
Requirements Documentation for
Manufacturing Systems:

Template and Management Tool

REQUIREMENTS DOCUMENTATION FOR

MANUFACTURING SYSTEMS:

TEMPLATE AND MANAGEMENT TOOL

By

MAHNAZ AHMADI, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.Sc.
Department of Computing and Software

McMaster University

©Copyright by Mahnaz Ahmadi, September 1, 2006

ll

MASTER OF SCIENCE (2005)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: Requirements Documentation for Manufacturing Systems:
Template and Management Tool

AUTHOR: Mahnaz Ahmadi, B.Sc. (Tehran University)

SUPERVISOR: Dr. Ridha Khedri

Co-SUPERVISOR: Dr. Nejah Tounsi

NUMBER OF PAGES: xv, 122

iii

Abstract

The experience shows that any shortcoming in defining the requirements for

computer based systems imperils the deliverables of all the subsequent stages of

their development. This importance is undeniable when dealing with manufac­

turing software-systems due to their significant role in all spheres of human life.

These systems have very stringent non-functional requirements such as accuracy

and real-time constraints. The development of manufacturing software-systems is

very challenging and requires special caution, since any mistake might have broad

impact on very expensive work-pieces or might lead to a machining accident with

irreparable effects. The success of their development depends largely on the quality

of their Software Requirements Specification Document (SRSD).

We propose a new requirements template specifically designed for manufacturing

systems. The template is structured to reflect their characteristics including multi­

constraints and multi-disciplinary problems, multi-stage processes, multi-tasking,

dynamic behavior, evolutionary nature, time-varying physical characteristics, and

the usage of complex scientific models. A complementary usage of goal-driven,

viewpoint oriented, and scenario-based approach is adopted for structuring the

template content. To provide a high quality SRSD, the template is designed to

enhance unambiguity, consistency, completeness, precision, non-redundancy, and

good organization of the requirements document as well as other criteria including

breadth of applicability and methodology independence.

iv

An automated tool for requirements management according to the proposed

template has been designed and implemented. The requirements management tool

provides relatively secure and easy-to-use capabilities for the documentation and

the retrieval of the requirements. It accelerates capturing the requirements, im­

proves system quality by enhancing the reduction of requirements errors, and helps

in establishing a common understanding between the system builders and the stake­

holders. In addition to a user friendly environment for changing the information,

we developed a powerful dynamic report generator that can be configured by the

user and that provides a simple way for retrieving the requirements and formatting

them.

Both the template and the tool have been validated using the requirements

for a Tool Trajectory Planning for High Speed Machining system developed at

the Aerospace Manufacturing Technology Centre, Institute for Aerospace Re­

search (Montreal).

v

Acknowledgments

First, I would like to express my deep gratitude to my supervisors Dr. Ridha Khedri

and Dr. Nejah Tounsi for their guidance, critical insights, encouragement and many

inspiration throughout my study.

I would also like to thank Dr. Alan Wassyng and Dr. Spencer Smith for their

valuable advises and comments.

Special thanks to my husband Saeed Samet for his love, support, and encour­

agement during the years of my graduate studies.

Last but not least, thanks to my daughter Saba because of her love, understand­

ing, and endless patience.

vi

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1 Introduction and Motivation

1.1 Requirements Documentation

1.1.1 SRSD Quality Attributes .

1.1.2 SRSD Templates

1.1.3 Requirements Management .

1.2 Problem Statement and Scope

1.3 Research Objectives .

1.4 Methods

1.5 Thesis Structure .

2 Manufacturing Systems Background

2.1 Manufacturing Systems General Characteristics

2.1.1 Numerical Analysis ...

2.1.2 Optimization Problems .

vii

iii

v

xi

xiii

1

1

4

8

12

13

14

15

16

17

18

19

24

viii CONTENTS

2.2 Conclusion ...

3 Literature Review

3.1 Goals-Driven Requirements Analysis

3.2 Viewpoint-Oriented Requirements Methods .

3.3 Scenario-Based Requirements Techniques

3.4 Conclusion

4 Template Design and Evaluation

4.1 Sources and Description of the Proposed Template .

4.2 Evaluation of the Proposed Template against Manufacturing Sys­

tems Characteristics

4.2.1 Non-Functional Requirements

4.2.2 Functional Requirements ...

4.3 Evaluation of the Proposed Template against the SRSD Quality At-

tributes and two more Criteria .

4.3.1 Organization

4.3.2 Precision .

4.3.3 Consistency

4.3.4 Completeness

4.3.5 Non-Redundancy

4.3.6 Ambiguity .

4.3.7 Traceability

4.3.8 Modifiability .

4.3.9 Methodology Independence

4.3.10 Breadth of Applicability

4.4 Conclusion .

29

31

31

33

35

38

39

40

42

42

45

53

53

53

54

54

56

56

57

57

58

58

59

CONTENTS lX

5 Design, Implementation, and Validation of the Management Tool 61

5.1 System Architecture

5.2 Technical Decisions

5.2.1 XML

5.2.2 JAXFront

5.2.3 XMLSpy

5.2.4 Java

5.2.5 Eclipse

5.3 Validation of SMART .

5.4 Conclusion . ..

6 Conclusion

6.1 Concluding Remarks

6.2 Main Contributions .

6.3 Future Work . ..

63

69

70

73

73

74

74

74

76

79

79

80

81

A The Proposed SRS Template 91

A.1 Template Structure 92

A.2 Introduction 97

A.2.1 Document Purpose 97

A.2.2 Terminology Definitions, Abbreviations and Acronyms 97

A.2.3 References 97

A.2.4 Document Organization 97

A.3 General System Description 98

A.3.1 System Purpose . 98

A.3.2 System Scope . 98

A.3.3 System Context 98

A.3.4 Operations . . . 98

X

A.3.5 User Characteristics

A.4 Non-Functional Requirements

A.4.1 System Non-Functional Requirements .

A.4.2 Partner Applications

A.5 System Constraints ...

A.6 Functional Requirements

A.6.1 Goal ...

A.6.2 Viewpoint

A.6.3 Scenario

A.6.4 Attributes and Models

CONTENTS

99

99

99

101

101

102

102

102

103

103

A.6.5 Assumptions 103

A.6.6 Common Input/Output/Constant Data Items of the Models 103

A.6.7 Theoretical Models 104

A.6.8 Instanced Models . 104

A.6.9 Model Description 104

A.6.10 Sensitivity of the Model 104

A.6.11 Tolerance of the Solution . 105

A.6.12 Specific Input/Output/Constant Data Items of the Model 105

A.6.13 Body of the Scenario 105

A.6.14 System Behavior . . 106

A.6.15 Control Flow Diagrams . 106

A.6.16 Others 106

A.7 Traceability Matrixes 106

A.8 Open Issues . . 107

A.9 Waiting Room . 107

A.10 Expected Changes 107

CONTENTS xi

B The Structure of the XML Requirements Data File (XSD) 109

xii CONTENTS

List of Figures

3.1 Goals Modeling Using Viewpoints and Scenarios

5.1 Requirements Management Tool: Technology Perspective

5.2 Requirements Management Tool: System Architecture

Xlll

37

63

65

XIV LIST OF FIGURES

List of Tables

1.1 Classification and Interdependence of the SRSD Quality Attributes 6

4.1 Main Sections of the Proposed Template ••••••• 0 ••••••• 41

4.2 Content of the Non-Functional Requirements of the Proposed Template 44

4.3 Content of the Functional Requirements of the Proposed Template . 47

4.4 Content of the Sections Attributes f3 Models and Body of the Scenario 50

4.5 Content of the Section Instanced Models from the Proposed Template 51

4.6 Power Conditioning Function [LFMOl] ••••• 0 •••••••••• 55

XV

XVI LIST OF TABLES

Chapter 1

Introduction and Motivation

1.1 Requirements Documentation

A complete cycle of developing a software product contains several phases including

software requirements activities, design, implementation, testing, and maintenance.

The focus of this research is on the first phase. Before illustrating the requirements

activities, we describe the main aim of requirements and their importance in soft­

ware development life cycle.

Requirements are the services that the product provides, or/and qualities it must

satisfy [RR99]. They could be derived directly from the user needs, stated from

standards, or environmental constraints. The requirements specify what should be

implemented. They will be discovered by answering the questions such as: what

the product must do?, what are the product properties?, and what are the process

constraints?

Any difficulty in defining the system requirements will affect the later stages

of developing computer based systems. In the requirements phase, the needs of

users and stakeholders should be elicited and translated into software requirements

understandable by software designers and managers. However, requirements do

1

2 1. Introduction and Motivation

change. The changes due to omitted requirements or bad requirements are always

expensive to handle. The problems that may occur if the requirements are incom­

plete or wrong could lead to undesirable results. These problems include latency in

product delivery, end-user dissatisfaction, unreliable product, and expensive main­

tenance [KS98]. These undesirable consequences could be avoided by applying the

software requirements activities in a rigorous systematic way.

The requirements stage is composed of the following activities: discovering, an­

alyzing, documenting, validating, and managing the requirements. Discovering the

requirements is concerned with learning about the work. It involves understanding

the user and stakeholders needs, determining the software constraints, and studying

the application domains.

Among the whole requirements gathered through the elicitation stage, the re­

quirements analyst establishes a set of complete and consistent requirements, which

is a translation of the user needs into product specifications.

The next activity is preparing a written statement of the requirements satisfying

the quality attributes described in Section 1.1.1. They are elicited and analyzed for

future use of customers, designers, testers, and managers. This document, which

is called Software Requirements Specification Document (SRSD), is the result of a

cooperation between users and the system builder, since none of them has enough

knowledge about the other side activities.

The SRSD is the result of the software requirements phase and includes a com­

plete set of the system capabilities. The benefits of providing the SRSD are as

follows [IEE98, Lai04, San03J:

1. SRSD is a formal statement that works as a baseline between the customer

and the system builder to ensure that technical community understands the

user needs correctly. This identifies problems and possible misunderstandings

1. Introduction and Motivation 3

at the early stage of the software development life cycle when corrections are

relatively inexpensive. The SRSD document often serves as a basis for the

work contract.

2. SRSD includes the services that must be provided by the product and the

system operational constraints. This constitutes a starting point for system

designers.

3. SRSD works as a criterion for verifying and testing the product to ensure that

the system satisfies the requirements and the stakeholders' needs.

4. Any change must be recorded first into the SRSD and then into the system.

This helps to control changes and makes a standard for the maintainer of

the SRSD and the system. Accordingly, a new SRSD which satisfies the

requirements for the next generation of the system is being built.

The content of the SRSD is a set of requirements that describe specifications

of a particular product and its interaction with the adjacent systems. The basic

information that the SRSD should address are the system functionalities, and the

overall constraints on the system load and its development process. The first set

of information constitutes the system's functional requirements and the second set

constitutes its non-functional requirements.

1. The functional requirements describe the functionalities or services that the

expected system must provide. In [RR99], further division is presented for

functional requirements as business requirements and technical requirements.

Business requirements are the actions which must be taken by the product

to fulfill some part of the product services, and will be described by users or

business people. Technical requirements are the requirements that are needed

to carry out the business requirements later. In fact, they are "requirements

4 1. Introduction and Motivation

for the requirements" [RR99]. We can name the evaluation of the workpiece

deflection as an example of functional requirements for the Tool Trajectory

Planning which we have chosen as our case study. One of the methods that

estimates the workpiece deflection y from the longitudinal neutral axis is

shown in Equation 1.1:

dx2 EI
(1.1)

Further technical requirements emerged by this model such as the external

moment M applied on the workpiece, the Young modulus of the workpiece E,

and the moment of inertia I.

2. The non-functional requirements are the qualities or properties that the sys-

tern must satisfy, such as maintainability, usability, precision, and reliability.

We can name the acceptable tolerance Op for the contour error resulting from

individual axial errors as an example of non-functional requirements in our

case study.

1.1.1 SRSD Quality Attributes

A set of properties should be associated with the SRSD to make it a quality re-

quirements document. These qualities are related to the information going into

the document and the methods of organizing the requirements. Faulk categorized

the quality attributes of a software requirements document into two semantic and

packaging classes as follows [Fau95]:

1. Semantic properties are related to the quality of the content going into the

requirements document. He considers completeness, implementation inde­

pendence, unambiguity, consistency, preciseness and verifiability under this

class.

1. Introduction and Motivation 5

2. Packaging properties are related to the quality of the structure of the require­

ments document. He considers modifiability, readability, and organization for

reference and review under this class.

A complete discussion about how to achieve a quality SRSD is presented

in [San03]. It was described that a quality SRSD is attained in two dimensions. The

first dimension refers to the quality of the content and presentation of the SRSD,

while the second dimension concerns the process of specifying and documenting the

requirements. To illustrate the former, we describe the classification of quality at­

tributes presented in [San03], and to elaborate on the later, we describe techniques

for documenting the requirements including requirements documentation methods

and templates.

In [San03], quality attributes are classified as primary, and secondary attributes.

Primary attributes are fundamental attributes, while secondary attributes depend

on the primary attributes. For instance, verifiability is a secondary attribute which

depends on the following primary attributes: unambiguity, consistency, complete­

ness, and preciseness. It means, if a SRSD is complete, consistent, precise, and

unambiguous, it is verifiable. Also, two further semantic and presentation cate­

gories for attributes are considered under each of the primary and the secondary

classes. These attributes work as two quality gates that check the requirements

for Semantic and Packaging properties presented by Faulk [Fau95]. To clarify this

classification see Table 1.1 [San03].

It is described in [San03] that in assessing the content and presentation quality

of the SRSD, more emphasis should be given to the primary attributes since the

secondary attributes are dependent on primary ones. The complete formal and

informal definitions for quality attributes are presented in [San03]. However, a

summary of definitions for primary quality attributes is presented here to provide

6 1. Introduction and Motivation

Table 1.1: Classification and Interdependence of the SRSD Quality Attributes

Secondary Attributes

Semantic Attributes Presentation Attributes

Correct Verifiable Traceable Modifiable

Unambiguous X X

~ Consistent X X 3.
ll>
-< Semantic Attributes Complete X X X

)>
q: Precise X X
0'
c:
<D en Non-Redundant X X X

Presentation Attributes Organized X X X

the reader with a better understanding of these attributes.

1. Consistent: Two types of consistency named space and behavior consistency

are defined. The specification is space consistent if the shared variables have

the same declarations (name and type) in different parts of the SRSD. While

it is behavior consistent if different parts of the SRSD do not disagree on the

actions to be carried out by the system in reacting to the same triggering

events. To illustrate, when different requirements scenarios have some parts

in common, no conflict should exist in the behavior of the system as described

by the common parts.

2. Complete: Three types of completeness named space, content, and semantics

are defined. The specification is space complete, if it prescribes the actions

to be carried out by the system at every state in the system's space domain.

It is content complete if it includes all the categories of the requirements that

pertain to the product. It is semantic complete if it includes all the explicit

1. Introduction and Motivation 7

and implicit assumptions and constraints related to the intended system. An

example in Section 4.3.4 describes how semantic incompleteness may lead to

inconsistency.

3. Unambiguous: Specification is unambiguous if it is not interpreted differently

by readers. There is no exact measurement for examining the ambiguity of

the SRSD. However, it can be reduced by documenting the requirements in

a well-formed syntax and describing the system behaviors and application

domains in a precise way, for example by using mathematics.

4. Precise: Two types of precisions named coverage and value are defined. Speci­

fication has coverage precision if it has narrow range of observation in defining

the statements. This kind of precision is also called behavioral precision (it

is a measure of the determinism of the system's functions). While it has

value precision, if it supplies the tolerance of every numerical quantity of a

requirement.

5. Non-redundant: Specification is non-redundant if no requirement has been

documented more than once or different requirements do not exist with the

same meaning.

6. Organized: Specification is organized if the principal of separation of concern

is considered in the process of documenting its requirements. This means,

information with a similar concern is organized under a same section.

Definitions of secondary quality attributes are provided in [San03]. It is sufficient

to know that:

1. The SRSD is correct, if it satisfies all the primary quality attributes.

2. The SRSD is verifiable, if it is unambiguous, consistent, complete, and precise.

8 1. Introduction and Motivation

3. The SRSD is traceable, if it is complete, non-redundant, and organized.

4. The SRSD is modifiable, if it is non-redundant, and organized.

As we discussed, in addition to the quality of the content and the presentation

of the SRSD, the methods of documenting the requirements and using templates

also affect the quality of the SRSD. Hence, we briefly explain the techniques of

documenting the requirements and then describe the role of templates in the quality

of the SRSD.

The methods of documenting the requirements can be categorized into three

groups as informal, semi-formal, and formal. Informal methods use natural lan­

guage to describe requirements document. Although, writing the requirements

document using natural language is understandable by all potential readers, it is

ambiguous because it can be interpreted differently. On the other hand, formal

languages reduce ambiguity. However they require more resources to use them and

lead to highly technical documents. Semi-formal specification languages in practice

are more accepted for documenting the requirements. A classification about the

examples offormal and semi-formal languages is presented in [San03]. According to

that classification, Z [Spi92, Wor96b], B [Abr98, Wor96a], Statecharts [Har87], and

Petri_Nets [Rei85] are categorized as formal methods, and Unified Modeling Lan­

guages (UML) [OMGOO], and Z++ [Kev90] are in the class of semi-formal methods.

1.1.2 SRSD Templates

The last factor that affects the quality of the SRSD is the use of templates in

documenting the requirements. To illustrate the impact of templates on the quality

of the SRSD, we first define them, then describe the advantages of using templates

in documenting the requirements, and we finally introduce the properties of what

is considered as a "good" template.

1. Introduction and Motivation 9

A template is a predefined format for recording the requirements, and a method

for presenting them. It gives a starting point for documenting the requirements.

There are many advantages of using templates summarized as follows [San03,Lai04]:

1. Organization: Templates organize the format of the SRSD by providing sep­

arate sections for addressing the requirements. This enhances the readability

of the document and facilitates updating the information.

2. Productivity: Templates increase the productivity of the SRSD by facilitating

the team work, when each part of the SRSD is assigned to an appropriate

technical team.

3. Re-usability: Templates facilitate the adaption of the SRSD for the next

evolution of the product, or the other products that have some characteristics

in common.

4. Adequacy: Templates work as a checklist for the writer of the requirements

document. This protects the specification from omitting parts of the require­

ments.

We assess templates against their ability to satisfy the primary quality attributes

described in Section 1.1.1. Moreover, we evaluate our template against two sec­

ondary attributes named modifiability and traceability. The emphasis on these

two secondary attributes is due to their impacts on the requirements management

that is discussed in Section 1.1.3. We also consider two more criteria presented

in [San03] for assessing the templates: breadth of applicability, and methodology

independence. Accordingly, we consider the following criteria in preparing our tem­

plate [San03, Lai04]:

1. Organization: The template should be organized according to the principal

of separation of concern. This means sections and subsections should be

10 1. Introduction and Motivation

used to organize the document in a hierarchical format, where each section

encapsulates the requirements which address one concern.

2. Precision: The template should provide a precise explanation about the con­

tent of the information that should be stored in each section of the template.

3. Consistency: The template should support both space and behavior consis­

tency explained in quality attributes.

4. Completeness: The template should give a complete list of all the categories

of requirements, assumptions, and constraints to be contained in the SRSD.

5. Non-redundancy: The template should impose unique identification for the

requirements. This identification could be labeling the requirements by num­

bers or by adopting a naming convention.

6. Ambiguity: The template should present the information in a well-formed

syntax and describe the system behaviors and application domains in a precise

way to reduce the ambiguity. However, the syntax should be understandable

for novices with the application.

7. Traceability: The source of the requirements, and their dependencies that

might be affected by future changes should be identifiable in the template.

This is for ease of change management, whereas ensures that changes in some

requirements do not affect others adversely.

8. Modifiability: Organizing the templates and specifying the requirements that

are more likely to change, are two factors that affect modifiability of a tem­

plate. The second factor provides a guideline for the system designers to see

them as independent components (as it is explained in Section 1.1.3), which

protects the system from frequent changes of these requirements.

1. Introduction and Motivation 11

9. Methodology independence: A complete discussion regarding the advantages

and disadvantages of the templates to be methodology dependent or indepen­

dent is held in [San03]. From that discussion, it is suggested that decision

making regarding the dependency of the template on a methodology should

be based on the application.

10. Breadth of applicability: The applicability of the template to wide breadth of

applications is a desirable characteristic. However, this criterion should not

be considered as very important; it might make the template ineffective for a

particular product.

There are many off-the-shelf templates. However, there are no standard tem­

plates for all products because each SRSD is unique for a specific product. The key

is to tailor the existing templates to meet special needs.

We can name the following templates as well known standards:

1. IEEE std 830-1998 [IEE98]

2. Volere Requirements Specification Template of the Atlantic System

Guild [RR99]

3. ESA PSS-05-0 used by European Agency [Bss91]

4. NASA-DID-P200-SW used by NASA [NAS91]

5. MIL-STD-498 and DI-IPSC-81433 used by the US Department of De­

fense [Def88]

6. NRL A-7E, Documented by the Naval Research Laboratory [HKSP78]

For the recent research efforts in providing templates, we refer the reader to [San03,

Che03, Mer03, Lai04, Smi06, SL05, SLK05].

12 1. Introduction and Motivation

1.1.3 Requirements Management

The last activity in the requirements stage that we focus on is related to the require­

ments management. The aim of the requirements management is to demonstrate

a common understanding between system builder and stakeholders to ensure that

stakeholders needs are met [OOGC06]. Changes are inevitable parts of developing

systems. Accordingly, the requirements management tries to minimize the diffi­

culties following to requirements change in any stage of the software development

life-cycle. Requirements change may occur due to misunderstandings, emerging

new requirements, introducing new laws or regulations, technical, schedule, or cost

problems [KS98]. However, changes to some requirements are slower than others.

The former are called stable requirements and is referred to as the essence of a

system, while the later are called volatile requirements and is referred to as the

requirements of the system in a specific environment or according to particular

assumptions.

In manufacturing systems, the information related to the tool material are stable

requirements, while displaying the information is a volatile requirement as new ways

of presentation are required or made available. The advantage of anticipating the

requirements that are likely to change is providing better insight for the system

designers to consider them as independent components that have less impact on

the system [KS98].

The quality attributes described in Section 1.1.1 have direct impact on the

efficiency of the requirements management. Traceability, modifiability and no re­

dundancy of the requirements are essential prerequisites for the requirements man­

agement [KS98]. Traceability specifies the source of the requirements, the existence

reason of the requirements, and the requirements dependencies that might be af­

fected by the requested changes [KS98]. Therefore, keeping the parent/child rela-

1. Introduction and Motivation 13

tionships between requirements makes change management possible and ensures us

that changes in some requirements do not affect others adversely. However, accord­

ing to [San03], traceability is a secondary attribute that depends on the primary

quality attributes namely, completeness, non-redundancy, and organization of the

SRSD. Thus, the requirements management is not effective, if the SRSD is not

qualified with respect to these primary quality attributes.

If the requirements management is performed properly, it would reduce search­

ing time to access the information in a precise, traceable, and consistent way. The

change management would control the changes in different parts and would not

cause inconsistency in the SRSD. Management tools that can vary from a word

processor to object-oriented databases according to the size of the information are

used to facilitate this purpose. Checking the communication between all parties and

the affects of changing requirements could be easily handled through management

tools. The facilities of databases help to keep relation between the requirements.

Also, different reports of databases help to manage the requirements. We aim at

designing and implementing a requirements management tool for manufacturing

systems that will be discussed in Chapter 5.

1.2 Problem Statement and Scope

We described the important role of SRSD quality attributes assessment and tem­

plates in the software requirements documentation. In Chapter 2, we express im­

portance of applying the software requirements activities to the manufacturing

software systems based on two reasons. The first reason refers to diversity in usage

of these systems in all spheres of human life and the second one is concerned with

their specific characteristic.

We illustrate the influence of the requirements documentation on two funda-

14 1. Introduction and Motivation

mental subareas of the manufacturing software. In that discussion, we identify the

elements required to be documented for developing scientific models and optimiza­

tion problems. This systematic step by step documentation defines plateaus for

system designers while simplifying the real problems. In addition, applying goal

driven, viewpoint oriented methods, and scenario approaches in documenting the

requirements, which is described in Chapter 3, makes possible tackling complex

nature of manufacturing systems. In fact, these methodologies split the system

purpose into a set of system goals, study each goal from different perspectives, and

consider all possible scenarios that might occur from each point of view. However, a

thorough study of the literature leads to the third reason of selecting manufacturing

systems as our case study. We did not find any available template that satisfies the

needs of a quality requirements documentation for these systems.

In addition, the evolutionary nature of the manufacturing systems demands an

automated tool, flexible enough to manage the requirements. Although, general

characteristics of the manufacturing software systems are considered in present­

ing our template, we limit our case study to document the requirements for the

Tool Trajectory Planning for High Speed Machining developed at National Research

Council of Canada (NRCC). The SRSD obtained was provided to our partners at

NRCC and is not included in the thesis due to a confidentiality agreement we signed

with them.

1.3 Research Objectives

We pursue the following objectives in this research:

1. Elicit the requirements for the Tool Trajectory Planning for High Speed Ma­

chining, which we chose as our case study.

1. Introduction and Motivation 15

2. Design an appropriate template suitable to the requirements of manufacturing

systems.

3. Design and build a requirements management tool to deal with the evolution

of the requirements of manufacturing software systems.

4. Assess the provided template against the requirements elicited in the fulfill­

ment of objective 1.

1.4 Methods

We pursue the following methodologies to achieve the research objectives:

1. Discovering the requirements through interviewing the stakeholders and in­

vestigating the functionality and the aspired qualities of the Tool Trajectory

Planning system.

2. Designing a template which satisfies the desired quality attributes listed as

the criteria for templates. Analyzing the needs of a requirements document

that deals with manufacturing systems. In addition, we employ goal-driven,

viewpoint-oriented, and scenario-base techniques in documenting functional

requirements. These methodologies help to capture a comprehensive work

perspective while all interactions of the system with the environment would

be considered.

3. Applying design techniques to elaborate the design of a management tool

and using Extensible Markup Language (XML) as a basis for implementing

the tool. This provides a rich documentation structure capable to run over

the web.

16 1. Introduction and Motivation

4. Assessing the provided management tool against the requirements of the case

study by our research partner.

1.5 Thesis Structure

Chapter 1 contains the SRSD background, the motivation, statement of the

problem, the contributions of the thesis and its structure.

Chapter 2 contains the manufacturing systems background.

Chapter 3 explores the use of goal-oriented analysis, viewpoint-oriented methods,

and scenario-based techniques in designing the proposed template.

Chapter 4 describes the template design and the rationale of the design.

Chapter 5 describes the design, implementation, and validation of the manage­

ment tool.

Chapter 6 presents our conclusion and potential future work.

Appendix A presents the proposed requirements template.

Appendix B presents the structure of the XML requirements data file (XSD).

Appendix C contains the source code of the management tool.

Chapter 2

Manufacturing Systems

Background

In Chapter 1, we discussed the importance of the requirements documentation in

general. In this chapter, we elaborate on the characteristics of manufacturing sys­

tems from requirements perspective. To achieve this aim, we first mention why

we select manufacturing systems as our case study. Then, we describe the charac­

teristics of manufacturing systems and challenges that are facing their developers.

Finally, we elaborate on how the requirements documentation is worthwhile and

cost effective in reducing inherent difficulties to manufacturing systems.

The first reason for selecting manufacturing systems as our case study refers

to the significant and comprehensive role of these systems in all spheres of human

life. They address a wide variety of products from apparel to very sophisticated

aircrafts, and impact all aspects of life from entertainment to health issues. This

diversity in usage requires special caution, since any mistake might have broad

impact or cause irreparable effects. The second reason concerns with the nature of

manufacturing systems, which we study their characteristics in Section 2.1.

17

18 2. Manufacturing Systems Background

2.1 Manufacturing Systems General Character-

istics

Manufacturing systems are complex, fast, multi-stage with time-varying physical

characteristics and dynamic behavior where process monitoring and automatic con-

trols are essential. Furthermore, their ability to react quickly to changes is impor­

tant in the success of a competing market place. In spite of these factors that

make the development of manufacturing systems so challenging, finding techniques

for delivering high quality products in the shortest time, while keeping the cost

down, is the manufacturers' goal. On the other hand, usually manufacturing soft­

ware systems are dealing with scientific models of the process of manufacturing a

product.

The development of scientific models, consists of building mathematical mod­

els, analyzing algorithms, solving equations, and finding optimal solutions to real

problems. Considering all these aspects makes the development of manufacturing

systems differ from other systems, such as business systems. Any difficulties in

understanding the actual needs, modeling the real problem, finding the solution,

or adjusting with requested changes result in latency in product delivery, end-user

dissatisfaction, unreliable product, and expensive maintenance [KS98].

In this research, we try to illustrate how providing a quality SRSD for manufac­

turing systems can protect them from the above mentioned difficulties at the early

stage of the software development life-cycle. To pursue this aim, in Sections 2.1.1,

and 2.1.2, we elaborate on the influence of numerical analysis and optimization

problems as two fundamental factors in the development of manufacturing systems

and on the impacts of software requirements methodology on standardizing and

conducting development of manufacturing systems in a systematic way. Then in

Chapter 3, we study the complementary usage of goal-driven, viewpoint-oriented,

2. Manufacturing Systems Background 19

and scenario-based approaches for documenting the requirements as an efficient

mechanism enhancing the quality of requirements documentation.

2 .1.1 Numerical Analysis

As mentioned above, numerical analysis techniques are widely used in manufac­

turing software applications. The numerical analysis is the study of methods and

algorithms for the numerical solution of mathematical problems [Hea02]. In many

cases, it leads to a sequence of approximations in which the analysis stage tries to

determine the rate of accuracy and completeness of the answer. Nowadays, the nu­

merical analysis and the scientific computation are used interchangeably [CEJM06].

As it is illustrated in [Lai04], the scientific computation is an inevitable part of

many engineering applications. Among others, the manufacturing systems, which

are the focus of this research, involve many scientific models of the process of

manufacturing a product. As we mentioned earlier, the development of scientific

models, consists of building mathematical models, analyzing algorithms, solving

equations, and optimizing the solution. Thus, understanding the factors that affect

the process of building and solving scientific models, such as collecting related phys­

ical data, measuring the errors, deriving the equations, and checking the stability

of algorithms has direct impact on the accuracy of the solution.

We attempt to identify these factors at the requirements stage to achieve the

goal of numerical analysis, which is finding solutions to numerical problems, that

are accurate, reliable, and efficient. Before describing the elements that impact the

accuracy, reliability, and efficiency of numerical systems, we define these attributes

more specifically for numerical systems [QSSOO]:

1. The accuracy means that errors are small according to a certain tolerance.

2. The reliability means that the difference between the actual computed solution

20 2. Manufacturing Systems Background

and the physical solution (either experimental or numerical) can be warranted

to be under a given tolerance.

3. The efficiency means that the amount of operations, time, and the required

memory size that affect the computational error is as small as possible.

Efficiency is an important software quality. In the subject of numerical com­

putation, efficiency is achievable by using optimal methods with least operations

and using algorithms that use memory efficiently. Considering the methods that

support efficiency of numerical computations is out of the scope of this research

and should be considered at later stages of software development. Therefore, we

focus on the accuracy and reliability attributes. The accuracy and reliability of

numerical computations are related to computational errors, the stability of the al­

gorithms, and the sensitivity of the problems [Lai04]. Therefore, by enhancing the

non-functional requirements with the contents that identify these elements, the ac­

curacy and reliability of computation and consequently the corresponding scientific

model mapped to the mathematical model would hold.

Different classifications are presented in [QSSOO, GMW81, Lai04, Wik06b] for

the errors generated during numerical computations. We summarize them as data

errors, modeling errors, numerical operation errors, and program errors. Later, nu­

merical operation errors have been divided into floating point problems, truncation

errors, and discretization errors. First, we give a brief explanation about these er­

rors and then we illustrate how anticipating these issues at the requirements stage

can help protect the software program from some of these errors.

1. The data errors are related to accuracy of measurement of the real physical

data.

2. The modeling errors are committed because physical problems are not for-

2. Manufacturing Systems Background 21

mulated in mathematical problems properly.

3. The problems with floating point are referred to rounding, overflow, underflow,

absorption, and cancelation. These problems arise because of the impossibil­

ity to represent all real numbers exactly on the digital computer that are in

use today.

4. The truncation errors are due to the replacement of iterative methods with

finite steps models.

5. The discretization errors come up when a continuous problem is approximated

with a discrete problem whose solution is known.

6. The program errors are referred to the implementation of the numerical al­

gorithms.

A part of the data and numerical operation errors can be reduced by employing

better computers. For example, this can be achieved by using powerful computers

or precise devices for measuring the data. Also, modeling errors might be controlled

by selecting proper mathematical models or building new ones. These are not the

issues we could deal with at the requirements stage. The issues that concern us

at this stage are: specifying the source of the measurement error and the error

range for each input data [Lai04], and protecting the software from propagating an

error during the computation. The later is controlled by checking the stability of

algorithms and sensitivity of the problems.

The concept of numerical stability varies in different situations. The definition

of stability for dynamic systems differs from that of solving the partial differential

equations. However, in general, an algorithm is numerically stable, if once an error

is generated due to some approximation during computation, it does not grow too

much to affect the result [GMW81, PC86, Lai04, Wik06b]. Moreover, not every

22 2. Manufacturing Systems Background

stable algorithm leads to an accurate solution since some problems are inherently

ill-conditioned.

A problem is sensitive or ill-conditioned, if small perturbation in the input

data causes a big change in the solution. A quantity named condition number is

associated to a numerical problem to assess whether this problem is sensitive. The

condition number is the ratio of the solution changes to the input changes. Small

condition number states well conditioning of the problem and vise versa.

The stability of algorithms and the insensitivity of the problems are two fun­

damental requirements for accuracy of numerical computations. Stable algorithms

solve a nearby problem while well conditioning guarantees that the solution for

nearby problem is close to that of actual problem [Lai04, Wik06b]. At the re­

quirements stage, emphasizing on computing condition numbers would protect the

software from converging to an inaccurate solution. However, stability cannot be

specified at the requirements stage. What can be done is considering solution tol­

erance [Lai04]. Tolerance of the solution determines the level of accuracy that is

expected for the solution.

In [Smi06], the author writes "validating the requirements is difficult because

there are an infinite number of potential input value for the output variable is

unknown a prior. In fact, the purpose of many scientific computing tools is to

solve problems that are difficult or impossible to solve without the software, so

in many cases the true solution is unknown." Therefore assessing whether the

computed answer is correct within a tolerance is not always possible. An example

in [Smi06] shows that the requirement is not always validatable even if the functional

requirement is defined unambiguously. Accordingly, the SRSD template should

help validating the numerical outputs by specifying the requirements that lead to a

correct result [SL05]. Where it is possible to evaluate the accuracy of the solution

according to a certain tolerance, first we define how the error could be measured,

2. Manufacturing Systems Background 23

and then describe the backward and forward error analysis to assess the correctness

of the answer. The definitions of this part are captured from [Ham06, Wik06b].

Let x be the exact answer and x be the computed value. The error in x can be

measured by the absolute error lx- xJ. Since the size of the absolute error depends

on the size of x, the notion of relative error is used instead. It is defined as lx1: 1xl

for x <> 0. let us consider a program being solved by the numerical algorithm as

a function f that takes an input x and computes y such that y = f(x). Let y be

the computed result, then y is the exact result for the input x + 6x. Two kinds of

errors might be described as follows, although the relative form of them are more

natural:

1. The forward error is determined by Jy- yJ. It shows how close the computed

solution is to the exact solution.

2. The backward error is determined by the smallest J6xl such that:

y = f(x + 6x). It indicates how well the computed solution satisfies the

problem to be solved. In other words, it specifies the problem that is actually

solved by the algorithm.

In backward error analysis, a bound on ~~~~ is considered as a criteria for eval­

uating the solution accuracy. However, if the exact solution is available, then jy-1/1
y

for y <> 0 is called forward error analysis and is used to evaluate the accuracy of

the solution.

2.1.1.1 Numerical Requirements

As it is illustrated in [Lai04], most of the scientific computing problems are solved

in five steps procedures including:

1. Defining the problem

24 2. Manufacturing Systems Background

2. Building a mathematical model

3. Specifying a computational method

4. Implementing a solution

5. Validating the solution

Only the first two steps are in the scope of the requirements stage. Accordingly, the

issues to be considered at this stage for development of scientific models, are: posing

the real problem, identifying the variables, assumptions and constraints that impact

the problem, and building the mathematical representation of the real problem. In

addition, according to the discussion held in Section 2.1.1, the factors needed to

be documented to enhance the accuracy of the numerical solution and protect the

numerical problem from propagating an error during their computation, are:

1. Specifying the source of the measurement error and the error range for each

input data.

2. Computing the condition number when possible to assess the sensitivity of a

problem.

3. Evaluating the accuracy of computation according to one of the forward or

backward error analyses.

2.1.2 Optimization Problems

Optimization is the discipline which is concerned with finding the best of all possible

solutions. For instance, this might be interpreted as maximizing efficiency, mini­

mizing cost, or maximizing profit. Solving optimization problems means finding the

maximum or minimum of the objective function depending on a set of variables and

2. Manufacturing Systems Background 25

possibly some constraints. Objective function, variables, and constraints are com­

ponents of optimization problems. The solution for the problem is a set of values

which satisfy the constraints and make the objective function optimal [GMW81].

This purpose is so appealing in many fields of human life and it has grown in recent

times as industrial applications become more complicated.

As an example of industrial systems that involve optimization, we can name

optimizing the machining process using Computerized Numerical Control (CNC)

machines which is used as a case study in this research. The general goal in this

field is machining in the shortest time with the highest quality and at the minimum

cost, while fully utilizing the capabilities of the provided machining power [CJ98].

Reaching this goal is very challenging mainly when dealing with high speed ma­

chining, high spindle speed exceeding 8000 Revolutions Per Minute (RPM) and

reaching 60000 or even 100000 RPMs for ultra-modern machines, and high feed

rates exceeding 50 m/min. On the other hand, the dynamic behavior of the sys­

tem as well as the time-varying physical characteristics and their interactions make

the situation more complex. For example, to minimize the polishing time, small

path-intervals are required. However, this causes an increase in the cutting time,

and consequently decreases the efficiency [CJ98]. Because of the complexity of the

considered applications, decision making is no longer possible or even economically

feasible to be made without using optimization models [NS96].

Optimization models arise to express the problems in mathematical terms and

solve them in optimal way. Formalizing an optimization problem includes selecting

optimization variables, identifying the constraints, and choosing the objective func­

tion [BhaOO]. Specifying the objective function is challenging when there is more

than one objective that should be minimized or maximized, specially if they are

conflicting [BhaOO]. As indicated in the above example: minimizing the polishing

time and minimizing the cutting time. There are two possible ways in these situa-

26 2. Manufacturing Systems Background

tions. Considering the most important goal as the objective and leaving others as

constraints or defining a composite objective function by assigning weights to each

objective function [BhaOO]. Explanation about the components of optimization

problems is given in [Wik06a] as follows:

1. The variables are values that are controllable.

2. The constraints are conditions that must be satisfied to make the solu-

tion acceptable. They are the functions of one or more optimization vari-

abies [BhaOO].

3. The objective is the value that has to be maximized or minimized. It is the

function of one or more variables [BhaOO].

4. The models are mathematical connections that relate the constraints, vari-

abies and the objective.

One general form of an optimization problem is called the Non-linear Comple-

mentarity Problem (NCP) and might be shown as [GMW81]:

mzn F(x)
xEJRn

subject to ci(x) = 0, i = 1, 2, ... , m' (2.1)

ci (x) > = 0, i = m' + 1, ... , m

Where the objective function F and the constraint functions ci are lumped together

and referred to as an optimization problem.

Although most of the optimization problems can be expressed in the standard

form or as a sequence of standard forms, it is very important that the formula­

tion has the characteristics that enhance the efficiency of solving the optimiza-

tion. Clearly, applying the methods for solving the standard form to a problem

2. Manufacturing Systems Background 27

with special features tends to be complex with significant numerical effort [BhaOO].

Therefore, optimization problems are categorized according to the mathematical

characteristic of their objective and constraint functions [GMW81]. We briefly give

the present classification for optimization problems and then we describe the issues

that concern us at the requirements stage.

According to modern numerical analysis, the risk of ending to a serious error or

numerical instability is very high even for a simple computation if someone wants

to develop his /her own method from the scratch [G MW81]. On the other hand,

for each of the problem categories, enormous optimization methods are available.

Thus, selecting methods from the software library or modifying techniques to fit for

a specific problem is the best way to solve the optimization problems in an efficient

way. However, this classification becomes more specific by taking advantages of

special properties for solving complex problems.

A typical classification of problem functions could be given as linear program­

ming (LP), second order programming (SOP), semi-definite programming (SDP),

quadratic programming (QAP), and non-linear programming (NLP) problems. Al­

though second order, semi-definite, and quadratic programming are also non-linear

problems, but they are separately classified due to the special algorithms invented

for the nature of these problems. There are further distinction characteristics be­

tween problems under each of the above classes according to be convex/non-convex,

smooth/non-smooth, and constrained/unconstrained [BtNO 1, G MW81, NS96].

We clarify this part by bringing in an example of using optimization disci­

pline in manufacturing systems. Determining the maximum contour error is one of

the machining optimization problems in our case study. We borrow this example

from [TE02]. In this problem, the objective is to keep the contour error lower or

equal to the given tolerance. To satisfy this objective, the maximum contour error

should be computed and checked if it is lower or equal than the tolerance. Vari-

28 2. Manufacturing Systems Background

abies for solving this problem are: desired and actual tool paths, and desired and

actual tool orientations. Contour error refers to the distance between the desired

path C(u) and the actual path. The error c5 is evaluated by the maximum dis-

tance between an arbitrary point M on the desired path and point k on the chord

that relates two positions P(k) and P(k + 1) on the actual path. This problem is

formulated as:

c5~ (k) = max c52
(u)

uE[u(k),l]

where c52 (u) = (M- P(k)) 2 - ((M- P(k)).T(k)) 2

{

0 < (M- P(k)).T(k)
subject to :

(M- P(k)).T(k) :S; ip(k + 1)- p(k)i

(2.2)

In the above formulation, u is the path parameter which varies from zero at the

starting position and one at the end position, and T(k) is:

(k) = d(C(u)/lld(C(u)ll _
T du du u-u(k) (2.3)

This problem is a non-linear constrained optimization problem. As it is de­

scribed in [TE02], using one of the standard methods may cause numerical insta­

bility, or convergence to an undesirable solution. Therefore, it has been formulated

into two subproblems as they are shown in equations 2.4 and 2.5:

{

Umax = min (iP(k + 1)- P(k)i- ((M- P(k)).T(k)))
uE[u(k):l] (2.4)

subject to: (IP(k + 1)- P(k)i- ((M- P(k)).T(k))) 2: 0

The objective of this problem is finding the closest path parameter to the current

path parameter while it meets the end point P(k + 1) on the chord closely. This

2. Manufacturing Systems Background 29

problem is solved with a non-linear constraint optimization procedure. Once the

Umax is determined by equation 2.4, the maximum chordal deviation is computed

by:

{
o~ (k) = max 62

(u)
uE[u(k),umax]

where o2 (u) = (M- P(k)) 2
- ((M- P(k)).T(k)) 2

(2.5)

2.1.2.1 Optimization Requirements

According to the above discussion, the issues which can be dealt with at the re­

quirements stage for developing optimization problems are: posing the problem,

identifying the variables, constraints, and assumptions that are involved in the

problem, transferring the desired qualities into a mathematical representation, and

analyzing the accuracy of the solution as it is explained in Section 2.1.1. In fact, we

see the system as a black box. We refer to the objective, not the way to attain it. In

this way, documenting the optimization components standardize the development

of optimization problems by a systematic step-by-step process. Furthermore, as

we discussed, classification of optimization problems and the available methods in

each class change often while they are part of the solution. Therefore, they are not

required to be a part of documentation. However, it is possible to consider them

as volatile requirements to make documentation more efficient.

2.2 Conclusion

In this chapter, we justified our reasons for selecting manufacturing systems as our

case study. Their diverse usage in all spheres of human life and their distinguishable

characteristics motivate us for this selection. We elaborated on characteristics of

30 2. Manufacturing Systems Background

manufacturing systems. According to this study, manufacturing systems involve

multi-constraints and multi-disciplinary problems, multi-stage processes, and multi­

tasking. They deal with scientific models and time-varying physical characteristics.

They have evolutionary nature and dynamic behavior. We focused on the influence

of numerical analysis and optimization problems as two fundamental knowledge

fields that affect the development of manufacturing systems. Finally, we determined

the issues to be considered at the requirements stage for the development of these

systems.

Chapter 3

Literature Review

In this chapter, we review three techniques as a complementary approach to support

requirements activities: goal-driven, viewpoint-oriented, and scenario-based. We il­

lustrate how this complementary approach provides a framework for documenting

the requirements and enhancing the completeness of the requirements. We study its

influence on improving the quality of the requirements documentation by provid­

ing a proper structure for requirements elicitation. In Section 4.2.2, we elaborate

on how this approach is suitable for structuring the requirements documents of

manufacturing software systems.

3.1 Goals-Driven Requirements Analysis

Goals are the core of the requirements analysis. The importance of using them

is given in [LamOl]. According to that discussion, goals are the objectives that

the intended systems should meet. These objectives can be business, organization,

or system oriented. They are originated by some stakeholders expectation. Goal

driven methods identify objectives by asking: why a certain functionality is required

and how it can be implemented by introducing different alternatives [Reg06]. At

31

32 3. Literature Review

this stage, objectives are not formulated and accordingly non-operational. When

a system is analyzed, high level goals are identified to address the systems needs.

Then, they are refined to subgoals. The target of the former is strategic concerns

of the intended software system and the focus of the latter is technical concerns to

concretize the super goals [LamOl]. This refinement process provides a pervasive

structure for the requirements document by asking: how these goals should be

achieved?

The essential reasons of using goals in requirements activities are summarized

as follows [LamOl, YM98,Reg06]:

1. Recognizing the requirements: Goals are the sources of the requirements

recognition in a systematic elaboration process.

2. Preventing irrelevant requirements: A requirement is relevant if it is used for

satisfying at least one goal. Goals provide a precise criterion for documenting

relevant requirements by relating them to the system context.

3. Obtaining requirements completeness: Goals are sufficient for requirements

document completeness. The system purpose will be split into a set of system

goals. The completeness of the specification will be assessed against satisfying

the system goals.

4. Supporting change management: In goal driven mechanism, it is clear which

part of the requirements document should be manipulated for particular

change.

5. Providing the requirements hierarchy: Goals provide a refinement tree be­

tween stakeholders needs and technical requirements. This supports require­

ments traceability from high level abstraction to low level details, while mak­

ing the explanation of the requirements to the stakeholders much easier.

3. Literature Review 33

6. Increasing readability: Goals organize complicated requirements documents.

This enhances the readability of the document.

7. Detecting conflicts: Goals are the sources for discovering the conflicts among

the provided requirements. Although, conflicts may lead to elicit further

information, they should be handled at early stages of requirements docu­

mentation. Resolving the conflicts at the requirements level enhances the

quality of the software and reduces its development cost.

8. Connecting requirements and design phases: Goals are used to connect re­

quirements phase to design phase by identifying desired objectives and propos­

ing alternative ways for implementing them.

3.2 Viewpoint-Oriented Requirements Methods

The notion of viewpoint is defined differently in software requirements field, such

as: interest aspects of the system, information processing entities, and service re­

cipients [NKF94]. A further distinction between the definition of perspectives and

viewpoints are presented in [Eas91]. According to the scope of this research, we

accept the general notion of viewpoints seen as sources or sinks of data that ad­

dress only those concerns related to their originator and ignore the others [NKF94].

We use the notion of viewpoint and perspective interchangeably to express explicit

guidance for gathering the requirements.

Viewpoints are vehicles that facilitate document partitioning to support the

principal of separation of concerns. Each viewpoint partially represents a specific

aspect of the system. System stakeholders, partner applications, system interfaces,

and other issues that affect the system functionalities such as mechanical aspects,

physical aspects, computational aspects, environmental aspects, and electrical as-

34 3. Literature Review

pects are potential system viewpoints. According to the discussion held in [AC03],

viewpoint-oriented methods are so crucial for documenting the requirements for

large scale systems that consist of several stakeholders that may have different re­

sponsibilities and concerns. The success of these systems depend on considering

all participants perspectives. Viewpoint-oriented approaches support this impor­

tance by encapsulating the information around each originator and addressing their

concerns separately. This mechanism is adequate to provide suitable requirements

structure in a systematic way.

Variety of reasons are proposed in the literature for using viewpoints in require­

ments activities [SSV98,Eas91]. We summarize them as follows:

1. Organizing the requirements: Documenting the requirements according to

viewpoints, from which they are originated, enhances the organization of re­

quirements documents.

2. Identifying the requirements: In any requirements elicitation process, re­

quirements implicitly gathered from different views. The viewpoint-oriented

method makes it explicit.

3. Detecting conflicts: Conflicts are interferences of the activities of one view­

point with another. It is important to recognize them in early stage of software

development process. There are different methods for resolving the conflicts

which is out of the scope of this research. We refer the reader to [Eas91]

for more information on the role of viewpoints in detecting inconsistency in

requirements.

4. Providing a basis for validity tests: The specifications represent the perspec­

tive of various needs. The validation process tests if all views are addressed

adequately.

3. Literature Review 35

5. Specification adequacy: Studying the software system from all the aspects,

reduce the chance of missing critical information.

6. Requirements traceability: Identifying the viewpoints provides a traceability

mechanism by linking the requirements to their sources.

Variety of information elements are introduced in the literature to associate

with viewpoints [SSV98]. We itemize them as follows:

1. Name: A meaningful describer to present the viewpoint.

2. Focus: A definition for the perspective taken by the viewpoint. Three types

of focuses are categorized as: perspective of the stakeholders that have direct

interact with the system, perspective of the stakeholders that influence the

system indirectly, and domain perspectives which encapsulate domain infor­

mation.

3. Source: An originator for the requirements associated with the viewpoint.

4. History: A description about the changes made in the viewpoint.

5. Requirements: A set of the requirements from the intended viewpoint.

In the template that we propose in Chapter 4, in addition to the above ele­

ments, we associate some more elements such as identifier, referenceTo, usedln,

and lastUpdate to each requirement. A thorough discussion on the influence of the

associated information follows in Section 4.2.2.

3.3 Scenario-Based Requirements Techniques

According to the literature [LY01,Sut98,Coc95,RSA98] scenarios are possible ways

of using a system to fulfil desired functions. They include a sequence of interactions

36 3. Literature Review

that might happen under certain condition to satisfy a particular result. They are

introduced as system activities, system interactions, roles, real world events, or/and

imaginary stories of the system-to-be. In summary, a scenario contains a single unit

of meaningful work that portrays the system processes by story lines of events. Each

scenario may be composed of several actions described sequentially from start to

end. This is sufficient to express the behavior of complex systems. Accordingly,

they systematize requirement elicitation and provide a criteria for requirements

validating [HD98]. There are formal definitions to scenarios [DFKM98], but since

we are not dealing with formal specifications, there is no need to introduce them.

As stated in Section 3.1, goal modeling is an effective approach in requirements

documentation. However, it has some difficulties in practice. These difficulties are

referred to as [RSA98]: problem in discovering goals, and fuzzy nature of goals to

domain experts. In order to overcome these difficulties, it is suggested to couple

goals and scenarios together [RSA98,LY01]. This complementary approach provide

a two way communication between goals and scenarios. The goals help to discover

the scenarios in a top-down direction and the scenarios help to identify the goals in

a bottom-up approach. The former is the result of decomposing a set of primitive

goals and promotes goal operationalization. The later is the result of analyzing the

efficiency of the scenarios and promotes goal discovery. Further, the goals are used

to structure the use cases [Coc95].

A use case is a collection of scenarios triggered from an originator to achieve a

particular result corresponding to the intended goal. By this view, every action in

a scenario is connected to a goal according to a particular originator. We advocate

this view in Section 4.2.2 and structure functional requirements of the proposed

template based on this hierarchical format. It is explained in [AMP94] that none

of the top-down and bottom-up approaches solely could offer a complete view of

functionalities of a software system. In this view, a scenario is a container for the

3. Literature Review 37

System Purpose

--i Goal n

Figure 3.1: Goals Modeling Using Viewpoints and Scenarios

information required to satisfy a goal from a particular viewpoint and expresses how

the intended goal can be implemented. The interactions expressed by scenarios are

understandable by domain experts. Accordingly, use of goal-viewpoint-scenario

complementary approach remove problems caused by goal-oriented analysis when

used in isolation. The hierarchy of this approach is presented in Figure 3.1.

According to the above discussion, the purpose and usage of scenarios are con-

siderable in all phases of requirements activities. We itemize them as follows:

1. They are used to elicit and validate system requirements.

2. They become a standard approach for test cases generation.

3. They concretize abstract description of system goals.

4. They strengthen the connection between requirements and the design phase.

5. They are essential to provide an understanding of operational concepts.

6. They help in discovering new goals.

38

3.4 Conclusion
3. Literature Review

In this chapter, we studied a complementary usage of goal-driven, viewpoint­

oriented, and scenario-based techniques to support requirements activities. We

illustrated their advantages on all aspects of requirements activities. We particu­

lary depict the positive influence of this complementary usage for documenting the

requirements of manufacturing systems in Section 4.2.2.

Chapter 4

Template Design and Evaluation

In Section 1.1.2, we explained how templates positively affect the quality of the

SRSD. We also studied the advantages of using templates related to the follow­

ing issues: organizing the format of SRSD, increasing the productivity of SRSD by

assigning each part of SRSD to an appropriate technical team, facilitating the adap­

tion of SRSD, and protecting the specification from omitting parts of the require­

ments. In addition, we defined the criteria of a "good" template and mentioned the

effectiveness of product-oriented templates. We illustrated the importance of apply­

ing the software requirements activities to manufacturing software systems and our

reasons for selecting this case study. According to that discussion, a template that

satisfies all the needs of a quality requirements documentation for manufacturing

systems does not exist in the open literature.

In this chapter, we propose a template and give the rationale for its design. We

present the techniques that assist us in designing our template. This requirements

template aims to be suitable for the domain of manufacturing systems while sat­

isfying the criteria of a "good" template discussed in Chapter 1. To achieve this

aim, we first present the main sections of the proposed template and specify the

portions of the requirement template which are borrowed from existing templates

39

40 4. Template Design and Evaluation

and those which are specific to ours. Second, we discuss how the proposed template

conforms with the special needs of the requirements documentation for manufac­

turing systems. Third, we illustrate how the proposed template satisfies the quality

attributes described in Section 1.1.1.

4.1 Sources and Description of the Proposed

Template

To propose the intended requirement template, we studied the following templates:

1. IEEE std 830-1998 [IEE98]

2. Volere Requirements Specification Template of the Atlantic System

Guild [RR99]

3. ESA PSS-05-0 used by European Agency [Bss91]

4. NASA-DID-P200-SW used by NASA [NAS91]

5. MIL-STD-498 and DI-IPSC-81433 used by the US Department of De­

fense [Def88]

6. NRL A-7E, Documented by the Naval Research Laboratory [HKSP78]

In addition, we considered the recent research efforts found in [San03, Che03,

Mer03, Lai04]. None of these templates can solely satisfy the needs of quality re­

quirements documentation for manufacturing systems. Each of them addresses

some aspects of manufacturing systems characteristics. For example, functional

requirements in [San03] is organized in a hierarchy format based on the business

events, viewpoints, and scenarios, which is similar to that we advocate in Chapter 3.

However, this template does not address any of the challenges that the scientific

4. Template Design and Evaluation

Table 4.1: Main Sections of the Proposed Template

1 Introduction

2 General System Description

3 Non-Functional Requirements

4 System Constraints

5 Functional Requirements

6 Traceability Matrices

7 Open Issues

8 Waiting Room

9 Expected Possible Changes

41

modeling of manufacturing a product presents. This weak point is common between

all the studied templates except the one presented in [Lai04]. Scientific modeling is

considered in this template, but this template addresses simple scientific systems.

It omits to study the system from different perspectives and only considers user's

point of view. Also, no classifications are considered for alternative instanced mod­

els associated to each possible scenario. For further information regarding this tem­

plate see [SL05, Lai04]. In addition, manufacturing systems involve many partner

applications. Taking into consideration the non-functional requirements of partner

applications is so demanding. While, these requirements are disregarded by the

studied templates. To sum up, we start from the existing templates, borrow some

portions from them and present new structure as needed. The proposed template

is composed of nine main sections which are presented in Table 4.1.

42 4. Template Design and Evaluation

The content of sections "Introduction", "General System Description", "Sys­

tem Constraint", "Open Issues", "Waiting Room" and "Expected Changes" are

common to off-the-shelf templates and therefore we borrowed them. However, to

propose a template suitable for manufacturing systems, we present a new structure

for two main sections of the requirements template named functional and non­

functional requirements. In Sections 4.2.2, and 4.2.1, we provide more details on

these new structures. Also, we consider some associated information to the require­

ments to enhance the quality of the documentation as illustrated in Sections 4.2.1.

The proposed template as well as the additional information about the content of

each of its elements, are given in Appendix A. In the rest of this chapter, we focus

on discussing the parts of the template that are new and which are specific for

documenting the requirements for manufacturing systems. We did not investigate

their satisfiability for other systems.

4.2 Evaluation of the Proposed Template against

Manufacturing Systems Characteristics

We propose a new structure for documenting the functional and non-functional

requirements in the proposed template. We structure these two fundamental parts

of the requirements document in a way to be suitable for documenting require­

ments of manufacturing systems. The structure of functional and non-functional

requirements in the proposed template are presented in Sections 4.2.1 and 4.2.2.

4.2.1 Non-Functional Requirements

We considered two classes under non-functional requirements: system and partner

applications. The former specifies the intended software system quality attributes.

4. Template Design and Evaluation 43

The latter identifies the quality attributes for each partner application of the in­

tended software system. Manufacturing systems involve many partner applications

including software, hardware, and/or piece of technology which impact the func­

tionalities of these systems. To support the principal of separation of concerns, we

document the attributes of both classes independently and consider their influence

on the functionality of the intended software system as potential system viewpoints

in Section 4.2.2. This structuring enhances the ease of modifiability of the require­

ments document since all the attributes related to one partner are documented

under one subsection.

Subclasses of both "System" and "Partner Applications" mainly come from the

Volere requirements specification template [RR99]. In addition, since the software

manufacturing systems might involve simulating the process of manufacturing a

product, we added one subsection to the list of preserved classes for document­

ing the system non-functional requirements, named simulation requirements. This

template subsection is intended for documenting related simulation requirements.

The hierarchy of non-functional requirements is presented in Table 4.2.

The attributes of partner applications should be studied from the perspective of

the intended software system. To illustrate this point, consider a "Machine" partner

in the SRSD of our case study. Using safety glass by the operator is one of the

security requirements for "machine" system, but it should not be documented as a

security requirement under the "machine" partner. Since from the point of view of

the Optimizing Tool Trajectory Planning software system, this is not a case. The

example of security requirements that should be documented under the "machine"

partner is "the maximum feed rate for having safe machining."

In addition, as it is stated in Chapter 2, the manufacturing software systems

are intended to deal with scientific models of the process of manufacturing a prod­

uct. According to that discussion, the development of scientific models lead to

44 4. Template Design and Evaluation

Table 4.2: Content of the Non-Functional Requirements of the Proposed Template

1 Non-Functional Requirements

1.1 System

1.1.1 Accuracy Requirements

1.1. 2 Performance Requirements

1.1.3 Security Requirements

1.1.4 Maintainability Requirements

1.1.5 Look and Feel Requirements

1.1.6 Usability Requirements

1.1. 7 Portability Requirements

1.1.8 Simulation Requirements

1.1.9 Others

1.2 Partner Applications

1.2.1 Partner 1

1.2.1.1 Accuracy Requirements

1.2.1.2 Performance Requirements

1.2.1.3 Security Requirements

1.2.1.4 Maintainability Requirements

1.2.1.5 Look and Feel Requirements

1.2.1.6 Usability Requirements

1.2.1.7 Portability Requirements

1.2.1.8 Others

1.2.n Partner n

4. Template Design and Evaluation 45

the numerical analysis and scientific computation concerns. It is summarized in

Section 2.1.1 that specifying the accuracy of each numerical input data item of a

model, studying the sensitivity of the problem due to a perturbation in the input

data items, and evaluating the accuracy of the computation enhance the correctness

of the numerical solution and protect the numerical problem from propagating an

error during its computation. Accordingly in the proposed template, we preserve

separate subsections for accuracy, sensitivity of the model, and tolerance of the solu­

tion. Although, these requirements present some attributes of the intended software

system, we document them under functional requirements part where the scenario

that describe the intended scientific model is documented. This enhances modifia­

bility of the system, by documenting all requirements related to the mathematical

representation of a problem in a single section. The template proposed in [Lai04],

document these requirements under system non-functional requirements. However,

manufacturing systems are complex and their development involves plenty of math­

ematical models, it is required to document the contents referring to the accuracy

of the mathematical representation of the problems for each model. These classes

are presented in Section 4.2.2 where the structures of the functional requirements

are presented.

4.2.2 Functional Requirements

We organize this section to accommodate documenting manufacturing software

systems. To illustrate how the proposed structure supports this purpose, we first

express manufacturing systems characteristics that were taken into consideration

in discussing the proposed template. Then, we present the techniques applied

to support those characteristics. As stated in Chapter 2, manufacturing systems

are multi-constraints and multi-disciplinary problems, involve multi-stage processes

46 4. Template Design and Evaluation

and multi-tasking. They deal with scientific models and time-varying physical char­

acteristics. They have evolutionary nature and dynamic behavior. In the rest of

this section, we describe the techniques that we used in the proposed template to

support manufacturing characteristics. For some other manufacturing characteris­

tics such as rapid response time, the template cannot directly contribute to their

enhancement. However, we believe applying the software requirements activities in

a systematic way could protect manufacturing systems from any insufficiency.

We advocate complementary usage of goal-driven analysis, viewpoint-oriented

methods, and scenario-based techniques described in Chapter 3 as an adequate

approach to tackle most difficulties raised in the requirements process of manufac­

turing systems. We believe this complementary approach provides a frame work

for requirements activities that facilitate partitioning the vague concerns into a

set of concerns with simpler structure. We follow this mechanism for structuring

documentation of manufacturing systems in the proposed template.

Complex operational objectives with multi-disciplinary nature are common con­

cerns of manufacturing systems. Hence, in the proposed template, super goals are

identified and documented based on the system purpose and stakeholders needs.

Then, they are refined to provide a set of primitive subgoals. This mechanism sim­

plifies handling the complex structure of manufacturing systems where each subgoal

focuses on some services that the intended software system is supposed to provide.

Also, it enables the process of requirements documentation to be more clear and

precise. In addition, it increases the productivity by facilitating team work, when

each system goal is assigned to an appropriate technical team. However, as illus­

trated in Section 3.2, the success of large scale systems is not guaranteed if, the

perspectives of all participants are not considered. Therefore, we study each goal

from the point of view of different stakeholders that may have some concerns with

regard to the system. Then, we document all scenarios triggered from one viewpoint

4. Template Design and Evaluation

Table 4.3: Content of the Functional Requirements of the Proposed Template

1 Functional Requirements

1.1 Goal 1

1.1.1 Viewpoint 1

1.1.1.1 Scenario 1

1.1.1.1.1 Attributes and Models

1.1.1.1.2 Body of the Scenario

1.1.1. n Scenario n

l.l.m Viewpoint m

1.l Goall

to achieve the objective of the intended goal.

47

Some approaches in the literature consider a fix set of viewpoints. We proposed

a flexible approach where the users are allowed to define appropriate viewpoints to

their application. The set of information elements which should be associated to

each viewpoint is presented in Section 3.2. However, we elaborate the reasons of

considering them in Section 4.3 to illustrate how these sections enhance the quality

of the requirements documentation. The hierarchy of the proposed template for

functional requirements is presented in Table 4.3.

To tackle the multi-stage characteristic of manufacturing systems, we follow in

48 4. Template Design and Evaluation

our template a systematic step by step documentation approach. We document

needed requirements for accomplishing the task that the intended scenario is sup­

posed to handle in a systematic way. As we illustrate in Section 3.3, scenarios

are containers for the information required to satisfy goals and express how goals

can be achieved. In the proposed template, presented in Table 4.3, we document

these information in two main subsections labeled: i) Attributes and Models and ii)

Body of the Scenario. The section Attributes and Models provides a clear picture of

the information required for designing the task that a scenario is supposed to do.

The section Body of the Scenario gives a detailed explanation about the intended

scenario and the flow of information between its processes.

Both goal-driven analysis approach and systematic step by step documentation

support multi-tasking characteristic of manufacturing systems. Tasks could be split

into the set of goals or scenarios objectives, according to their nature. Then, each

goal and their required information could be documented clearly in sections as

presented in Table 4.4.

Dynamic behavior and time-varying physical characteristics are two other distin­

guished characteristics of manufacturing systems. We believe that scenario-based

techniques support these characteristics. In this technique, each scenario may ex­

plain one of the system behaviors in each particular time.

As stated in Chapter 2, manufacturing software systems involve scientific mod­

eling of the process of manufacturing a product. To support this characteristic, we

focused on two fundamental factors in the development of manufacturing systems:

numerical analysis and optimization problems. The information elements required

to be documented in supporting these two fundamental aspects of manufacturing

systems are described in Sections 2.1.1.1 and 2.1.2.1. According to that explana­

tion, explicit sections are preserved in the proposed template for documenting the

information elements related to posing the problem, identifying the variables, the

4. Template Design and Evaluation 49

constants, and the assumptions related to the problem, specifying error range for

each input data, transferring the desired qualities into a mathematical represen­

tation, computing condition number, and analyzing the accuracy of the solution.

This structure is presented in Table 4.4. The following are the explanations for

each of its subsections:

1. The Assumptions are the factors that influence the requirements stated in

the scenario. They are not system constraints but the assumptions taken for

granted to solve the engineering problem(s).

2. The Common Input/Output/Constant Data Items to the Models are required

data items, to and from the intended scenario. Real problems might be mod­

eled differently. This subsection documents input/output/constant data items

regardless of the model considered for modeling the real problem.

3. The Theoretical Models describe the set of relevant mathematical equations,

axioms, or physical laws used in achieving the intended scenario goal state­

ment.

4. The Instanced Models are the mathematical representation of a real problem.

Engineering problems might be modeled differently. Hence, we assign sepa­

rate subsections for documenting the requirements of each alternative instanced

model. For example, evaluating the workpiece deflection for Tool Trajectory Plan­

ning, which we have chosen as our case study, might be modeled in several ways. In

equation 1.1, we propose one of those models. Also, an example is given for beam

deflection problem in [SL05]. The proposed structure for the instanced models is

presented in Table 4. 5.

The other main subsection in the scenario structure is named Body of the Sce­

nario. It is for giving a detailed explanation about the intended scenario and

50 4. Template Design and Evaluation

Table 4.4: Content of the Sections Attributes fj Models and Body of the Scenario

1 Attributes and Models

1.1 Assumptions

1.2 Common Input/Output/Constant Data Items to the Models

1.2.1 Data Item Code

1.2.2 Data Item Description

1.2.3 Characteristics of Numerical Data item

1.2.3.1 Data Type

1.2.3.2 Unit

1.2.3.3 Format

1.2.3.4 Definition Interval

1.2.3.5 Accuracy

1.2.4 Mnemonic Names for the Possible Values of each Non-Numerical

Data Item

1.3 Theoretical Models

1.4 Instanced Models

2 Body of the Scenario

2.1 System Behavior

2.2 Control Flow Diagram

2.3 Others

4. Template Design and Evaluation 51

Table 4.5: Content of the Section Instanced Models from the Proposed Template

1 Instanced models

1.1 Alternative Instanced Model 1

1.1.1 Model Description

1.1.2 Sensitivity of the Model

1.1.3 Tolerance of the Solution

1.1.4 Specific Input/Output/Constant Data Items to the Model

1.1.4.1 Data Item Code

1.1.4.2 Data Item Description

1.1.4.3 Characteristics of Numerical Data Item

1.1.4.3.1 Data Type

1.1.4.3.2 Unit

1.1.4.3.3 Format

1.1.4.3.4 Definition Interval

1.1.4.3.5 Accuracy

1.1.4.4 Mnemonic Names for the Possible Values of each Non-Numerical

Data Item

1.2 Alternative Instanced Model 2

l.n Alternative Instanced Model n

52 4. Template Design a.nd Eva.lua.tion

the flow of information between its processes. This part is particulary required

to be part of the manufacturing systems documentation. Scientific modeling of

the process of manufacturing a product is complex. Hence, precise explanation of

the behavior of system is suitable to provide a clear picture to the reader of the

document. The following are the explanation for each of its subsections:

1. The System Behavior describes the dynamic functionality of the intended

scenario based on the technical requirements identified in the template section

titled Attributes and Models. This description includes recording the input

data items and applying the models to generate the outputs. This technical

refinement should lead to the scenario's goal and assumptions as well as the

system constraints.

2. The Control Flow Diagrams visualizes system behavior by diagrams. It is an

optional information that makes the system behavior more clear to the reader

of the document. These diagrams should show major inputs/outputs to and

from the scenario and the functions performed by the system in response to

an input or to generate an output. These diagrams show information flow in

the intended scenario.

3. The Others includes any requirements which cannot fit in any of the previous

scenario subsections.

As stated in Section 1.1.3, changes are inevitable parts of developing systems.

We advocate that templates facilitate the adaption of SRSD for evolution of the

requirements. Accordingly, using templates potentially support the evolutionary

nature of manufacturing systems. In addition, we believe the proposed manage­

ment tool provides an extra support for this characteristic by facilitating change

management to the contents of the template.

4. Template Design and Evaluation 53

4.3 Evaluation of the Proposed Template against

the SRSD Quality Attributes and two more

Criteria

In this section, we evaluate the proposed template against the primarily quality

attributes presented in Section 1.1.1: organization, precision, consistency, com­

pleteness, non-redundancy, and ambiguity. According to that discussion, the sec­

ondary attributes depend on the primarily attributes. However, we justify our

template against two secondary attributes named modifiability and traceability.

The emphasis on these two secondary attributes is due to their impacts on require­

ments management. In addition, we used two other criteria presented in [San03] to

evaluate the proposed template: i) methodology independence and ii) breadth of

applicability.

4.3.1 Organization

In the proposed template we consider the principal of separation of concern. we

organize the document by using sections and subsections in a hierarchical format.

Thus, the document is started by identifying super sections and then those are

refined into low level subsections for holding the requirements. In this format,

requirements with a similar concern are organized under the same section.

4.3.2 Precision

In the proposed template an adequate description about the contents which should

go into each section, is presented. To support numerical precision, we assign a

section for documenting the accuracy of each data item in the mathematical models.

54 4. Template Design and Evaluation

Furthermore, systematic step by step documentation of scientific models is adequate

for model description precision.

4.3.3 Consistency

Two types of consistency presented in Section 1.1.1: space and behavior. They

address consistency in declaring the shared variables and the actions to be carried

by the system in reacting to same triggering events. In the proposed template, we

associate information items named reference To, and used!n to each requirement.

These items protect the requirements document from redundancy and the chance of

defining a requirement elsewhere differently in the document. Traceability report

provides the basis for both types of consistency checking. In addition, adopting

a specific technique in writing the content of the template such as using tabular

expressions as used in [Lai04] supports behavior consistency.

4.3.4 Completeness

Three types of completeness are presented in Section 1.1.1: space, content, and

semantics. Specification is space complete, if it prescribes actions to be carried by

the system at every state in the system's space domain. It is content complete if it

includes all categories of requirements that pertain to the product. It is semantic

complete if it includes all explicit and implicit assumptions and constraints related

to the intended system. In Sections 4.2.1 and 4.2.2, we illustrated how the structure

of the proposed template satisfies the requirements documents for manufacturing

systems. According to that evaluation, the categories of the proposed template is

adequate to address manufacturing needs. In Section 4.2.2, we advocated comple­

mentary usage of goal-driven analysis, viewpoint-oriented methods, and scenario­

based techniques for documenting the requirements of manufacturing systems to

4. Template Design and Evaluation 55

Table 4.6: Power Conditioning Function [LFMOl]

Power:::; Kaut Kaut < Power < Kin Power 2:: Kin

FALSE Prev TRUE

enhance content completeness. The specification is content complete if all the sys­

tem goals are achievable. Hence, in the proposed template we aim to expect all the

requirements categories lead to the statements of the goals. Furthermore, we tackle

a goal statement from different perspectives, and describe all the actions which

should be carried by the system through the scenarios. This approach provides

a complete structure for documenting the requirements. In addition, to support

semantic completeness, we consider separate sections for documenting the system

constraints and required assumptions for each possible scenario. The constraints

and assumptions should be considered even if we use informal methods. However,

we suggest using tabular notations for describing assumptions and constraints. Ac­

cording to the example stated in [LFMOl], semantic incompleteness may lead to

inconsistency. This example explains a simple power specification system presented

in Table 4.6.

There is an undocumented implicit assumption which refers to K out < Kin.

Consequently, if Power = Kin power function is always true and if Power = Kout

it is always false. Therefore, the specification given in Table 4.6 is inconsistent for

Kout =Kin.

56 4. Template Design and Evaluation

4.3.5 Non-Redundancy

Redundancy increases maintenance effort and is a potential source for inconsistency

in the requirements document. Every time a requirement changes, its duplicate

should also change otherwise two versions of the requirement will be left in the

document. To avoid redundancy in the documentation, we consider a unique iden­

tifier for each requirement. Then, if a requirement needs to be used in more than

one location, it should be cross-referenced. It means that, the intended requirement

should be located in one place and referenced from other parts of the document.

Referencing is handled by an associated information named referenceTo to each

requirement. However, referencing causes error if there is no change control. A

common example is, if the content of the referenced requirement is changed, the

meaning can be altered. This may affect the accuracy of the requirement which is

referencing to the changed one. To avoid this inefficiency, we associate an informa­

tion item named usedln. This item is used to keep the identifiers of the requirements

referenced to the intended one.

4.3.6 Ambiguity

It is explained in Section 1.1.1 that a specification is unambiguous, if it is not

interpreted variously by different readers. In the proposed template, we preserve

separate sections for introducing data definitions, specifying physical phenomena

and describing system behaviors. However, the use of well-formed syntax for writing

the requirements, and tabular notations for representing data definitions and system

behaviors are suggested to reduce ambiguity.

4. Template Design and Evaluation

4.3. 7 Thaceability

57

As described in Section 1.1.2, the requirements traceability identifies the source of

requirements, and their dependencies that might be affected by future changes. This

makes the change management possible, whereas ensures us that changes in some

requirements do not affect others adversely. Traceability is required in all phases

of software development and from one software development phase to another.

In this research we focus on satisfying requirement traceability. Four types of

traceability patterns are presented in [San03]: forward traceability, backward trace­

ability, version traceability, and cross-referencing. Forward traceability is tracing

the requirements to the design. Backward traceability is mapping the requirements

to their original sources. Version traceability refers to different versions of the

SRSD. Cross-referencing relates the requirements within a SRSD.

In the proposed template, we associate the following information to the re­

quirements: identifier, name, description, source, history, lastUpdate, referenceTo,

used!n. This information is used to support backward traceability, version trace­

ability, and cross-referencing. The item identifier is important for requirements

uniqueness which is the basis for referencing. Maintaining sources of the require­

ments is necessery for backward traceability. The items history, and lastUpdate are

important for version traceability. The items referenceTo, and used!n are impor­

tant for cross-referencing in SRSD. In [AC03], include, and expand terms are used

instead of reference To and used!n respectively.

4.3.8 Modifiability

Software requirements do change. The evolutionary nature of manufacturing sys­

tems needs a special support for modifiability. Two types of modifiability are pre­

sented in [San03]: semantic modifiability, and presentation modifiability. Semantic

58 4. Template Design and Evaluation

modifiability refers to the ability to change requirements in a consistent way. This

is related to the issue of non-redundancy in the requirements. Presentation modifi­

ability depends on the organization, traceability, and non-redundancy of the SRSD.

We described how the proposed template addresses each of these attributes in their

corresponding sections. Also, to specify the requirements that are more likely to

change, we dedicate a section to expected possible changes in the proposed template.

However, we believe an automated management tool with a graphical user interface

has a valuable impact on the modifiability of the requirements.

4.3.9 Methodology Independence

This criterion evaluates whether the template forces specific technology for doc­

umenting the requirements. A complete discussion regarding the advantages and

disadvantages of the templates to be methodology dependent or independent is held

in [San03]. From that discussion, it is suggested that decision making regarding

dependency of the methodology should be based on the application.

In the proposed template, we advocate complementary usage of goal-driven

analysis, viewpoint-oriented methods, and scenario-based techniques that we de­

scribed in Chapter 3. In addition, we use a systematic step by step process for

documenting the requirements, and preserve an optional template section for Con­

trol Flow Diagrams. However, we trade off this level of methodology dependency

with the advantages discussed in Section 4.2.2 for having these methodologies.

4.3.10 Breadth of Applicability

We consider the general characteristics of manufacturing systems in organizing the

proposed template. However, we believe that the proposed structure is comprehen­

sive enough to include other systems that have some of those characteristics.

4. Template Design and Evaluation

4.4 Conclusion
59

In this chapter, we showed that none of the templates available in the open litera­

ture could solely satisfy the needs of quality requirements documentation for man­

ufacturing systems. Therefore, we proposed a new requirements template where

two main objectives are pursued: i) being suitable for documenting the require­

ments of manufacturing systems and ii) satisfying the primary quality attributes as

well as the two criteria of methodology independence and breadth of applicability

presented in Section 1.1.1.

We described the characteristic of manufacturing systems and justified the suit­

ability of the proposed template for each of them. We elaborated on how the

proposed template supports primary quality attributes. In addition, we explained

the influence of two secondary attributes, namely the traceability and modifiability,

on the requirements management. We elaborated on the measure taken to satisfy

these two attributes. A trade off was made between the methodology independence

of documenting the requirements and the advantages of the complementary usage

of goal-driven analysis, viewpoint-oriented methods, and scenario-based techniques.

A systematic step by step process for documenting the requirements is also adopted.

The proposed template could be applicable for other systems with characteristics

similar to those of the manufacturing systems.

60 4. Template Design and Evaluation

Chapter 5

Design, Implementation, and

Validation of the Management

Tool

In Section 1.1.3, we explained the role of the requirements management in the

process of software development. According to that discussion, the requirements

management establishes and maintains a common understanding between system

builder and stakeholders, and minimizes the difficulties that emerge due to changes

in requirements. However, it is illustrated that requirements management is not

effective if the SRSD is not qualified with respect to the primary quality attributes.

In Section 4.3, we elaborated on how the proposed template and its associ­

ated information such as requirements identifiers, requirements references, source

of requirements, and history of changes, support quality attributes. In addition,

they ensure that changes in some requirements do not adversely affect others. The

structure of the proposed template and its associated information make require­

ments management possible. However, without an automated tool for tracing the

requirements, managing changes and enhancing requirements consistency become

61

62

tedious.

5. Design, Implementation, and Validation of the Management Tool

In this chapter, we focus on designing, implementing and validating a System

for MAnagement of Requirements according to the proposed Template for manu­

facturing systems (SMART). We present the design, discuss some technologies that

we adopted in implementing SMART, and comment on its validation by our client.

SMART aims to create a relatively secure, manageable and easy-to-use application

for documenting and retrieving requirements. It accelerates capturing the require­

ments and improves system quality while reducing errors.

Protecting the valuable and sensitive information from unauthorized access is

a must, especially for the environments that involves many temporary persons.

This capability for giving the access permission to the right persons, protects the

document from entering the requirements that are likely to be wrong and enhances

consistency among the requirements. In SMART, we have two levels of security, one

for the administrator and another for general users. The later has limited access

for the information as well as the operation that can be performed.

The user-friendly interface of our management tool increases modifiability by

providing a more comfortable environment for the users. The evolutionary na­

ture of the manufacturing systems requires such an environment for updating the

requirements and controlling the change-impact. In addition to a user friendly en­

vironment for changing the information, using Extensible Markup Language (XML)

as a management base provides an extensible structure for SMART as described in

Section 5.2.1.

A powerful dynamic report generator that can be configured by the user provides

a simple way for retrieving the requirements and their dependencies. A simple tick­

list mechanism enables the user to build a wide range of reports directly in PDF

and RTF formats. Furthermore, we offer the option of using Latex for writing

the mathematical formula and drawing tables in the corresponding text areas of

5. Design, Implementation, and Validation of the Management Tool

XML
Schema
(XSD)

Map to the Validate based

database

XML
Database

(XML)

Graphical
User Interface

(XU I)

Reports
Management

(PDF, RTF)

Figure 5.1: Requirements Management Tool: Technology Perspective

63

the graphical user interface. This enables users to add desirable formats to the

generated report. Figure 5.1 shows SMART from a technology perspective.

In the rest of this chapter, we describe how the system performs these tasks

by decomposing the systems tasks into modules and then explaining the services

each module should provide. We elaborate on the technologies that helped us in

implementing the management tool and we give the rationale behind our choices.

We also illustrate the validation of SMART by our research partner.

5.1 System Architecture

To simplify the system, we decompose its functionality to a set of manageable

modules. Figure 5.1 gives the module decomposition hierarchy for SMART. It

64 5. Design, Implementation, and Validation of the Management Tool

depicts the modules and their relationships. The arrow line from module A to

module B determines that accomplishing tasks in module A requires some results

from module B.

Modular design is useful in four ways: i) it reduces complexity by splitting the

system into small parts, ii) it facilitates maintenance by encapsulating expected

changes in separate modules, iii) it facilitates implementation through parallel

tasks, iv) and it facilitates testing by localizing the objects that should be tested

together. Information hiding is a module decomposition technique that is carried

out by identifying the expected changes, and it encapsulates each expected change

called module's secret [HS95]. Modules can be divided into three groups according

to the information they hide [HS95]:

1. Behavior-hiding modules: They hide input formats, screen formats, and text

messages.

2. Software decision-hiding modules: They hide internal data structure, and

algorithms.

3. Machine-hiding modules: They hide the characteristic of the hardware ma­

chines or virtual machines.

The following is the module guide we have derived for SMART. For each

module we gave a name, a service and a secret. The service specifies the function

that the module should provide, while the secret identifies the change that the

module hides. A secret type has been associated with each secret. The secret types

include data structure, algorithm, virtual machine, input formats, and text message.

'"rj
r]q"
>= ,..,
(!)

CJ1
N

S?
..0
>= ;:::;·
(!)

s
(!)

a
rn

~
§
~
(!)

s
(!)

a
S3 s
w

'-< rn
c+
(!)

s
~ ,..,
(")

l:T
;:::;­
(!)
(")
c+
>= ,..,
(1)

&0 :Module A uses Module B

~

tJ
rn
~·

8
'I:J

~
0
M-
(l:l
M-g·
§
a..

~
Q:
(l:l
M-g·
0 ,.....,
M-
b"'
(!)

~
j
0
M-

~
2..

Ol
CJ1

66 5. Design, Implementation, and Validation of the Management Tool

(1) Name: Login Module

Service: Verifies users authorizations.

Secret: The data structure needed to store users information. Secret type:

data structure.

(2) Name: Main Module

Service: Integrates together all of the functions of the system except login

function.

Secret: The sequence of the modules to call. Secret type: algorithm.

(3) Name: Setup Module

Service: Allows user to setup the system's directories.

Secret: The input format of the directories for set up. Secret type: input

formats.

(17) Name: Systemlnfo Module

Service: Displays the system information including the data and program

directories that system has been set up.

Secret: The data structure to represent the current system setup. Secret

type: data structure.

(4) Name: BackupRestore Module

Service: Allows user to provide backup and restore from the selected direc­

tories.

Secret: The input format of the directories for backup. Secret type: input

formats.

(5) Name: UserManagement Module

Service: Provides a set of available users of the system to update them.

Secret: The data structure to represent the available users. Secret type:

data structure.

5. Design, Implementation, and Validation of the Management Tool

(6) Name: PermissionManagement Module

67

Service: Provides a set of requirements sections that can be accessed by the

intended user.

Secret: The set of all the sections of requirements document. Secret type:

data structure.

(7) Name: InterfaceToJAXFront Module

Service: Interfaces to the JAXFront technology for updating the requirements.

Secret: The language to call JAXFront. Secret type: virtual machine.

(8) Name: ReportManagement Module

Service: Integrates all the functions related with providing the requirements

output.

Secret: The algorithm to integrate the functions for providing requirements

output. Secret type: algorithm.

(9) Name: ConstructGeneralReport Module

Service: Constructs a dynamic report according to the user selection.

Secret: The set of all the sections of requirements document. Secret type:

data Structure.

(10) Name: ConstructCrossReport Module

Service: Constructs a dynamic report according to the user selection.

Secret: The set of all the sections of requirements document. Secret type:

data Structure.

(11) Name: ConstructTraceReport Module

Service: Constructs a dynamic report according to the user selection.

Secret: The set of all the sections of requirements document. Secret type:

data Structure.

68 5. Design, Implementation, and Validation of the Management Tool

(12) Name: GenerateLatex Module

Service: Provides latex format from extracted information.

Secret: The command to make Latex file. Secret type: virtual machine.

(13) Name: GeneratePDF Module

Service: Provides PDF format from the generated Latex file.

Secret: The command to make PDF file. Secret type: virtual machine.

(14) Name: GenerateRTF Module

Service: Provides RTF format from the generated Latex file.

Secret: The command to make RTF file. Secret type: virtual machine.

(15) Name: DisplayReport Module

Service: Displays the content of the PDF or RTF files on the screen.

Secret: The command to display PDF or RTF files. Secret type: virtual

machine.

(16) Name: UserGuide Module

Service: Displays a guideline for the users who work with the requirements

management tool.

Secret: The command to display PDF file. Secret type: virtual machine.

(17) Name: Userlnfo Module

Service: Displays the user information including user name, Id, and his/her

access leveL

Secret: The data structure to represent the current user information. Secret

type: data structure.

(18) Name: Help Module

Service: Displays a guideline about the content of each element of the tem­

plate.

Secret: The command to display PDF file. Secret type: virtual machine.

5. Design, Implementation, and Validation of the Management Tool

(19) Name: XMLConnection Module

Service: Returns the root of XML file to the calling module.

69

Secret: The command to connect to the XML file. Secret type: virtual

machine.

(20) Name: MessageBox Module

Service: Displays the message information.

Secret: The format of the messages. Secret type: text message.

(21) Name: ImagePanel Module

Service: Provides an image for a panel background.

Secret: The format of the image. Secret type: text message.

(22) Name: RunCommand Module

Service: Run an external command.

Secret: The format of the command. Secret type: text message.

5.2 Technical Decisions

Some technical decisions are made to provide an integrated and powerful envi­

ronment for designing and implementing SMART. Discussion held in Section 5.2.1

justifies our choice for selecting XML to structure and document the content of our

SRSD. XMLSpy technology is introduced in Section 5.2.3 to visually design XML

Schema. To provide a convenient interface between the end-users and SMART,

we present a powerful technology for implementing Graphical User Interface (GUI)

in Section 5.2.2. Finally, we present our justification for selecting Java for im­

plementing SMART and Eclipse environment for developing the Java project in

Sections 5.2.4, and 5.2.5.

70 5. Design, Implementation, and Validation of the Management Tool

5.2.1 XML

The extraordinary growth of demand for distributing electronic documents over

the web has fueled the development of Extensible Markup Language (XML) for

applications that need more functionality than current Hyper Text Markup Lan­

guages (HTML) can provide. Development of XML is started in 1996 [Lib06]. XML

is designed by taking the best parts of Standard Generalized Markup Language

(SGML) defined by ISO 8879 and experienced gained from HTML [Lib06]. It is

designed for structuring, describing, storing, and passing the data. It is strongly

believed that XML will be the most important tool for manipulating and trans­

mitting data [W3S06]. An XML file consists of a plain text and some tags. Tags

are sequence of characters enclosed in angle brackets ('<' and '>'). Like HTML,

XM L uses tags to specify the logical components of document, which delimit the

information such as formatting and specification about the document.

The mechanism of identifying structures in a document is called a markup lan­

guage. However, unlike HTML, XML tags are not predefined. The XML user is

allowed to define her /his tags and leaves the interpretation of data to the applica­

tion reading these data. To be more specific, XML is a set of rules for describing the

data by adding markup for documenting and designing text formats. Accordingly,

any software that can work with text file can handle XML files. This makes the

major role of XML in connecting heterogenous databases. It is ideal not only for

transferring data from server to browser but also for sending the data from appli­

cation to application and machine to machine [Lib06]. The function of XML could

be simulated by the function that ASCII did for unifying the representation of the

letters on the computer many years ago [SF06].

Incompatible format between computer systems and databases is one of the

most challenges in computer technology. Converting the data between incompatible

5. Design, Implementation, and Validation of the Management Tool 71

formats is very time consuming. Neutral characteristic of XML helps to reduce this

complexity. The plain text format of data created by XM L can be read by almost

all types of applications. It also facilitates upgrading a system to new operating

system, server and/or browser.

The structure of an XML is described by XML Schema Definition (XSD). XSD

defines building blocks of XML documents which are elements and attributes.

Elements are specified by start tag and end tag, shown by <element-name>,

</element-name>. Attributes are attached to the elements to associate values

to an element. Any search in XM L document is done by looking for start tags

and end tags. Accordingly, adding more elements to the structure of the XM L do

not cause any break or crash to the application that extract the data from XML

document.

In addition, XSD defines child-parent relationship between the elements, defines

default and fixed values for elements, and defines data types for elements. It allows

the author to create her/his own data types. The strength about XSD schemas is

that, they are written in XML. Hence, there is no need to learn new language to

work with them. Also, they could be edited and parsed with the same editor and

parser used for XML file. XSD increases usability of the system by referencing the

other schemas and reusing by other schemas.

The reasons for advocating XM L for documenting data could be summarized as

follows: [W3S06, Lib06, Stu06, Wal98]:

1. XML provides a rich documentation structure capable to run over the web.

The syntax rules of XM L are very simple. Accordingly, it is easy to use and

manipulate by generic applications.

2. XML is a meta language that allows the author to define her/his tags and

document structure. Its modularity allows one to define new document by

72 5. Design, Implementation, and Validation of the Management Tool

combining other schemas.

3. XML is platform independent and license free. That means, it is software

and hardware independent. The syntax of an XML describes the relation­

ships among the elements. Hence, no prior information about the sender is

required. Using the XML as a basis for the project reduces the cost of storing,

converting, and transferring the data. It shipped with internet explorer 5 and

higher and has the features for many languages such as VB, Java, (++, Peri.

4. Documenting the system by XM L enhances usability of the system by making

the data accessible to all kinds of reading machines. Accordingly, more data

could be available for blind people or people with other disability.

5. The XML document is extensible to carry out more information. New elements

do not affect the search engine for previous elements.

6. It is possible to validate the correctness of XML data against its XSD. An XML

document is valid if it obeys the syntax of XML and obeys the constraints

that is defined by its XSD, such as: attribute values have the correct type,

child-parent relationship is valid, etc.

7. XML is a family of technologies. In spite of being a new technology, widespread

technologies and tools such as XSL, CSS, DOM, TurboXML, Stylus Studio,

VisuaiScript, Altova(XMLSpy), JAXFront are available to support XML.

The above characteristics of XML justify our choice for selecting XML to struc­

ture and document the content of our SRSD. The structure of requirements speci­

fication document based on the proposed template is presented in appendix B.

5. Design, Implementation, and Validation of the Management Tool

5.2.2 JAXFront

73

As illustrated in Section 5.2.1, the XML document is extensible to carry out more in­

formation. Handling extensibility in a visual environment is high demanding. Java

Enabled XML Frontends (JAXFront) is a technical tool facilitating XML document

manipulation visually. JAXFront provides an interactive Extensible User Interface

(XUI) to a valid XML schema (XSD). This graphical user interface allows editing the

underlying XM L data or the creation of new one. Any changes in the XM L schema

are reconstructed directly to the G UI, and any modifications done through G UI

will be validated against the XM L schema. Only valid changing will affect the un­

derlying XML document. Other strong factors of JAXFront convincing us to choose

this technology for developing our graphical user interfaces are: platform indepen­

dence, multiple natural languages supportance, ability to add plug-ins, functions,

and actions to the XUI. We refer the reader to [JAX06] for more information on

this technology.

5.2.3 XMLSpy

Although XML schema can be made by using solely Microsoft technologies, we used

XMLSpy technology to visually design the structure of our requirement specification

document based on the template proposed in Chapter 4. XMLSpy is a pervasive

tool for developing projects with XML base. We benefited of some of the features

this software provides such as designing the structure of the document visually,

providing XML document according to the XSD, and validating the XML document

against the XSD. We refer the reader to [XML06] for more information on this

technology.

74

5.2.4

5. Design, Implementation, and Validation of the Management Tool

Java

We opted Java as the programming language to implement SMART for the following

reasons:

1. Java is Platform independent

2. Many Java classes are available to parse and manipulate XML documents

3. Programming in Java provides wide accessibility to other technologies imple­

mented for manipulating XML documents. For example, it is easy to handle

the communication between Java programs and JAXFront explained in Sec­

tion 5.2.2 and we chose Java to implement the graphical user interface for

SMART. JAXFront accepts Java plug-ins and can be embedded in Java pro­

grams easily.

5.2.5 Eclipse

Eclipse is a powerful, standard-based, and free Integrated Development Environ­

ment (IDE). Recently Eclipse came out as superior IDE, which enables us to develop

Java projects with some facilities such as syntax highlighting, popup windows for

different Java classes, debugging, refactoring, auto-compiling, and packaging the

whole project in a jar file [Inn06]. Eclipse platform offers facilities to add plug­

ins implemented by other companies. Specifically, we used JAXFront plug-in to

communicate with JAXFront through Eclipse in our project.

5.3 Validation of SMART

We partially elicit the requirements needed for developing a software simulation for

the Tool Trajectory Planning for High Speed Machining. To describe this process,

5. Design, Implementation, and Validation of the Management Tool 75

we first briefly explain the process of manufacturing a product [CJ98] and then

explain the role of the Tool Trajectory Planning in this process.

Machining a part is an important step in manufacturing of a new product.

It requires producing master models by the skilled hands of artisans or virtual

design tools such as Computer Aided Design (CAD). The geometric information is

digitally saved. A process planning and tool path strategies will be elaborated either

manually or using the Computer Aided Manufacturing (CAM) tools. The resulting

data will be post-processed to create the program for the Computer Numerical

Controlled (CNC) cutting machines. The CNC machine removes the material of a

workpiece according to the provided program.

The Tool Trajectory Planning for High Speed Machining aims to optimize tool

trajectory for removing material. The objective is to maximize the amount of

material to be removed while guaranteeing the quality of the product and the

safety of machining. This is a vital objective especially for high speed machining

where the spindle speed exceeds 8000 Revolution Per Minutes (RPM) and could

reach 60000 and even 100000 RPMs for ultra-modern machines.

Along this thesis we illustrate the role of the requirements activities to support

manufacturing process. We elicit a sample requirements from National Research

Council of Canada (NRCC). We feed the gathered requirements to the management

tool and validate the result by our research partner in NRCC. A demo of the

management tool, including the elicited requirements had been represented to the

users of the tool. However, due to the confidentially agreement signed with NRCC,

we are not supposed to reveal the information gathered to non-signatory partners.

The purpose for gathering this information was to enable us to propose a template

adequate for manufacturing systems and to enable our client to validate both the

template and the requirements management tool.

Our client found that the new structures for the functional and non-functional

76 5. Design, Implementation, and Validation of the Management Tool

requirements are adequate for documenting the requirements for manufacturing

systems. The trade-off made between the complementary usage of goal-driven,

viewpoint oriented, and scenario-based approaches and the criteria of the method­

ology independence of the template is appropriate and justifiable due to the nature

of the manufacturing systems. The systematic step-by-step documentation is cru­

cial to tackle the complexity of manufacturing systems.

Our client is convinced that the association of additional information, such as

code, source, history, lastUpdate, referenceTo, and usedln, with the requirements

leads to enhancing the quality of the requirements document. As far as the man­

agement tool is concerned, our client found that the functionalities provided by

SMART responds to the important basic needs for security and dynamic reporting.

SMART went beyond the original agreement with our client where fixed maxi­

mum numbers of goals, viewpoints, and scenarios are to be considered. SMART is

providing non-limited dynamic lists for these items.

Our client team appreciated the conviviality and the ease of use of SMART,

noticed when feeding some simple case studies. This will encourage them to use

it and assess its performance for more substantial case studies. Being extensible,

SMART constitutes an important step-forward toward developing a sophisticated

management tool that would include automatic space consistency checking and

other features.

5.4 Conclusion

In this chapter, we described the role of management tools in the requirements

activities in general and specifically the features provided by the proposed tool

(SMART). The services provided by SMART are: a friendly user interface, per­

mission check, and dynamic reporting. We decomposed the system into modules

5. Design, Implementation, and Validation of the Management Tool 77

to simplify the system development and explained the service and secret of each

module. We explained and justified XML, XMLSpy, JAXFront, Java, and Eclipse as

the technologies that helped us in implementing our management tool. Finally, we

reported on the validation of SMART with a case study to document the require­

ments for the Tool Trajectory Planning for High Speed Machining system developed

at National Research Council of Canada (NRCC).

78 5. Design, Implementation, and Validation of the Management Tool

Chapter 6

Conclusion

The goal of this research is to provide a requirement documentation guidance for

manufacturing systems. A management tool is implemented to mechanize the

process of documenting, retrieving, and tracing the requirements in a secure, flex­

ible, and user friendly environment. We present our concluding remarks in Sec­

tion 6.1, main contribution in Section 6.2, and propose some potential future work

in Section 6.3.

6.1 Concluding Remarks

In this thesis, we described the influence of the requirements phase in the soft­

ware development life-cycle in general and made specific attention to structuring

and managing the requirements for manufacturing systems. We advocated using

templates as an intuitive way for structuring the requirements documents. We

proposed a new template aiming at two main objectives: being suitable for docu­

menting the requirements for manufacturing systems and satisfying SRSD primary

quality attributes. To achieve these goals we focused on two related issues. We

described the criteria for a "good" template according to SRSD primary quality at-

79

80 6. Conclusion

tributes, and elaborated on distinguished characteristics of manufacturing systems.

According to this study, manufacturing systems involve multi-constraint problems,

multi-disciplinary problems, multi-stage processes, and multi-tasking. They have

evolutionary nature, dynamic behavior, and deal with scientific models and time­

varying physical characteristics.

6.2 Main Contributions

We reviewed the literature for the well known templates and the recent research

efforts on structuring software requirements. We started from existing templates

then we restructured documenting the functional and non-functional requirements

in order to achieve the intended objectives.

The essential methodology we advocated for structuring the proposed template

is the complementary usage of goal-driven, viewpoint-oriented, and scenario-based

approach. We also followed a systematic step by step documentation for docu­

menting manufacturing systems requirements. In addition, we associated some

information to the requirements to enhance the quality of the requirements docu­

ments and improve the traceability and modifiability of these requirements. These

information include: identifier, name, description, source, history, lastUpdate, ref­

erenceTo, and used!n. An evaluation process is presented to ensure the capabilities

of the proposed template.

To demonstrate a common understanding between the system builder and the

stakeholders, enhance modifiability and traceability of requirements documents and

make change management possible, a management tool named SMART is designed

and implemented. SMART aims to create a relatively secure, manageable, and

easy-to-use application for documenting and retrieving the requirements. We elab­

orated on the technologies that provide an integrated and powerful environment

6. Conclusion 81

for designing and implementing SMART. We used XML to structure and document

the content of our SRSD to reduce the cost of storing, converting, and transferring

the data. Our reasons for this selection are:

1. Platform independency

2. Capability to run over the web

3. Extensibility to carry out more information

4. Being a part of a family of technologies

We opted for Java as the programming language to implement SMART due its

platform independency and its ability to provide wide accessibility to other tech­

nologies implemented for manipulating XM L documents. We developed our Java

tool through Eclipse, a free integrated development environment. Other comple­

mentary technologies that we used are:

1. XMLSpy to visually design the structure of our requirement specification doc­

ument.

2. JAXFront, a technical tool facilitating XML document manipulation visually.

We assessed SMART with a case study to document the requirements for the

Tool Trajectory Planning for High Speed Machining system developed at National

Research Council of Canada (NRCC).

6.3 Future Work

This thesis encourages further research in two dimensions: upgrade SMART and

improve the template. We propose them as follows:

82 6. Conclusion

1. Enrich SMART by adding more report options.

2. Integrate automatic space consistency checking to the tool which would lead

to a more quality specification document. However, behavior consistency will

require a quite considerable amount of work.

3. Improve the system by adding an automatic change management module

which handles changes applied to the requirements, and checks their depen­

dencies.

4. Connect the requirements to the design level to support forward traceability.

5. Make SMART more practical by automatically adding an identifier to each

requirements item. In the current version of SMART, users enter the iden­

tifier for requirements items. We expect an automatic way for generating

requirements identifier to protect the requirements management tool from

user's mistakes.

6. Validate the management tool by handling formal requirements.

7. Additional validation of the template by using more substantial case studies.

Bibliography

[Abr98]

[AC03]

J. R. Abrial. B user manual. Technical report, Programming Research

Group, Oxford University, 1998.

Joao Araujo and Paulo Coutinho. Identifying aspectual use cases us­

ing a viewpoint-oriented requirements method. In Workshop of 2nd

Int. Conf. on Aspect- Oriented Software Development (AOSD), Boston,

USA, March 2003. Aspect-Oriented Requirements Engineering and Ar­

chitecture Design.

[AMP94] Annie I. Antn, W. Michael McCracken, and Colin Potts. Goal de­

composition and scenario analysis in business process reengineering.

In 6th international conference on Advanced information systems en­

gineering, 0-387-58113-8, pages 94 - 104, Utrecht, The Netherlands,

1994. Springer-Verlag New York, Inc. Secaucus, NJ, USA.

[BhaOO]

[Bss91]

M. Asghar Bhatti. Practical Optimization Methods. Springer-Verlag

New York, Inc., 2000.

ESS BssC. Software project documents. In ESA PSS-05-0-Issue 2.

European Space Agency, February 1991.

83

84

[BtN01]

BIBLIOGRAPHY

Aharon Ben-tal and Arkadi Nemirovski. Lectures on Modern Convex

Optimization. MPS/SIAM Series on Optimization, Philadelphia, PA,

USA, 2001.

[CEJM06] C.C. Christara, W.H. Enright, K.R. Jackson, and R.A. Mathon.

[Che03]

[CJ98]

[Coc95]

[Def88]

Numerical analysis. http:/ jwww.cs.toronto.edu/DCS/Groupsjnumeri­

cal.html, 2006. (Last posted: 22/8/2006).

C. Chen. A software engineering approach to developing a mesh genera­

tor. Master's thesis, McMaster University, Hamilton, Ontario, Canada,

September 2003.

Byoung K. Choi and Robert B. Jerard. Sculptured Surface Machining.

Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

Alistair Cockburn. Structuring use cases with goals. Technical Re­

port 84121, Human and Technology, Salt Lake City, Utah, 1995.

HaT.TR.95.1.

Defense system software development. In DOD Standard 2167A. US

Department of Defense, February 1988.

[DFKM98] Jules Desharnais, Marc Frappier, Ridha Khedri, and Ali Mili. Integra­

tion of sequential scenarios. IEEE Transactions on Software Engineer­

ing, 24(9):695-708, September 1998.

[Eas91]

[Fau95]

Steve Easterbrook. Elicitation of Requirements from Multiple Perspec­

tives. PhD thesis, Department of Computing, Imperial College, London,

UK., June 1991.

S. R. Faulk. Software requirements. Technical Report NRL/MR/5546-

95-7775, Naval Research Laboratory, Washington DC, 1995. A tutorial.

BIBLIOGRAPHY 85

[GMW81] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Op­

timization. Academic Press INC, San Diego, CA 92101, 1981.

[Ham06] Sven Hammarling. Backward error analysis and numerical software.

http://www .cerfacs. fr /algor /Past Workshops /Ind ustria1Days2000 / absf­

ormer.html, 2006. (Last posted: 7 /3/2006).

[Har87] D. Harel. Statechart: Visual formalism for complex system. In Science

of Computer Programming, 8:231-274. 1987.

[HD98] Patrick Heymans and Eric Dubois. Scenario-based techniques for sup­

porting the elaboration and the validation of formal requirements. Re­

quir. Eng., 3(3/4):202~218, 1998.

[Hea02] Michael Heath. Scientific Computing An Introductory Survey. McGraw­

Hill Publishing Company, 2nd edition, 2002.

[HKSP78] K. Heninger, J. Kallander, J. Shore, and D. Parnas. Software require­

ments specification for a-7e aircraft. Technical Report memo-3876,

Naval Research Laboratory, Washington DC, November 1978.

[HS95]

[IEE98]

[Inn06]

Daniel M. Hoffman and Paul A. Strooper. Software design, automated

testing, and maintenance. International Thomson Computer Press,

1995.

IEEE. IEEE recommended practice for software requirements specifi­

cations. In IEEE Standard, pages 830~1998. New York, US, June 1998.

Object Innovation. Using eclipse overlays with oi java courses.

http:/ /www.objectinnovations.com/Guides/EclipseOverlays.html,

2006. (Last posted: 22/6/2006).

86

[JAX06]

[Kev90J

[KS98]

[Lai04]

[Lam01]

BIBLIOGRAPHY

JAXFront. http:/ /www.jaxfront.com/pages/home.html, 2006. (Last

posted: 22/6/2006).

L. Kevin. Z++: An object-oriented extension to z. In Workshops

m Computing, editor, Z User Workshop, pages 151-172. Springer­

Verlag, 1990.

G. Kotonya and I. Sommerville. Requirements Engineering. 1998.

L. Lai. Requirements documentation for engineering mechanics soft­

ware: Guidelines, template and a case study. Master's thesis, McMaster

University, Hamilton, Ontario, Canada, September 2004.

Axel Van Lamsweerde. Goal-oriented requirements engineering: A

guided tour. In Proceedings 5th IEEE International Symposium on

Requirements Engineering, pages 249-262, Toronto, Canada, August

27-31 2001. Institue of Electrical and Electronic Engineers, Inc.

[LFM01] M. Lawford, P. Froebel, and G. Mourn. Application of tabular meth­

ods to the specification and verification of a nuclear reactor shutdown

system. Ontario Power Generation, 700 University Ave., Toronto, ON,

CANADA M5G 1X6, August 20 2001.

[Lib06]

[LY01]

WebDevelope's Virtual Library. Structuring data for the web. http://

wd v l. internet. com/ Authoring/Languages /XML /Intro /benefits. html,

2006. (Last posted: 22/6/2006).

Lin Liu and Eric Yu. From requirements to architectural design - using

goals and scenarios. In ICSE-2001, pages 22-30, Toronto, Canada, May

14 2001. From Software Requirements to Architectures (STRAW 2001).

BIBLIOGRAPHY 87

[Mer03]

[NAS91]

K. Meridji. Documentation and validation of the requirements specifica­

tion an xml approach. Master's thesis, Concordia University, Montreal,

Quebec, Canada, August 2003.

NASA. Nasa software documentation standard. National Aeronautics

and Space Administration, Washington, DC 20546, July 1991.

[NKF94] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework

for expressing the relationships between multiple views in requirements

specification. IEEE Trans. Software Eng., 20(10):760-773, 1994.

[NS96] Stephen G. Nash and Ariel a So fer. Linear and Nonlinear Programing.

The McGraw-Hill Companies, Inc., 1996.

[OMGOO] OMG. Unified modeling language. http:/ /www.omg.org/uml, March

2000. (Last posted 8/ 4/2006).

[OOGC06] Office Of Government Commerce. http:/ jwww.ogc.gov.uk/sdtoolkit/de­

liveryteam/briefingsjbusinesschangejnewlinejreqments_mgmt.htm,

2006. (Last posted 24/3/2006).

[PC86]

[QSSOO]

[Reg06]

C. Phillips and B. Crnelius. Computational Numerical Methods. Chich­

ester, 1986.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Math­

ematics. Springer, 2000.

Gil Regev. Goal driven requirements engineering overv1ew.

http:/ /lamswww.epfi.ch, RE05 conference, 2006. (Last posted:

18/6/2006).

88

[Rei85]

[RR99]

[RSA98]

[San03]

[SF06]

[SL05]

[SLK05]

BIBLIOGRAPHY

W. Reisig. Petri nets: An introduction. In Number 4 in EATCS Mono­

graphs on Theoretical Computer Science. Springer-Verlag, 1985.

S. Robertson and J. Robertson. Mastering the Requirements Process.

1999.

Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding

goal modeling using scenarios. In IEEE Transactions on Software En­

gineering archive, volume 24 of 0098-5589, pages 1055-1071, Centre de

Recherche en Inf., Paris I Univ., December 1998. IEEE Press Piscat­

away, NJ, USA.

B. Sanga. Assessing and improving the quality of software require­

ments specification documents. Master's thesis, McMaster University,

Hamilton,Ontario, Canada, August 2003.

Quentin Stafford-Fraser. http:/ /www.qandr.org/ quentin/writings/xml­

importance.html, 2006. (Last posted: 22/6/2006).

W. Spencer Smith and Lei Lai. A new requirements template for sci­

entific computing. In J. Ralyte, P. Agerfalk, and N. Kraiem, editors,

Proceedings of the First International Workshop on Situational Require­

ments Engineering Processes -Methods, Techniques and Tools to Sup­

port Situation-Specific Requirements Engineering Processes, SREP'05,

pages 107-121, Paris, France, 2005. In conjunction with 13th IEEE

International Requirements Engineering Conference.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analy­

sis for engineering computation: A systematic approach for improving

BIBLIOGRAPHY 89

[Smi06]

[Spi92]

[SSV98]

[Stu06]

[Sut98]

[TE02]

software reliability. Reliable Computing, Special Issue on Reliable En­

gineering Computation, Accepted June 2005.

W. Spencer Smith. Systematic development of requirements documen­

tation for general purpose scientific computing software. In Proceedings

of the 14th IEEE International Requirements Engineering Conference,

RE 2006, St. Paul, Minnesota, Accepted April 2006.

J. M. Spivey. Z Notation. Prentice Hall, 1992.

I. Sommerville, P. Sawyer, and S. Viller. Viewpoints for requirements

elicitation: A practical approach. In 3rd Int. Conf. Requirements Eng.,

pages 74-81, Los Alamitos, Calif., March 1998. IEEE Computer Society

Press.

Stylus Studio. A technical introduction to xml. http:/ /www.xml.com

jpub/a/98/10/guideO.html, 2006. (Last posted: 22/6/2006).

Alistair Sutcliffe. Scenario-based requirements analysis. volume 3 of

0947-3602, pages 48-65. Springer-Verlag New York, Inc. Secaucus, NJ,

USA, 1998.

N. Tounsi and M. A. Elbestawi. Optimization feed scheduling in three

axes machining. part I. International Journal of Machine Tool and

Manufacture, (43 (2003)):253-267, October 4 2002.

[W3S06] W3Schools. Xml tutorials. http:/ /www.w3schools.com/xml/xmL used­

for.asp, 2006. (Last posted: 22/6/2006).

[Wal98] Norman Walsh. http:/ /www.xml.com/lpt/a/98/10/guideO.html, 1998.

(Last posted: 22/6/2006).

90

[Wik06a]

BIBLIOGRAPHY

Wikipedia. Multidisciplinary design optimization. http:/ /en.wikipedia

.org/wiki/Multidisciplinary _design_optimization, 2006. (Last posted:

25/2/2006).

[Wik06b] Wikipedia. Numerical analysis. http:/ jen.wikipedia.org/wiki/Numerical

_method, 2006. (Last posted: 20/2/2006).

[Wor96a] J. B. Wordsworth. Software Development with B. Addison-Wesley,

1996.

[Wor96b] J. B. Wordsworth. Software Development with Z. Addison-Wesley,

1996.

[XML06] Altova XMLSpy. http:/ jwww.altova.com/download/xmLsuite/xmL

tools_enterprise.html, 2006. (Last posted: 22/6/2006).

[YM98] Eric Yu and John Mylopoulos. Why goal-oriented requirements engi­

neering. In Foundation for Software Quality (RESFQ'98), pages 15-22,

Pisa, Italy, Jun 1998. 4th International Workshop on Requirements En­

gineering.

Appendix A

The Proposed SRS Template

In this appendix, we present the structure of the proposed template that is suit­

able for documenting the requirements of manufacturing systems. We organize the

document by using sections and subsections in a hierarchical format. Thus, the

document is started by identifying super sections which are refined into low level

subsections. In this format, information with similar concerns is organized under

the same section. In addition, we associate the following attributes to each re­

quirement: identifier, name, description, source, history, lastUpdate, referenceTo,

used!n. The definitions of these attributes are as follows:

1. Identifier: A unique label for each requirement.

2. Name: A distinguishable word or words for each requirement.

3. Description: An explanation to identify what the requirement is about.

4. Source: An originator for the requirement.

5. History: A description about the changes made in the requirements.

6. LastUpdate: The last date that a change is made to the requirement.

91

92 A. The Proposed SRS Template

7. ReferenceTo: List of other requirements that this requirement includes.

8. Usedin: List of other requirements that this requirement extends.

In proposing our template, we start from the existing templates, borrow some

portions from them and present new structure as needed. We also describe the in­

formation to be located in each part of the proposed template. The structure and

the content description of sections Introduction, General System Description, Sys­

tem Constraint, Open Issues, Waiting Room and Expected Changes are common to

off-the-shelf templates [IEE98, RR99, Bss91, NAS91, Def88, HKSP78, San03, Che03,

Mer03, Lai04] and therefore we borrowed them. However, to propose a template

suitable for manufacturing systems, we present new structure for two main sec­

tions of the proposed template named functional and non-functional requirements.

The basic idea of structuring the functional parts comes mainly from the current

research efforts presented in [San03, Lai04]. However, we trim those templates to

make them suitable for requirements documentation for manufacturing systems. In

addition, the description of non-functional requirements comes mainly from Volere

Requirements Specification Template [HKSP78]. The proposed template as well as

the additional information about the content of each of its elements, are given as

follows:

A.l Template Structure

1. Introduction

1.1 Document Purpose

1.2 Terminology Definitions, Abbreviations and Acronyms

1.3 References

1.4 Document Organization

A. The Proposed SRS Template

2. General System Description

2.1 System Purpose

2.2 System Scope

2.3 System Context

2.4 Operations

2.5 User Characteristics

3. Non-Functional Requirements

3.1 System

3.1.1 Accuracy Requirements

3.1.2 Performance Requirements

3.1.3 Security Requirements

3.1.4 Maintainability Requirements

3.1.5 Look and Feel Requirements

3.1.6 Usability Requirements

3.1. 7 Portability Requirements

3.1.8 Simulation Requirements

3.1.9 Others

3.2 Partner Applications

3.2.1 Partner 1

3.2.1.1 Accuracy Requirements

3.2.1.2 Performance Requirements

3.2.1.3 Security Requirements

93

94

3.2.1.4 Maintainability Requirements

3.2.1.5 Look and Feel Requirements

3.2.1.6 Usability Requirements

3.2.1.7 Portability Requirements

3.2.1.8 Others

3.2.m Partner m

4. System Constraints

5. Functional Requirements

5.1 Goal 1

5.1.1 Viewpoint 1

5 .1.1.1 Scenario 1

5.1.1.1.1 Attributes and Models

5 .1.1.1.1.1 Assumptions

A. The Proposed SRS Template

5.1.1.1.1.2 Common Input/Output/Constant Data Items of the Models

5.1.1.1.1.2.1 Data Item Code

5.1.1.1.1.2.2 Data Item Description

5.1.1.1.1.2.3 Characteristics of Numerical Data Item (Data Type,

Unit, Format, Definition Interval, Accuracy)

5.1.1.1.1.2.4 Mnemonic Names for the Possible Values of each

Non-Numerical Data Item

A. The Proposed SRS Template

5.1.1.1.1.3 Theoretical Models

5.1.1.1.1.4 Instanced Models

5.1.1.1.1.4.1 Alternative Instanced Model 1

5.1.1.1.1.4.1.1 Model Description

5.1.1.1.1.4.1.2 Sensitivity of the Model

5.1.1.1.1.4.1.3 Tolerance of the Solution

95

5.1.1.1.1.4.1.4 Specific Input/Output/Constant Data Items of

the Model

5.1.1.1.1.4.1.4.1 Data Item Code

5.1.1.1.1.4.1.4.2 Data Item Description

5.1.1.1.1.4.1.4.3 Characteristics of Numerical Data Item (Data

Type, Unit, Format, Definition Interval, Accuracy)

5.1.1.1.1.4.1.4.4 Mnemonic Names for the Possible Values of each

Non-Numerical Data Item

5.1.1.1.1.5.[Alternative Instanced Models l

5.1.1.1.2 Body of the Scenario

5.1.1.1.2.1 System Behavior

5.1.1.1.2.2 Control Flow Diagrams

5.1.1.1.2.3 Others

5.l.l.m Scenario m

96 A. The Proposed SRS Template

5.1.n Viewpoint n

4.p Goal p

6. Traceability Matrices

7. Open Issues

8. Waiting Room

9. Expected Possible Changes

A. The Proposed SRS Template

A.2 Introduction

This section should provide an overall view to the whole template.

A.2.1 Document Purpose

97

This subsection should describe the purpose of the current SRSD and state its

intended audience.

A. 2. 2 Terminology Definitions, Abbreviations and

Acronyms

This subsection should provide the definition of all technical terms as used in the

domain area of the system, and express the abbreviations and acronyms in full

terms. This reduces ambiguity in the documents and lets the reader properly

interpret the SRSD.

A. 2. 3 References

This subsection should provide an annotated list of documents referenced in the

SRSD as a source of additional information.

A.2.4 Document Organization

This subsection should provide a summary of the information contained in the

SRSD and explain how they are organized in the document.

98

A.3
A. The Proposed SRS Template

General System Description

This section should provide a background about the system and should describe

general factors that affect the requirements defined in Sections A.4, A.5, and A.6.

A.3.1 System Purpose

This subsection should describe the problem domain and delineate the reason that

the system is being developed.

A.3.2 System Scope

This subsection should provide an executive summary of the software system being

developed including: software system name, general description of its functionality,

and its objectives.

A.3.3 System Context

This subsection should provide a high level view of the software system and its

integration with other factors that have a direct interface with the system including:

people, partner applications, and organizations. If the system is embedded in a

larger system it should be stated here. The important system interfaces should be

defined by drawing diagrams to depict system boundaries and fitness of the software

system in the context.

A.3.4 Operations

This subsection should provide a list of routine operations required to be done by

users including: back up and recovery operations, initiated operations, and data

processing operations.

A. The Proposed SRS Template

A.3.5 User Characteristics

99

This subsection should define characteristics of the potential users of the software

system including: educational level, technological expertise, experience, age, gen­

der, or physical abilities. The software designer should take them into consideration

to make targeted system conform with its user characteristics.

A.4 Non-Functional Requirements

This section should specify the software system overall quality attributes. These

attributes describe the qualities or properties of the system and its partner appli­

cations. Attributes of partner applications should be considered from perspective

of the software system.

A.4.1 System Non-Functional Requirements

This section should specify the qualities or properties of the intended software

system.

A.4.1.1 Accuracy Requirements

This subsection should state the possible source of measurement errors and error

range applied to each input data of the software system. It is usually specified by

the number of significant digits.

A.4.1.2 Performance Requirements

This subsection should specify the performance requirements including: response

time, speed, capacity, reliability, and availability requirements.

100 A. The Proposed SRS Template

A.4.1.3 Security Requirements

This subsection should specify the factors that protect the software system infor­

mation from unauthorized accesses. They include specification of the persons who

have been permitted to work with different parts of the system, the circumstances

under which a permission is given, the required checks for auditing the system,

and/ or the required rules to preserve the system integrity.

A.4.1.4 Maintainability Requirements

This subsection should specify the maintenance that the system needs. The required

time for fixing a damage or adding a new feature, and any attributes that affect

the maintenance of the software system.

A.4.1.5 Portability Requirements

This subsection should specify the attributes that determine how easy the intended

software system should be to port to others host machines with different platforms.

This may include the percentage of code which depends on the host, or use of

particular portable language, compiler, or operating system.

A.4.1.6 Look and Feel Requirements

This subsection should state the requirements relating to the appearance of the

intended software system including style, color, and so on. These characteristics

should be taken into consideration by designer.

A.4.1.7 Usability Requirements

This subsection should describe clients aspiration regarding: how easy the intended

software system should be for its user to learn it and operate it.

A. The Proposed SRS Template

A.4.1.8 Simulation Requirements

101

This subsection should provide non-functional requirements specific to the simu­

lation issues. For example, simulation time, the laws governing the simulation,

simulation condition, etc.

A.4.1.9 Other Non-Functional Requirements

This subsection should describe the attributes which affect the intended software

system but cannot fit in any of the non-functional requirements categorized in

Sections A.4.1.1 to A.4.1.8.

A.4.2 Partner Applications

This subsection should identify quality attributes categorized in Subsections A.4.1.1

to A.4.1.7, and A.4.1.9 for each of the partner applications of the intended software

system. Partner applications can be considered as software, hardware, or piece of

technology which impact the system. Required attributes should be studied from

the perspective of the intended software system.

A.5 System Constraints

This section should provide a list of general constraints that apply to the whole

system and affect the next development stage. This includes implementation envi­

ronment, financial budget, system deadline, rules, and constraints on the solution.

102

A.6
A. The Proposed SRS Template

Functional Requirements

This section should describe all the services that the software system has to provide

in various situations. This explanation should be at a level of detail that provides

the design team with a clear understanding. It should contain software system

inputs, and the processes performed by the system to generate outputs. This section

should be organized properly to be suitable for the intended software system. We

organize functional requirements based on the system goals. Then we consider each

goal from different perspectives. Third, we specify all scenarios that might occur

from each point of view. Finally, we follow a systematic step by step process for

documenting the requirements needed for describing each scenario.

A.6.1 Goal

Goals are the objectives that the intended systems should meet. These objectives

can be business, organization, or system oriented that originated by some stakehold­

ers expectation. This subsection should describe portion of the system objectives

that are supported by the intended goal.

A.6.2 Viewpoint

Viewpoints are sources or sinks of data that address only those concerns related to

their originator and ignore the others. They are vehicles that facilitate document

partitioning in order to support the principal of separation of concerns. System

stakeholders, partner applications, system interfaces, and other issues that affect

the system functionalities such as mechanical aspects, physical aspects, computa­

tional aspects, environmental aspects, and electrical aspects are potential system

viewpoints. This subsection should describe the viewpoint that the intended goal

is studied under.

A. The Proposed SRS Template

A.6.3 Scenario

103

scenarios are possible ways of using a system to fulfil desired functions. They include

a sequence of interactions that might happen under certain condition to satisfy a

particular result. They are introduced as system activities, system interactions,

roles, real word events, or/and imaginary stories of the system-to-be. Every action

in a scenario connected to a goal according to a particular originator. Thus, scenar­

ios are containers for the information required to satisfy the intended goal from a

particular viewpoint and express how the intended goal can be implemented. This

subsection should describe the scenario objective and the services handled by that.

A.6.4 Attributes and Models

This subsection should express the assumptions, scenario data items, theoretical

models, and instanced models of the intended scenario. This explanation provides

a clear picture of the information required for designing the task that the intended

scenario describes.

A.6.5 Assumptions

This subsection should list the factors that influence the requirements stated in the

scenario. They are not system constraints but the assumptions taken for granted

to solve the engineering problem(s).

A.6.6 Common Input/Output/Constant Data Items of the

Models

Real problems might be modeled differently. This subsection should identify in­

put/output/constant data items of and from the intended scenario regardless of

104 A. The Proposed SRS Template

the model considered for modeling the real problem. Provided for each data item

are data item description, characteristic of each numerical data including type,

unit, format of the data representation, accuracy of the input data, and definition

interval, or mnemonic names for possible values of each non-numerical data item.

A.6.7 Theoretical Models

This subsection should describe the set of relevant mathematical equations, axioms,

or physical laws used in achieving the intended scenario goal statement.

A.6.8 Instanced Models

Instanced models are the mathematical representations of a real problem. Engi­

neering problems might be modeled in several ways. We assign separate sections for

documenting the requirements of each alternative instanced model. The informa­

tion required to be documented for each alternative instanced model is categorized

in Sections A.6.9 to A.6.12

A.6.9 Model Description

This subsection should represent the mathematical model of the problem defined

in Section A.6.3.

A.6.10 Sensitivity of the Model

This subsection should check sensitivity of the numerical model expressed in Sec­

tion A.6.9. Sensitivity of the model causes big changes in the solution due to

perturbations in the input data. Accordingly, inevitable computation errors propa­

gate during the computation. To protect the software system from this inaccurate

A. The Proposed SRS Template 105

result, sensitivity of the model should be tested. Calculating the condition number

might be used for evaluating sensitivity of the model. However, in practice the

exact amount of condition number is unknown. In this case, an approximation of

condition number over the input domain is required.

A.6.11 Tolerance of the Solution

Solution accuracy is one of the most challenges in scientific computation. This

subsection should determine the level of accuracy that is expected for the solution.

The solution is assessed by evaluating closeness of the computed solution to the

exact solution or how well the computed solution satisfies the problem to be solved.

A.6.12 Specific Input/Output/Constant Data Items of the

Model

Inspite of Section A.6.6 that is reserved for documenting common m­

putjoutputjconstant data items regardless of the specific model considered for

modeling the real problem, this section should identify input/output/constant data

items of and from each alternative instanced model. Provided for each data item

are data item description, characteristic of each numerical data including type,

unit, format of the data representation, accuracy of the input data, and definition

interval, or mnemonic names for possible values of each non-numerical data item.

A.6.13 Body of the Scenario

This subsection should give a detailed explanation about the intended scenario and

the flow of information between its processes.

106 A. The Proposed SRS Template

A.6.14 System Behavior

This subsection should describe dynamic functionality of the intended scenario

based on the technical requirements identified in Sections A.6.5 to A.6.12. This

description includes recording the input data items and applying the models to

generate the outputs. This technical refinement should end up to the scenario goal

while satisfies the scenario assumptions and system constraints.

A.6.15 Control Flow Diagrams

This subsection should visualize system behavior by diagrams to make it more clear

to the reader of the document. This diagram should show major inputs/outputs

handled by the scenario and the functions performed by the system in response to

an input or to generate an output. This diagram shows information flow in the

intended scenario.

A.6.16 Others

This subsection should include any requirements which cannot fit in any of the

previous scenario subsections.

A.7 Traceability Matrixes

This section should show the relationships between the requirements. These rela­

tionships could identify the entities most likely to be reused, the sources of infor­

mation, the existent reason of the requirements, and requirements dependencies.

Keeping the parent/child relationships between requirements makes change man­

agement possible, whereas ensures that changes in some requirements do not affect

others adversely.

A. The Proposed SRS Template

A.S Open Issues
107

This section should include the issues that have been raised but a final decision has

not been reached.

A.9 Waiting Room

This section should contain the potential requirements that might be included in

the next evolution of the software system.

A.IO Expected Changes

This section should characterize the requirements that are more likely to change

in the near future. This provides a guideline for the system designer to see them

as independent components, to protect the system from frequent changes of these

requirements. The expected changes might be related to changes in assumptions,

hardware, functions, or/and interfaces.

108 A. The Proposed SRS Template

Appendix B

The Structure of the XML

Requirements Data File (XSD)

109

element SRSD-Template

~-{~·::~~~~~~

-{~~~·~~~~~~~~~.=~'
--:~:~~==:~~~~~.:~:,~:~'

~ _rs~:~:i2~~t:-~
~·: -~~>""·~·~').""' • o -~ "«" '0-~J'M ._,,)

-~~~~~~~~~~'~' . .r.~~~i~~~~
::~~---------..__.,[

~-{~~~~~·.~=~~
<xs·.etement name="SRSO-Template">
<xs:complexType>
<XS:sequence>

<xs:element namc=~lntroductionH minOccurs="O">
<Xs:comp!exType>

<Xs:sequence>
<Xs:element name="DocumentPurpose" type="PermissionStructure" minOccurs="O"I>
<Xs:element name="Tenninology" min0ccurs="0">
<xs:complexType>
<XS:sequence>

<Xs:element name="Code" type="xs:string"/>
<Xs:element name="Terms" lype="CodeStructureltem" minOccurs="O" maxOccurs="unbounded"/>

<lxs:sequence>
<lxs:complexType>

<lxs:element>
<xs:element name="AcronymsAndAbbreviations" minOccurs="O">
<Xs:complexType>

<Xs:sequence>
<Xs:element name=~Code" type="xs:string"l>
<xs·element name="AcrAbb" type="CodeStructureltem" minOccurs="O" maxOccurs="unbounded"/>

</xs:sequence>
<lxs:complexType>

<lxs: element>
<Xs:e!ement name="References" min0ccurs="0">

<xs:comp!exType>
<xs:sequence>

<Xs:element namo="Code" typo=·xs:string"l>
<xs:element namo="Reference" type="CodeStructure' mJnOccurs="O" maxOccurs="unbounded"l>

<lxs·sequence>
<lxs:complexType>

<./xs:element>

l
<Xs:element name="DocumentOrganization" type=·PermissionStructure~ minOcc:urs="O"I>

<lxs:sequence>
<lxs:complexType>

----·- ·-------- ---- ----

<lxs:elemenb
<xs·element namo="GeneraiSystemDescription" minOccurs="O'>

<xs:complexType>
<xs:sequence>

<xs·.element name="SystemPurpose" type=5 PermissionStructure" minOccurs="O"/>
<Xs:element name="SystemScope" type="PermissionStructure" minOccurs="O"/>
<Xs:element name="SystemContext" type="PermissionStructure" mlnOccurs="O"I>
<Xs:element name="Operations" type="PermissionStructure" mlnOccurs="O"/>
<Xs:element name="UserCharacteristics" type="PermissionStructure" minOccurs="O"I>

<./xs:sequence>
<ixs complex Type>

<lxs:e!ement>
<Xs:element name="NonFunctiona/Requirements" minOccurs="O">

<xs:complexType>
<xs:sequence>
<XS:element name="SystemNonFunctional" type="SystemNonFunctional" minOccurs="O"/>
<XS:element name="PartnerNonFunctional" minOccurs="O">

<Xs:complexType>
<xs:sequence>

<Xs:element name="Code" type="xs:string"/>
<Xs:element name="PartnerApplications" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Codev type="xs:string"l>
<XS:e/ement name="Name" type="xs:string" mlnOccurs="O"I>
<xs:e/ement name="Description" type="xs:string" minOccurs="O"I>
<xs:e/ement name="Source· type="xs:string" minOccurs="O"I>
<xs:e/ement name="History" type="xs:string" minOccurs="O"I>
<xs:e/ement name="LastUpdate" type="xs:date" mlnOccurs="O"/>
<xs:element name=" Reference To" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs·element name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:element name="Partners" type="PartnerNonFunctional" minOccurs="O"I>

<lxs:sequence>
<./xs:complex Type>

<lxs:element>
<lxs.sequence>

<lxs:complexType>
<./xs:element>

<./xs:sequence>
<./xs: complexT ype>

<lxs:element>
<Xs:element name="SystemConstraints" minOccurs="O">

<Xs:complexType>
<xs:sequence>
<XS:element name="Code" type="xs:string"l>
<Xs:element name="SystemConstraints" type="CodeStructure" minOccurs="O"

maxOccurs="unbounded"l>
<fxs:sequence>

<ixs:complexType>
<lxs:element>
<Xs:element name="FunctionaiRequirements" mn,Occurs="O">
<Xs~complexType>

<xs:sequence>
<XS:e!ement namo="Goals" minOccurs=~O" maxOccurs="unbounded">

<XS :complex Type>
<xs:sequence>

<Xs.element name=MCode" type="xs:string"l>

I-'
I-'
0

tJj

~
ct>
U)
M-...,
>:::
(J
M-
>::: ...,
ct>
a,
M-
b"'
ct>

>< s:: r-
::0
ct>

...0
>:::,

8
~
M-
(/]

tJ
~
M-
~

f.rj__
ct>

>< V)

~

<xs.element name="Code" typc="xs:string"/> ~---~-~~~~~;urs~·o· maxOccurs="unbounded"l>

I

<lxs:sequence> <Xs:element name="Name• type="xs:string" minOccurs="O"/>
<Xs:element name=' Description" type="xs:string" minOccurs="O"/>
<Xs:element name="Source" type="xs:string" minOccurs="O"/>
<xs:element name="History' type="xs:string" minOccurs=·O"/>
<xs:e!ement name="LastUpdate' type="xs:dateH minOccurs="O"/>
<xs:e!ement name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>
<xs:e!ement name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:e!ement name="Viewpoints' minOccurs="O" maxOccurs="unbounded">

<Xs.comp!exType>
<xs:sequence>

<xs:element name="Code" type="xs:string"l>
<xs:element name="Name" typ~=·xs:string"l>
<xs:e!ement name="Description" type="xs:string" minOccurs="O"I>
<xs:element name="Source' type="xs:string" minOccurs="O"/>
<Xs:element name="History" type="xs:string" rninOccurs="O"/>
<xs:element name="LastUpdate" type="xs:date" m!nOccurs="O"/>
<xs:element name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:e!ement name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:e!ement name="Scenario" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<Xs:sequence>

<Xs:element name="Code~ type="xs:string"/>
<Xs:element name="Name" type="xs:string" minCXcurs="O"/>
<xs·element name="Description~ type="xs:string" minOccurs="O"/>
<xs:element name="Source" typo="xs:string" minOccurs="O"I>
<xs:element name="History" typc='xs:string" minOccurs="O"/>
<xs:element namc="LastUpdate" type="xs:date" minOccurs="O"/>
<xs:element name='ReferenceTo" type="xs:string" minOccurs="Ou

maxOccurs='unbounded"l>
<Xs:element name="Usedln" type="xs:string" rninOccurs="O" maxOccurs="unbounded"/>
<Xs:element name="AttributesAndModels" min0ccurs="0">

<Xs:complexType>
<xs:sequence>

<Xs:element name=" Assumptions" type=~CodeStructure" minOce-urs="O"
maxOccurs="unbounded"/>

<Xs:element name="CommonlnputOutput" type="lnputOutputConstantOataltems"
minOccurs="O" maxOccurs="unbounded"l>

<Xs:element namc="TheoriticaiModels" type="CodeStructureltem" minOccurs="O"
maxOccurs="unbounded"l>

<xs:element name=" Altemative!nstancedModels" minOccurs="O"
maxOccurs="unbounded">

<Xs:complexType>
<xs:sequence>
<xs:element name="DataCode" type="xs:string"l>
<xs:element name=" Name" type="xs:string" minOccurs="O"/>
<xs.element name="Description" type="xs:string" minOccurs="O"I>
<xs.element narne="Source" lype="xs:string" rnlnOccurs="O"/>
<XS.element narne="History" tyf.Je="xs:string" rninOccurs="O"/>
<xs:e!ement name="LastUpdate" type="xs:date" minOccurs="O"I>
<xs.element name="RefrenceTo" type='xs:string* minOu;urs="O"

maxOccurs="unbounded"l>
<xs·element name="Usedln" type="xs:string" minOccurs="O"

maxOccurs="unbounded"/>
<xs:element name="SensitivityOfModel" type="CodeStructure" minOccurs="O"/>
<xs:e!ement name="ToleranceOfSolution" type="CodeStructure" minOccurs="O"/>
<Xs:element name="Specific!nputOutput" type="lnputOutputConstantDataltems"

<lxs:complexType>
<IXS:element>

<./xs:sequence>
i <ixs:complexType>

<lxs.e!ement>
<xs:e!ement name="BodyOfScenario" minOccurs="O">
<Xs:complexType>

<xs:sequence>
<Xs:element name="SystemBehaviour" typf!="CodeStructure"/>
<Xs:element name="ControiFiowOiagrams" typr:="CodeStructure" minOccurs="O"I>
<xs:element name="Others" type="CodeStructure" minOccurs="O"

maxOccurs="unbounded"/>
<ixs:sequence>

<lxs:complexType>
</xs:element>

<lxs:sequence>
<ixs:complexType>

<lxs:e!ement>
<ixs:sequence>

<lxs:comp!exType>
<lxs:element>

<lxs:sequence>
<ixs:complexType>

<ixs:element>
<lxs·sequence>

<lxs·complexType>
<lxs:e!ement>
<xs:element narne="Openlssues" minOccurs="O">

<xs:comp!exType>
<Xs:sequence>

<xs:element name="Code" type="xs:string"/>
<xs:element name="Openlssues" type=~CodeStructure" minOccurs="OH rnaxOccurs="unbounded"/>

<lxs:sequence>
<lxs:comp!exType>

<ixs:e!ement>
<Xs:element name=MWaitingRoom" minO::curs=·O">

<Xs:complexType>
<xs:sequence>

<xs:element name="Code" type="xs:string"l>
<Xs:element name="WaitingRoom" type="CodeStructure" rn1nOccurs="O" maxOccurs="unbounded"/>

<ixs:sequence>
<ixs:comp!exType>

<lxs:elemenb
<xs:element name=·Expectedchanges" minOccurs="O">
<xs:complexType>

<xs:sequence>
<xs:element name="Code'· type="xs:string"/>
<xs:element name="Expectedchanges" type="CodeStructure" minOccurs="O"

maxOccurs="unbounded"l>
<lxs:sequence>

<lxs:comp!exType>
<lxs: element>

<lxs:sequence>
<ixs:comp!exType>

<lxs:element>

to

~
("!)

Cr:J. q-
~
(")
M­
~

~
~
::;:
("!)

>< s: r-
~
("!)

..0
~

~-
~
M­
(/)

tJ
'"' M-
Il:>
"rj
("!)

>< (J)

~

,__. ,__. ,__.

element SRSQ.. Template/Introduction • .

.
-___ -_---._----_-_-____ -._-_-___________ , <Xs:element name= Termmology" minOccurs="O"> I

: OoeumentPu11lQse • <XS:complexType>
--:, "''':PerfniSs•onstructl¥e ~ <Xs:sequence>
. ~-:_-_·--~~:~~--------~-""'··""- <xs:element nrlme="Code" type="xs:string"/> ,
~-~, ~~lmmology e <X.S:element name="Terms" type="CodeStructureltem" mlnOccurs="O" maxOccurs="unbounded"l> I
· :·;.c~'---.--·---~,'1 <lxs:sequence>

~~,:~~t;~d~--~t-r.::~~.;~.~~Mbe·.;~~~i~~~- ·~ <~:~~:~~~:Type> ~-

-" ·--- ·--·····"" """ _I~~:;:;~~---~------,'""----,, element SRSQ.. T emplatellntroduction/ AcronymsAndAbbreviations

:.{:7;~;~;.~;;~---~ ::~~::::~;_:::~:::~: _______ ; I
<XS:element name="lntroduction" minOccurs=·O"> --:r~ ,,, ·co;;;Structurettem ~ 1

<XS:complexType> 'r.·.;.----~---------A;;..~---~.,_•;:;··· I'

<xs:sequence>
<xs:element name="DocumentPurpose" type=·PermissionStructure" minOccurs="O"/> <Xs:ele. ment name=·AcronymsAndAbbreviations" minOccurs="OH>
<Xs:element name="Terminology" min0ccurs="0"> <xs:complexType>

<Xs:complexType> <xs.sequence> ,
<xs:sequence> 1 <xs:element name="CodeH type="xs:string"l>

<xs:element namc=:Code" .. type="xs:string"/> I <x~:element name="AcrAbb" type="CodeStructureltem" minOccurs="O" maxOccurs="unbounded"/>
<xs:element name= Terms typo="CodeStructureltem~ maxOccurs=-"unbounded"l> <lxs.sequence>

<lxs:sequence> <lxs:comp!exType>
<lxs:complexType> <lxs:element>

<!xs:element>
<xs:element name="AcronymsAndAbbreviations" minOccurs="O">

<xs:complexType>
<xs:sequence>

<xs:element name="Code" type="xs:string"/>
<xs·e!ement name="AcrAbb" type="CodeStructureltem" maxO::curs="unbounded"l>

<lxs:sequence>
<lxs:complexType>

<ixs:element>
<xs:e!ement namo="References" minOGcurs="O">

<xs:complexType>
<XS :sequence>

<xs:element name="Code" type=·xs:string"l>
<xs:element name="Reference" type="CodeStructure" maxOccurs="unbounded"l>

<lxs:sequence>
<lxs :complex Type>

<fxs-.elemenb
<xs·element name="DocumentOrganization" type=·PermissionStructure" minOccurs=MO"/>

<lxs:sequence>
<lxs:comp!exType>

<lxs:elemenb

element SRSQ.. Template/Introduction/Terminology

- ~
: i;,"~;.;.;;,~g;,--~ ~------ti

'-"'--------- -" '\:;,:_~~~i~c~~~c~!~-::

element SRSD-Template/Introduction/References

. ~
;;~;:::~~~::~.;~~;~

<xs:element name="References" minOccurs="O">
<xs:complexType>

<Xs:sequence>
<xs:element name="Code" lype="xs:string"l>
<xs:element namB="Reference" typc="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>

<lxs:sequence>
<./xs:complexType>

<fxs:element>

f-'
f-'
tV

to

~
(])

[f)
q-
1::
(")
<:-t-
1::

~
0 ,_...,

:;
(])

~ r-
:::0
(])

..0
>::::

~-
~
&j

tJ
~
<:-t-
~

'"l:j
:::::.:
(])

>< (J)

.S2

~-

element SRSD-Template/GeneraiSystemDescription

-{~Z~~~~;t~~~J
-{~7:~~~;~;;~;;:~

f-~~;~~-~~=~~:e~~~~~~~-~~ -L~t;~;;~-~~-'
- {;~~;~;~:;~~~~~~~
-{~~t;~;~~;~~~'

<xs:element name="GeneraiSystemDescription" min0ccurs="0">
<xs·complexT ype>
<xs:sequence>

<xs:element name="SystemPurpose" type="PermissionStructure" minOccurs=~O"I>
<xs·element name="SystemScope" typc="PermissionStructure" minOccurs=MO"I>
<xs:element name="SystemContext" typc="PermissionStructure" minOccurs="O"I>
<xs:element name="Operations" type="PermissionStructure" minOccurs="O"I>
<xs:element name="UserCharacteristics" type="PermissionStructure" minOccurs="O"/>

<./xs:sequence>
<lxs:complexType>

<ixs·eJement>

element SRSD-Template/NonFunctionaiRequirements

, .. ~.~·;;~~;;~·~;.;~;,;;·-~ .,-_~~i?E~~;
',C., "'"'"PH""'o"""' ·':·,: ... ~--·•·""''•'''"'

<xs:element name="NonFunctionaiRequirements" minOccurs=MO">
<xs·complexType>
<xs·sequence>

<Xs:element name="SystemNonFunctional" type="SystemNonFunctional" rninOccurs="O"I>
<xs-element namt:~="PartnerNonFunctional" minOccurs="O">

<Xs:complexType>
<Xs:sequence>

<Xs:element name="Code" type="xs:string"l>
<Xs.element namc="PartnerApplications" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<Xs:sequence>
<XS.element name="Code" type="xs:string"l>
<XS:element name=nName" type="xs:string" mrnOccurs="Onl>
<xs:element narne="Description" type="xs:string" minOccurs="O"I>
<xs·element narne="Source~ !ype="xs:string" minOccur~="O"I>
<XS:element narne="History" type="xs:string" mm0Gcurs="0"/>
<XS.element name="LastUpdate" type="xs:date" rnrnOccurs="O"/>
<XS:element namo="ReferenceTo" typc="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs·element name="Usedln" typc="xs:string" mrnOccurs="O" maxOccurs="unbounded"/>
<xs:element name=" Partners" type="PartnerNonFunctional" minOccurs="O"I>

<./xs:sequence>
<ixs:complexType>

<./xs: element>
<lxs:sequence>

<lxs:complexType>
<lxs:element>

<lxs:sequence>
<ixs complex Type>

<lxs:element>

element SRSD-Template/NonFunctionaiRequirements/PartnerNonFunctional

<Xs:element name=~PartnerNonFunctional">
<xs·complexType>

<xs:sequence>
<xs:element name="Code" type="xs:string"l>
<Xs:element name="PartnerApplications" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs·element name="Code" typc="xs:string"l>
<xs:element name="Name" type="xs:string"l>
<xs:element name="Description" typc="xs:string" minOccurs="O"/>
<XS:element name="Source" type="xs:string" minOccurs="O"I>
<xs.element name=·History" type="xs:string" minOccurs=HO"I>
<Xs:element name=MlastUpdate" type=Mxs:date" minOccurs="O*/>
<Xs:element name=MReferenceTo" type="xs:string" minO.::curs="O" maxOccurs="unbounded"/>
<xs:element name="Usedln" type="xs:stringH minOccurs="O" maxOccurs="unbounded"l>
<Xs:element name="Partners" type="PartnerNonFunctional" minOccurs="O"/>

<lxs:sequence>
<lxs:complexT ype>

<lxs:element>
<lxs:sequence>

<ixs:complexType>
<lxs:e!ement>

'

to

~
<'D
U)

"""' >-;
>:::
("';)

"""' >:::
>-;
<'D

a ...,_,
"""' b-'
<'D

>< s:
r--
~
<'D

..0
>:::
~.

>-;
<'D s
<'D
:::1
"""' (/]

t::J
(:0

"""' (:0

~
~-.._
<'D

>< <.n
~

I-'
I-'
w

element SRSD-Template/NonFunetionaiRequirements/PartnerNonFunetional

,---------------------

\~~:.:::::::::~J
o.oo ; _j~L~~;;e~-~r

-;·---- - ~··

;-{~~:ji~:~:J
' Q._<O

' ·=-----------
~- {::~::~~~;~~~

Ooo

/Partner Applications
~-f:.~~~;~:;~~-~;~~~:~

<xs:element name="PartnerApplications· minOccurs="O" maxOccurs="unbounded">
<XS:complexType>
<xs·sequence>

<xs:element name="Code" type="xs:string"/>
<.Xs.element nama="Name" type="xs:string" minOccurs="O"/>
<xs·element name=" Description" typc="xs:string" mnOccurs="OH/>
<Xs:element name="Source" type="xs:string" minOccurs="O"I>
<xs:element name="History" type="xs:string" minOccurs="O"I>
<Xs:element name="LastUpdate" type="xs:date" minOccurs="O"I>
<Xs:element name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<Xs:element name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:e!ement name="Partners" type="PartnerNonFunctional" minOccurs=·o·;>

<lxs:sequence>
<lxs:complexType>

<lxs:element>

element SRSO-Template/SystemConstraints

~:.~~-~
'r,-.-.-~-,:;,::"71··,-.-.-.-~-.-.-.-..-.-~!c

O.oo

<XS.element name="SystemConstraints">
<Xs.complexType>

<XS sequence>
<Xs:element name="Code" type="xs:string"/>
<Xs:element name="SystemConstraints" type="CodeStructure" mlnOcx-:ur~=·o·· maxOccurs="unbounded"/>

-------------- ·--------- ------ ---------

<lxs:sequence>
<lxs:complexType>

<lxs:element>

element SRSD-Template/FunetionaiRequirements

t;~:;:.=~~~~~::~~=~~~~9-EP-!~-~~t.;~
O .. w

<xs:element name="FunctionaiRequirements" minOccurs="O~>
<xs:complexType>

<xs:sequence>
<XS:e!ement name="Goals" m1nOccurs="O" mrJ.xOccurs="unbounded">

<XS:complexType>
<Xs:sequence>

<xs:element name="Code" type="xs:string"/>
<Xs:element name="Name" type="xs:string" I>
<Xs:element name="Description" type="xs:string" minOccurs="O"/>
<Xs:element name="Source" type="xs:string" minOccurs="O"I>
<Xs:element name="History" type="xs:string" minOccurs="O"i>
<Xs:element name="LastUpdate" tyf)e="xs:date" minO<:curs="O"/>
<xs:element name="ReterenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>
<xs·.element name="Usedln" type="xs:string~ minOccurs="O" maxOccurs="unbounded"/>
<xs:element name="Viewpoints" minOccurs="O" maxOcx;urs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Code" type="xs:string"l>
<Xs:element name=" Name" type="xs:string"/>
<Xs:element name="Description" typc=~xs:string" minOccurs="O"I>
<XS:element name="Source" type="xs:string" minOccurs="O"I>
<Xs:element name=·History" type="xs:string" minOccurs="O"/>
<Xs:element name="lastUpdate" type="xs:date" mmOccurs="O"I>
<xs:element name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>
<xs:element name="Usedln" type="xs:string" minCK;curs="O" maxOccur.s="unbounded"/>
<xs:element name="Scenario" minOccurs="O" maxOxurs="unbounded">

<xs:comp!exType>
<xs:sequence>

<xs:element name="Code" type="xs:string"/>
<Xs:e!ement namo="Name" typo="xs:string"l>
<Xs.element name="Description" type="xs:string" minOccurs="O"I>
<Xs:element name="Source" type="xs:string" m!nOccurs="O"I>
<xs·.element name=" History" type="xs:string" minOccurs="O"/>
<Xs:element name="LastUpdate" type="xs:date" minOccurs="O"I>
<xs:element name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>
<xs:element name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<Xs:element name="AttributesAndModels" min0ccurs="0">

<xs:complexType>
<Xs:sequence>

<XS:element name="Assumptions" type="CodeStructure" minOccurs="O"
rnaXOccurs="unbounded"/>

<XS:element name="CommonlnputOutput" type="lnputOutputConstantDataltems'
minOccurs="O" maxOccurs="unbounded"/>

<XS:element name="TheoriticaiModels" type="CodeStructureltem" minOccurs="O"
maxOccurs="unbounded"/>

<XS.element name="AitemativelnstancedModels" minOccurs="O"
maxOccurs="unbounded">

------------- ---

1-'
1-'
~

tr:J

62
(1)

CfJ.
0"1-­
>-j
1::
(J
o-t--
1::

26
0 ...,.,
g..
(1)

~ r-
:::0
(1)
.0
1::

@'
§l
~

tJ
~
0"1-­
~

"r_j
(1)

>< lt)

~

<Xs:comp!exType>
<xs-sequence>

<xs:element name="DataCode" type="xs:string"/>
<Xs:e!ement name="Name~ type="xs:string* minOccurs="O"/>
<Xs:element name=" Description" type="xs:string" minOccurs="O"/>
<Xs:element name="Source" type="xs:string" minOccurs="O"/>
<xs:etement name="History" type="xs:string" minOccurs="O"f>
<Xs:elemenl name="LastUpdate" type="xs:date" mmOccurs="O"I>
<Xs:element name="RefrenceTo" type="xs:string· minOccurs="O"

maxOccurs="unbounded"/>
<Xs:e!ement nam~="Usedln" typc="xs:string" minOccurs="O"

maxOccurs="unbounded"l>
<xs·element namc="SensitivityOfModel" typc="CodeStructure" minOccurs="O"f>
<xs:element namc="ToleranceOfSolution· type="CodeStructure" minOccurs="O"f>
<xs:element name="SpecificlnputOutput" type="lnputOutputConstantDataltems~

minOccurs="O" maxOccurs="unbounded"/>
<fxs:sequence>

<lxs:complexType>
<fxs:element>

<lxs:sequence>
<fxs:complexType>

<lxs:e!ement>
<Xs:element name="BodyOfScenario" min0ccurs="0~>

<xs:comp!exType>
<xs:sequence>
<xs:element name="SystemBehaviour" typc="CodeStructure"f>
<xs:element name="ControiFiowDiagrams" type="CodeStructure" minOccum="O*f>
<Xs:element namc="Others" type=~CodeStructure" minOccurs="O"

maxOccurs="unbounded"/>
<lxs:sequence>

<lxs:complexType>
<lxs:element>

<lxs:sequence>
<lxs:complexType>

<fxs:element>
<lxs:sequence>

<ixs:complexType>
<lxs:element>

<fxs:sequence>
<lxs.complexType>

<lxs:element>
<./xs:sequence>

<ixs complex Type>
<lxs:elemenb

element SRSD-Template/FunctionaiRequirements/Goals

-f:~~~~J
~o.;;~;~~i~-:

-\:~~,~~x_s~~~!"9_j
~--- ---·····
.r~c:e ~

::~;'~-~,~.S!~~ _:·

-f~~~ii~~J
0 .. 00

-~~tj~~~~;I~
0 .. 00

L.: v~,....p~.;~-~
~:-.:}.-.---.-.-.-.-.-~.)

O.oo

<Xs.element name="Goals" minOccurs="O" maxOccurs=·unbounded">
<xs:complexType>

<xs:sequence>
<Xs:element name="Code~ type="xs:string~f>
<xs:element name="Name" type="xs:string" minOccurs="O"f>
<xs:e!ement name="Description~ type="xs:string~ minOccurs="O"I>
<xs:e!ement name="Source" type="xs:string" minOccurs="O'/>
<xs:e!ement name="History" type="xs:string" minOccurs="O"f>
<xs:element name="LastUpdate" type="xs:date" minOccu•s="O"f>
<xs:e!ement name="ReferenceTo" type="xs:string· minOccurs="O" maxOccurs="unbounded"l>
<XS:e!ement name="Usedln" type="xs:string" rninOccurs="O" maxOccurs="unbounded"/>
<xs:e!ement name="Viewpoints" minOccurs="O" maxOccurs="unbounded">

<xs·complexType>
<xs:sequence>

<xs:element name="Code" type="xs:string"/>
<XS:e!ement name="Name" type="xs:string"/>
<xs:element name="Description" type=·xs:string" mlnOccuJs="O"i>
<xs:element name="Source" type="xs:string" minOc~.;u!s="O"I>
<XS:element name="History" type=·xs:string" minOccurs="O"/>
<XS:element narne="lastUpdate" type="xs:date" rninOccur~="O"/>
<Xs.element name="ReferenceTo" tyjje=·xs:string" minOccurs="O" maxOccurs="unbounded"l>
<XS.element name="Usedln" typc="xs:string" minOccUI"S="O" rnaxOccurs:"unbounded"i>
<xs:element narne="Scenario" minOccurs="O" maxOccu!s="unbounded">

<xs.complexType>
<xs.sequence>
<xs:element name=·cooe·· type="xs:string"/>
<Xs:element name="Name" type="xs:string" minOccurs="O"I>
<xs:element name="Description" type="xs:string" mlnOccurs="O"f>

b:J

~
C1l

\f)_ .,..,..
1-j

~
(') .,..,..
~
1-j
C1l

~
g.
C1l

>< s: r-
~
C1l

..Q
~

~-
§ .,..,..

"' t:J
"" .,..,..

""
~
:::::..:
C1l

>< lr)

~

1-'
1-'
CJ1

<xs·element name="Source" type="xs:string" minOccurs=·o·l>
<xs·element name="History" typc="xs:string" minOccurs="O"/>
<xs:element name="lastUpdate" tyre="xs:date" minOccurs="O"/>
<xs:e!ement name=·ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs·e!ement name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:element name="AttributesAndModels" minOccurs="O">
<XS:complexType>

<Xs:sequence>
<XS:element name=" Assumptions" type="CodeStructure" minOccurs="O"

maxOccurs="unbounded"/>
<xs:element name="CommonlnputOutput" type="lnputOutputConstantDataltems"

minOccurs="O" rnaxOccurs="unbounded"/>
<xs:element name="TheoriticaiModels" type=WCodeStructureltem" minOccurs="O"

maxOccurs="unbounded"/>
<xs·element namc="AitemativelnstancedModels" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<Xs:element name="DataCode" type=~xs:string"l>
<xs:element name="Name" type="xs:string" minOccurs="O"I>
<xs:element name="Description" type="xs:string~ minOccurs="O"/>
<Xs:e!ement name="Source" type="xs:string" minOccurs="O"/>
<xs:element name="History~ !ype="xs:string" minOccurs="O"I>
<Xs:element name="LastUpdate" type="xs:date" minOct:urs="O"I>
<Xs:element name="RefrenceTo" type="xs:strlng" minOccurs="O"

maxOccurs="unbounded"/>
<Xs:element name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>
<xs:element name="SensitivityOfModel" type="CodeStructure" minOccurs="O"I>
<xs:element name="ToleranceOfSolution· type="CodeStructure" minOccurs="O"I>
<Xs:element name="SpecificlnputOutput" typo="lnputOutputConstantDataltems"

minOccurs="O" maxO<x;urs="unbounded"l>
<lxs:sequence>

<ixs:complexType>
<lxs:element>

<lxs:sequence>
<lxs:complexType>

<./xs:element>
<Xs:e!ement name="BodyOfScenario" minOccurs="O">

<xs:complexType>
<XS.sequence>

<Xs:element name="SystemBehaviour" type="CodeStructure"/>
<xs:e!ement namc="ControiFiowDiagrams" type="CodeStructure" minOccurs="O"I>
<XS element namc="Others" type="CodeStructure" minOccurs="O" maxOccurs=·unbounded"/>

<lxs:sequence>
<lxs·comp!exType>

<./xs:element>
<./xs:sequence>

<lxs:complexType>
<lxs:element>

<lxs:sequence>
<lxs:complexType>

<./xs:element>
<./xs:sequence>

<lxs:comp!exType>
<lxs:element>

element SRSQ.. Template/FunctionaiRequirements/Goals/Viewpoints

-r~~:~~==~~ ·~:
-~~,.;,;-- .. ·-~•,f'

··Gt~~~;;J
Ooo

-f:~~t~:-~)
O .. o:D

--L~~~~~~-~~1
Ooo

<xs:element name=~Viewpoints" minOccurs="O" maxOccurs="unbounded">
<Xs:complexType>

<xs:sequence>
<xs:element name="Code~ type=~xs:string"/>
<xs:element name=~Name' type=·xs:string"l>
<Xs:element name="Description" type="xs:string" minOccurs="O"/>
<Xs:element name="Source" type="xs:string" m!nOt:eurs="O"/>
<Xs:element narne="History' type="xs:string" mlnOccur~="O"I>
<Xs:element narne="LastUpdate" type=·xs:date" minOccurs="O"/>
<Xs:element narne="ReferenceTo" lype="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<Xs:e!ement narne="Usedln" type=·xs:string" minOccurs="O" rnaxOccurs="unbounded"/>
<Xs:element name="Scenario" minOccurs="O" maxOccurs="unbounded">

<XS:complexType>
<xs:sequence>

<Xs:element namc="Code" typc="xs:string"l>
<xs:e!ement name="Name" type="xs:string" minOcc:urs=~O"/>
<Xs:element name=" Description" type="xs:string" minOcr:::urs="O"/>
<Xs:element name="Source* type=~xs:string" minOccurs=·O"/>
<xs:element name="History" type="xs:string" minOccurs="O"/>
<xs:element name="lastUpdate" tyf.Je="xs:date" rninOccurs="O"I>
<Xs:e!ement name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<xs:e!ement name=~Usedln" type="xs:string" minOccur~="O" rnaxOccurs="unbounded"l>
<xs·e!ement name="AttributesAndModels" minOccurs="O">

<xs:complexType>
<XS:sequence>

<xs:e!ement name="Assumptions" typc="CodeStructure" mJnOccurs="O"
maxOccurs="unbounded"l>

<xs-e!ement name="CommonlnputOutput" typc~="lnputOutputConstantDataltems· minOccurs="O"

f--'
f--'
Ol

tJ:j

~
CD
Cf).
c-t-...,
c:
(')
c-t-
c: ...,
CD

0,
c-t-
b-'
CD

><
~ r-
~
CD

..0
c:,

s
CD
~
c-t-
(/]

tJ
1\)
c-t-
1\)

"rj_
CD

>< V)

-2

~
---- -- ---------------

maxOccurs="unbounded"/>
<Xs:element name="TheoriticaiModels" type="CodeStructureltem" minOccurs="O"

maxOccurs="unbounded"/>
<xs:e!ement name="AiternativelnstancedModels" minOccurs="O" maxOccurs="unbounded">
<xs:comp!exType>

<xs:sequence>
<xs:element narne="DataCode" type="xs:string"l>
<xs:element name="Name" type="xs:string" minOccurs="O"I>
<xs:element name="Description" type="xs:string" minOccurs="O"I>
<XS:element name="Source' type="xs:string" minOccurs="O"/>
<xs:element name="History'' type="xs:string" minOccurs="O"I>
<XS:element name="LastUpdate" type="xs:date" minOccurs="O"I>
<Xs:element name="RefrenceTo" type="xs:string" minOccurs="O" maXOccurs="unbounded~l>
<Xs:element name="Usedln" type=·xs:string~ minOccurs="O" maxOccurs="unbounded"/>
<xs:element name="SensitivityOfModel" type="CodeStructure" minOccurs="O"/>
<xs:element name="ToleranceOfSolution" type="CodeStructure" minOccurs="O"I>
<xs:element name="SpecificlnputOutput" type="lnputOutputConstantDataltems"

minOccurs="O" maxOccurs="unbounded"/>
</xs:sequence>

<lxs:complexType>
<lxs:element>

<ixs:sequence>
<ixs:complexType>

<./xs:element>
<xs:e!ement namc="BodyOfScenario" minOccurs="O">
<Xs:complexType>

<xs:sequence>
<XS:element name="SystemBehaviour" type="CodeStructure"l>
<Xs:element name="Contro/FiowDiagrams" type="CodeStructure" minOccurs="O"I>
<XS:element name="Others" type="CodeStructure" minOccurs="O" rnaxOccurs="unbounded'l>

<lxs:sequence>
<ixs:complexType>

<lxs:element>
<lxs:sequence>

<ixs:complexType>
<lxs:element>

<./xs:sequence>
<lxs:complexType>

<lxs:element>

element SRSD-Template/FunctionaiRequirements!Goals/Viewpoints!Scenarlo

-{~~t~s~~~}
-f~it~~:~~l
-!~~ii""""]
:~;;:,::~~~~·

.i;f~~!~-~--~i
~' ;,{~ ~ ~;,~~~~ '"'~ :;;tt~;~~

-{~tt;~~~~.:JJ
0 .. 00

.r.~.~-~-~~~-~--~
~-;~mm~---~~.,__,., •• !

<XS:element name="Scenario" minOccurs="O" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element namc="Code" type="xs:string"/>
<xs:e!ement namc=·Name~ type=·xs:stringn minOccurs="O"I>
<xs:e!ement namc="Description· type="xs:string• mfnOccur~="O"I>
<Xs:e!ement name="Source" type="xs:string" minOccurs="O"I>
<Xs:e!ement name="History• type="xs:string" mfnOccurs="O"/>
<xs:e!ement name="lastUpdate" type="xs:date" minOccurs="O~I>
<XS:element name="ReferenceTo" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<Xs:e!ement name="Usedln" type="xs:string" minOccurs=·o" maxOccurs="unbounded"/>
<xs:element name="AttributesAndModels" minOccurs="O">

<xs:complexType>
<XS:sequence>

<Xs:element name=" Assumptions· type="CodeStructure" minO<;curs="O" rnaxOccurs="unbounded"/>
<xs:element namc="CommonlnputOutput" typc="lnputOutputConstantDataltems" minOccurs="O"

maxOccurs="unbounded"l>
<xs:element name="TheoriticaiModels" typo="CodeStructureltem" minOccurs="O"

maxOccurs="unbounded"l>
<Xs: element name=" AltemativelnstancedModels • minOccurs="O" maxOccu rs="unbounded">

<xs:complexType>
<xs:sequence>

<Xs:element name="DataCode" type="xs:string"/>
<xs:element name="Name" type="xs:string" minOccurs="O"/>
<Xs:e!ement name="Description" type="xs:string" minOccurs="O"/>
<Xs.element name="Source" type="xs:string" minOc:curs="O"I>
<xs:element name="History" type="xs:string" minOccurs="O"/>

____ i

~

~
ro
Cr:!. .,.,._
'"'"'!
.::
(') .,.,._
.::
'"'"'! ro

~
5:.
ro

>< s:
r-
~ ro

..0
.::

~·
§
~
t:::1
!;l:> .,.,._
!;l:>

"t:l ::::.;
ro

>< (J)

~

f-'
f-'
---1

<xs:element name="lastUpdate" type=~xs:date" minOccurs="O"I>
<xs·element name="RefrenceTo" typn="xs:string" minOc:curs="O" maxOccurs="unbounded"l>
<xs:element name="Usedln" type="xs:string" minOccurs="O~ maxOccurs="unbounded"/>
<xs:e!ement name="SensitivityOfModel" type="CodeStructure" minOccurs="O"I>
<xs·.element name="ToleranceOfSolution" type="CodeStructure" minOccurs="O"/>
<xs:element name="SpecificlnputOutput" type="lnputOutputConstantDataltems" minOccurs="O''

maxOccurs="unbounded"l>
<ixs:sequence>

<ixs:complexType>
<lxs:element>

<lxs:sequence>
<lxs:complexType>

<lxs.element>
<Xs:element namt:="BodyOfScenario" minOccurs="O">

<xs:complexType>
<xs:sequence>

<Xs:element name="SystemBehaviour" typ~="CodeStructure"l>
<xs:element name="Contro!FiowDiagrams" type="CodeStructure" minOccurs="O"I>
<Xs:e!ement name="Others· type="CodeStructure" mlnOccurs="O" maxOccurs="unbounded"l>

<lxs:sequence>
<ixs:complexType>

<ixs:element>
<ixs:sequence>

<ixs:complexType>
<lxs:element>

element SRSD-Template/Functional Requirements/Goals/Viewpoints/Scenario
/AttributesAndModels

r-E;~i~~;~~t~~i:~
0 .. <0

---------------------- ...

. ----------------------, -~z~1~;;.g;~~-~i~~~~
: AttributesAIHIMOOel$ ~ 0 oo

:<::;_"--------·-'"""""' --- {~~~~~t4t~;-,~
Ooo

~ Altem.tiht~-..-..~~~d-~d:;l~- -~

:~;;":; .• -;.,-~----:,-~,-,:::,:.·.-,x~--:-:::---:-~"y:r,-~:
O .. ro

<xs:element name="AttributesAndModels" minOccurs="O">
<Xs:complexType>

<xs:sequence>
<xs:e!ement name=" Assumptions" type="CodeStructure" minOccurs="O" maxOccurs="unbounded~/>
<xs:e!ement name="Common!nputOutput" typc="lnputOutputConstantDataltems· minOccurs="O"

maxOccurs="unbounded"/>
<xs:element name="TheoriticaiModels" type="CodeStructureltem" m1nOccurs="O"

maxOccurs="unbounded"/>
<Xs:element name="AitemativelnstancedModels" mlnOccuts="O" maxOccurs="unbounded">
<xs:comp!exType>

<XS:sequence>
<Xs.e!ement name="DataCode" type="xs:string"/>
<xs·element narne="Name" type="xs:string" minOccur~=MO"/>

<xs:element name="Description" type="xs:string" minOccurs="O"I>
<xs:element name="Source" type=Mxs:string" minOccurs="O"/>
<xs·element name="History" type="xs:string" minOccurs="O"/>
<xs·e!ement name="LastUpdate" typc="xs:date• minOccurs="O"/>
<xs:element name="RefrenceTo" type="xs:string· minOccurs="O" maxOccurs="unbounded"l>
<xs:element name="Usedln" type="xs:string" minOccurs="O" maxOccurs=·unbounded"l>
<xs:element name=~SensitivityOfModel" type="CodeStructureu mlnOccurs="O"/>
<xs:element name="ToleranceOfSolutionu type="CodeStructure" mlnOccurs='"O"/>
<xs:element name=·SpecificlnputOutput" type="lnputOutputConstantDataltems" rninOccurs="O"

maxOccurs="unbounded"/>
<lxs·sequence>

<lxs:comp!exType>
<lxs:element>

<lxs.sequence>
<lxs:comp!exType>

<lxs:element>

element SRSD--Template/FunctionaiRequirements/Goals/Viewpoints/Scenario
/AttributesAndModels/AiternativelnstancedModels

!~ A~~;~-~;,h·~~·d·~~~--~

:-,_'.;':;~:::;:;;.-.---.-,·.-.·-:-x.;;.·.:,;:.·.:;;.,-.-,-!:'
0 .. 0:0

:i'-R~t;;,;~;r ~- ·::
-k~:::-.-~:.-~~,s

O.oo

~-······ --- ...
: Usedln :·

~-~------~-~~~-~:.~~:~;
O.oo

-L~:l~~~~~~~~~~
-{~~~ ~~:;~~~;~~~~ ~'

-------·-·· ---··---------···-.,

·1li%:;~;~;~~~~:~,~l~~~'
O.oo

<Xs:elernent narne="AiternativelnstancedModels" rninOccurs="O" rnaxOccurs="unbounded">
<Xs:complexType>

<xs:sequence>
<Xs.e!ement namc="DataCode" type="xs:string"l>
<xs:e!ement namc="Name" type="xs:string" minOccurs="O"I>

1--'
1--'
(XJ

to

~
(1)

Cf)_
<-1-­
>-;
-=:
()
<-1-­
-=:
~
~
g.
(1)

~ r-
~
(1)

..0
-=:

~·
g;
e;j

t:J
~
<-1-­
~

"'!J_
(1)

>< U)

~

<Xs.etement namf!="Description" typo="xs:string" minOccurs="O*/>
<XS:element narne="Source" type="xs:string" minOccurs="O"/>
<xs·element name="History" type="xs:string" m!nOccurs="O"/>
<Xs:e!ement name="LastUpdate" type="xs:date" m!nOccurs="O"I>
<Xs:e!ement name="RefrenceTo" type="xs:string" minOct::urs="O" maxOccurs="unbounded"/>
<Xs:element name="Used!n" type="xs:string" minek:curs="O" maxOccurs="unbounded"l>
<Xs:element name="SensitivityOfModel" type="CodeStructureH rninOccurs="O"/>
<xs·e!ement name="ToleranceOfSolution" type="CodeStructure" minOccurs="O"/>
<xs·e!ement name="SpecificlnputOutput" type="lnputOutputConstantDataltems" minOccurs="O"

maxOccurs="unbounded"/>
<lxs.sequence>

<.lxs complexType>
<lxs:e!ement>

element SRSD-Template/FunctionaiRequirements/Goals!Viewpoints/Scenario/BodyOfScenario

-L~j~;;;;~~~
~;tt=::~~~~~~~ -r~tr~~~~:~~-*~~

;----------------- ...
_ _: oth~l$. -~

::.)_~_-l-~~!-~-~-~-;..4
O •. ID

<xs·e!ement name=UBodyOfScenario" minOccurs="O">
<xs:comp!exType>

I>

<xs:sequence>
<xs:element name="SystemBehaviour" type="CodeStructure" mnO.::curs="O"

<Xs:element name="ControiFiowDiagrams~ type=*CodeStructure" minOccurs="O"/>
<xs:element name="Others" type=*CodeStructure" minOccurs="O" maxOccurs="unbounded"/>

<ixs:sequence>
<./xs:complexType>

<lxs:element>

element SRSD-Template/Openlssues

<XS.element nacne="Openlssues">
<xs:complexType>

<xs·sequence>
<xs:element name="Code" type="xs:string"/>
<xs:element name=*Openlssues" type="CodeStructure" m1nOccurs="O" maxOccurs="unbounded"/>

<lxs·sequence>
<fxs:complexType>

<lxs:element>

.--------. £::J

~~*~'
<Xs:element namc="WaitingRoom">

<xs.complexType>
<xs:sequence>

<XS:element name="Code" type=*xs:string"l>
<xs.element name="WaitingRoom" type="CodeStructure· mlnOccurs="O" maxOccurs="unbounded"l>

<lxs:sequence>
<ixs:complexType>

<lxs:element>

element SRSD-Template/Expectedchanges

<XS: element name= *Expectedchanges ">
<xs:complexType>

<xs:sequence>
<xs:e!ement name="Code" type="xs:string"l>
<xs:e!ement name="Expectedchanges· lype="CodeStructure" minOccurs="O" maxOccurs="unbounded"/>

<lxs:sequence>
<./xs:complexType>

<lxs:element>

complexType CodeStructure

CodeSuuctul e
----~-

_"fL;~tU~:.t~.-.!
~:;;'~).:<~~~~--!
:~R~~~;:;T~-~

--:~~::::_~;~;~~jj~~:\j
Oro

-r;~~~~~;J
0 ~ 00

tJ:j

~
<"D

Ci).

""'" >-j

>:::
r.,

""'" >:::
Ql
0,

""'" b-'
<"D

>< s: r-
::0
<"D

..Q
>:::

~·
§
""'" C/)

tJ ..,
""'" ..,
"rj
t::.:.
<"D

>< (J)

-2

f-'
f-'
c.o

<XS_complexType name="CodeStructure">
<xs:sequence>

<xs:element name="DataCode* typc="xs:string"l>
<xs:element name=" Description~ type="xs:string" minOccurs="O'/>
<xs:element name=" Source" type="xs:string" mlnOccurs="O"f>
<xs:e!ement name=~History" type="xs:string" minOccurs="O"I>
<xs:element name="LastUpdate" type="xs:date" minOccurs="O"/>
<XS:element name=" Reference To" type="xs:string" minOccurs=nO" maxOccurs="unbounded"l>
<Xs:element name="Usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"l>

<ixs:sequence><lxs:complexType>

complexType CodeStructureltem

-f~~-~t:::e;·1
---,~--r.~.~--;·,~

--t:~t;~~~~~;~_;_~;
o~

~- z~~1if;!}_;J
0 ~

<Xs:comp!exType name="CodeStructureltem">
<xs:sequence>

<Xs:element namc="DataCode" type="xs:string"/>
<xs·element name="Name" type="xs:string" minOccurs="O"I>
<Xs:e!ement name="Description" type="xs:string" minOccurs="O"I>
<xs:element name="Source" type="xs:string" minOccurs="O"/>
<xs·element name="History" type="xs:string" minOccurs="O"/>
<xs·element name="LastUpdate" type="xs:date" minOccurs="O"I>
<XS:e!ement narne=·ReferenceTo" type="xs:string~ rn1nOccurs="O" maxOccurs=~unbounded"l>
<Xs:e!ement narne="Usedln" lype=~xs:string" rninOccurs=·o" maxOccurs="unbounded"/>

<ixs:sequence>
<lxs:complexType>

complex Type lnputOutputConstantDataltems

ktt>tiOutputConstilfltfurt.alems

:;fo;ri~iti~~~;~,;.- :·
-\'Y:'. _x_s~~!~~-", '" _ J
:~M.~~~k~~~;·:,

. !:(~~ :i~·-~~~.- ",""")

<XS:complexType name="lnputOutputConstantDataltems">
<Xs:sequence>

<xs:e!ement name="IOType" min0ccurs="0'>
<xs:simpleType>

<XS:restriction base="xs:string">
<XS:enumeration value="lnput"l>
<Xs:enumeration va!ue="Output"l>
<XS:enumeration value=·lnpuVOutput"l>
<xs·enumeration va!ue="Constant» I>

<lxs ·restriction>
<lxs:simpleType>

<lxs·element>
<Xs:element narne="ltemType" minOccurs="O">

<xs:simpleType>

f-'
N
0

to

~
(])

(f)

""' '"' >=:::
(")

""' >=:::

~

~
g.
(])

~ r-
::0
(])

..0
>=:::

~-
!5
""' (/)

tJ
~

""' ~
"rj
::::..:
(])

>< (J)

~

<xs:restriction tlase="xs:string">
<Xs:enumeration va!ue="Numerical"l>
<Xs:enumeration value="NonNumerical"/>

<lxs:restriction>
<lxs:simpleType>

<ixs:element>
<xs:element name="ltemCode" type="xs:string"/>
<Xs.element name="Description" lype="xs:string" minOccurs="O"I>
<XS element name="Source" type="xs:string" minOccurs="O"I>
<XS:element name="Histort" type=ftxs:string" minOccurs="O"/>
<xs:element namc="LastUpdate" typo="xs:date" minOccurs="O"/>
<xs:element name="ReferenceTo~ type="xs:string" minOccurs="O" maxOccurs="unbounded"l>
<Xs:element name="Usedln" type="xs:string" minOccurs="O" maxOo::urs="unbounded"l>
<Xs:element name="DataType" type="xs:string" minOccurs="O"I>
<xs:element name="Unit" type="xs:string" minOccurs="O"/>
<Xs:element name="Format" type="xs:string" minOccurs="O"I>
<Xs:element name=" Accuracy· type="xs:string" minOccurs="O"I>
<Xs:element name="Definitionlnterval" type="xs:string" minOccurs="O"/>
<xs:element narne="MnemonicNames" type="xs:string" mlnOccurs="O"I>

<ixs:sequence>
<lxs:complexType>

complexType PartnerNonFunctional

Ltt~~;t~:-~t~!
_ J Perfot manote ~

::.:~:~~--;.~~~~-~~;,!~
Oro

---
: Se-e_uricy .@1

. h~:~:_:-:-:-~~:-!!.~-~~;/~
Oro

-~:-~-~=uct~~-~
~~ ·.-.-,-~-~~;.-.-.---.-.:.:.-0-~';;,-·-·

, ,_ " " " "_, ' :
, loGkA•lflfe-el e

'\!_·::.~-~~!~.z!:~t~:
Oro

-{:~;~;-~~~'~
0 .. 00

::~~:~;~;:~;J
·--·-·------·

_j oth.ets $
:>_:~:~"'-S~~~!-~~-':!:.~:.-~

O.m

<xs:complexType narne="PartnerNonFunctional">
<xs:sequence>

<Xs:element name=" Accuracy" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<Xs:element name="Performance" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<xs:element name="Security" type="CodeStructure" minOccurs="O" rnaxOcr;urs="unbounded"l>
<xs:element name="Maintability" type="CodeStructure" minOccurs="O' maxOccurs=~unbounded"l>
<xs:element name="LookAndFeel" type="CodeStructure" minOccurs="O" maxOccurs="unbounded*l>
<Xs:element name="Usability" type="CodeStructure" minOccurs="O" maxO;curs="unbounded"l>
<Xs:element name="Portability" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<XS:element name="Others" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"/>

<ixs:sequence><lxs:complexType>

complexType PermissionStructure

~-\~:tt~~:J
-:~~~;.~~~~.:

0 .. 00

,,.,---····----

~- ~i:-~~:;~~J
0 .. ,.,

<Xs:complexType name="PermissionStructure">
<XS:sequence>

<xs:element name="Code" type="xs:string'/>
<xs:element name="Description" type="xs:string" minOccurs="O"/>
<XS:element name="Source" type="xs:string" minOccurs="O"I>
<Xs:element name="History" type="xs:string" minOccurs=·O"I>
<xs:element name="LastUpdate" type=·xs:date" minOccurs="O"I>
<xs:element narne=~ReferenceTo" tyf)e="xs:string" minOccurs="O" maxOccurs="unbounded"t>
<XS:element name=·usedln" type="xs:string" minOccurs="O" maxOccurs="unbounded"/>

<ixs:sequence>
<lxs:complexType>

tJ:j

~
(1)

Cf)_
<:-1'-
>-j

>::::
(")
<:-1'-
>::::
>-j
(1)

0
.........
<:-1'-
b-'
(1)

><
$:
r-
~
(1)

..0
>::::
~.

>-j
(1) s
0
<:-1'-
rJJ

t::J
~
<:-1'-
~

"rj
~. .._
(1)

>< V)

~

........
1:-V
........

-·-J
+:.a
r-v
0'-

0'',
C.::.l

complexType SystemNonFunctional

------------------

-~ A<-<-Uiol.~y .. $
:.-~i;~-~s?-~~!_1:1_~-~t.;~~

O.oo

tf~~:;~tt~~'
Ooo

------------------~

-~ S~u•i!Y e
:: .. ~,:;:~~~!-~-~;~-~:

·i..t~~~t~;:~;a
Ooo

~------ .. ---------..,
, L06kAndfeel '•

"\:.<}i?-~~!_1:l_~~~;.~
O.oo

·j,,:::;~:.".~f~~

·i .. ;.~~~~~;;_:_~~~1
O.oo

.. ,
-~:-:::~;;;t~~-~-~-~~;~

Ooo

·{;~~~~;~~;~~~~
O.oo

<Xs:complexType name='SystemNonFunctional">
<xs·sequence>

<xs·element name=~Code" type=·xs:string"/>
<xs:element name=~ Accuracy" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<XS element name="Performance" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<xs:element name="Security" type="CodeStructure" minOccurs="O" maxOccurs=·unbounded"/>
<xs·element name="Maintability" lype="CodeStructure" minOccurs=~Ott maxOccurs="unbounded"l>
<xs·element 11ame="LookAndFeel" type="CodeStructure" minOccurs="O" rnaxOccurs="unbounded"/>
<xs·element name="Usability" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>
<xs:element name=" Portability" type="CodeStructure" minOccurs="O" maxO..:GUIS="unbounded"l>
<XS:element namc="Simulation" typc="CodeStructure" rn;noccurs="O" maxOccurs="unbounded"/>
<XS element nn.mc="Others" type="CodeStructure" minOccurs="O" maxOccurs="unbounded"l>

<lxs.sequence>
<lxs complexType>

I

I
_j

I-'
1'-.:)
1'-.:)

~

~
(!)

\f). ,..,._ ...,
c
(") ,..,._
c
~
0 ,...,..,

g.
(!)

~ r-
~
(!)

..0
c

~-
§ ,..,._
(/}

t:J
>:>:> ,..,._
>:>:>

'1::1
(!)

>< U)

~

