between projected (line a) and reflected (line b) light rays should 

not be too small, otherwise the deformations of the projected pattern on the 

surface are negligible. The camera's optical centre and the image plane are 

computed from the parameters of the camera. If, for a point in the image, a 

corresponding point from the pattern plane among all the projected points can 

be identified, the point on the surface is the intersection of the two lines: one 

going through the light source and the pattern plane point, and the second 

going through the image plane point and the camera's optical centre (lines a 

and b in Figure 3.8 respectively). When the spatial coordinates for surface 

points are computed, the surface can be reconstructed. With many patterns, 

a single image can be enough to reconstruct the whole examined surface [35]. 

However, for surfaces with a lot of curvature, some parts of the surface can 

shade others from either the camera or the projector. In this case, several 
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b 

Figure 3.8: Structured light 

images from different viewpoints are needed, and the reconstructed surfaces 

have to be combined into one final surface. Multiple images can be used to 

increase accuracy and resolution. 

Fringe techniques are very popular in 3D surface reconstruction. For 

example, Lilley et al. [26] use an interferometer to produce fringe pattern and an 

extensive calibration to conduct good accuracy measurement of a patient 's body 

for controlling the position in the x-ray treatment machine. The alternative is to 

use a number of distinct shapes as a light pattern, such as a set of stripes, grids, 

rectangles, concentric circles, circular spots, etc. More details are provided in 

Section 4.2. 
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3.11 Conclusion and Motivation of Choice 

In this chapter, a brief review for the most popular optical 3D surface measure­

ment methods was provided. We decided to use a structured-light technique 

for the 3D reconstruction of the patient's body for the following reasons: 

1. All the light rays are in the visible spectrum range, which is not harmful 

to human health. 

2. Structured light does not demand expensive equipment, only a camera 

and a projector have to be provided. 

3. Because of the minimal number of parts and simple implementation, the 

3D surface scanner for application in radiation planning and treatment 

based on a structured-light technique is light-weight and can be mounted 

on the x-ray machine's head. Therefore, the necessary surface part can 

be observed without intrusion into the current workflow. 

4. Structured-light techniques provide fast full field measurement. A single 

image can be enough to reconstruct the surface though multiple images 

can be used to improve accuracy and resolution, and also to cover the 

surface not visible from one viewpoint. 

5. Due to the vast variety of possible patterns, the method is very flexible. 

The choice of the existing pattern or the design of the new one depends on 

the application, available equipment and software, and properties of the 

surface. After locating pattern elements, 3D coordinates for the surface 

points can be computed. Also, a pattern can be constructed so as to 
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provide some other useful information about the examined surface, such 

as the slope of the surface in the number of surface points. 
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Chapter 4 

Experimental Design 

In this chapter technical and optical aspects of the 3D surface scanner are 

discussed in Section 4.1. Then, Section 4.2 provides description of the projected 

pattern and motivation for this choice. Finally, the mathematical model for a 

pattern element is presented. 

4.1 Technical Setup 

This section describes design constraints, equipment and its disposition. 

4.1.1 Challenges and Design Constraints 

Figure 4.1 shows an x-ray machine, which rotates around the patient couch. 

The couch can be moved up and down, back and forth, and rotate so that the 

centre of rotation of the machine appears inside the target area in the patient's 

body. As mentioned in Chapters 1 and 2, we wanted to construct such a device 

that a patient's surface is measured in the same position, place and time as 

treatment planning and delivery. It brings a number of constraints to the 3D 

surface scanner design: 
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1. Because of the treatment machine's rotation and couch movement, it is 

not possible to put the equipment in a fixed location close to the patient. 

With some additional parts, such as zoom lenses, we could mount it at 

some distance but the price is one of the important constraints too. Also , 

in the case of distant location, for some positions of the x-ray machine 

the surface can be shaded from either the camera or the projector by the 

machine's head. Taking all these into account, we decided to mount the 

device onto the machine's head (between the head and the patient couch). 

2. Mounting the 3D surface scanner on the x-ray machine puts constraints 

on its size, weight, and number of parts. To satisfy the demands, we 

have chosen small and lightweight camera, and used a light source located 

inside the x-ray machine's head to project the pattern through the pattern 

mask mounted on the machine's head as well. 

3. In order to use triangulation equations to compute the spatial positions 

of the surface points (see Section 5.4), the camera's and the projector's 

axes have to intersect at the centre of rotation of the x-ray machine. 

4. Since all the equipment is mounted on the machine, the current angle 

of rotation should be known. Shape of the surface can be inferred from 

the relative position and orientation of the light, the camera and the 

pattern but surface orientation cannot be obtained without the angle of 

the machine. 
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Figure 4.1: Technical setup 

4.1.2 Surface Reconstruction Equipment 

For the structured light technique, it is important to know the position and 

orientation of the projector and the camera. We use a light source inside the 

machine's head, and mount the camera and the pattern firmly to the head , so 

that the position of the light source and the camera can always be computed 

from the current x-ray machine's angle. There is no way to control the speed 

of the rotation of the treatment machine, it is not stable because it depends on 

how much the button on the remote is pressed. Therefore, the position of the 

projector has to be inferred either from the calibration of the system (fiducial 

marks in the scene, an inclinometer attached to the machine 's head, etc. ) or 

from the initial setup. For the experiments we chose the second option, namely, 

taking the images from predefined angles of rotation because the focus of this 

thesis is not in the calibration techniques but rather in the development of 
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the algorithm capable of analyzing deformed pattern in the low-quality images. 

More details on low quality resulted from the low-light environment and the 

camera's optical parameters are provided in Section 4.2. 

Equipment Specifications 

The 3D surface scanner prototype was mounted on the VARIAN 's CLINAC 

2100 EX x-ray treatment machine (see Figure 4.1). All the experiments were 

run in the MATLAB 7.0.1 environment on a PC with Pentium 4 CPU 2.8 GHz, 

1 GB RAM , Microsoft Windows XP. The projector was represented by a light 

source and a pattern mask. We used inexpensive equipment: 

1. Light source: incoherent light source (as opposed to a laser source) built 

into the x-ray machine's head. It is more focused than an ordinary light 

bulb but less focused and less powerful than a laser. The light field is of 

the same size as the radiation beam, so the radiation therapist can see 

the area covered by x-rays without turning the radiation source on. 

2. Pattern mask: a transparency with rows of white , red, and green trans­

parent circular spots and an opaque black background. Spots are located 

on an invisible regular rectangular grid. The motivation for this choice is 

given in Section 4.2 . 

3. Camera: Unibrain Fire-i digital video camera (about $120 CAD) with 

the following characteristics: 
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Interface 
Sensor Type 

Resolution 
Optics 

Video Modes 
Frame rates 
Dimensions (W x H x D) 
Housing and Weight 

McMaster- Computing and Software 

Fire Wire 400 Mbps, 2 ports 
Sony™ Wfine* 1/4 CCD Color, 
progressive, square pixels 
VGA 640 x 480 
Built-in f 4.65 mm lens, anti-reflective 
coating 
YUV, RGB, Monochrome 
30, 15, 7.5 and 3. 75 frames per second 
62 x 62 x 35 mm 
Semi-transparent polymer, 60 g 

We take images in RGB mode with 24-bit colour coding. 

Geometry 

To solve the stated surface reconstruction problem, we need a special setup. 

The light source moves in the plane of rotation of the x-ray source. We mount 

the camera offset from the light source in the same plane (see Figure 4.1). The 

pattern mask is aligned so that the rows of spots are parallel to the plane of 

rotation. In this way the deformed pattern in the images has an exploitable 

structure that will be clear from the discussion in Section 4.2 and Chapter 5. A 

single image is enough together with calibration parameters to reconstruct the 

surface of the visible part of a body. Here "visible" means that the part where 

the pattern is projected on the body is visible for the camera. However, to 

reconstruct the surface not visible from one point of view, and also to improve 

the accuracy and resolution, several images from different viewpoints may be 

taken. 
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4.2 Choice of the Projected Pattern 

In this section we provide an explanation of the pattern designed for our 3D 

scanner prototype and describe the mathematical model for the pattern ele­

ments. 

4.2.1 Low-Light Environment 

With the structured light technique for body's surface reconstruction, the best 

choice is to use a light pattern on a dark background. In this way, body 

features, such as difference in skin colour within the examined area, freckles, 

scars, eye-brows, etc. are not visible. Only the light pattern elements should 

be distinguishable , which makes the image easier to analyze. Therefore, all the 

light except for projector light should be off during measurements. The x-ray 

machine's light source is neither very strong nor very focused , therefore the 

light pattern on the surface is dull and the images have low contrast . 

At the same time, the inexpensive camera that we use (see Section 4.1.2) 

is considered to be the best home and office Fire Wire camera available in the 

market, and it is , indeed, relatively good for ordinary use, but it is not designed 

to serve in low-light conditions: its sensitivity is low. This is why the level of 

noise is considerable. Sometimes, it is hard to say if the observed bright pixels 

belong to the pattern element or it is noise. 

4.2.2 Previous Work 

Salvi at al. [35] have classified the known patterns for structured light. The 

choice of pattern depends on the camera and light characteristics, expected 

surface properties, and the level of image processing software available. It is 
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important in RT procedures to acquire the data quickly, therefore we cannot 

use patterns that change over time or move and imply taking multiple images, 

though this technology can provide good accuracy and resolution even with 

consumer hardware [33]. Coding the pattern elements with different colours 

simplifies the correspondence problem. High precision can be reached with 

pseudo-randomly colour-encoded patterns [23]. However, because of the cam­

era's characteristics, low light and skin scattering properties, we cannot use 

many colours. Dark colours disappear in the image and similar hues are not 

distinguishable well, and they can be misclassified easily. 

In many cases, to reconstruct the surface, a fringe pattern projected by 

an interferometer is used [26]. Many variations to increase robustness in a 

particular setting have been developed. The technique for converting the fringe 

frequency information into spatial coordinates is well studied. With this kind 

of pattern, problems of indexing the lines on curved surfaces and of phase 

unwrapping arise. Phase unwrapping is the reconstruction of a function on a 

grid given its values modulo 21r. The alternative is to use a number of distinct 

shapes as a light pattern, such as a set of stripes [33], grids [23], rectangles [17], 

concentric circles [14], circular spots [12, 25], etc. 

Davies and Nixon [12] project yellow, cyan, and magenta hexagonally tes­

sellated (tiled) circular spots onto a face painted white using theatrical makeup. 

Each spot's position in the array is defined by its colour and its immediate 

neighbours. From the shape and position of the observed ellipses, the location 

and orientation of the 3D surface at video-rate is reconstructed with the use of 

geometric constraints. 

Lewin et al. [25] have constructed a camera capable of recording 3D images 
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of objects. It does this by projecting thousands of spots onto an object and 

then measuring the range to each spot by determining the parallax from a 

single image. The spots are organized in a tilted periodic fashion. The camera 

reconstructs the surface with an accuracy of less than 1 mm at 1 m distance. 

4 .2.3 M odelling Spots 

With a low-sensitivity camera and an incoherent low-power light source we get 

noisy images, and the fact that human skin diffuses and absorbs light further 

reduces contrast. To locate pattern elements in such images imposes restrictions 

on the method: 

1. complicated shapes cannot be used as pattern elements, and 

2. t he searching procedure has to be provided with a good estimate of where 

the pattern elements are to be robust and efficient. 

Under low-light conditions the image processing techniques that can be 

applied to the data are limited, for example, edge detection will fail on such 

noisy and diffuse images. The shapes of the projected pattern elements should 

take into account these problems and be robust enough for this environment. 

We chose circular spots arranged on a regular rectangular grid as a pattern 

(see Figures 4.1 and 4.2). One of the advantages of this pattern is the discrete­

ness of pattern elements in both directions (as opposed to line elements). It 

allows partitioning the problem of recognizing pattern elements and assigning 

them to the grid into discrete small subproblems. It simplifies the problem, and 

in this way it is easier to differentiate between good and erroneous data. Ellip­

tical spot shape also gives information about the surface orientation in the area 

58 



M Sc. Theszs - Olesya Peshko McMaster- Computzng and Software 

100 200 300 400 500 600 

Figure 4.2: Circular spots projected on the patient 's face (in pixels) 

containing the spot [12] This information is useful at the surface interpolation 

stage. 

When the circular spot strikes a small surface area, which is approximated 

by a plane, it becomes an ellipse. The spot does not have a sharp edge, because 

the incident light is not parallel, the skin diffuses light , and the charge-coupled 

device (CCD) introduces noise. 

The light intensity of a sample of white, red , and green spots is shown in 

Figures 4.3a, 4.3c, and 4.3e. We model the spot's cross-sectional intensity with 
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Figure 4.3: Original light intensity data and fitted models 
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Figure 4.4: Parameters of the spot model 

an inverse polynomial function. It has only seven parameters (see (4.2.1) and 

(4.2.2)) and was found empirically to fit the spot's shape well. To estimate the 

model parameters, we iteratively minimize the difference between the model 

and the data in a least-squares sense. Then, we discard spots whose estimated 

parameters don 't fit a predetermined profile, e.g., non-positive-definiteness, as 

explained below 

To model the light intensity of the spot observed in the image (see Fig­

ure 4.4) we use the inverse polynomial model 

vl 
f (X, Y) = Vo + 1 + S (X ' y) , (4.2.1) 
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where (x , y) are the coordinates of a pixel in the image, v0 is the asymptote of 

the function (from below), v1 is the height of the bump (see Figure 4.4), and 

s(x, y) is a quadratic form describing an elliptical shape 

x -b x-b 
( )

T ( ) s ( x, y) = y _ b: A y _ b: , (4.2.2) 

where b = (bx, bvf is the centre of the spot (see Figure 4.4), and the symmetric 

matrix A provides the parameters for the shape and the size of the spot. Note, 

that A must be positive definite in order to represent an elliptical shape. 

The fitting procedure minimizes the difference between the model f(x, y) 

and the acquired data c/Jx,y in the L 2 norm over the set of the model parameters 

- A, b, v0 , and v1 ( 4.2.3). Because the background noise is very large, we 

found the quality of the estimates were significantly degraded by including 

background pixels. Consequently, minimization runs only for the pixels inside 

a circular area n of the size of an average spot: 

min L (c/Jx,y- f(x , y)) 2
. 

A ,b,vo,VJ n 
(4.2.3) 

Figure 4.3 illustrates the original light intensity data (a, c, e) and the the 

maximum-likelihood inverse polynomial model (b, d, f) for a white, red , and 

green spots. 

4.2.4 Colour coding 

Note, that with the geometry described earlier (light and camera are in the same 

plane of rotation, with rows of the spots parallel to this plane) independent of 

the angle of the machine's head the vertical columns of the illuminated elliptical 

spots in the image will always appear as almost straight and vertical columns 
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Figure 4.5: Columns of spots (in pixels) 

(see Figure 4.5), especially in the central part of the image. This can be used 

as a good guess for the location of the spots because if we find columns the 

problem of locating the spots in the image reduces to a simpler problem of 

locating them along the columns. This not only helps to recognize the spots 

more easily but also solves half of the problem of assigning identified spots to 

the grid by arranging them in the columns. 

However, closer to the sides of the image, the period changes slightly and 

the columns incline more to follow the surface and because of the perspective. 
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100 200 300 400 500 600 

Figure 4.6: Colour coding (in pixels) 

We start from the centre assuming that the central most illuminated column 

is straight, and move towards the sides column by column, adapting to the 

column 's profile deviation from vertical by fitting a cubic polynomial to the 

identified spots' centres, using the estimate from the previous column as a 

starting point for the fit of the next column. This explanation gives an idea of 

the pattern recognition algorithm, which is described in detail in Chapt r 5. 

It is easy to notice that the horizontal rows of the spots follow the surface 

( ee Figure 4.2). The shape of the row can change rapidly, and it is not always 
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possible to decide correctly what row a spot belongs to. We use colour coding of 

the rows to make the assignment procedure simpler and more robust. Rows are 

coded periodically with white, red, and green colours (see Figure 4.6). These 

colours were chosen empirically. They are reflected well from the skin, and at 

the same time they are different enough to be separated even with our low­

intensity light source. For example, as experiments showed, blue and cyan 

spots cannot be used because they are not visible, especially on people with 

darker skin. Projecting similar colours is also not a good idea because they are 

not distinguishable well in the image, and colour classification errors can lead 

to serious surface reconstruction errors. 
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Chapter 5 

Algorithm and Experimental 
Results 

In this chapter the algorithm for 3D surface reconstruction of the human body 

in the area of radiation treatment from 2D images is explained in detail. More 

information about the MATLAB implementation can be found in Appendix A. 

Our algorithm consists of the two consecutive special-purpose parts: 

1. Processing of the acquired images in order to find elliptical spots, and 

identifying the correspondence between the projected and the deformed 

patterns. 

2. Reconstructing the surface using triangulation. 

The goal of this thesis is to design an algorithm capable of processing 

images taken under low-light conditions. See Section 4.2 for more information 

about low-light environment. We do not concentrate on the second part of the 

algorithm too much. The technique of triangulation is well-known. The result 

of the triangulation depends heavily on the calibration of the equipment and 

at this time the system was not calibrated and set up precisely enough. In 
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the end, we present the surface reconstructed from a single image as the final 

stage of the algorithm, though we cannot say how good or bad it is because the 

calibration parameters were approximate and, at the moment, we do not have 

the digitized surface, measured using an approved method, to compare. 

For 
each 

image 

Read data 

Filter data 

Find columns 
and spots 

Find colors 

Build 3D model 

Combine to get surface 

Convert to greyscaie 

Find location of column 

Correct 
errors 

Find spots in 
one coulrnn 

For each spot 

Fit spot 

Figure 5.1: Algorithm Scheme 

The algorithm scheme is depicted in Figure 5.1. Arrows between the 

blocks show a control flow. According to the algorithm, first we do noise re­

duction, or data filtering. In the spot finding procedure colour information is 
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not used for the reasons explained later in this chapter. Therefore, we convert 

the initial image to greyscale. The resulting image is processed and the spots 

are found in an iterative procedure utilizing optimization techniques. After 

that, the colours of the spots are determined by a clustering procedure. The 

correct colour assignment is very important because it is required to identify 

the position of the spots on the pattern grid. Due to the low-light conditions 

and skin scattering properties, colour assignment errors occur. We designed a 

three-step procedure, which corrects colour errors by using the sequence of the 

colours in the known projected pattern and the position of the spots relative 

to their neighbours. After correction, spots are assigned to the grid and the 

correspondence between the projected and the observed patterns is found. 3D 

coordinates for surface points are computed and the surface is reconstructed. 

5.1 Preprocessing 

The image file (see Figure 4.6) of m x n pixels is opened in MATLAB as an 

m x n matrix, each element of which contains a light intensity value for one 

pixel of a greyscale image, or as an m x n x 3 matrix with red, green, and blue 

channel intensities for one pixel of a colour image. Since we use an RGB [34] 

24-bit colour camera mode to acquire images with the 640 x 480 resolution, we 

initially get a 640 x 480 x 3 matrix with integer values ranging from 0 to 255 

(8 bits for each colour). In what follows, we use the terms light intensity of a 

pixel and matrix element interchangeably if it does not introduce confusion. 
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5 .1.1 Noise Reduction 

In the low-light conditions, when the threshold of the camera's sensitivity is 

approached, the CCD introduces significant noise. To reduce the noise slightly, 

so that denoising does not change the original data too much, we tried several 

filters , such as mean, median and Gauss-like filters. 

A mean filter sets the light intensity value for a pixel as an average of 

the neighbouring pixels' intensities. Correspondingly, a median filter assigns 

the median value. But the best results in the experiments with respect to the 

number and quality of the found spots were reached after applying a Gauss-like 

filter , as we call it here. Our Gauss-like filter finds the intensity of the pixel 

as a weighted average of the neighbouring pixels ' intensities, where the weights 

are computed from some Gauss-form function. We say that the neighbouring 

pixels belong to the weighted average area. We choose an inverted polynomial 

function to describe the weights: 

1 
filter(x, y) = k (( )2 ( )2), 1+ · X-Cx + y-cy 

(5.1.1) 

where (x, y) E w are the pixels from the weighted average area w, and k is 

the coefficient controlling the width of the bump. The current pixel, for which 

the weighted average is done, is located in the centre ( Cx, cy) of the filter ( x, y) 

bump in order to have the most weight. After the weights are computed, they 

are normalized so as their sum equals one. In the experiments, we filtered 

each colour channel (red, green, and blue intensity images) separately with 

5 x 5 pixels Gauss-like filter. The weights computed from 5.1.1 are shown in 

Figure 5.2 by black dots . 
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Figure 5.2: Filter weights 

5.1.2 Conversion to Greyscale 

According to the algorithm, we must find the spots, and assign them to the 

grid in order to find the correspondence between the projected and the observed 

spots on the surface. In the discussion in Section 4.2 we explained our choice 

of the inverse polynomial function to model light intensity data of a spot. But 

the problem is that there are three colour channels, and the intensities of the 

white, red, and green spots are fairly different in each of them. In addition, 

the colour channels themselves have different significance. For example, blue is 

considered to be a noisy channel and usually provides less useful information 

than red and green channels. If the spot fitting procedure runs separately for 

each colour channel, the three sets of found spots will not match. We have to 

decide how to combine the results. For example, if the spot is found in one 

channel but is absent in the two others, will we consider it to be a spot? 
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We conclude that the three channels must be analyzed simultaneously. 

The non-convex minimization problem of the least-squares difference between 

the model and the observed data ( 4.2 .3) has to be upgraded to be able to fit a 

spot in the three channels. Then, the number of the problem variables increases 

and the objective function gets more complicated. It is not desirable because 

the problem fits every potential spot, and the number of spots in the image can 

be about 350- 400. So, complicating the model increases the processing time 

and provokes difficulties in providing the effective first guess for the problem 

variables, which is crucial because the problem is non-convex. 

In fact, there is another option consisting of the two steps. First, convert­

ing the image to the greyscale with the chosen coefficients for the red , green, 

and blue channels so that spots have approximately equal intensity, as much 

as it is possible. And second, fitting spots on an m x n matrix by the ini­

tial ( 4.2.3) minimization model. An additional advantage of this approach is 

that a greyscale image has better Signal to Noise Ratio (SNR) because it av­

erages the three colour channels. In the following discussion the term image 

means the greyscale image unless the other is specified. 

The conversion to greyscale is done by multiplying every colour channel 

matrix by the chosen coefficient (5.1.1). If the initial image is saved in the 

matrix D of the size m x n x 3, then Dgreyscale corresponds to the greyscale 

image of m x n size, and Dred, D 9r een, and Dblue are the matrices of the red , 

green, and blue channels of the initial image respectively: 

D 9reyscale = r · Dred + g · D 9reen + b · Dbtue· (5.1.1) 

Now, the question is how to choose the coefficients r , g, and b so as to 

provide good quality of the greyscale image. By good quality we mean that: 
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1. spots of different colours have more or less equal intensity in a greyscale 

image; 

2. spots are distinguishable from the background. 

Note, that if the pattern consists of white, red and green spots, as in our 

case, white spots will most probably be the brightest with any chosen conversion 

coefficients compared to the green and red spots because the white spots are 

visible in every colour channel. Therefore, we aim to choose the coefficients so 

that green and red spots have approximately equal intensity. 

As a first example, let us choose the coefficients equal to the mean values 

of red, green, and blue components of all pixels from the initial colour image. 

Let us analyze the histogram of the image showed in Figure 5.3a. The histogram 

represents the relative frequency of occurrence of the various grey levels in the 

image [18], that is, for every grey level, from 0 to 255 in our case, the histogram 

value is the number of pixels, which have this grey level. Hence, the image with 

bright light elements over dark background should have a two-peak histogram. 

It is easy to see that the histogram in Figure 5.3a does not have two well-defined 

peaks. The fragment of the greyscale image next to it demonstrates that some 

of the spots are too dark and many of them will not be accepted by the spot 

finding procedure. 

Let us choose the most-used classic coefficients for colour to greyscale 

conversion (p. 40 in [34]): 

Dgreyscale = 0.299 · Dred + 0.587 · Dgreen + 0.114 · Dblue· (5.1.2) 

Figure 5.3b demonstrates the results of the greyscale conversion with the 

classic coefficients. The image fragment shows much better results compared 
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Figure 5.4: Colour channels of white, red, and green spots 

to the one in Figure 5.3a, spots are easily visible and have more regular smooth 

shapes. The histogram shows two well-defined peaks. 

The obtained greyscale image (Figure 5.3b) is good enough for processing, 

it satisfies the two characteristics of the good image stated earlier in this section, 

however, it is possible to improve the quality even more. Figure 5.4 shows the 

fragment of the original image (RGB) with white, red, and green spots arranged 

in a column. R, G, and B are, respectively, red, green, and blue channels of 

the full-colour RGB image. A closer look on the channels reveals white and red 

spots in the red channel, white and green spots in the green channel, and almost 

nothing except for noise can be found in the blue channel (see Figure 5.4) For 

our images, subtracting the blue channel from the colour image (RG) , or taking 
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very small fraction of it, improves image quality. Although the blue channel 

makes some small contribution to the white spots, subtracting blue improves 

image SNR and white is represented well in the two other channels. To provide 

similar light intensities for red and green spots in the greyscale image, we 

find average red and green values among all the pixels, and then take their 

reciprocals as the coefficients. The better choice would be to average only the 

pixels which are in the spots but since we do not have this information at the 

preprocessing stage, averaging over all the pixels is the best we can do. Finally, 

the r·eciprocal coefficients we use in the experiments for the greyscale conversion 

are: 
1 

r 
mean(Dred)' 

1 (5.1.3) g 
mean(D9reen) ' 

b = 0. 

Note, that the coefficients are normalized so that their sum equals one. 

Figure 5.3c demonstrates the results of the application of the coefficients defined 

in (5.1.3). The image fragment looks similar to the image in Figure 5.3b but 

from the histogram it is clear that with the reciprocal coefficients the greyscale 

image has more dark background pixels than with classic coefficients, which 

causes the spots to stand out better from the background. Experiments confirm 

out expectations: the number and quality of found spots is greatest using the 

reciprocal coefficients. 
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5.2 Finding Columns and Fitting Spots 

Because of the low-quality images, we must provide a good guess for the spots' 

locations. This is possible, thanks to the structure of the images, as discussed 

in Section 4.2. In a few words, the spots in the images are always organized 

in columns independently of the angle of the x-ray machine. The observed 

columns are especially straight and vertical in the central part of the image, 

and if we find columns' positions, the task of finding spots in the whole image 

reduces to finding them along columns, which is much easier. The shape of 

the processed column and the period of columns is used to predict the shape 

and position of the next column. This section provides algorithmic details on 

finding the columns and fitting spots. 

5.2.1 Finding Columns 

Since the columns of the spots in the image are almost vertical (see Figure 5.6), 

we sum the rows of the m x n greyscale light intensity matrix, which results 

in the 1 x n integrated curve. The central part of the curve shows well-defined 

periodic peaks (see Figure 5.5) in the positions where columns of spots are in 

the image. Closer to the sides of the image the peaks become blurry and low. 

By applying the Fast Fourier Transform (FFT) algorithm [31] to the central 

part of the integrated curve, we can find the frequency and phase of the peaks. 

Choosing the frequency which is contained in a reasonable range of values and 

inverting it gives the period, and the phase gives the location of the columns. 

We assume that the most reliable information will be contained in the 

centre of the image as it is the most visible part, and the perspective does not 

significantly affect the central columns, so they remain straight and vertical. 
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Figure 5.5: Sum of the light intensity matrix rows 

Since the best data is in the central part of the image, it makes sense to start 

the spot finding procedure from the central column, and then proceed right 

and left to the image sides. The guess for the next column location and shape 

takes into account the current column shape (deviation from the straight line) , 

and the slight variations of the period across the image. Figure 5.6 shows the 

straight line guess for the central column, which corresponds to the brightest 

peak from the integrated curve. It is computed using FFT results. 

5.2.2 Finding and Fitting Spots 

To find the spots along a column, we analyze that part of the intensity matrix 

(stripe), whose elements are in a neighbourhood of the estimated column line 

(plus or minus a column half-period). The brightest areas in the stripe are 
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Figure 5.6: Central column (in pixels) 

found and the minimization procedure runs to determine if good spots are 

located in the guessed places. The formulas for the spot model and the least­

squares minimization procedure are provided in Section 4.2 ( 4.2.1, 4.2.2, and 

4.2.3) An unconstrained 7-variable minimization procedure runs separately for 

every spot. After optimization, the parameters of the fitted spots are analyzed. 

If they are not reasonable, for example, if matrix A (see ( 4.2.2)) is not positive 

definite, and hence does not describe an ellipse, or if the centre of the spot is 

not contained in the analyzed area, etc. the spot is discarded. It may be noise 
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Figure 5.7: Fitted spots along the columns (in pixels) 

peaks, or a spot which is partially obscured from either the light source or the 

camera, and can be covered from another viewpoint. 

After spots from the central column are found , they are sorted according 

to the vertical position and a cubic curve is fitted to their centres. Adding a 

period to this newly created line gives the estimated line for the next column 

to the right, and subtracting, correspondingly, the column to the left. Using 

straight estimated lines soon leads to errors in assigning spots to columns be­

cause of perspective and surface curvature, so using curves is necessary. Higher 
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degree polynomials could give a little better fit to the centres of the spots in 

the column, but experiments showed that there is no significant gain after the 

third degree. The period value is also corrected through the image to adapt 

for minor changes. The minimal number of spots to build the cubic curve 

through their centres is four, however, the shape of the curve can become too 

twisted sometimes and intersect other lines. To avoid this, we demand at least 

five spots to fit the curve, otherwise the current line estimate is shifted by one 

period to obtain the guess for the next column. 

Figure 5. 7 demonstrates the results of the column finding and spot esti­

mation procedure. Note, that fitting spots along the columns not only simplifies 

and makes the procedure of finding spots in a low-quality images more robust 

but also does half the work of assigning spots to the grid by assigning them 

to columns. Putting spots on the grid is necessary to find the correspondence 

between the projected and the photographed light patterns used in the final 

surface reconstruction procedure. 

5.3 Separating Colours and 
Assigning Spots to the Grid 

When all the spots are identified in the greyscale image, and assigned to the 

columns, their colours are analyzed in order to locate the spots onto the hori­

zontal rows of the grid. 

To separate spots by colours, we have to define concept of a spot's colour 

first. It is not straightforward because a spot contains many pixels, and each 

of them has an individual hue and brightness. The simplest way is to use the 

colour of the central-most pixel. It does not seem robust though because it relies 
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Figure 5.8: Result of k-means colour clustering 

on a single pixel. Another approach is to average colours of the pixels in ·ide the 

spot. This method has the disadvantage of the decreased light int nsity of the 

spot's colour compared to the first approach because the brightest pixels are 

located in the centre of the spot. In the experiments, we use a weighted average 

colour of the central pixels as a colour of a spot. The weights are computed 

from the Gauss-like function in the same way as the weights for filtering were 

computed in Section 5.1.1. With this approach, the central-most bright pixel 

has the most influence, and the colours of the neighbouring pixels are taken 

into consideration. 
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Figure 5.9: Improved k-means colour clustering 

5.3.1 Extracting colours 

A reliable procedure of extracting colours is not straightforward because human 

skin absorbs and s atters light variously depending on the light colour, and skin 

structure and colour. Imaged colours are modified versions of the projected 

ones. We know the number of the projected colours , therefore the k-means 

clustering algorithm [13] can be applied to make the separation. Figure 5.8 

shows olours of the fitted spots in the RGB coordinat system [34], where 

axes correspond to light intensities of red , green, and blue colour channels. 

The k-means is an iterative algorithm, which divides the objects into k disjoint 

subsets ·o as to minimize sum of squares relative to the geometric centres. It 

83 



M.Sc. Thesis - Olesya Peshko McMaster-- Computing and Software 

80 

..3 60 co 

40 • 

40 
100 

60 
120 

80 
140 

100 
160 

Red 
Green 

Figure 5.10: Initial k-means colour clustering 

has to be supplied with the number of groups, and the initial Toup centr ·s. 

Final separation group centres are shown by black dots in Figur 5.8 . 

A closer look at the colour separation results reveals the separation prob­

lem: som of th spots are mis ·lassified. The prevailing problem is that whit' 

and red spots are ·la sified as green. It happt.ned becau e k-m .an does not 

account for the shape of the groups. It basically separate the space by hy­

perplanes so that the el0meut.s of one gr up a.re Ion d closer t.o t.h ~-ir group 

ceutrP than to other 1TO np rrut.rcs. It. is t~ lt.'Y t :'it<' from ' ip;m-e r: . t hn , for 

example, red TOHp · •ems to bP too long, an l at some point its spots a.Tc lo­

cated closer in the RGB colour space to the green group centr , and tho are 

rlas ified a TC n ·pots by k-m ans. 
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Figure 5.11: Coloured spots with initial k-means clust ring (in pix Is) 

If this result from k-means clustering is used we can have the misclassifica­

tion error of over 20%. There are two ways to improve the situation: either use 

another more sophisticated algorithm, or modify the existing data to improve 

the classification result. 

Let us have a look on Figure 5.8 again. The colours of the spots have sim­

ilar hues but different light intensities. That is why they are located along the 

three lines connecting the black colour with white, red, and green. We project 

all the colours of the spots onto the plane M, which is perpendicular to the 
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Figure 5.12: Coloured spots with improved k-means clustering (in pixels) 

(1 , 1, 1) vector, with the centre of projection in (0, 0, 0) , that is, the projection of 

a pot is the intersection of the plane M with the line going through the spot 's 

colour and the black colour (0 0, 0). Figure 5.9 shows the projected colour 

and the resu lt,· of the k-means algorithm applied to them. This separation is 

much better than the one in Figure 5.8. For an easier comparison, the colours 

from Figure 5.8 after separation are also projected on M plane and presented 

in Figure 5.10. It is easy to notice dramatic improvement. Improved k-means 

has the classification error of about 6%. Figure 5.11 demonstrates the colour 
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separation result of the initial k-means, and Figure 5.12 shows the separation 

by the improved version of the clustering algorithm. 

5.3.2 Correcting Colour Errors 

With the improvement to the colour extraction algorithm the number of cor­

rectly recognized colours of the spots increases but there are still incorrectly 

recognized spots, which need to be detected and corrected. Incorrect colour 

assignment complicates the task of locating the spots on the grid, and can 

introduce serious spatial errors in the reconstructed surface. We develop a 

three-step procedure for correcting colour errors. 

Stepl. Marking Correctly Recognized Coloured Spots 

During this procedure colours for no spots are changed. We only mark automat­

ically the spots, whose colours can are correctly recognized. The decision of the 

colour correctness is based on the close location to the neighbouring spots from 

the same column (no missing spots in between), and the sequence of pattern 

colours. If the spot has the top and bottom neighbours with the colours correct 

according to the colour sequence, the spot is marked as correctly recognized. 

The results are demonstrated in Figure 5.13, where the spots with definitely 

correctly recognized colours have coloured circles inside, while all the others, 

unknown, are empty. 

Step 2. Analyzing Colour Sequence in Columns 

In the second step, the spots marked as unknown are analyzed. If such spot 

has a correctly recognized close neighbour in a column, its colour is determined 

from the pattern colour sequence and the spot is marked as correct. The 

87 



M.Sc. Thesis- Olesya Peshko McMaster- Computing and Software 

100 200 300 400 500 600 

Figure 5. 13: Colour correction, step 1: Correctly recognized spots (in pixels) 

assigned colour can be different from the initial colour obtained from the k­

means clustering. The result of this procedure is shown in Figure 5.14. Again, 

the correct coloured spots are marked with the same colour circles. 

Step 3. Weighted Colour Assignment 

Finally, at the last stage the colour should be decided for all the spots that are 

not marked as correct yet. For each analyzed spot, there are three weights, one 

for each colour. They depend on: 
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Figure 5.14: Colour correction, step 2: Corrected spots in columns (in pixels) 

1. The spot's colour assigned by the k-means clustering procedure. 

2. Correctly recognized colours of the column neighbours. 

3. Correctly recognized colours of the closest horizontal neighbours. 

After analysis, the colour with the greatest weight is assigned to the cur­

rent spot , and it is marked as correctly recognized. The result is shown in 

Figure 5.15. 
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Figure 5.15: Colour correction, step 3: All corrected colour d spots (in pix:el ) 

Taking into account not only the initial k-means colour separation but also 

the structure of the pattern in the image helps to correct the colour assignm nt 

errors and improve the results of the surface reconstruction significantly. 

5.3.3 Assigning Spots to the Grid 

After the colours are assigned to the fitted spots and the errors are corrected, 

we can locate the spots on the grid to establish the correspondence betwee11 

the projected and the photographed light patterns. 
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Figure 5.16: Spots on the grid (in pixels) 

The assignment to the horizontal rows is made by starting from the central 

column and moving towards the sides of the image. First, spots from the central 

column are located on the grid with the consideration of their colours, that i ·, 

if there are missing spots in the column, this fact will be interpreted correctly, 

and there will be corresponding empty nodes on the grid. Then spots from 

the next column are assigned to the grid depending on their colours and the 

proximity to the previous column spots of the same colours, and so on until all 

the spots are placed on the grid (see Figure 5.16). 
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Figure 5.17: Triangulation 

5.4 3D Model 

After the correspondence between the patterns is known together with the 

position and orientation of the light source and the camera, spatial coordinates 

for all identified spots can be computed using triangulation. Let L be the light 

source, C - the camera optical centre, I and P - corresponding points in the 

image and pattern planes respectively, and S is the point on the examined 

surface that we want to compute (see Figure 5.17) . The surface point Sis 

the intersection of the projected and reflected rays , and in vector algebra this 

fact means that the vector from the light source to the camera LC equals to 

the sum of the vectors from light to the surface LS, and from surface to the 

camera SC: 

Since we do not know vectors LS and SC , they are expressed as 
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Hence, we have a system of three equations (three coordinates for each vector) 

and two unknowns, u and v: 

LC = LP · u + IC · v. (5.4.3) 

After u and v are estimated in the least-squares sense, 3D coordinates of the 

point S are easily obtained from 

S=L+LP·u. (5.4.4) 

From the 3D coordinates of the computed surface points, we can recon­

struct the surface. Figure 5.18 shows the surface grid reconstructed from the 

image in Figure 4.6. The obtained surface, indeed, looks like a human face 

but we cannot estimate how accurate it is. As it was already mentioned, the 

equipment lacked precise calibration, so we have used approximate values for 

the calibration and orientation parameters, and we do not have the surface 

reconstructed by some approved method to compare with. 

5.5 3D Surface 

This is the final stage of the algorithm when reconstructed surfaces from several 

images have to be combined together into one surface. Principally, for the 

structured light technique, one image is enough. However, if some parts of the 

examined surface cannot be seen by either the camera or the projector from 

one viewpoint, and also to improve the accuracy and resolution, several images 

from different viewpoints are necessary. 

As stated earlier, the focus of this work was to design an algorithm for 

image processing and pattern recognition in low-light conditions. The final 
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Figure 5.18: Reconstructed surface 

3D surface reconstruction procedure has not yet been developed because the 

equipment was not sufficiently set up and calibrated, largely due to restrictions 

on access to the equipment in a busy clinical environment. After proper setup, 

the final stage of the algorithm can be completed to allow the reconstruction 

of complex surfaces not visible from a single viewpoint. 
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Chapter 6 

Conclusions and Future Work 

In this thesis we considered the problem of a patient's body surface reconstruc­

tion for radiation therapy planning and treatment, and developed an image 

processing and surface reconstruction algorithm. To demonstrate its feasibility 

we built an inexpensive prototype of a 3D surface scanner and showed that it 

works even under difficult low-light conditions. Procedures described in this 

thesis are implemented in MATLAB. The processing time of one image on a 

standard PC1 is 2-3 minutes. The same algorithm written in C would be able 

to perform surface reconstruction quickly and unobtrusively within the current 

clinical workflow. The current version has been implemented in MATLAB be­

cause it provides a quick way of testing the algorithm without getting into too 

many implementation programming details. 

We used the 24-bit RGB colour setting in the camera to acquire images. 

According to the algorithm, the first stage is noise reduction. We tried several 

filters and chose a Gauss-like filter because it provided the best quantitative 

and qualitative characteristics for the set of the found spots. The initial image 

1 Pentium 4 CPU 2.8 GHz, 1 GB RAM, Microsoft Windows XP, MATLAB 7.0.1. 
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is converted to greyscale with the coefficients, which ensure good separation 

of spots from the background and similar light intensity between the spots of 

different colours. The acquired images have a certain structure: the columns of 

spots in the image are almost straight and vertical, especially in the central part 

of the image. The Fast Fourier Transform is applied to extract the location of 

the columns, and the spots are found along the columns. This is done, firstly, 

to reduce the task of finding spots in the image to the simpler procedure of 

fitting spots along the column, and secondly, to assign spots to the grid in the 

vertical image direction. After the optimization procedure determines good 

spots, their colours are found by the k-means clustering algorithm. The correct 

assignment of colours is very important because it defines the location of a spot 

on the grid , and later the 3D coordinates of the surface points. We improved 

the result of the k-means by projecting the colours of the found spots onto the 

plane in RGB space, where they are separated more easily. We also designed a 

three-step procedure to correct the colour assignment errors, which uses spatial 

and colour sequence information to define the spots with correctly recognized 

colours, and to correct the incorrectly assigned ones. The spots are placed 

on the grid, and the correspondence between the projected and the observed 

patterns is established. 3D coordinates of the surface points are computed 

with triangulation between the light source, the camera, and the surface. The 

software package is developed in MATLAB and is designed so that it can easily 

be extended with new program modules. 
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Future work. There are many possible extensions and future work on 

the optical hardware, the algorithm, and software design. We would like to 

mention some of them. 

• To make the 3D surface scanner commercially available, it is necessary 

to review the technical setup in order to improve accuracy, resolution 

and robustness. The project would benefit from a more sensitive camera 

with greater resolution, and more powerful and focused light source. For 

other applications, the system would benefit from multiple cameras and 

projectors, so that it would not be necessary to move them to different 

angles to cover the examined surface completely. 

• The procedure of combining the surfaces from single 1mages into one 

surface has to be developed after the proper setup and calibration of 

equipment to allow reconstructing complex surfaces not visible completely 

from one viewpoint. 

• After combining the surfaces from different views, testing and error es­

timation is required. We plan to compare our results with the surface 

reconstructed by either MRI or CT. 

• From the software side, the major improvement direction is writing the 

C code based on the MATLAB implementation described in this thesis. 

The speedup gain should allow close to real-time surface reconstruction 

desired for the clinical applications. The C implementation will allow 

performing the computations before the x-ray machine's head stops in 

the next position, or viewpoint, to collect data. If we choose to capture 

a movie instead of separate images then the complete image processing 
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procedure, as described in Chapter 5, has to be executed every n frames. 

The reason is that spots ' shapes and positions are very similar for the 

neighbouring frames. Therefore, we can use the spots found from the 

current frame as a good guess for the next frame. 
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Appendix A 

Software Documentation 

This appendix contains a high-level documentation for the software package 

written in MATLAB for 3D surface reconstruction from 2D structured-light 

images. All the experiments were run in the MATLAB 7.0.1 environment on a 

PC with Pentium 4 CPU 2.8 GHz, 1GB RAM, Microsoft Windows XP. 

A.l General Structure of the Software 
Package 

The main package directory contains the following items: 

• Main functions and scripts, including the starting script Contours. m, 

which provide the implementation of the algorithm. 

• Service Functions directory with the auxiliary functions that lighten 

the work. 

• Drawing Functions directory, which has functions for outputting the 

graphical results of the program. 
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• Netlab directory with several functions from the Netlab toolbox of MAT­

LAB developed by Nabney [27]. The Netlab toolbox is designed to provide 

the central tools necessary for the simulation of theoretically well founded 

neural network algorithms and related models. We use Netlab's imple­

mentation of k-means clustering algorithm. For more details see Netlab 's 

documentation [27]. 

• Data directory where examined images are stored. If this directory is 

empty or does not exist , the program produces error message and termi­

nates. 

• MAT Files directory with . mat files , where the variables are stored. 

Every function, called from Contours. m, checks if its . mat file for the 

current image is available. If so, the program execution time is reduced 

by reading the variables from the file instead of running the computa­

tions again. This feature is useful if program output has to be generated 

without making any changes to the functions. 

• Results directory for saving generated graphs as graphical files for further 

use. 

The package Contours contains 39 functions and 4 scripts: 20 main func­

tions and scripts, 10 drawing functions, and 13 service functions. In addition, 

4 functions from the Netlab toolbox by Nabney [27] are used for the k-means 

algorithm. Altogether, our software makes about 3600 lines of code. 
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A.2 Data Structures 

There are several important variables used throughout the Contours software 

package, which have to be explained before the description of the functions is 

provided: 

origColour is a global m x n x 3 matrix variable, which stores the red, green 

and blue colour channels of the original m x n image. 

origColourFiltered is a global m x n x 3 matrix variable, which stores a 

filtered colour original image, resulted from filtering origColour matrix. 

or'tg is a global m x n matrix variable, representing a greyscale conversion of 

origColourFiltered's image. 

spotParameters is a cell array, every element of which contains an ns x np 

matrix, where n 8 is the number of spots in one column, and np is the 

number of parameters of a spot. The spotParameters array contains 

the parameters for all the found spots, which are organized in vertical 

columns. 

LIST_OF_FILES is the global array, containing the list of files (names and 

descriptions) read by ReadDataFileNames function in the Data directory. 

centralLine is the number of column in the orig matrix, which is the guess 

line for the central column of the spots. Variable centralLine is computed 

in the FFTLines function and passed to the FindLinesAndSpots func­

tion. 
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HALF_PERIOD is a global variable, which stores the half of the period in 

pixels between the spot columns in the image, computed by the FFT­

Lines function. 

gridMatrix is an nr x nc x 3 matrix, where nr is the number of spot rows, 

and nc is the number of spot columns found. Every element of an nr x n c 

matrix has 3 values: the number of the spot in the current column, and 

two coordinates of the centre of the spot in orig matrix. Missing spots 

are expressed by zeros. In the matrix gridMatrix spots are arranged not 

only in the vertical columns, as in spotParameters cell array, but also in 

the horizontal rows, so gridMatrix represents the reconstructed grid. 

A.3 Connections Between the Main Units 

The scheme in Figure A.l represents the control flow between the mostly sig­

nificant functions and scripts. The starting script is Contours.m, which calls 

all the program blocks. 

A.4 List of Functions 

A.4.1 Main Functions 

spotParameters = AssignAllSpotColours(spotParameters); 

gridMatrix = BuildGrid(spotParameters, output, mode); 

BuildSurface(gridMatrix, output); 

ConvertToGray(output, mode); 

spotParameters = CorrectColours(spotParameters, output, mode); 

centraLLine = FFTLines(output, mode); 
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For 
every 
image 

Contours.m 

Gtobals.m 

Init.m 

ReadDataFileNames.m 

ReadData.m 

FilterData.m 

ConvertToGrey.m 

FFTLines.m 

FindLinesAndSpots.m 

FindColours.m 

CorrectColours.m 

BuildGrid.m 

BuildSurface.m 

Finalize.m 

McMaster- Computing and Software 

FindReliableColours.m 

RestoreColoursinColunms.m 

AssignAllSpotColours.m 

Figure A.l: Program Scheme 
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FilterData(filterName, filterSize, output, mode); 

spotParameters 

spotParameters 

spotParameters 

FindColours(spotParameters, output , mode); 

FindLinesAndSpots(centralLine , output, mode) ; 

= FindReliableColours(spotParameters); 

spotParametersOnOneLine = FitLine(approxLine) ; 

ReadData(output, mode); 

ReadDataFileNames(output); 

spotParameters = RestoreColourslnColumns(spotParameters) ; 

spotParams = SpotModel(row, col) ; 

F = SpotModelFunc(p, n1, n2, spot); 

A.4.2 Main Scripts 

Contours ; 

FinalizeProgram; 

Globals; 

!nit ; 

A.4.3 Service Functions 

spotParameters = AddColoursToSpotParams(spotParameters, 

pixelsByClusters, colourOrder) ; 

[minidx, minDist] = ClosestSameColourPrevLineSpot(b1, colour, 

co lourVector); 

aEdge = ComputeSpotEdge(spotParams); 

sumaLineFiltered = DeleteFittedSpot(sumaLineFiltered, 

spotParams) ; 
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exists= ExistsMATFile(imageFileName, programUnit); 

colourVector = FillColourVectorZeros(colourVector); 

nextColour = NextColour(curColour); 

num = NumMissingSpots(colour, grididx); 

prevColour = PrevColour(curColour); 

sumaLine = RefineSumaLine(sumaLine); 

spotParams = RemoveDoubleSpots(spotParams, prevSpotParams); 

resultLine = SplineThroughSpots(spotCentres); 

[resultRow, resultCol] = WeightedCentre(top, bottom, left, 

right); 

A.4.4 Drawing Functions 

DrawColouredSpots(spotParameters, len, lineWidth, colour1, 

colour2, colour3, lineStyle); 

DrawCorrectSpots(spotParameters, len, lineWidth, colour1, 

colour2, colour3, lineStyle); 

DrawHorizontalLines(gridMatrix, lineWidth, lineColour, 

lineStyle); 

DrawOrig(mode, graphTitle); 

DrawOrigColour(mode, graphTitle); 

DrawOrigColourFiltered(mode, graphTitle); 

DrawSplines(splineLinesAll, spotParameters, len, lineWidth, 

l ineCo lour, l ineSty l e) ; 

DrawSpotCentres(spotParameters, len, lineWidth, lineColour, 

lineStyle); 
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DrawSpots(spotParameters, len, lineWidth, lineColour, lineStyle) ; 

DrawVerticalLines(gridMatrix, lineWidth, lineColour, lineStyle); 

A.5 Function Synopses 

Function name: AddColoursToSpotParams 

Location: Contours\ Service Functions\AddColours ToSpotParams. m 

Prototype: spotParameters = AddColoursToSpotParams(spotParameters, 

pixelsByClusters , colourOrder) ; 

Description: AddColoursToSpotParams assignes colour codes to the found 

spots according to the results of k-means separation. 

This function calls: Globals. 

This function is called by: FindColours. 

Function name: AssignAllSpotColours 

Location: Contours\AssignAllSpotColours. m 

Prototype: [spotParameters, numCorrected] = 

AssignAllSpotColours(spotParameters) ; 

Description: AssignAllSpotColours is a part of CorrectColours function 

(step 3) . It assigns a colour fo r any spot with an unconfirmed colour. It does so 

by looking at the spot's closest confirmed horizontal and vert ical neighbours , 

and the spot's init ial colour from k-means. The colour, which gets the most 

weight, is assigned to the spot. 

This function calls: Globals, NextColour, PrevColour. 

This function is called by: FindColours. 
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Function name: BuildGrid 

Location: Contours\BuildGrid. m 

McMaster- Computing and Software 

Prototype: gridMatrix = BuildGrid(spotParameters, output, mode); 

output = {'text' 'timing' 'grid' 'spots on grid'} or {'all'}; 

mode= 'real' or 'improved'; 

Description: BuildGrid assignes the coloured spots to a regular rectangular 

grid, which is necessary for the surface reconstruction procedure. Spots are al­

ready assigned to the vertical columns, BuildGrid processes colour information 

to assign the spots to the horizontal rows based on the proximity information. 

This function calls: Globals, DrawColouredSpots, DrawHorizontalLines, Dra­

wOrigColour Filtered, Draw VerticalLines, ClosestSameColour Prev LineS pot, Ex­

istsMATFile, Fill Colour VectorZeros, N umMissingSpots. 

This function is called by: Contours. 

Function name: BuildSurface 

Location: Contours\BuildSurface. m 

Prototype: BuildSurface (gridMatrix, output) ; 

output = {'text' 'timing' 'surface grid'} or {'all'}; 

Description: BuildSurface computes 3D coordinates of the surface points via 

triangulation using the grid provided by the BuildGrid procedure. 

This function calls: Globals, ExistsMATFile. 

This function is called by: Contours. 

Function name: ClosestSameColour Prev LineS pot 

Location: Contours\ Service Functions\ ClosestSameColourPrevLineSpot. m 
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Prototype: [minidx, minDist] = ClosestSameColourPrevLineSpot(b1 , 

colour, colourVector) ; 

Description: For a given spot, ClosestSameColourPrevLineSpot finds the 

closest spot from t he previous column of the same colour. 

This function calls: Globals. 

This function is called by: BuildGrid. 

Function name: ComputeSpotEdge 

Location: Contours\ Service Functions\ ComputeSpotEdge. m 

Prototype: aEdge = ComputeSpotEdge(spotParams); 

Description: For a given spot, ComputeSpotEdge finds an ellipse representing 

the spot's "edge" . It is chosen between the background and the maximal spot 

value using some predefined ratio. 

This function calls: Globals. 

This function is called by: SpotModel, DrawColouredSpots, DrawCor­

rectSpots, DrawSpots, DeleteFittedSpot. 

Function name: Contours 

Location: Contours\ Contours. m 

Prototype: Contours; 

Description: Contours reads images of the surface illuminated with a regular 

colour-coded pattern and reconstructs the surface in 3D. This version works 

with the pattern of white, red, green rows of spots, and uses an inverse poly­

nomial model to fit the light spot but can be adapted to read other patterns 

and operate with other models. 
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This function calls: BuildGrid, BuildSurface, ConvertToGray, CorrectColours, 

FFTLines, FilterData, FinalizeProgram, FindColours, FindLinesAndSpots, Glob­

als, Init, ReadData, ReadDataFileNames. 

This function is called by: 

Function name: ConvertToGrey 

Location: Contours\ Convert To Grey. m 

Prototype: ConvertToGrey(output, mode); 

output = {'text' 'timing' 'greyscale image' 'histogram'} or 

{'all'}; 

mode= 'real' or 'improved'; 

Description: ConvertToGrey coverts a 3D origColour matrix (original image) 

to a 2D orig matrix ( "greyscale" image) using ( r,g, b) coefficients. 

This function calls: Globals, DrawOrig, ExistsMATFile. 

This function is called by: Contours. 

Function name: CorrectColours 

Location: Contours\ CorrectColours. m 

Prototype: spotParameters = CorrectColours(spotParameters, output, 

mode); 

output = {'text' 'timing' 'correct spots 1' 'correct spots 2' 

'correct spots 3'} or {'all'}; 

mode= 'real' or 'improved'; 

Description: CorrectColours analyzes the colours of the found spots and cor­

rects them based on spot spatial proximity and colour alternation information. 
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On the first step (FindReliableColours function), a set of "reliable" coloured 

spots is found. On the second step (RestoreColourslnColumns function), the 

spots in columns are analyzed to infer the colours for the "non-reliable" spots 

where possible from colour alternation and their proximity to the "reliable" 

spots. On the third step (AssignAllSpotColours function), colours for all the 

spots not confirmed yet are estimated in relation to the top-bottom-left-right 

neighbours ' colours and their initial colour. 

This function calls: AssignAllSpotColours, FindReliableColours, Globals, 

RestoreColoursinColumns, DrawCorrectSpots, DrawOrigColourFiltered, Ex­

istsMATFile. 

This function is called by: Contours. 

Function name: DeleteFittedSpot 

Location: Contours\ Service Functions\DeleteFittedSpot. m 

Prototype: surnaLineFiltered = DeleteFittedSpot(surnaLineFiltered, 

spotPararns); 

Description: DeleteFittedSpot deletes accepted spot bump using its semima­

jor from the column profile array. 

This function calls: Globals, ComputeSpotEdge. 

This function is called by: FitLine. 

Function name: DrawColouredSpots 

Location: Contours\ Drawing Functions\DrawColouredSpots. m 

Prototype: DrawColouredSpots(spotPararneters, len, lineWidth, 

colour1, colour2, colour3, lineStyle); 
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Description: DrawColouredSpots draws the coloured spots in the current 

figure. Parameter len is the number of columns to draw. One is set to draw 

the central line spots only, and length(spotParameters) draws all the spots. 

This function calls: Globals, ComputeSpotEdge. 

This function is called by: BuildGrid, FindColours. 

Function name: DrawCorrectSpots 

Location: Contours\Drawing Functions\DrawCorrectSpots. m 

Prototype: DrawCorrectSpots(spotParameters, len, lineWidth, 

colour!, colour2, colour3, lineStyle); 

Description: DrawCorrectSpots draws the coloured spots in the current fig­

ure, placing the same colour circles inside the spots with confirmed colour. 

Parameter len is the number of columns to draw. One is set to draw the 

central line spots only, and length(spotParameters) draws all the spots. 

This function calls: Globals, ComputeSpotEdge. 

This function is called by: CorrectColours. 

Function name: DrawHorizontalLines 

Location: Contours\Drawing Functions\DrawHorizontalLines. m 

Prototype: DrawHorizontalLines(gridMatrix, lineWidth, lineColour, 

lineStyle); 

Description: DrawHorizontalLines connects the spots in the rows with lines. 

This function calls: Globals. 

This function is called by: BuildGrid. 
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Function name: DrawOrig 

Location: Contours\ Drawing Functions\DrawOrig. m 

Prototype: DrawOrig (mode , graphTi tle) ; 

mode = 'real ' or 'improved'; 

Description: DrawOrig draws the greyscale image of t he examined surface 

contained in matrix orig, or an improved version of it . 

This function calls: Globals. 

This function is called by: ConvertToGray, FFTLines, F indLinesAndSpots. 

Function name: DrawOrigColour 

Location: Contours\ Drawing Functions\DrawOrigColour. m 

Prototype: DrawOrigColour(mode , graphTitle); 

mode= ' real' or 'improved' ; 

Description: DrawOrigColour draws the RGB image of the examined surface, 

contained in matrix origColour, or an improved version of it . 

This function calls: Globals. 

This function is called by: ReadData. 

Function name: DrawOrigColour Filtered 

Location: Contours\ Drawing Functions\ DrawOrigColourFiltered. m 

Prototype: DrawOrigColourFiltered(mode, graphTitle); 

mode = 'real ' or 'improved' ; 

Description: DrawOrigColourFiltered draws the RGB image of the examined 

surface, contained in matrix origColourFiltered, or an improved version of it . 

This function calls: Globals. 
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This function is called by: BuildGrid, CorrectColours, FilterData, Find­

Colours. 

Function name: DrawSplines 

Location: Contours\Drawing Functions\DrawSplines. m 

Prototype: DrawSplines(splineLinesAll, spotParameters, len, 

lineWidth, lineColour, lineStyle); 

Description: DrawSplines draws the cubic splines, fitted to the centres of the 

found spots, for every column of spots, from first spot's centre to the last one's 

in the column. Parameter len is the number of splines to draw. One is set to 

draw the central column spline only, and length(spotParameters) draws all the 

splines. 

This function calls: Globals. 

This function is called by: FindLinesAndSpots. 

Function name: DrawSpotCentres 

Location: Contours\Drawing Functions\DrawSpotCentres. m 

Prototype: DrawSpotCentres(spotParameters, len, lineWidth, 

lineColour, lineStyle); 

Description: DrawSpotCentres draws the centres of the found spots. Parame­

ter len is the number of spot columns, for which spot centres are drawn. One is 

set to draw the central column spot centres only, and length(spotParameters) 

draws all the spot centres. 

This function calls: Globals. 

This function is called by: FindLinesAndSpots. 
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Function name: DrawSpots 

Location: Contours\Drawing Functions\DrawSpots .m 

Prototype: DrawSpots(spotParameters , len, lineWidth, lineColour , 

lineStyle) ; 

Description: DrawSpots draws the found spots in the current figure. Para­

meter len is the number of columns to draw. One is set to draw the central 

line spots only, and length(spotParameters) draws all the spots. 

This function calls: Globals, ComputeSpotEdge. 

This function is called by: FindLinesAndSpots. 

Function name: DrawVerticalLines 

Location: Contours\ Drawing Functions\ Draw VerticalLines. m 

Prototype: DrawVerticalLines(gridMatrix , lineWidth , lineColour, 

lineStyle ); 

D escription: DrawVerticalLines connects the spots in the columns with lines. 

This function calls: Globals. 

This function is called by: BuildGrid. 

Function name: ExistsMATFile 

Location: Contours\ Service Functions\ ExistsMATFile. m 

Prot otype: exists= ExistsMATFile(imageFileName, programUnit) ; 

Description: ExistsMATFile checks if there is a .mat file with the name 

<imageFileName>-<programUnit> .mat. If so, Contours reads the workspace 

variables and does not run the program unit. Also it sets the global variable 

MAT_FILE. 
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This function calls: Globals. 

This function is called by: BuildGrid, BuildSurface, ConvertToGray, Cor­

rectColours, FFTLines, FilterData, FindColours, FindLinesAndSpots, Read­

Data. 

Function name: FFTLines 

Location: Contours\ Drawing Functions\FFTLines. m 

Prototype: centralLine = FFTLines(output); 

output = {'text' 'timing' 'suma' 'power' 'cosine' 

'central line'} or {'all'}; 

Description: FFTLines uses Fast Fourier Transform (FFT) to find the period 

and the location of the vertical columns of spots. It returns the number of 

columns in matrix orig, which corresponds to the maximal peak (the brightest 

column of spots). 

This function calls: Globals, DrawOrig, ExistsMATFile. 

This function is called by: Contours. 

Function name: Fill Colour Vector Zeros 

Location: Contours\ Service Functions\FillColour Vector Zeros. m 

Prototype: colourVector = FillColourVectorZeros(colourVector); 

Description: FillColourVectorZeros estimates the vertical location of the miss­

ing spots in a column based on their neighbours' image coordinates. The miss­

ing spots' positions are initially set as zeros in colour Vector array. 

This function calls: Globals. 

This function is called by: BuildGrid. 
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Function name: FilterData 

Location: Contours\ Filter Data. m 

McMaster - Computing and Software 

Prototype: FilterData(filterNarne, filterSize, output, mode) ; 

filterNarne = 'mean' or ' median ' or 'gauss '; 

output = { 'text ' ' timing ' ' filtered image' ' filter ' } or 

{'all'} ; 

mode = 'real ' or ' improved' ; 

Description: FilterData applies fil ter filterName of the size filterSize to the 

original image stored in origColour matrix, which results in a filtered image in 

origColourFiltered matrix. 

This function calls: Globals, DrawOrigColourFiltered, ExistsMATFile. 

This function is called by : Contours. 

Function name: FinalizeProgram 

Location: Contours\FinalizeProgram. m 

Prot otype: FinalizePrograrn ; 

Description: FinalizeProgram removes Contours' working directories from 

the MATLAB path and outputs final statistics. 

This function calls: 

This function is called by: Contours. 

Function name: FindColours 

Location: Contours\FindColours. m 

Prototype: spotPararneters = FindColours(spotPararneters, output, 

mode) ; 
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output = {'text' 'timing' 'coloured spots' 'kmeans' 

'kmeans_grey'} or {'all'}; 

mode= 'real' or 'improved'; 

Description: FindColours uses k-means clustering algorithm to divide the 

fitted spots by three groups depending on their colour. This is necessary to 

find the correspondence between the projected and the observed pattern. 

This function calls: Globals, DrawColouredSpots, DrawOrigColourFiltered, 

foptions (Netlab), kmeans (Netlab), AddColoursToSpotParams, ExistsMAT­

File. 

This function is called by: Contours. 

Function name: FindLinesAndSpots 

Location: Contours\FindLinesAndSpots. m 

Prototype: spotPararneters = FindLinesAndSpots(centralLine, output, 

mode); 

output = {'text' 'timing' 'spots and splines' 

'approxlines and splines' 'central spots' 'splines'} or 

{'all'}; 

mode= 'real' or 'improved'; 

Description: FindLinesAndSpots starts from the central column with spots, 

computed in FFTLines, fits spots along it, and then moves right till the side of 

the image, finds next columns (using column period), fits the spots. The same 

procedure is repeated from the centre to the left side. 

The guess line for the next column is computed from the cubic curve, 

which approximates the centres of the fitted spots in the current column, shifted 
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by one period. 

This function calls: FitLine, Globals, DrawOrig, DrawSplines, DrawSpot­

Centres, DrawSpots, ExistsMATFile, RemoveDoubleSpots, SplineThroughSpots. 

This function is called by: Contours. 

Function name: FindReliableColours 

Location: Contours\FindReliableColours. m 

Prototype: spotParameters = FindReliableColours(spotParameters); 

Description: FindReliableColours is a part of CorrectColours function (step 1). 

It analyzes every spot together with its neighbours in vertical columns. If the 

distance between spots is small enough, which means t here are no missing spots 

in between, and the colour sequence is correct, the spots are marked as correctly 

recognized. 

This function calls: Globals, NextColour , PrevColour. 

This function is called by: CorrectColours. 

Function name: FitLine 

Location: Contours\ FitLine. m 

Prototype: spotParametersDnDneLine = FitLine(approxLine) ; 

Description: FitLine takes the guess line for a column and analyzes if there 

are any good spots along t his line in the image. 

This function calls: Globals, SpotModel, DeleteFittedSpot, RefineSumaLine. 

This function is called by: FindLinesAndSpots . 
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Function name: Globals 

Location: Contours\ Globals. m 

Prototype: Globals; 

McMaster- Computing and Software 

Description: Globals declares constants and global variables. 

This function calls: 

This function is called by: AssignAllSpotColours, BuildGrid, BuildSur­

face, Contours, ConvertToGray, CorrectColours, FFTLines, FilterData, Find­

Colours, FindLinesAndSpots, FindReliableColours, FitLine, ReadData, Read­

DataFileNames, RestoreColoursinColumns, SpotModel, DrawColouredSpots, 

DrawCorrectSpots, DrawHorizontalLines, DrawOrig, DrawOrigColour, Dra­

wOrigColourFiltered, DrawSplines, DrawSpotCentres, DrawSpots, DrawVer­

ticalLines, AddColoursToSpotParams, ClosestSameColourPrevLineSpot, Com­

puteSpotEdge, DeleteFittedSpot, ExistsMATFile, Fill Colour Vector Zeros, Next­

Colour, NumMissingSpots, PrevColour, RefineSumaLine, RemoveDoubleSpots, 

SplineThroughSpots, WeightedCentre. 

Function name: Init 

Location: Contours\Init. m 

Prototype: Ini t; 

Description: Init initializes global variables and adds necessary directories to 

the MATLAB path. 

This function calls: 

This function is called by: Contours. 
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Function name: NextColour 

Location: Contours\ Service Functions\N ext Colour. m 

Prototype: nextColour = NextColour(curColour); 

Description: NextColour finds the next colour code in the pattern sequence. 

This function calls: Globals. 

This function is called by: AssignAllSpotColours, FindReliableColours, Re­

storeColourslnColumns. 

Function name: N umMissingSpots 

Location: Contours\ Service Functions\NumMissingSpots. m 

Prototype: num = NumMissingSpots(colour, grididx); 

Description: NumMissingSpots finds the number of missing spots before the 

current one in the column based on the colour sequence in the pattern. 

This function calls: Globals. 

This function is called by: BuildGrid. 

Function name: PrevColour 

Location: Contours\ Service Functions\PrevColour. m 

Prototype: prevColour = PrevColour(curColour); 

Description: PrevColour finds the previous colour code in the pattern se­

quence. 

This function calls: Globals. 

This function is called by: AssignAllSpotColours, FindReliableColours, 

RestoreColoursln Columns. 
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Function name: ReadData 

Location: Contours\ReadData. m 

Prototype: ReadData(output, mode); 

McMaster- Computing and Software 

output = {'text' 'timing' 'original image'} or {'all'}; 

mode= 'real' or 'improved'; 

Description: ReadData reads an m x n pixels image from a current file to an 

m x n x 3 colour light intensity matrix. 

This function calls: Globals, DrawOrigColour, ExistsMATFile. 

This function is called by: Contours. 

Function name: ReadDataFileN ames 

Location: Contours\ReadDataFileN ames. m 

Prototype: ReadDataFileNames (output); 

output = {'text' 'timing'} or {'all'}; 

Description: ReadDataFileNames reads the filenames from the Data direc­

tory. 

This function calls: Globals. 

This function is called by: Contours. 

Function name: RefineSumaLine 

Location: Contours\ Service Functions\RefineSumaLine. m 

Prototype: sumaLine = RefineSumaLine (sumaLine); 

Description: After the spot is found, the pixels it takes are set to zero. It 

often happens that the small non-zero intervals are left between the fitted spots 

in the column, which are too small to contain a spot. RefineSumaLine "cleans 
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up" the column, which saves t ime and resources by omitting the unnecessary 

optimization procedure runs for such places. 

This function calls: Globals. 

This function is called by: FitLine. 

Function name: RemoveDoubleSpots 

Location: Contours\ Service Functions\RemoveDoubleSpots. m 

Prototype: spotParams = RemoveDoubleSpots(spotParams, prevSpotParams); 

Description: RemoveDoubleSpots has two steps. First, it checks the fitted 

spots in the current line, and removes the spots which are too close in the case 

the fitting procedure converged to the one spot from the two initially different 

neighbouring locations. 

At the second step, RemoveDoubleSpots compares the current column 

of the fitted spots to the previous column and deletes the spots, which are 

extremely close to one of the previous column's spots, so that it is , in fact , the 

same spot. This can happen if the columns are curved. The spot is deleted from 

the current column and not from the previous one because of the assumption 

that the data, closer to the image centre, is generally better, and the algorithm 

runs so that the previous column is always closer to the centre than the current 

one. 

This function calls: Globals. 

This function is called by: FindLinesAndSpots. 

Function name: RestoreColourslnColumns 

Location: Contours\RestoreColourslnColumns. m 
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Prototype: spotParameters = 

RestoreColoursinColumns(spotParameters); 

Description: RestoreColourslnColumns is a part of CorrectColours function 

(step 2). It passes column by column, and sets colours by using pattern colour 

sequence for those spots, whose close vertical neighbours have confirmed colour. 

This function calls: Globals, NextColour, PrevColour. 

This function is called by: CorrectColours. 

Function name: SplineThroughSpots 

Location: Contours\ Service Functions\SplineThroughSpots. m 

Prototype: resultLine = SplineThroughSpots(spotCentres); 

Description: SplineThroughSpots computes a cubic approximation through 

the fitted spots' centres from one column. Shifted on a period, it will serve 

as a guess for the next column. It demands at least five fitted spots for good 

results, otherwise it returns empty array and the current column's guess line is 

shifted by a period and used for the next column guess. 

This function calls: Globals. 

This function is called by: FindLinesAndSpots. 

Function name: SpotModel 

Location: Contours\SpotModel.m 

Prototype: spotParams = SpotModel(row, col); 

Description: Spot Model takes the guess of the spot location (row, col) in 

the image matrix, and tries to fit the spot model f to the data. Least-squares 

fitting is used ( lsqnonlin MATLAB function) to retrieve the spot's parameters 
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p. If the values of the variables in p are not reasonable, the spot is discarded. 

Spot model currently used: 

vl 
f (X, Y) = Vo + 1 + S (X' y) , 

X- bx X - bx 
( )

T ( ) s (X' y) = y - by A y - by ' 

where A is a symmetric matrix, which has to be positive definite to describe 

an elliptical spot shape. 

This function calls: Globals, SpotModelFunc, ComputeSpotEdge, Weight­

edCentre. 

This function is called by: FitLine. 

Function name: SpotModelFunc 

Location: Contours\ SpotM odelFunc. m 

Prototype: F = SpotModelFunc (p, n1, n2, spot); 

Description: SpotModelFunc provides the function for the least-squares fit­

ting procedure, which equals to the squared difference between the data and 

an inverse polynomial model 

F = (¢x ,y- f(x, y)f 

Fits over circular area (where spot is not equal to zero). Parameters nl and 

n2 represent the size of the spot matrix. 

This function calls: 

This function is called by: SpotModel. 
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Function name: WeightedCentre 

Location: Contours\Service Functions\ WeightedCentre.m 

Prototype: [resultRow, resultCol] = WeightedCentre(top, bottom, left, 

right); 

Description: WeightedCentre finds weighted centre over the fitting square 

described by top, bottom, left, right parameters. 

This function calls: Globals. 

This function is called by: SpotModel. 

A.6 Output Example 

Here, we provide an example of the program output, when the output options 

for all the functions were set to {'all'}, which means that timing, statistical 

information and all available graphs were generated. The image file used in the 

example is the same as in Chapter 5. 

If there are no . mat files provided for in the MATFiles directory, then the 

program does all the computation, which usually takes 2 to 3 minutes. The 

program output is provided below. Every program unit prints its name in the 

square brackets, and provides some statistics about its execution. 

======================== CONTOURS ========================= 
Surface reconstruction from noisy structured-light images 

=========================================================== 

[ReadDataFileNames] : 
Data directory: D:\_Thesis_\Contours\_Data_ 

-- 1 file (s) read: "face. tif" 
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-- Elapsed time : 0.016 sec 

Image #1 face .tif 

[ReadData] : 
Resolution : 480 x 640 pixels 

--Elapsed time : 0.891 sec 

[Fil terData] : 
Filter type : gauss 
Filter size : 5 x 5 pixels 
Elapsed time : 1.797 sec 

[ConvertToGrey] : 

McMaster- Computing and Software 

Coefficient vector (r,g , b) = (0 .40485, 0 . 59515, 0) 
--Elapsed time : 0.656 sec 

[FFTLines] : 
Frequency = 0 . 050943 
Phase = -69 . 7365 
Central line is at 316 out of 640 pixel columns 
Period of lines = 19.6296 
Elapsed time : 0.172 sec 

[FindLinesAndSpots] : 
Number of columns = 27 
Number of accepted spots = 311 
Elapsed time: 161.469 sec 

[FindColours] : 
Cluster centres (R,G,B) : 

cluster 1 : (57.5196, 35 . 1665, 30 . 2921) 
cluster 2: (61.4102, 19 .435 , 21.7517) 
cluster 3: (35.8445, 28.313, 24.4159) 

Elapsed time : 0 . 234 sec 

126 



M.Sc. Thesis- Olesya Peshko McMaster- Computing and Software 

[CorrectColours] : 
Number of corrected spots = 61 out of 311 

-- Elapsed time: 0.578 sec 

[BuildGrid] : 
Number of horizontal rows of spots = 18 

-- Elapsed time: 0.359 sec 

[BuildSurface] : 
X-ray machine's angle of rotation = -60 degrees 

--Elapsed time: 0.063 sec 

Final Statistics: 

Total CONTOURS execution time: 166.235 sec 

In this example we had only one graphical file to process. If there are more 

files, the information about each of them is printed during program execution. 

During the execution, the files with computed variables were written into the 

MATFiles directory. Next time, the program is able to read them. If you run 

the code for the second time, you will notice that the execution time reduced 

significantly, as in the output displayed below. 

======================== CONTOURS ========================= 
Surface reconstruction from noisy structured-light images 

=========================================================== 

[ReadDataFileNames] : 
Data directory: D:\_Thesis_\Contours\_Data_ 
1 file(s) read: 11 face.tif 11 

Elapsed time: 0.016 sec 

Image #1 face.tif 
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[ReadData] : 
Resolution : 480 x 640 pixels 

--Elapsed time : 0.203 sec, MAT file is used! 

[Fil terData] : 
Filter type: gauss 
Filter size: 5 x 5 pixels 
Elapsed time: 0.484 sec, MAT file is used! 

[ConvertToGrey] : 
Coefficient vector (r,g,b) = (0 .40485, 0 .59515, 0) 

--Elapsed time : 0 . 609 sec 

[FFTLines] : 
Frequency = 0 . 050943 
Phase= -69 . 7365 
Central line is at 316 out of 640 pixel columns 
Period of lines = 19 .6296 
Elapsed time : 0 . 031 sec, MAT file is used! 

[FindLinesAndSpots] : 
Number of columns = 27 
Number of accepted spots = 311 
Elapsed time : 0 . 078 sec, MAT file is used! 

[FindColours] : 
Cluster centres (R,G,B) : 

cluster 1 : (57 .5196, 35.1665, 30 . 2921) 
cluster 2 : (61.4102, 19.435, 21 .7517) 
cluster 3 : (35 .8445 , 28.313, 24.4159) 

Elapsed time : 0 . 046 sec, MAT file is used! 

[CorrectColours] : 
Number of corrected spots = 61 out of 311 

--Elapsed time: 0.062 sec, MAT file is used! 
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[BuildGrid] : 
Number of horizontal rows of spots = 18 

--Elapsed time: 0.062 sec, MAT file is used! 

[BuildSurf ace] : 
X-ray machine's angle of rotation = -60 degrees 

-- Elapsed time: 0.031 sec, MAT file is used! 

Final Statistics: 

Total CONTOURS execution time: 1.622 sec 

Besides the text output, the program is also capable of outputting over 

20 graphs. 
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