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To my wife, Miao 



Abstract 

Traditionally, seasonal forcing has been considered to be the major cause of the 

influenza seasonality. However, Andreasen [2003] showed that repetitive introductions 

of new strains can lead to cyclic dynamics. The cyclic dynamic produced by his model 

is not seasonal, because the length of seasons cannot be defined in his model. In this 

report, we develop a model that combines a stochastic mutation process with a two­

strain competition process governing the spread of the mutant strain. This model 

can produce stable seasonal dynamics. If we introduce a small seasonal forcing to the 

transmission rate, the length of a season can be regulated to one year if the unforced 

system oscillates with a period close to one year. If the system has a period that is 

far from one year, then the forced system may behave chaotically. 
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Chapter 1 

Introduction 

Influenza is a major cause of human morbidity and mortality all over the world. Flu 

epidemics sweep throughout the world and infect around 10% of the population every 

year [Monto, 2003]. In the United States and Canada alone, they kill thousands of 

people each year [Health Canada, 2003, Centers for Disease Control and Prevention, 

2005]. The largest pandemic in the last century, the 1918 "Spanish flu", suppos­

edly infected more than one third of the population of the United States [Holmes, 

2004], and killed more than twenty million individuals worldwide [Kilbourne, 1987, 

Simonsen et al., 1998, Johnson and Mueller, 2002]. Two less severe pandemics, which 

occurred in 1957 and 1968, did not kill as many people as the 1918 flu, but caused 

major morbidity. After more than 400 years since an influenza epidemic was first 

described with reasonable certainty in 1557 [Nicholson et al., 1998], we are still far 

from controlling the disease. 

In order to develop control strategies, we have to understand flu dynamics. 

Especially, we need to understand why the flu keeps coming back every year. Sea­

sonality is the most striking characteristic of figure 1.1, which shows the monthly 

pneumonia and influenza deaths in United States from 1910 to 1998. In this project, 
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Figure 1.1: Monthly pneumonia and influenza (P&I) deaths from 1910 to 1998 in the 
United States. Copyright (2002) , TRENDS in Ecology and Evolution [Earn et al. , 
2002]. The flu seasonality is a striking characteristic. 

we try to develop a model that can explain its seasonality. Before we proceed to 

modeling, we will review the biological background. 

1.1 Biological background 

1.1.1 The epidemiology of flu 

Three types of flu , A, B, and C, currently circulate in human populations. Flu 

A is further categorized into subtypes with notations of the form H aNb, where "a" 

describes the a-th found hemagglutinin (HA) protein and "b" describes the b-th found 

neuraminidase (NA) protein. Subtypes are further divided into strains and each 

genetically distinct virus is usually considered as a distinct strain [Earn et al., 2002]. 

Subtypes emerge from dramatic genetic changes (called antigenic shift), prob-

ably from genetic reassortments of different flu viruses within the host. In last century 

all three flu pandemics were caused by the introduction of a new subtype [Webster 

et al. , 1992, Reid and Taubenberger, 2003]: the 1918 Spanish is caused by the intro­

duction of H 1N1, the 1957 Asian flu is caused by H2N2 , the 1968 Hongkong flu is 
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Figure 1.2: The phylogenie tree of H3N2 subtype of flu A in H A1 domain. Copyright 
(1997), National Academic of Science [Fitch et al., 1997]. Subtype H 3N2 mutates 
quickly. 

caused by H 3N2 [Webster et al., 1992]. 

Flu A virus also undergoes fast mutations (called antigenic drift). Its mutation 

rate is probably only second to HIV [Fitch et al., 1997]. However, unlike HIV, the flu 

A phylogenie tree (Figure 1.2) has a remarkable single trunk shape. 

The basic reproduction number (the average number of secondary infections 

caused by an infectious individual in a totally susceptible population) is estimated to 

be 1?0 = 4- 16; the average infectious period is estimated to be Tinr = 4- 8 days 
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[Douglas, 1975, Fine, 1982, Pease, 1987]. 

1.1.2 Cross-immunity 

Evidence shows that when an individual is infected by a strain, he/she acquires not 

only life-time immunity to the specific strain, but some protection to similar strains as 

well [Nicholson et al., 1998]. This cross protection is called cross-immunity. However, 

because of the fast mutation of the flu virus, our immune system has to catch up with 

the virus, which, arguably, selects for faster mutation in some areas of the flu genome 

[Bush et al., 1999, Plotkin and Dushoff, 2003]. 

If the cross-immunity depends on the challenging strain, then it is called spe­

cific immunity. If it is the same for all possible challenging strains, then it is called 

nonspecific immunity. 

1.2 Flu modeling 

In this section, we will review some common models applicable to the flu, and discuss 

their strengths and shortcomings. 

1.2.1 The SIR model 

A major type of modeling in epidemiology is compartmental model. This approach 

divides the population into disjoint classes and follows the flow of individuals among 

the classes. In its simplest form, with the assumption that an individual will acquire 

life-time immunity after he/she recovers, the population can be divided into three 

classes: susceptible, infectious, and removed [Bailey, 1975, Anderson and May, 1991]. 

The individuals that have not been infected are in the susceptible class. Once they 
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are infected, they enter the infectious class and begin infecting others. After they 

recover, they enter the removed class and cannot be infected again (thus removed 

from the transmission process). This process can be illustrated by the following: 

8 ____.I____. R. 

Let 8, I, R be the proportions of the population in the susceptible, infectious 

and removed classes respectively. Assuming homogeneous mixing (each pair of indi­

viduals has the same probability of making a contact), a constant transmission rate {3, 

and a recovery rate "!, we can write down a system of ordinary differential equations 

(ODEs) to describe the transmission process: 

s = -{38I' 

j = {38I- "(I' 

R ="~I. 

(1.1a) 

(1.1b) 

(1.1c) 

By adding up the equations, we see that 8 +I+ R = 1 is invariant. The first 

octant is positively invariant because either the boundary planes are invariant (8 = 0 

and I = 0), or on the boundary (R = 0), the trajectory points to the interior. Thus 

8, I, and Rare non-negative. 

From Eq. (1.1b), when a disease is introduced into a completely susceptible 

population at timet = 0, i.e., 8(0) ~ 1, I(t) can grow if and only if R 0 = ~ > 1. 

The threshold R 0 is the basic reproduction number of the model, which is defined 

as the mean number of secondary infections caused by an infectious individual in a 

completely susceptible population. 

This model has an interesting property: the disease will eventually burn out, 
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i.e., limt_,oo J(t) = 0. In fact, since ft(S+I) = -'"'fl, V = S+I is a Lyapunov function 

of Eqs. (1.1) in the first octant. Thus the trajectories have to approach V = 0, that 

is, I= 0. 

Because of the life-time specific immunity, this model can be used to describe 

the spread of a flu strain in the population. However, because of the "burn-out" 

property, this model can only describe a single epidemic, and cannot explain the 

recurrent epidemics. 

1.2.2 The SIRS model 

In order to get a recurrent epidemic, we need to recruit susceptibles. The recruitment 

may come from either the population dynamics (birth/migration), or the epidemio­

logical dynamics (loss of immunity). For the flu, since the birth/migration rates are 

small compared to the epidemiological parameters, the population dynamics can be 

ignored. Here we only discuss the effect of the loss of immunity. Even though humans 

probably have life-time specific immunity to each flu-strain, effective loss of immunity 

is possible because of the fast mutation of the flu virus. The dominant strain in next 

season is likely to be different from the current dominant strain. 

The simplest way to model the loss of immunity is to assume a fixed loss rate 

p. When an individual loses immunity, he/she reenters the susceptible class. Model 

(1.1) can then be modified as: 

S = -!3SI + pR, 

j = {3SI- '"'fl, 

R='"'fl -pR. 
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We can check that (S = 1, I = 0, R = 0) is an equilibrium, which is called 

the disease free equilibrium (DFE). The disease can invade a completely susceptible 

population if and only if the DFE is unstable. The stability of the DFE is determined 

by the basic reproduction number R 0 = ~ [Diekmann and Heesterbeek, 2000]. 

When R 0 > 1, there is a unique global asymptotically stable positive equilib­

rium (S* = ~,!* = ~~,R* =~!~~)[Diekmann and Heesterbeek, 2000]. Moreover, 

when R 0 > 1, the eigenvalues associated with this equilibrium may have non-zero 

imaginary parts, in which case the equilibrium is approached by damped oscillations. 

However, instead of producing periodic dynamics as we observed in the flu, this model 

predicts that I(t) converges to a constant. 

1.2.3 The seasonally forced SIRS model 

A common practice to model a seasonal epidemic is to assume that the transmission 

rate (3 of the SIRS model (1.2) is seasonally forced, i.e., is a periodic function of time 

(3(t). This assumption is reasonable for the flu because the survival probability of the 

flu virus might depend on environmental temperature and humidity [Schulman and 

Kilbourne, 1962]. 

Dushoff et al. [2004] showed that even a small amplitude ( < 5%) of seasonal 

forcing is capable of producing large oscillations in flu incidence. This is because for 

flu-like parameters, when R 0 > 1, the positive equilibrium is a spiral node, with an 

intrinsic damped oscillation period close to one year. This damped oscillation then 

resonates with the seasonal forcing and produces large oscillations. 

However, the assumption of the SIRS models that the loss rate p is constant 

is difficult to justify for the flu: individuals lose immunity when facing a new strain. 

The introduction of new strains does not occur continuously. Instead, we should 
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expect that the loss of immunity occurs in pulses when new strains are introduced. 

Indeed, we can detect these pulses when fitting a SIRS model with a time-dependent 

loss rate to the death curves [Finkenstadt et al., 2004]. 

1.2.4 The model of Andreasen [2003] 

Andreasen [2003] constructed a model to study the effect of these discrete introduc-

tions of new strains. To simplify the model, Andreasen assumed that an individual's 

cross-immunity to a new strain depends only on the number of seasons that have 

passed since the individual was last infected, and that this cross-immunity vanishes 

after n seasons. 

Let ai, i = 1, · · · , n be the susceptibility reduction factors (where 1- ai is the 

cross-immunity), Sf be the fraction of the population in season m whose susceptibility 

factor is ai. Before a new strain is introduced, :E~=l Sf = 1. Let Jm be the fraction of 

infectious individuals in season m, and Rm be the fraction of recovered inidividuals in 

season m. New strains are introduced at the end of each season, i.e., when Im(t) :::::::: 0. 

The transmission process of each season is governed by the following SIR model: 

(1.3a) 
n 

jm = 2:: f3aiSf I- "(l, (1.3b) 
i=l 

(1.3c) 

where for each season m, t E [0, oo), and m = 0, 1, 2, · · · . Rm( oo) contains individuals 

that are infected in season m and recovered. For season m + 1, these individuals were 
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infected exactly one season ago. Thus 

Similarly, we have 

S~i 1 ( 0) = s;n ( oo) , i = 1, 2, .. · , n - 2 , 

sm+l = sm(oo) + sm (oo) n n n-1 · 

Andreasen [2003] showed that depending on (3 and ai, the infection history 

structure {S:n(o)}~=l may have dynamics ranging from a stable equilibrium to com­

plex cyclical behaviors. 

Thus, seasonal epidemics occur in this model simply because of the introduc-

tion of new strains. However, this model does not explain where the new strains come 

from. Furthermore, since new strains are introduced manually at time t = oo in each 

season, the length of a season cannot be properly defined in this model. 

1.2.5 The multi-strain competition model 

New strains come from either mutation or migration. If we consider a closed popu-

lation, then the only source of new strains is mutation. Mutation only occurs when 

there are infectious individuals. Thus mutants should be introduced during, instead 

of after, an epidemic. Hence, when a mutation occurs, the mutant strain will compete 

with the parent strain. 

In general, to study the dynamics of n competing strains, one must keep in 

mind that an individual's immunity to a specific strain depends on the individual's 

infection history. Let H = { 1, · · · , n} be the strain space; S L be the proportion of the 
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susceptible individuals who have been infected only by all the strains in set L C H; 

Ji be the proportion of the infectious individuals who come from class SL (infectious 

with strain i) and a"k, be the susceptibility reduction factor (where 1- ai is the cross­

immunity) of individuals in SL to strain i. Then the competition is governed by the 

dynamical system 

fh = -(3 L ai,SLil + L "fli\i, LcH, (1.4a) 
iEH\L jEL 

LcH,iEH\L. (1.4b) 

There are (n + 1)2n equations in the system (1.4). Andreasen et al. [1997] 

gave a rough analysis. Lin et al. [1999] analyzed three-strain systems. With some 

assumptions on cross-immunity a}:, Dawes and Gog [2002] analyzed some four-strain 

systems. When n is large, it is difficult to analyze the model in detail. In fact, when n 

is large, the number of equations is comparable to the population size, which implies 

that most of the compartments are nearly empty. Thus it is hard to justify the use 

of ODE systems, which assumes an infinite population size in each class [Earn et al., 

2002]. 

1.2.6 The individual-based model 

One way to get around the problem of a large number of equations in the multi-strain 

competition model is to use individual-based models, which are stochastic models 

that keep track of the epidemiological details of each individual. 

In an effort to reproduce the flu-A-like phylogenie tree, Ferguson et al. [2003] 

built an individual-based model. In their model, strains are characterized by a pseudo­

genome consisting of B epitopes, each consisting of C codons (3 nucleotide bases). 
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The genetic sequences of all the infected strains (the infection history) of each in­

dividual is recorded to compute the specific cross-immunity, which is a function of 

the antigenic distance between the challenging strain and the individual's infection 

history. Each infectious individual produces mutants of the currently infected strain 

at a fixed rate. This model also contains complex spatial and temporal structures: 

20 patches with out-of-phase seasonal forcing to the transmission rates, and within 

patch spatial structures. A short-lived nonspecific immunity is introduced as well, 

which is found to be crucial for reproducing a flu-A like phylogenie tree. With this 

model, they reproduced not only the phylogenie tree, but the seasonal patterns of the 

flu dynamics as well. 

However, because of its stochastic nature and the overwhelming details, this 

model is mathematically intractable. 

1.3 The organization of this report 

In the next chapter, we build a model that couples the mutation process of Ferguson 

et al. [2003] and a multi-strain competition model within each season to overcome 

the problem of manually introducing strains at the end of each season. In Chapter 

3, we will discuss dependencies of the length of seasons on different parameters. We 

will compare the results of our model to the results of the model of Andreasen [2003] 

in Chapter 4. Then we will study the effect of seasonally forced transmission rates 

on our model in Chapter 5. In Chapter 6, we conclude our results, and discuss the 

strengths and limitations of our model, and possible future areas of research. 
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Chapter 2 

The model 

Recall that Andreasen [2003] showed that recurrent epidemics can arise from repet­

itive introductions of new strains. However, his model requires that the mutant be 

introduced at timet= oo in each season. Moreover, his results depend on a specific 

assumption: the immunity of an individual to a challenging strain depends only on 

the number of seasons from the last infection of the individual to the season of the 

challenge. It is difficult to justify this assumption without a description of how new 

strains emerge. 

In this chapter, we develop a mutation model that naturally gives rise to the 

cross-immunity of Andreasen [2003]. Then we couple this mutation model with a 

transmission model to describe the spread of the mutants. 

Since the birth/ death and migration rates are tiny compared to the epidemio­

logical rate parameters, they can be neglected. Thus, in this model, we will consider 

a closed population without population dynamics. Hence, the population size is a 

constant. 

12 



2.1 The mutation process 

We model the mutation process after the model of Ferguson et al. [2003], which is 

an individual-based stochastic process. We assume that each infectious individual 

produces mutants of his/her currently infected variant independently with a constant 

rate aiud; furthermore, when a mutation occurs, the mutant takes over its parental 

variant within the host. Thus the mutation process of each infectious individual is 

a Poisson process with rate aind· On the population level, the mutation process is 

the sum of the individual mutation processes. Thus, it is a nonhomogeneous Poisson 

process with rate 

.A(t) = aiudN I(t), (2.1) 

where N is the population size, and J(t) is the proportion of infectious individuals at 

timet. Since the population dynamic is ignored, N is a constant. We let a= ainctN, 

which is the mutation rate of the population, so Eq. (2.1) can be rewritten as 

.A(t) = al(t). (2.2) 

The expected number of mutations A in a season is 

1
Te 

A= >.(t)dt 
Ts 

1
Te 

=a I(t)dt, 
Ts 

where T8 and Te represent the start time and the end time of the season. Ma and 

Earn [to appear] showed 

1
Te 

I(t)dt = Z'nnf, 
Ts 
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where 1inr is the expected infectious period (1inf = ,-l ), and Z is the expected final 

size of the epidemic. Thus we have 

(2.3) 

If we know the expected number of mutations (A) and the final size Z, we can then 

estimate the mutation rate a (or aind) from Eq. (2.3). 

2 .1.1 The first mutation time 

Since the mutation process is a nonhomogeneuous Poisson process with rate ..\(t), the 

first mutation time is exponentially distributed with the probability density function 

(PDF) 

p(t) = ..\(t)e-fi.>.(r)d-r. (2.4) 

However, 

1
Te 1Te 

p(t)dt = ..\(t)e- fi. >.(r)dr dt, 
r. r. 

= 1 - e- JJ.• >.(r)dr 
' 

= 1- e-A < 1, 

so for any season there is always a probability e-A that no mutation occurs. This 

presents a problem because if no mutation occurs in a season, the epidemic is governed 

by an SIR model without recruitment of susceptibles. As we discussed in section 1.2.1, 

the disease will eventually die out. When A«:: 1, the probability of mutation is small. 

To avoid this problem, we assume that mutations always occur as long as there is an 
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epidemic. Specifically, the PDF of the first mutation time becomes 

p(t) = A(t) e- fi. >.(r)dr. 
1- e-A 

The expected first mutation time T mut is 

'T' -1Te t A(t) e- fi >.(r)drdt 
.Lmut- 1 -A s • 

T. - e 

(2.5) 

(2.6) 

Note that if the dynamics of a specific variant v can be described by the simple 

SIR model (1.1), then we can compute the expected mutation time Tmut relative to 

the peak time Tp of the epidemic. A(t) depends on J(t), which is a function of R 0 , 'Y 

and J(O). Since new variants always emerge from mutations, we assume J(O) = 1/N. 

Then T¥!u' is a function of o: and R 0 . For any Z (which is a function of R 0 [Diekmann 
p 

and Heesterbeek, 2000, Ma and Earn, to appear]) and A, we can compute O:ind from 

Eq. (2.3). Fitch et al. [1997] estimated that for the human population (N = 6 x 109
), 

A~ 5.7 mutations per year. Because of the definition of o:, this estimate relates Tpu• 
p 

as a function of R 0 and N. For each R 0 and N, we numerically computed the solution 

of the SIR model (1.1) with the initial conditions J(O) = 1/N, S(O) = 1- J(O), and 

R(O) = 0. We can then find the maximum of I(t) and the corresponding peak time 

Tp, and subsitute J(t) into Eq. (2.2) to compute A(t). We then subsitute A(t) into 

Eq. (2.6) and compute Tmut· Figure 2.1 shows contour plots of the resulting Tpu• as 
p 

a function of Nand R 0 , from which we can see that for a reasonable Ro (Ro > 1.5), 

Tmut!TP > 0.8. In fact, for a population size comparable to China (N ~ 1.3 x 109
) 

and 1.5 <Ro< 6, the expected first mutation time Tmut occurs around the peak of 

the epidemic. 

15 



2 -"! 3 
a d: 2.5 

2 Q .96 

1.5 

1 .5 2 2.5 

0.96 

0.96 
Q .99 

Q .99 

3 3.5 4 4 .5 
Basic reproductive number. 

0 .96 

0 .99 

5 .5 6 

Figure 2.1: Contour plot of the relative mean first mutation time Ti"' vs. t he pop-
P 

ulation size N and the basic reproduction number R 0 . The first mutation occurs on 
average around the peak of an epidemic. 

2.1.2 The second mutation time 

Similarly, we can compute the expected time of second mutation, given that there is 

at least one mutation. Let the random variables T1 and T2 be the first and the second 

mutation time. We have 

As with the expected first mutation t ime Tmut ' TP"t is a function of N and 
p 

R 0 . This function is plotted in figure 2.2. We can see for a population size smaller or 

equal to that of China (N < 1.3 x 109), the second mutation occurs very late. Thus 

the first mutation will always dominate. Hence, for a population size comparable 

to or smaller than that of China, we can safely assume that each circulating variant 

produces at most one mutant. 
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Figure 2.2: Contour plot of Tpu' vs. the population size Nand the basic reproduction 
p 

number R 0 , given that the first mutation occurs. We can see that the second mutation 
occurs late in the epidemic. 

2.2 Infection history, cross-immunity and antigenic 

distance 

The susceptibility of an individual to a new variant v generally depends on what 

variants he/ she has ever been infected with previously (his/her infection history). In 

our model, we consider only specific immunity. We adapt the specific cross-immunity 

model introduced by Ferguson et al. [2003]: an individual 's immunity to a new variant 

is a function of the antigenic distance of this variant and the set of previously infected 

variants in the antigenic space. We now define this antigenic distance precisely. 

In order to define the antigenic distance, we need to describe the antigenic 

space. Suppose the immune system responds toP epitopes, P » 1 , each containing 

M amino acids. Let £ be the space of all possible epitopes; since there are twenty 

different amino acids, £ = {1, · · · , 20111} In this project , we only study antigenic 

drift. We thus assume that each mutation changes a single amino acid out of PM 

possible ones, which in turn changes a single epitope. Then each variant v can be 
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characterized by a unique vector in the space S = £ P. 

The antigenic distance d of two variants is defined by using the Hamming dis-

tance of two vectors, that is, the number of non-identical corresponding components 

of the two vectors. We denote vi to be the ith component of variant v. Specifically, 

for two variants VI and v2 , let 

Vi_ vi 
I- 2. 

Then the antigenic distance of vi and v2 is defined as 

p 

d(vi,v2) = Ldi(vi,v2). 
i=I 

The antigenic distance of a variant v and a set of variants H is defined as the number 

of components of v that do not appear at the corresponding position of any variant 

in H. Specifically, let 

{

0, 
di(v, H)= 

1' 

then 
p 

d(v, H)= L di(v, H). 
i=I 

Let Vn be the variant in the nth season. Because of the linear-phylogeny assumption, 

Vn+l is a mutant of Vn- Thus. 

Since we assumed that P » 1, it is unlikely for an epitope to mutate more than once. 
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Thus, we have 

(2.7) 

That is, with the linear-phylogeny assumption, the distance between two variants is 

the difference in their generations. In addition, if i 1 < i2 < · · · < im < n, we have 

(2.8) 

Eq. (2.8) ensures that the the antigenic distance of a challenging variant and an 

individual's infection history is the antigenic distance of the challenging variant and 

the individual's last-infected variant. Hence, the infection history can be characterized 

by the last-infected variant. 

Thus the linear-phylogeny assumption leads to the infection history and cross­

immunity used by Andreasen [2003]. 

Let O"k be the susceptibility factor (where 1- O"k is the cross-immunity) when 

the antigenic distance between the challenging variant and the infection history is k. 

We also assume that individuals have life-time immunity for all infected variants, i.e. 

O"o = 0. For a totally susceptible population, we denote the reduction as 0"00 • Since 

totally susceptible individuals do not have any immunity, 0"00 = 1. 

Similarly to the model of Andreasen [2003], we assume that specific immu­

nity diminishes when the challenging variant and the infection history is sufficiently 

different, i.e. there is a K such that O"k = O"K for k ~ K. This limit O"x can be 

considered as the nonspecific immunity. Following Ferguson et al., we pick O"k to be 
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piecewise-linear: 

(Jl ' k = 1,2, 

k~K, 

(Jk = a1 + 17r:::~l (k- 2), 2 < k < K, 

0, 

1, 

with two parameters 0 < a 1 < aK < 1. 

k = 0, 

k = 00. 

2.3 The mutant-parent competition 

(2.9) 

Since mutants are introduced in the middle of each season, they face the competition 

of their parental variants. Recall that the first mutation is expected to occur around 

the peak of an epidemic. When a variant Vn+l is produced by Vn, the epidemic caused 

by Vn-l is usually finished. Thus we can assume that each mutant faces only the 

competition of its parental variant. In this section, we set up a two-strain competition 

model to describe the spread of the mutant. The model can be described by the flow 

chart shown in figure 2.3. 

We denote by Si the proportion of the individuals who have been infected by 

variant vi but not by variants vi for all j > i, i = 0, 1, · · · , n- 1, (So denotes the 

totally susceptible population). These individuals who are susceptible to variants vi 

for all j > i, when infected by the variant Vn or its mutant Vn+b enter the classes In 

and In+l, respectively, then recover and enter the classes Sn and Sn+b respectively. 

The individuals in Sn and Sn+l can then be infected by Vn+l and Vn, and enter 

classes In,n+l and In+l,n· The individuals in classes In,n+l and In+l,n are infected 

(sequentially) by both Vn and Vn+l during the same season; they then recover and 
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Inn 1 
' 

In-rl ,n 

Sn,n-1 

Figure 2.3: The flow chart of the two-strain competition model (Eqs. (2.10)) , where 
S i, i :S n are the proportions of individuals who have been infected by Vi but not vk 

for k > i ; I n and In+l are the proportion of individuals who come from S i for i < n 
and is infectious with Vn and Vn+l , respectively; Sn+l are the proportion of individuals 
who have been infected by Vn+l but not Vn ; In ,n+l and In+l,n are the proportion of 
individuals who come from Sn and Sn+l, respectively, and are infectious with Vn+l 

and Vn , respectively; Sn,n+l are the proportion of individuals who has been infected 
sequentially by Vn and Vn+l in the same season. 
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enter the class Sn,n+l· Moreover, we ignore cross infection, i.e., Ii cannot infect Ij for 

all i and j. After the mutant Vn+l is introduced, the epidemic process is governed by 

the following system 

n-1 

jn = {3 L ()n-iSi (In+ In+l,n) - "fln' 
i=1 

n-1 

jn+1 = {3 I: crn+1-iSi(In+l + ln,n+l) - "fln+l, 
i=1 

Sn = -{3cr1Sn(In+1 + ln,n+l) + "(ln, 

Sn+l = -{3cr1Sn+l(In + ln+l,n) + "fln+l, 

jn,n+l = f3cr1Sn(In+l + ln,n+l) - "fln,n+l, 

jn+l,n = f3cr1Sn+l(/n + ln+l,n)- "fln+l,n, 

i < n, (2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

(2.10e) 

(2.10f) 

(2.10g) 

(2.10h) 

where n ~ 1, t ~ T~~tl, and T~~t1 is the creation-time of the variant Vn+l· We assume 

that only one individual is infected by the mutant Vn+l at the time of mutation, 

i.e., In+l(T~~n = f.r where N is the population size. At time T~~tl, no infection 

of Vn+l has ever occurred, and thus Sn+l (T~~t1 ) = Sn,n+l (T~~t1 ) = In,n+l (T~~/) = 

ln+l,n(T~~t1 ) = 0. 

Note that Sn(oo) is the proportion of individuals who have been infected by 

Vn but not Vn+l, and Sn+l ( oo) + Sn,n+l ( oo) is the proportion of individuals who have 

been infected by Vn+l· 

Throughout this report, we assume 'Y = 0.25/day (the mean infectious period 

is 4 days [Ferguson et al., 2003]). Thus the basic reproduction number R 0 = 4{3 

(where {3 is expressed in units of 1/day). 
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If 0"1 « 1, then In,n+l and In+l,n can be neglected. In this case, Eqs. (2.10) 

can be simplified to 

n-l 

jn = f3 L O"n-iSJn - '"'(fn, 
i=l 

n-l 

jn+l = f3 L O"n+l-iSJn+l - '"'(fn+l , 
i=l 

i < n, (2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

(2.11e) 

2.4 The combination of the mutation process and 

the competition process 

We have modeled the mutation process and the competition process. But these two 

processes are not independent: the mutation time ~~t1 , which is the initial time of the 

competition process (2.10), depends on the epidemic curve ln(t) = In(t) + In+l,n(t) of 

the variant Vn, which in turn, depends on the mutation time T~ut· In this section, we 

combine the mutation process and the competition process into an iteration model. 

Since T~~t1 depends on the epidemic curve ln(t), we need to substitute ln(t) 

into Eq. (2.4) to generate a random mutation time, or, into Eq. (2.6) to compute the 

expected mutation time, where Ts = T~ut and Te = oo. In the rest of this report, 

we will use the expected mutation time unless specified. This makes our model 

deterministic. 

Now that we can compute the mutation time T~~t1 of Vn+b provided that we 

know the initial condition Si(T~~t1 ), i ~nand In(T~~t1 ), we can then solve for the 
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competition model (2.10), and get the epidemic curve ln+l(t) of the mutant Vn+l· 

We can thus repeat this process and find the mutation time T~~t2 of Vn+l and the 

epidemic curve ln+2(t), and keep doing so for all variants vk, k > n + 1. 

Thus, we can solve for any epidemic provided we know the initial condition 

for the very first epidemic, 80 (0), and 11(0). 

2.4.1 A proper initial condition 

The first epidemic starts when the ancestor variant v1 is introduced into a totally 

susceptible population. Thus, 11(0) = -JJ, and 80(0) = 1 - -JJ. The first epidemic 

is then governed by the simple SIR model (1.1). Note that from figure 2.1, when 

N is small, T~ut!Tp ~ 1. Thus ~~~~!~:~ = ;3So(T~ut) - "( ~ ;3So(Tp) - "( = 0. In 

fact, if T~ut > Tp, So(T~ut) < So(Tp), thus i2(T~ut) < 0. That is, it is difficult or 

impossible to for the mutant v2 to invade. Thus when the mutant v3 of v2 invades, 

~ ~ Sl(T;!mt) = Irfut Il(t)dt ~ 0, Sl(T~ut) ~ Sl(T~ut) and S2(T~ut) = Irfut I2(t)dt ~ 0. 
mut mut 

Then 

Hence, we need So(T~ut) + o-1(1- So(T~ut) > ~0 in order for V3 to invade, which is 

equivalent to 

(2.12) 

From the solution Z of the final size formula of the SIR model [Diekmann and Heester-

beek, 2000] 

1- Z = e-RoZ, 

we can compute S0 (T~ut) = 1 - Z. In fact, the right hand side of Eq. (2.12) is a 

decreasing function of R 0 , thus the cross-immunity (1- o-1) increases with R 0 (figure 
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Figure 2.4: The maximum cross-immunity 1- a 1 for the invasion of the variant v3 vs . 
the reproduction number R 0 . Thus the cross-immunity 1 - a 1 has to be very small 
in order for the disease to persist in a totally susceptible population. 

2.4). Clearly, in order for v3 to invade, we need a 1 » 0. Thus for a reasonable 

choice of parameters , the model cannot produce a sustained epidemic starting from 

a totally susceptible population. Indeed, this is a puzzle not only for our model (and 

the model of Andreasen [2003]), but also for explaining how real influenza epidemic 

survives after an antigenic shift [Earn et al. , submitted]. 

Thus, we need to specify proper initial conditions Si(T;:,ut), i <nand In(T;:,ut ). 

Unless specified, we set up the initial conditions Si(T;:,ut), i < nand In(T;:,ut) using the 

following process: first , using the model of Andreasen [2003] (Eqs . (1.3)), we obtain 

a stable distribution of Si , i < n. We then set the initial conditions Si(O) = Si 

and In(O) = -Jv , and let In(t) be the first epidemic. This enables us to compute an 

epidemic curve In ( t), which in turn, gives us the mutation time r;:,~t1 . We then use 

the values Si (T::,~t1 ) and In (T::,~t1 ) as the initial condition for iteration. 
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2.4.2 Reducing the dimension of the competition model (2.10) 

Now that we have an initial condition, the model is properly defined. However, as we 

iterate the model, the number for equations of the competition model (2.10) keeps 

growing with n. This presents both an analytical and a numerical challenge. In this 

section, we reduce the number of classes Si in Eqs. (2.10). 

Note that for each i, Si ( t) < 0 for all t > T~-t~, z. e. Si ( t) is a decreas-

ing function. In fact, this is true as long as the disease does not die out, i.e. 

lim supt--->cxo 2:::1 Ii(t) > 0, Si( oo) = 0 for all i. This is because logS( oo) = log S(O)­

/3 2:::1 J0= Ii(t)dt = -oo. Specifically, when n » 1, we can neglect So(t). Since 

ak = aK for all k > K, the classes {Si}~~r+l can be combined into a single class 

S _ '\"'n-K+l S· 
K - L...i=l •· 

2.4.3 The sustained epidemics 

Figure 2.5 shows the total proportion of the population that is infectious, I(t) = 

2:::1 Ii ( t) + Ii+l,i ( t) + Ii+l ( t) + Ii,i+l ( t), given by the solution to both our deterministic 

model and the stochastic model (where mutation time is generated randomly) with 

the following parameters: K = 12, a 1 = 0.01, aK = 0.75 as in the model of Ferguson 

et al. [2003], Ro = 5, N = 6 X 106, and aind = 1. 78 X 10-9 
0 This figure shows that 

our model can produce sustained cyclic epidemics. 
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Figure 2.5: a) The epidemic curve J (t) = 2:::: 1 Ji(t) + Ii+l ,i(t) + Ji+1(t) + hH1(t) of 
our deterministic model with parameters K = 12, CJ1 = 0.01 , CJK = 0.75, R 0 = 5, 
N = 6 x 106

, aind = 1. 78 x w-9 . b) The epidemic curve I ( t) of our stochastic model 
where the mutation time is generated randomly. This shows that our model can 
indeed produce stable periodic dynamics. 

27 



Chapter 3 

The length of a season 

For the cyclic epidemics produced by the deterministic model, we can define the start 

of a season as the time when the number of infectious individuals of the mutant 

variant equals that of its parent variant (figure 3.1), i.e., the start time Ts~!.i of the 

season n + 1 is the solution to the equation 

(3.1) 

The length of the n-th season Ln (also called the period) is then defined as Ln 

T n+l rn 
start - start · 

Note that when a1 « 1, In,n+l(t) and In+l,n(t) can be neglected. Moreover, 

the mutant Vn+l is introduced around the peak of In(t). In(t) monotonically decreases 

after the peak, while In+l (t) monotonically increases before the introduction of Vn+2 • 

At the introduction of Vn+2 , In(t) ~ 0. Thus there is a unique solution to Eq. (3.1). 

Hence, the start time Ts~!.~ is well defined. 
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Figure 3.1: The definition of the start time of a new season Ts~art· 

3.1 The dependence on the basic reproduction num-

her Ro 

In t his section we will keep the mutation rate aind, the population size N and the 

cross-immunity parameters (1 - a 1) and (1 - ax) fixed , and study the dependence 

of the length of season Ln on the basic reproduction number R 0 . Figure 3.2 shows 

the asymptotic trajectory (as n becomes large) of Ln versus R 0 , with parameters 

N = 6 x 107
, A= 5.7 (based on the population size of 6 x 109 ) , K = 12, a 1 = 0.01 , 

ax = 0.75. We can see that when R 0 < 19, Ln converges to a stable equilibrium, 

which decreases with R 0 ; when R 0 > 19, Ln bifurcates and eventually becomes 

chaotic (Fig. 3.3). 

3.2 The dependence on the mutation rate a 

Now we keep Ro , N , a 1 and ax constant and study how Ln varies with the mutation 

rate a . The results are shown in figure 3.4, with parameters N = 1.3 x 109 , R 0 = 5, 
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Figure 3.2: The asymptotic trajectory of season length Ln v.s. R 0 . This shows 
that the asymptotic season length generally decreases with the basic reproduction 
number R 0 . There is a bifurcation when R 0 >=::J 19. The parameters are N = 6 x 107 , 

A= 0.057, K = 12, o-1 = 0.01 , o-K = 0.75. 
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Figure 3.3: The time series of the length of seasons Ln. The parameters are R 0 = 24, 
N = 6 x 107

, A = 0.057 K = 12, o-1 = 0.01, O'K = 0.75. When R 0 is large, the 
dynamics of Ln appears chaotic. 
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Figure 3.4: The asymptotic trajectory of season length Ln v.s. the mutation rate (a) , 
with N = 1.3 x 109 , R 0 = 5, K = 12, o-1 = 0.01, o-x = 0.75. We can see that the 
asymptotic season length decreases with the mutation rate a. 

K = 12, o-1 = 0.01 , o-x = 0.75. We can see that Ln is a decreasing function of a. 

This is because the mutation time Tmut is a decreasing function of a. 

3.3 The dependence on t he population size N 

In this section, we try to answer the question of how Ln depends on the population 

size N . N appears in our model in two places: the initial condition In(O) = ~ ; and 

the mutation rate a = aindN· If we keep a constant , then increasing N decreases 

In(O) , which increases the length of each epidemic, while keeping the shape of the 

epidemic curve constant. Thus the mutation time is the same relative to the peak 

of the epidemic. Hence, increasing N not only prolongs the epidemic, but delays the 

mutation time as well. Thus we should expect an increase of Ln. This is demonstrated 

in figure 3.5, with parameters a= 2.314, R 0 = 5, K = 12, o-1 = 0.01 , o-x= 0.75. 

If we keep the per capita mutation rate aind constant, then the increasing of N 

increases a as well , which, as we know above, increases Ln. This effect will interfere 
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Figure 3.5: The asymptotic trajectory of season length Ln v.s. the population size 
while keeping the mutation rate (a:) constant . The parameters are o: = 2.314, R 0 = 5, 
K = 12, o-1 = 0.01 , D"K = 0.75. The asymptotic season length increases with the 
population size N if t he mutation rate o: is kept constant. 

with the effect of decreasing In(O). The result is shown in figure 3.6, with parameters 

O:ind = 1.78 X w-9
, R o = 5, K = 12, 0"1 = 0.01 , 0"!( = 0.75, 

3.4 The dependence on the cross- immunity param-

Here we study the effect of cross-immunity 1 - o-1 and 1 - D"K on the length of 

season Ln. Figure 3. 7 shows that Ln is an increasing function of the cross immunity 

1- 0"1 when we keep O"J( constant, with O:ind = 1.78 X w-9
, R o = 5, N = 6 X 107

, 

K = 12, O"J< = 0.75. Figure 3.8 shows that Ln increases with 1 - D"K as well , with 

O:ind = 1.78 X w-9
, R o = 5, N = 6 X 107

, K = 12, 0"1 = 0.01 . 
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Figure 3.6: The asymptotic trajectory of season length Ln v.s. the population size 
while keeping the per capita mutation rate (aind) constant. The parameters are 
aind = 1.78 x 10-9 , R 0 = 5, K = 12, <71 = 0.01 , O'K = 0.75. The population size 
N affects both the mutation rate a and the initial condition J(O) if we keep aind 

constant . When N is small , t he effect of J(O) dominates; when N is large, the effect 
of a dominates . 
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Figure 3.7: The asymptotic trajectory of season length Ln v.s. the cross-immunity 
parameter (1- <71) while keeping O'K constant . The parameters are a ind = 1. 78 x 10-9, 

R 0 = 5, N = 6 x 107
, K = 12, O'K = 0.75. This shows that the asymptotic season 

length increases with 1- <71. 
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Chapter 4 

Comparison to the model of 

Andreasen [2003] 

4.1 Reducing the competition model Eqs. (2.10) to 

the model of Andreasen [2003] 

If we ignore the transmission from In+l to Si fori < n, then the transmission model 

(2.10) becomes 

n-1 

jn = {3 L CTn-iSi(In + In+l,n) -{In, 
i=l 

35 

(4.la) 

(4.1b) 

( 4.1c) 

(4.1d) 

(4.1e) 
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Figure 4.1: The distribution of the susceptible classes Si at the start time of a new 
season: Ro = 4, 7, 10 and 13. The parameters are CXind = 1.78 X 10- 9 , N = 6 X 107 , 

K = 12, 0"1 = 0.01 , O"K = 0.75. The trajectories of our model are presented by points, 
while the trajectories of the model of Andreasen [2003] are presented by circles . The 
two models produce almost identical infection history distributions. 

If we further assume that In ,n+l ~ 0 in season n, the transmission model Eq. (2.10) 

reduces to the model of Andreasen [2003]. 

4.2 Differences between the dynamics of our model 

and those of the model of Andreasen [2003] 

Figure 4.1 shows that the distribution of susceptible classes of our model and that 

of the model of Andreasen [2003] are almost identical at the start of a season. This 

suggests that the differences between the dynamics of our model and that of the 

model of Andreasen [2003] should be minimal. 

However , figure 4.2 shows the equilibrium values of the final size Zn of the 

two models are slightly different even if the distributions of the susceptible classes 

are the same. It seems that the for small reproduction numbers, the two models 

36 



0.3.---~~---~--~---~--~---~~ 

0 .25 

~ 0 .2 

i 
! 0 . 15 

If 

0 .1 
.. 

0 .05 

2 4 a 12 16 20 24 
Basic reproductive number 

Figure 4.2: The final size Zn v.s. R 0 . The parameters are A = 5.7, N = 6 x 107 , 

K = 12, a-1 = 0.01 , O"K = 0.75. The trajectories of our model are presented by stars, 
while the trajectories of the model of Andreasen [2003] are. presented by circles . The 
dynamics of Zn of the two models diverge when R 0 becomes large. 

produce almost identical final size, but they become more different as R 0 gets bigger. 

When R 0 » 1, our model becomes chaotic, while the model of Andreasen [2003] still 

converges to a stable equilibrium. 

A similar result is shown in figure 4.3. The dynamics of the final size of the 

two models diverge when the cross-immunity 1 - a-1 becomes small. 

Figure 4.4 shows the time series of the final size Zn with 120 random initial 

conditions (with parameters O:ind = 1.78 x 10-9 , R 0 = 5, N = 6 x 107 , K = 12, 

a-1 = 0.01, O"K = 0.75). It shows that the basins of attaction of the two models are 

different: among the trajectories starting from 120 random initial conditions, one 

converges to a two-cycle instead of an symptotically stable equilibrium. 

Hence, our model cannot always be reduced to the model of Andreasen [2003] . 

In some regions of the parameter space, the difference in the variant introduction 

time and the competition of the mutants and their parents change the dynamics. 
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Figure 4.3: The final size Zn v.s. 1-(}1. The parameters are A= 5.7, N = 6 x 107 , 

'R0 = 5, K = 12, (}K = 0.75. The trajectories of our model are presented by stars, 
while the trajectories of the model of Andreasen [2003] are presented by circles. The 
dynamics of Zn of the two models diverge when 1 - (}1 becomes small. 

38 



a) 

0 .5 

0 .45 

0 .35 

~ 0.3 

i 0 .25 

-~ 

~ 
0.2 

0 . 15 

0 . 1 

0 .05 

0 
0 15 20 25 30 35 40 

Time (season) 

b) 

0.5 

0 .4 5 

0.4 

0 .35 

i 03 

.s. 0 .25 

-~ 

~ 
0.2 

0 .1 

30 35 40 
Time (season) 

Figure 4.4: a) The time series of the final size Zn of the model of Andreasen [2003]) , 
starting with 120 random initial conditions. b) The time series of the final size 
Zn of our model, starting with the same 120 initial conditions as in panel a. The 
parameters are O!ind = 1.78 X w-9, Ro = 5, N = 6 X 107

, K = 12, ()1 = 0.01 , 
aK = 0. 75. This shows that the basins of attraction of the two models are different : 
among the trajectories starting from 120 random initial conditions, one converges to 
a two-cycle instead of an symptotically stable equilibrium. 
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Chapter 5 

Regulating the length of seasons 

Although our model can produce sustained stable cyclic epidemics, the length of 

season Ln is a function of the parameters. In general, Ln does not converge to a 

year as we observed in death time series. Dushoff et al. [2004] suggest that small-

amplitude seasonally forced transmission rates can couple with the intrinsic damped 

oscillation of the standard SIRS model and regulate the oscillation to a period close to 

a year. On the other hand, large-amplitude seasonal forcing tends to generate chaotic 

dynamics in the SIR model with birth/deaths [Olsen and Schaffer, 1990, Kamo and 

Sasaki, 2002] . In this section, we study how seasonally forcing the transmission rate 

affects the length of season generated by our model. 

We use a sinusoidal seasonal forcing, i.e., the transmission rate is 

- [ 27ft] (3 ( t) = (3 1 + A cos 
365 

. 

We try to locate the regions of the parameter space where small seasonal 

forcing (0 < A < 0.026) can regulate the long-term average of the season length 

to one year. To do so, we fix the population size N, the mutation rate a and the 
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cross-immunity parameters (1-0"1) and (1-0"K), so that the asymptotic season length 

(denoted as L 00 (A = 0)) of the unforced model depends only on the basic reproduction 

number R 0 . We then vary 'R0 (and consequently vary L00 (0)) and A, and compute 

the average of Ln (A). 

The results are shown in figure 5.1. In region I, Ln(A) does not converge to 

an equilibrium, and the mean season length L(A) is not a year. In region II, Ln(A) 

converges to a year asymptotically. In region III Ln(A) converges to a periodic orbit, 

and the average season length L(A) = ~ 2::~=1 Ln(A) equals one year. 

If we fix 'Ro and vary N instead, the resulting regions are identical to the 

regions we find by fixing N and varying R 0 . This suggests that no matter what 

parameter combinations we use to compute the season length of the unforced model 

Ln(A = 0), the regions shown in figure 5.1 will not change. 

Hence, in our model, small-amplitude seasonal forcing can regulate the season 

length as well, if the season length of the unforced model is close to one year. This 

effect only depends on the season length of the unforced model. This conclusion is 

similar to that of Dushoff et al. [2004]. 

Interestingly, as seen in the bottom panel of figure 5.1, if the season length 

of the unforced system Ln ( 0) is far from one year, then the seasonally forced system 

shows chaotic behavior even if A is small. 
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Figure 5.1: a) Regions in the parameter space that yield qualitatively different be­
havior of the asymptotic season length L00 • In regions II and III the average season 
length is one year. b) The time series of Ln in each region (with A = 0.012) . The 
parameters are aind = 1. 78 X w-9

' N = 6 X 107
' K = 12, al = 0.01 ' aK = 0. 75. It 

shows that small seasonal forcing can regulate the average season length to one year, 
if the period of the unforced system is close to one year. If t he period of the unforced 
system is very different from one year, the seasonally forced system shows chaotic 
dynamics. 
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Chapter 6 

Conclusions and discussions 

In this report, we developed a model that combines a stochastic mutation process 

with a two-strain competition process. We showed that for a reasonably sized closed 

population, the mutation process produces a linear phylogeny of the mutant strains. 

It also justifies the cross-immunity function used in the model of Andreasen [2003]. 

Our deterministic model, where we use the expected mutation time as the 

mutation time, can generate sustained stable cyclic epidemics. We can naturally 

define seasons and compute the length of seasons numerically. With a reasonable 

basic reproduction number R 0 and per population mutation rate a, the length of 

season converges to an equilibrium value, which is generally a function of the basic 

reproduction number R 0 , the per population mutation rate a, the population size 

N, and the cross-immunity parameters. Our stochastic model, where the mutation 

time are generated randomly, yields stochastic perturbations to the solutions of the 

deterministic model. 

If we ignore the competition between the mutants and their parents, our model 

is identical to the less realistic model of Andreasen [2003]. Even when we include com­

petition, for a large range of parameter values, our model and the Andreasen model 
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produce almost identical attractors of the final size in each season. However, the at­

tractors of these two models do not have identical basins of attraction. In the example 

we emphasized, the model of Andreasen [2003] has a unique attractor, whereas our 

model has two, including a biennial cycle with basin of attraction comprising around 

1% of the initial conditions. 

Small-amplitude seasonally forced transmission rates can regulate the season 

length to an average of one year if the season length of the unforced model Ln (A = 0) is 

not far from one year. This is similar to the result of Dushoff et al. [2004]. However, 

when Ln(A = 0) is far from one year, the dynamics of the season length may be 

chaotic, even if the seasonal force is small. 

The extend to which stochasticity of the mutation process will destabilize the 

attractors of the season length is an interesting open question. 

Our model ignores migration, which is critical to the results. With migration, 

the phylogeny would not be linear. This will greatly affect the two-strain competition 

model. Very large mutation rates invalidate the linear phylogeny as well, because a 

strain will produce multiple coexisting mutants in a season. 

To generalize this model to cases other than linear phylogeny will be a valuable 

improvement. The improved model could then be coupled to a patch model. Such 

a patch model may provide useful insights into how spatial heterogeneity affects the 

evolution of influenza. 
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