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Abstract 

We present a symbolic analysis of a class of while loop programs which can automati

cally derive a closed-form symbolic expression for the input-output relation embodied 

in that program. 

We show that this is especially well-suited to analyzing programs from scientific 

computation, in particular programs which compute special functions (like Bessel 

functions) from its Taylor series expansion. Other than making heavy use of algebraic 

manipulations, as available in any computer algebra system, we also require the use 

of recurrence relations. It is from these recurrence relations that we derive most of 

our information. 

It is important to note that we can often get interesting information about a 

program (like termination) without requiring closed-form solutions to the recurrences. 
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Chapter 1 

Introduction 

This chapter provides a brief introduction to the background, purpose and outline of 

this thesis. 

1.1 Introduction 

In late sixties and early seventies, a technique for verifications and analysis of com

puter programs based on a calculus of relations was proposed ([2, 4, 26, 16] and 

others). Despite many theoretical and methodological advantages (it rather empha

sises calculation instead of proving), the technique has never become widely accepted 

because of the huge amount of symbolic computations that need to be performed for 

even relatively simple cases. 

The situation has dramatically changed today, as we have very powerful tools 

supporting symbolic computation such as Maple [27] and Mathematica [34]. The 

problem is still non-trivial, as the most general cases can be proved undecidable, but 

for many less general cases an efficient solution seems to be feasible. 

1 




2 1. Introduction 

In this thesis we show how to build a Maple [27] based tool [28] that can either 

automatically compute a closed form for simple programs with loops, or considerably 

simplify that task by computing polynomial invariants of such programs. Simple 

cases of recursion can also be treated. For straight-line programs, this reduces to a 

technique called symbolic execution. The main idea behind symbolic execution is to 

use symbolic expressions as input values and to simulate the execution of the program 

statements on this symbolic inputs. The formal specification of our system was done 

using Maude [25]. 

Symbolic execution has wide range of potential applications, however, it has been 

rarely used for proving properties of programs ([29] is one of few exceptions). This is 

because, in general, naive symbolic execution can lead to exponential blow-ups. 

Our symbolic analysis can be seen as a kind of compiler which can translate the 

input programs into a symbolic expression, and then can transform this expression 

into an output expression. From our point of view, recursion and looping are essen

tially equivalent, and so we will mainly restrict ourselves to loops as the source of 

our main difficulties [17]. The basic technique used in such cases is to find "loop 

invariants" proposed by C. A. R. Hoare in 1969 [14]. Unfortunately finding them is 

often problematic and research on how to find them in some automatic manner has 

only just begun [29]. 

We will show that for many frequently occurring loops, finding invariants is not 

necessary as the symbolic expression for the output can be generated explicitly by 

solving the recurrence equations generated from the loop. Even if, due to structural 

complexity of a loop, finding loop invariants is necessary, the technique we have 

proposed might often help substantially. 
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1.2 Applications for Symbolic Analysis 

Symbolic execution was first introduced by J. King in [19]. It is a technique that 

executing a program supplying symbolic input value and returning a symbolic output 

value. Since then, a number of researchers have developed it further for several 

different purposes. 

Symbolic analysis can be applied to a variety of problems. One of operational area 

of symbolic analysis is centered around compilers. Classical techniques usually fail to 

provide accurate data dependence information to support parallelization techniques 

such as array privatization [33] and communication optimization [12]. Therefore, 

sophisticated symbolic analysis that can cope with program unknown is needed to 

overcome these complier deficiencies. 

Another application for symbolic analysis are program development tools which 

assist the programmer and system designer. Instead of testing and debugging, sym

bolic analysis techniques provide analysis information for statically detecting program 

anomalies. 

Other applications can be found in safety-critical real-time computer systems 

which can be characterized by the presence of timing constraints. For example, sym

bolic analysis has been employed to deduce time functions [3] for real-time programs. 

Symbolic analysis techniques can be equally important for program testing [19], 

program verification [7], Software specialization [10], software reuse, pattern match

ing and concept comprehension [24], and other areas where complex programs with 

unknowns must be examined and accurate program analysis is required [13]. 
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1.3 Outline 

Chapter 2 introduces the intuition and motivation of our thesis. 


Chapter 3 discusses the solving recurrences function and loop termination. 


Chapter 4 introduces theoretical background and discuss denotational semantics. 


Chapter 5 analyzes our symbolic system in detail. 


Chapter 6 gives some examples of using our symbolic computation system. 


Chapter 7 summarizes the contribution and future work of this thesis. 




Chapter 2 

Intuition and Motivation 

The example below (from [4]) provides a motivation and illustrates well the main 

ideas. In principle, we first translate a program into a relational expression and then 

we will try to obtain the program properties by analyzing this relational expression. 

The full theory of those expressions can be found in [21]. 

Consider the well-known procedure factorial, written m a small subset of 

Maple [27]: 

procedure factorial(n) 

i:=1; 

fac:=1; 

while i < n do 

begin 

i:=i+1; 

fac: =fac*i; 


end; 


fac; 


end proc; 

5 




6 2. Intuition and Motivation 

Since n does not change its value in the above program we may consider it as a 

constant, so we may assume the above program has two integer variables i and fac. 

DefineD= Z x Z and denote the elements of D as (i,jac). Each instruction can be 

modeled by a function Fi : D---+ D, i = 1, 2, 4, 5, in the following manner: 

11 i :=P corresponds to F1(i,jac) = (1,jac), 


11 fac:=1 11 corresponds to F2 (i,fac) = (i, 1), 


11 i:=i+1 11 corresponds to F4(i,jac) = (i+ 1,jac), 


and 11 fac: =fac*i 11 to F5 (i,jac) = (i,fac · i). 


The test 11 i<n 11 can be modeled by two partial identity functions, 13 , !3 : D ---+ D, 


where 13 models 11 i<n 11 
, and ! 3 models its complement, i.e. 11 i2n 11 More precisely, 
• 

11 i < 1 11 corresponds to Is (i,fac), and 


11 i 21 11 
 corresponds to [3(i, fac), where 

(i, fac) if i < n 
13(i,jac) = ..L 

{ if i 2 n 

_ { (i, fac) if i 2 n 
fs(i,jac) = 

..L ifi<n 

It is a well known fact that non-recursive programs can be modeled adequately with 

Kleene Algebras of Relations with Tests (see [21]) by using the following scheme. 

Let R, R~, R2 be relations (each function is a relation!) that model the program 

statements S, S1, S2, respectively. Let T be a test modelled by 1r and lr, and let 

the symbols "o" and "*" denote the (forward) composition of relations, and transitive 

and reflexive closure of relations (Kleene star) respectively. Then table 2.1 shows the 

relations between statements and modelled relations. 
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Statement Modeled By 

S1;S2 R1 oR2 

if T then S1 else S2 (Ir o R1) U (lr o R2) 

while T do S (Ir oR)*lr 

Table 2.1: Relations between statements and modelled relations 

Using this scheme one can easily model the above program by writing the following 

relational expression: 

F = F1 o F2 o ( h o F4 o F5 ) * o 13 

Calculating "o" is easy in this case, but calculating "*" is not. Let G = 13 o F4 o F5 . 

Then we have: 

G(i,fac) = (13 o F4 o F5 )(i,jac) 

= F5(F4(J3(i,fac))) 

if i < n~ {:+ l,fac · (i+ !)) 

if i ~ n 

Similarly: 

G2 (i,fac) = G(G(i,fac)) 

~ {:+2,/ac · (i + 1) · (i + 2)) ifi+1<n 

ifi+1~n 

Hence: 

(i + k,fac · (i + 1) · (i + 2) ... (i + k)) 

ifi+k-1<n 

j_ ifi+k-1~n 
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Since G* is not a function, we need to express Gk in terms of relation calculus: 

(i,Jac)Gk(i',jac') ¢:=::;> i' = i + kA fad= fac * (i + 1) * ... * (i + k) A i + k- 1 < n. 

We have G* = U:o Gi, hence: 

( i, fac)G*( i' ,jac') 

¢:=::;> :Jk 2:: 0, (i,jac)Gk(i',jac') 

¢:=::;> :lk, 0 ~ k < n- i + 1 A i' = i + k A fac' = fac * (i + 1) * ... * (i + k). 

We may now make some simplification: 

(F1o F2)(i,jac) = F2(F1(i,jac)) = (1, 1). 

This means: 

(i,jac)F1o F2 o G*(i',jac') 

¢:=::;> (1, 1)G*(i',jac') 

¢:=::;> :Jk, 0 ~ k < n A i' = k + 1 A fac' = (k + 1)! 

Let us calculate : (1, 1)G* o 13(i',jac'). 

The partial function 13 in the relational representation looks as follows: 

( i, fac)13(i', fac') ¢:=::;> i 2:: n A i = i' A fac = fac'. 

From the definition of" o" we have: 

(1, 1)G* o 13(i',jac') ¢:=::;> :Ji,jac, (1, 1)G*(i,jac) and 

( i, fac)13( i', fac') 

¢:=::;> (:Jk,O ~ k < nA i = k + 1 Ajac = (k + 1)!) A (i 2:: n A i = i' Ajac = fac'). 


Note that: i = k + 1 A i 2:: n =? k + 1 2:: n ¢:=::;> k 2:: n- 1, and 


O~k<nAk2::n-1=?k=n-1 ¢:=::;> n=k+l. 


So now, we do not have a general :Jk, but a very specific k=n-1, which means G* o 13 


is a function again, and the statement: 


(:Jk, 0 ~ k < n A i = k + 1 A fac = (k + 1)!) A (i 2:: n A i = i' A fac = fac') 

is reduced to: 
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i' = k + 1 = n - 1 + 1 = n 1\ fac' = n! 

In this way we have proved that F(i,fac) = (n, n!), so the program is correct. To 

make this technique feasible for bigger, more realistic programs, we need a tool that 

would be able to do all those symbolic calculations. Our tool [28] will take the text of 

the program factorial as an input and will return the text "n!" as an output. In the 

following chapters we will show how it can be done with some help from Maple [27]. 

Our system [28] can also deal with some kind of limited recursion as well. 



Chapter 3 

Loops and Recurrence Equations 

A formula that expresses the meaning of a loop can be explicitly derived (in some 

cases) by solving appropriate recurrence equations. 

3.1 Solving Recurrence Equations 

Consider our program factorial presented in chapter 2. Every time when the loop 

is executed, the value of i is incremented by one and the value of fac is incremented 

i times. We may express this change in a form of recurrences. For this example, the 

recurrence relation is following i(t + 1) = i(t) + 1,fac(t + 1) = fac(t) · i(t + 1), where 

i(t + 1) and fac(t + 1), for t 2: 0 are the values of variable i and fac at the end of 

iteration t + 1. In this sense, t represents time, which is the important new concept 

in this representation. Because time is explicitly used in the recurrence, this allows 

many techniques from symbolic computation to apply. Before entering the loop, the 

value of i is 1 and the value of fac is 1, so we initialize the recurrence by i(O) = 1 and 

fac(O) = 1. Table 3.1 describes the meaning of our loop. 

10 




11 3. Loops and Recurrence Equations 

Input program Generated into Recurrence Equations 

factorial:=proc(n) 

local i, fac; 

i:=1; i{O):=l 

fac:=1; fac{O):=l 

while i < n do 

i:=i+1; i{t+l):= i{t) + 1 

fac :=fac * i; fac{t+l):= fac(t)*i(t+l) 

end do; 

end proc: 

Table 3.1: Input program corresponding to recurrence equations 

These recursive functions can not be solved by Maple [27] directly since they are 

non-linear recurrences. However, we can clearly see that i(t + 1) is independent of 

fac(t), but fac(t + 1) is not independent of i(t + 1), i.e. we may not be able to solve 

the system directly, but we might be able to solve it incrementally. From a simple 

data-flow analysis, this order can be determined. If we solve for i(t) first (including 

initial conditions), we get i(t) = t + 1. Replacing i(t) by t + 1, in the equation for 

fac, we get fac(t + 1) = fac(t) · (t + 2), which is also solvable. Putting the solution 

together, we get 

i(t)=t+1 (3.1) 

fac(t) = (t + 1)! (3.2) 

Note that the above solution is still in terms of time; however, regardless of whether 

the loop terminates or not, we have found the core meaning of the loop! 



3. Loops and Recurrence Equations 12 

This technique can be applied to any loop if the set of appropriate recurrence 

equations that the loop defines is essentially triangular, with polynomial solutions for 

the non-linearities (or it can be transformed into such a system). 

3.2 Loop Termination 

To determine the value of recurrence variables after the loop, we need the recurrence 

condition which symbolically determines the number of iterations for the recurrence. 

In our example, the recurrence variables are i and fac, and the recurrence condition is 

given by i(t) < n, which, together with equation (3.1) gives us the following formula 

for the loop termination (see [30]): 

n-1 ifn2::1 
min{t I i(t) 2:: n} = min{t It+ 1 2:: n} = 
t>O t>O- - { 0 if n ~ 0 

In order to compute the value of fac at the loop exit, we have to substitute n - 1 for 

t in (3.2). So, we get "n!". 

Note that it is only necessary to obtain a closed-form solution [23] to the recur

rences involving for those variables which actually occur in the stopping condition to 

determine loop termination. This can frequently be much simpler, as is the case for 

all for loops! 



Chapter 4 

Theoretical Background 

There are two main aspects of computer language, its syntax and its semantics. The 

syntax is concerned with the grammatical structure of the program while the se

mantics gives the meaning of grammatically correct programs. There are a number 

of different ways of describing the semantics of a programming or specification lan

guage, the most common ones are followings: 

Operational Semantics: The meaning of a construct of the language is specified 

by the computation it induces when it is executed on a machine. In particular, it is 

of interest how the effect of a computation is produced. 

Denotational Semantics: The meaning of a construct of the language is de

scribed by translating it into a different structure and modeling the effect of state

ments of the language there [31]. 

Axiomatic Semantics : The meaning of a language is described by axioms that 

can be used to prove theorems about specification terms in the language [31]. 

In our system, we are mainly concerned about the denotational semantics. De

notational semantics is a methodology to define the precise meaning of a computer 

13 




14 4. Theoretical Background 

language. In denotational semantics, a computer language is given by a valuation 

function that map programs into mathematical objects considered as their denota

tion, i.e. meaning. Thus the valuation function of a computer program reveals the 

meaning of computer programs while neglecting its syntactic structure. 

4.1 Denotational Semantics of Symbolic execution 

4.1.1 Syntax 	of Input Domain 

We illustrate the syntax of Input domain in this section. Type denotes data type that 

we use in the language. ArithmeticExpr denotes the abstract Arithmetic expression 

that we use in the language. int and constant are Int type and symbol is Symbol 

type. var is a Variable. ArithmeticOp denotes the Arithmetic operation that we 

use in the language. var (Arithmet i cExpr) denotes recursive variable in the loop. 

We describe them by the followings: 

Type Int I Bool I Symbol 

Variable Identifier : Type 

ArithmeticOp +I- I* I I 

ArithmeticExpr: 	int I symbol I constant I var(ArithmeticExpr) 

ArithmeticExprArithmeticOpArithmeticExpr 

BooleanDp, RelationOp and UnaryOp denote the boolean operation, relational 

boolean operation and unary boolean operation that we use in the language, respec

tively. Expr denotes the boolean expression or arithmetic expression that we use in 

the language. We describe them by the followings: 
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BooleanOp : && I II 

Relation0p1 : < I <= I > I >= 


Relation0p2 : == I ! = 


RelationOp : Relation0p1 I Relation0p2 


UnaryOp : --, 


BooleanExpr : Bool 


I BooleanExpr BooleanOp BooleanExpr 

I BooleanExpr Relation0p2 BooleanExpr 

I ArithmeticExpr RelationOp ArithmeticExpr 

I UnaryOp BoolExpr 

Expr : BooleanExpr I ArithmeticExpr 

BinaryOp denotes the binary operation that we use in the language. Op denotes 

the operation including binary operation and unary operation that we use in the 

language. We describe them by the followings: 

BinaryOp : BooleanOp I RelationOp I ArithmeticOp 

Op : BinaryOp I UnaryOp 

4.1.2 Grammar 

We will illustrate the abstract interpretation using the language described by the 

following simple grammar: 
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Statement 	: var := expr 


I if booleanExpr then Statement end if 


I if booleanExpr then Statement else Statement end if 


I while booleanExpr do Statement end do 


I for var from int to int by int do Statement end do 


I Statement ; Statement 


In the language, we have assignment statement, if condition statement, while 

loop and for loop statement, and statement sequences. var, expr and booleanExpr 

are the type of Expr, Expr and BooleanExpr individually. 

4.1.3 Syntax of Output Domain 

We define the syntax of the output domain in the followings: 

OutputExpr : Expr I 5(StateRep, (Identifier, Expr)) 

I /'(BooleanExpr, StateRep, StateRep) 

l~tCBooleanExpr, {Identifier}, StateRep) 

I ~([Variable, Int, Int, Int], {Identifier}, StateRep) 

StateRep : 5 I /' I It I ~ I ..l 

Where OutputExpr represents the domain of Output Expression. State is a map 

from an identifier to an output expression. StateRep is the representation of the 

state, i.e. for a StateRep, one can frequently reconstruct a state. 

4.1.4 Semantic Functions 

The detailed semantics requires that we show how the expressions and statement are 

modelled in terms of those basic semantic domains. We need to define the following 
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functions: 

o :StateRep-+ (Identifier, Expr) -+ StateRep 

'Y : BooleanExpr -+ StateRep -+ StateRep -+ StateRep 

J1 : BooleanExpr-+ {Identifier} -+ StateRep-+ StateRep 

rJ : [Variable, Int, Int, Int] -+ {Identifier} -+ StateRep -+ StateRep 

[] : Statement -+ (StateRep-+ StateRep) 

~ E : Statement -+ (StateRep-+ StateRep) 

evalExpr : Expr -+ StateRep -+ OutputExpr 

getRecVar: Statement-+ {Identifier} 

Reduce : StateRep -+ OutputExpr 

The constructor o, "(, J1 and rJ describe the updating StateRep to a new StateRep. 

The function [] and ~ Edescribe the mapping from one StateRep to a new StateRep 

under the state commands. The function evalExpr evaluates an expression with the 

StateRep to the outputExpr. Function Reduce can evaluate o, "(, J1 and rJ when 

possible. 

Let id and expr be the type of Identifier and Expression individually, then 

(id, expr) can be denoted by id=expr in o. 
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4.1.5 Semantics Equations 

(AS) 	 [var:=expr ]=A sE StateRep. 5(s,var=eva1Expr(expr, s)) 

(SQ) 	 [stmt1; stmt2 ]= A s E StateRep. [stmt2]([stmt1](s)) 

(I1) [if cond then stmt end if]= As E StateRep. 'Y(cond, [stmt ](s), s) 

(I2) [If cond then stmt1 else stmt2 end if ]= 

As E StateRep. I' (cond, [stmt1](s), [stmt2](s)) 

(WH) 	 [while cond do stmt end do ]= 

A sE StateRep. J.L(cond, getRecVar (stmt), [stmtiD (s)) 

(WA) 	 [var:=expr ID(s) = &(s, var(t+i)=evalRecExpr(expr, s)) 

(WI 1) 	[if cond then stmt end if ID (s) = !'(cond, [ stmt ID (s), s) 

(WI2) 	 [if cond then stmt1 else stmt2 end if ID(s) = 

J'(cond, [stmt1 ID(s),[stmt2 ID(s)) 

(WS) 	 [stmt1 ; stmt2 ID(s) = [stmt2 ID([stmtl ID(s)) 

(FR) 	 [for i from s to e by step do stmt end do ]= 

As E StateRep. 'lJ([i, s, e, step], getRecVar(stmt), [stmt ID(s)) 

Above lists the symbolic evaluation rules of simple assignment(AS), statement 

sequences(SQ). Rule (11) is used in order to evaluate if-statements without else

branches. Similarly, rule (I2) is applied to if-statements with else-branches. Rule 

(WH) is used to evaluate a while loop statement. Rule (WA), (Wil), (WI2) and 

(WS) are applied for the inside statements of the while loop, in order to generate 

recurrence equations. Rule (FR) is used to evaluate a for loop. 
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Assignment Statements 

For all statements of the program, our symbolic analysis deduces StateRep that 

describes the variable values that the program point is reached. 

StateRep is a representation of a state described by O,"f, J-l, TJ and _l. 

For evaluating an expression, we define function evalExpr which symbolically 

evaluates the value of expression expr for a specific program StateRep as follows: 

[ ] :Statement-----> (StateRep-----> StateRep) 

(AS) [var:=expr] = ,\s E StateRep.OCs,var=evalExpr(expr, s)) 

(SQ) [stmt1; stmt2] = ,\s E StateRep.[stmt2]([stmt1](s)) 

evalExpr : Expr -----> StateRep -----> OutputExpr 

(E1) evalExpr(constant, s) =constant 

(E2) evalExpr(var, s) = 
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var, if s=..l 


expr, if s=&(s', var=expr) 


evalExpr(var,s'), if s=& (s' ,var' =expr') A var' =/= var 


evalExpr(var, s 1) if s=~(cond,s 1 ,s2 ) Acond 


evalExpr(var, s2) if s=~(cond,s 1 ,s2) A -,(cond) 


var if (s=J.LC,getRecVar(stmt), _) 


V s=77C,getRecVar(stmt), _)) 

A var tj. getRecVar(stmt) 

var(t+1) 	 if (s=J.l(_,getRecVar(stmt), _) 

V s=77C,getRecVar(stmt), _)) 

Avar E getRecVar(stmt) 

where t is under the loop stopping condition, 

the loop iteration times. 

(E3) eva1Expr(expr1 op expr2, s)=eva1Expr(expr1 ,s) op eva1Expr(expr2,s) 

Where expr1 , expr2 E Expr and stmt E Statement 

The above lists the symbolic evaluation rules of simple assignment (AS), statement 

sequence(SQ), and the evaluation function evalExpr expressed as denotational se

mantic rules. 

The rule (AS) is applied for an assignment var: =expr under the stateRep. It is a 

function that maps the assignment with an input StateRep to a new StateRep. The 

new StateRep uses 5 constructor to keep track of the change of the variable var. 

Rules (E1) - (E3) describe the symbolic evaluation of expression. Rule (E1) de



21 

1 

4. Theoretical Background 

Table 4.1: Boolean symbols and their opposite values 

scribes the constant evaluation. Rule (E2 ) is used to extract the symbolic value of a 

variable from states and rule (E3) is used for translating an operation to its symbolic 

domain. In general, function evalExpr transforms expressions of the input program 

to symbolic expressions based on a given StateRep. For statement sequences, accord

ing to Rule(SQ) we symbolically analyze the first statement with the given StateRep, 

then the resulting StateRep is taken as the StateRep for the remaining statements. 

Conditional Statements 

If a conditional statement is encountered, usually the conditional expression can not 

be statically determined whether for all input data sets either the true or the false 

branch has to be followed. So the symbolic analysis has to consider both branches. 

We use constructor 1 to evaluate the conditional statements. Constructor 1 is defined 

as: 

reverse : BooleanExpr --+ BooleanExpr 


: BooleanExpr --+ StateRep --+ StateRep --+ StateRep 


Reduce( 1Ccond, [stmt1](s), [stmt2](s))) = 


[stmt1](s) if evalExpr(cond,s) 


{
 [stmt2](s) if evalExpr(reverse(cond),s) 


reverse(expr1 op expr2 ) = expr1 --,(op) expr2 


where expr1 , expr2 E Expr, op E Op 
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The symbolic semantics rules for symbolical evaluation if-statements are defined 

as: 

(!1) [if cond then stmt end if]= As E StateRep. 'Y(cond, [stmt ]Cs),s) 

(!2) [if cond then stmt 1 else stmt2 end if]= 

As E StateRep. 'Y(cond, [stmt 1 ]Cs), [stmt2 ]Cs)) 

Rule (Il) is used to evaluate if-statements without else branches. In fact, the 

constructor ')' is equivalent to the "piecewise" function in Maple. Before evaluating 

the branches, the condition cond of the if-statement is evaluated. if the condition cond 

is true, then goes to evaluate statements stmt under StateRep s, otherwise the state 

keeps unchanged. Similarly Rule (12) is applied to if-statements with else branches. 

After evaluating the branches, if the condition cond is true, then evaluate statements 

stmt1 under StateRep s, otherwise evaluate statements stmt2 under StateRep s. 

While Loop Statements 

Assume the following pattern for the while loop: while cond do stmt. 

We use constructor J-L to describe the while loop statements. The constructor J-L is 

similar to the fixed point function, which is defined as: 

[ ] :Statement --7 (StateRep --7 StateRep) 

[ E :Statement --7 (StateRep --7 StateRep) 

J-L: BooleanExpr --7 {Identifier} --7 StateRep --7 StateRep 

The denotational semantics of while loop is given in the followings: 

(WH) 	 [while cond do stmt end do] = 


AS E StateRep.J-L(cond,getRecVar(stmt), [stmtE (s)) 
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(WA) [var: =expriD(s) = 8(s, var(t+1)=evalRecExpr(expr, s)) 

(WI1) [if cond then stmt end ifiD(s) = 1(cond, [stmtiD(s), s) 

(WI2) [if cond then stmt1 else stmt2 end ifiD(s) = 

1(cond, [stmt1ID(s), [stmt2ID(s)) 

(WS) [stmt1; stmt2ID(s) = [stmt2ID([stmt1ID(s)) 

getRecVar : Statement ~ {Identifier} 

(G1) getRecVar(var:=expr) = {var} 

(Gil) getRecVar(if cond then stmt end if) =getRecVar(stmt) 

(GI2) getRecVar(If cond then stmt1 else stmt2 end if) = 

getRecVar(stmti) U getRecVar(stmt2) 

(GW) getRecVar(while cond do stmt end do) =getRecVar(stmt) 

(GS) getRecVar(stmt1;stmt2) =getRecVar(stmt1) U getRecVar(stmt2) 

We use getRecVar function to obtain the recurrence variables in the loop body. Let 

RecVar denotes the recurrence variables in the loop body, then we have: 

RecVar = getRecVar(stmt) 

evalRecExpr : Expr ~ StateRep ~ OutputExpr 

(ER1) evalRecExpr(constant,s)=constant 

(ER2) evalRecExpr(var,s)= 
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var(t+1), if s=b"(s', var(t+1)=expr) 

evalRecExpr(var,s'), if s=b"(s',var'(t+1)=expr) 

var(t), if s=b"(.l,var' (t+1)=expr) 1\ varE RecVar 

evalExpr(var, s), otherwise if var ~ RecVar 

(ER3) 	 evalRecExpr(expr1 op expr2 ,s) 

= evalRecExpr(expr1 ,s) op evalRecExpr(expr2 ,s) 

evalConExpr : Expr ~ StateRep ~ OutputExpr 

(EC1) evalConExpr(constant,s)= constant 

var(t), 	 if var E s 
(EC2) 	 evalConExpr(var,s)= 

{ var, otherwise 

(EC3) evalConExpr(expr1 op expr2 , s) 

= evalConExpr(expr1 ,s) op evalConExpr(expr2 ,s) 

Loop Stop Condition 

we can decide the loop stop condition on the basis of the condition cond. In general, 

this condition reads 

min { t I -,cond}
t20 

where cond depends on the state variables at timet. In general, this is a Diophantine 

equation, and thus well-known to be unsolvable. But in many practical situations, 

the actual equations are simple. We draw attention to three such cases. 
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• Case 1 cond =Vi R c, where v1 , ... , Vm are the recurrence variables, cis constant 

with respect to the vi's, and R is a relational operator from Table 4.1. The converse 

of R can easily be computed explicitly, also shown in Table 4.1. Assuming that the 

expression for vi = Fi(t) is simple enough (in terms oft), this can be solved in closed 

form. 

• Case 2 cond = Vi R 1>(vj), where v1, ... , Vm are the recurrence variables, and 

some of them occur in the expression ¢>, with R as before. 

where S = --,R. 

• Case 3 cond is a conjunction of terms which satisfy Case 1 or Case 2. Then we 

can simply take the minimum of all the conjuncts. 

For Loop Statements 

For loop statement is similar to the while loop, the difference is that the for loop 

iteration times can be decided more easily than the while loop. 

[ ] : Statement ---t (StateRep ---t StateRep) 

'TJ : [Variable, Int, Int, Int] ---t {Identifier} ---t StateRep ---t StateRep 

(FR) [for i from s to e by step do stmt end do] = 

>.s E StateRep. rJ([i, s, e, step],getRecVar(stmt), [stmtiD(s)) 

getRecVar : Statement StateRep---t 

(G1) getRecVar(var:=expr)={var(n)} 
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(GS) getRecVar(stmt1 ;stmt2 ) =getRecVar(stmt 1 ) U getRecVar(stmt2 ) 

evalFor : [Variable, Int, Int, Int]~ StateRep ~ OutputExpr 

le-s+lJ(EF) evalFor([i, s, e, step], s 1) = if i ~ s 1step 

We use getRecVar to get recurrence variable in the loop body, which is same as the 

definition in the while loop. Rule (EF) describes the for loop iteration evaluation. 

[i, s, e, step] is the representing of the for loop control condition by using loop 

variable, initial value, ending value and step value to describe. 

We can reduce rJ function into the following: 

Reduce(rJ([i, s, e, step],getRecVar(stmt), [stmtiDCs)) = 

lett= evalFor([i, s, e, step], s) in 

([stmtiD(s)) t 

4.1.6 Code Examples 

Example 1 

Example 1 is to implement assignment statements and conditional statements to get 

symbolic interpretation of these statements. 

h: X:= Xli 

l3 :if y < 0 then x := -2 * y; else x := 2 * y end if 
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8 =..l 

[x := xi](8) = 6(8, x = evalExpr(x~, 8)) 

= &(..l,x =XI)= 8I 

[y := YI](8I) = 6(8I, y = evalExpr(yi, 8I)) 

= 6(6(..l, X= XI), Y = YI) = 82 

[if ...](82) = 'Y(Y < 0, [x := -2 *y](82), [x := 2 * y](82)) 

= 'Y(Y < 0, 6(6(6(..l, X= XI), Y = YI), X= -2 *YI) 

, 6(6(6(..l, X= XI), y = YI), X= 2 * YI)) 

Reduce('Y(y < 0, 83, 84)) 

= {6(8(6(..l, X= XI), y = yt), X= -2 *YI) if YI < 0 

6(6(6(..l, X= XI), Y = YI), X= 2 *YI) if YI ~ 0 

Example 2: Factorial 

We choose Factorial function as an example with while loop to get symbolic inter

pretation of these statements. 

h: i := 1; 

l2: fac := 1; 

l3 :while i < n do i := i + 1; fac := fac *i end do 

8 =..l 
[i := 1](8) = 6(8, i = evalExpr(1, 8)) 

= 6(8, i = 1) = 8I 

[fac := 1](8I) = 6(81, fac = evalExpr(l, 81)) 

= &(&(..l, i = 1), fac = 1) = 82 
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[while i<n do i:=i+1; fac:=fac*i end do](82) 

= p,(i < n, getRecVar(i := i + 1; fac := fac * i), [i := i + 1; fac := fac * iiD(82)) 

= p,(i < n, {i, fac}, <5(<5(<5(<5(..l, i = 1), fac = 1), 

i(t + 1) = i(t) + 1), fac(t + 1) = fac(t) * i(t + 1))) = 8 3 

Reduce 8 3 to the following: 


Reduce(83) 


= (<5(<5(<5(<5(..l, i = 1), fac = 1), i(t + 1) = i(t) + 1), 


fac(t + 1) = fac(t) * i(t + 1)))mint;::o{tli(t)2:n} 


Example 3: Chebyshev Polynomials 

Chebyshev polynomial is an example implementing for loop statement to get sym

bolic interpretation of these statements. 

h: uo := 1; 

l3 : for i from 2 to n do 

u0 = v; 

end do; 

8 =..l 
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[uo := 1](8) = c5(8, u0 = evalExpr(1, 8)) 

= c5(8,uo = 1) = 81 

[u1 := x](8I) = c5(81, u1 = evalExpr(x, 81)) 

= c5(c5(..l, uo = 1), u1 = 1) = 82 

[for i from 2 to n do v= u1; u1=-u0 + 2*x*u1; u0=v end do](82) 

= 1J([i, 2, n- 1, 1], getRecVar(v := u1; u1 := -u0 + 2 * x * u1;u0 := v), 

[v := u1; u1 := -uo + 2 * x * u1; u0 := v](82)) 

= 1J([i, 2, n -1, 1], {v, uo, u1}, c5(c5(c5(c5(c5(..l, u0 = 1), u1 = x), v(t + 1) = u1(t)), 

u1(t + 1) = -u0 (t + 1) + 2 * x * u1(t)), u0(t + 1) = v(t + 1))) 

Reduce 83 to the following: 


Reduce(83) 


= (c5(c5(c5(c5(c5(..l, uO = 1), u1 = x), v(t + 1) = u1(t)), 


u1(t + 1) = -uO(t + 1) + 2 * x * u1(t)), u0(t + 1) = v(t + 1))(n-l) 


The above two examples show how to extract the meaning from the input function 

to generate initial equations, recurrence equations and loop iteration times. 



Chapter 5 

System Analysis 

Before describing the system analysis, it is convenient to discuss the syntax and 

semantics of the input language for programs that our system can handle. 

5.1 Input Language 

The language for programs to be input by our symbolic system was chosen as a subset 

of Maple [27]. Representation language contains usual mathematical operators ( +, 

*, <, :::;) but also 2:: (it is used to compute a closed form for an indefinite or definite 

sum), TI (which is is used to compute a formula for an indefinite or definite product), 

recurrences, etc., and it is a combination of the following statements: 

1. var :=expr 

2. if cond then stmt 1 else stmt2 

3. while cond do stmt end do 

4. for i from s to e by step do stmt end do 

5. Recursive Function Calls 

30 
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Program Statements Relations Generated 

var:=expr StateTransition 

if-then-else Piecewise 

while C do Fixedpoint([C] , ... ) 

for-from-to-by-do Fixedpoint(For(), ... ) 

Recursion RecursionCall 

Table 5.1: Rules for program transformation 

5.2 Relation Generator 

In our system, we have two modules: Relation Generator and Relation Solver, both 

written in Maple [27]. This is made especially easy since Maple has some very powerful 

reflection capabilities through its Toinert function, which gives an accurate AST 

representation for any Maple program (or expression). The first one generates a 

series of appropriate (recurrence, state transition, etc.) for the given input program, 

while the second one solves the relations and produces an output expression, either 

in an explicit form, or, if an implicit form can not be found, then implicit forms (like 

invariants) are returned. Figure 5.1 shows our symbolic execution system. 

The Relation Generator is a total function - it translates the given input program 

into a sequence of appropriate relations. We transform the original programs into a 

sequence of relations according to the rules shown in Table 5.1. 

Table 5.2 shows what is generated for our program factorial. Table 5.3 shows the 

mapping relation between the generated relations in our system and in the semantic 

functions. 

For the input program, how can our system make difference between different 

types of statement? In the Relation Generator, we call ToInert (eval (f)), which 
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Input Program 

Relation Generator 
Model 

A Sequence 
of Relations 

Piecewise inside 
restFixedPoint 

Invariant 

Solver Model 


Implicit 

Output Expression 


(like invariants) 


Relation 

Solver Model 


Explicit 

Output Expression 

(if it is solvable) 


Figure 5.1: Symbolic execution system 
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Input Program Relations 

factorial:=proc(n) 

i:=1 F1:StateTransition(i,1) 

fac:=1 F2:StateTransition(fac,1) 

while i < n do 

i :=i+1 

fac:=fac*i 

end do 

F3:FixedPoint([i < n]' 

[StateTransition(i,i+1), 

StateTransition(fac,fac*i)] 

) 

fac F4:fac 

end proc; 

Table 5.2: Translation of factorial into the set of appropriate relations 

Generated Relation( GenRelation) Semantic Function 

StateTransition( var, expr) 8(var, expr) 

Piecewise( cond, transition!, transition2) 'Y(cond,[stmt1], [stmt2]) 

Fixedpoint([cond], transition!) J.L(cond,{var}, [stmt]) 

Fixedpoint(For[i, s, e, step], transition!) 7J([i, s, e, step], {var}, [stmt]) 

Table 5.3: Mapping relations between the generated relations and the semantic func

tions 
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converts the input Maple function f into a sequence of inert form. Table 5.4 shows 

the meanings of Maple Inert functions. For example, for the factorial function 

given in chapter 2, calling To Inert (eval (factorial)) inside the Relation Generator, 

we obtain the following: 

_Inert_PROC (_Inert_PARAMSEQ (_Inert_NAME ( "n") ) , 


_Inert_LOCALSEQ(_Inert_NAME("i"), _Inert_NAME("fac")), 


_Inert_OPTIONSEQ(), _Inert_EXPSEQ(), 


_Inert_STATSEQ(_Inert_ASSIGN(_Inert_LOCAL(1), 


_Inert_INTPOS(1)), _Inert_ASSIGN(_Inert_LOCAL(2), _Inert_INTPOS(1)), 


_Inert_FORFROM(_Inert_EXPSEQ(),_Inert_INTPOS(1), _Inert_INTPOS(1), 


_Inert_EXPSEQ(), _Inert_INEQUAT(_Inert_LOCAL(1), _Inert_PARAM(1)), 


_Inert_STATSEQ(_Inert_ASSIGN(_Inert_LOCAL(1), 


_Inert_SUM(_Inert_LOCAL(1), _Inert_INTPOS(1))), 


_Inert_ASSIGN(_Inert_LOCAL(2), 


_Inert_PROD(_Inert_LOCAL(2), _Inert_LOCAL(1))))), _Inert_LOCAL(2)), 


_Inert_DESCRIPTIONSEQ(), _Inert_GLOBALSEQ(), _Inert_LEXICALSEQ(), 


_Inert_EOP(_Inert_EXPSEQ())) 


The above sequence of Inert functions exactly corresponds to the input program 

factorial. Table 5.5 shows the rules to translate the Inert functions into our 

symbolic system relations. 

5.3 Solving Relations: Overview 

The method for solving relations depends on the kind of relation that generated. The 

technique described in this and almost all remaining chapters is a refinement and 

generalization of many results from [7, 20, 30]. Of course, if code does not contain 
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Inert Function Meaning 

_Inert_PARAMSEQ Providing the parameters of the procedure 

_Inert_LOCALSEQ Providing the local variables of the procedure 

_Inert_LOCAL Mapping to the local variable 

_Inert_STATSEQ Providing the statement sequence of the procedure 

_Inert_ASSIGN Corresponding to the Assignment statement 

_Inert_FORFROM Corresponding to the Loop statement 

- Inert_IF Corresponding to the If conditional statement 

Table 5.4: Inert functions and their meanings 

Inert Function Generated Relation Rule 

_Inert_ASSIGN StateTransition Tl 

- Inert_IF Piecewise T2 

_Inert_FORFROM(_Inert_EXPSEQ... ) Fixedpoint T3 

_Inert_FORFROM(_Inert_LOCAL... ) Fixedpoint(For{), ... ) T4 

Table 5.5: Transformation and rules 

either loops nor recursion, from a symbolic point of view such straight-line code is 

completely trivial, and we can simply compute the result. The only drawback is that 

such an answer can be exponentially larger than the input program. 

For the case where we have either a while or for loop whose body is straight-line 

code, we generate a system of recurrence equations, which we try to solve in closed

form, using whatever triangular structure we may find. Using similar ideas, we can 

also generate systems of recurrences for programs containing recursion. 
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When loops contain branches (i.e. if-then-else), the resulting system of recur

rences essentially never falls within a class of solvable recurrence. At present, we 

immediately shift to generate implicit results, in the form of polynomial invariants 

[20, 29]. 

We classified the generated relations into five classes according to the types of 

relations. 

1. 	 FixedPoint. It maps to the input procedure including while-do structure. The 

recursive functions and initial functions will be generated and solved based on 

the loop stop condition, which can be calculated in this case. 

2. 	 FixedPoint{For ). It maps to the input procedure including for-do structure. 

The recursive functions and initial functions will be generated and solved based 

on the number of times the loop for-do iterates. 

3. 	 Piecewise inside FixedPoint. It happens when we have if-then-else inside 

while-do. It is usually very difficult to decide the number of iterations, so we 

usually cannot generate explicit output. We might generate implicit output, i.e. 

an invariant instead, more or less in the style of [29]. 

4. 	 RecursionCall. We can generate some recursive functions and their initial func

tions and then solve them(but not always). 

5. 	 Neither Fixedpoint nor RecursionCall. It maps to the input procedure is the 

sequential procedure without while-do or for-do in it. We do not need to 

generate recursive functions or invariants. We can easily get the explicit output 

by simply calculating relation composition. 



37 5. System Analysis 

Input Program 

Relation Generator 
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Figure 5.2: Symbolic execution system in detail 
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Relations Recurrence and Initial Condition 

StateTransition(i,1) Initial Condition: i(O) = 1 

StateTransition(fac,1) Inital Condition: fac(O) = 1 

FixedPoint (i< n, Loop Termination: 

lt = min{t 2: 0 I i(t) 2: n} 

StateTransition(i,i+1), Recurrence: 

i(t + 1) = i(t) + 1 

StateTransition(fac,fac*i), 

) 

Recurrence: 

fac(t+1) = fac(t) · i(t+1) 

return fac fac(lt) 

Table 5.6: Recurrence equations and initial conditions for factorial. 

5.4 From Code to Recurrences: while 

If the input program is a simple while loop, without if-then-else statements inside 

the while loop, the core relation we generate will be FixedPoint. Table 5.6 shows 

the results for our factorial program. In this case our system [28] will produce the 

output formula "n!". 

5.4.1 Generating Recurrence Relations 

In this case all we have inside the loop are assignment statements which are repre

sented by StateTransition relations. These relations might however be mixed, in 

other words a variable at time t + 1 might occur on both the left and right hand 

sides. This occurs in our factorial code, where fac depends on i(t + 1) rather than 

i(t). However, a simple program transformation related to Static Single Assignment 

(SSA) form [11] takes care of this issue. 
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5.4.2 Generating Initial Conditions 

The initial conditions are easily determined: they are the values of each of the loop 

variables (i.e. those which change) right before the loop starts. These can be deter

mined by unwinding the stack of StateTransit ion calls preceding the loop. This is 

always possible, though might again generate very large answers. 

5.4.3 Stopping Conditions 

If we want to find the actual stopping condition for a loop, we need to solve (symboli

cally) the recurrence equations (with known initial functions) just generated. Suppose 

the solution is: 

Now, we can decide the loop stop condition on the basis of the condition Cond in 

FixedPoint ( [Cond] , ... ) . In general, this condition reads 

min{t I --,Cond} 
t~O 

where Cond depends on the state variables at timet. We have discussed it in chapter 

4. 

5.5 Solving with for Loops 

Since a for loop is a special case of a while loop, this case is very similar to the 

previous. Generating recurrences is exactly the same. Assume the following pattern 

for the for loop: 

for i from s to e by step do S. 
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Generating Initial Conditions 

Initial functions are generated from the stack of StateTransit ions preceding the 

loop for all variables, with the addition of i(O) = s. Assuming [StateTransition(v1, 

expr1), StateTransition(v2, expr2), .. . , StateTransition(vm, exprm)] precedes the loop, 

where v1, v2, ... , Vm are recursive variables, then the generated initial functions are in 

the followings: 

... ' 

i(O) = s 

where expr[var:=exprl] means the expression expr with variable var in expr re

placed with exprl. It follows the chain of 6 that we discussed in chapter 4. 

5.5.1 Number of Loop Iterations 

Now, we can decide the for loop iteration times based on the For relation inside the 

FixedPoint relation. We have to consider two cases: 

• Case 1 The variable i, i.e. loop counter, is not modified by S. In this case the 

number of iterations z can be solved explicitly and uniformly for all cases, and is 

given by 

{l
e-s+ll if re-s+ll > 0 

step I step
Z= 

if re-s+ll :::; 00 I step 



41 5. System Analysis 

• Case 2 The variable i, i.e. loop counter, is modified by S. In this case we have to 

transform the for loop into a new for loop with the i update inside the loop, and 

using a new independent variable to control the loop. Then it transforms into the 

form of case 1, therefore we can decide the loop iteration times. In chapter 6, the 

Binomial Coefficients example shows how to solve this kind of problem. 

• Case 3 The variable i, i.e. loop counter, is not only modified by s, but also starts 

from 0. We choose to shift loop starting point and ending point by step times. Then 

applying to case 2, we can decide the loop iteration times. In chapter 6, the Bessel 

function example explains how to solve this kind of problem in detail. 

5.5.2 Solving Relations Involving Recursion Call 

If a recursive function is correctly defined, it defines both recurrence functions and 

initial conditions in quite natural way. 

For example, some recursive function generates the relations: StateTransition( u, 

piecewise(n=O, expr1, f(RecursionCall(n-1))), then we can get the initial and Recur

rence functions in the followings: 

u(O) = expr1 

u(t) = f(u(t- 1)) 

Based on the above that generated initial and recurrence functions, we can solve them 

and get the implicit output. 

However, we can not always solve (symbolically) the recurrence equations thus 

generated (for instance we cannot do it for Ackerman function). 

Note that it is important here to assume that we have a meaningful program, as 

otherwise a recursively defined function might come equipped with naturally defined 
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initial conditions. 

5.5.3 The Case of Branches in Loops 

When we have if-then-else inside a while, we usually are not able to generate 

explicit symbolic output. We can often generate implicit output, or invariants, in 

a way similar to that described in [20, 29]. From the generated relations, we can 

translate them into the input of Rodriguez-Carbonell and Kapur's method[29] to 

automatic generation of polynomial loop invariants. We will discuss how to automat

ically generate the input of Rodriguez-Carbonell and Kapur's method[29] from the 

relations. 

Let us give an example to see how to obtain input polynomials from relations. 

e:= [StateTransform(a, x), StateTransform(b, y), StateTransform(p1, 1), 


StateTransform(q1, 0), StateTransform(r, 0), StateTransform(s1, 1), 


Loop([a <> b], [[StateTransform(a, 'piecewise'(b <a, a-b, a)), 


StateTransform(b, 'piecewise'(b <a, b, b-a)), 


StateTransform(p1, 'piecewise'(b <a, p1-q1, p1)), 


StateTransform(q1, 'piecewise'(b <a, q1, q1-p1)), 


StateTransform(r, 'piecewise'(b <a, r-s1, r)), 


StateTransform(s1, 'piecewise'(b <a, s1, s1-r))]]), a] 


The above relation is generated from GCD function(given in chapter 6). The set 

of initial polynomial can be generated from the stack of StateTransitions preceding 

the loop for all variables, i.e. [a= x, b = y,p1 = 1, q1 = 0, r = 0, s1 = 1]. The sets of 

Conditional polynomial can be generated from the inside of Loop relation, grouping 

by the condition inside the piecewise, i.e. [a = a- b, b = b,p1 = p1 - q1, q1 = 
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ql, r = r- sl, sl = sl] and [b = b- a,pl = pl, ql = ql- pl, r = r, sl = sl- r]. 

Transformation from the generated relations into the input polynomial for generating 

invariants is quite straightforward. 

Let us have a brief introduction to Rodriguez-Carbonell and Kapur's method [29]. 

What is their module's theory background and why it works. Rodriguez-Carbonell 

and Kapur in [29] have proved that the set of polynomials serving as loop invariants 

has the algebraic structure of an ideal. Using this connection, it is proved that the 

procedure for finding invariants can be expressed using operations on ideals, for which 

Grabner basis constructions can be employed. 

For a given loop, the set {p} of polynomials such that p=O is invariant, i.e,. p 

evaluates to 0 at the header whenever the loop body is executed, is a polynomial 

ideal. This ideal is henceforth called the invariant polynomial ideal of the loop. Any 

conjunction of polynomial equations such that the polynomials are a basis of this 

ideal is shown to be inductive, i.e., it holds when entering the loop and is preserved 

by every iteration of the loop. Moreover, such formula formula is strongest among all 

the inductive invariants of the loop when invariants are conjunctions of polynomial 

equations. Using Hilbert's basis theorem, they also establish the existence of such an 

inductive invariant for a given loop. If a loop does not have any polynomial invariant, 

the procedure will generate the polynomial 0 (which is equivalent to true) as the 

invariant. 

In [29], they show that how the procedure for computing the invariant polynomial 

ideal can be approximated using Grabner bases computations. Moreover, for solvable 

mappings with rational positive eigenvalues, this approximation is exact, i.e. the 

algorithm computes the invariant ideal. More details are discussed in [29] about how 

to generate polynomial invariants [29]. 
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In our system, one of module generating the invariants comes from Rodrfguez

Carbonell and Kapur's method [29] source code. However since Rodriguez-Carbonell 

and Kapur's system [29] could not start to work from the given program point, our 

system has a module to generate their system input from the given program and 

based on their system to generate invariants automatically. 



Chapter 6 

Examples of Using Symbolic 

Execution Tool 

This chapter gives some examples that show the use of symbolic execution tool. It 

starts off with the computation of l:~=o ~ example, which shows how the relations 

are get and how the initial functions, recursive functions and number of loop iteration 

can be decided from the relations. We also give the following examples: computation 

of l:~=o i!, computation of the binomial coefficients, computation of Chebyshev poly

nomials and the computation of values of Bessel function from Taylor series, to show 

how to get the symbolic explicit output. We also give two examples to explain how 

to get the implicit output. 

6.1 Examples of Generating Explicit Output 

6.1.1 Example 1: :Z::~=O ~ 

This is an example to compute l:~=o ~ 
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sig_prod:=proc(n) 

local i, s, w; 

(s,w) :=(1,1); 

for i from 1 to n do 

w:=w/i; 

s:=s+w; 

end do; 

s; 

end proc: 

By observing the above function, we can see that the loop controller i not only 

controls the loop, but also shows up in the loop body (we only dealt with the case 

that i shows up on the right hand side of the expressions in the loop body). For this 

kind of input function, our system transforms the input function into a new function 

such that the loop controller is independent to control the loop (which means that it 

does not show up in the loop body). There are three steps: 

1. 	 Choose a variable, which does not belong to the input function, as the loop 

controller, i.e. ii. 

2. 	 Preceding the loop execution, adding a new assignment statement to initialize 

the original loop controller according to the loop start point. 

3. 	 At the loop bottom, adding an assignment statement to update the original 

loop controller by the sum of it and the step. 

Table 6.1 shows a direct translation between the program components and the recur

rence, initial conditions, and number of loop iterations. Our system [28] produces the 
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l:~o fr Recurrence and Initial Condition 

(s' w) ·= (1, 1); 

Initial Condition: 

s(O) = 1, w(O) = 1, i(O) = 1 

for i from 1 to n do 

Number of Loop Iteration: 

z = rn-i+ll = n if n ~ 1 

w := w/i; 

s ·= s+w 

Recurrence Equations: 

w(t + 1) = w(t)/i(t) 

s(t + 1) = s(t) + w(t + 1) 

i(t+ 1) = i(t) + 1 

s s(z) 

Table 6.1: Recursive and initial functions for computing L:~=o j 

following output for the above program : 

e*r(n+1,1) 
r(n + 1) 

It is an approximation to exp(1). The incomplete r function is defined as: 

r(a, z) = r(a)- za ja1F1(a, 1+a, -z) 

where 1F1 is the confluent hypergeometric function (in Maple notation, 1F1(a, 1 + 

a, -z) = hypergeom([a], [1 +a], -z)). 

6.1.2 Example 2: .L:~=O i! 

This is an example to compute 2:.:~0 i!. Table 6.2 shows a direct translation between 

the program components and the recurrence, initial conditions, and number of loop 

iterations. Our system [28] produces the following output for the above program : 
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Lni=O z.'! Recurrence and Initial Condition 

(s, w) := (1, 1); 

Initial Condition: 

s(O) = 1, w(O) = 1, i(O) = 1 

for i from 1 to n do 

Number of Loop Iteration: 

z = rn-:+ll = n if n 2: 1 

w ·= 

s ·= 

W*i; 

s+w 

Recurrence Equations: 

w(t + 1) = w(t) * i(t) 

s(t + 1) = s(t) + w(t + 1) 

i(t + 1) = i(t) + 1 

s s(z) 

Table 6.2: Recursive and initial functions for computing L~o i! 

-KummerU(1, 1, -1)- n! *KummerU(n + 1, n + 1, -1) * ( -1)(n+l) + n! (6.1) 

Where KummerU(J.t, v, z) solves the differential equation z *Y" + (v- z) *y'- J.l* y = 

0 [1]. 

There is another function to compute I:~=O i!. Table 6.3 shows the translation 

between the program components and the recurrence, initial conditions, and number 

of loop iterations. Our system [28] produces the following output for the above 

program: 
e-1r(-n,-1) r(-1, -1)e-1 (-1)n_:...___...:.....__ + 1 (6.2)

r(-n) r(-n + 1)r(-1) r(-n+1) 

Even though I believe that (6.1) and (6.2) are equal, it is challenge for me to prove 

it. 
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Ln "Ii=O z. Recurrence and Initial Condition 

s := n , 

Initial Condition: 

s(O) = n, i(O) = n- 1 

for i from n-1 by -1 to 1 do 

Number of Loop Iteration: 

z=n-1ifn2:2 

s - i*(1+s); 

Recurrence Equations: 

s(t + 1) = i(t) * (1 + s(t)) 

i(t + 1) = i(t)- 1 

s+1 s(z) + 1 

Table 6.3: Another example to compute L~=O i! 

6.1.3 Example 3: Chebyshev Polynomials 

Here we show a simple example with for loops. 

chebyshev:= proc(n::posint,x) 

local i, uO, u1, t; 

(uO, u1) := (1 , x) ; 

for i from 2 to n do 

v := u1; 


u1 := -uo + 2*x*u1; 


uO := v; 


end do; 

u1; 

end proc; 
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chebyshev Polynomials Recurrence and Initial Condition 

(uO, u1) := (1,x); Initial Condition: uO(O) = 1, u1(0) = x 

for i from 2 to n do 

Number of Loop Iteration: 

z = rn-~+11 = n - 1 if n ~ 2 

v := u1; 

u1 := -uo + 2*X*U1 

uO := v 

Recurrence Equations: 

v(t + 1) = u1(t) 

u1(t + 1) = -uO(t) + 2 · x · u1(t) 

uO(t + 1) = v(t + 1) 

u1 u1(z) 

Table 6.4: Recursive and initial functions for chebyshev 

Translation of the program into set of appropriate relations is quite straightforward 

and is omitted. Table 6.4 shows a direct translation between the program components 

and the recurrence, initial conditions, and stopping condition. 

Our system [28] produces the following output for the above program chebyshev: 

(x- ~)-n + (x + Jx2 -1)-n 
2 

better known as the closed-form for the Chebyshev polynomial Tn (x) for n ~ 2 [1]. 

6.1.4 Example 3: Binomial Coefficients 

The binomial coefficient G) is the number of ways of picking k unordered outcomes 

from u possibilities, also known as a combination or combinatorial number. The 

computation of binomial coefficients is given by the followings: 

binomial:=proc(u, k) 
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Binomial Coefficients Recurrence and Initial Condition 

res:= 1 Initial Condition: res(O) = 1, i(O) = 1 

for i from 1 to k do 

Number of Loop Iterations: 

z = 1k-i+l1= k if k ~ 1 

res := res * (u-i+1)/i; 

Recurrence Equations 

res(t + 1) = res(t) * (u- i(t) + 1)/i(t) 

i(t + 1) = i(t) + 1 

res res(z) 

Table 6.5: Recursive and initial functions for Binomial Coefficients 

local res, i; 

res 1; 

for i from 1 to k do 

res := res * (u-i+1)/i; 

end do; 

res; 

end proc: 

Transformation of binomial into an equivalent new binomial function in which 

the loop controller is independent is quite straitforward and is omitted. Table 6.5 

shows a direct translation between the binomial coefficient program and the recur

rence, initial conditions, and number of loop iterations. 

Our system [28] produces the following output for the above program chebyshev: 

(-l)kr(-u + k) 
r(-u)r(k + 1) 
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Proposition 1. 

(-1)kr(-u + k) 
is equivalent to binomial coefficient ( ~) .

r(-u)f(k + 1) 

Proof. In order to prove 

(-1)kr(-u + k) r(u + 1) 
r(-u)f(k + 1) r(u- k + 1)r(k + 1) 

we only need to prove 

(-1)kf(-u + k) r(u + 1) 
r(-u) r(u-k+1) 

Since 
r(u + 1)

f(u-k+ 1) =U*(u-1) ... (u-k+1) 


So, we need to show 


(-1)kr(-u + k)

r(-u) = u * (u- 1) ... (u- k + 1) 


let -u = t - k + 1, then: 


(-1)kr(-u + k) (-1)kf(t + 1) 

r(-u) r(t-k+1) 


= ( -1)k * t * (t- 1) * ... * (t- k + 1) 


= (-1)k * [-(u- k + 1) * · · · * (-(u -1)) * (-u)] 


= (u- k + 1) * .. · * (u- 1) *u 


Q.E.D. D 

6.1.5 Example 4: Bessel 

This is an example to show that in the for loop, the loop controller is not independent 

to control the loop, it also happens in the loop body statement. At the same time, 

the loop controller i starts from 0. 
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Bessel Function Recurrence and Initial Condition 

(res, u) = (0, 1) 

Initial Condition: 

res(O)=O, u(0)=1, i(O)=O 

for i from 0 to m-1 do 

Number of Loop Iterations: 

z = Im-f+ll = m if m ~ 1 

res := res + u 

Recurrence Equations 

res(t + 1) = res(t) + u(t) 

u := -u * z2/(4*(i+nu+1)(i+1)) u(t + 1) = -u(t) * z 2 j 

(4 * (i(t) + nu + 1)(i(t) + 1)) 

i(t + 1) = i(t) + 1 

res res(z) 

Table 6.6: Recursive and initial functions for Bessel 

bessel:=proc(z, nu, m) 

local res, i, u; 

(res,u):= (0,1); 

for i from 0 to m-1 do 

res:=res+u; 

u := -u * z-2/(4*(i+nu+1)(i+1)); 

end do; 

res; 

end proc: 

Since the loop controller starts from 0, we shift the loop starting and ending point 

by step. Transformation of the program into a new equivalent bessel is omitted and 
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the generation of recursive functions, initial functions, and loop termination condition 

are given in table 6.6. 

From table 6.6, we get the following recurrence functions: 

res(t + 1) = res(t) + u(t) 


u(t + 1) = -u(t) · z2/(4 * (i(t) + nu + 1) · (i(t) + 1)) (6.3) 


i(t + 1) =i(t)+1 


As s system, Maple can not solve (6.1) directly. However, if we solve the system in 

data-dependency order, i.e. 

i(t + 1) = i(t) + 1 


u(t + 1) = -u(t) · z2 /(4 * (i(t) + nu + 1) · (i(t) + 1)) (6.4) 


res(t + 1) = res(t) + u(t) 


then the system is solvable by steps, and the result is: 

v ( 2m+v _ (+) ( )) (-l)m+ll2 z 82m+l+v,v z 4 

r(v+l) Jv(z)(:;) - r(m+l+v)r(m+l)zV
[ 

where lv is the Bessel function of the first kind, while sC+) is known as Lommel's s 

function [1]. What is interesting about this example is not what it computes exactly, 

but that we can recognize (and with a bit more work, compute) that this is a Taylor 

approximation for the non-singular part of Bessel's function at the origin. 

6.1.6 Example 5: A Recursive Call Function 

This is an example to show the recursive call. 

chebyshev1:=proc(n) 

local res; 
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chebyshev! Function Recurrence and Initial Condition 

if n=O then res:=1 Initial Condition: res{O)=O 

elif n=1 then res:=x Initial Condition: res{l)=x 

else 

res - 2*x*chebyshev1(n-1)+ 

chebyshevi(n-2) 

Recurrence Equations 

res(t) = 2 * x * res(t- 1)+ 

res(t- 2) 

res res(t) 

Table 6.7: Recursive and initial functions for chebyshev1 

if n=O then 

res :=1; 

elif n=1 then 

res:=x; 

else 

res:=2*x*chebyshev1(n-1)+chebyshev1(n-2); 

end if; 

res; 

end proc; 

From the generated relation, our system can tell it is a recursive function call. 'Ifansla

tion of the input chebyshevl into its equivalent relations is omitted and the generation 

of recursive functions and initial functions are given in table 6.7. For the recursive 

call function, we do not need to generate loop stop condition. 

Our system produces the same output as the example 3 chebyshev polynomial 

function. 
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6.2 Examples of Generating Implicit Output 

6.2.1 Example 1: GCD 

The GCD example is to show how to deal with the single while loop with if condition 

in our symbolic execution system. The computation of GCD function is given by the 

followings: 

GCD:=proc(x, y) 

local a, b, p1, q1, r, s1; 

a:=x; b:=y; p1:=1; q1:=0; r:=O; s1:=1; 

while a <> b do 

if a > b then 

a:=a-b; p1:=p1-q1; r:=r-s1; 


else 


b:=b-a; q1:=q1-p1; s1:=s1-r; 


end if; 


end do; 


a; 


end proc: 

In our symbolic execution system, we use Rodriguez-Carbonell and Kapur's 

method [29] to get the invariant which denotes the implicit output. Table 6.8 shows 

to translate GCD program into the input of generating invariants [29]. 

Our system [28] produces the following output for the above program GCD: 

{-x - b*r +a* sl = 0, y +a* ql - b*pl = 0, sl * y + ql *x - b = 0, 

x *pl + y *r- a= 0, 1 + ql *r- sl *pl = 0} 
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GCD program Initial input of generating invariants [29] 

a:=x; b:=y 
' 

pi :=1; q1:=0; r:=O; s1:=1 (a=x b=y pl=l ql=O r=O s1=1]
' ' ' ' ' ' 

while a<> b do 

if a> b then 

a:=a-b; p1:=p1-q1; r:=r-s1; 

else 

b:=b-a; q1:=q1-p1; s1:=s1-r;; 

end if; end do 

[ 

[ 

a=a-b, pl=pl-ql, r=r-slj, 

[ 

b=b-a, ql=ql-pl, sl=sl-r 

jj 

Table 6.8: Translation of program into the input of generating invariants [29] for GCD 

The above is a set of polynomial invariants expressed in terms of ideal. Rodrfguez

Carbonell and Kapur's [29] prove that the set of invariant polynomials of a loop has 

the algebraic structure of an ideal. Using this connection, they prove that the proce

dure for finding invariants can be expressed using operations on ideals. Moreover, for 

any finite basis of this ideal, the corresponding conjunction of polynomial equation is 

the strongest possible inductive invariant for the loop expressible as a conjunction of 

polynomial equations [29]. 

A loop invariant is a relation among program variables that is true when control 

enters a loop, remains true each time the program executes the body of the loop, and 

is still true when control exits the loop. Understanding loop invariants can help us 

analyze programs, check for errors, and derive programs from specifications [22]. 
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6.2.2 Example 2: LCM 

LCM program is an example shows how to deal with the nested loop in our symbolic 

execution system. The computation of LCM function is given by the followings: 

LCM:=proc(a,b) 

local x, y, u, v; 

x:=a; y:=b; u:=b; v:=O; 

while x<>y do 

while x>y do 

x:=x-y; v:=u+v; 


end do; 


while x<y do 


y:=y-x; u:=u+v; 

end do; 


end do; 


return u+v; 


end proc: 

Table 6.9 shows to translate LCM program into the input of generating invari

ants [29]. [29] did not mention that if their method also works for nested while loop. 

It seems that their algorithm works for some nested while loop. 

Our system [28] produces the following output for the above program LCM: 

{-u *x - y *v +a* b = 0} 

The above is also a set of polynomial invariants expressed in terms of ideal [29]. In 

our example, since we have nested loop, the polynomial invariant should be true on 
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LCM program Initial input of generating invariants [29] 

x:=a; y:=b; u:=b; v:=O; [x=a y=b u=b v=O}
' ' ' ' 

while x <> y do 

while x > y do 

x:=x-y; v:=u+v; 

end do 

while x < y do 

y:=y-x; u:=u+v; 

end do 

[ 

[ 

x=x-y, v=u+v 

}, 

[ 

y=y-x, u=u+v 

j }) 

Table 6.9: Translation of program into the input of generating invariants [29] for LCM 

each iteration before executing the outer loop, between executing the outer loop and 

inner loop, after executing the inner loop body, and after executing the outer loop 

body, which have more restricts than the single loop. This is one of the reason that 

why we got much less invariants expression from this example than from the GCD 

example. 



Chapter 7 

Related Work 

Symbolic execution has been studied since seventies, however with different goals than 

ours. King [19] in 1976 has developed EFFIGY, a symbolic execution system with a 

fixed number of integers. 

Kemmerer and Eckmann [18] have presented an approach to symbolic execution 

based on the concept of path expressions and path conditions. 

DISSECT [15] and SELECT [5] are also symbolic execution systems that use the 

path conditions concept. DISSECT can be used to symbolically execute some simple 

FORTRAN programs. The main purpose of SELECT [5] is to complement mechanical 

program verification and debug programs. 

Rodriguez-Carbonell and Kapur [29] have recently developed some interesting 

techniques for automatically finding loop invariants. E. Roddguez-Carbonell and 

D. Kapur [29] introduce that conjunctions of polynomial equations as loop invariants. 

It shows that the set of invariant polynomials of a loop has the algebraic structure 

of an ideal, which immediately suggests that polynomial ideal theory and algebraic 

geometry can give insight into the problem of finding loop invariants. E. Rodriguez
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Carbonell and D. Kapur [29] also present the procedure for finding polynomial in

variants, expressed in terms of ideals. E. Roddguez-Carbonell and D. Kapur [29] also 

shows how to implement this procedure using Grabner bases. The implementation 

has been used to automatically discover nontrival invariants for several examples to 

illustrate the power of the techniques. However, the input parameters still need to be 

extracted manually. 

Fahringer and Scholz [30] have presented a comprehensive and compact control 

and data flow analysis information, called program context for solving program anal

ysis problems. Program contexts include three conmponets: variable values, assump

tions about and constrains between variable values, and path condition. Their ap

proach targets linear and non-linear symbolic expression and the program analysis 

information is represented as symbolic expression defined over the program's problem 

size. Fahringer and Scholz [30] introduce an algorithm for generating program con

texts based on control flow graphs. The alogrithm comprises accurate modeling of 

assignment and input/out statements, branches, lops, recurrences, arrays, dynamic 

records and procedures. 
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Contributions and Future Work 

We have described a symbolic execution system that can be used to analyze properties 

of programs. It is especially well-suited to numerical programs which compute so

called Special Functions. The most important tool is the transformation of loops 

into explicit systems of recurrence equations over time. The system [28] can handle 

assignment statements, if-then-else statements, for-do statements, and while-do 

statements, the latter two with some restrictions. 

Despite the restrictions, it can be used for a huge variety of programs, including 

programs to compute binomial coefficients, Bessel functions, orthogonal polynomials, 

and so on. In the case of finding invariants, we mainly follow [29] and can cover 

similar programs. 

For the future work, we would like to loosen the restriction for while loop we have 

now. The most promising line of investigation is to see if we can include branches in 

loops, but where the branch condition depends on a monotonic function of time. We 

also would like to be able to produce explicit symbolic solutions in some cases where 

now we can only produce invariants. We also would like to enrich the programming 
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model to consider some more complicate data structures such as arrays. 




Appendix A 

Specification by Maude 

Maude is a high-level language and is an equationally-base, algebraic language with 

a term rewriting implementation. We use maude to define the specification for our 

symbolic execution system. 

The following model describes the Arithmetic Expression type. It corresponds to 

the ArithmeticExpression and ArithmeticOp in the semantics syntax definition. 

fmod ARITHMETICEXPRESSION is 


protecting QID 


protecting INT 


sort Variable ArithmeticExpression 


subsorts Variable < ArithmeticExpression 


subsort Qid < Variable . 


subsorts Int < ArithmeticExpression 


op + 	 ArithmeticExpression ArithmeticExpression -> 


ArithmeticExpression [ditto] 
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op _-_ : ArithmeticExpression ArithmeticExpression -> 

ArithmeticExpression [ditto] . 

op * ArithmeticExpression ArithmeticExpression -> 

ArithmeticExpression [ditto] . 

op _/_ ArithmeticExpression ArithmeticExpression -> 

ArithmeticExpression . 

endfm 

The following is an example to test ARITHEMETICEXPRESSION module: 

reduce in ARITHMETICEXPRESSION : 'a + 'b . 

result ArithmeticExpression: 'a + 'b 

In the following, we define the Boolean Expression type for the input domain. It 

corresponds to the BooleanExpression and RelationOp definition in the semantics 

syntax. 

fmod BOOLEANEXPRESSION is 

protecting ARITHMETICEXPRESSION 

sort BooleanExpression . 

subsorts Bool < BooleanExpression 

op and_ BooleanExpression BooleanExpression -> BooleanExpression [ditto: 

op _or BooleanExpression BooleanExpression -> BooleanExpression [ditto] 

op _xor BooleanExpression BooleanExpression -> BooleanExpression [ditto: 

op _<=_ : ArithmeticExpression ArithmeticExpression -> BooleanExpression [d 

op _<_ : ArithmeticExpression ArithmeticExpression -> BooleanExpression [di· 

endfm 

The followings test BOOLEANEXPRESSION module: 
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reduce in BOOLEANEXPRESSION 2 + 3 <= 4 + 5 . 

result Bool: true 

reduce in BOOLEANEXPRESSION 2 + 2 < 2 + 3 xor 1 < 3 . 

result Bool: false 

We define Expression type in the following: 

fmod EXPRESSION is 

protecting ARITHMETICEXPRESSION 

protecting BOOLEANEXPRESSION 

sort Expression . 

subsorts BooleanExpression < Expression . 

subsorts ArithmeticExpression < Expression 

op _==_ : Expression Expression -> BooleanExpression [comm] . 

endfm 

We define Statement in the following: 

fmod STATEMENT is 

protecting EXPRESSION 

sorts Statement . 

op _;_ : Statement Statement -> Statement [assoc prec 50] 

op while_do_od : BooleanExpression Statement -> Statement 

[format (nir! o r! o++ --nir! o)] . 

op _:=_ : Variable Expression -> Statement 

[format (ni d d d)] . 

op if_then_else_fi : BooleanExpression Statement Statement -> Statement 
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[format(nir! o r! o r! o nir! o)] . 


op return_ : Expression -> Statement 


[format (nir! o d)] . 


endfm 


The followings test STATEMENT module: 


reduce in STATEMENT : while 'a + 'b + 'c < 3 + 5 do 'x := 'x + 2 od . 


result Statement: 


while 'a + 'b + 'c < 8 do 


'x 'x + 2 

od 

reduce in STATEMENT : return ('x + 'a< 'y + 'z) . 

result Statement: return ('a+ 'x < 'y + 'z) 

The following model describes the defining of the StateRep type that we defined in 

section 4. It could be FixedPoint /-l, Gamma 'Y or StateTransition 6 function. 

fmod STATEREP is 


protecting EXPRESSION 


sort StateRep . 


subsort Variable < StateRep . 


subsort Expression < StateRep 


op StateRep StateRep -> StateRep . 


op Gamma : BooleanExpression StateRep StateRep -> StateRep 


op FixedPoint : BooleanExpression StateRep -> StateRep . 
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op StateTransition StateRep StateRep -> StateRep . 

endfm 

The following is part of GEN_FUNCTION module. It translates statements into 

functions which have the stateRep type. So for any input statement given from the 

user, this module can substitute the input statements by using stateRep function. 

For example, if we have x:=a assignment statement, by calling this module, we can 

get StateTransition('x, 'a), which has StateRep type. 

fmod GEN-FUNCTION is 

protecting STATEMENT 

protecting STATEREP 

var 'x Variable 

var 'a Expression 

var b1 BooleanExpression 

var s1 Statement 

var s2 Statement 

op geneqns_ : Statement -> StateRep . 

eq geneqns ( 'x 'a) = StateTransition('x , 'a) . 

eq geneqns(if b1 then s1 else s2 fi) = Gamma(b1, geneqns(s1), geneqns(s2)) 

eq geneqns(while b1 do s1 od) = FixedPoint(b1 , geneqns(s1)) . 

eq geneqns(s1 return 'x) = StateTransition('x, geneqns(s1)) 

eq geneqns(s1 s2 ) = geneqns(s1) . geneqns(s2) 

endfm 

The followings test the GEN-FUNCTION module: 
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reduce in GEN-FUNCTION geneqns( if 2 + 'f < 1 + 'g 

then 'x := 2 < 3 else 'x 4 < 3 fi) . 

result StateRep: Gamma('f + 2 < 'g + 1, StateTransition('x, true), 

StateTransition('x, false)) 

reduce in GEN-FUNCTION geneqns ('x := 'a ; while 't < 'r do 'x := 'v 

'y := 'd od ; return 'x ) . 

result StateRep: StateTransition('x, StateTransition('x, 'a) . FixedPoint('t < 

'r, StateTransition('x, 'v) . StateTransition('y, 'd))) 

The following is OUTPUTEXP module. It defines the OutputExpr data type for the 

output expression. It corresponds to the OutputExpr type defined in the semantics 

syntax. 

fmod OUTPUTEXPR is 

protecting STATEREP 

sort OutputExpr . 

subsort StateRep < OutputExpr 

op Empty : -> OutputExpr . 

op soleqns_ : StateRep -> OutputExpr 

op SolRecursive_ : StateRep -> OutputExpr 

op Inv StateRep StateRep -> OutputExpr . 

op OutputExpr OutputExpr -> OutputExpr 

endfm 
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The following is SOLVE_FUNCTION module. It solves StateRep type Function 

to get output expression which has OutputExpr type. for some case, which is very 

hard to get an explicit final output, we will use function solrecursive or function 

Inv, which has the StateRep type, to represent it. 

fmod SOLVE-FUNCTION is 

protecting OUTPUTEXPR 

protecting GEN-FUNCTION 

var 'x Variable 

var 'y Variable 

var s1 StateRep 

var s2 StateRep 

var s3 StateRep 

var b1 BooleanExpression 

var b2 BooleanExpression 

eq soleqns(StateTransition('x, StateTransition('x, s1))) = s1 . 

eq soleqns(StateTransition('x, StateTransition('y, s1))) Empty 

eq soleqns(StateTransition('x, s1 . s2 )) = soleqns(StateTransition('x, s1): 

soleqns(StateTransition('x, s2) 

eq soleqns(FixedPoint(b1, Gamma(b2, s1, s2))) = Inv(s1, s2) . 

eq soleqns(FixedPoint(b1, s1 )) = SolRecursive(s1) . 

endfm 
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