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ABSTRACT 

The fire weather index (FWI), useful as a measure of forest fire danger, is calcu­

lated from precipitation and other weather variables. In the present environmental 

study, precipitation, fuel moisture codes, and fire behavior indices were available for 

a reference site and 4 higher elevation sites around Smithers, British Columbia. The 

objective of the study was to determine whether the use of local precipitation would 

lead to a different FWI than obtained from precipitation at the reference site. 

The features of the series of daily FWI values which needed to be taken into ac­

count were: peaks following dry periods, serial correlation, and heteroscedasticity. 

Two types of models were developed to characterize the record as a smooth compo­

nent, for the upward and downward movements of the index, and a component of 

correlated error terms. The first type was a parametric Fourier series in a context of 

a generalized linear model (GLS) that allowed for serial correlation and heteroscedas­

ticity. The second form was a smoothing cubic spline with a bootstrap procedure 

for estimation of standard errors and confidence bands. The question, of whether 

FWI on a particular day differed between a higher elevation station and the reference 

station, was addressed by adding a station effect to the GLS model and by graphical 

comparison of the smooth curves with confidence bands for the spline method. 

The Model-3 for the combined station effect is not able to capture the sharpness 

of the peak and found insignificant while cubic spline smoothing curves fitted to the 

bootstrap behave well to capture peaks and troughs in the index but it encounter 

some difficulties for few lower index values. 
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Chapter 1 

Introduction 

1.1 Background 

Precipitation plays an important role to reduce forest fire danger rating and it is 

one of the key ingredient to calculate daily severity rating that base on fire weather 

index (FWI). It is an index that represent the fire intensity of spreading fire as energy 

output rate per unit length of fire front (Van Wagner 1987) and based on precipitation 

and other weather variables known as fuel moisture codes and fire behavior indices. 

Precipitation has a major influence on all human activities. It deposits on surfaces 

from air either in liquid or solid form. Dew, fog, frost, rain and snow are the different 

forms of precipitation. It is a natural unlimited gift; one of the basic needs of human 

life and of other living creatures. 

On the other hand fire is a threat to lives, homes and businesses. Forest fire 

is a very dangerous form of fire because it may take lives, houses, businesses and 

future sources of income. Fire is one of nature's primary carbon-cycling mechanisms 

but human activity interferes with this, causing some 60% of forest fires (Higgins & 

Ramsey 1992). Canada has 420 million hectares, or 10% of the world's forest area, 

(Canadian Forest Service 1999), and annually experiences an average of9,500 wildland 
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fires that burn more than 3 million hectares of forest (Canadian Forest Service 2005a). 

Canada is a participant in several international initiatives including the Kyoto 

Protocol to the UN Framework Convention on Climate Change, the International 

Convention on Biological Diversity, and the Montreal Process (Working Group on 

Criteria and Indicators for the Conservation and Sustainable Management of Tem­

perate and Boreal Forests). These agreements commit Canada to reducing anthro­

pogenic carbon emissions, maintaining biodiversity, and practicing sustainable forest 

management, goals which cannot be met without a thorough understanding of the 

impacts of forest fires and of the role of climate change on forest fires (Canadian 

Forest Service 2001). 

Extensive resources are needed to extinguish a forest fire, even when it is small. 

Thus management and forest-fire fighters need the right information to be able to 

issue fire-danger ratings which will save human lives and precious resources. One 

such forest fire danger rating is the Daily Severity Rating (DSR) which is calculated 

from the fire weather index (FWI) on a daily basis. 

1.2 The Fire Weather Index 

Research on forest fire danger rating was begun in Canada by J.G. Wright in 1925. 

In 1970 the first Canadian forest fire weather index (FWI) was issued (Van Wagner 

& Pickett 1985, pp 1). Since then, revised versions were issued in 1976 and 1984, and 

several improvements have been made. Currently the Van Wagner & Pickett (1985) 

FORTRAN program is used to calculate the Fire Weather Index. 
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1.2.1 FWI Components 

The FWI represents the fire intensity of the spreading fire (Figure 1.1) and is useful 

as a general measure of forest fire danger in Canada. FWI is a mixture of the fuel 

moisture content and fire behavior indices, with wind playing a key role in the cal­

culations. FWI should be used for a single daily value only (Van Wagner & Pickett 

1985). 

The standard definitions for FWI components are as follows (Canadian Forest 

Service 2005b, Van Wagner 1987, Leathwick & Briggs 2001). 

Fine Fuel Moisture Code (FFMC) represents the moisture content of litter 

and other cured fine fuels. It is an indicator of the relative ease of ignition and 

flammability of fine fuel. 

Duff Moisture Code (DMC) represents the average moisture content of loosely 

compacted organic layers of moderate depth. This gives an indication of fuel con­

sumption in moderate duff layers and medium-size woody material. 

Drought Code (DC) represents a deep layer of compact organic matter. This 

is useful indicator of seasonal drought effects on forest fuels and the amount of smol­

dering in deep duff layers and large logs. 

Initial Spread Index {lSI) is a combination of wind and the FFMC that rep­

resents rate of spread alone without the influence of variable quantities of fuel. 

Buildup Index (BUI) is a combination of DMC and DC that represents the 

total amount of fuel available for the fire. 

The Daily Severity Rating (DSR) is a computed from the FWI and reflects 

the expected efforts required for fire suppression. It is calculated as 

DSR = 0.0272 (FWI)L77 
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1.2.2 Calculation of FWI 

The measurements needed for the moisture content codes are daily rain, temperature, 

wind and humidity all of ideally be recorded at noon. Wind also plays a key role in the 

fire behavior indices as shown in Figure 1.1. Rain and temperature are recorded to the 

first decimal place, while relative humidity and wind speed are recorded as a whole 

number. The Van Wagner & Pickett (1985) FORTRAN program, used to calculate 

FWI and components, has some standard starting values for the moisture content 

codes; these are 85 for FFMC, 6 for DMC, and 15 for DC. Criteria for adjusting 

starting values for the moisture codes and for the first recording day for meteorological 

variables, dependent primarily upon snow cover, are discussed by Turner & Lawson 

(1978). 

1.3 Objective of The Project 

The main objective of the project was to determine whether the use of the local 

precipitation amount would lead to a different fire weather index (FWI) than obtained 

if the precipitation at a nearby weather station is used. We have a precipitation data 

set for a reference station, and for 4 sites at higher elevations. Throughout this report, 

higher elevation stations are abbreviated as ES with a suffix that shows the height 

above sea level. The reference station is abbreviated as RS532. 

The following chapters are organized as follows. In Chapter 2, we describe the 

nature of the data, discuss generalized least square and fit a model in a context of 

a Fourier series, that allow serial correlation and heteroscedasticity in the model. In 

Chapter 3, we fit cubic spline smooth curve to the given data set and describe a 

bootstrap residuals method. In Chapter 4, we extend the idea of chapters 2 and 3 to 

4 



two stations, and performed a comparison of regression curves based on both and on 

fitted cubic spline smooth curves using the bootstrap method. In Chapter 5, we have 

concluding remarks and future research proposals . 
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Chapter 2 

Data Description and Models 

2.1 Data Description 

The data set consists of weather measurements and calculated variables for locations 

in the area around Smithers, British Columbia, part of the region of responsibility 

of the North West Fire Centre, Protection Branch, British Columbia Ministry of 

Forests and Range. The reference site is the weather station at the Smithers Airport, 

BC., 532 m meter above sea level. The 4 other sites are at elevations of 855, 1017, 

1166, and 1302 m above sea level and receive precipitation differs in amount from the 

reference site. The measurements were taken between May 1 and September 15, 2003, 

during the fire season for the high elevation sites. The four weather measurements, 

temperature, relative humidity, wind and 24-hour precipitation (1 PM to 1 PM), were 

made at the reference site, but only precipitation was measured at the high elevation 

sites, with the other weather measurements extrapolated on the basis of elevation 

using the elevation grid. The temperature adjustment is based on the United States 

standard Lapse Rate of -6.5°C /km, that is, for every kilometer gain in elevation, the 

temperature is assumed to drop by 6.5°C (Canadian Forest Service 2005d). The three 

fuel moisture codes, two fire behavior indices, and the FWI, described in Chapter 1, 
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have been calculated using the Van Wagner & Pickett (1985) FORTRAN program. 

The precipitation, fuel moisture codes, fire behavior indices and FWI for the five sites 

were supplied by Bradley Martin of the North West Fire Centre. 

Usually April 1 to September 30 is known as the fire season because this is the 

period in which fires occur in most areas of the country. However data collection 

depends on when the snow melts and when spring starts at a particular site (Thrner 

& Lawson 1978). In the present data set, data collection started May 1, 2003, at the 

reference site (day 1) and ended September 15 (day 138). At the higher elevations 

day 1 was May 9, May 21, May 19, and June 10 for the 855 m, 1017 m, 1166 m, and 

1302 m stations respectively. 

The total accumulated precipitation (Table 2.1) at RS532 is 219.8 mm and which 

is lower than the other stations: ES855 (247.14 mm), ES1017 (222.9 mm), ES1166 

(298.3 mm), and ES1302 (224.5 mm). Thus higher elevation stations have lower FWI 

compared to the reference site (Table 2.2). The FWI scatter plots Figure 2.1(b) 

for RS532 (more plots can be seen in the Appendix A (A.3)) and Figure 2.1(c) for 

precipitation RS532 and FWI RS532 when they plotted against day t. There is 

upward and downward movement of FWI in Figure 2.1 (c) which is decreases when 

precipitation has been high and increases when there is no precipitation and a pair plot 

between Reference site FWI and precipitation shows exponential relationship (Figure 

2.1(d)). Figure 2.2 shows precipitation, that is the main factor in FWI because all fuel 

moisture codes, namely FFMC, DMC, and DC that also shown there heavily depend 

on it along with wind, humidity and temperature. Figure 2.3 shows fire behavior 

indices and FWI structure. It is also important to note that, if precipitation was not 

measured due to the late snow melting at a particular site, then we will not have 
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Table 2.1: Summary Statistics, Reference and higher elevation sites Precipitation 

II I RS532 ES855 ES1017 ES1166 ES1302 II 
Sum 219.8 247.14 222.9 298.3 224.5 
Mean 1.59 1.9 1.89 2.49 2.29 
Sdev 4.45 4.97 3.98 5.96 4.95 
Q1 0.0 0.0 0.0 0.0 0.0 
Q3 1.3 1.95 1.58 2.5 1.58 
Min 0.0 0.0 0.0 0.0 0.0 
Max 31.4 37.3 23.3 42.4 26.6 

Table 2.2: Summary Statistics, Reference and higher elevation sites FWI 

II I RS532 ES855 ES1017 ES1166 ES1302 II 
Sum 1040.3 622.4 435.6 317.0 178.1 
Mean 7.5 4.8 3.7 2.6 1.8 
Sdev 7.54 5.61 4.81 4.12 2.56 
Q1 0.82 0.37 0.11 0.1 0.02 
Q3 12.14 8.1 6.14 3.9 2.54 
Min 0.0 0.0 0.0 0.0 0.0 
Max 35.81 26.92 22.06 21.01 10.76 

values for all 6-derived components. 

2.2 Modelling Approaches 

The precipitation at the reference site is normally used to provide the precipitation 

values to calculate an index for higher elevation sites. The moisture codes and fire 

behavior indices are calculated from deterministic equations, taking as input the 

weather measurements and thus it is reasonable to model all of the variables by 

including a random component. In addition to serial correlation that may be present 
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in the data, the calculations include equations that assume cumulative effects. Figures 

2.2 and 2.3 lead us to a model that accounts for regular peaks and troughs in the 

component that describe change in level over time and dependency on past values. 

This finally leads us to a conceptual linear model that best describes the smooth and 

rough components in the model 

(2.2.1) 

where Yt is a response variable on day t at a particular station site, Bt is a smooth 

component and Rt is a rough component. We obtained smooth curves in two different 

ways and accounted serial correlation in the rough component. 

Since the interest was in FWI, and the intermediate calculations are complex, it 

was decided to consider only FWI in the reminder. 

2.2.1 Linear Regression Models 

In Model-l, we adopt multiple linear regression model that is the extension of the 

simple linear regression model, in which we have one dependent and p independent 

variables, p 2:: 2, 
p 

Y = f3o + L /3iXi + E (2.2.2) 

A Fourier series model is a function of sine and cosine waves added together. Sine 

and cosine waves have amplitude, frequency and phase angle for the horizontal phase 

shift. The multiple linear regression model in Fourier form can be written as 

(2.2.3) 

where t is the day of measurement and T is total number of days, in the series, 

s = 1, 2, 3, · · · , k and t = 1, 2, · · · , T; T ~ 138 (according to the station). 
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If we take 

X 
. st

2 1s = smT 7r 

st 
X2s = cosT 2n 

then Equation 2.2.3 can be rewritten in the multiple linear regression form 

k 

yt = f3o + L [f31sX1s + f32sX2s] + Et 

s=1 

(2.2.4) 

(2.2.5) 

(2.2.6) 

where Yt is the response variable on day t, Xis is the regressor Fourier variable for 

the ith level and Et is the residual on day t. In a linear regression model it is common 

to assume that 

which means errors are independently and identically normally distributed with mean 

zero and constant variance a 2 . 

2.2.2 Serial Correlation 

In Model-2, we account serial correlation that is most common when we are consider-

ing a data set that is changing over time and depending on its past value (Buonaccorsi 

2002, Greene 1993). In such data sets, residuals are correlated across time and give 

rise to autocorrelation. Hence we can not assume the residuals are identically and 

independently distributed. 

Here we will focus only on the first order autoregressive AR(1) model, where, the 

error Et is correlated with its own previous term Et_1. 

Et = PEt-1 + Ut, -1 < p < 1 (2.2.7) 
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where 

iid 
Ut "' N(O, a~), \:1 t = 1, 2, · · · , T 

0, if t =I k. 

Equation 2.2. 7 is the first order autoregressive model AR(1) because Et is linearly 

related its own past value Et-1 for order one. In the same fashion we may define the 

AR( r) model. 
r 

Et = :~::)PkEt-k) + Ut (2.2.8) 
k=1 

Since, -1 < p < 1 and p ---+ 0 as k ---+ oo, thus limk-HxlPk ---+ 0. Therefore equation 

2.2. 7 and 2.2.8 will yield 

E(Et) - E(pEt-1 + Ut) 

E(Et) 0 

Var(Et) - p2Var(Et-1) +a~ 

a~/(1- p2
) 

Cov(Et, Et-1) - E(Et, Et-1) 

pVar(Et-1) 
0"2 

u 
p1 2 -p 

Corr( Et, Et-1) 
Cov( Et, Et-d 

JVar( Et)Var( Et-1) 
p 

Thus, autocorrelation for the rth order autoregressive model will be 

(2.2.9) 
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and the covariance matrix Cov(t:) = a~n is 

1 p p2 PT-1 

p 1 p PT-2 
a2 

u p2 
1 - p2 

p 1 PT-3 

PT-1 PT-2 1 

2.2.3 Heteroscedasticity 

In Model-3, we test heterosecdasticity in the model. It arises when residuals are 

not constant. For a data set that is collected over time at different locations, het-

eroscedasticity is common (Buonaccorsi 2002, Greene 1993). This leads us higher 

standard error in the residuals. If errors are pairwise uncorrelated then the general­

ized least square estimator ~ is 

{3 

0 

Var(t:t) 

W1 0 0 0 

0 w2 0 0 

0 

0 0 0 wr 

Thus n-1 is diagonal matrix whose ith element is 1/wt. Hence the GLS estimator~ 

is now the weighted generalized least square estimator 

and weights, Wt = 1/wt, t = 1, 2, · · · , T. 
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2.3 Data Analysis 

We are using a multiple linear regression model to analyze the data since scatter plots 

in Figure 2.3 suggests that we may model the data using linear combination of sine 

and cosine waves. It also suggests that we need to accommodate peaks and troughs 

by smoothing the model as we stated earlier in Equation 2.2.1. 

In this Chapter we fit multiple linear regression model to the FWI, and we will 

consider smoothing in the next chapter. We fit a linear model to FWI for different 

values of s. However, due to many zeros in FWI we are not able to fit a model for 

two stations separately for the value of s < 5. Since algorithm of the program did 

not allow us to converge the model for all stations so we are not able to fit the same 

model for all stations except two stations, RS532 and ES1017, where we able to fit 

the model for s = 5. Hence in this chapter we discuss the results for s = 5. We have 

presented the results for s = 2, and 4 only for RS532 in the Appendix A (A.l). 

We used the equations 2.2.4 and 2.2.5 to calculate sine and cosine terms and a 

restricted maximum likelihood method in generalized least square (gls) function, by 

default, to estimate the parameters in Splus. It also allow correlated error structure 

and heteroscedasticity (Splus Development Core Team. 2002) in the model. 

Table 2.3 below shows the result of a linear model after using the gls function for 

s = 5. It is obvious from Table 2.3 the alternate sin or cos parameters are significant 

at 5% level except for sin8 and cos8 terms. The plot of the standardized residuals 

against the fitted values which determines the adequacy of the distribution for the 

fitted model is shown in Figure 2.4 and it indicates non consistency of variance. It 

also revel a diagonal shape that can be observed here and other residuals plots that 

is occurring due to minimum or zero FWI in the model (Figure 2.1(b)). 
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Also, serial dependence has been considered since FWI is calculated in a way that 

assumes a cumulative effect. To check this we need to calculate serial correlation in 

residuals. Figure 2.5 also shows autocorrelation existing in the model, and suggest an 

autoregressive progressive process of order 1 AR(l), may be good to model the serial 

correlation in the residuals also see Figure 2.6 for partial autocorrelation function plot 

for response variable with 5% asymptotic boundary. 

Table 2.3: FWI RS532 Estimated Parameters in Model-l 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.532875 0.4965967 15.16900 <0.0001 
sin2t7r /T 4.203463 0.7012940 5.99387 <0.0001 
cos2t7r/T 0.718448 0.7023373 1.02294 0.3083 
sin4t7r /T 0.274679 0.7012931 0.39167 0.6960 
cos4t7r/T -3.883595 0.7023379 -5.52953 <0.0001 
sin6t1r /T 0.547333 0.7016092 0.78011 0.4368 
cos6t1r/T 2.620609 0.7027078 3.72930 0.0003 
sin8t1r /T 0.899074 0.7012931 1.28202 0.2022 
cos8t1rjT -0.824473 0.7023379 -1.17390 0.2426 
sinl01r /T 1.898425 0.7012940 2.70703 0.0077 
coslOt1rjT -2.162301 0.7023374 -3.07872 0.0025 

ARl Model 

We can use the first lag correlation value in our model, obtained from Table 2.8 1 

column two, and that is 0.55. Once we model the data with correlation structure 

AR1(0.55) (Table 2.4) we do not have any significant parameter at 5% level except 

the intercept. Autocorrelation is still same for this model see Model-2 in table 2.8. 

Moreover, it increase residual standard error from 5.83 to 7.34, and yielded almost 

1Where Model-l represent 018, Model-2 is GLS with ARl and Model-3 is GLS with ARl and 
heteroscedasticity 
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same lag values. Plot of residuals (Figure 2. 7) shows very little improvement and 

still has extra variation in residuals in same form. Therefore the overall model with 

AR1(.55) does not show better fit. 

Table 2.4: FWI RS532 Estimated Parameters with AR1 in Model-2 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.560747 1.563000 4.837331 <0.0001 
sin2t7r /T 4.045576 2.216941 1.824847 0.0704 
cos2t7r /T 0.808086 2.156049 0.374800 0.7084 
sin4t7r /T 0.168843 2.152466 0.078442 0.9376 
cos4t7r/T -3.816051 2.096331 -1.820348 0.0711 
sin6t1r /T 0.444791 2.057649 0.216164 0.8292 
cos6t1r/T 2.733858 2.008477 1.361160 0.1759 
sin8t1r /T 0.735058 1.941644 0.378575 0.7056 
cos8t1r/T -0.800277 1.900142 -0.421167 0.6743 
sinl0t1r /T 1.740789 1.819437 0.956773 0.3405 
cosl0t1r/T -2.118384 1.784663 -1.186994 0.2374 

Heteroscedastic Model 

Since overall model with AR1(0.55) does not show any improvement that lead us to 

further investigate the model. The Residual plot also shows that the variance is not 

constant across the predicted values (Figure 2.4 and 2. 7) since it is not spread equally. 

This indicate heterogeneity in the residuals and to accommodate this in the model, we 

can use the weights option 2 in our gls function with the AR(1) correlation structure. 

Hence we introduce weighted generalized least square to account heteroscedasticity 

in our model. 
2We used varPower function in Splus that represent a power variance covariate s2(v) = lvi(Zxt); 

where v denote the variance co-variate and s2(v) is a variance function evaluated at v and tis the 
variance function coefficient (Splus Development Core Team. 2002, Variance Function Classes) 
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Figure 2.6: FWI RS532 Partial ACF 

Table 2.5: FWI RS532 Correlation Matrix with AR1 in Model-2 

II (Intr) sin27r cos27r sin47r cos47r sn61r cos61r sin81r cos81r sinl01r I/ 
-.001 
-.042 -.001 
- .002 .000 -.003 
-.039 -.001 -.058 -.002 
-.003 .000 - .004 .001 -.004 
-.039 -.001 -.055 -.002 -.053 -.004 
-.003 .001 - .005 .000 -.004 .002 -.004 
-.035 - .001 -.052 - .002 -.049 -.004 -.047 -.004 
-.004 .003 -.005 .002 -.005 .002 -.005 .003 -.005 
-.034 - .001 -.047 - .002 - .046 -.003 -.045 -.004 -.041 -.005 
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Figure 2.7: FWI RS532 Residual plot after AR(l) in Model-2 

After fitting model-3 there is much improvement (Table 2.6). The alternate sin 

or cos parmeters are significant at 5% level including the sinS parameter that was 

not significant before. The correlation matrix in (Table 2. 7) also shows noticeable 

variance-covariance structure exists in the model as compared to the Table 2.5, where 

we introduced serial correlation. After introducing heteroscedasticity in the model 

the residual standard error also went down to 1.60 as compared to the 5.83 and 7.34, 

respectively. The smaller residual standard error also shows that heteroscedasticity 

was existing in the previous model before. This also demonstrates the earlier state­

ment , that due to unequal variances in residuals , we get the large standard error if we 

use ordinary least squares. Residual plot (Figure 2.9) has also improved a lot relative 

to the previous two Figures 2.4 and 2.7. But still we see some departure from the 

ideal band of constant width. We also plotted residuals against day t (Figure 2.10) . 

Autocorrelation also went down from 0.55 to 0.45 (Table 2.8) and autocorrelation 

plot (Figure 2.11) shows much smaller values at higher lags as compare to the previous 
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Figure 2.8: FWI RS532 ACF after fitting AR(l) in Model-2 

two models. Above 3-Models are not nested but Table 2.9 shows a likelihood ratio 

test t hat clearly indicate the fitted Model-3 with ARl and heteroscedasticity is good 

as compare to the other models since it has minimum AIC and BIC criteria. These 

criteria provide alternatives to measure the goodness of fit and show that the model 

fits adequately. 
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Table 2.6: FWI RS532 Parameters with AR1 and Heteroscedasticity in Model-3 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.836735 1.094279 7.161549 <0.0001 
sin2t-rr /T 5.347672 1.668822 3.204459 0.0017 
cos2t7r/T 0.679831 1.091037 0.623105 0.5343 
sin4t7r/T 0.261597 1.434091 0.182413 0.8555 
cos4t7r/T -4.650954 1.321436 -3.519621 0.0006 
sin6t1r /T 0.750334 1.337100 0.561165 0.5757 
cos6t1r/T 3.595814 1.362416 2.639292 0.0093 
sin8t1r /T 2.664587 1.113808 2.392321 0.0182 
cos8t1r /T -1.462143 1.046406 -1.397300 0.1648 
sin10t7r /T -0.304928 0.946292 -0.322235 0.7478 
cos10t1r/T -3.598100 0.942107 -3.819207 0.0002 

Table 2.7: FWI RS532 Corr. Matrix with AR1 and Heteroscedasticity in Model-3 

II II (Intr) sin27r cos27r sin47r cos47r sn61r cos61r sin81r cos81r sin101r II 
sin27r .541 
cos27r .041 -.002 
sin47r -.013 -.234 .542 
cos47r -.553 -.366 .446 .264 
sin61r .061 -.236 .410 .422 .412 
cos61r .418 .192 -.588 -.430 -.352 -.080 
sin81r .359 .460 -.138 -.498 .019 .092 .478 
cos81r -.170 .035 -.446 -.290 -.526 -.473 .197 -.069 
sin107r -.028 -.004 .039 -.008 -.121 -.494 .200 .183 .263 
cos107r -.594 -.248 .044 .168 .176 -.292 -.623 -.369 .430 .076 
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Table 2.8: FWI RS532, Numerical Comparison of ACF in all 3-fitted Models 

lag Model-l Model-2 Model-3 
1 0.54529072 0.546483705 0.444429303 
2 0.31377058 0.315071073 0.270875067 
3 0.03135022 0.033027 4 79 0.006298133 
4 -0.18385005 -0.181978260 -0.135265531 
5 -0. 19442393 -0.192623008 -0.073049219 

Table 2.9: FWI RS532, Comparison of 3-fitted Models 

Model df AIC BIC logLik Test L.Ratio p-value 
1 12 879.6567 913.7870 -427.8284 
2 13 817.1797 854.1541 -395.5898 1 vs 2 64.47704 < .0001 
3 14 754.7417 794.5603 -363.3708 2 vs 3 64.43801 < .0001 
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2.4 Linear Regression Model For ES1017 

In this section we will discuss the same models again but in context of ES1017 instead 

of RS532. Station ES1017 which is located 1017 m above sea level has fewer days of 

temperature measurement so T = 107 days rather than T = 138 days as it was for 

RS532. 

Table 2.10 shows the simple GLS model output where most parameters are signif­

icant at 5% level for the alternate sin or cos term except sin10 and coslO, while sin4 

and cos4 terms are highly significant. Residual standard error is 3.63 with 96 degrees 

of freedom. The Residual plot in Figure 2.12 shows almost the same behavior as we 

saw in Figure 2.4. 

Table 2.10: FWI ES1017 Estimated Parameters in Model-l 

II Parameters I Value SE t-value p-value II 
(Intercept) 3.688989 0.3346565 11.02321 <0.0001 
sin2t7r /T 1.399292 0.4732481 2.95678 0.0038 
cos2t7r/T -0.000242 0.4735387 -0.00051 0.9996 
sin4t7r /T 3.004787 0.4732481 6.34928 <0.0001 
cos4t7r/T -2.272202 0.4735392 -4.79834 <0.0001 
sin6t1r /T -1.487080 0.4732483 -3.14228 0.0022 
cos6t1r/T -0.455121 0.4735388 -0.96111 0.3387 
sin8t1r /T -0.495113 0.4732481 -1.04620 0.2978 
cos8t1r/T -1.719303 0.4735392 -3.63075 0.0004 
sinl0t1r/T -0.039286 0.4732483 -0.08301 0.9340 
cosl0t1r/T -0.378188 0.4735388 -0.79864 0.4263 
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ARl Model 

To investigate if there is any serial correlation among the residuals, the autocorrelation 

(ACF) was calculated (Table 2.15)3 and found to be 0.58, in our model. The results 

in Table 2.11 indicate we do not have any significant parameters in the model at 

5% except intercept. There is some variance-covariance structure (Table 2.12) but 

residual plot still shows much variability existing in residual structure. The correlation 

parameter p = 0.82 and residual standard error went up from 3.63 to 5.41. Residual 

plot in Figure 2.14 almost have the same pattern as we already observed in Figure 

2.7. 

Table 2.11: FWI ES1017 Estimated Parameters with AR1 in Model-2 

II Parameters I Value SE t-value p-value II 
(Intercept) 3.823929 1.543617 2.477253 0.0148 
sin2t7l' /T 1.302706 2.163324 0.602178 0.5483 
cos2t7r /T 0.195894 2.061242 0.095037 0.9245 
sin4t7r /T 2.940860 1.977327 1.487291 0.1399 
cos4t7r /T -2.145342 1.898234 -1.130178 0.2609 
sin6t7r /T -1.494387 1.751442 -0.853232 0.3954 
cos6t7r /T -0.247382 1.694571 -0.145985 0.8842 
sin8t7r /T -0.609918 1.535628 -0.397179 0.6920 
cos8t7r /T -1.632949 1.495666 -1.091787 0.2774 
sin10t7l' /T -0.116436 1.348797 -0.086326 0.9314 
cos10t7l' /T -0.280997 1.320549 -0.212788 0.8319 

3Where Model-l represent OLS, Model-2 is GLS with ARl and Model-3 is GLS with ARl and 
heteroscedasticity 
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Table 2.12: FWI ES1017 Corr. Matrix with AR1 in Model-2 

II (Intr) sin27r cos27r sin47r cos47r sn61r cos61r sin81r cos81r sin107r II 
-.002 
-.073 
-.003 
-.065 
-.004 
-.057 
- .005 
-. 049 
-.006 
-.043 

-.002 
.002 -.005 

-.002 -.092 -.005 
.003 -.006 .005 -.006 

- .002 - .080 - .004 -.072 -.005 
.003 -.007 .005 -.007 .007 -.006 
- .002 -.069 -.004 -.063 -.005 -.055 
.004 -.008 .006 -.008 .006 -.007 
- .002 -.061 -.004 -.054 -.005 -.048 
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Heteroscedastic Model 

To take care the unequal variability in the residuals, we introduce heteroscedasticity 

into the model and the results (Table 2.13) show most of the parameters are significant 

at 5% level for alternate sin or cos term, while sin4 and cos4 both are significant and 

sin2 and cos2 are not significant at all. 

It also shows the improvement in correlation structure since p decreases from 0.82 

, to 0.58. The correlation matrix (Table 2.14) also shows noticeable variance-covariance 

structure exists in the model as compared to the Table 2.12. After introducing het-

eroscedasticity in the model, the residual standard error went down to 1.53, as com-

pared to the 3.63 and 5.41 respectively. The Residual plot (Figure2.15) also shows 

much improvement compared to the previous two plots (Figure 2.14 and 2.12). We 

also plotted residuals against day t (Figure 2.16). Autocorrelation is reduces 0.58 to 

0.44 after introducing heteroscedasticity in the model (Table 2.15). AIC and BIC 

criteria also went down as well (Table 2.16). 

2.5 Comparison of models fitted for Stations RS532 
and ES1017 

For the comparison purpose we plotted FWI RS532 and fitted RS532 from the Model-3 

(for Reference site) and FWI ES1017 and Fitted ES1017 from the Model-3 (for higher 

elevation site). The fitted models (Figure 2.17) visually look different and the peaks 

occur differ by a constant amount the same time. This difference is wider in early 

June and later is quite parallel (we will discuss this in detail in Chapter 5). 
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Table 2.13: FWI ES1017 Parameters with AR1 and Heteroscedasticity in Model-3 

II Parameters I Value SE t-value p-value II 
(Intercept) 3.655636 0.681831 5.361501 <0.0001 
sin2t7r/T 1.496847 1.114650 1.342885 0.1822 
cos2t7r/T 0.093911 0.708892 0.132476 0.8949 
sin4t7r/T 3.168546 0.877197 3.612125 0.0005 
cos4t7r/T -2.572754 0.840282 -3.061775 0.0028 
sin6t1r /T -1.864934 0.806323 -2.312885 0.0226 
cos6t1r/T -0.246723 0.779342 -0.316578 0.7522 
sin8t1r /T -0.990304 0.489388 -2.023556 0.0455 
cos8t1rjT -0.471778 0.576847 -0.817858 0.4153 
sin10t1r/T 1.020615 0.532595 1.916307 0.0580 
cos10t7r/T 0.091238 0.499090 0.182809 0.8553 

Table 2.14: FWI ES1017 Corr. Matrix with AR1 and Heteroscedasticity in Model-3 

II II (Intr) sin27r cos27r sin47r cos47r sn61r cos61r sin81r cos81r sin101r II 
sin27r .332 
cos27r .027 .568 
sin47r .755 .183 -.007 
cos47r -.643 -.537 -.003 -.299 
sin61r -.478 -.252 .445 -.145 .576 
cos61r -.125 -.733 -.650 -.112 .090 .001 
sin81r -.481 -.372 -.120 -.402 .698 .237 .109 
cos81r -.173 .389 -.132 -.455 -.410 -.242 -.004 -.116 
sin107r .289 -.161 -.370 -.115 -.357 -.445 .597 .110 .148 
cos101r .161 .343 -.199 .209 -.300 -.639 -.320 -.022 .186 -.074 
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Table 2.15: FWI ES1017, Numerical Comparison of ACF in all 3-fitted Models 

lag Model-l Model-2 Model-3 
1 0.57589567 0.58169448 0.43916021 
2 0.36300164 0.37133562 0.19186230 
3 0.06644572 0.07717076 -0.09600589 
4 -0.22610675 -0.21328322 -0.26062806 
5 -0.34656631 -0.33351974 -0.20443906 

Table 2.16: FWI ES1017 Comparison of 3-fitted Models 

Model df AIC BIC logLik Test L.Ratio p-value 
1 12 649.4018 681.4757 -312.7009 
2 13 586.2290 620.9758 -280.1145 1 vs 2 65.17274 < .0001 
3 14 503.5539 540.9735 -237.7770 2 vs 3 84.67508 <.0001 

Residuals plot from a generalized least squares fit to the 
F.WI ES101 7 when S.-5 usin a oower variance fur.~ction 
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Chapter 3 

Smoothing the Data and Bootstrap 

3.1 Cubic Spline Smoothing and Bootstrap 

In this chapter we will discuss cubic spline smoothing, and smooth the given data 

set for the base station FWI and other higher elevation station using the cubic spline 

smoothing. We will use the bootstrap residuals to estimate the standard error of 

the smoothed values as described by Efron & Tibshirani (1998). Finally, we will 

graphically compare the spline fit to the data and the bootstrap smoothed results to 

see how well the bootstrap is performing. 

3.2 Introduction 

In non-parametric regression smoothing is a technique widely used in statistical anal­

ysis, because it can capture the existing structure in the data where we don't have a 

parametric model. There are many smoothers which a data analyst may use to find 

the existing structure in the data set including Kernel, Loess, Spline, Cubic spline, 

and Supersmoother. The idea of smoothing came from a naval draftsman who used a 

mechanical device called a spline to get a smooth interpolating curve by positioning 

the rod with a groove and weights (called ducks) (Schumaker 1993). 
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3.2.1 Cubic Spline Smoothing 

Consider a general linear regression model for given paired observations (yi, xi) 

where i = 1, 2, · · · , n; ei rv N(O, a 2 ) and x E [a, b]. 

Our main goal is to fit a smooth curve to f within the interval [a, b], where a and 

b are known as the boundary initial and end points. In the given interval we need to 

divide the data in small segments where the segments are joined by the knots, and it 

must be continuous at the knots to get the smoothness. Thus knots play an important 

role in the flexibility of the curve; more knots produce a more flexible curve. We can 

place more knots where data are too noisy or we need more smoothness but each knot 

should at least have one data point. 

A spline is a function of piecewise polynomial of degree m with m - 1 continuous 

derivative. A cubic spline (m = 3) has a continuous second derivative in the intervals 

[a, b] and it produce the curve without too much rapid local variation. To quantify 

the local variation the integrated squared second derivative is most common to use, 

that is, the roughness penalty. Thus a cubic smoothing spline arises as the function 

f that minimizes the penalized residuals sum of square (PRSS) 

P RSS = t[Yi- j(xi)]2 +.X 1b [j" (x)] 2dx 
i=l a 

(3.2.1) 

On the right of the equation (3.2.1), the first part is the goodness of fit for a linear 

regression equation and second is a roughness penalty due to smoothness. Equation 

3.2.1 yields a cubic spline, i.e., a piecewise cubic polynomial with continuous second 

derivative. 
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3.2.2 Smoothing Parameter 

The parameter ..\ is a smoothing parameter and is a trade off between the residual 

sum of square and the roughness penalty since it determine the influence of that. As 

..\ -+ 0, PRSS approaches a curve that interpolates the data and when ..\ -+ oo, then 

roughness becomes less important and we will get a linear regression fit. Therefore 

choosing ..\ is most important. There are certain methods to choose ..\. One is cross 

validation proposed by Wahba (1975) and other is generalized cross validation criteria 

proposed by Craven & Wahba (1979). For the given data set we will use a cubic 

smoothing spline function in Splus with the spar argument (i.e. is equivalent to ..\) 

and it yield a 3rd degree piecewise polynomial. 

3.2.3 Graphical Output 

Below we will see some graphical output from smoothing the data using the cubic 

spline function and plotting data and spline. In the first two graphs we plotted the 

given data set for FWI RS532 and ES855 and the corresponding from the spline 

function in Splus. This function will fit a cubic spline to the given data set with 

default smoothing parameter or we may specify its value. In Figure 3.1 and 3.2, we 

observe clearly that if we choose smoothing parameter ..\ = 0 (i.e. spar in Splus), 

then the interpolated curve will pass through the largest number of points and yield 

a smooth curve that provides a better fit compared to df= 5, where the curve is 

too smooth for our purposes. We also observe that all.knots=T and cross validation 

( cv=T) produce the same result as obtained with ..\ = 0. 
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3.3 Bootstrap 

Bootstrap is a method to resample statistic. It is a data-based simulation method 

used to estimate standard error of an estimator and provide confidence intervals which 

could be difficult to do in the usual way. 

Its main purpose to get better results by using repeated sampling with replacement 

either the data set, or the residuals of the fitted model. We will use the last technique 

in a non-parmetric setting also known as Efron & Tibshirani (1998) approach. 

3.3.1 Bootstrapping from Residuals 

We will adopt a non-parametric bootstrap technique without any assumption about 

of the population and will use residuals from the fitted cubic spline. Because data 

are collected over time, we will also account for serial correlation p, of lag1, in the 

residuals and will use this value to get the data to bootstrap, in same fashion as 

proposed by Efron & Tibshirani (1998, page 95-96). The only difference is that 

instead using the slope parameter f], we are accounting for serial correlation p. 

3.3.2 Algorithm 

We have a given data set FWI RS532 (Yt) for the base station and to that we fit a cubic 

smoothing spline (Yt)· From the fitted cubic smoothing spline we will get the residuals 

Zt (Step 1), and account the serial correlation p for lag1 in the residuals Zt· Thus we 

would use Step 1 and the estimated p from residuals to get the estimated error at 

time t in Step 2. Now we have T -1 estimated error observations where T = 138. We 

can construct the bootstrap sample from this by drawing random sample of size T- 1 

with replacement, where each observation has equal chance 1/(T -1) to occur and E; 
denote the bootstrap data set. It is very necessary that we sample with replacement, 

39 



otherwise we get the same sample every time. 

From the c; we construct z; in Step 4 and y; in Step 6. In constructing z; we 

need to treat z1 as a fixed constant in Step 3, where z1 is the residual on day t = 1 

obtained from (Step 1), and calculate z; recursively. By using Step 4 and smoothed 

values of FWI RS532 (i.e. f)) we can construct a new y* vector (Step 6) 

• Step 1: Zt = Yt- Yt 

• Step 2: Et = Zt- p * Zt-1; where t = 2, 3, · · · , 138 

• Step 3: 

• Step 4: Z* -pAz* +"'* . • - • 1 L. 1 • J J- J- ,z• where i = 1, 2, · · · , 137 and j = 3, 4 · · · , 138 

• Step 5: 

• Step 6: where j = 2, 3, · · · , 138 

So first value will be same for all sets of generated y*. To the set of y;, t = 

1, 2, · · · , 138, the spline was fitted in the same way as done for the observed data and 

the fitted values are denoted by ?};, t = 1, 2, · · · , 138. These steps are repeated B 

times, for a total of B = 999 bootstrap replicates and fit a cubic smoothing spline to 

the bootstrap data (for codes please see Appendix A (A.2)). 

3.3.3 Bootstrap Percentile Confidence Interval 

To construct a confidence band for a= 0.05 around the spline fitted to the data, the 

2.5% and 97.5% percentiles were obtained from y; at each t, where t = 1, 2, · · · , 138. 

We can arrange y* in ascending order ?}; , y~, · · · , Y1 or use a prebuilt quantile function 

to get order the bootstrap replicates. We can choose lower = (B + 1)(a/2) for 25th 

(i.e. 2.5%) percentile and upper = (B + 1)(1- a/2) for 975th (i.e. 97.5%) percentile 

if B = 999. 

We can plot different curves and numerical results to see desired results. For 
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example we can plot the FWI RS532 data and fitted cubic spline lines that we got 

through y* and construct a 95% confidence band around this. 

3.3.4 Numerical Output 

We chooses B = 999 which means we replicate the data 999 times and every time 

we should get a different set of observations due to sampling with replacement. Our 

numerical output the tables below verifies this. For illustrative purposes, we provide 

some numerical results for first few bootstrap data sets, including some initial rows 

and final rows. 

Table 3.1 shows some of the data for FWI RS532 (i.e. y1) and Fitted spline FWI 

RS532 (i.e. y). It also show residuals (zt) after fitting the cubic spline to base station, 

and in the next column we will see estimated residuals ( t::'t) after introducing the serial 

correlation (p). Lower (2.5%) and upper (97.5%) percentile confidence interval are 

also given. 

Table 3.2 gives t::(10x 6) matrix when the bootstrap was performed 999 times. It 

includes the first 6 bootstraps and 10 initial rows only. Table 3.3 gives z(10x 6) matrix 

and Table 3.4 gives Y(wxB) matrix. Table 3.5 gives fJ(wxB) fitted cubic spline values 

which we got after replicating the data 999 times and every time fitted a cubic spline to 

y* and stored this fitted spline value in the fJ* matrix. The tables show the successive 

calculations from bootstrap sample of t::*. 

In Table 3.6 we have the corresponding Bootstrap residuals matrix, where these 

residuals are the differences, y; - g; . 
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Table 3.1: FWI RS532 (y1), fitted Cubic Spline (Y), residuals (zt), estimated residuals 
(€) after p, and 95% CI 

t y1 y Zt i 2.5% 97.5% 
1 10.33682 8.16603883 2.170784642 6.35261383 9.630347 
2 2.247748 5.41383588 -3.166087874 -0.718530038 4.89955279 8.356558 
3 5.509882 4.90422323 0.605658308 -0.032801206 4.34192216 7.906800 
4 6.038941 6.32505377 -0.286112454 0.414064 712 5.16104129 8.711987 
5 9.299535 8.76580584 0.533728725 -0.680173249 7.18271929 10.567550 

136 0.3749921 0.60753954 -0.23254 7 423 0.036242156 -0.89042743 2.542698 
137 0.7642292 0.63072610 0.133503066 0.039297033 -1.16726651 3.070985 
138 0.6682403 0.68477970 -0.01653944 7 -2.258176332 -2.80202343 3.977151 

Table 3.2: Residuals (Eiox6) with replacement after 999 Bootstrap, few shown 

1 2 3 4 5 6 
1 1.0256534 -5.33382331 -0.6151219 0.05660906 -0.2540998 -0.36173567 
2 0.1434458 2.24186180 -0.6151219 -2.38220678 -2.2641185 -1.25463287 
3 -1.1996549 8.63200905 1.6553581 2.24186180 -1.5812923 -1.28459072 
4 0.5096793 2.24186180 -0.6151219 -2.79657424 -0.6058410 1.13091295 
5 1.7019371 -0.61338190 -0.8881789 3.92367747 -0.2204663 -1.01637 450 
6 -0.6151219 -1.31122515 0.4976243 -0.56979689 0.3063347 -4.15912695 
7 -2.2581763 1.91392239 0.3475198 0.30872285 -0.0922907 -0.56979689 
8 4.2829354 -2.26411846 -1.2845907 -1.28459072 1.0127787 1.02565341 
9 3.1268148 4.37281956 -1.0284353 -2.25817633 1.1309130 1.36216827 
10 1.7019371 -0.10236572 -5.3338233 1.72108229 -5.7762719 -2.78191878 

Table 3.3: zrox 6 after p, 999 Bootstrap sample drawn from residuals Et, few shown 

1 2 3 4 5 6 
1 -3.2901183 -2.0462971 -1.16201136 -0.8206017 -0.87166939 -6.4510304 
2 2.4017164 -4.4779776 -0.12912088 0.3998185 0.11046822 2.3363509 
3 -0.8610509 4.1147365 -0.56111822 -2.5494273 -2.31032082 -2.2317911 
4 -0.8395280 6.9110568 1.89004085 3.3081373 -0.61502095 -0.3511638 
5 0.8608045 -0.6486268 -1.40561481 5.6719982 -0.07466163 -1.5507964 
7 -1.1763653 -1.1681451 0.62321918 -2.9420601 0.33756128 -3.5105200 
8 -1.7661719 2.4024888 0.08686386 1.5392136 -0.2334 727 4 0.8984472 
9 5.0216213 -3.2689382 -1.32092076 -1.9283532 1.11042662 0.6498858 
10 1.0265660 5.7400241 -0.47597188 -1.4516596 0.66648681 1.0903593 
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Table 3.4: Estimated (Yiox6 ) from 999 Bootstrap samples from residuals, few shown 

1 2 3 4 5 6 
1 2.123718 3.3675388 4.251825 4.593234 4.542166 -1.037195 
2 7.305940 0.4262456 4.775102 5.304042 5.014691 7.240574 
3 5.464003 10.4397902 5.763936 3.775626 4.014733 4.093263 
4 7.926278 15.6768626 10.655847 12.073943 8.150785 8.414642 
5 12.244553 10.7351218 9.978134 7.203575 11.035135 12.661533 
6 14.861464 13.1774516 13.219258 19.191549 13.444889 11.968755 
7 14.003325 14.0115448 15.802909 12.237630 15.517251 11.669170 
8 14.686253 18.8549134 16.539289 17.991638 16.218952 17.350872 
9 22.108960 13.8184005 15.766418 15.158986 18.197765 17.737225 
10 17.710329 22.4237875 16.207791 15.232104 17.350250 17.774123 

Table 3.5: Fitted bootstrap spline (Yi~x 6 ) from 999 Bootstrap samples, few shown 

1 2 3 4 5 6 
1 6.037521 4.803254 6.289922 6.464023 6.202321 4.781956 
2 5.654236 5.486733 5.881534 6.320520 5.292440 4.562187 
3 6.633709 8.416233 6.796527 7.166708 5.839470 5.920580 
4 8.717613 11.051750 8.689491 8.980012 7.839509 8.156692 
5 11.179485 12.870703 11.049572 11.246369 10.570846 10.519331 
6 13.360581 13.987803 13.339226 13.379905 13.223263 12.446831 
7 15.341175 15.049507 15.079600 14.999015 15.350318 14.186373 
8 17.182915 16.494968 15.855159 15.845540 16.573105 15.915826 
9 18.133927 17.402385 15.444960 15.950856 16.419089 16.726948 
10 17.498637 16.799467 13.896367 15.408636 14.675509 15.825918 

Table 3.6: Fitted bootstrap spline Residuals from 999 Bootstrap samples, few shown 
1 2 3 4 5 6 

1 -2.2051208 0.37489428 -1.0458966 -2.065536817 -2.3198750 2.1856724 
2 -1.3455165 0.12918641 -0.3208171 -0.194894152 -2.7348450 -5.7143734 
3 -0.1547040 -3.17978136 -4.7226003 -1.224723891 3.0889688 2.4559358 
4 -0.4599867 1.69680174 3.1294803 -2.927866507 -1.5619209 0.5644404 
5 -2.7108927 1.33803071 -2.3351549 5.193137603 -0.8928071 -1.2161194 
6 8.4699105 -0.17216746 5.7054511 -1.306865672 0.2507089 -0.8560967 
7 -6.9684242 1.97483707 -4.9493058 1.434270900 2.2397253 3.3260521 
8 3.8300563 -0.01244875 3.1129506 -3.500593406 1.0010052 -0.7344299 
9 0.9794580 -1.58189628 -1.9785704 2.389824648 -3.5960286 -2.0033394 
10 -3.7006952 3.05723789 4.6753500 -0.009150813 4.5388554 3.4331919 
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3.3.5 Visual Output 

To better show the bootstrap outputs after replicating it 999 times we plot some 

graphs. In Figure 3.3 we plot f) as a data point and the 999 lines, obtained from 

bootstrap fitted cubic spline (f)*). These fitted lines are quite smooth and able to 

capture all peaks obtained when the original data was smoothed. We also observe 

that some lines become negative where we have FWI zero or close to zero. Two visible 

upper and lower lines show the 95% confidence intervals. We will notice that lower 

confidence band also becomes negative where we have zero FWI. But overall 95% 

percentile confidence band appears reasonable, since almost all curves are inside the 

lower (2.5%) and upper (97.5%) confidence bound. 

Because the individual resultant curves can not be distinguished due to 999 smooth 

lines, in Figure 3.4 we plot only first 10 curves to give better visualization for smooth 

curves. Almost all curves are lying within the 95% confidence band except one at 

initial and mid point. 

How well have we done in the bootstrap? This is a question which we can better 

answer by comparing the curves from the given FWI RS532 data and fitted cubic 

spline data (iJ). Next two figures will illustrate this. Figure 3.5 we plotted the RS532 

fitted cubic spline data f) and the lower (2.5%) and upper (97.5%) confidence band 

from 999 bootstrap sample. Here all smoothed values of the given base station data 

set are lying inside the 95% confidence band. 

In the next, Figure 3.6, we added the data for FWI RS532 and smoothed lines f) 

to curves plotted in Figure 3.5. Here the green line shows the RS532 cubic smooth 

spline. 
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3.3.6 Bootstrap Residuals 

No analysis in statistics can be completed without the residuals discussion. Next four 

graphs will show the fitted spline and bootstrap residuals. 

In Figure 3. 7 we will see bootstrap spline residuals those we got through bootstrap 

cubic spline data. These residual graph we got after fitting cubic spline residuals y* 
when bootstrap data replicated 999 times. The dense thickest cloud mostly oscillating 

between [ -5, 5], also we will see very visible cloud below -5 and above 5. 

In next Figure 3.8 we can expect the same thing only difference is that here we 

plot only first 10 bootstrap residuals, now it is more visible that most of the residuals 

are oscillating between [-5, 5] and few residuals point lying below -5 and above 5. 

What do these residual plots tell us? For that we will compare them to the given 

data set residuals Zt and € when we fitted a cubic spline to FWI RS532 data. The 

Figure 3.9 and 3.10 show the cubic spline residual (zt) and estimated residual € after 

introducing serial correlation p that we got from fitted cubic spline residuals. Here 

once again we will observe most of the residuals are oscillating between [ -5, 5] except 

very few below -5 and above 5. 

Thus simple comparison between figure 3.8 and 3.9 show very clear that our boot­

strap residuals plots are quite different to the original residuals plot in range values. 

We can clearly observe heteroscedastic structure of residuals from spline fitted to 

observed data (Figure 3.9 and 3.10) which is why we needed to account heteroscedas­

ticity in our generalized least squares model. If we do graphical comparison among 

the observed data set residuals (3.9 and 3.10) and bootstrap residuals (Figure 3.7 

and 3.8) we will find that the bootstrap residuals are lying between [-10, 10] while 

original data residuals or oscillating between [-5, 10]. 
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Figure 3.6: FWI RS532 and fitted cubic spline when 95% percent ile calculated from 
999 Bootstrap cubic spline smooth residuals 

Residuals after fitting 999 bootstrap cubic smoothing spline 
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Figure 3. 7: Residuals from 999 Bootstrap 
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Residuals after fitting 999 bootstrap cubic smoothing 
spline (first 10 residuals plotted) 
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Figure 3.8: Residual from 999 Bootstrap (first 10 plotted) 
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Estimated error (et) after Introducing rho In a fitted 
cubic smoothing spline residuals for RS532 
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Figure 3.10: Fitted RS532 Cubic spline smoothing Residuals (it) after introducing p 
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Chapter 4 

Station Effect 

4.1 Combined Model to address the main question 

In this Chapter we will fit a multiple linear regression model in the form of GLS to 

investigate the main question. To better accommodate peaks and troughs in FWI 

data set we will use the combined spline model and later for the same stations we 

will use the bootstrap residuals to estimate standard error of smoothed values. 

Our main interest is to determine whether the use of the local precipitation amount 

would lead to a different fire weather index (FWI) than obtained if the precipitation 

at a nearby weather station is used. For that, we need to compare the combined 

model of the base station and one of the higher elevation stations. The comparison 

for the higher elevation station, ES855, is reported here. The first 8 observations from 

the base station were omitted because the data collection could not start before May 

09, 2003 at ES855. 

The data table we designed here, contained the 130 observations from RS532, 

starting May 09, 2003, first, and same number for ES855 following the RS532 obser­

vations. Thus t = 1, the first observation for RS532, occurs in row 1, and for ES855, 

in row 131. In the construction of the sin and cos terms, T = 130 for both stations. 
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We are fitting the sin and cos terms to FWI RS532 and ES855 with k = 5. Therefore 

the model under consideration is 

(4.1.1) 

where s = 1, 2, · · · , k; t = 1, 2, · · · , T; T = 130, and dummy variable ai represent 

ith station effect 
for RS532 

for ES855 

In equation 4.1.1 sine and cosine terms are calculated using the same method as 

we used in Chapter 2. The model has the 11-parameters, as Chapter 2, plus one 

additional parameter ai to measure the station effect. 

4.1.1 Successive Models for the Combined Stations 

To carry out the goal of our main interest we built a combined multiple linear re-

gression model (Equation 4.1.1) and fitted the model to the combined stations (FWI 

RS532 and ES855) fork= 5, but, due to so many zeros in FWI and algorithm con­

vergence problem in gls() function for higher elevation station sites we are not able to 

fit the combined model for the same stations (FWI RS532 and ES1017) again, as we 

fitted in Chapter 2 for individual stations. To test the significance of the combined 

stations (FWI RS532 and ES855) model we can run the ordinary least square (OLS). 

After running OLS, it is evident from Table 4.1 that the alternate sin or cos 

parameters are significant at the 5% level except sin8 and cos8. The stations effect 

a is also highly significant and the residual standard error is 5.57. The residual plot 

(Figure 4.1) shows that the variance is not constant and shows te same diagonal shape 

as we alredy discussed (Chapter 2 Section 2.3). 
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Table 4. 1: Estimated Parameters in a Combined 018 Model 

II Parameters I Value SE t-value p-value II 
Intercept 4.744695 0.4906943 9.669351 < .0001 

a 2.648324 0.6909449 3.832903 0.0002 
sin2tn / T 3.277964 0.4885718 6.709279 <.0001 
cos2tn/T 1.111684 0.4885718 2.275374 0.0237 
sin4tn /T 1.333359 0.4885718 2.729095 0.0068 
cos4tn / T -3.535216 0.4979115 -7.100089 <.0001 
sin6tn /T -1.135803 0.4885718 -2 .324742 0.0209 
cos6tn / T 0.467266 0.4978260 0.938613 0.3488 
sin8tn / T 0.079537 0.4885718 0.162794 0.8708 
cos8tn / T -0.047402 0.5005359 -0.094702 0.9246 
sin10tn / T 1.890030 0.4885718 3.868479 0.0001 
cos10tn/T 0.127245 0.4885718 0.260444 0.7947 

Fitted Combined model when 5=5 for FWI RS532 and ES855 
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Figure 4.1: Fitted combined model 

53 



ARl Model 

The lag 1 autocorrelation estimated from the residuals of the ordinary least squares 

model was 0.60. Using this in the generalized least squares (GLS) analysis (Table 4.2) 

results in only 3 terms being significant, that of the intercept, sin2 and cos4. The 

correlation parameter ¢ increases to 0.68 and the residual standard error increases 

from 5.57 to 6.10. Moreover, the residual plot (Figure 4.2) has almost the same 

variability, and still indicates that we need to account for heteroscedasticity in the 

model. The station effect, parameter a also increased (Table 4.2) as compare to the 

previous one, but more pronounced is the increase in the standard error. 

Table 4.2: Estimated Parameters in a Combined GLS Model with AR1 

II Parameters I Value SE t-value p-value II 
Intercept 5.007631 1.198332 4.178833 <.0001 

Q 2.302654 1.650812 1.394861 0.1643 
sin2t7r /T 3.254209 1.226775 2.652654 0.0085 
cos2t7r/T 1.222526 1.208797 1.011358 0.3128 
sin4t7r/T 1.288052 1.198850 1.074407 0.2837 
cos4t7r/T -3.355993 1.184666 -2.832861 0.0050 
sin6t1r /T -1.198880 1.156328 -1.036800 0.3008 
cos6t1rjT 0.095121 0.386554 0.246074 0.8058 
sin8t1r /T 0.003137 1.103856 0.002842 0.9977 
cos8t1r/T 0.130505 1.094026 0.119289 0.9051 
sin10t1r/T 1.804621 1.045997 1.725263 0.0857 
cos10t7r/T 0.217654 1.034386 0.210418 0.8335 

Heteroscedasticity 

Non constancy of variance (Figure 4.2) in the residuals lead us to account for het­

eroscedasticity in the model. Taking account of it (Table 4.3) results again in most 
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parameters being significant at the 5% level except for s = 3 and 4, but the station 

effect is not significant. The residual standard error went down to 1.55 as compared 

to the 5.57 and 6.10. Thus the model which has accounted for heteroscedasticity has 

reduced estimate of error variance which is one of the objective of the modifications 

to the model. The residual plot (Figure 4.3) is improved but still retain features seen 

for the individual stations. Autocorrelation (Table 4.4) does not change much. The 

comparison of all 3-fitted models (Table 4.5) shows that model-3, which accounts for 

serial correlation and heteroscedasticity, has minimum AIC and BIC values, as seen 

for individual stations. 

Thus the model-3 fitted here shows, if we take both serial correlation and het­

eroscedasticity into account, that there is no difference between stations, since a: is 

not significant. However, this is illustrated by the plot of the final model, model-3, 

with the data (T = 130) for RS532 and ES855 (Figure 4.4). Here the two curves are 

close together and parallel, it is clear (Figure 4.4) that the fitted regression curves 

are not able to capture the sharpness of the peaks. This causes more variability in 

the residuals, and leads to residuals that do not form a rough uniform band around 

the horizontal axis. Hence that affects the overall model fit and contributes to the 

station effect being insignificant. 

Another way in which the data and model for combined stations, model-3 could 

be plotted is shown in Figure 4.6. A vertical dotted line splits the graph into two to 

show the fitted and scatter plot of the individual stations. The first half corresponds 

to RS532 FWI scatter and fitted line, and the second half to FWI ES855 scatter and 

fitted line. These figures clearly show that the fitted curves of the combined model, 

after introducing the serial correlation and heteroscedasticity are parallel. 
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Fitted Combined model when s=5 for FWI RS532 
and ES855 with corr lated error 
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Figure 4.2: Fitted combined model with AR1 

Table 4.3: Estimated Parameters in a Combined GLS Model with AR1 and Het­
eroscedasticity 

II Parameters I Value SE t-value p-value II 
Intercept 5.963002 0.834765 7.143329 <.0001 

Q 0.805836 0.637260 1.264534 0.2072 
sin2t7r / T 4.485287 1.294079 3.466008 0.0006 
cos2t7r /T 2.036939 0.683385 2.980662 0.0032 
sin4t7r /T 2.140716 0.973768 2.198385 0.0288 
cos4t7r/T -4.238541 1.099899 -3.853571 0.0001 
sin6t1r / T -0.822295 1.020905 -0.805458 0.4213 
cos6t1rjT 0.162671 0.222239 0.731966 0.4649 
sin8t1r / T 1.109884 0.690926 1.606372 0.1095 
cos8t1r /T -0.100857 0.685320 -0.147167 0.8831 
sin10t7r / T 1.319460 0.548877 2.403926 0.0170 
cos10t1r/ T -1.229745 0.510793 -2.407521 0.0168 
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Table 4.4: Comparison of ACF in all 3-fitted Models 

II lag I Model-l 
1 0.6031644491 
2 0.3875643317 
3 0.1455408307 

Model-2 

0.60709097 4 
0.391929878 
0.146089473 

Model-3 II 
0.58267865 
0.38601172 
0.16800554 

Table 4.5: Comparison of Combined fitted Models for RS532 and ES855 FWI 

II Model I df I AIC BIC I logLik I Test I L.Ratio I p-value I 
1 14 1572.102 1621.234 -772.0511 
2 15 1426.897 1479.538 -698.4485 1 vs 2 147.2053 <.0001 
3 16 1301 .497 1357.647 -634.7485 2 vs 3 127.4000 <.0001 

Fitted Combined model when s=5 for FWI RS532 and ES855 
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Figure 4.3: Fitted combined model with ARl and Heteroscedasticity 
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For the comparison purposes we plot FWI RS532 and fitted RS532 from GLS 

model-3 (from Chapter 2) for s = 5 and on same graph we plot FWI ES1017 and 

Fitted ES1017. We need to ignore first 20 observation in RS532 due to ES1017 data 

collection starting at a later date (Figure 4.5 and Figure 4. 7, where in last one, we 

also joined the scatter points with the line). 

Figure 4.4 and 4.5 enhance our understanding of that ANCOVA-type models 

fitted, i.e regression curves for the individual stations should be parallel to each other 

see the acid rain example in Hall & Hart (1990) , Bowman & Young (1996, Section 4.3). 

Figure 4.5 is quite different form Figure 4.4. This suggest that there is a difference 

between these two stations, although not tested for significance. The same peaks are 

present but they differ in amplitude much more in the early part of the series than 

do the two latter peaks. The early peak mid June, in Figure 4.4, which is missing in 

Figure 4.5 , is missing because of the later starting date for ES855. 
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--Figure 4.4: Scatter RS532 ( o) and ES855 ( • ) with the RS532 and ES1017 lines in a 
combined Heteroscedastic model with AR1 
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4.2 Stations Effect in a Cubic Spline Smoothing 
Model 

To account for peaks and troughs in our general model (Chapter 2 Equation 2.1), we 

smooth the data (Chapter 3) in a non-parametric setting. Here we continue the same 

idea and investigate the main question in a cubic spline smoothing scenario. 

Thus we fitted a combined cubic spline smooth curve to FWI RS532 and ES855 

separately and superimposed (Figure 4.8). Here we can clearly observe that the curves 

have peaks that coincide approximately in late June and early August, where FWI 

is zero or very close to zero (for that period we already observed diagonal structure 

in our residuals plots in Chapter 2 and in the previous section as well). The ES855 

smooth line touches the RS532 line. This shows that fire danger rating is zero or 

very minimal then these lines may touch each other. When we have higher FWI, 

the amplitude of the peaks differ with ES855 FWI always exceeding that of RS532, 

but somewhere in proportion to the level. That also provide supports to our visual 

results from the previous section (Figure 4.4 and 4.5) after fitting the combined and 

individual station model. 

4.3 Combined Stations Effect Using Bootstrap 

To carry out our main objective we can use bootstrap residuals technique, as described 

in Chapter 3, and see if the spline regression curves for the combined stations are 

parallel to each other as proposed by Hall & Hart (1990), Bowman & Young (1996). 

We can boot FWI RS532 fitted cubic spline residuals and FWI ES855 fitted cubic 

spline residuals B times as we did in the Chapter 3. Below we will see some combined 

bootstrap graphical outputs. 
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Figure 4.8: Cubic spline smooth curves for FWI RS532 and ES855 when they super­
imposed, A = 0 
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We plot RS532 999 bootstrap lines those we got from bootstrap fitted cubic spline 

(yi) and ES855 bootstrap fitted cubic spline Y2 (Figure 4.9). Although the individual 

resultant curves can not be distinguished due to 999 smooth lines for each station but 

it is still visible that fitted cubic spline lines to ES855 are approximately parallel to 

the base station lines (Figure 4.9). 

We also plot the first 10 bootstrap fitted curves for both stations (Figure 4.10) to 

make it more visible. Here we can observe very clearly that bootstrap lines are quite 

parallel except in the middle and end. These figures are very similar as Figure 4.8, 

and this shows the ability to capture the peaks. Thus it is clear from visual output 

that our fitted bootstrap lines are able to capture the essence of the original cubic 

spline smooth data. 
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999 Bootstrap samples with 95% percentile, 
drawn from Fitted Cubic Spline RS532 and ES855 residuals 
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Figure 4.9: 999 Bootstrap drawn from a fitted RS532 and ES855 cubic spline smooth 
residuals 
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Figure 4.10: 999 Bootstrap drawn from a fitted RS532 and ES855 cubic spline smooth 
residuals (first 10 curves plotted) 
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Chapter 5 

Discussion And Future Prospect 

5.1 Discussion 

The wildland fire is the worst kind of fire. The current project is designed to give 

the right information to forest fighters and management to issue the right fire-danger 

rating. Following we will summarize the results of this study in the light of the main 

objective. 

In Chapter 2, the generalized least squares model for Fire Weather Index based 

on Fourier terms with autoregressive orderl and heteroscedastic errors, FWI model-3, 

showed much improved results relative to the other fitted models. In particular, this 

model resulted in an improved residual plot and the diagonal shape of the residuals 

also faded. 

In the non-parametric approach (Chapter 3), the fitted cubic spline smoothing was 

able to capture the steepness of the peaks much better than the model with Fourier 

terms. In the cubic spline smoothing curves fitted to the bootstrap FWI, we observed 

almost the same behavior in capturing peaks, as we saw in cubic spline smoothing, 

but for lower FWI values some fitted curves were not able to observe that. 

In Chapter 4, FWI combined model-3, the fitted curves are not able to capture 
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the sharpness of the peaks, and as a result more of the variability remains in the 

residuals. This affects the overall model fit. 

In FWI data set, we were interested to find if the local precipitation amount 

would lead to a different fire weather index than that obtained if the precipitation 

at a nearby station were used, so we tested the station effect, and found it to be 

insignificant here. 

We have data for one year fire season only. With a short data series at the higher 

elevation stations due to later snow melt we may not have enough data to evaluate 

the method. Due to algorithm convergence problem in the FWI data, we were not 

able to use the same higher elevation station as we did for the individual station. 

Precipitation is a natural process, one year we get less rain and other year more rain, 

and higher rainfall may lead to more zeros in the FWI data, hence the algorithm 

convergence problem in the gls function is of concern, and the method will not work 

in some of the cases we will encounter. Therefore, these results can not establish the 

basis for a generalized result without further investigation of the model. A few years 

of additional data may yield a better fit. 

However, the model still enhances our understanding of that ANCOVA-types mod­

els as discussed by Hall & Hart (1990) and Bowman & Young (1996). This suggests 

that there is a difference between two stations, although of a form more complex than 

that tested for significance. 

The cubic smoothing spline fitted curves for individual stations when plotted 

separate and superimposed provided good visual summaries and comparisons. The 

residuals based simulation also demonstrated good smooth curves but at lower in­

dex values it encountered some difficulties. This can also be investigated with some 
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additional years data. 

There are number of model extensions that can be proposed with some additional 

years data, for example, the use of proper log transformation with and without dummy 

variable. One can also consider a model which includes different curves for each 

station as well as difference in levels to test whether including different curves for 

each station accounts for significantly more variation than current model does. 
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Appendix A 

A.l Base Station Parameters for S=2 and 4 

Follwing we will see the output for the reference site when we use 8=2 and 8=4 in 

the Fourier model. Table A.1 to A.6 will show you output of a Fourier model when 

8=2 without AR1, with AR1 and AR1 plus heteroscedasticity, while rest tables will 

show for 8=4. Following to that we will see bootstrap codes. 

Here we will see line plots for all indices including precipitation, FWI, BUI, DC, 

DMC, FFMC and lSI, see figures A.1 to A.5. 

Table A.1: Estimated Parameters and their p-values in RS532 FWI in GLS Fourier 

Model when s=2 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.533831 0.5469377 13.77457 < 0.0001 
sin2tpi.T 4.200018 0.7723850 5.43773 < 0.0001 
cos2tpi.T 0.720006 0.7735350 0.93080 0.3536 
sin4tpi.T 0.275812 0.7723850 0.35709 0.7216 
cos4tpi.T -3.883010 0.7735360 -5.01982 < 0.0001 
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Table A.2: Estimated Parameters and p-values When AR(0.64) was introduced for 

RS532 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.563320 1.422834 5.315672 < 0.0001 
sin2tpi.T 4.068520 2.022955 2.011176 0.0463 
cos2tpi.T 0.806951 1.965143 0.410632 0.6820 
sin4tpi.T 0.183986 1.974275 0.093192 0.9259 
cos4tpi.T -3.814440 1.920168 -1.986514 0.0490 

Table A.3: Estimated Parameters and p-values with AR1 and Heteroscedasticity in 

RS532 

II Parameters I Value SE t-value p-value II 
(Intercept) 7.634210 1.620709 4.710414 < 0.0001 
sin2tpi.T 3.830139 2.393403 1.600290 0.1119 
cos2tpi.T 1.535354 1.206210 1.272875 0.2053 
sin4tpi.T 1.270297 1.634666 0.777099 0.4385 
cos4tpi.T -4.959893 1.779411 -2.787380 0.0061 

Table A.4: Correlation Matrix When AR1 was introduced for RS532 

II I sin2tpi cos2tpi sin4tpi cos4tpi II 
sin2tpi - 0.001 
cos2tpi - 0.044 -0.002 
sin4tpi - 0.002 0.000 -0.003 
cos4tpi - 0.041 -0.001 -0.061 -0.003 

Table A.5: Correlation Matrix after AR1 and Heteroscedasticity for RS532 

II I sn2tpi cs2tpi sn4tpi cos4tpi II 
sin2tpi 0.475 
cos2tpi 0.221 0.173 
sin4tpi 0.214 0.285 0.335 
cos4tpi -0.737 -0.309 0.193 -0.072 
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Table A.6: Comparison of 3-fitted Models for RS532 

II ModelJ df AIC BIC logLik Test L.Ratio p-value II 
1 6 906.1213 923.4634 -447.0607 
2 7 828.2879 848.5204 -407.1440 1 vs 2 79.83341 < 0.0001 
3 8 764.9921 788.1149 -374.4960 2 vs 3 65.29585 < 0.0001 

Table A. 7: Estimated Parameters and their p-values in RS532 in GLS Fourier Model 
when s=4 

II Parameters I Value SE t-value p-value II 
Intercept 7.532875 0.5243223 14.36688 < 0.0001 
sin2tpi.T 4.199720 0.7404466 5.67187 < 0.0001 
cos2tpi.T 0.721130 0.7415491 0.97246 0.3326 
sin4tpi.T 0.274679 0.7404471 0.37096 0.7113 
cos4tpi.T -3.883595 0.7415502 -5.23713 < 0.0001 
sin6tpi.T 0.548433 0.7407807 0.74034 0.4604 
cos6tpi.T 2.619217 0.7419406 3.53022 0.0006 
sin8tpi.T 0.899074 0.7404471 1.21423 0.2269 
cos8tpi.T -0.824473 0.7415502 -1.11182 0.2683 

Table A.8: Estimated Parameters and their p-values when AR(0.6) was introduced 
for RS532 

II Parameters I Value SE t-value p-value II 
Intercept 7.502145 1.643756 4.564027 <.0001 
sin2tpi.T 4.017179 2.331912 1.722698 0.0873 
cos2tpi.T 0.700945 2.261704 0.309919 0.7571 
sin4tpi.T 0.145919 2.256558 0.064664 0.9485 
cos4tpi.T -3.921663 2.192355 -1.788790 0.0760 
sin6tpi.T 0.419683 2.146968 0.195477 0.8453 
cos6tpi.T 2.642465 2.091426 1.263475 0.2087 
sin8tpi.T 0.702699 2.015109 0.348715 0.7279 
cos8tpi.T -0.886099 1.969045 -0.450015 0.6535 
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Table A.9: Correlation Matrix when s=4 after AR1(0.64) 

II I sin2tpi cos2tpi sin4tpi cos4tpi sn6tpi cs6tpi sn8tpi cos8tpi II 
sin2tpi 0.001 
cos2tpi -0.047 -0.002 
sin4tpi -0.002 0.001 -0.003 
cos4tpi -0.043 -0.002 -0.064 -0.003 
sin6tpi -0.003 0.000 -0.004 0.001 -0.004 
cos6tpi -0.042 -0.002 -0.060 -0.003 -0.058 -0.004 
sin8tpi -0.003 0.001 -0.005 0.000 -0.005 0.002 -0.005 
cos8tpi -0.038 -0.001 -0.056 -0.003 -0.053 -0.004 -0.051 -0.005 

Table A.lO: Comparison of 2-fitted Models for RS532 when s=4 

II Model I df AIC BIC logLik Test L.Ratio p-value II 
7 10 893.9328 922.5310 -436.9664 
8 11 821.5069 852.9649 -399.7535 7 vs 8 74.42588 < 0.0001 

A.2 Bootstrap Codes 

function(B,fwi) 
{ 

y1 <- RS 
n <- length(y1) 
s.smooth <- smooth.spline(y1) 
zt <- s.smooth$yin - s.smooth$y 
zt .1 <- zt [ -138] 
zt.1 <- c(NA, zt.1) 
yhat <- s.smooth$y 
rho <- cor(zt[-1], zt[-138]) 
et <- zt -rho * zt.1 
et <- et[-1] 
z <- rep(NA, n) 
y <- rep(NA, n) 
estar <- matrix(rep(NA, B), nrow = n- 1, ncol =B) 
zstar <- matrix(rep(NA, B), nrow = n, ncol =B) 
ystar <- matrix(rep(NA, B), nrow = n, ncol =B) 
yhatstar <- matrix(rep(NA, B), nrow = n, ncol =B) 
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perclo <- rep(NA, n) 
percup <- rep(NA, n) 
for(i in 1:B) { 

estar[, i] <- sample(et, replace = T) 
z [1] <- zt [1] 
z[2] <- rho * z[1] + estar[1, i] 
for(j in 3:n) { 

z[j] <- rho * z[j - 1] + estar[j - 1, i] 

} 

z <- z 
} 

y [1] <- yhat [1] + z [1] 
for(h in 2:n) { 

} 

y[h] <- yhat[h] + z[h] 
y <- y 

ystar [, i] <- y 
zstar [, i] <- z 
fit <- smooth.spline(ystar[, i]) 
yhatstar[, i] <- fit$y 

for(k in 1:n) { 

} 

perclo[k] <- quantile(yhatstar[k, 
percup[k] <- quantile(yhatstar[k, 

plot((yhat), ylim = c(-5, 35), main= 

] ' 0.025) 
], 0.975) 

11 1000 Bootstrap samples with 95% percentile 
drawn from the fitted Cubic Spline RS532 residuals" 

) 

# For fig-1 
for(i in 1:B) { 

lines(yhatstar[, i], spar= 1e-007), 
lty = 1, col=3) 

abline (h = 0) 
lines(perclo, col = 4, lty = 1) 
lines(percup, col = 2, lty = 1) 

legend(80,35, c( 11 Fitted Spline RS532 11
, 

11 Bootstrap Cubic Spline " 
11 Lower Percentile 11

, 
11 Upper Percentile 11

), 

lty=c(-1,1,1,1), col=c(1,3,4,2), pch=c(21,-1,-1,-1)) 
} 

list(RS532=y1[1:10] , CubicSpline = yhat[1:10], 
yhatstar = yhatstar[1:3, 1:3], LowerPerc = perclo[ 
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} 

Note: 

1:10], UpperPerc = percup[1:10]) 

For additional figures we may do change in the plotting and lines forloop. 
For example: 

# For Fig-2 
#In last forloop just replace B from 10 
for(i in 1:10) { 

lines(yhatstar[, i], spar= 1e-007), 
lty = 1, col=3) ................ . 

} 

# For Fig-3 
# Replace ystarhat in the lines command by yhat 

plot((yhat), ylim = c(-5, 35), main= 
"Cubic Spline to FWI RS532 when 95% percentile 

calculated from 1000 Bootstrap cubic Spline residuals") 
for(i in 1:B) { 

lines(yhat,lty = 1, col=3) .............. . 
} 

# For Fig-4 
Replace yhat by y1 in the plot and ystarhat by yhat in the lines command. 

plot((y1), ylim = c(-5, 35), main= 
"Cubic Spline to FWI RS532 when 95% percentile 

calculated from 1000 Bootstrap cubic Spline residuals") 
for(i in 1:B) { 

lines(yhat,lty = 1, col=3) ................. . 
} 

A.3 Graphical Output for Precipitation, Fuel Mois­
tures Codes and Fire Behavior Indices for Ref­
erence and Elevation Sites 
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