
AN OPTIMAL DESIGN METHOD

FOR

MRI TEARDROP GRADIENT WAVEFORMS

AN OPTIMAL DESIGN METHOD

FOR

MRI TEARDROP GRADIENT WAVEFORMS

By

TINGTING REN, hB.Eng., M.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Tingting Ren, August 2005

MASTER OF SCIENCE(2005)

COMPUTING AND SOFTWARE

McMaster University

Hamilton, Ontario

TITLE: An Optimal Design Method for MRI Teardrop Gradient Waveforms

AUTHOR: Tingting Ren, M.ENG.

SUPERVISORS: Dr. Christopher Kumar Anand and Dr. Tamas Terlaky

NUMBER OF PAGERS: xiii, 138

ll

Abstract

This thesis presents an optimal design method for MRI (Magnetic Resonance

Imaging) teardrop gradient waveforms in two and three dimensions. Teardrop

in two dimensions was introduced at ISMRM 2001 by Anand et al. to address

the need for a high efficiency balanced k-space trajectory for real-time cardiac

SSFP (Steady State Free Precession) imaging.

We have modeled 2D and 3D teardrop gradient waveform design as

nonlinear convex optimization problems with a variety of constraints including

global constraints (e.g., moment nulling for motion insensitivity). Commercial

optimization solvers can solve the models efficiently. The implementation of

AMPL models and numerical testing results with the solver MOSEK are pro­

vided. This optimal design procedure produces physically realizable teardrop

waveforms which enable real-time cardiac imaging with equipment otherwise

incapable of doing it, and optimally achieves the maximum resolution and

motion artifact reduction goals. The research may encompass other waveform

design problems in MRI and has built a good foundation for further research

in this area.

iii

iv

Acknowledgements

I would first like to offer sincere thanks to my supervisors Dr. Christo­

pher Kumar Anand and Dr. Tamas Terlaky, for their patience, guidance and

continual support during the preparation of this thesis. I am truly grateful for

what I have been able to learn from them.

I would also like to express gratitude towards the members of the Ad­

vanced Optimization Laboratory for their great help and support.

Finally, I want to thank my family for their support and understanding.

Special thanks go to my husband Zhanyue Qi. Without his patience and

encouragement, none of this would have been possible.

v

vi

Contents

Abstract

Acknowledgements

List of Figures

1 Introduction

2 MRI Basics

2.1

2.2

Classical Description of MRI .

The k-Space and Basic 2D k-Space Patterns

iii

v

xi

1

7

7

9

2.3 Sampling Requirements and Artifacts in 2DFT Imaging . 14

3 Nonlinear Optimization

3.1

3.2

Teardrop Waveform Parametrization

Objective: Maximize Resolution

vii

19

20

21

3.3 Constraints .

3.3.1 Gradient System Hardware Limitations .

3.3.2 Constraints to Keep a Teardrop Shape of k-Space Tra-

jectory

3.3.3 First Moment Nulling

3.4 The Original Optimization Model

3.5 The Improved Optimization Model

3.6 The Second Improvement

3.7 The Third Improvement .

3.8 The Optimization Model for the 3D Case .

3.8.1 Review of 3D k-Space Acquisition .

3.8.2 The Optimization Model for 3D Teardrop Gradient Wave-

22

23

24

26

27

28

29

33

37

37

form Design . 40

4 Implementation 43

4.1 The AMPL Model teardrop2D.mod

4.1.1

4.1.2

Setting up the Model

Specifying Data . . .

4.1.3 Command Environment

4.2 The AMPL Model teardrop3D.mod

Vlll

44

44

58

62

67

5 Computational Results

5.1 Results with teardrop2D.mod

5.2 Results with teardrop3D.mod

6 Conclusions and Future Work

Appendix

ix

75

75

86

97

99

X

List of Figures

1.1 One teardrop trajectory in k-space. 3

1.2 Rotating one teardrop trajectory around the center of k-space. 4

2.1

2.2

2.3

Raster scanning pattern.

Radial scanning pattern.

Square spiral and spiral scanning patterns.

11

13

14

2.4 (a) Sampling ink-space (b) The replication in object domain. 15

2.5

2.6

Aliasing in a 2DFT image

The effects of motion on 2DFT images.

3.1 256, 128, and 64 phase-encoding step acquisitions of a transverse

image of a head

3.2 The deduction of the spiral constraint.

16

17

22

25

3.3 The illustration of the simplification of the spiral constraint. 29

3.4 Limit the distances between two trajectories. 30

xi

3.5 The pseudocode of the iterative non-linear method.

3.6 3DFT k-space trajectory ..

3. 7 3DPR k-space trajectory ..

3.8

4.1

4.2

Hybrid spiral-scan 3D trajectory.

Archimedean spiral. . .

A dodecahedron in 3D.

4.3 The initial values of the 20 trajectories.

4.4 A platonic dodecahedron graph.

5.1

5.2

5.3

2D k-space trajectories after the first iteration. . .

2D k-space trajectories after the fourth iteration.

2D k-space trajectories after the eighth iteration.

5.4 2D k-space trajectories after ten (the last) iteration.

34

38

38

39

61

67

70

71

76

77

78

79

5.5 2D k-space optimal trajectories with first moment nulling. 80

5.6 One optimal teardrop trajectory. 82

5. 7 Rotate the optimal teardrops to cover the whole k-space. 83

5.8 Gradient waveform Gx in the x-direction of the 2D k-space. 84

5.9 Gradient waveform Gy in the y-direction of the 2D k-space. . 85

5.10 3D k-space trajectories after the first iteration ..

5.11 3D k-space trajectories after the third iteration.

xii

87

88

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

5.12 3D k-space trajectories after the fifth iteration. 89

5.13 3D k-space trajectories after the seventh(last) iteration. 90

5.14 Two neighboring trajectories in 3D k-space. 91

5.15 Gradient waveform Gx for trajectory 1 in the 3D k-space. . 92

5.16 Gradient waveform Gy for trajectory 1 in the 3D k-space. . 93

5.17 Gradient waveform Gz for trajectory 1 in the 3D k-space. 94

5.18 Gradient waveform Gz for trajectory 1 in 3D k-space. . . 96

Xlll

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

xiv

Chapter 1

Introduction

Conventional MRI has a serious drawback that the scan time is long compared

with time constants of cardiac, peristaltic, and respiratory motion in the pa­

tient, giving rise to motion artifacts in the images. This long scan time is

caused by the time it takes to allow the spins after acquisition to relax back

to the equilibrium situation before the next excitation pulse is applied. Fast

scanning is necessary in these cases.

Real-time cardiac imaging has been demonstrated by using Steady

State Free Precession (SSFP) [3], making use of high performance gradients.

The two challenges faced by SSFP are banding artifacts and the requirement

for powerful gradients, which involve high rate of change of magnetic field

(dB/dt). We will design a novel non-raster gradient waveform for k-space

1

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

(Fourier transform space where signals of MRI come from) readout which

does not suffer from banding in the phase-encode direction and which is more

efficient.

SSFP requires that all gradient activity be rewound, or balanced. Con­

ventionally, this is done by adding read, slice and phase rewinders. While these

rewinders can be at least partially overlapped in time, it is not practical to

collect data during this time, and in any case, they expose the patient to high

dB/dt. By using a non-raster trajectory beginning and ending in the center of

k-space, a teardrop readout requires neither read nor phase dephase/rephase

lobes, increasing scan-time efficiency.

The name teardrop comes from the trajectory in k-space: leave the

center of k-space on a radial trajectory, turn around and return on a radial

trajectory (Fig. 1.1). The actual waveform is numerically generated and may

circle the center of k-space one or more times, but is still referred to as a

teardrop readout. By resampling the center of k-space at the beginning of

every shot, the reconstruction can compensate for approach to steady state,

and the sequence is less sensitive to motion artifacts.

The teardrop gradient waveform is in fact a continuous family of wave­

forms, one extreme of which integrates to describe a teardrop shaped k-space

trajectory. Rotating the associated gradient profiles is equivalent to rotating

2

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

-50

-100

-150

-200

-250 '------'-----'-----'-----'------'------'
-150 -100 -50 0 50 100 150

Figure 1.1: One teardrop trajectory ink-space.

this trajectory around the center of k-space. Together the combined views

cover k-space, as evidenced by a partial set of views (Fig. 1.2).

An MRI technician could design a gradient waveform interactively to

match the requested repetition time(TR) and resolution. The teardrop shape

above is suitable for short TR and many interleaves. Scan-time efficiency can

be increased by increasing the TR, and covering a larger region of k-space per

repetition. This leads to increased sampling duty cycle and higher frame rates.

A number of techniques have been put forth to perform the complicated

task of designing nulled moment gradient waveforms for motion compensation

3

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

-250 c___..___..___..__ _ _,___ _ _,___ _ _,___ _ _,___ _ _._____;
-200 -150 -100 -50 0 50 100 150 200 250

Figure 1.2: Rotating one teardrop trajectory around the center of k-space.

[10, 13, 17, 18, 22-24]. These are algebraic design methods. They take ad-

vantage of the linear relationship between gradient waveform time moments

and lobe amplitudes to generate motion compensated or sensitized waveforms.

There are several potential deficiencies that may limit their effectiveness in

gradient waveform design. First, because the physical limitations of gradi-

ents and coils are not explicitly included in algebraic design techniques, they

may prevent the attainment of specific imaging goals. Some computationally

ineffective methods [7, 9, 22] iterate through algebraic solutions until feasible

solutions are found. These methods do not guarantee that a realizable solution

4

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

will be found even if one exists. The resulting waveforms may not be optimal

in any sense either.

It has been recognized that gradient waveform design can be gener­

alized as a problem of non-linear constrained optimization [22], and there

are some previous works have presented different methods to optimize gradi­

ent waveforms in different situations [2, 4, 6, 12, 15, 19, 20]. But many of

these methods are limited to the design of trapezoidal pulses, and most have

been studied for one dimensional (1D) gradient design. Up to now, no design

formalism has been presented for optimal teardrop waveform design.

The goal of our project is to describe a general formalism for 2D and

3D optimal gradient waveform design as a convex-optimization problem using

teardrop waveforms as examples, for which very efficient solution methods

exist. This technique offers the following immediate practical benefits: it

incorporates as much a priori knowledge of the gradient system as possible;

it generates waveforms which are optimal for the imaging goals; it generates

waveform shapes which are constrained only by the limitations of the hardware

system; it guarantees the feasibility of the gradient waveforms. Finally, it can

potentially reduce waveform design time by avoiding iterative or trial and error

methods for determining feasible solutions.

The structure of this thesis is as follows. Chapter 2 reviews some basic

5

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

MRI concepts that are needed to understand this project. The methods of

formulating optimization models of MRI teardrop gradient waveforms are pre­

sented in Chapter 3. This discussion includes: teardrop waveform parametriza­

tion, the design objective, constraints, the original optimization model, and

the improved optimization models. Following this, Chapter 4 details the im­

plementation of the models in AMPL. Computational results are presented in

Chapter 5. Chapter 6 closes the thesis with conclusions and recommendations

for future work.

6

Chapter 2

MRI Basics

In this chapter, we review some basic MRI concepts that will be useful for

understanding the ideas that follow in the subsequent chapters. More detail

is available in texts on MRI, including [16].

2.1 Classical Description of MRI

Atoms with an odd number of protons or odd number of neutrons possess a nu­

clear spin angular momentum, and therefore exhibit the Magnetic Resonance

phenomenon. These nucleons can be visualized as spinning charged spheres

that give rise to a small magnetic moment. We refer to these MR-relevant

nuclei as spins. Because the body is composed of tissues primarily consisting

of water and fat, both of which contain hydrogen, in biological specimens,

7

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

hydrogen e H), with a single proton, is the most abundant spin and therefore

produces the strongest signal. That is why we usually assume e H) imaging.

The principle of MRI is based on the interaction of these spins with

three types of magnetic fields: 1) the main field B0 , 2) the radio frequency field B1,

and 3) the gradient fields G.

In the absence of an external magnetic field, the spins are oriented

randomly and the net magnet momentic is zero. However, in the presence of

an external magnetic field B0 , the spins will align with or align against the

external magnetic field. But the net magnetic moment vector is an alignment

with the external field. Also, the nuclear spins exhibit resonance at the Larmor

frequency w and

w = f'B, (2.1)

where B is the applied magnetic field, I' is called the gyromagnetic ratio, a

known constant unique for each type of atom. For 1H, I' /27r = 42.58 MHz/Tesla.

To obtain an MR signal, a radiofrequency (RF) magnetic pulse B1

tuned to the resonant frequency of the spins is applied in the transverse plane

to excite these spins out of equilibrium. B1 applies a torque that rotates the

magnetization vector by a prescribed angle dependent on the strength and du­

ration of B1. For example, if the excitation is set to a 90° tip angle, then upon

turning the excitation off, the tipped vector precess in the transverse plane at

8

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

the Larmor frequency generating an electromotive force (EMF) signal in an

RF receiver coil. The generated time signal is called a free induction decay

(FID). In general, a set of FIDs will be recorded and processed to reconstruct

and MR image.

In the context of imaging, the body can be visualized as an ensemble of

tiny oscillators inducing RF signals. The objective of MR imaging then is to

map the spatial distribution for their amplitudes. Spatial localization is based

on applying gradient fields to control the relative phases and frequencies of

these oscillators.

2.2 The k-Space and Basic 2D k-Space Pat-

terns

By MR theory [16], we can derive the equations for the MR signals:

s(t) = 1 i m(x, y)e-i21r[kx(t)x+ky(t)y] dxdy, (2.2)

where

'Y it kx(t) =- Gx(T) dr
211" 0

(2.3)

(2.4)

9

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

m(x, y) is the transverse nuclear magnetization, and Gx, Gy are gradient fields

in the x and y directions respectively.

Comparing the signal equation (2.2) with the 2D Fourier transform of

m(x, y),

(2.5)

we can see that

(2.6)

or

(2.7)

Thus, kx and ky are in units of spatial frequency, typically cycles/em.

This is the most important relationship in MR imaging. At any given

time t, s(t) equals the value of the 2D Fourier transform of m(x, y) at some

spatial frequency. The total recorded signals s(t) therefore maps directly to

a trajectory through the spatial-frequency (Fourier transform) space as de­

termined by the time integrals of the applied gradient waveforms Gx(t) and

Gy(t). In the MR literature [14] and [21], the Fourier transform space is often

called k-space, where k represents the spatial-frequency variable. To form an

image, the trajectories given by {s(t)} should cover a sufficient part of the

k-space to allow reconstruction of m(x, y).

10

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

The MRI signal provides information about the spatial frequency con-

tent of the image, rather than directly about the spatial positioning of infor-

mation in the image. A computer has to be used to sample the information

and apply the Fourier transform to the obtained signal to produce the image.

A variety of patterns have been developed for sampling and image reconstruc-

tion.

..... - - -. - -. ... - -
~ - - - - - - ~ - - - - ~
..... - - ~
~ - - ~ - - -~ ... - ... - - - - - - - - ~ -

..... - - - - ~
.... -. ... - - ... ~ - - - - - ~ - - - - - - '"to. - - - - - .. " ')l - - ... -

'I l ... - - - - - - ~
... -. - - - ... --~ - - - - - - - - - ~ - - - - - l - - - - - - - - - - - ~ - - ,.

Figure 2.1: Raster scanning pattern.

11

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

The rectangular raster scan (Fig. 2.1) is used by standard two-dimensional

Fourier transform (2DFT) imaging. Beginning at the origin, the k-space tra­

jectory moves along the kx direction as the signal is read out. A change in

the amplitude of the Gy gradient leads to a different line in the k-space. By

indexing to a set of ky-positions, we can assemble sufficient measurements to

fill the 2D k-space, and simply perform an inverse 2D Fourier transform to

reconstruct the image.

Because of the specific roles that these gradients play, the Gy gradient

is often referred to as the phase-encoding gradient, the Gx is called the readout

gradient because it is on during data acquisition. The third gradient Gz is

called the slice-select gradient.

Projection reconstruction imaging was the first method of MRI and is

still used in some special applications. The sampling method for projection

reconstruction is called the radial pattern. The radial pattern is shown in Fig.

2.2. The measurements are along diameters of a circle. The scan lines pass

through the origin and are equally spaced in angle.

There are a number of relatively exotic methods of scanning the k-space.

For example, spiral scanning and square spiral scanning (Fig. 2.3). In general,

these data are resampled onto a rectangular grid and then reconstructed by

using the inverse Fourier transform.

12

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Figure 2.2: Radial scanning pattern.

Because the location of each measurement is controlled by the mag­

netic field gradients, the gradient system must be able to generate the chosen

trajectories.

13

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

• • • • • • • • • • • • •
II
~ .
~ • - - - -
~ • - - -
II • ~~ • • • - ~ - -

.... ...
• • • • • • • • • • • • •

Figure 2.3: Square spiral and spiral scanning patterns.

2.3 Sampling Requirements and Artifacts in

2DFT Imaging

In practice, the continuous MRI signals are sampled as shown in Fig. 2.4. The

sampling periods are llkx and llky.

Let's only consider one-dimensional sampling here. From sampling the-

ory we know that

1
~=FOV.

kx

(2.8)

Equation (2.8) means that the uniform spacing between data points llk, equals

to 1/FOV, where FOV is the spatial interval over which the reconstructed

14

M.Sc. Thesis - T. Ren - McMaster - Computing and Software

•••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •I j.

Figure 2.4: (a) Sampling in k-space (b) The replication in object domain.

image repeats itself. This interval is called the Field-Of-View (FOV).

The two most common artifacts particular to 2DFT images are the

consequences of undersampling and motion. Undersampling means that not

enough cycles are used in the data collection. This results in the samples not

being sufficiently close in k-space. When this happens , the bottom of the image

appears to wrap around the top (Fig. 2.5), this artifact is called aliasing. The

cure for this is to increase the number of cycles in the data collection stage or

reduce the hardware zoom factor.

15

M.Sc. Thesis - T. Ren - McMaster- Computing and Software

Figure 2.5: Aliasing in a 2DFT image.

To avoid aliasing artifact, the Nyquist sampling criterion has to be met.

1
.6.k < -

S '
(2.9)

where S is the size of the object imaged. In one dimension, inequality 2.9

means that the FOV must be larger than S, the size of the object imaged.

The effects of the subjects motion on the 2DFT image are complicated.

Fig. 2.6 shows the effects of motion on 2DFT images , where A is an ungated

cardiac image, and B is a gated cardiac image. Cardiac gating is a kind of

method that synchronizes the heartbeat with the beginning of the TR (rep-

etition time) in order to minimize motion artifacts. The gated image shows

16

M.Sc. Thesis - T. Ren - McMaster - Computing and Software

improvement in the motion artifacts.

Figure 2.6: The effects of motion on 2DFT images.

17

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

18

Chapter 3

Nonlinear Optimization

A goal of gradient waveform design is to optimally meet some specific imaging

performance criteria without violating the constraints imposed by hardware

limitations of the gradient system and the sequence constraints, such as the

desired shape of the scanning trajectory in k-space etc. So the waveform design

problem can be viewed as a constrained optimization problem. Formulation

of any constrained optimization problem involves four basic steps:

1. Select a variable set.

2. Define the objective.

3. Specify the constraints.

4. Determine a suitable means of solution.

19

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

In this chapter, the first three steps will be applied to the teardrop gradient

waveform design, in other words, optimization models will be developed for

this problem. The suitable means of solutions will be discussed in Chapter 5.

3.1 Teardrop Waveform Parametrization

The design objectives and constraints must be expressed in terms of a variable

set which fully describes the gradient waveform. The ability to achieve a

feasible solution is highly dependent on the choice of a variable set.

Since gradient waveforms are computer generated discrete functions

and applied to the gradient coils via digital-to-analog (D /A) converters, the

most obvious and general variable set is a discrete series of point-by-point

gradient amplitudes. This set may be expressed in vector form as

__, _ []T -n2n+2 9- 91,92,·· · ,gi,··· ,gn+l E /\.- , (3.1)

where 9i E R 2 indicates the amplitude of the gradient waveform at time ti =

il:,.t, and i:,.t is the sample interval. The amplitudes at the n + 1 points define

the gradient waveform. Any gradient waveform shape can be expressed by

such a gradient amplitude vector, thereby removing artificial constraints on

shape and this way expanding the feasible solution space to the limits of the

gradient hardware system.

20

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

To present objective and constraints conveniently and efficiently in the

teardrop gradient waveform design, we add another variable set k which stands

for a set of points in k-space.

where

ki = L:gj i E [1, ... ,n].
j=l

(3.2)

(3.3)

Observe that there is one more point in the gradient amplitude space than in

k-space.

3.2 Objective: Maximize Resolution

The goal of waveform design can be expressed by an objective function in

terms of a variable set. In k-space, low frequencies are near the center of k-

space, higher spatial frequencies are towards the edges. We know that small

structures and fine details of an image contain high spatial frequencies. So

higher spatial frequencies give better spatial resolution. Thus, if we want a

sharp image, we have to measure not only the low spatial frequencies but

higher ones as well.

Fig. 3.1 displays the same image of a head measured with different

21

M.Sc. Thesis - T. Ren - McMaster- Computing and Software

numbers of spatial frequencies. It is obvious that the way to improve the

resolution is to measure higher spatial frequencies.

Figure 3.1: 256, 128, and 64 phase-encoding step acquisitions of a transverse

image of a head.

By MRI theory, we know that the distance from the center of k-space

to the farthest point in k-space equals the resolution of the image. Our design

goal is to maximize resolution. So our objective function can be expressed as

max llkn;2l l2 if n is even

3.3 Constraints

(3.4)

(3 .5)

The constraints of an optimization problem are the conditions which define the

feasible set of solutions. According to our specific teardrop gradient waveform

22

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

design, the gradient system hardware limitations, waveform characteristics

required to generate a teardrop k-space trajectory, and first moment nulling

form a set of constraints for the design of teardrop gradient waveforms.

3.3.1 Gradient System Hardware Limitations

Amplitude Limits

Gradient amplifiers have peak current limits which restrict the maximum ab­

solute value of gradient waveform amplitude. These limits can be expressed

as inequality range constraints on each of the n + 1 points in the discrete

waveform sequence as

(3.6)

where Gmax is the maximum allowable gradient amplitude.

Slew or Rise Time Limits

Gradient amplifiers also have limits on slew rate or rate of change of ampli­

tude. This can be approximated as an inequality constraint on the first-order

differences between adjacent discrete points as

ll9i+l- 9ill2 S Smax~t, i E [1, · · · , n + 1], (3.7)

where ~t is the sample interval.

23

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

Gradient Start and End Amplitudes

Because gradient amplifiers are switched off at the beginning and at the end,

so gradient amplitudes are zeros at start and end.

(3.8)

(3.9)

3.3.2 Constraints to Keep a Teardrop Shape of k-Space

Trajectory

The Beginning and the End of k-space Trajectory

The name teardrop comes from the shape of the trajectory in k-space: it leaves

the center of k-space, become tangent to a circle at the required resolution,

and returns on the mirror-image trajectory to the center of k-space. So the

beginning and the end of a k-space trajectory are at the center of k-space, i.e.,

kn = 0.

The constraint (3.11) is required for SSFP imaging.

24

(3.10)

(3.11)

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

The Spiral Constraint

This constraint family is meant to insure that the interleaves of the trajectories

in k-space do not become too separated from their neighbors. Suppose the

designed trajectory is along a standard spiral which can be described by a

polar equation

r = ae, (3.12)

where r is the radial distance, () is the polar angle, and a is a constant. When

applying the spiral constraint to the trajectory, the constraint should be ex-

pressed as follows:

r' ~ ae'. (3.13)

It means that the ratio of the radial derivative and the angular derivative

(measured in radians) should be bounded by a constant.

0

Figure 3.2: The deduction of the spiral constraint.

25

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

From Fig. 3.2, we know that the radial derivative r' at a point k =

(kx, ky) is k · g/Jikll where g = k' and k · g indicates the dot-product of the

vectors k and g. The angular derivative is kl_ · g/JikJJ 2 , where kl_ = (-ky, kx)

is the perpendicular vector of k. Substituting these in the constraint (3.13),

we get

k. g kj_. g
r' < aB' {:::> -- <a--.

- ~- k ·k
(3.14)

By squaring both sides of this formula, the constraint family can be written

as

(3.15)

3.3.3 First Moment Nulling

In SSFP imaging techniques, we do not dephase (destroy) the magnetization

from one readout to the next, but keep modifying it with new RF pulses. One

important fact about SSFP imaging is that, since the magnetization is never

reset as it is done in conventional techniques, errors will build up over time,

which means that motion artifacts can be more of a problem. To make the

readout gradient motion-insensitive, we should zero the first moment, which

is a global constraint
n+l

L:igi = o. (3.16)
i=l

26

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

3.4 The Original Optimization Model

Combining the objective and all the constraints together, we get the following

optimization model when n is even:

subject to k1 = 0

91 = 0

9n+l = 0

i

ki = L 9i i E [1, · · · , n]
j=l

ll9i+l- 9illz :S Smaxflt, i E [1, · · · , n + 1]
n+l

2:: igi = o
i=l

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)

(3.17f)

(3.17g)

(3.17h)

(3.17i)

(3.17j)

where n is an even number, !:lt is the sample interval, and a is a constant.

When n is odd, the objective becomes:

(3.18)

while the constraints are the same.

27

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

These are the original models. Our goal is to maximize the resolution

while satisfying all the constraints imposed by the hardware limitations of the

gradient system, the teardrop shape of the scanning trajectory in k-space and

first moment nulling.

3.5 The Improved Optimization Model

The most complicated constraint in the original model is the last one: the

spiral constraint (3.17j). By using the arctangent function, we can simplify

this constraint significantly. From Fig. 3.3, we know that

and

where atan represents inverse tangent function.

Then we have

r' ::; aB' =? !:1r ::; af:1(),

!:1r :S af1() <* llkill2 -llki-1ll2 :Sa atan(kf-1 · ki,ki-1. ki)·

28

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Figure 3.3: The illustration of the simplification of the spiral constraint.

As a result, the new constraints in the improved optimization model that

replace (3.17j) are

(3.24)

while all other constraints and the objective function are the same. When n

is odd, we should use formula (3.18) as the objective function.

3.6 The Second Improvement

The spiral constraints (3.24) from the improved optimization model are not

convex and can not be generalized to the 3D case, so we want to improve our

model again by modifying the spiral constraint which will require an iterative

29

M.Sc. Thesis - T. Ren - McMaster - Computing and Software

algorithm to solve a sequence of nonlinear problems. To replace the spiral

constraint in the previous models , we need to add another set of points in

k-space as our variables:

k/1 = [k" k" . . . k" . . . k"]T E J?}n
1' 2 ' ' ~ ' ' n · (3.25)

Then we can use the following two constraints to replace the spiral constraints:

(3.26)

where ¢ = th b 27rf . t 1 . This constraint means that one trajec-e num er o m er eaves

tory in k-space is the rotation of another trajectory. The second constraint

is:

min distance(k~', kjkJ+1) = f3i ,j ~constant. (3.27)
J

We can explain this constraint by Fig. 3.4 . Here f3i ,j is the distance from the

• I
Figure 3.4: Limit the distances between two trajectories.

30 \

I

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

point k~' to the segment kiki+1 in another trajectory and

where
(k:' old-kj,old)·(kj+l,old-kj,old)

llkJ+l,old-kj,oldll2

1

0

when 0 < ai < 1

(3.28)

(3.29)

and k~:old• kj,old i, j E [1, · · · , n] are solutions of the previous iteration or the

initials for the first iteration. If ai 2: 1 or ai ::; 0, then the closest point to kr

on the line through kiki+1 is not on the segment. In these cases, we choose

the distance from kr to the closest endpoint ki (ai = 0) or kH1 (ai = 1) to be

the distance f3i,j.

Keeping all other constraints and the objective function the same as

before, we can get our new model when n is even:

subject to k1 = 0

91 = 0

9n+l = 0

ki = 2:.:: 9i i E [1, .. · , n]
j=l

31

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

(3.30f)

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

(3.30g)

ll9i+l- 9iliz :S Smax!::..t, i E [1, · · · , n + 1] (3.30h)

(3.30i)
i=l

(3.30j)

(3.30k)

i E [2, · · · , n], j E [1, · · · , n],

where n is an even number, t:..t is the sample interval, and dis a constant.

When n is odd, you should use formula (3.18) as your objective function.

Now we design an iterative algorithm to solve a sequence of nonlinear

problems (3.30). The general idea is that of at each iteration we choose the

previous solutions as our starting point, then for each point k? in one trajec-

tory, we look for the segment in another trajectory which is nearest to the

point k? based on the results from the previous iteration, and we limit this

distance to be less than or equal to a constant. This constant can be decided

by the Nyquist sampling theory and field of view to avoid aliasing artifacts.

The purpose of these constraints are to avoid big holes between neighboring

trajectories. By repeating the process, we expect the distances between two

trajectories to become almost the same everywhere, and the objective function

32

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

will become larger and larger until the results converge to an optimal value.

See Fig. 3.5 for a pseudocode description.

3. 7 The Third Improvement

We cannot guarantee the result of Model (3.30) and the iterative algorithm

(Fig. 3.5) is a global optimal solution because the model is not convex. In

this section, we present how to change the subproblem Model (3.30) to a

convex problem while keeping the iterative algorithm the same as before. To

reformulate the model as a convex model, we need to change the non-convex

objective function in the model.

Another modification we make is to reduce the design variables by half

because of the symmetry of teardrop trajectories. Suppose the number of 9i

is n = 2N + 1 (odd number), then kN is the middle point of the teardrop

trajectory. In our new model, we only need to optimize N + 1 points (half of

the trajectory), then we get the another half of the trajectory by reflecting.

tion by

By introducing a new variable T, we can replace the old objective func-

max T

33

(3.31a)

(3.31b)

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Input:

initial values ki,old, k~:old i E [1, n];

tolerance: a parameter which stands for the tolerance of the objective

function.

begin

iter := 1;

previous-obj := 0;

k . k k" . i .= i,old, i .= k" i,old i E [1, · · ·, n];

calculate ai by using Formula (3.29);

solve;

repeat

{ k. : = k k" . - k" • i,old, i .- i,old i E [1 · · · n]· , , ,

recalculate ai by using Formula (3.29);

previous-obj := current-obj;

solve the optimization problem (3.30);

i := i+1;

} until current-obj <= previous-obj + tolerance.

end.

end.

Figure 3.5: The pseudocode of the iterative non-linear method.

34

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

where kN,old is kN from the last iteration.

The new objective function and the constraint is linear. This new

objective expression and the constraint together have the same purpose as the

old objective expression, they are trying to expand the trajectory in k-space.

To get another half trajectory by reflecting, we have to add a symmetric

constraint: llkNII2 = llkN+1II2· Thisisanon-convexconstraint. We can change

the symmetric constraint to a convex constraint by using the following method.

Let

(3.32)

where kN,otd, kN+I,old are the solutions from the previous iteration (or the

initial values for the first iteration). Instead of using llkNII2 = llkN+III2 in the

symmetric constraint, we use

(3.33)

Then this constraint is linear.

Keeping all other constraints the same as before, we can get the follow-

ing convex model for the 2D case:

max T (3.34a)

(3.34b)

(3.34c)

35

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

i

ki = L gj, i E [1, ... , N]
j=l

i=l

i E [2, · · · , N], j E [1, · · · , N],

(3.34d)

(3.34e)

(3.34f)

(3.34g)

(3.34h)

(3.34i)

(3.34j)

(3.34k)

where !:lt is the sample interval, dis a constant, and k = ~(kN,old + kN+l,otd)·

This model is a good foundation for the optimization model in the three di-

mensional space. We will develop the 3D model in next section.

36

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

3.8 The Optimization Model for the 3D Case

3.8.1 Review of 3D k-Space Acquisition

There are a variety of volumetric imaging methods available in MRI. Some

methods get volumetric data through the acquisition of many 2D slices while

other methods obtain data in 3D k-space directly by appropriate modulation

of all three gradients.

The extension of the signal equation from 2D imaging to 3D imaging

is straightforward. With all three gradients involved, the resultant signal can

be expressed as

s(t) = 1 i 1 m(x, y, z)e-i21r[kx(t)x+ky(t)y+k.(t)z] dxdydz, (3.35)

where

'Y 1t kx(t) =- Gx(T) dr
21f 0

(3.36)

(3.37)

(3.38)

The trajectory through k-space is now along all three dimensions. There

are a lot of possible ways of filling 3D k-space. Let us review some specific

3D k-space trajectories here. The most common 3D k-space imaging method

is three-dimensional Fourier transform (3DFT). A simple extension of 2DFT,

37

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Figure 3.6: 3DFT k-space trajectory.

3DFT employs phase-encoding gradients along two axes, and a readout gra­

dient along the third axis. From a k-space perspective, the Gy and Gz phase

encoding lobes create movement to some (ky, kz) location prior to movement

along the kx axis when the Gx readout gradient and data acquisition turn

on. The k-space trajectory consists of lines parallel to the kx axis in a carte­

sian orientation (Fig. 3.6), convenient for image reconstruction through a

3DFT. Whereas 3DFT acquires data in a cartesian coordinate structure, 3D

Figure 3. 7: 3DPR k-space trajectory.

38

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

projection reconstruction (3DPR) acquires data in a 3D spherical coordinate

structure. The readout direction varies in a manner to fill k-space with radial

lines, typically uniformly distributed over a sphere, each line passes through

the origin (Fig. 3. 7).

Figure 3.8: Hybrid spiral-scan 3D trajectory.

Given any 2D k-space acquisition for imaging a slice, one effective way

to extend the acquisition into 3D k-space is to apply a phase-encoding gradient

along the third axis. The 3D k-space filling therefore consists of a planar tra­

jectory that is replicated in the third dimension, one for each phase encoding

that is applied. Fig. 3.8 shows the 3D k-space trajectory for the example of a

spiral-scan sequence. The 3D reconstruction operation is simply the appropri­

ate 2D reconstruction operation for each of the 2D planes in k-space followed

by Fourier transformation along the phase encoding axis with the set of 2D

reconstructions.

One disadvantage of the above 3D imaging methods is that they require

39

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

rewinders for SSFP imaging, which reduce their sampling efficiency. Just like

in 2D case, we still need to design our 3D teardrop gradient waveforms and

k-space trajectories to obtain an optimal SSFP method in 3D.

3.8.2 The Optimization Model for 3D Teardrop Gradi­

ent Waveform Design

We can apply most of the ideas of the 2D model (3.34) to the 3D model

straightforwardly except for constraints (3.34j) and (3.34k). The constraint

(3.34j) means the trajectory k~' is the rotation of another trajectory ki, and

the constraint (3.34k) insures that these two trajectories are not separated by

more than a fixed amount. But in the 3D case, the concept of rotation is not

applicable. So we cannot design two neighboring trajectories then rotate them

to get all the interleaves in the 3D case. To replace these two constraints in

the 3D case, we have to design all the interleaves together in the 3D model.

Suppose we have Nt trajectories in the 3D k-space all together. Then

we take the following set of points as our design variables:

(3.39)

(3.40)

40

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

k ... Nt _ [kNt kNt kNt kNt]T
- 1 ' 2 ' ... ' i ' ... ' N+l · (3.41)

For each pair of two neighboring trajectories (for example, kf, kf are

neighboring to each other), we add the following constraint (see Fig. 3.4):

m~n distance(kf, kfkf+1) :::; constant.
J

(3.42)

This constraint has the same meaning as constraint (3.27) for the 2D

model. Its purpose is just to avoid big gaps between the neighboring trajecto-

ries. The constant can be decided by Nyquist sampling theory to avoid alias

artifacts.

Then the optimization model for the 3D case is:

max T (3.43a)

subject toT:::; kr;J · (kYJ,old/JlkYJ,oldll2), mE [1, · · · , Nt] (3.43b)

k~ = 0, mE [1, · · ·, Nt] (3.43c)

g~ = 0, mE [1,··· ,Nt] (3.43d)

i

k': = Lgj, i E [1 · · · N] , , , mE [1, · · · ,Nt] (3.43e)
j=l

JJg':JJ2:::; Gmroo i E [1, · · · , N + 1], mE [1, · · · , Nt] (3.43f)

JJg~ 1 - g':JJ2:::; Smax~t, i E [1,··· ,N + 1], mE [1,··· ,Nt]

(3.43g)

(3.43h)

41

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

2N

L igr; = 0, m E [1, · · · , Nt] (3.43i)

(3.43j)

Vi, j E [2, · · · , N], p, I! E [1, · · · , Nt],

where ~tis the sample interval, dis a constant, km = ~(kiV,otd+k]V+l,old), where mE

[1, · · · , Nt], and trajectory p and trajectory I! are neighboring to each other.

This is a convex model of the subproblem in the 3D case. The design

variables represent points in three dimensions. The iterative algorithm can be

applied analogously as before. The idea of this model is almost the same as

the 2D model, but the implementation is much more complicated. In Chapter

4, some details of implementation issues will be discussed.

42

Chapter 4

Implementation

To solve the models built in Chapter 3 by optimization software, we need to

implement those models in a modeling language. We have implemented all the

models in AMPL [8]. AMPL has been developed at Bell Laboratories. It al-

lows the implementation of numerical experiments with familiar mathematical

notation and concepts. Further, AMPL offers an interactive command envi­

ronment for setting up and solving optimization problems. A flexible interface

allows a user to choose from several solvers and to select options that improve

the solver's performance. AMPL offers also various options to format data,

for browsing or printing results.

In Chapter 3, we have presented all the models we have developed for

this project. Model (3.34) and model (3.43) are the final convex models for the

43

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

2D and 3D cases. So only the implementation issues of these two models and

the iterative algorithm of Fig. 3.5 involved in the numerical experiments will

be addressed in this chapter. Our implementation is based on the formulations

and equations that were detailed in the previous chapter.

4.1 The AMPL Model teardrop2D.mod

4.1.1 Setting up the Model

In this section, we will explain how to implement the objective function and

all the constraints of the model (3.34) and its iterative algorithm (Fig. 3.5) in

the AMPL code teardrop2D.mod.

The expressions in the objective and constraints necessarily involve

variables and parameters. So we need to define those variables and parameters

first in AMPL.

In model (3.34), we have the following variables: gi, ki, k~' and T. In

the AMPL model teardrop2D.mod, we declared these variables by:

var x{1.. N+1}; # X of gi

var y{1. . N+1}; # y of gi

var x1{1. .N+1}; # X of ki

var y1{1 .. N+1}; # y of ki

44

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

var x2{1 .. N+l}; # x of k''i, rotation of x1

var y2{1 .. N+1}; # y of k''i, rotation of y1

var tao; # the supplementary variable of objective function

These declarations create the indexed collection of variables for gi, ki and k~

and a variable for T.

There are two supplementary variables for setting up the quadratic

constraints:

var minumber; # supplementary variable

var beta{2 .. N,1 .. N}; #distances between two trajectories,

intermediate variables

They will be explained later.

The following are the parameter declarations in this model.

param N integer > 0; # total number of gi is 2*N+1

param pi >0; # the ratio constant of circumference to diameter

param K > 0; # a constant used in the initial condition

param M integer > 0; #number of interleaves

param mx ; #scalar in the initial condition

param TR >O;#readout interval for SSFP sequences, the unit is

s(second)

45

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

par am GMax; # maximum gradient of MRI machine, the unit is T/m

par am SMax; # maximum slew rate of MRI machine, the unit

is T/m/s

par am gama; # gyromagnetic ratio

par am DelT := TR/(2*N+1); # the sampling interval, the unit is

s(second)

param G1 (gama * GMax * DelT)~2; #maximum gradient of

calculation

param S1 (gama * SMax * DelT * DelT)~2;#maximum slew

#rate of calculation

par am x10{1 .. N+1}; # the initial value for x of ki

par am y10{1.. N+1}; # the initial value for y of ki

par am x20{1 .. N+1}; # the initial value for x of k' 'i

par am y20{1 .. N+1}; # the initial value for y of k' 'i

par am alfa{2 .. N, 1. . N};

par am beta1 {1 .. N};

par am jj;

par am previous_obj default 0; #the value of previous

objective function

param tolerance; # a tolerance for the objective function

46

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param d; # the distance between two neighboring trajectories

param iter; # iteration number

There is a brief explanation for each parameter after the # in each

declaration. Now we explain some more complicated parts here. Let us look

at what G1, 81 stand for first.

Let t0 , t 1 , • · · , tn represent the discrete time, then we use the notation

In model (3.34), by (3.34e)we define the relation

Further,

i

ki = L:gj.
j=l

However, from MRI theory (Section 2.2), we know that

So we have

=

=

'Y 1t k(t) =- G(r) dr.
27f 0

~ J;; G(r) dr-
2
: J;i-l G(r) dr

~ rti-l G(r) dr
27r Jt;

47

(4.1)

(4.2)

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Thus

(4.3)

Suppose that Gmax represents the maximum gradient of a MRI machine,

then constraint (3.34f) of model (3.34) should be

(4.4)

Then

21r llg;ll2 < G
'Y f:l.t - max

so

(4.5)

In the AMPL model teardrop2D.mod, the formulation of (4.5) was used

for the implementation of this constraint. In the AMPL model, we declared

parameter gama=~ = 42576000HzT-1
, further parameter GMax represents

Gmax, and parameter Del t represents !::..t. We also defined another parameter

G1=(~Gmax!::..t) 2 . So the constraint in AMPL is:

subject to gg{i in 1 .. N+1}:

Let Bmax represent the maximum slew of a MRI machine, then the

48

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

actual meaning of constraint (3.34g) of model (3.34) is

Then

so

llg(ti+I)- g(ti)ll2:::; Smaxb.t =?
2; lt(ll9i+l- 9ill2):::; Smaxb.t

=? ll9i+l- 9ill2:::; ~Smax(b.t) 2 ,

(4.6)

(4.7)

In the AMPL model teardrop2D .mod, the formulation of (4. 7) was used

for the implementation of this constraint. In the AMPL model, the parameter

SMax represents Smax, we also defined another parameter S1=(~Smax(b.t) 2) 2 .

So the constraint in AMPL is:

subject to vv{i in 2 .. N+1}:

(x[i]-x[i-1])-2 + (y[i]-y[i-1])-2 <= S1

After defining the variables and parameters, the objective function and

constraints (3.34a)-(3.34e), (3.34h) and (3.34j) can be expressed in AMPL

straightforwardly. The AMPL code is as follows:

#objective function

maximize k:

tao;

49

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to ob:

tao<= (x1[N]*x10[N]+y1[N]*y10[N])/sqrt(x10[N]*x10[N]+

y10 [N] *y10 [N]);

teardrop starts from the center of k-space

subject to xO:

x1[1]=0;

subject to yO:

y1 [1] =0;

#the first point of gi is zero

subject to sO:

X [1] = 0;

subject to syO:

y [1] = O· J

define k[i] in terms of g[i]

subject to x1_def{i in 2 .. N+1}:

x1 [i] =x [i] +x1 [i -1] ;

50

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to y1_def{i in 2 .. N+1}:

y1[i]=y[i]+ y1[i-1];

For odd points of gi, ki is even. The symmetric constraint: kN+1=kN.

subject to symmetr:

x1[N]*(x10[N]+x10[N+1])+y1[N]*(y10[N]+y10[N+1])

=x1[N+1]*(x10[N]+x10[N+1])+y1[N+1]*(y10[N]+y10[N+1]);

#define x2,y2 in terms of x1,y1

subject to x2_def{i in 1 .. N+1}:

x2[i] = x1[i]*cos(2*pi/M)- y1[i]*sin(2*pi/M);

subject to y2_def{i in 1 . . N+1}:

y2[i] = x1[i]*sin(2*pi/M) + y1[i]*cos(2*pi/M);

Some further work is needed for efficient implementation of the first

moment nulling constraint (3.34i). We introduce two vectors k and its per-

pendicular vector kl_ here. k can be calculated by formula (3.32). Because of

the first moment nulling constraint and the trajectory is symmetric, we know

9i+N · k = -gN+2-i · k, (4.8)

and

-j_ -j_

9i+N 'k = 9N+2-i 'k · (4.9)

51

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

To satisfy the constraint (3.34i), it is necessary and sufficient to satisfy

the following equalities:
2N

k . (2:::: igi) = o, (4.10)
i=l

2N

- j_ "" k 0 (L..,.. igi) = 0. (4.11)
i=l

Then we can make the following deduction from formula (4.10):

2N 2N

k 0 (2: igi) I: igi 0 k
i=l i=l

N 2N

2: igi · k + (N + 1)gN+l · k + 2: igi · k
i=l i=N+2
N N
2: igi · k + (N + 1)gN+l · k + 2:(N + j)gN+j · k (4.12)
i=l j=2

N N
2: igi · k + (N + 1)gN+l · k- 2: (N + j)gN+2-j · k
~1 ~2

N N
2: igi · k + (N + 1)gN+l · k- 2:(N + i)gN+2-i · k
i=l i=2

We can make the same deduction from formula (4.11), finally we can

get:

2N N N

kj_ 0 (L igi) = L igi 0 kj_ + (N + 1)gN+l 0 kj_ + L(N + i)gN+2-i 0 kj_. (4.13)
i=l i=l i=2

Finally, we use formulas (4.12) and (4.13) in our implementation. The

AMPL codes are as follows:

#First moment nulling constrain!

subject to nulll:

sum{i in 1 .. N} i*(x[i]*(x10[N]+x10[N+1])+y[i]*

52

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

(y10[N]+y10[N+1])) + (N+1)*(x[N+1]*(x10[N]+x10[N+1])

+y[N+1]*(y10[N]+y10[N+1]))-sum{i in 2 .. N} (N+i)*(x[N+2-i]

(x10[N]+x10[N+1])+y[N+2-i](y10[N]+y10[N+1]))=0;

#First moment nulling constrain2

subject to null2:

sum{i in 1 .. N} i*(x[i]*(y10[N]+y10[N+1])-y[i]*

(x10[N]+x10[N+1])) + (N+1)*(x[N+1]*(y10[N]+y10[N+1])

-y[N+1]*(x10[N]+x10[N+1]))+sum{i in 2 .. N} (N+i)*(x[N+2-i]

(y10[N]+y10[N+1])-y[N+2-i](x10[N]+x10[N+1]))=0;

The hardest part is how to express the quadratic constraint (3.34k) in

AMPL. In Section 3.6 we already described the meaning of this constraint.

For each k~'e i E [2, · · · , N] in a trajectory £, look for the segment k~k~+l

which is the nearest to the point in another trajectory p, then we limit the

distance to be less than a constant, i.e.,

To look for the nearest segment k~k~+l of trajectory p to k~'e, we de­

fined two dimensional parameters alfa{2 .. N ,1 .. N} to represent ai· For ex­

ample, alfa [2 ,10] equals to ai that is used to calculate the distance from

53

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

the point k;e to the segment kf.0kf.1 . We also defined two dimensional variables

beta{2 .. N,1 .. N} to represent f3i,j· For example, beta[2,10] equals the dis-

tance (32,10 which is the distance from the point k;e to the segment kf.0kf.1 .

The following code is used to calculate all the alfas, i.e., for all the point

k?, i E [2, · · · , N] (except for the first point) in a trajectory£, we calculate

all the alfa[i,j], j E [1, ... ,N] to all the segments on another trajectory

p.

#caculate alfa[i,j]

let {i in 2 .. N, j in 1. .N} alfa[i,j] :=

((x20[i]-x10[j])*(x10[j+1]-x10[j])+(y20[i]-y10[j])*(y10[j+1]-y10[j]))/

((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2);

for {i in 2 .. N} {

for{j in 1 .. N} {

if alfa[i,j]>1 then let alfa[i,j] :=1;

if alfa[i,j]<O then let alfa[i,j] :=0;

}

}

"e If alfa[i, j] > 1 or alfa[i, j] < 0, then the closest point to ki on the

line through k%k%+l is not on the segment. So we chose a larger distance to

54

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

the closest endpoint, like if alfa[i, j] > 1, we let alfa[i, j] = 1, it indicates

that the distance f3i,j will be the distance of k~'e to k~+I· On the other hand,

if alfa[i, j] < 0, we let alfa[i, j] = 0, what means that the distance /3i,j will

be the distance of k~' e to k~.

Then we can calculate all the distances from each point k~'e, i E

[2, · · · , N] to all the segments k~k~+l' j E [1, · · · , N] by using the following

code:

#caculate beta[i,j]

let {i in 2 .. N, j in 1 .. N} beta[i,j] :=

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+(alfa[i,j]

*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2;

We do not calculate the distance from the first point k~e to the segments

on another trajectory because the first point is always on the center of the k-

space.

After we get all the distances beta [i, j], we need to determine which

one is the smallest to each point k~'e i E [2, · · · , N]. For example, fori= 3,

we suppose beta[3,5] is the smallest element in beta[3,j] j E [1, · · · ,N].

This means that the nearest segment to k~e is kfk~. To do this, we need to de­

fine another intermediate variable minumber and another series of parameters

beta1[1. .N] to store the indices (j's) of the nearest segment k~k~+I· Contin-

55

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

uing the above example, let us suppose beta [3, 5] is the smallest element of

beta[3,j] j E [l,N], then beta1[3] = 5.

We used the following code to search for the smallest bet a [i , j] and

beta1 [1 .. N].

for {i in 2 .. N}{

let minumber :=beta[i,1];

let beta1[1] :=0;

let beta1 [i] : =1;

for{j in 2 .. N}{

if beta[i,j] < minumber

then {let minumber:=beta[i,j];

let beta1[i] :=j;}

}

}

if beta1[i-1]=40

then {let jj:= i-1;

break;}

It is still necessary to explain what j j means here. The counter j j

stands for how many points of k~'e should be subject to the quadratic con­

straint. For example, if the nearest segment to the point k~4 is k~0k~1 (the last

56

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

segment in a trajectory) at the previous iteration, then jj = 33, it means that

to get a better result, we don't need to apply the quadratic constraints to the

· "R "R pomts k34-k40 anymore.

For the constraint (3.34k) in model (3.34), the variables and parameters

have the following relationship with the variables and parameters in the AMPL

model teardrop2D.mod.

kj (x1[beta1[i]], y1[beta1[i]])

kJ+ 1 (x1[beta1[i + 1]], y1[beta1[i + 1]])

k~' = (x2[i], y2[i])

ai (alfa[i, beta1[i]]).

Thus, the constraint can be expressed in the following way in AMPL.

#Quadratic constraint

subject to qu3{i in 4 .. jj}:

(alfa[i,beta1[i]]*x1[beta1[i]+1]+(1-alfa[i,beta1[i]])*x1[beta1[i]]

-x2[i])-2+(alfa[i,beta1[i]]*y1[beta1[i]+1]+(1-alfa[i,beta1[i]])*

For the first two points k;R, k~e, we always limit the distance from k;R

to kf. k~ and the distance from k; e to k~ k~ for the purpose of getting a good

shape of a teardrop as follows:

Quadratic constraints for the first two points

57

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to qui:

(alfa[2,1]*x1[2]+(1-alfa[2,1])*x1[1]-x2[2])-2+

(alfa[2,1]*y1[2]+(1-alfa[2,1])*y1[1]-y2[2])-2<=d-2;

subject to qu4:

(alfa[3,3]*x1[4]+(1-alfa[3,3])*x1[3]-x2[3])-2+

(alfa[3,3]*y1[4]+(1-alfa[3,3])*y1[3]-y2[3])-2<=d-2;

4.1.2 Specifying Data

There is a distinction between an AMPL model for an optimization problem,

and data values that define a particular instance of the problem. After setting

up the model, we need to provide the data that convert a model into a specific

problem instance, then we use an optimization software to solve the problem.

All the implementation issues about specifying data for the parameters and

initial values of variables are addressed in this section.

The following code is used to specify data for most of the parameters

in the model.

data;

param N :=40;

param K 800;

param M 4· ,

58

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param mx ·= 20;

par am pi - 3.14159;

par am TR - 0.004;

par am GMax - 0.04;

par am SMax := 150;

par am gama - 42576000;

par am jj :=40;

par am tolerance - 1·
'

par am d - 63.25;

par am iter := 1;

The data command initiates a data mode in AMPL. AMPL will read

data statements after this command. The values for the parameters TR, GMax

and SMax are from a real MRI machine, GMax and SMax will change from model

to model. The value for the parameter gama is from MRI theory, and we give

reasonable values to the parameter tolerance and d accordingly.

We give the initial values for the parameter iter and jj, they will

change after the first iteration. We can modify the value of N to get different

results for different scanning points. If you give a bigger value of N, you would

get a smoother trajectory in k-space, but it would take more time to solve the

problem.

59

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

The parameters K, M and mx are used for specifying data for the pa­

rameters x10, y10, x20 and y20 - the initial values for the corresponding

variables in the first iteration. After the first iteration, the parameters x10,

y10, x20 and y20 will hold the values of the corresponding variables from the

last iteration. These values will be used to calculate the alia and beta needed

in the quadratic constraints.

We used the Archimedean spirals to generate the initial values for vari­

ables x1, y1, x2 and y2 just as the following code does:

#intial values for parameters

let {i in 1 .. N+1} x10[i] :=K/mx*((pi*(i-1)/N*M)*cos(pi*(i-1)/N*M));

let {i in 1 .. N+1} y10 [i] : =

K/mx*((pi*(i-1)/N*M)*sin(pi*(i-1)/N*M));

let {i in 1 .. N+1} x20 [i] : =x10 [i] *cos (2*pi/M) - y10 [i] *sin(2*pi/M);

let {i in 1 .. N+1} y20 [i] : =

x10[i]*sin(2*pi/M) + y10[i]*cos(2*pi/M);

#intial values for variables

let {i in 2 .. N+1} x1 [i] - x10 [i] ;

let {i in 2 .. N+1} y1 [i] - y10 [i] ;

let {i in 2 .. N+1} x2 [i] - x20 [i] ;

60

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

let {i in 2 .. N+1} y2 [i] : = y20 [i] ;

let {i in 2 .. N+1} x [i] : = x1 [i] -xl[i -1] ;

let {i in 2 .. N+1} y[i] y1[i]-y1[i-1];

Figure 4.1: Archimedean spiral.

An Archimedean spiral (Fig. 4.1) has the property that successive arms

have a fixed distance which is an attractive property for our trajectories in the

k-space. An Archimedean spiral can be described as

r =a+ b(J. (4.14)

In our AMPL program, we let a 0, b = K/mx, where K and mx are two

parameters.

61

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

4.1.3 Command Environment

This section explains the commands that invoke solvers, display results and

commands for modifying and resolving the model.

The commands used for the first run (first iteration) of the model are

as follows:

option solver mosek;

option show_stats 1;

solve;

display k

display x1, y1

display x2, y2

display x,y;

display iter

display jj;

The command

option solver mosek;

chose the solver MOSEK. If you have more than one solver, you can choose

your favorite one by changing this option. We used the command

option show_stats 1;

62

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

to have a summary of the actions of presolve and of the size of the resulting

program. AMPL simplifies constraints as it prepares the model and data for

handing them to a solver. For example, it may combine linear terms involving

the same variable, move variables from one side of a constraint to the other

side, or eliminate variables fixed at a value. Entire constraints may be dropped

because a mathematical test shows that they are implied by other constraints.

This work is carried out by a presolve phase.

The solve command finally sends the generated optimization problem

to the solver of your choice. The display commands are used to exhibit the

results after the solver solves the problem.

In the iterative algorithm (Fig. 3.5), we have a "repeat structure".

The repeat structure means we want to solve the problem again and again

after the first iteration until a stop criterion is satisfied. At each iteration, the

problem is almost the same as the problem of the last iteration, except for the

initial values for the variables and the quadratic constraints. The values for

the parameters alfa and beta! change after each iterations because they are

based on the results of the last iteration. In other words, after each iteration we

recalculate alfa, beta and beta!, and then solve the problem again. Although

we do not change the model, actually the quadratic constraints change because

the value of their parameters change.

63

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

There are some commands provided in AMPL to help us to change

the current optimization problem. The commands that implements the repeat

structure and changes the data of alf a, beta and beta1 are as follows:

repeat{

#after the first iteration

#give the results of last iteration to parameters

let {i in 1 .. N+1} x10 [i] : =x1 [i] ;

let {i in 1 .. N+1} y10 [i] :=y1[i];

let {i in 1 .. N+1} x20 [i] : =x2 [i];

let {i in 1 .. N+1} y20 [i] : =y2 [i] ;

#caculate alfa[i,j] again for this iteration

let {i in 2 .. N, j in 1. .N} alfa[i,j] :=

((x20[i]-x10[j])*(x10[j+1]-x10[j])+(y20[i]-y10[j])*

(y10 [j+1] -y10 [j])) I ((x10 [j+1] -x10 [j]) -2+

(y10[j+1]-y10[j])-2);

for {i in 2 .. N} {

for{j in 1. . N} {

if alfa[i,j]>1 then let alfa[i,j] :=1;

if alfa[i,j]<O then let alfa[i,j] :=0;

}

64

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

}

#caculate beta[i,j] again for this iteration

let {i in 2 .. N, j in 1 .. N} beta[i,j] :=

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+

(alfa[i,j]*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2;

for {i in 2 .. N}{

let minumber :=beta[i,1];

let beta1 [i] : =1;

for{j in 2 .. N}{

if beta[i,j] < minumber

then {let minumber:=beta[i,j];

let beta1[i] :=j;

}

}

}

if beta1[i] < beta1[i-1]

then {let jj:=i-1; break;}

if beta1[i-1]=40

then {let jj:= i-1;

break;}

65

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

let previous-obj :=k;

solve; display k

display x1, y1

display x2, y2

display x,y;

display jj;

let iter := iter+!;

display iter; } until k <= previous-obj+tolerance;

After some data values have been changed, the current values of the

variables no longer give an optimal solution. So the command solve and the

display commands for displaying results are issued a second time.

Our stop criterion is k <= previous-obj+tolerance, where k stands

for the value of the current objective function. If the trajectories in the k-space

do not expand any more or only expand a little, then the algorithm stops.

Putting all the code that we explained in this chapter together, we have

our model teardrop2D.mod as presented in Appendix A.l.

We performed the numerical experiments using this model. We will

describe the results in the next chapter.

66

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

4.2 The AMPL Model teardrop3D.mod

The AMPL model teardrop3D.mod is the implementation of model (3.43).

The 3D optimization model (3.43) is almost a straight-forward adoption of

the 2D model (3.34) except that all the interleaves of trajectories are design

variables in the 3D model.

In the model teardrop3D.mod, we designed 20 trajectories in k-space.

This idea is based on the dodecahedron.

Figure 4.2: A dodecahedron in 3D.

Fig. 4.2 shows a dodecahedron. It is composed of 20 polyhedron ver­

tices, 30 polyhedron edges, and 12 pentagonal faces. Suppose the center of

k-space is on the center of a dodecahedron, we will design 20 trajectories start­

ing from the center of k-space, and the starting directions of the trajectories

67

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

are from the center to each vertex.

The overall structure of teardrop3D .mod is the same as the struc­

ture of teardrop2D.mod. Because we are designing 20 trajectories now, in­

stead of 2 trajectories, we need some two-dimensional variables in the model

teardrop3D .mod.

The variables x, y and z represent the x-, y- and z-coordinates of k,

xdt, ydt and zdt represent x-, y- and z-coordinates of g. They are all two­

dimensional variables. For example, x [2, 3] stands for the x-coordinate of

the third point on the second trajectory. Variable zdt [20, 11] means the

z-coordinate of the 11th point of the 20th g (gradient waveform).

The variables betaaij {2 .. N, 1. . N} correspond to the beta's in the

teardrop2D.mod from trajectory i to p. For example, betaa23 [3, 4] equals

the distance from the third point on the trajectory 2 to the segment k4k5 on

the trajectory 3.

The parameters alfaij {2 .. N, 1 .. N} correspond to the alia's in the

teardrop2D.mod from trajectory i to j. For example, alfa23 [2, 10] stands

for the a value that is used when calculating the distance from the second

point of trajectory 2 to the segment k10 k11 on the trajectory 3.

The parameters betaij { 1 .. N} correspond to the beta1 'sin the teardrop2D.mod

from trajectory i to j. For example, suppose that betaa23 [3, 5] is the smallest

68

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

one of betaa23 [3, j], j E [1, N], then beta23 [3] =5, i.e., the nearest segment

to the third point of trajectory 2 is k5k6 on the trajectory 3.

In the implementation of constraint (3.43b), we let

kN,old = (xxO, yyO, zzO).

The purpose of doing this is to avoid that all the trajectories get close to each

other after several iterations. The parameters xxO,yyO and zzO are initial

values for the variables x, y and z in the first iteration.

We generated initial values xO,yO and zO for the variables x,y and z by

using Maple. Fig. 4.3 shows the initial values of the 20 trajectories.

Just like in the 2D model, the most difficult part of implementing the

3D model is how to express the quadratic constraints (3.43j) in AMPL. For

each pair of two neighboring trajectories, we need to apply these quadratic

constraints to avoid big holes between the trajectories.

69

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

20

10

0

-10

-20
20

-20 -20

Figure 4.3: The initial values of the 20 trajectories.

70

20

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

18

9

Figure 4.4: A platonic dodecahedron graph.

71

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

To implement these constraints, the first thing is to make clear the

connectivity of the the dodecahedron, i.e, we need to know which trajectories

are neighboring to each other. The Platonic graph (Fig. 4.4) of a dodecahedron

corresponds to the connectivity of the vertices of a dodecahedron. It is a

symmetric cubic planar graph. For example, trajectory 2 is surrounded by

trajectory 1, 3 and 12. So we need to limit the distances from trajectory 2 to

trajectory 1, 3 and 12 to be less than a constant, as the following code does:

#Quadratic constraint of tra. 2 to tra. 1 subject to qu3{i in

2 .. 10}:

(alfa21[i,beta21[i]]*x[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])*

x[1,beta21[i]]-x[2,i])~2+(alfa21[i,beta21[i]]*y[1,beta21[i]+1]+

(1-alfa21[i,beta21[i]])*y[1,beta21[i]]-y[2,i])~2+

(alfa21[i,beta21[i]]*z[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])*

z[1,beta21[i]]-z[2,i])~2<=d~2;

#Quadratic constraint of tra. 2 to tra. 3 subject to qu4{i in

2 .. 10}:

(alfa23[i,beta23[i]]*x[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])*

x[3,beta23[i]]-x[2,i])~2+(alfa23[i,beta23[i]]*y[3,beta23[i]+1]+

(1-alfa23[i,beta23[i]])*y[3,beta23[i]]-y[2,i])~2+

72

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

(alfa23[i,beta23[i]]*z[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])*

z[3,beta23[i]]-z[2,i])-2<=d-2;

#Quadratic constraint of tra. 2 to tra. 12 subject to qu5{i in

2 .. 10}:

(alfa212[i,beta212[i]]*x[12,beta212[i]+1]+(1-alfa212[i,beta212[i]])*

x[12,beta212[i]]-x[2,i])-2+(alfa212[i,beta212[i]]*y[12,beta212[i]+1]+

(1-alfa212[i,beta212[i]])*y[12,beta212[i]]-y[2,i])-2+

(alfa212[i,beta212[i]]*z[12,beta212[i]+1]+(1-alfa212[i,beta212[i]])*

z[12,beta212[i]]-z[2,i])-2<=d-2;

We can implement all the quadratic constraints similarly in AMPL.

Part of the AMPL code of the model teardrop3D.mod is in Appendix

A.2. We do not include all the quadratic constraints in the Appendix because

the whole program is too long.

73

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

74

Chapter 5

Computational Results

In this chapter we present the computational results of the teardrop2D.mod

and teardrop3D.mod models solved by MOSEK [8]. The MOSEK optimiza­

tion software is designed to solve large scale mathematical optimization prob­

lems. It can solve linear, convex quadratic and general convex mathematical

programs. An interior-point optimizer is available for all supported problem

classes. All numerical experiments were performed on an IBM RS/6000 44P

Model 270, 375 MHz, with 8 GB memory Workstation.

5.1 Results with teardrop2D.mod

Fig. 5.1 to Fig. 5.4 present the 2D k-space trajectories obtained by solving

the model teardrop2D.mod without the first moment nulling constraint. After

75

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 244.884

200

100

0
1/m

-100

-200

-200 -100 0 100 200 300

1/m

Figure 5.1: 2D k-space trajectories after the first iteration.

ten iterations, we got the optimal result (Fig.5.4). We only put the results of

four iterations here to save some space. From these figures, we can see that

the objective function value is increasing from iteration to iteration, in the

meantime, the trajectories are becoming more and more evenly spaced which

is a perfect property for trajectories in the k-space.

76

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 388.076

400

300

200

100

0
1/m

-100

-200

-300

-400
-400 -200 0 200 400

1/m

Figure 5.2: 2D k-space trajectories after the fourth iteration.

77

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

Obj = 429.701

500

400

300

200

100

1/m 0

-100

-200

-300

-400
-600 -400 -200 0 200 400

1/m

Figure 5.3: 2D k-space trajectories after the eighth iteration.

78

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 431.115

500

400

300

200

100

1/m 0

-100

-200

-300

-400
-600 -400 -200 0 200 400

1/m

Figure 5.4: 2D k-space trajectories after ten (the last) iteration.

79

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 419.849

500

400

300

200

100

1/m 0

-100

-200

-300

-400
-400 -200 0 200 400 600

1/m

Figure 5.5: 2D k-space optimal trajectories with first moment nulling.

80

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Fig.5.5 presents the the optimal trajectories obtained by solving the

model teardrop2D.mod with first moment nulling. We got the optimal result

after twelve iterations. Comparing this result to the result without first mo­

ment nulling (Fig.5.4), we can see the objective decreases a little, however as

first moment nulling is required for SSFP imaging, the better results are more

realistic.

The k-space trajectories we got from the model are only half teardrops.

We can get the another half by symmetry of the designed teardrop trajectories.

For example, Fig. 5.6 shows one of the whole teardrop trajectories from Fig.

5.4.

81

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

Obj = 431.115

500.-------~--------~------~--------.

400

300

200

(100

1/m 0

-100

-200

-300

-400~------~--------~--------~------~

-400 -200 0 200 400

1/m

Figure 5.6: One optimal teardrop trajectory.

Rotating the associated gradient profiles is equivalent to rotating the

trajectory around the center of k-space. Together the combined views can

cover the two-dimensional k-space completely, as evidenced by the set of views

in Fig.5.7. There are four teardrops in the figure.

82

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 431.115

400

300

200

100

0
1/m

-100

-200

-300

-400

-500~----------------~------------------_J
-500 0 500

1/m

Figure 5. 7: Rotate the optimal teardrops to cover the whole k-space.

Fig. 5.8 and Fig. 5.9 present the corresponding optimal gradient wave-

forms in the x- and y-direction which generate one of the trajectories of Fig.

5.4. Waveforms for the other interleaves are linear combination of these two.

83

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

80

60

40

20

1/m
0

-20

-40

-60

-80
0 5 10 15 20 25 30 35 40 45

Sample Points

Figure 5.8: Gradient waveform Gx in the x-direction of the 2D k-space.

84

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

80

60

40

20

1/m
0

-20

-40

-60

-80
0 5 10 15 20 25 30 35 40 45

Sample Points

Figure 5.9: Gradient waveform Gy in the y-direction of the 2D k-space.

85

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

5.2 Results with teardrop3D.mod

Fig. 5.10 to Fig. 5.13 present the results of the 3D k-space trajectories ob­

tained by solving model teardrop3D.mod. From these figures, we can see that

the value of the objective function is increasing from iteration to iteration, this

means that the resolution is increasing while all the constraints are satisfied.

After seven iterations, we got the optimal twenty trajectories (Fig.5.13). Al­

though the results are promising, they are still not perfect. The trajectories in

the 3D k-space are not as evenly spaced in the 3D k-space as we expected. To

illustrate this behavior, we show two trajectories in Fig. 5.14. The two tra­

jectories starting from the origin show similar behavior initially as in the 2D

case, while the last two points jump unexpectedly. This strange behavior may

indicate where the model should be improved to get better results. Further

improvements and experimentation are the subject of future research.

86

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 22.0303

30

20

10

1/m 0

-10

-20

-30
50

40

-100 -40

1/m 1/m

Figure 5.10: 3D k-space trajectories after the first iteration.

87

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

40

20

1/m 0

-20

-40
100

Obj = 29.852

0

-50 -40

1/m 1/m

Figure 5.11: 3D k-space trajectories after the third iteration.

88

40

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 34.8647

40

20

0

1/m
-20

-40

-60
50

40

-50 -40

1/m 1/m

Figure 5.12: 3D k-space trajectories after the fifth iteration.

89

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

Obj = 36.7152

40

20

0

1/m
-20

-40

-60
50

40

-50 -40

1/m 1/m

Figure 5.13: 3D k-space trajectories after the seventh(last) iteration.

90

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

8

6

4

2

1/m
0

-2

-4

-6

-8

-10
0 2 4 6 8 10 12

Sample Points

Figure 5.15: Gradient waveform Gx for trajectory 1 in the 3D k-space.

Fig's. 5.15, 5.16 and 5.17 display the corresponding optimal gradient

waveforms in the x-, y- and z-direction to generate the first trajectory of Fig.

5.13. The other optimal gradient waveforms are similar, so we do not present

them.

92

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

1/m

Sample Points

Figure 5.16: Gradient waveform Gy for trajectory 1 in the 3D k-space.

93

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

25

20

15

10

1/m
5

0

-5

-10

-15
0 2 4 6 8 10 12

Sample Points

Figure 5.17: Gradient waveform Gz for trajectory 1 in the 3D k-space.

94

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

The exact shapes of teardrop trajectories and gradient waveforms vary

with the number of interleaves, Field Of View and resolution. Various FOV,

TRs, interleaves and many different initial solutions were tested and alternative

solvers were used as well. In this thesis we represent only the best result derived

by using MOSEK.

In the paper [1], Anand et al. implemented interleaved teardrop read­

outs designed for a PD250 (27 mt/m, 72 T /m/s) on an in-house research

Marconi Eclipse 1.5 T scanner. The readout gradient waveform was numeri­

cally optimized using a proprietary Marconi algorithm. They showed a frame

of transverse, TR 5.2ms, 50 interleave cine (movie), 36cm field of view, 3mm

in-plane resolution. The image (Fig.5.18) displays good blood/septem (mus­

cle) contrast to noise ratio. They have demonstrated that the nonstandard

readout trajectories-teardrops can be used to acquire SSFP images. We ex­

pect our optimal readout to offer increased scan-time efficiency, which will

yield higher frame rates and increased signal to noise ratio.

95

M.Sc. Thesis - T . Ren - McMaster - Computing and Software

Figure 5.18: Gradient waveform Gz for trajectory 1 in 3D k-space.

96

Chapter 6

Conclusions and Future Work

Teardrop gradient waveform design is an increasingly important part of MRI

sequencing because teardrop readout enables us to acquire SSFP images effi­

ciently. We have shown that teardrop gradient waveform design can be cast as

a convex-optimization problem for which efficient solution methods exist. In

particular, we described how to build nonlinear convex optimization models for

2D and 3D teardrop gradient waveform design. The results of our numerical

experiments indicate that the described optimization procedure can provide an

effective, scientifically sound method of ensuring feasible and optimal teardrop

gradient waveform for the stated design goal and the constraints while requir­

ing short computation time. The unusual shapes exhibited by some numerical

results suggest that conventional design methods may be far from optimal.

97

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

Due to the limitations, there are still some aspects of the 3D model

that can be improved and areas left for further investigation. A few of the

issues that should be taken into account for future research are:

• Improve the 3D model to get the resulting trajectories more evenly

spaced in the 3D k-space (see Fig. 5.14 and the discussion around it);

• Add more constraints to the 2D and 3D models, like the second moment

nulling which would reduce the image artifacts caused by pulsatile flow.

The second moment nulling can be implemented the same efficient way

as the first moment nulling (see page 51 to page 53) ;

• Test on MRI machine.

The work which has been done with the teardrop gradient waveform design has

built an excellent foundation for future developments. This research illustrates

the design of MRI sequences should benefit from optimal design.

98

Appendix A: The AMPL Codes

A.l Model Teardrop2D.mod

#This is teardrop 2D convex model with only linear and quardratic

constraints

#parameters and variables, (xi, yi) corresponds to gi

#(x1i,y1i) corresponds to ki, and (x2i,y2i) corresponds to k'i

param N integer > 0; # total number of gi is 2*N+1

param pi >0; # the ratio constant of circumference to diameter

param K > 0; # a constant used in the initial condition

param M integer > 0; #number of interleaves

param mx ; #scalar in the intial condition

param TR >0; # readout interval for SSFP sequences, the unit

is s(second)

param GMax; # maximium gradient of MRI machine, the unit is T/m

param SMax; # maximium slew rate of MRI machine, the unit is

99

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

T/m/s

param gama; # gyromagnetic ratio

param DelT := TR/(2*N+1); #the sampling interval, the unit is

s(second)

param G1 (gama * GMax * DelT)-2; # maximum gradient of

calculation

param S1 (gama * SMax * DelT * DelT)-2; #maximum slew rate

#of calculation

par am x10{1 .. N+l}; # the initial value for X of ki in each iteration

par am y10{1. . N+l}; # the initial value for y of ki in each iteration

par am x20{1 .. N+l}; # the initial value for X of k'i in each iteration

par am y20{1 .. N+l}; # the initial value for y of k'i in each iteration

par am alfa{2 .. N, 1.. N};

par am beta1{1.. N};

par am jj; # the number of points are subject to quadratic

constraints

param previous-obj default 0; #the value of previous objective

function

param tolerance; # a tolerance for the objective function

param d; # the distance between two neighboring trajectories

100

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param iter; # iteration number

var x{1.. N+l}; # X of gi

var y{1.. N+l}; # y of gi

var x1{1.. N+l}; # X of ki

var y1{1.. N+l}; # y of ki

var x2{1 .. N+l}; # x of k''. 1, rotation of x1

var y2{1 .. N+1}; # y of k''i, rotation of y1

var tao; # the supplementary variable of objective function

var minumber; # supplementary variable

var beta{2 .. N,1 .. N}; #distances between two trajectories,

intermediate variables

#objective function

maximize k:

tao;

subject to ob:

tao <= (x1[N]*x10[N]+y1[N]*y10[N])/sqrt(x10[N]*x10[N]+

y10[N]*y10[N]);

101

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

teardrop starts from the center of k-space

subject to xO:

x1[1]=0;

subject to yO:

y1[1]=0;

#the first point of gi is zero

subject to sO:

X [1) = 0;

subject to syO:

y [1] = o·
'

define k[i] in terms of g[i]

subject to x1_def{i in 2 .. N+1}:

x1 [i] =x [i] +x1 [i -1] ;

subject to y1_def{i in 2 .. N+1}:

y1[i]=y[i]+ y1[i-1];

#Gmax constraint

subject to gg{i in 1 .. N+1}:

102

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

#Smax constraint

subject to vv{i in 2 . . N+1}:

(x[i]-x[i-1])-2 + (y[i]-y[i-1])-2 <= S1

For odd points of gi, ki is even. The symmetric constraint:

kN+1=kN.

subject to symmetr:

x1[N]*(x10[N]+x10[N+1])+y1[N]*(y10[N]+y10[N+1])=

x1[N+1]*(x10[N]+x10[N+1])+y1[N+1]*(y10[N]+y10[N+1]);

#define x2,y2 in terms of x1,y1

subject to x2_def{i in 1 .. N+1}:

x2[i] = x1[i]*cos(2*pi/M) - y1[i]*sin(2*pi/M);

subject to y2_def{i in 1 .. N+1}:

y2[i] = x1[i]*sin(2*pi/M) + y1[i]*cos(2*pi/M);

Quadratic constraints for the first two points

103

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to qui:

(alfa[2,1]*x1[2]+(1-alfa[2,1])*x1[1]-x2[2])~2+

(alfa[2,1]*y1[2]+(1-alfa[2,1])*y1[1]-y2[2])~2<=d~2;

subject to qu4:

(alfa[3,3]*x1[4]+(1-alfa[3,3])*x1[3]-x2[3])~2+

(alfa[3,3]*y1[4]+(1-alfa[3,3])*y1[3]-y2[3])~2<=d~2;

#First moment nulling constrain!

subject to null1:

sum{i in 1 .. N} i*(x[i]*(x10[N]+x10[N+1])+y[i]*

(y10[N]+y10[N+1])) + (N+1)*(x[N+1]*(x10[N]+x10[N+1])

+y[N+1]*(y10[N]+y10[N+1]))-sum{i in 2 .. N} (N+i)*

(x[N+2-i]*(x10[N]+x10[N+1])+y[N+2-i]*(y10[N]+y10[N+1]))=0;

#First moment nulling constrain2

subject to null2:

sum{i in 1 .. N} i*(x[i]*(y10[N]+y10[N+1])-y[i]*

(x10[N]+x10[N+1])) + (N+1)*(x[N+1]*(y10[N]+y10[N+1])­

y[N+1]*(x10[N]+x10[N+1]))+sum{i in 2 .. N} (N+i)*(x[N+2-i]

(y10[N]+y10[N+1])-y[N+2-i](x10[N]+x10[N+1]))=0;

104

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

data;

par am N :=40;

par am K ·= 800;

param M := 4·
'

param mx - 20;

param pi - 3.14159;

param TR - 0.004;

par am GMax - 0.04;

par am SMax := 150;

par am gam a ·= 42576000;

par am jj :=40;

par am tolerance - 1;

param d := 63.25;

param iter := 1;

#intial values for parameters

let {i in 1 .. N+1} x10[i] :=K/mx*((pi*(i-1)/N*M)*cos(pi*(i-1)/N*M));

let {i in 1 .. N+l} y10 [i] : =

105

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

let {i in 1 .. N+1} x20 [i] : =x10 [i] *cos (2*pi/M) - y10 [i] *sin(2*pi/M);

let {i in 1 .. N+1} y20 [i] : =

x10[i]*sin(2*pi/M) + y10[i]*cos(2*pi/M);

#intial values for variables

let {i in 2 .. N+1} x1 [i] := x10[i];

let {i in 2 .. N+1} y1 [i] := y10[i];

let {i in 2 .. N+1} x2 [i] := x20[i];

let {i in 2 .. N+1} y2 [i] := y20[i];

let {i in 2 .. N+1} X [i] := x1[i]-x1[i-1];

let {i in 2 .. N+1} y [i] := y1[i]-y1[i-1];

#caculate alfa[i,j]

let {i in 2 .. N, j in 1 .. N} alfa[i,j] :=

((x20[i]-x10[j])*(x10~+1]-x10~])+(y20[i]-y10[j])*

(y10[j+1]-y10[j]))/((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2);

for {i in 2 .. N} {

for{j in 1. . N} {

if alfa[i,j]>1 then let alfa[i,j] :=1;

106

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

if alfa[i,j]<O then let alfa[i,j] :=0;

}

}

#caculate beta[i,j]

let {i in 2 .. N, j in 1. .N} beta[i,j] :=

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+

(alfa[i,j]*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2;

for {i in 2 .. N}{

let minumber :=beta[i,1];

let beta! [1] : =0;

let beta1[i] : =1;

for{j in 2 .. N}{

if beta[i,j] < minumber

then {let minumber:=beta[i,j];

let beta1[i] :=j;}

}

if betai[i-1]=40

then {let jj:= i-1;

107

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

break;}

}

#Quadratic constraint

subject to qu3{i in 4 .. jj}:

(alfa[i,beta1[i]]*x1[beta1[i]+1]+(1-alfa[i,beta1[i]])*x1[beta1[i]]

-x2[i])~2+(alfa[i,beta1[i]]*y1[beta1[i]+1]+(1-alfa[i,beta1[i]])*

y1[beta1[i]]-y2[i])~2<=d~2;

option solver mosek;

option show_stats 1;

solve;

display k
'

display x1, y1

display x2, y2

display x,y;

display iter

display jj;

108

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

repeat{

#after the first iteration

#take the results of last iteration as the initial values

let {i in 1 .. N+l} x10 [i] : =x1 [i] ,

let {i in 1. . N+l} y10 [i] :=y1[i];

let {i in 1. . N+l} x20 [i] :=x2 [i];

let {i in 1 .. N+l} y20 [i] :=y2[i];

#caculate alfa[i,j] again for this iteration

let {i in 2 .. N, j in 1. .N} alfa[i,j] :=

((x20[i]-x10[j])•(x10[j+1]-x10[j])+(y20[i]-y10[j])*(y10~+1]

-y10[j]))/((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2);

for {i in 2 .. N} {

f or{j in 1 .. N} {

if alfa[i,j]>1 then let alfa[i,j] :=1;

if alfa[i,j]<O then let alfa[i,j] :=0;

}

}

109

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

#caculate beta[i,j] again for this iteration

let {i in 2 .. N, j in 1 .. N} beta[i,j] :=

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+(alfa[i,j]*

y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2;

for {i in 2 .. N}{

let minumber :=beta[i,1];

let beta1 [i] : =1;

for{j in 2 .. N}{

if beta[i,j] < minumber

then {let minumber:=beta[i,j];

let beta1[i] :=j;

}

}

if beta1[i] < beta1[i-1]

then {let jj:=i-1; break;}

if beta1[i-1]=40

then {let jj:= i-1;

break;}

110

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

}

let previous-obj :=k;

solve;

display k;

display x1, y1;

display x2, y2

display x,y;

display jj;

let iter := iter+1;

display iter;

} until k <= previous-obj+tolerance;

A.2 Part of Model Teardrop3D.mod

#This is teardrop 3D convex model with only linear and quadratic

constraints

#parameters and variables

111

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param N integer > 0; # total number of gi is 2*N+1

param NT integer > 0; # number of trajectories

param pi >0; # the ratio constant of circumference to diameter

param K > 0; # a constant used in the initial condition

param M integer > 0; # number of interleaves

param mx ; # scaler in the initial condition

param TR >0; # readout interval for SSFP sequences, the unit is

s(second)

param GMax; # maximum gradient of MRI machine, the unit is T/m

param SMax; # maximum slew rate of MRI machine, the unit is T/m/s

param gama; # gyromagnetic ratio

param DelT := TR/(2*N+1); #the sampling interval, the unit is

s(second)

param G1 := (gama * GMax * DelT)-2; # maximum gradient of

calculation

param 81 (gama * SMax * DelT * DelT)-2; #maximum slew

#rate of calculation

param x0{1 .. NT,1 .. N+1}; #the initial values for x of k[i,j]

in each iteration

param y0{1 .. NT,1 .. N+1}; #the initial values for y of k[i,j]

112

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

in each iteration

param z0{1 .. NT,1 .. N+1}; #the initial values for z of k[i,j]

in each iteration

the initial values for X of k [i 'j] in the first iteration

par am xx0{1 .. NT,! .. N+1};

the initial values for y of k [i, j] in the first iteration

par am yy0{1 .. NT,! .. N+1};

the initial values for z of k[i,j] in the first iteration

par am zz0{1 .. NT,1 .. N+1};

par am previous-obj default 0; #the value of previous objective

function

param tolerance; # a tolerance for the objective function

param d; # the distance between two neighboring trajectories

param iter; # iteration number

param c1; # a costant from the last itertion

param c2; # a costant from the last itertion

param c3; # a costant from the last itertion

alfaij stand for alfa's from trajectory i to trajectory j

param alfa21{2 .. N,1 .. N};

param alfa23{2 .. N,1 .. N};

113

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param alfa212{2 .. N,1 .. N};

par am alfa15{2 .. N,1 .. N};

par am alfa120{2 .. N,1 .. N};

par am alfa34{2 .. N,1 .. N};

par am alfa314{2 .. N,1 .. N};

par am alfa1211{2 .. N,1 .. N};

par am alfa1213{2 .. N,1 .. N};

par am alfa137{2 .. N,1 .. N};

par am alfa1314{2 .. N,1 .. N};

par am alfa1415{2 .. N,1 .. N};

par am alfa2019{2 .. N,1 .. N};

par am alfa2011{2 .. N,1 .. N};

par am alfa116{2 .. N,1 .. N};

par am alfa610{2 .. N,1 .. N};

par am alfa67{2 .. N,1 .. N};

par am alfa78{2 .. N,1 .. N};

par am alfa54{2 .. N,1 .. N};

par am alfa518{2 .. N,1 .. N};

par am alfa416{2 .. N,1 .. N};

par am alfa1617{2 .. N,1 .. N};

114

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

par am alfa1615{2 .. N,1 .. N};

par am alfa89{2 .. N,1 .. N};

par am alfa815{2 .. N,1 .. N};

par am alfa1817{2 .. N,1 .. N};

par am alfa1819{2 .. N,1 .. N};

par am alfa179{2 .. N,1 .. N};

par am alfa1910{2 .. N,1 .. N};

par am alfa910{2 .. N,1 .. N};

betaij stand for beta's from trajectory i to trajectory j

param beta21{1 .. N};

param beta23{1 .. N};

param beta212{1 .. N};

param beta15{1 .. N};

param beta120{1 .. N};

param beta34{1 .. N};

param beta314{1 .. N};

param beta1211{1 .. N};

param beta1213{1 .. N};

param beta137{1 .. N};

param beta1314{1 .. N};

115

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param beta1415{1 .. N};

param beta2019{1 .. N};

param beta2011{1 .. N};

param beta116{1 .. N};

param beta610{1 .. N};

param beta67{1 .. N};

param beta78{1 .. N};

param beta54{1 .. N};

param beta518{1 .. N};

param beta416{1 .. N};

param beta1617{1 .. N};

param beta1615{1 .. N};

param beta89{1 .. N};

param beta815{1 .. N};

param beta1817{1 .. N};

param beta1819{1 .. N};

param beta179{1 .. N};

param beta1910{1 .. N};

param beta910{1 .. N};

116

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

var x{1 .. NT,1 .. N+1}; #x of k[i,j]

var y{1 .. NT,1 .. N+1}; #y of k[i,j]

var z{1 .. NT,1 .. N+1}; #z of k[i,j]

var xdt{1 .. NT,1 .. N+1}; #x of g[i,j]

var ydt{1 .. NT,1 .. N+1}; #y of g[i,j]

var zdt{1 .. NT,1 .. N+1}; #z of g[i,j]

var tao; # the supplementary variable of objective function

var minumber;

betaaij stand for betaa's from trajectory i to trajectory j

var betaa21{2 .. N,1 .. N}; #tra 2 to tra 1

var betaa23{2 .. N,1 .. N}; #tra 2 to tra 3

var betaa212{2 .. N,1 .. N}; #tra 2 to tra 12

var betaa15{2 .. N,1 .. N}; #tra 1 to tra 5

var betaa120{2 .. N,1 .. N}; #tra 1 to tra 20

var betaa34{2 .. N,1 .. N}; #tra 3 to tra 4

var betaa314{2 .. N,1 .. N};

var betaa1211{2 .. N,1 .. N};

var betaa1213{2 .. N,1 .. N};

var betaa137{2 .. N,1 .. N};

var betaa1314{2 .. N,1 .. N};

#tra 3 to tra 14

#tra 12 to tra

#tra 12 to tra

117

11

13

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

var betaa1415{2 .. N,1 .. N};

var betaa2019{2 .. N,1 .. N};

var betaa2011{2 .. N,1 .. N};

var betaa116{2 .. N,1 .. N};

var betaa610{2 .. N,1 .. N};

var betaa67{2 .. N,1 .. N};

var betaa78{2 .. N,1 .. N};

var betaa54{2 .. N,1 .. N};

var betaa416{2 .. N,1 .. N};

var betaa518{2 .. N,1 .. N};

var betaa1617{2 .. N,1 .. N};

var betaa1615{2 .. N,1 .. N};

var betaa89{2 .. N,1 .. N};

var betaa815{2 .. N,1 .. N};

var betaa1817{2 .. N,1 .. N};

var betaa1819{2 .. N,1 .. N};

var betaa179{2 .. N,1 .. N};

var betaa1910{2 .. N,1 .. N};

var betaa910{2 .. N,1 .. N};

118

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

#objective function

maximize k:

tao;

subject to ob1{i in 1 .. 20}:

tao <= (x[i,N]*xxO[i,N] + y[i,N]*yyO[i,N]+ z[i,N]*zzO[i,N])

/sqrt(xxO[i,N]*xxO[i,N]+yyO[i,N]*yyO[i,N]+zzO[i,N]*zzO[i,N]);

trajectories start from the center of k-space

subject to xOO{i in 1 .. NT}:

x[i,1]=0;

subject to yOO{i in 1 .. NT}:

y [i' 1] =0;

subject to zOO{i in 1 .. NT}:

z [i' 1] =0;

#define k[i,j] in terms of g[i,j]

subject to x_def{i in 1 .. NT,j in 2 .. N+1}:

x [i ,j] =xdt [i, j] +x [i ,j-1];

119

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to y_def{i in 1 .. NT,j in 2 .. N+1}:

y[i,j]=ydt[i,j]+ y[i,j-1];

subject to z_def{i in 1 .. NT,j in 2 .. N+1}:

z[i,j]=zdt[i,j]+ z[i,j-1];

#Gmax constraint

subject to gg{i in 1 .. NT,j in 1 .. N+1}:

(xdt[i,j])~2 + (ydt[i,j])~2+ (zdt[i,j])~2 <= G1;

#Smax constraint

subject to vv{i in 1 .. NT,j in 2 .. N+1}:

(xdt[i,j]-xdt[i,j-1])~2 + (ydt[i,j]-ydt[i,j-1])~2+

(zdt[i,j]-zdt[i,j-1])~2 <= 81;

symmetric constraints

subject to symetr{i in 1 .. NT}:

x[i,N]*(xO[i,N]+xO[i,N+1])+y[i,N]*(yO[i,N]+yO[i,N+1])+z[i,N]*

120

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

(zO[i,N]+zO[i,N+1])

=x[i,N+1]*(xO[i,N]+xO[i,N+1])+y[i,N+1]*(yO[i,N]+yO[i,N+1])+

z[i,N+1]*(z0[i,N]+ zO[i,N+1]);

#the first point is zero, g1=0

subject to xdtO{i in 1 .. NT}:

xdt[i,1] = 0;

subject to ydtO{i in 1 .. NT}:

ydt[i,1] = 0;

subject to zdtO{i in 1 .. NT}:

zdt [i, 1] = 0;

data;

param K := 800;

param N :=10;

param NT :=20;

param M := 4;

param mx

param pi

param TR

20;

3.14159;

0.004;

121

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

param GMax := 0.04;

#param SMax := 150;

param SMax := 200;# ONLY FOR TEST

param gama := 42576000;

param iter :=1;

param tolerance := 1;

param d := 40;

#initial values for parameters

param xO (tr):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 :=

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

2 0.356822 -0.356822 -0.577350 0.000000 0.577350 0.000000

-0.577350 -0.356822 0.356822 0.577350 0.000000 -0.577350

-0.934172 -0.934172 -0.577350 0.000000 0.577350 0.934172

0.934172 0.577350

3 0.949309 -0.990296 -1.558363 0.030158 1.579985 -0.030158

-1.579985 -0.949309 0.990296 1.558363 -0.045814 -1.605316

122

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

-2.553486 -2.524468 -1.533032 0.045814 1.605316 2.553486

2.524468 1.533032

4 1.500012 -1.817725 -2.692316 0.084895 2.675895 -0.084895

-2.675895 -1.500012 1.817725 2.692316 -0.206250 -2.872253

-4.398577 -4.287370 -2.495958 0.206250 2.872253 4.398577

4.287370 2.495958

5 1.815029 -2.894922 -4.000879 0.025554 3.619982 -0.025554

-3.619982 -1.815029 2.894922 4.000879 -0.438036 -4.287393

-6.253944 -6.076868 -3.333468 0.438036 4.287393 6.253944

6.076868 3.333468

6 1.843217 -4.237355 -5.610385 -0.378393 4.228187 0.378393

-4.228187 -1.843217 4.237355 5.610385 -0.536086 -5.707845

-7.989689 -7.929455 -4.130727 0.536086 5.707845 7.989689

7.929455 4.130727

7 1.728043 -5.678274 -7.562535 -1.320755 4.421138 1.320755

-4.421138 -1.728043 5.678274 7.562535 -0.188099 -6.862515

-9.478677 -9.911313 -5.121158 0.188099 6.862515 9.478677

9.911313 5.121158

8 1.820851 -6.852362 -9.709559 -2.802191 4.323994 2.802191

-4.323994 -1.820851 6.852362 9.709559 0.880325 -7.433639

123

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

-10.650085 -12.056681 -6.599914 -0.880325 7.433639 10.650085

12.056681 6.599914

9 2.587227 -7.294918 -11.688779 -4.522189 4.300868 4.522189

-4.300868 -2.587227 7.294918 11.688779 2.724011 -7.210381

-11.551995 -14.319797 -8.779266 -2.724011

7.210381 11.551995 14.319797 8.779266

10 4.419062 -6.632597 -13.002187 -5.887151 4.879773 5.887151

-4.879773 -4.419062 6.632597 13.002187 5.041656 -6.247813

-12.379593 -16.554026 -11.634147

-5.041656 6.247813 12.379593 16.554026 11.634147

11 7.414612 -4.799456 -13.190688 -6.162686 6.572090 6.162686

-6.572090 -7.414612 4.799456 13.190688 7.161587 -4.955834

-13.443713 -18.533132 -14.806943 -7.161587 4.955834

13.443713 18.533132 14.806943;

param yO (tr):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 :=

124

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

2 -0.934172 -0.934172 -0.577350 -0.356822 -0.577350 0.356822

0.577350 0.934172 0.934172 0.577350 -0.356822 -0.577350

0.000000 0.000000 0.577350 0.356822

0.577350 0.000000 0.000000 -0.577350

3 -2.228747 -2.228911 -2.129645 -2.068131 -2.129380 2.068131

2.129380 2.228747 2.228911 2.129645 0.365457 -0.625605 0.464559

-0.464988 0.625340 -0.365457

0.625605 -0.464559 0.464988 -0.625340

4 -2.340837 -2.368639 -3.736944 -4.554800 -3.691959 4.554800

3.691959 2.340837 2.368639 3.736944 2.755940 0.781342 1.359834

-1.432620 -0.826327 -2.755940

-0.781342 -1.359834 1.432620 0.826327

5 -0.392183 -0.538345 -4.220845 -6.350593 -3.984349 6.350593

3.984349 0.392183 0.538345 4.220845 5.995163 3.409251 2.166500

-2.549159 -3.645747 -5.995163

-3.409251 -2.166500 2.549159 3.645747

6 3.485024 3.053895 -2.860754 -6.085079 -2.163173 6.085079

2.163173 -3.485024 -3.053895 2.860754 8.582724 6.204447

125

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

2.236946 -3.365656 -6.902028 -8.582724

-6.204447 -2.236946 3.365656 6.902028

7 8.244427 7.303293 0.321334 -3.052619 1.844122 3.052619

-1.844122 -8.244427 -7.303293 -0.321334 8.991319 7.764897

1.068226 -3.532149 -9.287685 -8.991319

-7.764897 -1.068226 3.532149 9.287685

8 12.247921 10.556335 4.488467 2.429904 7.225510 -2.429904

-7.225510 -12.247921 -10.556335 -4.488467 6.280547 6.868296

-1.478907 -2.949722 -9.605338

-6.280547 -6.868296 1.478907 2.949722 9.605338

9 13.815566 11.172721 8.200902 9.007062 12.477115 -9.007062

-12.477115 -13.815566 -11.172721 -8.200902 0.537614 2.966495

-5.077050 -1.842009 -7.242709 -0.537614 -2.966495 5.077050

1.842009 7.242709

10 11.837207 8.130507 9.860997 14.637200 15.858565 -14.637200

-15.858565 -11.837207 -8.130507 -9.860997 -7.010212 -3.517839

-8.986422 -0.717847 -2.479729 7.010212 3.517839 8.986422

0.717847 2.479729

11 6.243495 1.473231 8.255132 17.216842 15.973582 -17.216842

-15.973582 -6.243495 -1.473231 -8.255132 -14.269315 -11.204383

126

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

-12.257678 -0.231036 3.485933 14.269315 11.204383 12.257678

0.231036 -3.485933;

param zO (tr):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

2 0.000000 0.000000 0.577350 0.934172 0.577350 -0.934172

-0.577350 0.000000 0.000000 -0.577350 -0.934172 -0.577350

-0.356822 0.356822 0.577350 0.934172

0.577350 0.356822 -0.356822 -0.577350

3 -1.233107 -1.200135 0.652054 1.763797 0.598704 -1.763797

-0.598704 1.233107 1.200135 -0.652054 -2.693213 -2.102531

-0.808052 0.894374 2.155880 2.693213

2.102531 0.808052 -0.894374 -2.155880

4 -3.733217 -3.570979 -0.673168 0.955539 -0.935676 -0.955539

0.935676 3.733217 3.570979 0.673168 -3.745493 -3.578566 -0.685444

1.110190 3.841073 3.745493

3.578566 0.685444 -1.110190 -3.841073

127

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

5 -6.364405 -5.939983 -3.182958 -1.903444 -3.869686 1.903444

3.869686 6.364405 5.939983 3.182958 -2.796414 -3.734843 0.385033

0.726117 4.421572 2.796414

3.734843 -0.385033 -0.726117 -4.421572

6 -7.661883 -6.853163 -5.881068 -6.089000 -7.189604 6.089000

7.189604 7.661883 6.853163 5.881068 0.544746 -1.781187 2.325561

-0.208304 3.089724 -0.544746

1.781187 -2.325561 0.208304 -3.089724

7 -6.448826 -5.192610 -7.432959 -10.073788 -9.465560 10.073788

9.465560 6.448826 5.192610 7.432959 5.627155 2.270757 4.643022

-1.354205 -0.238156 -5.627155

-2.270757 -4.643022 1.354205 0.238156

8 -2.348551 -0.672060 -6.664898 -12.045167 -9.377517 12.045167

9.377517 2.348551 0.672060 6.664898 10.891396 7.510677 6.575049

-2.185939 -4.798058 -10.891396

-7.510677 -6.575049 2.185939 4.798058

9 3.947022 5.924278 -3.043065 -10.562444 -6.242333 10.562444

6.242333 -3.947022 -5.924278 3.043065 14.332945 12.343132 7.342858

-2.166334 -9.143864 -14.332945

-12.343132 -7.342858 2.166334 9.143864

128

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

10 10.760837 12.858721 3.024412 -5.151410 -0.370037 5.151410

0.370037 -10.760837 -12.858721 -3.024412 14.173279 14.967727 6.436854

-0.944521 -11.573278 -14.173279 -14.967727 -6.436854

0.944521 11.573278

11 15.867786 17.903607 10.178551 3.368382 6.884523 -3.368382

-6.884523 -15.867786 -17.903607 -10.178551 9.531142 13.987346

3.841907 1.487942 -10.693318 -9.531142

-13.987346 -3.841907 -1.487942 10.693318;

#intial values for variables

let {i in 1. .NT ,j in 2 .. N+1} x[i,j] := xO[i,j];

let {i in 1. .NT ,j in 2 .. N+1} y[i,j] : = yO [i ,j];

let {i in 1 .. NT ,j in 2 .. N+1} z[i,j] := zO[i,j];

let {i in 1..NT,j in 2 .. N+1} xdt[i,j] := x[i,j]-x[i,j-1];

let {i in 1..NT,j in 2 .. N+1} ydt[i,j] := y[i,j]-y[i,j-1];

let {i in 1. .NT,j in 2 .. N+1} zdt[i,j] := z[i,j]-z[i,j-1];

let {i in 1. .NT,j in 2 .. N+1} xxO[i,j] := xO[i,j];

let {i in 1..NT,j in 2 .. N+1} yyO[i,j] := yO[i,j];

129

M.Sc. Thesis - T. Ren -McMaster- Computing and Software

let {i in 1..NT,j in 2 .. N+1} zzO[i,j] := zO[i,j];

let c1:= (x0[1,N]+x0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]);

let c2:= (y0[1,N]+y0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]);

let c3:= (z0[1,N]+z0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]);

#First moment nulling constrain!

subject to null1:

sum{i in 1 .. N} i*(xdt[1,i]*c1+ydt[1,i]*c2+zdt[1,i]*c3)

+ (N+1)*(xdt[1,N+1]*c1+ydt[1,N+1]*c2+zdt[1,N+1]*c3)­

sum{i in 2 .. N} (N+i)*(xdt[1,N+2-i]*c1+ydt[1,N+2-i]*

c2+zdt[1,N+2-i]*c3)=0;

#First moment nulling constrain2

subject to null2:

sum{i in 1 .. N} i*(xdt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+

c3*zdt[1,i])*c1)+(N+1)*(xdt[1,N+1]-(c1*xdt[1,N+1]+c2*

130

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

ydt[1,N+1]+c3*zdt[1,N+1])*c1)+sum{i in 2 .. N} (N+i)*

(xdt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i]+c3*

zdt[1,N+2-i])*c1)=0;

#First moment nulling constrain3

subject to null3:

sum{i in 1 .. N} i*(ydt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+

c3*zdt[1,i])*c2)+(N+1)*(ydt[1,N+1]-(c1*xdt[1,N+1]+

c2*ydt[1,N+1]+c3*zdt[1,N+1])*c2)+sum{i in 2 .. N}

(N+i)*(ydt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i]

+c3*zdt[1,N+2-i])*c2)=0;

#First moment nulling constrain4

subject to null4:

sum{i in 1 .. N} i*(zdt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+c3*

zdt[1,i])*c3)+(N+1)*(zdt[1,N+1]-(c1*xdt[1,N+1]+c2*

ydt[1,N+1]+c3*zdt[1,N+1])*c3)+sum{i in 2 .. N} (N+i)*

(zdt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i]+c3*

zdt[1,N+2-i])*c3)=0;

131

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

#calculate all the alfaij's

calculate alfa21[i,j]

let {i in 2 .. N, j in 1. .N} alfa21[i,j] :=

((x0[2,i]-x0[1,j])*(x0[1,j+1]-x0[1,j])+(y0[2,i]-y0[1,j])*

(y0[1,j+1]-y0[1,j])+(z0[2,i]-z0[1,j])*(z0[1,j+1]-z0[1,j]))

/((x0[1,j+1]-x0[1,j])-2+(y0[1,j+1]-y0[1,j])-2+(z0[1,j+1]­

z0[1,j])-2);

for {i in 2 .. N} {

for{j in 1 .. N} {

}

if alfa21[i,j]>1 then let alfa21[i,j] :=1;

if alfa21[i,j]<O then let alfa21[i,j] :=0;

}

(calculate all other alfa's the similar way

as above)

#calculate all the betaaij's and betaij's

132

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

let {i in 2 .. N, j in 1 .. N} betaa21[i,j] :=

(alfa21[i,j]*x0[1,j+1]+(1-alfa21[i,j])*x0[1,j]-x0[2,i])-2+(

alfa21[i,j]*y0[1,j+1]+(1-alfa21[i,j])*y0[1,j]-y0[2,i])-2

+(alfa21[i,j]*z0[1,j+1]+(1-alfa21[i,j])*z0[1,j]-z0[2,i])-2;

for {i in 2 .. N}{

let minumber :=betaa21[i,1];

let beta21 [i] : =1;

f or{j in 1. . N}{

if betaa21[i,j] < minumber

then {let minumber:=betaa21[i,j];

let beta21[i] :=j;}

}

}

(calculate all other betaa's and beta's the similar way

as above)

#Quadratic constraints for all the neighbouring trajectories

#Quadratic constraint of tra. 2 to tra. 1

133

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

subject to qu3{i in 2 .. 10}:

(alfa21[i,beta21[i]]*x[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])*

x[1,beta21[i]]-x[2,i])-2+(alfa21[i,beta21[i]]*y[1,beta21[i]+1]+

(1-alfa21[i,beta21[i]])*y[1,beta21[i]]-y[2,i])-2+

(alfa21[i,beta21[i]]*z[1,beta21[i]+1]+

(1-alfa21[i,beta21[i]])*z[1,beta21[i]]-z[2,i])-2<=d-2;

#Quadratic constraint of tra. 2 to tra. 3

subject to qu4{i in 2 .. 10}:

(alfa23[i,beta23[i]]*x[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])*

x[3,beta23[i]]-x[2,i])-2+(alfa23[i,beta23[i]]*y[3,beta23[i]+1]+

(1-alfa23[i,beta23[i]])*y[3,beta23[i]]-y[2,i])-2+

(alfa23[i,beta23[i]]*z[3,beta23[i]+1]+

(1-alfa23[i,beta23[i]])*z[3,beta23[i]]-z[2,i])-2<=d-2;

. . . (apply all other quadratic constraints the similar

way as above)

option solver mosek;

option show_stats 1;

134

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

solve;

option display_width 120;

option gutter_width 1;

display k;

display x·
'

display y;

display z·
'

display xdt;

display ydt;

display zdt;

display iter;

repeat{

the second and after iteration

take the results of last iteration as the initial values

let {i in 1 .. NT ,j in 1. . N+1} xO [i, j] : =x [i, j] ;

let {i in 1. .NT ,j in 1. . N+1} yO [i, j] : =y [i ,j];

let {i in 1 .. NT ,j in 1 .. N+1} zO[i,j] : =z [i, j] ;

135

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

#recalculate all the alfaij's for this iteration

#calculate alfa21[i,j]

let {i in 2 .. N, j in 1. .N} alfa21[i,j] :=

((x0[2,i]-x0[1,j])*(x0[1,j+1]-x0[1,j])+(y0[2,i]-y0[1,j])*

(y0[1,j+1]-y0[1,j])+(z0[2,i]-z0[1,j])*(z0[1,j+1]-z0[1,j]))/

((x0[1,j+1]-x0[1,j])-2+(y0[1,j+1]-y0[1,j])-2

+(z0[1,j+1]-z0[1,j])-2);

for {i in 2 .. N} {

for{j in 1 .. N} {

}

if alfa21[i,j]>1 then let alfa21[i,j] :=1;

if alfa21[i,j]<O then let alfa21[i,j] :=0;

}

... (calculate all other alfa's the similar way as above)

#recalculate all the betaaij's and betaij's for this iteration

let {i in 2 .. N, j in 1 .. N} betaa21[i,j] :=

(alfa21[i,j]*x0[1,j+1]+(1-alfa21[i,j])*x0[1,j]-x0[2,i])-2+

136

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

(alfa21[i,j]*y0[1,j+1]+(1-alfa21[i,j])*y0[1,j]-y0[2,i])-2+

(alfa21[i,j]*z0[1,j+1]+(1-alfa21[i,j])*z0[1,j]-z0[2,i])-2;

for {i in 2 .. N}{

let minumber :=betaa21[i,1];

let beta21 [i] : =1;

for{j in 1. .N}{

if betaa21[i,j] < minumber

then {let minumber:=betaa21[i,j];

let beta21[i] :=j;}

}

}

(recalculate all other betaa's and beta's the similar way

as above)

let iter:=iter+1;

let previous-obj :=k;

solve;

option display_width 120;

option gutter_width 1;

137

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

display k;

display x;

display y;

display z;

display xdt;

display ydt;

display zdt;

display iter;

}until k <= previous-obj+tolerance;

138

Bibliography

[1] C.K. Anand, M. Thompson, D.H. Wu, and T. Cull. Teardrop, a novel

non-raster readout for true FISP. ISMRM, vol. 9, p.1804, 2001.

[2] E. Atalar, and E.R. McVeigh. Minimizing dead-periods in MRI pulse

sequences for imaging oblique planes. Magn. Reson. Med., vol. 32, pp.

773-777, 1994.

[3] K.S. Nayak, and B.S. Hu. The Future of Real-time Cardiac Magnetic

Resonance Imaging. Current Cardiology Reports, vol. 7, pp. 45-51, 2005.

[4] B.D. Bolster, and E. Atalar Jr. Minimizing dead-periods in flow-encoded

or compensated pulse sequences while imaging in oblique planes. J. Magn.

Reson. Imaging, vol. 10, pp. 183-192, 1999.

[5] S.C. Bushong. Magnetic Resonance Imaging: Physical and Biological

Principles. Mosby, Toronto, 2nd edition, 1996.

139

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

[6] B.M. Dale, and J.L. Duerk. Time-optimal control of gradients. In: Pro­

ceedings of the 10th Annual Meeting of ISMRM, Honolulu, p. 2361, 2002.

[7] J.L. Duerk. Magnetic resonance imaging gradient modulation technique

for motion artifact reduction and flow quantification. Ph.D. Thesis, Dept.

Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, 1986.

[8] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language

For Mathematical Programming. The Scientific Press, 1993.

[9] J.P. Groen, P. van Dijk, and J .J .E. In den Kleef. Design of flow adjustable

gradient waveforms. In: Book of Abstracts, Soc. Magnetic Resonance in

Medicine, Sixth Annual Meeting, p. 868, 1987.

[10] E.M. Haacke, and G.W. Lenz. Improving MR image quality in the

presence of motion by using rephasing gradients. American Journal

Roentgenology, vol. 148, pp. 1251-1258, 1987.

[11] E.M. Haacke, R.W. Brown, M.R. Thompson, and R. Venkatesan. Mag­

netic Resonance Imaging: Physical Principles and Sequence Design. John

Wiley and Sons, Toronto, 1999.

[12] 0. Heid. The fastest circular k-space trajectories. In: Proceedings of the

10th Annual Meeting of ISMRM, Honolulu, p. 2364, 2002.

140

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

[13] P.J. Keller, and F.W. Wehrli. Gradient moment nulling through the N­

th moment. Application of Binomial Expansion Coefficients to Gradient

Amplitudes. Journal of Magnetic Resonance, vol. 78, pp. 145-149, 1988.

[14] S. Ljunggren. A simple graphical representation of fourier-based imaging

methods. Journal of Magnetic Resonance, vol. 54, pp. 338-343, 1983.

[15] V.L. Morgan, R.R. Price, and C.H. Lorenz. Application of linear opti­

mization techniques to MRI phase contrast blood flow measurements.

Magnetic Resonance Imaging, vol. 14, pp. 1043-1051, 1996.

[16] D.G. Nishimura. Principles of Magnetic Resonance Imaging. Dept. of

Electrical Engineering, Stanford University, CA, 1996.

[17] P.M. Pattany, J.J. Phillips, L.C. Chiu, J.D. Lipcamon, J.L. Duerk, J.M.

McNally, and S.N. Mohapatra. Motion artifact suppression technique

(MAST) for MR imaging. Journal of Computer Assisted Tomogrraphy,

vol. 11, no. 3, pp 369-377, 1987.

[18] J.G. Pipe, and T.L. Chenevert. A progressive gradient moment nulling

design technique. Magnetic Resonance in Medicine, vol. 19, pp. 175-179,

1991.

[19] O.P. Simonetti, J.L. Duerk, and V. Chankong. An optimal design method

141

M.Sc. Thesis- T. Ren- McMaster- Computing and Software

for magnetic resonance imaging gradient waveforms. IEEE Transactions

on Medical Imaging, vol. 12, pp. 350-360, 1993.

[20] O.P. Simonetti, J.L. Duerk, and V. Chankong. MRI gradient waveform

design by numerical optimization. Magnetic Resonance in Medicine, vol.

29, pp. 498-504, 1993.

[21] D.B. Twieg. The k-trajectory formulation of the NMR imaging process

with applications in analysis and synthesis of imaging methods. Medical

Physics, vol. 10, pp. 610-621, 1983.

[22] R.E. Wendt III. Interactive design of motion compensated gradient wave­

forms with a personal computer spreadsheet program. Journal of Mag­

netic Resonance, vol. 1, pp. 87-92, 1991.

[23] Q.S. Xiang, and 0. Nalcioglu. A formalism for generating multiparametric

encoding gradients in NMR tomography. IEEE Transactions on Medical

Imaging, vol. MI-6, no. 1, pp. 14-20, 1987.

[24] H. Yamagata, M.H. Bounocore, B. Telford, and J.A. Sanders. Optimized

gradient pulses for MR quantitative flow imaging. Radiology, vol. 173(P),

p. 162, 1989.

142

2892 29

