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Abstract 

We study two objects: an ideal of a Heeke algebra, and a pairing 

in Galois cohomology. 

Let h be the Heeke algebra of cusp forms of weight 2, level n, and 

a fixed Dirichlet character modulo n generated by all Heeke operators, 

where n is an odd prime p or a product of two distinct odd primes N 

and p. We study the Eisenstein I ideal of h. We wrote a computer 

program to test whether Up - 1 generates this ideal, where Up is the 

pth Heeke operator in h. We found many cases of n and the character 

so that Up - 1 alone generates I. On the other hand, we found one 

example with N = 3 and p = 331 where Up - 1 does not generate I. 

Let K = Q(t-tn) be the nth cyclotomic field. Let S be the set of 

primes above pinK, and let GK,S be the Galois group of the max­

imal extension of K unramified outside S. We study a pairing on 

cyclotomic p-units that arises from the cup product on H 1(GK,s, /-Lp)· 

This pairing takes values in a Gal(K/Q)-eigenspace of the p-part of 

the class group of K. Sharifi has conjectured that this pairing is sur­

jective. We studied this pairing in detail by imposing linear relations 

on the possible pairing values. We discovered many values of n and 

the character such that these relations single out a unique nontrivial 

possibility for the pairing, up to a possibly zero scalar. 

Sharifi showed in [S2] that, under an assumption on Bernoulli num­

bers, the element Up - 1 generates the Eisenstein ideal I if and only 

if pairing with the single element p is surjective. In particular, in the 

instances for which we found a unique nontrivial possibility for the 

pairing, then if Up - 1 generates I, we know that the scalar up to 

which it is determined cannot be zero. 
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Introduction 

In this thesis, we study generators of an ideal of the Heeke algebra of mod­

ular forms and an equivalent statement about a pairing on the p-units of a 

cyclotomic field K = IQ(f.tNp), where N = 1 or N 2: 3 is a prime and p 2: 5 

is a prime as well. 

We let h be the Heeke algebra over Zp of cusp forms of weight 2 and level 

Np generated by all Heeke and diamond operators. We require that cp(N) I 
cp(p), where cp denotes the Euler phi function. Let x be a fixed even nontrivial 

Dirichlet character modulo Np, and let w be the Teichmiiller character. We 

assume that p divides the generalized Bernoulli number B1,xw-I· We also 

assume that X l(lt:fpZ)x =/:- w I(Zfpz)x and X I(Zfpz)x =/:- w2 
I(Zfpz)x. 

We define the Eisenstein ideal I of h to be the ideal generated by all 

T, - 1 - lx(l) and (l) - x(l) for l f n and by Ut - 1 when l I n. Here T, 

and U1 represent the usual Heeke operators, and (0 the diamond operator. 

We wrote a computer program to test whether the single element Up - 1 

generates the Eisenstein ideal. Sharifi found in (McS] that if N = 1 then for 

all x and p < 1000, it is true that Up - 1 generates I. 

Theorem. For all but one triple ( N, p, x) as above with N p < 1000, and 

p2 f B 2,xw-1, the element Up- 1 generates I in weight 2 and level Np. For 
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N = 3,p = 331, and x = 'I/Jw149
, where w is the Teichmuller character and '1/J 

is the unique nontrivial Dirichlet character of conductor 3, the element Up -1 

alone does not generate I. 

Let K = Q(f-tNp) be the Npth cyclotomic field. Let S be a set of primes 

of K including all primes above N p, and let G K,S be the Galois group of the 

maximal extension of K unramified outsideS. We consider the cup product 

on the first cohomology group of G K,S with coefficients in pth roots of unity /-Lp­

Let C be the group of cyclotomic p-units of K. Using Kummer theory, CjCP 

is isomorphic to a subgroup of H1(GK,s, f-tp)· Let A~x-
1

) be the Gal(K/Q)­

eigenspace of the p-part of the class group of K with an wx-1-action. There 

is an injection from A~x-
1

) 0t-tp to the 2nd cohomology group H2 (GK,s, t-t:2 ). 

The pairing that arises from the cup product is as follows: 

( ) C C A(wx- 1 ) 
'X: X ---t K 0/-tp-

Theorem (Sharifi). [82], Theorem 5.6. Suppose the following hold 

Then Up -1 generates the ideal I of h if and only if the pairing (p, )x induced 

by taking cup products with p is surjective. 

ix 



Corollary. For all but one triple (N,p, x) with Np < 1000 and p2 f Bz,xw-2, 

the pairing (p, )x induced by taking cup products with p is surjective. For 

Np = 993, and x as in the first Theorem of this section, the pairing with p 

is not surjective. 

We studied the values of this pairing in detail by imposing relations arising 

from the fact that (x, 1- x)x = 0 if x and 1- x are both p-units inK, as 

found in [McS], Section 5. We viewed the relations as linear equations over 

IF'p, and in this way were able to compute the nullspace of the matrix of 

coefficients. In particular, we compute the following. 

Theorem. For all but at most six triples ( N, p, x) as above with N 2: 3 and 

Np < 1000, the dimension of the nullspace of coefficients of relations is equal 

to one. For the remaining triples, this nullity is greater than one. 

Corollary. For the N,p and x for which the calculated nullspace was !­

dimensional, the pairing ( , )x induced by the cup product is completely de­

termined up to a single possibly zero scalar in ZjpZ. 

Combining our two Corollaries we obtain: 

Theorem. For all but at most seven triples ( N, p, x) with N p < 1000 and 

v f Bz,xw-2, the pairing ( , )x is completely determined up to a single nonzero 

scalar in ZjpZ. 
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1 The Eisenstein Ideal 

1.1 Dirichlet Characters and Bernoulli Numbers 

Definition 1.1. A Dirichlet character modulo m is a homomorphism of unit 

groups 

formE Z,m ~ 2. 

A Dirichlet character is called even if x( -1) = 1 and odd otherwise: if 

x(-1) = -1. The minimaln dividingm such thatx factors through (Zjnz)x 

is called the conductor of X. The set of all Dirichlet characters with a fixed 

modulus m forms a group, called the Dirichlet group modulo m. 

We may extend a Dirichlet character x modulo m to a map x: Z/mZ --> C 

by setting x(a) = 0 if (a, m) > 1. 

Definition 1.2. Given a Dirichlet character x: Z/mZ--> C of conductor f, 

the generalized Bernoulli numbers Bn;x are defined by 

I X( a )teat oo tn 
L eft -1 = LBn,xn!· 
a=l n=O 
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Definition 1.3. The ordinary Bernoulli numbers Bn are defined by 

t oo tn 
et -1 = LBnn! 

n=O 

Definition 1.4. The Bernoulli polynomials Bn(x) are defined by 

text oo tn 
et -1 = LBn(x)n!· 

n=O 

Lemma 1.5. The generalized Bernoulli numbers can be computed using 

m-1 F-1 

Bn,x = mn-1 LX(c)Bn (~) = pn-1 LX(c)Bn(;), 
c=O c=1 

where F is any multiple off. 

Proof. See [W], Proposition 4.1. D 

Definition 1.6. For a prime number p, the p-adic integers are the inverse 

limit 

Zp = ~Zjpnz. 

Definition 1. 7. Let p be a prime. The Teichmiiller character w is the map 

JF; ~ z; taking any a E JF; to the unique (p- 1)st root of unity in z; with 

a= w(a) mod p. 

Note: The Teichmiiller character is well-defined because of a Corollary 

of Hensel's lemma, which states that the number of (p -l)st roots of unity 

in Zp is p - 1 and that they are all distinct modulo p. 

Until this point, we only considered complex valued Dirichlet characters. 

We will also want to consider Dirichlet characters (Zjmz)x ~ z;. To this 

point, we fix, once and for all, an isomorphism between the p- pt roots of 

unity in <C and the p- 1st roots of unity in Zp. In this way we identify p-adic 

Dirichlet characters with complex-valued Dirichlet characters when needed. 
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1.2 Modular Forms 

Remark 1.8. For proofs of the results found in the remainder of this section, 

we refer the reader to [DSJ, Chapter 1. 

Definition 1. 9. Let N be an integer. The principal congruence subgroup of 

level N is 

f(N)~{ (::) ESL2(Z)oa,d=lmodN;b,c=OmodN} 

A subgroup r of SL2(Z) is called a congruence subgroup of level N if 

r(N) ~ r, 

and N is the smallest integer for which containment holds. 

Two examples are the following: 

r,(N) ~ { (: :) E SL,(Z)o a,d= 1 mod N;c = 0 mod N} 

and 

f 0 (N) ~ { ( : : ) E SL2 (Z) c = 0 mod N} 

Definition 1.10. The complex upper half plane is 

'H={rEC:Imr>O}. 

Proposition 1.11. The set SL2 (Z) of invertible 2x2 matrices of determinant 

1 acts on 'H by way of the usual fractional linear transformation: 

(: b ) ( T) = aT + b. 
d cr+d 

3 



Definition 1.12. For any congruence subgroup r, the modular curve 

Yr := {rr: r E H} 

is the set of coset orbits of r in H. 

We let H* = H U Q U { oo} be the extended half plane. We have that 

SL2(7l) acts on Q U { oo} as it does on H. Let r be a congruence subgroup 

of SL2 (7l). A r-equivalence class of points in Q U { oo} is called a cusp. 

Definition 1.13. The upper half plane H can be viewed as a subspace ofJR2 

and thus inherits the Euclidean topology, meaning that a basis of open sets is 

given by open balls. The natural surjection 1r : H --+ Yr affords the curve Yr 

the quotient topology, meaning that a set S in Yr is an open set if and only 

if the inverse image n-1(8) is open in H. 

Proposition 1.14. We can complete Yr to a compact Riemann surface by 

taking the quotient 

Xr := r\H* = Yr U r\(Q U {oo}). 

Proof. See [DS], Chapter 1. 0 

Definition 1.15. For any a E SL2(Z) and k E Z, define the operator [a]k 

on functions f: H --+ C by 

f[a]k(r) = (cr + d)-k f(a(r)) 

forTE Hand 
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Definition 1.16. Let r be a congruence subgroup of level N. Then a function 

f: 'H. ---+ C is called a modular form of weight k with respect to r if 

1. f is holomorphic on 'H. 

2. For all a E SL2(Z), f[a]k is holomorphic at oo. It is sufficient to show 

that f[a]k( T) is bounded as the imaginary part ofT approaches oo. 

3. f(~r)~(cr+d)'f(r)forall~~ (::) Ef,rE1t. 

Proposition 1.17. Any modular form f has a Fourier expansion 

00 

f(T) = Lanqn, 
n=O 

where q = e2'Trinr. 

Definition 1.18. A modular form is called a cusp form if, in the Fourier 

expansion, the term a0 equals zero. 

The space of all modular forms of weight k for r is denoted Mk(r). The 

space of all cusp forms of weight k for r is denoted Sk(r). 

Definition 1.19. If x is a Dirichlet character modulo N then the space 

Mk(r1(N), x) of modular forms of weight 2k, level Nand character xis the 

complex vector space off E Mk(r1(N)) with 

{ f(a(r)) ~ x(d)(cr +<f)' f(r) 'Va ~ ( : :) E r,(N), r E 1t} 

This subspace is sometimes referred to as the x-eigenspace of Mk(ri(N)). 
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1.3 Heeke Operators 

Next we will introduce two operators on modular forms, known as the di­

amond and Heeke operators. Fix integers N and k. Recall that because 

f 1(N) ~ f 0 (N) we have that Mk(f0 (N)) ~ Mk(f1(N)). First we set up 

the definition of the diamond operators. 

Note that the map 

r 0 (N) ~ (Z/NZ)'' (: :) ~ dmod N 

is a surjective homomorphism with kernel f 1(N). This implies that the quo­

tient f 0 (N)/f1(N) is isomorphic to the image, (7!../N'l!..)X. The group f 0 (N) 

acts on Mk(rl(N)) by (a, f) f-+ f[a]k where a E ro(N), f E Mk(ri(N)). 

Since f E Mk(r), we have by definition that f[a]k = f for all a E f1(N), 

so the action factors through the quotient, which is isomorphic to (71../ N'l!..)X. 

The action of any a is determined by d mod N. 

Definition 1.20. The diamond operator attached to dE (7!../N'l!..)x is 

for any 

o ~ ( : ; ) Er 0 ( N) 

with 8 = d mod N. 

We now extend the definition of the diamond operators (n) to include all 

positive integers n. Say n E z+ and ( n, N) = 1. Then the diamond operator 

( n) is determined by looking at n mod N. If n E z+, and ( n, N) > 1, then 

let (n) = 0, the zero operator on Mk(r1 (N)). 
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Proposition 1.21. The diamond operators are multiplicative: for any posi­

tive integers n and m, we have that 

(nm) = (n)(m). 

The second type of Heeke operator is given by double cosets. 

Definition 1.22. Let p be a prime number. The pth Heeke operator is 

Mk(ri(N))--+ Mk(ri(N)), f 1-t L f[!3i]k 
i 

where 

r,(N) ( ~ 
is a disjoint union of left cosets. Ifp does not divide N, we call this operator 

Tp and this can be written more simply in terms of the action of matrices as 

If p divides N, the pth operator is denoted Up and 

We extend inductively the definition of Tn in the case that n is not prime 

as follows. 

Definition 1.23. Let p be a prime. We define 

(1) 
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for any r 2: 2. Given any n E Z, factor n = TI;P~i as a product of prime 

numbers, and define 

Note that T1 = 1 is the identity operator. 

We have the following obvious proposition. 

Proposition 1.24. We have Tnm = TnTm if (n, m) = 1. 

Proposition 1.25. The Heeke and diamond operators are commutative en­

domorphisms of the vector space of modular forms Mk(r). 

Proof. See [DS], Chapter 5. D 

The following object is central to our study in this chapter. 

Definition 1.26. The cuspidal Heeke algebra hk(N) = h(Sk(f1(N))) of 

weight k for r 1 ( N) is the subalgebra of Z-linear endomorph isms of the space 

of cusp forms Sk(f1(N)) generated by all diamond and Heeke operators. 

The Heeke and diamond operators act on the space Sk(f1(N),x) for a 

character X· 

Definition 1.27. The cuspidal Heeke algebra hk(N,x) = h(Sk(f1(N),x)) of 

weight k and character x for f 1(N) is the subalgebra of Z-linear endomor­

phisms for the space of cusp forms Sk (r 1 ( N), x) generated by all diamond 

and Heeke operators. 
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1.4 Modular Symbols 

We define these objects following (St]. 

Let M be the free abelian group with basis the set of symbols {a, ,13} with 

a, ,13 E Q U { oo} modulo the relation {a, ,13} + {,6, 'Y} + { 'Y, a} and any torsion. 

We have a left action 

GL2(Q) x M--+ M: (g, {a, ,13}) f-+ {g(a), g(,6)}, 

where g acts on a and ,13 by way of the usual fractional linear transformation. 

Let H be the sub module of M generated by all elements of the form x- g( x) 

such that x E M,g E f1(N). 

Definition 1.28. The space M(f1 (N)) of modular symbols for f 1(N) is the 

maximal torsion free quotient of M /H. 

Definition 1.29. The diamond operator attached to d E (Z/ NZ)X acts on 

modular symbols by 

(d){a,~) ~ (: ; ) {a,~), 

where ( : ; ) Er0(N) and 0 "'d mod N 

We extend the definition of the diamond operators (n) to include all pos­

itive integers n in the same fashion as diamond operators acting on modular 

forms. 

Definition 1.30. Let p be a prime not dividing N. We define the action of 
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H ecke operators on modular symbols by 

Tp({a,,6}) = p {a,,6} + L r {a,,6}, ( 0) p-

1 

( 1 ) 
0 1 r=1 0 P 

and 

P-
1 

( 1 r) Up({a,,6}) = L {a,,6}. 
r=1 0 P 

We extend the defintion to include the cases where p is not a prime in a 

similar fashion to that of Defintion 1.23. 

Let B(r1(N)) be the free abelian group with basis equal to the finite set 

of cusps for r 1 ( N): r 1 ( N) \ <Q U { oo}. 

Definition 1.31. The boundary map is 

8: M(r1(N))--+ B(r1(N)): {a,,6} f-7 {,6}- {a}, 

where {,6} denotes the element of B(r 1 ( N)) corresponding to ,6 E Ql U { oo}. 

Definition 1.32. The kernel of o is the space of cuspidal modular symbols, 

denoted S(r1(N)). 

Remark 1.33. The space S(r1(N)) is isomorphic to the integral homology 

H1 (X1 (N), Z) under the map taking {a, ,6} to the class of the path from a to 

,6 in the upper half plane that is a circle of possibly infinite radius intersecting 

the x-axis perpendicularly, where a and ,6 are equivalent cusps, not both oo. 

Let h(S(r1(N))) be the subalgebra of Z-linear endomorphisms of the 

space of cuspidal modular symbols S(r1 (N)) generated by all Heeke and 

diamond operators. 

10 



Definition 1.34. Let S(r1 (N))+ be the subspace of cuspidal modular symbols 

fixed under the involution 

{a, ,6} ._.. {-a, -,6}. 

Let h(S(r1(N))+) be the Heeke algebra of endomorphisms of S(r1 (N))+ 

generated by the action of all Heeke and diamond operators. 

Theorem 1.35. The identity map on Heeke operators extends to an isomor­

phism 

Proof. We give a sketch of the proof. We have an integration pairing 

(,): S2(r1 (N)) x S(ri (N)) -+ C: (!, {a, ,6}) = 21ri lf3 f(z)dz, 

where the integral is over the path described in Remark 1.33. As shown in 

[M], this induces a non degenerate pairing 

Further, the integration pairing is compatible with Heeke operators: 

(Tf, {a, ,6}) = (!, T{a, ,6}) 

for any Heeke or diamond operator T. See, for instance, [C], Section 2.4. 

The isomorphism follows, since this implies that the identity map on Heeke 

operators is well-defined in both directions. 0 

Definition 1.36. The space of cuspidal modular symbols with respect to a 

Dirichlet character x modulo N, denoted S(r 1 (N), x) is 

{x E S(ri(N)) ®z Z[xll (d)x = x(d)x \fd E (Z/NZ)x}, 

where Z[x] is the ring generated over Z by the values of X· 

11 



We may take the plus and minus spaces under the involution 

{a, ,8} f-+ {-a, -,8} 

as in Definition 1.34, but on the space of cusp forms with respect to a Dirichlet 

character. 

Also as before, we define h(S(r1(N), x)+) to be the algebra of endomor­

phisms of S (r 1 ( N), x) + generated by all Heeke operators. 

Corollary 1.37. Let x be a Dirichlet character modulo N. Then the identity 

map on Heeke operators extends to an isomorphism 

1.5 The Eisenstein ideal 

Let p 2:: 5 be a prime and N = 1 or N 2:: 3 be a prime with (N,p) = 1. Let 

Tz for l f N p and U1 for l I N p be the usual Heeke operators. 

Let w be the Teichmiiller character. Fix a nontrivial even Dirichlet 

character x: (7l/Np7l)X --+ Qp x of conductor Nor Np. We assume that 

X I(ZfpZ)x =1- w I(ZfpZ)X and X I(ZfpZ)X =1- w2 
I(ZfpZ)X. Let 0 be the ring gener­

ated over 'll.,P by the values of X· Suppose that <.p(N) I <.p(p), where <.p denotes 

the Euler phi function. 

Proposition 1.38. If <.p(N) I <.p(p) then 0 = 7lp. 

Proof. Since <.p(N) I <.p(p) we actually have x as a map from 

(7ljNp7l)x ~ (7ljN7l)x X (7ljp7l)x ~ 7lj<.p(p)7l X 7lj<.p(N)7l. 

12 



Thus, the order of Im(x) divides r.p(p) = p - 1. Hence x must actually map 

(Z/NpZ)x into (p- 1yt roots of unity in Zp· This is because /LN- 1 C /Lp- 1 . 

That is, the image of X must be contained in ZP' D 

We now consider the Heeke algebra h = h2(Np, xw-2
) ®z[JLv-l] ZP' Note 

that 

noting Proposition 1.38. 

We are now ready to define the central object of our study. 

Definition 1.39. The Eisenstein ideal I is the ideal of of h generated by 

1!- 1 -lx(l) for l f Np and by Uz- 1 when l\ Np. 

Lemma 1.40. We have that h/I ~ Zp/ B2,xw-2 via the map taking 1! to 

1 + lx(l) for l f Np and Up to 1 for l\ Np. 

Proof. We sketch the proof, and refer the reader to the similar argument of 

[K], Lemma 3.1 for more details. The Eisenstein series G2,xw-2, which equals 

-B22xw-
2 + f"Lxw-2(t)tqn 

n=1 t>1 
tTn 

is congruent to a cusp form modulo pvv(B2,xw-2), where Vp is the usual additive 

p-adic valuation. The map on h takes a Heeke operator to the corresponding 

eigenvalue of the Eisenstein series modulo pvp(B2,xw-2). The kernel of this 

map is precisely I. The result then follows (as in [K], Lemma 3.1), using the 

duality between h and cusp forms of weight 2, level p and character x with 

Zp-coefficients. The map is a ring homomorphism because of the duality and 

the fact that G2,xw-2 is an eigenform. D 
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We assume that pI B2,xw-2 and p2 f B2,xw-2 so that h/1 ~ ZfpZ. 

In [S2], Section 5, Sharifi showed that I is principal in many cases, gen­

erated by the Heeke operator Up - 1. 

Theorem 1.41 (Sharifi). Let N = 1. Suppose p < 1000. Let k be a positive 

even integer less than p with p I Bk. Then the element Up- 1 generates the 

Eisenstein ideal I for the character wk-2 . 

This leads of course to the natural extension of the above question: we 

want to know whether Up - 1 generates I in general. 

Theorem 1.42. With the exception of one value of X for N = 3 and p = 331 

we have that for all p and x as above with N prime and N p < 1000, as well 

as for all X with N = 11, p = 101 and N = 3 and p :::; 397 we have that 

Up- 1 generates I in weight 2 and level Np. 

However, it is very interesting to note that it is not always the case the 

the element Up - 1 generates I. By running the program written by Sharifi 

to prove Theorem 1.41, we were able to find the following counterexample. 

Theorem 1.43. Let x = 'lj;w149 , where '1/J is the unique character of (Z/ N pZV 

with '1/J lcz/pZ)X = 1 and '1/J lcz;Nz)x =F 1. Then for N = 3, p = 331 and character 

xw-1 , we have that UP- 1 alone does not generate the Eisenstein ideal. 

This was computed using a modification of a program written by Sharifi 

in the language Magma. We describe the steps of that program, as a sketch 

of the proof of the theorem. 

Proposition 1.44. The ring h2 (N, xw-2
) of Heeke operators acting on the 

space S2 (r 1 ( N), xw-2
) of cusp forms of weight 2, level N p and character 

14 



xw-2 is generated as an abelian group by the Heeke operators Tn with 

< (N + 1)(p+ 1) 
n- 6 . 

Proof. This follows from (AS], Theorem 5.1. 0 

For each pair ( N, p) and character x, let l be the integer of Proposition 

1.44 so that T1, ... , T1 generate h2(N, xw-2 ). Recall that in 1.37 we showed 

that h(S2(f1(N), x)) and h(S(f1(N), x)+) are isomorphic. Hence, to com­

pute Heeke operators, it suffices to do so on a basis of h(S(f1(N), x)+). We 

did this, computing in Magma the matrices representing the Heeke operators 

Up and Tn for n :::; l as elements of the matrix ring Mdxd(Z[J.Lp_1]) where dis 

the rank of S(r1(N),x)+. 

Our earlier identification of (p - 1 )•t roots of unity in C and Zp provides 

a map Z(J.Lp-1] --+ Zp, and there is a canonical quotient map Zp --+ Z/p2Z. 

By composition we may map the matrices representing the Heeke operators 

into the matrix ring Mdxd(Z/p2Z). We denote the images of the matrices Up 
2 - -and Tn in Mdxd(Z/p Z) by Up and Tn, respectively. 

Let M = span(Tb ... , Tz), the subgroup of Mdxd(Z/p2Z) spanned by the 

Tn. Then, by a simple iteration, we found the smallest integer m such that 

- - j2 2} Tb ... , Tm generate M as a Z p Z-module. Recalling that p 1 B2,-x.w-2, we 

have the following. 

Proposition 1.45. The ideal I is generated over Zp by 

pT1 and Tn- L xw-1(e) with 1:::; n:::; m. 

O<eln 

Proof. See (S2], Section 5. 0 
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Proposition 1.46. Up- 1 generates I as a Zp-module if and only if Up- 1 

generates the abelian group I/I2
. 

Proof. This follows as a consequence of [82], Lemma 5.5. D 

We create the Eisenstein ideal in Magma using Propositon 1.45: we use 

the elements 

{Tm- 2:xw-1(k), ... ,T2- L:xw-1(k),pT1} 
kim kl2 

and their products to compute the images I and J, of I and I 2
, respectively, 

in M. Then we test that I = J +(Up - 1). This suffices to prove that 

I=I2 +(Up-l). 
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2 A Pairing Arising from the Cup Product 

2.1 Cohomology Groups and the Cup Product Map 

Definition 2.1. If G is a group and R is a ring then the group ring R[G] is 

the set of formal linear combinations 

{L a9g: a9 E R and a9 = 0 for almost all g E G}. 
gEG 

The group ring given the structure of a ring by linearly extending the opeartions 

of addition and multiplication of group elements, with addition and multipli­

cation of coefficients given by the operations in R. 

We fix some notation for this section: let G be a group, and let A be a 

module over the group ring Z[G]. 

Definition 2.2. Let C0 (G, A) = A and, for all i 2:: 1, let Ci(G, A) be the 

additive group Maps( Gi, A). 

Definition 2.3. Fori 2:: 0, the ith coboundary map is 

such that for any¢ E Ci(G, A) and (g1 , ... , gi+1) E Ci+l(G, A): 
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Definition 2.4. The set ofi-cocycles is zi(G,A) = ker(di). 

Definition 2.5. The set ofi-coboundaries is Bi(G,A) = im(di-1). 

Definition 2.6. The cohomology groups are 

i( ) zi(G,A) . 
H G,A = Bi(G,A) jon 2: 1. 

Theorem 2. 7. Fori 2: 0, the cohomology groups Hi( G, A) are abelian groups 

satisfying 

1. H 0 (G,A) = A 0 ={a E A I ga =a Vg E G}, the G-invariants of A. 

2. Iff: A -t B is a Z[G]-module homomorphism, then there exist group 

homomorphisms f*: Hi(G, A) -t Hi(G, B) induced by f for every i 2: 

0. 

3. If 
k j 

o~A~B~c~o 

is a short exact sequence of Z[G]-modules, then there exists a long exact 

sequence of abelian groups 
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Theorem 2.8. The cup product maps are the unique family of homomor­

phisms satisfying 

for all i,j 2:: 0 and Z[G]-modules A and B such that 

1. If f : A -7 A' is a Z [ G]-module homomorphism then there exists a 

commutative diagram 

Hi(G,A) ® HJ(G,B) ~Hi+J(G,A® B) 

1/*®idB l (/®ids)* 

Hi(G, A')® HJ(G, B)~ Hi+J(G, A'® B) 

and similarly for maps g : B -7 B'. 

2. If i = j = 0 then 

A®B--A®B 

commutes. 

3. If we have a short exact sequence of Z[G]-modules 

0 -7 A -7 A' -7 A" -7 0 

such that 

0 -7 A ® B -7 A' ® B -7 A" ® B -7 0 

is still exact then, for f" E Hi(G,A") and FE HJ(G,B), 

(of") u F = o(f" u F) 
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where J is the coboundary map in the long exact sequence in cohomol-

ogy. 

4. Iff E Hi( G, A) and F E Hi ( G, B), then there exists a natural isomor­

phism Hi+i(G,A®B) 9'! Hi+i(G,B®A) since A®B 9'! B®A. Under 

this identification, 

2.2 The Pairing 

Let K be a field containing the nth roots of unity for some n E Z. Let S be 

a set of primes of K including those above n, and let Ks be the maximal 

extension of K unramified outside S. Let GK,s denote the Galois group 

Gal(Ks/K). 

Definition 2.9. If S is a set of primes of a number field K, the S-integers 

of K are 

OK,s ={a E K: ordp(a) ~ 0 Vp rt S}. 

The group of S -units is 

O~,s ={a E K: ordp(a) = 0 Vp rt S}. 

Definition 2.10. Let K be a field containing the group f-ln of nth roots of 

unity, for some n E Z. A Kummer extension of K is a field extension Lj K 

where L is of the form L = K( ~) and ,6. is a subgroup of Kx containing 

Kxn, the group of nth powers. That is, L is generated by all roots y'a such 

that a E .6.. 
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Theorem 2.11 (Kummer Theory). The Kummer extensions are in bijective 

correspondence with the subgroups Ll of Kx containing Kxn. Further, if 

L = K( V'K) then Ll = £Xn n KX and 

Hom(Gal(L/ K), lln) ~ Ll/ Kxn 

in a canonical fashion. 

Fix notation: let DK = K;n n KX. Note that DK contains o~,s as, by 

definition, 

o~,s = {x E KX: ordq(x) = 0, Vq ~ S} c 

{x E Kx: n \ ordq(x) , Vq ~ S} = DK· 

As explained in [McS], Section 2, since any homomorphism from G K,s to 

lln factors through the maximal abelian quotient of G K,S of exponent n, we 

have by Kummer theory that 

We only consider the case where K is a cyclotomic field and in particular 

K = Q(lln) for neither a prime p or a product of two primes p and N. We 

also assume that S consists of only the primes above p in K. 

Definition 2.12. We define the pairing 

to be that induced by the cup product 
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2.3 Case 1: K = Q(p,p), p is prime 

Let K = Q(tip), where pis an odd prime and tip is the group of pth roots of 

unity. Let (p be a fixed primitive pth root of unity. 

Proposition 2.13. The unique prime above p inK is (1- (p)· 

Proof. See [W], Section 1. D 

LetS be the set containing the unique prime above pinK. As before, let 

G K,s be the Galois group of the maximal extension of K unramified outside 

S. Let AK be the Sylow-p subgroup of the class group ClK. 

Proposition 2.14. There is an isomorphism AK Q9 tip-+ H 2(GK,s, ti?2) of 

Zp[~]-modules. 

Proof. Recall from [McS], Section 2, that we have the short exact sequence 

As was also explained in [McS], Section 2, we may identify 

with the p-torsion in the S-part of the Brauer group, tensored with tip, namely 

Brs(K)[p] Q9 tip· Recall that by definition 

Brs(K)[p] Q9 tip= ker(E9 H 2(GKv, tip)-+ ZjpZ) Q9 tiw 
vES 

Because the cardinality of S is one, 

ker(E9H2(GKv,tiP)-+ ZjpZ) Q9 tip= ker(H2(GK(Hvl'tip)-+ ZjpZ) Q9 tip· 
vES 

22 



The cohomology of the local Galois group is simple: 

Thus, we have 

ker(Eij H 2(GKv, f.Lp) ~ 'lljp'll) ® {Lp ~ ker('lljp'll ~ 'lljp'll) ® /Lp = 0. 
vES 

In this way we are able to simplify the original short exact sequence to the 

following: 

0- AK ® f.Lp- H 2 (GK,s, J.L:2)-0. 

This implies that AK ® f.Lp ~ H 2 ( G K,s, J.L:2
) as desired. 0 

We fix some notation. Let w be the Teichmiiller character, as in Definition 

1.7. Let L1 = Gal(Q(J.Lp)/Q). 

Definition 2.15. Let i E 'll, and define the wi-eigenspace of AK to be 

Proposition 2.16. Let p be a prime number. Let r be even with 2 ~ r ~ 

p - 1. Then the following are equivalent: 

1. The prime p divides the numerator of the rth Bernoulli number Br 

2. The eigenspace At'p-r) is nontrivial 

3. The prime p divides the Bernoulli number B1,wr-1. 

Proof. See (W], Corollary 5.15 and Theorem 6.17. 0 

With this proposition in mind, we make the following definition. 
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Definition 2.17. A pair of integers (p, r) with p prime and r even with 

2 :::; r :::; p - 2 is called irregular if p divides the numerator of the Bernoulli 

number Br· 

Fix an irregular pair (p, r). 

Definition 2.18. The tth Tate twist of ZjpZ for an integer t is written 

ZjpZ(t). This object is isomorphic to ZjpZ as a group, and it has a Zp[Ll]­

module structure as well. The action of o E .6. on x E ZjpZ(t) is given 

by 

Conjecture 2.19 (Vandiver's Conjecture). Let p be a prime number and L 

be the maximal real sub .field of the pth cyclotomic field; i.e. L = Q( (p + (;1), 

where (p is a primitive pth root of unity. Then p does not divide the class 

number of L. 

We assume Vandiver holds for p. 

Proposition 2.20. There is a group isomorphism A~l-r) ~ Zpj B 1,wr-t'Zw 

Proof. See [W], Chapter 10. 0 

This allows us to choose an isomorphism 

of Zp[.6.]-modules. 

Proof. See [W], Chapter 8. 0 

This identification is possible because both modules have an w2
-r -action. 
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Definition 2.21. The pairing 

is given by composing the following isomorphisms and natural surjection: 

Proposition 2.22. The pairing ( , )r is Galois equivariant, meaning that 

for any o E ~ and a and b in Dx we have that 

o(a, b)r = (oa, ob)r· 

Now we restrict the mapping to the cyclotomic units C. 

Definition 2.23. The cyclotomic p-units of K are defined to be the group 

Cx=((;-11 (r,p)=l). 

We will technically now pass to the Zp[~]-module C = Cx 0 Zp for all 

further computations about the pairing. 

There is a decomposition of the cyclotomic units into subspaces: 

C = c+ EBC-

where the plus and minus part are determined by the action of complex 

conjugation. That is, c E C is an element of c+ if and only if c is fixed by 

complex conjugation; i.e. if and only if c is contained in the p-completion of 

the multiplicative group of the maximal real subfield Q((p + (;1) of Q(ftp)· 

Note that c- is just pth roots of unity. 
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Lemma 2.24. A prime p satisfies Vandiver's conjecture if and only if p f 
[O~,s: CxJ, where all notation is as above. 

Proof. See [W], Chapter 8. 0 

Definition 2.25. There is a Galois equivariant pairing arising from the cup 

product 

( , )r : C X C _, Ax ® J.lp 

depending on p and r. This pairing is the Zp-linear extension of the restric­

tion of ( , )r· 

We claim that ( , )r determines ( , )r on any p-units. This in fact fol­

lows immediately from Vandiver's conjecture. We have the natural inclusion 

Cx _, O~,s and we know that p f [O~,s: Cx] so actually C = Cx ® Zp ~ 

O~,s ®Zw 

Proposition 2.26. For x, 1- X E o~,s' we have (x, 1- x)r = 0. 

Proof. See [McS], Corollary 2.6. 0 

Proposition 2.27. We have that 

so we only need to compute the pairing on c+ to fully understand it. 

Proof. Consider the pth roots of unity (p and (; for some 2 ::; i ::; p - 1. 

By Proposition 2.26 we have that 0 = ((;, 1 - (;)r = ((p, 1 - (;)~. Thus, 

((p, 1- (;)r = 0, so ((p,C)r = 0 since Cis generated by the 1- (;. 0 

26 



Definition 2.28. For any i E Z let 

Proposition 2.29. There is an eigenspace decomposition 

p-2 p-2 

AK ~ EBA~i) = EBc:i(AK). 
i=O i=O 

Proposition 2.30. For 1 ~ i ~ p- 1 the element c:i is an idempotent in the 

group ring Zp[Ll]. Moreover, we may view t:; as a surjective map projecting 

from the p-part of the class group to the wi-eigenspace of any Zp[Ll]-module 

A: 

the map being multiplication by the idempotent. 

Fix a primitive pth root of unity (p. 

Definition 2.31. Applying the idempotents we obtain the elements 

'r}; := (1- (pyl-i = II (1- (;)w(8)i-l E C. 
8E~ 

Proposition 2.32. The elements rJ; with i odd, 1 ~ i ~ p - 2 generate c+ 
as a Zp-module. In fact, C(wl-i) = (rJi). 

Proof. See [W], Chapter 8. 0 

Proposition 2.33. We have that 
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Proof. Fix an element o E ~. By definition of the pairing, we have that for 

any i and j that ( 1Ji, 1JJ )r is acted on by w2-r. Thus o( 1Ji, 1JJ )r = w( o)2-r( 1Ji, 1JJ )r· 

On the other hand, by Galois equivariance of the pairing we have that 

'( ) - ( J: J: ) h' h b d fi · ' f · 1 ( w(&)l-i w(&)l-J) U 1Ji, 1}j r - U1Ji, U1}j r W lC y e mt10n 0 1} lS equa to 1Ji , 1Jj r· 

This is the same as w(o) 2-i-J(1Ji, 1JJ)r· That is, 

(>)2-r( ) _ (')2-i-j( ) W u 1Ji, 1}j r - W u 1Ji, 1}j r· 

If i + j =:/= r mod p- 1, then the above equation cannot hold for all o unless 

0 

This leads us to define the following ~ elements, the values of which 

completely determine the pairing on C: 

Definition 2.34. Fori odd, 1 ::; i ::; p- 2, let 

Proposition 2.35. If c E C and 1- c = (;c' for some k E Z and c' E C then 

(c, c')r = 0. 

Proof. We have 0 = (c, 1- c)r by Proposition 2.26. Then by hypothesis, we 

may write 

(c, 1- c)r = (c,(;c')r = (c,c')r(c,(p)~. 

By Proposition 2.27 we have that (c, (p)r is trivial. Hence (c, c')r = 0. 0 

We will create several relations using Proposition 2.35 in this case as well 

as in the case where K = Q(/LNp) where N and p are prime. In order to 

create the relations, we will first need to study some particular polynomials. 
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2.4 The Polynomials 

Definition 2.36. For a 2: 1, let 

a-1 

fa= 2)-x)i E Z[x]. 
j=O 

Proposition 2.37. For all a 2: 2, we have 1- fa= xfa-1· 

Proof We have that 

a-2 

xfa-1 = x L) -x)i = x- x2 + x3 + ... + x( -x)a-2 

j=O 

= 1- (1- x + x2
- ... + ( -xt-1

) = 1- fa· 

Proposition 2.38. If a is an even integer, then we have 

and 
1 + xa-1 (1- x2a-2)(1- x) 

fa- 1 = 1 + x = (1- xa-1)(1- x2 ) · 

Proof First recall the well-known polynomial identity 

1- xa = (1 + x)(1- x + x2
- •.. - xa-1 ), 

which holds for all x and all a even. This shows that 

To show that 

1 + x 1- x2 
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notice that 

Similarly, 

because of the identity 

1 + xa-1 
fa-1 = 1 +X 

( 1 - X + x2 + ... + xa-2
) ( 1 + x) = 1 + xa-1. 

Finally, 

because 

1 + xa-1 

1+x 

(1- x2a-2)(1 -x) 
(1- xa-1 )(1 - x2 ) 

D 

From now on we let x = ( where ( is a root of unity. That is, we consider 

Pa := fa(() E Q(f.tp)· For now, we let ( = (p· Note that for any a 2:: 1 we 

have that fa is a p-unit or zero. 

2.5 The Relations in Case 1 

Proposition 2.39. If 6 E ~ satisfies 6(p = (; for some a E Z then w( 6) = 
a mod p. Furthermore, 

Proof. The first statement is true by definition of the Teichmiiller character. 

It is necessary, however, to notice that we may apply w to 6 by using the 
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isomorphism ZjpZ ~ Gal(K/Q) to identify c5 with an integer mod p. The 

second statement is a simple computation: 

D 

By the eigenspace decomposition, Proposition 2.29, we have that for any 

x,y E C, 

(

p-1 p-1 ) 

(x,y)r= gxel-i,_gyC!-i r 

which because the odd eigenspaces are trivial or /-lp, along with Proposition 

2.33, is equal to 
p-2 

II ( xC!-i, yCl-(r-i)) r. 

i=l 
i odd 

Suppose that a is even. Choosing x = Pa andy= Pa-l> we see that 

p-2 

( ) II ( El-i 01-(r-i)) 
Pa, Pa-l r = Pa 'Pa-l r' 

i=l 
i odd 

We compute using Proposition 2.38 that 

(1 _ ra)el-i (1 _ r )el-i 
El-i _ '>p '>P 

Pa - (1 _ (;)el-i 

but by Proposition 2.39, we must have that 

Similarly, 

(1 _ ?p2a-2)El-(r-i) (1 _ ?p)El-(r-i) 
El-(r-i) '>· '>: 

Pa-l = (1 _ (;-1 )"Hr-i) (1 _ (J)"Hr-i) ' 
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But since 

(1 - ;-a)"1-(r-i) = T}a1-:(r-i) 
~p r-• ' 

for some 6 E ~with J((v) = (; we must have 

(2(a-1))1-r+i 
"1-(r-i) _ TJr-i TJr-i 

Pa-l = (a-1)1 r+l 21-r+i 
Tlr-i Tlr-i 

As Pa is a p-unit, and by the relationship described in Proposition 2.37, 

we must have by Proposition 2.35 that 

Finally, we compute that 

which implies that the ei,r are solutions over ZjpZ to 

L (1- 21-i + al-i)(1- 21-r+i)(1- (a- 1)1-r+i)ei,r = 0 (3) 
i odd, 

l::;i::;p-2 

for every a even with 2:::; a:::; p- 1. 

Proposition 2.40. The pairing ( , )r is skew-symmetric. 

Proof. Because the pairing arises from the cup product, for any x, y E C we 

have by part 4 of Theorem 2.8 that 

(x, Y)r = -(y, x)r· 

0 
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Corollary 2.41. The e;,r also satisfy the relation 

ei,r + er-i,r = 0. (4) 

Theorem 2.42 (McCallum-Sharifi). For all irregular pairs (p, r) with p less 

than 25,000, the ei,r with 1 ::; i ::; p - 2 odd are uniquely determined by 

the relations (3} and (4) up to a single scalar in ZjpZ. That is, ( , )r is 

determined by (3} and (4) up to a possibly zero scalar multiple. 

Proof. See [McS], Theorem 5.1. 0 

This theorem was proved using a computer program in the language 

Magma. It creates the matrix of the relations (3) and (4), and computes 

the nullspace of this matrix to have dimension 1. 

Example 2.43. For example, first compute the nullspace of the matrix 

M = (aj,i)I~i~p-2,i odd; 2~j~p-l,j even 

where for any i, j, we have that 

2.6 Case 2: K = Q(f.-LNp), N and p prime 

Let N be an odd prime number relatively prime to p with N - 1 I p - 1. 

Recall that K = Q(P,Np). Let S be the set of primes of K consisting of all 

those dividing p. Let Ax be the p-part of the class group of K. Let w be the 

Teichmiiller character. Let b.= Gal(K/Q). We fix a primitive Npth root of 

unity (Np such that (fJP = (p and define (N = (~p· 
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Let .D.* be the Dirichlet group modulo N p. That is, 

.D.*~ Hom( .D., z;). 

Proposition 2.44 . .D.*~ (Z/NZ)x x (Zjp!ZV. 

Proof. We have that 

by elementary group theory, and that 

by additivity of the Hom functor. It is obvious that Hom((Z/pfZ)X' z;) ~ 
(Z/p!Z)X, and because of the assumption that cp(N) I cp(p) it follows that 

Hom((Z/NfZ)X' z;) ~ (Z/NZV. Thus we have that .D.* ~ (Z/NZV X 

(Z/pfZ)X. D 

Definition 2.45. The p-completion C of cyclotomic p-units of K is 

( (1- (Jvp I i ;/:. 0 mod Np) n o~.s) ®z Zp. 

We just described how Cis generated as a pro-p group; however, we would 

like to know how it is generated as a Zp[.D.J-module. 

Fix an even character x E G of conductor N or N p. We will generalize 

the pairing of the previous section. We can think of x as being an extension 

of wr above. Let 'ljJ E .D.* be any Dirichlet character. 

Definition 2.46. Let 'ljJ E .D.*. We define the ¢-eigenspace of any Zp[.D.]­

module A to be 

A(¢)= {a E A l8(a) = ¢(8)a, V8 E .D.}. 
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Proposition 2.47. With notation as in the definition, there is always an 

eigenspace decomposition 

Proof. See [S2], Appendix A. 0 

Definition 2.48. Let 

ew,p-1 = (N -l~(p -l) ~w-1 '1/J(o)o. 
Note that we view this idempotent as an element of the group ring ZP[~]. 

We can also view it as a map projecting from the p-part of a Zp[~]-module 

A to the (w,p-1 )-eigenspace: 

the action being multiplication by the idempotent. 

Remark 2.49. We may also write the eigenspace decomposition of 2.41 in 

terms of the idempotents: 

A= EB ew,;;-1(A). 
1/JE!l* 

We fix notation: let x E ~ * be an even Dirichlet character such that 

pI B1;xw-1· 

Proposition 2.50. There is a Galois-equivariant, skew-symmetric pairing 

arising from the cup product 

depending on N,p, and X· 

Proof. See [McS] and [S2], Section 5. 0 
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2. 7 Understanding the pairing 

We now apply the idempotents. 

Proposition 2.51. There is an eigenspace decomposition of Zp[.6.]modules: 

c = EB c<.Pl, 
1/;EA* 

where 

Zp 'ljJ is even, 

c<.Pl = f.-tp '1/J = w, 

0 'ljJ is odd and 'ljJ =/= w. 

Proof. See [R], Chapter 3. D 

Definition 2.52. Let 

and 

Much as before with the 'IJi, the 'l],p and '17~ will in this case help us find a 

basis for the cyclotomic p-units, thus allowing us to compute the pairing by 

restricting our computations to just those basis elements. 

Proposition 2.53. Let 'ljJ be an odd character in .6. •. Then 

generates c<w,p-l) as a Zp[.6.]-module. 
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Proof. See [R], Chapter 3. 0 

Again, we have as in Proposition 2.27 that ((p, C)x = 0, so we need only 

consider the pairing values (a..;_,, a..;_,-1x)x· 

Proposition 2.54. If '1/J' =f 'I/J- 1x then (a..;_,, a..p' )x = 0. 

Proof. Fix an element <5 E ~- By definition of the pairing, we have that 

(a..;_,,a..p')x is acted on by w2x-1
. Thus <S(a..;_,,a,v)x = w2x-1(<5)(a..;_,,a..p')x· 

On the other hand, by Galois equivariance of the pairing we have that 

J:( ) (J: J: ) h" hb d fi "t" · lt ( w..p- 1
(6) w..p'- 1

(6)) u a,p,a..p' x = ua,p,ua..p' xw 1c y em 10n1sequa o a..;_, ,a..;_,, x· 

This is the same as w2'1jJ-1'1jJ'-1(<5)(a,p,a..p')x. That is, 

If x-1 =f '1/J-1'1/J'-1; i.e. if '1/J' =f 'ljJ- 1x then the above equation cannot hold for 

all <5 unless (a..;_,, a..p' )x = 0. 0 

Definition 2.55. Let e..;_,,x = (a,p, a..p-1x)x· 

Recall the polynomial fa(x). We will from now on set Pa = fa((Np), where 

(Np is a fixed primitive N pth root of unity. As we did before, we will derive 

relations based on the fact that (pa, Pa-I)x = 0 for 2 :::; a :::; p- 1. 

Before we can do these computations, we need the following facts about 

our basis for C. 

Lemma 2.56. 
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Proof. First, we would like to find a and b such that that (Np = (;(!z,. To 

solve this, recall that we require that (fJP = (p and (~P = (N. Thus, we have 

that 

rN = rNarNb 
'>Np '>p '>N 

which implies that (p = ({!a. That is, N a = 1 mod p; i.e. a = N-1 mod p. 

Similarly, b = p-1 mod N. Thus, (Np = ({;'-
1 (~-

1

• We may now compute the 

norm: 

N-1 N-1 N-1 =II (1-(:-1,~- 1

j) =II (1-(:-1(~) = (-1)N-1 II ((:-1-(~) = if>((:-1) 
j=1 j=1 j=1 

where if> refers to the Nth cyclotomic polynomial. The above is equal to 

1 _ (({;'-1)N 

1-(: 1 

1- (p 

(
N 1' 1- p 

Proposition 2.57. We have the relationship 

Proof. 

1 " -1 cw.p-1 = (N _ 1)(p _ 1) f;tw '1/J(J)J 

D 

= (N 1 1 L w-1'1/J(J)J) (~ L w-1'1/J(a)c;) 

- d'EGal(IQI(ILNp)/IQI(!Lp)) p- O"EGal(IQI(ILNp)/IQI(!LN)) 

As '1/J iclJNZ)x = 1 we have that the above is equal to 
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= (A L !j) (~ L W-
1'1/J(a)a) 

- 6EGal(IQI(J.INp)/IQ(J.Ip)) p- o-EGal(IQI(J.INp)/IQI(J.IN)) 

= N ~ 1 ( L J)c:~~- 1 ' 
6EGal(IQ(JLNp)/IQI(J.Ip)) 

where 

I 1 "" -1 ( ) c:w~-1 = p _ 1 w w '1/J a a. 
o-EGal(IQI(J.INp) /IQ(J.IN) 

Thus, using Lemma 2.56, we have that 

Notice that 

Thus the above is equal to 

0 

Proposition 2.58. If 'ljJ \cz;Nz)x =rf 1 then (1 - (p)"w.r- 1 = 1. 

Proof. Since 'ljJ \cz;Nz)x:rf 1 for all 6 E Gal(Q(J.LNp)/Q(J.Lp)), we have 

which is a contradiction if (1 - (p)"wV>- 1 =rf 1. 0 
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Fix notation: 7/J always refers to an element of .6. *, and a sum over 'lj; 

means to sum over all such characters; that is, over the entire Dirichlet 

group modulo N p. 

Proposition 2.59. Suppose 7/J l<;z;N;W = 1. If a E Z is prime to Np, then 

and 

Proof. First we compute that 

where 6 E .6. is an element taking (p to (g under the canonical isomorphism 

.6. ~ (ZjNpZ)x. Then we have that 

by the definition of TJ~· Similarly, 

where cr E .6. is the element taking (Np to ('Np· Then we have that 

(1 - cr(Nptw,p-1 = (1 - (Npt1/!-1(a)<w,p-1 = 'T}~1/!-1(a) mod CP 

by the definition of TJ'I/!· D 

By the eigenspace decomposition, Proposition 2.47, we have that for any 

c,d E C, 

(c, c') = (IJ c"ww- 1
, IJ c'c:wwx- 1 )x = L (c"ww- 1

, c'"wwx- 1 )x· 
1/! 1/! 1/! 
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Suppose that a is an even integer with a and a - 1 relatively prime to p 

and that xis a fixed even Dirichlet character. Choosing c = Pa and c' =Pa-l 

we see that 

( ) 
"'( 0w,p-1 °w1/Jx-1) 

Pa, Pa-l X= L...J Pa , Pa-l x· 
1/! 

Since Pa is a cyclotomic unit, and by the relationship described in Propo-

sition 2.37, we must have by Proposition 2.35 that 

To compute the relations arising from this fact, we note that our computation 

depends on whether or not 

Moreover, because of our choice of Pa = Pa((Np) and similarly with Pa-l = 

Pa-1((Np), by Proposition 2.38 we will be raising (Np to powers of a and a-1 

so we must also consider whether N I a and N I a - 1 because if either were 

the case, our primitive N pth root of unity could be reduced to a primitive pth 

root of unity, which would affect the computation of the relations. 

2.8 The Relations in Case 2 

Proposition 2.60. The following comprise all possible cases necessary to 

compute the coefficients cx . .P(a) in 

( ) "'( 
0
w,p-1 °w1/Jx-1) "' ( )( ) 0 = Pa, Pa-l x = L...J Pa 'Pa-l x = L...J Cx,'I/J a a.p, O'.x,P- 1 x· 

1/J 1/J 
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1. N I a - 1 and N fa and '1/J icz;mw = 1. 

2. N I a- 1 and N fa and '1/Jx-1 i<;z;Nz)X = 1. 

3. N I a- 1 and N fa and '1/Jx-1 I(Z/Nz)x =F 1 and '1/J I(Z/NZ)x =F 1. 

4. N fa- 1 and N I a and '1/J I(Z/NZ)X = 1. 

5. N fa- 1 and N I a and '1/Jx- 1 I(Z/NZ)X = 1. 

7. N f a - 1 and N f a and '1/J I (Z/ NZ)X = 1. 

8. N fa- 1 and N fa and '1/Jx-1 I(Z/NZ)X = 1. 

9. N fa- 1 and N fa and '1/Jx- 1 l<z;Nz)x =I 1 and '1/J I(Z/NZ)x =I 1. 

We compute the relations in each of these cases: 

we have 

by Propositions 2.57 and 2.59. Also, 

2{a-1) 

"w.Px-1 - (1 - (p N )"w.Px-1 (1 - (Np)"w.Px-1 - 1-w,Px-1(2) 
Pa-l - (a-1) - 'T/,p-1X ' 

(1 _ (p N )"w,px-1 (1 _ (J.,p)"w.Px-1 

by Propositions 2.58 and 2.59. Because 

( 
"w,p-1 "w,px-1) - 0 

Pa ,Pa-l X-
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and 

which in this case is equal to (ry~, rJ,p-1x)x, we have 

0 _ (r/ e-w~ 1 ~(N))(w1/J- 1 (a)+l-w1/J- 1 (2)) 1-w'I/Jx-1(2)) 
- '1'1/J , 'Tl,p-1x x 

I: 
1/J odd 

1/JI(Z/NZ)X =1 

for every a even, 1 < a < N p with N f a and N I a - 1. 

2. In the case N I a- 1 and N fa, '1/J kz:;Nz)x #- 1 and '¢-1x I(Z/NZ)X = 1 

we have 

and 

Because 

and 

2(a-1) 

(1 _ (p N )"w.Px-1 (1 _ (Np)"w.Px-1 

~ (1 _ (p N )"w,px-1 (1 _ (R,p)"w.Px-1 

I w'I/Jx- 1eaN 2 )-w'I/Jx- 1(at/) 1-w'I/Jx-1(2) 
= TJ'l/J-Ix 171/J-lx 

I e-w-:~1x(N) w'I/Jx-1(a,V1))(1-w'I/Jx-1(2)) 

'Tl,p-1x 

which in this case is equal to (ry,p, fJ~-1x)x, we have 
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2::: 
1/J odd 

1/Jx-'I(Z/NZ)X =I 

for every a even, 1 < a < N p with N f a and N I a - 1. 

3. In the case N I a- 1 and N fa and 'lj;- 1x lcz;Nz)X =1- 1 and 'ljJ lcz;Nz)x =1-

1, we have 

ew,p-1 (1 - ('Np)ew,p-! (1- (Nptw,p-! w.p-1(a)+l-w,P-1(2) 

Pa = (1 _ ('jypyw,p-1 = TJ.p 

and 

ew1/Jx-1 (1- (;(a-1)/N)ew,px-1 (1- (Npyw1/Jx-1 1-w.Px-!(2) 

Pa-l = (1- da-1)/Nyw,Px-1 (1- ('ftyptw,Px-1 = TJ.p-!X 

We have 

0 ( 
w,P-1(a)+l-w,P-1(2) 1-w,Px-1(2)) 

TJ.p , TJ.p-tx x 

L (w'ljJ-1(a) + 1- w'lj;-1 (2))(1- w'l/Jx-1(2))e.p,x 
1/! odd 

1/JX- 1
1(Z/NZ)X # 

for every a even, 1 < a < N p with N f a and N I a - 1. 

4. In the case N fa- 1 and N I a, 'l/J- 1x lcz/NZ)X =1- 1 and '1/J lcz;Nz)X = 1, 

we have 

and 

= 
(1 _ (~:-2))ew,Px-1 (1 _ (Nptw,Px-1 

(1 - (~;l)tw1/Jx-1 (1 - (fvptw,Px-1 

w,Px- 1 (2a-2)+ 1-w.Px-1 (a-1)-w,Px- 1 (2) 
TJ.p-tx 
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We have 

0 = (r/ w,P- 1 ( f!t )+( N~ 1 )(1-w- 11jJ(N))(1-w,P-1(2)) 'l'.p-w.Px- 1(2))(1-w'l/>x-1(a-1))) 
·t.p , ·t.p-1x x 

I: 
,P odd 

1/JI(Z/NZ)X = 1 

for every a even, 1 <a< Np with N fa- 1 and N I a. 

we have 

and 

We have 

I: 
,P odd 

1/Jx- 11(z/NZJ x =1 

(1 - (~;-2))"w.Px-1 (1- (Np)ew,Px-1 

(1 - (~;1))ew,Px-1 (1- ('Jvp)"w.Px-1 

w'l/>x- 1(2a-2)+1-w'l/>x- 1(a-1)-w1/Jx-1(2) 
'TJ.p-1x 

t ( 1-w-~~1 x(N) )(1-w'l/>x-1(2))(1-w'l/>x-1(a-1)) 
'TJ.p-1x 

1 -1.p-1 (N) 
(1-w.p-1(2))( -w N-

1 
X )(l-w1/Jx-1(2))(1-w'l/>x-1(a-l))e,p,x 

for every a even, 1 < a < N p with N f a - 1 and N I a. 

6. In the case N t a- 1 and N I a and 'I/J- 1x lcz;Nz)x f 1 and 'ljJ lcz;Nz)X f 
1 we have 

45 



and 

(1 - ;-2a-2)"w.Px-1 (1 - /"N )"w.Px-1 10w,px-1 _ '>Np '> P _ (1-w,Px- 1(2))(1-wl/>x-1(a-l)) 

Pa-l - (1 - (/.,;1 )"w,px-1 (1 - ('f.,p)"w.Px-1 - 1J,p-1X 

We have 

L (1- w1j;-1(2))(1- w1/Jx-1 (2))(1- w1/Jx-1(a- 1))e.p,x 
,P odd 

'lfX- 1 1(Z/NZ) X ;61 

for every a even, 1 < a < N p with N fa - 1 and N I a. 

7. In the case N fa- 1 and N fa, 1/;-1x i<;z:;m::)X =I= 1 and 1/J lcz:;mw = 1 

we have 

and 

We have 

2: 
,P odd 

1/JI(Z/NZ) X =1 

(1 _ ('Jvp)"w,p-1 (1 _ (Np)"w,p-1 

(1 - (hp)"w,p-1 

w.p- 1(a)+l-w,P-1 (2) 
1J,p 

I ( 1-w-11/J(N) )(w.p-1(a)+l-w,P-1(2)) 
1J,p N 1 

(1 - (~p-2)"w.Px-1 (1 - (Np)"w,px-1 

(1 - ('fvp 1 )"w,Px-1 (1 - (hp)"w.Px-1 

(1-w,Px- 1 (2) )(1-w,Px- 1 ( a-1)) 
1J.p-1x 

for every a even, 1 < a < N p with N f a - 1 and N f a. 

46 



8. In the case N fa- 1 and N fa, '¢ l(zjNz)X# 1 and 7/J-1x l(z;Nz)x= 1 

we have 

and 

"w.p-1 (1- (J.rp)"w.p-1 (1- (Np)"w.p-1 w..p-1(a)+l-w1/>-1(2) 

Pa = (1 _ (F,p)"w.p-1 = 1J.p 

(1- (~~-2 )"w.Px- 1 (1- (Np)"w.Px- 1 

(1 - ('Jv;1 )"w.Px-1 (1 - (F,p)"w.Px- 1 

(1-w,Px-1 (2))(1-w,Px- 1 (a-1 )) 
1J.p-1x 

I ( 1-w-:_~\xCN) )(1-w1/Jx-1(2))(1-w1/Jx-1(a-1)) 
1J.p-1x 

We have 

( 
w.p-1(a)+l-w1/>-1(2) 1 ( 

1-w-:~1 x(N) )(1-w1/>x- 1(2))(1-w1/Jx- 1(a-1))) 
0 = 1J.p , "'.p-1x x 

I: 
1/1 odd 

1/II(Z/NZ)X # 1 

for every a even, 1 < a < N p with N f a - 1 and N f a. 

9. In the case N fa- 1 and N fa and 7/J-1x l(z;Nz)x # 1 and '1/J I(Z/NZ)x # 
1 we have 

and 

"w.p-1 - (1 - (J.rp)"w.p-1 (1 - (Np)"w.p-1 - w.p-1(a)+l-w1/J-1(2) 

Pa - (1 _ (F,p)"w.p-1 - 1J.p 

(1 - (h?p-2)"w.Px-1 (1 - (Np)"w.Px-1 

(1 - ('Jv;1 )"w.px-1 (1 - (F,p)"w.Px-1 

(1-w,Px- 1 (2))(1-w,Px- 1 (a-1)) 
1J.p-1x 

We have 

0 _ ( w1/>- 1(a)+1-w,P-1(2) (1-w1/Jx-1(2))(1-w1/Jx-1(a-1))) 
- 1J.p , 1J.p-1x x 
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2::::: (w'lj;- 1 (a) + 1- w'lj;- 1(2))(1- w'lj;x-1(2))(1- w'lj;x- 1 (a- 1))e,p,x 
1/J odd 

1/Jx-'l<z;Nz) x #1 

for every a even, 1 < a < N p with N f a - 1 and N f a. 

In addition to these nine relations, we also have the following property 

which follows from the antisymmetry of the cup product. 

Proposition 2.61. We have that 

This implies 

We now state the results of our computations. Refer to the table of 

Appendix B to see all values tested. 

Theorem 2.62. For all triples N, p, x as above with N = 3,p < 822 and 

5 :'S N :'S 1000 and 5 :'S p :'S f 1~0 l except for one value of X in the cases 

N = 3,p = 683;N = 5,p = 17;N = 7,p = 73;N = 7,p = 97;N = 7,p = 

103; N = ll,p = 31; N = 13,p = 61; N = 23,p = 199 and two values of x 
in the case of N = 23,p = 89, the dimension of the nullspace of coefficients 

of relations computed in cases 1 through 9 of this section together with those 

of Proposition 2.61 is equal to one. That is, the e,p,x with 'ljJ odd determine a 

unique possibility for the pairing values up to a single possibly zero scalar in 

ZjpZ. 
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Proof. We wrote a routine in Magma which directly computes the nullspace 

of the matrix containing all the relations in each of the cases above. More 

precisely, we first compute four matrices. We have that M 1 is the matrix of 

the key relations 1, 2 and 3 in the case N I a- 1. Then M 2 is computed as 

the matrix of the key relations 4, 5 and 6 in the case N I a, and M 3 is the 

matrix of the key relations 7, 8 and 9 in the case N f a and N f a -1. Finally, 

we compute the matrix M 4 of antisymmetry relations. Then we compute the 

nullspace of the first matrix. Next, we compute the nullspace of M 2 on the 

nullspace determined by M 1 . Similarly, we compute the nullspace of M 3 and 

M 4 on the nullspaces determined by M 2 and M 1 , respectively. Finally, we end 

up with a nullspace which takes into account all the necessary relations. D 

Example 2.63. For example, one matrix is 

corresponding to relations numbered 7,8 and 9, where 2 ~ a ~ Np- 1, for 

a even, where N f a, a - 1, where '1/J odd with '1/J lcz;mw # 1 and where, for 

any '1/J, a, we have that c.p,x(a) is equal to 

{ 

(w..p- 1 (a)+ 1 - w,p-1 (2))(1- w,Px- 1 (2))(1 - w,Px- 1(a- 1)), if ..Px-1 I(Z/NZ) x # 1 

(w,p- 1(a) + 1- w,p- 1 (2))( 1-w-;:-
1
'x(N) )(1- w,Px- 1 (2))(1- w,Px- 1(a- 1)), if ..Px- 1 I(Z/NZ)X = 1 

( 
1 -w;'~(N) )(w.p-1 (a)+ 1 - w,p- 1 (2))(1 - w,Px- 1(2))(1 - w,Px- 1(a- 1)), if ..P i(z(Nz)x = 1. 
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3 Connections Between the Eisenstein Ideal 

and the Pairing 

3.1 The Key Theorem 

Let N 2: 3 and p 2: 5 be odd prime numbers which are relatively prime to 

each other and with the property that <p(N) I <p(p). Let x be a nontrivial 

even Dirichlet character modulo N p. Suppose that X I (Z/pZ)X # w I (Z/pZ) x. 

We will provide in the following theorem the essential key to understand­

ing the objects of our study. 

L 3 1 L t d b b Th B _ Bn,xw-n d J emma . . e p an X e as a ave. en l,xw-1 = --n- mo p. n 

particular, p I Bl,xw-1 if and only if p I B2,xw-2. 

Proof. See [W], Chapter 5. In particular, this follows from Theorem 5.11 

and Corollary 5.13, as in Corollary 5.15. 0 

Remark 3.2. For the computations regarding the Eisenstein ideal, we as­

sumed that p I B 2,xw-2 in order that I# h. For our study of the pairing we 

assumed that p I B 1,xw-1 so that A~x-
1

) # 0. Then Lemma 3.1 ensures us 

that these hypotheses are actually the same. 

Theorem 3.3. Suppose that X lczfpZ)X # w lczfpZ)X 'X2 ICZ/pZ)X # W
2 lczfpZ)X 

, p I Bl,xw-1 and p f Bl,wx-1 The pairing with p is surjective {i.e., (p, )x is 
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surjective) if and only if the H ecke operator Up - 1 generates the Eisenstein 

ideal I. 

Proof. See [S2], Theorem 5.6. D 

When we know that Up- 1 generates I and we know ( , )x up to a scalar, 

then Theorem 3.3 tells us that the pairing and hence the scalar must be 

nonzero. That is, in these cases we know the whole pairing up to a nonzero 

scalar. 

3.2 Final Comments 

We have proved that it is not always the case that the Eisenstein ideal is 

generated by Up -1, and thus that the pairing with p is not always surjective. 

We also found many examples where we were able to understand the pairing 

completely to within a single scalar multiple, and many examples of cases in 

which the element Up - 1 does generate I. We continue running the Magma 

routines in search of more such interesting examples. 

We fix some notation. For any N and p, we define the character '1/J as the 

unique Dirichlet character on (Z/NpZ)x ~ (Z/NZ)X x (ZfpZ)X factoring 

through (Z/ NZ)X and taking the smallest positive primitive root modulo N 

to the ( J(r-=_11 )!h power of the smallest positive primitive root modulo p. 

We note that there are also several cases in which the nullspace of the 

matrix of relations we computed was larger than !-dimensional. For instance, 

for the case N = 7, p = 73 and x = 'lj;3w11 we have a 13-dimensional nullspace. 

In the case N = 23, p = 89, x = 'lj; 10w30
, we have a nullspace of dimension 

45. These are just two concrete examples, but there are many more. This 
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does not in itself prove or disprove anything, as it is possible to impose more 

linear relations, such as those found in [81] arising from K-theory, which may 

lead us to discover that in these cases there is a unique nontrivial possibility 

for the pairing after all. 

There were some cases m which the hypothesis that p f Bt,wx-1 on 

Bernoulli numbers fails, and in these cases Theorem 3.3 no longer applies. For 

example, this occured for the triples (N,p, x) = (23, 67, 'lj;w49
), (23, 89, 'lj;12w60 ) 

and (31, 61, 'lj;4w22 ), just to name a few. Moreover, because the Eisenstein 

ideal program has the additional restriction that p2 f B2,xw-2 but the pair­

ing program does not require this, there were some cases where we actually 

computed the nullspace of the relations but not whether Up - 1 generates I. 

There were also some cases in which the hypothesis on Dirichlet char­

acters that x2 I (ZfpZ)X # w2 I (ZfpZ)X fails, and in these cases Theorem 3.3 

no longer applies. For example, this occured for the triples ( N, p, x) = 

(11, 31, 'lj;8w16 ), (13, 73, 'lj;5w37), (19, 37, 'lj;5w19 ) and (23, 67, 'lj;12w34 ). Note that 

in these cases it is true that X lcz;pz)x # w lcz;pz)x. 

Moreover, we found four examples in which the nullspace has dimension 

one, but the computed basis vector of this nullspace shows that the pairing 

with p is not surjective. The four triples found are as follows: ( N, p, x) = 

(3, 331, 'lj;w 149
), (23, 67, 'lj;14w44 ), (23, 89, 'lj;10w54) and (31, 61, 'lj;8w36

). We are 

currently running the other program to verify whether in these cases Up - 1 

generates I but have only produced results in the case (3, 331, 'lj;w149 ). 

It is also of interest to notice that in each of the cases N = 3, p = 257, x = 

'lj;w21 and N = 19,p = 37, X = 'lj;w 101 we know that p2 I B 1,xw-1 and that 

Up- 1 generates I. This leads to the following result. 
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Proposition 3.4. If X satisfies the hypotheses of Theorem 3.3, p2 I B 1,xw-1 

and Up- 1 generates I then A~.p-
1

) ~ 7L.fp27L.. 

Proof. By the results of [82], we have that the p-rank of A~.p-
1

), that is, 

dim!Fv A(w.p-
1

) fp is equal to the p-rank of 1/12
. Because of the hypothesis 

that Up - 1 generates 1/12
, the p-ranks are forced to be one, which in turn 

forces A~.p-
1

) ~ 7L.fp27L.. D 

Ultimately our goal has been to obtain some understand of the pairing 

arising from the cup product, the Eisenstein ideal, and the structure of the 

eigenspaces, all three of which are related. This thesis has explained how 

we went about studying these objects, what we have found, and what still 

remains mysterious. 
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4 Appendix A: Computations 

4.1 The program for computing whether Up -1 gener­

ates the Eisenstein ideal 

function conv(V,phi,A) 

seq:= ElementToSequence(A); //converts matrix to a sequence 

seq:= [phi(seq[i]) : i in [1 .. #seq] ]; /*applies the map phi 

to each element in the sequence.*/ 

return V!seq; 

end function; 

function alggens(V,L,phi) /*used to find vector space basis 

of Heeke algebra.*/ 

nums := [1]; 

M := sub< V I conv(V,phi,L[1]) >; 

for i in [j j in [2 .. #L]] do 

v := conv(V,phi,L[i]); 

if not v in M then 

Append(-nums, i); 
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M := M + sub<VIv>; 

end if; 

end for; 

return M,nums; 

end function; 

function idealeq(V,L,I,phi,Up1) I* used to compute I~2 

+ (U_p-1) & compare w/ I *I 

M := sub< V conv(V,phi,Up1) >; 

//M := sub< V I 0>; 

for i in [1 .. #L] do 

for j in [i .. #L] do 

v := conv(V,phi,L[i]*L[j]); //product of two Heeke operators 

if not v in M then 

M := M + sub<VIv>; //create M I~2 + (U_p-1) 

end if; 

if M eq I then 

return true,M; 

break; 

end if; 

end for; 

end for; 

return false,M; 

end function; 

55 



function rootofunity(p,prec) //a primitive root mod p-prec 

g := PrimitiveRoot(p); 

for i in [2 .. prec] do 

g := (IntegerRing(p-i)!g)-p; 

end for; 

return Integers()!g; 

end function; 

function Uptest(N, p, char prec := 2, val := 1); 

K := CyclotomicField(p-1); 

G<a, b> := DirichletGroup(N*p,K); 

M := ModularSymbols(char,2,1); 

DisownChildren(M); 

C := CuspidalSubspace(M); 

n := ((N*p)/6)*(&*[1+1/q q in [x : x in [2 .. N*p] I 

IsDivisibleBy(N*p,x) and IsPrime(x)]]); /*number of 

Heeke operators needed to generate C *I 

ls := [1 : 1 in [1 .. Ceiling(n)]]; 

L := [HeckeOperator(C,l) : 1 in ls]; /*create the matrices 

representing Heeke operators *I 

d := Dimension(C); 

R := IntegerRing(p-prec); 

g := R!rootofunity(p,prec); 

phi := hom<K->Rig>; 

V := RModule(R,d-2); 
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T,nums := alggens(V,L,phi); I* find gens. of Heeke algebra 

as module over Z_p *I 
T2 := sub<V I [ p~val*T.i i in [1 .. Rank(T)]] >; 

while Rank(T2) lt d do 

printf "error dim T = %o, dim C = %o, dim pT = %o\n", 

Rank(T), d, Rank(T2); I* these lines check what mod p~? 

is good enough *I 
prec +:= 1; 

R := IntegerRing(p~prec); 

g := R!rootofunity(p,prec); 

phi := hom<K->R I g>; 

V := RModule(R,d~2); 

T,nums := alggens(V,L,phi); 

T2 := sub<V I [p~val*T.i : i in [1 .. Rank(T)]] >; 

end while; 

L1 := [ L[n]-&+[m~(k-1)*Evaluate(char,m): min Divisors(n)] 

: n in nums I nne 1] cat [p*L[1]]; I* generators of I over 

zp *I 
I := sub< V I [conv(V,phi,i) i in L1] >; I* find 

Eisenstein ideal *I 
if T eq I then printf "T = I\n"; 

end if; II test if working so far here 

Up1 := HeckeOperator(C,p)-1; 

ans, I2 := idealeq(V,L1,I,phi,Up1); I* test if I~2 + 

(U_p-1) = I *I 
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return ans; 

end function; 

function Bern(N,p); //finds allowable characters 

K := CyclotomicField(p-1); 

G<a, b> := DirichletGroup(N*p,K); 

R := IntegerRing(p~2); 

g := PrimitiveRoot(p); 

g := (IntegerRing(p~2)!g)~p; 

phi := hom<K->Rig>; 

chars := []; I* creates list of all even Dirichlet 

characters modulo Np with conductor N or Np *I 

fori in [1 .. 0rder(a)] do 

for j in [1 .. Order(b)] do 

w:= a~i*b~j; 

if w(-1) eq 1 and IsDivisibleBy(Conductor(w), N) then 

Append(-chars,w); 

end if; 

end for; 

end for; 

L := #chars; 

c := []; 

i := 1; 

while i le L do 

w := chars[i]; 
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B:= &+[w(k)*((k~2)/(N*p)-k+(N*p)/6) :kin [0 .. ((N*p)-1)]]; 

I* The Bernoulli number B_2,char for each even character 

of conductor N or Np *I 

b:=phi(B); 

if GF(p)!b eq GF(p)!O and not b eq R!O then 

Append(-C,w); //tests the Bernoulli divisibility condition 

end if; 

i := i+1; 

end while; 

return C; 

end function; 

function BTest () 

for N in [y yin [3 .. 1000] I IsPrime(y)] do 

for p in [x x in [5 .. Ceiling(5000/N)] I IsPrime(x) and 

Gcd(x,N) eq 1] do 

s := []; 

if IsDivisibleBy(EulerPhi(p),EulerPhi(N)) then I* check 

divisibility *I 

C := Bern(N, p); //the list of all the allowable characters 

if #C ge 1 then 

T:=[* *]; 

Append(-T,N); 

Append(-T,p); 

for i in [1 .. #C] do 
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bool := Uptest(N,p,C[i]); //test whether U_p-1 generates I 

Append(-T,C[i]); 

Append(-T,bool); 

end for; 

Append(S,T); 

print S; 

end if; 

end if; 

end for; 

end for; 

return []; 

end function; 

4.2 The program for computing the dimension of the 

nullspace of relations of the pairing 

function psi(a,b,m,n,N) 

I* this will return a sequence T consisting of all odd 

Dirichlet characters. Recall that b is the Teichmuller 

character, a is the "real" other generator of the 

Dirichlet group and chi is a~n*b~m.*/ 

assert b(-1) eq -1; 

assert a(-1) eq -1; 

T:= []; 

T1:=[]; I* trivial on psi (so nontrivial on psi chi~-1) *I 
T2:=[]; I* trivial on psi chi~-1 (so nontrivial on psi) *I 
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I* The complement T-T1-T2 will constitute the other case: 

psi chi~-1 nontrivial (and psi nontrivial). *I 
for i in [0 .. Order(a)-1] do 

for j in [0 .. Order(b)-1] do 

if IsOdd(i+j) then 

Append(-T,a~i*b~j); 

if i mod (N-1) eq 0 then 

Append(-T1,a~i*b~j); 

else if n-i mod (N-1) eq 0 then 

Append(-T2,a~i*b~j); 

end if; 

end if; 

end if; 

end for; 

end for; 

return T,T1,T2; 

end function; 

function rel1(c,d,a,N,H); I* N divides a-1, a< *Np even, 

use zeta_N*P· The restriction of psi to ziNz* is trivial. *I 
return (11(N-1))*(1-((H!c)~(-1))(N))*(c(a)+1-c(2))*(1-d(2)); 

end function; 

function rel2(c,d,a,N,H); I* N divides a-1, a< *Np even, 

use zeta_N*p. The restriction of psi*chi~-1 to ziNz* 
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is trivial. *I 
return (c(a)+1-c(2))*((H!d)((2*a-2) div N) - (H!d)((a-1) 

div N) + (11(N-1))*(1-((H!d)~(-1))(N))*(1-d(2))); 

end function; 

function rel3(c,d,a); I* N divides a-1, a< *Np even, 

use zeta_N*p. The restriction of psi*chi~-1 to ziNz* 

is non-trivial. *I 
return (c(a)+1-c(2))*(1-d(2)); 

end function; 

function rel4(c,d,a,N,H); I* N divides a, a< *Np 

even, use zeta_N*p.The restriction of psi to 

ziNz* is trivial. *I 
return ((H!c)( a div N) + (11(N-1))*(1-((H!c)~(-1))(N)) 

*(1-c(2)))*(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 

function rel5(c,d,a,N,H); I* N divides a, a< *Np 

even, use zeta_N*p. The restriction of psi*chi~-1 

to ziNz* is trivial. *I 
return (1-c(2))*(11(N-1))*(1-((H!d)~(-1))(N))* 

(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 
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function rel6(c,d,a); I* N divides a, a< *Np even, 

use zeta_N*p. The restriction of psi*chi~-1 to ziNz* 

is non-trivial. *I 

return (1-c(2))*(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 

function rel7(c,d,a,N,H) I* N does not divide a 

or a-1, a < *Np even, use zeta_N*p. The 

restriction of psi to ziNz* is trivial. *I 

return (1I(N-1))*(1-((H!c)~(-1))(N))*(c(a)+1-c(2)) 

*(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 

function rel8(c,d,a,N,H); I* N does not divide a 

or a-1, a < *Np even, use zeta_N*p. The restriction 

of psi*chi~-1 to ziNz* is trivial. *I 

return (c(a)+1-c(2))*(11(N-1))*(1-((H!d)~(-1))(N)) 

*(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 

function rel9(c,d,a); I* N does not divide a or a-1, 

a < *Np even, use zeta_N*p. The restriction of 

psi*chi~-1 to ziNz* is non-trivial. *I 

return (c(a)+1-c(2))*(d(2*a-2)+1-d(a-1)-d(2)); 

end function; 

63 



function reltab1(R,T,T1,T2,w,chi,S1,f,N,H) 

/*a matrix of 3 key relations in the case N divides a-1 *I 
nr := #T; 

nc:=#S1; 

M1:=RMatrixSpace(R,nr,nc)!O; 

fori in [1 .. nr] do 

for j in [1 .. nc] do 

if (T[i] in T1) then I* restriction of psi trivial *I 
M1[i,j] := f(rel1(w*((T[i])~(-1)), 

(w*(T[i])*((chi)~(-1))),S1[j],N,H)); 

else if (T[i] in T2) then I* restriction of 

psi*chi~-1 trivial *I 
M1[i,j] := f(rel2(w*((T[i])~(-1)), 

(w*(T[i])*((chi)~(-1))),S1[j],N,H)); 

else I* restriction of psi*chi~-1 non-trivial *I 
M1[i,j] := f(rel3(w*((T[i])~(-1)), 

W*(T[i])*((chi)~(-1)),S1[j])); 

end if; 

end if; 

end for; 

end for; 

return M1; 

end function; 
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function reltab2(R,T,T1,T2,w,chi,S2,f,N,H) I* a matrix of 3 

key relations in the case N divides a *I 

nr := #T; 

nc:=#S2; 

M2:=RMatrixSpace(R,nr,nc)!O; 

fori in [1 .. nr] do 

for j in [1 .. nc] do 

if (T[i] in T1) then I* restriction of psi trivial *I 
M2[i,j] := f(rel4(w*((T[i])~(-1)),w*(T[i])*((chi)~(-1)), 

S2 [j] , N, H) ) ; 

else if (T[i] in T2) then I* restriction of psi*chi~-1 

trivial *I 
M2[i,j] := f(rel5(w*((T[i])~(-1)),(w*(T[i])*((chi)~(-1))), 

S2[j] ,N,H)); 

else I* restriction of psi*chi~-1 non-trivial *I 
M2[i,j] := f(rel6(w*((T[i])~(-1)),w*(T[i])*((chi)~(-1)), 

S2 [j])); 

end if; 

end if; 

end for; 

end for; 

return M2; 

end function; 

function reltab3(R,T,T1,T2,w,chi,S3,f,N,H) I* a matrix of 
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3 key relations in the case where N divides neither a 

nor a-1 *I 
nr := #T; 

nc:=#S3; 

M3:=RMatrixSpace(R,nr,nc)!O; 

for i in [1 .. nr] do 

for j in [1 .. nc] do 

if (T[i] in T1) then I* restriction of psi trivial *I 
M3[i,j] := f(rel7(w*((T[i])~(-1)),w*(T[i])*((chi)~(-1)), 

S3[j] ,N,H)); 

else if (T[i] in T2) then I* restriction of psi*chi~-1 

trivial *I 
M3[i,j] := f(rel8(w*((T[i])~(-1)),(w*(T[i])*((chi)~(-1))), 

S3[j] ,N,H)); 

else /*restriction of psi*chi~-1 non-trivial *I 
M3[i,j] := f(rel9(w*((T[i])~(-1)),w*(T[i])*((chi)~(-1)), 

S3[j])); 

end if; 

end if; 

end for; 

end for; 

return M3; 

end function; 

function antientry(i,j,T,chi,p) 
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if (j eq i) or (T[i] eq (T[j]~(-1))*(chi)) then 

return 1; 

else 

return 0; 

end if; 

end function; 

function antitab(T,chi,p) I* the matrix of antisymmetry 

relations. *I 

R:=GF(p); 

nr := #T; 

nc := nr; 

M := RMatrixSpace(R,nr,nc)!O; 

for i in [1 .. nc] do 

for j in [1 .. nr] do 

M[j,i] := antientry(i,j,T,chi,p); 

end for; 

end for; 

return M; 

end function; 

function null(N,p,n,m,a,b,chi,f,H); I* finds the null space 

with all the relations *I 

assert IsDivisibleBy(p-1,N-1); 

R:=GF(p); 
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T, T1, T2 := psi(a,b,m,n,N); 

nr := #T; 

S1:=[x : x in [2 .. N*p by 2] I x mod Nne 0 and x mod N eq 

1 and x mod p ne 0 and x mod p ne 1]; 

S2:=[x : x in [2 .. N*p by 2] I x mod N eq 0 and x mod N 

ne 1 and x mod p ne 0 and x mod p ne 1]; 

S3:=[x : x in [2 .. N*p by 2] I x mod N ne 0 and x mod N 

ne 1 and x mod p ne 0 and x mod p ne 1]; 

nc1:=#S1; 

nc2:=#S2; 

nc3:=#S3; 

V RSpace(R,nr); 

W := sub<VIV>; 

W NullSpace(Hom(W,RSpace(R,nc1))!reltab1(R,T,T1,T2,b, 

chi,S1,f,N,H)); 

W := NullSpace(Hom(W,RSpace(R,nc2))!reltab2(R,T,T1,T2,b, 

chi,S2,f,N,H)); 

W := NullSpace(Hom(W,RSpace(R,nc3))!reltab3(R,T,T1,T2,b, 

chi,S3,f,N,H)); 

W := NullSpace(Hom(W,RSpace(R,nr))!antitab(T,chi,p)); 

return W; 

end function; 

function setup(N,p) 

F:=CyclotomicField(p-1); 
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y:=PrimitiveElement(GF(p)); 

G:=DirichletGroup(N*p,F); 

a:=G!DirichletGroup(N,F).1; 

b:=G!DirichletGroup(p,F).1; 

f:=hom<F->GF(p) I y>; 

x:=CRT([Integers()!y,1],[p,N]); 

assert f(b(x)) eq GF(p)!y; //tests that b is the Teichmuller 

w:=PrimitiveRoot(N); 

z:=f(Evaluate(a,w)); 

assert #[u : u in [2 .. w-1] I IsPrimitive(u,N)] eq 0; I* w 

is the smallest 

primitive root mod N *I 

assert #[v: v in [2 .. Integers()!(y-1)] IsPrimitive(v,p)] 

eq 0; I* y is the smallest primitive root mod p *I 

assert f(a(w)) eq f(b(x))-((p-1) div (N-1)); I* a is what 

we think it is *I 

return a,b,y,f; 

end function; 

function berndiv(N,p,char,b,f,y) 

char1:=char*b--1; 

F:=Conductor(char1); 

Bern:=&+[(char1)(k)*(k/F) : kin [1 .. (F-1)]]; I* This is 

the Bernoulli number 8_{1, chi omega--1} *I 

bern:=f(Bern); 

69 



if bern eq 0 then 

if f(&+[(char1~(-1))(k)*(k/F) :kin [1 .. (F-1)]]) eq 0 

then printf "p I 8_{1, omega~{-1}*chi}!"; 

end if; 

phi:=hom<CyclotomicField(p-1) -> IntegerRing(p~2) 

(IntegerRing(p~2)!(Integers()!y))~p>; 

if IntegerRing(p~2)!phi(8ern) eq 0 then 

printf "p~2 I 8_{1, chi*omega~{-1}}!"; 

end if; 

char2:=char*b~-2; 

Bern2:=&+[(char2)(k)*((k~2)/(N*p)-k+(N*p)/6) kin 

[0 .. (N*p-1)]]; 

assert f(8ern2) eq 0; /*tests that p divides 

8_{2,chi*omega~-2} as it should *I 

if IntegerRing(p~2)!phi(8ern2) eq 0 then 

printf "p~2 I 8_{2, chi*omega~(-2)}!"; 

end if; 

return true; 

else return false; 

end if; 

end function; 

procedure run() 

for N in [y y in [3] I IsPrime(y)] do 

for pin [x x in [547 .. 661] I (IsPrime(x) and x 
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gt N and IsDivisibleBy(x-1,N-1)) and Gcd(x,N) eq 1] do 

assert IsPrime(N); 

assert IsPrime(p) and IsDivisibleBy(p-1,N-1) and Gcd(p,N) 

eq 1; 

a,b,y,f := setup(N,p); 

for n in [1 .. N-2] do 

for m in [0 .. p-2] do 

chi:=a~n*b~m; 

if IsDivisibleBy(Conductor(chi),N) and IsEven(chi) 

and Conductor(chi) ne 1 then 

if berndiv(N,p,chi,b,f,y) then 

W := null(N,p,n,m,a,b,chi,hom<CyclotomicField(p-1) -> 

IntegerRing(p)l 

CRT([PrimitiveRoot(p),1], [p,N])>, 

DirichletGroup(p,CyclotomicField(p-1))); 

printf "N = %o, p = %o, chi= %o, dim= %o,\n%o\n", N, p, 

chi, Dimension(W), Basis(W); 

end if; 

end if; 

end for; 

end for; 

end for; 

end for; 

end procedure; 
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5 Appendix B: Table of Program Output 

We must fix some notation before presenting the table of computed values. 

For any Nand p, where as before Ll* = Hom(Gal(Q(fLNp)/Q),z;), let b 

be the Teichmiiller character, and let a be the unique Dirichlet character on 

(Z/NpZ)x ~ (Z/NZ)X x (Zjpz)x factoring through (Z/NZ)x and taking 

the smallest positive primitive root modulo N to the ( J(r-=_1
1 

)th power of the 

smallest positive primitive root modulo p. Then a and b generate Ll *. 

Table 1: Output from the programs 

N p X Nullity Up -1 p2 I B1,xw-1 PI B1,wx-1 P2 I B2,xw-2 

3 23 ab17 1 true false false false 

3 47 ab13 1 true false false false 

3 53 ab29 1 true false false false 

3 53 ab45 1 true false false false 

3 67 ab47 1 true false false false 

3 103 ab93 1 true false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Uv-1 P2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

3 113 ab55 1 false false true 

3 139 ab99 1 true false false false 

3 197 abl79 1 true false false false 

3 197 abl83 1 true false false false 

3 199 abl6l 1 true false false false 

3 241 ab2l 1 true false false false 

3 257 ab1o1 1 true true false false 

3 263 abBl 1 true false false false 

3 271 ab89 1 true false false false 

3 281 abl3l 1 true false false false 

3 281 ab26l 1 true false false false 

3 317 ablOl 1 true false true false 

3 317 ab2l7 1 true false true false 

3 317 ab265 1 true false false false 

3 331 abl49 1 false false false false 

3 337 ab2o1 1 true false false false 

3 337 ab2o1 1 true false false false 

3 347 ab295 1 true false false false 

3 353 ab29l 1 false false false 

3 401 abl7 1 false false false 

3 409 ab6l 1 false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Up-1 P2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

3 419 abl5 1 false false false 

3 421 ab73 1 false false false 

3 457 ab95 1 false false false 

3 467 ab271 1 false false false 

3 491 ab403 1 false false false 

3 521 ab263 1 false false false 

3 547 ab303 1 false false false 

3 577 ab473 1 false false false 

3 577 ab527 1 false false false 

3 601 abl03 1 false false false 

3 673 ab363 1 false false false 

3 677 ab33l 1 false false false 

3 683 ab65l 32 false false false 

3 691 ab64l 1 false false false 

3 809 ab9 1 false false false 

3 811 ab529 1 false false false 

3 811 ab73l 1 false false false 

3 821 ab72l 1 false false false 

5 17 a2bl4 3 true false false false 

5 37 ab3l 1 true false false false 

5 41 a2b1s 1 true false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Uv-1 P2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

5 53 ab47 1 true false false false 

5 61 ab27 1 true false false false 

5 61 a2b42 1 true false false false 

5 61 a3b51 1 false false true 

5 73 ab47 1 true false false false 

5 73 a2b1o 1 true false false false 

5 73 a3b45 1 true false false false 

5 73 a3b49 1 true false false false 

5 89 a3b37 1 true false false false 

5 97 a3b69 1 true false false false 

5 101 ab9 1 true false false false 

5 137 ab25 1 true false false false 

5 137 a2bs4 1 true false false false 

5 149 abng 1 true false false false 

5 149 a2b22 1 true false false false 

5 149 a3b61 1 true false false false 

5 157 ab113 1 true false false false 

5 181 a3b43 1 true false false false 

5 181 a3b77 1 true false false false 

5 193 abl85 1 true false false false 

5 193 a3b27 1 true false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Up -1 P2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

5 197 ab29 1 true false false false 

5 197 a3b15 1 true false false false 

7 13 asbs 1 true false false false 

7 19 ab11 1 true false false false 

7 43 a5b7 1 true false false false 

7 43 a5b9 1 true false false false 

7 61 a2 1 true false false false 

7 61 a2b42 1 true false false false 

7 61 asb11 1 true false false false 

7 67 a5b13 1 true false false false 

7 73 a3b7 1 true false false false 

7 73 a3bll 13 true false false false 

7 79 a2b4 1 true false false false 

7 79 a5b73 1 true false false false 

7 97 ab7 1 true false false false 

7 97 a4b1B 4 true false false false 

7 97 a4b92 1 true false false false 

7 103 ab15 1 true false false false 

7 103 ab35 1 true false false false 

7 103 ab53 2 true false false false 

7 103 ab93 1 true false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity UP -1 p2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

7 103 a2b34 1 true false false false 

7 103 a2bl0o 1 true false false false 

7 109 ab9 1 true false false false 

7 109 a3blo5 1 true false false false 

7 109 a4b36 1 true false false false 

7 109 asb21 1 true false false false 

7 109 a5b57 1 true false false false 

7 127 ab5 1 true false false false 

7 127 ab11 1 true false false false 

7 127 abl7 1 true false false false 

7 127 a5b91 1 true false false false 

7 139 abl3 1 true false false false 

7 139 abl23 1 true false false false 

7 139 a3b21 1 true false false false 

7 139 a5b61 1 true false false false 

11 31 a6bl4 1 true false false false 

11 31 aBbl6 8 true false false false 

11 31 asb22 1 true false false false 

11 41 a2b3o 1 true false false false 

11 41 a3b35 1 true false false false 

11 41 a9b5 1 true false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Up -1 P2 I Bt,xw-l PI Bt,wx-l p2 I B2,xw-2 

11 61 ab57 1 true false false false 

11 61 a3b39 1 true false false false 

11 61 a6b36 1 true false false false 

11 71 a2b42 1 true false false false 

11 71 a4b14 1 true false false false 

11 71 a5b7 1 true false false false 

11 71 a6b4 1 true false false false 

11 71 a6b24 1 true false false false 

11 71 a1b35 1 true false false false 

13 37 a3b3 1 true false false false 

13 37 a6b34 1 true false false false 

13 37 a1b29 1 true false false false 

13 37 aBb34 1 true false false false 

13 37 a1ob24 1 true false false false 

13 37 a11b31 1 true false false false 

13 61 ab33 1 true false false false 

13 61 a2b46 1 true false false false 

13 61 a2bs2 6 true false false false 

13 61 a6b48 1 true false false false 

13 61 a9b13 1 true false false false 

13 61 a1Db3B 1 true false false false 

Continued on the Next Page 

78 



Table 1 - Continued 

N p X Nullity Uv-1 p2 I Bt,xw-1 PI Bt,wx-1 P2 I B2,xw-2 

13 61 a11b3 1 true false false false 

13 73 ab63 1 true false false false 

13 73 a2b3s 1 true false false false 

13 73 a2b4s 1 true false false false 

13 73 a3b7 1 true false false false 

13 73 a5b37 1 true false false false 

13 73 asb6 1 true false false false 

13 73 a9b31 1 true false false false 

13 73 a11b49 1 true false false false 

19 37 a5b19 1 true false false false 

19 37 a5b27 1 true false false false 

19 37 a6bs 1 true false false false 

19 37 asb2s 1 true false false false 

19 37 a9b17 1 true false false false 

19 37 a1ob12 1 true false false false 

19 37 a10b32 1 true false false false 

19 37 aub21 1 true true false false 

19 37 aub21 1 true false false false 

19 37 a14b22 1 true false false false 

19 37 a16bts 1 true false false false 

19 37 a17b7 1 false false true 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Up-1 p2 I Bl,xw-1 pI Bl,wx-1 P2 I Bz,xw-2 

23 67 ab49 1 false true false 

23 67 a2b5o 1 false false false 

23 67 a7bl1 1 false false false 

23 67 aBb5o 1 false false false 

23 67 a9b4l 1 false false false 

23 67 allb39 1 false false false 

23 67 al2b34 1 false false false 

23 67 al2b54 1 false false false 

23 67 al3b37 1 false false false 

23 67 al4b36 1 false false false 

23 67 al4b44 1 false false false 

23 67 al4b56 1 false false false 

23 67 al7b55 1 false false false 

23 67 al8b46 1 false false false 

23 67 al9b33 1 false false false 

23 67 a2lbl9 1 false true false 

23 89 a2b4o 1 false false false 

23 89 a3bl5 1 false false false 

23 89 a4bs 1 false false false 

23 89 a5b59 1 false false false 

23 89 a6b66 1 false false false 

Continued on the Next Page 

80 



Table 1 - Continued 

N p X Nullity Up -1 P2 I Bl,xw-1 PI Bl,wx- 1 P2 I B2,xw-2 

23 89 a6b74 1 false false false 

23 89 al0b3o 45 false true false 

23 89 al0b54 1 false false false 

23 89 al2b3o 1 false false false 

23 89 al2b6o 1 false true false 

23 89 al2b64 1 false false false 

23 89 al6bs 1 false false false 

23 89 a1Bb46 1 false false false 

23 89 a1Bb64 1 false false false 

23 89 al9b9 47 false false false 

23 89 al9b43 1 false false false 

23 89 a20b2s 1 false false false 

23 89 a2ob68 1 false false false 

23 199 a3b65 101 false false false 

23 199 a4bl44 1 false false false 

23 199 a5b1o1 1 false false false 

23 199 al3bl63 1 false false false 

23 199 al6bl68 1 false false false 

23 199 al9bl79 1 false false false 

31 61 a4b22 1 false true false 

31 61 a6bl6 1 false false false 

Continued on the Next Page 
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Table 1 - Continued 

N p X Nullity Up-1 P2 I Bl,xw-1 PI Bl,wx-1 P2 I B2,xw-2 

31 61 a5b55 1 false false false 

31 61 a6b16 1 false false false 

31 61 aBblO 1 false false false 

31 61 asb12 1 false false false 

31 61 aBb36 1 false false false 

31 61 a9b27 1 false false false 

31 61 a1Db16 1 false false true 

31 61 anbn 1 false false false 

31 61 a11b15 1 false false false 

31 61 an b59 1 false false false 

31 61 a12bs2 1 false false false 

31 61 a15b27 1 false false false 

31 61 a16b34 1 false false false 

31 61 a17b17 1 false false false 

31 61 a1sbs 1 false false false 

31 61 a20b1o 1 false false false 

31 61 a22b54 1 false false false 

31 61 a26b4o 1 false true false 

31 61 a27b53 1 false false false 

31 61 a2sb24 1 false false false 
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