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Abstract

Ewens Sampling formula is the sampling distribution for a population assumed to

follow a one parameter Poisson-Dirichlet distribution (PD(θ)), where the parameter

θ is fixed. In this project this assumption will be loosened and we will look at θ as a

function of the sample size n denoted θn = αnβ1(log n)β2 , where α > 0, β1 ≥ 0, β2 ≥ 0.

This will result in sampling from a family of PD(θn) distributions. Estimators for

this new construction will be tested using two different simulation methods.
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Notation and abbreviations

ESF : Ewens Sampling Formula

MLE : Maximum Likelihood Estimator

PD : Poisson-Dirichlet

RMSE : Root Mean Square Error
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Chapter 1

Introduction and Problem

Statement

In population genetics, Warren Ewens (Ewens (1972)) discovered the sampling dis-

tribution for allele frequencies in a neutral population called the Ewens sampling

formula (ESF). This famed formula has many applications. For a great overview see

(Crane (2016)). Ewens sampling formula has one parameter θ, which represents the

population mutation rate. Given a sample of size n, the number of distinct alleles

in the sample, Kn, is approximately the magnitude of log(n) for large n and fixed θ.

The focus of this project is to investigate cases where θ is not fixed. Specifically, we

will be treating θ as a function of n, denoted θn = αnβ1(log(n))β2 . We will also look

at the maximum likelihood estimator (MLE) of θ as well as develop closed form esti-

mators for θ and θn using asymptotic results. Finally, we will compare two methods

of simulation as well as test the performance of our new estimators.
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1.1 Motivation

Asymptotic results have been studied intensively in recent years for large θ (Feng

(2010)). It was shown in (Feng (2010)) that some of these results correspond to a

regime where θ and n are related in a special way. We intend to pursue further along

these lines by focusing on the ESF when θ and n are related.

1.2 Layout

We start with a discussion of the Wright-Fisher model and the infinite dimensional

generalization, the infinitely-many-neutral-alleles model. The ESF arises as the sam-

pling distribution of the equilibrium distribution. Our main focus will be on the

number of components Kn and the parameter θ. To gain a better understanding of θ

we will go through Hoppe’s Urn scheme and then look into the link between ESF and

the Poisson-Dirichlet distribution. Following this, we will look at the MLE and a few

closed form estimators for a fixed θ, before exploring our proposed θn and introducing

estimators for θn. Then, two simulation methods will be introduced and compared.

Finally, we will discuss the results and possible future work.
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Chapter 2

Construction and Background

To motivate our study we start with a review of the Wright-Fisher model developed

by (Wright (1931)) and (Fisher (1930)). This is followed by a discussion the infinitely-

many-neutral-alleles model (Ethier and Kurtz (1981)), Hoppe’s Urn model (Hoppe

(1984)), Dirichlet distribution, and the Poisson-Dirichlet distribution.

2.1 Wright-Fisher Model

Consider a diploid (having a pair of each chromosome) population of finite size N ,

with 2N alleles at any given time. Let the alleles be composed of two types (C1, C2).

Let Xt be the number of alleles of type C1 at time t. Then, Xt can be described as a

discrete time Markov chain with state space (0, ..., 2N) and transition probabilities,

P (Xt+1 = j|Xt = i) =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

(2.1)

This is the Wright-Fisher Model and was introduced independently by both Wright

and Fisher. Clearly, this is akin to binomial sampling with probability p = i
2N

.

3
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The Wright-Fisher model can be generalized to M allelic types by replacing the

binomial sampling with multinomial sampling. For example, if we have M allelle

types then,

P (Xt+1 = (j1, ..., jM)|Xt = (i1, ..., iM)) =

(
2N !

j1!, · · · , jM !

)(
i1

2N

)j1
· · ·
(
iM
2N

)jM
(2.2)

This model does not take into account selection, mutation, population subdivision,

two sexes, or any other additional effect. Note that the total number of alleles stays

fixed at 2N and the number of different allele types is fixed at M . Now let us consider,

the case where each allele has mutation rate µ and there are an infinite number of

possible alleles. The key notion here is that every mutation results in a new allelic

type that has yet to be seen.

So, at generation t we have Xi genes of allelic type Ci, then in generation t + 1

we will have Yi genes of allelic type Ci plus Y0 new distinct mutant genes. If our

mutation rate is µ then from (Ewens (2004)) we have,

Prob {Y0, Y1, Y2, ...|X1, X2, ...} =
(2N)!

ΠYi!
Ππi

Yi (2.3)

Where, π0 = µ and πi = Xi(1− µ)/(2N)

Now, the issue with this model is that there is no reverse mutation (mutating to

a new allelic type and then returning back to the old type), so each allelic type

will eventually vanish from the population. Therefore, there can exist no nontrivial

stationary distribution for the frequency of any allele (Ewens (2004)). However, let

us consider a delabeled configuration, where we ignore the specific type of allele

and only focus on how many there are of each type. This delabeled configuration

4
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is {a1, a2, a3, ...} where a1 is the number of genes of one type, a2 is the number of

genes of another type, and so on. The total possible number of configurations for a

population N can be written down as p(2N) where p is the partition function, which

represents the total number of possible partitions of a natural number.

Now, using this delabled configuration (Ewens (1972)) developed an approximat-

ing partition probability formula for a sample of size n. For more on the biological

construction refer to (Ewens (2004)).

When N is large and µ is small in such a way that Nµ is fixed, the Wright-Fisher

model can be approximated by the Wright-Fisher diffusion. The finite dimensional

Wright-Fisher diffusion has an infinite dimensional approximation, the infinitely-

many-neutral-alleles model, through appropriate scaling and ordering (Ethier and

Kurtz (1981)).

2.2 Dirichlet and Poisson-Dirichlet Distributions

The Wright-Fisher diffusion and the infinitely-many-neutral-alleles model are re-

versible diffusions with respective reversible measure, the Dirichlet distribution and

the one-parameter Poisson-Dirichlet distribution (Kingman (1975)).

The Dirichlet distribution has probability density function given by,

f (x1, · · · , xM |φ1, · · · , φM) =
1

B(φ)

M∏
i=1

xφi−1i ,

5
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where φi > 0 for any i and,

B(φ) =

∏M
i=1 Γ(φi)

Γ
(∑M

i=1 φi

) , φ = {φ1, ..., φM}

which is called the beta function.

The support is, 0 < xi < 1 for any 1 < i < M and
∑M

i=1 xi = 1 and although it

has M variables it exists on the (M-1)-dimensional simplex. This is because if you

know M-1 of the variables you know them all since xM = 1 − x1 − · · · − xM−1. For

more on the Dirichlet distribution refer to (Kotz et al. (2000)).

Now if we set φ = φ1 = φ2 = · · · = φM we end up with the symmetric Dirichlet

distribution. If we let M →∞ and φ→ 0 in such a way that limM→∞Mφ = θ, then

order xi such that,

{
(x1, x2, ...) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}

we end up with the PD(θ).

2.3 Ewens Sampling Formula

Taking a random sample of size n from a population with the frequency distribution

PD(θ). For each i = (1, .., n) let Ai denote the number of alleles that appear in the

sample i times. The vector A = (A1, .., An) is the random allelic partition of the

sample.

ESF gives the distribution of A as follows

6
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Pn[A = a] =
n!

θ(n)

n∏
i=1

(
θ

i

)ai 1

ai!
I

{
n∑
i=1

iai = n

}
(2.4)

where a = (a1, ..., an) is the given allelic partition and θ(n) = θ×(θ+1)×· · ·×(θ+n−1)

is the rising factorial.

2.4 Number of components Kn

The number of distinct alleles in the sample is the random variable Kn where Kn =∑n
i=1Ai. For any 1 ≤ k ≤ n it is known (Ewens (1972))

P [Kn = k] = |s(n, k)| θ
k

θ(n)
(2.5)

where |s(n, k)| is the unsigned Stirling number of the first kind, with value correspond-

ing to the coefficient of θk in the expanded θ(n). The expected value and variance are

given below (Ewens (2004))

E[Kn] =
n∑
j=1

θ

θ + j − 1
(2.6)

var[Kn] = θ
n∑
j=1

j − 1

(θ + j − 1)2
. (2.7)

These results can be derived directly from (2.3), or by using Hoppe’s urn below.

7
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2.5 Hoppe’s Urn

Consider an urn containing one black ball of mass θ. Select a ball from the urn, if

it is black return it along with a ball of a brand new colour. If it is not the black

ball, return the ball along with another ball of the same colour with mass one. Stop

when you have n non-black balls and label them 1, 2, .., K̃n, where K̃n represents the

balls colour. Now, let Ãi represent the number of colours that appear i times. Then,

Ã = (Ã1, ..., Ãn) will have the same distribution as A above.

Proposition (Ewens (2004)): The number of distinct alleles Kn is a sufficient statis-

tic for θ.

Proof :

P (A = a|Kn = k) =
P (A = a)

P (Kn = k)

=

n!
(θ)n

∏n
i=1

(
θ
i

)ai 1
ai!

|s(n, k)| θk
(θ)n

=
n!

|s(n, k)|
θ
∑n
j=1 aj

θk

n∏
i=1

1

iaiai!

=
n!

|s(n, k)|

n∏
i=1

1

iaiai!
�

This does not depend on θ. Therefore, the number of alleles Kn is a sufficient statistic

for the mutation parameter θ. So, any information about θ can be inferred solely by

k. Now, we return to the urn model with a focus on Kn.

Let, Kn be the number of different colored balls in the urn. After each draw, the

population n will increase by 1 regardless of what colour ball is obtained. So on the

8
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jth draw, let

ξj =

1, Black ball drawn

0, Black ball not drawn

On the first draw there is only the black ball, so ξ1 ≡ 1.

For the subsequent draws j > 1,

ξj =

1, θ
θ+j−1

0, j−1
θ+j−1

This is equivalent to saying that each ξj is a Bernoulli random variable with probabil-

ity θ
θ+j−1 . Now, they are not identical but they are independent since the probability

of drawing the black ball on the jth draw will remain the same regardless of how

many times it was drawn before.

Knowing that each time a black ball is drawn the value of Kn increases by one we

can see that,

Kn = ξ1 + ...+ ξn, (2.8)

9
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and by taking the expected value we get,

E[Kn] =E[ξ1 + ...+ ξn]

=E[ξ1] + ...+ E[ξn]

=1 + ...+
θ

θ + n− 1

=1 +
n∑
i=2

θ

θ + i− 1

=
n∑
i=1

θ

θ + i− 1

Now, if instead of counting k we calculate xk the frequency of each colour, so that∑n
k=1 xk = 1 and instead of stopping after n draws we just keep going, eventually

we end up with an infinite number of frequencies {x1, x2, ...}. Now, if we order these

points in descending order they can be described by the one parameter Poisson-

Dirichlet distribution.

10



Chapter 3

Estimating θ

3.1 Maximum Likelihood Estimator

The MLE is found by maximizing the log-likelihood as a function of its parameter.

In our case, since we know that Kn is a sufficient statistic for θ we will find the MLE

using the probability mass function of Kn.

P [Kn = k] = |s(n, k)| θ
k

θ(n)

The Likelihood of θ is,

L(θ|k) = |s(n, k)| θ
k

θ(n)

The log likelihood is, (here and below log is the natural logarithm)

l(θ|k) = log |s(n, k)|+ k log (θ)− log (θ(n))

11
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Taking the derivative with respect to θ we get,

dl

dθ
=
k

θ
− 1

θ(n)
dθ(n)

dθ

where, dθ(n)

dθ
= θ(n) (ψ(θ + n)− ψ(θ)) and (ψ(θ + n)− ψ(θ)) =

∑n−1
j=0

1
θ+j

(see A.3)

Setting equal to zero we get,

k =
n∑
j=1

θ̃

θ̃ + j − 1

The solution to this is the MLE for θ. We validate this by showing that the informa-

tion at the MLE is greater than 0.

− d
2l

dθ̃2
=

k

θ̃2
−

n∑
i=1

1

(θ̃ + i− 1)2

=

∑n
i=1

θ̃
θ̃+i−1

θ̃2
−

n∑
i=1

1

(θ̃ + i− 1)2

=
n∑
i=1

1

θ̃(θ̃ + i− 1)
−

n∑
i=1

1

(θ̃ + i− 1)2

> 0

This is valid since for any i > 1, the first term is larger than the second and at i = 1

the two terms are equal.

The mean square error (MSE) can be approximated for the MLE (Ewens (2004)).

12
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Let us denote f(x) =
∑n

i=1
x

x+i−1 , f ′(x) =
∑n

j=1
i−1

(x+i−1)2 . Then,

Kn − E[Kn] = f(θ̃)− f(θ)

Using first-order Taylor approximations for the right hand we get,

f(θ̃)− f(θ)

≈ f ′(a)(θ̃ − a)− f ′(a)(θ − a)

= (θ̃ − θ)f ′(a)

letting a = θ we get Kn − E[Kn] ≈ (θ̃ − θ)f ′(θ). Now,

E[(θ̃ − θ)2] ≈ E [(Kn − E[Kn])2]

f ′(θ)2

→MSE(θ̃) ≈ var[Kn]

f ′(θ)2

From (2.3) we have that,

var[Kn]

f ′(θ)2
=

θ
∑n

i=1
i−1

(θ+i−1)2(∑n
i=1

i−1
(θ+i−1)2

)2 =
θ∑n

i=1
i−1

(θ+i−1)2

Therefore,

MSE(θ̃) ≈ θ∑n
i=1

i−1
(i+θ−1)2

. (3.1)

Please refer to (Ewens (2004)) for more details.

13
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3.2 Closed Form Estimators

The MLE has no closed form solution. However, some closed form estimators can be

constructed using asymptotic approximations of E[Kn].

E[Kn] can be approximated by the integrals,

n∑
i=1

θ

θ + i− 1
≥θ
∫ n−1

0

1

θ + x
dx

=θ

∫ n+θ−1

θ

1

y
dy

=θ (log(n+ θ − 1)− log(θ))

≈θ
(

log(1 +
n

θ
)
)

and

n∑
i=1

θ

θ + i− 1
≤1 + θ

∫ n+θ−1

θ

1

y
dy

≤1 + θ
(

log(1 +
n

θ
)
)

Now, for n large, both integrals will resemble θ (log(n)).

This results in the simple consistent estimator,

θ̂ =
k

log(n)
(3.2)

The problem is that if k is significantly larger than log(n), θ̂ is far from the MLE.

14
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For extreme cases where k is very close to n let us look at the following,

E

[
1− k

n

]
= 1− 1

n
E[k]

= 1− 1

n

n∑
j=1

θ

θ + j − 1

≤ 1− θ

n

(
log(1 +

n

θ
)
)

= 1− θ

n

(
n

θ
− n2

2θ2
+ o(

n3

θ3
)

)
=

n

2θ
+ o(

n2

θ2
)

≈ n

2θ
for θ > n

Remark: The Above calculation will work for any θ > n, however the bigger θ is in

comparison to n the faster it will converge.

So, I propose the estimator.

ˆ̂
θ =

n2

2(n− k)
(3.3)

Remark: This estimator requires k to be very close to n but not equal to n.

Another estimator, which tries to combine θ̂ and
ˆ̂
θ is,

θ∗ =
nk

(n− k) log(n)
(3.4)

This estimator will look like k/ log(n) for small k while it will look like a tempered

version of
ˆ̂
θ for k close to n.

I plotted this estimator vs the MLE below.

15
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Figure 3.1: MLE vs θ∗

Based on this graph I believe that there should be another term, so I propose,

θ∗∗ =
nk

(n− k) (log(n)− log(log(n)))
(3.5)

which is plotted against the MLE below in Figure 3.2,

16
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Figure 3.2: MLE vs θ∗∗
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Chapter 4

θ as a funciton of n

If we consider θ as fixed then we know that Kn ≈ log (n). However, if we see a

sample where this is not the case, then the assumption that θ is fixed may not be

valid. For these cases I propose treating θ as a function of n in the following way.

θn = αnβ1(log(n))β2 .

4.1 Construction

We will look at the two following cases,

Case 1: β1 = 1− β2, β2 > 0

θn = αnβ1(log(n))1−β1 (4.1)

Case 2: β2 = 0

θn = αnβ1 (4.2)

18
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We will now approximate E[Kn] given θ = θn.

For β1 < 1, β2 <
(1−β1) log(n)−log(α)

log(log(n))

E[Kn] =
n∑
j=1

θ

θ + j − 1

≥ θ
(

log(1 +
n

θ
)
)

= θ log
(n
θ

)
+ θ

(
log(1 +

θ

n
)

)
= αnβ1(log(n))β2

[
log

(
n

αnβ1(log(n))β2

)
+ log

(
1 +

αnβ1(log(n))β2

n

)]
= αnβ1(log(n))β2

[
log

(
n1−β1

α(log(n))β2

)
+ log

(
1 +

α(log(n))β2

n1−β1

)]
= αnβ1(log(n))β2 [(1− β1) log (n)− β2 log(log(n))] +O(nβ1−1)

when n is large and similarly,

E[Kn] =
n∑
j=1

θ

θ + j − 1

≤ 1 + θ
(

log(1 +
n

θ
)
)

= αnβ1(log(n))β2 [(1− β1) log (n)− β2 log(log(n))] +O(nβ1−1)

this result is obtained using the asymptotic expansion of log(1 + x) at x = 0

(see A.4).
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For β1 = 1, β2 = 0

E

[
Kn

n

]
=

1

n

n∑
j=1

θ

θ + j − 1

=
n−1∑
j=0

α

αn+ j

using integral approximations and assuming n large (see A.5)

≈ α[log(αn+ n)− log(αn)]

= α[log(α + 1) + log(n)− log(α)− log(n)]

= α [log(α + 1)− log(α)]

= α log

(
1 +

1

α

)

4.2 Estimators

Let kn denote the observed value of Kn in a sample of size n.

For 0 ≤ β1 < 1, β2 <
(1−β1) log(n)−log(α)

log(log(n))
I propose the estimator,

θ̂n =
kn

(1− β1) log(n)− β2 log(log(n))
(4.3)

For β1 = 1, β2 = 0 I propose the solution to

kn
n

= ˆ̂α log

(
1 +

1

ˆ̂α

)
ˆ̂
θn = ˆ̂αn

This is not a closed form solution, so let us use the asymptotic expansion of log(1+x)
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once again. For (α > 1),

kn
n
≈ ˆ̂α log

(
1 +

1

ˆ̂α

)
≈ ˆ̂α

(
1

ˆ̂α
− 1

2(ˆ̂α)2
+

1

3(ˆ̂α)3
− o( ˆ̂α4)

)

≈ 1− 1

2(ˆ̂α)
+

1

3(ˆ̂α)2

⇒ 6

(
1− kn

n

)
( ˆ̂α)2 − 3ˆ̂α + 2 = 0

⇒ ˆ̂α =
3±

√
9− 48(1− kn

n
)

12(1− kn
n

)

=
3±

√
48kn

n
− 39

12(1− kn
n

)

Now, for the solution to be real, kn ≥ 13n
16

. For positive solutions there are two cases.

Case 1

3−
√

48
kn
n
− 39 ≥ 0

→
√

48
kn
n
− 39 ≤ 3

→ kn ≤ n

which will always be true and,

Case 2

3 +

√
48
kn
n
− 39 ≥ 0

which is always true for real solutions.
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Therefore,

ˆ̂α =


No real solution kn <

13n
16

3±
√

48 kn
n
−39

12(1− kn
n

)

13n
16
≤ kn < n

∞ kn = n

(4.4)

and,

ˆ̂
θn = ˆ̂α log(n) (4.5)

For the case when β1 > 1, and β2 > 0 it is suitable to use the estimator
ˆ̂
θ since θ will

be larger than n.

4.3 Approximating α, β1

Using R, we can find a solution to the MLE for a given k and n. We can then examine

the shape of θ̃ as n grows for different values of k. This is shown in the plots below.
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Figure 4.1: Shape of θ for different kn

Clearly, we can see that for different k the shape of θ changes. Now, using least
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squares regression I will fit θn = αnβ1(log(n))1−β1 ,

θn = αnβ1(log(n))1−β1

⇒ log(θn) = β1(log(n)− log(log(n))) + log(α) + log(log(n))

Let y = log(θn), β0 = log(α) + log(n) and, xn = log(n)− log(log(n))

⇒ y = β1xn + β0

Remark: We see that α = eβ0
log(n)

is a function of log(n). So, we can rewrite θn as,

θn = eβ0
(

n

log(n)

)β1

so I will record the β1’s and βo’s in the following table.

Table 4.1: Regression Results for Case 1

kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

β1 -0.16 0.02 0.46 1.17 2.33

β0 -1.16 -0.21 -0.46 0.15 1.46

R2 0.99 0.95 1 1 1

The results in this table were generated using the lm function in R.
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Here are the plots showing the MLE vs the fitted θn’s,

Figure 4.2: Least square approximations for θn

4.3.1 θn = αnβ

For our second case we have,

log(θ) = log(α) + β log(n)

Let log(θ) = y, and log(n) = xn and log(α) = β0

⇒ y = βxn + β0

This time we can directly record the α′s
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Table 4.2: Regression Results for Case 2

kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

β -0.13 0.018 0.39 1.00 2.00

α 0.36 0.79 0.41 0.39 0.48

R2 0.99 0.96 1 1 1

Notice that as expected β ≈ 0 when kn = log(n). However, this is the only case

where this occurs, which validates our proposition that θ should be a function of n.

Another interesting thing to note, is that when kn = n/2 we get β = 1, this implies

that if kn = n/2, θ has a linear relationship with n.
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Chapter 5

Simulations and Results

I simulated an observed kn given n and a true fixed value θ

5.1 Method 1: Hoppe’s Urn method

As seen in Chapter 2 (Equation 2.8), Kn can be constructed with the sum of n

Bernoulli random variables. This is a very straightforward method as R can generate

these random variables directly. This method generates kn, to generate the full allelic

partition a second method must be considered.
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5.2 Method 2: Symmetric Dirichlet(K,φ)

A sample of size n with φ > 0 from an M−dimensional symmetric Dirichlet(φ,...,φ)

follows (Feng (2007))

P (An = (a1, ..., an)) =
n!

θ(n)
φsΓ(M + 1)

Γ(M − k + 1)

n∏
j=1

(
Γ(j + φ)

Γ(j + 1)Γ(φ+ 1)

)aj 1

aj

with θ = Mφ and s =
∑n

i=1 ai. When M → ∞ and φ → 0 in such a way that θ is

fixed we get ESF. Computationally we can not let M → ∞ but if we take M large

enough we will get a reasonable approximation of the ESF.

To generate x= (x1, ..., xK) from a Dirichlet(K,φ), let y= (y1, ..., yK), where

Yi ∼Gamma( θ
K
, 1). Now, set xi = yi∑K

j=1 yj
and we are left with the desired result.

To sample from this distribution we will do the following.

• Generate b= (b1, ..., bn) where bi ∼ Uniform(0, 1).

• Create, z= (0, z1, ..., zM) where zi =
∑i

j=1 xj.

• Draw from z using b. For example, if 0 < b1 < z1 it is considered selecting

allele of type 1 from the population, whereas if z5 < b1 < z6 it is considered

selecting an allele of type 6 from the population.

• Finally, count the number of distinct alleles chosen in your sample. This will

be your simulated kn.

Remark: This method can also be used to generate the allelic partition for ESF.
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5.3 Tables

First, let us go over the metrics used in the following tables. Let θ̄ be any estimator.

I calculated the mean of 100
(
θ̄/θ − 1

)
, so the closer to 0 the better.

I calculated 1000 times the variance of
(
θ̄/θ
)
, so again the closer to 0 the better.

Finally, I calculated 100 times the square root of the mean squared error (RMSE)

of θ̂/θ, given by,

 1

m

m∑
i=1

(Xi − 1)2 +
1

n− 1

m∑
i=1

(
Xi −

1

n

m∑
i=1

Xi

)2
 1

2

Where m is the number of iterations and Xi is the value of θ̂/θ at iteration i. The

closer the RMSE is to 0 the better the estimator.

In Method 1 I ran 1000 repetitions for each case. This ran quickly, taking less

than an hour.

In Method 2, for each case I generated a Dirichlet distribution and sampled from

it 100 times. I then repeated this process 10 times to get 1000 k values, the total

time it took was around 13 hours.

Remark: When kn = n, the value of kn will be replaced with kn∗ = kn − 1. The

number of times this occurs will be counted and the higher the count the more skewed

the results. Since the MLE, θ∗, θ∗∗,
ˆ̂
θn and

ˆ̂
θ go to infinity when kn = n.
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5.3.1 Simulation Method 1

Table 5.1: n=50

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.08,-0.16,1.16,0.21) Mean 7 130 204 141 270 NA 12360 0

k̄ = 1.9 Variance 1479 1276 2235 1562 3681 NA 5974 0

RMSE 138 221 312 238 399 NA 14457 0

(0.21,0.02,0.98,0.85) Mean 7 23 93 36 109 NA 3098 0

k̄ = 4.1 Variance 427 229 561 335 791 NA 1283 0

RMSE 92 91 167 107 189 NA 3648 0

(0.16,0.46,0.54,2.04) Mean 2 -12 151 5 61 NA 1331 0

k̄ = 7.0 Variance 229 71 573 136 322 NA 522 0

RMSE 78 61 227 73 127 NA 1587 0

(0.30,1.17,-0.17,22.9) Mean 4 -70 -370 -33 3 NA 140 0

k̄ = 26.8 Variance 115 1 109 35 83 NA 135 0

RMSE 71 72 406 55 68 NA 205 0

(1.10,2.33,-1.33,1631) Mean -33 -99 -101 -65 -46 -100 -30 474

k̄ = 48.8 Variance 21 0 0 6 14 0 22 474

RMSE 54 99 101 69 58 100 54 474
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Table 5.2: n=100

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.07,-0.16,1.16,0.19) Mean 5 119 183 125 236 NA 26517 0

k̄ = 1.9 Variance 1262 1181 1965 1302 2915 NA 6904 0

RMSE 116 173 244 181 307 NA 27581 0

(0.18,0.02,0.98,0.86) Mean 4 19 81 26 88 NA 5989 0

k̄ = 4.7 Variance 328 200 465 246 550 NA 1304 0

RMSE 65 59 118 66 127 NA 6236 0

(0.14,0.46,0.54,2.6) Mean 3 -16 134 -5 42 NA 2040 0

k̄ = 10.1 Variance 170 54 414 85 191 NA 452 0

RMSE 51 37 162 40 73 49 2131 0

(0.25,1.17,-0.17,42.6) Mean 3 -74 -333 -44 -16 NA 146 0

k̄ = 51.9 Variance 46 1 39 10 23 NA 54 0

RMSE 36 74 340 48 33 NA 164 0

(0.94,2.33,-1.33,5607) Mean -23 -100 -100 -66 -49 -100 -21 415

k̄ = 98.7 Variance 42 0 0 8 18 0 42 415

RMSE 38 100 100 68 53 100 37 415
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Table 5.3: n=500

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.05,-0.16,1.16,0.16) Mean 1 108 154 109 196 NA 100000 0

k̄ = 2.0 Variance 974 971 1447 990 1986 NA 9560 0

RMSE 99 146 195 148 241 NA 100000 0

(0.13,0.02,0.98,0.88) Mean 1 12 62 14 61 NA 28504 0

k̄ = 6.2 Variance 244 171 356 180 361 NA 1738 0

RMSE 50 43 86 45 86 NA 28518 0

(0.10,0.46,0.54,4.75) Mean 0 -23 101 -19 14 NA 5412 0

k̄ = 22.6 Variance 61 21 146 26 51 NA 248 0

RMSE 25 28 108 25 27 NA 5415 0

(0.19,1.17,-0.17,197.1) Mean 1 -80 -270 -59 -42 NA 154 0

k̄ = 249.6 Variance 9 0 5 1 2 NA 11 0

RMSE 10 80 270 59 43 NA 154 0

(0.69,2.33,-1.33,118581) Mean -10 -100 -100 -71 -59 -100 -10 353

k̄ = 498.6 Variance 70 0 0 7 15 0 70 353

RMSE 29 100 100 72 60 100 28 353
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Table 5.4: n=1000

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.05,-0.16,1.16,0.14) Mean -1 101 144 104 184 NA 100000 0

k̄ = 2.0 Variance 1045 1053 1509 1064 2051 NA 12689 0

RMSE 102 146 189 147 233 NA 100000 0

(0.12,0.02,0.98,0.90) Mean 1 10 56 11 54 NA 56126 0

k̄ = 6.8 Variance 188 137 275 141 272 NA 1685 0

RMSE 43 38 77 39 75 NA 56126 0

(0.09,0.46,0.54,6.22) Mean 0 -25 92 -23 7 NA 8199 0

k̄ = 32.1 Variance 37 13 85 15 28 NA 175 0

RMSE 19 28 96 26 18 NA 8199 0

(0.17,1.17,-0.17,391.9) Mean 0 -82 -250 -63 -49 NA 154 0

k̄ = 496.7 Variance 5 0 2 0 1 0 6 0

RMSE 7 82 250 64 49 NA 154 0

(0.62,2.33,-1.33,466031) Mean -9 -100 -100 -74 63 -100 -9 339

k̄ = 998.6 Variance 73 0 0 6 12 0 74 339

RMSE 29 100 100 74 64 100 29 339
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5.3.2 Simulation Method 2

Table 5.5: n=50

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.08,-0.16,1.16,0.21) Mean -6 119 190 128 251 NA 12335 0

k̄ = 1.8 Variance 223 212 372 252 593 NA 962 0

RMSE 81 132 203 142 266 NA 12400 0

(0.21,0.02,0.98,0.85) Mean -10 10 73 21 85 NA 3067 0

k̄ = 3.7 Variance 92 55 135 77 182 NA 295 0

RMSE 55 42 91 51 104 NA 3084 0

(0.16,0.46,0.54,2.04) Mean -10 -19 131 -5 46 NA 1312 0

k̄ = 6.5 Variance 70 22 180 42 99 NA 161 0

RMSE 45 32 140 35 61 NA 1320 0

(0.30,1.17,-0.17,22.9) Mean -2 -71 -364 -36 -3 NA 133 0

k̄ = 26.1 Variance 68 1 73 21 50 NA 81 0

RMSE 32 71 366 40 28 NA 138 0

(1.10,2.33,-1.33,1631) Mean -34 -99 -101 -65 -47 -100 -31 482

k̄ = 48.8 Variance 23 0 0 6 15 0 24 482

RMSE 38 99 101 66 48 100 35 482
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Table 5.6: n=100

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.07,-0.16,1.16,0.19) Mean -32 84 138 88 181 NA 26433 0

k̄ = 1.6 Variance 148 151 251 163 366 NA 867 0

RMSE 67 93 147 97 191 NA 26433 0

(0.18,0.02,0.98,0.86) Mean -2 13 72 19 78 NA 5975 0

k̄ = 4.5 Variance 69 42 97 51 115 NA 273 0

RMSE 55 45 92 51 98 NA 5975 0

(0.14,0.46,0.54,2.6) Mean 13 -11 148 1 52 NA 2056 0

k̄ = 10.7 Variance 48 14 107 23 51 NA 121 0

RMSE 44 27 152 31 60 NA 2056 0

(0.25,1.17,-0.17,42.6) Mean 1 -74 -331 -45 -18 NA 144 0

k̄ = 51.5 Variance 37 0 31 8 18 NA 43 0

RMSE 22 74 332 46 23 NA 146 0

(0.94,2.33,-1.33,5607) Mean -24 -100 -100 -66 -50 -100 -22 405

k̄ = 98.7 Variance 42 0 0 8 18 0 43 405

RMSE 31 100 100 67 51 100 30 405
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Table 5.7: n=500

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.05,-0.16,1.16,0.16) Mean -26 81 121 82 158 NA 100000 0

k̄ = 1.8 Variance 38 39 57 39 79 NA 379 0

RMSE 63 86 125 87 161 NA 100000 0

(0.13,0.02,0.98,0.88) Mean 31 37 98 39 97 NA 28583 0

k̄ = 7.5 Variance 42 27 56 29 58 NA 277 0

RMSE 53 48 103 50 103 NA 28677 0

(0.10,0.46,0.54,4.75) Mean -2 -25 97 -21 11 NA 5406 0

k̄ = 22.2 Variance 10 3 24 4 8 NA 40 0

RMSE 22 27 100 24 23 NA 5425 0

(0.19,1.17,-0.17,197.1) Mean -1 -80 -269 -60 -43 NA 152 0

k̄ = 250.8 Variance 6 0 3 1 1 NA 7 0

RMSE 12 80 269 60 43 NA 154 0

(0.69,2.33,-1.33,118581) Mean -38 -100 -100 -80 -72 -100 -37 106

k̄ = 497.6 Variance 113 0 0 12 24 0 114 106

RMSE 51 100 100 81 73 100 51 106
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Table 5.8: n=1000

(α, β1, β2, θ) Criteria θ̃ θ̂ θ̂n θ∗ θ∗∗
ˆ̂
θn

ˆ̂
θ n = kn

(0.05,-0.16,1.16,0.14) Mean -12 92 130 93 167 NA 100000 0

k̄ = 1.9 Variance 97 97 139 98 188 NA 1166 0

RMSE 106 103 139 104 176 NA 100000 0

(0.12,0.02,0.98,0.90) Mean 5 14 62 15 60 NA 56139 0

k̄ = 7.1 Variance 24 17 34 18 34 NA 211 0

RMSE 37 33 68 34 66 NA 56372 0

(0.09,0.46,0.54,6.22) Mean -3 -27 87 -24 4 NA 8192 0

k̄ = 31.3 Variance 7 3 17 3 6 NA 35 0

RMSE 19 29 90 27 17 NA 8227 0

(0.17,1.17,-0.17,391.9) Mean -1 -82 -249 -64 -50 NA 153 0

k̄ = 494.6 Variance 3 0 1 0 1 NA 4 0

RMSE 11 82 250 64 50 NA 155 0

(0.62,2.33,-1.33,466031) Mean -78 -100 -100 -94 -91 -100 -77 2

k̄ = 994.1 Variance 23 0 0 2 4 0 23 2

RMSE 79 100 100 94 91 100 79 2
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Chapter 6

Discussion

6.1 Simulation Results

6.1.1 Simulation Method Comparison

In tables 5.1,5.2,5.3 and 5.4 I used the Hoppe’s Urn simulation method, while in

tables 5.5,5.6,5.7 and 5.8 I used the Dirichlet simulation method. To compare the

two methods we will examine the returned value k and the variance of Kn. The

percentage error will be used to determine how close the simulated values of kn are

to the theoretical values. Let R be the percentage error calculated by,

R = 100×
∣∣∣∣simulated value− theoretical value

theoretical value

∣∣∣∣
The value of R is given by the following table

38



M.Sc. Thesis - Benedict Min-Oo McMaster - Statistics

Table 6.1: Simulation Method Comparison using kn

Method 1 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 5.26 4.58 1.02 6.72 0.41

n=100 5.26 2.02 0.99 3.66 0.30

n=500 0.00 0.24 1.06 0.16 0.08

n=1000 0.00 1.58 1.49 0.66 0.04

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 11.11 5.73 8.79 4.21 0.41

n=100 25.00 2.34 6.54 2.91 0.30

n=500 11.11 17.14 0.72 0.32 0.28

n=1000 5.26 2.71 1.03 1.09 0.49

In Table 6.1 above, we can see that for method 1 the simulation remains within

7% of the theoretical values across the board. While in method 2 there continues to

be errors over 10% until we reach n = 1000. This indicates that the mean of our

simulated kn lies closer to the theoretical value when using method 1.

We will now look at the variance of Kn under both methods. Now, I did not

directly calculate the variance of Kn. However, by looking at 1000 times the vari-

ance of θ̂
θ

they can be inferred. Remember that θ̂ = kn
log(n)

and θ is given. So,

var[θ̂/θ] =var[Kn]/θ log(n).
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Table 6.2: Variance of θ̂/θ times 1000 under both Simulation Methods

Method 1 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 1276 229 71 1 0

n=100 1181 200 54 1 0

n=500 971 171 21 0 0

n=1000 1053 137 13 0 0

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 212 55 22 1 0

n=100 151 42 14 0 0

n=500 39 27 3 0 0

n=1000 97 17 3 0 0

In Table 6.2 above, we can clearly see that the variance in method 2 is significantly

lower than in method 1. However, despite the larger variance, method 1 does provide

closer results in under 1/10th the time. Therefore, method 1 is recommended when

simulating kn.

6.1.2 Estimator Comparison

Since simulation method 1 was shown to be the more effective method, the estimators

will be judged based solely on the results of the method 1 simulations.

We will begin by looking at the estimator
ˆ̂
θn.
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Table 6.3: RMSE of θii times 100

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 NA NA NA NA 100

n=100 NA NA NA NA 100

n=500 NA NA NA NA 100

n=1000 NA NA NA NA 100

The value NA indicates that there is no real solution. Remember that
ˆ̂
θn has

no real values for kn < 13n/16. In the simulation, if at any iteration kn < 13n/16

the result would be NA. Also, remember that this estimator was designed for cases

where β1 = 1 and α > 1. This case never occurred in our simulations, therefore the

performance of
ˆ̂
θn should not be judged based on these results.

Now, let us look at θ̂n.

Table 6.4: RMSE of θ̂n times 100

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 312 167 227 406 101

n=100 244 118 162 340 100

n=500 195 86 108 270 100

n=1000 189 77 96 250 100

These results are considered poor since any estimator with an RMSE value above
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100 is considered a poor estimator. However, we can see that as n increases the

estimator improves across the board.

Remember that in our construction β2 = 1−β1, so the approximation to E[Kn] is

controlled by
(

log(n)
n

)1−β1
. Therefore, the smaller the β1 the better, hence the better

performance of kn = log(n) where β1 ≈ 0.

There is another problem, when constructing this estimator there was a −log(α)

that we ignored since its effect becomes negligible for large n. Of course, our largest

n is only 1000 and our α < 1.2 throughout, especially for the kn = 2 case where

α < 0.1. Therefore, this log(α) may have a significant influence when dealing with

small n. While for very large n this estimator may be valid, it still cannot compete

with the MLE under these circumstances.

Now, let us examine the estimators θ∗ and θ∗∗.

Table 6.5: RMSE of (θ∗, θ∗∗) times 100

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 (238,399) (107,189) (73,127) (55,68) (69,58)

n=100 (181,307) (66,127) (40,73) (48,33) (68,53)

n=500 (148,241) (45,86) (25,27) (59,43) (72,60)

n=1000 (147,233) (39,75) (26, 18) (64,49) (74,64)

In bold are the times where the estimator was an improvement on the MLE. We

can see that when kn =
√
n one of our estimators always outperforms the MLE. For

kn = log(n), θ∗ performs well for larger values of n and improves as n grows. In the
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kn = n/2 case, θ∗ performs well for low values of n but does not improve as n grows.

We can also see that in the kn =
√
n case as n grows larger, θ∗∗ begins to outperform

θ∗.

Now, let us look at our final estimator
ˆ̂
θ.

Table 6.6: RMSE of
ˆ̂
θ times 100

Method 2 kn = 2 kn = log(n) kn =
√
n kn = n/2 kn = n− 1

n=50 > 1000 > 1000 > 1000 205 54

n=100 > 1000 > 1000 > 1000 164 37

n=500 > 1000 > 1000 > 1000 154 28

n=1000 > 1000 > 1000 > 1000 154 29

Here, we can see that this estimator is only reasonable in the extreme case of

kn = n − 1. In fact, by looking at Tables 5.1,5.2,5.3, and 5.4 we can see that
ˆ̂
θ and

the MLE are almost identical when kn ≈ n − 1 for every value of n. Therefore, for

this extreme case
ˆ̂
θ could be used in place of the MLE.

6.2 Conclusion

In this thesis, the mutation parameter of Ewens Sampling Formula was discussed.

Asymptotic approximations to the MLE were explored, and as a result closed form

estimators were introduced. The parameter θn = αnβ1(log n)1−β1 was proposed for

cases where θ may not be fixed. α, and β1 were approximated for several cases,
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by using least squares regression to fit θn against the MLE. It was established that

in a sample where k ≥
√
n, θ should not be assumed to be fixed. Two simulation

techniques were carried out, one that only simulated an observed value k, and one

that simulated the allelic partition of ESF. These two methods were compared by

calculating the percentage error between the theoretical and simulated values of k.

The MLE was also compared against the new estimators using these simulations. The

results indicate that method 1 achieves values closer to the theoretical values while

running 10 times faster. Our two closed form estimators θ∗ and θ∗∗ were also found

to perform as well or better than the MLE when k ≈
√
n.

6.3 Future Work

As for future work, one could look more closely at the case where β1 and β2 do not

have a relationship. One could also construct and simulate ESF using truncated

stick breaking methods, which was not discussed. The estimators θ∗ and θ∗∗ could

be further explored, to identify when exactly to use each one. Other regimes of Kn

could be explored. Finally, one could look at alternate constructions of θn.
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Appendix A

Your Appendix

A.1 Gamma Function

The Gamma function is defined by

Γ(n) = (n− 1)!, for positive integer n

Γ(t) =

∫ ∞
0

xt−1e−x dx, in general

where n! = n× (n− 1)× (n− 2)× · · · × 1

A.2 Digamma Function

The Digamma function is defined by

ψ(x) =
d

dx
ln
(

Γ(x)
)

=
Γ′(x)

Γ(x)
.

Also (ψ(θ + n)− ψ(θ)) =
∑n−1

j=0
1
θ+j

for positive integer n.
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A.3 The Rising Factorial

The rising factorial is defined by

θ(n) = θ × (θ + 1)× · · · × (θ + n− 1) =
Γ(θ + n)

Γ(θ)

and

d(θ(n))

dθ
=

Γ′(θ + n)Γ(θ)− Γ(θ + n)Γ′(θ)

Γ(θ)2

=
Γ(θ + n)

Γ(θ)

[
Γ′(θ + n)

Γ(θ + n)
− Γ′(θ)

Γ(θ)

]
= θ(n) (ψ(θ + n)− ψ(θ))

A.4 Asymptotic Expansions

Using the Taylor series expansion near 0.

log (1 + x) = x− x2

2
+
x3

3
− ... = O(x)
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A.5 Integral Approximation

n−1∑
j=0

α

αn+ j
≥α
∫ n−1

0

1

αn+ x
dx

apply the transformation y = αn+ x

=α

∫ αn+n−1

αn

1

y
dy

≈α[log(αn+ n)− log(αn)] for large n

=α[log(α + 1) + log(n)− log(α)− log(n)]

=α log

(
1 +

1

α

)
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