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ABSTRACT 

Genetic Algorithms (GAs) are search methods based on principles of natural selection 

and genetics. GAs attempt to find good solutions to the problem at hand by manipulating 

a population of candidate solutions. 

Each member of the population is typically represented by a single chromosome, the 

chromosome encodes a solution to the problem, the initial population is generated 

randomly, GAs are often used as optimizers, and the fitness of an individual is typically 

the value of the objective function at the point represented by the chromosome. The 

individuals with better performance are selected as parents of the next generation. GAs 

create new individuals using simple randomized operators that resemble crossover and 

mutation in natural organisms. The new solutions are evaluated with the fitness function, 

and the cycle of selection, recombination, and mutation is repeated until a user defined 

termination criterion is satisfied. 

In the real world, we always encounter the problems that need to be solved in a 

changing environment. This means that our algorithm needs to be dynamic or even 

adaptive to the changing environment. 

In this thesis, we will mainly deal with the adaptive GAs that have a new genetic 

operator called transformation instead of traditional crossover. 

In our study, we use a dynamic problem generator to create a dynamically changing 

landscape and study the behavior of transformation based GA in different parameter 

settings, such as: transformation rate, mutation rate, segment replacement rate. 
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CHAPTER! 

INTRODUCTION 

Genetic Algorithms (GAs) are mainly used to solve optimization problems, where 

optimization is defined as the process of adjusting the inputs to or characteristics of a 

device, mathematical process, or experiment to find the minimum or maximum output 

(result) [19]. The input consists ofvariables; the process or function is known as the cost 

function, objective function, or fitness function; and the output is the cost or fitness. If 

output is the cost then optimization becomes minimization, if output is the fitness then 

optimization becomes maximization. 

Searching the cost. surface (all possible function values is also called fitness 

landscape) for the minimum cost is the most common problem in optimization routines. 

There are different kinds of optimization methods. Before discussing the methodology of 

GA, we give a brief introduction to these optimization methods. 

1.1. Exhaustive Search 

The brute force approach to optimization looks at a sufficiently fine sampling of the 

cost function to find the global minimum [12]. This exhaustive search requires an 

extremely large number of cost function evaluations to find the optimum. For example, 

consider finding the minimum of the function: 

j{x,y)=2 x sin(5x) + y sin(3y) 

where xE[0,10] andyE[0,10] 

(1.1) 
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With sampling fine enough, exhaustive searches do not get stuck in local minima and 

work for either continuous or discontinuous variables. However, they take an extremely 

long time to find the optimal global. A three dimensional plot and contour plot of (1.1) 

are given in Figure 1.1 and Figure 1.2. 

f(x,y) = 2xsin(5x) + ysin(3y) 

30 .. ··: 
: 

20 ... ··i···· 
··· .. :. 

10 
. . : . . . 

.. 
:·· .. 

0 
... :··· 

., 
. · . 

-10 .... ·: 

-20 .. ·:···· 
: 

-30 
.. :.·: .. 

0 . ::·.:. ... 
0 

global minimum 

X 

Figure 1.1 Three-dimensional plot of ftxV')=2 x sin(Sx) + y sin(3y) 

We want to optimize the function (1.1) with some required precision: suppose three 

decimal places for the variables' values are desirable. To achieve such precision each 

domain X= {xl x E[0,10] } andY= {yl y E[O,lO] } should be cut into (10- 0)·103 equal 
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size ranges, so it needs 104·104 =108 functional evaluations. The minimum is -29.4359 

on point (9.743, 9.959); it took 47.54 seconds on a Pentium4 2.80, 512MB computer to 

find out this minimum; apparently this is too much work for such a simple problem. 

0 n--------.--------.--------.--------.-------~ 

~ 2 I 

>-

6 

8 

4 2 0 
X 

Figure 1.2 Contour plot of j{xVJ)=2 x sin(Sx) + y sin(3y) 

1.2. Analytical Optimization 

This is the calculus-based optimization method; the search process can be simplified 

to a single variable for a moment, and then an extremum is found by setting the first 

derivative of a cost function to zero and solving for the variable value [ 12]. If the second 

derivative is greater than zero, the extremum is a minimum, and conversely, if the second 

3 
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derivative is less than zero, the extremum is a maximum. One way to find the extrema of 

a function of two or more variables is to take the gradient of the function and set it equal 

to zero, Y'f{x,y)=O. For example, taking the gradient of equation (1.1) resulted in 

aj = 2sin(5x) + 10xcos(5x) = 0, 
ax 

0:Sx:S10 (1.2) 

and 

aj = sin(3y) + 3ycos(3y) = 0, 
8y 

0:Sy:S10 (1.3) 

Next these equations are solved for their, x andy which is a family of lines. Extrema 

occur at the intersection of these lines. Finally, the Laplacian of the function is 

calculated. 

and 

a2j 
--

2 
= 20cos5x-50xsin5x, 

ax 

a2j 
--

2 
= 6cos3y -9ysin3y, 

8y 

O:S X :S10 (1.4) 

0:Sy:S10 (1.5) 

The roots are minima when V'2j{x,y) > 0. Unfortunately, this process does not give a 

clue as to which of the minima is a global minimum. This approach is mathematically 

elegant compared to the exhaustive or random searches. But it requires continuous 

functions with analytical derivatives. 

4 
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1.3. Line Minimization Methods 

This algorithm begins at some random point on the cost surface, chooses a direction 

to move, then moves in that direction until the cost function begins to increase. Next the 

procedure is repeated in another direction [12]. 

A very simple approach to line minimization is the coordinate search method. It starts 

at an arbitrary point on the cost surface, and then does a line minimization along the axis 

of one of the variables. Next, it selects another variable and performs another line 

minimization along that axis. This process continues until a line minimization is carried 

out along each of the variables. Figure 1.3 shows the possible path that this algorithm 

might take on quadratic cost surface. In general this method is slow. Figure 1.4 shows 

the flowchart of typical line search algorithms. 

y 

X 

Figure 1.3 Possible path that the coordinate search might take on a quadratic 

cost surface 
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Initialize starting point and 
other parameters 

compute a search direction 

compute a step length 

update parameters 

check for convergence 

Figure 1.4 Flowchart for a typical line search algorithm 

1.4 Natural Optimization Methods 

Natural optimization methods generate new points in the search space by applying 

operators to current points and statistically moving toward more optimal places in the 

search space [12]. They rely on an intelligent search of a large but finite solution space 

using statistical methods. Here we briefly introduce some natural optimization methods: 

1.4.1 Simulated Annealing 

This method simulates the annealing process in which a substance is heated above its 

melting temperature and then gradually cooled to produce the crystalline lattice, which 

minimizes its energy probability distribution. This crystalline lattice, composed of 

millions of atoms perfectly aligned, is a beautiful example of nature finding an optimal 

structure. However, quickly cooling or quenching the liquid retards the crystal formation, 

6 
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and the substance becomes an amorphous mass with a higher than optimum energy state. 

The key to crystal formation is carefully controlling the rate of change of temperature. 

The algorithmic analogue to this process begins with a random guess of the cost 

function variable values. Heating means randomly modifying the variable values. Higher 

heat implies greater random fluctuations. The cost function returns the output associated 

with a set of variables. If the output decreases, then the new variable set replaces the old 

variable set. If the output increases, then the output is accepted provided that 

f(Pg[rj_)~ f(Pnew) 

r-:::;. e r (1.6) 

where r is a uniform random number (a random number in the interval (0,1)), Tis a 

variable analogous to temperature,fis the cost function, Potd is old variable set, and Pnew is 

new variable set. Otherwise the new variable set is rejected. Thus, even if a variable set 

leads to a worse cost, it can be accepted with a certain probability. The new variable set is 

found by taking a random step from the old variable set 

Pnew = d* Potd (1.7) 

The variable d is either uniformly or normally distributed about Pold· This control 

variable sets the step size so that, at the beginning of the process, the algorithm is forced 

to make large changes in variable values. At times the changes move the algorithm away 

from the optimum, which forces the algorithm to explore new regions of variable space. 

After a certain number of iterations, the new variable sets no longer lead to lower costs. 

At this point, the values of T and d decrease by a certain percent and the algorithm 

repeats. The algorithm stops when T :::::: 0. The decrease in T is known as the cooling 

7 
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schedule. The temperature is usually lowered slowly so that the algorithm has a chance to 

find the correct valley before trying to get to the lowest point in the valley. 

1.4.2 Ant Colony Optimization (ACO) 

In the real world, ants (initially) wander randomly, and upon finding food they return 

to their colony while laying down pheromone (chemical) trails. If other ants find such a 

path, they are likely not to keep traveling at random, but to instead follow the trail, 

returning and reinforcing it if they eventually find food. 

Over time, however, the pheromone trail starts to evaporate, thus reducing its 

attractive strength. The more time it takes for an ant to travel down the path and back 

again, the more time the pheromones have to evaporate. A short path, by comparison, 

gets marched over faster, and thus the pheromone density remains high as it is laid on the 

path as fast as it can evaporate. 

Thus, when one ant finds a good (i.e., short) path from the colony to a food source, 

other ants are more likely to follow that path, and positive feedback eventually leaves all 

the ants following a single path. The idea of the ant colony algorithm is to mimic this 

behaviour with "simulated ants" walking around the graph representing the problem to 

solve. 

Ant colony optimization algorithms have been used to produce near-optimal solutions 

to the traveling salesman problem. 

8 



M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software 

1.5. Genetic Algorithm 

Genetic Algorithms (GAs) are search methods based on principles of natural selection 

and genetics. GAs attempt to find good solutions to the problem at hand by manipulating 

a population of candidate solutions. 

Each member of the population is typically represented by a single chromosome-like 

data structure, which can be as simple as a string of zeroes and ones, or as complex as a 

computer program. The chromosome encodes a solution to the problem, in GAs 

chromosomes are also called strings, individuals, or objects. The initial population of 

individuals or set of solutions is generated randomly, unless some good solutions are 

known, or there is a heuristic to generate good solutions to the problem. In the latter case, 

a portion of the population is still generated randomly to ensure that there is some 

diversity in the population. 

The individuals are evaluated to determine how well they solve the problem with an 

evaluation function (objective function or fitness function), which is unique to each 

problem, and must be supplied by the user of the algorithm. In particular, GAs are often 

used as optimizers, and the fitness of an individual is typically the value of the objective 

function at the point represented by the chromosome. The individuals with better 

performance (the individuals that have higher fitness value or lower cost value) are 

selected as parents of the next generation. GAs create new individuals by using simple 

randomized operators that resemble crossover and mutation in natural organisms. The 

new solutions are evaluated with the evaluation function, and the cycle of selection, 

9 
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recombination, and mutation is repeated until a user defined termination criterion is 

satisfied. 

GAs are controlled by several inputs, such as the size of the population, and the rates 

that control how often crossover and mutation are used. GAs are not guaranteed to 

converge to the optimal solution, but a careful manipulation of the input parameters (or 

operators) and choosing a representation that is adequate to the problem increase the 

chances of success. In simple GAs, the operator set is usually fixed, but in a real world, 

we always encounter problems that need to be solved in a changing environment. That 

means our algorithm has to be dynamic or even adaptive to the changing environment. 

There are different ways of making Genetic algorithms dynamic or adaptive to its 

environment; one alternative is to let genetic operators (such as crossover, mutation) be 

free; an other alternative is to use variable-length individuals, with more complicated 

strings than binary strings and variable population size. 

In this thesis we will mainly deal with the adaptive GAs that have new genetic 

operator called transformation [24] instead of the traditional crossover. In our study we 

use a dynamic problem generator [21] to create a dynamically changing landscape and 

study the behavior of a transformation-based GA in different parameter settings, such as: 

transformation rate, mutation rate. 

10 
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CHAPTER2 

GENETIC ALGORITHMS 

2.1 Introduction to Genetic Algorithm 

The concept of Genetic Algorithms (GAs) has been developed by John Holland [14], 

and his colleagues. GA is an optimization and search technique based on the principles of 

genetics and natural selection. A GA encodes a potential solution to a specific problem 

on a simple chromosome-like data structure; this data structure is known as a 

chromosome or individual. At first, a GA randomly creates a population of individuals 

(potential solutions) and GA operators are applied to these individuals to find the best 

solution or evolve to a state that maximizes the "fitness" of the individuals (i.e., 

minimizes the cost function). 

GAs use a vocabulary borrowed from natural genetics. So we need a bit of Biological 

background on heredity at the cellular level. A gene is the basic unit of heredity. An 

organism's genes are carried on one of a pair of chromosomes in the form of 

deoxyribonucleic acid (DNA). Each cell of the organism contains the same number of 

chromosomes. Genes often occur with two functional forms, each representing a different 

characteristic. Each of these forms is known as allele. For instance, a human may carry 

one allele for brown eyes and another for blue eyes. The combination of alleles on the 

chromosomes determines the traits of the individual. The trait actually observed is the 

phenotype, but the actual combination of alleles is the genotype. 

11 
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We thus talk about individuals (chromosomes, genotypes, strings) in a population, 

and genes (features, characters). 

Each chromosome represents a potential solution to problem (the meanmg of a 

particular chromosome, i.e., its phenotype, is defined externally by the user); an evolution 

process run on a population of chromosomes corresponds to a search through a space of 

potential solutions. 

The population undergoes a simulated evolution: at each generation the relatively 

"good" solutions reproduce, while the relatively "bad" solutions die. To distinguish 

between different solutions we use an objective (evaluation) function which plays the role 

of an environment [ 19]. Usually, the evaluation function is called a fitness function if the 

individuals with a maximum evaluation is desired, or called a cost function if the 

individuals with a minimum evaluation is desired. We can easily change a maximizing 

problem into a minimizing problem by simply changing the sign of the evaluation 

function. 

2.2 The Advantages of Genetic Algorithms 

Genetic Algorithms are a class of general purpose (domain independent) search 

methods which strike a remarkable balance between exploration and exploitation of the 

search space. GAs can be used in image processing, numerical function optimization, 

combinatorial optimization, and machine learning [4], [5]. GAs outperform other 

searching optimization methods when solving very complex problems such as 

combinatorial optimization problems and highly constrained engineering problems. GAs 

12 
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belong to the class of probabilistic algorithms, yet they are very different from random 

algorithms as they combine elements of directed and stochastic search. Because of this, 

GAs are also more robust than existing directed search methods. 

Some ofthe advantages ofGA are [12]: 

• Optimizes variables with extremely complex cost surfaces( they can jump out of a 

local minimum) 

• Optimizes with continuous or discrete variables 

• Does not require derivative information 

• Simultaneously searches from a wide sampling of the cost surface 

• Deals with a large number of variables 

• Provides a list of optimum variables, not just a single solution 

• Works with numerically generated data, experimental data, or analytical 

functions. 

GAs have been quite successfully applied to optimization problems like wire 

routing, scheduling, adaptive control, game playing, cognitive modeling, 

transportation problems, traveling salesman problems, optimal control problems, etc. 

2.3 A Simple Genetic Algorithm 

A genetic algorithm for a particular problem must have the following five 

components: 

• A genetic representation for potential solutions to the problem, 

13 
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• A way to create an initial population of potential solutions, 

• An evaluation (fitness) function that rates the solutions in terms of their 

"fitness" 

• Genetic operators that alter the composition of children, 

• Values for various parameters that the genetic algorithm uses (population size, 

crossover rate, mutation rate, etc.) 

The process of a simple genetic algorithm is shown as a flowchart in Figure 2.1. We 

explain every process in this flowchart with an implementation of a simple genetic 

algorithm. 

Since a genetic algorithm originated in binary coding and is easy to implement, let us 

take a binary genetic algorithm for example. Suppose we have a string of length of eight 

that consists of 1 'sand O's, and we want it to have most 1 'sin it. 

2.2.1 Representation 

To solve this problem as a GA, we first consider the representation of the potential 

solution; from the definition of our problem it is clear that an eight bit binary string is a 

perfect representation of the solutions. 

14 
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2.2.2 Evaluation function 

Define GA representation, evaluation 
function, select GA parameters 

Generate Initial Population 

Evaluate the population 

Figure 2.1 Flowchart of a simple GA 

Since we want the string to have most 1 's, we can define the evaluation function as 

the number of 1 's in the string, (Note: the value of this function is not the value of the 

binary number, for this evaluation function ./{10000000) = ./{00000001) = 1 , it does not 

care about the position of 1 's). 

15 
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2.2.3 Initial Population 

The initialization process is very simple: we create a population of chromosomes, 

where each chromosome is a binary vector of eight bits. All eight bits for each 

chromosome are initialized randomly. In this example we set population at four, and we 

keep the population size fixed, during the whole process. Our initial population is: 

S 1= (1 1 0 0 1 0 1 0) 

s2= (0 1 0 0 0 0 1 1) 

s3= (0 1 1 1 0 1 0 1) 

s4= (0 0 1 0 0 0 1 0) 

The evaluation function eva!( ) evaluates them as following: 

eval(s1)= ./{1 1 0 0 1 0 1 0) = 4 

eval(s2)=j{O 10000 11)=3 

eval(s3)= j{O 11 1 01 0 1) = 5 

eval(s4)= j{O 0 1 0 0 0 1 0) = 2 

The chromosome s3 is the best of the four chromosomes since it has the highest 

fitness value among them. 

2.2.4 Selection 

In this step we choose better individuals (usually we set a number Nkeep as the number 

of individuals to be chosen) for reproduction, so hopefully they will produce even better 

offspring, the new offspring will replace the "unfit" individuals. 

16 
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There are many selection methods [12]: 

1. Pairing from top to bottom 

Sort the individuals according to their fitness and start at the top of the list and 

pair the chromosomes two at a time. So the first one mates with second one, 

third one mates with fourth one, and so on. In this example the top to down list 

is s3, s1, s2, s4, if we set Nkeep=2, then s3, s 1 will be chosen for reproduction. 

2. Random Paring 

This approach uses a uniform random number generator to select 

chromosomes. Parent chromosomes can be selected as: 

ma= r Nkeep *rand( ) l 

pa = r Nkeep *rand( ) l 

(2.1) 

(2.2) 

where rand() is the random number generator, and r lis the ceiling operator. 

This method is very easy to apply, but it is not fast due to the uniform random 

selection. 

3. Tournament selection 

Randomly picks a small subset of chromosomes and the chromosome with the 

highest fitness becomes a parent. This method is good for large population size, 

where we can choose tournament size according to our needs; if the tournament 

size is bigger, weak individuals have a smaller chance to be selected. In our 

example ifwe divide the population into two subsets, {s1, s2}, and {s3, s4}, then 

the best chromosomes s 1 and s 3 in these two subsets will be chosen as parents. 

17 
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4. Roulette wheel weighting 

The probabilities assigned to the chromosomes are proportional to their fitness 

(or inversely proportional to the their cost) . A random number determines 

which chromosome is to be selected. 

Roulette wheel weighting and tournament selection are used in most GAs, in this 

example we use roulette wheel weighting. 

We construct roulette wheel as follows (see Table 2.1): 

• Calculate the fitness valuef{s;) for each chromosomes; (i=1, 2, ... pop_size), 

where pop _size is the number chromosomes in the population (third column in 

Table 2.1). 

• Find the total fitness of the population (third column in Table 2.1 ). 

F ="pop _size J(s.) 
L...l=) I 

(2.3) 

• Calculate the probability of a selectionp; for each chromosomes; (i=1, 2, ... 

pop_size) (fourth column in Table 2.1): 

p; = f{s;)IF (2.4) 

• Calculate a cumulative probability q; for each chromosome s; (i=1, 2, ... 

pop_size) (fifth column in Table 2.1): 

(2.5) 

Table 2.1 demonstrates the construction of a roulette wheel table. 

The selection process is based on spinning the roulette wheel pop _size times; each 

time we select a single chromosome for a new population in the following way: 
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• Generate a uniform random (float) number r from the range [0 .. 1] 

• If r<q 1 then select the first chromosome (s 1 ); otherwise select the i-th 

chromosome si (2~ i ~op _size) such that qi-1< r <qi. 

Table 2.1 Constructing roulette wheel table 

Chrom. Initial Population Fitness PFf(sJIF q; 

No. (Randomly Generated) valuef(sJ = L.~=lpj 

1 11001010 4 0.308 0.308 

2 01000011 3 0.231 0.539 

3 01110101 5 0.384 0.923 

4 00100000 1 0.077 1.000 

Sum 13 1.000 

Max 5 0.385 

Average 3.25 0.25 

An example of roulette wheel selection is shown in Table 2.2. The roulette wheel 

weighting of chromosomes is shown in Figure 2.2. 

Table 2.2 Roulette wheel weighting selection 

random number r range selected chromosome 

0.726 q2~ r < q3 SJ 

0.157 r< q1 S1 

0.869 q2~ r< q3 SJ 

0.324 q1~ r < q2 S2 

As a result we get s1,s2, s3 as parents, among them s3 is chosen twice. 
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S1 30.8% 
OY]1<0.308 

Figure 2.2 Roulette wheel weighting 

From this figure we can see that the higher the fitness of a chromosome, the higher 

the chance of being selected for mating. 

2.2.5 Crossover 

Crossover is the creation of one or more offspring from the parents selected in the 

paring process. In single point crossover, a crossover point is selected randomly between 

the first and last bits of the parent's chromosomes. Table 2.3 shows the pairing and 

crossover process for the problem at hand, where " I " is the crossover point. 

Table 2.3 Process of single point crossover 

Parent Crossover Offspring 
Chromosome 

Sf 110011010 11001 101 

SJ 011101101 01110 010 

S2 010000111 010000 01 

SJ 011101101 01110111 
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First parent passes its binary code to the left of that crossover point to first offspring. 

In a like manner, second parent passes its binary code to the left of the same crossover 

point to second offspring. Next, the binary code of the right of the crossover point of first 

parent goes to second offspring and second parent passes its code to first offspring. 

Consequently the offspring contain portions of the binary codes ofboth parents. 

2.2.6 Mutations 

Mutation is performed on a bit-by-bit basis. It randomly alters the bits in the 

chromosome with the small probability Pm· Every bit (in all chromosomes in the whole 

population) has an equal chance to undergo mutation, i.e., change from 0 to 1 or vice 

versa. Increasing the number of mutations increases the algorithm's freedom to explore 

outside the current region of variable space. We proceed in the following way. 

For each chromosome in the current population and for each bit within the 

chromosome: 

• Generate a random number r from the range [0 .. 1]; 

• If r < Pm, mutate the bit. 

Let us set Pm = 0.1, now population size is 4, every chromosome has eight bits, 

0.1 *4*8 ;:::::; 3, so about three bits will be mutated. The mutated bits in Table 2.4 are 

shown in bold, italics. 

The other way of performing mutation is to think of a whole population as a two 

dimensional array pop[Npop• Nbits] (where Npop is population size, Nbus is the length of 

each chromosome) in which each row represents a chromosome, and each column 
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represents a gene. Thus a random number generator creates pairs of random integers 

(mrow, mcol) that correspond to the rows and columns of the mutated bits. 

Table 2.4 Mutating the individuals ( bit by bit mutation) 

Population after mating Population after mutation New fitness value 

11001101 11101101 6 

01110010 01110000 3 

01000001 01010001 3 

0 1 1 1 0 1 1 1 01110111 6 

We can use following computer code to find the rows and columns of the mutated 

bits. 

nmut = round(Npop * Nbus *pm) 

nrow = round(rand(1, Pm)* Npop + 1 

nco! = round(rand(1,pm)* Nbits) 

II number of mutations 

II row of the bits to be mutated 

//column of the bits to be mutated 

nmut = round(Npop * Nbus*Pm)= round(4*8*0.1) = 3 

So, mutations occur three times, the following pairs were randomly selected. 

nrow = [ 2 3 4] nco! = [ 6 2 1] 

Table 2.5 Mutating the individuals (by generating row, column pairs) 

Population after mating Population after mutation New fitness value 

11001101 11001101 5 

01110010 01110110 5 

01000001 00000001 1 

0 1 1 1 0 1 1 1 11110111 7 
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2.2.7 The Next Generation 

After the mutation takes place, the cost associated with the offspring and mutated 

chromosomes are calculated (third column in Table 2.4 and Table 2.5). The process 

described is iterated. For our example, the population at the end of next generations is 

shown in Table 2.6, Table 2.7, Table 2.8, and Table 2.9 (We took the population in Table 

2.5 as the starting population of the second generation). 

Table 2.6 Population at the end of second generation 

Population after mating Population after mutation New fitness value 

11110111 11110111 7 

11001101 11101101 5 

0 1 1 1 0 1 1 1 01100111 5 

11110110 11110111 7 

Table 2.7 Population at the end of third generation 

Population after mating Population after mutation New fitness value 

11110101 11010101 5 

1 1 1 0 1 1 1 1 11101111 7 

01110111 01010111 4 

1 1 1 0 0 1 1 1 11101111 7 
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Table 2.8 Population at the end of fourth generation 

Population after mating Population after mutation New fitness value 

1 1 0 1 1 1 1 1 11011111 7 

11100101 11101101 6 

01001111 01101111 5 

1 1 1 1 0 1 1 1 11110101 6 

2.2.8 Convergence 

The number of generations evolve depends on whether an acceptable solution is 

reached or a set number of iterations is exceeded. After a while all the chromosomes and 

associated costs would become the same if it were not for mutations. At this point the 

algorithm should be stopped. 

Most genetic algorithms keep track of the population statistics in the form of a 

population mean and minimum cost. As shown in Table 2.9, for our example after five 

generations the global maximum fitness value is found to be 8. This maximum fitness 

was found in 

4 * 
fitness evaluation 

per generation 

5 =20 (2.7) 
generations 

fitness function evaluations or checking 20/(256*256) = 0.03% of the population. Figure 

2.3 shows a plot of the algorithm convergence in terms of the best and average fitness of 

each generation. 
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Table 2.9 Population at the end of fifth generation 

Population after mating Population after mutation New fitness value 

11001101 11011111 

1 1 1 1 1 1 1 1 11101101 

01110101 01101111 

11101111 11110101 

5 

8 

5 

7 

----------------, 

--+--A \erage 
Fitness 

----41-- Best lndi\1dual 

Figure 2.3 Graph of average and best fitness value of each generation. 

From figure 2.3 we can see that at the end of the fifth generation, the algorithm is able 

find the best fitness value of 8. The average fitness value is also increased from initial 

value of3.25 to final value of6.25. 

25 



M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software 

CHAPTER3 

GENETIC ALGORITHMS IN DYNAMIC ENVIRONMENTS 

The genetic algorithms we have discussed above, work in stationary environments, 

which means that the fitness function does not change during the evolution process; a 

problem with a fitness (objective) function that changes over time is referred to as having 

a "dynamic fitness landscape". A variety of engineering, economic, and information 

technology problems require systems that adapt to changes over time. Examples of 

problems where environmental changes could cause the fitness landscape to be dynamic 

include: target recognition, where the sensor performance varies based on environmental 

conditions; scheduling problems, where available resources vary over time; financial 

trading models, where market conditions can change abruptly; investment portfolio 

evaluation, where the assessment of investment risk varies over time; and data mining, 

where the contents of the database are continuously updated. These types of problems 

may experience simple dynamics, where the fitness peaks that represent the optimal 

problem solution drift slowly from one value to the next, or complicated dynamics, where 

the fitness peaks change more dramatically, with current peaks being destroyed and new, 

remote peaks arising from valleys. 

3.1 Previous Research 

In recent years there has been significant research in making genetic algorithms work 

efficiently in dynamic environments [6], [10], [11], [7], [3], [18], most of this research 

could be grouped into one of these categories: 
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1. Increasing diversity after change 

The GA is run in a standard fashion, but as soon as a change in the 

environment has been detected, explicit actions are taken to increase diversity 

and thus to facilitate the shift to the new optimum. Cobb [ 6] has proposed a 

simple adaptive mutation mechanism called triggered hypermutation to deal 

with continuously changing environments. Cobb's approach is to monitor the 

quality of the best performers in the population over time. When this measure 

declines, it is a plausible indicator that the environment has changed. 

Hypermutation then essentially restarts the search from scratch. The most 

attractive feature of this approach is that it is adaptive; for example, it 

emulates a standard GA in a stationary environment. 

2. Maintaining diversity throughout the run 

Convergence is avoided all the time and it is hoped that a spread-out 

population can adapt to changes more easily. Grefenstette [10] introduced the 

method of random immigrants where in every generation, the population is 

partly replaced by randomly generated individuals in every generation. As 

opposed to strong mutations, random immigrants only affect part of the 

population. Thus it introduces diversity without disrupting the ongoing search 

process. 

3. Memory based approaches 

The GA is supplied with a memory to be able to recall useful information 

from past generations, which seems especially useful when the optimum 
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repeatedly returns to previous locations. Obviously, strategies with a memory 

may be especially beneficial in periodically changing environments, when 

there are repeated occurrences of a small set of situations. Additionally, 

redundant representations may slow down convergence and favor diversity, 

memory may be provided in two general ways: implicitly by using redundant 

representations, or explicitly by introducing an extra memory and formulating 

strategies to store in and retrieve solutions from it. 

4. Multi-population Approaches 

Multiple subpopulations are used, some to track known local optima, some to 

search for new optima. A general problem with memory is that the stored 

information, like the location of peaks found, becomes obsolete as the 

environment changes. One possibility to reduce this problem is to maintain 

small subpopulations in several promising areas of the search space which can 

track the peaks as they move and change, thus acting as self-adaptive memory. 

Morrison [20] introduced the concept of using sentinels, which have the 

following definition and attributes: 

• Sentinels constitute a subset of the population that is uniformly distributed 

through the search space upon initialization. 

• Sentinels are regular members of the population for selection and 

crossover operations but are stationary and are not, themselves, replaced 

or mutated. 
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By using sentinels to continuously sample the same points in the search space, 

we can guarantee that there are always some individuals that spread evenly 

throughout the search space. Whenever a fitness landscape shift occurs, the 

part of the population that has started to converge near a found peak may 

suddenly find itself at lower fitness. At this point, sentinels in other parts of the 

search space will get an increased opportunity to mate and create offspring that 

are spread throughout the search space, immediately increasing the dispersion 

of the population. 

Since sentinels remain stationary in the search space across multiple 

generations, they can be used to provide a more informative picture of the 

dynamics of the fitness landscape. Specially, they are able to retain memory of 

previous fitness values at their search-space location. If they are provided with 

some limited ability to communicate among themselves, they could derive 

information about the type and extent of any detected fitness landscape 

changes. With this information, it may be possible to improve performance by 

altering the sentinel behavior. 

Most of the adaptive GAs are trying to improve the diversity of the population so that 

the change in the fitness landscape can be detected by some individuals, importing 

random immigrants and placing sentinels are good examples of this. 
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3.2 Transformation-based Genetic Algorithm 

Transformation [24] is a biologically inspired genetic operator that, when 

incorporated into the Genetic Algorithm can promote diversity in the population; m 

nature this operator occurs in colonies ofbacteria. 

Usually, transformation consists in the transfer of small pieces of cellular DNA 

between organisms. These pieces of DNA, or gene segments [24] are extracted from the 

environment and added to recipient cells. 

After that, there are two possibilities, failure or success, known technically as 

restriction [24] and recombination [24]. Restriction is the destruction of the incoming 

foreign DNA, since those bacteria assume that foreign DNA is more likely to come from 

an enemy, such as a virus. In this case transformation fails. Recombination is the physical 

incorporation of some of the incoming DNA into the bacterial chromosome. If this 

happens, genes from the assimilated gene segment replace some of the host cell's genetic 

information and bacteria are permanently transformed. Once integrated in the 

chromosome, the DNA segment is able to survive. 

In some ways transformation-based GA (TGA) has similarity with the random 

immigrants method, when using TGA, we start with an initial population of individuals 

and an initial pool of gene segments [24] (also called gene segment pool or segment pool, 

is a set of gene segments that are used in transformation of selected individuals; these 

gene segments act like foreign DNA pieces in bacterial transformation), both created at 

random. In each generation, we select individuals to be transformed and we apply 

transformation using the gene segments in the segment pool, then if necessary we also 
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apply mutation. After that, the segment pool is updated using the individuals from the old 

population to create part of the new segments, and the rest of the segments are created at 

random; from the above description we can see that in TGA the crossover operator in 

standard GA is replaced by transformation operator. Figure 3.1 shows the flowchart of 

TGA. 

After selecting individuals, we use the transformation mechanism to produce new 

individuals. To transform an individual we randomly select a segment from the segment 

pool, and also randomly choose a point of transformation in the selected individual. The 

segment is incorporated in the genome of the individual (chromosome), replacing the 

genes after the transformation point. It should be noted that the chromosome is seen as a 

circle. Figure 3.2 and Figure 3.3 illustrate this transformation mechanism. 

The transformation process can be divided into the following steps: 

1. Select an individual 

In this study we used the roulette wheel selection method to select an individual. 

Because of the randomness of the roulette wheel selection method, it is possible 

that one individual with a high fitness value can be selected several times. This 

method is one of the most common selection methods in GAs, the mechanism of 

roulette wheel selection method was discussed in chapter 2. 

2. Select a gene segment 

In this step we randomly select a gene segment to replace the genes in the 

selected individual. 
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Define GA representation, evaluation 
function. select GA parameters 

No 

Generate initial population 

Generate initial gene 
segment pool 

Evaluate population 

Generate new segment pool 

Select individuals 

Transform individuals 

Mutate individuals 

Update segment pool with 
new segment pool 

done 

Figure 3.1 Flowchart of transformation-based genetic algorithm 
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3. Choose transformation point 

The transformation point (TransPoint) is also ·chosen randomly, which is an 

integer number between 0 and LENGTH-I (LENGTH is the number of genes in a 

chromosome). The number of genes in a segment (SEGLEN) is less than the 

number of genes in a chromosome (LENGTH). 

I 

Population of 
individuals 

I 
Select an individual 

+ 
-y 

LENGTH 

I 

I 

Gene segment 
pool 

Select a gene segment 

SEGLEN 
Trans? oint 

Copy genes from selected 
segment 

TransPoint Trans Point+ SEGLEN 

'--------------------------------------------------- - ------------------------------

Figure 3.2 Transformation mechanism ( gene segment lies in the middle of the 

chromosome) 
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4. Copy genes from selected segment 

The transformation point is chosen randomly so we should consider two possible 

situations separately: 

I 
<:::: 

• If LENGTH :2: TransPoint + SEGLEN, this means the genes to be replaced 

lie in the middle of the chromosome. In this case the genes in the gene 

segment are copied into the chromosome as a whole (see Figure 3.2). 

• If LENGTH < TransPoint + SEGLEN, this means the genes to be replaced 

lie at the two ends of the chromosome. In this case the (LENGTH -

TransPoint) genes at beginning of the gene segment are copied to the end 

of the chromosome, then, the rest of the (SEGLEN - (LENGTH -

TransPoint)) genes are copied to the beginning of the chromosome (see 

Figure 3.3). 

Selected individual 

LENGTH 

p 
TransPoint 

Copy genes from selected 
segment 

SEGLEN 

LENGTH - TransPoint 

SEGLEN - (LENGTH - Trans Point) 
Trans Point 

Figure 3.3 Transformation mechanism ( gene segment lies in the two ends of the 

chromosome) 
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5. Replace an old individual with the new one 

The last step is to add this new individual into the current population. Because the 

population size is fixed, we must replace an old individual with this newly 

generated individual. In this study, we choose the worst individual (the individual 

that has the lowest fitness value) to be replaced. 

The performance of TGA highly depends on the parameters' setting. The parameters 

include transformation rate (percentage of population to be transformed), segment 

replacement rate (the percentage of gene segments that are updated using the genetic 

information of the individual's of previous population), segment length, and mutation 

rate. 
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CHAPTER4 

DYNAMIC PROBLEM GENERATOR 

Researchers who have studied the GAs in dynamic environments have developed 

different dynamic test functions; this study introduces the dynamic problem generator 

(DPG) that was developed by Morrison and DeJong [19]. The reason why we chose this 

dynamic problem generator is that it provides easy methods to reproduce a wide variety 

of interesting dynamic test problems for use in GA research. 

The process of generating a dynamic problem can be divided into two steps: first 

construct the shape of the fitness landscape and then change the landscape according to 

the user specified settings. 

4.1 Morphology of the Fitness Landscape 

The basic morphology of the landscape is the "field of cones" of different heights and 

different slopes that are randomly scattered across the landscape [19]. The static function 

can be specified for any number of dimensions. In the 2-dimensional case we have: 

where: N- specifies the number of cones in the environment, 

(X;, Yi) - independently specifies the location of each cone, 

Hi - the height of each cone, 

Ri- the slope of each cone {tangent value of the base angle). 

(4.1) 

We choose a highest value for a given point using the max function, so that the cone 

that has a higher value "dominates" the cone that has a lower value at the given point. As 
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we can see in Figure 4.1, there are two cones located at x 1, and x2• For a given point x, 

we have two values.fi(x), and fz(x); in this case.fi(x) > fz(x), 

j(x) = max(fi(x) ,fz(x)) = fi(x) (4.2) 

so we take .fi (x) as a function value for the point x. 

cone 2 

fi(x) 
H2 

' ' h(xj ' ' ' ' 

XI X x2 

Figure 4.1 Illustration of calculating the function value for a given point in the cone 

field landscape 

When the generator is called each time, it produces a randomly generated landscape 

of this type in which random feature values for each cone are assigned based on user-

specified ranges: 

H; E [Hbase,Hbase+Hrange] 

R; E [ Rbase, Rbase + Rrange] 

X; E [Xbase, Xbase + Xrange] 

Y; E [Ybase, Ybase + Yrange] 
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To generate wide range of static problems of varying complexity, one needs only 

specify the parameters: 

• N (the number of peaks), 

• Hbase (the minimum cone height), 

• Hrange (the range of allowed cone heights), 

• Rbase (the minimum value of slope control variable), 

• Rrange (the allowed range for the slope control), 

• Xbase (the minimum value of x coordinates of peaks), 

• Xrange (the allowed range for peaks to move in x direction. Peaks move 

between Xbase and Xbase+ Xrange ), 

• Ybase (the minimum value of y coordinates of peaks), 

• Yrange (the allowed range for peaks to move in y direction. Peaks move 

between Ybase and Ybase+ Yrange), 

Figure 4.2 and 4.3 show two randomly generated landscapes. 

4.2 Dynamics of the Fitness Landscape 

In this dynamic problem generator, the features of the fitness landscape change in 

discrete step sizes. To control the generation of a variety of different step sizes the 

following function was used: 

Yi =A* Y(i-1) * (1 - Y(i-1)) (4.5) 

where: A is a constant specified by the user, Yi is the value at iteration i. 
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y va lue x value 

Figure 4.2 Randomly generated fitness landscape with N = 3, Hbase = 10, Hrange = 

(f) 
(f) 
Ql 

40 

35 

30 

~ 25 

20 

15 
1 

2, Rbase = 15, Rrange = 2 

y va lue 0 0 
x va lue 

Figure 4.3 Randomly generated fitness landscape with N = 50, Hbase = 30, 

Hrange = 10, Rbase = 70, Rrange = 15 
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A value 

Figure 4.4 Graph of dynamics control function Y; =A* Y(i-I) * (1 - Yu-I>) 

From Figure 4.4 we can see that for the values of A between 1.0 and 3.0, Y is 

constant; the values of A between 3.1 and 3.6 generate two different Y values. If the value 

of A is bigger than 3.6, Y is a random number between 0 and 1.0. In this study we used A 

value of3 .3. 

What remains then is to map the range of Y values produced into appropriately scaled 

step sizes for the particular dynamic feature. This is accomplished by scaling the Y values 

to keep the step sizes less than 0.5 of the user-range to add to or subtract from the current 

parameter value. For example, for an individual cone that is increasing dynamically in 

height, first the current height is computed as a percentage of maximum height: 

Hpct = HI(Hbase + Hrange) (4.6) 

The current Y value is then scaled by a user-supplied height scaling factor and added 

to theHpct: 

Hpct = Hpct + Y * Hscale (4.7) 
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If this is less than the 100% of the valid range, then the new height value is computed 

from the percentage value. If it is greater that 100%, then the new value is computed as: 

Hbase + (100%- (Hpct-100%)) * Hrange (4.8) 

and the step change sign is reversed. This causes the movement to "bounce" off of the 

limits of the search space. The sign remains reversed for each iteration until the minimum 

value of the range is reached, at which point it is reversed again. 

To illustrate the dynamics of this landscape let us look at the following figures. 

Figure 4.5 is the initial figure that is generated with N = 3, Hbase = 10, Hrange = 4, 

Rbase = 15, and Rrange = 4. 

Through specifying the A values and scaled step sizes for different features we can: 

1. Change peak heights 

By specifying A value and Hscale (scaled step size for height change) value for 

peak heights, we can change peak heights randomly, we can also choose which 

peak to be changed. 

2. Change slopes (cone shapes) 

Like changing the peak heights, we can also change cone slopes by providing 

appropriate A value and Rscale (scaled step size for slope change) value for cone 

slope dynamics control function. Figure 4.6 is the landscape that we got from the 

initial landscape in Figure 4.5, after randomly changing the peak heights and cone 

slopes at the same time. We can see that the cones became wider and the cone at 

the front became the highest one. 
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Figure 4.5 Initially generated landscape with N = 3, Hbase = 10, Hrange = 4, 

Rbase = 15, Rrange = 4 
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Figure 4.6 After changing the peak heights and slopes of the landscape in Figure 4.5 

with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 

42 



M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software 

3. Move the cones in one or multiple dimensions 

Another dynamics is that the cones can be moved in any direction and we can also 

control the speed (step size) of the movement, by specifying the A value and 

scaled step size value for movement change of the movement control function. 

Figure 4.7 and Figure 4.8 are the landscapes that we got from the initial landscape 

in Figure 4.5, by moving peaks randomly in x axis andy axis respectively. If we 

have a N dimensional landscape then we can also move the peaks in all 

dimensions at the same time. 

(1) 

~ 

"' > 
(/) 
(/) 
(1) 

c -;;::: 

15 

10 

5 

0 

-5 
1 

y va lue 0 0 
x value 

Figure 4.7 After moving the peaks of the landscape in Figure 4.5 along x axis 

randomly, with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 
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Figure 4.8 After moving the peaks of the landscape in Figure 4.5 along y axis 

randomly, with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 

To summarize, we can set the dynamics of the landscape as we want; by applying all 

the dynamics simultaneously, we can get a complex changing landscape. 
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CHAPTERS 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In the previous chapters, we have discussed the mechanism of TGA and dynamic 

problem generator (DPG). In this chapter, first we introduce their implementation: as we 

have said before, in TGA, the transformation operator replaces the crossover operator in 

standard GA; for comparison purposes, we also provided crossover procedure so that the 

user can decide whether to use TGA or standard GA. Secondly, we discuss our 

experimental results that we got by running TGA in different dynamically changing 

environments with different parameters' setting. 

5.1 Implementation 

In the implementation of GAs, one of the first things to consider is the representation 

of the potential solutions to the problem (definition of chromosome structure). The 

dynamic test problem generator [ 19] we used produces dynamic landscape in multiple 

dimensions, and our goal is to search for the best point which has the highest fitness 

value. So the representation of a potential solution should be the coordinate of a point in 

multiple dimensional space. We used binary representation to encode the coordinates, 

because it is convenient to perform transformation by using bitwise operations. The user 

can set the number of dimensions and the number of bits that are used to represent the 

coordinate in one dimension. From this, we can calculate the length of a chromosome: for 

example, if number of dimensions is N number of bits in one dimension is LENGTH, 
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then, length of a chromosome is N*LENGTH. It should be noted that LENGTH should be 

the multiple of 8, or else we have to make extra effort to get the correct coordinate value. 

In this study LENGTH is set to 8. 

The flowchart of the entire program is given in Figure 5.1, from this we can see that it 

is very similar to the flowchart in Figure 3 .1. Now we give a brief description of every 

block. 

1. Define GA representation, TGA, DPG parameters, and global variables 

We have discussed the GA representation above. TGA parameters and global 

variables are defined in header file. TGA parameters are: 

• transformation rate (the percentage of individuals to be transformed in the 

population, it is a global constant named TRANS_ RATE), 

• mutation rate (probability of mutation, it is a global constant named 

MUT_RATE), 

• segment replacement rate ( percentage of the segments to be generated 

from previous population, it 1s a global constant named 

SEG _ REPL _RATE), 

• population size (number of individuals in the population, in this study we 

keep the population size fixed; once the user sets the population size, it 

will not change throughout all the generations. It is a global constant 

named POP SIZE), 

• number of segments (the number of segments is also fixed in this study, it 

is a global constant named NUMBER _SEG). 
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The DGP parameters are: 

• number of dimensions (it is a global constant named NUMBER_ DIM), 

• number of peaks (it is a global constant named NUMBER _PEAKS), 

• minimum height of the peaks ( it is a global constant named Hbase ), 

• range of the peak height change (it is a global constant named Hrange, the 

peak heights will oscillate between Hbase and Hbase + Hrange ), 

• minimum slope value (it is a global constant named Rbase), 

• range of the cone slope change (it is a global constant named Rrange, the 

cone slope values will oscillate between Rbase and Rbase + Rrange ), 

Global variable for TGA are: 

• two dimensional array pop[POPSIZEJ[NUMBER_DIMJ is used to store all 

the individuals in the population, 

• two dimensional array seg[NUMBER_SEG][NUMBER_DIMJ is used to 

store the gene segments, and newseg[NUMBER_SEG][NUMBER_DIMJ is 

used to store newly generated segment pool, it will replace 

seg[NUMBER _SEG][NUMBER _DIMJ at the end of each generation. 

Global variable for DPG are: 

• x[NUMBER_PEAKS][NUMBER_DIMJ is the coordinate of every peak in 

the fitness landscape, 

• H[NUMBER _PEAKS] specifies the height of every peak, 

• R[NUMBER_PEAKS] specifies the slope of every cone. 
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l. Define GA representation, TGA, DPG parameters and global variables 

2. Generate initial population and initial gene segment pool 

3. Construct initial fitness landscape 

4. Evaluate population 

5. Print results 

6. Sort Population 

7. Construct roulette wheel table 

8. Generate new segment pool 

9. Select and transform individuals 

10. Mutate individuals 

II. Update segment pool with new segment 

13. Change fitness landscape 

No 

done 

Figure 5.1 Flowchart of TGA program 
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2. Generate initial population and initial gene segment pool 

This initialization is carried out by a procedure named tga _!nit( ), it is a 

straightforward procedure that randomly generates every individual in the 

population and every gene segment in the segment pool, stores the generated 

values in pop[][] and seg[ ][]respectively. 

3. Construct initial fitness landscape 

dpg_init( ) procedure constructs the initial fitness landscape, it randomly 

generates the feature values in given range for every peak. It stores these values in 

global variables: x[ ][ ], H[ ][ ], and R[ ][ ]. The landscape features include peak 

location, heights, and slope. 

4. Evaluate population 

During the evolution process, we evaluate the population once in every 

generation. This evaluation is accomplished by procedure tga_Evaluate(pop). 

Procedure tga_Evaluate(pop[ ][])calls function dgp_eval(pop[i]) to calculate the 

fitness of every individual, function dpg_eval(pop[i]) returns the fitness value to 

which that individual corresponds. After getting the fitness value from 

dpg_eval(pop[i]), tga_Evaluate(pop[ ][ ]) stores the evaluated fitness values in 

global array eval[ ]. 

5. Print results 

User can modify this procedure to print out what he needs, in this study we 

printed out the best and average fitness value of current population. 
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6. Sort Population 

We need to sort the population according the fitness of the individuals in order to 

replace the poorly fitted individuals with the new ones. The procedure 

tga_SortPop(eval[ ], index[ ]) accomplishes this task, it reads the fitness values 

from array eva/[], and stores the sorted indices in array index[]. 

7. Construct roulette wheel table 

The mechanism of roulette wheel selection and the construction of roulette wheel 

table have been discussed in Chapter 2. The procedure tga_ConsRltWhl(eval[ ], 

qi[ ]) works in the same way. It reads fitness values from eva/[ ], and stores the 

roulette wheel table (accumulative selection probabilities) in qi[ ]. 

8. Generate new segment pool 

In TGA we update the segment pool with the new segments. Some of the new 

segments are generated from individuals in the old population and the rest of them 

generated randomly. The procedure tga_GenSegPool(pop[ ][ ], qi[], newseg[ ][]) 

generates a new segment pool and stores it in array newseg[ ][],this new segment 

pool is used to update the current segment pool at the end of the iteration. 

9. Select and Transform individuals 

We incorporated the implementation of selection and transformation. The 

procedure tga_Transform(pop[ ][ ], seg[ ][ ] , qi[ ], index[ ]) carries out both 

selection and transformation, the flowchart of this procedure is given in Figure 

5 .2. It first calculates the number of individuals to be transformed (block 9.1 in 

Figure 5.2), and then the rest of the process is carried out in iteration loop. 
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No 

9.1 Calculate the number of 
individuals to be transformed 

9.2 Select an individual with the 
roulette wheel selection method 

9.3 Randomly select a segment from 
gene segment pool 

9.4 Randomly choose a 
transformation point 

9.5 Copy genes from selected 
segment 

9.6 Replace the poorly fitted 
individuals with the new ones 

Figure 5.2 Flowchart exhibiting the procedure of selection and 

transformation (block 9 of the flowchart on Figure 5.1) 
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In every loop, it selects an individual from the population with roulette wheel 

selection (block 9.2 in Figure 5.2), and randomly selects a segment from the 

segment pool (block 9.3 in Figure 5.2), then, randomly selects the transformation 

point (block 9.4 in Figure 5.2). As we have discussed before, there are two cases 

to consider depending on the value of the transformation point. It copies the 

genes from selected gene segment according to the transformation point (block 

9.5 in Figure 5.2), then, replaces a poorly fitted individual (the individual that has 

a lowest fitness value) from the old population with the new individual (block 9.6 

in Figure 5.2). This procedure gets individuals from pop[ ][ ] and segments from 

seg[ ][ ]. It uses roulette wheel table qi[] for selection purposes, and uses index[] 

when replacing old individuals. From the above description we can see that this 

procedure updates the population pop[][] every time it transforms an individual. 

10. Mutate individuals 

In binary GAs mutation IS simply flipping the bits. The procedure 

tga _Mutate(pop[ ] [ ]) carries out the mutation. It first calculates number of bits to 

be mutated, then, it randomly chooses which bit of which individual to be 

mutated. After selecting the bit it simply flips that bit. This procedure also updates 

the population every time it mutates an individual. 

11. Update segment pool with new segment pool 

We have already generated a new segment pool that part of its segments was 

generated from the individuals of the old population. To update current segment 

pool we just copy all the segments from new segment pool into current segment 
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pool. The procedure tga _ UpdateSegPool(seg[ ], newseg[ ]) updates seg[ ] with 

newseg[ ]. 

12. Condition: whether to change the fitness landscape 

In this study, the fitness landscape changes once in several generations. Between 

two changes the fitness landscape is kept static. The global variable 

CHANGE_ GAP represents the number of generations between two consequent 

changes. We used CHANGE_ GAP to set the frequency of the landscape change. 

13. Change fitness landscape 

We have discussed the dynamics of the landscape in Chapter 4. The following 

procedures change the landscape: 

• dpg_chg_C() moves the peaks in a given axis, 

• dpg_ chg_ H( ) changes the peak heights, 

• dpg_chg_R() changes the peak slopes. 

We can choose which procedure to call according to the landscape change we 

need. By using all of above procedures we can get a very complicatedly changing 

landscape. 

14. Stop condition satisfies 

In this study, the stop condition is to check whether the maximum number of 

generations is reached or not. 

Above we have introduced the implementation of TGA. In the next section we will 

discuss the results of the experimentations we performed on this TGA. 
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5.2 Experimental Results 

We first carried out a comparative study between TGA and other common GAs, 

including standard genetic algorithm (SGA) [19] which we have introduced in Chapter 2, 

and triggered hypermutation-based genetic algorithm (HGA) [6] that was introduced in 

section 3 .1. Secondly we tested the TGA performance in different parameter settings. 

There are different kinds of measurements that are used to compare the performance 

of the GA. Most common measurements are online performance [2] and offline 

performance [2]. 

Online performance is an average of all individual's fitness value on the entire run. 

Offline performance is the average of the best fitness values on the entire run. 

In this study, we used offline performance as a measurement to compare the 

efficiency of different GAs. 

5.2.1 TGA and SGA Performance in Static Landscape 

Before comparing these genetic algorithms in a dynamic environment, we compared 

them in a static environment where the fitness landscape was kept static throughout all 

the generations. 

The comparison result of offline performance (the average of the best fitness values 

on the entire run) of TGA and SGA is shown in figure 5.3. We repeated the test for 20 

times and took the average of offline performances. For both algorithms the fitness values 

were calculated with function (4.1), pop_size (population size) was set to 20, gen_num 

(number of generations) was set to 100, max_height (highest fitness value can be found, 

or in other words, the height of the highest peak in the fitness landscape) was set to 
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1873.00. SGA parameters were set as: cross_rate (crossover rate) = 0.7, mut_rate 

(mutation rate)= 0.01; TGA parameters were set as: trans_rate (transformation rate)= 

0.6, seg_repl_rate (segment replacement rate)= 0.5, mut_rate = 0.001. We can see from 

this figure that in static landscape TGA performs about 5% better than SGA. 
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~ 
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1 10 19 28 37 46 55 64 73 82 91 100 

Generations 

Figure 5.3 Offline performances of TGA and SGA in static fitness landscape 

We also tested TGA and SGA performance in different combinations of population 

sizes and numbers of generations. This time we compared the highest fitness value. For 

every combination of population size and number of generations, we repeated the test for 

20 times and took the average of these 20 highest fitness values. The fitness values were 

calculated with function ( 4.1 ); the results are shown in Table 5.1. Numbers in the second 

row are the population sizes; numbers in the second column are the numbers of 

generations. Every value in bold is the average of highest fitness values that were found 
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in the corresponding population size and number of generations. The best values among 

them are shown in italic and underlined. 

Table 5.1 The highest fitness values found in different population sizes and different 

number of generations (best values are in italic and underlined) 

TGA SGA 

pop_size -7 20 50 100 20 50 100 

10 1648.24 1765.38 1824.87 1622.58 1795.00 1829.95 
~ 

(JCl 

,::::: 

~ ::::: 
20 1781.68 1824.87 1869.23 1613.81 1824.87 1838.97 = :::: 

~ ::: 
"'! 
~ z ..... .... 
0 = = a 50 1838.9 1836.45 1870.13 1614.26 1827.34 1857.78 
rJ> 

0" "-"' 
~ 
"'! 
0 ...., 

100 1857.78 1857.78 1873.00 1625.56 1835.74 1873.00 

In this test, the max_ height = 1873.00. SGA parameters were set as: cross _rate 

0.7, mut_rate = 0.01; TGA parameters were set as: trans_rate = 0.6, seg_repl_rate 

0.5, mut_rate = 0.001. 

From this table we can see that TGA performs about 3% better (we took the average 

difference of TGA and SGA values in the table) than SGA in these parameter settings. 

For both algorithms the bigger the population size the better the performance is. The 

reason for this is that when the population size increases the diversity of the population 

also increases, so there is greater chance of placing the individuals around an optimal 
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peak. We can also see from Table 5.1 that when the number of generations increases the 

performance also improves. This is because genetic algorithm has enough time to find 

optimal values when the number of generations increases. 

We did not compare TGA with HGA in a static environment, because HGA works in 

exactly same manner as SGA in a static environment. So from SGA performance, we can 

also conclude the same HGA performance. 

5.2.2 TGA, HGA, and SGA Performance in Dynamic Landscape 

In this study, we mainly focused on the TGA performance in a dynamic environment. 

Researchers have intensively studied the GAs working in static environment for over 30 

years, but GAs working in dynamic environments are still new fields. 

As we have stated before, we used dynamic test problem generators to create dynamic 

landscapes for our study. To better test the performance of algorithms, we fixed the peak 

heights so that the best fitness value is the same throughout the entire generations. The 

dynamics we applied was: moving the peak locations, and changing the peak slopes 

randomly. Thus we can still get a changing landscape. 
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Figure 5.4 Highest fitness values ofTGA, HGA, and SGA in a dynamic 

landscape where the landscape changes every 20 generations 

We tested the three algorithms TGA, HGA, and SGA in an environment where 

landscape changes every 20 generations; max_step_scale (the percentage of maximum 

step size of landscape movement) is set to 30%. This time we also compared the highest 

fitness values; the fitness values were calculated with function ( 4.1 ). We repeated the test 

for 20 times and calculated the average of highest fitness values. The test results are 

shown in Figure 5.4. For all algorithmspop_size =50, gen_num = 100, and, max_height 

= 1873.00. SGA parameters were set as: cross_rate = 0.7, mut_rate = 0.01; TGA 

parameters were set as: trans_rate = 0.6, seg_repl_rate = 0.5, mut_rate = 0.001; HGA 

parameters were set as: cross rate = 0.5, mut rate = 0.01, hyper _mut_rate 

(hypermutation rate) = 0.2. 

From this figure we can see that every time landscape changes, the performances of 

algorithms declines. We can also see that TGA is always able to find a higher fitness 
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value quickly, HGA also performs well. But SGA behaves poorly in this dynamic 

landscape. 
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Figure 5.5 Offline performances of TGA, HGA, and SGA in dynamic landscape 

where the landscape changes every 20 generations 

We also compared the offline performance (the average of the best fitness values on 

the entire run) of these three algorithms in the same parameter settings as in Figure 5.4. 

We repeated the test 20 times and took the average of the offline performances. The 

result is shown in Figure 5.5. 

It is very noticeable from these two figures that SGA behaves poorly in this dynamic 

landscape. The reason for this is that before the change of the landscape, individuals tend 

to converge around the optimal peak, but after the landscape change, these individuals 

find themselves in lower fitness. In the following generations SGA still generates new 

individuals around a previous region which is now in a low fitness area. That means SGA 
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lacks population diversity (the extent to which individuals spread evenly throughout the 

search space) which is vital in dynamic environments. In SGA the main genetic operators 

are crossover and mutation. The individuals created through crossover are most probably 

in the same region as their parents. The only mechanism that can increase the population 

diversity is mutation, but in SGA the mutation rate is usually very small. So SGA has a 

smaller chance of finding optimal peak in dynamic environment. 

From Figure 5.4 and Figure 5.5 we can also see that, HGA performs almost the same 

as TGA and far better than SGA. The reason is that HGA keeps track of the population 

fitness in every generation. If it finds some significant decline in population fitness that 

means the landscape has changed. In this case HGA dramatically increases the mutation 

rate and consequently increases the population diversity. 

Like in section 5.2.1, we also tested these algorithms in different combinations of 

population sizes and landscape change durations. This time we compared the highest 

fitness value; the fitness values were calculated with function (4.1). For every 

combination of population size and landscape change durations, we repeated the test for 

20 times and took the average of these 20 highest fitness values. The results are shown in 

Table 5.2. Numbers in the second row are the population sizes; numbers in the second 

column are the landscape change durations. Every value in bold is the average highest 

fitness value that was found in the corresponding population size and landscape change 

duration. The best values among them are shown in italic and underlined. For all 

algorithms gen_num = 100, max_height = 1873.00, max_step_scale = 30%. SGA 

parameters were set as: cross_rate = 0.7, mut_rate = 0.01; TGA parameters were set as: 
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trans_rate = 0.6, seg_repl_rate = 0.5, mut_rate = 0.001; HGA parameters were set as: 

cross_rate = 0.5, mut_rate = 0.01, hyper _mut_rate = 0.2. 

Table 5.2 The highest fitness values found in different population sizes and 

different landscape change durations (LCHD) (best values are in italic and 

underlined) 

TGA HGA SGA 

IPop_size 7 20 50 100 20 50 100 20 50 100 

10 1765.10 1791.25 1850.5J 1742.35 1801.23 1836.73 1672.12 1783.25 1810.34 

h 20 1796.90 1831.94 1855.16 1752.36 1840.63 1857.54 1705.21 1802.74 1830.62 

8 
50 1842.56 1857.78 1873.00 1821.45 1865.25 1873.00 1814.57 1837.25 18.67.42 

From this table we can see that TGA performs about 2% better (we took the average 

difference of TGA and SGA values in the table) than SGA, and, performs almost same as 

HGA in these parameter settings. For all three algorithms, the bigger the population size, 

the better the performance is. The reason for this is same as we have explained before. 

We can also see from Table 5.2 that when the landscape change duration increases the 

performance also improves. This is because when the landscape is kept static for longer 

period of time, genetic algorithm has more time to find higher fitness values. 

5.2.3 TGA performance in different parameter settings 

In this section we will discuss the TGA performance in different parameter settings 

such as, transformation rate, segment replacement rate and mutation rate. 
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1. TGA performance in different transformation rate 

In this test we compared the offline performance (the average of the best fitness 

values on the entire run) of TGA in two different dynamics; the fitness values were 

calculated with function ( 4.1 ). In Figure 5.6 the landscape changes every 20 generations, 

while in Figure 5.7 the landscape changes every 50 generations. In both tests, we 

repeated the tests for 20 times and calculated the average of the offline performances. In 

this test, gen_num = 100, max_height = 1873.00, max_step_scale = 30%. TGA 

parameters were set as: seg_repl_rate = 0.5, mut_rate = 0.001. 
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Figure 5.6 Offline performance of TGA with different transformation rates 

(Trans) in a landscape that changes every 20 generations 
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Figure 5.7 Offline performance of TGA with different transformation rates 

(Trans) in a landscape that changes every 50 generations 

From these two figures, we can see that in both cases the TGA with the 

transformation rate of 0.7 performs better. The reason for this is that when the 

transformation rate is small, only small portion of the population is transformed; thus the 

number of newly generated individuals is not big enough to increase the population 

diversity. When transformation rate is increased to 0.7, the number of new individuals is 

increased, and, consequently population diversity is also increased. But transformation 

rate cannot be too high. If it is too high, then, some individuals with higher fitness value 

will also be transformed. This may cause the destruction of these individuals' 

chromosomes, thus the overall performance of the algorithm will decrease. 

2. TGA performance in different segment replacement rate 

In this experiment we tested the offline performances of TGA in different 

combinations of segment replacement rates and landscape change durations; the fitness 
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values were calculated with function ( 4.1 ). We also repeated the test for 20 times, and, 

took the average of the offline performances. The highest values are shown in italic and 

underlined. 

The results are shown in Table 5.3. In this test, pop_size = 50, gen_num = 100, 

max_height = 1873.00, max_step_scale =30%. TGA parameters were set as: trans_rate 

= 0.7, mut_rate = 0.001. 

Table 5.3 Offline performance of TGA in different segment replacement rates 

and different landscape change durations (LCHD) (best values are in italic and 

underlined) 

LCHD=lO LCHD=20 LCHD=SO LCHD =100 

seg_repl_rate = 0.1 1507.41 1566.26 1631.99 1682.25 

seg_repl_rate = 0.2 1527.42 1583.00 1641.45 1700.45 

seg_repl _rate = 0.3 1549.31 1588.26 1683.25 1708.45 

seg_repl_rate = 0.5 1513.71 1570.31 1622.51 1710.73 

seg_repl_rate = 0. 7 1524.96 1564.39 1626.33 1645.3 

From this table we can see that, segment replacement rate of 0.3 is good for all 

dynamics. We think the reason for this is that when segment replacement rate is 0.3, only 

30% of the segments generated from old population and the rest of them generated 

randomly. This large number of randomly generated gene segments increases the 

population diversity. Consequently the algorithm behaves well in dynamic environments. 

If the segment replacement rate is too small, then almost all the gene segments are 
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generated randomly. In this case it is possible that some segments with better genes may 

be replaced by randomly generated segments, thus decreasing the performance ofTGA. 

3. TGA performance in different mutation rate 

Mutation rate is one of most important genetic operators in standard genetic 

algorithms. In this study we found that even mutation can be replaced by transformation 

in TGA. 

In this experiment, we also compared the offline performances of TGA in different 

combinations of mutation rates and landscape change durations; the fitness values were 

calculated with function ( 4.1 ). We repeated the test for 20 times, and, took the average of 

the offline performances. The highest values are shown in italic and underlined. 

The results are shown in Table 5.4. In this test, pop_size = 50, gen_num = 100, 

max_height = 1873.00, max_step_scale =30%. TGA parameters were set as: trans_rate 

= 0.7, set_repl_rate = 0.3. 

Table 5.4 Offline performance of TGA in different mutation rates and different 

landscape change duration (LCHD) (best values are in italic and underlined) 

LCHD=lO LCHD=20 LCHD=SO LCHD =100 

mut rate= 0.0 1522.42 1576.56 1639.64 1689.47 

mut rate= 0.001 1530.45 1578.65 1637.46 1680.53 

mut rate= 0.005 1531.96 1580.83 1621.53 1650.25 

mut rate= 0.01 1526.42 1576.56 1624.94 1641.48 

mut rate= 0.05 1491.22 1528.63 1570.64 1603.43 

mut rate = 0.1 1485.25 1435.52 1490.28 1510.31 

65 



M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software 

From this table we can see that TGA behaves better if there is no mutation or 

mutation rate is very small. When the mutation rate increases TGA performance 

decreases. We think that unnecessarily changing the genes may result the destruction of 

good chromosomes, thus decreasing the algorithm performance. 
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6.1 Conclusion 

McMaster - Computing and Software 

CHAPTER6 

CONCLUSION 

In this thesis we have presented a genetic algorithm that uses new biologically 

inspired genetic operator called transformation. We used this operator as an alternative to 

crossover. In transformation-based genetic algorithm (TGA), an individual is generated 

from a single parent and a gene segment. This differs from other GAs that use crossover. 

We carried out a series of experiments on the performance of TGA. We used offline 

performance as a measurement of algorithm performance. 

We learned from these experiments that: 

• TGA with a higher transformation rate of 0.7 performs better. The reason for 

this is that higher transformation rate of 0.7 causes more new individuals to be 

generated; these new individuals replace the poor individuals in the old 

population, so it increases the overall performance of the algorithm. But 

transformation rate cannot be too high. If it is too high, then, some individuals 

with higher fitness value will also be transformed. This may cause the 

destruction of these individuals' chromosomes, thus the overall performance 

of the algorithm will decrease. 

• Smaller segment replacement rate is preferred in all dynamics. We think the 

reason for this is that if segment replacement rate is small, then only small 
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part of the segments is generated from old population and rest of them 

generated randomly. This large number of randomly generated gene segments 

increases the population diversity. Consequently the algorithm behaves well in 

dynamic environments. 

• In this study we found that even mutation can be replaced by transformation 

in TGA. The reason is that mutation is used to increase the diversity of the 

population. In TGA, randomly generated gene segments can increase the 

diversity of the population, so by setting proper segment replacement rate, 

mutation can be replaced by transformation. 

We mainly focused on methodology and implementation of general-purpose GAs 

rather than carrying out a huge set of experimentation. 

6.2 Contributions 

In the completion of this work: 

• We designed and implemented the new version of TGA. In the design of TGA 

(Simoes, and Costa [24]), we made some modifications to the algorithm when 

replacing the old individuals with new individuals. 

• In order to test the performance of TGA, we used dynamic problem generator 

(Morrison, [21]) that generates a wide variety of dynamic environments, and 

we incorporated the implementation of TGA with the dynamic problem 

generator. 

• We compared the TGA performance with other GAs such as standard GA 

(SGA) [19], and triggered hypermutation-based GA (HGA) [6]. We also 

studied the TGA performance in different parameter settings. From these 
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experiments we concluded some characteristics of TGA performance in 

dynamic environments. 

6.3 Future work 

We have compared TGA performance with other GAs, and carried out some 

experiments on TGA. There is still much to study on TGA. 

Future work may consist of: 

• Study the TGA with variable length gene segments. Because in some 

problems variable length chromosomes are preferred, in this case TGA with 

variable length gene segments may perform better. 

• Number of segments in the segment pool is also an important factor in TGA. 

The relation between population size and segments pool size need to be 

studied. In our implementation of TGA, the individuals are selected by using 

roulette wheel selection method, while segments are selected randomly. The 

selection method of segments may need more study also. 

• In our experiments the fitness landscape changes abruptly once in several 

generations. There are also some cases that the fitness landscape changes 

slowly in every generation. TGA performance and parameter settings need to 

be studied in these environments. 
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