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Abstract 

Data fusion is the methodology of efficiently combining the relevant information from 

different sources. The goal is to achieve estimates and inferences with better confi­

dence than those achievable by relying on a single source. Initial data fusion appli­

cations were predominantly in defense: target tracking, threat assessment and land 

mine detection. Nowadays, data fusion is applied to robotics (e.g., environment iden­

tification for navigation), medicine (e.g., medical diagnosis), geoscience (e.g., data 

integration from different sources) and industrial engineering (e.g., fault detection). 

This thesis focuses on data fusion for distributed multisensor tracking systems. 

In these systems, each sensor can provide the information as measurements or local 

estimates, i.e., tracks. The purpose of this thesis is to advance the research in the 

fusion of local estimates for multisensor multitarget tracking systems, namely, track 

fusion. This study also proposes new methods for track-to-track association, which 

is an implicit subproblem of track fusion. 

The first contribution is for the case where local sensors perform tracking using 

particle filters (Monte Carlo based methods). A method of associating tracks esti­

mated through labeled particle clouds is developed and demonstrated with subsequent 

fusion. The cloud-to-cloud association cost is devised together with computation 
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methods for the general and specialized cases. The cost introduced is proved to con­

verge (with increasing clouds cardinality) toward the corresponding distance between 

the underlying distributions. In order to simulate the method introduced, a particle 

filter labeled at particle level was developed, based on the Probability Hypothesis 

Density (PHD) particle filter. 

The second contribution is for the case where local sensors produce tracks using 

Kalman filter-type estimators, in the form of track state estimate and track state 

covariance matrix. For this case the association and fusion is improved in both terms 

of accuracy and identity, by introducing at each fusion time the prior information 

(both estimate and identity) from the previous fusion time. 

The third contribution is for the case where local sensors produce track estimates 

under the form of MHT, therefore where each local sensor produces several hypotheses 

of estimates. A method to use the information from other sensors in propagating each 

sensor's internal hypotheses over time is developed. 

A practical fusion method for real world local tracking sensors, i.e., asynchronous 

and with incomplete information available, is also developed in this thesis. 
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Notation and abbreviations 

AIS - Automatic Identification System 

C2C- Cloud-to-Cloud (referring to association or fusion) 

GPS- Global Positioning System 

FISST - Finite Set Statistics 

IMM- Interacting Multiple Model 

KF - Kalman filter 

LMMSE - Linear Minimum Mean Square Error 

MAP - Maximum a posteriori 

MHT- Multiple Hypothesis Tracking 

MMSE - Minimum Mean Square Error 

MSE - Mean Square Error 

OTH- Over-the-Horizon 

PHD- Probability Hypothesis Density 
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RFS - Random Finite Set 

T2T - Track-to-Track (referring to association or fusion) 

pdf- Probability Density Function 
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E[·] - expectation 

F - target state transition matrix 

H - measurement matrix 

G(k) -process noise gain matrix at sample time k 

P(k) -target state estimate error covariance matrix at sample time k 

Q(k) -process noise covariance matrix at sample time k 

R(k) -measurement covariance error matrix at sample time k 

zk- set of measurements from time 0 up to time k, {z(O), z(l), ... , z(k)} 

Px(k)Jzk (x) - conditional posterior pdf of target state 

p(x(k)jzk)- conditional posterior pdf of target state (simplified notation) 

x(k) - true target state vector at sample time k 

X:( k) - target state estimate vector (track estimate) at sample time k 

w( k) - measurement error vector at sample time k 

z(k)- measurement vector at sample time k 

v(k) -process noise vector at sample time k 

~(i) - state vector of particle index i used in particle filter 
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Chapter 1 

Introduction and Problem 

Statement 

This section introduces the subject of this research thesis, namely, the problem of 

track fusion for distributed multisensor multitarget tracking applications. The target 

tracking problem is presented first with a description of the general track estimator 

for a single target. The more complex multitarget tracking problem is discussed in the 

following subsection. Specific local track estimator methods applicable to multitarget 

tracking and used within the framework of this research, namely, Kalman filter-type 

estimators, particle filters and the Multiple Hypothesis Tracking algorithm (MHT) 

are presented. The multisensor multitarget tracking is introduced next. Data fusion 

in multisensor multitarget tracking with its intrinsic problem of data association is 

detailed with emphasis on the distributed sensors tracking case. 
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1.1 Target Tracking 

Given the imperfect and incomplete measurements of an unknown target state, the 

target tracking problem is to estimate the state of the target and its evolution over 

time. The estimation is performed recursively at discrete times t 0 , t 1, ... tk, .... Also, 

target tracking includes the evaluation of the precision of each target state estimate 

made. 

At any given sample time tk, the target state is represented by a vector whose 

components are true parameters of the target. These components may be target 

position, speed, and acceleration in three or less dimensions. For example, the target 

state of a ship can be represented as 

X (k) ~ [ x (k) X (k) y (k) iJ (k) r (1.1) 

where (x(k), y(k)) represents the target position in a 2D cartesian coordinate system 

xOy, and x(k), y(k) represent the corresponding velocities along the Ox and Oy axes. 

Equation (1.1) gives the true target state, unknown, i.e., to an observer on the shore. 

The target state evolves in time. i.e., as the ship in our example moves, changes 

course and speed. The target state is represented by a single point at a given time in 

the target state space Rnx where nx is the target state vector size. For bigger targets 

that are not small compared to the measurement resolution, i.e. a ship, the state of 

the center of the ship is tracked. In the above example the state has nx = 4 and the 

state space is 4-dimensional. 

The aim of target tracking is to provide the track of the target, x(k), k = 1, 2, ... , 

which is the list of estimates of the target state at each sample time. 

2 
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In the target tracking problem a sensor provides measurements of the target pa-

rameters at sample times tk, k = 0, 1, ... . Each measurement is represented by a 

scalar (e.g. bearing-only) or vector, often of lesser size than the target state vector. 

For the example above, a fixed radar sensor on the shore is considered, that provides 

measurements containing positional information only 1 

(1.2) 

where (zx(k) and zy(k)) represent the target position measured by the sensor in the 

same cartesian coordinate system xOy. 

The imperfection of measurements mentioned above is twofold. First, the mea-

sured state components are affected by errors due to the sensor limited precision, 

i.e., 

where 

Zx(k) = x(k) + Wx(k) 

zy(k) = y(k) + wy(k) 

w(k) = [ w,(k) wy(k) r 
(1.3) 

(1.4) 

represents the sensor error vector with wx(k) and wy(k) the error components on the 

two cartesian directions Ox and Oy. These errors are time-dependent as they depend 

on the sensor-target geometry. Second, the sensor may have false detections and the 

whole measurement at a sample time may be a false one (i.e., false detection). The 

first type of error is captured by the sensor error probability density function (pdf), 

usually known for a given sensor and dependent on the target-sensor geometry. For 

1 A radar sensor usually measures range ( r) and bearing ( 0), however for the brevity of presen­
tation the polar transform into Cartesian coordinates with the more intricate errors transform is 
skipped here. 

3 
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a Gaussian and unbiased (zero-mean) error distribution this error is characterized 

solely by the sensor error covariance, denoted as R( k) 

(1.5) 

where a;, a; and a;Y represent the variance of the errors on the Ox, Oy axes and 

respectively the covariance between them, here considered constant in time and space. 

The false measurements are modeled through the sensor probability of false alarms 

PFA (Scharf, 1991). 

The incompleteness of measurements mentioned above is also twofold. One aspect 

refers to the fact that the measurement vector most of the times has less state campo-

nents than the target state components, as seen in (1.2). The other aspect is that at 

given sample times a target can go undetected (i.e. there are missed measurements or 

missed detections). The missed detections are modeled through the sensor probability 

of detection Pv (Scharf, 1991). 

Measurement Equation 

The relationship between the target state, sensor measurement and the sensor error is 

modeled in target tracking through the measurement equation, which for the example 

considered is 

z (k) = H(k). X (k) + w (k)' (1.6) 

where H(k) is the measurement matrix and w (k) is the measurement noise or mea­

surement error in (1.4). For the sample target state and measurement errors given in 

4 



Ph.D. Thesis - Daniel G. Danu McMaster - Electrical Engineering 

(1.1) and (1.4) the measurement matrix is constant over time and and has the form 

[ 
1 0 0 OJ. H(k) = 
0 0 1 0 

(1.7) 

Equations (1.6) and (1. 7) describe a linear stochastic dependence between the sensor 

measurement and target space, however in the general case the measurement equation 

is nonlinear 

z(k) = h(k, x(k), w(k)), (1.8) 

where h(·) is a vector-valued, time-varying and nonlinear function and w(·) gives the 

sensor measurement error, possibly dependent on the target state (Bar-Shalom et al., 

2001). 

Dynamic Equation 

The target state dynamics are modeled through the dynamic equation known also as 

process plant equation (Bar-Shalom et al., 2001) or target state transition equation. 

This equation is based on the important assumption that the target state evolution in 

time is a Markov process (Bar-Shalom et al., 2001). In such a process, the probability 

density function (pdf) of the future evolution of the state conditioned on the whole 

state history up to the time k1 is equivalent to the pdf of the future evolution of the 

state conditioned only on the state at time k1: 

(1.9) 

5 
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Equation (1.9) can be summarized also as "The future is independent of the past 

if the present is known" (Bar-Shalom et al., 2001). Based on this assumption, the 

target state transition from time k to time k + 1 can be modeled through a linear 

stochastic process 

x(k + 1) = F(k) · x(k) + v(k), (1.10) 

where x(k) is the true target state at k, F(k) is the state transition matrix (Bar­

Shalom et al., 2001) and v ( k) is the target state model process noise. The process 

noise accounts for the uncertainties in the target motion that are not modeled through 

the F(k) ·x(k) term. For the example taken with the ship target state (1.1), the state 

transition matrix is 

1 .6.k 0 0 

0 1 0 0 
F(k) = (1.11) 

0 0 1 .6.k 

0 0 0 1 

where .6.k is the time interval between sample times k and k + 1. In this case any 

deviation of the ship motion from a constant velocity over the interval between the 

sample times k and k + 1 is modeled through the target process noise v(k) and its 

chosen covariance matrix Q(k). 

The process noise selection is based on the prior knowledge about the target mo­

tion (e.g., known motion type, maximum acceleration). In order to capture different 

possible motion types of a target (i.e., constant speed, coordinated turn, random ac­

celerations), several target state transition models can be considered within a single 

estimator (i.e., with low process noise, with high process noise, with different matrix 

6 
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F(k)). The process noise is usually modeled as Discrete Continuous White Noise Ac­

celeration (DCWNA) or Discrete White Noise Acceleration (DWNA) (Bar-Shalom 

et al., 2001). The process noise (i.e., DCWNA or DWNA) is selected as uncorrelated 

(white) with zero-mean in order to preserve the Markov property (1.9) ofthe modeled 

target state. For the example with the ship, the Markov property states that given 

the state of the ship at a sample time k (i.e., position and velocity), the future evolu­

tion of the ship states (trajectory) has to be independent on the ship's states before 

time k. As the state captures the ship dynamics up to velocity, in order to have the 

state at time k + 1 independent vs. the state at k - 1 and previous ones, the possible 

ship accelerations at k- 1 and k have to be independent. This is satisfied assumming 

a DWNA process noise model, which implies the sequence of accelerations between 

sample times to be white, and that over each interval between sample times the ac­

celeration to be constant. More details on the process noise selection implications 

can be found in (Bar-Shalom et al., 2001). 

The more general nonlinear stochastic process model of the target state dynamic 

equation is 

x(k + 1) = f (k + 1, x(k), v(k)), (1.12) 

where f(·) is a time-varying nonlinear vector-valued function (Bar-Shalom et al., 

2001). 

Observation. The target state in the example with the ship above takes a fixed 

value at each time k. However both dynamic equations (1.10), (1.12) model the 

target state as random processes through the added process noise, which is a random 

sequence (random process). Therefore in target tracking the unknown target state is 

modeled as a random process. 

7 
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Assumptions 

• In order to preserve the Markov property (1.9) for the target state, the process 

noise v(k) in both (1.10) and (1.12) is assumed zero-mean and white (indepen­

dent samples in time). 

• The measurement noise w(k) is assumed also to be zero-mean and white. 

• The process noise and measurement noise are assumed to be mutually indepen-

dent. 

Optimal Bayesian Track Estimate 

The end result of a single target tracking is the track of the target, which is the list 

of optimal estimates of the target state over time. This represents the trajectory of 

the target state estimated from the measurements. Each track entry X:( k) (or track 

estimate) at a given time k is conditioned on zk = {z(O),z(1), ... z(k)}, the set of 

all past measurements up to time k. The optimality criterion used in this research 

is the one that minimizes the Mean Square Error (MSE) between the track estimate 

x(k) and the true target state x(k). The estimate that minimizes the MSE is known 

in literature as the Minimum Mean Square Error (MMSE) one (Bar-Shalom et al., 

2001) 

XMMSE(k) = argmJnE [(x(k)- x(k)) 2 I zk]. 
X 

(1.13) 

Equation (1.13) translates into (Bar-Shalom et al., 2001) 

(1.14) 
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where Px(k) 1 zk (x) is the conditional posterior pdf of the target state taking values over 

the entire target state space X E nnx' where nx is the target state vector size. The 

index of the function is dropped for brevity and the notation p(x(k) I zk) is used 

further. 

The posterior conditional pdf of the target state in ( 1.14) can be expressed using 

Bayes formula of conditional probabilities (Bayes, 1763; Bar-Shalom et al., 2001; 

Papoulis and Pillai, 2001) 

( (
k) I zk) = p(z(k) I x(k), zk-1). p(x(k) I zk-1) 

p X p(z(k) I zk-1) . (1.15) 

The measurements error (noise) sequence is assumed white, and therefore z(k) condi­

tioned on x(k) is independent of z(j), j ::; k -1. Also as the process noise v(j), j ::; k 

and measurement noise are independent sequences, the first factor in {1.15) becomes 

p(z(k) 1 x(k), zk-1) = p(z(k) 1 x(k)), (1.16) 

the measurement likelihood. The second factor in the nominator can be written using 

the Chapman-Kolmogorov equation (Bar-Shalom et al., 2001; Papoulis and Pillai, 

2001) 

p(x(k) 1 zk-1) = j p(x(k) 1 x(k- 1), zk-1). p(x(k- 1) 1 zk-1)dx(k- 1). (1.17) 

Using a rationale similar to the one used for (1.16) 

p(x(k) I zk-1) = j p(x(k) 1 x(k- 1)). p(x(k- 1) 1 zk-1)dx(k- 1). (1.18) 
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The first factor in the integral above is the state transition pdf and the second one 

is the target state conditional pdf at time k- 1. Using (1.16) and (1.18), equation 

(1.15) can be written as 

( (
k) I zk) = p(z(k) I x(k)) · J p(x(k) 1 x(k- 1)). p(x(k- 1) 1 zk-1)dx(k- 1) 

p X p(z(k) I zk-1) . 

(1.19) 

The denominator of (1.19) is a normalizing constant (constant over all times k) and 

using Chapman-Kolmogorov integral may be written as 

p(z(k) I zk-1) 

= J p(z(k) 1 x(k)). p(x(k) 1 zk-1)dx(k) 

= J p(z(k) 1 x(k)). [J p(x(k)) 1 p(x(k- 1)). p(x(k- 1) 1 zk-1 )dx(k- 1)] dx(k) 

=c. 
(1.20) 

From (1.20) and (1.19) results the Bayesian recursion of the conditional target state 

pdf 

p(x(k) I zk) = p(z(k) I x(k)) · fp(x(k) I x(k -1)). p(x(k -1) 1 zk-1)dx(k -1). 
c 

(1.21) 

All conditional pdfs that enter (1.21) are known: 

• p(x(k) I x(k-1))- the state transition pdf can be derived from the known F(k) 

and p(v(k)) in (1.10) or f(·) and p(v(k)) in (1.12) 

• p(z(k) I x(k))- the measurement likelihood can be derived from the known H(k) 

and p(w(k)) in (1.6) or h(·) and p(w(k)) in (1.8) 

• p( x( k -1) I zk-1) - the pdf of the state at k -1 is known from previous recursion 
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The estimate using (1.21) and (1.14) is unusable in practice because of the very 

high computational demand due to the double integration required on the target 

state space. Following subsections present three estimators that simplify the above 

integral. 

1.1.1 Kalman Filter Estimator 

The Kalman Filter (KF) estimator (Kalman, 1960) gives an analytic solution to the 

Bayesian recursive estimation in (1.21) under certain assumptions. The conditions 

on target dynamics and measurements for the KF to provide the exact solution for 

the MMSE track estimate are listed below. 

• The initial target state (unknown) is a Gaussian distributed random variable. 

• The target state dynamics can be modeled through a linear dynamic equation 

x(k + 1) = F(k) · x(k) + v(k), (1.22) 

and the process noise v(k) is assumed additive, white, Gaussian distributed 

with zero-mean and known covariance, possibly time-varying Q(k). 

• The measurements can be modeled through a linear measurement equation 

z (k) = H(k). X (k) + w (k)' (1.23) 

and the measurement noise w(k) is assumed additive white, Gaussian dis­

tributed with zero-mean and known covariance, possibly time-varying R(k). 
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• The measurement noise, process noise and initial target state are assumed mu­

tually independent. 

The above assumptions are known as the Linear-Gaussian assumptions and the re­

sulting process is a Gauss-Markov process (Bar-Shalom et al., 2001). 

Some of the conditions above can be relaxed if extra processing is added to the 

basic KF equations. If the process noises are not Gaussian, however their covariances 

are available, the KF is the Linear Minimum Mean Square Error (LMMSE) estimator, 

as it is still the best linear estimator of the MSE estimate (Bar-Shalom et al., 2001). 

Kalman Filter Recursion Cycle 

A sample cycle of the KF recursive estimation is shown below. The track estimate 

x(k- 1 I k- 1) based on measurements up to time k- 1, and its covariance matrix 

P(k-11 k-1) are assumed known at time k-1. Upon the receipt of the measurement 

z(k) the corresponding estimates are computed for time k (Bar-Shalom et al., 2001). 

Prediction 

Using the dynamic equation (1.22) compute the predicted state estimate at time k 

x(k 1 k- 1) = F(k- 1). x(k- 1 1 k- 1) (1.24) 

and its covariance, 

P(k I k- 1) = F(k- 1). P(k- 1 I k- 1). F(k- 1f + Q(k- 1). (1.25) 

12 



Ph.D. Thesis - Daniel G. Danu McMaster - Electrical Engineering 

Using the measurement equation (1.23) compute the predicted measurement 

z(k 1 k- I) = H(k) · x(k 1 k- 1) (1.26) 

and its covariance 

S(k) = H(k). P(k I k- 1). HT(k) + R(k). (1.27) 

Update 

Compute the filter gain matrix, which is the product of the cross-covariance between 

predicted state and predicted measurement P(k I k- 1) · H(k? and the inverse of 

the predicted measurement covariance S ( k) - 1 

W(k) = P(k I k- 1). H(kf. S(k)-1
. (1.28) 

Compute the updated state estimate 

x(k 1 k) = x(k 1 k- 1) + W(k)v(k), (1.29) 

where 

v(k) = z(k)- z(klk- 1) (1.30) 

is known as the innovation and its covariance is equal to the one computed for pre­

dicted measurements S(k). Compute the updated state estimate covariance matrix 

P(k I k) = P(k I k- 1)- W(k). S(k). W(k)T. (1.31) 
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1.1.2 Interacting Multiple Model Estimator 

The Interacting Multiple Model (IMM) is an adaptive estimator used in estimating 

the state of a target of which dynamic pattern changes over time. For example a 

target trajectory can be a combination of segments over which the target moves 

straight (e.g., with nearly constant velocity) and segments over which the target 

performs maneuvers (e.g., coordinated turns). Each one of these motion types can 

be modeled using the Linear-Gaussian model (Section 1.1.1), however two different 

dynamic equation models are needed. The IMM provides the mechanism to use 

several dynamic equation models, which models can differ in the transition matrix 

F, in the process noise, or both. Internally it estimates the target state using each 

of the dynamic models. The likelihood of each model is evaluated interactively based 

on the likelihood of the measurement conditioned on the model state estimate and 

of the transition probabilities between models. The weights of the state estimates 

produced by models are dynamically combined by considering the models as the 

states of a Markov chain process. If the Linear-Gaussian assumptions are satisfied for 

each mode, then the final estimate is the result of a mixture of Gaussian pdfs. More 

details on the IMM can be found in (Bar-Shalom et al., 2001). 

The KF can be used as internal estimator of each mode in the IMM, however 

other state estimators (e.g., the particle filter presented next) can be used as internal 

model estimators as well. 

1.1.3 Particle Filter Estimator 

For targets having nonlinear trajectories or being measured by nonlinear sensors (e.g. 

providing range and bearing or only bearing measurements) the KF assumptions 
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are not met. The particle filter, introduced in (Gordon et al., 1993), estimates the 

conditional pdf of the state by implementing directly the Bayesian recursion in (1.21) 

through Monte Carlo methods. The conditional pdf of the target state vector, p(x I 

zk), is approximated through a set of random particles {~11 i = 1, ... , N}. Particles 

are vectors with the same dimension and components (e.g., position, velocity, etc) as 

the target state to be estimated. The set of random particles constitute a random 

measure of the pdf 

As in KF, the estimation cycle includes the two stages prediction and update. In 

the prediction step each particle in the set is propagated (moved) in the target state 

space using the dynamic equation (1.10) or (1.12). In the update step particles receive 

weights proportional to the received measurement likelihood function. The measure­

ment likelihood function is evaluated for each of the particle using the measurement 

model (1.6) or (1.8). At the end of each recursion cycle a resampling step is added 

to adjust the number of particles and equalize their weights. A sample particle filter 

cycle is presented below, based on the bootstrap filter introduced in the seminal paper 

(Gordon et al., 1993). 

Prediction 

Each particle ~L1 , i = 1, ... , N available at sample time k- 1 is predicted using the 

dynamic equation (1.12) 

(1.32) 

where vL1 is a sample drawn from the process noise pdf, p(vk-1)· 
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Update 

Upon the measurement zk receipt at time k, the likelihood of each particle is used to 

compute the particle normalized weight 

(1.33) 

Res ample 

N particles of equal weight { ~i / J 

particles{(~~' w1) /j = 1, ... , N}. 

1, ... , N} are sampled from the weighted 

The basic particle filter algorithm above is known as the bootstrap filter. There is 

a large variety of PFs known in target tracking, with various sampling (e.g. sampling 

from measurements distribution as well) and resampling schemes (Arulampalam et al., 

2002), (Doucet et al., 2001). 

1.2 Multitarget Tracking 

In a multitarget tracking problem the sensor produces measurements of several targets 

present in the sensor field of view. Measurements from the targets at each sample 

time k 2 usually do not have identity, in the sense that it is unknown which target 

generated a given measurement. Also there are received measurements that do not 

pertain to any target, i.e., spurious, false alarms, created by background noise. This 

introduces the problem of data association, i.e., measurements to targets association, 

2Measurements are considered synchronized here, however for a scanning sensor they can be 
scattered over the sensor scanning period, i.e., between k and k + 1 (Bar-Shalom and Li, 1995). 
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that includes gating, association, track initiation, confirmation and deletion (Bar­

Shalom and Li, 1995). There are two categories of solutions: non-Bayesian as the 

2D Assignment (Section 1.2.1) or Bayesian ones as the Multiple Hypothesis Tracking 

(Sections 1.2.3) or Probability Hypothesis Density (PHD) particle filter (Section 1.2.2). 

Gating is the process of eliminating measurements from possible association to 

a target estimate (track). A sample gating is to allow a measurement to enter the 

association with a track if the measurement is within a given region around the 

predicted measurement (1.26) for that track. Within the Linear-Gaussian framework 

this could be done by verifying the measurement falls within the "confidence ellipsoid" 

of the predicted measurement. This is equivalent to verify the estimated innovation 

(1.30) is consistent with its estimated covariance S (1.27). 

(z(k)- z(k I k- 1)). S(k)-1 (z(k)- z(k I k- 1)) < g2
• (1.34) 

Here g is the threshold selected for the ellipsoid. 

1.2.1 Data Association in Multitarget Tracking 

Data association in multitarget single sensor tracking is the process of associating 

the newly received measurements to the existing (confirmed) tracks (target state 

estimates). We consider that at sample time k- 1 there is a set of Nk_ 1 confirmed 

tracks i(k- 1)i, i = 1, ... , Nk_ 1. At time k a set of Mk measurements is received, 

z(k)i,j = 1, ... ,Mk. The data association problem is to find the best association 

between the measurements and tracks. This can be solved through a hard association 

or 2D Assignment (Pattipati et al., 2000) performed at every sample time k. The 

hard association means that at any given sample time k a measurement (or none) is 
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associated to every track. The assignment is defined by the binary variable defined 

as 

if measurement zi ( k) is assigned to track xi ( k) 
(1.35) 

otherwise 

where 

• Xw means that no measurement (or dummy measurement) was assigned to track 

i - implied missed detection 

• Xoj means that no target was assigned to measurement j - implied false alarm 

or new target detection 

The optimal assignment for measurements to track association is solved through the 

minimization (Pattipati et al., 2000) 

subject to 
Mk 

LXii = 1, i = 1, ... ' Nk-l 

j=O 

Nk-1 

L Xij = 1, j = 1, ... 'Mk. 
i=O 

(1.36) 

(1.37) 

(1.38) 

The cost of each pairing is defined using the likelihood of the measurement conditioned 

on the track estimate, unless the pairing is eliminated by gating 

0 if i = 0 or j = 0 

Xii = 00 for pairings eliminated by gating (1.39) 

log (p(zi(k) I X:i(k))) otherwise. 
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1.2.2 Probability Hypothesis Density (PHD) Particle Filter 

The Probability Hypothesis Density (PHD) filter is a Bayesian multi target tracking 

estimator introduced in (Mahler, 2003). The PHD is based on the Random Finite Set 

(RFS) theory, point processes (Daley and Vere-Jones, 1988), and Finite Set STatistics 

(FISST) (Mahler, 2007). It estimates all the targets states at once, as a multitarget 

state ( metatarget), however projected on the single-target space. It considers all the 

true targets states in the surveillance area at a given sample time as a single entity, 

the finite set of multitarget state vectors X(k) = {x1(k), ... , xN(k)}, where N is the 

number of targets. The multitarget space is defined as the combination of all subsets 

of the single-target space (Mahler, 2003, p.1157). The set of measurements received 

at sample time k is considered also a finite set Z(k) = {z1(k), ... , zM(k)}, where M 

is the number of measurements. The estimate of the multitarget state (metatarget) 

is modeled as a random finite set 2 defined as a subset of the multitarget state 

space. The PHD filter does not estimate directly the random finite set 2, rather 

its probability hypothesis density, which is its first order multitarget moment density, 

D3 ( {x} ), where xis a single-target state vector. The nth order multitarget moment 

density of the random finite set 2 is Ds(X), where X = {x1 , ... , XN} and is the 

probability density that n of the targets in 2 have states x1 , ... , XN. Therefore the 

PHD is the function whose integral over a region of the single target state gives 

the expected number of targets within the region. A sample PHD for three targets 

with in the 2-dimensional state space is shown in Fig.l.2.2. It can be seen that the 

target state estimates (tracks) cannot be identified from one another, as all targets 

are estimated in the same single-target space through a single function (i.e., the PHD 

function). Even though track estimates at a given time can be distinguished from one 
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Figure 1.1: Sample PHD for three targets, estimated on the 2-dimensional single 
target space. 

another through thresholding around the PHD function peaks, there is no intrinsic 

mechanism to propagate these identities over time. Two particle labeling schemes 

with the end result of identifying tracks was proposed in Appendix A. The purpose of 

particle labeling of the PHD filter is to allow the clouds estimated on different sensors 

to be fused, which is the research subject of Section 2. The propagation (prediction), 

update and resampling equations of the PHD filter are presented in Section A.2.1. 

1.2.3 Multiple Hypothesis Tracking (MHT) Estimator 

The Multiple Hypothesis Tracking (MHT) is a Bayesian tracking approach introduced 

in (Reid, 1979). MHT theoretically evaluates the probability of every combination 

(i.e., hypothesis) of measurements received over time as being generated by a target. 
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The valid hypotheses derived from sequences of measurements are evaluated and prop­

agated over time, each of them generating a set of new hypotheses at every sample 

time k. The number of hypotheses grows continuously and therefore the implemen­

tation of an optimal MHT becomes unaffordable. A judicious selection of hypotheses 

becomes essential for an efficient and practical implementation. The pruning i.e., 

selection of hypotheses in a multisensor scenario is one of the contributions of this 

thesis and a more detailed presentation of the MHT is given in the corresponding 

Section 4. 

1.3 Multisensor-Multitarget Tracking 

With the ever increasing number of tracking systems and tracking system types (e.g., 

satellite radar, airborne radar, over-the-horizon radar, infrared, optical), the surveil­

lance areas of various systems overlap. While sensor accuracy cannot be increased 

beyond a limit, the performance of target tracking algorithms can be greatly en­

hanced by employing multiple sensors with overlapping coverage regions. Data fusion 

is the combination of information from multiple sensors. The local sensor informa­

tion entering the fusion process can be raw local measurements, , locally associated 

measurements or local estimates (Danu et al., 2007c). 

1.3.1 Fusion of Measurements 

In this type of fusion the local sensor transmits local measurements to the fusion 

center and the estimation is performed centralized. This method leads to theoretical 

optimal performance, but at the cost of increased communication, a system with a 

single point of failure that is not always feasible in real world due to legacy constraints. 
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For example, tracking systems might not have measurements readily available to be 

communicated outside the system, only final estimates. 

1.3.2 Fusion of Local Estimates 

While the subject of the current thesis is the track-to-track fusion, there are other 

type of estimates at which this type of fusion can be carried out: 

• tracklet fusion 

• fusion of associated measurements. 

A performance evaluation of the distributed fusion algorithms above was per­

formed by the author in (Danu et al., 2007b). 

1.4 'frack Fusion Problem 

The estimation fusion problem can be categorized as a class of problems in which 

estimates of a continuous parameter/ state vector obtained by different sources are to 

be combined to obtain an overall estimate which, in general, has better accuracy. 

Some terms of the estimation fusion problem are defined as follows. The term 

raw measurement refers to the measurement from any sensor at the end of its signal 

processing chain. The term processed measurement refers to the data after some 

transform of the raw measurement to be used for estimation. One of the purposes in 

processing the raw measurements is to compress the data and save communication 

bandwidth (e.g., measurements may be locally associated first in order to eliminate 

the local false alarms ones). The term local estimate refers to any estimate that uses 

measurements from the local platform (i.e., the platform where the sensor is located) 
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only. A local estimate may include data from a single sensor or multiple sensors, but 

all inputs must be from the local platform or the data processing unit. The fusion 

systems use three basic approaches of communication between a local platform and 

the fusion center, namely: 

• sending raw measurements 

• sending processed measurements, e.g., quantized measurements to satisfy the 

bandwidth constraint 

• sending local posteriors, e.g., local estimatesfcovariances. 

This research thesis focuses on the third approach since it is commonly used in the 

existing distributed tracking systems. 

1.4.1 Estimation Fusion Architectures 

Architectures for estimation fusion can be divided into two basic categories, namely: a 

hierarchial fusion architecture and a fully distributed fusion architecture (Bar-Shalom, 

2006). Fig.l.2 shows examples of the two types of architectures where nodes marked 

as S denote sensors and nodes marked as F denote fusion centers. In the case of hierar­

chical architecture, local estimates obtained in the local fusion center are transmitted 

to the corresponding higher level fusion centers where these estimates are fused. On 

the other hand, in a fully distributed architecture, fusion centers do not have supe­

rior/subordinate relationship. Each local fusion center broadcasts its estimates to 

all other fusion centers, which, in turn, update their estimates by incorporating the 

new information. In the case of hierarchical architecture, the failure of a higher or­

der fusion center makes all subordinate fusion centers unusable for fusion. A fully 
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0 0 

(a) Hierarchical fusion architecture. (b) Distributed fusion architecture. 

Figure 1.2: Sample centralized (hierarchical) and distributed fusion architectures. 

distributed architecture does not have this limitation and hence it produces robust 

systems. However, it requires higher overall computation and it is unsuitable for a 

system that requires single global picture. The hierarchical fusion architecture can 

be further divided in terms of whether or not the higher level fusion centers transmit 

feedback to the lower level fusion centers. Although feedbacks can differ in terms 

of the information passed, in general, it contains fused estimates (Bar-Shalom and 

Blair, 2000). In this case the lower level fusion center can be simply re-initialized by 

using the estimates sent by the higher level fusion center. 

1.4.2 The Correlation Among Local Estimation Errors 

One of the major issues in estimation fusion is the cross-correlation among the local 

estimates (Bar-Shalom and Campo, 1986). This may not pose a severe problem in the 

static estimation fusion case since the only source of the cross-correlation is among the 

measurements from different sensors. This cross-correlation can be estimated and/ or 

the raw measurements can be de-correlated. However, in a dynamic estimation fusion 
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problem there are two more sources of cross-correlation, namely: 

• common history of measurement errors 

• common process noise. 

The cross-correlation due to common history of measurement errors arises as the es­

timates communicated by a local fusion center at different times may use a common 

set of measurements. Hence, the same measurement errors arrive at the fusion center 

at different times. On the other hand, the errors in the state transition model corre­

sponding to different local fusion centers are often cross-correlated, which causes the 

common process noise to be a part of the cross-correlation among estimates. 

1.4.3 Track-to-Track Association 

An important step in the track fusion process is the track-to-track association. The 

problem is similar to measurements to tracks association, however with increased 

complexity. First the dimension of the association problem can be higher. In mea­

surement to track association we have one list of measurements and one list of tracks 

to associate. In track-to-track association we have as many list of tracks to associate 

as sensors participating in fusion. Further, as shown in the research presented in Sec­

tion 3, the fused estimates could be used to improve the association and they enter 

as an extra list of tracks. Second, while the measurements errors and track estimate 

errors can be considered independent, this is not the case between tracks estimated 

at different local sensors. This correlation is the result of the common process noise 

used at local sensors and possibly due to feedback if applied. 
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1.5 Contribution 

This thesis advances the research in the association and fusion of sensor estimates 

in distributed multisensor multitarget tracking. The first contribution is for the case 

where local sensors perform tracking using particle filters (Monte Carlo based meth­

ods). Given labeled particle clouds as local tracks estimates, a method of associating 

them is developed and is demonstrated with subsequent fusion. The cloud-to-cloud 

association cost is devised together with the computation method for the general case 

of non-Gaussian, non-resampled particle clouds and of different cardinalities. The 

method is also specialized for specific types of particle clouds. The cost introduced 

is proved to converge (with the clouds cardinality increase) toward the correspond­

ing distance between the underlying distributions the particle clouds estimate. This 

first contribution is the subject of Chapter 2. In order to simulate the association 

method introduced, a particle filter labeled at particle level was developed, based on 

the Probability Hypothesis Density (PHD) (Mahler, 2003; Vo et al., 2005) particle 

filter. The labeled particle filter introduced is detailed in Appendix A. 

The second contribution is for the case where local sensors produce tracks using 

Kalman filter-type estimators, in the form of track state estimate and track state 

covariance matrix. For this case the association and fusion are improved in both terms 

of accuracy and identity, by introducing at each fusion time the prior information 

(both estimate and identity) from the previous fusion time. This is the subject of 

Chapter 3. 

A third contribution is for the case where local sensors produce track estimates 

under the form of MHT, therefore where each local sensor produces several hypotheses 

of estimates. A method to use the information from other sensors in propagating each 
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sensor's internal hypotheses over time is introduced in Chapter 4. 

A practical fusion method for real world local tracking sensors, i.e., asynchronous 

and with incomplete information available, was developed and presented in Chapter 

5. The sensor types are Over-the-Horizon (OTH) radar and Automatic Identification 

System (AIS) and data was received from DRDC Ottawa. 
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Chapter 2 

Distributed Multisensor Particle 

Filter Cloud Fusion for Multitarget 

Tracking 

This chapter introduces a novel method for the association and fusion of information 

from multiple particle filters in a distributed multisensor-multitarget scenario. Data 

considered herein for fusion consist of labeled tracks estimated through particle fil­

ter clouds. The cloud-to-cloud (C2C) association costs are computed using a novel 

distance defined at the particle cloud level, derived from the Wasserstein distance. 

Several association costs are presented, differing through the inner particle distance 

used within the C2C distance and through the type of particle clouds considered. 

These association costs use the whole estimated track information available through 

the particle clouds distributions, resulting in finer association than if only the es­

timates mean and sample covariance are used. Properties of the newly introduced 
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distance are presented, including its closed form solution for the case of normally dis­

tributed clouds. A method of computing the distance for the general case is derived, 

based on linear programming interior point methods. Its convergence on particle filter 

clouds is proved theoretically when the Euclidean inner distance is used at the parti­

cle level and sample comparison with the classical track-to-track (T2T) test is given. 

Three methods of particle clouds fusion, namely, by direct combination of particles, 

by using the sample second order moments of the clouds, and by using the sample sec­

ond order moments of clouds combined with their estimated sample cross-covariance, 

are presented. A simulation on a realistic distributed multisensor-multitarget sce­

nario, with nonlinear target trajectories in clutter shows the improvement achieved 

by using more than one particle filter and the benefits of using the newly introduced 

association and fusion methods, compared with classical methods. 

2.1 lntrod uction 

Particle filters have been the subject of consistent research and improvements, with 

special emphasis on target tracking (Gordon et al., 1993; Lin et al., 2006). The es­

sential work in (Gordon et al., 1993) takes on a single target and, using the bootstrap 

particle filter, expands tracking performance beyond that of the classical Extended 

Kalman Filter (EKF) for nonlinear state dynamics and measurements. In ( Arulam­

palam et al., 2002) several versions of sampling and resampling developed in the 

meantime are presented, while in (Hue et al., 2002) an extension of the particle filter 

to the multitarget case is introduced. 

Multitarget particle filters were developed in (Clark and Bell, 2007; Hue et al., 

2002; Vermaak et al., 2005) with the multitarget state being estimated through a 
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single hypothesis with respect to the number of targets and measurement to targets 

association. 

The fundamental work in (Mahler, 2003) on multitarget tracking based on random 

finite sets (RFSs) and finite set statistics (FISST) derives equations for sequential es­

timation of the first order multitarget moment or the probability hypothesis density 

(PHD). Based on the FISST and PHD approaches, new particle filters devised for 

multitarget scenarios, with the capability to handle target births, deaths and spawn­

ing were developed in (Vo et al., 2005; Zajic and Mahler, 2003). The PHD particle 

filter was improved in (Danu et al., 2009b; Lin et al., 2006; Fanta et al., 2005)] with 

track identities, or track labels, use of which is made in the current work as input to 

the fusion process. 

Within the Bayesian framework, particle filters that estimate the joint multitar­

get probability density (JMPD) in a multi-hypothesis approach were developed in 

(Kreucher et al., 2005; Morelande et al., 2007). One particle of these type of filters 

encodes a hypothesis about the entire multitarget state, including the number of 

targets and each target state. Special handling of the mixed labeling problem that 

occurs in these particle filters due to the coexistence of hypotheses that differ only in 

labels permutation is needed before estimations are extracted from these particle fil­

ters. The problem of closely spaced targets in a multitarget state is treated in (Blom 

and Bloem, 2007; Ekman et al., 2007). 

A particle filter fusion method applicable to a single target (i.e., when no associa­

tion is needed) was introduced in (Coates, 2004). Fusion based on Gaussian mixture 

or Parzen approximations of particle clouds was presented in (Ong et al., 2006, 2008). 

The information propagated from common observations due to the fusion with feed­

back method employed is handled through channel filters and particle division ( Ong 
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et al., 2008). 

An application of particle filters in a hierarchical data fusion system based on track 

fusion was discussed in (Lang and Dunne, 2008). Authors of (Lang and Dunne, 2008) 

have reported observations of instances of track-to-track (T2T) association errors due 

to the suboptimal approximation of particle clouds by their second-order statistics. 

The purpose of this research was to introduce novel methods of association and 

fusion for track estimates provided under the form of labeled particle filter clouds. 

The methods are applicable to distributed multisensor-multitarget scenarios featuring 

sensors with overlapping surveillance areas and particle filters used as estimators. The 

fusion architecture is a decentralized one, where labeled particle clouds are obtained 

at local sensors, which in turn are made available to the fusion center. The fusion cen­

ter could be one of the local estimators, in which case only the particle clouds of the 

other estimator(s) need to be communicated. Different novel ways of data association 

are introduced, based on the association costs computed at the particle cloud level, 

using a newly defined distance between clouds. The cloud-to-cloud ( C2C) distance 

introduced is based on the Wasserstein distance and its value is defined through map­

ping at particle level between the clouds. This mapping links the discrete supports 

(particle locations) of the two underlying distributions estimated through the clouds. 

The transference plan (transportation matrix) established overcomes the problem of 

having to estimate the distance between two distributions with only partially over­

lapping (or not overlapping at all) supports, even when both pertain to the same 

true target. The data association methods differ in the type of particle clouds con­

sidered in computing the newly defined distance (e.g., before resampling, resampled, 

of equal or different cardinalities) and in the inner distance used at particles level 

within the aforementioned C2C distance. The C2C distance introduced here exploits 
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in the computation of the association cost the entire information available through 

the clouds distributions. The usage of the whole information in the association cost 

is independent of the highest order moment characterizing the cloud distributions. 

This cost feature is paramount when associating particle clouds, whose distributions 

are characterized usually through moments of order higher than two. There are no 

approximations of the particle filter clouds, as the C2C distance is applied directly 

on the raw particles. 

The association part of the method presented here is applicable to multitarget 

particle filters that capture the multi target state in a single hypothesis (Clark and 

Bell, 2007; Hue et al., 2002; Lin et al., 2006), (Vermaak et al., 2005; Vo et al., 2005)]. 

The proposed association method preserves the local identities and, therefore, obtains 

at the fusion sensor track-valued estimates without the need of feedback at local 

sensors. Without feedback there are no common past observations contributing to 

the estimates being fused, and only the common process noise used in local dynamic 

models needs to be accounted for. The method is not directly applicable to multitarget 

particle filters whose output consists of several coexistent hypotheses (Kreucher et al., 

2005; Morelande et al., 2007). More research is needed for the association of particles 

from such estimators in handling the coexistent hypotheses in the estimated joint 

multitarget probability density. The association method presented here is applicable 

to the particle filters handling closely spaced targets in (Blom and Bloem, 2007; 

Ekman et al., 2007) if the closely spaced targets on each sensor are combined under 

the same cloud (label) for the duration they are closely spaced. 

The C2C association cost is a distance measure, proved herein to be a metric, 

between any type of probability density functions (pdf) approximated through particle 

filters. A measure between Gaussian mixture pdfs was introduced in (Liu and Huang, 
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2000) but it was computed based on the distance between Gaussian distributions, 

which were used of equal and diagonal covariances in order to have it preserved as a 

metric 1. 

For the fusion part, three methods are presented. They differ in the level of ac-

counting for the dependence of the estimation errors, through the usage of sample 

covariance and cross-covariance of the particle clouds. The first method combines 

directly the particles of clouds to be fused and the second one considers in the fu-

sion the sample covariance of the two clouds while the third one considers also the 

estimated sample cross-covariance of the two clouds. 

The treatment of the estimators association and fusion at particle cloud level is a 

novelty, to the best of our knowledge. , as well as the application of the track-labeled 

PHD filter using resolution cells to a 2D scenario. 

The chapter is structured as follows: the notion of labeled particle filter cloud 

and its equivalence to random probability measure are presented in Section 2.2. The 

method defined for data association performed at particle cloud level together with 

the costs introduced therein are presented in Section 2.3. Cost computation methods 

are presented in Section 2.4. Fusion methods for the associated particle filter clouds 

are derived in Section 2.5. Ground target tracking simulation and results are given 

in Section 2.6, and conclusions are drawn in Section 2. 7. 

1When estimating with a complex particle filter (e.g. PHD) that throws new particles around 
measurements, the closest a target particle cloud could get to the Gaussian distribution is being a 
pure mixture of at least two Gaussian distributions. This holds also for the non-realistic case in 
which the particle filter model, the sensor model and the true target trajectory, all follow the linear 
Gaussian model. 
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2.2 Particle Filter Clouds as Probability Mea-

sures 

In the context of this research, a particle cloud is a cluster of particles of the same 

label representing the posterior probability distribution of a target state estimated by 

a particle filter [(Crisan, 2001), (Crisan and Doucet, 2002)]. Each particle in a cloud 

is defined by its state~' weight w, and labell. The states indicate particles' location 

in the estimating space (which could consist of position, velocity in one, two, or more 

dimensions) and the weights indicate the estimated probability of the target existence 

at the locations given by the states in the state space, while the label indicates the 

identity of the target. We use the notations 2/:,ls = { ~!, w!, l8}~1 for a particle cloud 

of cardinality N and label ls (with l8 = 1, ... , L 8 ) on sensor 8 (with 8 = 1, ... , S). 

Therefore, in the space defined by the particle state ~ E JR.nx, where nx is the size of 

the target state x E JR.nx, the mass distribution of a particle cloud BN is a probability 

mass function [(Bar-Shalom et al., 2001)] 

(2.1) 

where 8x0 (·)is the Dirac delta function concentrated at x0 (Bar-Shalom et al., 2001). 

Equation (2.1) is a Monte Carlo approximation of the posterior probability distribu­

tion of the target state on the support provided by the particle cloud BN [(Arulam­

palam et al., 2002), (Crisan, 2001)]. Given the randomness of the particle sampling 

(and resampling) processes, the particle cloud is a random measure that approxi­

mates this posterior [(Crisan, 2001)]. If the same observation process Yo:t = {y7 : 

y 7 = h ( x 7 ) + w n T = 0, ... , t} is used on different nodes (e.g., identical sensors, with 

36 



Ph.D. Thesis- Daniel G. Danu McMaster - Electrical Engineering 

same measurement model h (·)and noise model won all sensors), then the u-algebra 

generated by the observation process on all nodes is the same. If identical dynamic 

models are used on all sensors for a given target, the posterior density of the state 

conditioned on the u-algebra of measurements, 7r;o:t(xt) on sensor s, is identical on 

all sensors [ ( Crisan, 2001)] 

Yo·t Yo·t 6 ( 1 (v )) 7f 1 . = ... = 7f S . = 7f Xt (j L O:t • (2.2) 

For a sample realization of the observation process on sensor s, given by the event 

{Yo:t = Yo:t}, the above posterior densities become deterministic probability measures, 

and as measurements are different from sensor to sensor, the deterministic probability 

measures are also different 

Yln 6 ( 1 ) Y5.t 6 ( S ) 7f 1 . = 7f Xt I y O:t =I= . . . =I= 7f s . = 7f Xt I y O:t . (2.3) 

The C2C association process therefore is performed between probability measures. 

It could be performed on either one of the measures, random or deterministic, in 

the former case associating identical measures on each sensor for a target, whereas 

in the latter associating for a given target, the closest probability measures on each 

sensor. The choice of associating the deterministic probability measures in (2.3) is 

followed in this research. Given the deterministic density of the target in (2.3) at one 

sensor, the particle filter cloud is a random probability measure that approximates 

it. In [(Crisan, 2001)] it was shown that under certain conditions that the particle 

filter must satisfy2 , the probability mass distribution in (2.1) is a sequence of random 

2The transition kernel of the model is assumed Feller (i.e., its composition with any continuous 
bounded function is a bounded continuous function), and the likelihood function of the measurement 
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measures that converges weakly to the deterministic one. Using further the simplified 

notation 3N for the probability mass distribution in (2.1), that is 

lim '2 N ----t 1r. 
N---+oo 

(2.4) 

Therefore, the problem of multisensor multitarget particle clouds fusion is of discrete 

random probability measures estimated by the multiple sensors on the multitarget 

scenario. This process implies first the association of the particle clouds estimated on 

each sensor as representing the same target, followed by the combination of (estimates 

from) the associated clouds. The particle filter clouds association is treated in Sections 

2.3 and 2.4, while their subsequent fusion is treated in Section 2.5. The fusion part 

is divided into two main stages, the first being the data association and second the 

estimation from combined associated data. Data to be fused here consists of labelled 

particles and their corresponding weights. Next the two stages are treated separately, 

in developing the fusion method for two sensors. 

2.3 Association of Particle Filter Clouds 

One main step of the data fusion process in distributed target tracking is track-to­

track (T2T) association, in which tracks from different local estimates are correlated 

(or grouped) as pertaining to the same target. T2T association is a computation­

ally intensive task, in most cases its complexity increasing exponentially with the 

number of sensors and targets. When fusing particle clouds, the problem is further 

complicated by having for each target a large number of representing particles. This 

model is assumed bounded, continuous and strictly positive. 
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problem is greatly alleviated by labeling particles estimated as representing the same 

target at the sensor level, prior to association. 

Using the notation introduced in Section 2.2 we denote by 3i1 a h-labeled cloud 

at sensors= 1, and by 3~2 a l2-labeled cloud at sensor s = 2, with labels h = 1.. N1 

and l 2 = 1.. N2. Here N1 and N2 are the number of targets, i.e. tracks approximated 

through particle clouds, estimated on sensor 1 and sensor 2, respectively. We assume 

that on both sensors labels l1 , l2 are contiguous (in sequence) and start from 1 only 

for the purpose of simplifying the notation. We denote by c (3i1
, 3~2 ) the cost of 

the hypothesis that clouds 3i1 and 3~2 correspond to the same target. Similarly to 

the case of T2T association, if the cloud association events among different cloud 

pairs are assumed independent, the most likely C2C association hypothesis can be 

found, within the 2D3 assignment formulation, by solving the following constrained 

optimization 

subject to 
L1 

L Xhl2 = 1' l2 = 1 .. L2 

h=O 

L2 

L Xhl2 = 1, ll = 1 .. Ll 
12=0 

(2.5) 

(2.6) 

(2.7) 

where Xhl2 is a binary variable. The labels h =0 and l2=0 in (2.5)-(2. 7) are used to 

denote the association with a dummy track. That is, for a cloud associated with one 

of label zero, no matching pair was found for it on the other sensor. The minimization 

3The optimization problem generalizes to S-D assignment when the number of sensors S > 2 
(Pattipati et al., 2000). 
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in (2.5)-(2.7) can be solved using, for example, the auction algorithms [(Bertsekas 

and Castanon, 1993), (Jonker and Volgenant, 1987)]. It remains to be determined 

the evaluation of the C2C association cost, c (Bi1
, 3~2 ), which is treated in the next 

section. In computing the C2C association cost, two types of clouds are considered 

(from the particle resampling viewpoint): clouds of unresampled particles and clouds 

of resampled particles. A gating between clouds has to be used first, such that some 

costly multiassignments (defined next) are skipped. 

As seen in Section 2.2, the particle filter clouds are random probability measures, 

therefore their association cost needs to be one that penalizes the distance and, im­

plicitly, the dissimilarity between these measures. 

2.3.1 Distance Between Probability Measures 

There are several distances between probability measures described in the literature, 

however most of them require a common support for the two measures, i.e. a common 

space where both have non-zero values, in order to achieve a proper estimation. Some 

that do not requires this are listed below. 

Levy-Prohorov Distance (Rachev and Ruschendorf, 1998) 

for probabilities P1 and P2 it is defined as 

where Ae is the c--neighborhood of the set A of events, and B is the Borel o--algebra 

of events on which g and P2 are defined. This distance is used mostly for theoretical 

expositions and is difficult to compute. 
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Haussdorff Distance (Hoffman and Mahler, 2004) 

between two sets A and B (particle clouds can be seen as sets of particles) is defined 

as 

dH (A, B)= max {inf{c > 0 I Ae :J B}, inf{c > 0 I Be :J A}}. (2.9) 

In the Haussdorff distance the boundary particles have the most impact whereas their 

internal distribution and weight is not taken into account, making it poorly suited 

for characterizing the similarity of discrete distributions. 

Wasserstein Distance (Vasershtein, 1969) 

is defined between two probabilities P1 and P2 as 

(2.10) 

where X, Y are random variables distributed with probabilities g, respectively P2 

and d is a distance defined between X and Y. The infimum is taken over all joint 

distributions of X and Y, having marginals P1 and P2 . In the literature this dis­

tance is also found under the names Kantorovich, Mallows, Earth Mover's Distance, 

Kantorovich-Rubinstein, depending on its order p or domain of applications. Vaser­

shtein introduced the distance using p = 1 only. 
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2.3.2 Properties of the Wasserstein Distance 

The Wasserstein distance can be used to assess the dissimilarity between two proba­

bility densities f(xi), g(x2 ) defined on the target state space (xi,x2 E lRn"') 

(2.11) 

where d( xi, x2) is the (inner) distance between states (e.g. Euclidian, Mahalanobis) 

and h(xi, x 2 ) is the joint distribution of the states (whose marginals are the two 

densities J h(xi, x2)dxi = g(x2 ) and J h(x1, x2)dx2 = f(xi)) (Hoffman and Mahler, 

2004). 

In a mathematical formulation the Wasserstein distance defines the weak topology 

on the set of probability measures on a given space, and for dense probability measures 

on the given space, it defines a separable and complete metric if the inner distance 

d(·, ·) defines a separable and complete metric on the given space [(Villani, 2003)]. 

For example, this is the case if the Euclidean distance is used ford(·,·) [(Carillo and 

Toscani, 2007)]. For distributions PI, P2 of two random variables (r.v.) XI, x 2 E 

JRnx of means mi, m 2 the Wasserstein distance between is always greater than the 

Euclidean distance between their means. From (Givens and Shortt, 1984): 

(2.12) 

where Q1, Q2 are the distributions of r.v. XI- mi and x 2 - m 2 , respectively. There­

fore, the Wasserstein distance between r.v. that have the same mean can be non-zero. 

This could be useful in distinguishing between probability distributions that pertain 

to targets compared to probability distributions that pertain to clutter or other false 
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alarms, even if they are collocated, provided their distributions are sufficiently differ­

ent. 

Recently in [(Schuhmacher et al., 2008)] a miss-distance between multiobject sets 

was introduced under the optimal subpattern assignment (OSPA) name for the pur­

pose of multitarget filtering performance evaluation. For two sets, this distance pe­

nalizes both localization errors between the objects within the two sets and also the 

difference between the cardinalities of the two sets. We stress that this distance is not 

a candidate that serves our purpose, as the cardinalities of the clouds are not at all a 

criterion that affects the closeness of their underlying distributions. For example two 

identical distributions could be sampled with very different number of particles in the 

two clouds and the difference between their cardinalities should not be penalized by 

the C2C distance we are to define. The C2C distance was designed to measure solely 

the difference between the clouds underlying distributions. 

2.3.3 Definition of C2C Association Cost 

A particle cloud is a finite set of particles. Therefore the cost of associating two 

clouds can be formulated as the distance between the two sets (of M 1 and M 2 parti­

cles) defining the clouds. Also as seen in Section 2.2, the particle cloud is a random 

measure through a discrete number of points of the underlying deterministic dis­

tribution modeled by the particle filter for a given track. Therefore, based on the 

properties in Section 2.3.2 the Wasserstein distance is a good candidate in defining 

the C2C association cost. However, because we apply it between random measures, it 

cannot be defined directly and its properties are valid only under certain constraints. 
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Prior to computing the cost of associating two clouds 

Bs = {w!,t!}~s, s = 1,2 
t=l 

(2.13) 

on two sensors (labeled clouds, however, with label dropped here for notation sim­

plification), both clouds are normalized such that their weights sum to one. This is 

done in order to re-interpret the particle cloud as a discretized representation of the 

target's probability density function in 2D-Cartesian space, of which integral is one 

{ Ps(x, y) · dA(x, y) = 1 
jdAcR 

(2.14) 

where R is the region over which the density is estimated, Ps ( ·) is the density function 

of the state and dA(·, ·)is the elementary surface area for estimation in x-y plane, or 

otherwise is the elementary volume of the state space. 

For the normalized weights we have 

(2.15) 

where ~A(t!) is the area containing all points of which nearest neighbor particle is t!, 
and such that the sum of these areas cover a contiguous region enclosing all particles 

of the cloud. From (2.15), upon normalization, each particle weight corresponds to 

the pdf of the cell surrounding the particle (of area ~A(t!) around t!) multiplied by 

the area cell w! = p~(t!) · ~A(t!), representing the cell probability mass. 

The inclusion of state velocity component into particle distance could be added 

by using ford(·,·) the Mahalanobis distance, or by projecting the velocities into the 

position through multiplications by small time intervals OT. 
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However, as noted in [(Morelande et al., 2007)] if just the measurement equation 

is nonlinear while the process equation is modeled through a linear Gaussian one, 

the particle filter can be implemented using particles containing position data, as 

the velocity can be derived from the position estimates using a Kalman filter-type 

estimator. 

In [(Hoffman and Mahler, 2004)] the multitarget miss distance is introduced based 

on the Wasserstein distance as a means to assess the multitarget tracking performance 

(through providing a distance between the sets of estimated tracks and true targets). 

Here we use the adjustment of Wasserstein distance to finite sets and adapt it to sets 

of particles (clouds). The particles in a cloud can be weighted (2.1) and therefore 

the distance we introduce accounts for these weights as well. We use for functions j 

and g the sum of Dirac delta functions 8::::1 (t1) and 8::::2 (t2), defined on the surfaces 

ts = {(x, y)}, covered by both sensors s = 1, 2 and with values on the discrete sets 

corresponding to the two particle clouds 3 1 = { ~t, ... , ttt1
}, 3 2 = { ti, ... , t~2 } 

Ms 

8::::8(t) = 2:: w!. 8~1 (ts), s = 1, 2 (2.16) 
i=l 

and h(·, ·)defined as 

M1 M2 

h(x1, x2) = L L Wij8~l (x1)8~4(x2) (2.17) 
i=l j=l 

where Wij are elements of the transportation matrix W known under this name from 

the linear programming special case of transportation problem. Introducing (2.16) 

and (2.17) in (2.11), we obtain the C2C association cost based on the Wasserstein 
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distance as 
M1 M2 

d;;-'(31,32) =if# p LLWijd(tLt~)P, (2.18) 
i=l j=l 

with elements of matrix W satisfying the constraints 

(2.19) 

i=1 .. Ml. (2.20) 

Constraints (2.19) and (2.20) assure that each particle in both clouds is fully assigned 

using its full weight to particles from the other cloud. The minimization problem 

(2.18)-(2.20) is a multiassignment problem in which each particle is assigned to several 

particles with different sub-weights, similar to the transportation problem, which is 

a special case of linear programming. Different methods for computing the C2C 

distance and association cost based on (2.18)-(2.20) are derived further, depending on 

the distanced used at particle level and on the type of particles used (i.e., resampled 

or before resampling). 

2.3.4 Properties of C2C Distance (Association Cost) 

In this subsection the convergence of the newly introduced distance between clouds 

is explored as well as the conditions under which it satisfies the properties of a met-

ric. It is noted that the C2C distance as introduced in (2.18) does not penalize the 

difference between cardinalities of the two clouds M 1 and M 2 , as this is not desired 

for the case of particle clouds. The C2C cost introduced penalizes differences in par-

ticles distribution whereas the difference in the number of particles between clouds 
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is absorbed by allowing fractional particles association through the transportation 

matrix W, which has real values. This is a feature that makes the C2C distance 

different from the multitarget miss distance (Hoffman and Mahler, 2004), in which 

the difference between cardinalities needs to be taken into account. 

Convergence of the Wasserstein C2C Distance 

As shown in Section 2.2, a particle filter cloud is an (empirical) random measure of 

the deterministic posterior distribution of the target state obtained through the filter 

models. The requirements on the particle filter for its particle estimate to converge 

(as a sequence of random probability measures) toward the underlying deterministic 

posterior probability distribution of the target state were established in [ ( Crisan, 

2001), (Crisan and Doucet, 2002)]. These requirements were briefly restated in Section 

2.2 and here we assume they are met. In this subsection the convergence of the C2C 

distance, defined in (2.18)-(2.20) between particle clouds as random measures of the 

underlying deterministic posterior densities, toward the Wasserstein distance between 

these underlying densities is explored. The theoretical proof of convergence is given 

for the case when the Euclidean distance is used at particles level (as inner distance), 

while the convergence in other cases is also explored empirically in Section 2.6 as a 

function of: 

• number of weighted particles 

• resampling method and number of particles 

• internal distance used (i.e. Mahalanobis) 
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Convergence of the Euclidean Wasserstein C2C Distance 

We use the name Euclidean Wasserstein for the distance in (2.11), which applies to 

deterministic distributions, and C2C Euclidean Wasserstein for the distance defined 

in (2.18), which applies to particle filter clouds (random measures). In both cases we 

use the notation d'fE(·, ·),through which we imply the Euclidean distance is used for 

the inner distance d(·, ·) and the order is p = 2. It is known that the Wasserstein 

distance (2.11) is a metric that defines the weak topology on a space if this given space 

is endowed by the inner distanced(·,·) with the complete separable metric property 

(Villani, 2009, Th.6.9). This means that the weak convergence to zero of the distance 

d'fE between a sequence of probability measures, 7rk, and a given probability measure, 

1r, is equivalent to the weak convergence of the sequence of measures toward the given 

measure: 

lim d1i'E(7rk,7r) ~ 0 {:::::::}lim 7rk ~ 1r. 
k-too k-too 

(2.21) 

We assume the particle filter satisfies the conditions necessary for its particle cloud 

estimate to converge toward the underlying deterministic posterior distribution esti-

mated for the target state (2.4) established in (Crisan and Doucet, 2002) (e.g., satis­

fied for the bootstrap filter and multinomial resampling). Under these assumptions, 

the C2C Euclidean Wasserstein distance satisfies the convergence property defined 

through following theorem: 

Theorem 1 (C2C Euclidean Wasserstein Distance Convergence). Given two particle 

filter clouds, Sf and S!{, estimated by two distinct particle filters based on two dif­

ferent sequences of measurements y~=t, yg=t, the C2C Euclidean Wasserstein distance 

between them, d'fE(Sf, Sf), converges weakly towards the Euclidean Wasserstein 
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distance between the underlying posterior probabilities, 1r1, 1r2 : 

l . dWE(~N ~N) --'- dWE( ) 
liD 2 .:::::.1 '.:::::.2 2 7fi, 7f2 • N--+oo 

(2.22) 

Three properties of the Euclidean Wasserstein distance (Villani, 2003) are listed 

below as they are used further in the reasoning. 

P.l For a sequence ofrandom probability measures fn that converges weakly to a de-

terministic probability measure f, the Euclidean Wasserstein distance between 

fn and f converges weakly to zero and the reverse 

lim d':}' E (f n, f) --'- 0 
n--+oo lim f n --'- f. 

n--+oo 
(2.23) 

P.2 (Weak lower semicontinuity) For two sequences of random probability mea­

sures fn, 9n which converge weakly to two deterministic probability measures, 

limn--+oo fn --'- f and liiDn--+oo 9n --'- g, we have 

(2.24) 

P.3 Triangle inequality 

(2.25) 

The sequences of the two particle filter clouds 2~, 22 of cardinalities n are assumed 

to converge weakly to the posterior distributions of the estimated target(s), n1, and 

1r2, respectively, (by satisfying requirements in (Crisan and Doucet, 2002)), therefore 
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based on P.l. we have 

(2.26) 

Using twice the triangle inequality (2.25) we get 

d WE (~n ~n) < dWE (~n ) dWE (~n ) dWE ( ) 
2 ~1' ~2 - 2 ~1' 7r1 + 2 ~2' 7r2 + 2 7r1' 7r2 (2.27) 

therefore 

(2.28) 

with lim c1 (n) ~ 0, lim c2 (n) ~ 0. From (2.24) we have for the particle clouds S?, 
n--+oo n--+oo 

:::;'n 
~2 

l . · fdWE (~n ~n) > dWE ( ) 1m Ill 2 ~1, ~2 _ 2 1r1, 1'r2 
n--+oo 

and combining (2.28) at the limit with (2.29) it results in 

l . dWE (~n ~n) dWE ( ) 
Im 2 ~1' ~2 ~ 2 7r2, 7r1 n--+oo 

(2.29) 

(2.30) 

Therefore, for particle filter clouds converging to the deterministic posterior distri-

butions of the estimated targets, the Euclidean Wasserstein distance converges to 

the one between the deterministic conditional posterior distributions of the targets 

estimates. 

Corollary 1. For two particle filter clouds Sf, Sf estimated by two (distinct) iden­

tical particle filters, based on the same sequence of measurements y0=t, the C2C df E 

distance converges weakly to zero limN--+oo dfE (Sf, Sf) ~ 0. 
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Metric Properties 

The C2C Euclidean Wasserstein distance satisfies the three properties of a metric, as 

being based on the Wasserstein distance, which is a metric itself if the inner distance 

d(·, ·) is a metric: 

1. distance is zero for (and only for) identical measures 

2. symmetry 

3. triangular inequality 

Based on Theorem 1 the metric properties above apply at the limit ( N ---+ oo) to the 

underlying deterministic (non-random) probability measures that the particle clouds 

estimate. Therefore the C2C Euclidean Wasserstein distance defined at the particle 

cloud level defines at the limit a metric on the underlying deterministic probability 

measures. 

Comparison with the T2T Association Cost 

In this subsection a comparison of the C2C association cost in (2.18)-(2.20) with the 

T2T association cost introduced in (Bar-Shalom and Li, 1995) is made for simple cases 

of Gaussian posterior distributions. First it is shown through a counterexample that 

the T2T test in (Bar-Shalom and Li, 1995) is not a metric on the space of estimated 

tracks posterior distributions and second the C2C association cost is compared with 

the T2T test on a Gaussian example. 

Example 1. Given the three estimated tracks Tt, T2 , T3 , assumed in the 1-D space 

and with their posteriors normally distributed, therefore characterized by state and 
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Figure 2.1: T2T and dfE distances between track estimates (posterior PDFs) of 
targets T1, T2, T3. 

variance Tn(Xn, lJ;), for n = 1 ... 3, as shown also in Fig.2.1 

(2.31) 

we have the following T2T association costs between them, dr2T = (~:~-~t, as defined 

in (Bar-Shalom and Li, 1995): 

(2.32) 

(2.33) 

(2.34) 

Therefore from (32)-(34) we have 

(2.35) 
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which shows the T2T association test in (Bar-Shalom and Li, 1995) does not satisfy 

the triangle inequality and therefore is not a metric. 

Example 2. In this 1-D example of associating two estimated tracks, i.e., xi, x~ 
from sensors= 1 to the one track x~, estimated on sensors= 2, the T2T association 

cost is shown to associate the estimated tracks in an unexpected manner. Given the 

estimated tracks posterior Gaussian distributions, characterized by x} = 2.5, ai = 1.0, 

x~ = 3.0, a~ = 2.0 and x~ = 2.7, a~ = 1.0, as shown in Fig.2.2, based on the T2T 

association test, dr2r = (~1-;;~
2 

(under the error independence assumption), we get 

the association 

.ri_ (T1 T1) o.2xo.2 0 02 d (T2 T1) _ o.axo.a _ 0 018 
W1'2T 1' 2 = 12+12 = · ' T2T 1' 2 - 12+22 - · ' 

(2.36) 
= > T[ associated to Ti. 

By using the dfE(·, ·) for 1-D Gaussian distributions in (2.40) we get the contrary 

association 

(2.37) 
= > T{ associated to Ti, 

which seem more probable given the tracks xi and x~ have closer means and have 

more alike distributions. 

2.4 Computation of the C2C Association Cost 

The calculation of the C2C association cost using the Wasserstein distance between 

particle clouds, as defined in (2.18)-(2.20) was carried out for the general case first 

in (Danu et al., 2008a) through linear programming interior-point methods (Zhang, 
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Figure 2.2: PDFs of estimated tracks on the two sensors. 

1999). It is presented below, together with the formulas from (Givens and Shortt, 

1984) applicable only to the special case of Gaussian distributed clouds and Eu-

clidean distance used as inner particle distance. The computation in the general case 

becomes very intensive as the cardinalities of the two clouds get higher. Therefore, 

the implications of using in this computation a restricted number of highest weighted 

particles, or resampled clouds of lesser cardinalities are explored in Section 2.6. Also 

the resolution obtained in the Wasserstein distance by using the Euclidean or T2T 

distance at particle level is experimented. 

2.4.1 C2C for Gaussian Particle Clouds Using Euclidean 

Wasserstein Distance 

For the special case of particle clouds of Gaussian probability distributions, the Eu­

clidean Wasserstein distance of order p = 2 has a closed form expression (Givens and 

Shortt, 1984), which for two probability distributions P1, P2 of random variables in 
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Based on (2.38) and the derivation of distance between zero mean distributions in 

(Givens and Shortt, 1984), we have for n = 2 

and for n = 1 

(2.40) 

2.4.2 C2C for Non-Gaussian Weighted Particle Clouds 

The computation of the general Wasserstein distance (not necessarily using the Eu­

clidean distance as its inner distance), as introduced in (2.18)-(2.20), for weighted 

particle clouds of an arbitrary distribution, can be carried out through interior point 

linear programming methods, as we showed in (Danu et al., 2008a). The computa­

tion implies finding the minimum cost solution to the multiassignment of particles in 

one cloud to the particles in the other cloud. In order to translate (2.18)-(2.20) in a 

classical linear program 

min dTw (2.41) 
w 

subject to 

Aw=b, 

w 2:0, (2.42) 

w:::; 1 
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(2.43) 

represents the vector of distances dij = d ( ~f, ~~) , 

(2.44) 

is the content of transportation matrix W in vector form, 

A= 

1 1 

0 0 

0 0 

1 0 

0 1 

0 0 

1 0 0 

0 1 1 

0 0 0 

0 1 0 

0 0 1 

1 0 0 

0 

1 

0 

0 

0 

1 

0 0 

0 0 

1 1 

1 0 

0 1 

0 0 

0 

0 

1 

0 

0 

1 

(2.45) 

and b = [w~ W~ ... WK,h W~ W~ ... W~2]T is the (stacked) vector of particle Weights 

of both clouds. 

Once the Wasserstein distance is formulated as a constrained minimization problem, 

a sample package solving the above minimization is LIPSOL (Linear-programming 

Interior Point SOLver) (Zhang, 1999). 
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2.4.3 C2C for Non-Gaussian Resampled-Particle Clouds 

Using clouds of labeled resampled particles at the particle filter level produces a fixed 

number of particles per cloud, all having same weight (i.e. 1/M for M particles per 

cloud). The constant weight of all particles results in the special form of 8::::. ( ~) as 

(2.46) 

In this case the transportation matrix W has the sums on all rows equal, and the 

same holds for columns 

(2.47) 

Equation (2.18) combined with (2.47) represent the constrained optimization to be 

solved in estimating the distance between the clouds (objective function). Two sub­

cases arise in the computation of this cost: when 1211 = 1321 (i.e. clouds are of equal 

cardinalities) and when IB1I # IB2I· 

Resampled Particle Clouds of Equal Cardinalities 

For equal cardinalities, M 1 = M 2 = M and all particles in both clouds have identical 

weights, 1/M. Consequently the C2C association cost can be simplified to the optimal 

objective function of a simple 2-D assignment (i.e., W to have elements in {0, 1} only). 

The minimization (2.18) becomes 

1 M 
dW(~ ~ ) · P "'"'d(C C )P 

p .::Ot, .::.2 = m~n M L....J l,i, l,ui 

i=1 

(2.48) 
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with p = 1, 2, where O"i is a permutation of i = 1, ... , M. Equation (2.48) represents 

the 2-D assignment problem (without dummy association allowed, as all particles 

should be assigned), which can be solved by finding optimum O" permutation using 

auction algorithms (Bertsekas and Castanon, 1993; Jonker and Volgenant, 1987). 

Resampled Particle Clouds of Different Cardinalities 

For clouds of different cardinalities, M 1 =j:. M2, even though particles in each cloud 

have equal weights (i.e., 1/ M 1 for s = 1 and 1/ M2 for s = 2), they are different 

between clouds. In order to reduce this problem to a similar 2-D problem as in 2.4.3, 

both clouds need to be reduced to the same number of particles and of equal weights 

(in order to allow one-to-one associations only and therefore W with elements in 

{0,1} ). Using a method similar to the one in (Hoffman and Mahler, 2004), each 

particle i = 1, .. M 1 in the cloud 3 1 will be divided into M; = M2/ gcd(M1, M2) new 

particles of the same state, where gcd stands for the greatest common divisor, thus 

obtaining the new equivalent cloud 2rew of /2rew/ = Mi M1 = M1M2/ gcd(M1, M2) 

particles of weights w = gcd(M1, M2)/(M1M2). The same resampling is applied to 

the particles in the cloud 3 2, in consequence obtaining the equivalent new cloud 3~ew 

of /3~ew/ = M;M2 = M1M2/ gcd(M1 , M2) particles of same weight w. At this stage 

as 3rew and 3~ew have the same number of particles of same weight, the cost can be 

computed by following the same 2-D association method in subsection 2.4.3. Another 

solution would be to apply directly the method in subsection 2.4.2, to allow fractional 

multiassignment between particles of both clouds (i.e. to allow W matrix elements 

to take values in the interval [0, 1]). 
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2.4.4 Discussion 

Clouds Cardinalities Implications 

The methods presented in Section 2.4 do not penalize the difference in the cardinalities 

of the clouds as long as the clouds cardinalities allow them to be estimates close to 

the underlying distributions. The C2C computation method introduced in subsection 

2.4.2 prevents the difference in clouds cardinalities from significantly affecting the 

C2C association cost through the fractional multiassignment of particles. For any 

two clouds, independent of their cardinalities, no particle or part of a particle weight 

remains unassigned. The C2C computation method simplified in subsection 2.4.3 for 

resampled clouds of different cardinalities brings the clouds to the same cardinalities 

by splitting the particles in smaller weights using the gcd. This makes, implicitly, 

their internal particles of equal weights. The numerical example below illustrates 

how the initial difference between clouds cardinalities does not affect the C2C cost. 

For weighted particle clouds, the C2C distances between the simplified cloud 

3f = { { -1, 0.2}, {0, 0.6}, {1, 0.2}} (2.49) 

to the clouds 

3~ = {{ -1, 0.1}, { -1, 0.1 }, {0, 0.3}, {0, 0.3}, {1, 0.1}{1, 0.1}} (2.50) 

or 

3~ = {{ -1, 0.2}, {0, 0.2}, {0, 0.2}, {0, 0.2}{1, 0.2}}, (2.51) 
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all of different cardinalities, have the same value 0. For the distributions above, we 

consider now approximations with resampled particle clouds of different cardinalities, 

such as 

and 

s~es = { { -1, 0.2}, {0, 0.2}, {0, 0.2}, {0, 0.2}, {1, 0.2}} 

s;:gs = {{ -1, 0.1}, { -1, 0.1}, {0, 0.1}, {0, 0.1}, {0, 0.1}, . 

{0, 0.1}, {0, 0.1}, {0, 0.1}, {1, 0.1}, {1, 0.1}} 

(2.52) 

(2.53) 

The C2C distance between these resampled clouds is still 0 since the method in 

subsection 2.4.3 will bring both resampled clouds above to the same form SJ:gs of 

equal cardinalities and of equal weights. 

The convergence in (2.30) was empirically explored using Monte Carlo simulations 

for the C2C computation on a restricted number N0 of weighted (of the highest 

N0 weights) particles in the cloud of cardinality N ;::: N0 • Some of the results are 

presented in Section 2.6. The C2C computation on weighted particle clouds was found 

to be the method of choice due to the fractional multiassignment (finer than a 2-D) 

and the possibility to select the most significant N0 particles based on their weights. 

The methods presented for resampled particle clouds use the 2-D assignment, which 

needs equal number of particles for a complete assignment, otherwise the unassigned 

particles would penalize the cost, as in (Hoffman and Mahler, 2004). One drawback 

of using the 2-D assignment on resampled clouds is that bringing both resampled 

clouds to the same cardinality (through their gcd as shown in 2.4.3) usually results 

in a very high number of particles. 
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Mahalanobis Distance Used as C2C Inner Distance 

Instead of using the Euclidean distance as the inner distance in the C2C computation, 

the Mahalanobis distance, as defined below, could be used. This allows the usage of all 

particle state components (e.g. velocity as well, beside position) into the computation 

of the resulting C2C Mahalanobis Wasserstein distance. It implies the computation 

of the sample covariance of each cloud 

N N 

P= L(C -m) (C -m)' ,m = L~nwn 
n=1 

and based on it 

dw (~n ~n) . 
Mah ,::.1' ,::.2 = min w 

n=1 

M1 M2 

L L Wij (~Lh- ~~,lJ p-1 (~Lh- ~~,lJ'. 
i=1 j=1 

(2.54) 

(2.55) 

The Mahalanobis distance is defined between a random variable and a discrete value 

(with the random variable characterized by mean and covariance), whereas in (2.55) 

we are using the distance between two random variables (whose samples are the two 

sets of particles in the two clouds). 

2.5 Cloud to Cloud Fusion 

For two associated particle clouds, as corresponding to same target, 3 1 and 3 2 , of 

unresampled particles with normalized weights (i.e., each cloud particles weights sum 

to one), three methods for computing the estimated fused state are presented below. 

Method 1 - Derives the fused estimate as the direct combination of particles in both 
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clouds. The method implicitly assumes the clouds have similar sample covariances. 

(2.56) 

Method 2- Clouds are weighted by their sample covariances, following the information 

filter approach (Bar-Shalom and Li, 1995) 

(2.57) 

where P 1 , P 2 , are sample covariances of clouds B1 and 3 2 , computed through 

Ms T 

P s = L w! ( e! - ~s) ( e! - ~s) , (2.58) 
i=l 

where ~s is the sample weighted mean. In this method independence of the estimation 

errors of both clouds is assumed, i.e., the cross-correlation due to common process 

noise is ignored. 

Method 3- Fusion is carried out making use of the estimated sample cross-covariance 

matrices between clouds, H 2 , P21 • These are estimated based on the transportation 

matrix W between clouds, derived in the association step 

and used as 

(2.60) 
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in the computation of fused estimate 

N1 N2 

x = (P2- P21) p-l L:{iwi + (P1- P12) p-l L~~w~. (2.61) 
i=l j=l 

2.6 Simulation 

The architecture used in the simulation is a distributed one where fusion can happen 

at a rate lower than the sampling rates of the available sensors. The sampling of the 

sensors at the fusion times are supposed to be synchronous and no feedback (from 

the fused estimates to the local sensors estimates) is assumed. 

2.6.1 PHD Particle Filter 

The PHD definition is based on the theory of RFSs, whose statistics a.k.a. FISST 

define the targets in a scenario as an RFS (meta-target) and the set of observations 

as another RFS (meta-observation) (Mahler, 2003). The PHD was introduced in 

(Mahler, 2003) as the first order multitarget moment -the density function whose 

integral over a region is the expected number of targets in that region. Being defined in 

single-target state space, its value at a given point is the probability density function 

of target presence, therefore provides target localization. In the same work (Mahler, 

2003) the author derives, within the Bayesian framework of FISST, the sequential 

estimation of the first order multitarget moment, also known as the PHD filter. The 

PHD filter has the ability to initiate tracks of newly born targets, spawning targets, 

as well as to terminate tracks for dead targets in a multitarget scenario of dynamic 

target cardinality, while also being able to account for clutter within the measurement 

set. A sequential Monte Carlo implementation of the PHD filter, known as the PHD 
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particle filter, was derived in (Sidenbladh, 2003; Vo et al., 2005; Zajic and Mahler, 

2003). 

2.6.2 Track Labeling 

A PHD particle filter with the particle labeling capability was developed in (Lin 

et al., 2006), based on the idea of running in parallel another estimator in order to 

preserve track identities (e.g. Kalman filter) and associate PHD peaks to current 

tracks identities and we proposed recently (Danu et al., 2009b) a different labeling 

method. As a result, the PHD particles entering the fusion process, beside the state 

and weight, have the track label information, which groups them in labeled particle 

clouds. For example, after processing the measurements received at a given time k, 

the output of a given particle filter 8 (where 8 = 1, ... , S, with S being the number 

of sensors) is the set of labeled particles corresponding to the estimated PHD 

DA _ { l.,iz c:ls,iz} l _ 1 NA · _ 1 Ll• 
s, klk - wk,s '""k,s ' s - ·· s,klk' 'lz. - ·· s,k· (2.62) 

Here f.k~~~ is a particle of track label ls and index i, w~.~~ is its weight, Ns,klk is the 

estimated number of targets, ls = 1.. Ns,klk are all target labels (numbered here from 

1 to Ns,klk), and L~:k is the number of particles in the cloud corresponding to track 

labeled l8 , all at time k and at sensor 8. In further notation the time index k is 

dropped for simplification, as fusion is performed statically (at a common instance, 

thus association time being irrelevant for the presentation purpose). 

One advantage of using labeled particles in the local particle filter sequential 

estimation is that new particles can be thrown into processing at any frame around 

every measurement (true or false) and no estimation of false measurements spatial 

64 



Ph.D. Thesis- Daniel G. Danu McMaster - Electrical Engineering 

distribution is needed for generating these new particles. The particles corresponding 

to false measurements are eliminated in the next frames, as they will not generate 

usually confirmed tracks, and particles of non-confirmed tracks are not propagated 

for more than two or three frames. (False tracks, when generated, are usually of 

small duration.) The advantage of using locally labeled particles for fusion is that the 

clustering at the fusion center is avoided and particles of tracks non-confirmed locally 

do not enter the fusion process, thus significantly decreasing the data association 

problem size and communication. 

The simulation scenario contains two sensors s = 1, 2, each estimating through a 

labeled PHD filter the two targets with close, crossing and nonlinear trajectories, as 

shown in Fig.2.3. Over the second half of targets trajectories the combined sensor 

measurement errors are at times higher than the distance between the targets, there-

fore local estimation and association between sensor estimates are carried out under 

measurement origin uncertainty. 

Targets x, yin time (Target 1 -dots, Target 2- crosses) 
100r---~~~~--~--~--~--~---. 

g 
>< 

-1 00 '----'-------''--------'-----'------'------'----'-----' 
0 5 10 15 20 25 30 35 40 

Time [s] 

-1 00 '--~'-------''------'-----'------L-----'----'------' 
0 5 10 15 20 25 30 35 40 

Time [s] 

Figure 2.3: True targets trajectories in x and y over time. 
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Targets- trajectories and measurements (true and false) 

Figure 2.4: Targets measurements over a sample run. 

Fig.2.4 shows the true measurements (circles) and false alarms (crosses) for a sam­

ple run of the simulation. The two local estimators used at the two sensors s = 1, 2, 

are PHD particle filters with track-valued (labeled) particle clouds. The equations 

and implementation of the track-labelled PHD particle filter follow the one in (Danu 

et al., 2009a), here extended to two-dimensional tracking, briefly described below, 

with k denoting the time sample, and filter index s dropped. Particle states contain 

two-dimensional position and velocity in Cartesian coordinates, while measurements 

provide only position information. 

Initialization 

Fori= 1, ... 'Ll sample position (x, y) of particles as ~Lx.y) rv N (Zl, az), where zl is 

the set of all initial measurements, and N stands for normal distribution. The velocity 

components of each particle are initialized uniformly distributed within maximum 

velocities allowed for a target ~Lcvx,vy) rv U ( -Vmax, Vmax), with Vmax = 6 here. Initial 

weights are computed as wf = ~I/ (L1 • n1 ), where ~1 is the estimated number of 

targets and n1 is the number of initial measurements. 
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Prediction 

Fori= 1, ... , Lk-1 (confirmed particles at time k -1), sample ~1"' q (·I~L1), where 

q is the proposal density, which translates into 

1 T 0 0 

~i-
0 1 0 0 

~L1 +vk, k- (2.63) 
0 0 1 T 

0 0 0 1 

with vk denoting the process noise (with a;,y = 1.0, a~x.vy = 0.25) and the sampling 

time step T = 1s. Assuming no target spawning, weights are computed as w1 -
wL1 · e, where e = 0.95 is the probability of target survival. 

For i = Lk_1 + 1, ... , Lk-J + Jk, newborn particles are sampled based on new 

measurements in the set Zk. For this purpose Zk is partitioned with respect toT k-1, 

the set of tracks at time k - 1, into 

Z k, in = { z{ I z{ in validation region of a track in T k-1 } 

and Z k, out = { z{ I zt in no validation region of any track in T k-1 } . Particles position 

components are sampled for all measurements as ~k.(x,y) "' N (Zk, az), where O"z is 

the standard deviation of measurement position error. For measurements in Zk,in 

particles velocity components are sampled from ~k.(vx,vy) "'N (±k'_1, O"v ), where ±k'_1 

is the velocity estimate of track n at time k- 1, in which region the measurement z 

was accepted. For measurements in Zk,out particles velocity components are sampled 

uniformly within [-vx,max, Vx,max] and [-vy,max, Vy,max]· The weights of all newborn 
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particles are computed as 

(2.64) 

where bk ( t1) is the intensity function of the point process (considered Poisson here) 

generating the target birth and Pk ( t11Zk) the proposal density. By considering 

normal densities for bk and Pk as in (Lin et al., 2006), (Vo et al., 2005), the weights 

are computed as I/ Jk, where the constant intensity of the point process was taken as 

I= 0.2 (e.g. one target birth expected every 5th sampling time on average). 

Update 

Fori= 1, ... , Lk, where Lk = Lk_1 + Jk, the updated weights are computed as 

(2.65) 

where Pn is the probability of detection (considered unity here), his the sensor mea-

surement function, considered as normal with measurement error standard deviation 

2.5 for each sensor in both x and y directions, ,\ = 4 is the average rate of clutter 

points per scan, c = 0.000025 is the uniform clutter density for the whole surveyed 

area, ,81=1.1, ,82 = ,BI/25 are design parameters as in (Lin et al., 2006) and 

Lk 

Ck(z) = L Pnh(zi~klk-1)wklk-1· (2.66) 
i=1 

Track labels are obtained by using a shadow Kalman filter and the resolution cell 

technique (Lin et al., 2006). The details of the particle labeling implementation for the 

2-D PHD filter were derived and presented in (Danu et al., 2009b). The unresampled 
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particle clouds obtained at the local particle filters are considered for fusion, and their 

association costs are computed as introduced in (2.18)-(2.20), translated into a linear 

program using definitions in (2.43)-(2.45). The resulting linear program was solved 

using the LIPSOL package (Zhang, 1999). 

2.6.3 Simulation Results 

Average estimated errors and Root Mean Squared Errors (RMSE) (Bar-Shalom et al., 

2001) computed over time for 100 Monte Carlo runs are shown in Fig.2.5-2.6 and are 

summarized in Tables 2.1-2.2 for single filter and fused results. The comparison be­

tween the estimates·RMSE obtained using the C2C distance and T2T test is captured 

also in Fig.2.5-2.6. The fusion Method1 was used in all simulation cases, therefore 

the results show the difference obtained through using different association costs. The 

C2C cost using Wasserstein distance of orders 1 and 2 on weighted and resampled 

clouds were used for comparison. The fused estimates MSE and RMSE over the MC 

runs are labeled in Fig.2.5-2.6 with Wd1 and Wd2 for C2C of orders 1 and 2, respec­

tively, obtained on weighted clouds and with W dLres and W d2__res for C2C of orders 

1 and 2, respectively, obtained on resampled clouds. 

Table 2.1: Position RMSE for single filters 
Target 1 Target 2 

RMSE Sensor 1 3.5109 3.8981 
RMSE Sensor 2 3.5624 3.8648 
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Table 2.2: Mean Position RMSE for Methods 1 and 2 of fusion using C2C cost and 
T2T test 

Target 1 Target 2 
Method 1 - C2C with df H 2.59 2.75 
Method 1 - C2C with dYj E 2.63 2.79 
Method 2 - C2C with df H 2.64 2.91 
Method 2 - C2C with dYj E 2.73 2.97 
T2T test 2.96 3.23 

2.6.4 C2C vs. Euclidean Distance for Gaussian Distributed 

Clouds 

In order to assess the proposed association cost on clouds of different distributions, 

Monte Carlo simulations were performed for estimating the association cost of two 

clouds, normally distributed (corresponding to the unresampled case), with different 

known standard deviations. The number of particles considered was M = 400 on 

both clouds. The costs obtained in 100 runs using (2.18) are compared with the 

distribution of the distance between the clouds centers estimated on the same runs 

using the weighted sum of particles 

M M 

d12 = 2: wi ~i - 2: w~~g (2.67) 
i=l j=l 

Two Gaussian particle clouds with particle states capturing the 2D position were con-

sidered, with distance between their centers of 2.594, one with constant standard de-

viation a 1 = 1.5 and the second one with seven different standard deviations, smaller 

and higher compared with the one of the first one: a 2 = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}. 

The results obtained are summarized in Table 2.3, where it can be seen first that the 

C2C distance, computed on the random probability measures represented by the 
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Pos Mean Error over 100 MC runs, targ 1 

5 . 

4.5 . 

4 ... 

3.5 . 

-Wd1 
... -t-Wd2 

---T2T 
· · · · · · · · X· Wd1_res · 

0· · Wd2_res . : 
··U· T2T_res 

Figure 2.5: Position Mean Errors of fused estimates obtained using C2C distance and 
T2T test. 

clouds follows closely the theoretical Wasserstein distance between the underlying 

Gaussian distributions, as given by (2.39). Compared with the sample Euclidean dis­

tance computed using (2.67), which is almost insensitive to the variance of the clouds, 

as only the estimate first order moment enters (2.67), the C2C cost computed based 

on (2.18) increases with the difference between the clouds second order moment (vari­

ance). The minimum C2C cost is obtained for equal variances of the clouds. While 

these simulations were using Gaussian clouds, however the cost in (2.18) is not mak­

ing any assumption on normality, therefore differences in higher order moments of 

the clouds are expected to be penalized by the C2C cost as well for non-Gaussian 

clouds. Also the results in Table 2.3 show that a good C2C convergence is obtained 
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Pos RMS Error over 1 00 MC runs, targ 1 

2. 

M ~ ~ M • M $ ~ ~ 

Pos RMS Error over 100 MC runs, targ 2 

x Wd1_res 

2. 

Figure 2.6: Position RMSE of fused estimates obtained using C2C distance and T2T 
test. 

using 400 particles per cloud. 

2. 7 Conclusions 

A method for the association and fusion of target posterior densities estimates ob-

tained using particle filters was proposed. C2C association costs, computed at the 

particle level, depending on particles types were derived and the convergence of the 

cost on particle clouds was proved theoretically and tested through simulations. Sev-

eral fusion methods were presented. Results obtained on a simulated multitarget 

scenario using the proposed association cost and fusion method were analyzed and 
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Table 2.3: C2C costs compared with sample Ed and theoretical T2T. 
Cloud 1 std a1 = 1.5 
Cloud 2 std a2=0.5 a2=l.O a2=l.5 a2=2.0 a2=2.5 a2=3.0 a2=3.5 
Wd theor. 2.780 2.642 2.594 2.642 2.780 2.997 3.276 
C2C mean 2.798 2.649 2.610 2.661 2.851 3.103 3.502 
C2C std. 0.101 0.111 0.130 0.155 0.180 0.170 0.193 
Ed mean 2.600 2.598 2.604 2.604 2.627 2.606 2.614 
Ed std. 0.089 0.089 0.108 0.127 0.146 0.165 0.180 
T2T theor. 2.692 2.071 1.496 1.077 0.792 0.598 0.464 

showed improvement compared with the classical T2T test when applied on parti-

cle filter estimates. The fusion method introduced, at particle level, combines the 

whole information contained in the estimated targets posterior densities, not only the 

tracks states first order moments, therefore being applicable to highly non-Gaussian 

estimates and nonlinear estimators. 
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Chapter 3 

Track-to-Track Fusion Using Prior 

Associations 

In single-frame track-to-track association the identities of the fused tracks are not 

preserved over time. The fused track identities can be tagged based on a given 

sensor local tracks identities at each frame. Due to possible local tracks swapping 

(switching of a track from an estimated target to another estimated target, under 

measurement uncertainty conditions), this type of tagging based on a single sensor 

identities is not reliable. This chapter introduces a track-to-track association method 

that links the histories of fused tracks over time. The association method shows also 

a reduction of track swapping at the fusion center level in the presence of track swap 

at the local sensors level. The track association method uses the previous association 

hypotheses as priors in a multiple-hypothesis association chain. The fused tracks 

continuity is achieved through their prediction from one fusion time frame to the next. 

The predicted fused tracks of each selected association hypothesis at a given time 

frame participate in the tracks association of the next frame. The cross-correlation 
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between local tracks at the association frame is considered in the association cost. 

The dependence between associations over consecutive frames is taken into account 

through the cross-correlation between the predicted fused tracks of previous frame 

to the time frame of current association. By taking into account the fused tracks 

identities when evaluating the fused tracks estimation errors (e.g. the errors of a 

fused track over all frames are computed with respect to the same true target), the 

procedure improves also the fused track performance estimation. The method and 

implementation proposed is intended to identify the histories of two or more tracks 

at the fusion center, and to improve the track-to-track association. Upon association, 

the track fusion method employed may use the previous fused track estimation, i.e. 

perform fusion with memory, or not, i.e. perform fusion without memory. Also the 

method can be used in conjunction with no, partial or full feedback from the fusion 

center to the local sensors. The feedback can be at the track estimation level, track 

identity level or both. 

3.1 Introduction 

Track-to-track association is an essential component of a distributed tracking system 

that performs track-to-track fusion. It generates and selects valid hypotheses of local 

tracks subsets as pertaining to the same targets. Its computational intensity increases 

exponentially with the number of sensors. 

In the literature there are described several methods, referring both to the com­

putation of the costs (likelihoods) of common origin of a subset of local tracks (Bar­

Shalom et al., 2007), (Bar-Shalom and Chen, 2006), (Kaplan and Blair, 2004), (You 

and Jingwei, 2006) as well as methods of selecting the best, or m-best, assignment 
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hypotheses (Deb et al., 1997), (Poore and Robertson-III, 1997), (Popp et al., 2001). 

The cost of common origin of a subset of tracks is usually computed on a single frame 

basis (Bar-Shalom et al., 2007), (Bar-Shalom and Chen, 2006), (Kaplan and Blair, 

2004) and therefore the resulting fused track does not have a continuity foundation 

from one fusion frame to the next. At the local sensor level each track has a continuity 

over time frames through the track label and its dynamic model. However when the 

local sensors estimate under measurement uncertainty conditions local tracks may 

switch from following one target to following another target. This erroneous change 

of a local track to start estimating a different true target is termed track swap. This 

may prevent relying on the local tracks identities (IDs) at the fusion center from one 

association frame to the other. A method of computing track-to-track association 

costs over several local frames was proposed in (You and Jingwei, 2006), for two sen­

sors, however relying solely on the local tracks identities, assuming no track swaps 

at the local tracker level and not taking into account the cross-correlation between 

local estimates over multiple frames (Bar-Shalom and Chen, 2008). The exact and 

approximate methods of computing the cross-correlation between local estimates over 

multiple frames was introduced in (Tian and Bar-Shalom, 2009). As shown therein, 

using multiple local frames in the association does not necessarily increase the power 

of test in selecting the association hypotheses. The sliding window over local tracks 

approach is valid only for the case that no track switch happens at the local trackers 

level for the windowing period, which cannot be guaranteed. The track-to-track asso­

ciation and further fused tracks identification over time becomes challenging when the 

local tracks of several targets are very close, within distances of the order of tracks 

uncertainties. This situation is usually linked to local measurement origin uncer­

tainty that may generate sporadic local tracks swap. The track association method 
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introduced in this chapter uses as prior at the current association frame the fused 

tracks and association obtained at the previous fusion frame. As tracks association is 

performed at each fusion frame, several cumulative association hypotheses are kept 

from the previous fusion frame as priors for assessing the current frame association 

hypotheses. The continuity of associations from one frame to the next is achieved 

through the predicted fused tracks estimates and their identities (labels). Each prior 

association hypothesis results in a different prior fused tracks set, of which predictions 

enter the current frame track-to-track association. An (S+ 1)-D association, with S 

equal to the number of sensors, is required in this case in the hypothesis selection. 

A limited number of distinct hypotheses are chosen to be used in the subsequent 

fusion step. The predicted fused tracks in the resulting assignment solutions are not 

used in the subsequent fusion, they are only used for linking the identity information 

from one fusion frame to the next, through weighting of the likelihoods of common 

origin for local tracks. The track-to-track association method relies on generating 

association hypotheses at each fusion frame and linking them through time in a fused 

track history. Therefore the method is intended to be used also in the identification 

of fused tracks histories over time. The cross-correlation between the local sensor 

tracks and also between predicted fused and local tracks is estimated with exact and 

approximate methods developed in (Chen et al., 2003) and (Tian and Bar-Shalom, 

2009). The cross-correlation between predicted fused tracks and current local tracks 

accounts for the dependency of estimation errors between fusion frames. The as­

sociation scheme proposed can be combined with different fusion methods used in 

the subsequent fusion estimate step. Beside the classical one-scan fusion method in­

troduced in (Bar-Shalom and Campo, 1986), several fusion methods were recently 

developed in (Tian and Bar-Shalom, 2009), (Tian and Bar-Shalom, 2010) that use or 
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do not use previous frames and feedback in computing the fused tracks estimates at 

the current frame. As shown in (Tian and Bar-Shalom, 2009), the feedback usage in 

the fusion estimate step changes the cross-correlation present between between local 

track estimates and fused tracks and needs to be accounted for in the association 

step. The chapter is organized as follows: section 3.2 provides a description of the 

track-to-track association problem, section 3.3 details the usage of prior associations 

assignment, section 3.4 describes the proposed method of generating and assessing 

the hypotheses, as well as a sample implementation. Simulations and results are 

presented in section 3.5 and conclusions in section 3.6. 

3.2 Problem Description 

We consider i = 1, ... , S local sensors tracking j = 1, ... , Nt targets and use the nota­

tion x{i(k) ( k) for the estimated local tracks states. The number of targets are assumed 

constant over time. The extension to a variable number of targets is straightforward 

once the target deaths and target births probabilities are considered in evaluating the 

association hypotheses costs. The sample time frames are represented by the index k 

and local sensors are considered synchronized for the brevity of the exposition. The 

identity index (label) of the local track that estimates a true target, i.e., j, at sensor i 

at time k is represented by the index ji ( k). The notation with time-dependent index 

ji ( k) is used as the ID of the local track that follows a true target at sensor i might 

change its value over time. This happens when the local track with ID ji switches 

to estimating a different target at a subsequent fusion time. The track swap may 

happen when trackers run under measurement origin uncertainty (Bar-Shalom and 

Li, 1995). It is caused by measurement-to-track misassociation(s) used in the update 
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of a track state estimate. The local track swap affects the track-to-track association 

part of track fusion. It also precludes the fusion center of labeling fused track iden­

tities based solely on a single sensor tracks identities. The problem of preserving the 

fused tracks identities over time and solution proposed is shown in Fig.3.1. In the 

example used, two sensors, i = 1, 2, are tracking two closely spaced targets tg = 1, 2 

between the fusion time frames l and k. Fig.3.1-a shows the ideal case of no local 

track swap. Both sensors preserve the correct IDs of the local tracks over all sample 

times between l and k. Tracks xi ( ·) and xi ( ·) are the sensor 1 estimates of targets 1 

and 2, respectively. Tracks x~(·) and x§(-) are sensors 2 estimates of targets 1 and 2, 

respectively. In this ideal case the identities of the associated and subsequently fused 

tracks x1(-), x}(·) can be maintained even with single-frame track association. The 

fused tracks identities are correctly inferred from the local IDs of any sensor. 

In Fig.3.1-b a track swap occurs at sensors= 2 between the fusion times land k. 

The resulting fused track identities cannot be correctly preserved based on the IDs of 

any local sensor. For example, using labels of sensor 2, would indicate that x1(l) and 

xffi (k) represent different targets, i.e. 1 respectively 2. The solution using the prior 

fused tracks in association is shown in Fig.3.1-c. If the predicted fused tracks x}(kjl), 

x}(kll) are used in the track association, the weights for the correct label of associated 

tracks are increased. For the case presented in Fig.3.1-c the best association cost will 

result to be the one of tracks [xi(k) x§(k) x1(kll)] representing target 1 and [xi(kil) 

x~(kll) x}(kll)] representing target 2. Based on a majority vote (Sinha et al., 2008) 

the indices of resulting fused tracks at k will represent the correct ones of the true 

targets. 

The details of the problem are presented next. At each fusion time k, the fusion 

center receives the local tracks estimates x{i(k\k), i = 1, ... , S, with ji(k) = 1, ... , Nt 
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xf(l) x}(k) 
Sensor 1 

Fusion Center 

x§(k) 
Sensor 2 

(a) 

xi(k) 
Sensor 1 

Fusion Center 

x§(k) 
Sensor 2 

(b) 

xf(l) xf(k) 
Sensor 1 

~~~~--~-------4~~x}(k) : 
Fusion Center I 

I x}(k) I 
L ------l 

x§(t) 
Sensor 2 

(c) 

Figure 3.1: Track-to-track association and fused track identities in the pres­
ence/absence of local track swap for 8=2 sensors tracking 2 targets. (a) Single frame 
track-to-track association (2-D) without local track swap and fused track identities 
preserved. (b) Single frame track-to-track association (2-D) with local track swap at 
sensors= 2 and uncertain fused track identities. (c) Track-to-track association using 
prior (3-D) with fused track identities retrieved upon local swap at sensor s = 2. 
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and performs the track-to-track association prior to the fusion of the track estimates. 

We define the binary track-to-track assignment variable Xi1.h, ... ,js representing the 

true/false common origin of the tracks at time frame k as (Pattipati et al., 2000) 

if j 1, j 2, ... , is denote the same target 
(3.1) 

otherwise 

The track-to-track association problem at a single fusion frame is the S-D general­

ized association problem captured through the constrained minimization (Deb et al., 

1997), (Pattipati et al., 2000), (Poore and Robertson-III, 1997): 

min "" "" · · · "" c · · · X · · · L...J L...J L...J 31,32,····35 31,J2, ... ,3s 
X . . . 

(3.2) 
31 32 3s 

subject to 

L · · · LL · · · LXj1,h, ... ,j8 = 1, i = 1, · · ·, S, ji = 1, ... Nt (3.3) 
is 

where ch,h, ... ,js is the cost of common origin for the localS-tuple. For a single frame 

association the cost is computed as 

c· · · --ln.A· · · 31,32•···•18 - ]1,]2,···,]8 (3.4) 

where Aj!,h, ... ,js is the generalized likelihood ratio of common origin of tracks hy­

pothesis 'Hh,h, ... ,js (Bar-Shalom and Chen, 2006). The likelihood ratio is computed 

as the ratio of the common origin of tracks likelihood function (assumed joint nor­

mal density) to the diffuse pdf of track density, 1/V (Bar-Shalom and Chen, 2006), 
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(Bar-Shalom et al., 2001) 

.X·· ·-V8
-

1N[x ·OP] JI.J2, ... ,Js - l,S, , l,S (3.5) 

where 

(3.6) 

and P 1,s is the covariance matrix of x1,s, with block elements defined as (Bar-Shalom 

et al., 2001) 

(PI,s)m-I,n-1 = E[(x~- x{1 )(x~n- x{1 
)], m, n = 2, ... , S (3.7) 

The above procedure performs the track-to-track association separately from fusion 

frame to fusion frame. In (You and Jingwei, 2006)1, for two sensors, the likelihood ra­

tio of common origin of tracks (j1 , j 2) is developed over several frames. The sequential 

association is performed as 

(3.8) 

with iilh(k) = x{1 (k)- x1/(k) and l being the previous fusion frame. The sequen­

tial (cumulative) likelihood ratio above was derived by assuming the conditional 

1-ljli2 hypothesis in the computation of the joint probability density function of 

ij
1
h = { iilh ( n) : n = 1, 2, ... , k}. This implies the 1-lhh hypothesis holds true for the 

whole time interval for which the summation is done, which cannot be guaranteed for 

1 As shown in (Bar-Shalom and Chen, 2008) and (Tian and Bar-Shalom, 2009), in the paper (You 
and Jingwei, 2006) the cross-correlation between estimates over different time frames is ignored, 
which leads to erroneous results. 
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close tracks. Also the association costs, i.e. logarithms of hypotheses likelihoods, at 

different fusion frames are assumed independent, disregarding the cross-correlation 

present between different time frames. In the case of local trackers running under 

measurements uncertainty condition, the probability of a track swap between fusion 

times l and k at a local sensor can be expressed as the probability of local measure­

ments misassociation for a given track within the time interval (l, k]. 

The probability of a local track at a given fusion time k to represent the state es­

timate of a given true target J E [1 ... Nt] is expressed in terms of tracks probabilities 

at previous fusion time l. It is the sum of the probability of the track representing 

the same target J at time l without local track swap in the interval (l, k] and the 

sum of probabilities of the joint events of estimating a different target I at time l and 

making an irreversible swap (I to J) within the time interval (l, k]. This translates in 

the measurement association of the track with the measurement of target J at time 

k 

(3.9) 

where the event Ok(X::k~l), zf,k) means the association of measurement zf,k to the 

track X::k~~l) in its update. The = sign is used to show the labels of two tracks 

match. The above can be written only at track label level as 

P (ji(k) = J) = P (ji(l) = J, Ok(ji(k- 1), zf,k)) + 

L P (ii(l) = I, Ok(X::k~~l), zf,k)) 
l=l...Nt,l#J 

(3.10) 

If the local sensors provide above information for the fusion center, these probabilities 

could be taken into account in computing the association costs through a confusion 
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matrix type information (Bar-Shalom et al., 2005). However, as they are not avail­

able, a method using the track-to-track association information in the prior frames is 

proposed to mitigate the effect of local swap. 

3.3 Utilization of Prior Association 

In finding the best solutions for track-to-track association at a given fusion frame, 

the prior best association hypotheses (solutions) found at the previous frame are 

considered informative. The method introduces a multiple hypotheses association 

(MHA) approach, at each fusion frame generating sets of best association hypotheses 

and predicting their fused tracks for use in the generation of the best association 

hypotheses at the next frame. The association cost function of the various hypotheses 

can be implemented using local tracks oriented, or fused tracks oriented approaches. 

This classification is very close to the one used for single-sensor MHT (multiple­

hypothesis tracking) methods in (Bar-Shalom et al., 2007). We call fused tracks 

oriented approach the method of which costs are based on the likelihood scores of fused 

tracks. We call local tracks oriented approach the method of which costs are based 

on probabilities of local tracks association hypotheses. Using a similar approach as 

in (Reid, 1979) for single-sensor tracking, a local tracks oriented approach is pursued 

within the framework of a fusion center capable of inferring the number of targets. The 

MHA approach consists of using at fusion frame k theN-best solutions of the previous 

fusion frame, l, predicted to the current frame. N hypotheses of tracks association are 

generated at current frame k. The predictions of each set of fused tracks are used at 

the next fusion frame to generate another set of hypotheses, through association with 

local tracks estimates. The link between track-to-track association frames is carried 
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out through the predictions of the fused tracks at a previous frame in the current 

frame association. Therefore for S sensors, at each frame it is performed an (S + 1)-D 

association instead of an S-D one. The fused tracks are predicted (from fusion times 

l to k) when the local tracks are available (at time k). The process noise information 

(available from the local trackers) between frames l and k is used in the estimation of 

the likelihood ratios of common origin for the set of local tracks and predicted fused 

tracks. The storage of several hypotheses, with their corresponding fused tracks at 

every fusion time is done in the attempt to find the hypothesis that results in best 

costs along multiple fusion frames. A pruning of the resulting hypotheses is performed 

at each fusion step. 

3.4 Method Description and Implementation 

3.4.1 Theoretical method description 

We consider two consecutive fusion frames taking place at local sample times land k. 

At the fusion frame k we have available the set of N (best) cumulative hypotheses from 

previous fusion time l. These hypotheses are called cumulative as they are the result 

of sequential processing of all previous fusion frames. Each cumulative hypothesis 8~ 

at time l is represented by the set of fused tracks resulting from the corresponding 

association hypothesis at time l. The set of N cumulative hypotheses available from 

time lis therefore 8 1 = {8~}, p = 1, ... , N, where the indexp is used to denote prior. 

These cumulative hypotheses are used as priors in the generation of the track-to-track 

association hypotheses set at current frame k, {1ln(k)}, n = 1, ... , M. Here 1ln(k) 

is a track-to-track association hypothesis selected at frame k, where the notation n 
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is used to denote new hypotheses. The recursion of the probability of a cumulative 

hypothesis can be written using Bayes rule, and an approach analogous to the one in 

(Reid, 1979) as 

P ( 8~ , 1-ln(k) I [xs(k) J) = ~P ( [xs(k) J I 8~ , 1-ln(k)) · P (1-ln(k) I 8~) · P (8~), 
(3.11) 

where [ Xs ( k) J is the set of local track estimates available at time k from all the 

S sensors and c is a constant used for normalization and equal to the sum of all 

right hand side (RHS) terms over all p = 1, ... , N and n = 1, ... , M hypotheses. 

A current cumulative hypothesis actually is the joint event of a prior cumulative 

hypothesis and a current association hypothesis, therefore (3.11) is the recursion 

for the cumulative hypothesis probability. The set of fused tracks estimates with 

their uncertainties (covariance matrices) at a current frame resulting from a given 

hypothesis is considered as a sufficient statistic for the hypothesis that generated 

them, therefore we can substitute them into (3.11) and obtain the recursion for the 

probability of a given set of fused tracks under a given hypothesis as 

P (<I>~)= ~P ([xs(k)] I <I>~, 1-ln(k)) · P (1-ln(k) I <I>~)· P (<I>~) (3.12) 

where <I>~ is the new set of fused tracks generated at frame k under the association 

hypothesis 1-ln ( k) and resulting from the parent set of fused tracks <I>~. The first 

probability in the RHS of (3.12) is the likelihood of the set of local tracks at frame 

k conditioned on the prior fusion hypothesis and the current association hypothesis. 

This can be estimated (for the purpose of hypotheses comparison) using <I>; 1z, the 

set of the predicted states of the fused tracks in <I>~ (assuming these predictions are 
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sufficient statistics for the fused tracks estimates) and it can be expanded in 

where the first is the likelihood of the association hypothesis 1ln(k) given the local 

tracks and predicted fused tracks. Following (Bar-Shalom and Chen, 2006), the log­

likelihood (ratio) of this event can be evaluated as the sum of the log-likelihood ratios 

of common origin of tracks with respect to each target at time k. In other words the 

log-likelihood of this event is evaluated as the maximum sum of the log-likelihood 

ratios of common origin of the tracks at l, over the subsets of local tracks in the 

current hypothesis. This is the negative of the sum of resulting costs of each of the 

branches corresponding to a given target in the resulting ( S + 1 )-D assignment tree 

(S sets of local tracks from local sensors and one set of predicted fused tracks): 

(3.14) 

subject to 

(3.15) 

For each target j = l..Nt a cost (corresponding to the best minimum feasible solution) 

of common origin of local tracks and one fusion tracks will be found as the result of 

S-D association. The cost of the association hypothesis 1ln(k) is the sum of the costs, 

as given by (3.14), for all targets, where the cost corresponding to a target is given 

by the negative log-likelihood of the common origin of a subset of tracks (Bar-Shalom 
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and Chen, 2006) 

(3.16) 

with 

.A. . . . (k) _ A(xjJi2 ••• jsjp(k)) _ ~N(xl:s,F(k); o, Pl:s,F(k)) (3.17) 
JlJ2···JSJF - v-(S+l) - v-(S+l) 

and therefore 

(3.18) 

The assumption of joint normal distribution for the set of local tracks and predicted 

fused track, all conditioned on the ones of a local sensor, i.e. first one, has been made 

above. The covariance matrix P 1:s,F(k) above is estimated as in (Bar-Shalom and 

Chen, 2006), (Chen et al., 2003) and represents the covariance of the vector x 1:s,F(k) 

below 

Here x{i (k) is the track estimate of sensor i at frame k to be associated under hypothe­

sis 1-lilh···isiF(k) with predicted fused track x{F(k il). The xW(k il) is the prediction 

of fused track x{F(l) from frame l to k. The reference track x{1 (k) in (3.19) can be 

replaced by the predicted fused one, obtaining 

The computation ofthe covariance matrix Pl:S;F(k) of the stacked vector XI:S;F(k) is 

described next. 
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For fusion without feedback (Bar-Shalom, 2006) the diagonal elements of the co-

variance matrix of x1:s;F(k) are 

Pmm = Cov [x!;(k)- xif(kll)] 

= E [(x!;(k)- xi;(kll)) · (x!;(k)- xJf(kiZ))'] (3.21) 

= P!;(k) + P{r(kil)- Pt:,~F(k; kll)- PW,~m(kjl; k)' 

with m = 1, ... S. The notation Pt;,dn(k; kll) is used for the cross-covariance between 

x!;(k) and x~n(kjl). The non-diagonal elements of the covariance matrix above are 

Pmn = Cov [x!;(k)- xif(kjl),x~n(k)- :Xif(kil)] 

= E [(x!;(k)- xJf(kil)) · (x~n(k)- xJf(kil))'] (3.22) 

= pjm,jn (k) + piF (kjl) - pim,jF (k· kjl) - piF,jn (kjl· k) 
m,n F m,F ' F,n ' 

with m = 1, ... S, n = 1, ... S and m =I= n. 

For fusion with feedback (Bar-Shalom, 2006) all sensors i = 1, ... , S local tracks 

x{i(l), with ji,JF E (1, ... Nt] are replaced after fusion (at time l) with xi;(l). For 

the hypothesis that the S tracks x{i(l), i = 1, ... , S pertain to the same true target, 

the diagonal elements of the covariance matrix of x1:s;F(k) are 

Pmm = Cov [x!;(k)- xi;(kll)] 

= E [(x!;(k)- xJf(kll)) · (~m(k)- xJf(kll))'] 

= E [(x!;(k)- x!;(kil)). (X!;(k)- X!;(kll))'] 

= P!;(k) + P!;(kll)- P!;(k; kll)- P!;(kll; k) 
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with m = 1, ... S. The non-diagonal elements of the covariance matrix above are 

Pmn = Cov [x1;(k)- xi;(kll), x~n(k)- xW(kll)] 

= E [(x1;(k)- x1;(kil)). (x~n(k)- x~n(kil))'] 

= pim,in(k) + pim,in(kll)- pim,jn(kil· k)- pim,jn(k· kll) 
m,n m,n m,n ' m,n ' 

with m = 1, ... S, n = 1, ... S and m "# n. 

(3.24) 

For the linear gaussian case the exact or approximate recursions introduced in 

(Tian and Bar-Shalom, 2009) can be used. For the multimodal gaussian case, a 

similar method as in (Bar-Shalom and Chen, 2006), (Chen et al., 2003) can be used 

for cross-covariances approximation. Both methods are described next. 

Cross-Covariances computation using exact recursion 

Assuming all targets have equal process noise covariances Q(k) at each time k (i.e. 

they move in formation), the covariances in (3.21), (3.22) can be exactly computed 

based on the recursions in (Tian and Bar-Shalom, 2009). 

The P1;(llk) is computed using 

k 

x{;(kll) = W~(k, l)x!:(lll) + L W~(k, n- 1)v(n- 1) (3.25) 
n=l+1 

where m = 1, ... , S, F and 

k-l-1 

W~(k,l) = II F(k- n -1) (3.26) 
n=O 

k-n-1 

W~(k,n-1)=- II F(k-p-1). (3.27) 
p=O 
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The P!;~n(k) is computed using (Tian and Bar-Shalom, 2009) 
' 

k 

P{;,~n(k) = W~(k, l)P{;,~n(Z)W~(k, l)' + L W~(k, n- 1)Q(n- 1)W~(k, n- 1)' 
n=l+1 

(3.28) 

where 
k-l-1 

w:(k, l) = II [(I- Ks(k- n))Hs(k- n)]F(k- n- 1) (3.29) 
n=O 

k-n-1 

w_:(k, n- 1) = { II [(I- Ks(k- p))Hs(k- p)] F(k- p- 1)}. [I- Ks(n)Hs(n)] 
p=O 

(3.30) 

and 

k-n-1 

w,;o(k,n) = { II [(I- Ks(k- p))Hs(k- p)] F(k- p -1)}Ks(n). (3.31) 
p=O 

The recursion of the cross-covariance between the current fusion frame k local 

estimates x~s(k) and the predicted fused estimates xif(kll), s = 1, ... , S, Js,}F = 

1, ... , Nt for the no feedback case results as (Bar-Shalom and Li, 1995) 

k 

PF,i(kll; k) = WJ(k, l). PF,1(l). Wi(k, l) + L W~(k, i- 1). Q(i- 1). Wf(k, i- 1)' 
i=l+l 

(3.32) 

with 

(3.33) 

and 
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Cross-Covariances approximation based on steady-state 

For nonlinear and non-gaussian assumptions the covariances in (3.21), (3.22) can be 

approximated using the method in (Chen et al., 2003). 

Next the the second probability in the RHS of (3.12) is evaluated. The condi­

tional set of fused tracks at l, <I>~, implicitly contains the corresponding association 

hypothesis that generated them at l, namely 1-lp(l). This contains the mappings of 

the local tracks identities to fused tracks identities. Therefore we write it as 

(3.35) 

The first equality in (3.35) can be written as the association 1-lp(l) is implicitly con­

tained in the set of fused tracks <.P~ and does not introduce any additional condi­

tion. The second equality in (3.35) is based on the same fact that P (1-lp(l)) = 

P (1-lp(l), <I>p(l)). The event [1-ln(k) /1-lp(l)] in (3.35) represents a track swap event 

(hypotheses transition) at at least on local sensor. The mapping hypothesis 1-lp(l) at 

time frame l switches to the mapping hypothesis 1-ln(k). In an association hypothesis 

the fused tracks are taken as reference for the associated tracks identities. The swap­

ping probability from one hypothesis to another is conditioned on the set of fused 

tracks configuration at l, <I>~. This probability could be estimated at the local tracker 

level, based on the distribution and uncertainties of local tracks estimates between 

times land k, using a formula based on (3.10), and communicated to the fusion cen­

ter. However, this is not the case for the scenario treated here. For local trackers of 

equal probabilities and uniformly distributed fused tracks states at l, this probability 

would be the same for different swapping hypotheses. The third probability in (3.35) 

is the probability of the parent set of fused tracks. This is evaluated from the cost 
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of the track-to-track association hypothesis that generated it at frame l. It is the 

probability of the set of fused tracks <I>1 resulting from the cumulative hypothesis at 

l, 81. 
Observation 1: For the same number of targets estimated by each local sensor at 

times l and k, and no swapping at any of the local sensors we have P (1ln(k) I <I>1) = 

P ([1ln(k) 11lp(l)] I <I>1), and therefore 

{ 

1 for 1l (k) = 1l (k - 1) 
P ([1ln(k) 11lp(l)] I <l>~-l) = 

1 

n P 

0, for 1ln(k) =/-1lp(k- 1) 
(3.36) 

Observation 2: Next we emphasize the difference and show the improvement brought 

by our solution compared to the one in (You and Jingwei, 2006). We consider only 

two sensors and only one solution of hypotheses preserved at fusion time l, <I>l. We 

take the logarithm in (3.12) and use the following. 

For the first RHS probability we use the likelihood ratio of common origin of tracks 

as in (3.18). Here we drop the conditioning on (i.e. association with) the predicted 

fused tracks of previous frame in the first equality below, as 

ln P ( [xs(k)] 1 <I>l, 1l(k)) = ln P ( [xs(k)] 11l(k)) = 1n (V · N (xl;2; o, P1;2)) 

= c2 + (x2(k)- xl(k)fP1;2(k)-l (x2(k)- XI(k)). 
(3.37) 

For the second RHS probability we use (3.36) under the assumptions that no track 

swap happens at the local trackers levels. This means the association hypothesis that 

generated el at frame lis also the valid one at frame k. In consequence 1l(k) = 1l(l) 

and this probability is equal to 1. The equivalence here means that association 

hypotheses group identically the track labels from local sensors sensors at both times 
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k and l. 

In p (1-l(k) I et, NoTrackSwap, 1-l(k)- 1-l(l)) = 0. (3.38) 

For the third RHS probability, we use the cumulative likelihood ratio of common 

origin of tracks at previous fusion time, P(<Pl). 

By combining (3.36), (3.38) in (3.12) a similar formula as the one obtained in (You 

and Jingwei, 2006) for the recursion of the logarithm of cumulative likelihood of the 

association hypothesis (n = p dropped here, as 1-ln(k) = 1-lp(l) is implicitly assumed) 

(3.39) 

Equation (3.39) contains the recursion for the sum of likelihood ratios for all the 

pairs of tracks assumed of common origin in <Pk. For a single pair of tracks (j1 , j 2 ) the 

log-likelihood of common origin, following (3.39) is obtained as in (You and Jingwei, 

2006) 

with coefficients c2 and c3 resulting from the normalizing coefficient of the correspond­

ing normal distributions. In the above simplifications, as in (You and Jingwei, 2006), 

implicitly, the assumptions of association hypothesis preservation over the cumulative 

summation period, as well as the non-swapping at local trackers level are made. The 

cross-correlation between the tracks at different fusion frames is not considered in 

(3.37) and resulting (3.40), which as shown in (Tian and Bar-Shalom, 2009) leads to 

erroneous results. In the method proposed here through (3.12) the conditioning on the 

previous frame fused tracks <P~ is considered. The conditioning on the previous frame 
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is present through the predicted fused tracks considered in the association cost (3.18) 

through (3.20) and its covariance matrix P{;,;!n(k; kjl) detailed in (3.21)-(3.22). The 

general recursion implemented through the method proposed here, accounts for swaps 

at the local trackers through considering several N hypotheses at each fusion frame. 

Also the cross-correlation between fusion frames is considered. The computation of 

the cost of an association hypothesis is, following (3.12) 

with intervening probabilities described above. The recursion (3.41) preserves, through 

the predicted fused tracks sets, the identity of the fused tracks over subsequent fu­

sion times, even under an association hypothesis change (due to track swap at local 

sensor). 

3.4.2 Proposed Implementation 

The proposed implementation finds the best association hypotheses and resulting 

fused tracks using the recursion (3.41). The likelihood of hypotheses switching (hy­

potheses transition), namely the second in the RHS of (3.12) or (3.41) are indirectly 

accounted for by considering multiple hypotheses at each association frame. The 

continuity likelihood of a given set of fused tracks over several hypotheses is inferred 

from the evolution of the cumulative (current and previous) association costs for a 

set of best current hypotheses, selected at each fusion frame. Fig. 3.2 shows the 

block diagram of the method implementation. Only the fusion frames are shown in 

the figure through the fusion frame index K. At first fusion frame, i.e. K- 1, there 

are N association hypotheses selected. These hypotheses become parent hypotheses 
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Figure 3.2: Solutions flow for the multiframe multiple hypothesis track-to-track asso­
ciation. 
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in the multiple association hypotheses (MHA) tree. Each of these hypotheses gener­

ates a set of fused tracks. Each parent hypothesis selected at time K - 1 enters the 

association at time K through its fused tracks, predicted for time K. For S sensors, 

a number of N problems of (S + 1)-D association are generated at each frame. The 

best M solutions (hypotheses) of each of the (S + 1)-D associations are kept. The 

best N association hypotheses are selected from the set of resulting N x M solutions. 

In order to avoid an exhaustive search through all possible hypotheses that might be 

generated (as required by an ideal MHA), two maximizations are used to prune the 

current set of solutions: 

a) from the set of all possible association hypotheses continuation of each parent 

hypothesis, the best M hypotheses are kept (M-best S-D association) 

b) from the set of M x N resulting hypotheses, the best non-duplicated N solu­

tions are kept further. The duplicate hypotheses in the set of N-best hypotheses are 

removed without being replaced. 

The continuity of the fused solutions over several frames and hypotheses transi­

tions is achieved through the propagation of each of the N solutions of fused tracks at 

frame k - 1 <I>~-l, p = l..N to one or more solutions at the frame k, <I>~, n = l..N. A 

sample resulting tree of associations chain in time is shown in Fig.3.3. It can happen 

that several solutions at time k - 1 generate identical association solutions at the 

next fusion time k and some of these identical solutions have their costs in the best N 

costs at k. In this case the places of the duplicates of a given solution are left empty 

in the current step, in order not to introduce too many confusing solutions. 

The best association chain is retrieved starting backwards from the best hypothesis 

at the latest time (shown with thicker line). When two paths are available from one 

solution, the path of minimum cost is picked. The best solution for the sample 
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Figure 3.3: Sample of the resulting tree of fused tracks hypotheses, for k=6 association 
times and N =4. 

tree is shown with thick line in Fig.3.3. From the same figure, it can be seen that 

the resulting transitions of association hypotheses are implicitly inferred in the best 

hypotheses propagation. 

3.5 Simulation Results 

In the simulation presented next there were used 3 sensors and 2 targets that evolve 

closely enough such that the local trackers run under measurement origin uncertainty, 

and therefore track swap happens at the local trackers level. A fixed number of 

targets and estimated tracks are simulated in the overlapping surveillance area of 

both sensors over the entire simulation time. The probability of detection is PD = 1. 

For the m-best association the m=2 or m=3 best solutions are kept and the set of 
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Sensors 1/2/3 (violet/black/cyan) tracks for targets 1,2 (dots I crosses) 
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Figure 3.4: Local tracks showing track swaps during maneuver. 

final fused solution preserved was set to N =2 and N =3. Therefore with respect to 

the association algorithms, we ran in parallel N m-best 4-D association problems and 

prune the solutions to preserve at most N hypotheses at each frame. Each local sensor 

is runnning an IMM estimator with two modes, of different process noise levels. For 

the IMM estimator, the approximate cross-covariance computation method is used. 

The positions of the sensors are (0 , 187) km, (50, 0) km, while their bearing and range 

standard deviation errors are of 2 1nrad and 50 m. Two sensors have the sample rate 

equal to 2 sec, and the third one 5 sec, with synchronous sampling and updates. A 

fusion is performed every 10 sec. The simulated targets have a velocity of 300 m/s 

and perform light coordinated turns of 1 deg/sec, as shown in Fig.3.4, or run straight 

trajectories. With these parameters, tracks swap happen at the local sensors, as shown 

in the same figure for a sample run of the coordinated turn scenario. Using several 

fusion hypotheses at each fusion time (i.e. , N =3, M =3 in the sample run depicted 
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Figure 3.5: Fused tracks with track identit ies preserved. True target trajectories 
are pictured with continuous line. 2cr confidence ellipses of fused track estimates 
covariance matrices are shown. 

Table 3 1· Results of Monte Carlo simulations .. 
Scenario Type M N Correct Target Identi-

fication [%] 
Nearly Constant Velocity 2 2 77.11 
Nearly Constant Velocity 3 3 87.80 
Coordinated Turn 2 2 67.34 
Coordinated Turn 3 3 77.55 

in Fig.3.4) , the identity of the fused tracks in the best hypotheses chain is preserved 

during the simulation, as shown in Fig.3.5. Results of Monte Carlo simulations (100 

runs) for the track identity preserved at the fusion center in the condit ion of local 

trackers randomly swapping targets, are shown in Table 3.1. 
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3.6 Conclusion 

Various simulations showed that the identification of the targets in the case of local 

tracks swap is still possible at the fusion center. A dependency of the fused tracks 

identification results on the scenario was observed, therefore an on-line estimation of 

the results uncertainty is intended to be pursued as future work, as well as improved 

hypotheses generation, solutions pruning and search schemes. Additional information 

provided by the local trackers, as the estimation of track swap probability at local 

tracker between the fusion interval, as well as the process noise within the period, is 

intended to be used for improved hypotheses assessment. 
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Chapter 4 

Track Fusion with Feedback for 

Local Trackers Using MHT 

With current processing power, Multiple Hypothesis Tracking (MHT) becomes a fea­

sible and powerful solution; however a good hypothesis pruning method is mandatory 

for efficient implementation. The availability of a continuously increasing number of 

tracking systems raises interest in combining information from these systems. The 

purpose of this work is to propose a method of information fusion for such trackers 

that use MHT locally with local information sent in the form of sensor global hy­

potheses and the fusion center combining them into fused global hypotheses. The 

information extracted from the best fused global hypotheses, in the form of rank­

ing of received sensor global hypotheses, is sent back to local trackers, for optimized 

pruning. Details of the method, in terms of sensor global hypotheses generation, eval­

uation, pruning at local sensors, association and fusion of sensor global hypotheses 

at fusion center, and usage of the information received as feedback from the fusion 

center are presented. 
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4.1 Introduction 

In a multi target scenario with dynamic number of targets, using sensors with probabil­

ity of detection less than unity, in the presence of false alarms and under measurement 

origin uncertainty, the multiple hypothesis tracking (MHT) has been shown to have a 

very good performance. Although the MHT computation increases exponentially in 

time, current computer power allows the use of MHT method at the local sensor level, 

with a proper local management of hypotheses, in order to keep their number within a 

reasonable limit. Therefore, the problem of hypotheses pruning becomes very impor­

tant in decreasing the computation complexity and yet preserving tracking accuracy. 

This chapter presents a track-to-track association and fusion with feedback method 

to be utilized in the case when one or more local trackers use MHT. The novelty is 

the association and fusion of global hypotheses obtained by MHT estimators, as well 

as the usage of feedback from the fusion center at the local trackers in the hypoth­

esis pruning process. The fusion center, having information on the best hypotheses 

available at several MHT trackers, contributes through feedback to improve the local 

pruning, using the global available information and forcing local trackers to promote 

from one fusion time to the next also the local hypotheses with best fusion results. A 

method for local hypotheses evaluation, pruning and selection for fusion is presented, 

as well as the selection of best fused hypotheses at the fusion center. The associa­

tion (with feedback) method is suitable for data fusion in centralized or decentralized 

architectures. There is no necessity that all sensors run MHT locally, however the 

feedback received from fusion could be applied only to the MHT estimators, as it is in 

terms of hypothesis ranking. For a given target, its local tracks to be associated are 

considered with dependent errors; for different targets, their cross-correlated errors 
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are assumed independent A simulation for evaluating the feedback scheme proposed 

is presented, using a scenario with multiple sensors and close targets, therefore having 

local measurements origin uncertainty. 

4.2 MHT Tracking 

While Bayesian target tracking approaches can be categorized as target-oriented 

(JPDAF) or measurement-oriented (MHT) (Bar-Shalom and Li, 1995), the MHT 

variants themselves could be categorized as following a hypothesis-oriented or track­

oriented approach (Reid, 1979; Kurien, 1990). In the measurement-oriented approach, 

for each measurement, every target hypothesis (already confirmed through an exist­

ing track, newly detected, or none- i.e. false alarm) is considered for measurement 

to track association (Bar-Shalom and Li, 1995). A global hypothesis represents the 

result of a sequence of association of measurements from the beginning up to current 

time. In the target-oriented approach, for each confirmed target, all measurements 

are considered (Reid, 1979). As described in (Drummond, 2003), there are at least 

three accepted definitions for MHT. The first one recognizes it as the method that 

builds and propagates all hypotheses from the first measurement up to the current 

time. The second definition is any variant that propagates more than one hypoth­

esis for subsequent processing and therefore approximates the suboptimal method 

introduced in (Reid, 1979). The third definition includes tracking methods based on 

multiple frame data association. Following this categorization, in this research the 

second definition is considered. 
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4.2.1 Hypothesis-oriented MHT 

Following the hypothesis-oriented approach (Bar-Shalom and Li, 1995; Reid, 1979), 

each compatible sequence of measurements is considered to form a hypothesized track, 

of which statistics are estimated using a sequential estimator. A hypothesis, in the 

context of this method, is a set of tracks representing at a given time all the estimated 

targets in the surveillance area. Several hypotheses coexist, and are propagated at 

each measurement time. Also at most of measurement times each existing hypothesis 

generates several different offspring hypotheses, some other completely new hypothe-

sis are generated, while few hypotheses might merge, if becoming close enough. Due to 

the continuously increasing number of hypotheses that would be generated in an op­

timal MHT, its implementation is most of the times unaffordable. Judicious pruning 

of hypotheses becomes an essential factor for a functional MHT implementation. The 

hypotheses are selected based on their estimated probabilities, first time introduced 

in (Reid, 1979). For s = 1, ... , S sensors, we denote a cumulative association event 

(or hypothesis), labeled l 8 (k) at sensors at a given time k by e~,l.(k) = {X:·1•}, with 

x:·1• = { x~·(k),i (k)} f~ik), the corresponding set of estimated tracks. The cumulative 

association event at time k, denoted by the upper index, is the result of previous cu­

mulative association event and current association event ()~· (k) ( k). Therefore we have 

e~,l.(k) = {e~,l.(k-l)' ()~,l.(k)(k)}, as the current hypothesis is formed from the parent 

hypothesis and the current association event. A current association event, ()~s(k)(k), 

is the set of associated tracks, new formed tracks and false alarms at the current time 

k. The hypothesis probability, conditioned on the sequence of measurements up to 

time k, zk, can be therefore written (by applying Bayes rule) as (Bar-Shalom and Li, 
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1995), (Reid, 1979): 

p ( e~JsCkllzk) = p (o~s(k)(k), 8~-1,ls(k-1)) = p (o~sCkl(k), 8~-l.lsCk-1)IZ(k), zk-1) 

= ~P ( Z(k)IB~sCk) (k), e~-1,lsCk-l), zk-1) . P (o~sCkl i8sk- 1, ls(k- 1), zk-1) . 

p ( e~-1,ls(k-1) Jzk-1) 

(4.1) 

where Z(k) = {z~(k)}~sl(k) is the set of m8 (k) measurements at time k at sensor 

s. The first term in lhs of (4.1) represents the likelihood of the current association 

event, the second represents the prior probability of current association event and last 

term represents the probability of cumulative association event at time k- 1. Using 

Poisson distribution for the false alarms target births distributions, the recursion in 

(4.1) was reduced in (Bar-Shalom et al., 2007) to 

p ( e~·ls(k),zk) = 

~ (.-\p)¢> (-Xvt · il~~){fTj [zi(k)]Yi ·Tit [[Pm(k)] 8t [[1- Pm(k)]1-ot] · (4.2) 

p ( e~-1,ls(k-1) jzk-1) 

where 

d contains all constant terms for all events 

¢ is the number of false alarms in the current association event 

v is the number of measurements assumed generated from newborn targets 

A¢> is the expected number of false measurements per unit volume in current frame 

,\11 is the expected number of measurements from new targets per unit volume in 

current frame 

106 



Ph.D. Thesis - Daniel G. Danu McMaster- Electrical Engineering 

m(k) is the number of measurements at time k 

ftj is the pdf of predicted measurement of track ti to which measurement Zj ( k) is 

assigned under hypothesis considered (innovation pdf) 

Tj indicator function, equal to 1 for measurement Zj ( k) assigned to a track under 

hypothesis considered, 0 otherwise 

Ot indicator function, equal to 1 for target t detected (measurement assigned to track 

t) under hypothesis considered 

Equation (4.2) is the basis of evaluating and ranking the local hypotheses in the 

pruning process and selection of hypotheses to be sent to the fusion center for the 

hypotheses oriented MHT. 

4.2.2 Track-oriented MHT 

In the track-oriented MHT, for each hypothesized target its track hypotheses are se­

quentially built into an independent tree, named track hypotheses tree, or target tree, 

with the root being the target birth, and a new generation of branches being added 

at each measurement frame (Kurien, 1990). All realistic (i.e. based on gating) track 

continuations brought by each measurement in a frame are considered to generate 

new branches, independently of the existence of other targets. In (Drummond, 2003) 

it is suggested also that different branches be generated by different target dynamics. 

A possible track for a target is represented by a succession of nodes in such a tree, 

from the root to a current leaf, and is named here a track hypothesis. Each target 

tree therefore contains all accepted track hypotheses. At a given time, the scenario 
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Track Hypotheses Global Hypotheses 

Target 1 

Hypothesis 1 

Hypothesis 2 

TargetL 

Figure 4.1: Track-Oriented MHT showing target trees of track hypotheses (L hypoth­
esized targets) and sensor global hypotheses. 

on the ground could be estimated (with more or less accuracy) through a combina­

tion of track hypotheses, by taking at most one track from each target tree. Such 

a combination represents a sensor global hypothesis. Therefore, following (Kurien, 

1990), a sensor global hypothesis is represented through a list of pointers to the track 

hypotheses in different target trees. 

As shown in (Bar-Shalom et al., 2007), the track-oriented approach is equivalent 

to the hypothesis oriented approach under the assumption that the expected number 

of measurements from new targets per scan, per unit volume of the measurement 

space is zero (in terms of equations ( 4.1) and ( 4.2)), however in consequence all 

false alarms are considered as potential new targets. Being based on easier global 

hypotheses generation and management for implementation, as described further, 
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the track-oriented MHT version was considered for the method presented here. 

4.2.3 Sensor Global Hypotheses Generation 

With each measurement frame, the current track hypotheses in a target tree are ex­

tended with a new set of branches, corresponding to different tracks continuations 

with different measurements. Using these new track hypotheses, new sensor global 

hypotheses are generated through feasible combinations of updated (new) track hy­

potheses. A feasible combination of track hypotheses implies that they do not share 

any common measurement in the past. To ensure that the newly generated global 

hypotheses are feasible, the component track hypotheses are chosen only from the 

offspring of track hypotheses previously grouped in a parent sensor global hypothesis. 

This is shown in Fig.4.2, where from the existing sensor global hypotheses at time k, 

ek,l and ek,2, two other feasible global hypotheses, ek+l,l and 8k+1,2, are obtained 

for time k + 1. The track hypotheses of each new global hypotheses, up to time k, 

are selected from the components of a previous global hypothesis at time k, therefore 

the feasibility up to time k is already ensured through this generation method. For 

example, from the target birth, up to time k, all track hypotheses of global hypothe­

ses ek+l,l are identical with the track hypotheses of ek,t. The hypothesis 8k+1,1 

is within the offspring set of ek,l' while ek+l,2 is within the offspring set of ek,2. 

The feasibility of global hypothesis from k to time k + 1 implies that at time k + 1 

only, the track hypotheses do not have in common any new measurement, which is 

a classic constraint of the 2D assignment, commonly used in measurement to tracks 

association. 
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Figure 4.2: Sensor global hypotheses generation ensuring feasibility. 

4.2.4 Hypotheses Management 

In a MHT method, the number of track hypotheses grows exponentially in time, 

with each set of new measurements. The growth of hypotheses number has two main 

sources: multiple measurements per measurement frame (including false alarms) and 

multiple track hypotheses existence at each time for a given target. Two techniques, 

described further, gating and m-best hypotheses selection, are used to keep low both 
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the number of track hypotheses and number of global hypotheses, respectively. Fur­

ther the notation in (Kurien, 1990) is used and we denote by screening the procedure 

of not considering some alternatives at the time they occur, and by pruning the elimi­

nation of certain alternatives at a later time after they had been pursued. Screening of 

Track Hypotheses- Gating The gating technique (Bar-Shalom and Li, 1995) screens 

out measurements that are not valid association candidates for the continuation of a 

given track, therefore eliminating least probable track hypotheses. For each existing 

track hypothesis a validation region is computed around its resulting track estimate, 

i.e. x1(k- 1), and only measurements that fall within it are considered as possible 

associations to and continuations of the given track. This region is computed assum­

ing a normal distribution of measurements conditioned on the last track estimation 

(Bar-Shalom and Li, 1995) 

(4.3) 

Here z1(kJzk- 1
) = H(k)x1(kik -1) is the predicted measurement for track l based on 

the past information (built out of the set measurements up to time k -1 (i.e. zk-1 ). 

S1(k) is the innovation covariance for track x1(kjk- 1) (Bar-Shalom et al., 2001). 

Based on (4.3), the validation region for track l at time k is defined as the region 

with 1 being the threshold selected depending on the desired accuracy and dimension 

of the measurement z. 
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Pruning of Sensor Global Hypotheses- m-best 

What is proposed for pruning of sensor global hypotheses is, beside the selection 

of global hypotheses only as combination of offspring track hypotheses grouped in 

parent global hypotheses (detailed in subsection 4.2.3), the selection at each time of 

only the N-best (best in a likelihood sense) ones per sensor for further local processing. 

The selection is based on each sensor global hypothesis evaluation through its score, 

computed based on the likelihoods (or scores) of its component tracks hypotheses. 

The selection of sensor global hypotheses is detailed in the following subsection, while 

the evaluation of track hypotheses and their constraints is detailed in the subsection 

4.2.5). 

Pruning of Sensor Global Hypotheses Through m-Best 2D Assignment 

Through the m-best 2D assignment method, the track hypotheses and sensor global 

hypotheses are pruned altogether at the global hypothesis level, by preserving from 

one time to the next at most N global hypotheses. This is implemented in two stages, 

as shown in Fig.4.3. First, for each of the N currently available global hypotheses 

at time k, the m-best track continuation hypotheses are found through m-best 2D 

assignment, ran between the list of track hypotheses at time k - 1 and list of available 

measurements at time k. At the end of first stage there will be N x m hypotheses 

obtained. From this list of hypotheses, in the second stage, the best N hypotheses 

are selected, by ranking their likelihoods using equation (4.2). The 2D association 

can be implemented through auction algorithms, while the m-best solutions can be 

found by using Murty's algorithm (Poppet al., 2001). 

This method resolves (locks) at each time k at most N global hypotheses. An 
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Figure 4.3: Pruning of global hypotheses and track hypotheses altogether through m­
best 2D assignment.Note: the sensor index is dropped and a sensor global hypothesis 
labeled l, at time k is denoted by H1(k). 

improvement of the above method could lock at each time k a number of N global 

hypotheses at time k - n + 2, with n > 2. For this purpose, in the first stage, 

for each of the N currently locked global hypotheses at time k- n + 1, an m-best 

n- D association is ran between the list of tracks in the global hypothesis considered 

and then- 1 lists of measurements (from time k- n + 2 to k). Using them-best 

assignments found in each solution (out of m for each hypothesis), the tracks at time 

k - n + 2 are locked to form a new global hypothesis. Therefore at the end of the 

first stage there will be N x m global hypotheses (tracks continuations from k - n + 2 
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to k) to be retained from each initial N global hypotheses. In the second stage, from 

these N x m new global hypotheses, the best N are evaluated and selected. These N 

hypotheses will be resolved (locked) at time k- n + 2. For fusion (if done at this time 

k), the set of tracks estimated at time k of each global hypothesis are considered and 

sent further. The ( n + 1) - D association could be carried on through Lagrangian 

Relaxation techniques (Poore and Rijavec, 1993), while the m-best solutions can be 

found through variants of Murty's algorithm (Popp et al., 2001). Two tracks in a 

sensor global hypothesis should not share at any time backwards (on any branch) a 

common measurement. This is avoided up to time k - 1 through selecting in a new 

global hypothesis only of track hypotheses offspring of track hypotheses present in a 

single parent global hypothesis at time k- 1. The 2D assignment of measurements to 

tracks, ran at time k and described through equations (4.5-4.7), ensures the unique 

assignment of a measurement at time k to a single track, through equation ( 4. 7): 

L(k-1) m(k) 

min 
X 

L L Xi,j ·cost (:xz(kjk- 1), zi(k)) 
l=O i=O 

subject to Xl,i being a binary variable satisfying 

m(k) 

LXl,i = 1, 
i=O 

L(k-1) 

L Xl,i = 1, 
l=O 

l=1,2, ... ,L(k-1) 

l=1,2, ... ,m(k) 

(4.5) 

(4.6) 

(4.7) 

with z0 (k) denoting a dummy measurement (i.e. the measurement to which a track 

not detected is associated) and x0 (k -1) denoting the dummy track (i.e. the track to 

which a false alarm is associated). To each dummy (track or measurement), several 
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associations can be made, while to each non-dummy measurement or track, only a 

single track or measurement association can be made, respectively. Therefore finding 

them-best solutions of (4.5-4.7) results in finding m feasible global sensor hypotheses 

continuations at k for each parent (existing) sensor global hypothesis at time k - 1. 

For an n-D association, the constrained optimization to be solved is similar, and 

detailed in (Popp et al., 2001). 

4.2.5 Track Hypothesis and Sensor Global Hypothesis Scor-

ing 

As derived in (Bar-Shalom et al., 2007) track hypotheses can be scored using cu­

mulative log-likelihood ratios (in fact the negative of it). The likelihood of a track 

hypothesis can be computed as a product of likelihoods at all previous times, there­

fore cumulative, as innovations are white (Bar-Shalom et al., 2001). The likelihood 

ratio, computed as the ratio between the likelihood and the false alarm density, is se-

lected instead of pure likelihood as the former provides dimensionless score function, 

which allows comparison of track hypotheses of different lengths (different numbers of 

measurement associations) (Bar-Shalom et al., 2007). Therefore, the likelihood ratio 

of a track hypothesis t continuation with measurement Zj ( k) is 

(4.8) 

where ft [zj(k)] is the pdf of the innovation brought by measurement Zj(k) and ApA 

is the spatial density of false measurements (with measurements from new targets 

included in this density). The cumulative likelihood ratio of a track hypothesis t 

is computed as A: = TI~ Atin(n) and its negative logarithm is used in the track 
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hypothesis score computation (Bar-Shalom et al., 2007) 

k k 

f~ =-In-\~=- LlnAt,j(t,n)(n)- Lft,j(t,n)(n) (4.9) 
n=l n=l 

Having dimensionless track hypotheses scores, the score of a sensor global hypothesis 

can be computed by summing the component track hypotheses scores. This is justified 

by assuming independent probabilities of tracks corresponding to different targets 

and therefore the probability of a global hypothesis is the joint probability of the 

independent track hypotheses components. As the density of false alarms is equal 

for all track hypotheses in a given global hypotheses, the likelihood ratio can be used 

and the summation results from taking the log of the joint likelihood ratio. The 

track-oriented MHT was shown in (Bar-Shalom et al., 2007) to be equivalent to the 

hypothesis-oriented MHT if the density of new targets is taken equal to zero and 

all false alarms are considered as potential new targets. Therefore, the probability 

of a track-oriented global hypothesis is equal to the probability of its counterpart 

hypothesis oriented MHT (with the density of new targets equal to zero). The score 

is obtained from the adjusted equation ( 4.2) to account for the density of new targets 

into the density of false alarms 

p (e~·z.(k)/zk) =~IT {ftj }Tj I1 [[Pm(k)]"t [l- Pvt(k)]l-"t]·P (e~-l,t.(k-l)/zk-1) 
j=l FA 

(4.10) 

with p ( e~·l.(k),zk) the probability of sensor s global hypothesis ls(k) at time k 

and other terms entering the equation described in subsection 4.2.1. For each sen-

sor global hypothesis, the negative logarithm of its probability, computed following 

equation (4.10) is used as its score in the selection of m-best sensor global hypotheses 
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(followed by the selection of theN-best sensor hypotheses out of them x N obtained 

hypotheses). 

4.3 MHT Fusion 

At each time k, all sensors send to the fusion center their P-best ranked global 

hypotheses. The sensor global hypotheses association at the fusion center is described 

in the next subsection. The estimated fused tracks are obtained from the set of track 

hypotheses components of each sensor global hypothesis associated. 

4.3.1 Sensor Global Hypotheses Association 

A sensor global hypothesis, as previously described, consists of a set of track hy­

potheses. At the given fusion time k, these track hypotheses are represented by the 

corresponding set of track estimates at time k. For S = 2 sensors, each is consid­

ered participating with P8 hypotheses into the fusion process. The cost of associating 

any two hypotheses for these two sensors is introduced as the distance between their 

track hypotheses sets. The distance between such two sets (two global hypotheses) 

is evaluated as the cost of the best 2D track-to-track association of their track hy­

potheses (which are the elements of the two sets). This type of distance was proposed 

as the multitarget miss distance for multitarget tracking performance assessment in 

(Mahler, 2004). Here it is proposed as a measure of sensor global hypotheses close­

ness, as every sensor global hypothesis is a set (with possibly different number) of 

tracks. Therefore the cost of sensor global hypothesis to sensor global hypothesis 
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association is computed as (Danu et al., 2008b) 

cost ( e~·h(k)' e~·h(k)) =min L L Xh(k),h(k) . cost ( xil(k) (k), x~(k)(k)) 
X l1 (k) l2(k) 

(4.11) 

where Xh(k)h(k) represents the binary assignment commonly used in the 2D assign­

ment to impose the appropriate constraints between tracks selection in both hypothe-

ses: 

L Xh(k),l2(kl) = 1, 
li(k)=O 

L Xi!(k),l2(kl) = 1, 
l2(k)=O 

(4.12) 

(4.13) 

The track hypotheses labels ls(k) = 0, s = 1, 2 represent the dummy track (e.g. 

association of a track to an unexisting track in the other set). For S > 2 sensors, 

following the same approach, the distance between S sensor global hypotheses is 

introduced as the cost of best S- D assignment between their component S sets of 

track hypotheses: 

t (ek,h ek,ls) ' "'"' "'"' l1 , ... ,ls t (Ali A ls) cos - 1 , ... , - 8 = mm 6 6 x1, ... ,s · cos x1 , ... , x 8 ll, ... ,ls 
X1, ... ,s li l2 

(4.14) 

where in the tracks labels the time index k was dropped in the rhs. The cost of track­

to-track association entering both equations (4.11) and (4.14) is computed using the 

general likelihood ratio for a group of tracks, introduced in (Bar-Shalom et al., 2007). 

Having P8 sensor global hypotheses received at the fusion center from each sensor s, 

there are A = n;=1 Ps possible associations of sensor global hypotheses. Once the 

costs of these associations are computed, as detailed above, through running A S-D 

associations, the best Q associations are chosen through ranking these A costs. The 
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selection of best associations through ranking is possible because all sensor global 

hypotheses are considered feasible. A more constrained association at the fusion 

center could allow as feasible sensor global hypotheses associations only the offspring 

hypotheses of previously Q-best associated sensor hypotheses at the previous fusion 

time. These Q-best associated hypotheses are used also in the feedback, as detailed 

in section 4.3.3. 

4.3.2 Sensor Global Hypotheses Fusion 

In order to find the best fused estimate, the tracks hypotheses of the best associated 

sensor global hypotheses are combined, using an ML approach (Chen et al., 2003). 

4.3.3 Fusion Feedback Usage at Local Trackers 

The feedback from fusion, sent back to a local MHT estimator (sensor), is the rank­

ing obtained (Q-best) at the fusion center (FC) for the P-best sensor (local) global 

hypotheses that were sent by the corresponding sensor to the FC. Usage of this FC 

ranking of sensor global hypotheses is shown in Fig.4.4. The local MHT uses the 

N1-best (out of the Q-best received) local hypotheses and locks (resolves them) for 

further local propagation. The remaining places (uptoN, i.e. N- N1) are filled by 

the best (locally scored) sensor global hypotheses, yet unused. 

Sensor Global Hypotheses Compatibility 

One restriction mentioned in (Chong et al., 1990) that could be applied to limit 

the number of global hypotheses is to consider only combinations of sensor global 
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hypotheses of which predecessors have also been associated. For example, if two as­

sociated hypotheses (at FC) are sent back to local sensors for further propagation, 

offspring hypotheses generated on one sensor from one of these hypotheses cannot 

be associated (in a next time frame, at FC) with offspring hypotheses generated on 

another sensor from other parent hypothesis. The rationale is because hypotheses 

represent mutually exclusive explanations of measurements origins for a given set of 

measurements. However, as local sensors are supposed to run under measurement 

origin uncertainty (which uncertainty basically generates the multiple hypotheses) a 

track swap might happen at any time at a local sensor, which results in measure­

ments from one track to be used in another, therefore resulting in "hypothesis swap". 

Therefore, once two hypotheses of different fused hypotheses as parents happen to be 

selected in a best global hypothesis, this might be an indication of track swap at local 

sensor and can be used for track identity preservation at local and fusion centers. 

4.4 Simulation 

The simulation scenario for the method proposed uses S = 3 sensors and three closed 

targets, such that the local trackers run in measurement uncertainty conditions. Sam­

ple parameters used in the sensor global hypotheses generation, selection and fusion 

are: 

N = 3 - at each new measurement frame, only three sensor global hypotheses are 

propagated 

m = 3- from each sensor global hypothesis, the best offspring hypotheses are found 

at each measurement frame NOTE: above parameters result in obtaining N x 
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m = 9 hypotheses as intermediary hypotheses, out of which the 3-best are 

selected, as shown in Fig.4.2. 

P = 4- out of them x N hypotheses obtained, the 4-best are communicated to the 

fusion center (FC) 

Q = 1 - only the best sensor global hypothesis fused is indicated through feedback 

by the FC 

N1 = 1 - the indicated hypothesis by the FC is forced for further propagation, 

independently of local ranking 

N2 = 2 - two remaining places ( N2 = N - N1) for hypotheses to be propagated 

further are selected through local scoring from the (already locally ranked) P­

best local hypotheses 

The true three targets trajectories, starting from the locations (0, 86.6)km, (0.4, 

86.6)km and (0.8, 86.6km) and moving with velocities of 300m/s (undergoing two 

coordinated turns) are shown in Fig.4.5, sampled at T = 2 sec. The three sensors are 

positioned at 81 (0, 187)km, 82 (50, O)km, 83 (-50, O)km. 

Sensors resolutions are identical, with 2mrad in angle and 50m in range, there­

fore local trackers are running under measurement uncertainty conditions. Fusion 

is performed every 6 seconds. Sample hypotheses inheritance within the local MHT 

estimators at sensors 1 and 2 are shown in Fig.4.6. Comparison of local estimators 

errors with fused estimates errors are shown in Fig.4. 7 and Fig.4.8 for all targets at 

sensors 2 and 3. 
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4.5 Conclusions 

A method for fusing hypotheses obtained by local MHT estimators was proposed, 

including an association method for sensor global hypotheses through the usage of 

the multi target miss distance. Usage of fusion results, obtained at local estimators 

through feedback in terms of local hypotheses ranking, was proposed in the selection 

of sensor global hypotheses to be propagated further. The feedback consists only in 

selection (ranking) of hypotheses obtained locally, therefore the cross-correlation of 

local estimates (represented by track hypotheses) over time is minimal. The method 

proposed does not require that all estimators (sensors) participating in the distributed 

fusion run MHT. For example estimators that do not run MHT still can send their 

current tracks to the fusion center where they are considered as a single track hy­

pothesis. 
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Figure 4.4: Local MHT sensor global hypotheses generation and selection using feed­
back from the fusion center (FC). 
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Figure 4.5: True targets trajectories. 
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errors with stars). 
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Figure 4.8: Estimate error for a sample ran , obtained at sensor 3 under 1st hypothesis 
and compared with fusion results (local estimate errors with dots, fused estimates 
errors with stars) . 
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Chapter 5 

Track Fusion with Asynchronous 

and Incomplete Data - OTH and 

AIS Estimators 

5.1 Introduction 

This chapter presents an application of track fusion to data collected from real-world 

tracking systems, courtesy of DRDC Ottawa. Track fusion is applied to estimates 

of Over-the-Horizon (OTH) Radar and Automatic Identification Systems (AIS) for 

the purpose of obtaining an improved overall maritime picture (Danu et al., 2007a). 

Over-the-Horizon radar and Automatic Identification System are commonly used in 

the surveillance of maritime areas. This section introduces a method, which includes 

tracking and association algorithms, for fusing the information from these two types 

of systems. Data to be fused consists of asynchronous track estimates from the 

OTH system and measurements obtained from AIS. The data available at the fusion 

127 



Ph.D. Thesis - Daniel G. Danu McMaster - Electrical Engineering 

center, as output of real world systems, contained incomplete information, compared 

to theoretical tracking and fusion algorithms. A method to estimate the missing 

information in the input data is described. Results obtained using real data as well 

as simulated data are presented. This type of fusion provides overall pictures of 

maritime areas, with benefits for surveillance against military threats, as well as 

threats to exclusive economic zones. 

Over-the-Horizon (OTH) radar systems and Automatic Identification System (AIS) 

are commonly used as stand-alone tracking systems in maritime surveillance. The fu­

sion of the estimates provided by such independent systems, surveying within the 

same area, was desired for an improved overall maritime picture. The OTH radar 

covers a static (fixed) area, while the AIS, mounted on an aircraft, changes continu­

ously its coverage area. A description of the OTH and AIS systems in presented in 

Section 5.2. The track estimates obtained from the real systems, OTH, AIS, provide 

incomplete information (e.g. incomplete covariance matrices), which cannot be used 

directly in fusion. Preprocessing of these estimates is described in Section 5.3. For 

track-to-track association, the M out of N method is used, based on a statistically 

derived cost, both detailed in Section 5.4. The fusion filter, based on the Kalman 

filter, is described in Section 5.5. Results achieved on real data, obtained courtesy 

of DRDC (Defense Research and Development Canada) Ottawa, as well as results 

obtained using simulated data, are presented in Section 5.6. 
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5.2 OTH and AIS Systems Description 

5.2.1 Over-the-Horizon Radar System Data 

The OTH radar system commonly measures the range, angle, and range rate of a 

detected target. Due to multiple-path reflections and clutter, the sensor has a high 

uncertainty in measurements. In addition, the sensor fails to detect a target when the 

target range rate is below the threshold of the motion target indicator (MTI) system. 

The multipath problem (several detections obtained for the same target) is already 

solved at the OTH tracker level, this work focuses on fusing the already estimated 

tracks. However, the environmental uncertainties, and multimode misidentification 

(Cameron et al., 1996) reflect in the estimated OTH tracks through higher level of 

incertitude of the track estimate. Maneuvering targets and slowly moving targets 

may undergo bursts of missed detections. In analyzing and simulating the OTH 

data, the probability of detection, denoted as P DorH, the probability of a burst 

of missed detections, denoted as P Mburst, and the length of such burst, denoted as 

Lburst, are considered. The length of a burst of missed detections is equal to the 

equivalent number of detections that would cover the time interval. The coverage 

area of the OTH system is fixed; therefore targets entering the OTH surveillance 

area are consistently detected with the statistics above. The OTH system does not 

identify the targets through direct communication with them; this information is 

added through the fusion of the OTH tracks with the AIS data. Thus AIS-OTH 

fusion converts non-identified OTH tracks into a more informative maritime picture. 
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5.2.2 Automatic Identification System Data 

An AIS commonly integrates a GPS (Global Positioning System) receiver with a 

standardized transceiver system and other navigational equipment on board ship. 

The AIS data is usually exchanged between nearby ships and vessel traffic systems, 

principally for identification of vessels at sea. This data consists of ID, position, 

course, speed and is used to resolve the problem of identifying ships when not in 

sight (e.g. at night, in fog, in radar blind arcs or shadows or at distance). The AIS 

information may become unavailable for certain intervals, e.g. the GPS could lose 

lock on the required number of satellites by being in the shadow of an obstruction (e.g. 

mountain, ship superstructure), as detailed in Section 5.2.3 and shown in Fig.5.1. In 

the real data used, the AIS data was acquired by an AIS receiver on an aircraft that 

circled the area for a few hours, therefore dynamically changing the coverage region. 

The precision of such a system is the precision of the GPS, therefore very high and the 

unique ID provides full target identification. However, ships not equipped with AIS 

systems, not transmitting AIS data, or out of the coverage area of the AIS receiver 

are not acquainted for by the AIS receiver. The OTH information adds the tracks 

not registered by the AIS receiver, as well as track estimates of the AIS registered 

tracks for periods when the AIS is locked in a blind area. OTH tracks may be 

considered as skin returns, while the reliability of AIS measurements, with complete 

target information (unique IDs), may be taken as beacon return (approach close to 

(Bar-Shalom and Li, 1995)). 
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5.2.3 Dynamics of the Coverage Area 

Sample of the space-time coverage area dynamics of both AIS and OTH systems, 

estimated through their detected/tracked targets, over a period of more than nine 

hours is presented in Fig.5.1. During the observed interval the AIS receiver approaches 

the OTH surveillance area in the first hour, actively overlaps its coverage with the 

OTH coverage area for one hour, does not receive any information in the following 

hour, starts receiving again and overlaps its coverage with the OTH coverage area for 

the next five hours, and finally moves eastward (to the left) out of the OTH coverage 

region. 

5.3 Sensor Data Preprocessing 

5.3.1 OTH Data Available for Fusion 

In a theoretical track-to-track fusion, the track state x(k) at time tk usually includes 

position (x, y for a 2D estimate in maritime surface surveillance) and the respective 

velocities 

x(k) = [x(k) x(k) y(k) y(k)] (5.1) 

The corresponding state estimate covariance matrix P(k) obtained by the local tracker 

contains the covariance of each element of the state, as well as all cross-covariances 

between elements of the state. 

The covariance matrix, as providing information on the certainty of the estimate, 

is essential in performing further fusion of the estimates. In the real-world OTH sys­

tem considered herein, even though the estimated state is available with position and 

velocity components, x(k) = [x(k) vx(k) y(k)) vy(k)]', due to the fact that from the 
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Figure 5.1: Dynamics of the coverage areas of AIS (blue tracks) and OTH (magenta 
tracks) real systems over. a period of more than nine hours. 
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covariance matrix P(k) only the terms P11 , P33 , P13 and P31 are available, and there­

fore the uncertainty on the velocity estimates is not known, the velocity information 

cannot be used. This situation is common for tracking systems that output tracks for 

displaying purposes and were not designed with the purpose of further fusion, there­

fore having the covariance matrix partially dropped. A Kalman-type pre-filtering of 

the OTH estimated tracks with dropped information is performed prior to the fusion 

with the AIS estimation, described in Section 5.3.3. 

5.3.2 AIS Data Available for Fusion 

While the AIS system does not provide consistent detections over time (due to AIS 

locks in blind zones, as well as not receiving data from vessels not equipped with 

the system), the received data is characterized by accurate position information and 

confirmed identifier (ID). Whereas the covariance matrix is not provided directly, 

the terms corresponding to the variances of the position estimates are taken from 

the variance of the AIS measurement sensor. The cross-covariance between x and y 

coordinates is considered zero. In order to retrieve the required full state estimate and 

covariance matrix estimates needed for fusion, a pre-processing of the AIS estimates 

is performed, similar to the one applied to OTH estimates, and described in Section 

5.3.3. 

5.3.3 Processing of OTH Tracks and AIS Data Before Fusion 

The pre-processing of OTH tracks and AIS data is applied for the purpose of complet­

ing the state information and the covariance matrix, up to the first order (velocities). 

The stages of track initialization and filtering are described below. For OTH, if the 
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initial track data is obtained through a Kalman Filter estimator, the tracks errors 

are correlated over time (Bar-Shalom et al., 2001). Therefore the direct application 

of a Kalman Filter on it would violate the assumption of independence on the input 

(measurements). The method described in (Bar-Shalom and Chen, 2008) can be ap-

plied for covariance reconstruction. For the AIS data, as being G PS type data, the 

Kalman Filter can be used. A pre-whitening filter may be applied on the data, if 

correlated in time. The track re-initialization for pre-filtering is performed using two 

data points. The partial covariance matrix available from the OTH (or AIS) system, 

[ 

}Jxx(k) }Jxy(k) ] 
PorH(k) = 

}Jxy(k) }Jxx(k) 

is used to initialize what is the measurement noise in a filtered track: 

RpreOTH(k) = PorH(k) 

The partial state vector available from the OTH system 

xorH(k) = [x(kik) y(kik)] 

ZpreOTH(k) = XQTH(k) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

and the pre-processed-OTH state and covariance matrix are computed using the in-

formation filter approach (Bar-Shalom et al., 2001). The indices 0 and 1 correspond 
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to the times t0 and t 1, being the first two estimates of the track to be initialized. 

XpreOTH(l) = 

((HF(o)-1)T (R(O) + HQ(O)HT) - 1 HF(0)-1 + HTR(1)-1H) -
1 

· (5.6) 

( (HF(o)-1 f (R(O) + HQ(O)HT) - 1 z(1) + HTR(1 )-1z(O)) 

and 

PpreOTH(1) = 

( (HF(o)-1 f (R(O) + HQ(O)HT) - 1 HF(o)-1 + HTR(l )-1 H) -
1

. 

( (HF(0)-1 )T (R(O) + HQ(O)HT) - 1 HF(o)-1 + HT (R(O) + HQ(O)HT) H) · 

( (HF(o)-1f (R(O) + HQ(O)Hr)-1 HF(o)-1 + HTR(l)-1H) -
1 

(5.7) 

where 

z(O) = z(O)preOTH, 
(5.8) 

z(1) = z(l)preOTH, 

R(O) = R(O)preOTH, 
(5.9) 

R(l) = R(l)preOTH, 

1 Tk 0 0 

0 1 0 0 
F(k) = (5.10) 

0 0 1 Tk 

0 0 0 1 

with Tk being the time interval between two measurements, Tk = t(k+l)-t(k). Using 

the information filter model for track initialization has the advantage of being able 

to start the pre-filtered track with non-informative prior for the covariance matrix, 
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as the complete matrix is not available (Bar-Shalom et al., 2001). The process noise 

covariance matrix is chosen modeled as DCWNA (Discrete Continuous White Noise 

Acceleration) (Bar-Shalom et al., 2001): 

(5.11) 

resulting in 

1/3Tf 1/2Tf 0 0 

1/2Tf Tk 0 0 
Q(k) = E . q. (5.12) 

0 0 1/3Tf 1/2Tf 

0 0 1/2Tf Tk 

The dynamic state and measurement equations, at times t(k) fork> 1 are 

x(k + 1) = F(k) · x(k) + G(k) · v(k) (5.13) 

and 

z(k) = H(k) · x(k) + w(k), (5.14) 

respectively, for which the estimation of the complete state x( k) and covariance matrix 

P(k) uses the common Kalman filter (Bar-Shalom et al., 2001). The noise coefficient 

ij is chosen such that the already available data in the state estimate and covariance 

matrix is not changed significantly by pre-filtering. 
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5.4 Tracks Association 

The processing logic for a newly received AIS data is shown in Fig.5.2. A similar 

processing is applied at the receipt of an OTH track estimate. At the time an AIS 

data sample is received there are already formed OTH and AIS tracks, preprocessed 

as described in Section 5.3, as well as possible AIS data from which a track is not 

initialized yet (in AIS Initial Data Storage in Fig.5.2). The cost of association of the 

newly received incomplete AIS estimate with an existing OTH pre-filtered track is 

computed first as described in Section 5.4.1. If the association between the AIS and 

OTH track is not declared, then either the AIS data is filtered into an existing AIS 

track or the AIS data is used to initialize a new track with an existing single AIS 

measurement of same ID. If the association with an OTH track is declared, the AIS 

data is fused to the OTH track and further AIS data of same ID is filtered into the 

fused track. 

The association is done in two steps. First each best cost found between tracks of 

different types is recorded for the given pair of tracks. If M past best costs are found 

recorded for a pair of AIS and OTH tracks within their list of last N associations, then 

the second step confirms the association and passes them for fusion. This method is 

recorded in literature as the M out of N association (Radar Corresponding Group, 

2006). 

5.4.1 Track Association Cost Definition 

Below the cost computation is detailed for associating a newly received AIS data with 

an existing pre-filtered OTH track. The same procedure is used for a new sample of 

OTH data. The association cost of an input data to an already pre-filtered track is 
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Figure 5.2: Sample association and fusion for AIS estimate. 
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computed as the negative logarithm of the likelihood of the new data and existing 

track being sampled from the same target. In order to compute the association cost 

of the newly received data z(k + 1) at time t(k + 1), to the OTH track x(k), last 

updated at time t( k) (as AIS and OTH systems are asynchronous), the OTH track 

state needs to be predicted to the association time t(k + 1) 

x(k + 1lk) = F(k) · x(k) (5.15) 

where F(k) is computed using (5.10) with Tk = t(k + 1) - t(k). The likelihood of 

the measurement z(k + 1) being sampled from the same target as the predicted state 

estimate x(k + 1lk) is the probability density function (pdf) of the measurement 

conditioned on the predicted state. The association cost is computed as the negative 

logarithm of this likelihood: 

cost = -ln (P (z:~f I Hx?J~)) (5.16) 

Using the normal distribution for the conditional pdf above, (5.16) translates into 

cost= -ln (N (z:~f I Hx?J~, S(k + 1))) (5.17) 
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with 

N (z(k + 1)Ais I Hx(k + 1lk)orH, S(k + 1)orH,Ais) = 

1 

which is the normal pdf with mean equal to the predicted state and covariance matrix 

S. The covariance matrix in (5.16) denotes the covariance matrix of the innovation 

v(k + 1) = zA18(k + 1)- H · x 0 TH(k + 1lk), estimated by (Bar-Shalom et al., 2001) 

with the OTH predicted covariance matrix of the state 

pOTH(k + 1lk) = F(k)POTH(k I k)F(k)T + QOTH(k), (5.20) 

Upper indices were added to indicate the source of the data, when data from both 

sources are present in the same equation. The position information (available) in the 

partial covariance matrix of the input data, similar to (5.2), this time for AIS, is used 

for R AI 8 ( k + 1) in ( 5.19): 

[ 

pAIS,xx(klk) pAIS,xy(klk) ] 
RAis(k) = . 

pAIS,xy(klk) pAIS,yy(klk) 
(5.21) 
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5.4.2 M out of N Association Method 

For each input data of ID i, the cost detailed in section 5.4.1 is computed for the 

available tracks j E J (where J is the set of tracks of other type), as in 5.17 

cost(i,j) = -lnN (zi(k + 1) I H:X:i(k + 1lk), si,j(k + 1)) (5.22) 

The track selected for the recorded association event to this input data zi(k + 1) is 

ibest = min c(i, j) 
jEJ 

(5.23) 

and the event is recorded to the track combination (i,jbest)· Only the last N such best 

recorded combinations are stored for each track combination. Once a pair of tracks 

( i,j) is found having M combinations together out of the last N ones, the association 

is confirmed and the tracks will be fused. A gating, which restricts the number of 

tracks that enter the association, based on the input data position, currently available 

pre-filtered tracks positions, input (incomplete) covariance matrices and maximum 

velocities is applied first, for both x andy directions, is detailed below for x: 

(5.24) 

where v max is the maximum velocity allowed for a target and a is a constant chosen. 

5.5 OTH Tracks to AIS Information Fusion 

After the input data passes the M out of N association with an existing track, the 

input data is fused with the track of different type. The estimate of the fused track 
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is computed using the update equation of the Kalman filtering. 

5.5.1 Fused State Update Using Kalman Filter 

Based on the new input data available z(k + 1), equations of predicted track state 

in (5.15), predicted covariance matrix in (5.20) and innovation covariance matrix in 

(5.19), the updated state of the fused track is computed as 

x_i,i ( k + 1) = xi ( k + 1/ k) + Wi,i ( k + 1) · ( zi ( k + 1) - Hxi ( k + 1/ k)) (5.25) 

where the combined gain matrix is computed as 

(5.26) 

The Kalman filter is optimal under the Gaussian-Markov assumption (white, Gaus­

sian noises and initial state, and Markov process). The error of the input AIS and 

OTH estimates can be assumed as white. The independence of AIS and OTH errors 

is assumed based on their estimation from different sensors and estimators. The OTH 

estimator (tracker) uses a dynamic state equation with process noise to approximate 

the target state, while the AIS uses the (differential) GPS receiver in estimating the 

highly accurate position. Therefore, their error can be assumed as uncorrelated and, 

furthermore, an AIS input data and an OTH pre-filtered track can be assumed as 

having uncorrelated errors. However, as AIS and OTH pre-filtering are based on sim­

ilar dynamic equations, a correlation of errors is present for an OTH input data and 

an AIS pre-filtered track. Based on the AIS higher precision, however, the correlation 

is considered to be insignificant. Therefore, the Kalman filter can be used with good 
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performance for filtering one type of estimate with another. 

5.6 Simulation 

5.6.1 Simulated Data 

The models of the simulated OTH and AIS tracks were developed such that they 

closely replicate real OTH and AIS tracks, provided courtesy of DRDC (Defense 

Research Development Canada) in Ottawa. The statistics of the OTH tracks are 

modeled through the normal probability of detection, PDorH = 0.85, the probability 

of a burst of missed detections, P Mburst = 0.05, and the Poisson distributed length of 

such burst, Lburst(>-.), with)..= 8, described in section 5.2.1. The length of a burst of 

missed detections is equal to the equivalent number of detections that would cover the 

time interval. Initial simulated measurements are considered in ground coordinates 

(i.e., after mapping the measurements in radar coordinates into ground coordinates). 

Combination of OTH tracks resulting from multipath propagation is considered al­

ready performed at the OTH tracker level, therefore each target is represented by only 

one track as input for fusion. The simulated track estimates for AIS and OTH sys­

tems are generated starting from OTH-type radar measurements in polar coordinates 

(range, angle and range rate) 

Zpolar = [ T () T ]T (5.27) 

where r is the target radial measurement, r is the target radial rate measurement 

and () is the angular target position measurement. For the measurement covariance 
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matrix 

0"
2 0 0 r 

Rpolar = (5.28) 

0 

the standard deviations O"r, O"fJ, and O"r were set to 1000 m, 0.01 rad and 0.8 m/s, 

respectively. The standard polar-to-Cartesian translation with approximate terms 

based on linearization (Bar-Shalom et al., 2001; Bar-Shalom and Li, 1995) is used 

x(k) = r(k) · cos(O(k)) 

y(k) = r(k) · sin(O(k)). 
(5.29) 

The terms of the resulting covariance matrix in Cartesian coordinates are (Bar-Shalom 

et al., 2001) 

Rxx(k) = r(k )2 
• 0"~ · sin( O(k) )2 + 0"; ·cos ( O(k) )2 

Ryy(k) = r(k) 2 
• O"~ · cos(O(k))2 + O"; ·sin (O(k))

2 

Rxy(k) = (O";- r(k)2 · O"~) ·sin (O(k)) ·cos (O(k)). 

(5.30) 

For the simulated sensors precision, the above standard conversion does not generate 

large bias errors (Bar-Shalom and Li, 1995). The dynamic model used to simulate 

the OTH tracks is based on the Kalman filter, with plant equation 

x(k + 1) = F(k) · x(k) + G(k) · v(k) (5.31) 

and measurement equation 

z(k) = H(k) · x(k) + w(k). (5.32) 
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where xk, xk+l are the states (at discrete sampling times tk, respectively tk+I) of the 

track in Cartesian coordinates, F(k) is the transition matrix, G(k), v(k) represent 

the process noise, His the measurement matrix and w(k) is the measurement noise. 

The resulting state vector is modeled as in (5.1) and the state transition matrix F(k) 

has the form in (5.10). The process noise is modeled using the DCWNA model in 

(5.11) and (5.12) with being the power spectral density of the process noise (Bar­

Shalom et al., 2001). The measurement vector z(k), with components transformed in 

Cartesian coordinates (5.29)-(5.30), the matrix H(k), and measurement noise vector 

w(k) are used in the forms (Sinha et al., 2005) 

z(k) ~ [ X(k) fJ(k) f(k) r (5.33) 

1 0 0 0 

H(k) = 0 0 1 0 (5.34) 

0 cos(O(k)) 0 sin(O(k)) 

and 

w(k) = [ wx(k) wy(k) wr(k) ]T (5.35) 

respectively. Based on (5.33) and (5.35) the measurement noise covariance matrix 

has the form 

Rxx(k) Rxy(k) 0 

R(k) = Rxy(k) Rxx(k) 0 

0 0 

(5.36) 

Each generated track is tagged with identifier (ID), which for the AIS completely 

identifies a target, while for OTH it does not (e.g. a single target for which track is 
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Figure 5.3: Simulated AIS (cyan) , OTH (red) and fused (violet) tracks, during pro­
cessing, over a t ime window interval. 

lost and restarted might have different OTH IDs at different t imes). For the M out 

of N association method, the values M = 3 and N = 4 were used. Results obtained 

on simulated data, containing 10, respectively 50 targets, are presented in the next 

figures. In Fig.5.3 t he tracks of 10 targets are shown during the processing, over a 

given window interval. While in Fig.5.4 the final results , with full tracks , over the 

whole simulated interval (around 20 hours) are displayed. The end of each track is 

marked with a circle, while the first fusion time of a pair of two tracks is marked with 

a star. For the simulation with 10 targets in Fig.5.3 and Fig. 5.4, all the AIS-OTH 

pairs from the same target are properly fused. For the simulation with 50 targets , 

shown in Fig.5.5 and Fig.5.6, t here are 45 pairs of tracks properly fused. Some of 

the AIS tracks do not have enough measurements wit hin the OTH area (3 out of the 

last 4 are required for fusion). All the fused tracks have the AIS-OTH pair properly 
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Figure 5.4: Results for 10 simulated targets within the OTH surveillance region. All 
t racks are fused , circles mark track ends and stars mark first fusion times. 

matched (no swaps) . 

R eal Data 

Sample of the results obtained on real data with M = 3 and N = 4 in the association 

method, are presented next . In Fig.5. 7 a snapshot of time is displayed , while in 

Fig. 5.8 the whole history of t racks, fused or not, is presented. All the overlapping 

AIS-OTH tracks are properly fused. For the OTH-AIS pair in Fig.5.8 not fused , and 

which seem to be from same target, the AIS receiver does not receive data while the 

target is t racked within the OTH surveillance region. 
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Figure 5.5: Simulat ed AIS (light blue), OTH (red) and fused (violet) tracks, during 
processing, over a t ime window interval. 
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Figure 5.6: Final fusion results for 50 simulated t argets within the surveillance region. 
Fused tracks are violet and non-fused AIS measurements are light blue. 
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Figure 5.7: Real data AIS (blue) , OTH (red) and fused (violet) tracks, during pro­
cessing, over a time window interval. 
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Figure 5.8: Results obtained with real data. Fused tracks are violet , OTH non-fused 
tracks are red and AIS non-fused are cyan. First fusion times are marked with stars. 
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5. 7 Conclusions 

A method of fusing AIS data with incomplete OTH tracking data is presented. The 

fusion of AIS with OTH data results in a more informative surveillance picture. 

It facilitates tracking targets with complete AIS ID information, over periods the 

AIS is not transmitting, based only on OTH data. The probability of loosing (and 

reinitializing) an OTH track decreases very much, once associated to an AIS ID. The 

non-cooperative targets tracked by OTH are quickly identified as the ones not being 

fused with any AIS data. Future work is intended for association logic at boundaries 

between coverage areas of different sensors, as well as making further use of the highly 

precise AIS data position information. 
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Chapter 6 

Conclusion 

This thesis introduces two novel methods of track fusion for multisensor tracking 

systems. The first method, presented in Chapter 2 associates and fuses local estimates 

provided under the form of particle clouds. The second method, presented in Chapter 

3 introduces the usage of the prior information from the previous fusion time in the 

track-to-track association of the current time. This method was devised for local 

estimators providing tracks under the form of gaussian or gaussian mixture estimates, 

i.e. MMSE or LMMSE. The local tracks are given as mean estimate and covariance 

matrix or mean estimate and MSE matrix for the second method. This thesis also 

introduces in Chapter 4 a novel method of using the fused tracks in the pruning the 

local hypotheses in multisensor MHT tracking. A sample track fusion application to 

real data that uses asynchronous sensors, of different types, and with incomplete local 

covariance matrices is presented in Chapter 5. Novel particle labeling schemes for the 

PHD particle filter were introduced, presented in Appendix A, for the simulation and 

assessment of the first method of fusion. 

The method for the association and fusion of target posterior densities estimates 
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obtained using particle filters was proposed in Chapter 2. Cloud-to-cloud association 

costs, computed at the particle level, depending on particles types were derived and 

the convergence of the cost on particle clouds was proved theoretically and tested 

through simulations. Several applicable fusion methods were presented. Results ob­

tained on a simulated multitarget scenario using the proposed association cost and 

fusion method were analyzed and showed improvement compared with the classical 

track-to-track test when applied on particle filter estimates. The fusion method intro­

duced, at particle level, combines the whole information contained in the estimated 

targets posterior densities, not only the tracks states first order moments, therefore 

being applicable to highly non-Gaussian estimates and nonlinear estimators. 

The novelty of the track fusion method introduced in Chapter 3 is the preservation 

of the fused tracks identities over time. It also shows possible the recovery of targets 

identities at the fusion center in the case of local tracks swap. This fusion method 

keeps and propagates identities of the estimated targets (tracks) at the fusion center, 

beside the ones at the local sensors. The identities of the fused tracks, as well as their 

estimates at the previous fusion frame are used in the track-to-track association of 

the current fusion frame. 

A novel method for fusing track hypotheses obtained by local MHT estimators was 

introduced in Chapter 4, including an association method for sensor global hypotheses 

through the usage of the multitarget miss distance. Usage of fusion results, obtained 

at local estimators through feedback in terms of local hypotheses ranking, was pro­

posed in the selection of sensor global hypotheses to be propagated further. The 

feedback consists only in selection (ranking) of hypotheses obtained locally, therefore 

the cross-correlation oflocal estimates (represented by track hypotheses) over time is 

152 



Ph.D. Thesis- Daniel G. Danu McMaster - Electrical Engineering 

minimal. The method proposed does not require that all estimators (sensors) partic­

ipating in the distributed fusion run MHT. For example estimators that do not run 

MHT still can send their current tracks to the fusion center where they are considered 

as a single track hypothesis. 

A method of fusing AIS data with incomplete OTH tracking data is presented in 

Chapter 5. The fusion of AIS with OTH data results in a more informative surveil­

lance picture. It facilitates tracking targets equipped with AIS systems over periods 

the AIS is not transmitting, based only on the data received from the OTH sensor. 

The probability of loosing (andre-initializing) an OTH track decreases very much, 

once associated to an AIS track. The non-cooperative targets tracked by OTH are 

quickly identified as the ones not being fused with any AIS data. 

Two methods of PHD estimate labeling at particle level for the PHD particle filter 

were proposed in Appendix A. The particle labeling obtains the estimated PHD mesh 

partitioned under the form of labeled particle clouds, each estimating the probability 

density function either of a confirmed track or of a measurement in the past two 

frames. Both methods are based on two 2D assignments, run within the PHD filter 

at the end of the update stage, therefore having costs more informative than the 

assignments run at the prediction step. The usage of both methods improves the 

sampling step, through better usage of particles around confirmed tracks and adds 

the extra track identity feature to the PHD filter. 

6.0.1 Possible Future Work 

The first method of fusion is applicable to particle filters that estimate the multi target 

state through a single multitarget hypothesis. The cloud-to-cloud association cost and 
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subsequent fusion could be extended in a future work to particle filters that estimate 

multiple multitarget hypotheses at a given sample time. 

In the second method of fusion that uses the prior fused information, a dependency 

of the fused tracks identification performance on the scenario was observed. Therefore 

an on-line estimation of the target identification uncertainty could be pursued as 

future work. Additional information provided by the local trackers could be used 

for the target identification uncertainty and improved hypotheses assessment. This 

information could be the estimation of local track swap probability at each local 

tracker between the fusion intervals. Also the feedback implications could be explored. 
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Appendix A 

Assignment-Based Particle 

Labeling for PHD Particle Filter 

The probability hypothesis density (PHD) filter is an estimator that approximates, 

on a given scenario, the multitarget distribution through its first-order multitarget 

moment. This appendix presents two particles labeling algorithms for the PHD par­

ticle filter, through which the information on individual targets identity (otherwise 

hidden within the first-order multitarget moment) is revealed and propagated over 

time. By maintaining all particles labeled at any time, the individual target distri­

bution estimates are obtained under the form of labeled particle clouds, within the 

estimated PHD. The partitioning of the PHD into distinct clouds, through labeling, 

provides over time information on confirmed tracks identity, tracks undergoing initia­

tion or deletion at a given time frame, and clutter regions, otherwise not available in 

a regular PHD (or track-labeled PHD). Both algorithms imply particles tagging since 

their inception, in the measurements sampling step, and their re-tagging once they 

are merged into particle clouds of already confirmed tracks, or are merged for the 
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purpose of initializing new tracks. Particles of a confirmed track cloud preserve their 

labels over time frames. Two data associations are involved in labels management; 

one assignment merges measurement clouds into particle clouds of already confirmed 

tracks, while the following 2D-assignment associates particle clouds corresponding to 

non-confirmed tracks over two frames, for track initiation. The algorithms are pre­

sented on a scenario containing two targets with close and crossing trajectories, with 

the particle labeled PHD filter tracking under measurement origin uncertainty due to 

observations variance and clutter. 

A.l Introduction 

The PHD filter was designed for the unified tracking of multiple and varying number 

of targets in clutter, based on the random finite sets (RFS) theory and the finite set 

statistics (FISST), detailed in (Mahler, 2003). For the purpose of introducing the 

PHD filter, the multi target state was modeled as a random finite set (RFS) and the 

PHD for a given multitarget distribution was defined as the density of which inte­

gral over any region of the individual-target state space gives the expected number 

of targets within the region integrated (Mahler, 2003, p.ll54). From a point process 

theory perspective, the PHD is the intensity function of the multitarget posterior 

RFS (Vo et al., 2005, p.1231), or in other words the density of the intensity measure 

(which intensity measure over a region gives the number of elements within). The 

integral of the PHD over the whole multitarget space gives the estimated number 

of targets (confirmed tracks), therefore it is not a classical probability density func­

tion. By estimating only the first-order moment of the multitarget state, the PHD 

is a good approximate sufficient statistic of the multitarget posterior only under the 
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assumptions of small sensor covariance errors and small rate of false alarms (Mahler, 

2003, p.l154), (Vo et al., 2005, p.1232). 

Subsequent works in (Vo et al., 2005; Zajic and Mahler, 2003) defined its practi­

cal implementation using particle filter methods and imposed the filter as a common 

player on the target tracking community stage, being the subject of continuous re­

search ever since. One direction of improvements is toward estimating and preserving 

targets identities over time, as within the PHD there is no identity or ordering for 

the elements of the multi-target state (Vo et al., 2005, p.1226). In a particle filter 

implementation the PHD integral needs to be adjusted to the closest integer in order 

to obtain an estimate of the multitarget cardinality. 

This appendix presents two methods of obtaining individual track-valued target 

distribution estimates, under the form of distinct labeled particle clouds, within the 

multitarget first-order moment estimated by the PHD filter. This is achieved through 

maintaining all particles defining the PHD labeled over time. The process implies 

particles labeling since their inception as particles sampled around measurements and 

their re-labeling once particle clouds around measurements are merged into particle 

clouds of confirmed tracks, or initialized into new ones. In the context of this research 

a track denotes a sequence of state estimates over time, linked through the hypothesis 

that they belong to the same target. A track-valued estimate defines here a state 

estimate, at a given time, that is tagged as belonging to a track. The labeling at 

particle level provides the full estimate of the individual target density that defines 

the track-valued estimate. The labeling methods were designed in order to obtain 

distinct particle clouds, for subsequent research on particle filter clouds fusion (Danu 

et al., 2008a, 2009a). 

Several approaches for obtaining track-valued estimates within the PHD were 
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already introduced in the literature. In (Lin et al., 2006) tracks are obtained and 

maintained through a Kalman filter (Bar-Shalom et al., 2001) running in parallel 

with the PHD filter, and feeded with the PHD peaks as measurements. The PHD 

peaks are estimated by integrating over a fixed grid, that defines the resolution cell. 

In that approach labeling is applied at the track level, thus loosing the distribution 

information of particles that contributed toward obtaining each track-valued estimate 

1 . In (Panta et al., 2005) particles are labeled using clustering methods applied on the 

posterior PHD, and labeling a cluster with the most contributing particles of same 

label, which could lead to merging clusters of weak targets into stronger ones. Also 

it implies the condition of not having more than one target born at a time step. In 

(Panta et al., 2007) there are presented two schemes of combining the PHD filter 

with the multitarget hypothesis tracking (MHT) method. In the first one clustering 

methods are used to extract PHD peaks to be used in subsequent MHT while in 

the second one PHD is used to filter clutter from the MHT input. The identity 

information is defined and used only at the MHT level, the PHD filter does not make 

use of target identities. 

In the first method introduced in this appendix, following the idea in (Lin et al., 

2006), a resolution cell approach is used to estimate and extract the peaks of a track 

distribution from the PHD, which in this case is represented by labeled particles. On 

these estimates, a Kalman filter is run for track maintenance over time. Different 

from (Lin et al., 2006), the labeling occurs at particle level and they are preserved 

for confirmed tracks over time. The KF here computes the covariances of estimates 

(predicted and updated) that are used in track initialization and associations. The 

track identity is preserved in our method through maintaining over time the particle 

1The second moment of these are re-estimated through the Kalman filter covariance. 
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labels of the clouds confirmed as track-valued estimates. Different than in (Lin et al., 

2006), one partitioning and two data associations are run at different stages. All mea­

surements are sampled with labeled particles, which labels are changed subsequently 

to either labels of confirmed tracks, labels of new tracks or they disappear over time 

through the resampling steps of the PHD filter. Two data associations are performed 

at each frame as part of the track maintenance process. First new measurements 

are assigned to confirmed tracks and next the unassociated measurements are associ­

ated between them over two frames. Both data associations are performed using the 

posteriors of the estimates, as measurements and tracks had already undergone the 

update step of the PHD filter at their association time. As shown in (Lin et al., 2006) 

for track labeling, the cloud labeling improves the selection of importance distribu­

tions (e.g. different for particles around confirmed targets than for non-associated 

measurements). 

In the second method the parallel Kalman filter is removed, as the clouds of con­

firmed tracks are propagated over time by preserving their labels from the previous 

frame. The peak extraction is based on integration over a given region (rectangular 

windowing) around all peaks of the clouds, and thus is not restricted to a rigid grid, 

as in the resolution cell approach. The track management is performed as in the 

first method, using this time sample covariances estimated on the labeled particle 

clouds. In both methods the states of either confirmed tracks or measurements that 

enter the assignments had already undergone the PHD update stage, therefore their 

uncertainty is smaller and assignment cost have higher resolution than the assign­

ment cost computed on the priors, as in classical 2D assignments. Moreover, these 

pseudameasurements entering the association have velocity components. Both meth­

ods are presented for the two-dimensional case and are demonstrated on a scenario 
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containing closed and intersecting targets, with measurements uncertainties 

The PHD filter and its particle filter implementation is briefly described in Section 

A.2, the two assignment-based labeling methods of PHD particle filter are presented 

in Section A.3, the performance of the methods is evaluated on a simulated scenario 

in Section A.4, and conclusions are presented in Section A.5. 

A.2 PHD Particle Filter 

The PHD filter is described in subsection (A.2.1), as introduced in (Mahler, 2003). 

Its particle filter implementation is described in subsection (A.2.2), as introduced in 

(Vo et al., 2005). 

A.2.1 PHD Filter Equations 

Denoting with Dk/k ( x) the estimated PHD at time k -1, its estimation at time k from 

the new measurements and its propagation from time k - 1 is done in two stages, 

namely prediction and update. 

Prediction: The prediction equation of the multitarget PHD from time k to k - 1 

is: 

where 

Update: The update equation of the predicted PHD with measurements obtained 

160 



Ph.D. Thesis- Daniel G. Danu McMaster - Electrical Engineering 

at time k is 

where 

Pv(x) is the probability of detection of an individual target with state x 

9k(zlx) is the likelihood of individual targets 

~(x) is the intensity function of the clutter 

Even though the PHD is a statistic of the multitarget posterior, its propagation 

through both the prediction and update stages is done using statistics on the indi­

vidual target state. 

A.2.2 PHD Particle Filter Equations 

This subsection briefly presents the PHD particle filter implementation established in 

(Vo et al., 2005), from which both track labeling proposed in (Lin et al., 2006) and 

the particle labeling proposed here are derived. At any particular time k, the PHD is 

estimated through a set of particles Dk = { (~ki), Wki)) I i = 1, ... , Lk}, where ~ki) and 

Wki) stands for the state and weight, respectively, of particle i at time k. 

Prediction: From the PHD estimated at time k- 1, Dk-1lk-1 = {(~k~1 , Wk~1 ) I i = 

1, ... , Lk_1}, its prediction for the time k is computed under the form of the new set 

f t . 1 D- {cCi) -Ci) 1 · 1 L } o par 1c es klk-1 = c,k , wk ~ = , ... , k : 
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• sample 

• compute associated weights 

where 

-(i) -
wklk-1-

1 'Y(€ki)) 

Jk Pk(€ki) IZk)' 

i = 1, ... , Lk-1 

i = Lk-1 + 1, ... , Lk-1 + Jk 

eklk-1(·), fkik-1(· I ·), bkik-1(· I ·),'YO are the same as defined in (A.1) 

qk(· I ·) is importance sampling density such that qk(· I ·) > 0 wherever !kik-1(· I 

·) > 0 and bkik-1(· I ·) > 0 

Pk(· I ·) is importance sampling density such that Pk(· I ·) > 0 wherever 'YO > 0 or 

g(· I ·) > o 

Update: The particle weights are updated as in equation (A.3) below 

(A.3) 

where Pv(·), g(· I ·)and ~k(·) are the functions entering equation (A.2) and described 

there. 

Resample: The resampling step implies the following operations: 
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{ 
-o (") ~ }Lk-1+h { (") (") ~ }Lk 

• resample ~kz, (wkz I Nklk) i=l to ~kz, (wkz I Nklk) i=l' and 

• rescale back by Nklk and get { ~ki), Wki)} ;~1 . 

A.3 Assignment-based Labeled PHD Particle Fil-

ter 

The PHD surface is defined on the individual target space as being the sum of the 

projections of each of the multitarget posterior dimensions (where the dimensions 

cardinality is the number of targets here) onto the single target space, through the 

first-order moment. The PHD is defined in the individual target space, while the 

multitarget posterior is defined in the multitarget space, therefore target identities 

and track estimate continuities over time frames are lost in the former. 

Through particle labeling, the intention is to (i} preserve target identities and (ii} 

estimate single-target probability density functions within the resulting partitioned 

PHD, under the form of labeled particle clouds. Our approach is to keep all PHD 

particles labeled at any time k, and have as a result the PHD always partitioned into 

labeled particle clouds of labels lk = 1, ... , Ak. Through the PHD filter stages pre-

sented in Section A.2, particle labels are preserved through prediction and resampling 

stages, and they are merged at the end of the update stage: measurement clouds into 

confirmed track clouds and measurement clouds (at k-1) with measurement clouds 

(at k) into new track clouds. 

We stress out that particle labeling (with common label for each track) in the 

estimated PHD is basically the estimation (extraction) from the PHD surface of the 
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probability density functions for each confirmed track, under the form of labeled par­

ticle clouds, with each track being defined in its own target state. Therefore having he 

PHD estimated at every time k through a set of labeled particles: Dk = { ~ki), wki), lki)}, 

with i = 1, ... , Lk, basically moves the estimate from the PHD domain, estimated on 

the individual target space, x E {{xi}, ... , {xN} }, back into the multitarget space 

X= [x1 , ... , XN,], as shown in Figure A.l(a), A.l(b) and equations (A.4): 

multi target individual multitarget 

space target space space 

]kjk(XIZk) PHD Filter estimates Dkjk(x) Particle Labeling in PHD Aik(XIZk) (A.4) 

In the following subsections we present the two assignment-based labeled PHD parti­

cle filter algorithms. The target states contain position and velocity as x = [x Vx y vy] 

and measurements are received as z = [x y], therefore both state and observation are 

in the ( x, y) two-dimensional cartesian space. The first method is close to the method 

presented in (Lin et al., 2006), however one major difference is that the filter presented 

here implements the labeling at the particle level, thus obtaining particle filter clouds 

as estimates of individual tracks. 

164 



Ph.D. Thesis- Daniel G. Danu 

(a) Sample idealized PHD for 
three targets 

McMaster - Electrical Engineering 

(b) Particle clouds separated, 
through particle labeling 

Figure A.1: Through labeling, pdf of different targets are distinguished and obtained 
basically in separate target spaces. 

A.3.1 Method 1 - Particle Labeled PHD Filter Using Kalman 

Filter 

Initialization 

At time k = 1, given the set of n 1 observations Z1 = [zL ... , z~1 ], each of them is 

sampled with m 1 particles. As usually only position information is given in measure-

ments, the state components of particles are initialized separately in the sampling 

process, as in (Lin et al., 2006). The initialization sequence includes particles sam­

pling, weights computation, particles labeling and track list initialization, described 

next. 

A. Particles Sampling 

A total of L1 = m 1 n 1 particles are initialized, of which 

a. position components et~x,y) are sampled from the importance sampling 

density for measurements, p(~lz~), selected based on sensor characteristics 
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(measurement positions and uncertainties): 

e(i) - e(j+ml(n-1)) rv p(~lzn) 
1,(x,y) - 1,(x,y) 1 ' (A.5) 

i=1, ... ,L1, j=1, ... ,m1, n=1, ... ,n1, 

b. velocity components e1(i)(v ) are sampled from the joint uniform distribu-
' x,Vy 

tion within maximum velocities allowed for a target 

(A.6) 

B. Weights Computation 

- (i) f) /( ) w1 = q m 1 · n 1 , i = 1, ... , £ 1 , (A.7) 

where £1 is the initial estimated number of targets and n 1 is the number of 

measurements. 

C. Particles Labeling 

a. particles sampled from measurements z7, n = 1, ... , f 1 , guessed as from 

valid targets, are labeled as 

l (i) _ zU+ml(n-1)) _ zc _ 
1 - 1 - 1- n, i=1, ... ,m1£1, j=1, ... ,m1 (A.8) 

thus obtaining £1 labeled particle clouds of labels l]_ = 1, ... £1, where c 

stands for confirmed tracks 

b. particles sampled from measurements z}, n = £1 + 1, ... , n 1 , guessed as 
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from candidate targets, are labeled as 

l (i) _ l(j+m1(n-1)+m1£1) _ l _ 11J + 
1 - 1 - 1 - lVlQ n, 

(A.9) 

where M 0 is a high number used to distinguish further between labels, 

i.e. between measurement labels (clouds of yet unconfirmed tracks) and 

confirmed track labels 

D. Track List Initialization 

The track list Tk at k = 1 is initialized with a tentative track for each obser-

vation, with their states capturing the first two moments, as needed by the 

parallel Kalman filter that will update them. 

Z1x 2 0 0 0 
' (]' Z1,x 

h- f'1:£1-
0 0 v;..max/3 0 0 

1- 1 - (A.10) 
Z1,y 0 0 2 

a z1,y 0 

0 0 0 0 v;..max/3 

Prediction 

At each time k 2 2, a new particle is sampled for each existing particle at k - 1, 

using the importance sampling density for target transition distribution, q( · I ·). A 

number of Jk new particles are sampled also to account for the new set of nk measure­

ments, Zk = [z~, ... , z~k], using the importance sampling density for measurements 

uncertainty, p( · I ·). The prediction sequence, including particles labeling, is given 

below. 
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A. Particles Sampling 

a. From existing particles (at k - 1): 

(A.ll) 

b. From current observations set Zk: 

First the set of measurements is partitioned into ones falling within the gate 

of a confirmed track in 'Jk_1 and ones falling outside any track gate, Zk = 

{ Zk,in, Zk,out}· For this purpose, the confirmed tracks in track list 'Jk_1 = 

T~=~- 1 are predicted to time k using Kalman filter prediction equations 

(Bar-Shalom et al., 2001) 

'T TA1:~k- 1 {Azc pzc }~k- 1 KFPrediction 
I k-1 = k-1 = Xk-1' k-1 zc=1 

{

A zc pzc }~k-1 TA 1:~k-1 'T 
xklk-1' klk-1 zc=1 = klk-1 = 1 klk-1 

(A.12) 

Next either: i) a 2D association (Bertsekas and Castanon, 1993; Jonker 

and Volgenant, 1987), is performed between measurements and predicted 

confirmed tracks, or ii) measurements that fall within the gate of sev-

eral tracks are duplicated and sampled several times, for each track gate. 

Measurements within Zk,in are sampled with a 1 sk particles, while measure­

ments in Zk,out are sampled with a 2sk particles, where a 1 , a 2 are design 

parameters (Lin et al., 2006) that account for probabilities of measure-

ments. 

, i = Lk-1 + 1, ... , Lk-1 + Jk,in (A.13) 
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(A.14) 

i = Lk-1 + Jk,in + 1, 

nalities of Zk,in and Zk,out, respectively. 

B. Weights Computation 

a. Weights for particles predicted from existing ones at k - 1 are computed 

using 

- (i) (i) (c(i) ) 
wk\k-1 = wk-1ek\k-1 ':.k-1 ' i=1, ... ,£k-1· (A.15) 

b. Weights for newborn particles, sampled from measurements in Zk,in, Zk,out 

are 

(A.16) 

C. Particles Labeling 

a. Persistent particles, propagated from k - 1 through prediction, preserve 

their labels, therefore with values for confirmed tracks in {1, ... , .ek_1} 

and for measurements in {Mk_2 + 1, ... , Mk_1} (i.e. measurements clouds 

before k - 2 and not merged yet into a confirmed or newly initiated track 

cloud are discarded at k). 

ll(i) - z<i) • 1 L 
k - k-1' '/, = ' ... ' k-1· (A.17) 
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b. Particles sampled from new measurements zk E Zin,k, where n = 1, ... , nk,in 

are labeled as 

l
-(i) _ l-(j+(n-1)alsk) _ M + 
k - k - k-1 n (A.18) 

where j = 1, ... , a 1sk, and therefore i = Lk-1 + 1, ... , Lk-1 + Jk,in· 

c. Particles sampled from new measurements zJ: E Zout,k, where n = 1, ... , nk,out 

are labeled as 

(A.19) 

where j = 1, ... , a 2sk, and therefore i = Lk-1 + Jk,in + 1, ... , Lk-1 + Jk 

Update 

A. Weights Computation. All particles, i = 1, ... Lk-1 + Jk, have their weights 

updated using (Lin et al., 2006) 

B. Track List Update 

a. The predicted tracks in Tklk- 1 are updated as follows: 
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i} Find the peaks Pk = {7r~c}fc=1 of the PHD, using weights integration 

over the coarser resolution cell grid approach (Lin et al., 2006), thus 

obtaining the PHD in a resolution cell (PHDRC) peaks. 

ii} Label resolution cell peaks with the the most contributing cloud label 

Pk = { 7rkc, lkc }fc=l· The shortcoming of allowing only an ID to lay 

within a resolution cell is circumvented in the next step. 

iii} Update tracks in Tklk-l with their 2D-assigned PHDRC peaks ob­

tained above, using Kalman filter update equation. Note that the 

pseudomeasurements entering the association here have also velocity 

components, as the component particles of had already undergone the 

PHD update and therefore had obtained this information (i.e. for peak 

(A.21) 

If no PHD RC peak is assigned to a track that had a measurement 

within its gate in Zk,in, it is updated with that measurement directly. If 

the clouds of two tracks lie within the same resolution cell, the stronger 

target hides the other one in the resolution cell tagging, therefore the 

cloud of the weakest target does not participate in the assignment. It 

may result in having a track in the track list not updated, even if it 

had a valid measurement in its gate, therefore in Zin· Such a track 

is updated separately, with its closest measurement in Zin Another 

way to circumvent this is to compute the peaks of the resolution cell 
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on each label separately. This is performed in the second algorithm 

however not on a resolution cell grid. 

iv) If a track in Tkik-l does not have assigned neither a PHDRC peak in 

Pk, neither a measurement in Zk,in, then its prediction is promoted 

directly into 7k and the track is marked as having a missed detection. 

All tracks found with two (or other design-established value of) con­

secutive missed detections are marked for deletion. The consequence 

is that their labels won't participate in the measurements partitioning 

process. 

b. New tracks are added to 7k and their corresponding particle clouds labels 

change from measurement labels into track labels. Unassociated entries 

(RC peaks) in Pk are associated to unassociated entries (RC peaks) in 

Pk-l through 2D-assignment and if valid pairs are found, new tracks are 

initialized using classic track initialization from measurements procedures 

(Bar-Shalom et al., 2001). 

c. Thacks are removed from 7k if they do not have associated peaks in Pk-l 

or no associated measurements for the past two frames. 

C. Particles Labeling 

a. Labels of any measurement particle cloud (lk > Mk_I) that participated 

in a track update is changed into the respective track label, thus merging 

the two clouds. 

b. Labels of newly confirmed tracks are given by incrementing the higher 

current confirmed track label, lk = fk-l + 1, ... , fk, with fk = fk-l + 

Nnewtracks· 
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c. Labels of any pair of two measurement particle clouds that initialized a 

new track (one in Mk-2 < lk(1) < Mk-1, and other in Mk-1 < lk(2) < Mk) 

are changed into the new track label, therefore the two clouds merge. 

At the end of the update step the labels of particle (clouds) are in the set 

(A.22) 

confirmed tracks measurements at k-1 measurements at k 

Resampling 

In the resampling step the resulting particles preserve the labels of particles from 

which they are obtained: 

{ c(i) w(i) z<i)}!'k rv {c(i) w(j) [Ci)}J:k-l+Jk 
c.,k ' k ' k ~=1 c.,k ' k ' k J=1 (A.23) 

During resampling labels of clouds of low weights might be removed naturally (i.e. not 

resampled). Beside these labels which might disappear, at the end of the resampling 

stage the labels of unweighted particles (clouds) are preserved. They are in the set 

(A.24) 

confirmed tracks measurements at k 

where the first set includes the labels of~ and the second set includes the set of clouds 

build around unassociated measurements over the past two frames. Some tracks might 

have been deleted, therefore the set oflabels in~ might be smaller than {1, ... , .ek}· 

Also some measurements over past two frames might be already associated and had 

formed new tracks, therefore their set might be smaller than {Mk_2 + 1, ... , Mk}· 

Normally all other particles should disappear after resampling. If a particular cloud 
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is still present and is in none of above sets, its particles will be removed, subject to 

the condition of its mass to be under a specified threshold v. 

A.3.2 Method 2 - Particle Labeled PHD Filter Using Cloud 

Estimate 

In this method the continuity of a track over time frames is preserved solely by 

the (common) label of the particles within its cloud. The resolution cell peaks are 

replaced in this algorithm with the mean estimates of the labeled particle clouds. 

These are estimated on both clouds of confirmed tracks and clouds of unassociated 

measurements. 

Figure A.2 shows the flow of particles and their labeling in the PHD filter proposed. 

Initialization 

The initialization step is identical with the one presented in Section A.3.1, with the 

exception that the track list Ti is initialized directly with the labels l~ = 1, ... .€1 of 

particle clouds. 

Prediction 

A. Particles Sampling 

The particles sampling from existing particles is as in Section A.3.1. The 

partition of measurements is done using the gating of particle clouds labeled 

lk_1 = 1, ... .ek_1, marked as for confirmed targets. Particle clouds with labels 

in ~-1 are predicted first and their gating is used next. The sampling from 

measurements, upon their partitioning, is performed as in Section A.3.1. 
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Figure A.2: Labels' flow in the particle labeled PHD for the filter cycle at time frame 
k. The arrows marked with discontinued line show the flow of measurements ingested 
at time k. The arrows marked with dotted line show the flow of measurements 
ingested at time k - 1 and preserved at time k. The empty arrows show the flow of 
existing or newly formed tracks at time k 
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B. Weights Computation and C. Particles Labeling steps are identical to the ones 

in Section A.3.1 

Update 

A. Weights Computation 

Is identical to the one in Section A.3.1 

B. Track List Update 

a. The cloud mean estimates and the sample covariance matrices, i.e., the 

matrix of the mean square error (MSE), of the confirmed tracks particle 

clouds, with labels in 1, ... , l!k-l, are computed, as they are used in the 

t 2D . ,., T.-l:fk-1 { -zc p- zc }fk-1 
nex two -assignments, lk = kJk-1 = xklk-1' kJk-1 zc=l 

b. Compute the cloud estimates and the MSE matrix of measurements clouds, 

Mk, sampled at k, and persistent measurements clouds MkJk-l, sampled 

at k- 1, needed in the following two associations. 

c. Combine confirmed tracks clouds in ~Jk-l with their 2D-assigned measure­

ment clouds in Mk, using Mahalanobis-distance based association costs. 

d. Initialize new tracks through merging Mk measurement clouds with their 

2D-assigned MkJk-l measurement clouds, using Mahalanobis-based asso­

ciation costs. NOTE: The clouds of labels lc of confirmed tracks have 

already their weights updated with the new measurements using the PHD 

filter equation (A.2), however their entity as clouds is considered still not 

updated entirely, as the particles sampled from measurements at k are not 

included in their clouds yet. 
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C. Particles Labeling 

Here two 2D-associations are performed for two purposes: i) to merge clouds 

of new measurements into clouds of confirmed tracks, and ii) to associate mea­

surement clouds over current and previous frame in order to merge them into 

the cloud of a newly confirmed (and newly labeled) track. Both associations 

are performed after the measurements have been used in the PHD filter update 

equations, therefore are not affecting the PHD filter convergence for the cur­

rent frame. Moreover, in ii), the measurements to tracks (clouds) association, 

the updated cloud estimates of tracks are considered, and not the prior as in 

the case of usual association, therefore entering the association with lesser un­

certainty. In ii), the measurements to measurements association, the particle 

clouds of measurements at time k- 1 and k were already updated twice, respec­

tively once, before they enter the association. Therefore their association costs 

are more informative than the association costs of pure measurements. The 

two associations at particle cloud level are done using their estimates, however 

they could use directly the cloud-to-cloud association methods in (Danu et al., 

2009a). The steps are listed below: 

a. The label of any measurement particle cloud in Mk that participated in a 

track update is changed into the respective track label. 

b. Labels of newly confirmed tracks are given by incrementing the higher 

current confirmed track label, lk = .ek-1 + 1, ... , .ek, .ek = .ek-1 + Nnewtracks· 

c. Labels of any pair of two measurement particle clouds that initialized a 

new track (one in Mklk-b and other in Mk are changed into the new track 

label, as the two clouds merge. 
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Resampling 

The resampling step is identical with the one presented in A.3.1 

A.4 Simulation 

We consider two targets with close trajectories, which also cross each other, observed 

in a 2 - D cartesian space. The target state given as x = [x, Vx, y, vy] and the 

measurement as z = [x, y]. The observations variances are high enough compared 

with the targets closeness such that the tracking is performed under measurements 

origin uncertainty. The average rate of clutter points per scan is r = 4, therefore with 

cz = 1/2002 and ~k = r · cz. The scenario and performance evaluation includes the 

track initiation stage for each target , over a period of 40 sec, with measurements at 

every second. Targets trajectories and sample measurements (including clutter) for 

a run are shown in Figure A.3.a. 

Targets trajectories (Target 1 -dots, Target 2 - crosses) 

80 

60 .. :' x' ·;. 
· ·· :-: .. , ..... :..:~~] .. :. . . 

···. 
• : · . : . 0 · · ~ . . . .. . . .. , . 

:-;? ·· 
,;~ "- ' 

40 

20 

-20 

-40 

-60 

-80 

.• 
-100 -50 50 100 

(a) True targets trajectories and measure­
ments. 

Cyan-prev_state , Blue-pred(1 :Ns), Magenta-pred(Zin) , Green-pred(Zout), Yellow-current 

60 ,; 

-80 - 60 -40 -20 0 20 40 60 80 100 
Time 40, Live tracks: 1 2 7, Ntg_est=2.3789 

(b) Track-valued estimates over one run. 

Figure A.3: True targets and track estimates using Method 1, Particle Labeled PHD 
using Kalman Filter. 

The measurement noise error covariance is P~ 
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and ay=2.5m/s. The particle filter process noise selected is a~ = [1.02, 0.52] and the 

maximum allowed velocity for a target is Vmax = 6m/ s. In terms of sampling, there are 

£ 1 =1000, number of initial particles, and for subsequent times the design parameters 

values selected are a 1 = 1, 5, a 2 = ai/3, and sk = 400, therefore for measurements in 

Zk,in, Zk,out there are sampled Jk,in = a1 · sk = 600 and Jk,out = a2 • sk = 200 particles, 

respectively. At resampling, there are a number of p = 1000 particles intended for 

each confirmed track. The update design parameter values are (31 = 1.1, (32 = (31/25. 

The probability of target survival is set to eklk-1 ( · I ·) = 0.95. The initial number of 

targets guessed in the scenario is ( 1 = 1, therefore different than the real one, with 

the filter left in charge of estimating the correct number. 

The performance of the two methods of PHD filter with particle labeling was 

assessed on 100 Monte Carlo runs using the selected scenario. The root mean square 

error (RMSE) of position and velocity, as well as the mean of the sample covariance 

error, all computed at each sampling time, are presented in Figure A.4. The estimates 

are computed only on the runs on which each method identified properly both targets, 

through the whole scenario, 70 times for Method1 and 61 times for Method 2. 

A.5 Conclusion 

Two methods of PHD estimate labeling at particle level for the PHD particle filter 

were proposed. The particle labeling obtains the estimated PHD partitioned under 

the form of labeled particle clouds, each estimating the probability density function 

either of a confirmed track or of a measurement in the past two frames. Both meth­

ods are based on two 2D assignments, run within the PHD filter at the end of the 

update stage, therefore having costs more informative than the assignments run at 
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Figure A.4: Performance evaluation of Method 1 and Method 2 of particle labeled 
PHD particle filter. 
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the prediction step. The usage of both methods improves the sampling step, through 

better usage of particles around confirmed tracks. The methods were ran on a 2-D 

scenario in order to show that target identities are preserved for the case of closed 

and crossing trajectories, estimated with the PHD filter. 
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