
AN ANALYSIS OF PROGRAM BY

SYMBOLIC COMPUTATION

By

YuN ZHAI, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.Sc

Department of Computing and Software

McMaster University

© Copyright by Yun Zhai, May 2006

ii

MASTER OF SCIENCE (2006) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
An Analysis of Program by Symbolic Computation

AUTHOR: Yun Zhai, B.Sc. (MCMASTER UNIVERSITY, CANADA)

SUPERVISORS: Dr. Jacques Carette, Dr. Ryszard Janicki

NUMBER OF PAGES: viii, 74

Abstract

We present a symbolic analysis of a class of while loop programs which can automati

cally derive a closed-form symbolic expression for the input-output relation embodied

in that program.

We show that this is especially well-suited to analyzing programs from scientific

computation, in particular programs which compute special functions (like Bessel

functions) from its Taylor series expansion. Other than making heavy use of algebraic

manipulations, as available in any computer algebra system, we also require the use

of recurrence relations. It is from these recurrence relations that we derive most of

our information.

It is important to note that we can often get interesting information about a

program (like termination) without requiring closed-form solutions to the recurrences.

Acknowledgments

I would like to express my sincere appreciations to my supervisors, Dr. Jacques

Carette and Dr. Ryszard Janicki, for their inspirations, invaluable and patient guid

ances, help, advice and comments through out the research of this thesis.

Also I want to thank all the other students I shared office with, for many fruitful

discussion and for providing the environment that made this work not just possible

but even enjoyable.

I am very grateful to Stephen Forrest, one of Dr. Carette's students, who helps

me a lot on the code review and good performance on Maple. Thank you so much

for your generous help.

I would also like to thank my parents who, for so many years, gave me the support

needed to go all the way. Last not least my thanks go to my husband Lixin for his

great support.

Some results of this thesis have been presented in [6]. Some parts of this thesis

are the extension of appropriate parts of [6].

ii

Contents

Abstract i

Acknowledgments ii

List of Figures vi

1 Introduction 1

1.1 Introduction . 1

1.2 Applications for Symbolic Analysis 3

1.3 Outline 4

2 Intuition and Motivation 5

3 Loops and Recurrence Equations 10

3.1 Solving Recurrence Equations 10

3.2 Loop Termination ... 12

4 Theoretical Background 13

4.1 Denotational Semantics of Symbolic execution 14

4.1.1 Syntax of Input Domain 14

4.1.2 Grammar 15

iii

CONTENTS IV

4.1.3 Syntax of Output Domain 16

4.1.4 Semantic Functions . 16

4.1.5 Semantics Equations 18

4.1.6 Code Examples 26

5 System Analysis 30

5.1 Input Language 30

5.2 Relation Generator 31

5.3 Solving Relations: Overview 34

5.4 From Code to Recurrences: while 38

5.4.1 Generating Recurrence Relations 38

5.4.2 Generating Initial Conditions 39

5.4.3 Stopping Conditions 39

5.5 Solving with for Loops ... 39

5.5.1 Number of Loop Iterations . 40

5.5.2 Solving Relations Involving Recursion Call 41

5.5.3 The Case of Branches in Loops 42

6 Examples of Using Symbolic Execution Tool 45

6.1 Examples of Generating Explicit Output 45

6.1.1 Example 1: L~o i 45

6.1.2 Example 2: L.":~=o i! 47

6.1.3 Example 3: Chebyshev Polynomials . 49

6.1.4 Example 3: Binomial Coefficients 50

6.1.5 Example 4: Bessel 52

6.1.6 Example 5: A Recursive Call Function 54

CONTENTS v

6.2 Examples of Generating Implicit Output 56

6.2.1 Example 1: GCD 56

6.2.2 Example 2: LCM 58

7 Related Work 60

8 Contributions and Future Work 62

A Specification by Maude 64

List of Figures

5.1 Symbolic execution system 32

5.2 Symbolic execution system in detail 37

vi

List of Tables

2.1 Relations between statements and modelled relations 	 7

3.1 Input program corresponding to recurrence equations 	 11

4.1 Boolean symbols and their opposite values 	 21

5.1 	 Rules for program transformation 31

5.2 	 Translation of factorial into the set of appropriate relations 33

5.3 	 Mapping relations between the generated relations and the semantic

functions 33

5.4 	 Inert functions and their meanings 35

5.5 	 Transformation and rules 35

5.6 	 Recurrence equations and initial conditions for factorial. 38

6.1 	 Recursive and initial functions for computing I:~=O if 47

6.2 	 Recursive and initial functions for computing I:~=o i! 48

6.3 	 Another example to compute I:~o i! 49

6.4 	 Recursive and initial functions for chebyshev 50

6.5 	 Recursive and initial functions for Binomial Coefficients 51

6.6 	 Recursive and initial functions for Bessel 53

Vll

LIST OF TABLES 	 vm

6.7 	 Recursive and initial functions for chebyshev! 55

6.8 	 Translation of program into the input of generating invariants [29] for

GCD . 57

6.9 	 Translation of program into the input of generating invariants [29] for

LCM . 59

Chapter 1

Introduction

This chapter provides a brief introduction to the background, purpose and outline of

this thesis.

1.1 Introduction

In late sixties and early seventies, a technique for verifications and analysis of com

puter programs based on a calculus of relations was proposed ([2, 4, 26, 16] and

others). Despite many theoretical and methodological advantages (it rather empha

sises calculation instead of proving), the technique has never become widely accepted

because of the huge amount of symbolic computations that need to be performed for

even relatively simple cases.

The situation has dramatically changed today, as we have very powerful tools

supporting symbolic computation such as Maple [27] and Mathematica [34]. The

problem is still non-trivial, as the most general cases can be proved undecidable, but

for many less general cases an efficient solution seems to be feasible.

1

2 1. Introduction

In this thesis we show how to build a Maple [27] based tool [28] that can either

automatically compute a closed form for simple programs with loops, or considerably

simplify that task by computing polynomial invariants of such programs. Simple

cases of recursion can also be treated. For straight-line programs, this reduces to a

technique called symbolic execution. The main idea behind symbolic execution is to

use symbolic expressions as input values and to simulate the execution of the program

statements on this symbolic inputs. The formal specification of our system was done

using Maude [25].

Symbolic execution has wide range of potential applications, however, it has been

rarely used for proving properties of programs ([29] is one of few exceptions). This is

because, in general, naive symbolic execution can lead to exponential blow-ups.

Our symbolic analysis can be seen as a kind of compiler which can translate the

input programs into a symbolic expression, and then can transform this expression

into an output expression. From our point of view, recursion and looping are essen

tially equivalent, and so we will mainly restrict ourselves to loops as the source of

our main difficulties [17]. The basic technique used in such cases is to find "loop

invariants" proposed by C. A. R. Hoare in 1969 [14]. Unfortunately finding them is

often problematic and research on how to find them in some automatic manner has

only just begun [29].

We will show that for many frequently occurring loops, finding invariants is not

necessary as the symbolic expression for the output can be generated explicitly by

solving the recurrence equations generated from the loop. Even if, due to structural

complexity of a loop, finding loop invariants is necessary, the technique we have

proposed might often help substantially.

1. Introduction 3

1.2 Applications for Symbolic Analysis

Symbolic execution was first introduced by J. King in [19]. It is a technique that

executing a program supplying symbolic input value and returning a symbolic output

value. Since then, a number of researchers have developed it further for several

different purposes.

Symbolic analysis can be applied to a variety of problems. One of operational area

of symbolic analysis is centered around compilers. Classical techniques usually fail to

provide accurate data dependence information to support parallelization techniques

such as array privatization [33] and communication optimization [12]. Therefore,

sophisticated symbolic analysis that can cope with program unknown is needed to

overcome these complier deficiencies.

Another application for symbolic analysis are program development tools which

assist the programmer and system designer. Instead of testing and debugging, sym

bolic analysis techniques provide analysis information for statically detecting program

anomalies.

Other applications can be found in safety-critical real-time computer systems

which can be characterized by the presence of timing constraints. For example, sym

bolic analysis has been employed to deduce time functions [3] for real-time programs.

Symbolic analysis techniques can be equally important for program testing [19],

program verification [7], Software specialization [10], software reuse, pattern match

ing and concept comprehension [24], and other areas where complex programs with

unknowns must be examined and accurate program analysis is required [13].

1. Introduction 4

1.3 Outline

Chapter 2 introduces the intuition and motivation of our thesis.

Chapter 3 discusses the solving recurrences function and loop termination.

Chapter 4 introduces theoretical background and discuss denotational semantics.

Chapter 5 analyzes our symbolic system in detail.

Chapter 6 gives some examples of using our symbolic computation system.

Chapter 7 summarizes the contribution and future work of this thesis.

Chapter 2

Intuition and Motivation

The example below (from [4]) provides a motivation and illustrates well the main

ideas. In principle, we first translate a program into a relational expression and then

we will try to obtain the program properties by analyzing this relational expression.

The full theory of those expressions can be found in [21].

Consider the well-known procedure factorial, written m a small subset of

Maple [27]:

procedure factorial(n)

i:=1;

fac:=1;

while i < n do

begin

i:=i+1;

fac: =fac*i;

end;

fac;

end proc;

5

6 2. Intuition and Motivation

Since n does not change its value in the above program we may consider it as a

constant, so we may assume the above program has two integer variables i and fac.

DefineD= Z x Z and denote the elements of D as (i,jac). Each instruction can be

modeled by a function Fi : D---+ D, i = 1, 2, 4, 5, in the following manner:

11 i :=P corresponds to F1(i,jac) = (1,jac),

11 fac:=1 11 corresponds to F2 (i,fac) = (i, 1),

11 i:=i+1 11 corresponds to F4(i,jac) = (i+ 1,jac),

and 11 fac: =fac*i 11 to F5 (i,jac) = (i,fac · i).

The test 11 i<n 11 can be modeled by two partial identity functions, 13 , !3 : D ---+ D,

where 13 models 11 i<n 11
, and ! 3 models its complement, i.e. 11 i2n 11 More precisely,
•

11 i < 1 11 corresponds to Is (i,fac), and

11 i 21 11
 corresponds to [3(i, fac), where

(i, fac) if i < n
13(i,jac) = ..L

{ if i 2 n

_ { (i, fac) if i 2 n
fs(i,jac) =

..L ifi<n

It is a well known fact that non-recursive programs can be modeled adequately with

Kleene Algebras of Relations with Tests (see [21]) by using the following scheme.

Let R, R~, R2 be relations (each function is a relation!) that model the program

statements S, S1, S2, respectively. Let T be a test modelled by 1r and lr, and let

the symbols "o" and "*" denote the (forward) composition of relations, and transitive

and reflexive closure of relations (Kleene star) respectively. Then table 2.1 shows the

relations between statements and modelled relations.

7 2. Intuition and Motivation

Statement Modeled By

S1;S2 R1 oR2

if T then S1 else S2 (Ir o R1) U (lr o R2)

while T do S (Ir oR)*lr

Table 2.1: Relations between statements and modelled relations

Using this scheme one can easily model the above program by writing the following

relational expression:

F = F1 o F2 o (h o F4 o F5) * o 13

Calculating "o" is easy in this case, but calculating "*" is not. Let G = 13 o F4 o F5 .

Then we have:

G(i,fac) = (13 o F4 o F5)(i,jac)

= F5(F4(J3(i,fac)))

if i < n~ {:+ l,fac · (i+ !))

if i ~ n

Similarly:

G2 (i,fac) = G(G(i,fac))

~ {:+2,/ac · (i + 1) · (i + 2)) ifi+1<n

ifi+1~n

Hence:

(i + k,fac · (i + 1) · (i + 2) ... (i + k))

ifi+k-1<n

j_ ifi+k-1~n

8 2. Intuition and Motivation

Since G* is not a function, we need to express Gk in terms of relation calculus:

(i,Jac)Gk(i',jac') ¢:=::;> i' = i + kA fad= fac * (i + 1) * ... * (i + k) A i + k- 1 < n.

We have G* = U:o Gi, hence:

(i, fac)G*(i' ,jac')

¢:=::;> :Jk 2:: 0, (i,jac)Gk(i',jac')

¢:=::;> :lk, 0 ~ k < n- i + 1 A i' = i + k A fac' = fac * (i + 1) * ... * (i + k).

We may now make some simplification:

(F1o F2)(i,jac) = F2(F1(i,jac)) = (1, 1).

This means:

(i,jac)F1o F2 o G*(i',jac')

¢:=::;> (1, 1)G*(i',jac')

¢:=::;> :Jk, 0 ~ k < n A i' = k + 1 A fac' = (k + 1)!

Let us calculate : (1, 1)G* o 13(i',jac').

The partial function 13 in the relational representation looks as follows:

(i, fac)13(i', fac') ¢:=::;> i 2:: n A i = i' A fac = fac'.

From the definition of" o" we have:

(1, 1)G* o 13(i',jac') ¢:=::;> :Ji,jac, (1, 1)G*(i,jac) and

(i, fac)13(i', fac')

¢:=::;> (:Jk,O ~ k < nA i = k + 1 Ajac = (k + 1)!) A (i 2:: n A i = i' Ajac = fac').

Note that: i = k + 1 A i 2:: n =? k + 1 2:: n ¢:=::;> k 2:: n- 1, and

O~k<nAk2::n-1=?k=n-1 ¢:=::;> n=k+l.

So now, we do not have a general :Jk, but a very specific k=n-1, which means G* o 13

is a function again, and the statement:

(:Jk, 0 ~ k < n A i = k + 1 A fac = (k + 1)!) A (i 2:: n A i = i' A fac = fac')

is reduced to:

9 2. Intuition and Motivation

i' = k + 1 = n - 1 + 1 = n 1\ fac' = n!

In this way we have proved that F(i,fac) = (n, n!), so the program is correct. To

make this technique feasible for bigger, more realistic programs, we need a tool that

would be able to do all those symbolic calculations. Our tool [28] will take the text of

the program factorial as an input and will return the text "n!" as an output. In the

following chapters we will show how it can be done with some help from Maple [27].

Our system [28] can also deal with some kind of limited recursion as well.

Chapter 3

Loops and Recurrence Equations

A formula that expresses the meaning of a loop can be explicitly derived (in some

cases) by solving appropriate recurrence equations.

3.1 Solving Recurrence Equations

Consider our program factorial presented in chapter 2. Every time when the loop

is executed, the value of i is incremented by one and the value of fac is incremented

i times. We may express this change in a form of recurrences. For this example, the

recurrence relation is following i(t + 1) = i(t) + 1,fac(t + 1) = fac(t) · i(t + 1), where

i(t + 1) and fac(t + 1), for t 2: 0 are the values of variable i and fac at the end of

iteration t + 1. In this sense, t represents time, which is the important new concept

in this representation. Because time is explicitly used in the recurrence, this allows

many techniques from symbolic computation to apply. Before entering the loop, the

value of i is 1 and the value of fac is 1, so we initialize the recurrence by i(O) = 1 and

fac(O) = 1. Table 3.1 describes the meaning of our loop.

10

11 3. Loops and Recurrence Equations

Input program Generated into Recurrence Equations

factorial:=proc(n)

local i, fac;

i:=1; i{O):=l

fac:=1; fac{O):=l

while i < n do

i:=i+1; i{t+l):= i{t) + 1

fac :=fac * i; fac{t+l):= fac(t)*i(t+l)

end do;

end proc:

Table 3.1: Input program corresponding to recurrence equations

These recursive functions can not be solved by Maple [27] directly since they are

non-linear recurrences. However, we can clearly see that i(t + 1) is independent of

fac(t), but fac(t + 1) is not independent of i(t + 1), i.e. we may not be able to solve

the system directly, but we might be able to solve it incrementally. From a simple

data-flow analysis, this order can be determined. If we solve for i(t) first (including

initial conditions), we get i(t) = t + 1. Replacing i(t) by t + 1, in the equation for

fac, we get fac(t + 1) = fac(t) · (t + 2), which is also solvable. Putting the solution

together, we get

i(t)=t+1 (3.1)

fac(t) = (t + 1)! (3.2)

Note that the above solution is still in terms of time; however, regardless of whether

the loop terminates or not, we have found the core meaning of the loop!

3. Loops and Recurrence Equations 12

This technique can be applied to any loop if the set of appropriate recurrence

equations that the loop defines is essentially triangular, with polynomial solutions for

the non-linearities (or it can be transformed into such a system).

3.2 Loop Termination

To determine the value of recurrence variables after the loop, we need the recurrence

condition which symbolically determines the number of iterations for the recurrence.

In our example, the recurrence variables are i and fac, and the recurrence condition is

given by i(t) < n, which, together with equation (3.1) gives us the following formula

for the loop termination (see [30]):

n-1 ifn2::1
min{t I i(t) 2:: n} = min{t It+ 1 2:: n} =
t>O t>O- - { 0 if n ~ 0

In order to compute the value of fac at the loop exit, we have to substitute n - 1 for

t in (3.2). So, we get "n!".

Note that it is only necessary to obtain a closed-form solution [23] to the recur

rences involving for those variables which actually occur in the stopping condition to

determine loop termination. This can frequently be much simpler, as is the case for

all for loops!

Chapter 4

Theoretical Background

There are two main aspects of computer language, its syntax and its semantics. The

syntax is concerned with the grammatical structure of the program while the se

mantics gives the meaning of grammatically correct programs. There are a number

of different ways of describing the semantics of a programming or specification lan

guage, the most common ones are followings:

Operational Semantics: The meaning of a construct of the language is specified

by the computation it induces when it is executed on a machine. In particular, it is

of interest how the effect of a computation is produced.

Denotational Semantics: The meaning of a construct of the language is de

scribed by translating it into a different structure and modeling the effect of state

ments of the language there [31].

Axiomatic Semantics : The meaning of a language is described by axioms that

can be used to prove theorems about specification terms in the language [31].

In our system, we are mainly concerned about the denotational semantics. De

notational semantics is a methodology to define the precise meaning of a computer

13

14 4. Theoretical Background

language. In denotational semantics, a computer language is given by a valuation

function that map programs into mathematical objects considered as their denota

tion, i.e. meaning. Thus the valuation function of a computer program reveals the

meaning of computer programs while neglecting its syntactic structure.

4.1 Denotational Semantics of Symbolic execution

4.1.1 Syntax 	of Input Domain

We illustrate the syntax of Input domain in this section. Type denotes data type that

we use in the language. ArithmeticExpr denotes the abstract Arithmetic expression

that we use in the language. int and constant are Int type and symbol is Symbol

type. var is a Variable. ArithmeticOp denotes the Arithmetic operation that we

use in the language. var (Arithmet i cExpr) denotes recursive variable in the loop.

We describe them by the followings:

Type Int I Bool I Symbol

Variable Identifier : Type

ArithmeticOp +I- I* I I

ArithmeticExpr: 	int I symbol I constant I var(ArithmeticExpr)

ArithmeticExprArithmeticOpArithmeticExpr

BooleanDp, RelationOp and UnaryOp denote the boolean operation, relational

boolean operation and unary boolean operation that we use in the language, respec

tively. Expr denotes the boolean expression or arithmetic expression that we use in

the language. We describe them by the followings:

15 4. Theoretical Background

BooleanOp : && I II

Relation0p1 : < I <= I > I >=

Relation0p2 : == I ! =

RelationOp : Relation0p1 I Relation0p2

UnaryOp : --,

BooleanExpr : Bool

I BooleanExpr BooleanOp BooleanExpr

I BooleanExpr Relation0p2 BooleanExpr

I ArithmeticExpr RelationOp ArithmeticExpr

I UnaryOp BoolExpr

Expr : BooleanExpr I ArithmeticExpr

BinaryOp denotes the binary operation that we use in the language. Op denotes

the operation including binary operation and unary operation that we use in the

language. We describe them by the followings:

BinaryOp : BooleanOp I RelationOp I ArithmeticOp

Op : BinaryOp I UnaryOp

4.1.2 Grammar

We will illustrate the abstract interpretation using the language described by the

following simple grammar:

16 4. Theoretical Background

Statement 	: var := expr

I if booleanExpr then Statement end if

I if booleanExpr then Statement else Statement end if

I while booleanExpr do Statement end do

I for var from int to int by int do Statement end do

I Statement ; Statement

In the language, we have assignment statement, if condition statement, while

loop and for loop statement, and statement sequences. var, expr and booleanExpr

are the type of Expr, Expr and BooleanExpr individually.

4.1.3 Syntax of Output Domain

We define the syntax of the output domain in the followings:

OutputExpr : Expr I 5(StateRep, (Identifier, Expr))

I /'(BooleanExpr, StateRep, StateRep)

l~tCBooleanExpr, {Identifier}, StateRep)

I ~([Variable, Int, Int, Int], {Identifier}, StateRep)

StateRep : 5 I /' I It I ~ I ..l

Where OutputExpr represents the domain of Output Expression. State is a map

from an identifier to an output expression. StateRep is the representation of the

state, i.e. for a StateRep, one can frequently reconstruct a state.

4.1.4 Semantic Functions

The detailed semantics requires that we show how the expressions and statement are

modelled in terms of those basic semantic domains. We need to define the following

4. Theoretical Background 17

functions:

o :StateRep-+ (Identifier, Expr) -+ StateRep

'Y : BooleanExpr -+ StateRep -+ StateRep -+ StateRep

J1 : BooleanExpr-+ {Identifier} -+ StateRep-+ StateRep

rJ : [Variable, Int, Int, Int] -+ {Identifier} -+ StateRep -+ StateRep

[] : Statement -+ (StateRep-+ StateRep)

~ E : Statement -+ (StateRep-+ StateRep)

evalExpr : Expr -+ StateRep -+ OutputExpr

getRecVar: Statement-+ {Identifier}

Reduce : StateRep -+ OutputExpr

The constructor o, "(, J1 and rJ describe the updating StateRep to a new StateRep.

The function [] and ~ Edescribe the mapping from one StateRep to a new StateRep

under the state commands. The function evalExpr evaluates an expression with the

StateRep to the outputExpr. Function Reduce can evaluate o, "(, J1 and rJ when

possible.

Let id and expr be the type of Identifier and Expression individually, then

(id, expr) can be denoted by id=expr in o.

18 4. Theoretical Background

4.1.5 Semantics Equations

(AS) 	 [var:=expr]=A sE StateRep. 5(s,var=eva1Expr(expr, s))

(SQ) 	 [stmt1; stmt2]= A s E StateRep. [stmt2]([stmt1](s))

(I1) [if cond then stmt end if]= As E StateRep. 'Y(cond, [stmt](s), s)

(I2) [If cond then stmt1 else stmt2 end if]=

As E StateRep. I' (cond, [stmt1](s), [stmt2](s))

(WH) 	 [while cond do stmt end do]=

A sE StateRep. J.L(cond, getRecVar (stmt), [stmtiD (s))

(WA) 	 [var:=expr ID(s) = &(s, var(t+i)=evalRecExpr(expr, s))

(WI 1) 	[if cond then stmt end if ID (s) = !'(cond, [stmt ID (s), s)

(WI2) 	 [if cond then stmt1 else stmt2 end if ID(s) =

J'(cond, [stmt1 ID(s),[stmt2 ID(s))

(WS) 	 [stmt1 ; stmt2 ID(s) = [stmt2 ID([stmtl ID(s))

(FR) 	 [for i from s to e by step do stmt end do]=

As E StateRep. 'lJ([i, s, e, step], getRecVar(stmt), [stmt ID(s))

Above lists the symbolic evaluation rules of simple assignment(AS), statement

sequences(SQ). Rule (11) is used in order to evaluate if-statements without else

branches. Similarly, rule (I2) is applied to if-statements with else-branches. Rule

(WH) is used to evaluate a while loop statement. Rule (WA), (Wil), (WI2) and

(WS) are applied for the inside statements of the while loop, in order to generate

recurrence equations. Rule (FR) is used to evaluate a for loop.

19 4. Theoretical Background

Assignment Statements

For all statements of the program, our symbolic analysis deduces StateRep that

describes the variable values that the program point is reached.

StateRep is a representation of a state described by O,"f, J-l, TJ and _l.

For evaluating an expression, we define function evalExpr which symbolically

evaluates the value of expression expr for a specific program StateRep as follows:

[] :Statement-----> (StateRep-----> StateRep)

(AS) [var:=expr] = ,\s E StateRep.OCs,var=evalExpr(expr, s))

(SQ) [stmt1; stmt2] = ,\s E StateRep.[stmt2]([stmt1](s))

evalExpr : Expr -----> StateRep -----> OutputExpr

(E1) evalExpr(constant, s) =constant

(E2) evalExpr(var, s) =

20 4. Theoretical Background

var, if s=..l

expr, if s=&(s', var=expr)

evalExpr(var,s'), if s=& (s' ,var' =expr') A var' =/= var

evalExpr(var, s 1) if s=~(cond,s 1 ,s2) Acond

evalExpr(var, s2) if s=~(cond,s 1 ,s2) A -,(cond)

var if (s=J.LC,getRecVar(stmt), _)

V s=77C,getRecVar(stmt), _))

A var tj. getRecVar(stmt)

var(t+1) 	 if (s=J.l(_,getRecVar(stmt), _)

V s=77C,getRecVar(stmt), _))

Avar E getRecVar(stmt)

where t is under the loop stopping condition,

the loop iteration times.

(E3) eva1Expr(expr1 op expr2, s)=eva1Expr(expr1 ,s) op eva1Expr(expr2,s)

Where expr1 , expr2 E Expr and stmt E Statement

The above lists the symbolic evaluation rules of simple assignment (AS), statement

sequence(SQ), and the evaluation function evalExpr expressed as denotational se

mantic rules.

The rule (AS) is applied for an assignment var: =expr under the stateRep. It is a

function that maps the assignment with an input StateRep to a new StateRep. The

new StateRep uses 5 constructor to keep track of the change of the variable var.

Rules (E1) - (E3) describe the symbolic evaluation of expression. Rule (E1) de

21

1

4. Theoretical Background

Table 4.1: Boolean symbols and their opposite values

scribes the constant evaluation. Rule (E2) is used to extract the symbolic value of a

variable from states and rule (E3) is used for translating an operation to its symbolic

domain. In general, function evalExpr transforms expressions of the input program

to symbolic expressions based on a given StateRep. For statement sequences, accord

ing to Rule(SQ) we symbolically analyze the first statement with the given StateRep,

then the resulting StateRep is taken as the StateRep for the remaining statements.

Conditional Statements

If a conditional statement is encountered, usually the conditional expression can not

be statically determined whether for all input data sets either the true or the false

branch has to be followed. So the symbolic analysis has to consider both branches.

We use constructor 1 to evaluate the conditional statements. Constructor 1 is defined

as:

reverse : BooleanExpr --+ BooleanExpr

: BooleanExpr --+ StateRep --+ StateRep --+ StateRep

Reduce(1Ccond, [stmt1](s), [stmt2](s))) =

[stmt1](s) if evalExpr(cond,s)

{
 [stmt2](s) if evalExpr(reverse(cond),s)

reverse(expr1 op expr2) = expr1 --,(op) expr2

where expr1 , expr2 E Expr, op E Op

22 4. Theoretical Background

The symbolic semantics rules for symbolical evaluation if-statements are defined

as:

(!1) [if cond then stmt end if]= As E StateRep. 'Y(cond, [stmt]Cs),s)

(!2) [if cond then stmt 1 else stmt2 end if]=

As E StateRep. 'Y(cond, [stmt 1]Cs), [stmt2]Cs))

Rule (Il) is used to evaluate if-statements without else branches. In fact, the

constructor ')' is equivalent to the "piecewise" function in Maple. Before evaluating

the branches, the condition cond of the if-statement is evaluated. if the condition cond

is true, then goes to evaluate statements stmt under StateRep s, otherwise the state

keeps unchanged. Similarly Rule (12) is applied to if-statements with else branches.

After evaluating the branches, if the condition cond is true, then evaluate statements

stmt1 under StateRep s, otherwise evaluate statements stmt2 under StateRep s.

While Loop Statements

Assume the following pattern for the while loop: while cond do stmt.

We use constructor J-L to describe the while loop statements. The constructor J-L is

similar to the fixed point function, which is defined as:

[] :Statement --7 (StateRep --7 StateRep)

[E :Statement --7 (StateRep --7 StateRep)

J-L: BooleanExpr --7 {Identifier} --7 StateRep --7 StateRep

The denotational semantics of while loop is given in the followings:

(WH) 	 [while cond do stmt end do] =

AS E StateRep.J-L(cond,getRecVar(stmt), [stmtE (s))

23 4. Theoretical Background

(WA) [var: =expriD(s) = 8(s, var(t+1)=evalRecExpr(expr, s))

(WI1) [if cond then stmt end ifiD(s) = 1(cond, [stmtiD(s), s)

(WI2) [if cond then stmt1 else stmt2 end ifiD(s) =

1(cond, [stmt1ID(s), [stmt2ID(s))

(WS) [stmt1; stmt2ID(s) = [stmt2ID([stmt1ID(s))

getRecVar : Statement ~ {Identifier}

(G1) getRecVar(var:=expr) = {var}

(Gil) getRecVar(if cond then stmt end if) =getRecVar(stmt)

(GI2) getRecVar(If cond then stmt1 else stmt2 end if) =

getRecVar(stmti) U getRecVar(stmt2)

(GW) getRecVar(while cond do stmt end do) =getRecVar(stmt)

(GS) getRecVar(stmt1;stmt2) =getRecVar(stmt1) U getRecVar(stmt2)

We use getRecVar function to obtain the recurrence variables in the loop body. Let

RecVar denotes the recurrence variables in the loop body, then we have:

RecVar = getRecVar(stmt)

evalRecExpr : Expr ~ StateRep ~ OutputExpr

(ER1) evalRecExpr(constant,s)=constant

(ER2) evalRecExpr(var,s)=

24 4. Theoretical Background

var(t+1), if s=b"(s', var(t+1)=expr)

evalRecExpr(var,s'), if s=b"(s',var'(t+1)=expr)

var(t), if s=b"(.l,var' (t+1)=expr) 1\ varE RecVar

evalExpr(var, s), otherwise if var ~ RecVar

(ER3) 	 evalRecExpr(expr1 op expr2 ,s)

= evalRecExpr(expr1 ,s) op evalRecExpr(expr2 ,s)

evalConExpr : Expr ~ StateRep ~ OutputExpr

(EC1) evalConExpr(constant,s)= constant

var(t), 	 if var E s
(EC2) 	 evalConExpr(var,s)=

{ var, otherwise

(EC3) evalConExpr(expr1 op expr2 , s)

= evalConExpr(expr1 ,s) op evalConExpr(expr2 ,s)

Loop Stop Condition

we can decide the loop stop condition on the basis of the condition cond. In general,

this condition reads

min { t I -,cond}
t20

where cond depends on the state variables at timet. In general, this is a Diophantine

equation, and thus well-known to be unsolvable. But in many practical situations,

the actual equations are simple. We draw attention to three such cases.

25 4. Theoretical Background

• Case 1 cond =Vi R c, where v1 , ... , Vm are the recurrence variables, cis constant

with respect to the vi's, and R is a relational operator from Table 4.1. The converse

of R can easily be computed explicitly, also shown in Table 4.1. Assuming that the

expression for vi = Fi(t) is simple enough (in terms oft), this can be solved in closed

form.

• Case 2 cond = Vi R 1>(vj), where v1, ... , Vm are the recurrence variables, and

some of them occur in the expression ¢>, with R as before.

where S = --,R.

• Case 3 cond is a conjunction of terms which satisfy Case 1 or Case 2. Then we

can simply take the minimum of all the conjuncts.

For Loop Statements

For loop statement is similar to the while loop, the difference is that the for loop

iteration times can be decided more easily than the while loop.

[] : Statement ---t (StateRep ---t StateRep)

'TJ : [Variable, Int, Int, Int] ---t {Identifier} ---t StateRep ---t StateRep

(FR) [for i from s to e by step do stmt end do] =

>.s E StateRep. rJ([i, s, e, step],getRecVar(stmt), [stmtiD(s))

getRecVar : Statement StateRep---t

(G1) getRecVar(var:=expr)={var(n)}

26 4. Theoretical Background

(GS) getRecVar(stmt1 ;stmt2) =getRecVar(stmt 1) U getRecVar(stmt2)

evalFor : [Variable, Int, Int, Int]~ StateRep ~ OutputExpr

le-s+lJ(EF) evalFor([i, s, e, step], s 1) = if i ~ s 1step

We use getRecVar to get recurrence variable in the loop body, which is same as the

definition in the while loop. Rule (EF) describes the for loop iteration evaluation.

[i, s, e, step] is the representing of the for loop control condition by using loop

variable, initial value, ending value and step value to describe.

We can reduce rJ function into the following:

Reduce(rJ([i, s, e, step],getRecVar(stmt), [stmtiDCs)) =

lett= evalFor([i, s, e, step], s) in

([stmtiD(s)) t

4.1.6 Code Examples

Example 1

Example 1 is to implement assignment statements and conditional statements to get

symbolic interpretation of these statements.

h: X:= Xli

l3 :if y < 0 then x := -2 * y; else x := 2 * y end if

27 4. Theoretical Background

8 =..l

[x := xi](8) = 6(8, x = evalExpr(x~, 8))

= &(..l,x =XI)= 8I

[y := YI](8I) = 6(8I, y = evalExpr(yi, 8I))

= 6(6(..l, X= XI), Y = YI) = 82

[if ...](82) = 'Y(Y < 0, [x := -2 *y](82), [x := 2 * y](82))

= 'Y(Y < 0, 6(6(6(..l, X= XI), Y = YI), X= -2 *YI)

, 6(6(6(..l, X= XI), y = YI), X= 2 * YI))

Reduce('Y(y < 0, 83, 84))

= {6(8(6(..l, X= XI), y = yt), X= -2 *YI) if YI < 0

6(6(6(..l, X= XI), Y = YI), X= 2 *YI) if YI ~ 0

Example 2: Factorial

We choose Factorial function as an example with while loop to get symbolic inter

pretation of these statements.

h: i := 1;

l2: fac := 1;

l3 :while i < n do i := i + 1; fac := fac *i end do

8 =..l
[i := 1](8) = 6(8, i = evalExpr(1, 8))

= 6(8, i = 1) = 8I

[fac := 1](8I) = 6(81, fac = evalExpr(l, 81))

= &(&(..l, i = 1), fac = 1) = 82

28 4. Theoretical Background

[while i<n do i:=i+1; fac:=fac*i end do](82)

= p,(i < n, getRecVar(i := i + 1; fac := fac * i), [i := i + 1; fac := fac * iiD(82))

= p,(i < n, {i, fac}, <5(<5(<5(<5(..l, i = 1), fac = 1),

i(t + 1) = i(t) + 1), fac(t + 1) = fac(t) * i(t + 1))) = 8 3

Reduce 8 3 to the following:

Reduce(83)

= (<5(<5(<5(<5(..l, i = 1), fac = 1), i(t + 1) = i(t) + 1),

fac(t + 1) = fac(t) * i(t + 1)))mint;::o{tli(t)2:n}

Example 3: Chebyshev Polynomials

Chebyshev polynomial is an example implementing for loop statement to get sym

bolic interpretation of these statements.

h: uo := 1;

l3 : for i from 2 to n do

u0 = v;

end do;

8 =..l

29 4. Theoretical Background

[uo := 1](8) = c5(8, u0 = evalExpr(1, 8))

= c5(8,uo = 1) = 81

[u1 := x](8I) = c5(81, u1 = evalExpr(x, 81))

= c5(c5(..l, uo = 1), u1 = 1) = 82

[for i from 2 to n do v= u1; u1=-u0 + 2*x*u1; u0=v end do](82)

= 1J([i, 2, n- 1, 1], getRecVar(v := u1; u1 := -u0 + 2 * x * u1;u0 := v),

[v := u1; u1 := -uo + 2 * x * u1; u0 := v](82))

= 1J([i, 2, n -1, 1], {v, uo, u1}, c5(c5(c5(c5(c5(..l, u0 = 1), u1 = x), v(t + 1) = u1(t)),

u1(t + 1) = -u0 (t + 1) + 2 * x * u1(t)), u0(t + 1) = v(t + 1)))

Reduce 83 to the following:

Reduce(83)

= (c5(c5(c5(c5(c5(..l, uO = 1), u1 = x), v(t + 1) = u1(t)),

u1(t + 1) = -uO(t + 1) + 2 * x * u1(t)), u0(t + 1) = v(t + 1))(n-l)

The above two examples show how to extract the meaning from the input function

to generate initial equations, recurrence equations and loop iteration times.

Chapter 5

System Analysis

Before describing the system analysis, it is convenient to discuss the syntax and

semantics of the input language for programs that our system can handle.

5.1 Input Language

The language for programs to be input by our symbolic system was chosen as a subset

of Maple [27]. Representation language contains usual mathematical operators (+,

*, <, :::;) but also 2:: (it is used to compute a closed form for an indefinite or definite

sum), TI (which is is used to compute a formula for an indefinite or definite product),

recurrences, etc., and it is a combination of the following statements:

1. var :=expr

2. if cond then stmt 1 else stmt2

3. while cond do stmt end do

4. for i from s to e by step do stmt end do

5. Recursive Function Calls

30

31 5. System Analysis

Program Statements Relations Generated

var:=expr StateTransition

if-then-else Piecewise

while C do Fixedpoint([C] , ...)

for-from-to-by-do Fixedpoint(For(), ...)

Recursion RecursionCall

Table 5.1: Rules for program transformation

5.2 Relation Generator

In our system, we have two modules: Relation Generator and Relation Solver, both

written in Maple [27]. This is made especially easy since Maple has some very powerful

reflection capabilities through its Toinert function, which gives an accurate AST

representation for any Maple program (or expression). The first one generates a

series of appropriate (recurrence, state transition, etc.) for the given input program,

while the second one solves the relations and produces an output expression, either

in an explicit form, or, if an implicit form can not be found, then implicit forms (like

invariants) are returned. Figure 5.1 shows our symbolic execution system.

The Relation Generator is a total function - it translates the given input program

into a sequence of appropriate relations. We transform the original programs into a

sequence of relations according to the rules shown in Table 5.1.

Table 5.2 shows what is generated for our program factorial. Table 5.3 shows the

mapping relation between the generated relations in our system and in the semantic

functions.

For the input program, how can our system make difference between different

types of statement? In the Relation Generator, we call ToInert (eval (f)), which

32 5. System Analysis

Input Program

Relation Generator
Model

A Sequence
of Relations

Piecewise inside
restFixedPoint

Invariant

Solver Model

Implicit

Output Expression

(like invariants)

Relation

Solver Model

Explicit

Output Expression

(if it is solvable)

Figure 5.1: Symbolic execution system

33 5. System Analysis

Input Program Relations

factorial:=proc(n)

i:=1 F1:StateTransition(i,1)

fac:=1 F2:StateTransition(fac,1)

while i < n do

i :=i+1

fac:=fac*i

end do

F3:FixedPoint([i < n]'

[StateTransition(i,i+1),

StateTransition(fac,fac*i)]

)

fac F4:fac

end proc;

Table 5.2: Translation of factorial into the set of appropriate relations

Generated Relation(GenRelation) Semantic Function

StateTransition(var, expr) 8(var, expr)

Piecewise(cond, transition!, transition2) 'Y(cond,[stmt1], [stmt2])

Fixedpoint([cond], transition!) J.L(cond,{var}, [stmt])

Fixedpoint(For[i, s, e, step], transition!) 7J([i, s, e, step], {var}, [stmt])

Table 5.3: Mapping relations between the generated relations and the semantic func

tions

34 5. System Analysis

converts the input Maple function f into a sequence of inert form. Table 5.4 shows

the meanings of Maple Inert functions. For example, for the factorial function

given in chapter 2, calling To Inert (eval (factorial)) inside the Relation Generator,

we obtain the following:

_Inert_PROC (_Inert_PARAMSEQ (_Inert_NAME ("n")) ,

_Inert_LOCALSEQ(_Inert_NAME("i"), _Inert_NAME("fac")),

_Inert_OPTIONSEQ(), _Inert_EXPSEQ(),

_Inert_STATSEQ(_Inert_ASSIGN(_Inert_LOCAL(1),

_Inert_INTPOS(1)), _Inert_ASSIGN(_Inert_LOCAL(2), _Inert_INTPOS(1)),

_Inert_FORFROM(_Inert_EXPSEQ(),_Inert_INTPOS(1), _Inert_INTPOS(1),

_Inert_EXPSEQ(), _Inert_INEQUAT(_Inert_LOCAL(1), _Inert_PARAM(1)),

_Inert_STATSEQ(_Inert_ASSIGN(_Inert_LOCAL(1),

_Inert_SUM(_Inert_LOCAL(1), _Inert_INTPOS(1))),

_Inert_ASSIGN(_Inert_LOCAL(2),

_Inert_PROD(_Inert_LOCAL(2), _Inert_LOCAL(1))))), _Inert_LOCAL(2)),

_Inert_DESCRIPTIONSEQ(), _Inert_GLOBALSEQ(), _Inert_LEXICALSEQ(),

_Inert_EOP(_Inert_EXPSEQ()))

The above sequence of Inert functions exactly corresponds to the input program

factorial. Table 5.5 shows the rules to translate the Inert functions into our

symbolic system relations.

5.3 Solving Relations: Overview

The method for solving relations depends on the kind of relation that generated. The

technique described in this and almost all remaining chapters is a refinement and

generalization of many results from [7, 20, 30]. Of course, if code does not contain

35 5. System Analysis

Inert Function Meaning

_Inert_PARAMSEQ Providing the parameters of the procedure

_Inert_LOCALSEQ Providing the local variables of the procedure

_Inert_LOCAL Mapping to the local variable

_Inert_STATSEQ Providing the statement sequence of the procedure

_Inert_ASSIGN Corresponding to the Assignment statement

_Inert_FORFROM Corresponding to the Loop statement

- Inert_IF Corresponding to the If conditional statement

Table 5.4: Inert functions and their meanings

Inert Function Generated Relation Rule

_Inert_ASSIGN StateTransition Tl

- Inert_IF Piecewise T2

_Inert_FORFROM(_Inert_EXPSEQ...) Fixedpoint T3

_Inert_FORFROM(_Inert_LOCAL...) Fixedpoint(For{), ...) T4

Table 5.5: Transformation and rules

either loops nor recursion, from a symbolic point of view such straight-line code is

completely trivial, and we can simply compute the result. The only drawback is that

such an answer can be exponentially larger than the input program.

For the case where we have either a while or for loop whose body is straight-line

code, we generate a system of recurrence equations, which we try to solve in closed

form, using whatever triangular structure we may find. Using similar ideas, we can

also generate systems of recurrences for programs containing recursion.

36 5. 	 System Analysis

When loops contain branches (i.e. if-then-else), the resulting system of recur

rences essentially never falls within a class of solvable recurrence. At present, we

immediately shift to generate implicit results, in the form of polynomial invariants

[20, 29].

We classified the generated relations into five classes according to the types of

relations.

1. 	 FixedPoint. It maps to the input procedure including while-do structure. The

recursive functions and initial functions will be generated and solved based on

the loop stop condition, which can be calculated in this case.

2. 	 FixedPoint{For). It maps to the input procedure including for-do structure.

The recursive functions and initial functions will be generated and solved based

on the number of times the loop for-do iterates.

3. 	 Piecewise inside FixedPoint. It happens when we have if-then-else inside

while-do. It is usually very difficult to decide the number of iterations, so we

usually cannot generate explicit output. We might generate implicit output, i.e.

an invariant instead, more or less in the style of [29].

4. 	 RecursionCall. We can generate some recursive functions and their initial func

tions and then solve them(but not always).

5. 	 Neither Fixedpoint nor RecursionCall. It maps to the input procedure is the

sequential procedure without while-do or for-do in it. We do not need to

generate recursive functions or invariants. We can easily get the explicit output

by simply calculating relation composition.

37 5. System Analysis

Input Program

Relation Generator
Model

A Sequence
of Relations

Implicit Output Explicit Output Expression
Expression (if recursive functions are

(like invariants) solvable)

Piecewise
inside

FixedPoint

Invariant

Solver Model

By using by E. R.

Carbonell &

D. Kapur's Automatic

Generation

of Invariants
procedure

FixedPoint

Generating recurrence
functions, initial

functions and stop
condition

Without
Recursion FixedPoint &

Call Recursion Call

Generating

Recurrence
 Solving the

sequentialfunctions and initial

functions
 relations

Figure 5.2: Symbolic execution system in detail

38 5. System Analysis

Relations Recurrence and Initial Condition

StateTransition(i,1) Initial Condition: i(O) = 1

StateTransition(fac,1) Inital Condition: fac(O) = 1

FixedPoint (i< n, Loop Termination:

lt = min{t 2: 0 I i(t) 2: n}

StateTransition(i,i+1), Recurrence:

i(t + 1) = i(t) + 1

StateTransition(fac,fac*i),

)

Recurrence:

fac(t+1) = fac(t) · i(t+1)

return fac fac(lt)

Table 5.6: Recurrence equations and initial conditions for factorial.

5.4 From Code to Recurrences: while

If the input program is a simple while loop, without if-then-else statements inside

the while loop, the core relation we generate will be FixedPoint. Table 5.6 shows

the results for our factorial program. In this case our system [28] will produce the

output formula "n!".

5.4.1 Generating Recurrence Relations

In this case all we have inside the loop are assignment statements which are repre

sented by StateTransition relations. These relations might however be mixed, in

other words a variable at time t + 1 might occur on both the left and right hand

sides. This occurs in our factorial code, where fac depends on i(t + 1) rather than

i(t). However, a simple program transformation related to Static Single Assignment

(SSA) form [11] takes care of this issue.

39 5. System Analysis

5.4.2 Generating Initial Conditions

The initial conditions are easily determined: they are the values of each of the loop

variables (i.e. those which change) right before the loop starts. These can be deter

mined by unwinding the stack of StateTransit ion calls preceding the loop. This is

always possible, though might again generate very large answers.

5.4.3 Stopping Conditions

If we want to find the actual stopping condition for a loop, we need to solve (symboli

cally) the recurrence equations (with known initial functions) just generated. Suppose

the solution is:

Now, we can decide the loop stop condition on the basis of the condition Cond in

FixedPoint ([Cond] , ...) . In general, this condition reads

min{t I --,Cond}
t~O

where Cond depends on the state variables at timet. We have discussed it in chapter

4.

5.5 Solving with for Loops

Since a for loop is a special case of a while loop, this case is very similar to the

previous. Generating recurrences is exactly the same. Assume the following pattern

for the for loop:

for i from s to e by step do S.

40 5. System Analysis

Generating Initial Conditions

Initial functions are generated from the stack of StateTransit ions preceding the

loop for all variables, with the addition of i(O) = s. Assuming [StateTransition(v1,

expr1), StateTransition(v2, expr2), .. . , StateTransition(vm, exprm)] precedes the loop,

where v1, v2, ... , Vm are recursive variables, then the generated initial functions are in

the followings:

... '

i(O) = s

where expr[var:=exprl] means the expression expr with variable var in expr re

placed with exprl. It follows the chain of 6 that we discussed in chapter 4.

5.5.1 Number of Loop Iterations

Now, we can decide the for loop iteration times based on the For relation inside the

FixedPoint relation. We have to consider two cases:

• Case 1 The variable i, i.e. loop counter, is not modified by S. In this case the

number of iterations z can be solved explicitly and uniformly for all cases, and is

given by

{l
e-s+ll if re-s+ll > 0

step I step
Z=

if re-s+ll :::; 00 I step

41 5. System Analysis

• Case 2 The variable i, i.e. loop counter, is modified by S. In this case we have to

transform the for loop into a new for loop with the i update inside the loop, and

using a new independent variable to control the loop. Then it transforms into the

form of case 1, therefore we can decide the loop iteration times. In chapter 6, the

Binomial Coefficients example shows how to solve this kind of problem.

• Case 3 The variable i, i.e. loop counter, is not only modified by s, but also starts

from 0. We choose to shift loop starting point and ending point by step times. Then

applying to case 2, we can decide the loop iteration times. In chapter 6, the Bessel

function example explains how to solve this kind of problem in detail.

5.5.2 Solving Relations Involving Recursion Call

If a recursive function is correctly defined, it defines both recurrence functions and

initial conditions in quite natural way.

For example, some recursive function generates the relations: StateTransition(u,

piecewise(n=O, expr1, f(RecursionCall(n-1))), then we can get the initial and Recur

rence functions in the followings:

u(O) = expr1

u(t) = f(u(t- 1))

Based on the above that generated initial and recurrence functions, we can solve them

and get the implicit output.

However, we can not always solve (symbolically) the recurrence equations thus

generated (for instance we cannot do it for Ackerman function).

Note that it is important here to assume that we have a meaningful program, as

otherwise a recursively defined function might come equipped with naturally defined

42 5. System Analysis

initial conditions.

5.5.3 The Case of Branches in Loops

When we have if-then-else inside a while, we usually are not able to generate

explicit symbolic output. We can often generate implicit output, or invariants, in

a way similar to that described in [20, 29]. From the generated relations, we can

translate them into the input of Rodriguez-Carbonell and Kapur's method[29] to

automatic generation of polynomial loop invariants. We will discuss how to automat

ically generate the input of Rodriguez-Carbonell and Kapur's method[29] from the

relations.

Let us give an example to see how to obtain input polynomials from relations.

e:= [StateTransform(a, x), StateTransform(b, y), StateTransform(p1, 1),

StateTransform(q1, 0), StateTransform(r, 0), StateTransform(s1, 1),

Loop([a <> b], [[StateTransform(a, 'piecewise'(b <a, a-b, a)),

StateTransform(b, 'piecewise'(b <a, b, b-a)),

StateTransform(p1, 'piecewise'(b <a, p1-q1, p1)),

StateTransform(q1, 'piecewise'(b <a, q1, q1-p1)),

StateTransform(r, 'piecewise'(b <a, r-s1, r)),

StateTransform(s1, 'piecewise'(b <a, s1, s1-r))]]), a]

The above relation is generated from GCD function(given in chapter 6). The set

of initial polynomial can be generated from the stack of StateTransitions preceding

the loop for all variables, i.e. [a= x, b = y,p1 = 1, q1 = 0, r = 0, s1 = 1]. The sets of

Conditional polynomial can be generated from the inside of Loop relation, grouping

by the condition inside the piecewise, i.e. [a = a- b, b = b,p1 = p1 - q1, q1 =

43 5. System Analysis

ql, r = r- sl, sl = sl] and [b = b- a,pl = pl, ql = ql- pl, r = r, sl = sl- r].

Transformation from the generated relations into the input polynomial for generating

invariants is quite straightforward.

Let us have a brief introduction to Rodriguez-Carbonell and Kapur's method [29].

What is their module's theory background and why it works. Rodriguez-Carbonell

and Kapur in [29] have proved that the set of polynomials serving as loop invariants

has the algebraic structure of an ideal. Using this connection, it is proved that the

procedure for finding invariants can be expressed using operations on ideals, for which

Grabner basis constructions can be employed.

For a given loop, the set {p} of polynomials such that p=O is invariant, i.e,. p

evaluates to 0 at the header whenever the loop body is executed, is a polynomial

ideal. This ideal is henceforth called the invariant polynomial ideal of the loop. Any

conjunction of polynomial equations such that the polynomials are a basis of this

ideal is shown to be inductive, i.e., it holds when entering the loop and is preserved

by every iteration of the loop. Moreover, such formula formula is strongest among all

the inductive invariants of the loop when invariants are conjunctions of polynomial

equations. Using Hilbert's basis theorem, they also establish the existence of such an

inductive invariant for a given loop. If a loop does not have any polynomial invariant,

the procedure will generate the polynomial 0 (which is equivalent to true) as the

invariant.

In [29], they show that how the procedure for computing the invariant polynomial

ideal can be approximated using Grabner bases computations. Moreover, for solvable

mappings with rational positive eigenvalues, this approximation is exact, i.e. the

algorithm computes the invariant ideal. More details are discussed in [29] about how

to generate polynomial invariants [29].

44 5. System Analysis

In our system, one of module generating the invariants comes from Rodrfguez

Carbonell and Kapur's method [29] source code. However since Rodriguez-Carbonell

and Kapur's system [29] could not start to work from the given program point, our

system has a module to generate their system input from the given program and

based on their system to generate invariants automatically.

Chapter 6

Examples of Using Symbolic

Execution Tool

This chapter gives some examples that show the use of symbolic execution tool. It

starts off with the computation of l:~=o ~ example, which shows how the relations

are get and how the initial functions, recursive functions and number of loop iteration

can be decided from the relations. We also give the following examples: computation

of l:~=o i!, computation of the binomial coefficients, computation of Chebyshev poly

nomials and the computation of values of Bessel function from Taylor series, to show

how to get the symbolic explicit output. We also give two examples to explain how

to get the implicit output.

6.1 Examples of Generating Explicit Output

6.1.1 Example 1: :Z::~=O ~

This is an example to compute l:~=o ~

45

46 6. 	 Examples of Using Symbolic Execution Tool

sig_prod:=proc(n)

local i, s, w;

(s,w) :=(1,1);

for i from 1 to n do

w:=w/i;

s:=s+w;

end do;

s;

end proc:

By observing the above function, we can see that the loop controller i not only

controls the loop, but also shows up in the loop body (we only dealt with the case

that i shows up on the right hand side of the expressions in the loop body). For this

kind of input function, our system transforms the input function into a new function

such that the loop controller is independent to control the loop (which means that it

does not show up in the loop body). There are three steps:

1. 	 Choose a variable, which does not belong to the input function, as the loop

controller, i.e. ii.

2. 	 Preceding the loop execution, adding a new assignment statement to initialize

the original loop controller according to the loop start point.

3. 	 At the loop bottom, adding an assignment statement to update the original

loop controller by the sum of it and the step.

Table 6.1 shows a direct translation between the program components and the recur

rence, initial conditions, and number of loop iterations. Our system [28] produces the

47 6. Examples of Using Symbolic Execution Tool

l:~o fr Recurrence and Initial Condition

(s' w) ·= (1, 1);

Initial Condition:

s(O) = 1, w(O) = 1, i(O) = 1

for i from 1 to n do

Number of Loop Iteration:

z = rn-i+ll = n if n ~ 1

w := w/i;

s ·= s+w

Recurrence Equations:

w(t + 1) = w(t)/i(t)

s(t + 1) = s(t) + w(t + 1)

i(t+ 1) = i(t) + 1

s s(z)

Table 6.1: Recursive and initial functions for computing L:~=o j

following output for the above program :

e*r(n+1,1)
r(n + 1)

It is an approximation to exp(1). The incomplete r function is defined as:

r(a, z) = r(a)- za ja1F1(a, 1+a, -z)

where 1F1 is the confluent hypergeometric function (in Maple notation, 1F1(a, 1 +

a, -z) = hypergeom([a], [1 +a], -z)).

6.1.2 Example 2: .L:~=O i!

This is an example to compute 2:.:~0 i!. Table 6.2 shows a direct translation between

the program components and the recurrence, initial conditions, and number of loop

iterations. Our system [28] produces the following output for the above program :

48 6. Examples of Using Symbolic Execution Tool

Lni=O z.'! Recurrence and Initial Condition

(s, w) := (1, 1);

Initial Condition:

s(O) = 1, w(O) = 1, i(O) = 1

for i from 1 to n do

Number of Loop Iteration:

z = rn-:+ll = n if n 2: 1

w ·=

s ·=

W*i;

s+w

Recurrence Equations:

w(t + 1) = w(t) * i(t)

s(t + 1) = s(t) + w(t + 1)

i(t + 1) = i(t) + 1

s s(z)

Table 6.2: Recursive and initial functions for computing L~o i!

-KummerU(1, 1, -1)- n! *KummerU(n + 1, n + 1, -1) * (-1)(n+l) + n! (6.1)

Where KummerU(J.t, v, z) solves the differential equation z *Y" + (v- z) *y'- J.l* y =

0 [1].

There is another function to compute I:~=O i!. Table 6.3 shows the translation

between the program components and the recurrence, initial conditions, and number

of loop iterations. Our system [28] produces the following output for the above

program:
e-1r(-n,-1) r(-1, -1)e-1 (-1)n_:...___...:.....__ + 1 (6.2)

r(-n) r(-n + 1)r(-1) r(-n+1)

Even though I believe that (6.1) and (6.2) are equal, it is challenge for me to prove

it.

49 6. Examples of Using Symbolic Execution Tool

Ln "Ii=O z. Recurrence and Initial Condition

s := n ,

Initial Condition:

s(O) = n, i(O) = n- 1

for i from n-1 by -1 to 1 do

Number of Loop Iteration:

z=n-1ifn2:2

s - i*(1+s);

Recurrence Equations:

s(t + 1) = i(t) * (1 + s(t))

i(t + 1) = i(t)- 1

s+1 s(z) + 1

Table 6.3: Another example to compute L~=O i!

6.1.3 Example 3: Chebyshev Polynomials

Here we show a simple example with for loops.

chebyshev:= proc(n::posint,x)

local i, uO, u1, t;

(uO, u1) := (1 , x) ;

for i from 2 to n do

v := u1;

u1 := -uo + 2*x*u1;

uO := v;

end do;

u1;

end proc;

50 6. Examples of Using Symbolic Execution Tool

chebyshev Polynomials Recurrence and Initial Condition

(uO, u1) := (1,x); Initial Condition: uO(O) = 1, u1(0) = x

for i from 2 to n do

Number of Loop Iteration:

z = rn-~+11 = n - 1 if n ~ 2

v := u1;

u1 := -uo + 2*X*U1

uO := v

Recurrence Equations:

v(t + 1) = u1(t)

u1(t + 1) = -uO(t) + 2 · x · u1(t)

uO(t + 1) = v(t + 1)

u1 u1(z)

Table 6.4: Recursive and initial functions for chebyshev

Translation of the program into set of appropriate relations is quite straightforward

and is omitted. Table 6.4 shows a direct translation between the program components

and the recurrence, initial conditions, and stopping condition.

Our system [28] produces the following output for the above program chebyshev:

(x- ~)-n + (x + Jx2 -1)-n
2

better known as the closed-form for the Chebyshev polynomial Tn (x) for n ~ 2 [1].

6.1.4 Example 3: Binomial Coefficients

The binomial coefficient G) is the number of ways of picking k unordered outcomes

from u possibilities, also known as a combination or combinatorial number. The

computation of binomial coefficients is given by the followings:

binomial:=proc(u, k)

51 6. Examples of Using Symbolic Execution Tool

Binomial Coefficients Recurrence and Initial Condition

res:= 1 Initial Condition: res(O) = 1, i(O) = 1

for i from 1 to k do

Number of Loop Iterations:

z = 1k-i+l1= k if k ~ 1

res := res * (u-i+1)/i;

Recurrence Equations

res(t + 1) = res(t) * (u- i(t) + 1)/i(t)

i(t + 1) = i(t) + 1

res res(z)

Table 6.5: Recursive and initial functions for Binomial Coefficients

local res, i;

res 1;

for i from 1 to k do

res := res * (u-i+1)/i;

end do;

res;

end proc:

Transformation of binomial into an equivalent new binomial function in which

the loop controller is independent is quite straitforward and is omitted. Table 6.5

shows a direct translation between the binomial coefficient program and the recur

rence, initial conditions, and number of loop iterations.

Our system [28] produces the following output for the above program chebyshev:

(-l)kr(-u + k)
r(-u)r(k + 1)

52 6. Examples of Using Symbolic Execution Tool

Proposition 1.

(-1)kr(-u + k)
is equivalent to binomial coefficient (~) .

r(-u)f(k + 1)

Proof. In order to prove

(-1)kr(-u + k) r(u + 1)
r(-u)f(k + 1) r(u- k + 1)r(k + 1)

we only need to prove

(-1)kf(-u + k) r(u + 1)
r(-u) r(u-k+1)

Since
r(u + 1)

f(u-k+ 1) =U*(u-1) ... (u-k+1)

So, we need to show

(-1)kr(-u + k)

r(-u) = u * (u- 1) ... (u- k + 1)

let -u = t - k + 1, then:

(-1)kr(-u + k) (-1)kf(t + 1)

r(-u) r(t-k+1)

= (-1)k * t * (t- 1) * ... * (t- k + 1)

= (-1)k * [-(u- k + 1) * · · · * (-(u -1)) * (-u)]

= (u- k + 1) * .. · * (u- 1) *u

Q.E.D. D

6.1.5 Example 4: Bessel

This is an example to show that in the for loop, the loop controller is not independent

to control the loop, it also happens in the loop body statement. At the same time,

the loop controller i starts from 0.

53 6. Examples of Using Symbolic Execution Tool

Bessel Function Recurrence and Initial Condition

(res, u) = (0, 1)

Initial Condition:

res(O)=O, u(0)=1, i(O)=O

for i from 0 to m-1 do

Number of Loop Iterations:

z = Im-f+ll = m if m ~ 1

res := res + u

Recurrence Equations

res(t + 1) = res(t) + u(t)

u := -u * z2/(4*(i+nu+1)(i+1)) u(t + 1) = -u(t) * z 2 j

(4 * (i(t) + nu + 1)(i(t) + 1))

i(t + 1) = i(t) + 1

res res(z)

Table 6.6: Recursive and initial functions for Bessel

bessel:=proc(z, nu, m)

local res, i, u;

(res,u):= (0,1);

for i from 0 to m-1 do

res:=res+u;

u := -u * z-2/(4*(i+nu+1)(i+1));

end do;

res;

end proc:

Since the loop controller starts from 0, we shift the loop starting and ending point

by step. Transformation of the program into a new equivalent bessel is omitted and

54 6. Examples of Using Symbolic Execution Tool

the generation of recursive functions, initial functions, and loop termination condition

are given in table 6.6.

From table 6.6, we get the following recurrence functions:

res(t + 1) = res(t) + u(t)

u(t + 1) = -u(t) · z2/(4 * (i(t) + nu + 1) · (i(t) + 1)) (6.3)

i(t + 1) =i(t)+1

As s system, Maple can not solve (6.1) directly. However, if we solve the system in

data-dependency order, i.e.

i(t + 1) = i(t) + 1

u(t + 1) = -u(t) · z2 /(4 * (i(t) + nu + 1) · (i(t) + 1)) (6.4)

res(t + 1) = res(t) + u(t)

then the system is solvable by steps, and the result is:

v (2m+v _ (+) ()) (-l)m+ll2 z 82m+l+v,v z 4

r(v+l) Jv(z)(:;) - r(m+l+v)r(m+l)zV
[

where lv is the Bessel function of the first kind, while sC+) is known as Lommel's s

function [1]. What is interesting about this example is not what it computes exactly,

but that we can recognize (and with a bit more work, compute) that this is a Taylor

approximation for the non-singular part of Bessel's function at the origin.

6.1.6 Example 5: A Recursive Call Function

This is an example to show the recursive call.

chebyshev1:=proc(n)

local res;

55 6. Examples of Using Symbolic Execution Tool

chebyshev! Function Recurrence and Initial Condition

if n=O then res:=1 Initial Condition: res{O)=O

elif n=1 then res:=x Initial Condition: res{l)=x

else

res - 2*x*chebyshev1(n-1)+

chebyshevi(n-2)

Recurrence Equations

res(t) = 2 * x * res(t- 1)+

res(t- 2)

res res(t)

Table 6.7: Recursive and initial functions for chebyshev1

if n=O then

res :=1;

elif n=1 then

res:=x;

else

res:=2*x*chebyshev1(n-1)+chebyshev1(n-2);

end if;

res;

end proc;

From the generated relation, our system can tell it is a recursive function call. 'Ifansla

tion of the input chebyshevl into its equivalent relations is omitted and the generation

of recursive functions and initial functions are given in table 6.7. For the recursive

call function, we do not need to generate loop stop condition.

Our system produces the same output as the example 3 chebyshev polynomial

function.

56 6. Examples of Using Symbolic Execution Tool

6.2 Examples of Generating Implicit Output

6.2.1 Example 1: GCD

The GCD example is to show how to deal with the single while loop with if condition

in our symbolic execution system. The computation of GCD function is given by the

followings:

GCD:=proc(x, y)

local a, b, p1, q1, r, s1;

a:=x; b:=y; p1:=1; q1:=0; r:=O; s1:=1;

while a <> b do

if a > b then

a:=a-b; p1:=p1-q1; r:=r-s1;

else

b:=b-a; q1:=q1-p1; s1:=s1-r;

end if;

end do;

a;

end proc:

In our symbolic execution system, we use Rodriguez-Carbonell and Kapur's

method [29] to get the invariant which denotes the implicit output. Table 6.8 shows

to translate GCD program into the input of generating invariants [29].

Our system [28] produces the following output for the above program GCD:

{-x - b*r +a* sl = 0, y +a* ql - b*pl = 0, sl * y + ql *x - b = 0,

x *pl + y *r- a= 0, 1 + ql *r- sl *pl = 0}

6. Examples of Using Symbolic Execution Tool 57

GCD program Initial input of generating invariants [29]

a:=x; b:=y
'

pi :=1; q1:=0; r:=O; s1:=1 (a=x b=y pl=l ql=O r=O s1=1]
' ' ' ' ' '

while a<> b do

if a> b then

a:=a-b; p1:=p1-q1; r:=r-s1;

else

b:=b-a; q1:=q1-p1; s1:=s1-r;;

end if; end do

[

[

a=a-b, pl=pl-ql, r=r-slj,

[

b=b-a, ql=ql-pl, sl=sl-r

jj

Table 6.8: Translation of program into the input of generating invariants [29] for GCD

The above is a set of polynomial invariants expressed in terms of ideal. Rodrfguez

Carbonell and Kapur's [29] prove that the set of invariant polynomials of a loop has

the algebraic structure of an ideal. Using this connection, they prove that the proce

dure for finding invariants can be expressed using operations on ideals. Moreover, for

any finite basis of this ideal, the corresponding conjunction of polynomial equation is

the strongest possible inductive invariant for the loop expressible as a conjunction of

polynomial equations [29].

A loop invariant is a relation among program variables that is true when control

enters a loop, remains true each time the program executes the body of the loop, and

is still true when control exits the loop. Understanding loop invariants can help us

analyze programs, check for errors, and derive programs from specifications [22].

58 6. Examples of Using Symbolic Execution Tool

6.2.2 Example 2: LCM

LCM program is an example shows how to deal with the nested loop in our symbolic

execution system. The computation of LCM function is given by the followings:

LCM:=proc(a,b)

local x, y, u, v;

x:=a; y:=b; u:=b; v:=O;

while x<>y do

while x>y do

x:=x-y; v:=u+v;

end do;

while x<y do

y:=y-x; u:=u+v;

end do;

end do;

return u+v;

end proc:

Table 6.9 shows to translate LCM program into the input of generating invari

ants [29]. [29] did not mention that if their method also works for nested while loop.

It seems that their algorithm works for some nested while loop.

Our system [28] produces the following output for the above program LCM:

{-u *x - y *v +a* b = 0}

The above is also a set of polynomial invariants expressed in terms of ideal [29]. In

our example, since we have nested loop, the polynomial invariant should be true on

59 6. Examples of Using Symbolic Execution Tool

LCM program Initial input of generating invariants [29]

x:=a; y:=b; u:=b; v:=O; [x=a y=b u=b v=O}
' ' ' '

while x <> y do

while x > y do

x:=x-y; v:=u+v;

end do

while x < y do

y:=y-x; u:=u+v;

end do

[

[

x=x-y, v=u+v

},

[

y=y-x, u=u+v

j })

Table 6.9: Translation of program into the input of generating invariants [29] for LCM

each iteration before executing the outer loop, between executing the outer loop and

inner loop, after executing the inner loop body, and after executing the outer loop

body, which have more restricts than the single loop. This is one of the reason that

why we got much less invariants expression from this example than from the GCD

example.

Chapter 7

Related Work

Symbolic execution has been studied since seventies, however with different goals than

ours. King [19] in 1976 has developed EFFIGY, a symbolic execution system with a

fixed number of integers.

Kemmerer and Eckmann [18] have presented an approach to symbolic execution

based on the concept of path expressions and path conditions.

DISSECT [15] and SELECT [5] are also symbolic execution systems that use the

path conditions concept. DISSECT can be used to symbolically execute some simple

FORTRAN programs. The main purpose of SELECT [5] is to complement mechanical

program verification and debug programs.

Rodriguez-Carbonell and Kapur [29] have recently developed some interesting

techniques for automatically finding loop invariants. E. Roddguez-Carbonell and

D. Kapur [29] introduce that conjunctions of polynomial equations as loop invariants.

It shows that the set of invariant polynomials of a loop has the algebraic structure

of an ideal, which immediately suggests that polynomial ideal theory and algebraic

geometry can give insight into the problem of finding loop invariants. E. Rodriguez

60

61 7. Related Work

Carbonell and D. Kapur [29] also present the procedure for finding polynomial in

variants, expressed in terms of ideals. E. Roddguez-Carbonell and D. Kapur [29] also

shows how to implement this procedure using Grabner bases. The implementation

has been used to automatically discover nontrival invariants for several examples to

illustrate the power of the techniques. However, the input parameters still need to be

extracted manually.

Fahringer and Scholz [30] have presented a comprehensive and compact control

and data flow analysis information, called program context for solving program anal

ysis problems. Program contexts include three conmponets: variable values, assump

tions about and constrains between variable values, and path condition. Their ap

proach targets linear and non-linear symbolic expression and the program analysis

information is represented as symbolic expression defined over the program's problem

size. Fahringer and Scholz [30] introduce an algorithm for generating program con

texts based on control flow graphs. The alogrithm comprises accurate modeling of

assignment and input/out statements, branches, lops, recurrences, arrays, dynamic

records and procedures.

Chapter 8

Contributions and Future Work

We have described a symbolic execution system that can be used to analyze properties

of programs. It is especially well-suited to numerical programs which compute so

called Special Functions. The most important tool is the transformation of loops

into explicit systems of recurrence equations over time. The system [28] can handle

assignment statements, if-then-else statements, for-do statements, and while-do

statements, the latter two with some restrictions.

Despite the restrictions, it can be used for a huge variety of programs, including

programs to compute binomial coefficients, Bessel functions, orthogonal polynomials,

and so on. In the case of finding invariants, we mainly follow [29] and can cover

similar programs.

For the future work, we would like to loosen the restriction for while loop we have

now. The most promising line of investigation is to see if we can include branches in

loops, but where the branch condition depends on a monotonic function of time. We

also would like to be able to produce explicit symbolic solutions in some cases where

now we can only produce invariants. We also would like to enrich the programming

62

63 8. Contributions and Future Work

model to consider some more complicate data structures such as arrays.

Appendix A

Specification by Maude

Maude is a high-level language and is an equationally-base, algebraic language with

a term rewriting implementation. We use maude to define the specification for our

symbolic execution system.

The following model describes the Arithmetic Expression type. It corresponds to

the ArithmeticExpression and ArithmeticOp in the semantics syntax definition.

fmod ARITHMETICEXPRESSION is

protecting QID

protecting INT

sort Variable ArithmeticExpression

subsorts Variable < ArithmeticExpression

subsort Qid < Variable .

subsorts Int < ArithmeticExpression

op + 	 ArithmeticExpression ArithmeticExpression ->

ArithmeticExpression [ditto]

64

A. Specification by Maude 65

op _-_ : ArithmeticExpression ArithmeticExpression ->

ArithmeticExpression [ditto] .

op * ArithmeticExpression ArithmeticExpression ->

ArithmeticExpression [ditto] .

op _/_ ArithmeticExpression ArithmeticExpression ->

ArithmeticExpression .

endfm

The following is an example to test ARITHEMETICEXPRESSION module:

reduce in ARITHMETICEXPRESSION : 'a + 'b .

result ArithmeticExpression: 'a + 'b

In the following, we define the Boolean Expression type for the input domain. It

corresponds to the BooleanExpression and RelationOp definition in the semantics

syntax.

fmod BOOLEANEXPRESSION is

protecting ARITHMETICEXPRESSION

sort BooleanExpression .

subsorts Bool < BooleanExpression

op and_ BooleanExpression BooleanExpression -> BooleanExpression [ditto:

op _or BooleanExpression BooleanExpression -> BooleanExpression [ditto]

op _xor BooleanExpression BooleanExpression -> BooleanExpression [ditto:

op _<=_ : ArithmeticExpression ArithmeticExpression -> BooleanExpression [d

op _<_ : ArithmeticExpression ArithmeticExpression -> BooleanExpression [di·

endfm

The followings test BOOLEANEXPRESSION module:

A. Specification by Maude 66

reduce in BOOLEANEXPRESSION 2 + 3 <= 4 + 5 .

result Bool: true

reduce in BOOLEANEXPRESSION 2 + 2 < 2 + 3 xor 1 < 3 .

result Bool: false

We define Expression type in the following:

fmod EXPRESSION is

protecting ARITHMETICEXPRESSION

protecting BOOLEANEXPRESSION

sort Expression .

subsorts BooleanExpression < Expression .

subsorts ArithmeticExpression < Expression

op _==_ : Expression Expression -> BooleanExpression [comm] .

endfm

We define Statement in the following:

fmod STATEMENT is

protecting EXPRESSION

sorts Statement .

op _;_ : Statement Statement -> Statement [assoc prec 50]

op while_do_od : BooleanExpression Statement -> Statement

[format (nir! o r! o++ --nir! o)] .

op _:=_ : Variable Expression -> Statement

[format (ni d d d)] .

op if_then_else_fi : BooleanExpression Statement Statement -> Statement

67 A. Specification by Maude

[format(nir! o r! o r! o nir! o)] .

op return_ : Expression -> Statement

[format (nir! o d)] .

endfm

The followings test STATEMENT module:

reduce in STATEMENT : while 'a + 'b + 'c < 3 + 5 do 'x := 'x + 2 od .

result Statement:

while 'a + 'b + 'c < 8 do

'x 'x + 2

od

reduce in STATEMENT : return ('x + 'a< 'y + 'z) .

result Statement: return ('a+ 'x < 'y + 'z)

The following model describes the defining of the StateRep type that we defined in

section 4. It could be FixedPoint /-l, Gamma 'Y or StateTransition 6 function.

fmod STATEREP is

protecting EXPRESSION

sort StateRep .

subsort Variable < StateRep .

subsort Expression < StateRep

op StateRep StateRep -> StateRep .

op Gamma : BooleanExpression StateRep StateRep -> StateRep

op FixedPoint : BooleanExpression StateRep -> StateRep .

A. Specification by Maude 68

op StateTransition StateRep StateRep -> StateRep .

endfm

The following is part of GEN_FUNCTION module. It translates statements into

functions which have the stateRep type. So for any input statement given from the

user, this module can substitute the input statements by using stateRep function.

For example, if we have x:=a assignment statement, by calling this module, we can

get StateTransition('x, 'a), which has StateRep type.

fmod GEN-FUNCTION is

protecting STATEMENT

protecting STATEREP

var 'x Variable

var 'a Expression

var b1 BooleanExpression

var s1 Statement

var s2 Statement

op geneqns_ : Statement -> StateRep .

eq geneqns ('x 'a) = StateTransition('x , 'a) .

eq geneqns(if b1 then s1 else s2 fi) = Gamma(b1, geneqns(s1), geneqns(s2))

eq geneqns(while b1 do s1 od) = FixedPoint(b1 , geneqns(s1)) .

eq geneqns(s1 return 'x) = StateTransition('x, geneqns(s1))

eq geneqns(s1 s2) = geneqns(s1) . geneqns(s2)

endfm

The followings test the GEN-FUNCTION module:

A. Specification by Maude 69

reduce in GEN-FUNCTION geneqns(if 2 + 'f < 1 + 'g

then 'x := 2 < 3 else 'x 4 < 3 fi) .

result StateRep: Gamma('f + 2 < 'g + 1, StateTransition('x, true),

StateTransition('x, false))

reduce in GEN-FUNCTION geneqns ('x := 'a ; while 't < 'r do 'x := 'v

'y := 'd od ; return 'x) .

result StateRep: StateTransition('x, StateTransition('x, 'a) . FixedPoint('t <

'r, StateTransition('x, 'v) . StateTransition('y, 'd)))

The following is OUTPUTEXP module. It defines the OutputExpr data type for the

output expression. It corresponds to the OutputExpr type defined in the semantics

syntax.

fmod OUTPUTEXPR is

protecting STATEREP

sort OutputExpr .

subsort StateRep < OutputExpr

op Empty : -> OutputExpr .

op soleqns_ : StateRep -> OutputExpr

op SolRecursive_ : StateRep -> OutputExpr

op Inv StateRep StateRep -> OutputExpr .

op OutputExpr OutputExpr -> OutputExpr

endfm

A. Specification by Maude 70

The following is SOLVE_FUNCTION module. It solves StateRep type Function

to get output expression which has OutputExpr type. for some case, which is very

hard to get an explicit final output, we will use function solrecursive or function

Inv, which has the StateRep type, to represent it.

fmod SOLVE-FUNCTION is

protecting OUTPUTEXPR

protecting GEN-FUNCTION

var 'x Variable

var 'y Variable

var s1 StateRep

var s2 StateRep

var s3 StateRep

var b1 BooleanExpression

var b2 BooleanExpression

eq soleqns(StateTransition('x, StateTransition('x, s1))) = s1 .

eq soleqns(StateTransition('x, StateTransition('y, s1))) Empty

eq soleqns(StateTransition('x, s1 . s2)) = soleqns(StateTransition('x, s1):

soleqns(StateTransition('x, s2)

eq soleqns(FixedPoint(b1, Gamma(b2, s1, s2))) = Inv(s1, s2) .

eq soleqns(FixedPoint(b1, s1)) = SolRecursive(s1) .

endfm

Bibliography

[1] 	 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover

Publications, New York 1965.

[2] 	 H. Bekic, Definable operations in general algebras and the theory of automata

and flowcharts, Unpublished Manuscript, IBM Laboratory, Vienna 1969.

[3] 	 J. Blieberger. Data Flow Frameworks for Worst-Case Execution Time Analysis.

Real Time System Journal, 2001.

[4] 	 A. Blikle, An anlysis of programs by algebraic means, In A. Mazurkiewicz, Z

Pawlak (eds), Mathematical Foundation of Computer Science, Banach Center

Publications, Vol. 2, pp. 167-213, Polish Scientific Publishers, Warsaw 1977.

[5] 	 R. S. Boyer, B. Elspas and K. N. Levitt. SELECT-A formal system for testing

and debugging programs by symbolic execution. ACM SIGPLAN Notices, 10(6),

pages 234-245, June 1975.

[6] 	 J. Carette, R. Janicki and Y. Zhai, Program Verification by Calculating Rela

tions, Conf. of Applied Simulation and Modelling, 2006.

71

72 BIBLIOGRAPHY

[7] 	 T. E. Cheatham, J. A. Townley, Symbolic Evaluation of Programs: A look at

Loop Analysis, Proc. of ACM Symposium on Symbolic and Algebraic Computa

tion, 1976, pp. 90-96.

[8] 	 Lori A. Clarke, A System to generate test data and symbolically execute pro

grams, IEEE Transaction on Software Engineering, 1976, September, pp. 215-222

[9] 	 A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze, Using symbolic execution

for verifying safety-critical systems, Communications of the ACM, 2001, 142-151.

[10] 	 A. Coen-Porisini, F. D. Paoli, C. Ghezzi, and D. Mandrioli. Software

Specialization Via Symbolic Execution. IEEE Transactions on software

Engineering,17(9):884-899, Sept. 1991.

[11] 	 R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck, Efficiently

computing static single assignment form and the control dependence graph, A CM

Trans. Program. Lang. Syst., 13, 4 (1991), 451-490.

[12] 	 T. Fahringer and B. Scholz. A Unified Symbolic Evaluation Framework for Par

allelizing Compilers. IEEE Transactions on Parallel and Distributed Systems,

11(11):1106-1126, 2000.

[13] 	 T. Fahringer and B. Scholz. Advanced Symbolic Analysis for Compilers. Lecture

Notes in Computer Science (LNCS), Vol. 2628, Springer Press, 2003.

[14] 	 C. A. R. Hoare, An Axiomatic Basis of Computer Programming, Comm. of

ACM 12 (1969), 576-580.

[15] 	 W. E. Howden. Symbolic Testing and the DISSECT Symbolic Evaluation Sys

tem. IEEE Trans. on Software Engineering SE-3, 4, pages 266-278, July 1977.

73 BIBLIOGRAPHY

[16] 	 R. Janicki, Analysis of coroutines by means of vector coroutines, Fundamenta

informaticae, 2, 2 (1979), 289-316

[17] 	 A. Kaldewaij, Programming. The Derivation of Algorithms, Prentice-Hall 1990.

[18] 	 R. A. Kemmerer, S. T. Eckmann. UNISEX: A UNix-based symbolic Executor

for Pascal. Sojtw. Pratt. Exper. 15,5, pages 439-457, May 1985.

[19] 	 J. C. King. Symbolic Execution and program testing. Communications of the

ACM, pages 385-394, July 1976.

[20] 	 L. I. Kovacs, T. Jebelean, Automated Generation of Loop Invariants by Recur

rence Solving in Theorema, Proc. of SNASC'04 (Symbolic and Numeric Algo

rithms for Scientific Computing).

[21] 	 D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular

events, Information and Computation 110 (1994), 366-390.

[22] 	 Loop Invariants, http:/ /academic.evergreen.edujcurricular/dsa01/loops.html

[23] 	 B. Luca, S. Andrei, H. Anderson and S. Khoo, Program 'fransformation by

Solving Recurrences, Proceedings of the 2006 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program manipulation, 2006, 121 - 129

[24] 	 B. D.Martino. Algorithmic Concept Recognition Support for Automatic Paral

lelization: A case Study for Loop Optimization and Parallelization. Journal of

Information Science and Engineering, Special Issue on Compiler Techniques for

High-Performance Computing, March 1998

[25] 	 The Maude System, http:/ /maude.cs.uiuc.edu

http:maude.cs.uiuc.edu

74 BIBLIOGRAPHY

[26] 	 A. Mazurkiewicz, Proving algorithms by tail function, Information and Control,

18 (1971) 793-798.

[27] 	 M. B. Monagan and K. 0. Geddes and K. M. Heal and G. Labahn and

S. M. Vorkoetter, Maple Programming Guide, Springer Verlag, 1998.

[28] 	 Reverse Engineering at McMaster,

http://www.cas.mcmaster.ca;- carette /ReverseEngineering/Maple

[29] 	 E. Rodrfguez-Carbonell, D. Kapur, Program Verification Using Automatic Gen

eration of Invariants, Proc. of ICTAC'04, Lecture Notes in Computer Science

3407, Springer 2005, pp. 325-340.

[30] 	 B. Scholz, T. Fahringer. Advanced Symbolic Analysis for Compilers. Springer

Berlin, 2003.

[31] 	 J. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, The M.I.T. Series in Computer Science, M.I.T. Press, Cam

bridge MA, 1977.

[32] 	 N. Tawbi. Estimation of nested loop execution time by integer arithmetic in con

vex polyhedra. In Proc. of the 1994 International Parallel Processing Symposium,

April1994.

[33] 	 P. Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis.

PhD thesis, University of Illinois at Urbana-Champaign, 1995.

[34] 	 S. Wolfram, The Mathematica Book, Cambridge University Press, 1999

http://www

	Structure Bookmarks
	Contents
	Table 2.1: Relations between statements and modelled relations
	Table 3.1: Input program corresponding to recurrence equations
	Table 5.1: Rules for program transformation
	Table 5.2: Translation of factorial into the set of appropriate relations
	Table 5.3: Mapping relations between the generated relations and the semantic functions
	Table 5.4: Inert functions and their meanings
	Table 5.5: Transformation and rules
	Table 5.6: Recurrence equations and initial conditions for factorial.
	Table 6.1: Recursive and initial functions for computing L:~=o j
	Table 6.2: Recursive and initial functions for computing L~oi!
	Table 6.3: Another example to compute L~=O i!
	Table 6.4: Recursive and initial functions for chebyshev
	Table 6.5: Recursive and initial functions for Binomial Coefficients
	Table 6.6: Recursive and initial functions for Bessel
	Table 6.7: Recursive and initial functions for chebyshev1
	Table 6.8: Translation of program into the input of generating invariants [29] for GCD
	Table 6.9: Translation of program into the input of generating invariants [29] for LCM

