
GENETIC ALGORITHMS WORKING IN DYNAMIC

ENVIRONMENTS

GENETIC ALGORITHMS WORKING IN DYNAMIC

ENVIRONMENTS

By

BIEKEZHATI DILIMULATI, B. Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University

©Copyright by Biekezhati Dilimulati, April 2006

MASTER OF SCIENCE (2006) McMaster University

(Computer Science)

TITLE:

AUTHOR:

SUPERVISOR:

Hamilton, Ontario

Genetic Algorithms Working in Dynamic
Environments

Biekezhati Dilimulati, B.Sc.
(Xinjiang University, China)

Dr. Ivan Bruha

NUMBEROFPAGES: x, 72

11

ABSTRACT

Genetic Algorithms (GAs) are search methods based on principles of natural selection

and genetics. GAs attempt to find good solutions to the problem at hand by manipulating

a population of candidate solutions.

Each member of the population is typically represented by a single chromosome, the

chromosome encodes a solution to the problem, the initial population is generated

randomly, GAs are often used as optimizers, and the fitness of an individual is typically

the value of the objective function at the point represented by the chromosome. The

individuals with better performance are selected as parents of the next generation. GAs

create new individuals using simple randomized operators that resemble crossover and

mutation in natural organisms. The new solutions are evaluated with the fitness function,

and the cycle of selection, recombination, and mutation is repeated until a user defined

termination criterion is satisfied.

In the real world, we always encounter the problems that need to be solved in a

changing environment. This means that our algorithm needs to be dynamic or even

adaptive to the changing environment.

In this thesis, we will mainly deal with the adaptive GAs that have a new genetic

operator called transformation instead of traditional crossover.

In our study, we use a dynamic problem generator to create a dynamically changing

landscape and study the behavior of transformation based GA in different parameter

settings, such as: transformation rate, mutation rate, segment replacement rate.

111

ACKNOWLEDGMENTS

I would like to give my sincere thanks to my supervisor, Dr. Ivan Bruha, for his

supervision and support in the accomplishment of this work. Thanks also go to the

Department of Computing and Software for their support.

IV

TABLE OF CONTENTS

Page

ABSTRACT ill

ACKNOWLEDGEMENTS iv

LIST OF TABLES vili

LIST OF FIGURES ix

CHAPTER 1 INTRODUCTION 1

1.1 Exhaustive Search... 1

1.2 Analytical Optimization... 3

1.3 Line Minimization Methods.. 5

1.4 Natural Optimization Methods... 6

1.4.1 Simulated Annealing... 6

1.4.2 Ant Colony Optimization . 8

1.5 Genetic Algorithm . 9

CHAPTER 2 GENETIC ALGORITHMS 11

2.1 Introduction to Genetic Algorithm... 11

2.2 The Advantage of Genetic Algorithms 12

2.3 A Simple Genetic Algorithm.. 13

2.2.1 Representation.. 14

2.2.2 Evaluation function... 15

2.2.3 Initial Population... 16

v

2.2.4 Selection.. 16

2.2.5 Crossover . 20

2.2.6 Mutations.. 21

2.2.7 The Next Generation... 23

2.2.8 Convergence . 24

CHAPTER 3 GENETIC ALGORITHMS IN DYNAMIC ENVIRONMENTS 26

3.1 Previous Research . 26

3.2 Transformation-based Genetic Algorithm................................. 30

CHAPTER 4 DYNAMIC PROBLEM GENERATOR 36

4.1 Morphology ofthe Fitness Landscape 36

4.2 Dynamics ofthe Fitness Landscape... 38

CHAPTER 5 IMPELEMENTATION AND EXPERIMENTAL RESULTS 45

5.1 Implementation.. 45

5.2 Experimental Results 54

5.2.1 TGA and SGA Performance in Static Landscape.................. 54

5.2.2 TGA, HGA, and SGA Performance in Dynamic Landscape 57

5.2.3 TGA Performance in Different Parameter Settings................ 61

CHAPTER 6 CONCLUSION 67

6.1 Conclusion . 67

6.2 Contributions .. 68

VI

6.3 Future Work ... 69

REFERENCES 70

Vll

LIST OF TABLES

Page

2.1 Constructing roulette wheel 19

2.2 Roulette wheel weighting selection 19

2.3 Process of single point crossover 20

2.4 Mutating the individuals (bit by bit mutation) 22

2.5 Mutating the individuals (by generating row, column pairs) 22

2.6 Population at the end of second generation 23

2. 7 Population at the end of third generation 23

2.8 Population at the end of fourth generation 24

2.9 Population at the end of fifth generation 25

5.1 The highest fitness values found in different population sizes and different number
of generations 56

5.2 The highest fitness values found in different population sizes and different
landscape change durations (LCHD) 61

5.3 Offline performance ofTGA in different segment replacement rates and different
landscape change durations (LCHD) 64

5.4 Offline performance of TGA in different mutation rates and different landscape
change duration (LCHD) 65

V111

LIST OF FIGURES

Page

1.1 Three-dimensional plot of f(x,y)=2 x sin(5x) + y sin(3y) 2

1.2 Contour plot of f(x,y)=2 x sin(5x) + y sin(3y) 3

1.3 Possible path that the coordinate search might take 5

1.4 Flowchart for a typical line search algorithm 6

2.1 Flowchart of a simple GA 15

2.2 Roulette wheel weighting 20

2.3 Graph of average and best fitness value of each generation 25

3.1 Flowchart of transformation-based genetic algorithm 32

3.2 Transformation mechanism (segment lies in the middle) 33

3.3 Transformation mechanism (segment lies in the two ends) 34

4.1 Illustration of calculating the function value for a given point in the cone field
landscape 3 7

4.2 Randomly generated fitness landscape with N = 3, Hbase = 10, Hrange = 2, Rbase
= 15, Rrange = 2 39

4.3 Randomly generated fitness landscape with N =50, Hbase = 30, Hrange = 10,
Rbase = 70, Rrange = 15 39

4.4 Graph of dynamics control function Yi =A* Y(i-1) * (1 - Y(i-1)) 40

4.5 Initially generated landscape with N = 3, Hbase = 10, Hrange = 4, Rbase = 15,
Rrange = 4 42

4.6 After changing the peak heights and slopes of the landscape in Figure 4.5 with
N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 42

4.7 After moving the peaks of the landscape in Figure 4.5 along x axis randomly, with
N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 43

IX

4.8 After moving the peaks of the landscape in Figure 4.5 along y axis randomly, with
N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4 44

5.1 Flowchart ofTGA program 48

5.2 Flowchart exhibiting the procedure of selection and transformation (block 9 of the
flowchart on Figure 5.1) 51

5.3 Offline performance ofTGA and SGA in static fitness landscape 55

5.4 Highest fitness values ofTGA, HGA, and SGA in a dynamic landscape where the
landscape changes every 20 generations 58

5.5 Offline performances ofTGA, HGA, and SGA in dynamic landscape where the
landscape changes every 20 generations 59

5.6 Offline performance ofTGA with different transformation rates (Trans) in a
landscape that changes every 20 generations 62

5.7 Offline performance ofTGA with different transformation rates (Trans) in a
landscape that changes every 50 generations 63

X

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

CHAPTER!

INTRODUCTION

Genetic Algorithms (GAs) are mainly used to solve optimization problems, where

optimization is defined as the process of adjusting the inputs to or characteristics of a

device, mathematical process, or experiment to find the minimum or maximum output

(result) [19]. The input consists ofvariables; the process or function is known as the cost

function, objective function, or fitness function; and the output is the cost or fitness. If

output is the cost then optimization becomes minimization, if output is the fitness then

optimization becomes maximization.

Searching the cost. surface (all possible function values is also called fitness

landscape) for the minimum cost is the most common problem in optimization routines.

There are different kinds of optimization methods. Before discussing the methodology of

GA, we give a brief introduction to these optimization methods.

1.1. Exhaustive Search

The brute force approach to optimization looks at a sufficiently fine sampling of the

cost function to find the global minimum [12]. This exhaustive search requires an

extremely large number of cost function evaluations to find the optimum. For example,

consider finding the minimum of the function:

j{x,y)=2 x sin(5x) + y sin(3y)

where xE[0,10] andyE[0,10]

(1.1)

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

With sampling fine enough, exhaustive searches do not get stuck in local minima and

work for either continuous or discontinuous variables. However, they take an extremely

long time to find the optimal global. A three dimensional plot and contour plot of (1.1)

are given in Figure 1.1 and Figure 1.2.

f(x,y) = 2xsin(5x) + ysin(3y)

30 .. ··:
:

20 ... ··i····
··· .. :.

10
. . : . . .

..
:·· ..

0
... :···

.,
. · .

-10 ·:

-20 .. ·:····
:

-30
.. :.·: ..

0 . ::·.:. ...
0

global minimum

X

Figure 1.1 Three-dimensional plot of ftxV')=2 x sin(Sx) + y sin(3y)

We want to optimize the function (1.1) with some required precision: suppose three

decimal places for the variables' values are desirable. To achieve such precision each

domain X= {xl x E[0,10] } andY= {yl y E[O,lO] } should be cut into (10- 0)·103 equal

2

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

size ranges, so it needs 104·104 =108 functional evaluations. The minimum is -29.4359

on point (9.743, 9.959); it took 47.54 seconds on a Pentium4 2.80, 512MB computer to

find out this minimum; apparently this is too much work for such a simple problem.

0 n--------.--------.--------.--------.-------~

~ 2 I

>-

6

8

4 2 0
X

Figure 1.2 Contour plot of j{xVJ)=2 x sin(Sx) + y sin(3y)

1.2. Analytical Optimization

This is the calculus-based optimization method; the search process can be simplified

to a single variable for a moment, and then an extremum is found by setting the first

derivative of a cost function to zero and solving for the variable value [12]. If the second

derivative is greater than zero, the extremum is a minimum, and conversely, if the second

3

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

derivative is less than zero, the extremum is a maximum. One way to find the extrema of

a function of two or more variables is to take the gradient of the function and set it equal

to zero, Y'f{x,y)=O. For example, taking the gradient of equation (1.1) resulted in

aj = 2sin(5x) + 10xcos(5x) = 0,
ax

0:Sx:S10 (1.2)

and

aj = sin(3y) + 3ycos(3y) = 0,
8y

0:Sy:S10 (1.3)

Next these equations are solved for their, x andy which is a family of lines. Extrema

occur at the intersection of these lines. Finally, the Laplacian of the function is

calculated.

and

a2j
--

2
= 20cos5x-50xsin5x,

ax

a2j
--

2
= 6cos3y -9ysin3y,

8y

O:S X :S10 (1.4)

0:Sy:S10 (1.5)

The roots are minima when V'2j{x,y) > 0. Unfortunately, this process does not give a

clue as to which of the minima is a global minimum. This approach is mathematically

elegant compared to the exhaustive or random searches. But it requires continuous

functions with analytical derivatives.

4

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

1.3. Line Minimization Methods

This algorithm begins at some random point on the cost surface, chooses a direction

to move, then moves in that direction until the cost function begins to increase. Next the

procedure is repeated in another direction [12].

A very simple approach to line minimization is the coordinate search method. It starts

at an arbitrary point on the cost surface, and then does a line minimization along the axis

of one of the variables. Next, it selects another variable and performs another line

minimization along that axis. This process continues until a line minimization is carried

out along each of the variables. Figure 1.3 shows the possible path that this algorithm

might take on quadratic cost surface. In general this method is slow. Figure 1.4 shows

the flowchart of typical line search algorithms.

y

X

Figure 1.3 Possible path that the coordinate search might take on a quadratic

cost surface

5

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

Initialize starting point and
other parameters

compute a search direction

compute a step length

update parameters

check for convergence

Figure 1.4 Flowchart for a typical line search algorithm

1.4 Natural Optimization Methods

Natural optimization methods generate new points in the search space by applying

operators to current points and statistically moving toward more optimal places in the

search space [12]. They rely on an intelligent search of a large but finite solution space

using statistical methods. Here we briefly introduce some natural optimization methods:

1.4.1 Simulated Annealing

This method simulates the annealing process in which a substance is heated above its

melting temperature and then gradually cooled to produce the crystalline lattice, which

minimizes its energy probability distribution. This crystalline lattice, composed of

millions of atoms perfectly aligned, is a beautiful example of nature finding an optimal

structure. However, quickly cooling or quenching the liquid retards the crystal formation,

6

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

and the substance becomes an amorphous mass with a higher than optimum energy state.

The key to crystal formation is carefully controlling the rate of change of temperature.

The algorithmic analogue to this process begins with a random guess of the cost

function variable values. Heating means randomly modifying the variable values. Higher

heat implies greater random fluctuations. The cost function returns the output associated

with a set of variables. If the output decreases, then the new variable set replaces the old

variable set. If the output increases, then the output is accepted provided that

f(Pg[rj_)~ f(Pnew)

r-:::;. e r (1.6)

where r is a uniform random number (a random number in the interval (0,1)), Tis a

variable analogous to temperature,fis the cost function, Potd is old variable set, and Pnew is

new variable set. Otherwise the new variable set is rejected. Thus, even if a variable set

leads to a worse cost, it can be accepted with a certain probability. The new variable set is

found by taking a random step from the old variable set

Pnew = d* Potd (1.7)

The variable d is either uniformly or normally distributed about Pold· This control

variable sets the step size so that, at the beginning of the process, the algorithm is forced

to make large changes in variable values. At times the changes move the algorithm away

from the optimum, which forces the algorithm to explore new regions of variable space.

After a certain number of iterations, the new variable sets no longer lead to lower costs.

At this point, the values of T and d decrease by a certain percent and the algorithm

repeats. The algorithm stops when T :::::: 0. The decrease in T is known as the cooling

7

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

schedule. The temperature is usually lowered slowly so that the algorithm has a chance to

find the correct valley before trying to get to the lowest point in the valley.

1.4.2 Ant Colony Optimization (ACO)

In the real world, ants (initially) wander randomly, and upon finding food they return

to their colony while laying down pheromone (chemical) trails. If other ants find such a

path, they are likely not to keep traveling at random, but to instead follow the trail,

returning and reinforcing it if they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its

attractive strength. The more time it takes for an ant to travel down the path and back

again, the more time the pheromones have to evaporate. A short path, by comparison,

gets marched over faster, and thus the pheromone density remains high as it is laid on the

path as fast as it can evaporate.

Thus, when one ant finds a good (i.e., short) path from the colony to a food source,

other ants are more likely to follow that path, and positive feedback eventually leaves all

the ants following a single path. The idea of the ant colony algorithm is to mimic this

behaviour with "simulated ants" walking around the graph representing the problem to

solve.

Ant colony optimization algorithms have been used to produce near-optimal solutions

to the traveling salesman problem.

8

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

1.5. Genetic Algorithm

Genetic Algorithms (GAs) are search methods based on principles of natural selection

and genetics. GAs attempt to find good solutions to the problem at hand by manipulating

a population of candidate solutions.

Each member of the population is typically represented by a single chromosome-like

data structure, which can be as simple as a string of zeroes and ones, or as complex as a

computer program. The chromosome encodes a solution to the problem, in GAs

chromosomes are also called strings, individuals, or objects. The initial population of

individuals or set of solutions is generated randomly, unless some good solutions are

known, or there is a heuristic to generate good solutions to the problem. In the latter case,

a portion of the population is still generated randomly to ensure that there is some

diversity in the population.

The individuals are evaluated to determine how well they solve the problem with an

evaluation function (objective function or fitness function), which is unique to each

problem, and must be supplied by the user of the algorithm. In particular, GAs are often

used as optimizers, and the fitness of an individual is typically the value of the objective

function at the point represented by the chromosome. The individuals with better

performance (the individuals that have higher fitness value or lower cost value) are

selected as parents of the next generation. GAs create new individuals by using simple

randomized operators that resemble crossover and mutation in natural organisms. The

new solutions are evaluated with the evaluation function, and the cycle of selection,

9

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

recombination, and mutation is repeated until a user defined termination criterion is

satisfied.

GAs are controlled by several inputs, such as the size of the population, and the rates

that control how often crossover and mutation are used. GAs are not guaranteed to

converge to the optimal solution, but a careful manipulation of the input parameters (or

operators) and choosing a representation that is adequate to the problem increase the

chances of success. In simple GAs, the operator set is usually fixed, but in a real world,

we always encounter problems that need to be solved in a changing environment. That

means our algorithm has to be dynamic or even adaptive to the changing environment.

There are different ways of making Genetic algorithms dynamic or adaptive to its

environment; one alternative is to let genetic operators (such as crossover, mutation) be

free; an other alternative is to use variable-length individuals, with more complicated

strings than binary strings and variable population size.

In this thesis we will mainly deal with the adaptive GAs that have new genetic

operator called transformation [24] instead of the traditional crossover. In our study we

use a dynamic problem generator [21] to create a dynamically changing landscape and

study the behavior of a transformation-based GA in different parameter settings, such as:

transformation rate, mutation rate.

10

M. Sc. Thesis - B. Dilimulati McMaster - Computing and Software

CHAPTER2

GENETIC ALGORITHMS

2.1 Introduction to Genetic Algorithm

The concept of Genetic Algorithms (GAs) has been developed by John Holland [14],

and his colleagues. GA is an optimization and search technique based on the principles of

genetics and natural selection. A GA encodes a potential solution to a specific problem

on a simple chromosome-like data structure; this data structure is known as a

chromosome or individual. At first, a GA randomly creates a population of individuals

(potential solutions) and GA operators are applied to these individuals to find the best

solution or evolve to a state that maximizes the "fitness" of the individuals (i.e.,

minimizes the cost function).

GAs use a vocabulary borrowed from natural genetics. So we need a bit of Biological

background on heredity at the cellular level. A gene is the basic unit of heredity. An

organism's genes are carried on one of a pair of chromosomes in the form of

deoxyribonucleic acid (DNA). Each cell of the organism contains the same number of

chromosomes. Genes often occur with two functional forms, each representing a different

characteristic. Each of these forms is known as allele. For instance, a human may carry

one allele for brown eyes and another for blue eyes. The combination of alleles on the

chromosomes determines the traits of the individual. The trait actually observed is the

phenotype, but the actual combination of alleles is the genotype.

11

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

We thus talk about individuals (chromosomes, genotypes, strings) in a population,

and genes (features, characters).

Each chromosome represents a potential solution to problem (the meanmg of a

particular chromosome, i.e., its phenotype, is defined externally by the user); an evolution

process run on a population of chromosomes corresponds to a search through a space of

potential solutions.

The population undergoes a simulated evolution: at each generation the relatively

"good" solutions reproduce, while the relatively "bad" solutions die. To distinguish

between different solutions we use an objective (evaluation) function which plays the role

of an environment [19]. Usually, the evaluation function is called a fitness function if the

individuals with a maximum evaluation is desired, or called a cost function if the

individuals with a minimum evaluation is desired. We can easily change a maximizing

problem into a minimizing problem by simply changing the sign of the evaluation

function.

2.2 The Advantages of Genetic Algorithms

Genetic Algorithms are a class of general purpose (domain independent) search

methods which strike a remarkable balance between exploration and exploitation of the

search space. GAs can be used in image processing, numerical function optimization,

combinatorial optimization, and machine learning [4], [5]. GAs outperform other

searching optimization methods when solving very complex problems such as

combinatorial optimization problems and highly constrained engineering problems. GAs

12

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

belong to the class of probabilistic algorithms, yet they are very different from random

algorithms as they combine elements of directed and stochastic search. Because of this,

GAs are also more robust than existing directed search methods.

Some ofthe advantages ofGA are [12]:

• Optimizes variables with extremely complex cost surfaces(they can jump out of a

local minimum)

• Optimizes with continuous or discrete variables

• Does not require derivative information

• Simultaneously searches from a wide sampling of the cost surface

• Deals with a large number of variables

• Provides a list of optimum variables, not just a single solution

• Works with numerically generated data, experimental data, or analytical

functions.

GAs have been quite successfully applied to optimization problems like wire

routing, scheduling, adaptive control, game playing, cognitive modeling,

transportation problems, traveling salesman problems, optimal control problems, etc.

2.3 A Simple Genetic Algorithm

A genetic algorithm for a particular problem must have the following five

components:

• A genetic representation for potential solutions to the problem,

13

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

• A way to create an initial population of potential solutions,

• An evaluation (fitness) function that rates the solutions in terms of their

"fitness"

• Genetic operators that alter the composition of children,

• Values for various parameters that the genetic algorithm uses (population size,

crossover rate, mutation rate, etc.)

The process of a simple genetic algorithm is shown as a flowchart in Figure 2.1. We

explain every process in this flowchart with an implementation of a simple genetic

algorithm.

Since a genetic algorithm originated in binary coding and is easy to implement, let us

take a binary genetic algorithm for example. Suppose we have a string of length of eight

that consists of 1 'sand O's, and we want it to have most 1 'sin it.

2.2.1 Representation

To solve this problem as a GA, we first consider the representation of the potential

solution; from the definition of our problem it is clear that an eight bit binary string is a

perfect representation of the solutions.

14

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

2.2.2 Evaluation function

Define GA representation, evaluation
function, select GA parameters

Generate Initial Population

Evaluate the population

Figure 2.1 Flowchart of a simple GA

Since we want the string to have most 1 's, we can define the evaluation function as

the number of 1 's in the string, (Note: the value of this function is not the value of the

binary number, for this evaluation function ./{10000000) = ./{00000001) = 1 , it does not

care about the position of 1 's).

15

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

2.2.3 Initial Population

The initialization process is very simple: we create a population of chromosomes,

where each chromosome is a binary vector of eight bits. All eight bits for each

chromosome are initialized randomly. In this example we set population at four, and we

keep the population size fixed, during the whole process. Our initial population is:

S 1= (1 1 0 0 1 0 1 0)

s2= (0 1 0 0 0 0 1 1)

s3= (0 1 1 1 0 1 0 1)

s4= (0 0 1 0 0 0 1 0)

The evaluation function eva!() evaluates them as following:

eval(s1)= ./{1 1 0 0 1 0 1 0) = 4

eval(s2)=j{O 10000 11)=3

eval(s3)= j{O 11 1 01 0 1) = 5

eval(s4)= j{O 0 1 0 0 0 1 0) = 2

The chromosome s3 is the best of the four chromosomes since it has the highest

fitness value among them.

2.2.4 Selection

In this step we choose better individuals (usually we set a number Nkeep as the number

of individuals to be chosen) for reproduction, so hopefully they will produce even better

offspring, the new offspring will replace the "unfit" individuals.

16

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

There are many selection methods [12]:

1. Pairing from top to bottom

Sort the individuals according to their fitness and start at the top of the list and

pair the chromosomes two at a time. So the first one mates with second one,

third one mates with fourth one, and so on. In this example the top to down list

is s3, s1, s2, s4, if we set Nkeep=2, then s3, s 1 will be chosen for reproduction.

2. Random Paring

This approach uses a uniform random number generator to select

chromosomes. Parent chromosomes can be selected as:

ma= r Nkeep *rand() l

pa = r Nkeep *rand() l

(2.1)

(2.2)

where rand() is the random number generator, and r lis the ceiling operator.

This method is very easy to apply, but it is not fast due to the uniform random

selection.

3. Tournament selection

Randomly picks a small subset of chromosomes and the chromosome with the

highest fitness becomes a parent. This method is good for large population size,

where we can choose tournament size according to our needs; if the tournament

size is bigger, weak individuals have a smaller chance to be selected. In our

example ifwe divide the population into two subsets, {s1, s2}, and {s3, s4}, then

the best chromosomes s 1 and s 3 in these two subsets will be chosen as parents.

17

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

4. Roulette wheel weighting

The probabilities assigned to the chromosomes are proportional to their fitness

(or inversely proportional to the their cost) . A random number determines

which chromosome is to be selected.

Roulette wheel weighting and tournament selection are used in most GAs, in this

example we use roulette wheel weighting.

We construct roulette wheel as follows (see Table 2.1):

• Calculate the fitness valuef{s;) for each chromosomes; (i=1, 2, ... pop_size),

where pop _size is the number chromosomes in the population (third column in

Table 2.1).

• Find the total fitness of the population (third column in Table 2.1).

F ="pop _size J(s.)
L...l=) I

(2.3)

• Calculate the probability of a selectionp; for each chromosomes; (i=1, 2, ...

pop_size) (fourth column in Table 2.1):

p; = f{s;)IF (2.4)

• Calculate a cumulative probability q; for each chromosome s; (i=1, 2, ...

pop_size) (fifth column in Table 2.1):

(2.5)

Table 2.1 demonstrates the construction of a roulette wheel table.

The selection process is based on spinning the roulette wheel pop _size times; each

time we select a single chromosome for a new population in the following way:

18

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

• Generate a uniform random (float) number r from the range [0 .. 1]

• If r<q 1 then select the first chromosome (s 1); otherwise select the i-th

chromosome si (2~ i ~op _size) such that qi-1< r <qi.

Table 2.1 Constructing roulette wheel table

Chrom. Initial Population Fitness PFf(sJIF q;

No. (Randomly Generated) valuef(sJ = L.~=lpj

1 11001010 4 0.308 0.308

2 01000011 3 0.231 0.539

3 01110101 5 0.384 0.923

4 00100000 1 0.077 1.000

Sum 13 1.000

Max 5 0.385

Average 3.25 0.25

An example of roulette wheel selection is shown in Table 2.2. The roulette wheel

weighting of chromosomes is shown in Figure 2.2.

Table 2.2 Roulette wheel weighting selection

random number r range selected chromosome

0.726 q2~ r < q3 SJ

0.157 r< q1 S1

0.869 q2~ r< q3 SJ

0.324 q1~ r < q2 S2

As a result we get s1,s2, s3 as parents, among them s3 is chosen twice.

19

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

S1 30.8%
OY]1<0.308

Figure 2.2 Roulette wheel weighting

From this figure we can see that the higher the fitness of a chromosome, the higher

the chance of being selected for mating.

2.2.5 Crossover

Crossover is the creation of one or more offspring from the parents selected in the

paring process. In single point crossover, a crossover point is selected randomly between

the first and last bits of the parent's chromosomes. Table 2.3 shows the pairing and

crossover process for the problem at hand, where " I " is the crossover point.

Table 2.3 Process of single point crossover

Parent Crossover Offspring
Chromosome

Sf 110011010 11001 101

SJ 011101101 01110 010

S2 010000111 010000 01

SJ 011101101 01110111

20

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

First parent passes its binary code to the left of that crossover point to first offspring.

In a like manner, second parent passes its binary code to the left of the same crossover

point to second offspring. Next, the binary code of the right of the crossover point of first

parent goes to second offspring and second parent passes its code to first offspring.

Consequently the offspring contain portions of the binary codes ofboth parents.

2.2.6 Mutations

Mutation is performed on a bit-by-bit basis. It randomly alters the bits in the

chromosome with the small probability Pm· Every bit (in all chromosomes in the whole

population) has an equal chance to undergo mutation, i.e., change from 0 to 1 or vice

versa. Increasing the number of mutations increases the algorithm's freedom to explore

outside the current region of variable space. We proceed in the following way.

For each chromosome in the current population and for each bit within the

chromosome:

• Generate a random number r from the range [0 .. 1];

• If r < Pm, mutate the bit.

Let us set Pm = 0.1, now population size is 4, every chromosome has eight bits,

0.1 *4*8 ;:::::; 3, so about three bits will be mutated. The mutated bits in Table 2.4 are

shown in bold, italics.

The other way of performing mutation is to think of a whole population as a two

dimensional array pop[Npop• Nbits] (where Npop is population size, Nbus is the length of

each chromosome) in which each row represents a chromosome, and each column

21

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

represents a gene. Thus a random number generator creates pairs of random integers

(mrow, mcol) that correspond to the rows and columns of the mutated bits.

Table 2.4 Mutating the individuals (bit by bit mutation)

Population after mating Population after mutation New fitness value

11001101 11101101 6

01110010 01110000 3

01000001 01010001 3

0 1 1 1 0 1 1 1 01110111 6

We can use following computer code to find the rows and columns of the mutated

bits.

nmut = round(Npop * Nbus *pm)

nrow = round(rand(1, Pm)* Npop + 1

nco! = round(rand(1,pm)* Nbits)

II number of mutations

II row of the bits to be mutated

//column of the bits to be mutated

nmut = round(Npop * Nbus*Pm)= round(4*8*0.1) = 3

So, mutations occur three times, the following pairs were randomly selected.

nrow = [2 3 4] nco! = [6 2 1]

Table 2.5 Mutating the individuals (by generating row, column pairs)

Population after mating Population after mutation New fitness value

11001101 11001101 5

01110010 01110110 5

01000001 00000001 1

0 1 1 1 0 1 1 1 11110111 7

22

(2.6)

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

2.2.7 The Next Generation

After the mutation takes place, the cost associated with the offspring and mutated

chromosomes are calculated (third column in Table 2.4 and Table 2.5). The process

described is iterated. For our example, the population at the end of next generations is

shown in Table 2.6, Table 2.7, Table 2.8, and Table 2.9 (We took the population in Table

2.5 as the starting population of the second generation).

Table 2.6 Population at the end of second generation

Population after mating Population after mutation New fitness value

11110111 11110111 7

11001101 11101101 5

0 1 1 1 0 1 1 1 01100111 5

11110110 11110111 7

Table 2.7 Population at the end of third generation

Population after mating Population after mutation New fitness value

11110101 11010101 5

1 1 1 0 1 1 1 1 11101111 7

01110111 01010111 4

1 1 1 0 0 1 1 1 11101111 7

23

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

Table 2.8 Population at the end of fourth generation

Population after mating Population after mutation New fitness value

1 1 0 1 1 1 1 1 11011111 7

11100101 11101101 6

01001111 01101111 5

1 1 1 1 0 1 1 1 11110101 6

2.2.8 Convergence

The number of generations evolve depends on whether an acceptable solution is

reached or a set number of iterations is exceeded. After a while all the chromosomes and

associated costs would become the same if it were not for mutations. At this point the

algorithm should be stopped.

Most genetic algorithms keep track of the population statistics in the form of a

population mean and minimum cost. As shown in Table 2.9, for our example after five

generations the global maximum fitness value is found to be 8. This maximum fitness

was found in

4 *
fitness evaluation

per generation

5 =20 (2.7)
generations

fitness function evaluations or checking 20/(256*256) = 0.03% of the population. Figure

2.3 shows a plot of the algorithm convergence in terms of the best and average fitness of

each generation.

24

M. Sc. Thesis - B. Dilimulati McMaster - Computing and Software

Table 2.9 Population at the end of fifth generation

Population after mating Population after mutation New fitness value

11001101 11011111

1 1 1 1 1 1 1 1 11101101

01110101 01101111

11101111 11110101

5

8

5

7

----------------,

--+--A \erage
Fitness

----41-- Best lndi\1dual

Figure 2.3 Graph of average and best fitness value of each generation.

From figure 2.3 we can see that at the end of the fifth generation, the algorithm is able

find the best fitness value of 8. The average fitness value is also increased from initial

value of3.25 to final value of6.25.

25

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

CHAPTER3

GENETIC ALGORITHMS IN DYNAMIC ENVIRONMENTS

The genetic algorithms we have discussed above, work in stationary environments,

which means that the fitness function does not change during the evolution process; a

problem with a fitness (objective) function that changes over time is referred to as having

a "dynamic fitness landscape". A variety of engineering, economic, and information

technology problems require systems that adapt to changes over time. Examples of

problems where environmental changes could cause the fitness landscape to be dynamic

include: target recognition, where the sensor performance varies based on environmental

conditions; scheduling problems, where available resources vary over time; financial

trading models, where market conditions can change abruptly; investment portfolio

evaluation, where the assessment of investment risk varies over time; and data mining,

where the contents of the database are continuously updated. These types of problems

may experience simple dynamics, where the fitness peaks that represent the optimal

problem solution drift slowly from one value to the next, or complicated dynamics, where

the fitness peaks change more dramatically, with current peaks being destroyed and new,

remote peaks arising from valleys.

3.1 Previous Research

In recent years there has been significant research in making genetic algorithms work

efficiently in dynamic environments [6], [10], [11], [7], [3], [18], most of this research

could be grouped into one of these categories:

26

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

1. Increasing diversity after change

The GA is run in a standard fashion, but as soon as a change in the

environment has been detected, explicit actions are taken to increase diversity

and thus to facilitate the shift to the new optimum. Cobb [6] has proposed a

simple adaptive mutation mechanism called triggered hypermutation to deal

with continuously changing environments. Cobb's approach is to monitor the

quality of the best performers in the population over time. When this measure

declines, it is a plausible indicator that the environment has changed.

Hypermutation then essentially restarts the search from scratch. The most

attractive feature of this approach is that it is adaptive; for example, it

emulates a standard GA in a stationary environment.

2. Maintaining diversity throughout the run

Convergence is avoided all the time and it is hoped that a spread-out

population can adapt to changes more easily. Grefenstette [10] introduced the

method of random immigrants where in every generation, the population is

partly replaced by randomly generated individuals in every generation. As

opposed to strong mutations, random immigrants only affect part of the

population. Thus it introduces diversity without disrupting the ongoing search

process.

3. Memory based approaches

The GA is supplied with a memory to be able to recall useful information

from past generations, which seems especially useful when the optimum

27

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

repeatedly returns to previous locations. Obviously, strategies with a memory

may be especially beneficial in periodically changing environments, when

there are repeated occurrences of a small set of situations. Additionally,

redundant representations may slow down convergence and favor diversity,

memory may be provided in two general ways: implicitly by using redundant

representations, or explicitly by introducing an extra memory and formulating

strategies to store in and retrieve solutions from it.

4. Multi-population Approaches

Multiple subpopulations are used, some to track known local optima, some to

search for new optima. A general problem with memory is that the stored

information, like the location of peaks found, becomes obsolete as the

environment changes. One possibility to reduce this problem is to maintain

small subpopulations in several promising areas of the search space which can

track the peaks as they move and change, thus acting as self-adaptive memory.

Morrison [20] introduced the concept of using sentinels, which have the

following definition and attributes:

• Sentinels constitute a subset of the population that is uniformly distributed

through the search space upon initialization.

• Sentinels are regular members of the population for selection and

crossover operations but are stationary and are not, themselves, replaced

or mutated.

28

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

By using sentinels to continuously sample the same points in the search space,

we can guarantee that there are always some individuals that spread evenly

throughout the search space. Whenever a fitness landscape shift occurs, the

part of the population that has started to converge near a found peak may

suddenly find itself at lower fitness. At this point, sentinels in other parts of the

search space will get an increased opportunity to mate and create offspring that

are spread throughout the search space, immediately increasing the dispersion

of the population.

Since sentinels remain stationary in the search space across multiple

generations, they can be used to provide a more informative picture of the

dynamics of the fitness landscape. Specially, they are able to retain memory of

previous fitness values at their search-space location. If they are provided with

some limited ability to communicate among themselves, they could derive

information about the type and extent of any detected fitness landscape

changes. With this information, it may be possible to improve performance by

altering the sentinel behavior.

Most of the adaptive GAs are trying to improve the diversity of the population so that

the change in the fitness landscape can be detected by some individuals, importing

random immigrants and placing sentinels are good examples of this.

29

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

3.2 Transformation-based Genetic Algorithm

Transformation [24] is a biologically inspired genetic operator that, when

incorporated into the Genetic Algorithm can promote diversity in the population; m

nature this operator occurs in colonies ofbacteria.

Usually, transformation consists in the transfer of small pieces of cellular DNA

between organisms. These pieces of DNA, or gene segments [24] are extracted from the

environment and added to recipient cells.

After that, there are two possibilities, failure or success, known technically as

restriction [24] and recombination [24]. Restriction is the destruction of the incoming

foreign DNA, since those bacteria assume that foreign DNA is more likely to come from

an enemy, such as a virus. In this case transformation fails. Recombination is the physical

incorporation of some of the incoming DNA into the bacterial chromosome. If this

happens, genes from the assimilated gene segment replace some of the host cell's genetic

information and bacteria are permanently transformed. Once integrated in the

chromosome, the DNA segment is able to survive.

In some ways transformation-based GA (TGA) has similarity with the random

immigrants method, when using TGA, we start with an initial population of individuals

and an initial pool of gene segments [24] (also called gene segment pool or segment pool,

is a set of gene segments that are used in transformation of selected individuals; these

gene segments act like foreign DNA pieces in bacterial transformation), both created at

random. In each generation, we select individuals to be transformed and we apply

transformation using the gene segments in the segment pool, then if necessary we also

30

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

apply mutation. After that, the segment pool is updated using the individuals from the old

population to create part of the new segments, and the rest of the segments are created at

random; from the above description we can see that in TGA the crossover operator in

standard GA is replaced by transformation operator. Figure 3.1 shows the flowchart of

TGA.

After selecting individuals, we use the transformation mechanism to produce new

individuals. To transform an individual we randomly select a segment from the segment

pool, and also randomly choose a point of transformation in the selected individual. The

segment is incorporated in the genome of the individual (chromosome), replacing the

genes after the transformation point. It should be noted that the chromosome is seen as a

circle. Figure 3.2 and Figure 3.3 illustrate this transformation mechanism.

The transformation process can be divided into the following steps:

1. Select an individual

In this study we used the roulette wheel selection method to select an individual.

Because of the randomness of the roulette wheel selection method, it is possible

that one individual with a high fitness value can be selected several times. This

method is one of the most common selection methods in GAs, the mechanism of

roulette wheel selection method was discussed in chapter 2.

2. Select a gene segment

In this step we randomly select a gene segment to replace the genes in the

selected individual.

31

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

Define GA representation, evaluation
function. select GA parameters

No

Generate initial population

Generate initial gene
segment pool

Evaluate population

Generate new segment pool

Select individuals

Transform individuals

Mutate individuals

Update segment pool with
new segment pool

done

Figure 3.1 Flowchart of transformation-based genetic algorithm

32

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

3. Choose transformation point

The transformation point (TransPoint) is also ·chosen randomly, which is an

integer number between 0 and LENGTH-I (LENGTH is the number of genes in a

chromosome). The number of genes in a segment (SEGLEN) is less than the

number of genes in a chromosome (LENGTH).

I

Population of
individuals

I
Select an individual

+
-y

LENGTH

I

I

Gene segment
pool

Select a gene segment

SEGLEN
Trans? oint

Copy genes from selected
segment

TransPoint Trans Point+ SEGLEN

'--- - ------------------------------

Figure 3.2 Transformation mechanism (gene segment lies in the middle of the

chromosome)

33

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

4. Copy genes from selected segment

The transformation point is chosen randomly so we should consider two possible

situations separately:

I
<::::

• If LENGTH :2: TransPoint + SEGLEN, this means the genes to be replaced

lie in the middle of the chromosome. In this case the genes in the gene

segment are copied into the chromosome as a whole (see Figure 3.2).

• If LENGTH < TransPoint + SEGLEN, this means the genes to be replaced

lie at the two ends of the chromosome. In this case the (LENGTH -

TransPoint) genes at beginning of the gene segment are copied to the end

of the chromosome, then, the rest of the (SEGLEN - (LENGTH -

TransPoint)) genes are copied to the beginning of the chromosome (see

Figure 3.3).

Selected individual

LENGTH

p
TransPoint

Copy genes from selected
segment

SEGLEN

LENGTH - TransPoint

SEGLEN - (LENGTH - Trans Point)
Trans Point

Figure 3.3 Transformation mechanism (gene segment lies in the two ends of the

chromosome)

34

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

5. Replace an old individual with the new one

The last step is to add this new individual into the current population. Because the

population size is fixed, we must replace an old individual with this newly

generated individual. In this study, we choose the worst individual (the individual

that has the lowest fitness value) to be replaced.

The performance of TGA highly depends on the parameters' setting. The parameters

include transformation rate (percentage of population to be transformed), segment

replacement rate (the percentage of gene segments that are updated using the genetic

information of the individual's of previous population), segment length, and mutation

rate.

35

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

CHAPTER4

DYNAMIC PROBLEM GENERATOR

Researchers who have studied the GAs in dynamic environments have developed

different dynamic test functions; this study introduces the dynamic problem generator

(DPG) that was developed by Morrison and DeJong [19]. The reason why we chose this

dynamic problem generator is that it provides easy methods to reproduce a wide variety

of interesting dynamic test problems for use in GA research.

The process of generating a dynamic problem can be divided into two steps: first

construct the shape of the fitness landscape and then change the landscape according to

the user specified settings.

4.1 Morphology of the Fitness Landscape

The basic morphology of the landscape is the "field of cones" of different heights and

different slopes that are randomly scattered across the landscape [19]. The static function

can be specified for any number of dimensions. In the 2-dimensional case we have:

where: N- specifies the number of cones in the environment,

(X;, Yi) - independently specifies the location of each cone,

Hi - the height of each cone,

Ri- the slope of each cone {tangent value of the base angle).

(4.1)

We choose a highest value for a given point using the max function, so that the cone

that has a higher value "dominates" the cone that has a lower value at the given point. As

36

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

we can see in Figure 4.1, there are two cones located at x 1, and x2• For a given point x,

we have two values.fi(x), and fz(x); in this case.fi(x) > fz(x),

j(x) = max(fi(x) ,fz(x)) = fi(x) (4.2)

so we take .fi (x) as a function value for the point x.

cone 2

fi(x)
H2

' ' h(xj ' ' ' '

XI X x2

Figure 4.1 Illustration of calculating the function value for a given point in the cone

field landscape

When the generator is called each time, it produces a randomly generated landscape

of this type in which random feature values for each cone are assigned based on user-

specified ranges:

H; E [Hbase,Hbase+Hrange]

R; E [Rbase, Rbase + Rrange]

X; E [Xbase, Xbase + Xrange]

Y; E [Ybase, Ybase + Yrange]

37

(4.3)

(4.4)

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

To generate wide range of static problems of varying complexity, one needs only

specify the parameters:

• N (the number of peaks),

• Hbase (the minimum cone height),

• Hrange (the range of allowed cone heights),

• Rbase (the minimum value of slope control variable),

• Rrange (the allowed range for the slope control),

• Xbase (the minimum value of x coordinates of peaks),

• Xrange (the allowed range for peaks to move in x direction. Peaks move

between Xbase and Xbase+ Xrange),

• Ybase (the minimum value of y coordinates of peaks),

• Yrange (the allowed range for peaks to move in y direction. Peaks move

between Ybase and Ybase+ Yrange),

Figure 4.2 and 4.3 show two randomly generated landscapes.

4.2 Dynamics of the Fitness Landscape

In this dynamic problem generator, the features of the fitness landscape change in

discrete step sizes. To control the generation of a variety of different step sizes the

following function was used:

Yi =A* Y(i-1) * (1 - Y(i-1)) (4.5)

where: A is a constant specified by the user, Yi is the value at iteration i.

38

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

y va lue x value

Figure 4.2 Randomly generated fitness landscape with N = 3, Hbase = 10, Hrange =

(f)
(f)
Ql

40

35

30

~ 25

20

15
1

2, Rbase = 15, Rrange = 2

y va lue 0 0
x va lue

Figure 4.3 Randomly generated fitness landscape with N = 50, Hbase = 30,

Hrange = 10, Rbase = 70, Rrange = 15

39

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

A value

Figure 4.4 Graph of dynamics control function Y; =A* Y(i-I) * (1 - Yu-I>)

From Figure 4.4 we can see that for the values of A between 1.0 and 3.0, Y is

constant; the values of A between 3.1 and 3.6 generate two different Y values. If the value

of A is bigger than 3.6, Y is a random number between 0 and 1.0. In this study we used A

value of3 .3.

What remains then is to map the range of Y values produced into appropriately scaled

step sizes for the particular dynamic feature. This is accomplished by scaling the Y values

to keep the step sizes less than 0.5 of the user-range to add to or subtract from the current

parameter value. For example, for an individual cone that is increasing dynamically in

height, first the current height is computed as a percentage of maximum height:

Hpct = HI(Hbase + Hrange) (4.6)

The current Y value is then scaled by a user-supplied height scaling factor and added

to theHpct:

Hpct = Hpct + Y * Hscale (4.7)

40

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

If this is less than the 100% of the valid range, then the new height value is computed

from the percentage value. If it is greater that 100%, then the new value is computed as:

Hbase + (100%- (Hpct-100%)) * Hrange (4.8)

and the step change sign is reversed. This causes the movement to "bounce" off of the

limits of the search space. The sign remains reversed for each iteration until the minimum

value of the range is reached, at which point it is reversed again.

To illustrate the dynamics of this landscape let us look at the following figures.

Figure 4.5 is the initial figure that is generated with N = 3, Hbase = 10, Hrange = 4,

Rbase = 15, and Rrange = 4.

Through specifying the A values and scaled step sizes for different features we can:

1. Change peak heights

By specifying A value and Hscale (scaled step size for height change) value for

peak heights, we can change peak heights randomly, we can also choose which

peak to be changed.

2. Change slopes (cone shapes)

Like changing the peak heights, we can also change cone slopes by providing

appropriate A value and Rscale (scaled step size for slope change) value for cone

slope dynamics control function. Figure 4.6 is the landscape that we got from the

initial landscape in Figure 4.5, after randomly changing the peak heights and cone

slopes at the same time. We can see that the cones became wider and the cone at

the front became the highest one.

41

M.Sc. Thesis - B. Dilimulati

12

10

Q) 8
:::1

c;;

~ 6
VI
Q)

~ 4

2

0
1

McMaster - Computing and Software

y va lue 0 0
x va lue

Figure 4.5 Initially generated landscape with N = 3, Hbase = 10, Hrange = 4,

Rbase = 15, Rrange = 4

... ...
15

10
Q)

:::J
(ij
> 5 (J)
(J)
Q)

.::;
;;::::

0

-5
1

y va lue x va lue

Figure 4.6 After changing the peak heights and slopes of the landscape in Figure 4.5

with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4

42

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

3. Move the cones in one or multiple dimensions

Another dynamics is that the cones can be moved in any direction and we can also

control the speed (step size) of the movement, by specifying the A value and

scaled step size value for movement change of the movement control function.

Figure 4.7 and Figure 4.8 are the landscapes that we got from the initial landscape

in Figure 4.5, by moving peaks randomly in x axis andy axis respectively. If we

have a N dimensional landscape then we can also move the peaks in all

dimensions at the same time.

(1)

~

"' >
(/)
(/)
(1)

c -;;:::

15

10

5

0

-5
1

y va lue 0 0
x value

Figure 4.7 After moving the peaks of the landscape in Figure 4.5 along x axis

randomly, with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4

43

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

15

10
Q)
::I
(ij ,.

5 Ul
Ul
Q)
c:

:t:::
'+-

0

-5
1

y value 0 0
x value

Figure 4.8 After moving the peaks of the landscape in Figure 4.5 along y axis

randomly, with N = 3, Hbase = 10, Hrange = 4, Rbase = 15, Rrange = 4

To summarize, we can set the dynamics of the landscape as we want; by applying all

the dynamics simultaneously, we can get a complex changing landscape.

44

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

CHAPTERS

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In the previous chapters, we have discussed the mechanism of TGA and dynamic

problem generator (DPG). In this chapter, first we introduce their implementation: as we

have said before, in TGA, the transformation operator replaces the crossover operator in

standard GA; for comparison purposes, we also provided crossover procedure so that the

user can decide whether to use TGA or standard GA. Secondly, we discuss our

experimental results that we got by running TGA in different dynamically changing

environments with different parameters' setting.

5.1 Implementation

In the implementation of GAs, one of the first things to consider is the representation

of the potential solutions to the problem (definition of chromosome structure). The

dynamic test problem generator [19] we used produces dynamic landscape in multiple

dimensions, and our goal is to search for the best point which has the highest fitness

value. So the representation of a potential solution should be the coordinate of a point in

multiple dimensional space. We used binary representation to encode the coordinates,

because it is convenient to perform transformation by using bitwise operations. The user

can set the number of dimensions and the number of bits that are used to represent the

coordinate in one dimension. From this, we can calculate the length of a chromosome: for

example, if number of dimensions is N number of bits in one dimension is LENGTH,

45

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

then, length of a chromosome is N*LENGTH. It should be noted that LENGTH should be

the multiple of 8, or else we have to make extra effort to get the correct coordinate value.

In this study LENGTH is set to 8.

The flowchart of the entire program is given in Figure 5.1, from this we can see that it

is very similar to the flowchart in Figure 3 .1. Now we give a brief description of every

block.

1. Define GA representation, TGA, DPG parameters, and global variables

We have discussed the GA representation above. TGA parameters and global

variables are defined in header file. TGA parameters are:

• transformation rate (the percentage of individuals to be transformed in the

population, it is a global constant named TRANS_ RATE),

• mutation rate (probability of mutation, it is a global constant named

MUT_RATE),

• segment replacement rate (percentage of the segments to be generated

from previous population, it 1s a global constant named

SEG _ REPL _RATE),

• population size (number of individuals in the population, in this study we

keep the population size fixed; once the user sets the population size, it

will not change throughout all the generations. It is a global constant

named POP SIZE),

• number of segments (the number of segments is also fixed in this study, it

is a global constant named NUMBER _SEG).

46

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

The DGP parameters are:

• number of dimensions (it is a global constant named NUMBER_ DIM),

• number of peaks (it is a global constant named NUMBER _PEAKS),

• minimum height of the peaks (it is a global constant named Hbase),

• range of the peak height change (it is a global constant named Hrange, the

peak heights will oscillate between Hbase and Hbase + Hrange),

• minimum slope value (it is a global constant named Rbase),

• range of the cone slope change (it is a global constant named Rrange, the

cone slope values will oscillate between Rbase and Rbase + Rrange),

Global variable for TGA are:

• two dimensional array pop[POPSIZEJ[NUMBER_DIMJ is used to store all

the individuals in the population,

• two dimensional array seg[NUMBER_SEG][NUMBER_DIMJ is used to

store the gene segments, and newseg[NUMBER_SEG][NUMBER_DIMJ is

used to store newly generated segment pool, it will replace

seg[NUMBER _SEG][NUMBER _DIMJ at the end of each generation.

Global variable for DPG are:

• x[NUMBER_PEAKS][NUMBER_DIMJ is the coordinate of every peak in

the fitness landscape,

• H[NUMBER _PEAKS] specifies the height of every peak,

• R[NUMBER_PEAKS] specifies the slope of every cone.

47

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

l. Define GA representation, TGA, DPG parameters and global variables

2. Generate initial population and initial gene segment pool

3. Construct initial fitness landscape

4. Evaluate population

5. Print results

6. Sort Population

7. Construct roulette wheel table

8. Generate new segment pool

9. Select and transform individuals

10. Mutate individuals

II. Update segment pool with new segment

13. Change fitness landscape

No

done

Figure 5.1 Flowchart of TGA program

48

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

2. Generate initial population and initial gene segment pool

This initialization is carried out by a procedure named tga _!nit(), it is a

straightforward procedure that randomly generates every individual in the

population and every gene segment in the segment pool, stores the generated

values in pop[][] and seg[][]respectively.

3. Construct initial fitness landscape

dpg_init() procedure constructs the initial fitness landscape, it randomly

generates the feature values in given range for every peak. It stores these values in

global variables: x[][], H[][], and R[][]. The landscape features include peak

location, heights, and slope.

4. Evaluate population

During the evolution process, we evaluate the population once in every

generation. This evaluation is accomplished by procedure tga_Evaluate(pop).

Procedure tga_Evaluate(pop[][])calls function dgp_eval(pop[i]) to calculate the

fitness of every individual, function dpg_eval(pop[i]) returns the fitness value to

which that individual corresponds. After getting the fitness value from

dpg_eval(pop[i]), tga_Evaluate(pop[][]) stores the evaluated fitness values in

global array eval[].

5. Print results

User can modify this procedure to print out what he needs, in this study we

printed out the best and average fitness value of current population.

49

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

6. Sort Population

We need to sort the population according the fitness of the individuals in order to

replace the poorly fitted individuals with the new ones. The procedure

tga_SortPop(eval[], index[]) accomplishes this task, it reads the fitness values

from array eva/[], and stores the sorted indices in array index[].

7. Construct roulette wheel table

The mechanism of roulette wheel selection and the construction of roulette wheel

table have been discussed in Chapter 2. The procedure tga_ConsRltWhl(eval[],

qi[]) works in the same way. It reads fitness values from eva/[], and stores the

roulette wheel table (accumulative selection probabilities) in qi[].

8. Generate new segment pool

In TGA we update the segment pool with the new segments. Some of the new

segments are generated from individuals in the old population and the rest of them

generated randomly. The procedure tga_GenSegPool(pop[][], qi[], newseg[][])

generates a new segment pool and stores it in array newseg[][],this new segment

pool is used to update the current segment pool at the end of the iteration.

9. Select and Transform individuals

We incorporated the implementation of selection and transformation. The

procedure tga_Transform(pop[][], seg[][] , qi[], index[]) carries out both

selection and transformation, the flowchart of this procedure is given in Figure

5 .2. It first calculates the number of individuals to be transformed (block 9.1 in

Figure 5.2), and then the rest of the process is carried out in iteration loop.

50

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

No

9.1 Calculate the number of
individuals to be transformed

9.2 Select an individual with the
roulette wheel selection method

9.3 Randomly select a segment from
gene segment pool

9.4 Randomly choose a
transformation point

9.5 Copy genes from selected
segment

9.6 Replace the poorly fitted
individuals with the new ones

Figure 5.2 Flowchart exhibiting the procedure of selection and

transformation (block 9 of the flowchart on Figure 5.1)

51

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

In every loop, it selects an individual from the population with roulette wheel

selection (block 9.2 in Figure 5.2), and randomly selects a segment from the

segment pool (block 9.3 in Figure 5.2), then, randomly selects the transformation

point (block 9.4 in Figure 5.2). As we have discussed before, there are two cases

to consider depending on the value of the transformation point. It copies the

genes from selected gene segment according to the transformation point (block

9.5 in Figure 5.2), then, replaces a poorly fitted individual (the individual that has

a lowest fitness value) from the old population with the new individual (block 9.6

in Figure 5.2). This procedure gets individuals from pop[][] and segments from

seg[][]. It uses roulette wheel table qi[] for selection purposes, and uses index[]

when replacing old individuals. From the above description we can see that this

procedure updates the population pop[][] every time it transforms an individual.

10. Mutate individuals

In binary GAs mutation IS simply flipping the bits. The procedure

tga _Mutate(pop[] []) carries out the mutation. It first calculates number of bits to

be mutated, then, it randomly chooses which bit of which individual to be

mutated. After selecting the bit it simply flips that bit. This procedure also updates

the population every time it mutates an individual.

11. Update segment pool with new segment pool

We have already generated a new segment pool that part of its segments was

generated from the individuals of the old population. To update current segment

pool we just copy all the segments from new segment pool into current segment

52

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

pool. The procedure tga _ UpdateSegPool(seg[], newseg[]) updates seg[] with

newseg[].

12. Condition: whether to change the fitness landscape

In this study, the fitness landscape changes once in several generations. Between

two changes the fitness landscape is kept static. The global variable

CHANGE_ GAP represents the number of generations between two consequent

changes. We used CHANGE_ GAP to set the frequency of the landscape change.

13. Change fitness landscape

We have discussed the dynamics of the landscape in Chapter 4. The following

procedures change the landscape:

• dpg_chg_C() moves the peaks in a given axis,

• dpg_ chg_ H() changes the peak heights,

• dpg_chg_R() changes the peak slopes.

We can choose which procedure to call according to the landscape change we

need. By using all of above procedures we can get a very complicatedly changing

landscape.

14. Stop condition satisfies

In this study, the stop condition is to check whether the maximum number of

generations is reached or not.

Above we have introduced the implementation of TGA. In the next section we will

discuss the results of the experimentations we performed on this TGA.

53

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

5.2 Experimental Results

We first carried out a comparative study between TGA and other common GAs,

including standard genetic algorithm (SGA) [19] which we have introduced in Chapter 2,

and triggered hypermutation-based genetic algorithm (HGA) [6] that was introduced in

section 3 .1. Secondly we tested the TGA performance in different parameter settings.

There are different kinds of measurements that are used to compare the performance

of the GA. Most common measurements are online performance [2] and offline

performance [2].

Online performance is an average of all individual's fitness value on the entire run.

Offline performance is the average of the best fitness values on the entire run.

In this study, we used offline performance as a measurement to compare the

efficiency of different GAs.

5.2.1 TGA and SGA Performance in Static Landscape

Before comparing these genetic algorithms in a dynamic environment, we compared

them in a static environment where the fitness landscape was kept static throughout all

the generations.

The comparison result of offline performance (the average of the best fitness values

on the entire run) of TGA and SGA is shown in figure 5.3. We repeated the test for 20

times and took the average of offline performances. For both algorithms the fitness values

were calculated with function (4.1), pop_size (population size) was set to 20, gen_num

(number of generations) was set to 100, max_height (highest fitness value can be found,

or in other words, the height of the highest peak in the fitness landscape) was set to

54

M. Sc. Thesis - B. Dilimulati McMaster - Computing and Software

1873.00. SGA parameters were set as: cross_rate (crossover rate) = 0.7, mut_rate

(mutation rate)= 0.01; TGA parameters were set as: trans_rate (transformation rate)=

0.6, seg_repl_rate (segment replacement rate)= 0.5, mut_rate = 0.001. We can see from

this figure that in static landscape TGA performs about 5% better than SGA.

2000
1800

1600
1400

II) 1200
II)
Q) 1000 c
~
LL 800

600

400

200
0

1 10 19 28 37 46 55 64 73 82 91 100

Generations

Figure 5.3 Offline performances of TGA and SGA in static fitness landscape

We also tested TGA and SGA performance in different combinations of population

sizes and numbers of generations. This time we compared the highest fitness value. For

every combination of population size and number of generations, we repeated the test for

20 times and took the average of these 20 highest fitness values. The fitness values were

calculated with function (4.1); the results are shown in Table 5.1. Numbers in the second

row are the population sizes; numbers in the second column are the numbers of

generations. Every value in bold is the average of highest fitness values that were found

55

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

in the corresponding population size and number of generations. The best values among

them are shown in italic and underlined.

Table 5.1 The highest fitness values found in different population sizes and different

number of generations (best values are in italic and underlined)

TGA SGA

pop_size -7 20 50 100 20 50 100

10 1648.24 1765.38 1824.87 1622.58 1795.00 1829.95
~

(JCl

,:::::

~ :::::
20 1781.68 1824.87 1869.23 1613.81 1824.87 1838.97 = ::::

~ :::
"'!
~ z
0 = = a 50 1838.9 1836.45 1870.13 1614.26 1827.34 1857.78
rJ>

0" "-"'
~
"'!
0,

100 1857.78 1857.78 1873.00 1625.56 1835.74 1873.00

In this test, the max_ height = 1873.00. SGA parameters were set as: cross _rate

0.7, mut_rate = 0.01; TGA parameters were set as: trans_rate = 0.6, seg_repl_rate

0.5, mut_rate = 0.001.

From this table we can see that TGA performs about 3% better (we took the average

difference of TGA and SGA values in the table) than SGA in these parameter settings.

For both algorithms the bigger the population size the better the performance is. The

reason for this is that when the population size increases the diversity of the population

also increases, so there is greater chance of placing the individuals around an optimal

56

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

peak. We can also see from Table 5.1 that when the number of generations increases the

performance also improves. This is because genetic algorithm has enough time to find

optimal values when the number of generations increases.

We did not compare TGA with HGA in a static environment, because HGA works in

exactly same manner as SGA in a static environment. So from SGA performance, we can

also conclude the same HGA performance.

5.2.2 TGA, HGA, and SGA Performance in Dynamic Landscape

In this study, we mainly focused on the TGA performance in a dynamic environment.

Researchers have intensively studied the GAs working in static environment for over 30

years, but GAs working in dynamic environments are still new fields.

As we have stated before, we used dynamic test problem generators to create dynamic

landscapes for our study. To better test the performance of algorithms, we fixed the peak

heights so that the best fitness value is the same throughout the entire generations. The

dynamics we applied was: moving the peak locations, and changing the peak slopes

randomly. Thus we can still get a changing landscape.

57

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

2000
1800
1600
1400

1/) 1200 +-------------~--~--~------;
1/)

G) 1000-r::::
:t:: 800 -LL

600
400
200

0
1

----------------------";--;---------;

-----------·~::----1

10 19 28 37 46 55 64 73 82 91 100

Generations

Figure 5.4 Highest fitness values ofTGA, HGA, and SGA in a dynamic

landscape where the landscape changes every 20 generations

We tested the three algorithms TGA, HGA, and SGA in an environment where

landscape changes every 20 generations; max_step_scale (the percentage of maximum

step size of landscape movement) is set to 30%. This time we also compared the highest

fitness values; the fitness values were calculated with function (4.1). We repeated the test

for 20 times and calculated the average of highest fitness values. The test results are

shown in Figure 5.4. For all algorithmspop_size =50, gen_num = 100, and, max_height

= 1873.00. SGA parameters were set as: cross_rate = 0.7, mut_rate = 0.01; TGA

parameters were set as: trans_rate = 0.6, seg_repl_rate = 0.5, mut_rate = 0.001; HGA

parameters were set as: cross rate = 0.5, mut rate = 0.01, hyper _mut_rate

(hypermutation rate) = 0.2.

From this figure we can see that every time landscape changes, the performances of

algorithms declines. We can also see that TGA is always able to find a higher fitness

58

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

value quickly, HGA also performs well. But SGA behaves poorly in this dynamic

landscape.

2000
1800
1600
1400

II) 1200 II)
-TGA

Cl)
1000 c --HGA -u:: 800 ·······SGA
600
400
200

0·
10 19 28 37 46 55 64 73 82 91 100

Generations

Figure 5.5 Offline performances of TGA, HGA, and SGA in dynamic landscape

where the landscape changes every 20 generations

We also compared the offline performance (the average of the best fitness values on

the entire run) of these three algorithms in the same parameter settings as in Figure 5.4.

We repeated the test 20 times and took the average of the offline performances. The

result is shown in Figure 5.5.

It is very noticeable from these two figures that SGA behaves poorly in this dynamic

landscape. The reason for this is that before the change of the landscape, individuals tend

to converge around the optimal peak, but after the landscape change, these individuals

find themselves in lower fitness. In the following generations SGA still generates new

individuals around a previous region which is now in a low fitness area. That means SGA

59

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

lacks population diversity (the extent to which individuals spread evenly throughout the

search space) which is vital in dynamic environments. In SGA the main genetic operators

are crossover and mutation. The individuals created through crossover are most probably

in the same region as their parents. The only mechanism that can increase the population

diversity is mutation, but in SGA the mutation rate is usually very small. So SGA has a

smaller chance of finding optimal peak in dynamic environment.

From Figure 5.4 and Figure 5.5 we can also see that, HGA performs almost the same

as TGA and far better than SGA. The reason is that HGA keeps track of the population

fitness in every generation. If it finds some significant decline in population fitness that

means the landscape has changed. In this case HGA dramatically increases the mutation

rate and consequently increases the population diversity.

Like in section 5.2.1, we also tested these algorithms in different combinations of

population sizes and landscape change durations. This time we compared the highest

fitness value; the fitness values were calculated with function (4.1). For every

combination of population size and landscape change durations, we repeated the test for

20 times and took the average of these 20 highest fitness values. The results are shown in

Table 5.2. Numbers in the second row are the population sizes; numbers in the second

column are the landscape change durations. Every value in bold is the average highest

fitness value that was found in the corresponding population size and landscape change

duration. The best values among them are shown in italic and underlined. For all

algorithms gen_num = 100, max_height = 1873.00, max_step_scale = 30%. SGA

parameters were set as: cross_rate = 0.7, mut_rate = 0.01; TGA parameters were set as:

60

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

trans_rate = 0.6, seg_repl_rate = 0.5, mut_rate = 0.001; HGA parameters were set as:

cross_rate = 0.5, mut_rate = 0.01, hyper _mut_rate = 0.2.

Table 5.2 The highest fitness values found in different population sizes and

different landscape change durations (LCHD) (best values are in italic and

underlined)

TGA HGA SGA

IPop_size 7 20 50 100 20 50 100 20 50 100

10 1765.10 1791.25 1850.5J 1742.35 1801.23 1836.73 1672.12 1783.25 1810.34

h 20 1796.90 1831.94 1855.16 1752.36 1840.63 1857.54 1705.21 1802.74 1830.62

8
50 1842.56 1857.78 1873.00 1821.45 1865.25 1873.00 1814.57 1837.25 18.67.42

From this table we can see that TGA performs about 2% better (we took the average

difference of TGA and SGA values in the table) than SGA, and, performs almost same as

HGA in these parameter settings. For all three algorithms, the bigger the population size,

the better the performance is. The reason for this is same as we have explained before.

We can also see from Table 5.2 that when the landscape change duration increases the

performance also improves. This is because when the landscape is kept static for longer

period of time, genetic algorithm has more time to find higher fitness values.

5.2.3 TGA performance in different parameter settings

In this section we will discuss the TGA performance in different parameter settings

such as, transformation rate, segment replacement rate and mutation rate.

61

M. Sc. Thesis - B. Dilimulati McMaster - Computing and Software

1. TGA performance in different transformation rate

In this test we compared the offline performance (the average of the best fitness

values on the entire run) of TGA in two different dynamics; the fitness values were

calculated with function (4.1). In Figure 5.6 the landscape changes every 20 generations,

while in Figure 5.7 the landscape changes every 50 generations. In both tests, we

repeated the tests for 20 times and calculated the average of the offline performances. In

this test, gen_num = 100, max_height = 1873.00, max_step_scale = 30%. TGA

parameters were set as: seg_repl_rate = 0.5, mut_rate = 0.001.

·--·------··-- --. -

1800

1600

1400 - - ----.Trans 0. 1
II)
II)
Q)

1200 c
--Trans 0.3 -u::: --Trans0.5

1000 --Trans 0.7 L__ ... ____ _

800.

600
1 11 21 31 41 51 61 71 81 91

Generations

Figure 5.6 Offline performance of TGA with different transformation rates

(Trans) in a landscape that changes every 20 generations

62

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

1800

1600

1400
II)
II)
CD 1200 c -ii:

1000

800

600

1 11 21 31 41 51 61 71 81 91

Generations

·······Trans 0.1

--Trans0.3

--Trans 0.5

-Trans0.7

Figure 5.7 Offline performance of TGA with different transformation rates

(Trans) in a landscape that changes every 50 generations

From these two figures, we can see that in both cases the TGA with the

transformation rate of 0.7 performs better. The reason for this is that when the

transformation rate is small, only small portion of the population is transformed; thus the

number of newly generated individuals is not big enough to increase the population

diversity. When transformation rate is increased to 0.7, the number of new individuals is

increased, and, consequently population diversity is also increased. But transformation

rate cannot be too high. If it is too high, then, some individuals with higher fitness value

will also be transformed. This may cause the destruction of these individuals'

chromosomes, thus the overall performance of the algorithm will decrease.

2. TGA performance in different segment replacement rate

In this experiment we tested the offline performances of TGA in different

combinations of segment replacement rates and landscape change durations; the fitness

63

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

values were calculated with function (4.1). We also repeated the test for 20 times, and,

took the average of the offline performances. The highest values are shown in italic and

underlined.

The results are shown in Table 5.3. In this test, pop_size = 50, gen_num = 100,

max_height = 1873.00, max_step_scale =30%. TGA parameters were set as: trans_rate

= 0.7, mut_rate = 0.001.

Table 5.3 Offline performance of TGA in different segment replacement rates

and different landscape change durations (LCHD) (best values are in italic and

underlined)

LCHD=lO LCHD=20 LCHD=SO LCHD =100

seg_repl_rate = 0.1 1507.41 1566.26 1631.99 1682.25

seg_repl_rate = 0.2 1527.42 1583.00 1641.45 1700.45

seg_repl _rate = 0.3 1549.31 1588.26 1683.25 1708.45

seg_repl_rate = 0.5 1513.71 1570.31 1622.51 1710.73

seg_repl_rate = 0. 7 1524.96 1564.39 1626.33 1645.3

From this table we can see that, segment replacement rate of 0.3 is good for all

dynamics. We think the reason for this is that when segment replacement rate is 0.3, only

30% of the segments generated from old population and the rest of them generated

randomly. This large number of randomly generated gene segments increases the

population diversity. Consequently the algorithm behaves well in dynamic environments.

If the segment replacement rate is too small, then almost all the gene segments are

64

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

generated randomly. In this case it is possible that some segments with better genes may

be replaced by randomly generated segments, thus decreasing the performance ofTGA.

3. TGA performance in different mutation rate

Mutation rate is one of most important genetic operators in standard genetic

algorithms. In this study we found that even mutation can be replaced by transformation

in TGA.

In this experiment, we also compared the offline performances of TGA in different

combinations of mutation rates and landscape change durations; the fitness values were

calculated with function (4.1). We repeated the test for 20 times, and, took the average of

the offline performances. The highest values are shown in italic and underlined.

The results are shown in Table 5.4. In this test, pop_size = 50, gen_num = 100,

max_height = 1873.00, max_step_scale =30%. TGA parameters were set as: trans_rate

= 0.7, set_repl_rate = 0.3.

Table 5.4 Offline performance of TGA in different mutation rates and different

landscape change duration (LCHD) (best values are in italic and underlined)

LCHD=lO LCHD=20 LCHD=SO LCHD =100

mut rate= 0.0 1522.42 1576.56 1639.64 1689.47

mut rate= 0.001 1530.45 1578.65 1637.46 1680.53

mut rate= 0.005 1531.96 1580.83 1621.53 1650.25

mut rate= 0.01 1526.42 1576.56 1624.94 1641.48

mut rate= 0.05 1491.22 1528.63 1570.64 1603.43

mut rate = 0.1 1485.25 1435.52 1490.28 1510.31

65

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

From this table we can see that TGA behaves better if there is no mutation or

mutation rate is very small. When the mutation rate increases TGA performance

decreases. We think that unnecessarily changing the genes may result the destruction of

good chromosomes, thus decreasing the algorithm performance.

66

M.Sc. Thesis- B. Dilimulati

6.1 Conclusion

McMaster - Computing and Software

CHAPTER6

CONCLUSION

In this thesis we have presented a genetic algorithm that uses new biologically

inspired genetic operator called transformation. We used this operator as an alternative to

crossover. In transformation-based genetic algorithm (TGA), an individual is generated

from a single parent and a gene segment. This differs from other GAs that use crossover.

We carried out a series of experiments on the performance of TGA. We used offline

performance as a measurement of algorithm performance.

We learned from these experiments that:

• TGA with a higher transformation rate of 0.7 performs better. The reason for

this is that higher transformation rate of 0.7 causes more new individuals to be

generated; these new individuals replace the poor individuals in the old

population, so it increases the overall performance of the algorithm. But

transformation rate cannot be too high. If it is too high, then, some individuals

with higher fitness value will also be transformed. This may cause the

destruction of these individuals' chromosomes, thus the overall performance

of the algorithm will decrease.

• Smaller segment replacement rate is preferred in all dynamics. We think the

reason for this is that if segment replacement rate is small, then only small

67

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

part of the segments is generated from old population and rest of them

generated randomly. This large number of randomly generated gene segments

increases the population diversity. Consequently the algorithm behaves well in

dynamic environments.

• In this study we found that even mutation can be replaced by transformation

in TGA. The reason is that mutation is used to increase the diversity of the

population. In TGA, randomly generated gene segments can increase the

diversity of the population, so by setting proper segment replacement rate,

mutation can be replaced by transformation.

We mainly focused on methodology and implementation of general-purpose GAs

rather than carrying out a huge set of experimentation.

6.2 Contributions

In the completion of this work:

• We designed and implemented the new version of TGA. In the design of TGA

(Simoes, and Costa [24]), we made some modifications to the algorithm when

replacing the old individuals with new individuals.

• In order to test the performance of TGA, we used dynamic problem generator

(Morrison, [21]) that generates a wide variety of dynamic environments, and

we incorporated the implementation of TGA with the dynamic problem

generator.

• We compared the TGA performance with other GAs such as standard GA

(SGA) [19], and triggered hypermutation-based GA (HGA) [6]. We also

studied the TGA performance in different parameter settings. From these

68

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

experiments we concluded some characteristics of TGA performance in

dynamic environments.

6.3 Future work

We have compared TGA performance with other GAs, and carried out some

experiments on TGA. There is still much to study on TGA.

Future work may consist of:

• Study the TGA with variable length gene segments. Because in some

problems variable length chromosomes are preferred, in this case TGA with

variable length gene segments may perform better.

• Number of segments in the segment pool is also an important factor in TGA.

The relation between population size and segments pool size need to be

studied. In our implementation of TGA, the individuals are selected by using

roulette wheel selection method, while segments are selected randomly. The

selection method of segments may need more study also.

• In our experiments the fitness landscape changes abruptly once in several

generations. There are also some cases that the fitness landscape changes

slowly in every generation. TGA performance and parameter settings need to

be studied in these environments.

69

M.Sc. Thesis - B. Dilimulati McMaster - Computing and Software

REFERENCES

[1] Affenzeller, M., and Wagner, S. "Offspring selection: A New Self-Adaptive
Selection Scheme for Genetic Algorithms." In Adaptive and Natural Computing
Algorithms, pp. 218-221. Springer, 2005.

[2] Annunziato, M., and Pizzuti, S. "Adaptive Parameterization of Evolutionary
Algorithms Driven by Reproduction and Competition," in Proceedings of
ESIT'2000, Aachen, Germany, 2000.

[3] Branke J. "Evolutionary Approaches to Dynamic Optimization Problems- Updated
Survey." In: GECCO workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, pp. 27-30, 2001.

[4] Bruha, I., Kralik, P. "Embedding a Genetic Algorithm in Attribute-based Rule­
Inducing Learning", Soft Computing (SOC0-99), Symposium ICSC pp. 631-635
(International Computer Science Conventions, Canada), Genova, Italy, 1999.

[5] Bruha, I., Kralik, P., Berka, P. "Genetic Learner: Discretization and Fuzzification of
Numerical Attributes", Intelligent Data Analysis Journal, vol. 4, pp. 445-460, 2000.

[6] Cobb, H. G. "An Investigation Into the Use of Hypermutation as an Adaptive
Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary
Environment." NRL Memorandum Report 6760, 1990.

[7] Cobb, H.G., and Grefenstette, J. J. "Genetic Algorithms for Tracking Changing
Environments." Proceedings of the Fifth International Conference on Genetic
Algorithms, pp.523-530, 1993.

[8] Garrido, S., and Moreno, L. "Learning Adaptive Parameters with Restricted Genetic
Optimization Method.", Proceedings of the 6th International Work-Conference on
Artificial and Natural Neural Networks: Connectionist Models of Neurons, Learning
Processes and Artificial Intelligence-Part I, pp.612-620, Springer-Verlag London,
UK, 2001.

70

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

[9] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company Inc. 1989.

[10] Grefenstette, J. J. "Genetic algorithms for changing environments." In R. Manner
and B. Manderick (Eds.), Parallel Problem Solving from Nature, 2, pp.137-144,
Elsevier Science, 1992.

[11] Grefenstette, J. J. "Evolvability in dynamic fitness landscapes: A Genetic Algorithm
Approach," in Proceedings of the Congress on Evolutionary Computation, vol. 3,
pp.2031-2038.Piscataway, NJ: IEEE Press, 1999.

[12] Haupt, R.L., and Haupt, S.E. Practical Genetic Algorithms, second edition, John
Wiley & Sons, Inc., 2004.

[13] Hercock, R. G. Applied Evolutionary Algorithms in Java, Springer, 2003.

[14] Holland, J.H. Adaptation in Natural and Artificial Systems, Ann Arbor: The
University of Michigan Press, 1975.

[15] Hong, T.P., Wang, H.S., Lin, W.Y., and Lee, W.Y. "Evolution of Appropriate
Crossover and Mutation Operators in a Genetic Process." Applied Intelligence
Vol.16 No. 1, pp. 7-17, 2002.

[16] Jeong, I.K., Lee J.J., "Adaptive Simulated Annealing Genetic Algorithm for System
Identification", Engineering Applications of Artificial Intelligence, vol. 9, No.5, pp.
523-532, 1996.

[17] Jin, Y., and Sendhoff, B. "Constructing Dynamic Optimization Test Problems Using
the Multi-objective Optimization Concept.", Lecture Notes in Computer Science,
pp. 525 - 536, Springer, 2004.

[18] Lund, H.H. "Adaptive Approaches Towards Better GA Performance in Dynamic
Fitness Landscapes." Technical Report DAIMI PB-487, DAIMI, Aarhus University,
1994.

71

M.Sc. Thesis- B. Dilimulati McMaster - Computing and Software

[19] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs
Springer, Verlag New York, third edition, 1996.

[20] Morrison, R.W. Designing Evolutionary Algorithms for Dynamic Environments,
Springer, 2004.

[21] Morrison, R. W., and DeJong, K. A." A Test Problem Generator for Nonstationary
Environments." Proceedings of Congress on Evolutionary Computation, pp. 2047-
2053, 1999.

[22] Murata, Y., Shibata, N., Yasumoto, K. and Ito, M. "Agent Oriented Self Adaptive
Genetic Algorithm.", Proceedings of lASTED International Conference on
Communications and Computer Networks (CCN2002), pp.348-353, 2002.

[23] Smith, J., and Fogarty, T. C .. "Self Adaptation of Mutation Rates in a Steady State
Genetic Algorithm." ,In Proceedings of the Third IEEE International Conference on
Evolutionary Computing, pp. 318-323. IEEE Press, 1996.

[24] Simoes, A., and Costa, E. "On Biologically Inspired Genetic Operators:
Transformation in the Standard Genetic Algorithm.", Proceedings of the Genetic
and Evolutionary Computation Cenference,GECC0-2001, pp. 584-591, W. B.
Langdon et alli (Eds.) San Francisco, USA, 7-11 July, CA: Morgan Kaufinann
Publishers, 2002.

[25] Simoes, A., and Costa, E. "Parametric Study to Enhance Genetic Algorithm's
Performance when Using Transformation", Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '02), W. B. Langdon et alli (Eds.),
Morgan Kaufinann Publishers, New York, 9-13 July, 2002.

[26] Yuan, B., and Gallagher, M. "A Hybrid Approach to Parameter Tuning in Genetic
Algorithms". In Proceedings of the 2005 Congress on Evolutionary Computation,
IEEE, pp. 1096-1103, Edinburgh, UK, 2005.

[27] Wikipedia, the free encyclopedia, http:/ /en.wikipedia.org/wiki/Genetic _Algorithm,
2006.

[28] rEvolutionary Engineering, http://www.rEvolutionaryEngineering.com, 2006.

72

	Dilimulati_Biekezhati_2006_04_master0001
	Dilimulati_Biekezhati_2006_04_master0002
	Dilimulati_Biekezhati_2006_04_master0003
	Dilimulati_Biekezhati_2006_04_master0004
	Dilimulati_Biekezhati_2006_04_master0005
	Dilimulati_Biekezhati_2006_04_master0006
	Dilimulati_Biekezhati_2006_04_master0007
	Dilimulati_Biekezhati_2006_04_master0008
	Dilimulati_Biekezhati_2006_04_master0009
	Dilimulati_Biekezhati_2006_04_master0010
	Dilimulati_Biekezhati_2006_04_master0011
	Dilimulati_Biekezhati_2006_04_master0012
	Dilimulati_Biekezhati_2006_04_master0013
	Dilimulati_Biekezhati_2006_04_master0014
	Dilimulati_Biekezhati_2006_04_master0015
	Dilimulati_Biekezhati_2006_04_master0016
	Dilimulati_Biekezhati_2006_04_master0017
	Dilimulati_Biekezhati_2006_04_master0018
	Dilimulati_Biekezhati_2006_04_master0019
	Dilimulati_Biekezhati_2006_04_master0020
	Dilimulati_Biekezhati_2006_04_master0021
	Dilimulati_Biekezhati_2006_04_master0022
	Dilimulati_Biekezhati_2006_04_master0023
	Dilimulati_Biekezhati_2006_04_master0024
	Dilimulati_Biekezhati_2006_04_master0025
	Dilimulati_Biekezhati_2006_04_master0026
	Dilimulati_Biekezhati_2006_04_master0027
	Dilimulati_Biekezhati_2006_04_master0028
	Dilimulati_Biekezhati_2006_04_master0029
	Dilimulati_Biekezhati_2006_04_master0030
	Dilimulati_Biekezhati_2006_04_master0031
	Dilimulati_Biekezhati_2006_04_master0032
	Dilimulati_Biekezhati_2006_04_master0033
	Dilimulati_Biekezhati_2006_04_master0034
	Dilimulati_Biekezhati_2006_04_master0035
	Dilimulati_Biekezhati_2006_04_master0036
	Dilimulati_Biekezhati_2006_04_master0037
	Dilimulati_Biekezhati_2006_04_master0038
	Dilimulati_Biekezhati_2006_04_master0039
	Dilimulati_Biekezhati_2006_04_master0040
	Dilimulati_Biekezhati_2006_04_master0041
	Dilimulati_Biekezhati_2006_04_master0042
	Dilimulati_Biekezhati_2006_04_master0043
	Dilimulati_Biekezhati_2006_04_master0044
	Dilimulati_Biekezhati_2006_04_master0045
	Dilimulati_Biekezhati_2006_04_master0046
	Dilimulati_Biekezhati_2006_04_master0047
	Dilimulati_Biekezhati_2006_04_master0048
	Dilimulati_Biekezhati_2006_04_master0049
	Dilimulati_Biekezhati_2006_04_master0050
	Dilimulati_Biekezhati_2006_04_master0051
	Dilimulati_Biekezhati_2006_04_master0052
	Dilimulati_Biekezhati_2006_04_master0053
	Dilimulati_Biekezhati_2006_04_master0054
	Dilimulati_Biekezhati_2006_04_master0055
	Dilimulati_Biekezhati_2006_04_master0056
	Dilimulati_Biekezhati_2006_04_master0057
	Dilimulati_Biekezhati_2006_04_master0058
	Dilimulati_Biekezhati_2006_04_master0059
	Dilimulati_Biekezhati_2006_04_master0060
	Dilimulati_Biekezhati_2006_04_master0061
	Dilimulati_Biekezhati_2006_04_master0062
	Dilimulati_Biekezhati_2006_04_master0063
	Dilimulati_Biekezhati_2006_04_master0064
	Dilimulati_Biekezhati_2006_04_master0065
	Dilimulati_Biekezhati_2006_04_master0066
	Dilimulati_Biekezhati_2006_04_master0067
	Dilimulati_Biekezhati_2006_04_master0068
	Dilimulati_Biekezhati_2006_04_master0069
	Dilimulati_Biekezhati_2006_04_master0070
	Dilimulati_Biekezhati_2006_04_master0071
	Dilimulati_Biekezhati_2006_04_master0072
	Dilimulati_Biekezhati_2006_04_master0073
	Dilimulati_Biekezhati_2006_04_master0074
	Dilimulati_Biekezhati_2006_04_master0075
	Dilimulati_Biekezhati_2006_04_master0076
	Dilimulati_Biekezhati_2006_04_master0077
	Dilimulati_Biekezhati_2006_04_master0078
	Dilimulati_Biekezhati_2006_04_master0079
	Dilimulati_Biekezhati_2006_04_master0080
	Dilimulati_Biekezhati_2006_04_master0081
	Dilimulati_Biekezhati_2006_04_master0082
	Dilimulati_Biekezhati_2006_04_master0083
	Dilimulati_Biekezhati_2006_04_master0084

