
DISSERTATION ABSTRACT 

The quasi-steady state optimization of a single tubular fixed 

bed chemical reactor with a slowly decaying catalyst is considered. 

The optimal choice of temperature T(z,t) distributed in both the space 

of the reactor and in chronological time is sought so as to maximize the 

total amount of reaction in a fixed given period of time. A single 

irreversible reaction is considered with a rate expressible as a product 

of separate functions of temperature, a~tivity and conversion. The rate 

of catalyst decay is also a product of separate functions of temperature 

and activity but independent of conversion. Upper and lower bounds are 

placed on the permitted temperature. Theoretical characterization of the 

optimal policy is obtained using Sirazetdinov and Degtyarev•s maximum 

principle derived for first-order partial differential equations and the 

influence of the ratio of reaction activation energy to catalyst deactiva

tion energy on the derived optimal policy is indicated. Numerical 

calculations are presented to illustrate the optimal policies. 



OPTIMIZATION BY DISTRIBUTED CONTROL OF REACTORS WITH DECAYING CATALYST 


The contribution of chemical engineering to the industrial 

scale development of processes in the chemical and allied indus

tries was initially attributable to the improved understanding it 

gave to the transport processes - fluid flow, heat transfer and 

mass transfer - and to the development of design principles for 

the unit operations and their control, nearly all of which are 

concerned with the physical separation of complex mixtures into 

their components. 

With a fair degree of success achieved in the physical separation 

processes, interest has moved very much towards the design and 

control of the reactor and of more industrial concern : the 

catalytic reactor. 

Chemical manufacture has become more demanding with a high 

proportion of the economic rewards to be obtained in the production 

of sophisticated chemicals. Profit margins have narrowed too, 

giving a far greater economic incentive co obtain che highest 

possible yield from raw materials and reactor design and control 

has therefore become a vital ingredient of the work of the 

chemical engineer. 

The phenomenon of irreversible catalyst decay is very common 

in the catalytic chemical reactor and the number of commercial 

processes in which catalyst decay is an important factor is legion. 

For this reason and since temperature constitutes a most important 

operating variable of such reactors there has been much recent 

interest in the optimization of catalytic decaying reactors with 

both uniform and non-uniform temperature profiles varying in time. 

The problem of optimally choosing the temperature T(z,t), 

as a function of time t and position z in the reactor, so as to 

maximize the total yield of product over a fixed time period for 

a reaction-deactivation system with a slow decaying catalyst has 

been formulated by a number of authors but as yet no analytical 

solutions are available. 



The significant feature of the present study is that using 

basically Sirazetdinov and Degtyarev's maximum principle formu

lation as the mathematical tool, for a tubular fixed-bed reactor 

and a quasi-steady state reaction-deactivation system, analytical 

expressions for the optimizing policies are obtained and charac

teristics of the optimal temperature controls identified. 

Results of this approach are that the strong influence of the 

ratio of reaction activation energy to catalyst deactivation 

energy on the derived optimal policy is indicated and that pro

perties of the optimal controls are used to reduce the computa

tional dimensionality in synthesizing the control policies. 
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The optimal choice of temperature T(z,t) distributed in both the 

space of the reactor and in chronological time is sought so as to maximize the 

total amount of reaction in a fixed given period of time. 

A single irrevers1ble reaction is considered with a rate expressible 

as a product of separate functions of temperature, activity and conversion. 

The rate of catalyst decay is also a product of separate functions of tempera

ture and activity but independent of con~ersion. Upper and lower bounds are 

placed on the permitted temperature. Theoretical characterization of the 
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CHAPTER I 


INTRODUCTION 


Heterogeneous chemical reactions, where the catalyst condition is 

sensitive to any integrated effect or past history of the operating conditions, 

are common industrial problems in both fixed and moving bed reactors. 

For such processes the catalyst activity decreases in chronological 

time under the effect of the operational conditions used but the rate of decay 

may be influenced by variations in the operating variables. 

Since both the instantaneous reaction and catalyst decay rates depend 

upon the reactor temperature, it often constitutes the most important operating 

variable available for the control of such reactors. 

There has been much recent interest in the optimization of reactors 

with both uniform and non-uniform temperature profiles varying in time and 

particular aspects of the research done in this field are discussed in section 

2.3 of Chapter 2. 

For a tubular fixed-bed reactor the current temperature profile in 

the reactor influences the whole future of the reaction by leaving its imprint 

on the catalyst activity profile. The problem of optimally choosing the tempera

ture T{z,t), as a function of time and position in the reactor, so as to 

maximize the total yield of product over a fixed time period has been formulated 

for the quasi-steady state reaction-deactivation process by Volin and Ostrovskii 

(1964, 1965b), Jackson (1965, 1966, 1967) and recently by Ogunye and Ray (l969a), 

but as yet no analytical solutions are available. 

1 
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The maximum principle of Rozonoer (1959) or Pontryagin et al. (1962) 

is not applicable to a problem of this type with two independent variables z 

and t and this is discussed in -sections 2.1 and 2.2 of Chapter 2. 

Although an analogous principle can be found [Jackson (1966)] it has 

not proved possible to obtain the optimum policy directly by using it as a 

necessary condition. Ogunye and Ray (1969a) also gave a weak form of a maximum 

principle for this case but as yet no investigation of the form of the optimizing 

policy for this problem has been reported other than computationally by Jackson 

(1965, 1967) who considered a reversible exothermic reaction. 

That is,no direct analog of the analytical characterization of optimal 

policies as obtained for uniform temperature reactors, as discussed in section 

2.3 of Chapter 2, is available. 

The significant feature of the present study is that using basically 

Sirazetdinov and Degtyarev's (1967) maximum principle formulation, for the 

quasi-steady state reaction-deactivation process, analytical expressions for the 

optimizing policies are obtained and characteristics of the optimal controls 

identified. 

Results of this approach are that the strong influence of the ratio 

of reaction activation energy to catalyst deactivation energy on the derived 

optimal policy is indicated and that properties of the optimal controls are 

used to reduce the computational dimensionality in synthesizing the control 

policies. 

Chapter 3 discusses in detail the problem to be considered and the 

theory associated with the solution of such optimization problem is fully exposed 

in Chapter 4. 

Chapter 5 represents the core of the thesis since properties of the 
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optimizing policies are stated and proved there. 

Chapter 6 serves to illustrate the control policies recognized in 

the earlier chapter. 

Finally Chapter 7 summarizes the results and conclusions obtained 

throughout the thesis. 



CHAPTER 2 


LITERATURE SURVEY 


2.1 Optimal Control Theory and Lumped Parameter Systems 


Contributions to the theory of optimal control have been concerned 

primarily with processes whose dynamic behaviour can be adequately described 

by a set of ordinary differential equations. These systems are referred to 

as lumped parameter systems. 

The two theoretical approaches to the control optimization problem 

for such systems have been Bellman•s (1957) dynamic programming method which 

is based on his principle of optimality and Rozonoer (1959) or Pontryagin•s 

(1962) maximum principle which can be viewed as an extension and application 

of the classical calculus of variations to the optimal control problem. 

The advantages and shortcomings of each method have been broadly 

discussed elsewhere [Roberts (1964), Pontryagin et al. (1962)]. It is worthwhile 

mentioning, however, that a major advantage of the maximum principle as well 

as other variational techniques, is that many characteristics of the optimum 

path may be determined without solving the entire problem. 

2.2 Optimal Control Theory and Distributed Parameter Systems 

While many physical systems have a spatial energy distribution 

sufficiently aggregated during the course of motion described by ordinary 

differential equations, there are systems for which energy relationships are 

important, not only as a function of time, but, in addition, as functions of 

one or more spatial variables. 

4 
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These systems are called distributed parameter systems and are most 

naturally described by sets of partial differential equations, integral equations 

or integra-differential equations. 

However, optimal control problems for these systems cannot be solved 

directly with the aid of Rozonoer {1959) or Pontryagin's {1962) maximum 

principle developed for lumped parameter systems. 

Extension and generalization of the maximum principle to distributed 

parameter systems started only recently. 

Most of the earlier work in this area has been carried out in the 

Soviet Union and a comprehensive survey of soviet publications on optimal control 

theory and its practical applications to such systems has been given by 

Butkovskii, Egorov and Lurie {1968}. 

A brief review is given below of the most important works pertaining 

to the establishment of a maximum principle as a necessary condition for 

optimality of distributed parameter systems described by partial differential 

equations. 

2.2.1. Partial Differential Equations 

One of the earliest and most persistent investigators of optimal 

control of distributed parameter systems was Butkovskii. His earlier publications 

attempted simply to define certain types of control problems that might arise. 

Butkovskii with Lerner subsequently considered the optimal control of a class 

of systems described by a set of non-linear integral equations, which result, 

in general, from the solution of partial differential equations. Butkovskii 

derived a maximum principle {in the sense of Pontryagin) embodying the necessary 

conditions for optimality of such systems. However, his results require before
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hand the explicit solution of the system equations, thus restricting the results 

to linear systems. An account of this wark may be found in the recent book 

of Butkovskii (1969). This deficiency was removed by Katz {1964) who formulated 

a general maximum principle which could be applied to first-order hyperbolic 

systems and parabolic systems, as well as lumped parameter systems, and did 

not depend on the a priori representation of the system by integral equations. 

The generality of this functional analysis approach leads to some practical 

difficulty in implementation, because the adjoint operator must be constructed 

for each specific case. 

At about the same time Egorov {1964, 1965, 1966, 1967) treated the 

optimal distributed control problem of a process described by second-order 

parabolic, hyperbolic and elliptic quasilinear partial differential equations. 

He extended Rozonoer's variational approach (1959) and obtained a maximum 

principle. These necessary conditions for optimality were shown to be also 

sufficient when the process is linear. 

A comprehensive look at many properties of distributed parameter 

systems was given by Wang (1964) who introduced the concept of controllability 

and observability and derived necessary conditions similar to those of Katz (1964) 

and Egorov (1964) based on dynamic programming. His results are difficult to 

use since he obtains an implicit expression for the optimal control function in the 

form of a functional non-linear partial differential equation. 

Sirazetdinov {1964) studied the optimal control of processes governed 

by a quasilinear first-order partial differential equation with n° + 1 independent 

variables z and t but only one dependent variable ~0 {z,t), 
~ ~ 

{2-1 ) 
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He derived a maximum principle as a necessary condition for optimality 

for cases in which the control functions are distributed both in time and space 

or only in time or space domain of the system. This maximum principle is 

also shown to be a sufficient condition for optimality of linear processes. 

Jackson (1966} studied optimization problems where the system is 

described by two first-order partial differential equations but for the general 

case where the integral to be extremized is taken around a closed curve in the 

plane of the independent variables, and that this general closed curve includes 

finite straight segments parallel to the characteristic lines of the differential 

equations. 

Variational theory and its extension were used by Jackson (1966) 

in this two-part work to show that a necessary condition for the control 

vector u to maximize the integral around such a curve could be framed up as 
~ 

.. the requirement that the control vector u be chosen at each point of the 
~ 

domain such as to maximize a certain Hamiltonian function of the control vector .. : 

a maximum principle picture. However, these conclusions were derived only for 

the unconstrained control vector considered in that study. 

In his dissertation Chang (1967) considered the optimal control of a 

system of simultaneous first-order partial differential equations in two 

independent variables z and t but for n' dependent variables ~(z,t) and obtained 
~ 

a maximum principle. That is for system of the form, 

(2-2) 

with i =1, ••• ,n•. 
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The proof of the maximum principle lies essentially in, 

i - the derivation of a formula for the incremental change of the 

function arguments corresponding to an arbitrary but admissible 

variation in the control vector u, 
"' 


ii - the estimate of the second-order increments of the functions involved, 

iii - the establishment of the theorem through proof by contradiction. 

The method closely follows that of Rozonoer (1959) for a system 

of ordinary differential equations and that of Sirazetdinov {1964). 

An independent work by Oegtyarev and Sirazetdinov (1967) proved a 

maximum principle to be a necessary condition for the control optimization of 

a one-dimensional distributed process described by a set of simultaneous quasi

linear first-order partial differential equations of the following type, 

a~. _, + (2-3) 
at 

with i=l, ••• ,n•. 

The proof of the maximum princip1e follows essentially the same basic 

steps cited earlier. In both approaches the control vector u(z,t) is sought
"' 

in the class of piecewise-continuous functions with a finite number of lines 

of discontinuity and may lie in a closed or open region U. The maximum principle 

established there is shown in both studies to be also a sufficient condition for 

optimality when system {2-3) is linear with a linear functional to be extremized. 

A theoretical extension of Sirazetdinov•s (1964) work has also been 

given by Tarassov {1968} and a maximum principle formulated for the system, 
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(2-4) 


with i=l, .•• ,n', and constitutes a generalization of system (2-2). 

The works noted above represent attempts to formulate a general 

maximum principle as a necessary condition for optimality of systems described 

by partial differential equations. 

2.3. Optimal Operation of Reactors with Decaying Catalyst 

2.3.1. Single Reactor with Uniform Temperature Profile 

The problem of determining the optimum variations of uniformly dis

tributed temperature with time in a single batch reactor (BSTR) and flow reactors 

of the CSTR and PFTR type during the life of the catalyst has been treated by 

Szepe {1966) using the Bolza form of the calculus of variations. The following 

types of rate equations were considered, 

rate of reaction = K[T] • F[X] • ~ {2-5) 

rate of deactivation = - k[T] • g[~J (2-6) 

with g[~J = ~m, F[X] = [1-X]n and both K[T] and k[T] of the Arrhenius form. 

X refers to the conversion for an irreversible reaction, ~ to the relative 

catalyst activity and T to temperature. The final catalyst activity ~(tf}, as 

well as the total time tf, was specified beforehand and the temperature was 

considered to lie between higher and lower limits T* and T*. Analytical 

characterization of the optimal policies is obtained. 

Chou, Ray and Aris {1967} also studied the uniform temperature tubular 

reactor control policy in time using the Euler-Lagrange equations of the calculus 
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of variations but failed to determine if the extremal policies thus identified 

were indeed optimal or not. Ogunye and Ray (1968) subsequently treated a similar 

problem for the tubular reactor using the maximum principle of Pontryagin et al. 

(1962) and showed that the simple optimal policies given by Chou, Ray and Aris 

(1967) were not optimal. The approach of Chou, Ray and Aris (1967) and Ogunye 

and Ray (1968) was to constrain the temperature at or below a specified tempera

ture T* and the conversion at or above a specified X*. The total time tf was 

free to be chosen, subject to the constraints, so that the policy for irreversible 

reactions always ended at T = T* and X = X*. 

The most detailed treatment of a problem of this class for the tubular 

reactor is that of Crowe (1969) who, using the maximum principle of Pontryagin 

et al. (1962), also gave a comparison of the conclusions of the workers cited 

above and indicated the effect of the problem statement on the derived policy. 

He fixed the operating time period and placed upper and lower bounds, T* and T*, 

on the permitted temperature, but imposed no other constraints on the problem. 

Lee and Crowe {1969) also studied the influence of an arbitrary 

residence time distribution on the optimal policy derived for this problem. 

In addition reversible reactions [Drouin (1969)], parallel 

reactions [Rowbottom (1970)] and consecutive reactions [Alexander 

(1970)] has also been studied when the deactivation rate is of the 

form (2-6) with g[~J = ~m. 

The problem of catalyst decay where the deactivation rate is a 

function of the degree of reaction in the reactor, that is, 

rate of deactivation=$ [T,~,X] 

has been recently investigated by Crowe and Lee {1970) for the case of an 
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irreversible reaction occurring in a batch reactor (BSTR). The effect of 

conversion on catalyst decay and its influence on the derived extremal policy 

are indicated and the results obtained are compared with Szepe and Levenspiel•s 

(1968a) observation. 

A similar reaction-deactivation scheme but occurring in a CSTR has 

recently been studied and the inter-relation between the factorability of the 

function (2-7), 

+ [T,Iji,X] = - k[T] . g[ljl] • f[X] (2-8) 

and the derived extremal policy is indicated [Crowe and Therien (1971)]. 

2.3.2. Multiple Reactors with Uniform Temperature Profile 

The optimization of reactors with decaying catalyst but for a series 

of tubular fixed-bed reactors with uniform temperature was first studied by 

Volin and Ostrovskii (1965a). The problem was treated as a distributed 

parameter system and variational arguments were used to obtain necessary station

ary conditions for an extremum, but no bounds were placed on the permitted 

temperature. 

Crowe and Lee (1969) further examined this problem and retaining the 

use of Pontryagfn•s(l962) maximum principle extended the result of a previous 

study [Crowe (1969)] to several beds in series, each with uniform temperature 

and uniform catalyst activity. A single irreversible reaction with reaction and 

decay rates given respectively by (2-5) and (2-6} were considered and characteristics 

of the optimal policy identified. Upper and lower bounds were placed on the 

permitted temperature and the operating time period is fixed. 
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A general formulation for problems of this class has been given by 

Ogunye and Ray {1969b) where a distributed maximum principle for multi-bed 

reactors is derived. Analytic identification of characteristics of the 

optimal policy is no longer available and gradient methods are used to synthesize 

the extremal control policies. 

Extending their first study Volin, Ostrovskii with Finkelshtein {1971) 

very recently obtained necessary conditions for optimality in the form of a 

weak and strong distributed maximum principle. 

2.3.3. Single Reactor with Non-Uniform Temperature Profile 

When the problem is generalized by eliminating the assumption that the 

reactor is uniform in temperature, the temperature may become a function of 

position in the reactor, as well as time, and the maximum principle of 

Pontryagin et al. (1962) is no longer applicable. 

Such an optimization;problem has been first carried out by Volin and 

Ostrovskii {1964, l965b) who derived necessary stationary conditions for the 

optimal operation of a tubular chemical reactor based on calculus of variations. 

They considered the case where the temperature is distributed in both space and 

time but unconstrained. A steepest descent algorithm was proposed to solve the 

problem. 

The problem was also considered by Jackson (1965, 1967). The object 

of this study was to develop a criterion of optimality based on a variational 

method which could provide the basis of a computational procedure to solve for 

the extremal temperature policy. An optimizing algorithm based on gradient 

in function space is derived and results of some preliminary computations for 

the case of a reversible exothermic reaction is reported. 
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The derivation of a weak form of a maximum principle which could treat 

a problem of this class has recently been given by Ogunye and Ray (1969a). This 

result states that the Hamiltonian like function arising from such variational 

analysis be a maximum at boundaries and simply stationary for interior values 

of the optimal decision. Since no second-order necessary condition is considered 

in their derivation, the stationary condition alone does not guarantee that the 

Hamiltonian is a maximum for interior points of the decision function, and, 

this result is significantly weaker than the condition that the Hamiltonian 

takes its absolute maximum value when evaluated for the optimal decision 

function: a strong form of the maximum principle as derived by Rozonoer (1959) 

or Pontryagin et al. (1962) for lumped systems. An efficient computational 

algorithm is presented and several detailed numerical examples are worked out. 

No consideration is given to the analytical characterization of an optimal 

policy and the problem of best choosing the temperature T(z,t} in both space 

and time is not treated. 



CHAPTER 3 

CATALYTIC REACTOR SYSTEM 

3.1. Tubular Fixed-Bed Catalytic Reactor 

A tubular fixed bed catalytic chemical reactor consists in its 

simplest form of a cylindrical tube packed with pellets of catalyst through 

which reactants are passed and converted into products in an amount depending 

upon the controlled parameters of the system. In general, industrial catalytic 

reactors use catalyst particles that are small compared to the overall geometry 

of the reactor itself, and therefore it has been customary to write continuum 

models for the interstitial fluid. The particle itself is considered as a 

continuum imbedded in a field of concentration and temperature, the particle 

being small enough so that it may be assumed the fields with which it interacts 

are uniform. The system as a whole has been described by non-linear partial 

differential equations of great complexity [Amundson (1970)]. 

However, when the analytical description of the process is not readily 

solvable another customary approach has been to consider the reaction system as 

a pseudo-homogeneous one where the equations are written as though the system 

did not contain the solid catalyst phase. This approach simplifies the 

equations describing the system, however not without a price, for the correspondence 

of the real and equivalent systems depends upon how completely the effects of 

the solid phase can be included in the equivalent homogeneous equations 

[Petersen (1965)]. 

Nevertheless, when the heat and mass transfer between the catalyst 

and the fluid phase is very rapid and when the reactor tube has enough catalyst 

14 
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particles per unit volume that a continuum representation is adequate this 

simplification is reasonably justifiable. 

The continuity equation in terms of molar units for a component i 

in some reactor element may be written, 

(3-1) 

where ci is the molar concentration of species i, vis the molar average velocity, 


Ji is the molar flux of species i relative to the molar average velocity and 


Ri is the molar rate of production of species i. When the density of the reacting 


fluid is nearly a constant for the range of operations considered, 


V • Ci V = V • V Ci (3-2) 

and if flow component is considered in the flow direction along the axis of the 

tubular reactor only, 

ac. 
v • v ci = v • a~· (3-3) 

Now when the axial diffusion is negligible and that no radial concentration 

gradient exists, 

(3-4) 

and finally (3-1) may be rewritten, 

{3-5) 
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For a single chemical reaction, the rate of reaction Ri may be 

expressed as a function of temperature T(z 1 ,t'), chemical conversion X(z',t') 

and catalyst relative activity ~(z',t'}, 

Ri = o [T ,X, ~] (3-6) 

and (3-5) formulated, 

ax axat' + v • azr = o [T, X,~] (3-7) 

The pseudo-homogeneous rate of an irreversible chemical reaction 

A~ B is expressed in this study as the product of separate functions each 

depending on only one of the state or decision variable, and, 

o [T,X,~] = K'[T]. F[X]. ~ (3-8} 

Weller (1956} has shown that this product of functions is compatible 

with much more complex forms of the rate of reaction and that in some cases 

it is a better representation. Therefore (3-7) may be written with (3-8), 

ax axw + v . azr = K • CTJ • FCxJ • ~ (3-9) 

z' is the distance along the bed, Z1 £[0,L] where L is the length of the bed, 

and t' is the chronological time, t'£[0,tf ], since start-up of the reactor 

with tf representing the terminal reaction time. 
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The function K'[T(z',t')] is assumed of the Arrhenius form and then is 

a positive continuous strictly monotonic increasing and differentiable 

function of temperature T(z',t'), that is, 

K' [T] = K • exp {- ER/(R. T)} (3-10)0 

with K
0 

and R representing constants and ER the reaction activation energy. 

The function F[X(z',t')] is considered a continuous, generally non-linear 

monotonic decreasing function of conversion X(z',t'), or a constant, such that 

for, 

o ~ X(z',t') ~ 1 (3-11) 

then 

o ~ F[X(z' ,t')] ~ 1 (3-12) 

and F[X] is twice continuously differentiable with respect to its argument. 

The relative effectiveness of the catalyst is measured by its relative activity 

•Cz',t') defined as, 

= rate of reaction using catalyst in a given condition•<z',t') rate using fresh catalyst, or catalyst in a reference state 

(3-13) 

Anderson (1968} recently stressed the importance of characterizing 

the relative catalyst activity in this manner since the combined effect of 

operating condition, type of contacting pattern and the kinetics itself are 

eliminated. 
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Natural spatial and time boundary conditions for equation {3-9) 

are 

X{o,t') =X (t') {3-14)
0 

with 

X{z',o) = x1{z') {3-15) 

where X {t') and x1(z') are given and may in general be piecewise continuous 
0 

functions of t' and z' and have piecewise continuous first derivatives with 

respect to t' and z' along their respective boundaries of the plane considered 

T = fO X Z0 = [o,tf] X [o,l], but With a finite number of discontinuities there. 

However, when the space time (time required to process one void reactor 

volume) is small {minutes or seconds) compared to the average time of total 

decay of the catalyst (days or hours), the change in relative activity 

o~{z',t') over a space time is very nearly negligible, and the quasi-steady state 

approximation is validated {Appendix F), 

ax. axw « v.azr (3-16) 

then equation {3-9) may be written for the quasi-steady state reaction

deactivation process, 

v • azrax 
= K • crJ • FCxJ • ~ {3-17) 

with the natural boundary {3-14). 
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3.2. Catalyst Deactivation 

While the process of catalyst deactivation is a complex phenomenon, 

nevertheless various general types of mechanisms contributing to deactivation 

can be identified and have been extensively mentioned in the literature. Loss 

in activity may be due to sintering, fouling or poisoning of the catalyst. 

Sintering is often encountered in practice and is due to loss in 

activity through structural changes in the catalyst itself and is an irreversible 

process. It is mainly caused by unfavorable operating conditions. In particular, 

a high level of temperature may cause localized melting of the catalyst, hence 

a reduction of its active surface. 

Fouling is a rather common problem in the hydrocarbon processing 

industry and is caused by side reactions which develop with the reactants and/or 

products formed by the main reaction. Carbonaceous compounds formed by these 

side reactions deposit and accumulate on the catalytic surface and block the 

diffusion of reactants into porous pellets. 

Poisoning refers to a process where impurities in the feed of reactants 

to the reactor reduce the active surface by preferential adsorption or surface 

reaction. 

3.2.1. 	 Quantitative Characterization of Catalyst Decay 

A multitude of cases relating quantitatively the degradation of a 

catalyst condition and number of models have been presented in the literature. 

The unified interpretation of these studies offers two major difficulties 

and 	 have been discussed by Szepe (1966): 

one consists in the way authors have expressed or defined the catalyst 

condition or activity, 
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the second is that the functional form relating the catalyst 

condition has been often reported, mainly in the early literature, 

explicitly as a function of time on stream. 

This latter observation is more serious since it is based on integral 

measures only, such as the outlet conversion of a reactor, and thus gives a 

descriptive image of the catalyst activity with time but averaged over the 

whole reactor. local characterization of the catalyst condition may however 

be assured using functional forms relating the relative activity to the local 

concentration of adsorbed or deposited materials on the catalyst [Anderson and 

Whitehouse (1961)]. A number of equations for expressing the relative activity 

as a function of the concentration of the adsorbed or deposited species on a 

catalyst have been reported in the literature. The most recognized forms of 

decay have been linear, exponential or hyperbolic in form and experimental 

evidence of such results may be found in the works of Takeuchi et al. (1966) and 

Ozawa and Bischoff (1968). 

A simple but theoretically acceptable and satisfactory form for the 

rate of deactivation has been shown by Szepe (1966) to be describable similarly 

to a chemical reaction rate expression and to be a function of the operating 

and catalyst condition, 

rate of deactivation = - k'[T] • f[X] • g[~J (3-18) 

with the simplest possible but still admissible form, 

rate of deactivation = - k'[T] . g[~J (3-19) 

where g[~J of the power form, 

g[~J =~m (3-20} 
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and k'[T] of the Arrhenius form, 

k'[T] = k
0 

• exp {- Ec/(R.T)} (3-21) 

The pre-exponential factor k and R are constants and Ec the catalyst 
0 

deactivation energy. The parameter m in (3-20) is called the dea~tivation order. 

More complex deactivation processes may however exist for which 

expression {3-19) or even (3-18) may not be a true representation [.Wheelerand Robell 

(1969)]. Nevertheless, these expressions may be a satisfactory first approxima

tion to many such complex deactivation processes. 

Szepe (1966) found that five different types of deactivation equations 

most currently referred to in the literature, including the linear, exponential 

and hyperbolic form and obtained on the basis of experiments, are all special 

cases of expression (3-19) with g[~] given by (3-20). 

An analysis of the published data by Szepe and Levenspiel (1968b) 

shows that cracking catalyst deactivation can be well described by expression 

(3-19) with the power form (3-20) where m is usually close to 3. Levenspiel 

and Szepe (1971) have also shown that this kinetic form is consistent with and 

can be explained by the mechanism of progressive deposition of carbon at the 

mouth of catalyst pores. 

A systematic experimental investigation of sintering on industrial 

catalyst by Schlaffer et al. (1957) and later by Maath and Mascou (1965} has 

shown, under all conditions studied, that the rate of decline in the catalyst 

active surface is most satisfactory described by a function of the power 

form such as (3-19} with (3-20). The parameter m averaged nearly a constant 

value of 4 when thermal sintering alone was considered and has been reported 
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by Schlaffer et al. for a silica-alumina catalyst. A value of m = 2 was 

proven satisfactory in the later study of Maath and Mascou on a platinum 

reforming catalyst. 

Recognizing the importance of retaining in this study a simple but 

admissible functional form for catalyst deactivation, the rate of change of the 

catalyst relative activity is written, 

~t• = - k'[T] • g[~] (3-22) 

where the function g[~(z',t')J is considered a continuous, generally non-linear 

monotonic increasing function of relative activity ~(z',t'), or a constant, such 

that for 

o' ~(z' ,t')' 1 (3-23} 

then 

o ~ g[~(z',t'}J' 1 (3-24} 

and is twice continuously differentiable with respect to its argument. The 

function k'[T(z',t')] is assumed of the foi~ (3-21) and is then a positive 

continuous strictly monotonic increasing and differentiable function of 

temperature T(z',t'). 

A natural time boundary condition 

~{z',o) =~ 0 (z'} (3-25) 

where ~0 (z'} is given and may in general be a piecewise-continuous function of 

z' and has a piecewise-continuous first derivative with respect to z' but with a 

finite number of discontinuities. 
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3.3. 	 Formulation of the Optimization Problem 

Defining for convenience the transformations, 

(3-26) 

and~ 

(3-27) 


with 

K[T] = tf • K'[T] (3-28) 

k[T] =tf • k'[T] 

then the variables Z£[0,1], t£[o,l], K[T] and k[T] have been made dimensionless. 

The unsteady state catalytic reactor system may then be written with t 0 = {L/v}, 

t 
;~ + (~) • ~~ = K[T] . F[X] • l/J = n (3-30) 

and the quasi-steady state system, 

tf ax
{t) . az = K[T] • F[X] • 1/J = n 	 {3-31) 

e 

with the rate of decay, 

~ = - k[T] . g[l/J] = ~ (3-32} 

The corresponding initial and boundary cont:iitions being, 

(3-33) 


X(z~o) = 	x (z) (3~34)
1 

1/J(z,o) = $ (z) (3-35)
0 
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3.3.1. 	The Control Alternative 

The temperature sought is constrained by some upper and lower bounds, 
* .T and T*, such that, 

T* ~ T(z,t) ~ T* 	 (3-36) 

which may be imposed from physical, legal or profit considerations. Since by 

assumption, K[T] and k[TJ are both of Arrhenius form, from (3-10), (3-21), (3-28) 

and (3-29), 

(3-37) 

with, 

(3-38) 


and p represents the ratio of reaction activation/energy to deactivation 

energy, 

(3-39) 

and since k[T] is a strictly monotonic increasing function of temperature T(z,t), 

the temperature is replaced more conveniently as a decision variable by k[T], 

that is corresponding to (3-36), 

k* ~ k[T] ~ k* 	 (3-40) 

where k* = k[T•] with k* = k[T*J from (3-21) and (3-29}. 
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3.3.2. 	 The Quasi-Steady State Problem_ 

The precise statement of the optimization problem for the quasi-steady 

state reaction-deactivation process is: as follows: 

Given the system equations: (3-.31) and (3"32). 

Given the initial and boundary conditions: (3-33) and (3-35). 

Given the control constraint:· (3~40), 

maximize the total amount of reaction from the reactor shown in Figure 3-1 

over a fixed reaction time, by choosing the rate constant k[T(z,t)], hence 

T(z,t), at every instant t£[0,1] and any position Z£[o,l] along the reactor 

length, that is, 

1 
J+ = max.J = max X(1 •t) - x0 ( t) l • dt (3-41}J{

k[T(z,t)] k[T(z,t)] o 
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CHAPTER 4 


OPTIMAL CONTROL THEORY 


4.1. Formulation of a General Optimization Problem 


Let a proc~ss take place in a bounded region t, 

{4-1) 

and let it be described by the following system of first-order partial differ

ential equations, 

a ti{z,t) n' a t.(z,t) 
at + .I: aiJ.{z,t) -~~--z-- = fi(z,t,t, u) i=l ~· •. ,n' {4-2)

J=l ~ ~ 

where the n'-dimensional vector, 

t = t(z,t) = {4-3) 
~ 

is the vector function describing the state of a process at any point {z,t) e t. 

The coefficients aij(z,t) are real and continuous functions of z and t and 

continuously differentiable with respect to them in t. The n' x n' matrix of 

the coefficients is assumed to define system (4-2) as a totally hyperbolic 

system in the whole of t {see Appendix A). 

The r-dimensional vector, 

{4-4) 

27 



28 


is the control vector distributed in z and t of r. 

The optimal control vector, 

(4-5) 

belonging to a closed set U, 
I 


I 


+ *u* ~ u (z,t) ~ u (4-6} 
"' "' "' 

will be sought in the class of arbitrary piecewise continuous controls, i.e., 

controls u(z,t) which are continuous for all z,t under consideration, with 
"' 

the exception of only a finite number of lines of discontinuity in t at which 

the controls u(z,t) may have discontinuities of the first kind. Recalling that 
"' 

discontinuities of the first kind imply the existence of finite limits for the 

values of the controls at both sides of a line of discontinuity, controls 

satisfying the above conditions will be called admissible controls. 

Each, generally non-linear, ith component of the n-dimensional vector 

function, 

f =f(z,t,~,u) = {f1 (z,t.~,u), ••. , fn,(z,t,~,u)} (4-7)
"' "' "' "' "' "' "' "' 

is a twice continuously differentiable real function with respect to the control 

vector u(z,t) and the state vector ~(z,t} in t, and also a real, continuous 
"' "' 

function of the explicitly appearing independent variables z and t. 

The initial and boundary conditions associated with system (4-2) 

are, 
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i=l , ••• ,n' {4-8) 

i =1 , ••• ,n • (4-9) 

where the ith component of the vectors a and a may in general be piecewise 
"' "' continuous functions of z and t and have piecewise continuous first derivatives 

with respect to z and t along their respective boundaries of T. That is, the 

components ai(z) and si(t) are continuous functions and have continuous first 

derivatives with z and t respectively for all z £ zO and all t £ ~ under 

consideration, except for a finite set of points on Z0 and~. where ai{z) 
d a (z) d a (t)

and/or a! and ai(t) and/or al may have discontinuities of the 

first kind. 

If an admissible control vector u(z,t) is specified in the whole of T, 

"' system (4-2) with the available initial conditions (4-8) and boundary conditions 

{4-9) may be shown to possess a uniquely detennined solution vector ~(z,t)
"' 

in the whole of T (see Appendix A). 

On the set of such solutions, the following functional is defined, 

I = G1 [~(z,t),u(z,t)] dz dt + 
"' "' 

(4-10) 

tf tf 

+ J G2[~(z0 ,t)] dt + J G2[~(zf, t)] dt 

to to 

where G1, G2, G2 and G3 are twice continuously differentiable real functions 

with respect to their arguments. 
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The optimal distributed control problem is then defined as: 

''Find an admissible distributed control vector u +(z, t) that 
"' 

makes the functional I a minimum" 

4.2. Formulation of a Maximum Principle 

Introduce the following scalar function, 

n' 
H(z,t,t,~,u) = - G1[t,u] + r ~ 1 (z,t) • fi(z,t,!,~) (4-11) 

"' "' "' "' "' i=l vv 

where the costate variables ~i(z,t) satisfy the set of equations, 

n' a{aij(z,t).~i(z,t)}. _ a H(z,t,~,t~~) 
+ r j=l , .•• ,n' az a tj(z,t)i=l 

( 4-12) 

with the associated terminal and boundary conditions, 

a G3[~(z, tf)] 
= - i=l , ••• ,n' 

a ti(z,tf) 

(4-13) 

and 

a G2C~(zf, t)] 
=- j=l , .•. ,n'

a tj(zf,t) 

(4-14) 

where the vector functions ~(z,tf) and ~(zf,t) are unspecified. Here, the 

vector functions ~(z,t) and ~(z,t) represent the solution of the boundary-value 
"' "' 
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problem defined by equations (4-2), (4-8), (4-9), (4-12), (4-13) and (4-14) 

corresponding to the specified admissible control vector u(z,t) in •· 
"' The scalar function (4-11) plays a role similar to the Hamiltonian 

function of the maximum principle of Pontryagin et al. (1962). An admissible 

control vector u+(z,t) £ U is said to satisfy the maximum condition if: 
"' 

+ + +H[z,t,t (z,t),~ (z,t), u (z,t)J
"' "' "' 

= supremum H[z,t,t+(z,t), ~ +(z,t), u(z,t)] (4-15)
"' "' "' 

u(z,t) £ U 

"' 

where t+(z,t) and ~+(z,t) are the solutions of the boundary-value problem defined 
"' "' by equations {4-2), {4-8), (4-9), (4-12), (4-13) and (4-14) using control 

vector u+(z,t). 
"' The necessary condition for an admissible control vector to be optimal 

in the whole of • is given in the following theorem [Sirazetdinov and Degtyarev 

{1967)]: 
11 1f an admissible control vector u(z,t) defined on • is to yield a 

"' 
minimum of functional (4-10), it is necessary that the admissible 

control vector u(z,t) £ U satisfy the maximum condition (4-15) 
"' everywhere in • except possibly on a subset 6 • 0c • whose measure is 

zero. 11 

If both system (4-2) and functional (4-10) are linear, this theorem 

becomes a necessary and sufficient condition for optimality. 

A detailed proof of the theorem is given in Appendix B. 
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4.3. A Global Maximum Condition 

The maximum condition (4-15) expressed in the previously stated 

theorem may also be conveniently written, 

+ + + + +
H[z,t,~ ,w ,u J ~ H[z,t,~ .~ ,u] (4-16) 

~ ~ ~ ~ ~ ~ 

for all u(z,t) £ U. 
~ 

Since for fixed values of ~+(z,t) and ~+(z,t) at any chosen point 
~ ~ 

(z,t) £ T the function H becomes a function solely of the control vector 

u(z,t), the maximum condition (4-16) instructs us unequivocally to take at 
~ 

that point (z,t) £ T the greatest value of the function H globally with respect 

to all admissible control vectors u(z,t) £ U.- ~ 

Thus the maximum condition (4-16) provides a necessary test which 

determines globally over all admissible control vectors u(z,t) £ Uwhether 
~ 

or not any given control vector u(z,t) £ u is a candidate for optimality at 
~ 

a point (z,t) £ T. If the given control vector u(z,t) violates the maximum 
~ 

condition (4-16) there, one is assured that the control vector u(z,t) cannot 
~ 

be optimal at that point in T. 

On the other hand, the mere fact that a control vector u(z,t)£ U 
~ 

satisfies the maximum condition at that point is not enough to guarantee that 

u(z,t) is the optimal control vector. 
~ 

The reason is that the maximum condition (4-15) or (4-16) resulting 

from the maximum principle formulation is a necessary condition for the 
" optimality of a control vector u(z,t) £ U but is not, in general, a sufficient 
~ 

condition. Furthermore, the use of the maximum condition (4-15} or (4-16) in 

itself does not gUarantee that the greatest value of the function H with respect 
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to all admissible control vector u(z,t} £ U at a point (z,t} £ T corresponds 
~ 

to a unique control vector ~(z,t) £ U. 
~ 

For this reason, the set of control vectors u(z,t)£ Uwhich satisfy 
~ 

the global maximum condition at a point (z,t} £ T and are thus candidates for 

optimality will be referred to as the set of extremal control vectors, 

~ 

u(z,t) = {u1{z,t), •.• ,uP(z,t)l (4-17) 

If an optimal control vector u+(z,t) exists, then it belongs to the 
~ 

~ 

set of extremal control vectors U{z,t). Of course, more than one extremal 

control vector u(z,t} may be optimal, i.e., the optimal control vector 
~ 

u+{z,t) when it exists need not be unique. However, there may exist extremal 
~ 

A 

control vectors u(z,t) £ U(z,t) which are not optimal. 
~ 

Thus in applying a maximum principle in order to deduce an optimal 

control vector u+(z,t) £ U, one is faced with two major tasks: 
~ 

i -establish that an optimal control vector u+(z,t) EU exists. 
~ 

A 

ii - to find all extremal control vectors u(z,t}£ U(z,t). 
~ 

The first of these tasks requires knowledge of existence theorems for optimal 

control. 

4.3.1. Existence of Optimal Control 

Questions regarding the existence of optimal controls are complicated. 

Investigations and results pertaining to the existence of optimal controls for 

systems described by ordinary differential equations can be found in the works 

of Pontryagin et al. {1962), Roxin (1962), Markus and Lee (1961), Filippov {1963), 

Neustadt (1963}, Cesari (1965), LaSalle (1960) and Halkin (1965). 
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Most of these references deal with the existence of optimal controls 

when the state enters linearly into the ordinary differential equations. 

The most important works at present and pertaining to the existence 

of optimal controls in systems described by partial differential equations 

are undoubtedly due to Lions and his coworkers and to Cesari (1968). An account 

of this work may be found in the recent book of Lions (1968) and in the thesis 

of Bensoussan (1969). 

Most of the available results at present use measure theory and the 

concept of measurable functions in the derivation of the results. 

One 11 practical 11 shortcoming of these investigations is that they 

deal with the existence of optimal controls which are measurable functions. 

As Halkin (1964) has pointed out: 11 0ne must know measure theory in order to 

imagine a function which is not measurable... That is, continuous and piece

wise continuous functions are measurable functions, however, there are measurable 

functions which are neither continuous nor piecewise continuous. The search 

for existence theorems for optimal controls which are specifically piecewise 

continuous is much more 11 practical 11 from an efig,ineering point of view. 

Such an investigation has been conducted by Halkin (1965) regarding 

the existence of piecewise continuous time-optimal controls for linear-time 

varying systems. Halkin also conjectures that other existence theorems in the 

theory of optimal control could be similarly strengthened. 

It is doubtful, however, that it will ever be possible to state 

parallel, general existence results for the optimization problem stated in 

section 4.1, without relatively strong assumptions regarding the partial 

differential equations of the system, the control constraint set Uand the 

functional I. Nevertheless, results in that direction have been recently 
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provided by Cesari {1971) for some problems of optimization with distributed 

and boundary controls. 

When no existence theorem applies to the problem at hand one has 

to be content with presenting the best extremal control vector u{z,t} and 
"' 

relying on other knowledge about the problem to support the contention or 

at least the hope that it is the optimal control vector u+(z,t). 
"' 

4.3.2. Extremal and Optimal Controls 

The second task involves basically the solution of the state and 

costate equations {4-2) and {4-12) subject to their respective specified and 

transversality conditions {4-9}, {4-13) and {4-14) using the maximum condition 

{4-15) or a weaker local maximum condition as is discussed in section 4.4. 

The success of this endeavor depends to a large extent on whether 

or not it is possible to obtain a closed-form solution of the set of partial 

differential equations. If no closed-form solution is available, as often 

is the case, one must have recourse to a semi-analytical study of the problem, 

or, when even this is not possible, to a numerical method for solving the 

mixed end-point boundary problem. 

Optimization problems for which the set of extremal control vectors 

U{z,t) is finite for each and every point (z,t) e: t are corrmonly termed .. normal .. 

problems since the optimal control vector u+{z,t) if it exists can always be 
"' 

extracted, at least conceptually, out of such set. 

Obviously, if the set U(z,t) consists of a unique extremal control 

tvector 	u(z,t) e: u for each and every point (z,t) e: and if an optimal control 
"' vector u+{z,t} is known to exist in the whole of t, then,
"' 

all z,t e: 	 {4-18)t 
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defines an optimal control 	vector u+(z,t) uniquely determined in the whole of T. 
A "' If the set U(z,t) consists of one or many extremal control vectors u(z,t) at 

"' 
each and every point (z,t) e T, one must upon identifying each extremal control 

vector u(z,t) in T, compute the functional (4-10) associated with each of them 
"' 

and compare the corresponding numerical values in order to discriminate and 
.. 

determine the best extremal control vector u(z,t) E U(z,t). Thus when an 
"' optimal control vector u+(z,t) is known to exist, 

"' 

~+(z,t) = {~(z,t) e: U(z,t) j minimum I[~(z,t)]} (4-19) 

When more than one control 	vector u(z,t) e: u(z,t) gives the same numerical 
"' result for the functional I, then the optimal control u+(z,t), existing, is not 

"' 
unique in T. 

4.4. A Local Maximum Condition 

An 	 extremal control vector u{z,t)e: u is characterized at any (z,t) e: T 

"' by the fact that the maximum condition, 

AH ={H[u + Au] - H[uJ}~ 0 	 (4-20)
"' "' "' 

for all finite admissible control variationsAu, 
"' 

( U + AU) e: U 	 {4-21) 
"' "' 

Although this condition is conceptually useful in expressing the 

quality of extremal control vectors u(z,t) e: U, which are candidates for 
"' 

optimality, it may prove difficult, in general, to use it directly as a global 
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procedure for finding the eXtremal COntrol VeCtOrS U(Z,t)£ U at pointS (z,t) £ T. 

"' 
However, condition (4-20) validated for all changes Au consistent 
"' 


with condition (4-21) may be relaxed by using it to express the maximum condition 

that an extremal control vector u(z,t} £ Umust obey locally with respect to 
"' other control vectors u(z,t) £ u within some 

"' 
small neighbourhood of u(z,t}, that 

"' 
fs, 

AH ={H[u + ~u] - H[uJ}E 0 (4-22} 
' "' "' 


for all infinitesimal admissible control variations ~u, 

"' 

(u + cSu} £ u {4-23} 
"' "' 


Thus to find the absolute maximum of the function Hover all u(z,t}£ U, 
"' 

one need only compare the value of the function H corresponding to each of the 

comparatively few local maxima and pick the control vector(s) u(z,t) £ u 
- - "' 

corresponding to the largest value of the function H. 

The above scheme can be put to effect by constructing a test for 

local maxima. The key is the fact that only infinitesimal changes ~u need be 
"' 
considered. 

Since at any point (z,t) £ T the scalar function H is at least twice 

continuously differentiable with respect to the admissible control vectors 

u(z ,t) £ U, a Taylor's series expansion of expression (4-22) would give,
"' 
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r r 
+ l E 	 E a aH (4-24)

2 i=l j=l au1 • auj 

4.4.1. 	 Interior Points 

Now for an extremal control vector u(z,t) E (u.,u*), small control 
"' 	 "' "' variations ~u satisfying condition (4-23) may be arbitrarily either positive 

"' or negative. As 6u ~ 0, first-order variations of H will predominate and a 
"' 

necessary condition for a local maximum is that, 

aH = 0 	 (4-25)au
"' u 

"' 
When this condition is met, equation {4-24) reduces to, 

r r
AH = 1 t E a aH ~ ~ 	 + 0 [(~u)3J {4-26)• uUi • uUj ~ f i=l j=l 	 au1 • auj 

,u.u~ ,, J 

Letting ~u 	~ 0, since e[{ou)3J goes faster to zero than e[(ou)2J and 
"' "' 	 "' provided second-order variations of Hare not all zero, these will predominate 

and an additional condition is that, 

{4-27) 
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in order that a local maximum condition (4-22) be met. 

4.4.2. 	 Boundary Points 

When an extremal control vector u(z,t) = aU, where aU represents 
"' the boundary of the set of admissible control vectors U, small control variations 

6u are no longer arbitrary in regard to polarity, and, 
"' 

(4-28) 


and 


(4-29)6Ui < 0 for 

must satisfy condition (4-23). 

Provided all first-order variations of the function H with respect to 

an extremal control ui(z,t), i=l, ••• ,r are not zero, they will predominate in 

equation (4-24) letting ou + 0, and, 
"' 

(4-30) 


becomes a necessary condition for condition (4-22) to be satisfied there. 

4.5. Linearity in Control 

An important special case of the optimal control problem defined 

previously is obtained when one or more components uk(z,t) of the control 

vector ~(z,t)E U enter the system equations (4-2) and function G1 of equation 

(4-10) in a linear manner. That is, when the ith component of the vector f for 
"' 
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the ith scalar equation (4-2) is written as, 

n m
f [z,t,~,u] = g1 [z,t,~,u ] + E uk • h.k [z,t,~,un] i=l, •.• ,n (4-31)1 ~ ~ ~ ~ k=l 1 ~ ~ 

and the function G1 expressed as, 

m 
G c~,uJ = G ·c~,unJ + r uk • Hk' C!,~"J (4-32)1 1~ "' "' "' k=1 vv 

with 

UR. = cu,(z,t), ••• , um(z,t)] (4-33) 
"' 
u" = [um+l (z,t), ••• , ur (z,t)] (4-34) 
"' 

and 

u =[u1 ,un] (4-35) 
"' "' "' 

The function H may then be written, 

n n n
H = A [z,t,~,w,u J + r uk • rk [z,t,~.w,u J (4-36) 

"' ~ "' k=l "' ~ "' 

and is linear in the control components uk(z,t) £ ~1 , with 

' n n= a,·c~,u"J+ r w;(z,t). g,.[z,t,~.u J (4-37) 
"' "' 1=1 "' "' 

and 


n 
rk [z,t,~.w.u"J = Hk'[~,un] + E w1.(z,t) • hik [z,t,~,un] (4-38) 

"' "' "' "' "' 1=1 "' "' 
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The functions rk[z,t,~.~.un] are called the switching functions for 
"'"'"' the component uk(z,t) t ~1 and represent the gradient of the function H with 

respect to uk(z,t) all other variables remaining constant. 

Thus if QCz,t) is an optimal control vector and if ~{z,t) and 

t{z,t) represent the corresponding state and adjoint variable extremal trajectories,
"' then in view of the function H defined in {4-36) and the maximum condition {4-15}, 

.. 
each component uk(z,t) t ~1 is formally given by, 

.. .. "n
for rk[z,t,~.~.u J > 0 

"'"'"' (4-39) 
#flo A An

for rk[z,t,~.~.u J < 0 
"'"'"' 

for k=l, ••• ,m and where uk* and uk* are respectively the lower and upper bounds 

on admissible values of uk(z,t) t U. Equation (4-39) may also be written in the 

alternate form: 

(4-40) 

for k=l, ••• ,m. 

Extremal controls of the form given in equation (4-39) occur frequently 

in practice and are commonly referred to as''bang-bang" controls. 

The switching function rk[z,t,$,~,un] is, in principle, determined as 
"'"'"' 

an explicit function of time and space by substituting equation (4-40) into 

the function H defined by equation (4-36) and solving the state and costate 

equations (4-2) and (4-12) subject to their respective initial and boundary 

values (4-8), (4-13), (4-9) and (4-14) and knowing the control vector un. 
"' 

http:rk[z,t,~.~.un
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This procedure when realized, should yield a well-defined piece

wise continuous control uk{z,t} as 'long as their switching functions 
.. ..n 

rk[z,t,~,~,u ] have only isolated zeros in T. 

"'"'"' 

4.5.1. Singular Problems 

While it is possible in some particular problems [Leitmann {1959)] 

to rule out the possibilities of a switching function (4-38) vanishing on a 

non-empty subset AT~ T, this cannot be done in general. 

In fact, there may exist an extremal control vectory u(z,t) distributed 
"' 

in the whole of T such that the corresponding state i{z,t) and costate ~{z,t)
"' "' extremal trajectories render one or more than one of the kth component of the 

switching function vector r to vanish on a non-empty subset A T. 

"' 
Therefore, in the process of selecting the optimal control trajectory 

u+(z,t), existing for all z,t e T, among the candidate extremal controls u{z,ti e u 
"' "' 
one must, to avoid overlooking qualified candidates, admit into competition 

all those control candidates which may possibly be characterized by this condition. 

It is characteristic of such an optimal control problem that when a 

switching function rk becomes identically zero over a non-empty domain A T s T, 

the function H defined in (4-36) no longer depends explicitly on the control 

variable uk(z,t) there, and the usual procedure of selecting uk{z,t) so as to 

maximize the function H breaks down. 

That is, the maximum condition {4-15) is trivially satisfied there 

and fails to provide an adequate test for the optimality of the control trajectory 

uk{z,t) in A T and correspondingly equations (4-39) and (4-40) fail to yield 

a well-defined control uk(z,t) in AT. Problems of that nature are referred to 

as singular. 
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Along extremal trajectories of the state and costate variables 

t(z,t) and ~(z,t) everywhere defined in T, the behaviour of each switching 
"' "' 
function rk, k=l, ••• ,m, may be classified into two distinct categories: 

i - the condition rk = 0 is satisfied along such extremal trajectories 

for all (z,t) belonging to non-empty open subsets 6 Tl £ ~ Tl where 

~ Tl <; .T represen-ts the union of these subsets. For all points 

(z,t) contained in each and every subset 6 Tl £ ~ Tl the extremal 

control uk(z,t) cannot be defined by equation (4-39). Such controls 

are referred to as singular. 

ii - the zeros of the particular switching function rk along such extremal 

trajectories are isolated in the whole of the subset ~ T2, where 

(4-41) 

and the extremal control uk(z,t) along such trajectories is well 

defined there according to equation (4-39). 

Therefore, extremal control policies uk(z,t) in T, k=l , •.. ,m, may 

consist only of "bang-bang" control policies, singular control policies or 

composite "bang-bang" and singular control sub-policies depending whether the 

set of points (z,t) £ T where the controls are defined belongs entirely to the 

subset ~ T2, ~ Tl or partly in both. 

Singular control candidates are characterized by the condition,.that 

in the interior of non-empty open subsets 6 Tl , the switching function 

rk' k £ [l,m], is identically zero and that all of its partial derivatives with 

respect to z and t, when they exist, are also zero: 
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q=1,2, ••• ; k £ [l, ••• ,m] {4-42) 

with 

q~1,2, ••• ; k £ [l, ••• ,m] {4-43) 

It should be stressed, however, that the existence of singular 

control candidates does not necessarily imply the existence of singular control 

sub-arcs to the optimal control problem [Johnson (1965)]. 

The possible appearance of singular control sub-arcs in the optimal 

control problem is accompanied by considerable analytical difficulty. 

Amajor problem is that at present there is still no generally 

applicable analytical method for the distributed parameter optimal control 

problem by which one can ascertain a priori whether a singular control candidate 

in 6 Tl actually represents any part of an extremal control trajectory in T. 

Also, since in general the points of transition from singular control 

sub-arcs to "bang-bang" control sub-arcs {and vice versa) must be determined 

from consideration of the mixed end-point boundary problem, no general analytical 

method is ava·i.£1aale for determining these control sub-arcs and the manner in 

which they form segments of the entire extremal control policy for both the 

lumped and distributed parameter control problems. 

Singularities have been known to appear in classical lumped parameter 

variational problems and the corresponding singular problem arising from the 

use of maximum principle ofPontryagin et al. {1962) has also been recognized 

[Johnson and Gibson {1963)]. 
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Research interest in this area has been mainly directed towards three 

major aspects of the problem, namely: 

i - the derivation of necessary and sufficient optimality conditions 

that must be obeyed on a singular sub-arc. 

ii - the establishment of conditions that must be necessarily met at the 

junction points where non-singular control sub-arcs join singular 

control sub-arcs (and vice versa}. 

iii - developing transformation techniques by which a singular problem might 

be transformed to a non-singular one. 

As a result of activities concerned with the first item, a necessary, 

but not sufficient, condition for a singular trajectory to be optimal with 

respect to an arbitrary piecewise continuous perturbation in the singular control 

sub-arc has been discovered by Kelley (1964). This condition was generalized 

subsequently by Robbins (1966), Tait (1965), Kelley et al. (1967) and Goh {1966) 

and is now commonly known as the generalized Legendre-Clebsch condition, or: 

q=l,2, ••• ; k £ [1,2, ••• ,m] (4-44} 

This result expresses the fact that for a specially chosen class of piecewise 

continuous perturbations in the singular control sub-arc, the second variation 

of the cost functional along a singular trajectory is strictly positive if and 

only if the inequality sign is satisfied. 

Using a different special control variation in the singular control 

sub-arc, Gabasov (1968, 1969) later obtained an additional necessary condition 

to the Legendre-Clebsch condition for the case of unconstrained terminal state. 
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This condition was also found, independently, by Jacobson (1969) whose treatment 

also included constraints on the terminal state. It has been recently shown, 

however, that both this additional necessary condition and the Legendre-Clebsch 

condition are still insufficient for optimality [Jacobson {1970b)]. 

Sufficient conditions for non-negativity of the second variation in 

singular and non-sinlular problems have been presented lately by Jacobson (1970a). 

These conditions in the form of equalities and differential inequalities are 

sufficient for a weak relative minimum of the cost functional. It is also shown 

that these conditions are applicable to totally singular, partially singular 

and non-singular control functions. 

A rather thOP.OUgh analysis has been carried out also for the linear, 

constant coefficient system with the performance index quadratic in the state 

[Kliger {1964),Wonham (1964)]. McOanell and Powers (1970) recently obtained a 

new Jacobi-type necessary and sufficient condition for these systems but for 

which the control trajectory is totally singular in the whole domain of the 

problem. 

All of these results pertain to lumped parameter optimal control 

systems, and, with the exception of a worthy but unsuccessful effort by 

Seinfeld {1967) to derive a corresponding Legendre~Clebsch condition for the 

distributed parameter optimal control problem, no other result pertaining to 

this latter field has appeared, to the author's knowledge, in the open literature. 

Activities relating to the second item have resulted in worthwhile 

observations by Kelley, Kopp and Moyer {1967) concerning the possibility of 

jump discontinuities in the control at the junction points of non-singular with 

singular {and vice versa) control sub-arcs. 
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Independent results and stronger necessary conditions have been given 

by Johnson {1965) using geometrical conditions which must be satisfied for the 

singular trajectory to be reachable by a non-singular trajectory corresponding 

to both limits of a non-singular control sub-arc. 

The latest contribution in that direction has been made by Seinfeld 

(1967) who extended Johnson's result to inc1ude consideration of a class of 

distributed parameter systems. 

Investigations pertaining to transformation techniques related to 

lumped parameter systems have been done by Kelley (1965) and Goh {1966) by which 

a singular problem may be transformed to a non-singular one, thereby allowing 

application of the classical necessary optimality conditions. However, the 

transformations required are often cumbersome and do not guarantee that a non

singular problem will result from its use. 

The most important question of synthesis of optimal controls in 

general non-linear problems in which singulari.ties may exist, except for 

recent computational algorithms by Jacobson and Lele (1970) for the lumped 

parameter systems and some computational effort by Seinfeld {1967) to distributed 

parameter systems, has largely been avoided. 



CHAPTER 5 


ANALYSIS OF THE OPTIMALITY PROBLEM 


The precise statement of the optimization problem for the quasi

steady state reaction-deactivation process is given in section 3.3.2. and 

represents a particular and simplified form of the general optimization 

formulation given in section 4.1. 

5.1. A Maximum Principle Formulation for the Quasi-Steady State Problem 

Treated in the format and nomenclature of the maximum principle 

enunciated by Sirazetdinov and Degtyarev (1967) and retaining for clarity 

the definition and nomenclature of the catalytic reaction-deactivation system 

given in Chapter 3, the equivalence resulting between the symbols is given in 

Table 5-1 for the general unsteady state process. 

With that set of definitions, the minimization of the functional I 

defined by equation (4-10) corresponds to the maximization of the cost functional 

J defined by equation (3-41}. 

The system equations (3-30) with (3-32) describing the unsteady 

state process and (3-31} with (3-32} for the quasi-steady state process are 

totally hyperbolic in the whole domain considered (see Appendix A) and the 

maximum principle formulation thus becomes for the unsteady state process, 

H[X,lji,>.,JJ,k] =A.F[X].K[k].ljl- JJ.k.g[ljl] (5-l} 

with the costate variables defined as, 

48 
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DESCRIPTION Sirazetdinov 
Degtyarev {1967) 

This Work 

Domain 

Independent Variables 

State Variables [n 

Costate Variables in 

Control Variable [r 

System Coefficients [n 

Functions [n 

Functional Components 

= 2] 

= 2] 

= 1] 

= 2] 

= 2] 

T = Z0 
X ~ 

To = [to,tf] 

zO = (zo,zf) 

z E: z0 

t e: T0 

4> 1{z,t) 

4>2{z,t) 

1/1, (z, t) 

1/1 2{z,t) 

]..1 1(z,t) 

a11 (z,t) 

a12 (z,t) 

a21 (z,t) 

a22 (z,t) 

f1 [z,t,~,~] 
f2 [z,t,~,~] 

G, Lt,J~) 
G2f$(z0 ,t)] 

G2[~(zf,t)] 

G3 [~(z,tf)] 

-r=Z0 xT0 

T0 = [0,1] 

z0 = [O,l] 

z e: z0 

t c: T0 

X(z,t) 

1/l{z,t) 

).(z,t) 

]..I(Z,t) 

k{z,t) 

(tf/te) 

o. 

o. 

0. 

1/J. K[k]. F(X] 

- k.g[1/l] 

0. 

X(b,t) 

- X(l ,t) 

o. 

Table 5-1 Symbol Equivalence 
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a>. ( } a>. _ aH _ ,ar + tf/t9 • a-z- -ax- - >-.F cxJ.l/J.K (5-2} 

and 

it= - ~~ =A.F[X].K - ll.k.g'[l/J] {5-3) 

with, for the monotonic decreasing function F[X] of X, or constant F[X], 

F'[X] =d F[X] ~ 0 (5-4}dx "' 

and, for the monotonic increasing function g[l/JJ- bfi 1/J, or constant g[l/J], 

(5-5} 

The associated terminal and boundary conditions corresponding to equations 

(4-13) and (4-14} are, 

>.{z,1) =0 all z £ [o,l] {5-6} 


all t £ [o,l] (5-7} 


ll(Z,l) = 0 all z £ [o,l] (5-8) 


For conditions pertaining to the quasi-steady state process, it is 

shown in Appendix C that the corresponding maximum principle becomes: 

H[X,l/1,>-,ll,k] = A.F[X].l/I.K - lJ.k.g[l/1] {5-9) 
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with the costate variables now defined as, 


{5-10) 


and 

1if=- ~~ = - {),.F[X].K- JJ.k.g [~]} {5-11) 

The associated tenninal and boundary conditions are given by {5-8) and {5-7). 

5.2. Basic Characteristics of Extremal Control Policies 

The nature of extremal control policies pertaining to the quasi

steady state system may be identified using the global maximum condition 

{4-16) for controls, 

+ * k* ~ k { z t t) ~ k {5-12) 

and where, 

(5-13) 

with 6k such that, 

(5-14) 

However, if k+{z,t) is an optimal control, then one of the following 

conditions, given by equations {4-25), {4-27) and {4-30), is necessary at 

any point {z,t) £ T: 
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+ *i if k* < k ( z 't) < k (5-15) 

with 

+ * ~ 0 for k* < k ( z , t) < k (5-16 

ii (5-17) 

iii (5-18) 

where 

(5-19) 

with 

(5-20) 

A control policy which fulfills these local and necessary conditions 

is not guaranteed to be opti'mal and has been discussed in sections 4.3 and 4.4. 

Control policies characterized by conditions (5-15), (5-17) and 

(5-18) respectively are referred to in.thik$tUdy as a stationary policy S, 

a policy C* and a policy C*. Therefore, an extremal control policy k (z,t) 

at any station z £ [o,1] may consist, in time, of one or more control sub

policies drawn from types S, c* or C*. 
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The parameter p, entering directly equations (5-19) and (5-20) 

plays a decisive role in the admissibility of a control sub-policy to an 

extremal control policy. Consideration of limits for the value of p clearly 

illustrates this fact. 

For p =0, the reaction rate is independent of temperature and as 

low a temperature as possible should be chosen in order to retain the highest 

possible catalyst activity level in the reactor. For p = m, the deactivation 

rate is virtually independent of the temperature and as high a temperature 

as possible should be chosen in order to achieve the highest possible 

conversion level. 

Several characteristics of extremal control policies have been 

identified for intermediate ranges of the value of the parameter p and are 

discussed for the following cases: 

i - 0 < p < 1 


ii - 1 < p < 
 m 

Results are given with proofs and are stated in the form of properties 

and sub-properties of the optimization problem. Termination of a proof 

is indicated by using the geometrical symbol ~. 

Trivial situations where the initial catalyst activity distribution 

~0 (z), z £ [o,l] is identically zero or that the inlet conversion X (t),0 

t £ [o,l] is the maximum attainable conversion, xr. are ignored. 

A common characteristic of an extremal control policy holding for 

positive values of the parameter p is summarized by the following two 

properties. It is established first, with the stated assumption, that at 
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t =1, all extremal control policies must end at k(z',l) = k* everywhere 

1n the reactor. 

Property 1: 

If for all z £ [o,l], ~(z,l) • F[X(l ,1)] > 0, then 
... 
k(z,l) = k* all z E[o,l] 

Proof: 

At t = 1, by (5-11), ~(z,l) = 0. for all z £ [o,l] and (5-19) 

reduces to, 

~~ = p.A{Z,l).p(z,l).F[X(z,l)].K(z,l) (5-21) 
a~ k(z,l)

t=l 

or using equation {D-18), 

aHI - p.~<z.,l>.~lo>.K<z,n 
(5-22)

aK' - k{z 1)
t=l ' 

Finally for ~(z,l).F[X(l ,1)] > 0 and al! z £ [o,l], this expression contains 

only positive terms for all admissible control values k* ~ k{z,l) ~ k* and 

the function H, 

HI = ~{z,l).F1 (1) • K(z,l) (5-23) 
t=l 

with K(z,l) a k(z,l) can be increased by any admissible increase of the control 
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value k(z,l). Thus 

*Ak(z,l) = k all z e: [o,l] (5-24) 

It is demonstrated in the following, with the stated assumption, 

that all extremal control policies consist at least of a control sub-policy 

C* in time 1 - ot
0 

< t ' 1 with ot
0 

> 0 everywhere in the reactor. 

Property 2: 

If for all ze:[o,l], ljl(z,l).F[X(l,l)]> 0, then for ot
0
> 0, 

k(z,t) = k* all z e: [o,l], 1 -ot < t, 1
0 

Proof: 

The inlet conversion X
0 

(t) having been assumed to be a piecewise 

continuous function of time, there exists a time interval ot such that 

X (t) is continuous for 1- ot < t' 1. On such a tiae interval, consideration 
0 

of (5-19) upon substitution of (0-18) gives, 

(5-25) 


At t • 1, ~(z,l) =o. for all z e: [o,l] and, with the stated assumption, 

the condition, 

aH p.Fl(l).K.ljl
aK = k >O (5-26) 

t=l 

is recovered. 
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Since the functions ~(z,t) and ~(z,t) are continuous in time (see Appendix D) 

and the function ~is a continuous function of its arguments, there must 

exist, corresponding to each z £ [o,l], a finite time interval ot ~ ot
0 

> 0 

such that, 

aH 
> 0 (5-27)3k 

t 

for all admissible controls k(z,t) £ [k.,k*J. Thus the function H could 

be increased by any admissible increase in k(z,t) unless k(z,t) = k* and so, 

k(z,t) = k* (5-28) 

5.3. 0 < p < 1 

The kinetic significance of the parameter p t (0,1) is that an 

increase of the operating temperature would increase the rate constant k[T] 

for catalyst decay faster than the rate constant K[T] for reaction. Although 

such control action would not appear desirable, a lowering of the operating 

temperature in order to retain a high catalyst activity level in the reactor 

would result in a decrease in the rate constant K[T] for reaction. 

This apparent conflict in the choice of a control policy seems to 

indicate that a 11 best 11 compromise between these two situations would exist 

such that at points (z,t) £ T a control k(z,t) could be adjusted in order 

to minimize the rate of decay and maximize the rate of reaction. 

This indication, based on rather intuitive concepts, is established 

in the following property. 
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Property 3: 

When $(z,t).F[X(l,t)] > 0 for all z,t E T, then a 

stationary control policy S is an admissible control 

sub-policy to an extremal control policy. 

Proof: 

Condition (5-16), upon substitution of (D-18}, may be written, 

2H p.(p-1}. F1(t) • $(z,t).K(z,t)
3 (5-29);k2 = k 

Given the assumption that $(z,t).F[X(l,t)] > 0 everywhere in 

T, the second partial derivative (5-29) is strictly negative everywhere in 

T for values of 0 < p< 1 and constitutes a sufficient condition for the 

function H to be locally a maximum on a stationary control policy S. 

By properties 1 and 2, with the given assumption, this admissible 

stationary control policy S to an extremal control policy cannot alone 

constitute, at each and every station z E [o,l], a pure extremal control 

policy for all time t E [o,l]. This completes the proof. 

The maximum of the function H, however, is not guaranteed to 

correspond to a unique extremal control and has been discussed in section 4.3 • 
.. 

Yet, the possibility of having multiple extremal controls k(z,t) at any given 
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point (z,t} £ T is shown here not to exist and is summarized in the 

following. 

Property 4: 

At any given point (z,t} t T for which the condition 

~(z,t) • F[X(l ,t)J > 0 exists, an extremal control 
... 
k(z,t} is uniquely determined there. 

Proof: 

For 0 < p < 1, the second partial derivative (5-29) with the stated 

assumption, is strictly negative for a11 admissible control values 

k(z,t) t [k.,k*] and, 

(5-30) 


Therefore ~ is not constant with varying k(z,t) but can change sign if 

and only if the function H has a maximum with respect to k(z,t) £ [k.,k*]. 

Since condition (5-30) implies that the function H is a strictly concave 

function of the control k(z,t) at any given point (z,t) £ T, the maximum 

of the function H is unique and the corresponding control, 

* k* ~ 
~ k(z,t), k (5-31) 

is unique at that point. 
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A direct consequence of that property, with the stated assumption, 

is that equations {5-15), (5-16), {5-17) and (5-18) represent a set of 
A 

global conditions that an extremal k(z,t) must satisfy necessarily at any 

given point {z,t) £ T in order to be optimal. 

Moreover, this set of conditions now represents necessary and 

sufficient conditions that a control k(z,t) e [k*,k*J must obey in order to 
A 

be an extremal control k(z,t) uniquely determined at any given point (z,t) E T. 

Typical curves of the function H with respect to admissible 

controls k E [k*,k*] are illustrated in figure 5-l. 

The joining of a stationary control policy S with a policy C* or 

C* and the possible occurrence of a discontinuou~ transfer between control 

policies are investigated below. 

Property 5: 

When X (t) is a continuous function of !time for t£[t1,t2J
0 

and if ~(z,t).F[X(l ,t)] > 0 everywhere in T then finite jumps 

in control occurring simultaneously at a time ts E (t1,t2) 

over a finite length !J.zSZ0 Oi~: the reactor are not optimal. 

Proof: 

Because of the strict concavity of the function H with respect 

to all admissible controls (see property 4) a jump in control at a time t5 

£ ( t 1, t 2) , where 
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H (a) 

H (b) 

k* 

H (c) 

k* 

Figure 5-l Typical Curves Of The Function H(z,t) Versus 

The Control k*, k(z,t) ~ k* foro< p < 1. 
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t; = 1imi t { ts - ot } (5-32) 

ot > o 

ot -. o 

may exist iff the maxima of the function H at times ts and ts correspond to 
A A 

controls k(z,ts) and k(z,ts) whose values remain different by a finite 

quantity at the limit for t5 + t 
5 

• Necessary conditions for the optimality 

of finite jumps in control at any specific station z £ [o,l] are, 

(5-33) 

and 


(5-34) 

where using (5-25) and recalling from (3-37) that K=A.kP, 

p.A.l/I(Z,£). Fl (£) 
= 1 P -~(z,£) .g[.p(z,£)] (5-35)

[k(z,£)] 

with the positive constant A defined in {3-38). Since ~(z,t) and .p(z,t) 

are continuous functions of time, at the limit for t 5 + ts, 

(5-36) 

and 

(5-37) 




62 

equation (5-35) may be written for times ts and t 5 but at the limit for 

ts + ts' 

(5-38) 

and 

{5-39) 

The exit conversion X{l ,t), corresponding to a continuous inlet 

conversion X (t) in time t e [t1,t2J, is dependent upon the integral value
0 

of the controls along the whole length of the reactor in time and the effect 

of finite but admissible jumps in control occurring uniformly along a finite 

length of the reactor 6z<;.Z0 at a time t 5 e {t1,t2) may result in only one 

of the following three possible cases: 

(5-40) 

(5-41) 

{5-42) 

It will be assumed in the following that finite but admissible jumps in 

control occur simultaneously at a time t 5 at each and every station 

Z € 6Z <;_ Z0 • 

For the case of (5-40), since a jump in temperature in one direction 

only is not consistent with (5-40) it is necessary that along some finite 

segments of the reactor oz c 6z, 
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-all z £ oz (5-43} 

but from equations (5-38) and (5-39) at the limit for t 5 ~ ts' 


all z € oz (5-44} 

and result (5-44} contradicts optimality condition (5-33) corresponding to 

controls (5-43}. The consideration of finite jumps in control leading to 

case (5-41} requires that along some finite segments of the reactor 

oz c t:.z the controls, 

-all z € oz (5-45) 

From equations (5-38) and (5-39} and recalling that F[X] is a 

continuous monotonic decreasing (or constant) function of X, at the limit 

for t5 ~ ts, result (5-44) is again obtained and optimality condition (5-33) 

corresponding to controls (5-45) is again contradicted. 

Now when case (5-42) arises from the action of finite jumps in 

control over finite segments oZ S t:.z, that is, 

(5-46} 


then from equations (5-38) and (5-39) at the limit for t 5 ~ ts, 

all i £ oz (5-47) 

but this contradicts optimality condition (5-34) corresponding to controls 

(5-46). 
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Therefore, finite but admissible jumps in control occurring 

simultaneously in time along a finite length of the reactor AZ S z0 

are not optima1 • 

Since an optimal control policy may not contain any control 

discontinuity occurring simultaneously in time over a finite length of the 

reactor, that is a line of discontinuity parallel to the flow axis of the 

reactor, the conversion X(z,t) resulting from such an optimal operation 

and corresponding to a continuous inlet conversion X
0 

(t) in time is also 

a continuous function of time for all z £ [o,l]. 

A direct consequence of that result is contained in the next 

stated sub-property. 

Sub-Property Sa:. 

When the inlet conversion X (t) is a continuous function of 
0 

time fort£ [t ,t2J and if ~(z,t).F[X(l,t)] > 0 everywhere1 

in T, then a finite jump in control occurring at a time 

t5 t (t1,t2) but at isolated stations zs t [o,l] is also 

not optimal. 

Proof: 

Because of property 5, with the stated assumptions, the exit 

conversion X(l,t) is a continuous function of time for all t £ (t1,t2). 



65 

Therefore, corresponding to finite but admissible jumps in control 

at a time t5 £ (t1,t2) but at isolated stations z £ [o,l], subject to the 
5 

optimality conditions (5-33) and (5-34), case (5-40) needs only to be 

considered. 

Since for finite but admissible jumps in control, 

zs £ [o,l] (5-48) 

or 

zs £ [o,l] (5-49) 

results (5-44) and (5-47) are obtained respectively for controls (5-48) 

and (5-49) and the optimality conditions (5-33) and (5-34) corresponding 

to controls (5-48) and (5-49) are in both cases contradicted at each and 

every isolated station zs £ [o,l]. 

Thus at each and every station of the reactor z £ [o,l] no 

discontinuous control policy in timet£ (t1,t2) may be optimal • 

• 
Therefore, with the stated assumptions, all optimal control 

policies k+(z,t) at each and every station z £ [o,l] are continuous functions 

of time. Also the function H and its gradient (5-19) are both continuous 

functions of time there. They have continuous first partial derivatives 

with respect to time for all t £ T0 under consideration except possibly for 

a set of points on T0 , namely at times where the inlet conversion X (t) and
0 

the control k(z,t) may have a discontinuity of the first kind in their time 

derivatives. On an interval of time where the gradient (5-19) is 
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continuously zero, 

aH I =o (5-50)ak k 

the partial derivative of the gradient with respect to time and existing 

continuously on that interval must also vanish and, 

(5-51) 

where 

(5-52) 

with, 

q, =- k.g[ljl] (5-53) 

and from (D-18) 

= F1(t) = A(z,t). F[X(z,t)] ( 5-54) F1 

Because of conditions (5-50} and (5-51} equation (5-52} may be written, 

(5-55) 

or, 

(5-56) 
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Since 

it:!.! !t+.!t 2!. (5-57)at a~ • at af • at 

and recalling equations (3-32) and (5-11) equation (5-56) becomes with 

(5-53) and (5-54), 

(5-58) 


Also, from (5-19), (5-50) and (5-54}, 

(5-59) 

and recalling that, 

ak _ ak aK _ k aK (5-60)ar-aR"·a-Pi<·a£ 

relation (5-58) then becomes with (5-53) and (3-32), 

(5-61) 

or grouping, 

(1-p) a ln ljJK d ln Fl (5-62)p at = dt 

Integrating, at constant z, from a reference time t0 to a time t, 

(5-63) 
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where 


a = p/{1-p) {5-64) 

•o{z) = •<~,to) {5-65) 

= K{z,t0 
) {5-66)K0 {z) 

F o = Fl{to) {5-67)1 

The product •K is called the local effective rate constant for reaction. 

From a knowledge of: 

i the desired or given exit conversion profile X{l,t) in time, and, 

ii - the effective rate constant at some specific reference time t 0 
, 

equation {5-63) permits the construction of a stationary control k{z,t) 

in time t at each and every station z for which condition {5-50) holds. 

A characteristic of the effective rate constant for reaction, first 

noted by Crowe {1970), is that it is expressible as a product of separate 

functions, each depending respectively on only one independent variable z 

or t. 

Now when the entire reactor is on a constrained control policy C * 

and/or C for a time interval ~t ~T0 , the exit conversion X{l,t) correspond
* 

ing to a non-varying inlet conversion X
0
{t) in time, is clearly a continuous 

A 

and monotonic decreasing function of time since the controls k{z,t) are non

varying in time t E ~t and the relative catalyst activity level •<z,t) is a 

continuous and monotonic decreasing function of time. 
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When at any one time t, 
j 

parts of the bed are on a stationary 

control policy Sand other parts are on constrained control policies C * 

and/or C* over a time interval 6t S T0 
, the exit conversion X(l,t), 

corresponding to a non-varying inlet conversion X
0 

(t) in time and resulting 

from an optimal operation, cannot be maintained constant in value over 

that time period, but is a continuous and monotonic decreasing function 

of time. 

This is clearly demonstrated using the following result. 

Property 6: 

When at a particular time t parts of a reactor are on a stationary 

control policy S with other parts on constrained control policies 

c* and/or C* in time, the rate of change of exit conversion X(l,t) 

in time where X0 (t) is continuous differentiable is given by, 

F[X{l ,t)] dXo(t) te *l * 
F[X (t)]. dt - (~).F[X(l,t)]. K .k. j g[~].dz+K•• k•• J g[.;].dz ~ 

0 f 
dX~~ ,t) =________________cSz_1_(t_)____cS_z~2_(t_)_ 

{ 1 - e. j K0 (£).~0 (£).d£ } 

·6z (t)
0 

with oz , oz1, and representing respectively length of the bed
0 

oz2 

on control policies S, C* and c•. 


http:g[.;].dz
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Proof: 

Integrating {3-31) at constant t from z
0 

= 0 to zf =1, 

X(l,t} 1 

dY = {te/tf) . K{e:,t).~{e:,t) • d e: {5-68)f mJ" J 

X

0
{t) 

0 

Substituting (5-63) in (5-68) for the length oz
0 

where the reactor is on a 


control policy S, 


J 
X{l,t) 


dY _ Fl {t) a Jo o * J J
{t /tf).[{Flo }. K {£).~ (t).d e:+K. ~{e:~t).de: +K*. ~(e:,t).de:]rrn- 0

oz
0
{t) oz

1
(t) oz2(t) 

{5-69) 

and where oz1 and oz2 represent respectively lengths of the bed on control 

policies C * and C*. Differentiating (5-69) at constant z and with respect to 

t, 

1 
F[X(l,t)] 

dX{l, t)
dt 

"=""""'1~...... 
- F[X

0 
(t)] 

{5-70) 

= {F[X{l8 ,tD .f Ko(<) .$o(E) .dd dX{l ,t) +
dt 

(te) K* 
t •
f Ja~(e:, t) 

at .d £ + 

oz {t)
0 

t5z1{t) 

t f a~(e:, t)
+ <t;> . ~ . at • d e: 

http:e:,t).de
http:e:~t).de
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with, 

(5-71) 

Rearranging (5-70) and using (3-31), 

d x~~,tl. {l _a • J Ko(e).~o(e). d < } 


c5zo (5-72) 


F[X(l,t)] dXo(t) te * * 
J =F[X (t)] • dt - (tf).F[X(l,t)].{K .k. g[~].dE + K*.k*. 
0
 

c5Zl 


Therefore, since the results of the operations between braces on the 

right side of equation (5-72) are strictly positive, the exit conversion X(l,t), 

corresponding to a continuous non-increasing inlet conversion X (t) in time for all
0 

t E 6t c T, is then a continuous and monotonic non-increasing function of 

time for all t E6t. By definition, F[X(l,t)] is then a continuous and 

non-decreasing function of time there. 

Now when the entire reactor bed is on a stationary control policy 

S, the following result holds. 



72 


Sub-Property 6a: 


When the entire reactor is on a stationary control policy S in time, 

the rate of conversion X{z,t) in time is given everywhere in the 

reactor by, 

dX
0 
{t)aX{z,t) _ F[X(z,t)J 

at - F[X (t) ]· dt
0 

Proof: 

Substituting (5-63) in (3-31) and integrating at constant t, 

from z0 =0 to zf =z, 

X{z,t) z 

J I 

dY !<0 (e:).liP(£).d e: (5-73)mJ = .J 
X (t) 00 

Now differentiating (5-73) at constant z and with respect to t, 

1 aX(z,t) 1 d Xo(t) 
F[X(z,t)J • at - F[X

0 
(t)J • dt 

(5-74) 
z 

f3 o d X\1, t)J o= {F[X(l,t)J K {e:).~ {e:).d e:} • at 

0 

with f3 given by (5-71). 



73 

Rearranging (5-74), 

fz 
dX (t)aX(z,t) = FtX(z,t)J o + {B.F~X~a{tjJ Ko( ) ,,,o( ) d } dX(l.t) 

at F X (t) ]" dt 't'"'[ ( , ) • e: ·"' e: • e: ·-ar
0 

(5-75) 

Now for z =1, equation (5-75) becomes, 

dX(l ,t) = _FC_x_(l_,_t)_J_IF_[...;X0;....(_t)_J__ 
(5-76)dt 

0{1-B~ K (e).l/J0 {e:).d e:} 

0 

Therefore when the entire bed is on a stationary control policy S, that is 

for all z e: [o,l], substitution of (5-76) in (5-75) gives, 

dX (t)aX{z~t) _ F[X(z,t)] 0 (5-77)at - F[X (t) ] at 
0 

dX (t) 
Since the terms pre-multiplying ~t in equation (5-77) are 

strictly positive on a policy S, a major consequence of that result is that 

when the inlet conversion is a constant in time, the conversion everywhere 

in the reactor and resulting from such an extremal control policy is a constant 

in time for all t e: 6t c T0 . 

When this is the case, the effective rate constant for reaction, 

expressed by (5-63), is a constant in time at each and every station z e: [o,l]. 
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In relation with these observations and those of property 6, 

the following results are obtained. 

Property 7: 

When the inlet conversion X (t) to the reactor is a con
0 

tinuous and monotonic non-increasing function of time, 

then an optimal control k+(z,t) defining a stationary 

policy S is a continuous and monotonic increasing function 

of time. 

K(z,t) 

Proof: 

Rewrite equation (5-63) in the form, 

(5-78} 

Now F1(t), with the stated assumptions on X
0 

{t}, is a continuous 

monotone non-decreasing function of time and ~(z,t} is a continuous 

monotonic decreasing function of time. Therefore, the rate constant K(z,t} 

and thus k(z,t}, at each and every station z £ [o,l] for which a stationary 

control exists, is a continuous monotone increasing function of time. 
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Sub-Property 7a: 

When the inlet conversion X (t) to the reactor is a continuous and
0 

monotonic non-increasing function of time, then an optimal control 

policy c+(z,t) in time, may consist only of the following continu

ous and monotonic non-decreasing control policies in time: 

Type 1: c+ ={c*} all t e: [o, 1] 


* 
t e: [o,t JType II: c+ = {~·} 
t E [t*,l] 

t e: [o, t.J 

Type I II: c+ = 
 t E [t.,t*]~·j

C* t E [t*,l] 

* at each and every station Z E [o,1] , where t and t* are in general
functions of z. 

Proof: 

Because of property 1, with the stated assumptions, an optimal 

*control policy at any given station z e: [o,l] must end on C , and, 

aH (5-79)31< I > 0
t=l 

From equation {5-52), the time dependence of (~) for constant k(z,t) is given 

by: 

a (aH) 1 aFl (t) o!J!ar. aK: = :2. {p.(wK)· at + (p-1). K.F, (t)·ar} (5-80) 
k 
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Since conversion X{l,t) decreases with time at constant lc+{z,t) and since 

it< 0, equation {5-80) implies that, 

a ( aH}i£ . aK > 0 	 (5-81) 

Inequalities {5-79) and {5-81) indicate therefore that (~)will decrease 

with decreasing time along a pblicy k+ = k* from its positive value at t =1. 

A switch to a stationary policy S occurs if~ becomes zero before 

t =0. Then because of property 7, with the given assumption, a switch from 

a policy S to a policy c. occurs if the lower control limit k* is reached before 

t = 0. 

When the inlet conversion X
0 

(t) to the reactor is a continuous 

and monotonic increasing function of time but its rate of change is such 
+ 

that ~~ ~ 0 there, then an optimal control policy c+ in time also may 

consist only of a control policy of type I, II or III. 

For continuous but arbitrary variations of X
0 

(t) in time, these 

control policies are still principal ones to an optimal control policy c+. 

5.3.1. 	 First-Order Catalyst Deactivation: [0 < p < 1] 

If in equation (3-32) the function g[~J assumes the power form: 

(5-82) 

with the order of deactivation m = 1 and if the control k(z,t) at any time 

t e 6t has a uniform value for all z e [o,l], then the activity ~(z,t) is 

characterized there by the fact that it can be expressed as a product of 
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separate functions (see Appendix D), 


all Z£[o,l], t £ .t\t (5-83) 

each of which depends only on z and t respectively. A consequence of that 

observation is given in the following result. 

Property 8: 

For a first-order catalyst deactivation process when the inlet 

conversion X
0 

(t) is continuous in time fort £ [1-ot,l], ot > 0, 

and ~(z,l) • F[X(l,l)] > 0 for all z £ [o,l], then any switch 

in control from a policy C * to a policy S occurring at time 

ts £ (1-ot,l), ot > 0, occurs uniformly along the whole bed, 

that is for all z £ [o,l], irrespective of the uniformity or 

continuity of the catalyst activity distribution there. 

Proof: 

Because of properties 1 and 2, with the stated assumptions, there 

exists a time t £ [1-ot,l], ot > 0, such that everywhere in the reactor, the 

gradient (5-19) is strictly positive and, 

+ * k (z,t) = k all z £ [o,1J (5-84) 

Since the control (5-84) has a uniform value for all z £ [o,l] characteristic 

(5-83) applies and the gradient (5-19) with result (D-18) may be written, 
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I (5-85) 

t 

for all z £ [o,l]. Equation (5-85) consists of a product of separable terms 

each of which depends only on time t or distance z. 

Therefore when the gradient (5-19) becomes identically zero at a 

time ts £ (1-ot,l) at a station z £ [o,1], the strictly time-dependent term, 

1 

p.F1(t).K. .,2(t)- k.. I K..F1(£).,2(£).d £ =0 (5-86) 

is zero identically everywhere along the reactor length. 

Since v1(z) > 0 by assumption, a simultaneous switch in control 

from a policy C * to a policy S in time occurs uniformly over all z £ [o,l]. 

Since no continuity or uniformity argument has been imposed on 

' 2(z) in this discussion, the result is general in that respect. 

Sub-Property Sa: 

For a first-order catalyst deactivation process, an optimal 

control k+(z,t) in timet£ [o,l] is uniform in value along 

the entire length of the reactor, that is for all z £ [o,l], 

irrespective of the uniformity or continuity of the catalyst 

activity distribution along the length of the bed. 
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Proof: 

It is shown in property 8 that forte '[ts,l] 

A * 
k(z,t) = k all ze[o,l] (5-87) 

Since at t =ts a stationary control policy S is initiated for all 

z e [o,l], relation (5-63) holds ther,e fort~ ts and may be written for two 

different arbitrary stations z1, z2 e [o,l], 

$(z1 ,t).K(z1,t) 
11PCz1).K0 (z1) 

= .Fi(t)
(flO)a 

(5-88) 

$(z2,t).K(z2,t) 
$o(z2).Ko(z2) 

= (Flo)a .Fl(t) (5-89) 

Choosing as a common reference time t 0 =ts for the quantities 

$0 , .K0 and F1°, the·ratio of relations (5-88) and (5-89) gives: 

$(z1,t).K(zl't) 
(5-90)$(z2 ,t).K(z2,t) 

For a first order catalyst deactivation process, the following relation 

(see Appendix D) is written for t ~ t
5

: 

ts 

$(zi,t) =$(zi,ts>· exp {+~ k(zi,6).do} i = 1 ,2 (5-91) 

t 

Recalling that with t 0 = ts, from (5-65), 

$0 (z1) =$(Zi,ts) i = 1,2 (5-92) 

and that from (5-66) with (5-87), 

K0 (z1) = K(z1,ts) = K* i =1,2 (5-93) 

http:k(zi,6).do


80 


substitution of (5-91), (5-92) and (5-93) in (5-90) and rearranging: 

K(z1,t).exp{+ Jts k(z ,o) .do}= K(z ,t}.exp{+ (5-94)1 2 
t t 

In the equivalent logarithmic form, 

(5-95) 

t 

Now for t = ts - ots with ots arbitrarily chosen but ots > 0 and such that 

t t[o,ts), assume that, 

and relation (5-95) is violated there. 

Assume again that, 

then, 

and relation (5-95} is again violated there. 
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The only admissible proposition is then, 

(5-100) 


Therefore on an S policy, since z1 and z2 are arbitrarily chosen 
A 

in z E[O,l], an extremal control k(z,t) at any timet~· t is uniform in 
5 

value over all z E [o,l ]. 

If a stationary policy S switches to a policy C* before t = 0., 
A 

the whole bed reaches k(z,t) = k* uniformly there. 

Since no continuity or uniformity argument has been imposed on 

~(z,t) with respect to z, at any timet E [o,l], the result obtained is 

general in that respect. 

5.4. 1 < p < ~ 

Raising the temperature when p > 1 would increase the rate constant 

K[T] for reaction faster than the rate constant k[T] for deactivation and 

would seem desirable. 
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However, although an increase in temperature everywhere over a 

finite length of the bed 6Z S Z0 would then increase the conversion X(z,t) 

for all z £ (zs, zs + 6z], zs £ [o,l], the rate of reaction could decrease 

because F'[X(z,t)J ~ 0. 

Unless the reaction is zero order for which F'[X(z,t)J = 0 and 

so conversion does not affect the rate of reaction, a decrease of reaction 
' 

rate through an increase of X(z,t) could overweigh the increase through 

raising temperature. 

At low conversion level increasing the temperature would increase 

the reaction rate relative to the decay rate with only a small decrease in 

F[X(z,t)], but at higher conversions, however, raising the temperature may 

decrease F[X(z,t)] more than the increase of K[T] relative to k[T]. This 

would then suggest that the temperature should not be raised everywhere 

as high as possible. 

Now for p > 1, the occurrence of a discontinuous control policy 

as an extremal control policy is possible and is established below. 

Property 9: 

When ~(z,t).F[X(l,t)J > 0 for all z,t £ T, then a stationary 

control policy S is no longer an admissible control sub-policy 

in an extremal control policy. 
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Proof: 

For p > 1, given that ~(z,t).F[X(l ,t)J > 0 for all (z,t) e T, 

the second partial derivative (5-29), 

(5-101) 

for all admissible control k(z,t) e [k*,k ] * at each and every point (z,t) e T 

and constitutes a sufficient condition for the function H to be globally 

a minimum on a stationary control policy S. Clearly in this case, no 

stationary policy S may be a part of an extremal control policy. 

Thus properties 2 and 9, with the stated assumptions, establish 

that at any given station of the reactor z e [o,l] an extremal control 
A * k(z,t) in time may only consist of control sub-policies C and C* with a 

sub-policy C * over a terminal time interval. 

Conditions (5-17) and (5-18), however, represent only necessary 

conditions for a control to be extremal. Since the strict convexity of the 

function Hwith respect to controls k has been established in property 9, 

namely equation (5-101), typical curves of the function Hwith respect to 
* kA 

e [k*,k J are illustrated in figure 5-2. Sufficient conditions that a 

control must obey in order to be extremal at a control boundary k* or k* are: 

sgn {aH I } = sgn {aH I } = sgn {2.k(z,t)- (k* + k*)} (5-102)
a~< k* ar k 

* 
for k(z,t) = k* or k(z,t) = k*. 
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These conditions are well identified for curves {a) and {c) of 

figure 5-2. In general, however, as illustrated. for curve {b) of figure 5-2, 

conditions {5-102) need not be necessarily satisfied for a control to be 

extremal at a control boundary k* or k*. Admissible extremal control 

candidates in the following are discriminated using the global condition 

{4-16): 

6H(z,t) ={H{z,t) - H{z,t)}~ 0 {5-1 03) 

where at each and every point {z,t) £ T, from (D-27), 
1 

H{z,t) = lji.F1.K- k. J K.F1• g[l/l].d o {5-104} 

t 

and 

1 

f (5-105) 

t 

A A 

where k = k{z,t} represents the extremal control from time t = t to t = 1 

and k = k(z,t) is the other admissible control candidate at any time t. The 

state variables ljl(z,t) and X{l,t), thus F1{t), are the solutions to 

equations {3-32) and {3-31) and their respective initial and boundary 

conditions {3-35) and {3-33) obtained from time t = t to t = 1 and for all 
A 

z £ [o,l] using the control k{z,t). 

Consideration of properties 1 and 2 with the stated assumptions there, 
A * shows that sufficient conditions (5-102) are satisfied with k(z,t) = k at 

each and every station z £ [o,l], and 

6H(z,t) > 0 {5-106) 
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(a)H 

* k = kA 

(b)H 

A * k = k 

H (c) 

A *k = k k
* 

Figure 5-2 Typical Curves Of The Function H(z,t) Versus The 
*Control k* ~ k(z,t) ~ k for 1 < p < oo, 
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there, with 
1 

6H(z,t) = ~.F .6K- 6k.~ K*.F1• g[~].d o (5-107)1 
t 

(5-108) 


(5-109) 

Because conditions (5-102} are sufficient but not necessary for 
... * k(z,t} = k , there may exist corresponding to each and every station 

z £ [o,l] a time interval ot > ot1 ~ ot , where X (t} is continuous, such
0 0 

0 ... * that for all points (z,t} £ Z x (1-ct1,1J, k(z,t} = k and that condition 

(5-103) is true. 

Therefore the function 6H(z,t} at each and every station 

z £ [o,1] is a continuous function of time and has a continuous first 

partial derivative everywhere with respect to timet£ (l-ot1,1J except 

possibly for a set of points on ot1, namely at the points of discontinuity 
dX (t) 

of a~ ' where it may have a discontinuity of the first kind. 

On intervals of time for which, 

a6H(z,t} _ aH(z,t) aH(z,t} (5-11 0}at - at - at 
... * ... * is continuously defined, equation (5-104} becomes with K = K and k = k , 

aH(z,t} = F K* a~ + F' ,,, K* dX(l ,t} + k* K* F g[·'·] (5-111}at 1 • • at 1·"' • • dt • • 1 • "' 

... * recalling (3-32} with k = k, 
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aH(z,t) = F' ,1, K* dX(1~t} (5-112)at 1""'" • -ar-
Similarly for equation (5-105) with K =~ and k =k*, 

(5-113) 

" * and (3-32) with k =k , 

(5-114) 


with, 

* * ~(Kk) =K .k* - ~.k (5-115) 

and since by {3-37) K = A.kP, and for p > 1, 

* *p-1 p-1 
~(Kk) =A.k .k*. {k - k* } > 0 {5-116) 

· Finally, equation {5-110) may be written, 

(5-117) 


with ~K defined in (5-108). 

The case of a zero order reaction is treated below and it is · 

shown that an optimal control policy everywhere in T may only be purely C . * 
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Property 10: 

For ~(z,l) > 0 an optimal control policy corresponding to 

a zero order reaction may consist only of, 
+ *k (z,t) = k all (z,t) £ T 

that is a pure control policy C * in the whole of T. 

Proof: 

Since for a zero order reaction F[X(l,t)] is a positive constant, 

Fi = 0 and equation (5-117) reduces to, 

(5-118) 


Recalling property 1, with the stated assumption, function (5-107) with 

k+(z,l) = k* for all z £ [o,l] may be written, 

~H(z,l) = ~(z,l). F1• ~K > 0 (5-119) 

with ~K given by (5-108). Since by (5-116) ~(Kk) is strictly positive and 

since the catalyst activity is a continuous and monotonic decreasing function 

of time, then with the stated assumption, ~(z,t} > 0 for all (z,t) £ T, and 

relation {5-118) becomes, 

a~H(z,t) 0 for all (z,t) £ T (5-120)at < 

Therefore, since 6H(z,l) > 0 for all z £ [o,l], the function AH(z,t), 
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because of (5-120), will always be positive everywhere in T and the maximum 

condition (5-106) will be satisfied there for k+(z,t) = k*. 

Therefore, unless a reaction is zero order, the rate of change 

of the function ~H(z,t) with time may be positive for some finite intervals 

of time. Accordingly, since the function ~H(z,t) is positive at t =1 

it could decrease in value with decreasing time and could possibly reach 

a value zero at some time ts t (l-ot1,1J. 

When this is the case, the function ~H(z,ts) at a time ts £ (l-ot1,1J 

may become identically zero at one or many isolated stations z t [o,l] or 

uniformly zero along a finite length ~z S [o,l] of the reactor. Also since 

the rate (5-117) would be positive at time ts at these particular stations, 

a jump in control from a policy C * to a policy c. at one or more of these 

stations would need to be actuated at time t =ts' otherwise the rate of 

change of ~H(z,t) could remain positive there and the maximum condition 

be violated at these stations for t < t •
5 

Although the maximum condition indicates that a jump in control 

from a policy C * to a policy c. may occur in an optimal sense at a time 

ts £ (l-ot1,1J when the null condition, 

z £ [o,1] (5-121) 

exists at these stations, it does not insure however that a jump in control 

must be actuated at each, of these stations. 

The case where the null condition (5-121) exists at a time ts 

but uniformly along a finite length of the reactor is investigated below 

and the results are summarized in the following property. 
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Property 11 : 

When X (t) is continuous in time fort£ [t1,t2J and
0 

when the function 6H(z,t) reaches a zero value at a time 

t £ (t1,t2) but uniformly along a finite length
5 

6Z S [o,l], a uniform jump in control occurring sim

ultaneously along a finite length oz S 6z is not 

optimal. 

Proof: 
A A  * 

Since at time t 
5 

, k(z,t
5 

) = k(z,ts) = k and that, 

-Z £ 6Z (5-122) 


(5-123) 

assume that a uniform switch in control along 

optimal, 

a finite length oz~6Z is 

..
z £ oz {5-124) 

where 

(5-125) 
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then the function H(z,t5) and H(z,t5) may be written there, 

1 ts 

H(z,ts) = {11J(Z,ts).F1 (ts).J<.. - k •• cl K*F1g d ()+I K*F1 g d o]} (5-126) 

ts ts 

with 

1 ts 

A(i,ts) = {11J(z,ts).F1(ts).K*- k*.cl K*F1g do+ I K*F1g do]} (5-127) 

ts 

and fina 11y: 

1 ts 

AH(i,t;;l • - {~(i,t;;).Fl(t;;).AK- Ak.[l K*Flg d6 +I K*Flg d 6]) 

ts ts 

(5-128) 

with ~K and ~k given respectively by (5-108) and (5-109). Corresponding 

at time ts, 

1 

{ 1/J ( z, ts) . F1{ts) •~K - ilk. I K F* g d o} = 0 (5-129)
1 

substituting in equation {5-128), 

ts 

~H{z,ts) =- {[11J{i,ts).F1{ts) - 11J{i,ts).F1 {ts)].~K- ~k~ J<..F1g d o} 

ts 
(5-130) 

http:11J{i,ts).F1
http:11J(z,ts).F1(ts).K*-k*.cl
http:11J(Z,ts).F1
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The exit conversion at time t5 may be expressed as (see Appendix D), 

x(l,tsl = PCx0 <tsl. K. l•<•.t;) d.+ K* I w<•. t5J. d •J (5-131) 

oz Z0 \oz
2 2 

and at time ts by, 
1 

X(l ,ts) = P[X (ts), K* J ljl(£, t ).d £] {5-132)0 5 

0 

Since the inlet conversion X
0 

(t) and the relative activity 

everywhere in the reactor are both continuous functions of time, at the 

limit t 5 + ts, 

(5-133) 

(5-134) 

{5-135) 

and expression {5-131) is rewritten there, 

X{1,t5) = P[ X {t ), K* 11/J(E,ts).d £ + K* I ljl{£,ts).d £] {5-136)
0 5 

oz2 z0\o~ 

Now since the integral of a positive quantity over a non-zero length o~ is 

a non-zero quantity, relations (5-136) and (5-132) indicate that, at the limit 

for {5-125), 

X(l,t5) < x(l,ts> (5-137) 
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and that for a non-zero order reaction, 


{5-138) 

Since substitution of results (5-133) and (5-134) in equation (5-130) gives, 

(5-139) 

and at the limit for t 5 considering result (5-138), 

6H{z,t5> < o {5-140) 

Thus result (5-140) violates the maximum condition for all z £ o~where oz2 
is finite, and assumption {5-124) cannot be validated there. 

In this proof, the allowable control jump is from a policy C * 

to a policy C* in decreasing time. The same result could be shown to be 

true if the allowable control jump was from a policy c. to a policy C * in 

decreasing time. 

Since jumps in control along a line parallel to the flow axis of 

the reactor are not optimal, conversion X(z,t} at each and every station 

z £ [o,l] corresponding to a continuous inlet conversion X
0 

(t) in time and 

also resulting from the application of an extremal control policy there may 

only be a continuous function of time (see Appendix D). 

This situation would suggest that jumps in control from a policy C * 

to a policy C* may only occur at time t 5 at one or more isolated stations 

zs E 6Z at which 6H(zs,ts) = 0. 
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Recalling that an isolated station zs £ [o,l] has a length of 

measure zero and that the integral of an integrable function over a length 

of measure zero is zero, then in particular the contribution of the 

integral of the function {K..•(z,t)} over lengths of measure zero to the 

integral, 

1 

)' K(<,tl.wC•.tl d. (5-141} 

0 

at any time t is nil and in the context of the proof of property 10, relation 

(5-131} could be written for that case: 

1 

x(l,tsl • P[x0 ct5l. K* J ,.c••t5l. d •J (5-142) 

0 

Aconsequence is that at the limit as t 5 ~ ts, relations (5-137} 

and (5-138) would then become equalities and the maximum condition would 

be satisfied there at each and every of the stations zs £ 6Z where a jump 

in control occurred. 

Necessary and sufficient conditions that guarantee the maximum 

condition be satisfied fort < ts and all z £ [o,l] are given below for 

the case where a jump in control has been initiated at time t 5 at one or 

more isolated stations zs £ 6Z S ZO. 

Consider a jump in control such that at a station zs £ 6Z, 

(5-143) 

for t < ts. 

http:K(<,tl.wC�.tl
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The function ~H(zs,t) given in (5-107) is then written, 

1 ts 

AH(z5 ,t) = - £;(z ,t).F1(t).AK - Ak. [ f K*F1g d 6+ J K*Fig d 6]} (5-144)
5 

ts t 

which can also be written (see Appendix E), 

ts 

AH(z ,t) • + J [~(z5 ,6).Fj(6). dX~!,O) .AK- F1(6).g[.].A(Kk)] d 6
5 

t 
(5-145) 

+ ~H(z ,t-)s s 

with ~K,ik and ~(Kk) given respectively by (5-108), (5-109) and (5-115). 

Since X(l,t) is a continuous function of time and given that a jump in 

control has occurred at t 5, then at the limit for t5 + ts, 

(5-146) 


and since ~H(zs,ts) = 0. by assumption, a necessary and sufficient condition 

for ~H(zs,t) ~ 0 for all zs £ ~z and all t < ts where control {5-136} holds 

is given by (5-145): 

ts 

(5-147) 

t 

J [w(zs,o).Fi (o). ¥ .~K- F1(o).g[wJ.~(Kk)J d o ::. o 

http:w(zs,o).Fi
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Now consider other stations z £ ~z but z ~ zs for which a jump 

in control has not yet occurred at a timet < ts, that is, 

A  * k{z,t) = k {5-148) 

The function ~H{z,t) is then written, using {5-107), 

ts1 

AH(i,t) =+ !>(Z,t).F1(t).AK- Ak.[ )' K*F1 g d6 + f K*F1 g d 6]) (5-149) 

ts t 

or in the form {see Appendix E), 

ts 

AH(Z,t) =- f [;(i,6).FJ(6). dX~!• 6 ) .AK- F1(6).g[;].A(Kk)].d 6 

t (5-150) 

+ ~H{z,t5 > 

with ~K, ~k and ~{Kk) given as before. Since X(l,t) is a continuous function 

of time and that no jump in control has occurred at t 5, at the limit for 

ts .. ts, 

{5-151) 

Also because ~H{z,ts) = 0. by assumption, a necessary and sufficient condition 

for ~H{z, t) ~ 0 for all i £ ~z but i ~ zs and t < ts where control (5-148) 

holds is given by (5-150), 

ts

f [;(i:,6).F](6). dX(l~ 6 ) .AK- F1(6).g[>].A(Kk)].d 6 ~ 0 {5-152) 

t 
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If a jump in control need be actuated at a time tsw < ts at any station 

i £ Az but i ~ zs, the condition, 

(5-153) 


must be satisfied at this point and relation (5-152) becomes, 


ts

J [.;(i,o).F)(O). dX~!,O) .AK- F (o).g[.;].A(Kk)].d 6 = 0 (5-154)1

tsw 

Finally for stations i £ {Z0\Az} at which the condition, 

(5-155) 


exists and for which a jump in control at time t < ts has not yet occurred, 

that is, 

A A * 
k(z,t) =k (5-156) 

A 

the function AH(z,t) may be written there, using (5-107), 

1 

K F1 g do+AH(i,t) =+ !.;(i,t).F1(t).AK- Ak.[ )' * 

ts 

(5-157) 


or equivalently in the form (see Appendix E), 
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ts 

AH(Z,t) =- f [.p(i,6).Fi (o). dX~!,o) • AK - F (o).g[.p].A(Kk)J.d o
1 

t (5-158) 

Because of the continuity of X(l,t) and since no jump in control has 

occurred at t 5, at the limit for t 5 ~ ts, 

(5-159) 


However, because of condition (5-~55) a necessary and sufficient 

condition for 6H(z,t) ~ 0 for all z £ {Z0 
\ f!z} and all t < ts where control 

(5-156) holds is given by (5-158): 

ts 

AH(i,t ) - J[.p(i,o).Fi (o). dXA! ,o) .AK ~ F (o).g[.p].A(Kk)J. d o ~ 0
5 1 


t 


(5-160) 

Similarly, if a jump in control need be actuated at a time 

tsw < ts at any of these station z, the condition, 

6H(z,t
5
w) = o (5-161) 

must be satisfied at this point and (5-160) becomes, 

http:p(i,o).Fi
http:p(i,6).Fi
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(5-162} 


In summary, for p > 1, unless a reaction is zero order for 

which an extremal control policy is purely C *everywhere in T, an extremal 

control in time may only consist at each and every station z £ [o,l] of 

control sub-policies C * and c. with a sub-policy C * over a terminal time 

interval. When the null condition 6H{z,t) = 0 is satisfied for (z,t) £ T 

a possibility of a jump. in control exists. It has been shown that when 

6H(z,t) =0 unifonnly over a finite length of the reactor 6zs;z0 a 

simultaneous jump in control along a finite length of the reactor oz ~ 6Z 

in time is not optimal. That is no control switching line in T may be 

parallel to the flow axis of the reactor. It has also been indicated that a 

control switching line may be initiated at a time t = t 5 only at isolated 

points zs where at a time ts £ (o,l) 6H(z,t) =0 whether or not the null 

condition exists only at isolated points zs £ [o,l] or uniformly along a 

finite length of the bed 6z ~Z0 in which case zs £ 6Z. 

Therefore, corresponding to each and every station z £ [o,l], 

a jump in control may occur at a time t
5
w(z} < ts defined implicitly by 

condition (5-154) for z £ 6Z and by condition (5-162) for z £ (Z~6z) and 

a control switching line w(z,tsw> may be traced out there for (z,t) e Z0x[o,ts). 
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5.4.1. First Order Catal~t Deactivation I1 < p. < oo]
' 

For t~me t ~ ts where a jump in control has not yet been initiated 

everywhere in z E [0,1], the control 

A * k(z,t) = k (5-163) 

is uniformly distributed for all points (z,t) E [0,1] x [ts,l]. Recalling with 

equations (5-82) and (5~83) that for a first order catalyst deactivation process 

acting there, the catalyst activity may be expressed as a product of separate 

functions, 

(5-164) 


each of which depends only on z and t respectively, the function ~H(z,t) given 

by (5-107) may be written there, 

1 

6H(z,t} = 71(z}. {72(t}.F1(t}.6K- Ak. ftK*.F1 (1i}.72(1i}dli} (5-165) 

for all z E [0,1] and t ~ ts. Since ~1 {z) > 0 by assumption, and noting that 

the expression inside the parenthesis of {5-165) is solely a function of time 

t, then if it reaches a value zero at a time ts' it reaches it uniformly along 

the whole reactor, that is for all z E [0,1], irrespective of the quality of the 

catalyst distribution in the reactor ~ (z).1 
Therefore for a first order catalyst deactivation process, the condition, 

(5-166) 
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exists uniformly over the whole reactor, that is for all z £ [0,1] at t = ts. 

Hence AZ =[0,1] and, with respect to property 11, a jump in control from a 

policy C * to a policy C* may only occur at time t5 at one or more isolated 

stations zs £ Az. 

Necessary and sufficient conditions for controls to be extremal in 

timet <ts at stations zs £ !J.z and z £ !J.z, butz ~ zs' are given in relations 

(5~147), (5-152) and (5-154). However for a catalyst deactivation process 

described by (3-32) and, 

g[1/J] = 1/J (5-167) 

conditions (5~147), (5~152) and (5-154) reduce to a strictly time dependent 

necessary and sufficient condition that an extremal control must obey for t < ts 

and all z £ [0,1]. This is indicated in the following property. 
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Property 12: 
' 

When the inlet conversion X
0 

(t) is continuous in time for 

t £ [t1,t2}:and when the funct'ion .6H(z,t). for a first order 

catalyst deactivation process, reaches a value zero 

uniformly along the whole reactor at time ts £ (t1,t2), then 

the condition, 

I 

F1(t). dX(1 ,t) . .6K- F1(t) ..6(Kk) = 0. 
dt 

constitutes a necessary and sufficient condition that must be 

obeyed by discontinuous control policies in the plane of 

Z0 x .6t = [0,1] x (t1,t ) in order to satisfy the maximum
5 

condition there. 

Proof: 

Because of (5-167), relation (5-147), (5-152) and (5-154) may be 

written respectively: 

(5-168) 

I ts 
t V;(z,o).Q(c).do ~ o (5-169) 

http:V;(z,o).Q(c).do
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I
ts 

t w(z,o),Q(o),do =o 


sw 


with 

•Q(t) = F1(t). 'dX(l ,t) .AK ~ F1{t).A(Kk) (5-171) 
dt 

Now for t = ts - ots with ots arbitrarily chosen, but ots > 0 and such 

that t E (t1,ts), assume that, 

Q(t) > 0 {5-172) 

since, by assumption, w(z,t) > 0 for all z,t E T, then condition (5-168) is 

satisfied but condition {5-169) is violated there. Assume again that, 

Q(t) < 0 (5-173) 

similarly, condition (5-172) is satisfied but condition (5-169) is violated there. 

The only admissible value is then, 

Q(t) =0 (5-174) 

and condi:tion (5.,168) and (5..._169) become identically satisfied with the equality 

sign for all t £ Its ...~t5 ,ts). 
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Since the process of choosing ots is arbitrary and may be achieved 

for anytime, t =·Its~ ots} E: Ct1,ts), ots > o. condition (5 ...174) must be 

satlsfied at all ttme t there. Therefore condition (5 ....170) is also satisfied 

there for all tsw E: (t1,ts). Satisfying condition~ {5""147), {5-152) and {5-154), 

equation (5 ....177), with Q(t) defined in (5-171), is a necessary and sufficient 

condition to be obeyed by discontinuous control policies in Z0 x 6t = [0,1] x 

(t1 ,ts). 

iC 

Aconsequence of property 12 for first-order catalyst deactivation 

process is that extremal controls distributed everywhere in the reactor and thus 

satisfying condition {5-174) for timet < ts render function (5-107), 

6H(z,t) = 0 	 (5-175) 

identically zero for all z E: [0,1] and t < ts. This result (5-175) indicates the 

possibility of a jump in control at each and every point z,t there, and the 

problem of synthesizing extremal control policies in time t < ts at each and 

every station z E: [0,1] would seem a formidable task. Fortunately, however, since 

condition {5-174) with (5-171) may be written, 

d ln 	FIX(l,t)] = 6(Kk) (5-176)
dt 6K 

or more explicitly, integrating from time t < ts to time t = t
5

, 

ln F[X{l ,t)] 6(Kk) . (ts - t) 	 {5-177) 
~Kt 
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and involves tne exit conversion X(l ,t) as an explicit function of time, it 

indicates that at any given time t --< ts, controls along the reactor length could 

be adjusted in order that, corresponding to an inlet conversion X (t), the exit
0 

conversion, 

{5-178) 

resulting from such action satisfies (5-177). In relation (5-178), oz1 and oz2 
represent parts of the bed on a policy C * and policy C* respectively which could 

be varied continuously in time. 

= k* everywhere in the reactor and oz1 = [0,1] 

with oz2 = 0. In order to satisfy relation (5-177) for t < ts some parts of the 

bed could need be on a C* policy and oz2 ~ 0 there. 

Even if for t < ts this is the case and the integral quantity, 

(5-179) 

must be related through relation (5-178), with a known inlet conversion X {_t),
0 

to a value given in time by (5-177), nothing is implied, however, about which 

portions of the actual bed need be the constitutive parts of tz1 and oz2. 

Therefore fort < ts' relation (5-178) may correspond to a value of 

X(l ,t) in time given by (5-177) and lead to more than one extremal control 

surface in T. This situation is illustrated in figure 5~3 where two different 

extremal control surfaces are considered and may be constructed in order that 

fort < t , X(l ,t) be identical in value for both cases. s 
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1 


·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· t s 

(a)t *c 

0 z 

t (b) 

0 z 1 

Figure 5-3 Equivalent Extremal Control Surfaces For A First 
Order Catalyst Decay And 1 <p <co. 
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Since, by assumption, the catalyst activity is independent of con

version in tne reactor, then at any given time the catalyst activity and 

temperature at one point of the reactor have no influence on the catalyst 

activity and temperature at any other point of the reactor. This amounts to 

saying that at any given time interchanging parts of the bed with their 
-

respective activity and temperature does not change the exit conversion X{l,t) 

there. 

Because of this, a single control switching line as in figure 5-3 {a) 

is considered in section 6 of that study concerned with the numerical evaluation 

of the extremal control policies. 

5.5 p = 1 

A special case of the optimal control problems is obtained when the 

kinetic parameter p =1 since for that situation, 

K{ z , t ) = A • k { z , t ) (5-180) 

where the positive constant A is defined in {3-38), and the control k{z,t) appears 

only linearly in the state and costate equations {3-31), {3-32)~ {5-10) and 

(5-11). Defining: 

{5-181) 


the function H given in (5~9) may be written accordingly, 


H(z,t) = k{z,t).ri{z,t) (5-182) 
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where the function (5~181) ts referred to i~ section 4.5 as the switching 

functton. Clearly, the maximum of H(z,t) cqrresponds to an extremal control 

-~ (z, t): 
I 
.1 

k* if r1(z, t) > 0 

R(z,t) = {5-183) 

everywhere in T where r (z,t) has only isolated .zeros. 1
Typical curves of the function H linear in the control k are illustrated 

in figure 5-4. 

However, the possibility that the function {5-191) vanishes on non

empty open subsets <ST
1 

<;. T may not be ruled out, that is, 

r1(z,t) = o all (z,t) e: o Tl c T (5-184) 

and singular controls may exist in T. A characteristic of such controls, dis

cussed in section 4.5.1., is that, 

= 0 q =1,2, ... {5-185) 

and 

q•a r1(z,t) = 0 q' • 1,2' •.. (5-186) 



r1(z,t) > 0 
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H (a) 

k* "' * k = k 

r1(z,t) = o 

H (b) 

"' k = ? k* 

r1(z,t) < o 

Figure 5-4 Typical Curves Of The Function H(z,t) Versus The 
*Control k* ~ k(z,t) ~ k for p = 1. 

H (c) 

k* 
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in the interior of non~mpty open subsets oT1 ~ T. 

The rate of c~ange of the function r1(z,t) with time at any particular 

statton of the reactor z e: [0,1] may be written, 

~ar,cz.t) = L { A.F
1
{t).'IJ{z,t)- l-l{z,t).g['IJJ} (5-187)

".at at 

and using (3-32), (5-11) and (5-180), 

ar,cz,t) = A.'IJ{z,t).F~(t). dX(l,t) (5-188) 
at dt 

The case of a zero order reaction for which the rate {5-188) is zero 

is treated below and it is shown that an optimal control policy everywhere in 

T may only be purely C . * 

Property 13: 

When \jJ{z,t) > 0 for all z e: [0,1], then an optimal control 

policy for a zero order reaction may consist only of a pure 

*policy C everywhere in T, that is, 

+ * k (z, t) = k all (z,t) e: t 
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Proof: 

Since at any timet 
t 

E IO,l], a zero order reaction is characterized 
•by r,(t) = 0, equation (5..-188) clearly indicates that, 

r1(z,t) =constant (5-189) 

.. 
everywhere in T, Since at t = 1, ~(z,l) = 0 and by equation (5-181) 

·r~{z,l) > o (5-190) 

then because of (5-189), r1(z,t) > 0 everywhere in T and corresponding to 

optimality conditions (5-183), 

" '* k(z,t) = k all z,t e: T (5-191) 

When singular controls exists, then corresponding to each and every 
I 

point z,t e: a Tl where the condition ~(z,t).F (t)~ 0 is validated, equation 1 
(5-188) with condition (5-185) and q = 1 give, 

dX(l ,t) = 0 {5..-192)dt 

thus indtcattng that the exit conversion X{l ,t) is a constant in time for all 
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Now since by properties 1 and 2, with the stated assumption, 

::; k.* (5-193) 

for all z E [0,1] and t E {l~ot0 ,1], then to a non-increasing continuous inlet 

conversion X
0 

(t) corresponds in time a decreasing continuous exit conversion 

x{l ,t), and, 

(5-194) 

there. 

Therefore, unless a reaction is zero order, F1
t 

(t) < 0 and (5-188) 

becomes, 

ar1(z,t) > 0 {5-195)
dt 

and since from (5-181) r 1(z,l) > 0 at t: 1, it would decrease from its positive 

value with decreasing time and could possibly attain a value zero fort < 1. 

When this occurs, the function r 1(z,t) may become identically zero ·at one or many 

isolated stations zs E [0,1] or uniformly zero along a finite length of the 

reactor b.z <;[0,1]. 

Since controls initiated at isolated stations z E [0,1] may satisfy
5 

the condition, 

{5-196) 
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for a finite interval of time, this case is investigated below. 

Property 14: 

When the inlet conversion X
0 

(t) is a non-increasing and 

continuous function of timet E[ 0,1] and if the function 

r1{z,t) becomes identically zero at times t c[ 0,1), for 

~{z,t).F (t) > 0, but only at isolated stations zs E [0,1],1 
then an extremal control policy in time may consist only 

of a bang-bang control policy at each and every station 

zs £ [0,1] with at most one switch in control from a policy 

c* to a policy c* in decreasing time. 

Proof: 

When at ts E (0,1), but at isolated stations zs £ [0,1], 

ZS E (0,1] (5-197) 

with 

Z E (0,1], Z ~ ZS {5-198) 

a bang~bang switch in control may happen or a control satisfying condition {5-196) 

may be initiated at t = t5 at stations z £ [0,1], where,
5 
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1:11 limit {t .. at} (5-199)t 5 5 


ot -+ o 


ot > o 


Assume ftrst that a control satisfying condition (5-196), or 

(5-200) 

is initiated at time ts and exists for 0 ~ t < t 
5 

at stations zs £ [0,1]. Now 

since condition {5-200) and equation (5-188) indicate that, 

dX(l,t) = 0 (5-201)
dt 

then result (5-201) with {5-188) make 

ar(z,t) =O t < t s (5-202) 
at 

for all z £ [0,1], z ~ z , and the function r 1(z,t) retains its posivity {5-198)
5 

fort < t • Therefore the control there is given by conditions (5-184) and,
5 

(5-203) 

Recalling that the exit conversion X(l ,t) may be expressed as (see 

Appendix D), 

Q(z,t) = k* 
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. JlX(l~t) =·PIX (t), k{e:,t).ljJ(e:,t)de:] (5-204) 
0 0 

and that the contribution of the integral of the product· {k(zs,t).ljJ(zs,t)}, 

(5-205) 


over lengths of measure zero (isolated stations), to the integral of (5-204) is 

nil, then the exit conversion X(l,t), corresponding to controls {5-203) and with 

a continuously and monotonically decreasing catalyst activity 1jJ{z,t) in time 

and an inlet conversion X (t) non-increasing in time, can only be a decreasing 
0 

function of time. Therefore X(l ,t) cannot satisfy condition (5-201) and this 

violates assumption (5-200). 

Consider now a switch in control actuated at t = t-,
s 

zs e: [0,1] (5-206) 

Because of the arguments involved for integral (5-205) and the continuity ·Of the 

catalyst activity and inlet conversion in time, at the limit for t- ~ ts: . s 

(5-207) 


and 

< 0 (5-208)dX(L t)
dt t = t 5 
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Therefore because of (5-208) condition (5-195) is recovered 

fort= t5, everywhere in Z0 , and r1(z,t) and r1(zs,t) are then decreasing 

from their positive value (5-198) and zero value (5-197) respectively 

with decreasing time and, 

(5-209) 

with control (5-206) consistent with optimality conditions (5-183) there. 

Since (5-208) is also true for t < ts, it is then possible for 

r1(z,t) to become identically zero, backward in time, at other stations 

z E [o,l]. If condition (5-197) is encountered at other times t < ts 

but only at isolated stations in z0 for all tE (o,ts), then the previous 

arguments hold and inequality (5-209) is always satisfied in this case 

with inequality (5-195) holding, everywhere in Z0 
, for all t E [o,l]. 

Moreover, because of condition (5-195) holding throughout that 

time interval ~t = [o,l] and everywhere in Z0 , a switch in control from 

a policy C * to a policy C* at these isolated stations may only occur once, 

backward in time. 

The case where the switching function r1(z,t) becomes identically 

zero in time but uniformly along a finite length of the reactor is also 

investigated and the results are summarized in the following. 
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Property 15: 

When the inlet conversion X
0 
(t) is a non-increasing and 

continuous function of timet£ [o,l] and if the function 

r 1(z,t) becomes identically zero at times ts £ {o,l), for 

~(z,t).F1 (t) > 0, but uniformly along a finite length of 

the reactor ~z ~Z, an extremal control policy in time 

cannot consist of a uniform jump in control over a finite 

length of the reactor oz ~ ~z (bang-bang controls) at times 

t 
5 

£ (o,l). However singular control policies initiated 

at times t 5 along stations z £ oz may be extremal for 

t < t •
5 

Proof: 

Now when at ts £ ( o, 1 ) , 

all i £ ~z (5-210) 

with 

z E[o,l], z i ~z (5-211) 

Assume first that a jump in control occurs at t =t 5 uniformly along a 

finite length of the reactor oz£; ~z, that is, 

all z e oz (5-212) 

with controls (5-193) existing at all other stations for t = t5, defined in 

(5-199). 
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The exit conversion may then be expressed at time t = ts by, 

1 

X(l,t) • P[X
0 
(t

5 
), [ k~.;(.,t ). d <] (5-213)5 

() 

and at time t = t5 by, 

1 

x ( 1 , t 5l =P[x0 ( t 5l , [ <k.-k*l . ;. (. , t 5l . d • +Jk*."c. ,t 5l d • J 

cSZ 0 

(5-214) 

Because of the continuity of X
0 

(t) and ~(z,t) in time and the fact that the 
. * integral of the product {(k.-k }.~(z,t5 )} over a finite length oz is negative, 

at the limit for t5 ~ ts, 

(5-215) 

and for a non-zero order reaction, 

(5-216) 

then from (5-181) since ~(z,t} is a continuous function of time (see Appendix D), 

a11 cS e: [o,1] (5-217) 

However from {5-210} and (5-211} and inequality {5-217}, the switching function 

for t = t 5 is positive everywhere in Z0 and in accord with optimality 

conditions (5-186}, 

k(cS,t-) = k* a11 o £ [o , 1] (5-218)s 
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Result (5-218) then contradicts assumption (5-212) and a jump in control 

initiated at t = t5 uniformly along some finite length of the reactor 

oz S t:.z is not optimal. 

Now consider controls initiated at t =t 5 along a finite length 

of the reactor oz S t:.z such that for t < ts, 

arl{z,t) 
=0 z £ oz {5-219)at 

Condition (5-219) with (5-188) indicates however that 

dX~l ,t) = O {5-220)t 

and consideration of {5-220) with {5-188) at other stations z£ [o,l] show that, 

ar1{o,t) 
=0 all o £[o,l] {5-221 )at 

and the function r1{z,t) retains its posivity {5-211) and r1{z,t) remains 

zero {5-210) for t < ts where {5-219) holds. Controls at these stations 

for t = t 5 are then given according to conditions {5-183) at stations 

z £[o,l], z t Az, and 

A * k{z,t-) = k {5-222}s 

but for all z £ t:.z, 

(5-223) 


where l<{z,t5) is an admissible singular control£ [k.,k*J. Condition (5-220) 

implied by (5-219) then requires by relation (5-215) that the control k(z,t) 
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be chosen in time for all z E llz such that, 

X(l,t) =constant (5-224) 

for t < ts, where 

X(l,t) = P[X (t), f k(,,t).O(<,t).d < + [ k*•.,c •• t).d •J C5-225l
0 

0 
llZ Z\llZ 

Because the catalyst activity is a continuous and monotonic decreasing 

function of time and the inlet conversion X
0 

(t) is also a continuous and 

non-increasing function of time, controls k(i,t), zE ~z, may then be 

decreased backward in time, from theirmaximum value k* at t = ts, in order 

to satisfy (5-224). 

When ultimately k(i,t) reaches the lower limit k* everywhere in 

llz before t = 0 is attained, say t = tc, then for t = tc condition (5-224) 

may no longer be satisfied, and, 

dX (1 ,t) O
dt < t = t

c 
(5-226) 

with tc having the same significance as in (5-199). 

Because of {5-226) condition (5-195) is recovered everywhere in Z0 

fort= tc and then the function r1(z,t) will decrease from its positive 

value (5-210) and r1(i,t) from its zero value, with decreasing time, and, 

( 5-227) 

" with the corresponding control k(z,tc) = k* in accord with conditions (5-183). 

Since it is possible for r1(z,t), z E [o,l], z¢ ~z, to reach a value zero 

uniformly along another finite segment of the reactor for t < tc' the previous 
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arguments remain valid there and either condition (5-195) or (5-221) will 

always be satisfied in this process for all t£ [o,l]. 

Hence by condition (5-195) once a singular control has reached 

the lower constraint k* backward in time, and the switching function becomes 

negative there, it stays there until t = 0. 

It is shown in property 15 that an extremal control policy in time 

at any station z £ [o,l], 'may consist only of one of the follm'ling policies, 

Type I policy {c*} all t£ [o,l] 

O~t~ t * 
Type IV policy l::l t * ~ t ~ l 

0 ~ t ~ t* 
c.IType V policy Sg t*~ t ~ t * 
* * c t ~ t ~ l 

where Sg refers to a singular control policy. 

Property 16: 

When the inlet conversion X
0 

(t) is a non~increasing function 

of time and when the function r1(z,t), corresponding to a 

first-order catalyst deactivation process, becomes identically 

zero in time, it then becomes uniformly zero along the entire 

reactor bed independently of the catalyst activity profile 

there. 
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Proof: 

For a first-order deactivation process g[$] ~= 1jJ and equation 

(5-11) may be written using (5-5) and (D-18), 

a~(z,t) _ ( ) ( ) ( )at - {~ z,t - A.F1 t } .k z,t (5-228) 

with the terminal condition ~(z,l) =0 everywhere in Z0 at t =1. 

Recalling properties 1 and 2, with the given assumptions, control (5-193) 
0exists everywhere in Z for time t E (1-~t,l], with ~t> 0, and considering 

(5-228) the variable ~(z,t) has a uniform value everywhere in Z0 for times 

t E (1-~t,l]. When at time t = 1-~t, the switching function r1(z,t) becomes 

identically zero at one station z E [ o,1 ], 

(5-229) 


clearly since the only position dependent variable ~(z,t) inside the 

parenthesis of (5-229) is uniform in value everywhere in Z0 at that time 

and $(z,t) > 0 by assumption, then the parenthesis of (5-229) is uniformly 

zero in value for all z E [o,l] independently of the catalyst activity profile 

$(z,t) there. 

Therefore extremal control policies pertaining to such catalyst 

decay process may only be of type I, IV or V. 



CHAPTER 6 


NUMERICAL EVALUATION OF EXTREMAL POLICIES AND DISCUSSION 


6.1. Hypothetical Reactor 

In order to illustrate the various control policies, numerical cal

culations of extremal policies are carried out for the following hypothetical 

reactor, 

3X = K[T].F[X].l/J (6-1)
fZ 

and 

ti = - k[T]. g[l/J] (6-2) 
at 

for F[X] = [1-X]n and g[l/J] = 1/Jm. Both functions K[T] and k[T] are assumed of 

the Arrhenius form and are defined respectively by (3-28) with (3-10) and (3-29) 

with (3-21). 

The inlet conversion to the reactor X
0 

(t) is considered a constant, 

{6-3) 


for all numetical cases studied, but the initial catalyst activity profile in 

the reactor is assumed to have the following piecewise continuous distributions, 

(6-4) 

(6-5) 

123 

all z e:: [0,1] 
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z E: [o,z1J 

(6-6) 

z E: [z1 ,1] 

with c1, i = 1, ... ,5 representing constants. 

Numerical values of n =0.5, 1.0 and 2.0 and m =0.75,1.0 and 2.0 are 

considered for the reaction and deactivation orders respectively. The reactor 

average space time is, 

= 1 sec. (6-7)t0 

and the total operational time, 

- 6tf- 2.16 x 10 sec. (25 days) (6-8) 

Upper and lower bounds placedon the admissible temperature are, 

T* = 900.°K 

(6-9) 

The catalyst deactivation energy, 

Ec/R = 15,000.°K (6-10) 

with a rate constant for deactivation, 
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t 

k
0 

= 20.2447 {1./sec.) (6-11) 

as 	defined in (3~15) are considered. For a given value of the parameter p, the 

reaction activation energy ER/R is easily calculated from (3-39). The reaction 

rate constant K
0 

of K[T] is computed using equations {6-1), with condition 

(6-3) for all reaction orders, corresponding to a maximum attainable exit 

conversion x* 1(l,t) = 0.90 with fresh catalyst ~{z,t) = 1.0 and maximum temperature 

T* =900.°K. everywhere in the reactor. Reaction activation energies ER/R and 

reaction rate constants K are listed in table 6-1 corresponding to sets of
0 

parameters nand p describing cases·further investigated below. 

6.2. Algorithmic Procedure 

Since the quality of extremal controls in time differs markedly for 

values of p larger or smaller than unity, the structure of the synthesizing 

algorithms likewise differs for values of p > 1 or p < 1 and two basic extremal 

control synthesizing algorithms have been constructed to· solve each case 

separately. 

No algorithm has been specifically constructed for the physically 

possible, but unlikely, case of p = 1.0 exactly. The solution to this problem 

may be found at the limit for p + 1 with values of p above or below but 

arbitrarily close to unity from the appropriate basic algorithm. 

The consideration of a first-order catalyst deactivation process 

always led to the identification of additional properties of the extremal control 

policies and these are used with profit in devising a simpler and/or more 

efficient version for each of the basic algorithms. 

t 	 The large number of significant figures retained is due to back calculation 
using k[T*] = 1Q-8(l./sec.). 
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p 
\ 

n Ko ER/R 

(1/sec) oK. 

D. 10 1. 0 1.21910 X 101 1500. 

0.50 0.5 5.68934 X 103 7500. 

0.50 1.o 9.57936 X 103 7500. 

0.50 2.0 3. 74424 X 104 7500. 

0.90 1.0 7.52719 X 106 13500. 

1.10 1.0 2.10999 X 108 16500. 

1.50 0.5 9.84699 X 1010 22500. 

1.50 1.0 1.65797 X 101l 22500. 

1.50 2.0 6 • 48044 X 1011 22500. 

2.50 1.0 2.86959 X 1018 37500. 

5.0 1.0 3.57621 X 1036 75000. 

Table 6-1. Reaction Activation Energy ER/R And Rate Constant K0 Corresponding 

To A Reaction Order n And Kinetic Parameter p. 
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In summaryt the following algorithms have been constructed: 

Basic algorithm Cl p > 1, m ~ 1 

II II Sl 	 p < 1, m ~ 1 

Sub-algorithm C2 p > 1 , m= 1 

II II S2 	 p < 1, m = 1 

All of these algorithms are iterative in nature in the sense that, 

"' 1. 	 a control surface k(z,t) defined in T, obeying some but not necessarily 

all of the properties of an extremal control surface, is assumed, 

2. 	 the state and costate equations are solved using that control surface 

and the given initial, terminal and boundary conditions, 

3. 	 the maximum condition (4-16) is used with these pseudo-extremal state 

and costate variables to generate a pseudo-extremal control surface 
;-., 

k(z,t), 

4. 	 this pseudo-extremal control surface is assumed to be the extremal 

one and step 2. to 3. are repeated. When, after a finite number of 

iterations no significant change between the assumed and generated 

control surface is found and when the maximum condition is everywhere 

satisfied, then this control surface is an extremal one. 

Although no quarantee of convergence is given for such iterative 

process, convergence was achieved in all cases surveyed. 

All of these algorithms use the method of characteristics which is 

probably the best technique for solving the state and costate equations. For 

the quasi~steady state problem considered here the characteristic lines are 

parallel to the t and z axes, making the technique very simple. 



128 

These characteristic lines are illustrated in figure 6-1. Denoting 

by Ii the t =constant characteristic line, and by II~ the z =constant 

characteristic line, then equations (3-31) and (3-32) become ordinary 

differential equations along It and II~ respectively. 

A brief description of the basic steps characterizing each of these 

different algorithms is given below. 

6. 2. 1. A 1 gori thm Cl : p > 1 , "' 'f 1 

Step 1. Because of property 9, assume a control switching line separating the 

plane of T in two distinct regions where controls k * and k* are defined. By 

properties 1 and 2 this control switching line must not be touching the line 

t = 1 and because of property 11, it must not contain any segment parallel to 

the z axis. 

Step 2. With initial condition (3-35), integrate equation (3-32) in time from 

0 ~ t ~ 1 along lines II;, i = O, ... ,M with the control defined in step 1., 

and store the value ~(zi,tj) atr~al mesh points. 

Step 3. With boundary condition (3-33), integrate equation {3-31) along the 

reactor for 0 ~ z ~ 1 along line Ij' j = O, ... ,N with the control defined in 

step 1. and ~(zi,tj) computed in step 2. Store the values of X(l ,tj)' j = 0, 

. '. ,N. 

Step 4. For each line II;, i = O, ... ,M starting backward in time from t = 1 

where by properties 1 and 2 ~K and ~k are defined by (5-108) and (5-109), locate 

the time at which ~H{z;,tj) computed by (5-107) first becomes negative and then 

by interpolation the precise time at which it first becomes zero. Label these 

times tsi' i = O, ... ,M.and;store. 
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t 

0.0 

0.0 z 1.0 

Fiqure 6-1 Characteristic Lines For The State And 
Costate Variables In The Plane Of £0 x T0 

. 

r, 



130 

Step 5, Determine if the line joining these points (zi,tsi)' i = l, ... ,M, 

differ significantly according to some defined measure, such as, 

M 2 
£1 = r It . - t . J (6-12)

i = 0 s1 new s1old 

from the previous assumed control switching line. 

If so then take this newly generated line as the new control switching 

line and go to step 2. If not then proceed to step 6. 

Step 6. At each and every mesh point defined by lines Ij and II; compute 

~H(zi,tj) according to (5-107) using ~K and ~k given by (5-108) and (5-109) for 

t ~ tsi and (-~K) and {-~k) fort < tsi' If ~H(zi,tj) ~ 0 everywhere at these 

mesh points then this control switching line is an extremal one with respect 

to the set of mesh points E T. 

Although this condition was satisfied for all the cases surveyed, if. 

it were to be violated at one or more mesh points this would indicate that a 

single control switching line is not sufficient to describe an extremal control 

surface defined in T. The same basic procedure discussed here could then be 

extended to two or more extremal control switching line candidates starting 

with step 1. 

A typical rate of convergence of this algorithm with respect to the 

number of iterations is illustrated in figure 6-2. 

6.2.2. Algorithm C2 p > 1, m = 1 

Step 1 . Set ~ = 1 . 

Step 2. Choose at time t = 0. a station z~0 E (0,1) which d~vides the reactor 
0 

in two sections oz1 and oz2 with their respective control k* and k*. Compute 
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p = 1.5 
m = 2.0 
n = 1. 0 

Uniform catalyst activity profile. 

t 

1st iteration 
2nd iteration 
3rd iteration 
4th iteration 

8th iteration 

0.0 z 1.0 

Figure 6-2 Typical Rate Of Convergence Of A Control Switching 
Line In The Plane Of Z0 x T° For Algorithm Cl. 
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the conversion X(l,t ) using equations (D~5) or (D-6) with the boundary condition
0 

(3-33) and initial catalyst activity profile (3-35). 

Step 3. Set j = 1. 

Step 4. Now fort= t. find a station z;j £ [0,1] such that by joining the 

points (z! ,tJ._1), (z!J.,tJ.) a segment of a control switching line is con
j-1 

structed such that the resulting conversion X{l,tj)' obtained by using (D-5) 

or (D-6) with (D-11) and the initial and boundary conditions (3-35) and (3-33), 

has the value predicted by equation (5-177). 

Step 5. Repeat step 4. for other times tj, j = 2, 3, ... and locate the time 

t~ at which the control switching line thus defined intercepts the line z = 0. 

Store t~~ 

Step 6. With initial condition (3-35) and equation (D-11), compute ~(zi,tj) 

in time for 0 ~ t ~ 1 along lines II;, i = O, ... ,M and tj' j = O, ... ,N with 

the control defined in step 4. Store the values of ~(zi,tj) at all mesh points. 

Step 7. With boundary conditions {3-33) and equation (D-5) or (D-6), compute 

X(z,t) along the reactor length for 0 ~ z ~ 1 along line Ij' j = O, ... ,N with 

the control defined in step 4. and ~(zi,tj) given in step 6. Store the values 

of X(l ,tj) for j = o, ... ,N. 

Step 8. Since for a first-order catalyst deactivation process when ~H(z,t) 

first reaches a value zero backward in time from the line t = 1, it reaches it 

uniformly along the whole reactor bed, locate the time at which hH(z,t) computed 

by (5-107) first become zero at any chosen station z € [o,l]. label this time 

t~ and store. 

Step 9. Form an error function, 

E~ = [t~ - t~] 2 (6-13) 
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corresponding to the guess Z~0 done in step 2, and t~ and t~ are found in 

step 5. and 8. 

Step 10. Repeat step 2. with t = 2, 3, ... using a new guess Z~0 each time and 

following steps 3. to 9. find a station z~o such that the function (6-13) is 

minimized. When E~ is minimized with E~ ~ 0 at the limit for a finite 

number t, the control switching line generated in step 4. and for which the 

maximum condition ~H(z,t) ~ 0 is satisfied everywhere in T is an extremal one. 

A typical rate of convergence of algorithm C2 with respect to the 

number of iterations is illustrated in figure 6-3. 

6.2.3. Algorithm Sl : p < 1, m;. 1 

Step 1. Corresponding to the intersections of the line t = 0 with each line 

II1, i = O, ... ,M assume a control k(z1, 0) such that, 

~ <k(z
1

, 0) <k* (6-14) 

and store. 

Step 2. With boundary conditions (3-33) and equation (D-5) or (D-6) compute 

X(l ,0) using the initial catalyst activity profile (3-35) and the controls 

defined in step 1. Store X(l ,0). 

Step 3. Considering X (t) = constant, then for times where the whole bed is
0 

on a stationary policy S, sub-property 6a indicates that X(l ,t) = constant. 

Therefore for each line II1, i = O, ... ,M assuming the whole bed is on a 

* *stationary policy S ,;n time the activity 1/J(zi,ti), where tie: (0,1] refers to 

*the time at which k(z1,ti)=k*, may be computed with relation {5-63) using controls 
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from step 1. and X(l ,0) from step 2. and the initial conditi.on (3-35). Store 

*1/J(Z;,t;), i = O, ... ,M, 

Step 4. Using relation (5~63) the control k{z;,t) on a stationary policy S 

may be conveniently expressed as a function of 1/l(zi,t) and of the known 

quantities 1/J(zi,O), k{zi,O) and X(l ,t) = X{l,O) =constant. Substituting 

this expression in equation (3-32) and integrating from timet= 0 to t = ti•* 

the values of ti'* i = O, ... ,M may be calculated since corresponding to each 

*line II; both values of 1/J{zi,O) and 1/J{zi,ti) are known from (3-35) and step 3. 

Store ti,* i = 0, ... ,M. 

Step 5. Find the upper and lower bounds from the set ti'* i = O, ... ,M and 

label tmax and tmin respectively. Now for t ~ tmin the whole bed is on a 

stationary policy S and the assumption of constant exit conversion is validated 

forte: [O,tmin]. If tmax = tmin go to step 12 otherwise proceed to step 6. 

Step 6, For time t e: ~t = [tmax - tmin] the whole bed is not on a S policy 

and X(l,t) r constant. Compute the value of 1/J(z1,tmin) using equation {3-32) 

upon substitution of (5-63) for k and in.tegrate from t = 0 to t = tmin' Use 

relation {5-63) and compute k{z;,tmin). Store both 1/l(z1,tmin) and k(zi,tmin) 

for i = 0, ... ,M. 

Step 7. Compute corresponding to each line II1, i = o, ... ,M the values of 

w(zi,t) for timet e: [t;* - tmin] using equation (3-32) substituted fork with 

(5-63) and integrating from t = tmin tot= t using boundary condition 1/J(zi,tmin) 

known from step 6. Then compute for each of these times t e: [ti* - tmin] the 

corresponding control k(z1,t) using {5-63). Store all computed values. 

Step 8. Integrating along lines parallel to the axis of the reactor, compute 

X{l,t) using equation {D-5) or {D-6) with condition {3-33) and activity 1/J(zi,t) 

and control k{zi,t) defined in step 7. 
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Step 9. Using this new conversion profile X{l,t) as the current one, compute 

for each line II1, i = O, ... ,M with the results ~{zi,tmin) and k(zi,tmin) of 

* *step 6. the new values of ~(z;,t;). Store all values ~(z;,t;), i = O, ... ,M. 

Step 10. Using relation {5-63) the control k{z1,t) on a stationary policy S 

may be conveniently expressed as a function of ~(zi ,t) and of the known quantities 

~(zi,tmin)• k(z;,tmin) and current X(l,t). Substituting this expression in 

equation (3~32) and integrating from timet= tmin tot= t;,* the values of 

* t;, i = O, ... ,M may be calculated since corresponding to each line II; both 

*values of ~(z.,t. ) and ~{z.,t.) are
1 m1n 1 1 

known from step 6. and 9. Store all 

*values of newt;, i = O, ... ,M. 

Step 11. Find the new * upper bound from the set of ti' i = O, ... ,M newly defined, 

tmin remaining the same value, and repeat steps 7. through 10. until according 

to some measure, 

(6-15) 


E3 is minimized with E3 ~ 0. Then store all values of the current iteration 

and proceed to step 12. 

*Step 12. With condition ~(zi,ti) and equation (D-12) compute along each line 

II., i = 0, ... ,M the value of ~(zi,t) for timet;* ~ t ~ 1 using control k = k * .
1 

Store all computed values. 


Step 13. With boundary condition (3-33) and equation {D-5) and (D-6) compute 


*X(l,t) forts ~t = (1-tmax) using results of step 12. and control k = k . Store 

X(l,t). 

Step 14. For each line II;, i = 0, ... ,M locate starting from t = 1, backward 

in time, the time at which aH first becomes zero. aH is computed by equation
IT IT 
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*(5-25) with relation (0~25) using (D-12) with everywhere a control k = k 

and where the boundary and terminal conditions X(l ,t) and ~(z,l) are given in 
0step 12. and 13. Label these times ti' i = O, ... ,M and store. 

Step 15. Defining a new time, 

t~ = (t* 0 )/2 (6-16)i i + ti 

+ * * +at which k(zi,ti) = k , compute using k = k fort£ ~t = (1-ti) the value of 
+~(z.,t.) using (D·l2) with the terminal condition ~(zi,l) computed in step 12.

1 1 

Store all values of ti'+ i = O, ... ,M. 


Step 16. A new initial control k(z;,O) may then be calculated by using relation 


(5-63) with the current X(l ,t) profile available and initial condition (3-35) 


plus the results k(zi,t~) = k* and ~(zi,t~) given in step 15. 


Step 17. Steps 1. through 16. may then be repeated until the measure, 


E = 4 {6-17) 

is minimized with E4 + 0. Then the control surface k(z,t) for all (z,t) £ T 

satisfying everywhere the maximum condition is an extremal one. 

A typical rate of convergence of this algorithm with respect to the 

number of iterations is illustrated in figure 6-4. 

6. 2. 4. A 1 gori thm S2 : p < l , m = 1 

For a first-order catalyst deactivation process properties 8 and 8a 

hold and an extremal control is uniform for all z £ [0,1] at any given time 

t £ [0,1]. 
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Therefore algorithm S2 uses the same basic steps of algorithm Sl 

but with the following modifications: 

Step 1. Assume a uniform control value such that at timet= 0, 

(6-18) 

Step 4. Same, except that by sub-property 8a only one value of ti* = t * need 


be calculated. 


Step 5. Go to step 12. with tmin = tmax = t * . 

t 0Step 14. Same, except that by property 8 only one time t? = need be located 

1 

and stored. 


Step 15. Same with a single t~ = t+ defined. 


Step 16. Same but with a single control k
0 

(0). 


Step 17. Same but with, 


(6-19) 


Figure 6-5 illustrates a typical rate of convergence of this algorithm with 

respect to the number of iterations T representing the uniform starting tempera
0 

ture, T(z,o) all z E [0,1]. 

6.3. Effect Of Kinetic Parameters On Extremal Policies 

6.3.1. Reaction Order n 

Recalling from property 10 that for p > 1 an optimal control policy 

for a zero-order reaction is purely k * everywhere in T, an optimal control 
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policy for n > 0 may however not raise the temperature {hence the rate k[T]} 

everywhere as high as posstble, as discussed in section 5.4. This is for 

example true for values of n = 0.5, 1.0 and 2.0 where according to property 

9 for p > 1 the optimal control surface k+(z,t) defined on T consists only of 

controls k * and k*. Extremal control switching lines, which are defined in the 

plane of r,bound disjoint regions on r upon which the controls k* and k* are 

defined respectively, as illustrated in figure 6-6. For each case taken separately 

the region contained by the contour t t 1z1z (n =0.5) or t t 2z2z (n =1.0) or
0 0 0 0 

(n =2:0) is one on which the control k* fs defined with the controlt 0 t3z3z0 

k* defined on the remaining surface in r. It is observed that as n decreases in 

value the surface on which the control k* is defined decreases in area, which is 

consistent with property 10 at the limit for n + o. 

For p < 1 and when a stationary policy may exist, the effect of 

different values of the reaction order on the resulting extremal control policies 

would be expected to be less significant than for p > 1 since the stationary 

control is continuously variable in both space and time of T. The effect of 

considering values of n = 0.5, 1.0 and 2.0 on the extremal stationary control 

policies is illustrated in figure 6-7 where, using sub-property 8 a for a first

order catalyst deactivation process, uniform temperature T{z,t) = T(t), °K., 

is plotted with time. 

6.3.2. Deactivation Order m 

For an identical .set of operating temperature and initial catalyst 

activity the magnitude of non-zero catalyst activity at any given time t > 0 is 

greater with larger deactivation order m, as illustrated in figure 6-8. 
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The ratio of catalyst decay rates for orders of deactivation m1 > m2 
may be written using equation {3-32), 

rate IT ,~ ,m J = k[T ].~ ml1 1 1 1 1 (6-20) 
rate IT2 ,~2 ,m2] kiT2].~2m2 

and for catalyst activities 1 > ~ ~ ~2 ~ 0 the rate of catalyst decay of the 1 
higher order m1 deactivation process at fixed finite positive temperatures 

= T2 is smaller than the rate of catalyst decay for the lower order m2T1 

deactivation process. 


Therefore for i denti ca1 decay rc;tes with m1 > m2 and 1 ~ ~l ~ ~2 > 0 

{6-21) 

and the temperature T1 for the higher orde-:r m deactivation process is greater1 
than for the lower order m2 deactivation process. 

This would then suggest that thE average level of optimal operating 

temperature of a higher order deactivation process could be at any time higher 

than that of a lower order deactivation process. 

This has been shown to be the case and is illustrated in figure 6-9 

for p > 1 with values of m = 1.0, 1.5 and 2.0 and in figure 6-10 for p < 1 with 

va1ues of m = 0.75, 1.0 and· 2.0. 

6.3.3. Parameter p =' ER/Ec 

The role of the parameter p in the admissibility of a control sub-policy 

S, C* or C * to an optimal control policy has been discussed in chapter 5. 
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For a value of p = 0 the reaction rate is independent of temperature 

and as low a temperature (hence k[T]) as possible should be chosen in order to 

retain the highest possible catalyst activity in the reactor. For p =· ~ the 

deactivation rate is virtually independent of the temperature and as high as. 

temperature as possible should be chosen in order to achieve the highest 

possible conversion level. 

This would suggest that to higher values of p > 0 correspond higher 

average level of temperature in the reactor. This is observed for 0 < p < 1, 

namely for the values of p = 0.1, 0.5 and 0.9 where the significant effect on 

the extremal stationary control policy is illustrated in figure 6-11. However 

for p > 1, namely for the values of p =1.1, 1.5, 2.5 and 5.0 the effect on the 

resulting extremal control switching lines is nearly indistinguishable when 

plotted on the z-t plane and results are shown in table 6-2. The tabulation 

contains results considering a first and second-order catalyst deactivation 

processes (m =1, m =2) and the intercepts of the control switching line with 

the coordinate t axis (z = 0) and z axis (t = 0) in the plane of T are given 

for each case. Although the surface area where the control k* is defined only 

slightly diminishes with increasing finite values of p, nevertheless, it indicates 

that for the range of p considered (very far from p = oo) the average level of 

temperature in the reactor very slowly increases with higher values of p. 

In contrast with the results for 0 < p < 1 where the effect of 

different values of p on the resulting exit conversion X(l,t) profile in time 

is very significant, the results for p > 1, p = 1.1, 1.5, 2.5 and 5.0, shows 

indistinguishable exit conversion profiles X(l,t) when plotted in figure 6-12. 

Values for the initial and terminal exit conversion assessing the small changes 

in these profiles for p > 1 are listed in table 6-2. Ameasure of the amount 
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Reaction Catalyst Control switching line Exit conversion Extremal 
order decay order int~~cept initial _terminal 

'1~p1 is;y 
p = ER (z = o) (t = o) 

~-· n m t z X(l ,0) X(1,1) J 

1.1 1.0 1.0 .52658 .57312 .62840 .25771 .53244 

1.5 1.0 1.0 .52347 .56795 .63060 .25597 .53186 

2.5 1.0 1.0 .52295 .56707 .63097 .25569 . 53177 

5.0 1.0 1.0 .52295 .56706 .63097 .25568 .53176 

·~- r 

1.1 1.0 2.0 .24010 .28735 .8069 .4878 .65848 
' 

.. 

1.5 1.0 2.0 . 23711 .28360 .8080 .4876 .65841 

2.5 1.0 2.0 .23660 .28296 .8082 .4876 .65840 
--- - --- ---------

i 
1 

I 

Table 6-2 Effect Of The Kinetic Parameter p For A First And Second Order Catalyst Deactivation 
On The Intercept Of The Extremal Control Switching Lines With The t and z Axis, The Initial And 

.....Terminal Conversion And The Amount of Reaction J. U'1 
0 
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of reaction J resulting from such extremal control surface and computed by 

equation (3~41) is also given there for p > 1, and a comparative illustration 

of that measure with the case of 0 < p < 1 is given in figure 6-13. 

6.4. Cata,l~t ActivitY, Profiles and the Order of Deactivation 

6.4.1. StationarY, Control Policies 

A continuous exponentially increasing initial catalyst activity 

profile. 

~0 (z) = (0.75).exp{{0.28765).z} Z E (0.1] (6-22) 

and a piecewise uniform catalyst initial activity profile, 

Z E (0.0.5] 
(6-23) 

~0 (z) = 0.8 Z E {0.5,1.0) 

and their relative effect on the extremal stationary control policy S for a first 

and second-order catalyst deactivation process are considered. 

Since for a first-order catalyst deactivation process properties 8 and 

"' Sa hold, the extremal control k(z,t) in time is uniform along the entire length 

of the reaction irrespective of the uniformity or continuity of the catalyst 

activity distribution along the reactor length. These properties of the extremal 

stationary control policy S have been observed form= 1 and are illustrated 

in figure 6-14 for the continuous non-uniform catalyst activty profile (6-22) 
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and in figure 6~15 for the discontinuous but piecewise uniform catalyst activity 

proftl e ( 6 ....23). 

Howevert for a second~order catalyst deactivation process the extremal 
"' control k(z,t) is sensitive to both the uniformity and continuity of the catalyst 

activity profile along the reactor length. 

This observation is illustrated in figure 6-16 and 6-17 respectively 

for catalyst distributions (6-22) afld (6-23) wbere no longer is 'the extremal 

stationary control policy S uniform for a non-uniform catalyst activity profile 

or continuous for a discontinuous catalyst activity profile. 

6,4.2. Bang~bang Control Policies 

A piecewise uniform initial catalyst activity p.rofile, 

1/J (z) = 1.0 Z E: [0.0,0.2]
0 (6-24) 

z 'c: (0.2t 1.0] 

and its relative effect on the extremal control switching line for a first and 

second-order catalyst deactivation process are considered. 

The case of a first-order catalyst deactivation process is discussed 

in section 5.4.1. and it is shown that a necessary and sufficient condition 

(5-177) defining an extremal control switching line in T is independent of the 

uniformity or continuity of the catalyst activity distribution along the length 

of the reactor. The result illustrated in figure 6-18 establishes this fact. 

For a second-order catalyst deactivation process, however, the control 

switching line in T is sensitive to a discontinuity in the initial catalyst 
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activity profile. This is reflected in figure 6~19 where for illustration the 

first iterative steps of algorithm Cl are shown starting with an initial pseudo-

extremal continuous control switching line in T, The generation of a pseudo

extremal discontinuous control switching line developed at the second iteration 

and remained thereafter at the point of discontinuity of the initial catalyst 

activity profile. 

6.4.3. Catalyst Activity Distributions 

The distribution of an initial catalyst change according to different 

activity profiles along the length of the reactor but with an identical average 

activity level, 

1 
{6-25)1/Jmean =J 1/Jo(z) .dz 

0 

is considered. The following distributions are used, 

case 1 l/J
0 

(z) = 0.869 z £ [0,1] (6-26) 

case 2 l/J
0

(z) = 1.0 z £ [0.0,0.5] 
(6-27) 

l/J
0 

(z) = 0.738 Z£(0.5,1.0] 

case 3 l/J
0 

(z) = {0.75).exp{(0.28765).z} z £ [0,1] (6-28] 

with 1/Jmean = 0.869 in each case. 

The effect of these different activity profiles on the extremal control 

switching lines is illustrated in figure 6-20 for a first-order catalyst 
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deactivation process with n = 1 and p = 1.5. The resulting exit conversion 

X(l ,t) profile is identical in all cases and thus the amount of reaction {3-41) 

produced is the same whatever catalyst activity profile is used. 

The effect on the extremal stationary control policy S discussed in 

section 6.4.1. form= 1 is also illustrated in figure 6-21 for n = 1 and p = 0.5. 

Again the amount of reaction produced is invariant towards the use of the 

catalyst activity profiles {6~26), (6-27) and (6~28), 

However when a second-order catalyst deactivation process m = 2 is 

considered for a ftrst~order reaction with p = 0.5 and corresponding to catalyst 

activity profiles (6-26), (6-27) and (6-28), the exit conversion X(l,t) profiles 

although nearly the same in time are no longer identical there. A comparative 

description of the initial and terminal exit conversion in time with the 

corresponding amount of reaction (3-41) is given in table 6-3 for both m = 1 

and m= 2. 

The tabulated results form= 2 would seem to indicate that an 

optimal distribution of catalyst activity along the length of the reaction 

could exist such that with the corresponding extremal control surface the amount 

of reaction {3-41) be maximized. 

Results from figures 6-20 and 6-21 or tabulated for m = 1 would seem 

to indicate however that this is not the case for a first-order catalyst 

deactivation process. 

6.5. Best Isothermal Operating Policies 

A way of assessing the extremal policies identified in this study is 

to compare them with the best isothermal operating policies {best uniform 

temperature in both space and time). 
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Figure 6-21 Effect Of Various Initial Catalyst Activity Profiles 
With Mean = 0.869 On The Extremal Stationary Temoerature Policy 
And Exit Conversion In Time For A First-Order Deactivation Process. 



Initial catalyst 
activity profile 

P = ER 

~ 

Reaction 
order 

n 

Catalyst 
decay 
order 

m 

Exit conversion 
I" 

initial termi na1 
X(1 ,0) X(1 , l) 

Extremal 
, policy 

J 

(6-26) 1.5 1.0 1.0 .5908 .2187 .4850 I 

(6-27) 1.5 1.0 1.0 .5908 .2187 .4850 

(6-28) 1.5 1.0 1.0 .5908 .2187 .4850 

(6-26) 

{6-27) 

0.5 

0.5 

1.0 

1.0 

1.0 

1.0 

.5918 

.5918 

.4089 

.4089 

.5720 

.5720 

I 

i 

(6-28) 0.5 1.0 1.0 .5918 .4089 .5720 
: 

I 

(6-26) 

(6-27) 

0.5 

0.5 

1.0 

1.0 

2.0 

2.0 

.6982 

.6990 

. 5174 

.5161 

.6501 

.6496 

i 

i 

I 

{6-28) 0.5 1.0 2.0 .6998 .5192 .6520 

'--

.....Table 6-3 Effect Of Various Initial Catalyst Activity With Mean = 0.869 For A First 0'1 
(.71 

And Second-Order Deactivation Process With p = 0.5 and p = 1.5 On The Initial And 
Terminal Exit Conversion And Amount Of Reaction J Produced. 
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Results were obtained for different sets of kinetic parameters p, n 
' and m and the following types of catalyst activity profiles, 

type 1: l/Jo(z) = 1. all z E: [0,1] {6-29) 

type 2: tJ;
0 

(z) = 0.869 all z E: [0,1] (6-30) 

type 3: tJ; (z) = (0. 75) ,exp {{O. 28765). z} all z E: [0, 1 J (6-31)
0 

type 4: tJ; (z) = 1.0 z e: [0.0,0.5]
0 

(6-32) 
tJ; (z) = 0.9 z e: (0.5,1.0]

0 

type 5: tJ; {z) = 1.0 z e: [0.0,0.5]
0 

{6-33) 
tJ; (z) = 0.8 z E: ( 0.5, 1.0] 

0 

Tables 6-4 and 6-5 summarized these results. The relative improvement in the 

amount of reaction (3··41) J and J1 for the extremal distribution control policy 

over the more conservative best isothermal operating policy is also given. 

Although an improvement over the best isothermal operating policy has 

been noticed in all cases studied, tabulated results indicated that a greater 

gain would be achieved for first-order than second-order catalyst deactivation 

processes for both values of p = 0.5 and p = 1.5. 

This is found compatible with the arguments contained in section 6.3.2. 

since as m increases a higher level of temperature would be used and for m ~ oo 

an extremal control policy could result for 0 < p < oo in a purely k * policy hence 

corresponding to the best isothermal control policy k * with a relative improve

ment zero. 



Reaction Catalyst Initial Extremal Isothermal 
order decay cata ly,?t policy policy 

J - Jp =ER order activity , I 
n m JljJo(z) J~ JI 

1.5 1.0 Type 11.0 .5318 .5022 + 5.57 

II1.5 1.0 1.5 .6066 .5992 + 1.23 

II1.5 1.0 2.0 .6584 + 1).23.6569 

II1.5 0.5 1.0 .4139 .41)69 + 1.69 

II1.5 2.0 1.0 . 7411 .6970 + 5.95 

1.5 1.0 1. 0 Type 3 .4850 .4654 + 4.04 

1.5 1.0 1.0 Type 4 .5038 .4782 + 5.08 
I 

Table 6-4 Relative Improvement Of The Distti~uted· Controil Pbli¢y Over· 
The Best Isothermal Policy. For p r:,-115 And ·Various Combinations Of The 
Reaction Order n, Deactivation Order m, And Initial Catalyst Activity 
Profiles. ..... 

0\ 

"' 
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p = ER 

~ 
" 

Reaction 
order 

n 

Catalyst
decay 
order 

m 

Initial 
catalyst 
activity 
~o·{z) 

Extremal 
~~ol icy 

J 

Isotherma 1 
policy 

JI 
J - JI 

J 

0.5 1.0 0.75 Type 1 .6076 

' 

.5724 + 5.79% 

0.5 1.0 1.0 II .6230 .5865 + 5.85% 

'1.5 l.f) 2.0 II .6819 .6570 + 3.65% 

0.5 0.5 1.0 II .4974 .4655 + 6.42% 

0.5 2.0 1.0 II . 7915 .7709 + 2.60% 

0.5 l.O 1.0 Type 2 .5720 .5376 + 6.00% 

0.5 1.0 2.0 II .6501 .6324 + 2.71% 

0.5 1.0 1.0 Type 3 .5720 .5418 + 5.27% 

0.5 1. 0 2.0 II .6520 .6341 + 2.75% 

0.5 l.f) 1.0 Type 5 .5846 .5497 + 5.97% 

0.5 1.0 2.0 II .6574 .6378 + 3.00% 

Table 6-5 Relative Improvement Of The Distributed Control Policv Over 
The Best Isothermal Policy For p = 0.5 And Various Combinations Of The 
Reaction Order n, Deactivation Order m, And Initial Catalyst Activity 

Profiles. 
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For p =1.5, a similar but opposite pattern is recognizable from the 

tabulated data since for n decreasing the relative improvement of J over J 1 is 

decreasing. This behaviour is again consistent with the discussion given in 

section 6.4.1. since for p > 1 and as n ~ 0 an extremal control policy would 

tend towards a purely k * policy and would then correspond at the limit for 

n ~ 0 to the best isothermal control policy k * with a relative improvement zero. 

However for p < 1 since for decreasing n or even n = 0 raising the 

temperature would not increase the rate constant K[T] for reaction faster than 

the rate constant kiT] for decay an extremal control policy would not be 

expected in general * to be purely k there and the above arguments are .not val1d 

in this case. 

Therefore a significant improvement of the extremal distributed 

control policy over the best isothermal control policy in the amount of reaction 

produced may be expected in general for low order catalyst deactivation processes 

and with htgh order reaction systems for p > 1. 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The maximum principle formulation of Sirazetdinov and Degtyarev 

(1967) derived for unsteady-state processes has been applied to a quasi-steady, 

state catalytic reaction-deactivation system. The problem of choosing a 

temperature policy as a function of chronologica1 time and position in a 

tubular fixed...bed, one-dimensional flow reactor. so as to maximize the total 

amount of reaction in a fixed period of time has been solved. A single 

irreversible reaction with a rate expressible as a product of separate 

functions of temperature, activity and conversion was considered with a rate 

of decay also expressible as a product of separate functions but independent 

of conversion. 

Analytical identification of properties of the optimal policy were 

given with proofs. The role of the parameter p = ER/Ec in the admissibility 

of a control sub-policy S, C* or c* to an optimal control policy is also 

indicated. 

It is shown that for a11 o < p < oo the opti rna 1 temperature every

where in the reaction is T* over a terminal time interval, unless the catalyst 

activity ~(z,t) along finite portions of the reactor is zero, in which case 

the rate of reaction is invariant to a change in the current temperature policy 

there, or unless the conversion level X{z,t) in the reactor is unity, that is 

F[X] = 0, and where there is clearly no incentive in choosing a temperature 

higher than that required to maintain X(z,t) = 1. 
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For o < p < l, it is shown that at each and every point of the 

reactor an optimal temperature policy T+(z,t) in time, corresponding to a con

tinuous monotonic non-increasing inlet conversion X
0 

(t) in time, is a continuous 

monotOnic non-decreasing function of time and may consist only of the following 

control policies: * .... T } or * {T*-+ S-+ T}. Also for continuous but {T }, {-S * 

arbitrary variations of X
0 

(t) in time, these control policies and still 

principal ones to an optimal control policy. 

When the entire reactor 
\ 
is on a stationary policy S in time and 

provided the inlet conversion X (t) = constant an optimal operating policy is
0 

to maintain the exit conversion X(l,t) =constant. 

When the catalyst deactivation is first-order (m = 1) then an optimal 
. . * , * * control pol 1 cy {T } , {S -+ T } or· {T* -+ S .... T } in time is the same everywhere 

in the reactor. 

For p = 1, the possibility of an optimal singular control sub-policy 

existing is noted and conditions under which it may arise are given. An optimal 

policy in time corresponding to a singular control sub-policy is to maintain 

the exit conversion X(l,t) =constant. w:1en conditions pertaining to the 

existence of a singular control sub-policy to an optimal control policy are not 

satisfied optimal controls defined in T may only consist of controls T * and T*. 

For a zero-order reaction the optimal temperature is purely T * everywhere in T. 

For 1 < p < oo no stationary control policy S is an admissible part 
" to an optimal control policy. Therefore an optimal control surface T(z,t) 

defined in may only consist of controls T * and T*' and for a zero-order 

reaction it is purely T * everywhere. 

Since at any given time parts of the bed may have a temperature T * and 

others T* it is shown that jumps in control in time from a temperature T * to T* 
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(or vice-versa) over finite lengths of the reactor are not optimal. Therefore 

in time an(toptimal temperature change from T* to T * or inversely along the length 

of the reactor bed may only·be continuous. Necessary and sufficient conditions 

defining an extremal·control switching line in Tare also given. 

The effect of the kinetic parameters n and m on the resulting extremal 

control policy have been studied and a *assessment of these control policies 

over more conservative best isothermal policies is given. It is shown that a 

significant improvement in the total amount of reaction produced, using the 

extremal distributed control policies, could be expected for low order catalyst 

deactivation processes with o < p < oo and high order reaction systems for p > 1. 

7.1. 	 Future Work 

Since the theory presented in chapter 4 allows the treatment of more 

complex systems the following extensions to the present analytical study could 

be done, 

1. 	 the case where the rate of decay is some function of the reactant 

and/or product concentration. 

2. 	 the case where the rate of reaction is of a more complex nature due 

to the consideration of a different reaction scheme. 

3. 	 the case of an unsteady-state catalytic reaction-deactivation system. 

'It numerical 
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measure of error relating two successive sets of ti'* 

equation (6-15) of algorithm S1. 


measure of error, equation {6-17) of algorithm Sl. 


equation (5-96}. 


scalar function of equation (2-1). 


ith component of vector function f. 

"' 

n'-component vector function, equations (2-2), (2-3) 

and (4-2). 


ith component of a n'-component vector function, 

equation (2-4). 


continuous, generally non-linear, monotonic increasing 

or decreasing function, or a constant, of conversion X. 


continuous, generally non-linear, monotonic decreasing

function, or a constant, of conversion X satisfying 

relation (3-12). 


first derivative of F[X] with respect to X, equation (5-4). 


equation (5-54). 


Fl {to}. 


equation { 5-96). 


continuous, generally non-linear, monotonic increasing

function, or a constant, of activity 1jl satisfying

re1 ation (3-24). 


first derivative of g[ljl] with respect to ljl, equation (5-5}. 


;th component of a n'-component vector function, equation 

(4-31). 


specified scalar functions of functional (4-10). 


scalar function of equation (4-32). 


ith row and jth column element of an' x m matrix of 

coefficients, equation (4-31). 




H(z,t,41,un) 
"'"' H(X,lji,>.,JJ) 

H, H(z,t) 

ii, H(z,t) 

W(41,un) 
k "' "' 

i 

iff 

I 

j 

k, k[T] 

k* 

k(z;,o)old 

ko 

k (0)
0 

175 

Hamiltonian like scalar function, equation {4-11). 

scalar function H{z,t,41,ljl,u) for the problem. considered, 

equation {5-l). "'"'"' 


particular forms of H{X,lji,>.,JJ) for p < 1: equation

(5-9), p = 1: equation (5-182) or p > 1: equation (5-104). 


scalar function, equation (5-105). 


kth component of a m-component vector function, 

equation (4-32). 


chemical reacting species in system {3-1). 


if and only if. 


functional (4-10). 


tth characteristic line: z =constant, figure 6-1. 


tth characteristic line: t =constant, figure 6-1. 


total amount of reaction produced over a fixed reaction 

time with a control k(z,t), equation {3-41). 


value of J obtained with the optimal control k+(z,t). 


molar flux of species i relative to the molar average

velocity v. 


value of J obtained with the best isothermal control 

policy. 


equation (5-96). 


catalyst deactivation rate constant of the Arrhenius 

form taken as control, equation (3-29). 


value of k[T] corresponding to T = T*. 


value of k[T] corresponding to T = r •. 


current computed value of k(zi,o) in step 16 of 

algorithm Sl. . 


prior computed or assumed value of k(zi,o), algorithm Sl. 


pre-exponential term in equation (3-21). 


control k at start-up of the process but uniform along

the reactor bed. 




L 

ko(O)old 

k'[T] 

~. k(z,t) 
A A 

k, k{z,t) 

k+ , k+(z,t) 

K, K[T] 

K* 

-K, K{z,t) 
A A 

K, K{z,t) 

+ +cK , K z,t) 

M 

n• 

N 

176 


current computed value of k
0 

(0) in step 16 of algorithm 
52. 


prior computed or assumed value of k
0 

(0), algorithm 52. 


catalyst deactivation rate constant, equation {3-21). 


admissible extremal control candidate. 


extremal control, extremal deactivation rate constant. 


optimal control, optimal deactivation rate constant. 


reaction rate constant of the Arrhenius form, equation

{3-28). 

*value of K[T] correspond to T = T • 

value of K[T] corresponding to T =T*. 

reaction frequency factor, equation {3-10). 

degree Kelvin. 

K(z,t0 ). 

reaction rate constant of the Arrhenius form, equation 
( 3-10). 

-value of K[T] corresponding to control k, equation {3-37). 
A 

value of K[T] corresponding to extremal control k, 

equation (3-37). 


value of K[T] corresponding to optimal control k+, 

equation (3-37). 


length of the reactor bed. 


catalyst deactivation order, equation (3-20); j = 1, •.• ,4, 

figure 6-8 and equation (6-20). 


number of characteristic lines II, figure 6-1. 


order of an irreversible chemical reaction. 


number of spatial co-ordinates, equation (2-1). 


number of dependent variables ~i• ~i· 


number of characteristic lines I, figure 6-1. 




Q(t} 

r 

-R 

s 

Sg 

Sl 

S2 

t 

t* 

tc,tj ,ts ,tsw't
0 

to 

te 

tf 

tsi 

(tsi>new 

(tsi>old 

ts 
tc 

177 
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o, o[T ,lji,X] pseudo-homogeneous rate of reaction, equation (3-8). 

au boundary of the set of admissible control vectors U. 



X =y 


X ~ y 


X > y 


X ~ y 


X < y 


X ~ y 


X £ X 


X /. X 


xc v 
X<; y 

X'\Y 


A => B 


X a y 


... 

dy/dx 

an/a n 
y X 

MATHEMATICAL SYMBOLS AND OPERATORS 

x equal to y. 


x not equal to y. 


x greater than y. 


x greater than or equal to y. 


x smaller than y. 


x smaller or equal toy. 


element x belongs to set X. 


element x does not belong to set X. 


set X is a subset of set Y. 


set X is a subset of or equal to set Y. 


set Xminus set Y. 


fact A implies fact B. 


x varies as y. 


infinity • 


summation operator. 


gradient operator. 


derivative of y with respect to x. 


nth partial derivative of y with respect to x. 


integral along a path ox. 

integral between the limit x andy. 
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APPENDIX A 

Existence and Uniqueness of a Solution for Systems 
of First-Order Partial Differential Equations 

Consider the following system of first-order partial differential 

equations: 

a ~;(z,t) n a ~j(z,t) 
at + E ai 3.(z,t,~) az = f;(z,t,~) i=l, .•• ,n (A-1)

j=l 'V 'V 

with the associated initial and boundary conditions: 

i=l, •.. ,n (A-2) 

i=l, ..• ,n (A-3) 

The ~i(z,t) represents the ;th component of the unknown n-dimensional 

vector ~(z,t) distributed in the plane of the independent variables z and t. 
'V 

The a j(z,t,~) represents the ith row and jth column element of the1 
n x n matrix A(z,t,~) and the f .(z,t,~) corresponds to the ;th component of the1~ 'V 'V 

n-dimensional vector f(z,t,~). 
'V 'V 

Generally matrix A and vector f may be both function of the variable = 'V 

quantities z, t and~ but not of the partial derivatives· of~, that is ~z 
'V 'V 'V 

or ~t· 
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When A does not depend on ~and f depends linearly on ~the = ~ ~ ~ 

system is linear. If A is independent of~ and f depends on ~' but non= ~ ~ ~ 

linearly, the system is called semi-linear and can be treated almost as a 

linear system. Otherwise, if~ depends on t the system is termed quasi-linear. 

A.l Analyticity and the Cauchy-Kowalevski Theorem 

System (A-1) can be easily expressed in the format of the classical 

Cauchy problem, which consists in finding the solution of the following 

system: 

a ~i(z,t) 
= F. (z,t,~,~z) i=l, ... ,n (A-4)at 1 ~ ~ 

that satisfies the initial conditions (A-2). 

The fundamental theorem of Cauchy-Kowalevski then states 

[Petrovskii (1967)]: 

"If all of the components F1 are analytic functions in some 

neighbourhood of the point (z0 ,t0 ,~(z0 ,t0 )) and all the components 

~,. and ~z of the column vectors ~ and ~z are analytic functions in 
i ~ ~ 

some neighbourhood of the point (z
0 
,t

0 
), then the Cauchy problem 

has an analytic solution in some neighbourhood of the point (z
0
,t

0 
) 

and this solution is unique in the class of analytic functions". 

Despite its generality this theorem is restricted to problems 

involving only analytic functions, that is equations and solutions that have 

convergent power series representations. 

This assumption of analyticity may be regarded in many cases as 

being not too serious for it is known by the Weierstrass approximation 
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theorem [Bartle {1964)] that any continuous function can be approximated 

arbitrarily closely by analytic functions, in fact by polynomials. 

This requirement of analyticity may hm'lever prove to be very 

restrictive and to exclude many of the most significant situations in the 

theory of partial differential equations since the Weierstrass approximation 

theorem does not insure that close approximation of the boundary values implies 

close approximation of the solution fort> t
0 

[Petrovskii (1967), 

Garabedian {1964)]. 

A.2 Continuity and the Concept of Characteristics 

Nevertheless, for partial differential equations of first-order 

such as defined by system (A-1) a more direct and complete theory of 

integration is available under rather weak assumptions of continuity and 

differentiability. 

The key to the theory is the concept of characteristics or the 

equivalence of a first-order partial differential equation with a certain 

system of ordinary differential equations. 

The basic rationale underlying the use of characteristics is that 

by an appropriate choice of coordinates the original system can be replaced 

by an equivalent one expressed in characteristic coordinates. 

In terms of these characteristic coordinates differentiation is 

much simplified since the complication of having more than one differential 

operator in each equation is removed and the theory is brought closer to that 

of ordinary differential equations. 

The existence and uniqueness of the required solution of the 

equivalent system then follow directly from the theory of ordinary differential 
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equations. 

A.3 Reduction of Semi-Linear and Linear Systems to 

a Canonical Form 

Reduction of semi-linear or linear systems such as (A-1), involving 

differentiation in two distinct directions, to a canonical form involving 

differentiation in a single direction succeeds if and only if such systems 

are hyperbo1 i c. 

This hyperbolicity condition will be stressed here for the more 

general semi-linear case. 

It is immaterial whether the fi{z,t,~) are linear or non-linear 

functions of the unknown vector ~. the only assumption will be that the 
'V 

coefficients a;j(z,t) are real and continuous functions of z and t and also 

that they have continuous partial derivatives with respect to z and t in 

some region T of the z,t plane. 

In a neighbourhood N(P) of an arbitrarily chosen point P(z,t) £ T, 

form n independent linear combinations: 

n a~. n n a4>. n 
r k 1 + ~ ~ k a J - ~ k f s-1 n (A-5)

i=l si at 1 ~ j~l si ij az- i~l si i - '· · ·'1 

of then equations of system (A-1) such that for all ~i i=l , ... ,n: 

n n n 
s=l, .•. ,n (A-6)i;l j;l ksi aij 4>j = As i~l ksi ~i 
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where the k
5
i(z,t) and As(i,t) are certain functions with respect to z and 

t to be more precisely identified later. 

It is sufficient and clearly necessary that the coefficients of 

$j on the two sides of this identity be the same if (A~6) is to hold for all 

$j in the neighbourhood N(P) of the point P(z,t) £ T, that is, 

s=1 , ••. ,n (A-7) 

which is a system of n homogeneous equations for the n unknowns ksj(z,t) 

j=l, ..• ,n. 

For this system to have a non-trivial solution, it is necessary 

and sufficient that the determinant of its coefficients be equal to zero, or, 

s=1 , ..• , n (A.8) 

where I stands for the n x n identity matrix. 

It has been shown [Petrovskii (1967)] that a full set of linearly 

independent characteristic vectors k j(z,t) j=l , ..• ,n, corresponding to 
5 

characteristic roots As(z,t) is uniquely determined in a neighbourhood 

N(P) of the point P(z,t) £ T if polynomial equation (A-8) has only distinct 

real characteristic roots in that neighbourhood. 

When this last condition is met for the entire region T under 

consideration, semi-linear system (A-1) is called totally hyperbolic in the 

whole ofT and the characteristic roots As(z,t) and vectors ksj j=l , .•. ,n 

have at any point (z,t) £ T the same smoothness as the coefficient aij(z,t) 

have in T, that is, they have as many continuous derivatives \'lith respect to 
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z and t as do the coefficients aij(z,t). 

Under the same hyperbolicity condition, it has also been proven 

[Petrovskii (1967)] that there exists a non-singular linear transformation 

of the unknown functions 
'\, 
~(z,t) holding for the entire region t, 

n 
= r kiJ.(z,t) . ~J.(z,t) i=l, ... ,n (A-9) 

j=l 

such that semi-linear system (A-1) is reduced to a canonical form. 

This can be observed in the following, since the results of (A-5) 

may be written as: 

n 
a{ r ks,· a .. }.~.n i=l lJ J 

+ r = f' s=l, .•• ,n (A-10)at az sj=l 

with 

n 
a { 2: a .. }n n n ksi 1Jaksi

f' = E f. E + E ~. s=l, .•• ,n (A-11)s ksi 1 + ~-1 at J 
i=l 

azi=l i=l j=l 

Also,using equation (A-7), 

s=l, ••• ,n (A-12)+at 
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with 

f• n n aksi n a{As ksj} 
S = r ks 1· f 1• + r <ll1· ~ + r ~J. az s=l, .•. ,n (A-13)

i=l i=l d" j=l 

Finally in regard to transformations (A-9), 

s=l, ... ,n (A-14) 

with 

f * = s=l, ... ,n (A-15)s 

where f* is a n-dimensional vector not depending upon any partial derivative 

of e:. 
'\, 

The corresponding initial and boundary conditions for system (A-14) 

are, 

n (A-16)e:s(z,to) = }: k i{z,t0 ) 
. ets(z) s=l, ... ,n

5i=l 

and 

n 
e:s(zo,t) = E ks;(z0 ,t) . ss(t) s=l, •.. ,n (A-17)

i=l 
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and are related to conditons (A-2) and (A-3) through transformations (A-9). 

The advantage of the equivalent canonical form (A-14) of semi

linear system (A-1) is that the sth scalar equation of (A-14) can be solved 

for the derivative of the sth unknown component e of e in the direction of 
s "' 

the corresponding characteristic curve Ls defined as, 

s=l, .•. ,n (A-18) 

These n equations are called the characteristic lines of system 

(A-14) for their direction of any point P(z,t) e T is precisely the 

characteristic direction there. 

When semi-linear (A-1) is totally hyperbolic throughout the entire 

region T in question, then through every point (z,t) £ T there pass a family 

of n distinct, real characteristic lines L s=l, ... ,n.
5 

The figure below represents such a family for a characteristic line L1. 

tf / / /

"' s=l
/ / /, / /- / /....- /- /- / / 

/ / 

t -- / 
/ 

/ 

/ / 
.... /.....- /- ./ /

/ /.....- /- ../-to ..... 

zo Zf 
z 
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These characteristic lines originate on the initial-value curve 
11 C11 which is detennined by the initial and boundary conditions (A-16} and 

(A-17}. 

The angle between the tangent to the characteristic curve Ls and 

the z-axis at point P(z,t} e T is denoted by Ys and the characteristic 

directions {A-18) become there, 

s=1 , ••• , n (A-19) 

and by construction, one may write, 

dt 1sin = s=l, .•. ,n (A-20)ar;-= Ys 
[1 + ).2]1/2 

s 

and 

dz .As 
cos Ys = s=l, .•. ,n (A-21)err;= [1 + ).2]1/2

s 

Also the directional derivative of the function es(z,t) at any 

point P(z,t) e T of a characteristic line Ls is given by, 

dz s=1 , .•• , n (A-22)err; 

and denotes the differential of the function e
5
{z,t) as one moves along the 

arc ts in the direction of the characteristic line L
5 

passing at P(z,t) e T. 
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However, since the directional derivatives {A-22) may also be 

written 

s=l, ••• ,n (A-23) 

the bracketed term is easily identifiable with the sth scalar equation 

of system (A-14) and, 

s=l, •.• ,n (A-24) 

From the above, along a segment of the arc ts in the direction 

of the characteristic line L the system of partial differential equations
5 

{A-14) reduces to a system of ordinary differential equations. 

The coordinate z and t given in terms of the parametric coordinate 

1s are the following for As constant, 

s=1 , ••• ,n (A-25) 

s=l, •.• ,n (A-26) 

where z' e [z
0

,zf] and t' e [t
0
,tf]. 

When the characteristic lines Ls do not coincide with the initial

value curve "C", a non-singular transformation of coordinate may be done. 
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Thus the set of partial differential equations (A-14) can be 

integrated along the characteristic lines Ls as o'rdinary differential 

equations (A-24), and, then each point on the parametrized line is can be 

projected back to the z and t coordinate system using relations {A-25) and 

(A-26). 

Due to the invariance of characteristics under point transformation 

[Courant and Hilbert (1962)] system (A-24) may also be directly transformed 

to, 

s=1 , .•. ,n (A-27) 

using transformation (A-20), and each scalar equation of (A-27) represents 

the differential of the variable Es{z,t) in time t as one moves along an 

arc segment is of the characteristic line Ls. 

Another compatible transformation, using relation (A-21) would be, 

s=l, •.. ,n (A-28) 

where each scalar equation of (A-28) represents the differential of the 

variable Es(z,t) in space z as one moves along an arc segment is of the 

characteristic line Ls. 

Denoting by is that portion of the corresponding characteristic 

line L5 between an arbitrary point P(z,t) E T and its intercept (z' ,t•) with 

11 C11the initial-value curve at time t•, the sth scalar equation of (A-27) 

may be integrated along this arc segment is from the point (z' ,t') to 

the point P(z,t) £ T , to give a system of integral equations. 
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t 

fs* dts s=l, ... ,n 	 (A-29) 

t• 


Similarly for the sth scalar equation of (A-28), 


z 

Es(z,t) = Es(z',t') +j * fs 
>.s 

dts s=1 , .•• , n (A-30) 

z' 

where again here Es(z',t') refers to the condition on the initial-value 
11 C11curve 	 • 

Every solution to system (A-27) or (A-28) that satisfies the 

initial condition Es{z',t') is a solution of the system of integral 

equations (A-29) or (A-30) and conversely. 

A.4 	 Hyperbolic Systems and the Cauchy Problem 

It is shown in section A.3 that totally hyperbolic system 

of first-order partial differential equations can be reduced to some suitable 

canonical form under rather weak assumptions of continuity and differentiability. 

The assumption of a totally hyperbolic system for which all of the 

real characteristic roots >.i(z,t), i=l, ... ,n, are distinct has been shown 

not to be essential for that reduction to succeed [Petrovskii (1967), 

Garabedian (1964)]. 

All the statements made in section A.3 may be shown to remain valid 

for the case in which some of the real characteristic roots >.i(z,t) coincide 
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if and only if the resulting set of characteristic vectors ksj(z,t) 

j=l , •.. ,n, generated is linearly independent [Petrovskii (1967)]. When 

this is the case, the system is called hyperbolic. 

Questions about the existence of a solution and uniqueness of 

that solution for the original Cauchy initial-value problem for the totally 

hyperbolic system (A-1) with the initial data (A-2) and (A-3) are then 

essentially transposed to the equivalent system of ordinary differential 

equations (A-24) with the initial-value curve ncn as initial conditions. 

Theory pertaining to a system of ordinary differential equations 

is fairly complete and general existence and uniqueness theorems are 

available [Coddington and Levinson (1955)]. Proofs of these theorems are 

fairly lengthy and intricate. 

In the first place, it is necessary to establish the existence of 

a continuous vector function e(z,t) such that each of its components 
"' 

11 C11es(z,t) = es(z' ,t• }, s=l , ..• ,n on the given initial data curve and 

satisfied the differential equations (A-24) in a neighbourhood N(P
0 

) of a 

point P
0
[z' ,t•, ~(z',t')]. 

In order to do this the equivalence of the given initial-value 

problem with a certain set of integrals is shown. 

A sequence of vector functions is constructed in such a manner that 

the limit vector function of the sequence can be shown to exist, and to 

satisfy the integral equations; this vector function being also a solution of 

the initial-value problem. This leads to the ~auchy-Peano existence theorem. 

Finally, it is shown that any other solution of the initial-value 

problem, regardless of its manner of construction, is identical to the first 

solution. Hence the solution is unique. The Picard-Lindelof theorem summarizes 
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these arguments. 

Conditions under which the existence of a·solution to the totally 
11 C11hyperbolic system (A-24) with the initial-data curve will be ascertained 

by the Cauchy-Peano existence theorem in a neighbourhood N(P
0 

) of the point 

P [ z~t·, £(z' ,t' )] is that the vector function f * be a continuous function 
0 

~ ~ 

of its arguments there, that is, 

(A-31) 


However, something more than the continuity of the vector function 

!* in N(P ) is required in order to guarantee that a solution ~(z,t) passing
0 

through a given point P[z,t, ~(z,t)]£ N (P
0 

) be unique. 

A simple condition which permits one to imply uniqueness of a 

*solution through the Picard-Lindelof theorem is that the vector function f 
~ 

satisfies a Lipschitz condition with respect to the unknown vector function £ 
~ 

in N ( P 
0 

~ that is, 

(A-32) 


The precise meaning of that condition may be expressed in the fact that if 

the vector function f * is defined in the space (z,t,£) £ N(P ) and that there 
~ ~ 0 

exist a constant M > 0 such that for every (z,t,£1) and (z,t,£2) in N(P0 ). 
~ ~ 

(A-33)If* (z,t,£1) f*( z,t,£2)1 < M 
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then the vector function f * is said to satisfy a Lipschitz condition with 
"' 

respect toE in N(P
0
), and f * is uniformly continuous in E for each fixed 

"' "' "' station {z,t) in N(P
0

), although nothing is implied concerning the 

continuity of f* with respect to z and t. The constant t4 is often called 
"' 

a Lipschitz constant. 

Nevertheless, since the existence and uniqueness theorems of 

such a general nature can only insure a solution in the small, that is, 

in some neighbourhood N(P
0 

) of the whole space (z,t,E) when, 
"' 

(A-34) 


the existence and uniqueness of a solution E{z,t) in the large can only be 
"' asserted under additional conditions on the system coefficients and the initial 

data. 

In general, the existence and uniqueness of a continuous solution 

E(z,t) with continuous first derivatives with respect to z and t can be 
"' 
extended into the whole space r of z,t and E{z,t) under consideration as long

"' 
as the coefficient aij(z,t), the vector function~ * and the initial data 

(A-16) and (A-17) of the system retain their continuity and differentiability 

in that space [Courant and Hilbert (1962}, Coddington (1961)]. 

However, the initial-value problem (A-24) with the initial data 

curve for which a solution exists and is uniquely determined in the whole of 

r may still be incorrectly set or not well posed [Courant and Hilbert (1962)]. 

This results from Hadamard's work in the theory of partial differential 

equations which has shown that a third criterion necessary for a problem of 
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this type to be correctly set or proper in that sense is that its solution 

must also depend continuously on the data. 

Fortunately, however, a sufficient condition for the system at 

hand to be proper in the sense of Hadamard has been shown [Courant and 

Hilbert (1962)] that it be totally hyperbolic in the whole of r. 



APPENDIX B 


PROOF OF A MAXIMUM PRINCIPLE 


B.l Control Perturbation and Functional Increment 

The general derivation of the necessary conditions for optimality 

are based on the following observation. 

If there exists an admissible optimal control policy which 

yields a minimum for the cost functional I, then any different admissible 

control policy will result in no lower values for the cost functional. 

This concept of non-decreasing cost of the functional I for 

any sub-optimal control policy is then used to derive the necessary 

conditions for an optimal control to exist. 

Noting that the cost functional as defined by (4-10) may be 

written in terms of the function H defined by (4-11), the increment 6I 

corresponding to an arbitrary perturbation in control 6u(z,t) is, 
"' 

n 
{- 6H + E 6 [wi.f;J} dz dt 

i=l 

+ f tf !oG;1 [~{z0 ,t)] + oGz [~ (zf,t)]) dt (B-1) 

to 
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where 

-
~H = H(z,t,• + ~•,j + ~.,u + ~u) - H(z,t,t,. 5 u) (B-2) 

"' "' "' "' "' "' "' "' "' 

and 

n n n n 

E ~ [ ••• f;J = E •·. ~f.+ E fi·~·i + E ~·;·~f • (B-3)
1 1 1 1i=l i=l i=l i=l 

However since ~(z0 ,t) is not influenced by a variation of 

control in T, ~•(z0 ,t) = 0 and consequently, 
"' 

(B-7) 

and the functional increment (B-1) reduces to, 
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n 
{-~H + r ~ [w;.f;J} dz dt 

i=l 

(B-8) 

tf zf 

+J 'G2 [~(zf't)J dt + f ,G3 [~(z,tf)J dz 

~H expression 

The increment ~H defined by equation (B-2) may also be written 

as, 

= 
~H = ~H + ~H (B-9) 

where 

= 
~H = H(z,t,~ +~~,w+~w,u+ ~u) - H(z,t,~,w,u+~u) (B-10) 

"' "' "' "' "' "' "' "' "' "' 

and 

AH = H(z,t,¢,w,u+Au) H(z,t,¢,~,u) ( B-11) 

"' "' "' "' "' "' "' 

Recalling the Mean Value Theorem and Taylor's Theorem for functions of 

several variables [Bartle (1964)]: 
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Mean Value Theorem 

Let f be defined on a subset Q of RP and have values in R. 

Suppose the set Q contains the points a,b and the line segment joining 

them and that f is differentiable at every point of this segment. Then 

there exists a point c on this line segment such that. 

f{b) - f{a) = D f{c) • (b-a) {B-12) 

Taylor's Theorem 

Suppose that f is a function with domain Q in RP and range in 

R, and suppose that f has continuous oartial derivatives of order n in a 

neighborhood of every point on a line segment joining two points u,v in Q . 
-Then there exists a point u on this line segment such that, 

f{v) = f(u) +}: D f(u).(v-u) + ~ o2 f(u).{v-u) 2 

(B-13) 
1 n - . n+ .•• + n; D f(u).(v-u) 

and noting that the scalar function H is at least twice continuously 
-

differentiable with respect to its augments, expression (B-10) for ~H may 

then be expanded exactly to second-order terms. 

-
~H = H{z,t,~+~~,w+~w,u+~u) - H(z,t,~,w,u+~u} 

'\., '\., '\., '\., '\., '\., '\., '\., '\., '\., 

n aH(z,t,-t,~,Jt.{;u) n aH(z,t,,t,~,~+~u) 
= l: M. + l: +aw. a~;j=l J J i=l 
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n n 
+ 1 L: L: 

'l j=l i=l 

n n 
+ L: L: 

j=l i=l 

n n 
+l L: L:2 j=l j=l 

(B-14) 

Since ~H defined by equation (B-11) can also be expanded exactly to first 

order tenns, 

1r aH(z,t,~,~,~+e u~u) 
H(z,t,~,tjJ,U) + L: {B-15) 

k=l"'"'"' auk 

and from equation (B-14) with result (B-15), 

n aH(z,t,~,tjJ,u+~u) n aH(z,t,~,~,u+~u) 
L: "' "' "' . ~IJ!. + L: "' "' "' . M;3tjl. J d~·,j=l J i=l 

n a H ( z, t ,,t ,~ ,~) n aH(z,t,ljl,w,u) 

= l: . ~t/Jj + l: "' "' "' . b<P i
3tjl. 3~;j=l i=lJ 

(B-16) 

2 1n r a H(z,t,<P,w,u+e u~u) 
+ l: L: '{,"' "' "' 

j=l k=l 

2 1 )n r a H(z,t,<P,w,u+e u~u 
+ l: l: "' -t "' "' "' • 1\U M> 

ac~>; auk k • ii=l k=l 
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-Substituting this result in expression (B-14), ~H may be rewritten, 

n aH n aH 
~H = ~H + r a·"· . ~l)J. + r ~ . ~~i + El (B-17)

j=l ~J J i=l i 

with 

n r i H1= 1: 1:El al)Jj aukj=l k=l 


n r a
. 
2 H1+ 1: I: 
a~i auki=l k=l 

n n a2 H (B-18)
+ l 1: I: 

2 . ~~i . ~~j2 . 1 al)J. at1J= i=l J 


n n a2 H2
+ I: I: . • ~ljJjal)Jj a~. ~·i
j=l i=l 1 


2 H
n n a 2+ 1 I: . ~ljJ.r . ~ljJi2"" • 1 al)J. al)Ji JJ= i=l J 

where 

H = H(z,t,~,ljJ,U) 
"'"'"' 

= H(z,t,~,w,u+eu1 ~u)H1 
"' t{, "' "' "' 

(B-19) 

and 
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n 
E 6[~i • fi] expression:

i=l 

The effect of a control perturbation upon the state variables of 

the system is carried out through equation {4-2), and, 

i=l , ••• ,n (B-20) 


Since from equation (4-11), 


i=l, ..• ,n {B-21) 

the increment Afi may also be written, 


aH(z,t,t,liJ,u)
"'"'"' (B-22) 

or recalling equation {B-2), 


{B-23) 


Expanding AH exactly to first-order terms gives, 

-AH = H(z,t,t+At,,~Aijl,u+Au) - H(z,t,t,w,u) 
"' "' . <{, . "' "' "' "' "' "' 

n 
= E 

i=l 

n 
+ r 

j=l 

(B-24) 


r 
+ 1: 

k=l 
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Substituting this result in equation (B-23), 

n a2 H n a2H3 r a2 H3 3Afi = l: • A~. + l: • AlP· + l: . AUk (B-25)alPi a~j alP . alP . olPi aukj=l J j=l 1 J J k=l 

Thus the third component of equation (B-3} may be written, 

(B-26) 


where 


(B-27) 

with 

2 2 2= H(z,t,~+e .... 6~,~e,j,61P,u+euAu)H3 "' "'... "' "' "''~""' "' "' ~ (B-28) 

and 


Also by equation (B-21) the second component of equation (B-3) becomes, 


{B-29) 


Equation (B-20) finally permits one to write for the first component of 

equation (B-3), 

(B-30) 
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and 

n n aH a~~i n a~~. 

I ~ [1/J •• f.J = e:2 + I L••,.•• ~1/J,. + wi -;--t + .I 1/J.•aij __J} (B-31)


i=l 1 1 i=l a.,, a J=l 1 az 

Functional Increment ~I: 

Substituting equations {B-17) and {B-31) into {B-8), the functional 

increment ~I becomes, 

(B-32) 

tf zf 

+J AGJ! [~(zf,t)J dt + J AG3 [•(z,tf)J dz 


to zo 


Recalling equations {4-12), the third integral of equation (B-32) may be 

written, 

(B-33) 




214 

or grouping, 

(B-34) 

Each partial differential term may be individually integrated 

with respect to its coordinate, and noting that 

(B-35) 

the double integral (B-34) reduces to, 

(B-36) 

However, observing the terminal and boundary conditions (4-13) 

and (4-14), result (B-36) becomes, 

zf n 


- [ E + 

i=l 
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(B-37) 

and functional increment (B-32) is rewritten, 

~I = 

{B-38) 

Since G2[~{zf,t)] and G3[~{z,tf)J are twice continuously differentiable 

functions with respect to their arguments.~' G2[~(zf,t)] and A G3[~(z,tf)] 
as defined by equations {B-5) and (B-6) can be expanded exactly to second 

order tenns, 

(B-39) 
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and 

(B-40) 

Substituting these last results in the functional increment 

(B-38) gives finally, 

t1H di dt + e (B-41} 

where the remainder term e is given by 


a = 

tf . a2 G" (B-42) 
. 2 

- a1 !: • 6~j (zf' t) • 6~;(zf,t) dt+ a~i(zf,t) a~i(zf,t)2 f 1!1 j=l 

n 

... 

to 

zf 2 Gan 
+ r2" 

1 f 1!1 j=l a 1(z, tf) 
3a 
a~j(z,tf) • 6~/z,tf) • 6~;(z,tf) dz 


zo 
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and, 


(B-43) 

with 0 ~ e6u,e6 ~ 1 
"' 2 "' 3 

Expressions {B-41) with (B-42) denote the exact increment of the 

functional I corresponding to an arbitrary variation of the distribution 

control u(z, t). · 
"' 

Note also that the remainder term s groups only second order 

terms. 

8.2 State and Costate Incrementals to a Control Perturbation 

The estimate of the remainder term s involves the estimates of the 

magnitude of ~t and ~~ corresponding to variations in the control vector 
"' "' 

~(z,t). 

The estimates of these quantities will be derived from the concept 

of characteristics developed essentially in Appendix A. 

System (4-2) may be written for ~t{z,t) as: 
"' 

i=l , ••• ,n {B-44) 
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Also, under the hyperbolicity condition stated for the system, a non

singular linear transformation of the unknown vector ~t(z,t) may be proved
"' 

to exist, (see Appendix A). 

n 
~"i = I: k; . • ~~J. i=l, ••• ,n (B-45)

j=l J 

which converts system (B-44) to the form, 

aH* i=l , ••• ,n (B-46)~ar
i 

with, 

(B-47) 

Note that equation (B-46) is analogous in form to (A-14), and equation (B-47) 

to (A-15) of Appendix A and equation (B-46) assumes the canonical form. 

In equations (B-46) and (B-47) the characteristic values Ai(z,t) 

are differentiable functions with respect to z and t and are the roots of 

the characteristic polynomial (A-8). The characteristic vector kij(z,t) 

which are solutions of the homogeneous system (A-7) also possess with 

the characteristic roots A;(z,t) the same smoothness properties as the 

matrix coefficients aij(z,t). 

Since the matrix coefficients aij(z,t) are continuous and continuously 

differentiable with respect to z and t in the finite domain T they are 

therefore also bounded there and so are the characteristic values Ai(z,t) 

and k;j(z,t}. 

Furthermore, since the vector f (z,t,w,u) of system (4-2) possesses 
~ "' "' 

at least continuous first derivatives with respect to its arguments in T, 
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then the vector f(z,t,~,u) satisfies a Lipschitz condition with respect to 
"" "" "" 

vector ~(z,t) and u(z,t) in T [Coddington and Levinson (1955)].
"" "" 

Hence equation (B-47), factorable in terms of these quantities, 

satisfies a Lipschitz condition with respect to vectors ~(z,t) and u(z,t) in T, 

"" "" 
that is, there exist a constant M 0 such that,1 > 

(B-48) 

or since in the case considered, 


i=l, ••• ,n (B-49) 

and 


k=l , ••. ,n (B-50) 


equation (B-48) may be rewritten 


(B-51 ) 


where M1 is a Lipschitz constant. 


Since equation (B-46) may be written as, 


d An; AaH*I i=1, .•• ,n (B-52)dt L =~ 
i 
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with the same significance as in equation (A-24), integrating it in the 

sense given there, equation (B-52) becomes, 

f•l , ••• ,n (B-53) 

Substituting expression (B-51) in equation (B-53) and noting that 

6 ni(zi,t0 ) = 0 gives; 

i=l, ••• ,n (B-54) 

or summing it for f=l, ••• ,n: 

(B-55) 

Since this could be written in the form, 

t 

y(t) ~ a + J b(s).y(s).ds (B-56) 

to 

with, 

y(s) = ~ 16 n·l~ 0 (B-57)
i=l 1 

~ 16 ukj dt ~ o (B-58)
k=l 

http:b(s).y(s).ds
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b = n M1 > 0 (B-59} 

a lemma on integral inequality [Lakshmikantham and Leela (1969}] instructs 

us that expression {B-56) may be written as, 

t 

y(t) ,< a • exp { J b(s) dsJ (B-60} 

to 

or in terms of expression (B-55}, 

(B-61} 

Finally, since, 

i=l, ••• ,n (B-62) 

inequality (B-61} becomes, 

i=l, ••• ,n (B-63) 

where tf is the largest finite value of time t corresponding to the largest 

value of si in the region of integration along Li' and M3 is a positive 

constant whose value may change with i=l , ••• ,n. 

Since ~(z, t) £ U, where U is a closed set, If1 uk I is a bounded 

quantity in t and quantities (B-63} are also bounded there. 
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The characteristic vector kij(z,t) being unaffected by a 

perturbation in control, transformation (B-45) may be used in inequalities 

(B-63) to yield, 

tf 

i=l , ••• ,n (B-64)lA ·~I~ M4 ·~ k!l lA ·kl dt 


to 


with M4 possessing the same characteristics as M3 
Letting ~u be the largest of j6 ukl, k=l, ••• ,r, inequalities 

(B-64) reduce to, 

i=l , ••• ,n (B-65) 

where 6t represents·a time interval for which some of the 16 ukl are non-zero, 

and c1 is a positive constant whose value may change with i=l, ••• ,n. 

System (4-12) may also be written for ~tjl(z,t) as, 

i=l, •.. ,n (B-66) 

where under the hyperbolicity condition stated for system (4-2), a non

singular linear transformation of the unknown vector 6$(z,t} may be proved
"' 

to exist, (see Appendix A}, 

n 
6 w = E k~j • 6tjlj s=l, ... ,n (B-67} 

s j=l 

where k~j is defined by, 

s=1 , ••• ,n (B-68} 
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and which converts system (B-66) to the form, 

s=1 , .•• , n (B-69) 

with 

(B-70) 

Note again that equation {B-68) is analogous in form to (A-14) with 

£ + 6w and assumes the canonical form. 
"' "' 

All previous continuity, differentiability and boundedness arguments 

relative to the characteristic quantities As{z,t) and k~j{z,t) and the matrix 

coefficients aij{z,t) hold, and since the vector f{z,t,t,~> of system {4-2) 

is continuously twice differentiable with respect to vector t{z,t) and u(z,t), 
af. "' "' 

hence~ satisfies a Lipschitz condition with respect to these arguments, 
1 

equations {B-70) factorable in terms of these quantities also satisfy a 

Lipschitz condition with respect to ~{z,t) and ~(z,t). 
"' That is, explicitly, 

6 ~~~· 1~ M5 • c.~ lA ~1 j+ ~ jA ukjJ i=l, ••• ,n (B-71)1 1 1=1 k=l 

where M5 is a Lipschitz constant. 

Since equation (B-69) may be written as, 

aH** 
A~ i=l, .•. ,n (B-72) 

i 
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with equation (B-72) having the same significance as in {A-24}. Integrating 

equation (B-72} in the same sense given there, but backward along the 

characteristic L1 starting from terminal time tf, 

tf 
aH** dnA w1(z,t) - A w1Cz;,tf) =~ ~~;.. i=l, •.• ,n {B-73} 

i 
t 

Substituting expression (B-71} in equation {B-73} and noting that 6 wi{z1,tf) = 0 

gives, 

tf 

. r c ~ i=l, ••. ,n (B-74)J i=l 
t 

Noting that results {B-64} permits to write, 

~ ~ 

(B-75)~ i~l lA ~;I dt ~ n. M4.(trtol ~ k~l lA "kl dt 

\ ~ 

substitution of inequality (B-75) into result (B-74) gives, 

i=l, •.• ,n (B-76) 

with 

(B-77) 

Since the boundedness and invariability arguments involved in the 

passing from inequalities {B-63} to (B-64) apply here with respect to 

transformations (B-69}, the following results are obtainable, 
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rftfIA til; I $ M7 t IA uk I dt i=l, ••• ,n (B-78)
k=l 

t'
0 

where M 0.7 > 


Hence, 


IA til; I ~ c2 • AU • At 1=1 , ••• ,n (B-79) 

where c2 is a positive constant whose value may change with i=l, ••. ,n and 

Au and At have the same significance as in inequalities (B-65). 

8.3 The Remainder Term in the Formula for the Functional Increment 

Since the validity of the following inequality is recognized 

[Bartle (1964)], 

n n n n 

t t t t T·. a. 13. (B-80)


lJ 1 Ji=l j=l i=l j=l 

and recalling equations (B-18) and (B-27), the expression for the 

remainder term {B-42) may be written accordingly as, 
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(B-81) 

n n a2H 
+ r ~ la:

2

~!.1·1A•~I·IA•jl+ ~ .r la,.a! ,.,A,ii·IA'j'}dz dt
i=l j=l i J i•l J=l 1 j 

tf a2G"n 
+ 1

'2" I i=l 
r j~1 lat1 !zf,t~~tj{zf,tli·IAti(zf,t)l.jAtj(zf,t)ldt 

to 

zf a2Gu 
+ 1 r'2" I i=l 

n 
j~llati(z,tf~~atj{z,tfli·IAti(z,tfli·IAtj(z,tf)ldz 

zo 

The function H being a twice continuously differentiable function 

with respect to its arguments in the whole of ,, the second partial 

derivatives of that function are bounded in the domain of the space defined 

by z,t,~,w and u, and, 
"'"' "' 

(B-82) 

where'M 
a 
i'
J 

is a finite positive number. 
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The same arguments applying to the functions G2 and G3, 

Now because of the increments l~til and ~~~ii given by relations 

(B-65) and (B-79), 

a2H 
la~j a~kj.j~ukj.j~~dl~ (Mljk · c2 • ~u · ~t) • j6ukj 

a2H
la• a~kj.j~t1j.j~ukl~ CMzjk • cl · ~u · ~t) .j~ukj

1 

a2H 
lati a;jl·l~•il·l~•jl~ M3ij • ci. (~u) 2 • {~t) 2 

a2H 
lati a~j~ .j~tij .j~~jl~ M4ij . cl • c2 • (~u)2 . (~t)2 

2 


la;i"~,JJh•iJ+~jJ~ Msij • c~. (hii)2. (hd 


a2H 
la~i ;.jl·l~~il·l~•jl~ M~';j. cl. c2. (t~u)2 • (~t)2 

a2H 
la~i ~~jl·l~~il·l~~j~~ M7ij . c~. (~u) 2 . (~t)2 

a2H
la"'i ~ukl·l~~ij.j~ukl~ <Maij · c2 • ~u · ~t} .j~uk 

a2G" 

jati (zf't~aatj (zf,tlJ.j hti (zf,t) j.j htj ( zf • t) J<= M9ij .c~; (Aii)2. 6Atlt 

a2G" 

Iati (z • t:j atj (z ,tfJI·I hti (z ,tf) 1·1 htj (z ,tf) I<= Haij .c~. (hii )2. (ht)2 

(B-83) 

(B-84) 

(B-85) 

(B-86) 

(B-87) 

{B-88) 

(B-89) 

(B-90) 

(B-91) 

(B-92) 

(B-93) 
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Substituting relations {B-84 to B-93) in {B-81) and rearranging, 

{B-94) 

to zo 

Since l6ukj= 0 for t t 6t, and letting 6U represent the largest 

value of j6ukj, k=l, ••• ,r, 

(B-95) 

and finally the remainder term in the formula for the functional increment 

is dominated in the following way, 

{B-96) 

where c3 is some finite-valued constant. 

8.4 A Necessary Condition 

The maximum principle states that the cost functional I is 

minimized, for an optimal control ~ + , 

+ +61 =I {u + 6u) - I {u ) ~ 0 {B-97)
"' "' "' 

when the function H assumes a maximum: 

{B-98) 
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on the set of admissible control vector u £ U. 
"' 


The proof of the maximum principle is established by contradiction 

arguments. 

Proof: 

Select any poi~t (z0 ,t0 
) £ T and assume that there exists an 

optimal control vector ~+(z0 ,t0 ) such that, 

~ H > 0 (8-99) 

Then in view of the piecewise continuity of the control u(z,t)
"' 

with respect to z and t and the continuity of the function H with respect 

to its arguments, there must exist some control ~(z0 ,t0 ) continuously defined 

in a neighbourhood N(z0 ,t0 ) £ ~ T c T such that the following equations, 

(B-100) 

all (z,t) £ ~ T (B-1 01) 

are continuous. 


By assumption (B-99) 


all {z,t) £ 4 T 

where ~T = ~ z x ~t =[z1,z2J x [t1,t2J. 

Now consider the admissible control vector ~(z,t) £ U: 
"' 

~ +(z,t) for all (z,t) t ~ T 


u(z,t) = 
 (B-1 03) 

"' u(z,t) for all (z,t) £ ~ T 

"' 
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The incremental change of the cost functional I due to the 

application of this control vector u(z,t) is given by (8-41)~ and, 
"' 


(8-104) 


or substituting the assumed result (B-102): 

2 2 

A! ~ - { / ; « dz dt - aJ (B-105) 

tl zl 

Since the estimate of the remainder term e is available and given 

by (8-96), 

t2 z2 
c3 (llu)2(llt)2 

lll ~ -a - } dz dt (8-106)ll "rJ f { 

tl zl 

and that ll , is proportional to llt, it is always possible to select ll • so 

that its second linear dimension llz remains bounded and non-zero as llt ~ 0., 

and, 

• f.t+\2
l1m illL = 0 (8-107)llt ~ 0 ll "r 

Hence since llU is bounded, the integrand of (B-106) is always 

positive and: 

lll < 0 (8-108) 

and this result contradicts (B-97). 
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Thus (B-98) is a necessary condition that an optimal control 

vector u +(z,t) £ U, if it exists, must obey in order to minimize functional 

(4-10). "' 

According to measure theory, the integral of an integrable function 

over a set of measure zero is zero. Thus, when the maximum condition ho1ds, 

the integrand in (B-106) may possibly be positive only on a subset o T of 

measure zero and consequently the contribution of the integral over the 

subset to 6I is zero. This proves and complete the above result. 

For the case where system (4-2) is linear and the cost functional 

I is linear, the maximum principle or condition (B-98) is both necessary_ 

and sufficient since the partial derivative terms are such as to make 

expression (B-42) for the estimate of the remainder identically equal to 

zero. 

Therefore the incremental change of the functional I due to the 

application of control u(z,t) becomes, 
"' 

2 2 

AI • - ; ; AH dz dt (B-109) 

tl zl 


and non-positive values of 6H will lead to non-negative values for 6I. 




APPENDIX C 

QUASI STEADY~STATE AND THE MAXIMUM PRINCIPLE FORMULATION 

The unsteady~state system defined by equations (3-24) and (3-26) ~ 

exists already in the canonical form and the characteristic roots for the system, 

(C-1) 

with 

(C-2) 

are real and distinct for the whole of T, thus making the system totally 

hyperbolic there (see Appendix A). Since the coefficients of the system, 

a1j(i,j = 1,2), are also constant in T, the characteristic lines consist of two 

distinct families of straight lines in T having respectively angles y 1 and y2 
with respect to the z axis. 

1 

t 

0 0 1 
z 

where by relations (A~ 19), 
232 
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= arc cotg ~, (C-3)y1 

=arc cotg (C-4)y 2 ~2 

The relatlve catalyst activity 1jJ{z,t) may then be integrated along a 

linear segment s2 of the line L2 making an angle y with respect to axis z, or,2 

(C-5) 


and because by (C-2) A2 = 0., 

~ = Cl1jJ(z,t) = <P (C-6)
L atds2 z2 

and by (C-4), =TI/2.y 2 
Corresponding to this angle y2, the result of this integration along 

a line L parallel to the t axis gives directly the total variation of 1jJ(z_,t)2 

in chronological time at a given station zi of the z axis for which the initial 

condition 1jJ(z;,O) is known. 

Similarly, conversion X(z,t) can also be integrated along a linear 

segment s of characteristic line L1 which makes an angle y 1 with respect to 1 

the z axis. 

{C-7)dX 

CI'Slt1 

= 
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and for Al > > 1, 

= (C-8)dX 
O'Slt1 

Noting from (C-3) that, 

(C-9) 

then for Al sufficiently large, 

dX aX (z, t) = {C-10)
OS, L,~ az i-. 1t 

Since by (C-3), Al represents the ratio of the total operating time 

tf (hr., days) to the flow space time t0 of a reactor of finite length (sec., 

min.), this scalar is usually much larger than unity for industrial units, 

(C-11) 


e~uation :{C-10) then expresses the fact that, when condition {C-11) 

holds, the result of this integration along a line L making an angle y1 with1 
respect to axis z corresponds, at the limit for {C~9), to the result of an 

integration along a line parallel to axis z which would give the total variation 

of conversion along the flow axis z by chemical reaction along when the integra

tion is initiated at a natural boundary such as X(O,t). 
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This is tantamount to say that when the space time t 0 is small 

compared to the average time of total decay of the catalyst, the change in 

relative catalyst activity over a space time t 0 is very nearly negligible so 

that in the process of integrating (C~lO) along the axis z or equivalently over 

a space time, the relative catalyst activity at any point along this axis is not 

considered varying in that space time. 

The chronological time scale unit for varying the relative catalyst 

activity ~{z,t) then becomes the space time t 
0 

and represents the basic assump

tion of the quasi steady-state system considered here. 

Hence the dynamics of a catalytic reactor process described by 

equations (3-24) and (3-26) and offering the characteristic (C-11) may be then 

well approximated by the following equations describing the state of a quasi 

steady-state process, 

{C-12) 

and 

aw{z,t) = <1> {C-13) 
at 

with the associated initial and boundary conditions (3-27) and (3-29). 

The costate equations (5-2) and (5-3) corresponding to the unsteady

state process possess the same distinct families of characteristic lines L1 and 

L2 with identical angular coefficients 1/Al and l/A2. 

From this observation and following the previous discussion for 

condition (C-11) holding, the corresponding set of costate equations to the 
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quasi steady ... state equations (C-12) and (C...l3) is, 

and 

a}l(z,t) =-aH (C-15) 
at aijj 

with the associated terminal and boundary conditions (5-8) and (5-7) and the 

function H given by (5-l), 



APPENDIX D 

CHARACTERISTICS OF STATE AND COSTATE VARIABLES FOR THE 
QUASI STEADY STATE SYSTEM 

D,l State Vartable X(z,t) 
* Q ( 

From (3 ...25), 

(D-1) 


integrating at constant t, from a reference station z to an arbitr.ary position z, 
0 

(D-2) 


For continuous X(z ,t) in time, relation (D-2) indicates that a finite 
0 

increase (decrease) in the value of the integral 

{D-3) 


in time would be reflected by a finite increase (decrease) of X(z,t). Similarly 

when integral (D·3) is continuous in time, a finite positive (negative) varia

tion of X(z
0
,t) in time would be translated by a finite positive (negative) 

variation in X{z,t). This condition is expressed in the following way, 

X(z,t) = P[X(z ,t), fz K(o,t).$(o,t).de] (D-4)
0 

zo 
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http:K(o,t).$(o,t).de
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where the functional P expresses the fact that a variation in X(ztt) has the 

same sign as a variation of X{z ,t) has or a variation of (D-3) there. For
0 

F[X] =Il - X]n/CA(l ~ n), where CA is a constant, expression (D-4) may be 

explicitly formulated for n =1, 

X(z,t) = 1. - [1 - X(z ,t)].exp{- ¢1(z,t)} (D-5)
0 

and for n r 1, 

1 
X(z,t) = l. - Il ~ X(z0 ~t)](l - n)- (1 - n).¢1(z,t) (1-n) 

(D-6)
CA (1-n) 

with, 

(D-7) 


The state variable X(z,t) is at any time t, a continuous function of 

z for all z £ [0,1] with a continuous partial derivative ax(z,t) everywhere in 
az 

0
Z except possibly at a finite set of points where the product {K(z,t).~{z,t)} 

may have discontinuities of the first kind along the z axis. 

Discontinuities in the state variable X(z,t) witft respect to time may 

occur only, 

i - if X(z
0 

,t) is discontinuous in time, 
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11 - a finite jump 'in control in time occur simultaneously along a finite 

length of the reactor AZ ~ Z, 

iii - combined non~annihilating effect of (i) and (ii). 

0.2 	 State Variabe p(z,t) 

From (3..26), 

ap(z,t) = - k(z,t).g[p(z,t)] (0-8) 
at 

integrating at constant z, from a reference time t to an arbitr.ary time t,
0 

p(z,t) ftd
f	 fuJ = ... k(z,o).do (D-9) 

p(z,t ) 	 t
0	 0 

For continuous p(z,t ) in z, relation {0-9) indicates that a finite 
0 

increase (decrease) in the value of the integral 

f
t k(z,o) .do 	 (D-10) 


to 


in z would be reflected by a finite decrease (increase) in p{z,t). Similarly 

when integral (D-10) in continuous in z, a finite positive (negative) variation 

of p(z,t ) along z would be translated by a finite positive (negative) varia
0 

tion in p(z,t), 

For g[p] =pm, expression (0~9) becomes form= 1, 

http:k(z,o).do
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and form~ 1, 

(D-12) 

When the value of a control k(z,t) at any given time in uniform every
o 

where in Z then the integral (D-10) becomes a virtual function of time only 

and form= 1, equation (D~ll) may be expressed as, 

(D-13) 

with '1'1(z) = 1jJ(z,t ) and 'l'2(t) = exp{ -~~ k(o)do}.
0 

"o 

The state variable 1jJ(z,t) is at any position z E [0,1] a continuous 

function of time for all t E [0,1] with a continuous partial derivative a1jJ(z,t) 
at 

T0everywhere on except possibly on a finite set of points where the k(z,t) may 

have discontinuities of the first kind along the t axis. 

Discontinuities in the state variable 1jJ(z,t) with respect to distance 

z along the reactor may occur only, 

i - if 1jJ(z,t
0 

) is discontinuous along the z axis, 

ii -if a finite jump in control along z eKists at a location zs E (0,1) 

for a finite interval of time nt ~ T~ 
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t:tt ""combtned non...annihi1ating effect of (i) and (ii). 

D.3 	 Costa~~ Variable A(z,t) 

From (5-1 0), 

aA(z,t) = ... (t /tf).{A(z,t).F'[' (z,t)].Kik(z,t)],ljJ(z,t)}
8az 

and since the product, 

a A(z,t).FIX{z,t<)] = A{z~t).a F[X(z,t)l + F[X(z,t)].aA{.z,t) 

(D-14) 

{D-15) 
az 

and that, 

aFIX{z,t)] = dF[X(z,t)].aX{z,t) 
az ax (z , t) az 

then substituting {D-1), (D-14) and 

a>.{z,t).F[X{z,t)] 
ax 

az 	 &z 

= F'[X{z,t)].aX(z,t) 	 (D-16) 
az 

{D-16) in equation {D-15) gives, 

= o 

and indicates that the product >.(z,t).FIX(z,t)] is a constant everywhere in Z. 

Since by {5-7), A(l ,t) = (t8/tf) at z = 1, 

(D-18) 


0 
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0.4 	 Costate Vartable p(z,t) 

From (5~11) and (0~18) 

ap(z,t) = -{ F1(t).K[k(z,t)] ~ ll(z,t),k(z,t).g'[ljJ(z,t)]} (D-19) 
at 

and since the product, 

a}l(z;t),g[if/!(z,t)] = g[ljJ(z,t)].a~{z,t) + Jl(z,t).a g[p{z,t)] (D-20) 
at at at 

and that, 

ag[p(z,t)J = da[{(z,t)].ap(z,t) = g'I~JJ(z,t)].ayr(z,t) (D-21) 
at 1JJ z,t) at at 

then substituting (0-8), (D-19) and (D-21) in equation (D-20) gives, 

a}l(z,t).g[w(z,t)] =- F1(t).K[k{z,t)].g[1jJ(z,t)] (D-22) 
at 

Integrating (0..22) at constant z, from a reference time t 0 to an 

arbitrary time t, 

t 

J' F1(o).K[k(z,O)].g{$(z,O)].d0 (D-23) 

to 

http:F1(o).K[k(z,O)].g{$(z,O)].d0
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and, 

~(z,t),g[1jl(z,t)] = p(z,t
0 
).g[1jl(z,t

0 
)] + 

g[1)J{z,o)].do 

toJ F1(o).K[k(z,6)]. 
t (D-,24) 

If t 
0 

= 1, then from {5-8) ~(z,l) = 0. and {D-24) reduces to, 

1 

~(z,t).g[1)1(z,t)] = J' F1(o).K[k(z,o)].g[1jl{z,6)].d6 
t 

(D-25) 

0,5 Function H 

From (5-l) and (D-18), 

H= F1(t).K[k{z,t)].1jJ{z,t)- ~(z,t).k(z,t).g[1jJ(z,t)] (D-26) 

and substituting relation (D-25), 

H= F1{t).K[k(z,t)].1jl{z,t)- k(z,t). 

g[1)J(z,o)].do 

1 

)' F1(6).K[k(z,6)]. 

t (D-27) 



APPENDIX E 

Consider stations zs where a jump in control from a policy C * at 

time ts to a policy c* at time ts ~ 

t- = 1 imit{ts - ots} (E-1)s 


at > o
s 

ot -+ o 
s 

then fort < ts' with ~K and ~k given by (5-112) and (5-113), 

1 ' t 

.:\H(z5 ,t) = -l~(z5 ,t).l>K.'j(t) -·{~K\gdO +f ts K,F1gd0] ~ (E-2) 

s 

or explicitly, 

Adding and substract\ng the quantity k.K• J:5
F gd0, equation (E-3) becomes, 

.~H(z ,t) =- ~(z ,t).F (t).K* + k*K* J:5 
F

1

1gd0 +5 5 1 
244 
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(E-4) 

or recalling ~(Kk) defined in (5~119) and factorizing, 

AH(zs,t) =- K* { ~(zs,t).F 1 (t) + J:s[-k*g].F1do) 

(E-5)+ K.{ ~(zs,t).F 1 (t) + J>-k*g].F1do) 

- A(Kk). ft\1gdli + Llk.Jl K*F gdli1
t ts 

Now because using (3-26), 

~(zs,t).F 1 (t) + J:s[-k*g].F1do 


=~(zs 't).Fl (t) + f :s H%} .Fl dO 


{E-6) 

=~(zs,t).F 1 (t) + J:s{",~:l}.do-J>~:l}.~dO 

= ~(zs,ts).F 1 (ts)- f 1;; {dF1} .1/Jdo 
t(I(S 

http:zs,ts).F1
http:zs,t).F1
http:zs,t).F1
http:zs,t).F1
http:zs,t).F1
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equation (E-5) may be written, 

(E-7) 

or factorizing, with ~K as above, 

L\H(z
5 
,t) = { ljl(z

5 
,t

5 
).F1(t

5 
),!\K- !\kf :/*F1gd0} 

+ f :s [lji.F;. :~1. L\K - F1g .A(Kk)J.do 

(E-8) 

because, 

{E-9) 

and at the limit for t 5 ~ t 
5 

, (E-2) becomes, 

(E-10) 

then equation (E-8) becomes for t < t ,s 
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(E-ll) 

Now when considering station z £ [0,1] where a jump in control has 

not yet occured fort< tst 

Similarly (E-12) may be reduced to the form of (E-8)t 

1\H(z,t) = + { ~(z,t5 ).F 1 (t5 ).~K- ~k. J:.x*F1gdil} 

(E-13) 

} 

But since here no jump in control has occured, at the limit for ~ ts't 5 

(E-14) 

with, 

~H(z,t5 ) = + { ~(z,t5 ).F 1 (t5 ).~K- Ak. J: K*F1gdil} (E-15) 
s 

then (E-13) may be written, 

http:z,t5).F1
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ft 
5 

' dXIIH(z,t) = IIH(z,ts) - t [lji.F1. dtl. IlK - F1.g.II(Kk)] .d~ (E-16) 



APPENDIX F 

The quasi steady~state approximation has been shown by Ogunye and 

Ray (1969a) to be adequate except for very long tubes filled with very rapidly 

decaying catalyst. However, two other underlying conditions not explicitly 

stated in the works consulted but which are of great importance in the sense 

that they could destroy the validation at any time if not respected are dis

cussed here. 

The relation: 

v. ax > > ax (F-1 ) 
a--z rr 

should always be respected at any time not only as a sole function of the slow 

decay nature of the catalyst but also as a function of the controllable or un

controllable variables of the process. 

That is, the deterministic variation in the inlet conversion of the 

system, X
0 
(t), which acts as a boundary condition for the reduced system has to 

be such that at any time relation (F-l) is satisfied, or: 

dX (t) = 
0 ax(z,t) (F-2)< < v.aX(z,t)
dt ·at az z = 0z = 0 

Secondly, the controllable variation of temperature that may come from 

a control action should also possess the quality that through its action relation 

(F-1) is satisfted at all times. This is because conversion being both a 

function of temperature and catalyst activity, a sudden change of temperature 

in time over some finite length of the reactor could violate condition (F-1). 
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