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Abstract 

We present a method for tissue quantification at a resolution that would 
not be possible for either conventional Dixon method or MR spectroscopy. Our 
objective is to design a steady-state free precession (SSFP) pulse-sequence 
which maximizes the contrast to noise ratio in tissue segmentation by solving 
a nonlinear, nonconvex semi-definite optimization problem. To solve the prob­
lem a grid search is used to get a good starting point, and then a sequential, 
semi-definite trust-region method is developed. The subproblems in our al­
gorithm contain only linear, second order, and semi-definite constraints. Our 
method can easily be adapted to other pulse sequence types, and it can handle 
any numbers of tissues and images. As an illustration, we show how the pulse 
sequences designed numerically could be applied to the problem of quantifying 
intraluminal lipid deposits in the carotid artery. 

We also consider the case where the main magnetic field is not homo­
geneous, for which we first present a heuristic by adjusting RF pulse phase 
cycling to correct for the field inhomogeneity. Then we construct a total vari­
ation regularization based model, from which we extract two subproblems -
field inhomogeneity estimation and tissue density estimation that can be in­
terleaved iteratively. The computational and numerical results show that the 
model yields a good estimate of both field inhomogeneity and tissue density. 

iii 



Acknowledgements 

I would like to thank my supervisors Prof. Christopher Anand and Prof. 
Tamas Terlaky for their sophisticated guidance and generous support all along. 
This work would not have been possible without their trust and support. I 
would also like to thank them for their careful reading and insightful comments 
of my thesis. 

I appreciate the medical imaging knowledge I have learned from Prof. 
Anand, and the optimization knowledge I have learned from Prof. Terlaky. I 
am also grateful to them, for the inspiring weekly optimization seminars they 
have organized and for the great facility in the laboratory they have provided. 

I would like to acknowledge Prof. Christopher Anand, Prof. Mike Nose­
worthy, Prof. Sanzheng Qiao, and Prof. Tamas Terlaky for their agreement 
to be a committee member and for their enormously helpful feedback on my 
thesis. 

I thank all members of the Advanced Optimization Lab (AdvOL) for 
their friendly help during my graduate work and for the pleasant and exciting 
working environment they have established. 

Last but not least, my special thanks go to my parents, your love, 
understanding, encouragement, and support will always be my driving force 
to carry on. I take pride in being your son. 

v 



Contents 

Abstract 

Acknowledgements 

List of Figures 

List of Tables 

1 Introduction 
1.1 MRI Basics 
1.2 MR Pulse Sequence 0 0 0 0 0 0 0 0 0 0 

1.201 Steady-State Free Precession 0 

2 Tissue Quantification Using Optimal SSFP Pulse Sequence 

iii 

v 

ix 

xi 

1 
2 
6 
7 

Design 11 
201 Tissue Quantification via a Generalized Dixon Method 12 

201.1 Tissue Quantification Prototype 12 
201.2 Dixon Method 0 0 0 0 0 0 0 0 0 13 

202 Imaging 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
203 Semi-definite Optimization Problem 0 

20301 Formulation 0 0 0 
20302 Complete System 0 0 0 0 0 0 0 

14 
15 
16 
18 

3 Tissue Quantification in the Presence of Field Inhomogeneity 19 
301 Semi-infinite Problem 0 0 0 0 21 

302 
301.1 Discretized Problem 0 0 0 0 0 0 0 0 0 22 
Heuristic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30201 Corrections for Field Inhomogeneity 0 
30202 Optimization Problem Based on the 

Cycling Heuristic 0 0 0 0 0 0 0 0 

vii 

RF Pulse Phase 

23 
26 

27 



4 Total Variation Regularization Based Model 
4.1 Total Variation Formulation .... . . 
4.2 Mathematical Model . . . . . . . . ... . 

31 
31 
34 

4.3 Notes about Regularization Parameters . . 36 
4.4 Sparsity Pattern and Complexity Analysis 37 
4.5 Tissue Quantification and Field inhomogeneity Estimation with 

Total Variation Regularization . . . . . . . . . . . . . . . . . . 41 
4.5 .1 The First Subproblem: Field Inhomogeneity Estimation 41 
4.5.2 The Second Subproblem: Tissue Density Estimation 42 

5 Results and Numerical Simulation 43 
5.1 Tissue Quantification with Homogeneous Field . . . . . . . . . 43 

5.1.1 Numerical Phantom (Carotid Artery) . . . . . . . . . . 44 
5.2 Tissue Quantification with Total Variation Regularization in 

the Presence of Field Inhomogeneity 46 
5.2.1 The First Subproblem . 46 
5.2.2 The Second Subproblem 49 

6 Conclusions and Future Work 61 
6.1 Pulse Design . . . . . . . . . . . . . . . 61 
6.2 Regularized Tissue Density Estimation 62 
6.3 Applications . . . . . . . 62 
6.4 Algorithm Development 63 

A Algorithms 65 
A.1 A Trust Region Algorithm for NL-SDO . . . . . . . . . . . . 65 

A.l.l Linearization and the SDO-Trust Region Subproblem 66 
A.l.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . 69 

viii 



List of Figures 

1.1 The clockwise precession of spin about the direction in which 
the external magnetic field is assigned. . . . . . . . . . . . . . 3 

1. 2 SSFP pulse sequence showing two pulse repetitions (a) and (b). 
Each pulse interval contains one readout interval (c) when data 
is collected, and one RF pulse (d). . . . . . . . . . . . . . . . . 8 

3.1 The fluctuation of the minimum singular value of S versus de-
phasing caused by the field inhomogeneity. . . . . . . . . . . . 23 

3.2 The change of the minimum singular value of S corresponding 
to the shift of the RF pulse phase cycling. . . . . 27 

3.3 Multiple acquisition of images with different shifts 29 

3.4 The minimum singular value versus B0 . . . . . . 30 

4.1 Graphical representation of total variation function based on 
three different schemes. The pixels that each arrow traverses 
represent those that a specific term in the total variation de-
pends on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

4.2 The pictures of unit balls for two different formulations with 
constant e = 0.01, corresponding to (a) and (b) of Figure 4.1, 
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

4.3 The sparsity pattern corresponding to the formulation ( 4.4), ( 4.5), 
and ( 4.6) respectively, with variables organized in a pixel-clustered 
manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4.4 The sparsity pattern corresponding to the formulation ( 4.4),( 4.5), 
and ( 4.6) respectively, with variables organized in a sequential 
manner .................... . 

5.1 The cross section of idealized carotid artery. 

ix 

40 

50 



5.2 Tissue density reconstruction simulation: each column repre­
sents a different tissue, as labelled; ideal (zero noise) tissue den­
sities are shown in row a) , densities reconstructed from data 
collected with the optimal pulse sequence design are in row b), 
row c) shows the densities from the pulse sequence found by 
grid search, and row d) illustrates the tissue density estimation 
based on Dixon method. All values are displayed using the same 
gray scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

5.3 The simulated field inhomogeneity from the magnet and tissue 
susceptibility, respectively. . . . . . . . . . . . . . . . . . . . . 52 

5.4 The simulated signal from the x and y components (channels) 
of the magnetization: . . . . . . . . . . . . . . . . . . . . . . . 52 

5.5 The curve represents the residual resulting from a grid search 
at a specific pixel, with the grid consisting of 1000 points. . . . 53 

5.6 The curve represents the residual resulting from a grid search 
at a specific pixel, with the grid consisting of 500 points. . . . 54 

5.7 The two curves represent the original field inhomogeneity and 
the solution after the optimization with the starting point from 
the grid search. As it can be seen from the graph, they match 
each other very well, except at a few spots. . . . . . . . . . . . 55 

5.8 Partial grid search based estimation. . . . . . . . . . . . . . . 56 
5.9 Partial grid search followed by total variation regularization es-

timation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
5.10 The residual curve for , the starting point obtained by the partial 

grid search (left), and for the starting point obtained by partial 
grid search followed by total variation regularization (right) . . 58 

5.11 Partially sampled pixels for grid search starting point without 
weighting the residuals. . . . . . . . . . . . . . . . . . . . . . . 59 

5.12 Partially sampled pixels for grid search starting point with pixel 
residuals weights . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

5.13 The difference between the real tissue density and estimated 
tissue density for the tissue types: fat, blood, and muscle , re-
spectively (from left to right). . . . . . . . . . . . . . . 60 

A.l Sequential, trust-region, second-order conic algorithm .. 72 

X 



List of Tables 

5.1 Numerical results for tissue density estimation based on 1000 
experiments, measured in mm2

. . . . . . . . . . . . . . . . . . 45 
5.2 Pulse-sequence design variables for Dixon method, where a and 

f are in degrees and T is in ms. . . . . . . . . . . . . . . . . . 46 

xi 



MasteT Thesis - Z. Zheng - McMaster· - Computing and Softwar-e 

Xll 



Chapter 1 

Introduction 

We address an MR pulse sequence design problem in order to achieve bet­
ter resolution and contrast to noise ratio (CNR) in tissue quantification by 
using nonlinear optimization techniques both in the design of optimal exper­
iments and in image reconstruction. This work was motivated by the fact 
that currently most clinical imaging methods focus on qualitative imaging, 
although quantitative applications do exist, especially in functional imaging, 
e.g., flow measurements in arteries or brain activity. The dynamical system 
for our imaging pulse sequence design problem was originally developed by 
Hargreaves et al., [Hargreaves et al., 2001]. However, we have extended that 
model and developed an approach to quantify different tissue types that out­
performs existing methods in terms of both imaging time and resolution. The 
novelty of our approach comes principally from 

• an estimate for CNR in tissue segmentations; 

• a method of maximizing CNR using semidefinite optimization (SDO); 

• a model for image reconstruction in the presence of main magnetic field 
inhomogeneity, using total variation (TV) regularization. 

The thesis contains five chapters with three main topics, namely, the 
basics of MRI, tissue quantification using optimal SSFP pulse sequence de­
sign, and total variation model-based tissue density and field map estimation. 
Although MRI is a fairly complex system, in which a tremendous amount of 
mathematics, physics as well as biochemistry is involved, the reader does not 
have to have all background knowledge to appreciate this thesis. We have at­
tempted to make this thesis self-contained and accessible to a general audience 
by giving a short introduction to MRI in the following sections of this chapter, 
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covering those concepts that are needed to understand our problem. In Chap­
ter 2, tissue separation via a generalized Dixon Method will be discussed and a 
new nonlinear semi-definite optimization model introduced. Then we take into 
account the magnetic field inhomogeneity and describe a novel heuristic for es­
timating field inhomogeneity that further leads to a semi-infinite optimization 
problem in Chapter 3. In Chapter 4, we give an overview of the total variation 
(TV) model that will be used for the estimation of tissue densities and field 
inhomogeneities. We present the results of numerical simulation in Chapter 
5. In Chapter 6, we summarize our results and outline some suggestions for 
future work. The detailed nonlinear semi-definite optimization algorithm is 
presented in Appendix A. 

1.1 MRI Basics 

Magnetic Resonance Imaging is a tomographic imaging technique that pro­
duces images of internal physical and chemical characteristics of an object 
from externally measured nuclear magnetic resonance (NMR) signals [Liang 
and Lauterbur, 1999]. The concept of MRI was introduced in 1973 in the land­
mark papers ofLauterbur, Mansfield and Crannell [Lauterbur, 1973; Mansfield 
and Crannell , 1973] . Interest in this field is still growing, due to the fact that 
MRI is capable of measuring the internal structure and function of the human 
body in a noninvasive manner. It is widely used medically for the purpose of 
diagnosis, treatment monitoring and research. The underlying mechanism of 
imaging comes from the interaction of a nuclear spin with an external mag­
netic field as described by the Bloch equation (see equation (1.8)) [Haacke et 
al., 1999, Ch. 4]. In this section, we will derive this equation and outline its 
properties, since the models we develop are all based on the Bloch equation. 

The hydrogen nucleus possesses an angular momentum, which is often 
called spin. Although nuclear spin is a property characterized by quantum me­
chanics, it is often visualized in the classical vector model [Liang and Lauter­
bur, 1999] . One important property of a nuclear spin is the nuclear magnetism 
associated when placed in an external magnetic field, which is also the physi­
cal foundation of MRI. If we represent the spin by a vector quantity ji, when 
placed in an external magnetic field B0 produced by a main magnet along 
the z direction in the three dimensional coordinate system, i.e., (B~ = B0z) 
(see Figure 1.1), according to classical mechanics , then the spin satisfies the 
equation (1 .1): 

dji - B -- = IJ.L X oz. 
dt 

(1.1) 
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Solving this differential equation, we obtain: 

/-Lxy ( t) 

/-Lz(t) 

/-Lxy ( 0) e -v'-I'YBot 

/-Lz(O), 

(1.2) 

(1.3) 

in which /-Lxy(O) and /-Lz(O) are initial values. Equation (1.2) describes a clock­
wise precession of the xy component of /-L about the z-axis. The angular 
frequency w0 of precession known as the Larmor frequency can be determined 
from the equation 

wo = "(Bo, (1.4) 

where 'Y is a constant known as the gyromagnetic ratio. To describe the col-

y 

:r 

Figure 1.1: The clockwise precession of spin about the direction in which the 
external magnetic field is assigned. 

lective behavior of an ensemble of nuclei present in a specimen or object, we 
use an aggregate magnetization vector M, defined as 

(1.5) 

in which N is the total number of spins, and firJ denotes the 19th spin in the 
object. In its equilibrium state M0 = (Mo,x, Mo,y, Mo,z)r, the magnetization 
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M = (Mx, My, Mzf is aligned with the direction of the constant external 
magnetic field. Then we use a radio frequency (RF) pulse that produces 
an oscillating magnetic field , B1 ( t), to tip the magnetization away from its 
equilibrium state down to the transverse plane (x - y plane) . In the course of 
the rotation, the magnetization induces an electric current within a receiver 
coil appropriately oriented with respect to the same plane. The electric current 
in the coil is then used to generate a signal. In addition to the RF pulse , there is 
a system of three orthogonal coils, known as gradient coils, designed to produce 
time-varying magnetic fields of controlled spatial nonuniformity, which is used 
for signal localization [Liang and Lauterbur, 1999] . The collected signals are 
then processed to form an image. We should note that for a single pixel in the 
reconstructed image, the intensity value depends on a number of parameters 
that characterize both the constituent tissue types at that pixel and the RF 
pulse sequence that we used. 

Relaxation Times 

The response of an isolated proton's spin in an external magnetic field has 
been modeled by the classical equation of motion of a single magnetic moment 
(see equation (1.1)), however, the interactions of the proton spin with its 
neighboring atoms lead to important modifications to this behavior [Haacke et 
al., 1999, Ch. 4]. After the magnetization has been rotated into the transverse 
plane, it will tend to grow back along the direction of the static field Eo to 
its equilibrium state. The rate of regrowth can be characterized by a time 
constant T1 , called the spin lattice relaxation time, that results from proton 
interactions with the lattice. Mathematically, the spin lattice relaxation time 
T1 can be determined from the following differential equation: 

dMz 1 ~ ~ 
-- -(Mo -M) dt - T1 ,z z ' 

(1.6) 

where Mo,z = (0, 0, Mo,zf and Mz = (0, 0, Mz)T. In the meantime, the com­
binations of the external magnetic field and the field from the neighbor spins 
cause individual spins to fan out in time, which results in a reduction of the net 
magnetization vector. This process is normally called dephasing. Dephasing 
of spins via spin-spin interaction produces a decay of the individual transverse 
components (and hence the transverse magnetization) that is characterized by 
a time constant T2 , called the spin spin relaxation time: 

(1. 7) 
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Chemical Shift Effect 

Hydrogen protons in different molecules are immersed in slightly different 
magnetic environments, even in the presence of identical external magnetic 
fields [Liang and Lauterbur, 1999]. Therefore, different chemical compounds 
have slightly different local magnetic fields which means that the local Lar­
mor frequency is chemically shifted to different values w0 (j) depending on the 
molecular species type j, which is called a resonance offset or chemical shift, 
because it causes tissues to appear shifted with respect to each other in some 
types of reconstructed images. 

Rotating Frame of Reference 

Up to now, we have considered the motion of magnetization in a stationary 
coordinate system. A rotating frame is a coordinate system whose transverse 
plane is rotating clockwise at an angular frequency. Since the RF coil gener­
ates a magnetic field at a frequency that matches that of the spin system's 
precession in order to achieve resonance, it would be much easier for the com­
putation if we consider the precession in a rotating coordinate system that 
rotates at an angular frequency w0 • The benefit of using such a rotating frame 
of reference will become clear in section (1.2) and further in Chapter 3. 

Bloch Equation 

Taking into account the motion of a spin system in a pure external magnetic 
field B0 , as well as the effects of spin lattice and spin spin relaxation after 
the application of the RF pulse, we arrive at an equation that quantitatively 
describes the time-dependent behavior of the magnetization M in the presence 
of B0 and B1(t). By combining equation (1.1) with relation (1.5) that allows 
to replace [1 by M, and taking into account equations (1.6), and (1.7), we 
arrive at the Bloch equation: 

(1.8) 

MRI measures the aggregate magnetic field generated by the spins of all the 
protons in the object. Because the number of protons is very large, we can 
model the proton density as a continuous function, or a piecewise continuous 
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function [Haacke et al., 1999, Ch. 1 and 4] . It is common to discretize the 
magnetization by tessellating the region into a regular volume, called voxel, 
and assigning the sum of the magnetization in each voxel to a point in the 
discretization. Since tissues of different types have different properties which 
result in different magnetizations , our voxel model must include the propor­
tions of tissues of different types. The evolution in the magnetization in one 
voxel is independent of the magnetization in neighboring voxels, hence , we can 
consider the signal from each voxel separately. Since (1.5) and (1.8) are linear, 
we can use it to solve for the evolution of each tissue's magnetization sepa­
rately, and sum up the resulting magnetizations, which is also the underlying 
idea of our approach for tissue quantification. 

1.2 MR Pulse Sequence 

As we have mentioned, the RF pulse is a crucial part of the imaging system, 
because it manipulates the rotation of the magnetization that leads to a mea­
surable signal. Since the motion of the magnetization is the combined result 
of two perpendicular magnetic fields, the precession of the magnetization fol­
lows a spiral trajectory down to the transverse plane when an RF pulse is 
applied . However, if we observe it in the rotating frame as introduced earlier, 
the precession about the z axis disappears, since the coordinate system is also 
precessing at the same angular frequency as the magnetization. The preces­
sion of M about the B1 field generated by RF coil is called forced precession 
[Liang and Lauterbur , 1999], the angular frequency w1 of which in the rotating 
frame of reference is determined by (see also (1.4)): 

(1.9) 

As a consequence of the forced precession, magnetization is flipped from the 
longitudinal direction along the z axis by a certain angle. The flip angle is 
defined as the smaller angle between M and the z axis [Liang and Lauterbur, 
1999]. 

In MRI, we often use multiple RF pulses to realize different imaging 
goals. Hence, the repetition time ( tr) between two consecutive pulses is an 
important issue we need to take care of, because it controls the degree of both 
spin lattice relaxation and spin spin relaxation. Since MR signal depends on a 
set of parameters including the relaxation times, variation in tr would influence 
the signal, and eventually quality of reconstructed images. 

A typical pulse sequence consists of a combination of individual RF 
pulses with (possibly) different flip angles, for which the time interval between 
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two consecutive pulses is determined by the repetition time. An overview of 
pulse sequences itself is an interesting topic with extensive literature [Haacke 
et al., 1999, Ch. 15], which. makes it impossible to be covered here in detail. We 
restrict our discussion to a specific type of pulse sequence - called steady-state 
free precession (SSFP) - that is used in our tissue quantification problem. 

1.2.1 Steady-State Free Precession 

When a spin system is excited by a train of periodic radio frequency (RF) 
pulses with repetition time tr « T2 , the spin system will reach a dynamic 
equilibrium, known as the steady state [Carr, 1958]. One can find several 
reports about SSFP signal and SSFP pulse sequences in recent years, see 
e.g., [Hanicke and Vogel, 2003; Hargreaves et al., 2001; Scheffler, 2003]. The 
popularity of SSFP sequences is due to the advantage that they yield high 
signal strength in short scan time, high image resolution and good image 
contrast. For this reason, we use SSFP sequences to demonstrate our method 
to optimally determine the pulse design parameters that maximize the CNR. 

The physical system is well-described by the Bloch equation (1.8), but 
for our purposes it is simpler to discretize the system by assuming the fixed 
simple pulse-sequence design shown in Figure 1.2 and integrating the Bloch 
equation in each section. The magnetization is governed by a dynamical sys­
tem defined in [Hargreaves et al., 2001]. We will show it has a steady-state 
which can be found by solving a linear system. To see this, and get a better 
idea about the constraints we will build up the dynamical system from its 
components. 

The dynamical system is the composition of several simple components, 
parameterized by the tissue parameters 

(1.10) 

where T 1 , T 2 are relaxation times of the magnetization measured in milliseconds 
( ms), K, is the resonance offset of the tissue measured in Hz, IR+ is the set of 
nonnegative real numbers, and the pulse-sequence design variables 

(1.11) 

where a is the flip angle, f is the angle of RF pulse phase cycling which models 
the change of the axis of rotation of the RF pulse, T is the echo time which 
we fix to be half of the repetition time tr· Fixing the echo time to be mid­
way between RF pulses corresponds to the most basic spin-warp and radial 
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k-space trajectories [Haacke et al., 1999, Ch. 9]. Other choices of readout tra­
jectories would lead to other fixed ratios. Simultaneously optimizing RF pulse 
design and readout trajectories would lead to a more complicated optimization 
problem, which is beyond the scope of this thesis. 

(a) (b) 

(d) 

(c) 

(e) (f) 

Figure 1.2: SSFP pulse sequence showing two pulse repetitions (a) and (b). 
Each pulse interval contains one readout interval (c) when data is collected, 
and one RF pulse (d). 

The first component is the rotation of the magnetization vector caused 
by the RF pulse: 

0 0 
cos( a) sin( a) 

- sin( a) cos( a) ) (1.12) 

Variations in bulk susceptibility of the different tissues cause different tissue 
to observe different magnetic fields B, which we capture by the parameter "'' 
this causes a rotation about the z axis that also depends on the echo time T: 

( 

cos ( "'T) sin ( "'T) 0) 
P = -sin ("'T) cos ("'T) 0 . 

0 0 1 

(1.13) 

In designing the pulse sequence, we can change the axis of rotation of the RF 
pulse referred to as RF pulse phase cycling, because all current generation 
scanners have the ability to rotate this angle by a fixed constant, which is 
usually an integral fraction of 21r. To simplify this analysis , it is easier to fix 
the RF pulse phase, and pretend that the rest of the experiment rotates from 
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one RF pulse to the next by 

( 

cos(!) sin(!) 0) 
Q = -sin(!) cos(!) 0 . 

0 0 1 

We collect the effect of relaxation into two components: 

and 

(1.14) 

(1.15) 

(1.16) 

where the scaling of D assumes that M has been scaled so that the minimum 
energy state is M0 = (0, 0, proton density)T. We have 

Mk+l = P(C(RQP(CMk +D))+ D). (1.17) 

If a steady-state exists, it satisfies 

(1.18) 

Therefore, 
AMss = b, (1.19) 

where A= PCRQPC, A= I- A and b = PCRQPD +PD. 
Since the rotations R, P, and Q have unit eigenvalues, and all the 

eigenvalues of the relaxation matrix C are less than one (and positive), the 
matrix A is invertible, and so the steady state Mss exists, and can be solved 
either symbolically or numerically for particular values of the parameters. 
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Chapter 2 

Tissue Quantification Using 
Optimal SSFP Pulse Sequence 
Design 

Tissue quantification, by definition, refers to the problem of estimating differ­
ent tissue quantities from a region of interest in an image in order to reveal 
anatomical structures. This is important for many clinical applications, since it 
provides useful quantitative information about different tissue types regardless 
of their physical distribution. For example, neurological diseases are normally 
associated with some abnormalities in brain tissue volumes [Santago and Gage, 
1993]. Given the pathological changes observed using MRI, identification of 
these changes can be achieved in vivo by tissue quantification. 

MR images are typically analyzed by qualitative, or semi-qualitative 
visualization or evaluation [Wang et al., 1998]. Tissue quantification can be 
approximated by segmentation, where the reconstructed image is subdivided 
into its constituent regions or objects. In cases where distinct tissue types are 
well-separated physically, and are large in extent relative to image resolution, 
quantitative tissue volumes have been successfully extracted from qualitative 
images by calculations based on manual and automatic contour estimation 
[Jardim and Figueiredo, 2003]. However, these methods of tissue separation 
are based on selectively suppressing tissue from undesired components, and 
they are sensitive to main field inhomogeneity and other conditions. Therefore 
they are unsuitable for tissues colocated at the image resolution. 

An alternative to MRI tissue quantification is MR spectroscopy [Sal­
ibi and Brown, 1998], which can be used to quantify multiple molecules in 
regions of interest. Unfortunately, it is extremely limited in spatial and tem­
poral resolution, and it is at least an order of magnitude slower than imaging 

11 



MasteT Thesis - Z. Zheng - McMasteT - Computing and Softwan:. 

methods. 
Due to the various limitations for the existing tissue quantification 

methods, we introduce our approach in this chapter, which improves on con­
ventional Dixon methods [Glover, 1991; Huang et al., 2004; Reeder et al., 2004; 
Vasanawala et al., 2000] since it 

• does not dictate a particular configuration of phases (e. g., in and out 
of phase) and look for pulse-sequence design variables to match this 
configuration, 

• takes all tissue parameters into account (relaxation constants, as well as 
resonance offset) , 

• can be used to quantify any number of tissues, and 

• increases the CNR of images acquired faster than signal averaging- and 
allows greater latitude in trading off imaging time versus CNR. 

These advantages are the direct results of formulating the selection 
of pulse-sequence design variables as an optimization problem , including the 
formulation of an objective function which measures the CNR. However , before 
we get into the technical subtleties , we first introduce the generalized Dixon 
method, on which our idea of tissue quantification is based. 

2.1 Tissue Quantification via a Generalized Dixon 
Method 

2.1.1 Tissue Quantification Prototype 

For a sample voxel that consists of m tissue types with concentrations 

which is imaged n times by varying the pulse sequence, the resulting signals 
(t-I,I-2,· . . ,t-n)E en, are given by 

t-1 = a11P1 + a12P2 + · · · + almPm, 

t-2 = a21P1 + a22P2 + .. . + a2mPm, 

12 
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where by definition ik = Mx(k) + HMy(k) is the projection of the magneti­
zation Mkth tissue to the x-y plane, which is identified with the complex plane, 
and aijE <C gives the expected signal in image i of a unit quantity of tissue 
j. Therefore, the coefficient matrix Sc=(aij)nxm defines a linear transforma­
tion from tissue concentrations to signal measurements. If S is considered 
as a real matrix having twice the number of rows as the complex coefficient 
matrix sc=(aij)nxm by splitting the real and imaginary parts of aij into two 
adjacent rows, and rank(S) = m, then we can invert this linear system to find 
the tissue concentrations. This is the basic idea of tissue quantification, the 
interesting part is how to choose pulse-sequence design variables so that S is 
well-conditioned. 

2.1.2 Dixon Method 

All imaging methods in MR are based on understanding (and working with) 
the behavior of solutions of the Bloch equation (1.8). The Dixon Method, 
[Dixon, 1984], uses chemical differences between tissues which manifest them­
selves as different external field values, and hence different resonant frequen­
cies. For tissues with different resonant frequencies, the signals will go in and 
out of phase periodically. Dixon observed that for fat and water, if one image 
is acquired while both are in phase and one while they have opposite phases, 
then 

S
0 ~ G ~~), equivalently, S ~ (! ~I) , (2.1) 

and addition and subtraction of images is all that is required to recover the 
original fat and water concentrations. The difference between the effective ex­
citation time and the effective measurement time is called the echo time. Dixon 
fixed the phase relationship by altering the echo time, but ignored differences 
caused by relaxation. When we formulate the model for SSFP sequences, we 
will be concerned with repetition time, the time between successive excita­
tion pulses. Repetition time always effects signal generation, but for spoiled 
pulses, it can be excluded from calculations of the complex phase of the sig­
nal, whereas for SSFP, phase in addition to magnitude are very sensitive to 
repetition times. 

This analysis ignores the fact that equal quantities of fat and water 
may not generate the same magnitude of signal, but this can be calibrated. 

The Dixon method usually uses spoiled sequences [Haacke et al., 1999, 
Ch. 18], because (ignoring the calibration issue) relaxation parameters can be 

13 
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ignored. For SSFP sequences, relaxation parameters cannot be ignored, and 
Hargreaves et al., [Hargreaves et al., 2003], adjust the pulse-sequence design 
variables of SSFP sequences by proper selection of the sequence repetition time 
and the center frequency offset that makes different tissue types properly go 
out of phase, respectively, in order to realize a 180° phase difference between 
fat/water signals. Other authors, e.g., Vasanawala et al., [Vasanawala et al., 
2000], have considered more general tissue separation problems, but always 
with similar simple structures for sc. 

Dixon introduced the principle of separating different tissue types by 
manipulating the phase relationships, which can be easily extended to more 
cases than fat and water, as shown in our simulation part (see Chapter 5). 
The linear transformations S used in the Dixon method are simple by design, 
and therefore usually not written in matrix form. Not doing so, obscured the 
fact that more general linear combinations of tissue densities can be used for 
tissue quantification. Recently, Rybicki et al., and Reeder et al., [Reeder et 
al., 2004; Rybicki , 2001] have considered matrices containing square roots and 
arbitrary complex roots of unity, respectively. This complex matrix can be ap­
proximated by manipulating a single pulse design variable (echo time), when 
the resonant frequencies of the different tissues are well separated. To the best 
of our knowledge , we are the first to exploit the generalization to arbitrary 
complex values. That this has not been discussed before, is perhaps because 
there was previously no way of evaluating the relative merits of different lin­
ear combinations. The introduction of a merit function, and a systematic 
computational method of optimizing this function over all possible choices of 
pulse sequence design variables for the case of SSFP pulses are the main con­
tributions of this thesis. Note that Reeder et al., do use noise in the tissue 
separations as an objective, and discuss the merits of their proposed heuristic 
for choosing echo times. They find that in the best case, noise in computed 
tissue separations is reduced as would be expected from signal averaging alone. 
By optimizing over a larger number of design variables, we observe better than 
the expected reduction from signal averaging alone. 

2.2 Imaging 

Based on what has been discussed in Section (2.1), we arrive to the following 
problem statement: Let m be the number of tissues, and n the number of 
experiments. We denote Uz = (ull, u21, u31, U4z, Tz) E IR5 , l = 1, . .. , n, tk = 
( Tlk, T2k> "'k) E IR3

, k = 1, ... , m , where we represent the angles O:z and fz by 
unit vectors (ull,u2z) = (cos(az),sin(az)) and (u3z,u4z) = (cos(Jz),sin(Jz)). If 

14 
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Mss(u1, tk) E IR3 is the steady state magnetization corresponding to design 
variables u1 and tissue parameters tk, with components Mss,x, Mss,y, Mss,z, 
and Pk is the density of tissue k, then the measured signal from experiment l 
is 

(~ Mss,x( u,, t,)p,, ~ Mss,y( u,, t,)p,) . 
If we write the results of n experiments (i.e., images) as a 2n dimensional 
real vector, and the m dimensional tissue densities as an m dimensional real 
vector, the transformation from tissue densities to measurements is 

Mss,x(ul, t1) Mss,x(ul, tm) 
Mss,y(ub t1) Mss,y(ul, tm) 

5= (2.2) 

Mss,x(Un, t1) Mss,x(un, tm) 
Mss,y( Un, tl) Mss,y(un, tm) 

If S does not have full rank, we cannot reconstruct tissue densities from 
this set of images. If S does have full column rank, the Moore-Penrose Pseudo­
Inverse [Horn and Johnson, 1985] of S, (srsr1 sr, is an unbiased maximum 
likelihood estimator [Mardia et al., 1979, Thms. 6.2.1, 6.2.2] for the tissue 
densities as a function of the measured image data. In the next section, we 
will show how the pulse-sequence design variables can be chosen, not only to 
avoid singular transformations, but to maximize the quality of the computed 
tissue densities. 

2.3 Semi-definite Optimization Problem 

Our objective is to choose the pulse-sequence design variables such that the 
error in the reconstructed tissue densities is minimized. As is standard prac­
tice in MR imaging, we will assume that measurement noise is white, that 
is, independent and normally distributed [Haacke et al., 1999]. Under this 
assumption the error in the reconstructed tissue densities will also be normally 
distributed (since the reconstruction is a linear transformation), but the er­
ror in different tissue density components will not necessarily be independent. 
Barring additional information about the use of tissue segmentation (e.g., the 
method of diagnosis in which they will be employed), we assume that the 
objective is to minimize the worst-case error among different tissue densities. 
Even if in a particular application, we may only be concerned in the quantifi­
cation of one tissue, it is likely that radiologists would occasionally want to 
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examine other tissue density images, so minimizing the worst-case error is a 
good conservative design criterion. 

2.3.1 Formulation 

Since the Moore-Penrose Pseudo-Inverse [Horn and Johnson, 1985] is a linear 
map from measured signals to density estimates, it follows that if E E IR2

n is a 
vector of measured noise, then the resulting errors in the tissue densities are 
also normally, but not identically distributed, and given by ( ST srl ST E. 

We can calculate the expected error in the tissue density estimates 
by using a singular-value decomposition S = vr DU, where V and U are 
orthonormal and D is diagonal. Then we have 

(2.3) 

Since each measurement noise is independent with distribution N(O, a), for 
any two rows iii and Vj in the orthonormal matrix V, i/it: and VJE are also 
independent with distribution N(O, a), which means that each component in 
E

1

=VE is also independent with distribution N(O,a). Similarly, each compo­
nent in/ = D-1 t:' is independent with distribution N(O, .Ai 1a), in which, .Ai 
is the ith singular value of D. When left multiplied by the matrix ur, the 
resulting error, t:"' = ur t:" also has normally distributed components, with 

the ith element having distribution N(O, aJL_j(U{) 2 .Aj2
). To minimize the 

worst-case error, we want to minimize the largest value 

for all values of i. This is equivalent to minimizing the maximal .Ai2
, which is 

equivalent to maximizing the minimal .Ai. Since 

and the eigenvalues of D 2 and ur D 2U coincide because uru = I, the eigen­
values of D 2 are the same as the eigenvalues of sr S . Thus our goal is to 

max min {eigenvalues of sr S} . 
design variables 

(2.4) 

We formulate the eigenvalue optimization problem (2.4) using semidefinite 
inequalities as 

max .A 

srs- .AI t 0, 

16 



Master· Thes·is - Z. Zheng - McMaster- - Computing and SoftwaTe 

where ~ 0 means that the matrix on the left hand side of the inequality has 
to be square, symmetric and positive semi-definite. Additional constraints for 
S and for the design variables describe the set of feasible design variables. 

The formulation of the constraints involves three angles that always 
occur as sine-cosine pairs, which define rotations around two of the coordinate 
axes in IR3 . We can replace the sines and cosines that appear in the rota­
tion matrices R and Q by unit vectors (see p.24.) u 11 and u21, and add the 
constraints 

2 2 1 
ull + U21 = ' 

2 2 1 
U31 + U41 = · 

(2.5) 

(2.6) 

We can then relax the constraints (2.5) and (2.6) to the convex quadratic 
constraints 

(2.7) 
(2.8) 

Although we do not have a proof, we expect that the relaxed problem 
is equivalent to the original problem, so we can solve the relaxed problem, 
and check that the constraints (2.5) and (2.6) are satisfied (within numeri­
cal tolerance). We reason the equivalence as follows: Scaling a unit vector 
(u 11 , u21 f or (u31, u 41 )T to lie strictly inside the unit disk will have the effect 
of increasing the norm of A, (see (1.19)), which will, in general, decrease the 
norm of Mss, (see (1.19)). This will scale the row of S corresponding to that 
experiment, which will, in general, reduce the minimum eigenvalue of srs, 
and hence reduce the objective function. 

In addition to the angles, we have variables 1!, which control the rep­
etition time of the pulse sequence used to collect an image. In practical ap­
plications, this variable is bounded below by hard physical constraints on the 
instrumentation (Tmin), and it is bounded above by practical limits on SSFP 
image stability (T max), and limits on the patients ability to remain still (possi­
bly including holding their breath). (These limits also depend on the particular 
model of imager, on the part of the body being imaged, and the field strength 
of the magnet.) Since the original Dixon methods used echo time alone to 
differentiate fat and water [Dixon, 1984], we expect our objective to be very 
sensitive to variations in 1! between experiments. 
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2.3.2 Complete System 

Recall that m stands for the number of tissues and n stands for the number 
of experiments , and 

A(ul, tk) = 
I- P(1! , "'k)C(1! , Tlk, T2k)R(u11 , u21)Q(u31 , u41)P(1!, r~,k)C(1! , Tlk, T2k), 

b(ul , tk) = 

and 

(P(1! , "'k)C(1!, Tlk, T2k)R(ull , u21)Q(u31 , u4l) + I)P(1!, r~,k)D(1! , Tlk) , 

Mss,x (ul, tl) 
Mss,y(ul , tl) 

Mss ,x(Un, tl) 
Mss ,y(un, t1) 

Mss,x(ul , tm) 
Mss,y(ul, tm) 

Mss ,x (Un, tm) 
Mss,y(un , tm) 

(2.9) 

Using this notation, we can now write the entire optimization model in the 
compact form: 

max >. 
s.t. sr s- ).J C:: 0 

A(ul , tk)Mss(ul, tk) = b(ul , tk) Vl , k 

ui1 + u~ 1 :S 1 Vl 

u~1 + u~1 :S 1 Vl 

Tmin :S 1! :S Tmax, 

(NL-SDO) 

where l = 1, . . . , n, k = 1, ... , m. Note that in the nonlinear semi-definite 
optimization problem (NL-SDO) , constraints UI,l + v[+l ,l :S 1, Vl, i = 1, 3 are 
second order cone constraints (SOCO), see [Ben Tal and Nemirovski, 2001]. 

This is a nonlinear, nonconvex semi-definite optimization problem. An 
optimal solution corresponds to optimal design variables of the SSFP pulse 
sequence, from which we can achieve tissue density estimation with good CNR 
(see Chapter 5). However, the quality of the estimate is still influenced by some 
other factors , such as magnetic field inhomogeneities. To design a robust pulse 
sequence , we have to address the problem of correcting field inhomogeneities , 
which will be our focus in the next two chapters. 
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Chapter 3 

Tissue Quantification in the 
Presence of Field Inhomogeneity 

In this chapter we explore the problem of quantifying tissue types in the pres­
ence of main magnetic field inhomogeneity, by examining the structure of the 
dynamical model. A heuristic will be presented based on the mathematical 
derivation of the equivalence (within measurement error) between the effect 
of field inhomogeneity and a shift of RF pulse phase cycling. Furthermore, 
we also formulate a semi-infinite optimization problem in order to compensate 
field inhomogeneity. Our aim is to design robust pulse sequences. 

From what has been discussed, we know that for magnetic resonance 
imaging, highly uniform magnetic fields are necessary because they determine 
the frequency at which the magnetization resonates, and this frequency de­
termines position, complex phase as well as Mss in MR imaging. In practice, 
however, there always exist magnetic field inhomogeneities for a variety of rea­
sons. For example, imperfections within the main magnetic field generating 
magnet due to design and manufacturing. Different magnetic susceptibility of 
materials may also cause the inhomogeneities at the regions where the mate­
rials come into contact such as air/tissue interfaces. As a consequence, field 
inhomogeneities can lead to geometric distortions and other artifacts in recon­
structed images. 

The extent to which field inhomogeneities impair the image quality is 
determined by many factors, such as the severity of inhomogeneity, sensitivity 
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of the imaging sequence type, length of repetition time, etc. Unfortunately, 
steady-state free precession (SSFP) imaging that we have studied for tissue 
density estimation in our model is quite sensitive to field inhomogeneity. For 
example, dark stripe artifacts are common in SSFP imaging as a manifestation 
of off-resonance caused by field inhomogeneities [Li et al., 2004]. The reason 
behind the phenomenon can be understood through a simple analysis based 
on our imaging model. The resonant frequency w0 at which the magnetization 
precesses depends bilinearly on two factors: the gyromagnetic ratio 1 and the 
main magnetic field B 0 (wo=!Eo). Consider a field inhomogeneity b.E0 at a 
certain point on image, during the time interval b..rp between two consecutive 
pulses. The magnetization accumulates the extra angular phase 'l/J=!b.E0b.r.p 
during the precession. Because b.E0 , and hence 'ljJ are position-dependent , 
different dephasing may be observed at different spatial locations. To further 
illustrate our point, we numerically simulate the impact of dephasing within 
the range of [-21r, 21r] caused by field inhomogeneities on the expected noise 
(minimum singular value of S) in the reconstructed tissue densities in Figure 
3.1. If we also take into account the chemical shift effect 6..1 that results from 
the slightly different magnetic environments in which proton spins in different 
molecule are immersed, we can characterize the rotation of different tissue 
types due to variations in bulk susceptibility as: 

( 

cos ((I+ 6.1)(B0 + b.E0 )T) sin ((I+ 6.1)(B0 + b.B0 )T) 

P = -sin ((I+ b.!)(Bo + b.Bo)T) cos ((I+ 6.1)(B0 + b.B0 )T) 

0 0 

Since we are modelling the dynamical system in a rotating frame of reference , 
we can ignore the 1Bo term (recall that the coordinate system is precessing at 
the resonance frequency w0 = 1E0 ); the chemical shift effect 6..1 is very small, 
when multiplied by a field inhomogeneity b.B0 , fl ! b.B0 becomes a negligible 
term that can be ignored without seriously affecting the result because it is 
smaller than any other term by at least on the order of 10-6 ; note also that 
chemical shift factor 6..1 is what induces the tissue susceptibility variation, 
hence "' = fl1Eo. Taking the above discussion into account , we focus on the 
terms inside the trigonometric functions in the matrix P: 

P F(((J + fl!)(Eo +flEa) -1B0 )T) 

P((b.!Eo +!flEa+ D.,D.B0 )T) 
"--v--' 

~ P(("' + 1b.E0 )T) 
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Therefore, 

( 

cos ((11; + ryb.Bo) T) 

P = -sin ((11;: ryb.Bo) T) 

sin ((11; + ryb.B0 ) T) 

cos ((11; + ryb.B0 ) T) 

0 

where !:1B0 can be calibrated by a field map. 

(3.1) 

Since field inhomogeneity may cause serious problems [Haacke et al., 
1999, Ch. 20], much research has been done on field inhomogeneity correction 
in the past. Generally speaking, there are two steps involved in most field 
inhomogeneity rectification schemes. The first is to measure spatial variation 
of the magnetic field (referred to as 'estimating the field map'). The second 
step is the use of that field map to compensate field inhomogeneities during the 
reconstruction step. Some methods have been developed that combine the two 
steps [Nayak and Nishimura, 2000]. In order for the readers to better under­
stand our approach, we first present our formation for the field compensation 
problem in this chapter, and leave the field mapping problem for Chapter 4. 

3.1 Semi-infinite Problem 

Our objective is to design robust pulse-sequences to withstand the perturba­
tion of magnetic field inhomogeneities over a certain range. Suppose that !:1B0 
E [b.Bo,min, b.Bo,max] is the magnitude of the magnetic field inhomogeneity at 
a certain pixel we are dealing with. In other words, if we denote each possible 
value of the field inhomogeneity as !:1B0 within the interval, then !:1B0 may 
take on infinite number of values. Theoretically, to minimize the expected 
noise of that pixel in the reconstructed tissue densities, we should solve an 
optimization subproblem that gives the best - worse - noise among all !:1B0 
values. Recall (see Section 2.3.2) that k is the tissue parameter index, and l 
is the experiment index, 

A(ut, tk, "fkb.Bo) = 

I- F(Tt, "'k' "fkb.Bo)C(Tt, Tlk, T2k)R( uu, u21)Q( u31, U4t)F(Tt, "'k, '/'kflBo)C(Tt, Tlk, T2k), 

b( u1 ,tk, 'YkflBo) = 

(F(Tt, "'k, "fkb.Bo)C(Tt, Ttk, T2k)R( uu, u21)Q( u31, U4t) + I)F(Tt, "'k, "fkb.Bo)D(Tt, Tlk)· 

With these definitions, we can formulate the complete optimization 
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problem: 

max A (3.2) 

s. t. A ::; AD. V b.B0 

sisD.- AD.I ~ o Vb.Bo 

A(ul, tk, /kb.Bo)Mss(ul, tk , /kb.Bo) = b(ul, tk, /kb.Bo) 'il, k, 'ib.Bo 

ui1 + u~1 ::; 1 'il 

u~1 + u~1 ::; 1 'il 

T min :'S Jl :'S T max, 

where b.Bo E [b.Bo,min, b.Bo,maxL and as in Section (2.3.2) /k = ~ depends 
only on tissue type. This is a semi-infinite optimization problem with nonlinear 
and semi-definite constraints. Although it is a theoretically interesting model , 
it is not practical to solve, since we have to maximize the minimum eigenvalue 
of the matrix SISD. over all possible values of b.B0 , which belongs to a set 
with infinite cardinality. Therefore, we need to consider discretization. 

3.1.1 Discretized Problem 

Discretization is a technique used to approximate the solution numerically. For 
example, in our case, if we take J E N discretization points, for the interval 
[~Bmin, b.Bmax] with each value (point) indexed by j E {1 , ... , J}, then the 
discretized model is as follows 

max A (3 .3) 

s.t. A :'S AJ j E {1 , .. . , J} 

sJ s1 - A1I ~ o j E {1 , ... , J} 

A(ul, tk, /kb.Bo,j)Mss(ul, tk , /kb.Bo,j) = b(ul, h, /kb.J) 'ij, l , k 

ui1 + u~1 ::; 1 Vl 

u~1 + u~1 ::; 1 'il 

T min :'S Jl :'S T max· 

The number of discretization points is determined by the magnitude of field 
inhomogeneity, i.e., the fineness of the discretization needs to be tuned to the 
sensitivity of the objective with respect to b.B0 variation. The solution of 
the discretized, large-scale nonlinear semi-definite optimization problem needs 
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Figure 3.1: The fluctuation of the minimum singular value of S versus dephas­
ing caused by the field inhomogeneity. 

the development of dedicated algorithms. Due to time constraints, we did not 
explore this route, further, we found an easy-to-solve heuristic, which gave 
promising results. 

3.2 Heuristic 

An alternative way to handle the problem of field inhomogeneities is to ex­
ploit the properties of the matrices that are building blocks of the dynamical 
system. In this section, we explore the evolution of 6.B0 and phase-cycling 
f. We demonstrate how off-resonance of the magnetization can be compen­
sated by shifting phase-cycling. However, first we need to do some algebra to 
get an equivalent formulation of Mss which makes the symmetry of P and Q 
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transparent. 

We recall the formula (1.17) (see p.15.) that reflects the change of two 
consecutive states of the magnetization: 

Mk+l = P (C (RQP (CMk +D))+ D). (3.4) 

From (3.4) we note that at the kth time period, when Mk is flipped , it ex­
periences a series of changes as rotation (R) , RF pulse phase-cycling (Q), 
off-resonance (P) and relaxation (C), before the successive flip is carried out 
again, which results in off-resonance (P) and relaxation (C), causing the mag­
netization to achieve the magnetization Mk+l· Therefore, if we exert a phase­
cycling Q after the second flip, which directly affects Mk+ 1 , we expect this to 
be equivalent to the effect of only exerting a phase-cycling after the second 
time period other than the first time period, which can be formulated as: 

(3 .5) 

Theorem 3.2.1. Let the steady-state magnetization be achieved during the 
processes (3.4) and (3. 5). Let M 88 and Mss denote the steady-state magneti­
zations, respectively. Then the following relationship holds: 

Proof. Writing (3.4) and (3.5) as steady-state forms , we have: 

(I- PCRQPC)Mss 

(I- QPCRPC)Mss 

PCRQPD+PD, 

QPCRPD + QPD. 

(3.6) 

(3 .7) 

(3.8) 

Since the rotations R, P , and Q have unit eigenvalues, and all the eigenvalues 
of the relaxation matrix C are less than one (and positive), (I - PC RQ PC) 
is invertible, so is (I- QPCRPC) in (3.8). Therefore, 

hence, 

Mss = (I- PCRQPC)- 1(PCRQPD + PD), 

Q(I- PCRQPC) - 1(PCRQPD + PD) 

((I- PCRQPC)Q- 1r1 
(PCRQPD + PD) 
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((I- PCRQPC)Q- 1r
1 
Q- 1Q(PCRQPD + PD) 

(Q ((I- PCRQPC)Q-1)r
1 

(QPCRQPD + QPD) 

(QIQ- 1
- QPCRQPCQ-1r

1 
(QPCRQPD + QPD), 

since I is the identity matrix and commutes with any matrix, Q is orthogonal 
(Q-1 = QT), which commutes with C according to their structures, QP = 
PQ, and Q P D = P D = D (since D is a vector with the first and second 
component being zero, and the last rows and columns of P and Q are unit 
vectors, see (1.13), (1.14), and (1.16)), we have: 

QMss (IQQ- 1
- QPCRPQQ- 1Cr

1 
(QPCRQPD + QPD) 

(I- QPCRPC)- 1 (QPCRPD + QPD) 

based on (3.8). D 

We are only concerned with the x and y components of the steady-state 
M 88 , therefore: 

( 
co~ (f) sin(!)) (Mss,x) = (!Cfss,x) . 

- sm(J) cos(!) Mss,y Mss,y 
(3.9) 

For a three-experiment case in which n = 3 (see Section 2.2), we con­
struct the matrix S based on (3.9) and obtain the relationship: 

us = s, 
in which, 

cos(J1 ) sin(h) 0 0 0 0 
- sin(JI) cos(JI) 0 0 0 0 

U= 0 0 cos(h) sin(h) 0 0 
(3.10) 

0 0 - sin(h) cos(h) 0 0 
, 

0 0 0 0 cos(h) sin(h) 
0 0 0 0 - sin(h) cos(h) 

where the index off corresponds to the experiment number. 
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Thus, 

(3.11) 

since U is an orthogonal matrix. Equality (3.11) implies that the steady-state 
matrices obtained from (3.4) and from (3.5) have the same singular values 
because their singular values are equal to the square root of the eigenvalues 
of srs and (SfS, respectively, which are equal. Therefore, we conclude 
that (3.4) is equivalent to (3.5) in terms of the usage in our optimization 
formulation. 

3.2.1 Corrections for Field Inhomogeneity 

We can write (3.8) by the decomposition Q = JQ · VQ. Since VQ has the 
same structure as Q, by comparing (3.7) and (3.8) , we have: 

(3.12) 

by a similar argument. If we take a closer look at equation (3.12), we observe 
that each appearance of P is preceded by a VQ. What is more interesting is 
that if we multiply VQ and P , we have: 

(3.13) 

This tells us that the effect of magnetic field inhomogeneity could be 
compensated by adjustments to the RF pulse phase cycling as long as we 
have a map of the main magnetic field. Since P is transformed into P in the 
presence of b.B0 , we need to work with 

( 

cos (KT + rb.BoT +f) sin (KT + [ b.B0T +f) 0) 
VQF = -sin (KT + 1b.B0T +f) cos (KT + 1b.B0T +f) 0 . (3.14) 

0 0 1 

In other words, we are able to handle nonuniform fields by shifting the 
RF pulse phase cycling correspondingly. This is illustrated by Figure 3.2, in 

26 



Ma8ter· Thesi8 - Z. Zheng- McMa8teT- Computing and Softwan; 

which we discretize uniformly as we did for tlB0 during the interval [-47!', 47r] 
for the phase-cycling f. Comparing Figures 3.1 and 3.2, we can see that they 
manifest the same behavior. Of course, it is not practical (and possible) to do 
experiments with different shifting of RF pulse phase cycling for each pixel. In 
the next section we show that this individual shift of RF pulse phase cycling 
is not necessary. 

0.4r----..,------.-----r----,----.------, 

0.35 

f;l ,. 0.25 

~ 
.E 
"' E o.2 
= E 

';:l 

·§ 0.15 

0.1 

0.05 

( 

OL----~---~---~---~---~---~ 
-15 -10 -5 0 5 10 15 

.f value 

Figure 3.2: The change of the minimum singular value of S corresponding to 
the shift of the RF pulse phase cycling. 

3.2.2 Optimization Problem Based on the RF Pulse 
Phase Cycling Heuristic 

Now we are able to formulate an optimization problem to make our SSFP 
pulse-sequence robust and insensitive to field inhomogeneity by employing a 
phase cycling shift heuristic. Without loss of generality, we only focus on one 
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period [ -1r, 1r], since the response of the minimum singular value of the steady­
state signal generation matrix to field inhomogeneity is periodic (see Figure 
3.1) . In our formulation , S corresponds to the case where there is no shift of 
phase-cycling, and Sf.< corresponds to the shift of phase-cycling by the amount 
of~(' in which ( is the number of shifts. Assume 1000 points of discretization 
of field inhomogeneities, indexed by i, we have: 

max inf{.Aili E Y'} 
(! ,(2 , ... (( 

s.t. S[Si- .AJ ~ 0 Vi 
- - - - T 

si =(So, s(. 1 , s6 , · · · , sf.<) 

A(ul , tk, /kt::.-i)Mss(ul , tk, /k.6.i) = h(ul, tk , /k.6.i) \fl, k 

(3.15) 

- 6- 6- 6 . 
A(ul,tk,/k.6.i+'T')Mss(ul , tk,/k.6.i+-) = b(ul,tk,/k.6.i+-) \fl,k,z 

1l Tt Tt 
- 6- 6- 6 . 

A(ul,tk , /k.6.i+ Tt )Mss(ul , tk , /k.6.i+ Tt) = b(ul,tk, /k.6.i+ Tt) \fl, k, z 

- ~( - ~( - ~( . 
A(ul,tk,/k.6.i+Tt)Mss(ul,tk,/k.6.i+Tt) = b(ul,tk,/k.6.i+Tt) 'v'l,k,z 

uil + u~l :S 1 \fl 

u~ 1 + u~1 ::; 1 \fl 

[ 
1f 1fl I 

~(' E -2,2 V( 

in which Sf.< depends on Mss(ul,tk>!k.6.i +~)similarly to (NL-SDO) . 

Based on the equation (3.14) in which field inhomogeneity and phase 
cycling are linearly related , we can repeat the experiment multiple times with 
different shifts of phase cycling, so that all of the troughs from one curve (as 
shown in Figure 3.1) are covered by peaks from other curves , (see Figure 3.3). 
In other words, we solve the problem of low-quality tissue quantification by 
shifting the phase-cycling, in order to obtain good pulse-sequence design vari­
ables for better quantification. We realize this by multiple acquisitions of 
images and improve the images of inferior quality by averaging. We show the 
numerical results of repeating the experiment 15 times for each field inhomo­
geneity value, and calculate the minimum singular value (see Figure 3.4). 

This model (3.15) is nonconvex and periodic, but it was easy to verify 
a good combination of fs based on the numerical experiments , as shown in 
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Figure 3.3: Multiple acquisition of images with different shifts 

Figures (3.3) and (3.4). 
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Figure 3.4: The minimum singular value versus B0 
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Chapter 4 

Total Variation Regularization 
Based Model 

Tissue density estimation and field mapping can be cast as an inverse problem 
in which we would like to recover the original information about the image 
based on the available corrupted data. However, as is common in imaging, the 
problem is normally ill posed, which means that even for a small data pertur­
bation, a large perturbation in the reconstruction can occur. To get around 
this, a regularization method is needed. The most common form of regular­
ization is Tikhonov regularization [Tikhonov and Arsenin, 1977], in which a 
regularization parameter is set to regularize the output of the least squares 
solution. It has been used in a wide variety of applications, including image 
processing. While most of the regularization methods utilize prior knowledge 
and tend to smooth out the restored images, total variation preserves edges in 
the reconstructed image. Therefore, in this chapter, we first present the origi­
nal total variation based model and then show how the model can be adapted 
to the MR imaging problem. 

4.1 Total Variation Formulation 

We are concerned with a bounded convex region n c IRxlR in the 2-dimensional 
image plane. Let u : n --+ IR, and u(x, y) be the observed intensity value of 

31 



MasteT Thesis - Z. Zheng - McMaster· - Computing and Softwan; 

the noisy image at location ( x, y) in the region. Let u : n - JR., and u( x, y) 
be the estimated intensity value of the original image at location (x, y) in the 
region; then 

u(x, y) = u(x, y) + ry(x, y), 

where rJ : n - JR., and ry(x , y) is an independently and uniformly distributed 
random variable representing the noise in the region. The gradient of a func­
tion is defined as a vector operator denoted by \7. Let us suppose that O" is the 
standard deviation of the white noise, then the total variation based denoising 
model, proposed by Rudin et al. [Rudin et al., 1992], is as follows: 

min fn l\?uldxdy 
u 

s.t. llu- ull2 = 0"2, 
(4.1) 

(4.2) 

here I · I denotes the absolute value, and II · II denotes the l 2 norm. In the 
cases where the standard deviation of the noise O" is only imprecisely known, 
or known to have an upper bound, we relax the constraint (4.2) to llu - ull2 ~ 
0"2 . A number of algorithms have been suggested to solve the above problem 
in the literature, by solving the associated Euler-Lagrange equation of the 
minimization problem. Interested readers should refer to [Vogel and Oman, 
1996]. 

In the meantime, Li and Santosa [Li and Santosa, 1996] considered a 
discretized version of the total variation model, in which, instead of a contin­
uous image plane n = [0, a] x [0, b], they focused on an array of pixels with 
m columns and n rows, and each pixel has width ajm and height bjn. In 
other words, the image space is divided into n X m fine grids, and within each 
grid we assume that the intensity value is homogeneous. Therefore, the total 
variation of the image is approximated by 

m n-1 b 
TV(a)(u) = ~ ~ ~lu(i + 1, j)- u(i ,j )l + 

n 
j=1 i=1 

n m-1 

~ ~ ~ lu(i , j + 1)- u(i,j)l. 
m 

i=1 j=1 

(4.3) 

The discretized formulation bases the total variation of the image on the dif­
ference of the individual pixels, which is suitable for the pixel-wise operation 
in the MRI. In other words, the total variation of the image can be inter­
preted as the summation of the vertical and horizontal variations of every 
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single pixel (see Figure 4.1(a)). Note that (4.3) is the h norm of a vector in 
the m(n-1) +n(m-1) dimensional space, and it is not differentiable whenever 
a component is zero. To make it smooth, we reformulate by switching to the 
sum of l2 norms and by introducing a small positive constant f2 E JR.+: 

m n-1 b 
TV~a)(u) = L L ~J(u(i + 1,j)- u(i,j)) 2 + f2 + 

n 
j=1 i=1 

n m-1 

L L ~ }(u(i,j + 1)- u(i,j))2 + f2. 
m 

i=1 j=1 

(4.4) 

Alternatively, ( 4.3) can be slightly modified into the following form (see Figure 
4.1(b)): 

n-1 m-1 

2.::::2..::: (~(u(i+1,j)- u(i,j)))2 + ( ~ (u(i,j+1)- u(i,j)))2 + f2. (4.5) 
i=1 j=1 

n m 

We can visualize the differences between the two above measures, as in Figure 
4.2. We notice that the unit ball on the right is rotationally invariant, whereas 
the one on the left is directionally dependent. In addition, since a pixel is 
correlated with all its neighbor pixels, we expect that the variation of a pixel 
could be modelled in many ways other than vertically and horizontally. For 
example, we can present another scheme that is based on the variations of 
diagonal pixels (see Figure 4.1 (c)): 

TV~c)(u) = 
m-1 n-1 b a 
L L ( ~(u(i + 1,j + 1)- u(i,j)))2 + ( ~(u(i + 1,j)- u(i,j + 1)))2 + f2. 

n m 
j=1 i=1 

(4.6) 

We would like to point out that even though there are other ways to 
formulate total variation, we do not list all of them here. The three different 
ways of formulating the total variation have distinct computational cost, for 
which we will give a detailed analysis in Section 4.4. 
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(a) (b) (c) 

Figure 4.1: Graphical representation of total variation function based on three 
different schemes. The pixels that each arrow traverses represent those that a 
specific term in the total variation depends on. 

4.2 Mathematical Model 

Now we will show how to use total variation to regularize the estimation of 
tissue densities in the context of MRI. To reconstruct the image, we mea­
sure the projection of the magnetization onto the plane perpendicular to 
the external magnetic field as a complex-valued signal. Suppose that we 
are dealing with three different tissue types defined on the same region n, 
P1 : D ---+ JR., P2 : D ---+ JR., P3 : D ---+ JR. respectively. The field inhomo­
geneity strength at each pixel is defined as tlE0 : n ---+ R The observed 
signal generated from the MR machine is defined as s0 : n ---+ IR.2 . In order 
to formulate the total variation based tissue density estimation model , we let 
Pt(i , j) E JR. : t E {1, 2, 3} , 1 S i S n, 1 S j S m be the estimated intensity 
value of the tissue type t at the pixel ( i, j) , and we define a vector p E IR.3mi1. 

as 

p (Pl ( 1, 1), P2 ( 1, 1) , P3 ( 1, 1) , ... , Pl ( 1, m), P2 ( 1, m), P3 ( 1, m), 
P1 (2, 1), P2(2, 1), P3(2, 1), ... , P1 (2, m), P2(2, m), P3(2, m), 
... , P1(n, m), P2(n, m), P3(n, m)f. 

Let tlE0 (i,j) E JR. be the field inhomogeneity magnitude at the pixel (i,j), 
and we define the vector tlE0 E IR.mn 

!lEo= (6.Eo(1, 1) , ... , 6.Eo(1, m), ... , tlEo(n , 1), ... , tlEo(n, m)f. 

Steady-state magnetization of tissue type t at a point ( i, j) depends on tlE0 ( i, j) , 
which is define as M1s : IR.2 

---+ IR.3 , t E (1, 2, 3), the 3-dimensional magnetiza­
tion of the tissue type t under an experiment. Let s( i, j) E IR.2 be the observed 
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Figure 4.2: The pictures of unit balls for two different formulations with con­
stant{}= 0.01, corresponding to (a) and (b) of Figure 4.1, respectively. 

signal strength at pixel ( i, j), and we define 

S = (so,x(1, 1), So,y(l, 1), So,x(l, 2), So,y(l, 2), ... , So,x(n, m), So,y(n, m)) E JR2mn. 

In addition, we define a block diagonal transformation matrix S E JR2miix 3mn 
that has 2 x 3 blocks at positions from (2i- 1, 3j- 2) to (2i, 3j), 

Bl k- . = [ Ml,x(flBo(i, j)) M2,x(flBo(i, j)) M3,x(flBo(i, j)) ] 
oc t,J M 1,y(D.B0 (i,j)) M2,y(D.Bo(i,j)) M3,y(D.Bo(i,j)) 

Blocki,j 

Block1,m 
Block2,1 

(4.7) 

Block~ ~ n,m 
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or, S = blockdiag(Blocki,j li = 1, ... , n, j = 1, ... , m), with each block corre­
sponding to a single pixel in the image. Now we propose a total variation 
regularization formulation that takes into account both the total variation of 
tissue densities and field inhomogeneity, as well as the similarity of the esti­
mated signal to the measurements. 

where .\1 , >.2, A3, .\4 are regularization parameters, and TV represents the total 
variation (see ( 4.4)). We can also reformulate the above as a barrier function, 
in the following function: 

i'i m 
- 1-l(L~ l)log(pl ( i, j)) + log(p2 ( i, j)) + log(p3 ( i, j))) , ( 4.8) 

i=l j=l 

in which f.l is the barrier parameter. We can solve this problem by solving a se­
quence of unconstrained minimization problems of the form fi!.in v(b.B0 , p, f.l) 

f:lBo,p 

for a sequence of f.l that decrease monotonically to zero. The optimal solu-
tion depends on the selection of the regularization parameters that yields a 
regularized output. 

4.3 Notes about Regularization Parameters 

The purpose of imposing regularization is that the solutions given by the least 
squares liSp- sll 2 may be dominated by contributions from data errors and 
rounding errors . However, we expect to reduce the negative contributions 
while keeping the regularization at a reasonable size by selecting proper reg­
ularization parameters. In other words, we need to trade off between the fit 
to the given data and the variation in the regularized solution in a way that a 
reasonable balance is achieved. In addition, it is necessary to assign different 
regularization parameters to the different tissues and field inhomogeneity since 
they are independent quantities in our case. In addition , the decision also bears 
a certain clinical relevance. For example, many brain diseases are associated 
with patterns of atrophy that may be distinctive in the distribution of different 
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tissues [Coffey et al., 1992]. Therefore, volumetric data describing the distri­
bution of brain tissue types, such as cerebrospinal fluid (CSF), white matter 
(WM), grey matter (GM) have been widely used in studies of normal aging 
and disease process. CSF is a clear, colorless liquid that circulates around and 
within the central nervous system occupying cavities within the brain and the 
subarachnoid space around it. The WM, together with the GM also called 
the cortex, comprise the core of the cerebellum that coordinates our motor 
activity, posture, and balance. The curves of variation for the three different 
tissue types are distinct [Haacke et al., 1999], so a different regularization is 
desired. To gain a sense of the general case, please refer to the book by P.C. 
Hansen [P.C. Hansen, 2001]. In this thesis, we did not explore the optimal 
selection (combination) of the regularization parameters, because we believe 
that it is computationally demanding to conduct a brute force search for the 
parameters with a variable size in our problem involved, unless we find a better 
way to approach the problem of selecting the regularization parameters. 

4.4 Sparsity Pattern and Complexity Analysis 

Now we would like to explore the sparsity pattern of the function ( 4.8). If 
we apply Newton's method to solve it, we need to calculate the gradient as 
well as the Hessian of the function (4.8) in order to find out the Newton 
search direction, i.e., at least we need to store a vector size of 4m:n for the 
gradient, and a matrix size of 4mn x 4mn for the Hessian. For example, 
for a typical image size of 256 x 256, the Hessian matrix would be of size 
16 x 2564 c:::: 1.6 x 1011 ! Therefore, computing the search direction seems to be 
computationally challenging for Newton's method in this case. However, the 
Hessian matrix is very sparse. We will justify our statement by analyzing the 
sparsity pattern now. 

For a different set of regularization parameters, ( 4.8) comes as a dif­
ferent optimization problem, and for each iteration in solving the problem, 
the barrier parameter f-L is fixed. Therefore, we have the variable size for each 
iteration as follows: 

(PI(1,1), ... , ... ,p1(n,m), 
P2(1, 1), · · · , · · · , P2(n, m), 
P3(1, 1), .. · , .. · , P3(n, m), 
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.6.B0 (1 , 1), · · · , · · · , .6.Bo(n, m)), 

namely, 3mn + mn = 4mn variables. 

For the formulation ( 4.4), we calculate the first element of the gradient 
and find out that op~(~,l) depends on 

(p1(1, 1) , P2(1 , 1) , P3(1, 1) , .6.Bo(1 , 1) , Pl(1 , 2) , Pl(2, 1)) , 

i. e., a function of only 6 variables. So if we take the Hessian, the first row of 
which would consist of 4mn elements obtained by taking the derivative of the 
above function with respect to all variables. Thus , it is easy to see that there 
are only 6 nonzero entries in the first row, with all others being zeros. Based 
on the observation of the structure of the v function, we would be able to 
generalize the results that for the 3mn variables in the form of Pt(i,j), , a(v .) 

upt t,J 

contains at most eight variables, should they all exist: 

(Pl ( i, j) , P2( i, j), P3( i, j), .6.Bo( i, j), 

Pt(i- 1,j),pt(i + 1,j),pt(i, j- 1) ,pt(i,j + 1)), 

which means that for the first 3mn rows altogether , the Hessian matrix con­
tains at most 3mn x 8 = 24mn nonzeros. 

For the variables in the form of .6.B0 (i,j), M_g~(i ,j) contains at most 
eight variables, should they all exist: 

(Pl (i, j), P2(i, j), p3(i, j), .6.Bo(i, j), .6.Bo(i- 1, j), 

.6.Bo(i + 1,j ), .6.Bo(i,j -1),.6.B0 (i,j + 1)) , 

which means that for the last mn rows, the Hessian matrix contains at most 
mn x 8 nonzeros. Therefore, the Hessian matrix has at most 24mn + 8mn = 
32mn nonzero entries. In fact, the bound is not tight and the Hessian should 
be even sparser, considering the fact that at the boundary, each pixel has only 
two or three adjacent pixels (depending on whether that pixel is at the corner 
or not) instead of four. 

With similar analysis, we may calculate the number of nonzero entries 
for formulation (4.5). For the variables in that form of Pt(i,j) , , a(v .) contains 

upt t,J 

at most nine variables, should they all exist: 

(Pl (i, j), P2(i, j), P3(i, j), .6.Bo(i , j), Pt(i- 1, j), Pt(i + 1, j), 
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Pt(i, j- 1), Pt(i, j + 1), Pt(i + 1, j- 1)), 

and for the variables in that form of llBo(i,j), 8!:1:~(i,j) depends on at most 
nine variables, namely: 

(PI(i, j), P2(i, j), P3(i,j), LlBo(i,j), LlBo(i- 1, j), 
llB0 (i + 1, j), llB0 (i, j- 1), llB0 (i, j + 1), llBo(i + 1, j- 1)). 

Note that the gradient now depends on more variables, we expect to end up 
with a denser Hessian matrix. Indeed the Hessian matrix contains at most 
36m:n nonzero entries. 

For the formulation ( 4.6), any pixel is correlated with all its adjacent 
pixels, thus for the variables in that form of Pt(i,j), 8 

8(~ .) contains at most 
Pt t,J 

twelve variables, should they all exist: 

(PI (i, j), P2(i, j), p3(i, j), ilBo(i, j), Pt(i- 1, j), Pt(i + 1, j), Pt(i, j- 1), 

Pt ( i, j + 1) , Pt ( i + 1 , j + 1) , Pt ( i - 1, j - 1) , Pt ( i + 1, j - 1 ) , Pt ( i - 1 , j + 1)) , 

and for the variables in that form of llB0 ( i, j), 8!:1:~(i,j) depends on at most 
twelve variables: 

(PI(i, j), P2(i, j), P3(i, j), ilBo(i, j), ilB0(i- 1, j), 

llB0 (i + 1, j), llB0 (i, j- 1), llB0 (i, j + 1), llB0 (i + l,j + 1), 

llB0(i- 1, j- 1), llB0 (i + 1, j- 1), llBo(i- 1, j + 1), ). 

Therefore, the Hessian contains at most 48in:n nonzero entries. 

We also note that the sparsity pattern of the Hessian matrix varies 
with the ordering of the variables. If the variables are organized in the pixel­
clustered manner, i.e., in the form of 

PI(1, 1), P2(1, 1), P3(1, 1), ilB0 (1, 1), · · · , 

Pl(n, m), P2(n, m), p3(n, m), llBo(n, m), 

then the Hessian matrix exhibits an interesting sparsity pattern as shown in 
Figure 4.3 for all the three TV models. However, if we organize the variables 
in a sequential manner as follows: 

P1(1,1),··· ,p1(n,m), 

P2(1, 1), · · · , P2(n, m), 
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P3(1 , 1), · · · , P3(n, m) , 
llB0 (1 , 1) , · · · , llB0 (n , m) , 

then the Hessian matrix becomes an even sparser banded matrix as shown in 
Figure 4.4. 

Figure 4.3: The sparsity pattern corresponding to the formulation (4.4) ,(4 .5) , 
and ( 4.6) respectively, with variables organized in a pixel-clustered manner . 

F igure 4.4: The sparsity pattern corresponding to t he formulation (4 .4) ,(4.5) , 
and ( 4.6) respectively, with variables organized in a sequential manner. 
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4.5 Tissue Quantification and Field inhomo­
geneity Estimation with Total Variation 
Regularization 

In this section, we will show how to use total variation regularized model (see 
(TV)) to estimate tissue density and field inhomogeneity, by decomposing the 
original problem into two interleaved subproblems that can be solved by a 
coordinate search in a lower dimension subspace. More specifically, we would 
like to estimate the field inhomogeneity ~Bo as a first subproblem, then we 
continue to solve the tissue density estimation subproblem by fixing ~Eo as 
estimated. By solving the two subproblems, we are able to obtain both field 
inhomogeneity and tissue density estimates. 

4.5.1 The First Subproblem: Field Inhomogeneity Es­
timation 

The model for estimating the ~Eo is as follows: 

(4.9) 

in which S (see equation ( 4. 7)) depends on ~Bo at each pixel. We attempt 
to estimate ~Bo without knowing tissue density by minimizing a residual 
between the estimated signal and the simulated signal (in our case) with total 
variation regularization, because we expect that the estimated ~Bo would 
be such that the signal generated with this ~Bo is as close to the simulated 
signal as possible while the smooth property of the field inhomogeneity is still 
preserved. Without loss of generality, we assume that the field variation falls 
into a specific range. This is reasonable since the tissue variability is known, 
and main magnets have manufacturing tolerances. The range is determined 
in accordance with the ~Bo data simulated, i.e., our purpose is to estimate 
precisely the simulated ~B0 from our model based on this range. In the real 
experiment, we will derive ~Bo from the image data. But in order to validate 
the algorithm, we need to simulate data with known ~Bo values. 
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4.5.2 The Second Subproblem: Tissue Density Estima­
tion 

Next, we would like to estimate the tissue densities based on the informa­
tion obtained from estimating the field inhomogeneity. The subproblem for 
estimating the tissue density is as follows: 

mm 
p* 

(4 .10) 

Since we want to harness the field inhomogeneity estimate, we would assume 
that the t::.B0 term is already known. In our experiment, p* = [p1 , P2 , P3]T 
represents the concatenation of the three different tissue types, namely: 

P1 (PI(1,1),pl(1,2), ... , p1(2,1) , p1(2,2), ... , ... ,pl(15,15)) 

P2 (P2(1,1),p2(1,2), ... , p2(2,1),p2(2 , 2), ... , . .. , p2(15 , 15)) 

P3 (p3(1, 1) , P3(1 , 2) , · · · , P3(2 , 1) , P3(2 , 2) , · · · , · · · , P3(15 , 15)) . 

For the 15 x 15 image with three different tissue types that we simulated, there 
are 3 x 15 x 15 variables involved. This variable size is much bigger than that 
of the model for field inhomogeneity estimation. 
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Chapter 5 

Results and Numerical 
Simulation 

In this chapter, we present the results of our algorithms and numerical simula­
tion in two parts. The first part contains a brief description of our sequential, 
semi-definite, trust-region method used to solve the semi-definite optimization 
problem (NL-SDO), followed by a numerical simulation that demonstrates an 
application of our method in carotid artery tissue quantification. The sec­
ond part consists of numerical results for field inhomogeneity as well as tissue 
density estimation based on our total variation regularized model. 

5.1 Tissue Quantification with Homogeneous 
Field 

We solve the nonlinear semi-definite problem (NL-SDO) by solving a sequence 
of linear mixed semi-definite (SDO) and second order cone (SOCO) trust re­
gion subproblems. We chose to fix the values of T1 in the nonlinear problem 
because Tz appear in multiple places in the constraints, and we couldn't find a 
suitable change of coordinates to reduce the nonlinearity. We use the optimiza­
tion software SeDuMi [Sturm, 1999] to solve the subproblems. For detailed 
description of our algorithm and numerical results, please refer to Appendix 
A. 
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5.1.1 Numerical Phantom (Carotid Artery) 

In this section we demonstrate the applicability of our method by numerically 
simulating carotid artery tissue quantification. Intraluminal lipids, i.e., fat de­
posits inside arteries, are an indication of arterial disease. For example, some 
strokes are caused by the rupturing of large lipid deposits in the carotid artery, 
which carries blood from the heart to the brain. Figure 5.1 depicts a cross sec­
tion of an idealized carotid artery containing intraluminal lipid. Large arteries 
are essentially composed of a tube of muscle (which contracts in sympathy 
with the heart to increase blood flow), containing (flowing) blood and sur­
rounded by fat (and other) tissues. For simplicity, we ignore the surrounding 
tissue which is not fat. In Figure 5.1 , we also show a layer of lipid deposited 
uniformly on the inside of the vessel wall. The exact distribution of lipids is 
not important, since we have not chosen a resolution sufficient to determine 
the exact distribution. 

Numerical Results for Tissue Quantification 

Table 5.1 shows the relative performance of optimal pulse sequence designs 
using our method for the cases of 3, 4, and 6 experiments. In all cases, we 
use the sum of the fat components of all of the voxels marked with a I: in 
Figure 5.1 to estimate the total intraluminal lipids in this cross section. The 
estimated intraluminal lipid is close to the actual value in the simulations, for 
all numbers of experiments , but more importantly, the standard deviation of 
the lipid quantification decreases as a function of the number of experiments, 
and it does so faster than one would obtain by simply averaging the three 
experiments to reduce noise in the source images. The standard deviations 
in the simulation are also consistent with the deviations predicted by the 
objective function. 

Comparison with MR Spectroscopy 

Superimposed on the vessel structure is a 1mm grid representing the voxel 
size for SSFP tissue quantification, whereas the entire figure represents a sin­
gle voxel for MR spectroscopy. The SSFP pulse-sequence has higher spatial 
resolution than MR spectroscopy, and no matter how we line up this 1cm2 
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3-Ex 4-Ex 6-Ex Zero-noise 
Actual intraluminal lipid 5.4000 5.4000 5.4000 5.4000 

Estimated intraluminal lipid 5.4028 5.4016 5.3987 5.4000 
Standard deviation of the est. 0.0735 0.0650 0.0467 0.0000 

Expected std. deviation from ave. 0.0735 0.0637 0.0520 0.0000 
Expected std. deviation from obj. 0.0735 0.0610 0.0497 0.0000 

Table 5.1: Numerical results for tissue density estimation based on 1000 ex­
periments, measured in mm2

. 

voxel, we cannot separate the intraluminal lipids from the extraluminallipids. 
Furthermore, a spectroscopic examination would take on the order of minutes, 
whereas the individual SSFP images at this resolution would only require 
256x6ms, or about 1.5 seconds. 

Comparison with Dixon Method 

In order to demonstrate the advantage of generalizing the Dixon method by 
allowing arbitrary phase relationships between tissues (as expressed in the S 
matrix), we compare a 3 tissue-experiment with pulse sequence design variables 
optimized according to the model (see (NL-SDO)) with a 3-experiment result 
using conventional phase relationships: 

(5.1) 

To be comparable, we use SSFP sequences for the conventional Dixon case, 
with pulse-sequence design variables in the same ranges. We used a grid-search 
to find design values which result in an sc of the form (5.1), after an overall 
complex scaling, and we allow a variation of 5 per cent in each entry. We 
allowed the variation in each entry to make the grid search reasonable. To not 
disadvantage the conventional case, we also use the Moore-Penrose Pseudo­
Inverse for this case. The resulting three sets of pulse-sequence design variables 
are listed in Table 5.2. 

The advantage of optimal sequence design over the design based on the 
conventional Dixon phase relationships is clear in a numerical simulation of 
the carotid artery simulation described by Figure 5.1. Figure 5.2 shows gray-
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4.0 
1.0 
1.0 

f 
45.0 
21.0 
86.5 

T 
1.2 
4.9 
5.0 

Table 5.2: Pulse-sequence design variables for Dixon method, where a and f 
are in degrees and T is in ms. 

scale images reconstructed by applying the Moore-Penrose Pseudo-Inverse to 
simulated SSFP images, for different sequence designs, but with identical noise, 
to render noise effects comparable. The final row shows the results of the 
conventional Dixon phase relationships. The middle rows are the result of 
our algorithm, using only the grid search, and the grid search followed by the 
iterative method. The first row is the ideal case with zero noise. Note that 
without noise , all reconstruction methods and sequence designs produce the 
same results . 

5.2 Tissue Quantification with Total Variation 
Regularization in the Presence of Field In­
homogeneity 

5.2.1 The First Subproblem 

Simulation of Field Inhomogeneity 

The field inhomogeneity is caused by machine imperfections and tissue sus­
ceptibility of the object being imaged, 

flEa = b..Bo(magnet) + b..Bo(tissue) · 

The main magnetic field inhomogeneity b..Bo(magnet) is a slowly varying function 
in space, thereby approximately constant within a small region . By contrast , 
the susceptibility field inhomogeneity is rapidly varying, since the value of 
the gyromagnetic constant induces a frequency shift even for a few parts per 
million (ppm) static field variation, which in turn leads to significant distor­
tions in image geometry and intensity. In the case of tissues with different 
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susceptibility, we expect a strong field variation across the interface of two 
tissues. 

Numerically, we simulate both parts of the field inhomogeneity as dis­
cussed above. The contribution from the magnet can be considered random, 
since we have no control over the location of the imperfections. Hence, we ap­
proximate the field inhomogeneity from the magnet by a random polynomial in 
our experiment. On the other hand, since different tissue types with different 
susceptibility values exhibit distinct local field variations, and those values are 
empirically determined and (for some tissues) available in the literature, we 
would be able to obtain the local field variation for each tissue type. Because 
the field map is the restriction of a solution of Maxwell's equation [Zwillinger, 
1997], it is smooth. Therefore, we smooth the 6B0 component from the tissue 
susceptibility using 2-D Gaussian smoothing, which is a point-spread function 
with standard deviation O"o: 

1 - x2+¥2 
G(x, y) = --e 2"o 

27r0"2 0 

In our experiment, the simulated !J.B0 from the main magnet and from the 
tissue susceptibility are shown in Figure 5.3. 

Simulation of Collected Signal 

The 6B0 data is necessary for simulating the signal that would be produced 
by the MR machine, which is represented by s in our model. As explained 
earlier, our signal generation is measured on an individual pixel basis, which 
means that the signal emanating from each pixel depends only on tissue density 
distribution and field inhomogeneity at that pixel. Since we have simulated 
!J.B0 information for each pixel, we are able to simulate the signal s for the 
whole image. The simulated signal of the 15 x 15 image, viewed as a 225 pixel 
vector is shown in Figure 5.4: 

Grid Search 

Since ( 4.9) is not convex with respect to the !J.B0 (after examining the structure 
of S), it is possible that a local search algorithm (such as Newton's method) 
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converges to a local minimum other than the desired global one. Therefore, 
the choice of starting point is very important. We choose a starting point using 
pixel-wise grid search in 6.B0 for the least residual (the least squares part of 
( 4.9)). In our experiment , we discretize the possible range of 6.B0 into 1000 
equally spaced points for each pixel and search for the best one that yields 
the least residual between the generated signal and the simulated signal. We 
choose 1000-grid based on the fineness of the 6.B0 simulation. We expect to 
cover all the data by taking the discretization of this precision. We believe that 
this is necessary for the accuracy of the starting point by performing a grid 
search with the 1000 points. Suppose that the simulated 6.B0 is within the 
range [-0.1, 0.7], then we perform the grid search for a specific pixel for 1000 
times, see Figure 5.5. However, based on the computational consideration, we 
can also discretize the range up to some specified precision that would lead 
to a sparser grid. If the discrepancy is small, this would not undermine the 
accuracy while saving computation time, which is demonstrated in Figure 5.6. 
For an image of size 15 x 15, the grid search corresponding to 1000 and 500 
points means 15 x 15 x 1000 times and 15 x 15 x 500 times of computation, 
respectively. Since the contrived signal is close to the simulated signal up to 
added noise, we expect that the estimate 6.B0 and the real 6.B0 are close 
to each other as well. Taking the solution from the grid search as a starting 
point, the local minimum to which the local search algorithm converges is also 
a global minimum, since the starting point is already very close to the real 
solution. We have tested this idea numerically and found out that it works , 
see Figure 5. 7. 

However, even though this approach has many advantages, it is too 
expensive. For an image of typical size 256 x 256, it would be time consuming 
to perform the grid search for all pixels, since it requires 256 x 256 x 1000 ~ 
6.6 x 107 times of computation. Therefore, we consider sampling just a few of 
all the pixels for grid search. In our experiment, we first consider sampling one 
third of the 225 pixels , i.e. , 75 pixels or sampling every third pixel, which would 
compromise the quality of the estimation to some extent, but the computation 
would be significantly saved as well. In the meantime, we expect that the use 
of total variation regularization would recover the information on pixels not 
involved in the grid search, as is clear from the Figures 5.8, 5.9 and 5.10. 

Since the value of the residual can be further improved by incorporating 
the values of pixel estimate as measured by the residual , we do this by weight­
ing those pixels according to the relative quality of the grid search solution 
versus other pixels. The resulting estimate is shown in Figure 5.11. 
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Furthermore, we implement this by iteratively checking the pixels with 
the ten worst least squares pixels, i.e., the 10 largest residuals, to discover the 
mismatch due to the undersampling and do a grid-search for these pixels again, 
in order to correct the estimates that deviate too much from the simulated 
data. The correction is a heuristic which allows us to rectify the severely 
deviating pixel estimates, as can be seen in Figure 5.12. 

5.2.2 The Second Subproblem 

We employ a truncated nonlinear conjugate gradient (CG) algorithm (see 
[Berstekas, 1995]) with a bisection line search to solve this optimization prob­
lem. 

Starting Point 

The quality of the solution depends on the starting point. If a problem has 
many local minima, the algorithm may converge to a solution other than the 
desired global optimum. In our experiment, we have two choices of the start­
ing point: the one obtained from the Moore-Penrose pseudo-inverse estimation 
(tissue quantification problem with homogeneous field), or an arbitrary one. 
The former starting point is most likely to be close to our solution as demon­
strated, so it is a very good starting point. 

Thresholding 

Since our image has been constructed in such a way that for any pixel, if a 
specific tissue type exists, then we set 256 for that pixel as image intensity, 
otherwise 0, we want to set a threshold value for the post-processing of the 
estimation in order to improve the accuracy of the tissue density estimation. 
To correct the possible errors in the estimation, we can specify a range so 
that if the estimate of a tissue type is close to either 256 or 0 with respect to 
this range, then we assume that there is an error that leads to the deviation, 
which we need to rectify. We determined empirically that in this case 10 
CG iterations and a truncation range of [ -10, 10] gave good results for our 
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simulated problem. The difference between the real tissue density and the 
estimated tissue density is shown in Figure 5.13. 

Note that the thresholding strategy is successful in estimating the tissue 
densities in a few iterations, since there are just several misestimates in the 
tissue densities. 

Figure 5.1: The cross section of idealized carotid artery. 

50 



Master- Thesis - Z. Zheng - McMaster· - Computing and Softwa-re 

blood fat muscle 

a) 

b) 

c) 

d) 

Figure 5.2: Tissue density reconstruction simulation: each column represents a 
different tissue, as labelled; ideal (zero noise) tissue densities are shown in row 
a), densities reconstructed from data collected with the optimal pulse sequence 
design are in row b), row c) shows the densities from the pulse sequence found 
by grid search, and row d) illustrates the tissue density estimation based on 
Dixon method. All values are displayed using the same gray scale. 
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Figure 5.3: The simulated field inhomogeneity from the magnet and tissue 
susceptibility, respectively. 
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Figure 5.4: The simulated signal from the x andy components (channels) of 
the magnetization: 
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Figure 5.5: The curve represents the residual resulting from a grid search at a 
specific pixel, with the grid consisting of 1000 points. 
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Figure 5.6: The curve represents the residual resulting from a grid search at a 
specific pixel, with the grid consisting of 500 points. 
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Figure 5. 7: The two curves represent the original field inhomogeneity and the 
solution after the optimization with the starting point from the grid search. 
As it can be seen from the graph, they match each other very well, except at 
a few spots. 
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Figure 5.8: Partial grid search based estimation. 
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Figure 5.9: Partial grid search followed by total variation regularization esti­
mation. 
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Figure 5.10: The residual curve for, the starting point obtained by the partial 
grid search (left) , and for the starting point obtained by partial grid search 
followed by total variation regularization (right) . 
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Figure 5.11: Partially sampled pixels for grid search starting point without 
weighting the residuals. 
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F igure 5.12: Partially sampled pixels for grid search starting point with pixel 
residuals weights . 

F igure 5.13: The difference between the real t issue density and estimated tissue 
density for the tissue types: fat, blood, and muscle, respectively (from left to 
right) . 
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Chapter 6 

Conclusions and Future Work 

We have modelled SSFP-based tissue quantification, and optimized both the 
pulse design and density reconstruction phases of the problem to maximize the 
contrast-to-noise ratio in the resulting tissue densities. We have demonstrated 
numerically the improvement for carotid artery intraluminal lipid quantifica­
tion. 

This model-based approach is a significant innovation from previous 
methods, which opens many possible algorithm improvements. 

6.1 Pulse Design 

We have investigated tissue quantification as a generalization of Dixon's method. 
We have developed a method for optimal design of SSFP pulse sequences for 
MR tissue quantification. Our method requires the solution of a nonlinear, 
nonconvex semi-definite optimization problem. We have shown that general­
izing Dixon's method by removing assumptions about the best complex phase 
relationships between tissue types across multiple images results in dramati­
cally better tissue quantification. The resulting model represents what clin­
icians and researchers want most: the reduction of error in the calculated 
tissue quantities. The resulting optimization problem has semi-definite and 
other highly-nonlinear constraints. We have developed a method for solving it 
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that combines grid search and a sequential SDO trust-region algorithm. Since 
we do not obtain conventional Dixon phase relationships for optimizing pulse 
sequence design variables, we should suspect that conventional Dixon methods 
are not optimal. More significantly, we have provided computational evidence 
that our generalized Dixon method produces better results than conventional 
Dixon method(see Table 5.1). 

6.2 Regularized Tissue Density Estimation 

We have also studied the case where main magnetic field inhomogeneities exist , 
by incorporating field inhomogeneity into the tissue quantification process. 
We have estimated tissue density, as well as field inhomogeneity based on 
the total variation regularized model, in which we regularize the grid search 
solution in order to obtain a field inhomogeneity estimate. Then we estimate 
tissue density based on the ~Bo information. Even though the model is highly 
nonlinear in ~B0 , numerical results show that total variation regularization 
works well, and yields good results for both field inhomogeneity and tissue 
density estimation. 

6.3 Applications 

Identifying tissue distribution in-vivo has many applications in diagnostic 
imaging, treatment monitoring, and biological research. In many cases, in­
formation about tissue composition may be known from MR spectroscopy, 
but acquisition times are too long to apply spectroscopy in clinical diagnosis. 
Since MR does not involve ionizing radiation, it is attractive for population­
scale screening. After developing appropriate sequences using our optimization 
method, it may be cost-effective to do so, e.g. , for quantifying liver fat. In a 
similar way, the reduced imaging time requirements for SSFP-based quantifi­
cation, will make longitudinal studies feasible, e.g., brain development studies 
in infants based on white and gray matter quantification. We have clinical 
partners for one such application and are planning to conduct research in this 
direction. 
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6.4 Algorithm Development 

In most imaging environments, technicians are free to adjust pulse-sequence 
design variables to suit the subject (including the subjects ability to remain 
still). Although our sequential trust-region SDO-SOCO algorithm is very fast, 
the initial grid search in our algorithm, whose cost grows exponentially with 
the number of experiments, is simply too slow to be used in this setting. We 
are exploring several heuristics to find good starting points quickly, even if 
we are less likely to find the global optimum. We are optimistic about such 
heuristics, at least in the case of many experiments. We will also investigate 
including the variables T1 in the subproblems, as a possible way of increasing 
the basins of convergence (and thus reducing the cardinality of the grid). If 
these methods are not sufficient, we could always precompute good starting 
points for ranges of parameters to hide the cost of the grid search from the 
end user. 

We have formulated the parameter selection problem in terms of SSFP 
imaging. Since different sequence types are sensitive to different tissue prop­
erties, one would expect better quantification by looking at mixed imaging, 
using some SSFP images and some other imaging types, e.g., fast spin echo, 
spoiled sequences, gradient-reversed fast imaging with steady-state precession, 
inversion recovery sequences, see Haacke et al. [1999]. There is no fundamen­
tal obstacle to formulating mixed imaging parameter selection, but software 
complexity will increase by having a nonconvex mixed continuous and discrete 
optimization problem. 

In addition to main magnetic field inhomogeneity, we also need to take 
into account the so-called B1 field inhomogeneity, resulting from rf coil non­
uniformity (introduced in the design or manufacture of coils) and interactions 
between the generated field and the sample, which grow as the field strength 
grows. In this thesis, we have shown that by introducing TV-regularization, 
we are able to recover from B0 inhomogeneity, and we are confident that in the 
future the same technique can be applied to the estimation of, and correction 
for B1 inhomogeneity, which will be necessary in order to use these techniques 
at higher field, e.g. 3T. 

The most challenging area for future investigation is the adaptation of 
our method to situations in which parameters change between patients and 
within patients. Not all tissue parameters are accurately known, and some 
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are known to vary as a function of pH and hydration. For our methods to 
be applicable in these situations, we will have to develop integrated methods 
of estimating these parameters- perhaps from the source images as a stage in 
processing to precede quantification. 

Although these issues are challenging, we believe that they are all solv­
able by adapting known techniques, or by modifying the existing model in 
ways which change the size (and notational complexity) of the problem, but 
which do not change its character. Our success in modelling and numerically 
simulating and solving the tissue quantification problem, therefore, gives us 
confidence to begin development of a robust implementation. 
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Appendix A 

Algorithms 

A.l A Trust Region Algorithm for NL-SDO 

In this section, we explain our algorithm for solving (NL-SDO) where (T1 , ... , 

Tn) and (t 1 , ... , tm) are fixed parameters (see Section 2.2). We name the model 
with fixed T1 and tk values (NL-SDO), (see page 18). The values of the tissue 
parameters (t 1 , ... , tm) that are used in the algorithm for solving (NL-SDO), 
are representative values chosen from the literature, and the values of the 
design variables T1, l = 1, ... , n are obtained by a grid search that is explained 
in §A.l.2. 

Our aim is to solve the nonlinear semidefinite problem (NL-SDO) by 
solving a sequence of linear mixed semidefinite (SDO) and second order cone 
(SOCO) trust region subproblems. We chose to fix the values of T1 in the 
nonlinear problem because the Tz appear in multiple places in the constraints 
(within both real exponentials and sine and cosine) which come from the dy­
namical system (1.19), and we couldn't find a suitable change of coordinates 
(as we did in changing from angles to unit vectors) to reduce the nonlinearity. 
This decision was supported by subsequent visual exploration of the objective 
function, which strongly suggested that the objective is 'less convex' and has a 
larger Lipschitz constant in the Tz directions than the other variable directions. 
Rapid changes in the objective as a function of the variables Tz is consistent 
with the inverse relationship between the repeat time and the resonance fre­
quency. More investigation is required to understand the differences in roles of 
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the pulse sequence design variables, methods such as automatic differentiation 
are needed to overcome the technical difficulty in treating the T1 variables- and 
in dealing with many more degrees of freedom , and more complicated pulse 
design problems. Given the focus of the present paper on demonstrating the 
validity of the SDO formulation and gauging the difficulty of solution (on a 
clinically relevant , but relatively simple test problem), we felt it was reasonable 
to fix the values of Tt in the subproblems. 

In this section we first derive a linear mixed SDO and SOCO trust 
region subproblem (Plin), (see page 68) obtained by linearizing (NL-SDO) with 
respect to (ull , u21 , U31 , u 41) , l = 1, .. . , n , and then explain our sequential SDO 
trust region algorithm based on (PHn), (see page 68) . 

A.l.l Linearization and the SDO-Trust Region Sub­
problem 

It is known that mixed SDO and SOCO problems can be solved efficiently 
with interior-point methods (IPMs), (see Sturm [2002]). Therefore, for the 
eigenvalue problem (NL-SDO) we introduce SDO-SOCO subproblems defined 
on a trust region. The semidefinite eigenvalue constraint 

srs- )..J t 0 (A.l) 

is not fitting in the form of linear conic optimization, therefore we substitute 
out the quadratic term as X = sr S and replace constraint ( A.l) by the 
following two constraints 

X srs 
X- )..J >-- 0. 

The first constraint is nonlinear while the second one is a standard 
SDO constraint. By taking into consideration that Tt are fixed pamrneteTs, we 
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rewrite (NL-SDO) problem as follows 

max A 

s.t. X- AI t 0 

X= srs, 
A(ul, tk)Mss(ul, tk) = b(ul, tk), Vl, k 

ui1 + u~1 :::; 1, Vl 

u~1 + u~1 :::; 1, Vl, 

where l = 1, ... , n, and k = 1, ... , m. 

(P) 

Now, we develop a sequential semidefinite tTust-Tegion based algorithm 
for solving (NL-SDO). At each iteration we define a linear SDO-SOCO trust 
region subproblem by linearizing the nonlinear constraint around the current 
point and restrict the movement to a certain trust region. Our next step is to 
linearize with respect to (ull, u21, u31, u41), l = 1, ... , n the constraint 

(A.2) 

To simplify the notation, we write X= X(ub ... , un, t 1 , ... , tm)· Each 
element in matrix S corresponds to x or y component of a steady state magne­
tization that depends on tissue parameters tk and design variables u1, (see 2.9). 
Therefore, for the linearization of the nonlinear constraint (A.2) we explore 
the nonlinear constraints 

and remove them from the derived conic subproblem. It is easy to see that 

n 

Xpq = 2:: SlpSlq 
l=l 

n 

"L:(Mss,x(u~, tp)Mss,x(ul, tq) + Mss,y(ul, tp)Mss,y(ul, tq)), 
l=l 

and 
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where p,q = 1, ... ,m, j = 1, ... ,4, l = 1, ... ,n. In point (uz,tk) the values 
of steady state magnetization and the corresponding partial derivatives are 
computed from (A.3), and 

A( )
fJMss ,x(uz,tk) _ fJb(uz,tk) _ fJA(uz,tk)M ( ) 

Uz, tk >:l - >:l >:l( ) SS,x Uz, tk , UUjl UUjl U Uz j 
(A.6) 

respectively, where k = 1, ... , m, Mss,x(uz, tk) = (Mss(uz, tk)h, and Mss,y(uz, tk) 
= (Mss(u1, tk))2. Since A(u1, tk) is nonsingular (see page 8), we can always 
solve for Mss(uz, tk) and fJMss(uz, tk)/8u1z in (A.3) and (A.6). These val­
ues are then used for computing (A.4) and (A.5) that are explored further in 
linearization. 

Let hz = (hll, h2z, h3z, h4z, h5z) E R5 denote the displacement in Uz for 
l = 1, ... , n. Since in problem (P) parameters T1 are fixed, it follows that 
h5z = 0 for alll. Now, from (A.4)-(A.6) we derive the first order approximation 
of the nonlinear constraint (A.2), i.e., 

n 

X(ul + h1, ... , Un + hn , t1, ... , tm)p,q = Xpq + L hf\7 u 1Xpq· (A.7) 
l=l 

Finally, by using (A.7) we derive the following problem that is obtained by 
linearizing (P) around the point (u1 , ... , un), where 1! are fixed, and with 
respect to the trust region radius ~: 

max ,\ 

s.t. Xlin- .AI~ 0 

(Xiin)pq = X(ul + h1 , ... , Un + hn, t1, ... , tm)pq, Vp, q 

X~ 0 (Plin) 

(ull + h11) 2 + (u21 + h2z) 2 ~ 1, Vl 

(u31 + h3z) 2 + (u4l + h4z) 2 ~ 1, Vl 
n 4 

:L:::L::h7z~~2 , 
l=l j=l 

where p, q = 1, ... , m, l = 1, ... , n, and X(ul + h1, ... , Un + hn, t1, ... , 
tm)p,q is computed as in (A.7). Note that the trust region constraint is a sec­
ond order cone constraint , and therefore the optimization problem (Plin) is a 
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linear mixed SDO-SOCO problem. Note that we do not need to linearize the 
constraints (A.3) for S, because S can be effectively computed as a function 
of the variables u1• If S were only defined by the constraints, we would have 
to linearize those constraints and project the solution of the linear subproblem 
onto the constraint manifold. Direct computation reduces the size of the lin­
ear subproblem and eliminates the projection step, see Section ?? for further 
details. 

Problem (Piin) is the tmst region subproblem in the algorithm that 
is described in the following subsection. We use the optimization software 
SeDuMi Sturm [1999] for solving these subproblems. 

A.1.2 The Algorithm 

Here we describe our trust-region based algorithm that solves (P), (see page 
67). Problem (P) is a nonconvex problem and the algorithm converges to 
a local optimum. We ensure that the point computed by the algorithm is 
at least a local optimum of (P), by numerically verifying the Karush-Kuhn­
Tucker conditions at that point. The algorithm is iterative and maintains at 
each iteration a feasible current point and the solution of the linearized model 
in it. It also maintains the smallest eigenvalue of sr S where S is computed 
at the current point. 

Grid search to fix Tz and the Starting Point. Although we can start the al­
gorithm from any feasible point of (NL-SDO), (see page 18), a grid search 
is developed for finding a "good" initial point and to find good T1 values, 
that are fixed for the rest of the algorithm. Note that in model (NL-SDO), 
Tz, l = 1, ... , n are variables. We form a grid with respect to (az, fz, Tz), 
l = 1, ... , n, and compute S at each point of that grid. The "best" point 
obtained by the grid search, is the one with the property that the smallest 
eigenvalue of sr S is the largest, among smallest eigenvalues of the matrices 
ST S at different grid points. The values for Tz from the "best" grid point, are 
now fixed parameters in the algorithm for solving (NL-SDO). The values for 
(a1, fz), l = 1, ... , n at the "best" grid point, are the starting values of the 
algorithm. Our numerical experiments justify this choice of starting point (see 
Section ??). 

Note that the quality of the "best" initial point in the described way, 
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depends on the density of the grid . Namely, the denser the grid, the "better" 
starting point is computed. However, the cost of the grid search increases 
exponentially with the number of the experiments n in the model and/or the 
grid density. 

We denote now the initial point obtained from the grid search, by 
(u~, .. . , u~ , t 1 , . . . , tm), and the smallest eigenvalue of (S0 )rso by >.0 . Note 
that the input values rp are fixed during the optimization algorithm. We 
specify the initial trust region radius, e.g., 6.0 := 1. 

General step. To describe a general step of the algorithm, we assume to have 
a current feasible point (u1, .. . , Un , t1, . .. , tm)· Let the value of the objective 
function in the current point be :\, which is the smallest eigenvalue of sr S . 
The minimization of (Ptin) , (see page 68) around the current point with respect 
to the corresponding trust region radius 6. gives a new candidate point ( u 1 + 
hi , ... , Un +h~), and the corresponding value of the objective function).*. Note 
that the new candidate point will satisfy (A.3) due to the construction of the 
algorithm, i.e., by solving (A.3) for Mss(u1, tk) at each iterate. Therefore the 
feasibility of each iterate is ensured. More precisely, the steps in the algorithm 
are 

h*-----> u + h*-----> (from(A.3)) M(u + h*, t)-----> (from (Ptin)) ).* . 

We denote by ~* the smallest eigenvalue of sr S, where S is computed at the 
new candidate point. Then we compute the trust region ratio (! based on the 
information of the new candidate point, i.e., 

). - ).* 

(!= >. - >.* ' (A.8) 

Note that the closer the value of(! is to one , the better approximation by the 
linearized model is realized. If a sufficient reduction at the objective function 
is obtained at the candidate point , then that point is accepted as the next 
iterate and the trust region radius is expanded or kept the same, as specified 
by (A.9). A negative or very small (! indicates a poor approximation, and 
therefore the point is rejected and the trust region radius is reduced. More 
precisely, we update the trust region radius 6. , (see e.g., Berstekas [1995]; Conn 
et al. [2000]) , in the following way: 

~· = { 

cl6., if (! < r1 
c26. , if (! > r2 
6. , otherwise. 

(A.9) 
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In our computations we set c1 = 0.25, c2 = 2 and r1 = 0.2, r2 = 0.95. The 
choice of these parameters is made after extensive testing and benchmarking. 

Stopping criteria. Several conditions are used for terminating the algorithm. 
When the trust region becomes very small (e.g., ~ 10~8 ), or too large (e.g., 
> 4~0 ) and there is no significant improvement in the objective, we stop the 
algorithm. Another criterion is when after a pre-specified number of iterations 
there is no improvement with respect to the objective. We stop the algorithm 
if the total number of iterations reaches 25. 

Finally, we present our sequential SDO-trust-region algorithm for solv­
ing problem (P), by the pseudo code in Figure A.1.2. 
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Algorithm I 

Input: 
t issue parameters: tk = (Tlk, T2k, K,k), k = 1, . .. , m; 

repetitive time parameters: T? , l = 1, ... , n ; 

initial design variables: ( afJ, !?) , l = 1, ... , n; 

compute: 'U? = (cos( af), sin( a?), cos(!?), sin(!? ), TP), l = 1, . .. , n; 

initial t rust region radius: 6. 0 = 1; 
input parameters: r-1 = 0.25, r-2 = 2, c1 = 0.2, c2 = 0.95; 

begin 
6. f-- 6. 0. 

' 
'Ut ;- 'Uf , l = 1, ... , n; 

while one of the stopping criteria is satisfied (see page 71) 
solve (Ptin), (see page 68) ~ optimal value).*, hi , l = 1, ... , m; 
new candidate point: ui, = 'ILl+ hi, l = 1, ... , n; 
compute p from (A.8); 
if {} < 7'] 

reduce 6.; 
else 

update 6. according to (A.9) 
Ut f-- 'ILl , l = 1, ... , n; 

end 
end 
return (a1, f1) , l = 1, ... , n and>.* ; 

end 

Figure A.1: Sequential, trust-region, second-order conic algorithm. 
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