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Abstract 

This thesis presents an optimal design method for MRI (Magnetic Resonance 

Imaging) teardrop gradient waveforms in two and three dimensions. Teardrop 

in two dimensions was introduced at ISMRM 2001 by Anand et al. to address 

the need for a high efficiency balanced k-space trajectory for real-time cardiac 

SSFP (Steady State Free Precession) imaging. 

We have modeled 2D and 3D teardrop gradient waveform design as 

nonlinear convex optimization problems with a variety of constraints including 

global constraints (e.g., moment nulling for motion insensitivity). Commercial 

optimization solvers can solve the models efficiently. The implementation of 

AMPL models and numerical testing results with the solver MOSEK are pro­

vided. This optimal design procedure produces physically realizable teardrop 

waveforms which enable real-time cardiac imaging with equipment otherwise 

incapable of doing it, and optimally achieves the maximum resolution and 

motion artifact reduction goals. The research may encompass other waveform 

design problems in MRI and has built a good foundation for further research 

in this area. 
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Chapter 1 

Introduction 

Conventional MRI has a serious drawback that the scan time is long compared 

with time constants of cardiac, peristaltic, and respiratory motion in the pa­

tient, giving rise to motion artifacts in the images. This long scan time is 

caused by the time it takes to allow the spins after acquisition to relax back 

to the equilibrium situation before the next excitation pulse is applied. Fast 

scanning is necessary in these cases. 

Real-time cardiac imaging has been demonstrated by using Steady 

State Free Precession (SSFP) [3], making use of high performance gradients. 

The two challenges faced by SSFP are banding artifacts and the requirement 

for powerful gradients, which involve high rate of change of magnetic field 

(dB/dt). We will design a novel non-raster gradient waveform for k-space 
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(Fourier transform space where signals of MRI come from) readout which 

does not suffer from banding in the phase-encode direction and which is more 

efficient. 

SSFP requires that all gradient activity be rewound, or balanced. Con­

ventionally, this is done by adding read, slice and phase rewinders. While these 

rewinders can be at least partially overlapped in time, it is not practical to 

collect data during this time, and in any case, they expose the patient to high 

dB/dt. By using a non-raster trajectory beginning and ending in the center of 

k-space, a teardrop readout requires neither read nor phase dephase/rephase 

lobes, increasing scan-time efficiency. 

The name teardrop comes from the trajectory in k-space: leave the 

center of k-space on a radial trajectory, turn around and return on a radial 

trajectory (Fig. 1.1). The actual waveform is numerically generated and may 

circle the center of k-space one or more times, but is still referred to as a 

teardrop readout. By resampling the center of k-space at the beginning of 

every shot, the reconstruction can compensate for approach to steady state, 

and the sequence is less sensitive to motion artifacts. 

The teardrop gradient waveform is in fact a continuous family of wave­

forms, one extreme of which integrates to describe a teardrop shaped k-space 

trajectory. Rotating the associated gradient profiles is equivalent to rotating 

2 
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Figure 1.1: One teardrop trajectory ink-space. 

this trajectory around the center of k-space. Together the combined views 

cover k-space, as evidenced by a partial set of views (Fig. 1.2). 

An MRI technician could design a gradient waveform interactively to 

match the requested repetition time(TR) and resolution. The teardrop shape 

above is suitable for short TR and many interleaves. Scan-time efficiency can 

be increased by increasing the TR, and covering a larger region of k-space per 

repetition. This leads to increased sampling duty cycle and higher frame rates. 

A number of techniques have been put forth to perform the complicated 

task of designing nulled moment gradient waveforms for motion compensation 

3 
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Figure 1.2: Rotating one teardrop trajectory around the center of k-space. 

[10, 13, 17, 18, 22-24]. These are algebraic design methods. They take ad-

vantage of the linear relationship between gradient waveform time moments 

and lobe amplitudes to generate motion compensated or sensitized waveforms. 

There are several potential deficiencies that may limit their effectiveness in 

gradient waveform design. First, because the physical limitations of gradi-

ents and coils are not explicitly included in algebraic design techniques, they 

may prevent the attainment of specific imaging goals. Some computationally 

ineffective methods [7, 9, 22] iterate through algebraic solutions until feasible 

solutions are found. These methods do not guarantee that a realizable solution 

4 
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will be found even if one exists. The resulting waveforms may not be optimal 

in any sense either. 

It has been recognized that gradient waveform design can be gener­

alized as a problem of non-linear constrained optimization [22], and there 

are some previous works have presented different methods to optimize gradi­

ent waveforms in different situations [2, 4, 6, 12, 15, 19, 20]. But many of 

these methods are limited to the design of trapezoidal pulses, and most have 

been studied for one dimensional (1D) gradient design. Up to now, no design 

formalism has been presented for optimal teardrop waveform design. 

The goal of our project is to describe a general formalism for 2D and 

3D optimal gradient waveform design as a convex-optimization problem using 

teardrop waveforms as examples, for which very efficient solution methods 

exist. This technique offers the following immediate practical benefits: it 

incorporates as much a priori knowledge of the gradient system as possible; 

it generates waveforms which are optimal for the imaging goals; it generates 

waveform shapes which are constrained only by the limitations of the hardware 

system; it guarantees the feasibility of the gradient waveforms. Finally, it can 

potentially reduce waveform design time by avoiding iterative or trial and error 

methods for determining feasible solutions. 

The structure of this thesis is as follows. Chapter 2 reviews some basic 

5 
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MRI concepts that are needed to understand this project. The methods of 

formulating optimization models of MRI teardrop gradient waveforms are pre­

sented in Chapter 3. This discussion includes: teardrop waveform parametriza­

tion, the design objective, constraints, the original optimization model, and 

the improved optimization models. Following this, Chapter 4 details the im­

plementation of the models in AMPL. Computational results are presented in 

Chapter 5. Chapter 6 closes the thesis with conclusions and recommendations 

for future work. 

6 



Chapter 2 

MRI Basics 

In this chapter, we review some basic MRI concepts that will be useful for 

understanding the ideas that follow in the subsequent chapters. More detail 

is available in texts on MRI, including [16]. 

2.1 Classical Description of MRI 

Atoms with an odd number of protons or odd number of neutrons possess a nu­

clear spin angular momentum, and therefore exhibit the Magnetic Resonance 

phenomenon. These nucleons can be visualized as spinning charged spheres 

that give rise to a small magnetic moment. We refer to these MR-relevant 

nuclei as spins. Because the body is composed of tissues primarily consisting 

of water and fat, both of which contain hydrogen, in biological specimens, 

7 
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hydrogen e H), with a single proton, is the most abundant spin and therefore 

produces the strongest signal. That is why we usually assume e H) imaging. 

The principle of MRI is based on the interaction of these spins with 

three types of magnetic fields: 1) the main field B0 , 2) the radio frequency field B1, 

and 3) the gradient fields G. 

In the absence of an external magnetic field, the spins are oriented 

randomly and the net magnet momentic is zero. However, in the presence of 

an external magnetic field B0 , the spins will align with or align against the 

external magnetic field. But the net magnetic moment vector is an alignment 

with the external field. Also, the nuclear spins exhibit resonance at the Larmor 

frequency w and 

w = f'B, (2.1) 

where B is the applied magnetic field, I' is called the gyromagnetic ratio, a 

known constant unique for each type of atom. For 1H, I' /27r = 42.58 MHz/Tesla. 

To obtain an MR signal, a radiofrequency (RF) magnetic pulse B1 

tuned to the resonant frequency of the spins is applied in the transverse plane 

to excite these spins out of equilibrium. B1 applies a torque that rotates the 

magnetization vector by a prescribed angle dependent on the strength and du­

ration of B1. For example, if the excitation is set to a 90° tip angle, then upon 

turning the excitation off, the tipped vector precess in the transverse plane at 

8 
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the Larmor frequency generating an electromotive force (EMF) signal in an 

RF receiver coil. The generated time signal is called a free induction decay 

(FID). In general, a set of FIDs will be recorded and processed to reconstruct 

and MR image. 

In the context of imaging, the body can be visualized as an ensemble of 

tiny oscillators inducing RF signals. The objective of MR imaging then is to 

map the spatial distribution for their amplitudes. Spatial localization is based 

on applying gradient fields to control the relative phases and frequencies of 

these oscillators. 

2.2 The k-Space and Basic 2D k-Space Pat-

terns 

By MR theory [16], we can derive the equations for the MR signals: 

s(t) = 1 i m(x, y)e-i21r[kx(t)x+ky(t)y] dxdy, (2.2) 

where 

'Y it kx(t) =- Gx(T) dr 
211" 0 

(2.3) 

(2.4) 
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m(x, y) is the transverse nuclear magnetization, and Gx, Gy are gradient fields 

in the x and y directions respectively. 

Comparing the signal equation (2.2) with the 2D Fourier transform of 

m(x, y), 

(2.5) 

we can see that 

(2.6) 

or 

(2.7) 

Thus, kx and ky are in units of spatial frequency, typically cycles/em. 

This is the most important relationship in MR imaging. At any given 

time t, s(t) equals the value of the 2D Fourier transform of m(x, y) at some 

spatial frequency. The total recorded signals s(t) therefore maps directly to 

a trajectory through the spatial-frequency (Fourier transform) space as de­

termined by the time integrals of the applied gradient waveforms Gx(t) and 

Gy(t). In the MR literature [14] and [21], the Fourier transform space is often 

called k-space, where k represents the spatial-frequency variable. To form an 

image, the trajectories given by {s(t)} should cover a sufficient part of the 

k-space to allow reconstruction of m(x, y). 

10 
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The MRI signal provides information about the spatial frequency con-

tent of the image, rather than directly about the spatial positioning of infor-

mation in the image. A computer has to be used to sample the information 

and apply the Fourier transform to the obtained signal to produce the image. 

A variety of patterns have been developed for sampling and image reconstruc-

tion. 

..... - - -. - ..... ..... -. ... - - ..... .. 
~ - - - - - - ~ - - - - ~ 
..... - ..... - ..... ..... ..... ~ 
~ - - ~ - - -~ ... - ... - - - - - - - - ~ ..... - ..... 

..... - - ..... - ..... ..... ..... ..... - ~ 
.... -. ... - - ... ~ - - - - - ~ - - - - - - '"to. - - - - - .. " ')l ..... - - ... - ..... ..... 

'I l ... - - - - - - ~ .... 
... -. - - - ... --~ - - - - - - - - - ~ ..... - - ..... - ..... ..... ..... - - ..... l - - - - - - - - - - - ~ ..... - ..... - ..... ..... ,. 

Figure 2.1: Raster scanning pattern. 
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The rectangular raster scan (Fig. 2.1) is used by standard two-dimensional 

Fourier transform (2DFT) imaging. Beginning at the origin, the k-space tra­

jectory moves along the kx direction as the signal is read out. A change in 

the amplitude of the Gy gradient leads to a different line in the k-space. By 

indexing to a set of ky-positions, we can assemble sufficient measurements to 

fill the 2D k-space, and simply perform an inverse 2D Fourier transform to 

reconstruct the image. 

Because of the specific roles that these gradients play, the Gy gradient 

is often referred to as the phase-encoding gradient, the Gx is called the readout 

gradient because it is on during data acquisition. The third gradient Gz is 

called the slice-select gradient. 

Projection reconstruction imaging was the first method of MRI and is 

still used in some special applications. The sampling method for projection 

reconstruction is called the radial pattern. The radial pattern is shown in Fig. 

2.2. The measurements are along diameters of a circle. The scan lines pass 

through the origin and are equally spaced in angle. 

There are a number of relatively exotic methods of scanning the k-space. 

For example, spiral scanning and square spiral scanning (Fig. 2.3). In general, 

these data are resampled onto a rectangular grid and then reconstructed by 

using the inverse Fourier transform. 

12 
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Figure 2.2: Radial scanning pattern. 

Because the location of each measurement is controlled by the mag­

netic field gradients, the gradient system must be able to generate the chosen 

trajectories. 

13 
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Figure 2.3: Square spiral and spiral scanning patterns. 

2.3 Sampling Requirements and Artifacts in 

2DFT Imaging 

In practice, the continuous MRI signals are sampled as shown in Fig. 2.4. The 

sampling periods are llkx and llky. 

Let's only consider one-dimensional sampling here. From sampling the-

ory we know that 

1 
~=FOV. 

kx 

(2.8) 

Equation (2.8) means that the uniform spacing between data points llk, equals 

to 1/FOV, where FOV is the spatial interval over which the reconstructed 

14 
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Figure 2.4: (a) Sampling in k-space (b) The replication in object domain. 

image repeats itself. This interval is called the Field-Of-View (FOV). 

The two most common artifacts particular to 2DFT images are the 

consequences of undersampling and motion. Undersampling means that not 

enough cycles are used in the data collection. This results in the samples not 

being sufficiently close in k-space. When this happens , the bottom of the image 

appears to wrap around the top (Fig. 2.5), this artifact is called aliasing. The 

cure for this is to increase the number of cycles in the data collection stage or 

reduce the hardware zoom factor. 

15 
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Figure 2.5: Aliasing in a 2DFT image. 

To avoid aliasing artifact, the Nyquist sampling criterion has to be met. 

1 
.6.k < -

S ' 
(2.9) 

where S is the size of the object imaged. In one dimension, inequality 2.9 

means that the FOV must be larger than S, the size of the object imaged. 

The effects of the subjects motion on the 2DFT image are complicated. 

Fig. 2.6 shows the effects of motion on 2DFT images , where A is an ungated 

cardiac image, and B is a gated cardiac image. Cardiac gating is a kind of 

method that synchronizes the heartbeat with the beginning of the TR (rep-

etition time) in order to minimize motion artifacts. The gated image shows 

16 
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improvement in the motion artifacts. 

Figure 2.6: The effects of motion on 2DFT images. 
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Chapter 3 

Nonlinear Optimization 

A goal of gradient waveform design is to optimally meet some specific imaging 

performance criteria without violating the constraints imposed by hardware 

limitations of the gradient system and the sequence constraints, such as the 

desired shape of the scanning trajectory in k-space etc. So the waveform design 

problem can be viewed as a constrained optimization problem. Formulation 

of any constrained optimization problem involves four basic steps: 

1. Select a variable set. 

2. Define the objective. 

3. Specify the constraints. 

4. Determine a suitable means of solution. 

19 
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In this chapter, the first three steps will be applied to the teardrop gradient 

waveform design, in other words, optimization models will be developed for 

this problem. The suitable means of solutions will be discussed in Chapter 5. 

3.1 Teardrop Waveform Parametrization 

The design objectives and constraints must be expressed in terms of a variable 

set which fully describes the gradient waveform. The ability to achieve a 

feasible solution is highly dependent on the choice of a variable set. 

Since gradient waveforms are computer generated discrete functions 

and applied to the gradient coils via digital-to-analog (D /A) converters, the 

most obvious and general variable set is a discrete series of point-by-point 

gradient amplitudes. This set may be expressed in vector form as 

__, _ [ ]T -n2n+2 9- 91,92,·· · ,gi,··· ,gn+l E /\.- , (3.1) 

where 9i E R 2 indicates the amplitude of the gradient waveform at time ti = 

il:,.t, and i:,.t is the sample interval. The amplitudes at the n + 1 points define 

the gradient waveform. Any gradient waveform shape can be expressed by 

such a gradient amplitude vector, thereby removing artificial constraints on 

shape and this way expanding the feasible solution space to the limits of the 

gradient hardware system. 

20 
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To present objective and constraints conveniently and efficiently in the 

teardrop gradient waveform design, we add another variable set k which stands 

for a set of points in k-space. 

where 

ki = L:gj i E [1, ... ,n]. 
j=l 

(3.2) 

(3.3) 

Observe that there is one more point in the gradient amplitude space than in 

k-space. 

3.2 Objective: Maximize Resolution 

The goal of waveform design can be expressed by an objective function in 

terms of a variable set. In k-space, low frequencies are near the center of k-

space, higher spatial frequencies are towards the edges. We know that small 

structures and fine details of an image contain high spatial frequencies. So 

higher spatial frequencies give better spatial resolution. Thus, if we want a 

sharp image, we have to measure not only the low spatial frequencies but 

higher ones as well. 

Fig. 3.1 displays the same image of a head measured with different 

21 
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numbers of spatial frequencies. It is obvious that the way to improve the 

resolution is to measure higher spatial frequencies. 

Figure 3.1: 256, 128, and 64 phase-encoding step acquisitions of a transverse 

image of a head. 

By MRI theory, we know that the distance from the center of k-space 

to the farthest point in k-space equals the resolution of the image. Our design 

goal is to maximize resolution. So our objective function can be expressed as 

max llkn;2l l2 if n is even 

3.3 Constraints 

(3.4) 

(3 .5) 

The constraints of an optimization problem are the conditions which define the 

feasible set of solutions. According to our specific teardrop gradient waveform 

22 
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design, the gradient system hardware limitations, waveform characteristics 

required to generate a teardrop k-space trajectory, and first moment nulling 

form a set of constraints for the design of teardrop gradient waveforms. 

3.3.1 Gradient System Hardware Limitations 

Amplitude Limits 

Gradient amplifiers have peak current limits which restrict the maximum ab­

solute value of gradient waveform amplitude. These limits can be expressed 

as inequality range constraints on each of the n + 1 points in the discrete 

waveform sequence as 

(3.6) 

where Gmax is the maximum allowable gradient amplitude. 

Slew or Rise Time Limits 

Gradient amplifiers also have limits on slew rate or rate of change of ampli­

tude. This can be approximated as an inequality constraint on the first-order 

differences between adjacent discrete points as 

ll9i+l- 9ill2 S Smax~t, i E [1, · · · , n + 1], (3.7) 

where ~t is the sample interval. 

23 



M.Sc. Thesis - T. Ren -McMaster- Computing and Software 

Gradient Start and End Amplitudes 

Because gradient amplifiers are switched off at the beginning and at the end, 

so gradient amplitudes are zeros at start and end. 

(3.8) 

(3.9) 

3.3.2 Constraints to Keep a Teardrop Shape of k-Space 

Trajectory 

The Beginning and the End of k-space Trajectory 

The name teardrop comes from the shape of the trajectory in k-space: it leaves 

the center of k-space, become tangent to a circle at the required resolution, 

and returns on the mirror-image trajectory to the center of k-space. So the 

beginning and the end of a k-space trajectory are at the center of k-space, i.e., 

kn = 0. 

The constraint (3.11) is required for SSFP imaging. 

24 
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The Spiral Constraint 

This constraint family is meant to insure that the interleaves of the trajectories 

in k-space do not become too separated from their neighbors. Suppose the 

designed trajectory is along a standard spiral which can be described by a 

polar equation 

r = ae, (3.12) 

where r is the radial distance, () is the polar angle, and a is a constant. When 

applying the spiral constraint to the trajectory, the constraint should be ex-

pressed as follows: 

r' ~ ae'. (3.13) 

It means that the ratio of the radial derivative and the angular derivative 

(measured in radians) should be bounded by a constant. 

0 

Figure 3.2: The deduction of the spiral constraint. 
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From Fig. 3.2, we know that the radial derivative r' at a point k = 

(kx, ky) is k · g/Jikll where g = k' and k · g indicates the dot-product of the 

vectors k and g. The angular derivative is kl_ · g/JikJJ 2 , where kl_ = (-ky, kx) 

is the perpendicular vector of k. Substituting these in the constraint (3.13), 

we get 

k. g kj_. g 
r' < aB' {:::> -- <a--. 

- ~- k ·k 
(3.14) 

By squaring both sides of this formula, the constraint family can be written 

as 

(3.15) 

3.3.3 First Moment Nulling 

In SSFP imaging techniques, we do not dephase (destroy) the magnetization 

from one readout to the next, but keep modifying it with new RF pulses. One 

important fact about SSFP imaging is that, since the magnetization is never 

reset as it is done in conventional techniques, errors will build up over time, 

which means that motion artifacts can be more of a problem. To make the 

readout gradient motion-insensitive, we should zero the first moment, which 

is a global constraint 
n+l 

L:igi = o. (3.16) 
i=l 
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3.4 The Original Optimization Model 

Combining the objective and all the constraints together, we get the following 

optimization model when n is even: 

subject to k1 = 0 

91 = 0 

9n+l = 0 

i 

ki = L 9i i E [1, · · · , n] 
j=l 

ll9i+l- 9illz :S Smaxflt, i E [1, · · · , n + 1] 
n+l 

2:: igi = o 
i=l 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

(3.17e) 

(3.17f) 

(3.17g) 

(3.17h) 

(3.17i) 

(3.17j) 

where n is an even number, !:lt is the sample interval, and a is a constant. 

When n is odd, the objective becomes: 

(3.18) 

while the constraints are the same. 
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These are the original models. Our goal is to maximize the resolution 

while satisfying all the constraints imposed by the hardware limitations of the 

gradient system, the teardrop shape of the scanning trajectory in k-space and 

first moment nulling. 

3.5 The Improved Optimization Model 

The most complicated constraint in the original model is the last one: the 

spiral constraint (3.17j). By using the arctangent function, we can simplify 

this constraint significantly. From Fig. 3.3, we know that 

and 

where atan represents inverse tangent function. 

Then we have 

r' ::; aB' =? !:1r ::; af:1(), 

!:1r :S af1() <* llkill2 -llki-1ll2 :Sa atan(kf-1 · ki,ki-1. ki)· 
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Figure 3.3: The illustration of the simplification of the spiral constraint. 

As a result, the new constraints in the improved optimization model that 

replace (3.17j) are 

(3.24) 

while all other constraints and the objective function are the same. When n 

is odd, we should use formula (3.18) as the objective function. 

3.6 The Second Improvement 

The spiral constraints (3.24) from the improved optimization model are not 

convex and can not be generalized to the 3D case, so we want to improve our 

model again by modifying the spiral constraint which will require an iterative 
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algorithm to solve a sequence of nonlinear problems. To replace the spiral 

constraint in the previous models , we need to add another set of points in 

k-space as our variables: 

k/1 = [k" k" . . . k" . . . k"]T E J?}n 
1' 2 ' ' ~ ' ' n · (3.25) 

Then we can use the following two constraints to replace the spiral constraints: 

(3.26) 

where ¢ = th b 27rf . t 1 . This constraint means that one trajec-e num er o m er eaves 

tory in k-space is the rotation of another trajectory. The second constraint 

is: 

min distance(k~', kjkJ+1) = f3i ,j ~constant. (3.27) 
J 

We can explain this constraint by Fig. 3.4 . Here f3i ,j is the distance from the 

• I 
Figure 3.4: Limit the distances between two trajectories. 
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point k~' to the segment kiki+1 in another trajectory and 

where 
(k:' old-kj,old)·(kj+l,old-kj,old) 

llkJ+l,old-kj,oldll2 

1 

0 

when 0 < ai < 1 

(3.28) 

(3.29) 

and k~:old• kj,old i, j E [1, · · · , n] are solutions of the previous iteration or the 

initials for the first iteration. If ai 2: 1 or ai ::; 0, then the closest point to kr 

on the line through kiki+1 is not on the segment. In these cases, we choose 

the distance from kr to the closest endpoint ki (ai = 0) or kH1 (ai = 1) to be 

the distance f3i,j. 

Keeping all other constraints and the objective function the same as 

before, we can get our new model when n is even: 

subject to k1 = 0 

91 = 0 

9n+l = 0 

ki = 2:.:: 9i i E [1, .. · , n] 
j=l 
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(3.30g) 

ll9i+l- 9iliz :S Smax!::..t, i E [1, · · · , n + 1] (3.30h) 

(3.30i) 
i=l 

(3.30j) 

(3.30k) 

i E [2, · · · , n], j E [1, · · · , n], 

where n is an even number, t:..t is the sample interval, and dis a constant. 

When n is odd, you should use formula (3.18) as your objective function. 

Now we design an iterative algorithm to solve a sequence of nonlinear 

problems (3.30). The general idea is that of at each iteration we choose the 

previous solutions as our starting point, then for each point k? in one trajec-

tory, we look for the segment in another trajectory which is nearest to the 

point k? based on the results from the previous iteration, and we limit this 

distance to be less than or equal to a constant. This constant can be decided 

by the Nyquist sampling theory and field of view to avoid aliasing artifacts. 

The purpose of these constraints are to avoid big holes between neighboring 

trajectories. By repeating the process, we expect the distances between two 

trajectories to become almost the same everywhere, and the objective function 
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will become larger and larger until the results converge to an optimal value. 

See Fig. 3.5 for a pseudocode description. 

3. 7 The Third Improvement 

We cannot guarantee the result of Model (3.30) and the iterative algorithm 

(Fig. 3.5) is a global optimal solution because the model is not convex. In 

this section, we present how to change the subproblem Model (3.30) to a 

convex problem while keeping the iterative algorithm the same as before. To 

reformulate the model as a convex model, we need to change the non-convex 

objective function in the model. 

Another modification we make is to reduce the design variables by half 

because of the symmetry of teardrop trajectories. Suppose the number of 9i 

is n = 2N + 1 (odd number), then kN is the middle point of the teardrop 

trajectory. In our new model, we only need to optimize N + 1 points (half of 

the trajectory), then we get the another half of the trajectory by reflecting. 

tion by 

By introducing a new variable T, we can replace the old objective func-

max T 
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Input: 

initial values ki,old, k~:old i E [1, n]; 

tolerance: a parameter which stands for the tolerance of the objective 

function. 

begin 

iter := 1; 

previous-obj := 0; 

k . k k" . i .= i,old, i .= k" i,old i E [1, · · ·, n]; 

calculate ai by using Formula (3.29); 

solve; 

repeat 

{ k. : = k k" . - k" • i,old, i .- i,old i E [1 · · · n]· , , , 

recalculate ai by using Formula (3.29); 

previous-obj := current-obj; 

solve the optimization problem (3.30); 

i := i+1; 

} until current-obj <= previous-obj + tolerance. 

end. 

end. 

Figure 3.5: The pseudocode of the iterative non-linear method. 

34 



M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

where kN,old is kN from the last iteration. 

The new objective function and the constraint is linear. This new 

objective expression and the constraint together have the same purpose as the 

old objective expression, they are trying to expand the trajectory in k-space. 

To get another half trajectory by reflecting, we have to add a symmetric 

constraint: llkNII2 = llkN+1II2· Thisisanon-convexconstraint. We can change 

the symmetric constraint to a convex constraint by using the following method. 

Let 

(3.32) 

where kN,otd, kN+I,old are the solutions from the previous iteration (or the 

initial values for the first iteration). Instead of using llkNII2 = llkN+III2 in the 

symmetric constraint, we use 

(3.33) 

Then this constraint is linear. 

Keeping all other constraints the same as before, we can get the follow-

ing convex model for the 2D case: 

max T (3.34a) 

(3.34b) 

(3.34c) 
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i 

ki = L gj, i E [1, ... , N] 
j=l 

i=l 

i E [2, · · · , N], j E [1, · · · , N], 

(3.34d) 

(3.34e) 

(3.34f) 

(3.34g) 

(3.34h) 

(3.34i) 

(3.34j) 

(3.34k) 

where !:lt is the sample interval, dis a constant, and k = ~(kN,old + kN+l,otd)· 

This model is a good foundation for the optimization model in the three di-

mensional space. We will develop the 3D model in next section. 
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3.8 The Optimization Model for the 3D Case 

3.8.1 Review of 3D k-Space Acquisition 

There are a variety of volumetric imaging methods available in MRI. Some 

methods get volumetric data through the acquisition of many 2D slices while 

other methods obtain data in 3D k-space directly by appropriate modulation 

of all three gradients. 

The extension of the signal equation from 2D imaging to 3D imaging 

is straightforward. With all three gradients involved, the resultant signal can 

be expressed as 

s(t) = 1 i 1 m(x, y, z)e-i21r[kx(t)x+ky(t)y+k.(t)z] dxdydz, (3.35) 

where 

'Y 1t kx(t) =- Gx(T) dr 
21f 0 

(3.36) 

(3.37) 

(3.38) 

The trajectory through k-space is now along all three dimensions. There 

are a lot of possible ways of filling 3D k-space. Let us review some specific 

3D k-space trajectories here. The most common 3D k-space imaging method 

is three-dimensional Fourier transform (3DFT). A simple extension of 2DFT, 
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Figure 3.6: 3DFT k-space trajectory. 

3DFT employs phase-encoding gradients along two axes, and a readout gra­

dient along the third axis. From a k-space perspective, the Gy and Gz phase 

encoding lobes create movement to some (ky, kz) location prior to movement 

along the kx axis when the Gx readout gradient and data acquisition turn 

on. The k-space trajectory consists of lines parallel to the kx axis in a carte­

sian orientation (Fig. 3.6), convenient for image reconstruction through a 

3DFT. Whereas 3DFT acquires data in a cartesian coordinate structure, 3D 

Figure 3. 7: 3DPR k-space trajectory. 
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projection reconstruction (3DPR) acquires data in a 3D spherical coordinate 

structure. The readout direction varies in a manner to fill k-space with radial 

lines, typically uniformly distributed over a sphere, each line passes through 

the origin (Fig. 3. 7). 

Figure 3.8: Hybrid spiral-scan 3D trajectory. 

Given any 2D k-space acquisition for imaging a slice, one effective way 

to extend the acquisition into 3D k-space is to apply a phase-encoding gradient 

along the third axis. The 3D k-space filling therefore consists of a planar tra­

jectory that is replicated in the third dimension, one for each phase encoding 

that is applied. Fig. 3.8 shows the 3D k-space trajectory for the example of a 

spiral-scan sequence. The 3D reconstruction operation is simply the appropri­

ate 2D reconstruction operation for each of the 2D planes in k-space followed 

by Fourier transformation along the phase encoding axis with the set of 2D 

reconstructions. 

One disadvantage of the above 3D imaging methods is that they require 
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rewinders for SSFP imaging, which reduce their sampling efficiency. Just like 

in 2D case, we still need to design our 3D teardrop gradient waveforms and 

k-space trajectories to obtain an optimal SSFP method in 3D. 

3.8.2 The Optimization Model for 3D Teardrop Gradi­

ent Waveform Design 

We can apply most of the ideas of the 2D model (3.34) to the 3D model 

straightforwardly except for constraints (3.34j) and (3.34k). The constraint 

(3.34j) means the trajectory k~' is the rotation of another trajectory ki, and 

the constraint (3.34k) insures that these two trajectories are not separated by 

more than a fixed amount. But in the 3D case, the concept of rotation is not 

applicable. So we cannot design two neighboring trajectories then rotate them 

to get all the interleaves in the 3D case. To replace these two constraints in 

the 3D case, we have to design all the interleaves together in the 3D model. 

Suppose we have Nt trajectories in the 3D k-space all together. Then 

we take the following set of points as our design variables: 

(3.39) 

(3.40) 
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k ... Nt _ [kNt kNt kNt kNt ]T 
- 1 ' 2 ' ... ' i ' ... ' N+l · (3.41) 

For each pair of two neighboring trajectories (for example, kf, kf are 

neighboring to each other), we add the following constraint (see Fig. 3.4): 

m~n distance(kf, kfkf+1) :::; constant. 
J 

(3.42) 

This constraint has the same meaning as constraint (3.27) for the 2D 

model. Its purpose is just to avoid big gaps between the neighboring trajecto-

ries. The constant can be decided by Nyquist sampling theory to avoid alias 

artifacts. 

Then the optimization model for the 3D case is: 

max T (3.43a) 

subject toT:::; kr;J · (kYJ,old/JlkYJ,oldll2), mE [1, · · · , Nt] (3.43b) 

k~ = 0, mE [1, · · ·, Nt] (3.43c) 

g~ = 0, mE [1,··· ,Nt] (3.43d) 

i 

k': = Lgj, i E [1 · · · N] , , , mE [1, · · · ,Nt] (3.43e) 
j=l 

JJg':JJ2:::; Gmroo i E [1, · · · , N + 1], mE [1, · · · , Nt] (3.43f) 

JJg~ 1 - g':JJ2:::; Smax~t, i E [1,··· ,N + 1], mE [1,··· ,Nt] 

(3.43g) 

(3.43h) 
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2N 

L igr; = 0, m E [1, · · · , Nt] (3.43i) 

(3.43j) 

Vi, j E [2, · · · , N], p, I! E [1, · · · , Nt], 

where ~tis the sample interval, dis a constant, km = ~(kiV,otd+k]V+l,old), where mE 

[1, · · · , Nt], and trajectory p and trajectory I! are neighboring to each other. 

This is a convex model of the subproblem in the 3D case. The design 

variables represent points in three dimensions. The iterative algorithm can be 

applied analogously as before. The idea of this model is almost the same as 

the 2D model, but the implementation is much more complicated. In Chapter 

4, some details of implementation issues will be discussed. 
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Implementation 

To solve the models built in Chapter 3 by optimization software, we need to 

implement those models in a modeling language. We have implemented all the 

models in AMPL [8]. AMPL has been developed at Bell Laboratories. It al-

lows the implementation of numerical experiments with familiar mathematical 

notation and concepts. Further, AMPL offers an interactive command envi­

ronment for setting up and solving optimization problems. A flexible interface 

allows a user to choose from several solvers and to select options that improve 

the solver's performance. AMPL offers also various options to format data, 

for browsing or printing results. 

In Chapter 3, we have presented all the models we have developed for 

this project. Model (3.34) and model (3.43) are the final convex models for the 
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2D and 3D cases. So only the implementation issues of these two models and 

the iterative algorithm of Fig. 3.5 involved in the numerical experiments will 

be addressed in this chapter. Our implementation is based on the formulations 

and equations that were detailed in the previous chapter. 

4.1 The AMPL Model teardrop2D.mod 

4.1.1 Setting up the Model 

In this section, we will explain how to implement the objective function and 

all the constraints of the model (3.34) and its iterative algorithm (Fig. 3.5) in 

the AMPL code teardrop2D.mod. 

The expressions in the objective and constraints necessarily involve 

variables and parameters. So we need to define those variables and parameters 

first in AMPL. 

In model (3.34), we have the following variables: gi, ki, k~' and T. In 

the AMPL model teardrop2D.mod, we declared these variables by: 

var x{1.. N+1}; # X of gi 

var y{1. . N+1}; # y of gi 

var x1{1. .N+1}; # X of ki 

var y1{1 .. N+1}; # y of ki 

44 



M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

var x2{1 .. N+l}; # x of k''i, rotation of x1 

var y2{1 .. N+1}; # y of k''i, rotation of y1 

var tao; # the supplementary variable of objective function 

These declarations create the indexed collection of variables for gi, ki and k~ 

and a variable for T. 

There are two supplementary variables for setting up the quadratic 

constraints: 

var minumber; # supplementary variable 

var beta{2 .. N,1 .. N}; #distances between two trajectories, 

# intermediate variables 

They will be explained later. 

The following are the parameter declarations in this model. 

param N integer > 0; # total number of gi is 2*N+1 

param pi >0; # the ratio constant of circumference to diameter 

param K > 0; # a constant used in the initial condition 

param M integer > 0; #number of interleaves 

param mx ; #scalar in the initial condition 

param TR >O;#readout interval for SSFP sequences, the unit is 

# s(second) 
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par am GMax; # maximum gradient of MRI machine, the unit is T/m 

par am SMax; # maximum slew rate of MRI machine, the unit 

# is T/m/s 

par am gama; # gyromagnetic ratio 

par am DelT := TR/(2*N+1); # the sampling interval, the unit is 

# s(second) 

param G1 (gama * GMax * DelT)~2; #maximum gradient of 

# calculation 

param S1 (gama * SMax * DelT * DelT)~2;#maximum slew 

#rate of calculation 

par am x10{1 .. N+1}; # the initial value for x of ki 

par am y10{1.. N+1}; # the initial value for y of ki 

par am x20{1 .. N+1}; # the initial value for x of k' 'i 

par am y20{1 .. N+1}; # the initial value for y of k' 'i 

par am alfa{2 .. N, 1. . N}; 

par am beta1 {1 .. N}; 

par am jj; 

par am previous_obj default 0; #the value of previous 

# objective function 

param tolerance; # a tolerance for the objective function 
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param d; # the distance between two neighboring trajectories 

param iter; # iteration number 

There is a brief explanation for each parameter after the # in each 

declaration. Now we explain some more complicated parts here. Let us look 

at what G1, 81 stand for first. 

Let t0 , t 1 , • · · , tn represent the discrete time, then we use the notation 

In model (3.34), by (3.34e)we define the relation 

Further, 

i 

ki = L:gj. 
j=l 

However, from MRI theory (Section 2.2), we know that 

So we have 

= 

= 

'Y 1t k(t) =- G(r) dr. 
27f 0 

~ J;; G(r) dr-
2
: J;i-l G(r) dr 

~ rti-l G(r) dr 
27r Jt; 
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Thus 

(4.3) 

Suppose that Gmax represents the maximum gradient of a MRI machine, 

then constraint (3.34f) of model (3.34) should be 

(4.4) 

Then 

21r llg;ll2 < G 
'Y f:l.t - max 

so 

(4.5) 

In the AMPL model teardrop2D.mod, the formulation of (4.5) was used 

for the implementation of this constraint. In the AMPL model, we declared 

parameter gama=~ = 42576000HzT-1
, further parameter GMax represents 

Gmax, and parameter Del t represents !::..t. We also defined another parameter 

G1=(~Gmax!::..t) 2 . So the constraint in AMPL is: 

subject to gg{i in 1 .. N+1}: 

Let Bmax represent the maximum slew of a MRI machine, then the 
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actual meaning of constraint (3.34g) of model (3.34) is 

Then 

so 

llg(ti+I)- g(ti)ll2:::; Smaxb.t =? 
2; lt(ll9i+l- 9ill2):::; Smaxb.t 

=? ll9i+l- 9ill2:::; ~Smax(b.t) 2 , 

(4.6) 

(4.7) 

In the AMPL model teardrop2D .mod, the formulation of ( 4. 7) was used 

for the implementation of this constraint. In the AMPL model, the parameter 

SMax represents Smax, we also defined another parameter S1=(~Smax(b.t) 2 ) 2 . 

So the constraint in AMPL is: 

subject to vv{i in 2 .. N+1}: 

(x[i]-x[i-1])-2 + (y[i]-y[i-1])-2 <= S1 

After defining the variables and parameters, the objective function and 

constraints (3.34a)-(3.34e), (3.34h) and (3.34j) can be expressed in AMPL 

straightforwardly. The AMPL code is as follows: 

#objective function 

maximize k: 

tao; 
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subject to ob: 

tao<= (x1[N]*x10[N]+y1[N]*y10[N])/sqrt(x10[N]*x10[N]+ 

y10 [N] *y10 [N]); 

# teardrop starts from the center of k-space 

subject to xO: 

x1[1]=0; 

subject to yO: 

y1 [1] =0; 

#the first point of gi is zero 

subject to sO: 

X [1] = 0; 

subject to syO: 

y [1] = O· J 

# define k[i] in terms of g[i] 

subject to x1_def{i in 2 .. N+1}: 

x1 [i] =x [i] +x1 [i -1] ; 
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subject to y1_def{i in 2 .. N+1}: 

y1[i]=y[i]+ y1[i-1]; 

# For odd points of gi, ki is even. The symmetric constraint: kN+1=kN. 

subject to symmetr: 

x1[N]*(x10[N]+x10[N+1])+y1[N]*(y10[N]+y10[N+1]) 

=x1[N+1]*(x10[N]+x10[N+1])+y1[N+1]*(y10[N]+y10[N+1]); 

#define x2,y2 in terms of x1,y1 

subject to x2_def{i in 1 .. N+1}: 

x2[i] = x1[i]*cos(2*pi/M)- y1[i]*sin(2*pi/M); 

subject to y2_def{i in 1 . . N+1}: 

y2[i] = x1[i]*sin(2*pi/M) + y1[i]*cos(2*pi/M); 

Some further work is needed for efficient implementation of the first 

moment nulling constraint (3.34i). We introduce two vectors k and its per-

pendicular vector kl_ here. k can be calculated by formula (3.32). Because of 

the first moment nulling constraint and the trajectory is symmetric, we know 

9i+N · k = -gN+2-i · k, (4.8) 

and 

-j_ -j_ 

9i+N 'k = 9N+2-i 'k · (4.9) 
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To satisfy the constraint (3.34i), it is necessary and sufficient to satisfy 

the following equalities: 
2N 

k . (2:::: igi) = o, (4.10) 
i=l 

2N 

- j_ "" k 0 (L..,.. igi) = 0. ( 4.11) 
i=l 

Then we can make the following deduction from formula (4.10): 

2N 2N 

k 0 (2: igi) I: igi 0 k 
i=l i=l 

N 2N 

2: igi · k + (N + 1)gN+l · k + 2: igi · k 
i=l i=N+2 
N N 
2: igi · k + (N + 1)gN+l · k + 2:(N + j)gN+j · k (4.12) 
i=l j=2 

N N 
2: igi · k + (N + 1)gN+l · k- 2: (N + j)gN+2-j · k 
~1 ~2 

N N 
2: igi · k + (N + 1)gN+l · k- 2:(N + i)gN+2-i · k 
i=l i=2 

We can make the same deduction from formula (4.11), finally we can 

get: 

2N N N 

kj_ 0 (L igi) = L igi 0 kj_ + (N + 1)gN+l 0 kj_ + L(N + i)gN+2-i 0 kj_. (4.13) 
i=l i=l i=2 

Finally, we use formulas (4.12) and (4.13) in our implementation. The 

AMPL codes are as follows: 

#First moment nulling constrain! 

subject to nulll: 

sum{i in 1 .. N} i*(x[i]*(x10[N]+x10[N+1])+y[i]* 
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(y10[N]+y10[N+1])) + (N+1)*(x[N+1]*(x10[N]+x10[N+1]) 

+y[N+1]*(y10[N]+y10[N+1]))-sum{i in 2 .. N} (N+i)*(x[N+2-i] 

*(x10[N]+x10[N+1])+y[N+2-i]*(y10[N]+y10[N+1]))=0; 

#First moment nulling constrain2 

subject to null2: 

sum{i in 1 .. N} i*(x[i]*(y10[N]+y10[N+1])-y[i]* 

(x10[N]+x10[N+1])) + (N+1)*(x[N+1]*(y10[N]+y10[N+1]) 

-y[N+1]*(x10[N]+x10[N+1]))+sum{i in 2 .. N} (N+i)*(x[N+2-i] 

*(y10[N]+y10[N+1])-y[N+2-i]*(x10[N]+x10[N+1]))=0; 

The hardest part is how to express the quadratic constraint (3.34k) in 

AMPL. In Section 3.6 we already described the meaning of this constraint. 

For each k~'e i E [2, · · · , N] in a trajectory £, look for the segment k~k~+l 

which is the nearest to the point in another trajectory p, then we limit the 

distance to be less than a constant, i.e., 

To look for the nearest segment k~k~+l of trajectory p to k~'e, we de­

fined two dimensional parameters alfa{2 .. N ,1 .. N} to represent ai· For ex­

ample, alfa [2 ,10] equals to ai that is used to calculate the distance from 
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the point k;e to the segment kf.0kf.1 . We also defined two dimensional variables 

beta{2 .. N,1 .. N} to represent f3i,j· For example, beta[2,10] equals the dis-

tance (32,10 which is the distance from the point k;e to the segment kf.0kf.1 . 

The following code is used to calculate all the alfas, i.e., for all the point 

k?, i E [2, · · · , N] (except for the first point) in a trajectory£, we calculate 

all the alfa[i,j], j E [1, ... ,N] to all the segments on another trajectory 

p. 

#caculate alfa[i,j] 

let {i in 2 .. N, j in 1. .N} alfa[i,j] := 

((x20[i]-x10[j])*(x10[j+1]-x10[j])+(y20[i]-y10[j])*(y10[j+1]-y10[j]))/ 

((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2); 

for {i in 2 .. N} { 

for{j in 1 .. N} { 

if alfa[i,j]>1 then let alfa[i,j] :=1; 

if alfa[i,j]<O then let alfa[i,j] :=0; 

} 

} 

"e If alfa[i, j] > 1 or alfa[i, j] < 0, then the closest point to ki on the 

line through k%k%+l is not on the segment. So we chose a larger distance to 
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the closest endpoint, like if alfa[i, j] > 1, we let alfa[i, j] = 1, it indicates 

that the distance f3i,j will be the distance of k~'e to k~+I· On the other hand, 

if alfa[i, j] < 0, we let alfa[i, j] = 0, what means that the distance /3i,j will 

be the distance of k~' e to k~. 

Then we can calculate all the distances from each point k~'e, i E 

[2, · · · , N] to all the segments k~k~+l' j E [1, · · · , N] by using the following 

code: 

#caculate beta[i,j] 

let {i in 2 .. N, j in 1 .. N} beta[i,j] := 

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+(alfa[i,j] 

*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2; 

We do not calculate the distance from the first point k~e to the segments 

on another trajectory because the first point is always on the center of the k-

space. 

After we get all the distances beta [i, j], we need to determine which 

one is the smallest to each point k~'e i E [2, · · · , N]. For example, fori= 3, 

we suppose beta[3,5] is the smallest element in beta[3,j] j E [1, · · · ,N]. 

This means that the nearest segment to k~e is kfk~. To do this, we need to de­

fine another intermediate variable minumber and another series of parameters 

beta1[1. .N] to store the indices (j's) of the nearest segment k~k~+I· Contin-
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uing the above example, let us suppose beta [3, 5] is the smallest element of 

beta[3,j] j E [l,N], then beta1[3] = 5. 

We used the following code to search for the smallest bet a [ i , j] and 

beta1 [1 .. N]. 

for {i in 2 .. N}{ 

let minumber :=beta[i,1]; 

let beta1[1] :=0; 

let beta1 [i] : =1; 

for{j in 2 .. N}{ 

if beta[i,j] < minumber 

then {let minumber:=beta[i,j]; 

let beta1[i] :=j;} 

} 

} 

if beta1[i-1]=40 

then {let jj:= i-1; 

break;} 

It is still necessary to explain what j j means here. The counter j j 

stands for how many points of k~'e should be subject to the quadratic con­

straint. For example, if the nearest segment to the point k~4 is k~0k~1 (the last 
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segment in a trajectory) at the previous iteration, then jj = 33, it means that 

to get a better result, we don't need to apply the quadratic constraints to the 

· "R "R pomts k34-k40 anymore. 

For the constraint (3.34k) in model (3.34), the variables and parameters 

have the following relationship with the variables and parameters in the AMPL 

model teardrop2D.mod. 

kj (x1[beta1[i]], y1[beta1[i]]) 

kJ+ 1 (x1[beta1[i + 1]], y1[beta1[i + 1]]) 

k~' = (x2[i], y2[i]) 

ai (alfa[i, beta1[i]]). 

Thus, the constraint can be expressed in the following way in AMPL. 

#Quadratic constraint 

subject to qu3{i in 4 .. jj}: 

(alfa[i,beta1[i]]*x1[beta1[i]+1]+(1-alfa[i,beta1[i]])*x1[beta1[i]] 

-x2[i])-2+(alfa[i,beta1[i]]*y1[beta1[i]+1]+(1-alfa[i,beta1[i]])* 

For the first two points k;R, k~e, we always limit the distance from k;R 

to kf. k~ and the distance from k; e to k~ k~ for the purpose of getting a good 

shape of a teardrop as follows: 

# Quadratic constraints for the first two points 
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subject to qui: 

(alfa[2,1]*x1[2]+(1-alfa[2,1])*x1[1]-x2[2])-2+ 

(alfa[2,1]*y1[2]+(1-alfa[2,1])*y1[1]-y2[2])-2<=d-2; 

subject to qu4: 

(alfa[3,3]*x1[4]+(1-alfa[3,3])*x1[3]-x2[3])-2+ 

(alfa[3,3]*y1[4]+(1-alfa[3,3])*y1[3]-y2[3])-2<=d-2; 

4.1.2 Specifying Data 

There is a distinction between an AMPL model for an optimization problem, 

and data values that define a particular instance of the problem. After setting 

up the model, we need to provide the data that convert a model into a specific 

problem instance, then we use an optimization software to solve the problem. 

All the implementation issues about specifying data for the parameters and 

initial values of variables are addressed in this section. 

The following code is used to specify data for most of the parameters 

in the model. 

data; 

param N :=40; 

param K 800; 

param M 4· , 
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param mx ·= 20; 

par am pi - 3.14159; 

par am TR - 0.004; 

par am GMax - 0.04; 

par am SMax := 150; 

par am gama - 42576000; 

par am jj :=40; 

par am tolerance - 1· 
' 

par am d - 63.25; 

par am iter := 1; 

The data command initiates a data mode in AMPL. AMPL will read 

data statements after this command. The values for the parameters TR, GMax 

and SMax are from a real MRI machine, GMax and SMax will change from model 

to model. The value for the parameter gama is from MRI theory, and we give 

reasonable values to the parameter tolerance and d accordingly. 

We give the initial values for the parameter iter and jj, they will 

change after the first iteration. We can modify the value of N to get different 

results for different scanning points. If you give a bigger value of N, you would 

get a smoother trajectory in k-space, but it would take more time to solve the 

problem. 
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The parameters K, M and mx are used for specifying data for the pa­

rameters x10, y10, x20 and y20 - the initial values for the corresponding 

variables in the first iteration. After the first iteration, the parameters x10, 

y10, x20 and y20 will hold the values of the corresponding variables from the 

last iteration. These values will be used to calculate the alia and beta needed 

in the quadratic constraints. 

We used the Archimedean spirals to generate the initial values for vari­

ables x1, y1, x2 and y2 just as the following code does: 

#intial values for parameters 

let {i in 1 .. N+1} x10[i] :=K/mx*((pi*(i-1)/N*M)*cos(pi*(i-1)/N*M)); 

let {i in 1 .. N+1} y10 [i] : = 

K/mx*((pi*(i-1)/N*M)*sin(pi*(i-1)/N*M)); 

let {i in 1 .. N+1} x20 [i] : =x10 [i] *cos (2*pi/M) - y10 [i] *sin(2*pi/M); 

let {i in 1 .. N+1} y20 [i] : = 

x10[i]*sin(2*pi/M) + y10[i]*cos(2*pi/M); 

#intial values for variables 

let {i in 2 .. N+1} x1 [i] - x10 [i] ; 

let {i in 2 .. N+1} y1 [i] - y10 [i] ; 

let {i in 2 .. N+1} x2 [i] - x20 [i] ; 
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let {i in 2 .. N+1} y2 [i] : = y20 [i] ; 

let {i in 2 .. N+1} x [i] : = x1 [i] -xl[i -1] ; 

let {i in 2 .. N+1} y[i] y1[i]-y1[i-1]; 

Figure 4.1: Archimedean spiral. 

An Archimedean spiral (Fig. 4.1) has the property that successive arms 

have a fixed distance which is an attractive property for our trajectories in the 

k-space. An Archimedean spiral can be described as 

r =a+ b(J. (4.14) 

In our AMPL program, we let a 0, b = K/mx, where K and mx are two 

parameters. 
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4.1.3 Command Environment 

This section explains the commands that invoke solvers, display results and 

commands for modifying and resolving the model. 

The commands used for the first run (first iteration) of the model are 

as follows: 

option solver mosek; 

option show_stats 1; 

solve; 

display k 

display x1, y1 

display x2, y2 

display x,y; 

display iter 

display jj; 

The command 

option solver mosek; 

chose the solver MOSEK. If you have more than one solver, you can choose 

your favorite one by changing this option. We used the command 

option show_stats 1; 
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to have a summary of the actions of presolve and of the size of the resulting 

program. AMPL simplifies constraints as it prepares the model and data for 

handing them to a solver. For example, it may combine linear terms involving 

the same variable, move variables from one side of a constraint to the other 

side, or eliminate variables fixed at a value. Entire constraints may be dropped 

because a mathematical test shows that they are implied by other constraints. 

This work is carried out by a presolve phase. 

The solve command finally sends the generated optimization problem 

to the solver of your choice. The display commands are used to exhibit the 

results after the solver solves the problem. 

In the iterative algorithm (Fig. 3.5), we have a "repeat structure". 

The repeat structure means we want to solve the problem again and again 

after the first iteration until a stop criterion is satisfied. At each iteration, the 

problem is almost the same as the problem of the last iteration, except for the 

initial values for the variables and the quadratic constraints. The values for 

the parameters alfa and beta! change after each iterations because they are 

based on the results of the last iteration. In other words, after each iteration we 

recalculate alfa, beta and beta!, and then solve the problem again. Although 

we do not change the model, actually the quadratic constraints change because 

the value of their parameters change. 
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There are some commands provided in AMPL to help us to change 

the current optimization problem. The commands that implements the repeat 

structure and changes the data of alf a, beta and beta1 are as follows: 

repeat{ 

#after the first iteration 

#give the results of last iteration to parameters 

let {i in 1 .. N+1} x10 [i] : =x1 [i] ; 

let {i in 1 .. N+1} y10 [i] :=y1[i]; 

let {i in 1 .. N+1} x20 [i] : =x2 [i]; 

let {i in 1 .. N+1} y20 [i] : =y2 [i] ; 

#caculate alfa[i,j] again for this iteration 

let {i in 2 .. N, j in 1. .N} alfa[i,j] := 

((x20[i]-x10[j])*(x10[j+1]-x10[j])+(y20[i]-y10[j])* 

(y10 [j+1] -y10 [j])) I ( (x10 [j+1] -x10 [j]) -2+ 

(y10[j+1]-y10[j])-2); 

for {i in 2 .. N} { 

for{j in 1. . N} { 

if alfa[i,j]>1 then let alfa[i,j] :=1; 

if alfa[i,j]<O then let alfa[i,j] :=0; 

} 
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} 

#caculate beta[i,j] again for this iteration 

let {i in 2 .. N, j in 1 .. N} beta[i,j] := 

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+ 

(alfa[i,j]*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2; 

for {i in 2 .. N}{ 

let minumber :=beta[i,1]; 

let beta1 [i] : =1; 

for{j in 2 .. N}{ 

if beta[i,j] < minumber 

then {let minumber:=beta[i,j]; 

let beta1[i] :=j; 

} 

} 

} 

if beta1[i] < beta1[i-1] 

then {let jj:=i-1; break;} 

if beta1[i-1]=40 

then {let jj:= i-1; 

break;} 
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let previous-obj :=k; 

solve; display k 

display x1, y1 

display x2, y2 

display x,y; 

display jj; 

let iter := iter+!; 

display iter; } until k <= previous-obj+tolerance; 

After some data values have been changed, the current values of the 

variables no longer give an optimal solution. So the command solve and the 

display commands for displaying results are issued a second time. 

Our stop criterion is k <= previous-obj+tolerance, where k stands 

for the value of the current objective function. If the trajectories in the k-space 

do not expand any more or only expand a little, then the algorithm stops. 

Putting all the code that we explained in this chapter together, we have 

our model teardrop2D.mod as presented in Appendix A.l. 

We performed the numerical experiments using this model. We will 

describe the results in the next chapter. 
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4.2 The AMPL Model teardrop3D.mod 

The AMPL model teardrop3D.mod is the implementation of model (3.43). 

The 3D optimization model (3.43) is almost a straight-forward adoption of 

the 2D model (3.34) except that all the interleaves of trajectories are design 

variables in the 3D model. 

In the model teardrop3D.mod, we designed 20 trajectories in k-space. 

This idea is based on the dodecahedron. 

Figure 4.2: A dodecahedron in 3D. 

Fig. 4.2 shows a dodecahedron. It is composed of 20 polyhedron ver­

tices, 30 polyhedron edges, and 12 pentagonal faces. Suppose the center of 

k-space is on the center of a dodecahedron, we will design 20 trajectories start­

ing from the center of k-space, and the starting directions of the trajectories 
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are from the center to each vertex. 

The overall structure of teardrop3D .mod is the same as the struc­

ture of teardrop2D.mod. Because we are designing 20 trajectories now, in­

stead of 2 trajectories, we need some two-dimensional variables in the model 

teardrop3D .mod. 

The variables x, y and z represent the x-, y- and z-coordinates of k, 

xdt, ydt and zdt represent x-, y- and z-coordinates of g. They are all two­

dimensional variables. For example, x [2, 3] stands for the x-coordinate of 

the third point on the second trajectory. Variable zdt [20, 11] means the 

z-coordinate of the 11th point of the 20th g (gradient waveform). 

The variables betaaij {2 .. N, 1. . N} correspond to the beta's in the 

teardrop2D.mod from trajectory i to p. For example, betaa23 [3, 4] equals 

the distance from the third point on the trajectory 2 to the segment k4k5 on 

the trajectory 3. 

The parameters alfaij {2 .. N, 1 .. N} correspond to the alia's in the 

teardrop2D.mod from trajectory i to j. For example, alfa23 [2, 10] stands 

for the a value that is used when calculating the distance from the second 

point of trajectory 2 to the segment k10 k11 on the trajectory 3. 

The parameters betaij { 1 .. N} correspond to the beta1 'sin the teardrop2D.mod 

from trajectory i to j. For example, suppose that betaa23 [3, 5] is the smallest 
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one of betaa23 [3, j], j E [1, N], then beta23 [3] =5, i.e., the nearest segment 

to the third point of trajectory 2 is k5k6 on the trajectory 3. 

In the implementation of constraint (3.43b), we let 

kN,old = (xxO, yyO, zzO). 

The purpose of doing this is to avoid that all the trajectories get close to each 

other after several iterations. The parameters xxO,yyO and zzO are initial 

values for the variables x, y and z in the first iteration. 

We generated initial values xO,yO and zO for the variables x,y and z by 

using Maple. Fig. 4.3 shows the initial values of the 20 trajectories. 

Just like in the 2D model, the most difficult part of implementing the 

3D model is how to express the quadratic constraints (3.43j) in AMPL. For 

each pair of two neighboring trajectories, we need to apply these quadratic 

constraints to avoid big holes between the trajectories. 
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Figure 4.3: The initial values of the 20 trajectories. 
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Figure 4.4: A platonic dodecahedron graph. 
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To implement these constraints, the first thing is to make clear the 

connectivity of the the dodecahedron, i.e, we need to know which trajectories 

are neighboring to each other. The Platonic graph (Fig. 4.4) of a dodecahedron 

corresponds to the connectivity of the vertices of a dodecahedron. It is a 

symmetric cubic planar graph. For example, trajectory 2 is surrounded by 

trajectory 1, 3 and 12. So we need to limit the distances from trajectory 2 to 

trajectory 1, 3 and 12 to be less than a constant, as the following code does: 

#Quadratic constraint of tra. 2 to tra. 1 subject to qu3{i in 

2 .. 10}: 

(alfa21[i,beta21[i]]*x[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])* 

x[1,beta21[i]]-x[2,i])~2+(alfa21[i,beta21[i]]*y[1,beta21[i]+1]+ 

(1-alfa21[i,beta21[i]])*y[1,beta21[i]]-y[2,i])~2+ 

(alfa21[i,beta21[i]]*z[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])* 

z[1,beta21[i]]-z[2,i])~2<=d~2; 

#Quadratic constraint of tra. 2 to tra. 3 subject to qu4{i in 

2 .. 10}: 

(alfa23[i,beta23[i]]*x[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])* 

x[3,beta23[i]]-x[2,i])~2+(alfa23[i,beta23[i]]*y[3,beta23[i]+1]+ 

(1-alfa23[i,beta23[i]])*y[3,beta23[i]]-y[2,i])~2+ 
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(alfa23[i,beta23[i]]*z[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])* 

z[3,beta23[i]]-z[2,i])-2<=d-2; 

#Quadratic constraint of tra. 2 to tra. 12 subject to qu5{i in 

2 .. 10}: 

(alfa212[i,beta212[i]]*x[12,beta212[i]+1]+(1-alfa212[i,beta212[i]])* 

x[12,beta212[i]]-x[2,i])-2+(alfa212[i,beta212[i]]*y[12,beta212[i]+1]+ 

(1-alfa212[i,beta212[i]])*y[12,beta212[i]]-y[2,i])-2+ 

(alfa212[i,beta212[i]]*z[12,beta212[i]+1]+(1-alfa212[i,beta212[i]])* 

z[12,beta212[i]]-z[2,i])-2<=d-2; 

We can implement all the quadratic constraints similarly in AMPL. 

Part of the AMPL code of the model teardrop3D.mod is in Appendix 

A.2. We do not include all the quadratic constraints in the Appendix because 

the whole program is too long. 
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Chapter 5 

Computational Results 

In this chapter we present the computational results of the teardrop2D.mod 

and teardrop3D.mod models solved by MOSEK [8]. The MOSEK optimiza­

tion software is designed to solve large scale mathematical optimization prob­

lems. It can solve linear, convex quadratic and general convex mathematical 

programs. An interior-point optimizer is available for all supported problem 

classes. All numerical experiments were performed on an IBM RS/6000 44P 

Model 270, 375 MHz, with 8 GB memory Workstation. 

5.1 Results with teardrop2D.mod 

Fig. 5.1 to Fig. 5.4 present the 2D k-space trajectories obtained by solving 

the model teardrop2D.mod without the first moment nulling constraint. After 
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Obj = 244.884 
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Figure 5.1: 2D k-space trajectories after the first iteration. 

ten iterations, we got the optimal result (Fig.5.4). We only put the results of 

four iterations here to save some space. From these figures, we can see that 

the objective function value is increasing from iteration to iteration, in the 

meantime, the trajectories are becoming more and more evenly spaced which 

is a perfect property for trajectories in the k-space. 
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Obj = 388.076 

400 

300 

200 

100 

0 
1/m 

-100 

-200 

-300 

-400 
-400 -200 0 200 400 

1/m 

Figure 5.2: 2D k-space trajectories after the fourth iteration. 
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Obj = 429.701 
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Figure 5.3: 2D k-space trajectories after the eighth iteration. 
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Obj = 431.115 
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Figure 5.4: 2D k-space trajectories after ten (the last) iteration. 
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Obj = 419.849 
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Figure 5.5: 2D k-space optimal trajectories with first moment nulling. 
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Fig.5.5 presents the the optimal trajectories obtained by solving the 

model teardrop2D.mod with first moment nulling. We got the optimal result 

after twelve iterations. Comparing this result to the result without first mo­

ment nulling (Fig.5.4), we can see the objective decreases a little, however as 

first moment nulling is required for SSFP imaging, the better results are more 

realistic. 

The k-space trajectories we got from the model are only half teardrops. 

We can get the another half by symmetry of the designed teardrop trajectories. 

For example, Fig. 5.6 shows one of the whole teardrop trajectories from Fig. 

5.4. 
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Obj = 431.115 
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Figure 5.6: One optimal teardrop trajectory. 

Rotating the associated gradient profiles is equivalent to rotating the 

trajectory around the center of k-space. Together the combined views can 

cover the two-dimensional k-space completely, as evidenced by the set of views 

in Fig.5.7. There are four teardrops in the figure. 
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Obj = 431.115 
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Figure 5. 7: Rotate the optimal teardrops to cover the whole k-space. 

Fig. 5.8 and Fig. 5.9 present the corresponding optimal gradient wave-

forms in the x- and y-direction which generate one of the trajectories of Fig. 

5.4. Waveforms for the other interleaves are linear combination of these two. 
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Figure 5.8: Gradient waveform Gx in the x-direction of the 2D k-space. 

84 



M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

80 

60 

40 

20 

1/m 
0 

-20 

-40 

-60 

-80 
0 5 10 15 20 25 30 35 40 45 

Sample Points 

Figure 5.9: Gradient waveform Gy in the y-direction of the 2D k-space. 
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5.2 Results with teardrop3D.mod 

Fig. 5.10 to Fig. 5.13 present the results of the 3D k-space trajectories ob­

tained by solving model teardrop3D.mod. From these figures, we can see that 

the value of the objective function is increasing from iteration to iteration, this 

means that the resolution is increasing while all the constraints are satisfied. 

After seven iterations, we got the optimal twenty trajectories (Fig.5.13). Al­

though the results are promising, they are still not perfect. The trajectories in 

the 3D k-space are not as evenly spaced in the 3D k-space as we expected. To 

illustrate this behavior, we show two trajectories in Fig. 5.14. The two tra­

jectories starting from the origin show similar behavior initially as in the 2D 

case, while the last two points jump unexpectedly. This strange behavior may 

indicate where the model should be improved to get better results. Further 

improvements and experimentation are the subject of future research. 
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Figure 5.10: 3D k-space trajectories after the first iteration. 
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Figure 5.11: 3D k-space trajectories after the third iteration. 
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Figure 5.12: 3D k-space trajectories after the fifth iteration. 
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Figure 5.13: 3D k-space trajectories after the seventh(last) iteration. 

90 





M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

8 

6 

4 

2 

1/m 
0 

-2 

-4 

-6 

-8 

-10 
0 2 4 6 8 10 12 

Sample Points 

Figure 5.15: Gradient waveform Gx for trajectory 1 in the 3D k-space. 

Fig's. 5.15, 5.16 and 5.17 display the corresponding optimal gradient 

waveforms in the x-, y- and z-direction to generate the first trajectory of Fig. 

5.13. The other optimal gradient waveforms are similar, so we do not present 

them. 
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Figure 5.16: Gradient waveform Gy for trajectory 1 in the 3D k-space. 
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Figure 5.17: Gradient waveform Gz for trajectory 1 in the 3D k-space. 
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The exact shapes of teardrop trajectories and gradient waveforms vary 

with the number of interleaves, Field Of View and resolution. Various FOV, 

TRs, interleaves and many different initial solutions were tested and alternative 

solvers were used as well. In this thesis we represent only the best result derived 

by using MOSEK. 

In the paper [1], Anand et al. implemented interleaved teardrop read­

outs designed for a PD250 (27 mt/m, 72 T /m/s) on an in-house research 

Marconi Eclipse 1.5 T scanner. The readout gradient waveform was numeri­

cally optimized using a proprietary Marconi algorithm. They showed a frame 

of transverse, TR 5.2ms, 50 interleave cine (movie), 36cm field of view, 3mm 

in-plane resolution. The image (Fig.5.18) displays good blood/septem (mus­

cle) contrast to noise ratio. They have demonstrated that the nonstandard 

readout trajectories-teardrops can be used to acquire SSFP images. We ex­

pect our optimal readout to offer increased scan-time efficiency, which will 

yield higher frame rates and increased signal to noise ratio. 
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Figure 5.18: Gradient waveform Gz for trajectory 1 in 3D k-space. 
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Chapter 6 

Conclusions and Future Work 

Teardrop gradient waveform design is an increasingly important part of MRI 

sequencing because teardrop readout enables us to acquire SSFP images effi­

ciently. We have shown that teardrop gradient waveform design can be cast as 

a convex-optimization problem for which efficient solution methods exist. In 

particular, we described how to build nonlinear convex optimization models for 

2D and 3D teardrop gradient waveform design. The results of our numerical 

experiments indicate that the described optimization procedure can provide an 

effective, scientifically sound method of ensuring feasible and optimal teardrop 

gradient waveform for the stated design goal and the constraints while requir­

ing short computation time. The unusual shapes exhibited by some numerical 

results suggest that conventional design methods may be far from optimal. 
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Due to the limitations, there are still some aspects of the 3D model 

that can be improved and areas left for further investigation. A few of the 

issues that should be taken into account for future research are: 

• Improve the 3D model to get the resulting trajectories more evenly 

spaced in the 3D k-space (see Fig. 5.14 and the discussion around it); 

• Add more constraints to the 2D and 3D models, like the second moment 

nulling which would reduce the image artifacts caused by pulsatile flow. 

The second moment nulling can be implemented the same efficient way 

as the first moment nulling (see page 51 to page 53) ; 

• Test on MRI machine. 

The work which has been done with the teardrop gradient waveform design has 

built an excellent foundation for future developments. This research illustrates 

the design of MRI sequences should benefit from optimal design. 
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Appendix A: The AMPL Codes 

A.l Model Teardrop2D.mod 

#This is teardrop 2D convex model with only linear and quardratic 

# constraints 

#parameters and variables, (xi, yi) corresponds to gi 

#(x1i,y1i) corresponds to ki, and (x2i,y2i) corresponds to k'i 

param N integer > 0; # total number of gi is 2*N+1 

param pi >0; # the ratio constant of circumference to diameter 

param K > 0; # a constant used in the initial condition 

param M integer > 0; #number of interleaves 

param mx ; #scalar in the intial condition 

param TR >0; # readout interval for SSFP sequences, the unit 

# is s(second) 

param GMax; # maximium gradient of MRI machine, the unit is T/m 

param SMax; # maximium slew rate of MRI machine, the unit is 
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# T/m/s 

param gama; # gyromagnetic ratio 

param DelT := TR/(2*N+1); #the sampling interval, the unit is 

# s(second) 

param G1 (gama * GMax * DelT)-2; # maximum gradient of 

# calculation 

param S1 (gama * SMax * DelT * DelT)-2; #maximum slew rate 

#of calculation 

par am x10{1 .. N+l}; # the initial value for X of ki in each iteration 

par am y10{1. . N+l}; # the initial value for y of ki in each iteration 

par am x20{1 .. N+l}; # the initial value for X of k'i in each iteration 

par am y20{1 .. N+l}; # the initial value for y of k'i in each iteration 

par am alfa{2 .. N, 1.. N}; 

par am beta1{1.. N}; 

par am jj; # the number of points are subject to quadratic 

# constraints 

param previous-obj default 0; #the value of previous objective 

# function 

param tolerance; # a tolerance for the objective function 

param d; # the distance between two neighboring trajectories 
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param iter; # iteration number 

var x{1.. N+l}; # X of gi 

var y{1.. N+l}; # y of gi 

var x1{1.. N+l}; # X of ki 

var y1{1.. N+l}; # y of ki 

var x2{1 .. N+l}; # x of k''. 1, rotation of x1 

var y2{1 .. N+1}; # y of k''i, rotation of y1 

var tao; # the supplementary variable of objective function 

var minumber; # supplementary variable 

var beta{2 .. N,1 .. N}; #distances between two trajectories, 

# intermediate variables 

#objective function 

maximize k: 

tao; 

subject to ob: 

tao <= (x1[N]*x10[N]+y1[N]*y10[N])/sqrt(x10[N]*x10[N]+ 

y10[N]*y10[N]); 
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# teardrop starts from the center of k-space 

subject to xO: 

x1[1]=0; 

subject to yO: 

y1[1]=0; 

#the first point of gi is zero 

subject to sO: 

X [1) = 0; 

subject to syO: 

y [1] = o· 
' 

# define k[i] in terms of g[i] 

subject to x1_def{i in 2 .. N+1}: 

x1 [i] =x [i] +x1 [i -1] ; 

subject to y1_def{i in 2 .. N+1}: 

y1[i]=y[i]+ y1[i-1]; 

#Gmax constraint 

subject to gg{i in 1 .. N+1}: 
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#Smax constraint 

subject to vv{i in 2 . . N+1}: 

(x[i]-x[i-1])-2 + (y[i]-y[i-1])-2 <= S1 

# For odd points of gi, ki is even. The symmetric constraint: 

# kN+1=kN. 

subject to symmetr: 

x1[N]*(x10[N]+x10[N+1])+y1[N]*(y10[N]+y10[N+1])= 

x1[N+1]*(x10[N]+x10[N+1])+y1[N+1]*(y10[N]+y10[N+1]); 

#define x2,y2 in terms of x1,y1 

subject to x2_def{i in 1 .. N+1}: 

x2[i] = x1[i]*cos(2*pi/M) - y1[i]*sin(2*pi/M); 

subject to y2_def{i in 1 .. N+1}: 

y2[i] = x1[i]*sin(2*pi/M) + y1[i]*cos(2*pi/M); 

# Quadratic constraints for the first two points 
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subject to qui: 

(alfa[2,1]*x1[2]+(1-alfa[2,1])*x1[1]-x2[2])~2+ 

(alfa[2,1]*y1[2]+(1-alfa[2,1])*y1[1]-y2[2])~2<=d~2; 

subject to qu4: 

(alfa[3,3]*x1[4]+(1-alfa[3,3])*x1[3]-x2[3])~2+ 

(alfa[3,3]*y1[4]+(1-alfa[3,3])*y1[3]-y2[3])~2<=d~2; 

#First moment nulling constrain! 

subject to null1: 

sum{i in 1 .. N} i*(x[i]*(x10[N]+x10[N+1])+y[i]* 

(y10[N]+y10[N+1])) + (N+1)*(x[N+1]*(x10[N]+x10[N+1]) 

+y[N+1]*(y10[N]+y10[N+1]))-sum{i in 2 .. N} (N+i)* 

(x[N+2-i]*(x10[N]+x10[N+1])+y[N+2-i]*(y10[N]+y10[N+1]))=0; 

#First moment nulling constrain2 

subject to null2: 

sum{i in 1 .. N} i*(x[i]*(y10[N]+y10[N+1])-y[i]* 

(x10[N]+x10[N+1])) + (N+1)*(x[N+1]*(y10[N]+y10[N+1])­

y[N+1]*(x10[N]+x10[N+1]))+sum{i in 2 .. N} (N+i)*(x[N+2-i] 

*(y10[N]+y10[N+1])-y[N+2-i]*(x10[N]+x10[N+1]))=0; 
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data; 

par am N :=40; 

par am K ·= 800; 

param M := 4· 
' 

param mx - 20; 

param pi - 3.14159; 

param TR - 0.004; 

par am GMax - 0.04; 

par am SMax := 150; 

par am gam a ·= 42576000; 

par am jj :=40; 

par am tolerance - 1; 

param d := 63.25; 

param iter := 1; 

#intial values for parameters 

let {i in 1 .. N+1} x10[i] :=K/mx*((pi*(i-1)/N*M)*cos(pi*(i-1)/N*M)); 

let {i in 1 .. N+l} y10 [i] : = 
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let {i in 1 .. N+1} x20 [i] : =x10 [i] *cos (2*pi/M) - y10 [i] *sin(2*pi/M); 

let {i in 1 .. N+1} y20 [i] : = 

x10[i]*sin(2*pi/M) + y10[i]*cos(2*pi/M); 

#intial values for variables 

let {i in 2 .. N+1} x1 [i] := x10[i]; 

let {i in 2 .. N+1} y1 [i] := y10[i]; 

let {i in 2 .. N+1} x2 [i] := x20[i]; 

let {i in 2 .. N+1} y2 [i] := y20[i]; 

let {i in 2 .. N+1} X [i] := x1[i]-x1[i-1]; 

let {i in 2 .. N+1} y [i] := y1[i]-y1[i-1]; 

#caculate alfa[i,j] 

let {i in 2 .. N, j in 1 .. N} alfa[i,j] := 

((x20[i]-x10[j])*(x10~+1]-x10~])+(y20[i]-y10[j])* 

(y10[j+1]-y10[j]))/((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2); 

for {i in 2 .. N} { 

for{j in 1. . N} { 

if alfa[i,j]>1 then let alfa[i,j] :=1; 
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if alfa[i,j]<O then let alfa[i,j] :=0; 

} 

} 

#caculate beta[i,j] 

let {i in 2 .. N, j in 1. .N} beta[i,j] := 

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+ 

(alfa[i,j]*y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2; 

for {i in 2 .. N}{ 

let minumber :=beta[i,1]; 

let beta! [1] : =0; 

let beta1[i] : =1; 

for{j in 2 .. N}{ 

if beta[i,j] < minumber 

then {let minumber:=beta[i,j]; 

let beta1[i] :=j;} 

} 

if betai[i-1]=40 

then {let jj:= i-1; 
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break;} 

} 

#Quadratic constraint 

subject to qu3{i in 4 .. jj}: 

(alfa[i,beta1[i]]*x1[beta1[i]+1]+(1-alfa[i,beta1[i]])*x1[beta1[i]] 

-x2[i])~2+(alfa[i,beta1[i]]*y1[beta1[i]+1]+(1-alfa[i,beta1[i]])* 

y1[beta1[i]]-y2[i])~2<=d~2; 

option solver mosek; 

option show_stats 1; 

solve; 

display k 
' 

display x1, y1 

display x2, y2 

display x,y; 

display iter 

display jj; 
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repeat{ 

#after the first iteration 

#take the results of last iteration as the initial values 

let {i in 1 .. N+l} x10 [i] : =x1 [i] , 

let {i in 1. . N+l} y10 [i] :=y1[i]; 

let {i in 1. . N+l} x20 [i] :=x2 [i]; 

let {i in 1 .. N+l} y20 [i] :=y2[i]; 

#caculate alfa[i,j] again for this iteration 

let {i in 2 .. N, j in 1. .N} alfa[i,j] := 

((x20[i]-x10[j])•(x10[j+1]-x10[j])+(y20[i]-y10[j])*(y10~+1] 

-y10[j]))/((x10[j+1]-x10[j])-2+(y10[j+1]-y10[j])-2); 

for {i in 2 .. N} { 

f or{j in 1 .. N} { 

if alfa[i,j]>1 then let alfa[i,j] :=1; 

if alfa[i,j]<O then let alfa[i,j] :=0; 

} 

} 
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#caculate beta[i,j] again for this iteration 

let {i in 2 .. N, j in 1 .. N} beta[i,j] := 

(alfa[i,j]*x10[j+1]+(1-alfa[i,j])*x10[j]-x20[i])-2+(alfa[i,j]* 

y10[j+1]+(1-alfa[i,j])*y10[j]-y20[i])-2; 

for {i in 2 .. N}{ 

let minumber :=beta[i,1]; 

let beta1 [i] : =1; 

for{j in 2 .. N}{ 

if beta[i,j] < minumber 

then {let minumber:=beta[i,j]; 

let beta1[i] :=j; 

} 

} 

if beta1[i] < beta1[i-1] 

then {let jj:=i-1; break;} 

if beta1[i-1]=40 

then {let jj:= i-1; 

break;} 
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} 

let previous-obj :=k; 

solve; 

display k; 

display x1, y1; 

display x2, y2 

display x,y; 

display jj; 

let iter := iter+1; 

display iter; 

} until k <= previous-obj+tolerance; 

A.2 Part of Model Teardrop3D.mod 

#This is teardrop 3D convex model with only linear and quadratic 

# constraints 

#parameters and variables 
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param N integer > 0; # total number of gi is 2*N+1 

param NT integer > 0; # number of trajectories 

param pi >0; # the ratio constant of circumference to diameter 

param K > 0; # a constant used in the initial condition 

param M integer > 0; # number of interleaves 

param mx ; # scaler in the initial condition 

param TR >0; # readout interval for SSFP sequences, the unit is 

# s(second) 

param GMax; # maximum gradient of MRI machine, the unit is T/m 

param SMax; # maximum slew rate of MRI machine, the unit is T/m/s 

param gama; # gyromagnetic ratio 

param DelT := TR/(2*N+1); #the sampling interval, the unit is 

# s(second) 

param G1 := (gama * GMax * DelT)-2; # maximum gradient of 

# calculation 

param 81 (gama * SMax * DelT * DelT)-2; #maximum slew 

#rate of calculation 

param x0{1 .. NT,1 .. N+1}; #the initial values for x of k[i,j] 

# in each iteration 

param y0{1 .. NT,1 .. N+1}; #the initial values for y of k[i,j] 
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# in each iteration 

param z0{1 .. NT,1 .. N+1}; #the initial values for z of k[i,j] 

# in each iteration 

# the initial values for X of k [i 'j] in the first iteration 

par am xx0{1 .. NT,! .. N+1}; 

# the initial values for y of k [i, j] in the first iteration 

par am yy0{1 .. NT,! .. N+1}; 

# the initial values for z of k[i,j] in the first iteration 

par am zz0{1 .. NT,1 .. N+1}; 

par am previous-obj default 0; #the value of previous objective 

# function 

param tolerance; # a tolerance for the objective function 

param d; # the distance between two neighboring trajectories 

param iter; # iteration number 

param c1; # a costant from the last itertion 

param c2; # a costant from the last itertion 

param c3; # a costant from the last itertion 

# alfaij stand for alfa's from trajectory i to trajectory j 

param alfa21{2 .. N,1 .. N}; 

param alfa23{2 .. N,1 .. N}; 
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param alfa212{2 .. N,1 .. N}; 

par am alfa15{2 .. N,1 .. N}; 

par am alfa120{2 .. N,1 .. N}; 

par am alfa34{2 .. N,1 .. N}; 

par am alfa314{2 .. N,1 .. N}; 

par am alfa1211{2 .. N,1 .. N}; 

par am alfa1213{2 .. N,1 .. N}; 

par am alfa137{2 .. N,1 .. N}; 

par am alfa1314{2 .. N,1 .. N}; 

par am alfa1415{2 .. N,1 .. N}; 

par am alfa2019{2 .. N,1 .. N}; 

par am alfa2011{2 .. N,1 .. N}; 

par am alfa116{2 .. N,1 .. N}; 

par am alfa610{2 .. N,1 .. N}; 

par am alfa67{2 .. N,1 .. N}; 

par am alfa78{2 .. N,1 .. N}; 

par am alfa54{2 .. N,1 .. N}; 

par am alfa518{2 .. N,1 .. N}; 

par am alfa416{2 .. N,1 .. N}; 

par am alfa1617{2 .. N,1 .. N}; 
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par am alfa1615{2 .. N,1 .. N}; 

par am alfa89{2 .. N,1 .. N}; 

par am alfa815{2 .. N,1 .. N}; 

par am alfa1817{2 .. N,1 .. N}; 

par am alfa1819{2 .. N,1 .. N}; 

par am alfa179{2 .. N,1 .. N}; 

par am alfa1910{2 .. N,1 .. N}; 

par am alfa910{2 .. N,1 .. N}; 

# betaij stand for beta's from trajectory i to trajectory j 

param beta21{1 .. N}; 

param beta23{1 .. N}; 

param beta212{1 .. N}; 

param beta15{1 .. N}; 

param beta120{1 .. N}; 

param beta34{1 .. N}; 

param beta314{1 .. N}; 

param beta1211{1 .. N}; 

param beta1213{1 .. N}; 

param beta137{1 .. N}; 

param beta1314{1 .. N}; 
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param beta1415{1 .. N}; 

param beta2019{1 .. N}; 

param beta2011{1 .. N}; 

param beta116{1 .. N}; 

param beta610{1 .. N}; 

param beta67{1 .. N}; 

param beta78{1 .. N}; 

param beta54{1 .. N}; 

param beta518{1 .. N}; 

param beta416{1 .. N}; 

param beta1617{1 .. N}; 

param beta1615{1 .. N}; 

param beta89{1 .. N}; 

param beta815{1 .. N}; 

param beta1817{1 .. N}; 

param beta1819{1 .. N}; 

param beta179{1 .. N}; 

param beta1910{1 .. N}; 

param beta910{1 .. N}; 
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var x{1 .. NT,1 .. N+1}; #x of k[i,j] 

var y{1 .. NT,1 .. N+1}; #y of k[i,j] 

var z{1 .. NT,1 .. N+1}; #z of k[i,j] 

var xdt{1 .. NT,1 .. N+1}; #x of g[i,j] 

var ydt{1 .. NT,1 .. N+1}; #y of g[i,j] 

var zdt{1 .. NT,1 .. N+1}; #z of g[i,j] 

var tao; # the supplementary variable of objective function 

var minumber; 

# betaaij stand for betaa's from trajectory i to trajectory j 

var betaa21{2 .. N,1 .. N}; #tra 2 to tra 1 

var betaa23{2 .. N,1 .. N}; #tra 2 to tra 3 

var betaa212{2 .. N,1 .. N}; #tra 2 to tra 12 

var betaa15{2 .. N,1 .. N}; #tra 1 to tra 5 

var betaa120{2 .. N,1 .. N}; #tra 1 to tra 20 

var betaa34{2 .. N,1 .. N}; #tra 3 to tra 4 

var betaa314{2 .. N,1 .. N}; 

var betaa1211{2 .. N,1 .. N}; 

var betaa1213{2 .. N,1 .. N}; 

var betaa137{2 .. N,1 .. N}; 

var betaa1314{2 .. N,1 .. N}; 

#tra 3 to tra 14 

#tra 12 to tra 

#tra 12 to tra 
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var betaa1415{2 .. N,1 .. N}; 

var betaa2019{2 .. N,1 .. N}; 

var betaa2011{2 .. N,1 .. N}; 

var betaa116{2 .. N,1 .. N}; 

var betaa610{2 .. N,1 .. N}; 

var betaa67{2 .. N,1 .. N}; 

var betaa78{2 .. N,1 .. N}; 

var betaa54{2 .. N,1 .. N}; 

var betaa416{2 .. N,1 .. N}; 

var betaa518{2 .. N,1 .. N}; 

var betaa1617{2 .. N,1 .. N}; 

var betaa1615{2 .. N,1 .. N}; 

var betaa89{2 .. N,1 .. N}; 

var betaa815{2 .. N,1 .. N}; 

var betaa1817{2 .. N,1 .. N}; 

var betaa1819{2 .. N,1 .. N}; 

var betaa179{2 .. N,1 .. N}; 

var betaa1910{2 .. N,1 .. N}; 

var betaa910{2 .. N,1 .. N}; 
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#objective function 

maximize k: 

tao; 

subject to ob1{i in 1 .. 20}: 

tao <= ( x[i,N]*xxO[i,N] + y[i,N]*yyO[i,N]+ z[i,N]*zzO[i,N]) 

/sqrt(xxO[i,N]*xxO[i,N]+yyO[i,N]*yyO[i,N]+zzO[i,N]*zzO[i,N]); 

# trajectories start from the center of k-space 

subject to xOO{i in 1 .. NT}: 

x[i,1]=0; 

subject to yOO{i in 1 .. NT}: 

y [i' 1] =0; 

subject to zOO{i in 1 .. NT}: 

z [i' 1] =0; 

#define k[i,j] in terms of g[i,j] 

subject to x_def{i in 1 .. NT,j in 2 .. N+1}: 

x [i ,j] =xdt [i, j] +x [i ,j-1]; 
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subject to y_def{i in 1 .. NT,j in 2 .. N+1}: 

y[i,j]=ydt[i,j]+ y[i,j-1]; 

subject to z_def{i in 1 .. NT,j in 2 .. N+1}: 

z[i,j]=zdt[i,j]+ z[i,j-1]; 

#Gmax constraint 

subject to gg{i in 1 .. NT,j in 1 .. N+1}: 

(xdt[i,j])~2 + (ydt[i,j])~2+ (zdt[i,j])~2 <= G1; 

#Smax constraint 

subject to vv{i in 1 .. NT,j in 2 .. N+1}: 

(xdt[i,j]-xdt[i,j-1])~2 + (ydt[i,j]-ydt[i,j-1])~2+ 

(zdt[i,j]-zdt[i,j-1])~2 <= 81; 

# symmetric constraints 

subject to symetr{i in 1 .. NT}: 

x[i,N]*(xO[i,N]+xO[i,N+1])+y[i,N]*(yO[i,N]+yO[i,N+1])+z[i,N]* 
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(zO[i,N]+zO[i,N+1]) 

=x[i,N+1]*(xO[i,N]+xO[i,N+1])+y[i,N+1]*(yO[i,N]+yO[i,N+1])+ 

z[i,N+1]*(z0[i,N]+ zO[i,N+1]); 

#the first point is zero, g1=0 

subject to xdtO{i in 1 .. NT}: 

xdt[i,1] = 0; 

subject to ydtO{i in 1 .. NT}: 

ydt[i,1] = 0; 

subject to zdtO{i in 1 .. NT}: 

zdt [i, 1] = 0; 

data; 

param K := 800; 

param N :=10; 

param NT :=20; 

param M := 4; 

param mx 

param pi 

param TR 

20; 

3.14159; 

0.004; 
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param GMax := 0.04; 

#param SMax := 150; 

param SMax := 200;# ONLY FOR TEST 

param gama := 42576000; 

param iter :=1; 

param tolerance := 1; 

param d := 40; 

#initial values for parameters 

param xO (tr): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 := 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

2 0.356822 -0.356822 -0.577350 0.000000 0.577350 0.000000 

-0.577350 -0.356822 0.356822 0.577350 0.000000 -0.577350 

-0.934172 -0.934172 -0.577350 0.000000 0.577350 0.934172 

0.934172 0.577350 

3 0.949309 -0.990296 -1.558363 0.030158 1.579985 -0.030158 

-1.579985 -0.949309 0.990296 1.558363 -0.045814 -1.605316 
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-2.553486 -2.524468 -1.533032 0.045814 1.605316 2.553486 

2.524468 1.533032 

4 1.500012 -1.817725 -2.692316 0.084895 2.675895 -0.084895 

-2.675895 -1.500012 1.817725 2.692316 -0.206250 -2.872253 

-4.398577 -4.287370 -2.495958 0.206250 2.872253 4.398577 

4.287370 2.495958 

5 1.815029 -2.894922 -4.000879 0.025554 3.619982 -0.025554 

-3.619982 -1.815029 2.894922 4.000879 -0.438036 -4.287393 

-6.253944 -6.076868 -3.333468 0.438036 4.287393 6.253944 

6.076868 3.333468 

6 1.843217 -4.237355 -5.610385 -0.378393 4.228187 0.378393 

-4.228187 -1.843217 4.237355 5.610385 -0.536086 -5.707845 

-7.989689 -7.929455 -4.130727 0.536086 5.707845 7.989689 

7.929455 4.130727 

7 1.728043 -5.678274 -7.562535 -1.320755 4.421138 1.320755 

-4.421138 -1.728043 5.678274 7.562535 -0.188099 -6.862515 

-9.478677 -9.911313 -5.121158 0.188099 6.862515 9.478677 

9.911313 5.121158 

8 1.820851 -6.852362 -9.709559 -2.802191 4.323994 2.802191 

-4.323994 -1.820851 6.852362 9.709559 0.880325 -7.433639 

123 



M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

-10.650085 -12.056681 -6.599914 -0.880325 7.433639 10.650085 

12.056681 6.599914 

9 2.587227 -7.294918 -11.688779 -4.522189 4.300868 4.522189 

-4.300868 -2.587227 7.294918 11.688779 2.724011 -7.210381 

-11.551995 -14.319797 -8.779266 -2.724011 

7.210381 11.551995 14.319797 8.779266 

10 4.419062 -6.632597 -13.002187 -5.887151 4.879773 5.887151 

-4.879773 -4.419062 6.632597 13.002187 5.041656 -6.247813 

-12.379593 -16.554026 -11.634147 

-5.041656 6.247813 12.379593 16.554026 11.634147 

11 7.414612 -4.799456 -13.190688 -6.162686 6.572090 6.162686 

-6.572090 -7.414612 4.799456 13.190688 7.161587 -4.955834 

-13.443713 -18.533132 -14.806943 -7.161587 4.955834 

13.443713 18.533132 14.806943; 

param yO (tr): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 := 
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1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

2 -0.934172 -0.934172 -0.577350 -0.356822 -0.577350 0.356822 

0.577350 0.934172 0.934172 0.577350 -0.356822 -0.577350 

0.000000 0.000000 0.577350 0.356822 

0.577350 0.000000 0.000000 -0.577350 

3 -2.228747 -2.228911 -2.129645 -2.068131 -2.129380 2.068131 

2.129380 2.228747 2.228911 2.129645 0.365457 -0.625605 0.464559 

-0.464988 0.625340 -0.365457 

0.625605 -0.464559 0.464988 -0.625340 

4 -2.340837 -2.368639 -3.736944 -4.554800 -3.691959 4.554800 

3.691959 2.340837 2.368639 3.736944 2.755940 0.781342 1.359834 

-1.432620 -0.826327 -2.755940 

-0.781342 -1.359834 1.432620 0.826327 

5 -0.392183 -0.538345 -4.220845 -6.350593 -3.984349 6.350593 

3.984349 0.392183 0.538345 4.220845 5.995163 3.409251 2.166500 

-2.549159 -3.645747 -5.995163 

-3.409251 -2.166500 2.549159 3.645747 

6 3.485024 3.053895 -2.860754 -6.085079 -2.163173 6.085079 

2.163173 -3.485024 -3.053895 2.860754 8.582724 6.204447 
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2.236946 -3.365656 -6.902028 -8.582724 

-6.204447 -2.236946 3.365656 6.902028 

7 8.244427 7.303293 0.321334 -3.052619 1.844122 3.052619 

-1.844122 -8.244427 -7.303293 -0.321334 8.991319 7.764897 

1.068226 -3.532149 -9.287685 -8.991319 

-7.764897 -1.068226 3.532149 9.287685 

8 12.247921 10.556335 4.488467 2.429904 7.225510 -2.429904 

-7.225510 -12.247921 -10.556335 -4.488467 6.280547 6.868296 

-1.478907 -2.949722 -9.605338 

-6.280547 -6.868296 1.478907 2.949722 9.605338 

9 13.815566 11.172721 8.200902 9.007062 12.477115 -9.007062 

-12.477115 -13.815566 -11.172721 -8.200902 0.537614 2.966495 

-5.077050 -1.842009 -7.242709 -0.537614 -2.966495 5.077050 

1.842009 7.242709 

10 11.837207 8.130507 9.860997 14.637200 15.858565 -14.637200 

-15.858565 -11.837207 -8.130507 -9.860997 -7.010212 -3.517839 

-8.986422 -0.717847 -2.479729 7.010212 3.517839 8.986422 

0.717847 2.479729 

11 6.243495 1.473231 8.255132 17.216842 15.973582 -17.216842 

-15.973582 -6.243495 -1.473231 -8.255132 -14.269315 -11.204383 
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-12.257678 -0.231036 3.485933 14.269315 11.204383 12.257678 

0.231036 -3.485933; 

param zO (tr): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

2 0.000000 0.000000 0.577350 0.934172 0.577350 -0.934172 

-0.577350 0.000000 0.000000 -0.577350 -0.934172 -0.577350 

-0.356822 0.356822 0.577350 0.934172 

0.577350 0.356822 -0.356822 -0.577350 

3 -1.233107 -1.200135 0.652054 1.763797 0.598704 -1.763797 

-0.598704 1.233107 1.200135 -0.652054 -2.693213 -2.102531 

-0.808052 0.894374 2.155880 2.693213 

2.102531 0.808052 -0.894374 -2.155880 

4 -3.733217 -3.570979 -0.673168 0.955539 -0.935676 -0.955539 

0.935676 3.733217 3.570979 0.673168 -3.745493 -3.578566 -0.685444 

1.110190 3.841073 3.745493 

3.578566 0.685444 -1.110190 -3.841073 
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5 -6.364405 -5.939983 -3.182958 -1.903444 -3.869686 1.903444 

3.869686 6.364405 5.939983 3.182958 -2.796414 -3.734843 0.385033 

0.726117 4.421572 2.796414 

3.734843 -0.385033 -0.726117 -4.421572 

6 -7.661883 -6.853163 -5.881068 -6.089000 -7.189604 6.089000 

7.189604 7.661883 6.853163 5.881068 0.544746 -1.781187 2.325561 

-0.208304 3.089724 -0.544746 

1.781187 -2.325561 0.208304 -3.089724 

7 -6.448826 -5.192610 -7.432959 -10.073788 -9.465560 10.073788 

9.465560 6.448826 5.192610 7.432959 5.627155 2.270757 4.643022 

-1.354205 -0.238156 -5.627155 

-2.270757 -4.643022 1.354205 0.238156 

8 -2.348551 -0.672060 -6.664898 -12.045167 -9.377517 12.045167 

9.377517 2.348551 0.672060 6.664898 10.891396 7.510677 6.575049 

-2.185939 -4.798058 -10.891396 

-7.510677 -6.575049 2.185939 4.798058 

9 3.947022 5.924278 -3.043065 -10.562444 -6.242333 10.562444 

6.242333 -3.947022 -5.924278 3.043065 14.332945 12.343132 7.342858 

-2.166334 -9.143864 -14.332945 

-12.343132 -7.342858 2.166334 9.143864 
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10 10.760837 12.858721 3.024412 -5.151410 -0.370037 5.151410 

0.370037 -10.760837 -12.858721 -3.024412 14.173279 14.967727 6.436854 

-0.944521 -11.573278 -14.173279 -14.967727 -6.436854 

0.944521 11.573278 

11 15.867786 17.903607 10.178551 3.368382 6.884523 -3.368382 

-6.884523 -15.867786 -17.903607 -10.178551 9.531142 13.987346 

3.841907 1.487942 -10.693318 -9.531142 

-13.987346 -3.841907 -1.487942 10.693318; 

#intial values for variables 

let {i in 1. .NT ,j in 2 .. N+1} x[i,j] := xO[i,j]; 

let {i in 1. .NT ,j in 2 .. N+1} y[i,j] : = yO [i ,j]; 

let {i in 1 .. NT ,j in 2 .. N+1} z[i,j] := zO[i,j]; 

let {i in 1..NT,j in 2 .. N+1} xdt[i,j] := x[i,j]-x[i,j-1]; 

let {i in 1..NT,j in 2 .. N+1} ydt[i,j] := y[i,j]-y[i,j-1]; 

let {i in 1. .NT,j in 2 .. N+1} zdt[i,j] := z[i,j]-z[i,j-1]; 

let {i in 1. .NT,j in 2 .. N+1} xxO[i,j] := xO[i,j]; 

let {i in 1..NT,j in 2 .. N+1} yyO[i,j] := yO[i,j]; 

129 



M.Sc. Thesis - T. Ren -McMaster- Computing and Software 

let {i in 1..NT,j in 2 .. N+1} zzO[i,j] := zO[i,j]; 

let c1:= (x0[1,N]+x0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+ 

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]); 

let c2:= (y0[1,N]+y0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+ 

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]); 

let c3:= (z0[1,N]+z0[1,N+1])/sqrt(x0[1,N]*x0[1,N]+ 

y0[1,N]*y0[1,N]+z0[1,N]*z0[1,N]); 

#First moment nulling constrain! 

subject to null1: 

sum{i in 1 .. N} i*(xdt[1,i]*c1+ydt[1,i]*c2+zdt[1,i]*c3) 

+ (N+1)*(xdt[1,N+1]*c1+ydt[1,N+1]*c2+zdt[1,N+1]*c3)­

sum{i in 2 .. N} (N+i)*(xdt[1,N+2-i]*c1+ydt[1,N+2-i]* 

c2+zdt[1,N+2-i]*c3)=0; 

#First moment nulling constrain2 

subject to null2: 

sum{i in 1 .. N} i*(xdt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+ 

c3*zdt[1,i])*c1)+(N+1)*(xdt[1,N+1]-(c1*xdt[1,N+1]+c2* 

130 



M.Sc. Thesis- T. Ren- McMaster- Computing and Software 

ydt[1,N+1]+c3*zdt[1,N+1])*c1)+sum{i in 2 .. N} (N+i)* 

(xdt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i]+c3* 

zdt[1,N+2-i])*c1)=0; 

#First moment nulling constrain3 

subject to null3: 

sum{i in 1 .. N} i*(ydt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+ 

c3*zdt[1,i])*c2)+(N+1)*(ydt[1,N+1]-(c1*xdt[1,N+1]+ 

c2*ydt[1,N+1]+c3*zdt[1,N+1])*c2)+sum{i in 2 .. N} 

(N+i)*(ydt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i] 

+c3*zdt[1,N+2-i])*c2)=0; 

#First moment nulling constrain4 

subject to null4: 

sum{i in 1 .. N} i*(zdt[1,i]-(c1*xdt[1,i]+c2*ydt[1,i]+c3* 

zdt[1,i])*c3)+(N+1)*(zdt[1,N+1]-(c1*xdt[1,N+1]+c2* 

ydt[1,N+1]+c3*zdt[1,N+1])*c3)+sum{i in 2 .. N} (N+i)* 

(zdt[1,N+2-i]-(c1*xdt[1,N+2-i]+c2*ydt[1,N+2-i]+c3* 

zdt[1,N+2-i])*c3)=0; 
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#calculate all the alfaij's 

# calculate alfa21[i,j] 

let {i in 2 .. N, j in 1. .N} alfa21[i,j] := 

((x0[2,i]-x0[1,j])*(x0[1,j+1]-x0[1,j])+(y0[2,i]-y0[1,j])* 

(y0[1,j+1]-y0[1,j])+(z0[2,i]-z0[1,j])*(z0[1,j+1]-z0[1,j])) 

/((x0[1,j+1]-x0[1,j])-2+(y0[1,j+1]-y0[1,j])-2+(z0[1,j+1]­

z0[1,j])-2); 

for {i in 2 .. N} { 

for{j in 1 .. N} { 

} 

if alfa21[i,j]>1 then let alfa21[i,j] :=1; 

if alfa21[i,j]<O then let alfa21[i,j] :=0; 

} 

# (calculate all other alfa's the similar way 

as above) 

#calculate all the betaaij's and betaij's 
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let {i in 2 .. N, j in 1 .. N} betaa21[i,j] := 

(alfa21[i,j]*x0[1,j+1]+(1-alfa21[i,j])*x0[1,j]-x0[2,i])-2+( 

alfa21[i,j]*y0[1,j+1]+(1-alfa21[i,j])*y0[1,j]-y0[2,i])-2 

+(alfa21[i,j]*z0[1,j+1]+(1-alfa21[i,j])*z0[1,j]-z0[2,i])-2; 

for {i in 2 .. N}{ 

let minumber :=betaa21[i,1]; 

let beta21 [i] : =1; 

f or{j in 1. . N}{ 

if betaa21[i,j] < minumber 

then {let minumber:=betaa21[i,j]; 

let beta21[i] :=j;} 

} 

} 

# (calculate all other betaa's and beta's the similar way 

as above) 

#Quadratic constraints for all the neighbouring trajectories 

#Quadratic constraint of tra. 2 to tra. 1 
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subject to qu3{i in 2 .. 10}: 

(alfa21[i,beta21[i]]*x[1,beta21[i]+1]+(1-alfa21[i,beta21[i]])* 

x[1,beta21[i]]-x[2,i])-2+(alfa21[i,beta21[i]]*y[1,beta21[i]+1]+ 

(1-alfa21[i,beta21[i]])*y[1,beta21[i]]-y[2,i])-2+ 

(alfa21[i,beta21[i]]*z[1,beta21[i]+1]+ 

(1-alfa21[i,beta21[i]])*z[1,beta21[i]]-z[2,i])-2<=d-2; 

#Quadratic constraint of tra. 2 to tra. 3 

subject to qu4{i in 2 .. 10}: 

(alfa23[i,beta23[i]]*x[3,beta23[i]+1]+(1-alfa23[i,beta23[i]])* 

x[3,beta23[i]]-x[2,i])-2+(alfa23[i,beta23[i]]*y[3,beta23[i]+1]+ 

(1-alfa23[i,beta23[i]])*y[3,beta23[i]]-y[2,i])-2+ 

(alfa23[i,beta23[i]]*z[3,beta23[i]+1]+ 

(1-alfa23[i,beta23[i]])*z[3,beta23[i]]-z[2,i])-2<=d-2; 

# . . . (apply all other quadratic constraints the similar 

# way as above) 

option solver mosek; 

option show_stats 1; 
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solve; 

option display_width 120; 

option gutter_width 1; 

display k; 

display x· 
' 

display y; 

display z· 
' 

display xdt; 

display ydt; 

display zdt; 

display iter; 

repeat{ 

# the second and after iteration 

# take the results of last iteration as the initial values 

let {i in 1 .. NT ,j in 1. . N+1} xO [i, j] : =x [i, j] ; 

let {i in 1. .NT ,j in 1. . N+1} yO [i, j] : =y [i ,j]; 

let {i in 1 .. NT ,j in 1 .. N+1} zO[i,j] : =z [i, j] ; 
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#recalculate all the alfaij's for this iteration 

#calculate alfa21[i,j] 

let {i in 2 .. N, j in 1. .N} alfa21[i,j] := 

((x0[2,i]-x0[1,j])*(x0[1,j+1]-x0[1,j])+(y0[2,i]-y0[1,j])* 

(y0[1,j+1]-y0[1,j])+(z0[2,i]-z0[1,j])*(z0[1,j+1]-z0[1,j]))/ 

((x0[1,j+1]-x0[1,j])-2+(y0[1,j+1]-y0[1,j])-2 

+(z0[1,j+1]-z0[1,j])-2); 

for {i in 2 .. N} { 

for{j in 1 .. N} { 

} 

if alfa21[i,j]>1 then let alfa21[i,j] :=1; 

if alfa21[i,j]<O then let alfa21[i,j] :=0; 

} 

# ... (calculate all other alfa's the similar way as above) 

#recalculate all the betaaij's and betaij's for this iteration 

let {i in 2 .. N, j in 1 .. N} betaa21[i,j] := 

(alfa21[i,j]*x0[1,j+1]+(1-alfa21[i,j])*x0[1,j]-x0[2,i])-2+ 
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(alfa21[i,j]*y0[1,j+1]+(1-alfa21[i,j])*y0[1,j]-y0[2,i])-2+ 

(alfa21[i,j]*z0[1,j+1]+(1-alfa21[i,j])*z0[1,j]-z0[2,i])-2; 

for {i in 2 .. N}{ 

let minumber :=betaa21[i,1]; 

let beta21 [i] : =1; 

for{j in 1. .N}{ 

if betaa21[i,j] < minumber 

then {let minumber:=betaa21[i,j]; 

let beta21[i] :=j;} 

} 

} 

# (recalculate all other betaa's and beta's the similar way 

# as above) 

let iter:=iter+1; 

let previous-obj :=k; 

solve; 

option display_width 120; 

option gutter_width 1; 
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display k; 

display x; 

display y; 

display z; 

display xdt; 

display ydt; 

display zdt; 

display iter; 

}until k <= previous-obj+tolerance; 
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