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Abstract 
It has been argued for some time that tabular representations of formal spec

ifications can help in writing them, in understanding them, and in checking them. 

Recently it has been suggested that tabular representations also help in breaking 

down large verification and refinement conditions into a number of smaller ones. 

The article [32] developed the theory, but the real proof in terms of an im

plementation is not provided. This project is about formalizing tables in a theorem 

prover, Simplify, defining theorems of [32] in terms of functions written in the OCaml 

programming language, and conducting some case studies in verifying and refining 

realistic problems. 

A parser is designed to ease our job of inputting expressions. Pretty-print is 

also provided: all predicates and tables of the examples in our thesis are automatically 

generated. 

Our first example is a control system, a luxury sedan car seat. This example 

gives us an overall impression on how to prove correctness from tabular specification. 

The second example specifies a visitor information system. The design features of 

this example involve modeling properties and operations on sets, relations and func

tions by building self-defined axioms. The third example illustrates another control 

system, an elevator. Theorems of algorithmic refinements, stepwise data refinements, 

and the combination of algorithmic abstraction and data abstraction are applied cor

respondingly to different operations. 
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Chapter 1 

Introduction 

1.1 Formal Manipulation of Tabular Expressions 

The use of tabular expressions in the specification of programs is motivated by 

the discontinuous input/output behavior of programs. Sekerinski continues this line 

by deriving a number of theorems to support formal manipulations on tables in [32]. 

Many of the theorems have an intuitive interpretation, but the side conditions which 

are also derived are less obvious. 

The expressions which is dealing with are predicates-as they allow an abstract 

specification of the input/ ouput behavior-and relations-as they model non-deterministic 

programs. Our project is the implementation of the theorems in [32]. The definition 

of precondition in [34] is also applied in our thesis. 

1.2 Contributions 

Our contributions in the research of tabular specification and refinement include: 

• Define a unified data type farm, based on which all first-order logic predicates, 

1 
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tables, set properties and operations, and relations and functions in terms of 

sets of pairs are expressed. 

• Design a small parser to ease the work of inputting expressions directly by 

programmers who develop examples. 

• Implement a function to pretty print any expression of farm, including tables, 

by its ASCII character to screen; implement a function for printing expressions 

to :f:\\TEX files. 

• The side conditions are checked before implementing theorems. The results are 

printed by S-expressions which can be recognized and validated by Simplify. 

• Develop examples and case studies to apply theorems. Build axioms for types 

and properties in each example. 

• The proofs of invariants, weakest precondition, precondition, algorithmic refine

ment, data refinement are illustrated. 

Our work provides a demonstration on how tabular predicates and tabular relations 

help in formal manipulations that occur in the process of verifying and refining spec

ifications. We argue that 

1. the structure of tables leads to a natural way of decomposing their manipulation; 

and 

2. tabular manipulation rules are easier to memorize and apply than their textual 

counterparts. 

We illustrate these claims with three examples. It turns out that some of the theorems 

are applied frequently and others are less useful. 

2 
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Our adoption of OCaml as our programming language is based on the fact that 

ML was designed for theorem proving [28]. Objective Caml is an implementation of 

the ML language, based on the Caml Light dialect extended with a complete class

based object system and a powerful module system in the style of Standard ML [5]. It 

adds object-oriented features into the functional programming language and produces 

higher performance. 

We send our formulae to the automatic theorem prover Simplify for validation. 

Simplify is the proof engine of the Extended Checkers ESC/ Java and ESC/Modula-3. 

The input to Simplify is a formula of untyped first-order logic with function symbols 

and equality [7]. 

1.3 Structure of the Thesis 

The remainder of this thesis is organized as follows: 

• Chapter 2 introduces related work on applications of tables in software engi

neering and table tool systems. 

• Chapter 3 gives an introduction to the design features of our project. It in

cludes the interface of our program with Simplify, pattern matching in function 

definition, types, and structure of implementation. 

• Chapter 4 models theorems in terms of functions. It first explains the principle 

of the proof, then selects some typical theorems from each section in [32] to 

demonstrate the proof. 

• Chapter 5 studies the case of a Luxury Sedan Car Seat in its specification and 

verification by applying functions of Chapter 4. 

3 



Master Thesis- N. Zhou- McMaster- Computing and Software 

• Chapter 6 illustrates an information management system where axioms about 

sets, functions and relations are used. 

• Chapter 7 gives an elevator example to show algorithmic and data refining 

operations in control systems. Call button pressed operation is abstracted to 

a state space including two boolean variables. Elevator scheduling is specified 

by an abstract relation. It is then stepwise refined to our specification which 

executes the elevator algorithm. 

• Chapter 8 draws conclusions from our work, in addition to discussing future 

work. 

4 



Chapter 2 

Related Work 

Tables support a divide and conquer approach to understanding a complicated 

question by breaking large amounts of information into several small parts. Illumi

nated by their application in an aircraft project to specify the controls, the use of 

tables for software documentation is formalized and tabular expressions are defined 

by logical expressions and conventional mathematical formulae. 

2.1 Application of Tabular Specification 

2.1.1 Navy's A-7 Aircraft Documentation 

The first application of this technique was documenting the requirements of ex

isting flight software for the Navy's A-7 aircraft [14]. When the Naval Research 

Laboratory and the Naval Weapons Center rebuild the operational flight program, 

software engineering techniques were not suitable for this project because of stringent 

resource limitations for the old program. New techniques allowed them to achieve 

completeness, precision, and clarity within a 500-page document. Function charac

teristics described in tables make it easy to find answers to specific questions and to 

5 
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MODE 
*DIG*, *DI*, *I+ 

Wag sl*,*Grid* 
*IMS fail* 

I IMAGHDGRI I 
value 

CONDITIONS 
Always X 

(NOT IIMSOMODEI =$0ffnone$) IIMSMODEI =$0ffnone$ 
angle defined by 0 (North) 
IMAGHCOSI and IMAGHSINI 

Table 2.1: Condition Table, Magnetic heading (/ IMAGHDGRI I) output value 

detect gaps and inconsistencies in specifications. Two kinds of tables are introduced: 

condition tables, which are used to define some aspect of an output value that is 

determined by an active mode, and event table, which show when demand functions1 

should be performed or when periodic functions2 should be started or stopped. 

Table 2.1 gives an example of a condition table. Each row corresponds to a group 

of one or more modes in which this function acts like. Each condition column at one 

row characterizes the time intervals within a mode, so it must be exclusive to the 

other columns in the same mode. All condition columns together at one row describe 

the entire time the program is executing within a mode, so they must be complete. 

To find the information appropriate for a given mode and given condition, first find 

the row corresponding to the mode, find the condition within the row, and follow 

that column to the bottom of the table. An "X" instead of a condition indicates that 

information at the bottom of the column is never appropriate for that mode. With 

the condition table, one can easily check any inconsistency of the periodic functions. 

Each row in an event table corresponds to a mode or group of modes. Table entries 

are events that cause an action to be taken when the system is in a mode associated 

with the row. At the bottom of the column is the action triggered by that event. 

The event table in Table 2.2 specifies that the autocalibration light controlled by 

output data item I I AUTOCALI I be turned on when the two listed modes are entered 

1performed differently in different event request. 
2 performed differently in different time intervals. 

6 
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MODE EVENTS 
*Lautocal* @T(In mode) @F(In mode) 
*Sautocal* 
ACTION // AUTOCAL/ /:=$On$ // AUTOCAL/ /:=$Off$ 

Table 2.2: Event Table, when AUTOCAL Light switched on/off 

and off when they are exited. Symbol":=" is used to denote assignment. The event 

@T(In mode) occurs when all the conditions represented by the mode become true, 

i.e, when the mode is entered. @F(In mode) occurs when any one of the conditions 

represented by the mode becomes false, i.e., when the system changes to a different 

mode. 

Formulating questions with tabular notation in this program helps to separate 

concerns before trying to answer them. 

2.1.2 Functional Tables Applied in Shutdown Systems 

Program functions describe the precise effect of a deterministic program without 

describing the intermediate states. The upper header of a program function table 

consists of predicates partitioning the function's domain, while the left header contains 

program variable names. The entries store the final variable values in corresponding 

conditions. An example in [25] shows a simple program and the tabular expression of 

the relational specification of that program. The tables ease the expressions in that: 

1. Tables reveal the intended structure of the expression. 

2. Tables replace repetition parts of the subexpression with a single name. 

3. Because each table entry only applies to a small part of the function's domain, 

the expression in that entry can be simplified. 

7 
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A large safety-critical project using program-function tables was the inspection of 

the shutdown systems of the Darlington Nuclear Power Generating Station in Ontario, 

Canada [24]. Since conventional approach of software inspection is not good enough 

for safety-critical software, function documentation is applied where long programs 

are decomposed into sequences of state changes. Each part in the decomposition 

implements its assigned function. The entire program can be precisely specified and 

documented with tabular representations of the program function. Requirement ta

bles are also constructed based on formal mathematical notation by nuclear safety 

experts. The correctness of the software is assessed by program experts who are 

in charge of showing program function tables and requirement tables expressing the 

same information through a step-by-step transformation. 

2.1.3 Documentation of Non-deterministic Programs 

Non-deterministic programs cannot be fully described by program functions since 

a program started in a safe state may terminate in one of several distinct final states. 

A relation, meaning here a binary relation has following definitions [27]: 

• A binary relation R on a given set U is a set of ordered pairs with both elements 

from U, i.e. R <;::; U x U. The set U is called the Universe. 

• The set of pairs R could also be defined by its characteristic predicate, R(p, q), 

i.e. R = {(p,q): U xU I R(p,q)}. 

• The domain and the range of R can be expressed as follows: 

Dom(R) ={pI :lq[R(p, q)]}, Range(R) = {q I :lp[R(p, q)]}. 

A limited domain relation(LD-relation) on U is an ordered pair L = (RL, CL), where: 

• RL, the relational component of L, is a relation on U, i.e. RL <;::; U x U, 

8 
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• CL,thecompetencesetofL,isasubsetofthedomainofRL,i.e. CL <;;;; Dom(RL)· 

In order to explain how to use LD-relations especially in tabular form to specify 

a program in [27], Parnas analyzes the problem of writing an operation which finds 

the maximum of two integer values stored in programming variables: 

• Rewrite a characteristic predicate of a relation directly as a table. 

• Check the overlap of a table header. 

• Express some rows of a table by standard notation and combine both notations 

together. 

• Use abbreviation to represent predicates. 

• Narrow long conditions. 

• Replace relational operator. 

Two examples are taken to illustrate Display Method-Binary search and Dutch 

national flag. In these two examples, the specification of the procedure invocation 

is written in terms of the combination of simple predicates and tabular predicates. 

Both specification of subproblems in the declaration and statements in the declaration 

body are written in terms of formal parameters. 

2.1.4 An Example of the Use of Tables in System Documen

tation 

Tables can also be used for semi-formal specifications of computing systems [36]. 

The general method applies to deterministic systems and is based on describing the 

system by a function 

9 
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n:SxC---+S 

where S and C are appropriately chosen sets of states and commands, respectively. 

A classification of the inter-connection between states and commands, and of the 

algebraic structure of the state-transition function n, determine the way tables can 

be generated. 

The interface of the dialogue box shown in Figure 2.1 provides the features for 

entering and deleting numeric values in X fields, toggling both of the check boxes B 

and I, and selecting the focus of the dialogue box. The behavior of the dialogue box 

is modeled by the system model (S, C; n). The carrier and operators of this algebra 

are defined by : 

1. The set of states is the Cartesian product. 

S = Focus x N x B x B 

where set Focus = { x, b, i} holds the possible locations in the dialogue box, N 

is the set of natural numbers, and B is the set of Boolean values. 

2. The set of commands is defined to hold all possible events the system can receive. 

C = Digits U Del U Space U FocusC, where 

(a) Digits= {0, ... , 9} of digit events. 

(b) Del = {del} of delete events. 

(c) Space = {space} of toggle events. 

(d) FocusC = {x, b, Z} of focus selection events. 

3. System specification is the function diag : S x C ---+ S. 

It defines the behavior of the dialogue box is documented by the table in Figure 

2.2. This decomposition fits the command-state decomposition. Here the semi

formal definition of diag(s, c) starts by first classifying the command c and 

10 
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then secondly the state s. The main header enumerates the control events and 

then each sub-header enumerates the local state conditions employed for each 

command event. 

Alternatively, a state-command decomposition of the diag function can be used. 

This generates the table shown in Figure 2.3. Here the semi-formal definition 

of diag(s, c) starts by first classifying the states and then secondly the control 

event c. 

X 

Figure 2.1: The Dialogue Box 

2.2 Syntax, Semantics, and Transformations of Ten 

Kinds of Tables 

Parnas summarizes his findings on tabular specifications and describes ten kinds 

of tables [23], giving their syntax and semantics based on the fact that tabular no

tation is useful for improving the readability of long mathematical definition, and 

is particularly well-suited to software documentation. The ten ways in which tables 

may be interpreted as predicates and functions are: 

1. Normal Function Tables 

A normal function table, T, is a table in which the elements of the main grid, 

G, are terms and the elements of the headers are predicate expressions. 

11 
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I Focus[x](s) I Focus[bi](s) I 
Digits(c) 

I ins(s,c) I id(s ,c) I 
I Focus [x](s) I Focus [bi](s) I 

Del( c) 

I del(s) id(s,c) I 

Space( c) 
I Focus [b i](s) Focus[x](s) I 

I toggle(s,c) id(s,c) I 
I All(s) 

FocusC(c) 
I cycle(s,c) I 

Figure 2.2: Command Mode Table for Dialogue Box 

I Digits( c) I Del( c) I Space( c) I FocusC(c) I 
Focus[x](s) 

I ins(s,c) I del(s,c) I id(s,c) I cycle(s,c) I 

I Digits( c) I Del( c) I Space( c) I Fo~usC(c) I 
F o c us [b i] ( s) 

I id(s,c) I id(s,c) I toggle(s,c) I cycle(s,c) I 

Figure 2.3: State Mode Table for Dialogue Box 

2. Inverted Function Tables 

An inverted function table, T, is a table in which the elements of the main 

grid, G, are predicate expressions, the elements of H2 , ..• , Hdim(T) are predicate 

expressions, and the elements of H 1 are terms. 

3. Vector Function Tables 

12 
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y = 27 y > 27 y < 27 

27 + ..;27 54+ ..;27 y2 + 3 
27+J-(x-3) y + J-(x- 3) y2 + (x- 3)2 

27+JX=3 2xy+Jx-3 y2+(3-x)2 
G 

Figure 2.4: A Normal Function Table 

x+y x-y xxy 

y<3 y=3 y>3 
y<x y>x y=x 
y < -x y > -x y= -X 

G 

Figure 2.5: An Inverted Function Table 

A vector function table, T, is a table in which the elements of the main grid, 

G, are terms, elements of H 1, H 3 , ... , Hdim(T) are predicate expressions, and the 

elements of H 2 are single variables. 

w<O w=O w > 0 

x+w+q x+2-q x-w 
y+2 x+y x+y+2 
z-w z z+w 

G 

Figure 2.6: A Vector Function Table 

4. Normal Relation Tables 

A normal relation table, T, is a table in which the elements of the main grid 

and headers are predicate expressions. The expressions in the main grid and 

headers are constructed from the usual variables except that one variable, which 

will be written, "®", may not appear in the headers. 

5. Inverted Relation Tables 

13 
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VY < 21 y>O 

x2 +y2 = ®:l x2 = y2 true 
y2 =®:l x2 =®:L false 
x2 =®:L x-®>3 x2 +y2 = ®:L 

G 

Figure 2.7: A Normal Relation Table 

An inverted relation table, T, is a table in which the elements of the main grid 

and headers are predicate expressions. The expressions in H2 , ... , Hdim(T) and 

G are constructed using the usual variables except that one variable, which will 

be written "®", may not appear. The expressions in H 1 may include "®". 

®=3 

y>3 y=3 y<3 
y<O y?_O false 

y > 100 y = 100 y < 100 
G 

Figure 2.8: An Inverted Relation Table 

6. Vector Relation Tables 

A vector relation table, T, is a table in which the elements of the main grid, 

G, are predicate expressions, the elements of H 1 , H3 , ... , Hdim(T) are predicate 

expressions, and the elements of H2 are single variables. 

w < 0 w=O w > 0 

y>3 x2 = 4 x"2=w 
y<O y=x+2 y = JxJ + 2 

z2 = x2 + y2 + w2 z2 = x2 + y z=5 
G 

Figure 2.9: A Vector Relation Table 

14 
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7. Mixed Vector Tables 

A mixed vector table, T, is a table in which the elements of the main grid, G, 

are either predicate expressions or terms, the elements of H 1, H 3 , .. . Hdim(T) are 

predicate expressions, and the elements of H 2 are single variables. 

w < 0 w=O w>O 

x+w+q x+2-q x-w 
y2=x+2 y=x+2 y = lxl + 2 

z2 = x2 + y2 + w2 z2 = x2 + w2 z=5 
G 

Figure 2.10: A Mixed Vector Table 

8. Predicate Expression Tables 

A predicate expression table, T, is a table in which the elements of the main 

grid, G, and all headers are predicate expressions. 

w<O w=O w > 0 

y=5 y+x=w x+y=z 
y>7 y-x=6 x-y=z 

y2 = 4 y2 = 4 z=y 
G 

Figure 2.11: A Predicate Expression Table 

9. Characteristic Predicate Tables 

A characteristic predicate table, T, is a predicate expression table where the deco-

rations (the symbols""' and "'") are considered part of the variable name. It can 

be viewed as the set of ordered pairs that constitutes the relation. Characteristic 

predicate tables are especially useful in tabular verification and refinement [32] 

to derive weakest precondition and data refinement theorems. 

15 
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'x = 3 
'x < 3 
'x > 3 

H2 

'w < 0 

(x' = w') 1\ 

(w' = 'x) 

y' = 'x 
y'"" =4 

'w=O 'w > 0 

(x' = w') 1\ 

(w' = 'y) 1\ w' = x' = 'y 
(w' = 'y) 

y' = 'y 'w=w' 
x' +w' = 'y y' = 'x 

Figure 2.12: A Characteristic Predicate Table 

10. Generalized Decision Tables 

G 

A generalized decision tables, T, is a table in which the elements of the main 

grid, G, are predicate expressions that may contain a distinguished variable, 

which we shall denoted by "#", and the elements of H1 and H2 are terms that 

do not include"#". Ha, ... , Hdim(T) are not used in this interpretation of tables. 

x+y x-y 

# < 20 # < 20 
#?. 20 # = 20 

true # > 20 
G 

Figure 2.13: A Generalized Decision Table 

Problems arise when considering the best kind of tables to represent a function. 

In order to transform a table to a simpler form of the same kind, Zucker describes 

the change of a table's dimension and the transformation between a normal and an 

inverted function table in [37]. The concept of proper table is clarified in an algebraic 

way. Terms, conditions of a table and the table itself are defined over many-sorted 

signatures. 
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2.3 Automatic Tabular Documentation Tools 

2.3.1 RSML for Process-Control Systems 

The article [16] defines general analysis criteria that can be applied to black-box 

requirements specified for process-control systems. Particular attention is focused on 

the properties of robustness and lack of ambiguity. Semantic analysis techniques asso

ciated with a specific model, Requirements State Machine (RSM), and a specification 

language, Requirements State Machine Language (RSML), are developed to ensure 

that these criteria are satisfied for a given specification. 

RSML's application on an industrial aircraft collision avoidance system, Traffic 

Alert and Collision Avoidance System II (TCAS II), are first introduced in [19]. 

RSML has the features in common with Statecharts: superstates, AND decomposi

tion, arrays, and connectives. The syntactic and semantic additions to Statecharts 

are: directed communications, external events, interface definitions, component state 

machines, transition definitions, macros and functions, transition buses, cross refer

encing and identifier types, identity transitions, timing, and step semantics. 

The guarding conditions on the transitions are described by a tabular represen

tation of disjunctive normal form (DNF) called AND/OR tables instead of predicate 

calculus which makes it easier to parse an expression. The far-left column of the 

AND/OR table contains the logical phrases, each other column is a conjunction of 

the logical phrases, all columns together are disjunction of each conjunct term which 

make it much easier to parse the expression. A dot denotes "don't care" for omissions. 

The table in Figure 2.14 is equivalent to predicate: 

( (Expression-1 1\--, Expression-3) V (--, Expression-2 1\ Expression-3)) 

AND/OR tables are provided in analysis procedures to find completeness, con

sistency and safety errors in specifications. Although in the TCAS II requirements 
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A 
N 
D 

Expression-! 

Expression-2 

Expression-3 

OR 

Figure 2.14: An AND/OR Table 

specification, automated analysis tools use Binary Decision Diagrams (BDDs) for 

the manipulation of the guarding conditions [11], the readability and reviewability 

of the AND/OR tabular representation make the error be discovered quickly by the 

application experts. 

2.3.2 Model Checking 

The Software Cost Reduction (SCR) requirements method comes from A-7 aircraft 

operational flight documentation. Faulk [8] provides formal definitions for the A-7 

model, van Schouwen [35] extends the original SCR method for the safety-critical 

components of the Darlington nuclear power plant. The characteristic of this model 

are compositional, event-driven, mode-machines. 

Atlee demonstrate how model checking can be used to verify safety properties for 

event-driven systems in [3]. A model checking system, MCB, is used for formalizing 

the semiformal event-driven SCR requirements. MCB accepts a system's behavior 

requirements as a finite state machine and the safety assertions as temporal logic 

formulae. First, the transformation algorithm formalizes the software requirements. 

Then, it can be verified or disproved that the tabular specifications and the relation-

ships between conditions were entered correctly. The shortcoming is that the model 

checker only analyzes properties of mode transition tables. The mode transition tables 
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Old Mode Conditions New Mode 
ml eoc1,1,1 eoc1,1,2 eoc1,1,p ml,l 

eoc1,2,1 eoc1,2,2 eoc1,2,p m1,2 

eoci,k,I eoci,k,2 eoc1,k,p m1,k 

mn eocn,I,I eocn,I,2 eocn,l,p mn,l 

eocn,2,1 eocn,2,2 eocn,2,p mn,2 

eocn,k,I eocn,k,2 eocn,k,p mn,k 

Table 2.3: A Mode Transition Table 

are of the form in Table 2.3. 

Each row in the table specifies the event causing the transition from the mode on 

the left to the mode on the right. A table entry in the middle of the table may be an 

event (@T,@F) triggered by a change of the condition, or a condition value (t,f) which 

are depended by the event. The global tabular specification is then converted into 

a CTL machine. The model checker accepts a CTL machine and a CTL formula3 , 

and determines whether the formula holds in the machine or not, which can perform 

state-based model checking using CTL model checker. 

2.3.3 SCR* 

Parnas and Medey [26] introduced the four-variable model to provide a formal 

framework for semantic decomposition. The four-variable model describes the sys-

tern behavior (functional or non-functional requirements) as a set of mathematical 

relations on four sets of variables - monitored and controlled variables and input 

and output data items. Four-Variable Model together with four other constructs -

modes, terms, conditions, and events are SCR constructs [13]. The tabular notation 

3 Computational tree logic (CTL) is a temporal logic. It uses atomic propositions as its building 
blocks to make statements about the states of a system. CTL then combines theses propositions 
into formulae using logical operators and temporal operators. 
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in SCR specifications facilitates industrial application of the method. There are three 

kinds of tables - event tables, condition tables and mode transition tables. Event and 

condition tables are the same as those in the A-7 documentation. Mode t ransition 

tables in [13] are similar to Table 2.3 except that several depended conditions and 

one input triggered event are combined together to build a new event by a logical 

expression of form: 

@T(Cond1) WHEN [Cond2] 

Below is an example of a mode transition table which describes a mode (monitored 

variable) as a function of an old mode and an event. 

W aterPres Mode Figure 2.15: WaterPres Mode Transition Table for 
Press 

Old Mode I Event I New Mode 
Too Low @T(WaterPres 2: Low) Permitted 

Permitted @T(WaterPres 2: Low) High 
Permitted @T(WaterPres < Low) TooL ow 

High @T(WaterPres < Permit) Permitted 

We consider Water Pres mode class are divided into three segment mode - TooLow, 

Permitted, and High by two constants Low and Permit. The first row illustrates that 

if the old mode is TooLow, then after the event which makes water pressure below 

Low exceed Low mark, the new mode of WaterPres is Permitted. 

Illuminated by the Four-Variable Model, a formal requirement model, finit e-state 

automaton system model, was invented to provide a precise and detailed semantics for 

the SCR method [13] . It describes the input and output variables, conditions, events , 

and other constructs that make up an SCR specification in terms of that automaton. 

The model also describes how a set of table functions, called table functions , can be 

derived from the SCR tables. These table functions define the transform which maps 

the current state and an input event to a new state. 
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A powerful and robust CASE tool, SCR *, was developed on this model to support 

automatic detection of errors expressed in the SCR tabular notation [12]. The toolset 

which is written in C++ and runs on SPARC workstation includes a specification 

editor for creating and modifying the specification, a simulator for symbolically exe-

cuting the system, and two formal analysis tools. One analysis tool is a consistency 

checker for testing the specifications for consistency with a formal requirement model; 

the other is a verifier for checking that the specifications satisfy selected application 

properties. 

2.3.4 Tablewise 

Decision tables are widely used for specifying finite functions, such as finite state 

transitions [15]. Table 2.4 is a simple decision table that specifies an input-output 

relation. The first two columns list the input variables and the possible values, called 

states, that each may take. The top row lists the possible output values( operational 

procedures, or modes to be entered). The rest of the table is called its body. Each 

row of the body belongs to the variable listed in the first column in that row. Each 

column, or scenario, represents the conjunction of its cells. 

II Operational Procedure I Op Proc 1 I Op Proc 2 II 
Senarios Seen 1 Seen 2 Seen 3 
Inputs Values 

SI1 SI, S2 S1 SI s2 

Sh sl, ... , Sn SI s2 Sn 

Table 2.4: A Simple Decision Table 

Hoover and Chen have demonstrated the utility of Tablewise in [15]. Tablewise 

performs three kinds of logical analysis of decision tables: detecting overlap between 

engagement criteria of different operational procedures( failure of consistency), detect-
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ing scenarios not covered by any engagement criterion(failure of completeness), and 

detecting structural defects in a decision table that prevent it from being functional. 

Besides logical analysis, Tablewise can generate code implementing a decision table 

and English-language text describing it. 

Completeness is more difficult to detect than overlap since no one column in 

the table is responsible for the absence of others. In order to localize flaws causing 

incompleteness, a form of structural analysis is developed. It finds minimum sets of 

variables that the table correlates in a way that precludes functionality. Therefore, 

overlap and structural analysis together is a method for analyzing functionality of 

decision tables. 

2.3.5 TABLE Construct in PVS 

In addition to these independent table tools, a simple construct for tabular specifi

cation is added to PVS [22]. This construct is useful for many purposes since it coop

erates with other utilities of PVS. The side condition of the construct is that the rows 

and columns are disjoint and exclusive. This utility is used in requirements analysis 

for Space Shuttle flight software by colleagues at NASA and Lockheed-Martin [6] [29]. 

Lawford et al. [18] use the capability to verify decomposition of proof obligations, on 

second thoughts, extending the 4-variable model to an 8-variable model by adding tol

erance relations. TABLE constructs of PVS has an input syntax for one-dimensional, 

two-dimensional and enumeration tables and allowing blank entries when a specific 

condition can no longer arise. These tables are translated to internal IF-THEN-ELSE 

constructs of PVS theorem prover and printed as true tables by 15-'IE;X. typesetting. 

One-dimensional tables have vertical and horizontal formats shown in Figure 2.6. 

Each row is included by I and II except that the upper header of a horizontal table 
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use I [ ... ]1 to alert parser that it present the information in a different order. 

sign_ vtable(x): signs = TABLE sign_htable(x): signs =TABLE 
%------------------% 
I X< 0 I -1 II %-----------------------------------% 

%------------------% I[ x<O I x=O I x>O ]I 
I x = 0 I 0 II %-----------------------------------% 

%------------------% 
I X> 0 I 1 II 

I -I I 0 I I I I 
ENDT ABLE %-----------------------------------% 

ENDT ABLE %-------------------% 

Figure 2.16: One-Dimensional Vertical and Horizontal Tables 

Enumeration Tables are a syntactic variation of one-dimensional or two-dimensional 

tables where the conditions to a table are of the form x = expression for some single 

identifier x. Figure 2. 7 gives a two-dimensional table and its corresponding enumer-

ation tables. 

tw o-dimensional(state, input): some_type = TABLE 
% -------------------------------------------------% 
I I [ state = a ] I [ state = b ] I 
%-------------------------------------------------% 
I input = x I p I q I 
% -------------------------------------------------% 
I input= y I s I t I 
% -------------------------------------------------% 

ENDTABLE 

enumeration(state, input): some_type =TABLE 
state , input 

%-----------------------------% 
I I [ X ]I [ y ]I 
%-----------------------------% 
I a I p I s I 
%-----------------------------% 
I b I q I t I 

ENDT ABLE %-----------------------------% 

Figure 2.17: A Two-Dimensional Table and Its Corresponding Enumeration Table 

The PVS TABLE construct can not represent decision tables supported by Table-

wise. The TABLE construct interprets a scenario of a decision table as the argument 

list to a function X to be applied to each cell of that scenario. Thus, function X 

and an operational procedure is represented as a vertical one-dimensional PVS table. 

We can also use tabular specifications in a theorem proving context to identify the 

anomaly in either our expectations or our formalization of the specification. 
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Transition relations provide a way to pose and examine invariant or reachable 

property by simulating the tabular manner of the SCR method. To model the mode 

transition table of Figure 2.5 in PVS, a condition is specified as a predicate on inputs 

to the system, then atT (@T), atF (@F), T, F, and de ("don't care") are higher order 

functions. The corresponding PVS representation is shown in Figure 2.8. 

event_constructor: TYPE= [condition ->event] 
EC: TYPE= event_constructor 
PC(A,B)(a,b)(p,q):bool = A(a)(p,q) & B(b)(p,q) 
% Note: PC stands for "pairwise conjunction" 

original(s: modes, (p, q: monitored_vars)): modes= 
LET 

x = (WaterPres >=Low, WaterPres <Permit), 
X = (LAMBDA (a,b: EC) : PC (a,b) (x) (p, q)) 

IN TABLEs 
I TooLow I TABLE 

%-------------l------------------l------------------1--------------------ll 
I X ( atT, de) I Permitted II 

%--------------------------------------------------1--------------------1 I 
I ELSE I TooLow II 

%--------------------------------------------------I------------------ --1 I 
ENDTABLE II 

I Permitted I TABLE 
% -------------1------------------1------------------1--------------------1 I 
I X ( atT, de ) I High I I 

% -------------I---------------- --1----------------- -I------------------ --1 I 
I X( atF, de) I TooLow II 

% --------------------------------------------------I------------------ --1 I 
I ELSE I Permitted I I 

% --------------------------------------------------I------------------- -I I 
ENDTABLE II 

I High I TABLE 
% -------------l------------------1------------------l--------------------ll 
I X ( de, atT) I Permitted II 

%--------------------------------------------------I------------------- -I I 
I ELSE I High I I 

% --------------------------------------------------1--------------------1 I 
ENDTABLE II 

ENDTABLE 

Figure 2.18: The SRC Table Represented in PVS 
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A state transition relation can be derived from the corresponding mode transi

tion table. The branching time temporal logic CTL provides a method to specify 

some properties of the computations induced by a transition relation. The PVS 

model-check command can verify formulae specified by CTL. Overall, the PVS treat

ment requires no customized development: it builds on capacities such as tables, 

typechecker-generated proof obligations, dependent typing, higher-order functions, 

model-checking and theorem proving. 

2.4 Table Tool System 

Abraham outlines the documentation methods in [2] for software products devel

oped by Software Engineering Research Group (SERG) at McMaster University, and 

describes how a generalized model of tabular expressions has been applied to build 

a tool that evaluates a broad class of software documentation. An application of the 

Table Tool System (TTS) that interprets a group of tabular expressions is also pro

vided. C code generated by the tool will evaluate the logical expressions contained in 

an input specification. Expression evaluation is useful when checking a specification 

or for testing an implementation against its specification. 

The model presented in [17] covers most of the known table types for documenting 

Software Engineering projects, and admits precise classification and definition of new 

types of tables. The central concept in the approach is cell information flow graph 

( CCG) which characterizes the information flow among table cells. A raw table 

skeleton is defined by a header and a grid. It is extended to a medium table skeleton 

by adding a CCG. A well done table skeleton consists of a table predicate rule, a 

table relation rule, a table composition rule and a medium table skeleton. A tabular 

expression is a tuple of a well done table skeleton, a mapping which assigns a predicate 
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expression to each guard cell and a relation expression to each value cell, together 

with a set of inputs and outputs. Using tabular expressions in [17] enables us to 

use mathematical precision in the documentation of software requirements, eases 

the methods of extending and/or modifying tables, and most importantly, helps in 

building automated tools that are able to interpret tabular expressions. 
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Chapter 3 

Tabular Verification and 

Refinement Overview 

The utility of tabular specification in Chapter 2 are proposed for structuring com

plex mathematical expressions or informal operations. In their formal manipulation, 

tabular predicates and tabular relations are explored to be used in program verifi

cation and refinement based on pre- and post-conditions. This chapter is literately 

summarized from [32]. We present it here to make the thesis self-contained. 

3.1 Terminology and Notation 

3.1.1 Properties of Vectors 

A vector pv is disjoint if all its elements are mutually exclusive, •(pvi 1\pvk) for all 

i and k with i =/= k. Two vectors pv and qv are jointly disjoint if •(pvil\qvj l\pvkl\qv1) 

for all i,j, k, l with either i =1- k or j =1- l. If pv and qv are jointly disjoint, then the 

conjunction of any two elements of pv(qv) does not need to be false in isolation but 

only if conjoined with an element of qv(pv). Vector pv covers (at least) c if one of its 
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elements is true if c is true, c ===? Vi · pvi and covers exactly c if c = Vi · pvi. Vector 

pv is total if it covers true. Vector pv partitions c if it is disjoint and covers exactly c. 

3.1.2 Relations 

It is usual to describe relations using boolean expressions. A boolean expression 

can be presented in a tabular form [23]. Notational conventions in [27] are used 

to increase the readability of tables. A non-deterministic program is modeled by a 

relation of type XV----. XV'----. Bool with initial state space XV and final state space 

XV'. Let P be a program specified by the characteristic predicate of a relation, and 

let xv1 , ... ,xvk be variables in P which form its state space, XV= (xv1, ... , xvk)· Then: 

• "xv/' (to be read "xvi before") denotes the value of the program variable vi 

before an execution of P, 

• "xv:" (to be read "xvi after") denotes the value of the variable vi after a ter

minating execution of P, 

• Since Ocaml does not support prime as its' composition of variable name, we use 

vil instead of v: in the implementation of tabular specification and refinement 

using this programming language. 

3.1.3 Relational Operation 

We define the constant relations _L (empty relation), T (universal relation), I d 

(identity relation), and for relations P and Q the operations P (complement), p-l 

(inverse), PnQ (intersection), PUQ (union), PoQ (relational composition) as well 

as the predicates P <::::: Q and P :2 Q (inclusion): 

28 



Master Thesis- N. Zhou- McMaster- Computing and Software 

l_ xv xv' =false 

T xv xv' = true 

( P U Q) xv xv' = P xv xv' V Q xv xv' 

( P n Q) xv xv' = P xv xv' 1\ Q xv xv' 

I d xv xv' = xv = xv' 

P xv xv' = -,p xv xv' 

p-l xv xv' = P xv' xv 

(Po Q) xv xv' = (3yv · P xv yv 1\ Q yv xv') 

(P ~ Q) = (Vxv, xv' · P xv xv'::::} Q xv xv') 

(P :2 Q) = (Vxv, xv' · P xv xv'-¢:::: Q xv xv') 

A relation Pis functional if p-I o P ~ Id and injective if Po p-l ~!d. Relation 

P is called a condition if Po T = P. The domain LP of a relation P is defined 

by L.P =PoT. A relation Pis total if L.P = T, or equivalently Id ~Po p-l. 

Relation Pis surjective if L,p-l = T, or equivalently Id ~ p-loP. We make use 

of generalized union Ui E I· P; and generalized intersection ni E I·?;, for arbitrary 

index set I. Relations have the following facts. 

Let P, Q, ?;, Qi be relations and C a condition: 

(a) Po (Ui E I· Qi) = Ui E I· Po Qi 

(b) (Ui E I·?;) o Q = Ui E I· P; o Q 

(c) Po (ni E I· Qi) ~ ni E I· Po Qi 

(d) ( ni E I · P;) o Q ~ ni E I · Pi o Q 

(e) P o ( ni E I · Q i) = ni E I · P o Q i 

(f) (ni E I· P;) o Q = ni E I· P; o Q 

(g) (CnP)oQ=Cn(PoQ) 

if P is functional. 

if Q is injective. 

3.1.4 Precondition and Weakest Precondition 

Assuming that the set of program variables is fixed, we can determine for any 

statement a characterizing predicate over unprimed and primed variables. 
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The theory about deriving precondition from program statements is shown as 

below [34]: 

If an operation S over initial state xv1, ... ,xvm and final state xvi, ... ,xv~ is given by a 

predicate P, 

S(xv1, ... , xvm)(xvi, ... , xv~) = P 

then its precondition is: 

preS= (3xv~, ... , xv~ · P) 

The domain LP of a program P is interpreted either as the enabledness domain 

(or guard) of P or as the termination domain (or precondition) of P. The weakest 

precondition [P]C of program P to establish post condition C characterizes those 

initial states in which P is never going to lead to a state outside C: 

[P]C = PoC 

If LP is interpreted as the enabledness domain of program P, then [ P] C characterizes 

those initial states in which either P is not enabled or P is enabled and leads to a 

state in C. If LP is interpreted as the termination domain of program P, then [P]C 

characterizes those initial states in which either P does not terminate or P terminates 

and leads to a state in C. In this case we would refer to [P]C as the weakest liberal 

precondition. Leaving both interpretations open, we uniformly refer to [P]C as the 

weakest precondition for P to establish C. 

The weakest precondition can equivalently be defined in terms of predicates. We 

assume that the state consists of a vector xv of variables and that the initial and final 

state space are products of the same type: 

Theorem 5.1 (Weakest Precondition). 

[P]C xv xv' = Vxv' · P xv xv':::::? C xv' xv' 
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3.2 Tabular Predicates 

Tabular predicates are predicates written as a disjunction of conjunctions. A 

tabular predicate with one header consisting of predicates p, q, rand a body consisting 

of predicates s, t, u is defined by 

~I~ I~ =(pl\s)V(ql\t)V(rl\u) 

In general, let I be a finite and non-empty set of indices and let pv be an indexed 

collection of predicates that we call a vector, with elements pv; fori E J. Tables with 

a single header are one-dimensional. With pv and qv vectors over the same index 

set, we introduce a shorthand for a table with header pv, and body qv, defined by 

generalizing the above example: 

pv . -- = Vz · pv; 1\ qv; 
qv 

On vectors pv and qv over the same index set -,pv, pv 1\ qv, pv V qv, pv ==? qv, pv <¢= qv, 

and pv = qv are all defined by the pointwise extension of the corresponding operators 

on Bool, e.g. (pv 1\ qv); = pv; 1\ qv;. On occasion we identify a predicate p with a 

vector with all elements being p. This also allows us to write expressions like p 1\ pv, 

with the meaning of (p 1\ pv ); = p 1\ pv;, and similarly for other Boolean operators. 

In general, ann-dimensional table has n headers; here we restrict ourselves to one-

and two-dimensional tables. Let I and J be index sets, let pv be an !-indexed vector, 

let qv be a J -indexed vector, and let rm be a doubly indexed collection of predicates 

that we call a matrix, with elements rm;,j for i E I and j E J. We introduce a 

shorthand for a two-dimensional tabular predicate with headers pv, qv and body rm : 

.. = Vz J · pv; 1\ qv 1\ rm· · l J Z,] 

We also use a shorthand with multiple vectors in one header, with the special case of 

one vector being a single predicate: 
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On matrices rm and sm over the same index sets •rm, rm 1\ sm, rm V sm, rm =? 

sm, rm {= sm, and rm = sm are all defined by the pointwise extension of the 

corresponding operators on Bool, e.g. (•rm)i,j = •rmi,j· On occasion we identify 

a predicate p with a matrix with all elements being p. This also allows us to write 

expressions like p 1\ pm, with the meaning of (p 1\ pm)i,j = p 1\ pmi,j, and similarly 

for other Boolean operators. We will also identify a vector pv with a matrix with all 

columns being pv. This allows us to write expressions like pv 1\pm, with the meaning 

of (pv 1\ pm )i,j = pvi 1\ pmi,j, and similarly for other Boolean operators. 

Some basic transformations of tabular predicates are: 

Theorem 2.1 (Transposing). 

- .~-_l~ Pvrrm- = Tv/ rrr;:r· 
Theorem 2.2 (Swapping Rows and Columns). 

I qv I rv = I rv I qv 
pv qm rm - pv I rm qm 

Theorem 2.3 (Splitting and Joining Tables). 

I qv I rv = /q~ v~ 
pv qm rm - --pvrqm p'IJ. rrm 

Theorem 2.4 (Extending and Contracting). 

I qv I rv = ~-=-1~=?-~
pv qm rm - ])Vfqm- - pvTQm ])Vfqm~ 

Theorem 2.5 (Lifting and Flattening). 

(a)*"= p~vrv 
(b) ~ = Vi· P;ivl\ rmi 
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Theorem 2.8 (Replacing Table Elements). 

Theorem 2.9 (Splitting and Joining Rows and Columns). 

lqVr, ... - I q I r I··· 
pv sv . . . - pv sv sv ... 

3.3 Operations on Tabular Predicates 

We give some basic theorems about common Boolean operators applied to tables. 

Theorem 3.1 (Table Negation) 

(a) --, (~) = 1\i j · pvi 1\ qv · =? •rmi · -~~m- ' J J 

(b) ~ ( 1"J I ,q: ) => 1"' I ~:. 

(c) ~( 1"J I ~;: ) ~ pv I ~;: 

if pv, qv are total 

if pv, qv are jointly disjoint 

(~) - I qv (d) --, - pVf rm- = pv •rm if pv, qv are total and jointly disjoint 

Theorem 3.2 (Table Conjunction) 

(a) ~ 1\ ~ <¢== -+-q=------v -r;urr::rn· pVfSm pv rm 1\ sm 

b- lqv_/\~= I qv 
( ) ~ pv fSm- - pv rm 1\ sm 
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Theorem 3.3 (Table Disjunction). 

I q21___v ~= I qv 
~ P1JT.Sm- pv rm V sm 

Theorem 3.4 (Predicate-Table Implication). 

(a) ( 1fV I ;~ => s) "' (IIi, j · pv; II qv; II rm;,; => s) 

(b) (s =} I q_v__) =} (1\i, j · sl\pvii\QVj =} rmi,j) if pv, qv are jointly disjoint. 
~ 

(c) (s =:;, ~) ~ (1\i,j · s 1\pvi 1\ qvj =:;, rmi,j) if pv covers s, qv covers s. PvJrm 

(d) 
(

s =} ~) = (1\i J. · s 1\ pv· 1\ qv · =} rm· ·) Pv-frm , z J z,J 

if pv covers s, qv covers s and pv, qv are jointly disjoint. 

(c) ( 8 => 1fV I ;~ ) = _s_=}_p_v-+1-:-:-r-=qm_v_ 

(f) ( s => 1fV I ;;, ) = -p-v-+1-
8
-=}_;:q'-vr_m_ if pv, qv are total and jointly disjoint. 

Theorem 3.5 (Table Implication). 

(a) (~=>~) ~ 1\i, j · pvi 1\ qvj 1\ rmi,j =} smi,j 

(b) (~=>~) =} I qv if pv, qv are total. 
pv rm =} sm 

(c) ( PV~ => Pv-tfm-) ~ I qv if pv, qv are jointly disjoint. 
pv rm =:;, sm 

(d) (~ ~) I qv pv rm =} pv sm = pv rm =:;, sm 

if pv, qv are total and jointly disjoint. 

Theorem 3.6 (Table Equivalence). 

(a) (~ = ~) ~ 1\i j · pvi 1\ qv· =} (rmi · = smi ·) JJVTTffi- pv I sm ' 1 '
1 

'1 
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(b) ( pv I ;~ = pv I :~ ) <= -p-v-+-1-rm______,:_v_s_m if pv, qv are jointly disjoint. 

(~-~) I qv (c) ~=··pvTsm pv rm=sm 

if pv, qv are total and jointly disjoint. 

3.4 Tabular Relations 

Tabular relations are defined in analogy to tabular predicates using generalized 

intersection and union. Let PV and QV be vectors of relations and let RM be a 

matrix of relations: 

PV I~~ = ui,j · PVi n QVi n RMi,j 

All operations on relations are pointwise extended to operations on vectors and rna-

trices. On occasion we identify a relation P with a vector or a matrix with all 

elements being P. For example, this allows us to write Po PV, with the meaning 

of ( P o PV)i = P o PVi. There is a direct relationship between tabular predicates 

and tabular relations. Let pv and qv be vectors of predicates, let rm be a matrix 

of predicates, let PV and QV be vectors of relations, and let RM be a matrix of 

relations. If 

QVi x y = qvj, 

then the following two definitions of relation S are equivalent: 

IQV -~ s = PV RM ' s X y = pv I. rm-
This relationship between tabular predicates and tabular relations allows us to switch 

between them as convenient. This also allows us to lift all theorems on tabular 

predicates to tabular relations as needed. In particular the notions of disjointness 

and coverage carry over to relations. 
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Operations on tabular relations are: 

Theorem 4.1 (Table Domain). 

"( BV I~~)~ BV I "c;:M 

Theorem 4.2 (Table Composition). 

(a) I cv BV PM oQ= I cv 
BV PMoQ 

(b) So I QV 
PV RM 

c I SoQV 
SoPVSoRM 

(c) So I QV 
PV RM 

I SoQV 
SoPV SoRM 

if S is functional 

3.5 Tabular Verification 

A typical use of weakest preconditions is for checking invariance properties: an 

operation P establishes condition C if [P]C = T and P preserves C if C r:::;; [P]C. Con-

sequently we give theorems for deducing that a weakest precondition-if expressed 

as a predicate-is either universally true or is weaker than a given precondition. We 

make use of the following facts about weakest preconditions. Assume P, ~ are rela-

tions, for an arbitrary index set I, and B, Care conditions: 

Lemma 5.1. 

(a) [Ui E I· P;]C = ni E I· [P;]C 

(b) [BnP]C=BU[P]C 

We give some theorems for determining weakest preconditions of operations in tab-

ular form. For a matrix PV and a condition C let [P M]C stand for PM with the 
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weakest precondition applied to each element, formally ([P M]C)i,j = [P Mi,j]C : 

Theorem 5.2 (Tabular Weakest Precondition). 

(a) I cv 
BV [PM]C 

c [ nv I j;~ ]c if BV, CV are total 

(b) I cv 
BV [PM]C 

::J [ nv I j;~ ]c if BV, CV are jointly disjoint 

(c) I cv 
BV [PM]C [ nv I j;~ ]c if BV, CV are total and jointly disjoint. 

We note that typically only (c) is useful as (a) results in a precondition may be too 

restrictive and (b) may not result in a precondition for the given postcondition at 

all. While (c) allows the precondition to be determined by considering each case in 

the body of the program in turn, it does have the side conditions of totality and 

disjointness. We give an alternative theorem that does not have these side conditions 

but allows only inclusion to be shown, although it gives a necessary and sufficient 

condition for it. Thus it can always be used to verify that a tabular relation under 

a given precondition establishes a given postcondition: 

Theorem 5.3 (Tabular Verification). 

n c; [ nv I j;~ ] c = i,j · Bn BV; ncv; c; [PM,,,]C 

For the case that the table is given by a tabular predicate and the postcondition 

by a predicate, we can give the analogue of Theorem 5.2. For brevity, we give only 

the analogue of Theorem 5.2(c). We assume that the state consists of a vector 

xv of variables. If pm is a matrix of predicates, we write Vx · pm for every matrix 

element universally quantified over x, formally (Vx·pm)i,j = (Vx·pmi,j)· Let f[xv\ev] 

stand for expression f with each variable in xv simultaneously substituted by the 

corresponding expressions in ev. 
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Theorem 5.4 (Weakest Precondition with Predicates). If standard relation 

P and condition C are given by 

P xv xv' = ~b cv , C xv xv' = c -bv-1 pv 

and if bv, cv are total and jointly disjoint we have 

I 

cv [P]C xv xv' = -,--+----,-------,-----_____,------,---cc
- bv Vxv' · pm::::} c[xv\xv'] 

Next we give a theorem that does not have the side conditions of totality and dis

jointness of the headers and does not even require the table to be in standard form. 

Hence it can also be applied to inverted tables: 

Theorem 5.5 (Tabular Verification with Predicates). If conditions B, C and 

relation P are given by 

B xv xv' = b, P xv xv' = · f. qy_ 
~' 

C xv xv' = c 

we have 

B ~ [P]C = 1\i, j · b 1\ pvi 1\ qvi 1\ rmi,j ::::} c[xv\xv'] 

For an operation given by a vector table we have a simplified rule for determining 

its precondition. Let f[xv\em] stand for a vector of expressions, with each ele

ment obtained by substituting xv with one column of matrix em in f, formally 

(f[xv\em])j = f[xv\emi]. 

Theorem 5.6 (Weakest Precondition of Vector Table). If standard vector 

relation V and condition C are given by 

Vxvxv'= I bv 
xv' = em ' 

C xv xv' = c 

we have 

[V]C xv xv' = 1\j · bvi ::::} c[xv\emi] 
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While the theorem allows the precondition to be calculated, the precondition is a 

conjunction rather than a table. We can give an alternative theorem that gives a 

tabular precondition but has side conditions: 

Theorem 5.7 (Tabular Weakest Precondition of Vector Table). If standard 

vector relation V and condition C are given by 

,_ I bv V XV XV = 1 ' xv = em 
C xv xv' = c 

and if bv is total and disjoint we have 

[VJ C XV xv' ==: [ b\ J 
CXV em 

Finally we give a theorem that does not have the side conditions of totality and 

disjointness. It follows directly from Theorem 5.5. 

Theorem 5.8 (Verification with Vector Table). If conditions B, C and vector 

relation V are given by 

B xv xv' = b, 

we have: 

V xv xv' = I pv 
xv' = em ' 

B ~ [V]C = 1\j · b 1\ pvj =? c[xv\emJ] 

3.6 Refinement 

C xv xv' = c 

In general, refinement is the process of deriving an implementation from a speci-

fication and verifying the correctness of the derivation [20]. 

Programs are given a new semantics with the merit that a specification written as 

a first-order predicate can be refined, step by step, to a program via the rules of Pred-

icate Calculus. The semantics allows a free mixture of predicate and programming 

notations, and manipulation of programs [10]. 

We formalize the notation of program refinement defined on partial relations [34]. 

We say that S is refined by T, written S ~ T, if 

39 



Master Thesis - N. Zhou- McMaster- Computing and Software 

1. dom S ~ dom T 

2. ldom Sl nT <:: S 

The operator Is I "lifts" a set to a relation, Is I x y = ( x E s). 

Algorithmic refinement is simplified assuming program P and Q are defined on 

total relations with the same domain. If P <;:; Q, then we say that P refines Q [32]. 

Refinement is a process that allows non-determinism to be reduced. Refinement is 

reflexive, P <;:; P, meaning that each programs is refined by itself. Refinement is also 

transitive, P <;:; Q and Q <;:; R implies P <;:; R, meaning that programs can be refined 

in a stepwise manner. If P <;:; Q holds, then P is called the (more) concrete and Q 

the (more) abstract program. 

Data refinement is the systematic replacement of a state space (abstract data) by 

another one (concrete data) in program development. Data refinement is considered 

as an operator rather than a relation within the refinement calculus framework [4]. 

The encoding operator l is defined so that S l D is the most general (least refined) 

data refinement of statement S with respect to an abstraction statement D (an ab

straction statement models the relationship between the concrete and the abstract 

state space). Using Galois connections it is found that under certain restrictions 

there exists a dual decoding operator j which allows us to calculate the least general 

(most refined) abstraction S j D of a given (concrete) statement S with respect to 

abstraction statement D. 

We consider two variants of data refinement, downward (forward) data refinement 

and upward (backward) data refinement [9]. The encoding and decoding operators are 

similar to those of [4]. Suppose P, Q are homogeneous relations of possibly different 

types, an encoding operator P l R is introduced: 

P l R = R-1 o Po R provided R is injective 
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Program Q downward refines program P via relation R if R o Q ~ P o R holds. 

Symmetrically, a decoding operator P j R is introduced: 

P j R = R-1 o Po R provided R is total 

Program P upward refines program Q via relation R if P o R ~ R o Q holds. 

If R is either injective or total, a coding operator is introduced: 

P 1 R = R-1 o Po R 

We give a theorem that apply only to encoding: 

Theorem 6.1 (Soundness of Encoding). 

Q ~ P l R '* R o Q ~ P o R if R is injective 

We give a theorem that apply only to decoding: 

Theorem 6.2 (Soundness of Decoding). 

P j R ~ Q '* P o R ~ R o Q if R is total 

We note that coding is monotonic in its first argument (but not in its second), which 

follows directly from its definition: 

Theorem 6.3 (Monotonicity of Coding). 

P~Q'*P1R~Q1R 

We state some facts about the first argument of the coding operator. 

Theorem 6.4. Suppose I is an index set and C is a condition: 

(a) j_ 1 R = j_ 

(b) (Ui E I · Pi) 1 R = (Ui E I · Pi 1 R) 

(c) (ni E I· I{) 1 R ~ (ni E I· Qd R) 

(d) (C n P) 1 R ~ (R-1 o C) n (P 1 R) 
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We note that for a relation R and condition C, the condition R-1 o C is the image 

of C under R. As Theorem 6.4(c) and (d) state inclusion and not equality, they are 

only useful for decoding when distributing the decoding operator into conjunctions. 

Next we state how coding behaves in its second argument: 

Theorem 6.5 Suppose I is an index set: 

(a) p! j_ = j_ 

(b) P J T = T 

(c) P! Id = P 

(d) P! (R o S) = (P! R)! S 

(e) ( Ui E I · P J R;) <;;:;; P J ( Ui E I · Ri) 

(f) P 1 ( ni E I · Ri) <;;:;; ( ni E I · P 1 Ri) 

if p =I= j_ 

We continue with theorems that apply only to encoding. Distributivity through 

conjunctions in the first argument can be strengthened to equality with an injective 

encoding relation. Encoding subdistributes through relational composition: 

Theorem 6.6 Suppose R is an injective relation: 

(a) (ni E I· Pi) l R = (ni E I· Qi) l R 

(b) (CnP)lR=(R- 1 oC)n(PlR) 

(c) ( P1 l R) o ( P2 l R) <;;:;; ( P1 o P2) l R 

We conclude with a theorem that applies only to decoding. Decoding also subdistrib

utes through relational composition, though in the other direction than encoding: 

Theorem 6. 7 Suppose R is a total relation: 

(P1 o P2) j R <;;:;; (P1 j R) o (P2 j R) 
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3. 7 Tabular Refinement 

We give theorems on how specifications can be transformed into more concrete 

or more abstract ones, where either the concrete or the abstract or both are given in 

tabular form. 

First we consider that both specifications are over the same state space. Assume 

PV and QV are vectors of relations, RM is a matrix of relations, and S is a relation: 

Theorem 7.1 (Refining to Table). 

(a) I 
QV 

-p==-v-:-t--=R:---;M:-::- <:_::: S = 1\i, j · PVi n QVj n RMi,j <:_::: S 

(b) -p=-=v:-11-~=-M-=-v=--- <:_::: PV I ~~ -¢::= 1\i,j · PVi n QVj n RMi,j <;::: SMi,j 

Refining to a vector table allows for a simplified rule: 

Theorem 7.2 (Refining to Vector Table). If vector relation P and relation Q 

are given by 

I 
pv 

P xv xv' = -----:----t-=-
xv' = em' 

we have 

pv 
Q xv xv' =-

qv 

P <:_::: Q <== (1\j · pvj =? qv[xv'\emi]) 

Note that while above theorem can be applied even if Q is not a standard relation, P 

is a standard vector relation only if Q is a standard relation. We now give a general 

theorem when the concrete and abstract state are related through relation R: 

Theorem 7.3 (Data Refining a Table). Assume BV, CV are vectors of condi-

tions: 

(a) ( I cv 
BV PM ) lR= 

I R-l 0 cv 
R 1 oBV PM l R 

if R is injective. 

(b) ( I cv 
BV PM ) !R= 

I R-l 0 cv 
R-1 oBV PM 1 R 

if R is injective. 
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To allow a direct application of above theorem, we derive the corresponding theorem 

when the relation is given by a tabular predicate. We extend the use of existential 

quantifications to matrices of predicates, with the meaning that the quantification 

is applied to each element, formally (::Jx · pm)i,j = (::Jx · pmi,j): 

Theorem 7.4 (Data Refining with Predicates). Given relation Pin standard 

form and relation R by 

p xv xv' =b _l__c cvv ' 
~ 

R xv yv = r 

and writing r' for r with xv, yy substituted by xv', yv' we have: 

(a) (P l R) yv yv' = ( 3xv · r 1\ cv ) 3xv · r 1\ bv 3xv, xv' · r 1\ pm 1\ r' 

if R is injective. 

(b) (P 1 R) yv yv' ~ 
( 3xv · r II 1m 

3xv · r 1\ cv ) 3xv, xv' · r 1\ pm 1\ r' 

We consider the case that the refinement relation rather than the specification is 

in tabular form. More precisely, we consider the refinement relation being defined 

by an inverted vector table, that is a table in which only the variables of the initial 

state appear in the left header and variables of the final state appear only in the 

upper header and body. For simplicity we consider a refinement relation with only 

two columns. 

Theorem 7.5 (Data Refinement with Vector Table). Assume inverted vector 

relation R is given by: 

R xv yv = I c I d xv = ev fv 

Writing c', d', ev', fv' for c, d, ev, fv with yv substituted by yv' we have 

c' d' 
(P 1 R) yv yv' = c Pevev' Pevfv' 

d P fv ev' P fv fv' 
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Chapter 4 

Design Features 

4.1 Interface with Simplify 

Simplify accepts a sequence of first order formulas as input, and attempts to prove 

each one [21]. 

Simplify [-print] [-ax axfile] [-nose] [-noprune] [-help] [-version] [file] 

Simplify implements a semi-decision procedure for its inputs: it can sometimes 

fail to prove a valid formula. But it is conservative in that it never claims that an 

invalid formula is valid [21]. Simplify handles propositional connectives by backtrack

ing search and includes complete decision procedures for the theory of equality and 

for linear rational arithmetic, together with some heuristics for linear integer arith

metic that are not complete. Simplify's handling of quantifiers by pattern-driven 

instantiation is also incomplete [7]. 

Complex valid formulae including quantifiers may require much longer running 

time for Simplify to prove, or even cause Simplify fail to prove their correctness. If 

Simplify can prove the formula, it prints valid. If it cannot prove the formula, it 

normally prints a conjunction of literals that it believes to satisfy the negation of the 
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formula. 

Three options are used in our application: 

1. The -nose options causes Simplify to simply output "valid" or "invalid" ; 

2. The -ax flag allows us to specify an alternate axiom set, and the AXIOMDIR 

environment variable allows us to specify where Simplify should look for that 

axiom set. 

3. The file argument is provided such that S-expression formulae are read one at 

a time from the file, and proved. 

The syntax of formulae is based on S-expressions, with one S-expression per for-

mula. 

formula ::= "(" ( AND I OR ) { formula } ")" I 

"("NOT formula")" I 

" (" IMPLIES formula formula ")" I 

"(" IFF formula formula ")" I 
"(" FORALL "(" var* ")" formula ")" I 

"(" EXISTS "(" var* ")" formula ")" I 

"(" PROOF formula*")" I 
literal 

literal ::= "(" ( "EQ" I "NEQ" I"<" I"<=" I">" I">=") 

term term")" I 
"(""DISTINCT" term term+")" 

"TRUE" I "FALSE" I <propVar> 

term ::= var I integer I "(" func {term}")" 

"var'"s (variables), "func'"s (functions), and "propVar"'s (propositional variables) are 

represented as" Atom.T" 's. 

The formula 

(DISTINCT terml ... termN) 
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represents a conjunction of distinctions between all pairs of terms in the list. 

<funcs> 's are uninterpreted, except for "+", "-", and "*", which represent the ob

vious operations on integers. "/" is interpreted by our self-defined functions in our 

axioms. 

4.2 Pattern Matching in Function Definition 

The input to Simplify is a formula of untyped first-order logic with function and 

relations, including equality. That is, the language includes the propositional con-

nectives /\, V, •, ==?,and{:?; the universal quantifier V, and the existential quantifier 

3 [7]. To define functions we need to apply universal quantifier to all independent 

variables such that the variable can be replaced by any value. Simplify handles quan-

tifiers by pattern-driven instantiation. Pattern matching starting with keyword 

PATS is used to find the relevant structure and to substitute the matching part 

(function name and its inputs) with function outputs. Pattern matching can benefit 

from guard. Guards can be used to augment pattern matching with the possibility 

to skip a pattern even if the structure matches. Guards are realized in Simplify by 

the left part of implication. Following S-expression in Simplify is a function which 

defines the arithmetic division operation on two positive integers. 

(FORALL (x y) 

(PATS (div1 x y)) 

(AND (IMPLIES (>= x y) (EQ (div1 x y) (+ (div1 (+ x (* -1 y)) y) 1))) 

(IMPLIES (< x y) (EQ (div1 x y) 0)))) 
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This is a recursive definition and similar to the respective mathematic notation: 

{

divl(x- y) + 1 x;?: y 
divl(x, y) = 

divl(x,y) = 0 x < y 

An absolute function can be defined without pattern matching since the disjunction 

of the left side of all the implication are total: 

(FORALL (x y) 

(AND (IMPLIES (>= x 0) CEQ Cabs x) x)) 

(IMPLIES (< x 0) (EQ Cabs x) (* -1 x))))) 

A division function on two integers are extended to: 

(FORALL (x y) 

(PATS (/ X y)) 

(AND (IMPLIES (AND (>= X 0) (> y 0)) 

CEQ (/ X y) (div1 X y))) 

(IMPLIES (AND (>= X 0) (< y 0)) 

CEQ (/ X y) (* -1 (div1 x Cabs y))))) 

(IMPLIES (AND (< X 0) (> y 0)) 

CEQ (/ X y) (* -1 (div1 Cabs x) y)))) 

(IMPLIES (AND (< X 0) (< y 0)) 

(EQ (/ x y) (div1 (abs x) Cabs y)))))) 

The pattern matching here plays a role of guard to skip a division xjy with y = 0. 

Note that if a pattern matches a function defined on the right side of an implication, 

then the left side of the implication states the domain of the function. It is similar 

to an alternative statement. Theses functions are the additional axioms to which 

Simplify refers before validating predicates. 
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4.3 Unified Data Type 

Our data type form is defined to match Simplify grammar. Besides that, we also 

add properties and operations of sets to form. There are two kinds of variables

variables in the left header of a vector table, represented by V ECV AR("varname") 

and otherwise, represented by V AR("varname"). Another type expression OP is 

applied in Chapter 6. OP takes a predicate name and a predicate definition as 

its parameter, passes the predicate definition as inputs to Simplify but prints the 

predicate names to the screen and Ib'IE;X files. Such a use is also sugar for reading 

the foregone predicate into the current background predicate by our parser. 

For simplicity we only define the data type of two-dimensional tables; one dimen-

sional table can be deemed as a special two-dimensional table with row header or 

column header being TRUE and other columns or rows of table body being copied 

from the first column or row. Table structure is modeled by a TABLE construct 

followed by a record as its parameter which consists of left header, upper header and 

table body. Row header and column header are expressed by one dimensional arrays; 

table body is expressed by a two dimensional array. Elements of arrays are predicates 

including tables. So this is a mutually recursive definition. 

Among ten kinds of tables summarized by Parnas [23], TABLE construct can rep-

resent normal, inverted and vector function tables with integer return type, normal, 

inverted and vector relation tables, predicate expression tables, and characteristic 

predicate tables. In this thesis we use one class of tables, called characteristic predi

cate tables, together with its variation of vector tables. 

type form = CONST of int 

I VAR of string 

I VECVAR of string 

I SUM of form x form 
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DIFF of form x form 

PROD of form x form 

QUOT of form x form 

FUN of string x form list 

OP of string x form 

EMPTY 

INSERT of form x form 

DELETE of form x form 

MEMBER of form x form 

UNION of form x form 

SUBSET of form x form 

TRUE 

FALSE 

EQ of form x form 

NEQ of form x form 

LT of form x form 

LE of form x form 

GT of form x form 

G E of form x form 

AND of form list 

OR of form list 

IMPLIES of form x form 

IFF of form x form 

NOT of form 

FORALL of form list x form 

EXISTS of form list x form 

TABLE of tables 

and tables = { headm :form array;headn :form array;body :form array array} 

4.4 Variable Types of Theorems 

In the logic of [32] and this thesis, typing is implicit, so all variables of the theorems 

(distinguishing from program variables) are implicitly (if not explicitly) universal 
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quantified over the right type. In Simplify, individual variables range over the space 

of individual values which includes integers and maps [7]. 

If a program variable is of numerical or string type, we can simply map it to 

the space of individual values with the same name; if a program variable belongs to 

boolean or enumeration type where the domain of the program variable may have 

effect on the behavior of the program, we have to explicitly state the space of values 

of that type. In Simplify, we do this by two steps: 

1. make all values in Type space distinct by a general distinction of the form 

DISTINCT(tl, ... , tn). 

2. make the variable t total over its Type by a disjunction of the form OR(t = 

tl, ... , t = tn) 

For each typed program variable, we set these two formulae into our self-defined axiom 

file and they will be loaded each time the main program is initialized. One typical 

example is modeling car seat movement where longitudinal adjustment motor only 

has three states-forward, backward and stop. Another example is elevator button 

pressed refinement where program variable r takes a boolean value true or false. 

These two examples will be illustrated in the following chapters. 

If a program variable x in specification Z has a type Y, Y is a set and the elements 

of Y are not specified, we can limit the domain of x by the predicate x E Y ===? Z. 

If a program variable is of abstract type (e.g. set), functions have to be defined 

to model properties and operations of that type (e.g. insert, delete and member). A 

program variable of composite type (e.g. tuple and array) follow the same rule as that 

of abstract type. These functions are also stored in our axiom file. The modeling 

of visitor information system in Chapter 7 illustrates how to define functions that 

specify the properties and operations of set and relation (a set of pairs). Note that 
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a program variable of initial and final states should be typed if they both occur in a 

specification. 

Type checking is not implemented in our application of theorems since the types 

of program variables are confined by functions. 

4.5 Structure of Implementation 

Our implementation of theorems in OCaml includes three parts: 

1. Parser 

2. Printing 

3. Theorem proving 

We introduce each part briefly in this section. 

4.5.1 Parser 

The idea of designing a parser comes from difficulties we met when inputting a 

long and complicated predicate, especially a table or a set manipulation, directly 

by our data type form. The parser also assists in better understanding and error 

checking procedures or operations in our examples. 

The characters are first scanned: processed into tokens such as keywords, identi

fiers, special symbols and numbers. The parser is supplied a list of tokens. A token is 

either an identifier, an integer constant or a keyword. Calling scan performs lexical 

analysis on a string and returns the resulting list of tokens [28]. 

We use recursive decent parsing technique [33] to construct a top-down parser 

directly in OCaml. Literal TRUE and FALSE are inputted as they are; variable 
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Precedence Operator Input Example form expressions 
0 () () (a+ b)l4 QUOT(ADD(a, b),4) 
1 X * a*b PROD( a, b) 
1 I alb QUOT(a,b) 
2 + + a+b ADD( a, b) 
2 a-b SUB( a, b) 
3 a=b EQ(a, b) 
3 =I= I= al = b NEQ(a,b) 
3 < < a<b LT(a, b) 
3 < <= a<= b LE(a, b) 
3 > > a>b GT(a, b) 

3 > >= a>= b GE(a, b) 
4 --, not not a> b NOT(GT(a, b)) 
5 1\ & a> O&b > 0 AND([GT(a, O);GT(b, 0)]) 
6 V or a> 0 orb> 0 OR([GT(a, O);GT(b, 0)]) 
7 ===} => a> 0 => b > 0 IMPLIES(GT(a, O),GT(b, 0)) 
7 {::} <=> a> 0 <=> b > 0 IFF(GT(a, O),GT(b, 0)) 
8 v ! !xlx > 0 FORALL([x],GT( x ,0)) 
8 :J # #x,ylx > y EXISTS([x; y],GT(x, y)) 

Table 4.1: Logical Operators and Quantifiers 

VAR(" id") is inputted as id; variable VECVAR(" id") in the left header of a vector 

table is inputted as id = ; integer CONST(12) is inputted as 12. Tables 3.1list logical 

operators and quantifiers. 

The inputting environment of tables is similar to the tabular environment in ~TEX. 

typesetting. The keyword BEGTAB starts a tabular input environment while END

TAB finishes it. The left header starts by keyword LHEADER, ends by symbol 

I I, and its elements are separated by symbol $; Upper header start by keyword 

UHEADER, ends by symbol I I, and its elements are separated by symbol $; there 

is no prefix keyword for the tabular body, symbol $ is used to separate elements of 

each row, symbol I I starts a new line. Left header or upper header can be omitted 

but table body can not. For example, Table 4.2 can be inputted by 
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c>O d>O e>O 
a>O x<y y<z x<z 
b>O y<z x<y x<z 

Table 4.2: A Sample Table 

"BEG TAB LHEADER a > 0 $ b > 0 I I UHEADER c > 0 $ d > 0 $ e > 0 I I 

X < y $ y < z $ X < z I I y < z $ X < y $ X < z I I ENDTAB" 

A vector table is a table in which only the variables of the initial state appear 

in the left header and variables of the final state appear only in the upper header 

and body. In this project, vector tables have the same input environment as normal 

tables except that the left header should be an identifier followed by symbol = and 

table body is a matrix of arithmetic expressions. For instance, the input of Table 4.3 

is "BEG TAB LHEADER x = $ y = z I I UHEADER c > 0 $ d > 0 $ e > 0 I I 

3 $ 7 $ 9 I I 2 $ 4 $ 8 I IENDTAB" 

c>O d>O e>O 

X= 3 7 9 

y=z 2 4 8 

Table 4.3: A Sample Vector Table 

4.5.2 Notations for Sets and Relations 

Other form expressions relate to the properties and operations of set, relation 

and function. We list their input syntax, their meaning is explained by plain words 

or conventional symbols, and translation into our farm type expressions . 

. {} 
- An empty set¢. 

-EMPTY 
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- (INSERT ( ... (INSERT (INSERT EMPTY x1) x2) ... )xn) 

e XS- -ys 

- Deleting elements of set ys from set xs (i.e. xs- ys). 

- DELETE(xs, ys) 

e XS U ys 

- The union of set xs and set ys (i.e. xs U ys). 

- UNION(xs, ys) 

• xs <: ys 

- If xs is a subset of ys (i.e. xs <:;:; ys), then it is evaluated to true. 

- EQ(SUBSET(xs; ys),VAR("true")) 

e X: XS 

- If x is an element of set xs (i.e. x E xs), then it is evaluated to true. 

- MEMBER(xs,ys),VAR("true")) 

• PAIR( a, b) 

- A relation is represented by a set of pairs (i.e. {(a1, b1), (a2, b2)} ). 

- FUN(" PAIR" ,[x; y]) 

• dom(xs) 

- The domain of binary relation xs. 

- FUN("dom" ,[xs]) 
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• ran(xs) 

- The range of binary relation xs. 

- FUN("ran" ,[xs]) 

• relate(x, xs) 

- A relation which is the subset of binary relation xs where the domain of 

the relation is { x}. 

- FUN("relate" ,[x; xs]) 

• revrelate( x, xs) 

- A relation which is the subset of binary relation xs where the range of the 

relation is { x}. 

- FUN("revrelate" ,[x; xs]) 

• injective(xs) 

- If binary relation xs is injective, then it evaluates to true. 

- FUN(" injective" ,[xs]) 

• map(xs) 

- If binary relation xs is a function, then it evaluates to true. 

- FUN("map" ,[xs]) 

• card(xs) 

- The cardinality of set xs (i.e. #xs ). 

- FUN(" card" ,[xs]) 
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• compose(xs, ys) 

- The composition of the relations xs and ys. 

- FUN(" compose" ,[xs]) 

• EMPSTR 

- The empty string "". 

- EMPSTR 

• concate(xs) 

Concatenate a set of strings separated with spaces. 

- FUN("concate" ,[xs]) 

4.5.3 Printing 

Module Print fulfills three printing functions: 

1. Function prints with parameters predi and margin 

One auxiliary function predtable takes a predicate table and returns a plain 

predicate corresponding to the table. Function prints takes a predicate with 

possible embedded tables and returns an equivalent predicate without tables, 

printing that predicate in Simplify syntax based on S-expression. A formula is 

printed in a nested structure and a margin is added to the output file if needed. 
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let predtable t1 = 
let t2 = ref [l in 

fori = 0 to (Array.length tl.body) - 1 do 

for j = 0 to (Array.length t1.body.(O)) - 1 do 

if tl.headm -=f [Ill 1\ t1.headn -=f [Ill then 

match tl.headm.( i) with 

VECVAR(x) ----+ t2 := AND([tl.headn.(j); EQ( VAR(x), 

tl.body.(i).(j))]) :: !t2 

I _----+ t2 := AND([t1.headm.(i); tl.headn.(j); tl.body.(i).(j)]) ::!t2 

else if t1.headm = [Ill 1\ t1 .headn -=f [Ill then 

t2 := AND([TRUE; tl.headn.(j); tl.body.(i).(j)]) ::!t2 

else if tl.headm-=/ [Ill 1\ tl.headn = [Ill then 

(match t1 . headm. ( i) with 

VECVAR(x) ----+ t2 := EQ(VAR(x), tl.body.(i).(j)) :: !t2 

I _ ----+ t2 := AND([t1.headm.(i); TRUE; tl.body.(i).(j)]) ::!t2) 

else 

t2 .- AND([ TRUE; TRUE; t1.body.(i).(j)]) ::!t2 

done 

done; 

OR(!t2) 

let prints predi margin 

let space = ref margin in 

let flag = ref 0 in 

let rec transformlist = function 

I [l ----7 [l 
I head :: tail ----+ transstring head ·· transformlist tail 

and transstring = function 

CONST(x) ----+ string_of _int x 

VAR(x) ----+ if x = 1111 then 11 EMPSTR 11 else x 

SUM ( term1 , term2) ----+ 

11 
( +u 11 

A transstring term1 A 
11 u 11 

A transstring term2 A 
11 ) 11 

DIFF(term1, term2) ----+ 

11 ( -u 11 
A trans string term1 A 

11 u 11 
A trans string term2 A 

11 ) 11 
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DELETE(terml, term2) -+ 

" (DELETEu" A transstring terml A "u" A transstring term2 A " ) " 

PROD( terml, term2) -+ 

" ( *u" A transstring terml A" u" A transstring term2 A") " 

QUOT(terml, term2) -+ 

" (/ u" A transstring terml A" u" A transstring term2 A") " 

FUN(x, termlist) -+ (String.concat "" ["(";x;"u"; 

String. con cat "u" ( transformlist termlist)]) A " ) " 

EMPTY -+ "EMPTY" 

INSERT(terml, term2) -+ 

"(INSERTu" A transstring terml A "u"Atransstring term2 A")" 

MEMBER(terml, term2) -+ 

" (MEMBERu" A transstring terml A" u" A transstring term2 A") " 

UNION(terml, term2) -+ 

"(UNIONu" A transstring terml A "u" A transstring term2A")" 

SUBSET(terml, term2)-+ 

" (SUBSET u" A transstring terml A "u" A transstring term2 A ") " 

TRUE -+ 

if !flag = 1 then begin space := !space A "uu"; 

let s = "\n" A !space A "TRUE" in 

space := String.sub !space 0 (String.length !space- 2); s end 

else begin let s = !space A "TRUE" in flag := 1; s end 

FALSE -+ 

if !flag = 1 then begin space := !space A 

let s = "\n" A !space A "FALSE" in 

II II. 
uu ' 

space := String.sub !space 0 (String.length !space- 2); send 

else begin let s = !space A "FALSE" in flag := 1; s end 

EQ(terml, term2) -+ 

space := !space A "uu"; 

let s = "\n" A ! space A " (EQu" A transstring terml A "u" 

A transstring term2 A") " 

in space := String.sub !space 0 (String.length !space- 2); s 

NEQ(terml, term2) -+ 

space := !space A "uu"; 
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let s = "\n" A !space A" (NEQu" Atransstring term1 A 

"u" A transstring term2 A " ) " 

in space := String.sub !space 0 (String.length !space- 2); s 

LT(term1, term2) ----7 

space := !space A "uu"; 

let s = "\n" A !space A" ( <u" A transstring term1 A 

"u" A transstring term2 A ") " 

in space := String.sub !space 0 (String.length !space- 2); s 

LE( term1, term2) ----7 

space := !space A "uu"; 

let s = "\n" A !space A" ( <=u" A transstring term1 A 

"u" A transstring term2 A ") " 

in space := String.sub !space 0 (String.length !space- 2); s 

GT(term1, term2) ----7 

space := !space A "uu"; 

lets = "\n"A !spaceA"(>u"Atransstring term1A 

"u" A trans string term2 A " ) " 

in space := String.sub !space 0 (String.length !space- 2); s 

GE( term1, term2) ----7 

space := !space A "uu"; 

lets = "\n"A !spaceA"(>=u"Atransstring term1A"u"A 

transstring term2 A ") " 

in space := String.sub !space 0 (String.length !space- 2); s 

AND(formlist) ----7 

if !fiag = 1 then begin space := !space A "uu"; 

lets= "\n"A!spaceA"(AND"A 

(String.concat "u" (transformlist formlist)) A ")" in 

space := String.sub !space 0 (String.length !space - 2); 

s end else begin fiag := 1;1et s = (!space A "(AND" A 

(String. concat "u" ( transformlist formlist)) A " ) ") 

in s end 

OR(formlist) ----7 

if !fiag 1 then begin space .- !space A 

lets = "\n"A !spaceA "(OR"A 
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(String.concat "u" (transformlist formlist))' ")"in 

space := String.sub !space 0 (String.length !space - 2); s 

end else begin 

flag:= 1;1et s = (!space ' "(OR"' (String.concat "u" 

( transformlist formlist)) ' ") ") in s end 

IMPLIES(form1, form2) --+ 

if !flag = 1 then begin space := !space ' "uu"; 

lets = "\n"' !space' "(IMPLIES"' 

transstring form1 ' "u" ' transstring form2' ") " in 

space := String.sub !space 0 (String.length !space- 2); s 

end else begin 

flag:= 1; lets = !space ' "(IMPLIES"' 

transstring form1 ' "u" ' transstring form2 ' ") " in s end 

IFF(Jorm1, form2) --+ 

if !flag = 1 then begin space:= !space ' "uu"; 

let s = "\n"' !space ' "(IFF" ' 

transstring form1 'transstring form2' ")" in 

space:= String.sub !space 0 (String.length !space- 2); send 

else begin flag := 1; let s = !space ' "(IFF" ' 

transstring form1 'transstring form2' ")" in s end 

NOT(Jorm1) --+ 

if !flag = 1 then begin space:= !space ' "uu"; 

lets = "\n"' !space' "(NOT"'transstring formr")" in 

space := String.sub !space 0 (String.length !space- 2); s end 

else begin flag := 1;1et s = !space ' 

" (NOT"' transstring form1' ")" in s end 

FORALL(y,jorm1) --+ 

let shell x ys = match x with 

I VAR(xx) --+ xx ' "u" ' ys 

I - --+ ys 

in let y2 = List.fold_right shell y "" in 

if !flag = 1 then begin space := !space ' II II. 

uu ' 

lets = "\n"' !space' "(FORALL("'y2'")"' 

transstring form1 '")" in 
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space := String.sub !space 0 (String.length !space- 2); s end 

else begin flag := 1; let s = !space A 

11 (FORALL ( 11 
A y2 A 

11 ) 11 
A transstring formt A 

11 ) 11 in s end 

EXISTS(y,Jormt) -+ 

let shell x ys = match x with 

I VAR(xx) -+ xx A 

11 u 11 
A ys 

I - -+ ys 

in let y2 = List.fold_right shell y 1111 in 

if !flag = 1 then begin space := !space A 

let s = 11 \n 11 
A !space A 

II II. 

uu ' 

11 (EXISTS ( 11 
A y2 A 

11 ) 11 
A transstring formt A 

11 ) 11 in 

space := String.sub !space 0 (String.length !space- 2); s end 

else begin flag := 1; let s = !space A 

11 (EXISTS ( 11 
A y2 A 

11
) 

11 
' transstring formt A 

11
) 

11 in s end 

TABLE( tablet) -+ transstring (predtable tablet) 

OP(x,formt) -+ let s = !space A transstring formt in s 

_ -+ raise 

(Failure 11 theuparameteruofutransstringushouldubeuauformula 11
) 

in transstring predi 

2. Function pretty_print with parameter predi 

It prints all formulae, including tables, on standard output. Plain formulae are 

expressed by infix structure with parenthesis to override operator precedence. 

The ASCII code operators refer to those of B language. Tables are expressed by 

their original structure with parallel lines composed of'-' character and vertical 

lines composed of 'I' character. Changing lines are controlled in both plain 

formulae and tables. 

( * A record type used in function pretty_ print and latex_ print, it is similar 

to record table except that each element of arrays is a string representing the 

formula which is supposed to send output to terminals or files *) 

type tstr = { hdm :string array; hdn :string array; bd :string array array} 
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( * A record type used in function pretty_ print only in order to record the number 

of lines of each element and the maximum characters of each line. Since a single 

cell of a table may occupy several lines, if the length of the content in this cell 

is greater than the default maximum value, we need to memorize the number of 

lines and characters for each element. We also have to divide the original string 

element in a cell into a list of strings according to the content for each line. *) 

type rest = { hdmtri : ( int x int x string list) array; 

hdntri : ( int x int x string list) array; 

bdtri : ( int x int x string list) array array} 

let pretty_ print predi = 

let tt = ref ( -1) in 

let flag = ref 0 in 

let rec transformlist prec 

I [ J __. [J 
I head :: tail ---> 

function 

transstring prec head · · transformlist prec tail 

and transset = function 

EMPTY ---> 11
{

11 

INSERT ( terml , term2) ---> (match terml with 

INSERT(tl, t2) ---> transset terml A 

11
,

11 
A transstring 0 term2 

EMPTY ---> transset terml A transstring 0 term2 

- ____, "") 

_ ---> razse 

(Failure 11 theuparameteruof utranssetushouldubeuaupairuofu terms 11
) 

(*A function called to print table in ASCih) 

and print_ table t1 = 

let mh = Array.length tl.headm in 

let nh = Array.length tl.headn in 

let mb = Array.length tl.body in 

let nb = Array.length tl.body.(O) in 

let tst = {hdm = Array.create mh 1111 ;hdn = Array.create nh 1111
; 

bd = Array.make_matrix mb nb 1111
} in 

for i = 0 to mh- 1 do 

tst.hdm.(i) t-- transstring 0 tl.headm.(i) 
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done; 

for j = 0 to nh - 1 do 

tst.hdn.(j) t- transstring 0 tl.headn.(j) 

done; 

for i = 0 to mb - 1 do 

for j = 0 to nb - 1 do 

tst.bd.(i).(j) t- transstring 0 t1.body.(i).(j) 

done 

done; 

( * Compute the default number of characters for m header and body. *) 

let compmax = let maxt = ref 0 in 

for j = 0 to mh - 1 do 

maxt := max !maxt (String.length tst.hdm.(j)) done; 

!maxt in 

let bdefault = if mh = 0 then (120- nb- 1)lnb 

else if compmax < 18 then (120 - nb - 1 - compmax - 1) I nb 

else (102 - nb - 2) I nb in 

let hdefault = if mh = 0 then 0 

else if compmax < 18 then compmax else 18 in 

( * compute function return a record matching the structure of res by computing 

each element of a tabular formula in terms of string*) 

let compute remain default 

let temp = ref "" in 

let left = ref [] in 

let col = if (String .length ! remain) > default 

then default else (String.length !remain) in 

let row = ref 0 in 

while (String.length !remain) > default do 

row := !row + 1; 

let s = ref default in 

while !s 2': 0 1\ String.get !remain !s =1- ' ' do 

s := !s -1 

done; 

temp ·- !remain; 
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remain ·-

if !s 2': 0 then 

if ! s = (String .length ! remain) - 1 

then 1111 else 

String.sub !remain (!s + 1) ((String.length !remain)- (!s)- 1) 

else String. sub ! remain default ( (String .length ! remain) 

- default); 

left := (if !s 2': 0 then String.sub !temp 0 !s 

else String.sub !temp 0 default) :: !left 

done; 

if String. length !remain = 0 then (!row, col, List. rev !left) 

else (!row + 1, col, List. rev (!remain :: !left)) in 

(*This record stores the information of a table. Each element of the table 

consists of a triple. The first element of a triple stores the number of lines 

of each cell; the second stores the number of characters for each line of each 

cell; the third stores the list of strings of each cell, and each string in the list 

corresponds to the line to be filled in each cell.*) 

let res = {hdmtri = Array.create mh (0,0, []); 

hdntri = Array.create nh (0, 0, []); 

bdtri = Array.make_matrix mb nb (0,0, [])}in 

for i = 0 to mh - 1 do 

rcs.hdmtri.(i) +--- compute (ref tst.hdm.(i)) hdefault 

done; 

for j = 0 to nh - 1 do 

rcs.hdntri.(j) +--- compute (ref tst.hdn.(j)) bdefault 

done; 

for i = 0 to mb - 1 do 

for j = 0 to nb - 1 do 

rcs.bdtri.(i).(j) +--- compute (ref tst.bd.(i).(j)) bdefault 

done 

done; 

( * Compute the number of lines of each row and distance of each column by 

computing the maximum number of lines of all elements in the same row and the 

maximum distance of all elements in the same colunm, and put those numbers 
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into two one-dimensional arrays.*) 

let rowar = Array.create (mb + 1) 0 in 

let colar = Array.create (nb + 1) 0 in 

letfsttri =function I (a,_,_) """"""' a in 

let sndtri =function I (_,b,_) """"""' bin 

let thdtri = function I (-,_,c) """"""' c m 
let maxt = ref 0 in 

for j = 0 to nh - 1 do 

maxt := max !maxt (Jsttri rcs.hdntri.(j)) done; 

rowar.(O) <--- !maxt; 

let maxt = ref 0 in 

for i = 0 to mh - 1 do 

maxt := max !maxt (sndtri rcs.hdmtri.(i)) done; 

colar.(O) <--- !maxt; 

for i = 0 to mb - 1 do 

let maxt = ref 0 in 

rowar.(i + 1) <---if mh > i then begin 

for j = 0 to nb - 1 do 

maxt := max !maxt (Jsttri rcs.bdtri.(i).(j)) done; 

max !maxt (fsttri rcs.hdmtri.(i)) end 

else begin 

done; 

for j = 0 to nb - 1 do 

maxt := max !maxt (Jsttri rcs.bdtri.(i).(j)) done; 

!maxt end 

for j = 0 to nb - 1 do 

let maxt = ref 0 in 

colar.(j + 1) <---if nh > j then 

begin for i = 0 to mb- 1 do 

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done; 

max ! maxt ( sndtri res. hdntri. (j)) end 

else begin for i = 0 to mb - 1 do 

maxt .- max !maxt (sndtri rcs.bdtri.(i).(j)) done;!maxt end 

done; 
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(*Draw the outline of a table according to the horizontal and vertical distances 

for each row and column, at the same time record the position of each line of 

each cell corresponding to a string to fill in contents, and store the contents 

and positions in a list of pairs in order to replace blank by contents in the next 

step.*) 

lets ref "\nl" in 

let p ref [l in 

for j 0 to nb do 

if j =/= 0 V mh =/= 0 then begin 

done; 

for k = 0 to colar.(j)- 1 do s := !s • "-"; done; 

s := if j = nb then !s else !s • "-";end 

s := !s • "I \n I"; 
for i = 0 to mb do 

if i =/= 0 V nh =/= 0 then begin 

for rowi = 0 to rowar.(i)- 1 do 

for j = 0 to nb do 

if j =/= 0 V mh =/= 0 then begin 

p := if i =!= 0 1\ j =/= 0 then 

if (List.length ( thdtri rcs.bdtri.( i - 1).(j - 1))) > rowz 

then (String.length !s, 

List.nth (thdtri rcs.bdtri.(i- 1).(j- 1)) rowi) ::!p 

else !p 

else if i = 0 1\ j =!= 0 

then if rcs.hdntri =/=[Ill 1\ 

(List .length ( thdtri res. hdntri. (j - 1))) > rowz 

then (String.length !s, 

List.nth (thdtri rcs.hdntri.(j- 1)) rowi) :: !p 

else !p 

else if i =!= 0 1\ j = 0 

then if rcs.hdmtri =/= [Ill 1\ 

(List .length ( thdtri res. hdmtri. ( i - 1))) > rowi 

then (String.length !s, 

List.nth (thdtri rcs.hdmtri.(i- 1)) rowi) :: !p 
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else !p 

else !p; 

for colj = 0 to colar.(j)- 1 do s := !s A 

11 u 11 done; 

s := !s A 
11 I 11 end 

done; 

s : = ! s A 
11 \n I 11 

done; 

if i i= mb then begin 

for j = 0 to nb do 

end 

done; 

for colj = 0 to colar.(j)- 1 do s := !s A 

11
-

11 done; 

s := if j = nb V (j = 0 1\ mh = 0) then !s else !s A 

11 + 11 

done; 

s := !s A 

11 I \n I 11 end; 

for j = 0 to nb do 

if j i= 0 V mh i= 0 then begin 

end 

done; 

for colj = 0 to colar.(j) - 1 do s := !s A 
11

-
11 done; 

s := if j = nb then !s else !s A 

11
-

11 

s : = ! s A 
11 I \n 11

; 

(*Fill the contents into cells starting from the recording position*) 

for i = 0 to (List.length !p) - 1 do 

for j = 0 to (String.length (snd (List.nth !p i)))- 1 do 

String.set !s ((fst (List.nth !p i)) + j) 

done 

done; 

(String.get (snd (List.nth !p i)) j) 

( * Set flag before returning to the execution of plain formula*) 

flag ·- 0; 

!s 

and transstring prec = function 

I CONST(x) __. let s11 = string_of _int x in 

68 



Master Thesis - N. Zhou- McMaster- Computing and Software 

if !flag= 0 then tt := !tt + (String.length s11); s11 

VAR(x) --+ if x = 1111 then 

begin if !flag= 0 then tt := !tt + 2; "\"\ 11
" end 

else begin if !flag= 0 then tt := !tt + (String.length x); x end 

VECVAR(x) --+ if !flag= 0 then tt := !tt+ (String.length x)+1; x'"= 11 

SUM(term1, term2) --+ if prec > 9 then begin 

if !flag= 0 then tt := !tt + 5; 
11 

( 
11 'transstring 9 term1 ' 11 u+u 11

' transstring 9 term2 '") 11 

end else begin 

if !flag= 0 then tt := !tt + 3; 

transstring 9 term1 ' 11 u+u 11 
' transstring 9 term2 end 

DIFF( term1, term2) --+ if prec > 9 then begin 

if !flag = 0 then tt := !tt + 5; 
11 

( 
11 'transstring 9 term1 ' 11 u-u 11

' transstring 9 term2 ' 11
) 

11 

end else begin 

if !flag= 0 then tt := !tt + 3; 

transstring 9 term1 ' 11 u-u 11
' transstring 9 term2 end 

DELETE(term1, term2) --+ if prec > 9 then begin 

if !flag= 0 then tt := !tt + 5; 
11 

( 
11 'transstring 9 term1 ' 11 u-u 11

' transstring 9 term2 '") " 

end else begin 

if !flag = 0 then tt := ! tt + 3; 

transstring 9 term1 ' 11 u-u 11
' transstring 9 term2 end 

PROD(term1, term2) --+ if prec > 10 then begin 

if !flag = 0 then tt := !tt + 5; 
11 

( 
11 'transstring 10 term1 ' 11 u*u 11

' transstring 10 term2' 11
) 

11 

end else begin 

if !flag = 0 then tt := !tt + 3; 

transstring 10 term1 ' 11 u*u 11
' transstring 10 term2 end 

QUOT(term1, term2) --+ if prec > 10 then begin 

if !flag = 0 then tt := !tt + 5; 

II (II' transstring 10 term1 'II ul U II' transstring 10 term2 ' II) II 

end else begin 

if !flag = 0 then tt := !tt + 3; 
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transstring 10 term1 A 

11 u/ u 11 
A transstring 10 term2 end 

FUN( 11 PAIR 11 ,[VAR(s1); VAR(s2)]) ----+ 

if !flag = 0 then tt :=!tt + 3 + (String.length s1) + (String.length s2); 
II (II A s 1 A II ' II A s2 A II ) II 

FUN( 11 compose 11 ,[VAR(s1); VAR(s2)]) ----+ if !flag= 0 then 

tt := !tt + 1 + (String.length s1) + (String.length s2); 
s1 A II. II A s2 

FUN(x, termlist) ----+ if !flag = 0 then begin let ss1 = ref 1111 in 

flag := 1; 

ss1 := (String.concat 1111 [x; 11
(

11 ;String.concat 11
,

11 

( transformlist 0 termlist)]) A 

11
) 

11
; 

tt := !tt + String. length !ss1; 

flag := 0; 

!ss1 end else (String.concat 1111 [x; 11 
(

11 ;String.concat 11
,

11 

( transformlist 0 termlist)]) A 

11
) 

11 

EMPTY ----+ if !flag= 0 then tt := !tt + 2; 11
{}

11 

INSERT( term1, term2) ----+ let ss1 = ref 11 11 in if !flag = 0 then begin 

flag := 1; 

ss1 := transset (INSERT(term1, term2)) A 

11
}

11
; 

tt := !tt + String.length !ss1; 

flag := 0; 

!ss1 end else begin ss1 := transset (INSERT(term1, term2)) A 
11

}
11

; 

!ss1 end 

UNION( term1, term2) ----+ if prec > 9 then begin 

if !flag = 0 then tt := !tt + 6; 
11 

( 
11 

A transstring 9 term1 A 

11 u \\I u 11 
A transstring 9 term2 A 

11
) 

11 

end else begin 

if !flag= 0 then tt := !tt + 4; transstring 9 term1 A 
11 u\ \/u 11 

A 

transstring 9 term2 end 

SUBSET( term1, term2) ----+ if prec > 9 then begin 

if !flag = 0 then tt := !tt + 6; 
11 

( 
11 

A transstring 9 term1 A 
11 u<: u 11 

A 

transstring 9 term2 A 

11
) 

11 end else begin 

if !flag= 0 then tt := !tt + 4; transstring 9 term1 A 

11 u<: u 11 
A 
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transstring 9 term2 end 

TRUE --. if !flag = 0 then tt := !tt + 4; "TRUE" 

FALSE --. if !flag = 0 then tt := !tt + 5; "FALSE" 

OP(x,Jorml) --. if !flag = 0 then tt := !tt + (String.length x); x 

EQ(MEMBER(terml, term2), VAR("true")) --. 

if prec > 7 then begin if !flag= 0 then tt :=!tt + 5; 

" (" ' transstring 7 terml ' "u : u" ' transstring 7 term2 ' ") " 

end else begin if !flag= 0 then tt :=!tt + 3; 

transstring 7 terml ' "u : u" ' transstring 7 term2 end 

EQ(terml, term2) --. 

if prec > 7 then begin if !flag = 0 then tt := !tt + 5; 

" (" 'transstring 7 terml ' "u=u" ' transstring 7 term2' " ) " end 

else begin if !flag = 0 then tt := !tt + 3; 

transstring 7 terml ' "u=u" ' trans string 7 term2 end 

NEQ(MEMBER(terml, term2), VAR("true"))--. 

if prec > 7 then begin if !flag = 0 then tt :=!tt + 6; 

" (" ' transstring 7 terml ' "u/ : u" 'transstring 7 term2 ' ") " end 

else begin if !flag= 0 then tt :=!tt + 4; 

transstring 7 terml ' "ul: u" ' transstring 7 term2 end 

NEQ( terml, term2) --. 

if prec > 7 then begin if !flag = 0 then tt := !tt + 6; 

"("'transstring 7 terml'"ul=u"'transstring 7 term2'")" end 

else begin if !flag = 0 then tt := !tt + 4; 

transstring 7 terml '" ul =u" 'transstring 7 term2 end 

LT( terml, term2) --. 

if prec > 7 then begin if !flag = 0 then tt := !tt + 5; 

" ("' transstring 7 terml '" u<u"' transstring 7 term2' ") " end 

else begin if !flag = 0 then tt := !tt + 3; 

transstring 7 terml '" u<u" 'transstring 7 term2 end 

LE(terml, term2) --. 

if prec > 7 then begin if !flag = 0 then tt := !tt + 6; 

" ("' transstring 7 terml '" u<=u"' transstring 7 term2' ") " end 

else begin if !flag = 0 then tt := !tt + 4; 

trans string 7 terml '" u<=u"' transstring 7 term2 end 
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G T ( terml , term2) ---+ 

if prec > 7 then begin if !flag = 0 then tt := !tt + 5; 
11 ( 

11 A transstring 7 terml A 11 u>u 11 A transstring 7 term2 A 11
) 

11 end 

else begin if !flag = 0 then tt := !tt + 3; 

transstring 7 terml A 

11 u>u 11 
A transstring 7 term2 end 

GE( terml, term2) ---+ 

if prec > 7 then begin if !flag = 0 then tt := !tt + 6; 
11 

( 
11 A trans string 7 terml A 11 u>=u 11 A trans string 7 term2 A 11

) 
11 end 

else begin if !flag = 0 then tt := !tt + 4; 

transstring 7 terml A 

11 u>=u 11 
A transstring 7 term2 end 

AND(Jormlist) ---+ if prec > 4 then begin 

if !flag = 0 then begin 

tt := !tt + 1; 

let s11 = ref 11 
(

11 in 

let temp = ref 11 11 in 

let rec andean = function 

I [] ---+ s11 := !s11 A 

11
)

11 

I hd :: [] ---+ tt := !tt+1; temp := !s11 A transstring 4 hd; 

if !tt > 120 then if !s11 f 11 
(

11 then 

begin tt := 0; s11 :=!s11 A 

11 \n 11 
A transstring 4 hd end 

else begin tt := 1; s11 := 11 \n 11
A !s11 Atransstring 4 hd end 

else s11 := !temp; 

andean [] 

hd :: tl ---+ tt := !tt+3; temp := !s11 A transstring 4 hd; 

if !tt > 123 then if !s11 f 11
(

11 then begin tt := 3; 

s11 := !s11 A 11 \n 11 A transstring 4 hd A 11 u&u 11 end 

else begin tt := 4; 

s11 := 11 \n 11 A !s11 A transstring 4 hd A 11 u&u 11 end 

else if !tt > 120 then begin tt := 3; s11 ·- !tempA 11 \nu&u 11 

end else s11 := !temp A 

11 u&u 11
; 

andean tl 

in andean formlist; !s11 end 

else 11 
( 

11 
A (String. concat 11 u&u 11 

( transformlist 4 formlist)) A 

11
) 

11 

end else begin 
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if !flag = 0 then begin 

let s11 = ref 1111 in 

let temp = ref 11 11 in 

let rec andean = function 

I [] ----+ s11 := !s11 

I hd :: [] ----+ temp := !s11 ' transstring 4 hd; 

if !tt > 120 then begin tt := 0; 

s11 := !s11 ' 11 \n 11 
' transstring 4 hd end 

else s11 := !temp; 

andean [] 

hd :: tl ----+ tt := !tt + 3; temp := !s11 ' transstring 4 hd; 

if !tt > 123 then begin 

tt := 3; s11 :=!s11 ' 11 \n 11 'transstring 4 hd' 11 u&u 11 end 

else if !tt > 120 then begin tt := 3; s11 :=!temp' 11 \nu&u 11 end 

else s11 := !temp ' 11 u&u 11
; 

andean tl 

in andean formlist; 

!s11 end 

else String. co neat 11 u&u 11 
( transformlist 4 formlist) end 

OR(formlist) ----+ if prec > 3 then begin 

if !flag = 0 then begin tt := !tt + 1; 

let s11 = ref 11
(

11 in 

let temp = ref 11 11 in 

let rec orcon = function 

I [] ----+ s11 := !s11 ' 11
)

11 

I hd :: [] ----+ tt := !tt+ 1; temp := !s11 'transstring 3 hd; 

if !tt > 120 then if !s11 =1- 11 
(

11 then begin tt := 0; 

s11 := !s11 ' 11 \n 11 
' transstring 3 hd end 

else begin tt := 1; 

s11 := 11 \n 11 
' !s11 ' transstring 3 hd end 

else s11 := ! temp; 

orcon [] 

hd :: tl ----+ tt := !tt + 4; temp := !s11 ' transstring 3 hd; 

if !tt > 124 then if !s11 =1- 11 
(

11 then begin tt := 4; 
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s11 := !s11 A 
11 \n 11 

A transstring 3 hd A 

11 uOru 11 end 

else begin tt := 5; 

s11 := 11 \n 11 
A !s11 A transstring 3 hd A 

11 uOru 11 end 

else if !tt > 120 then begin tt := 4; 

s11 := !temp A 

11 \nuoru 11 end else s11 .- !temp A 

11 uOru 11
; 

orcon tl 

in orcon formlist; 

!s11 end else 11
(

11
A (String.concat 11 uOru 11 

( transformlist 3 formlist)) A 

11
) 

11 

end else begin 

if !flag = 0 then begin 

let s11 = ref 1111 in 

let temp = ref 1111 in 

let rec orcon = function 

I [] ---+ s11 := !s11 

I hd :: [] ---+ temp := !s11 A transstring 3 hd; 

if !tt > 120 then begin tt := 0; 

s11 := !s11 A 
11 \n 11 

A transstring 3 hd end 

else s11 := ! temp; 

orcon [] 

hd :: tl ---+ tt := !tt+4; temp := !s11 A transstring 3 hd; 

if !tt > 124 then begin tt := 4; 

s11 := !s11 A 
11 \n 11 

A transstring 3 hd A 

11 uOru 11 end 

else if !tt > 120 then begin tt := 4; 

s11 := !temp A 

11 \nuoru 11 end else s11 ·- !temp A 

11 uoru 11
; 

orcon tl 

in orcon formlist; 

!s11 end 

else String. concat 11 uoru 11 
( transformlist 3 formlist) end 

IMPLIES(form1, form2) ---+ if prec > 2 then begin 

if !flag = 0 then begin tt := !tt + 1; 

let s11 = ref 11
(

11 in 

let temp = ref 1111 in 

let tempi = ref 11 11 in 
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temp := !sii A transstring 2 formi; 

if !tt > 120 then begin tt := 1; 

sii := 11 \n 11 
A !sii A transstring 2 formi end 

else sii := !temp; 

tt := !tt+4; 

if !tt > 120 then begin tt := 4; 

sii := !sii A 

11 \n 11 
A 

11 u=>u 11 end 

else sii := !sii A 

11 u=>u 11
; 

tempi := !sii A transstring 2 form2; 

tt := !tt + 1; 

if !tt > 120 then begin tt := 1; 

sii := !sii A 
11 \n 11 

A transstring 2 form2 A 
11

) 
11 end 

else sii := !tempi A 
11

) 
11

; 

!sii end 

else 11 
(

11 
A transstring 2 formi A 

11 u=>u 11 
A 

transstring 2 form2 A 

11
) 

11 end 

else begin 

if !flag = 0 then begin let sii 

let temp = ref 11 11 in 

let tempi = ref 11 11 in 

ref 1111 in 

temp := !sii A transstring 2 formi; 

if !tt > 120 then begin tt := 0; 

sii := 11 \n 11 
A !sii A transstring 2 formi end 

else sii := !temp; 

tt:= !tt+4; 

if !tt > 120 then begin tt := 4; sii :=!sir 11 \n 11
A

11 u=>u 11 end 

else sii := !sii A 

11 u=>u 11
; 

tempi := !sii A transstring 2 form2; 

if !tt > 120 then begin tt := 1; 

sii := !sii A 

11 \n 11 
A transstring 2 form2 end 

else sii := !tempi; 

!sii end 

else transstring 2 formi A 

11 u=>u 11 
A transstring 2 form2 end 

IFF(Jormi, form2) ---+ if prec > 2 then begin 
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if !flag = 0 then begin tt := !tt + 1; 

let sii = ref "(" in 

let temp = ref 11 11 in 

let tempi = ref 1111 in 

temp := !sii A transstring 2 formi; 

if !tt > 120 then begin tt := 1; 

sii := 11 \n 11 
A !sii A transstring 2 formi end 

else sii := !temp; 

tt := !tt + 5; 

if !tt > 120 then begin tt := 5; sii := !sii A 

11 \nu<=>u 11 end 

else sii := !sii A 

11 u<=>u 11
; 

tempi := lsii A transstring 2 form2; 

tt := !tt + 1; 

if !tt > 120 then begin tt := 1; 

sii := !sii A 

11 \n 11 
A transstring 2 form2 A 

11
)

11 end 

else sii := !tempi A 

11
) 

11
; !sii end 

else 11 
( 

11 
A transstring 2 forml A 

11 u<=>u 11 
A transstring 2 form2 A 

11
) 

11 

end else begin 

if !flag = 0 then begin let s11 = ref 1111 in 

let temp = ref 1111 in 

let templ = ref 1111 in 

temp := ls11 A transstring 2 forml; 

if !tt > 120 then begin tt := 0; 

s11 := 11 \n 11 
A !s11 A transstring 2 forml end 

else s11 := ! temp; 

tt := !tt+5; 

if !tt > 120 then begin tt := 5; s11 := !s11 A 

11 \nu<=>u 11 end 

else sli := !s11 A 

11 u<=>u 11
; 

templ := ls11 A transstring 2 form2; 

if !tt > 120 then begin tt := 0; 

s11 := !s11 A 

11 \n 11 
A transstring 2 form2 end 

else s11 := ltempl; 

!s11 end 

else transstring 2 formi A 

11 u<=>u 11 
A transstring 2 form2 end 
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NOT(Jorml) ---* if prec > 5 then begin 

if !flag = 0 then begin tt := !tt + 6; 

let s11 = ref 1111 in 

let temp = ref 1111 in 

temp := 11 (notu 11 
A transstring 5 forml A 

11
) 

11
; 

if !tt > 120 then begin tt := 6; 

s11 := 11 \n 11 
A 

11 (notu 11 
A transstring 5 forml A 

11
) 

11 end 

else s11 := !temp; 

!s11 end 

else 11 (notu 11 
A transstring 5 forml A 

11
) 

11 end 

else begin 

if !flag = 0 then begin tt := !tt + 4; 

let s11 = ref 1111 in 

let temp = ref 11 11 in 

temp := 11 notu 11 
A transstring 5 forml; 

if ! tt > 120 then begin tt := 4; 

s11 := 11 \n 11 
A 

11 notu 11 
A transstring 5 forml end 

else s11 := !temp; 

!s11 end 

else 11 notu 11 
A transstring 5 forml end 

FORALL(y,Jorml) ____. 

( * Shell V AR() of expression V AR( m), leaving m to be concatenated into a 

string of variables*) 

let shell x ys = match x with 

I VAR(xx)---* xxA 11
,

11 Ays 

I -----?- II II 

- ' 
in let yl = List.fold_right shell y 1111 

in let y2 = if yl = 1111 then 1111 

else String.sub yl 0 ((String.length yl)- 1) in 

if !flag = 0 then begin tt := !tt + 5 + (String.length y2); 

let s11 = ref 11 11 in 

let temp = ref 11 11 in 

if !tt > 120 then begin tt := 5 + (String.length y2); 

s11 := 11 \n 11 
A 

11 (! 11 
A y2 A 

11 .u 11 end 
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elses11:= 11 (! 11 Ay2A 11 .u 11
; 

temp := ls11 A transstring 1 form1 A 

11
) 

11
; 

if ltt > 120 then begin tt := 0; 

s11 := ls11 A 
11 \n 11 

A transstring 1 form1 A 

11
)

11 end 

else s11 := !temp; ls11 end 

else 11 ( ! 11 A y2 A 11 • u 11 A transstring 1 form1 A 11
) 

11 

EXISTS(y,Jorm1) -t 

let shell x ys = match x with 

I VAR(xx) ---> xx A 
11

,
11 

A ys 

I ---+ II II 
- ' 

in let y1 = List.fold_right shell y 1111 

in let y2 = if y1 = 1111 then 1111 

else String.sub y1 0 ((String.length y1)- 1) in 

if !flag = 0 then begin tt := !tt + 5 + (String.length y2); 

let s11 = ref 1111 in 

let temp = ref 1111 in 

if ltt > 120 then begin tt := 5 + (String.length y2); 

s11 := 11 \n 11 
A 

11 (# 11 
A y2 A 

11 .u 11 end 

else s11 := 11 \n 11 A 11 #( 11 A y2 A 11 .u 11 ; 

temp := !s11 A transstring 1 form1 A 
11

) 
11

; 

if ltt > 120 then begin tt := 0; s11 ·- 11 \n 11 
A 

transstring 1 form1 A 

11
) 

11 end 

else s11 := !temp; 

!s11 end else 11 (# 11 
A y2 A 

11
• u 11 

A transstring 1 form1 A 

11
) 

11 

(*A table included in a formula should be printed as a new line*) 

TABLE(table1) ---> tt := 0; flag:= 1; prinLtable table1 

_ ---> raise (Failure 
11 theuparameteruofutransstringushouldubeuauformula 11

) 

in transstring 0 predi 

3. Function latex_print with parameter predi 

It prints all formulae, including tables, on Is\'IEX files. The formulae have the 

same structure as those of 2 except that all characters and tables are in Is\'IEX 
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typesetting. Plain predicates are broken into individual lines of the appropriate 

size by LITgX typesetting. In order to control changing lines in tables, we set 

the alphabetic characters to the typewriter font where each glyph has the same 

width as all others. 

let latex_ print predi 

let flag = ref 0 in 

( * Replace symbols at last in order to count the number of characters the latex 

output.*) 

let rep st 

let tmp ref"" in 

let i = ref 0 in 

while !i < (String.length st) do 

(match st.[!i] with 

'!' -+ tmp ·- !tmp A "$\ \forall$" 

'@' -+ tmp ·- !tmp A "$\\in$" 

'#' -+ tmp ·- !tmp A "$\\exists$" 

'$' -+ tmp ·- !tmp A "$\\notin$" 

'%' -+ tmp - !tmp A "$\ \neq$" 

'<' -+ if !i + 1 < (String .length st) 

begin i -
I. + 1· tmp - !tmp A 
0 z 

' 
else tmp - !tmp A "$<$" 

'-' tmp !tmp 
A 

"$\\leq$" -+ -

'>' -+ tmp ·- !tmp A "$>$" 

'?' -+ tmp ·- !tmp A "$\\geq$" 

'&' -+ tmp ·- !tmp A "$\\wedge$" 
,_, 

-+ if !i + 1 < (String .length st) 

begin i -
I. + 1· tmp - !tmp A 
0 z 

' 
'-' -+ tmp ·- !tmp A "$\\neg$" 

'*' -+ tmp ·- !tmp A "$\\times$" 

'/' -+ tmp ·- !tmp A "$\\div$" 

'{' -+ tmp - !tmp A "\\{" 
'}' -+ tmp ·- !tmp A "\\}" 

'I' -+ tmp ·- !tmp A "$\\cup$" 
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'\001' --+ tmp .- !tmp A "$\\subseteq$" 

'\002' --+ tmp .- !tmp A "$\\eire$" 

'\003' --+ tmp .- !tmp A "$\\vee$" 

c --+ if ( c 2': ' 0 ' 1\ c :::::; ' 9 ' ) V ( c 2': ' A ' 1\ c :::::; ' Z ' ) V 

(c2':'a' 1\ c::;'z') V c='.' 

then tmp := !tmp A "\\texttt{" A (Char.escaped c) A"}" 

else tmp := !tmp A (Char. escaped c)); 

z := !i + 1 

done; 

!tmp in 

let ree transformlist prec 

I [J --+ [J 

function 

I head :: tail --+ transstring prec head ·· transformlist prec tail 

and transset = function 

EMPTY --+ if !flag 0 then "\ \{" else "{" 

INSERT( term1, term2) --+ 

(match term1 with 

INSERT( t1, t2) --+ transset term1 A "," A transstring 0 term2 

EMPTY --+ transset term1 A transstring 0 term2 

- -----7 "") 

I _ --+ raise 

(Failure "theuparameteruof u transsetushouldubeuaupairuof uterms ") 

( * Print table on a latex file, the difference from function pretty_ print is that 

horizontal and vertical distances for each cell is not computed, the only separate 

symbol for a column is a & and for a row is a \hline *) 

and prinLtable t1 = 

let mh = Array.length t1.headm in 

let nh = Array.length t1.headn in 

let mb = Array.length t1.body in 

let nb = Array.length t1.body.(O) in 

let tst = {hdm = Array.create mh "";hdn = Array.create nh ""; 

bd Array.make_matrix mb nb ""} in 

for i = 0 to mh - 1 do 
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tst.hdm.(i) +--- transstring 0 tl.headm.(i) 

done; 

for j = 0 to nh - 1 do 

tst.hdn.(j) +--- transstring 0 t1 .headn.(j) 

done; 

for i = 0 to mb - 1 do 

for j = 0 to nb - 1 do 

tst. bd. ( i). (j) +--- transstring 0 t1. body. ( i). (j) 

done 

done; 

(*Compute the default number of characters for m header and body. *) 

let compmax = let maxt = ref 0 in 

for j = 0 to mh - 1 do 

maxt := max !maxt (String.length tst.hdm.(j)) done; !maxt in 

let bdefault = if mh = 0 then (75- 5 x nb /2- 3) / nb else if compmax < 15 

then (75- 5 x nb/2- 5- compmax)/nb else (60- 5 x nb/2- 5)/nb in 

let hdefault = if mh = 0 then 0 else if compmax < 15 

then compmax else 15 in 

( * compute function return a record matching the structure of res by computing 

each element of a tabular formula in terms of string*) 

let compute remain default 

let temp = ref 1111 in 

let left = ref [] in 

let col = if (String.length !remain) > default 

then default else (String .length ! remain) in 

let row = ref 0 in 

while (String.length !remain) > default do 

row := !row + 1; 

let s = ref default in 

while !s 2: 0 1\ String.get !remain !s i- ' ' do 

s := !s - 1 

done; 

temp := !remain; 

remain :=if !s 2:0 then if !s = (String.length !remain) -1 then 1111 
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else String.sub !remain (!s + 1) 

((String.length !remain)- (!s)- 1) 

else String.sub !remain default 

( (String .length ! remain) - default); 

left := (if !s 2 0 then String.sub !temp 0 Is 

else String.sub !temp 0 default) :: !left 

done; 

if String.length !remain = 0 then (!row, col, List. rev !left) 

else (!row + 1, col, List.rev (!remain :: !left)) in 

( * This record stores the information of a table, and each element of the table 

consists of a triple. The first element of a triple stores the number of lines 

of each cell; the second stores the number of characters for each line of each 

cell; the third stores the list of strings of each cell, and each string in the list 

corresponds to the line to be filled in each cell. *) 

let res = { hdmtri = Array.create mh (0, 0, []); 

hdntri = Array.create nh (0, 0, []); 

bdtri = Array.make_matrix mb nb (0, 0, [])}in 

for i = 0 to mh - 1 do 

rcs.hdmtri.(i) ;---- compute (ref tst.hdm.(i)) hdefault 

done; 

for j = 0 to nh - 1 do 

rcs.hdntri.(j) ;---- compute (ref tst.hdn.(j)) bdefault 

done; 

for i = 0 to mb - 1 do 

for j = 0 to nb- 1 do 

rcs.bdtri.(i).(j) ;---- compute (ref tst.bd.(i).(j)) bdefault 

done 

done; 

( * Compute the number of lines of each row and distance of each column by 

computing the maximum number of lines of all elements in the same row and the 

maximum distance of all elements in the same colunm, and put those numbers 

into two one-dimensional arrays. *) 

let rowar = Array.create (mb + 1) 0 in 
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let colar = Array.create (nb + 1) 0 in 

let fsttri = function I (a,-,_) ----+ a in 

let sndtri = function I (-, b, -) ----+ bin 

let thdtri = function I ( _, _, c) --+ c m 

let maxt = ref 0 in 

for j = 0 to nh- 1 do maxt ·- max !maxt (fsttri rcs.hdntri.(j)) done; 

rowar.(O) +-- !maxt; 

let maxt = ref 0 in 

fori = 0 to mh -1 do maxt ·- max !maxt (sndtri rcs.hdmtri.(i)) done; 

colar.(O) +-- !maxt; 

for i = 0 to mb - 1 do 

let maxt = ref 0 in 

rowar.(i + 1) +--if mh > i then begin 

for j = 0 to nb - 1 do 

maxt := max !maxt (fsttri rcs.bdtri.(i).(j)) done; 

max ! maxt (fsttri res. hdmtri. ( i)) end 

else begin for j = 0 to nb- 1 do 

done; 

maxt := max !maxt (fsttri rcs.bdtri.(i).(j)) done; 

!maxt end 

for j = 0 to nb - 1 do 

let maxt = ref 0 in 

colar.(j + 1) +-- if nh > j then 

begin for i = 0 to mb- 1 do 

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done; 

max ! maxt ( sndtri res. hdntri. (j)) end 

else begin for i = 0 to mb- 1 do 

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done; !maxt end 

done; 

( * Insert some material in the table preamble *) 

let str = ref "\\begin{longtable}{l" in 

for i = 0 to nb do 

if if= 0 V mh f=Othen str := !str' "cl" 

done; 
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str := !str A "}\n\ \hline\n"; 

( * Upper header of a table *) 

if nh of- 0 then begin 

for rowi = 0 to rowar.(O) - 1 do 

if mh # 0 then str := !str A "u&u"; 

for j = 0 to nb - 2 do 

str := !str A (if List.length (thdtri rcs.hdntri.(j)) > rowz 

then rep (List. nth ( thdtri res. hdntri. (j)) rowi) 

else "u") A "u&u" 

done; 

str : = ! str A (if List .length ( thdtri res. hdntri. ( nb - 1)) > rowi 

then rep (List.nth (thdtri rcs.hdntri.(nb- 1)) rowi) 

else "u") A "\ \\ \" 

done; 

str ·- !str A "\n\ \hline\n" 

end; 

( * Left header and body of a table *) 

for i = 0 to mb - 1 do 

for rowi = 0 to rowar.(i + 1)- 1 do 

str := !str A (if mh = 0 then "u" 

else if List.length (thdtri rcs.hdmtri.(i)) > rowi then 

(rep (List.nth (thdtri rcs.hdmtri.(i)) rowi)) A "u&u" 

else "u&u"); 

for j = 0 to nb - 2 do 

str : = ! str A (if List .length ( thdtri res. bdtri. ( i). (j)) > rowz 

then rep (List.nth (thdtri rcs.bdtri.(i).(j)) rowi) 

else "u") A "u&u" 

done; 

str := !strA (if List.length (thdtri rcs.bdtri.(i).(nb- 1)) > rowi 

then rep (List. nth ( thdtri res. bdtri. ( i). ( nb - 1)) rowi) 

else "u") A "\ \\ \"; 

done; 

str := !str A "\n\ \hline\n" 
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done; 

( * End of a table, set flag before returning to the execution of plain formula. 

*) 

str := !str A 

11
\ \end{longtable}\n 11

; 

flag .- 0; 

!str 

and transstring prec = function 

CONST(x) --> string_ of _int x 

VAR(x) --> if x = 1111 then 11
\

11
\

1111 else x 

VECVAR(x) -> xA 11 = 11 

SUM(term1, term2) --> if prec > 9 then 
11 ( 11 

A transstring 9 term1 A 
11 u+u 11 

A transstring 9 term2 A 
11

) 
11 

else transstring 9 terml A 

11 u+u 11 
A trans string 9 term2 

DIFF( term1, term2) --> if prec > 9 then 
11 

( 11 
A trans string 9 terml A 

11 u-u 11 
A transstring 9 term2 A 

11
) 

11 

else transstring 9 term1 A 

11 u-u 11 
A transstring 9 term2 

DELETE(terml, term2) --> if prec > 9 then 
11 

( 11 
A transstring 9 terml A 

11 u-u 11 
A transstring 9 term2 A 

11
) 

11 

else transstring 9 terml A 

11 u-u 11 
A transstring 9 term2 

PROD( terml, term2) --> if !flag = 0 then if prec > 10 then 
11 

( 
11 

A transstring 10 terml A 
11 u \\ timesu 11 

A transstring 10 term2 A 
11

) 
11 

else transstring 10 term1 A

11 u\ \timesu 11
A transstring 10 term2 

else if prec > 10 then 
11 

( 
11 

A trans string 10 terml A 
11 u*u 11 

A transstring 10 term2 A 
11

) 
11 

else transstring 10 terml A 

11 u*u 11 
A transstring 10 term2 

QUOT(term1, term2) --> if !flag = 0 then if prec > 10 then 
11 

( 
11 

A trans string 10 terml A 

11 u \ \di Vu 11 
A transstring 10 term2 A 

11
) 

11 

else transstring 10 terml ' 11 u\ \di Vu 11 
A transstring 10 term2 

else if prec > 10 then 
11 

( 
11 

A transstring 10 term1 A "ul u 11 
A transstring 10 term2 A 

11
) 

11 

else transstring 10 terml A 

11 u/ u 11 
A transstring 10 term2 

FUN( 11 PAIR 11 ,[VAR(s1); VAR(s2)])--> 11
(

11 
A sl A 

11
,

11 
A s2 A 

11
)

11 

FUN( 11 compose",[VAR(s1); VAR(s2)]) --> 
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if !flag= 0 then s1 ~ "u\ \circu" ~ s2 else s1 ~ "u\002u" ~ s2 

FUN(x, termlist) -+ (String.concat "" 

[ x;" (";String. concat " , " ( transformlist 0 termlist)]) ~ ") " 

EMPTY -+ if !flag = 0 then "\ \{\ \}" else "{}" 

INSERT( term1, term2) -+ if !flag = 0 then 

transset (INSERT(term1, term2)) ~ "\ \}" 

else transset (INSERT(term1, term2)) ~ "}" 

UNION(term1, term2) -+ if !flag = 0 then if prec > 9 then 

" (" ~ transstring 9 term1 ~ "u \\ cupu" ~ transstring 9 term2 ~ ") " 

else transstring 9 term1 ~ "u\ \cupu" ~ transstring 9 term2 

else if prec > 9 then 

" (" ~ transstring 9 term1 ~ "u I u" ~ transstring 9 term2 ~ ") " 

else transstring 9 term1 ~ "u I u" ~ transstring 9 term2 

SUBSET(term1, term2) -+ if !flag = 0 then if prec > 9 then 

"(" ~ transstring 9 term1 ~ "u\ \subsetequ" ~ 

transstring 9 term2 ~ " ) " 

else transstring 9 term1 ~ "u\ \subsetequ" ~ transstring 9 term2 

else if prec > 9 then 

" (" ~ transstring 9 term1 ~ "u \00 1u" ~ 

transstring 9 term2 ~ ") " 

else transstring 9 term1 ~ "u \00 1u" ~ transstring 9 term2 

TRUE -+ "TRUE" 

FALSE -+ "FALSE" 

OP(x,form1) -+ x 

EQ(MEMBER(term1, term2), VAR("true")) -+ 

if !flag = 0 then if prec > 7 then 

" (" ~ transstring 7 term1 ~ "u \ \inu" ~trans string 7 term2 ~ ")" 

else transstring 7 term1 ~ "u\ \inu" ~ transstring 7 term2 

else if prec > 7 then 

" (" ~ transstring 7 term1 ~ "u«lu" ~ transstring 7 term2 ~ ") " 

else transstring 7 term1 ~ "u«lu" ~ transstring 7 term2 

EQ(term1, term2) -+ if prec > 7 then 

" (" ~ transstring 7 term1 ~ "u=u" ~ transstring 7 term2 ~ ") " 

else transstring 7 term1 ~ "u=u" ~ transstring 7 term2 
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I NEQ(MEMBER(term1, term2), VAR( 11 true 11 ))----+ if !flag= 0 then 

if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u \\not inu 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u\ \notinu 11 
A transstring 7 term2 

else if prec > 7 then 
11 

( 11 
A transstring 7 term1 A 

11 u$u 11 
A transstring 7 term2 A 

11 ) 
11 

else transstring 7 term1 A 

11 u$u 11 
A transstring 7 term2 

NEQ(term1, term2) ----+ if !flag = 0 then if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u \ \nequ 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u \ \nequ 11 
A transstring 7 term2 

else if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u%u 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u%u 11 
A transstring 7 term2 

LT( term1, term2) ----+ if !flag = 0 then if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u<u 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1A 11 u<u 11 Atransstring 7 term2 

else if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u<u 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u<u 11 
A transstring 7 term2 

LE ( term1 , term2) ----+ if !flag = 0 then if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u \ \lequ 11 

A transstring 7 term2 A 

11
) 

11 

else transstring 7 term1A

11 u\\lequ 11
A transstring 7 term2 

else if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 
u- u 

11 
A transstring 7 term2 A 

11
) 

11 

else transstring 7 term1 A 

11 u-u 11 
A trans string 7 term2 

GT(term1, term2) ----+ if !flag = 0 then if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u>u 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u>u 11 
A transstring 7 term2 

else if prec > 7 then 11 
( 

11 
A transstring 7 term1 A 

11 u>u 11 
A 

transstring 7 term2 A 

11
) 

11 

else transstring 7 term1 A 

11 u>u 11 
A transstring 7 term2 

G E ( term1 , term2) ----+ if !flag = 0 then if prec > 7 then 
11 

( 
11 

A transstring 7 term1 A 
11 u \ \gequ 11 

A transstring 7 term2 A 
11

) 
11 

else transstring 7 term1 A 

11 u \ \gequ" A transstring 7 term2 
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else if prec > 7 then 

" (" ' transstring 7 terml ' "u? u" 'transstring 7 term2 ' ") " 

else transstring 7 terml '" u? u" 'trans string 7 term2 

AND(Jormlist) -+ if !flag = 0 then if prec > 4 then 

" ("' (String. con cat "u \\ wedgeu" ( transformlist 4 formlist))' ") " 

else String. con cat "u \\ wedgeu" ( transformlist 4 formlist) 

else if prec > 4 then 

" ("' (String. concat "u&u" ( transformlist 4 formlist)) ' ") " 

else String. concat "u&u" ( transformlist 4 formlist) 

OR(formlist) -+ if !flag = 0 then if prec > 3 then 

" (" ' (String. concat "u \\ veeu 11 
( transformlist 3 formlist))' ") " 

else String. concat 11 u \\ veeu" ( transformlist 3 formlist) 

else if prec > 3 then 

" (" ' (String. con cat "u \ 003u" ( transformlist 3 formlist)) ' ") " 

else String.concat "u\003u" (transformlist 3 formlist) 

IMPLIES(Jorml, form2) -+ 

if !flag = 1 then begin space := !space ' "uu"; 

lets = "\n"' !space' "(IMPLIES"' 

transstring forml '"u" 'transstring form2' ")" in 

space := String.sub !space 0 (String.length !space- 2); s 

end else begin 

flag := 1; let s = !space ' "(IMPLIES"' 

transstring forml '"u"'transstring form2'")" ins end 

IFF(Jorml, form2) -+ 

if !flag = 1 then begin space := !space ' "uu"; 

let s = "\n"' !space ' "(IFF" ' 

transstring forml 'transstring form2' ")" in 

space := String.sub !space 0 (String.length !space- 2); s end 

else begin flag := 1; let s = !space ' "(IFF" ' 

transstring forml 'transstring form2' ")" in s end 

NOT(Jormi) -+ if !flag = 0 then 

if prec > 5 then "(\\neg" ' transstring 5 formi ' ")" 

else "\\neg" ' transstring 5 formi 

else 
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if prec > 5 then 11 
(-

11 
A transstring 5 forml A 

11
) 

11 

else 11
-

11 
A transstring 5 forml 

FORALL(y,form1) --+ 

( * Shell V AR() of expression V AR( m), leaving m to be concatenated into a 

string of variables*) 

let shell x ys = match x with 

I VAR(xx)--+ XXA 11 , 11 Ays 

I - -+ II' II 

in let y 1 = List .fold_ right shell y 11 11 

in let y2 = if y1 = 1111 then 1111 else 

String.sub yl 0 ((String.length y1)- 1) in 

if !flag = 0 then 
11 (\ \f orallu 11 

A y2 A 
11 • u 11 

A transstring 1 forml A 
11 ) 11 

else 11 ( ! u 11 
A y2 A 

11 
• u 11 

A transstring 1 forml A 
11 ) 

11 

EXISTS(y,form1) --+ 

let shell x ys = match x with 

I VAR(xx)--+ xx A 
11

,
11 

A ys 

I - ---7 "," 

in let y1 = List.fold_right shell y 1111 

in let y2 = if yl = 1111 then 1111 else 

String.sub yl 0 ((String.length y1)- 1) in 

if !flag = 0 then 
11 
(\ \existSu 11 

A y2 A 
11 .u 11 

A transstring 1 forml A 
11

) 
11 

else 11 (#u 11 
A y2 A 

11 • u 11 
A transstring 1 forml A 

11 ) 
11 

TABLE(table1) --+ flag:= 1; 11 $ 11 
A prinLtable tablet A 

11 $u 11 

_ --+ razse 

(Failure 11 theuparameteruofutransstringushouldubeuauformula1 11
) in 

(*Before calling transstring function, insert some material in the latex preamble*) 
11 \\documentclass{article}\n\\usepackage{longtable}\n11 

A 

11
\ \begin{ document} \n$u 11 

A( transstring 0 predir 11 $\n 11 
A 

11
\ \end{ document } 11 
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4.5.4 Theorem Proving 

It is the main part of our program which contains the following functions: 

1. Function valid pred checks if the given predicate is valid or not by invoking 

Simplify to prove it. 

let valid pred 

try 

( * Open the named file for writting *) 

let outchannel = 
open_ouLgen [ Open_creat; Open_trunc; Open_wronly] 6448 "outfile" 

and outfile = prints pred 1111 in 

( * Write the string on the given output channel *) 

outpuLstring outchannel (out file); 

( * Flush the buffer associated with the given output channel, performing all 

pending writes on that channel *) 

flush outchannel; 

( * Close the given channel, flushing all buffered write operations *) 

close_ out outchannel; 

( * Unix system call, the -nose options causes Simplify to simply output valid 

or invalid, if the argument -ax file is given, Simplify looks for file. ax. Set the 

AXIOMDIR environment variable in .bash_profile, Simplify looks for that file 

in the given directory. *) 

if Unix .system ( "Simplifyu-axumyaxiomu-noscuoutf ileu>uabc") 

= WEXITED 127 

then exit 0; 

( * Open the named file for reading *) 

let inchannel = open_in_gen [Open_rdonly] 6448 "abc" 

( * Read characters from the given input channel, until a newline character is 

encountered *) 
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in let infile = inpuLline inchannel 

(*The output invalid contains a character 'n' which is not in output valid, this 

function is used to check if the given Simplify formula is valid or invalid *) 

in --, (String. contains in file 'n' ) 

( * If encountering the end of file, terminate program normally *) 

with End_ of _file --+ exit 0 

2. Some auxiliary functions 

Since a variable x in its final state is expressed by xl, the functions below are 

used to replace x by xl in its context: 

(a) Function replace (ul, u2) t 

It replaces each occurrence of ul in predicate t by u2. Specially, if V AR(x) 

occurs in t and ul = VECVAR(x), it is replaced by u2. This function 

could be used to replace a variable in the left header of a vector table by 

its expressions in body matrix. 

let rec replace ( ul , u2) t = 
match t with 

VAR(x) --+ if VAR(x) = ul V VECVAR(x) = ul then u2 else VAR(x) 

VECVAR(x) --+ if VECVAR(x) = ul then u2 else VECVAR(x) 

CONST(x) --+ CONST(x) 

DELETE(terml, term2) --+ 

DELETE(replace (ul, u2) terml, replace (ul, u2) term2) 

SUM(terml, term2) --+ 

SUM (replace ( ul , u2) terml , replace ( ul , u2) term2) 

DIFF(terml, term2)--+ 

DIFF(replace ( ul, u2) terml, replace ( ul, u2) term2) 

PROD(terml, term2)--+ 

PROD(replace (ul,u2) terml,replace (ul,u2) term2) 

QUOT(terml, term2)--+ 

91 



Master Thesis - N. Zhou- McMaster- Computing and Software 

QUOT(replace ( u1, u2) term1, replace ( u1, u2) term2) 

FUN(x, termlist) --+ 

FUN(x, List.map (replace ( u1, u2)) termlist) 

EMPTY --+ EMPTY 

INSERT( term1, term2) --+ 

INSERT (replace ( u1, u2) term1 , replace ( u1, u2) term2) 

MEMBER(term1, term2) --+ 

MEMBER(replace (u1,u2) term1, replace (u1,u2) term2) 

UNION(term1, term2) --+ 

UNION(replace (u1,u2) term1, replace (u1,u2) term2) 

SUBSET( term1, term2) --+ 

SUBSET(replace (u1, u2) term1, replace (u1, u2) term2) 

TRUE --+ TRUE 

FALSE --+ FALSE 

EQ( term1, term2) --+ 

EQ (replace ( u1, u2) term1 , replace ( u1 , u2) term2) 

NEQ(term1, term2) --+ 

NEQ(replace ( u1, u2) term1, replace ( u1, u2) term2) 

LT( term1, term2) --+ 

LT( replace ( u1, u2) term1, replace ( u1, u2) term2) 

LE(term1, term2) --+ 

LE (replace ( u1, u2) term1 , replace ( u1 , u2) term2) 

GT( term1, term2) --+ 

G T (replace ( u1, u2) term1 , replace ( u1 , u2) term2) 

GE( term1, term2) --+ 

G E (replace ( u1, u2) term1 , replace ( u1 , u2) term2) 

OP(x, form1) --+ OP(x, replace ( u1, u2) form1) 

AND(formlist) --+ AND( List. map (replace ( u1, u2)) formlist) 

OR(formlist) --+ OR(List.map (replace (u1, u2)) formlist) 

IMPLIES(form1, form2) --+ 

IMPLIES(replace ( u1, u2) form1, replace ( u1, u2) form2) 

IFF(form1, form2) --+ 

IFF( replace ( u1, u2) form1, replace ( u1, u2) form2) 

NOT(form1) --+ NOT( replace ( u1, u2) form1) 
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FORALL(x,Jorm1) --t 

let rec replaces ( u1 , u2) s 

match s with 

[ l --t [ l 
I hd :: tail --t replace ( u1, u2) hd :: replaces ( u1, u2) tail 

in FORALL( replaces ( u1, u2) x, replace ( u1, u2) form1) 

EXISTS ( x ,Jorm1) --t 

let rec replaces ( u1 , u2) s 

match s with 

[ l --t [ l 
I hd :: tail --t replace ( u1 , u2) hd :: replaces ( u1 , u2) tail 

in EXISTS(replaces ( u1, u2) x, replace ( u1, u2) form1) 

TABLE ( table1) --t replace ( u1 , u2) (predtable table1) 

(b) Function reformlist pred varl 

It concatenates each variable in the variable list varl with the character 

'1' and generates a new predicate from pred by replacing each occurrence 

of the variable which belongs to varl with the concatenated one. 

let rec reformlist pred varl = 
match varl with 

[] --t pred 

VAR(hd) :: tail--t letpred1 =(replace (VAR(hd), VAR(hd."1")) pred) 

in reformlist pred1 tail 

VECVAR(hd) :: tail --t let pred1 =(replace ( VECVAR(hd), 

VECVAR(hd."1")) pred) in reformlist pred1 tail 

I _ --t pred 

(c) Function replacelist predlist 

It concatenates each variable in the variable list predlist with the character 

'1' and generates a new variable list from predlist by replacing each variable 

with the concatenated one. 
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let rec replacelist predlist 

match predlist with 

[ l ---7 [ l 
I VAR(hd) :: tail ---+ VAR(hd' "1 ") :: replacelist tail 

I - ---+ [J 

3. Validation functions of side conditions 

Some theorems require tables to have particular properties, we represent those 

through functions that return if a table has these properties or not. All vectors 

below are represented by one dimensional arrays and an Ocaml code segment 

is followed by each interpretation. 

(a) Function disjoint pv checks if vector pv is disjoint. 

let disjoint pv = 

let len= Array.length pv in 

let reference = ref true in 

for i = 0 to len - 1 do 

for j = 0 to len - 1 do 

if (i =/= j) 1\ (valid (AND([pv.(i);pv.(j)]))) then 

reference := false 

done 

done; 

!reference 

(b) Function jointdisjoint ( pv, qv) 

It checks if pv and qv are jointly disjoint. 
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let jointdisjoint (pv, qv) = 

let lenpv = Array.length pv in 

let lenqv = Array.length qv in 

let reference = ref true in 

if lenpv = 0 then reference ·- disjoint qv; 

if lenqv = 0 then reference := disjoint pv; 

for i = 0 to lenpv - 1 do 

for j = 0 to lenqv - 1 do 

for k = 0 to lenpv - 1 do 

for l = 0 to lenqv - 1 do 

if ((i t= k) v (j t= l)) 1\ 

(valid (AND([pv.(i); qv.(j);pv.(k); qv.(l)]))) then 

reference ·- false 

done 

done 

done 

done; 

!reference 

(c) Function coversatleast pv c 

It checks if vector pv covers at least c. 

let coversatleast pv c = 

let len = Array.length pv in 

let reference = ref [FALSE] in 

for i = 0 to len - 1 do 

reference ·- pv.(i) :: !reference 

done; 

len= 0 V valid (IMPLIES( c, OR(!reference))) 

(d) Function covers pv c 

It checks if vector pv covers exactly c. 
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let covers pv c = 
let len = Array.length pv in 

let reference = ref [FALSE] in 

for i = 0 to len - 1 do 

reference ·- pv.(i) :: !reference 

done; 

len= 0 V valid (IFF(c, OR(!reference))) 

(e) Function total pv 

It checks if vector pv is total. 

let total pv = 

covers pv TRUE 

(f) Function partition pv c 

It checks if vector pv partitions c. 

let partition pv c = 

disjoint pv 1\ covers pv c 

(g) Function injectiver r vls 

Since a relation between elements of types V L and V LR is a function of 

type V L-+ V LR-+ Bool, lists vl and vlr are used to represent types V L 

and V LR of relation r respectively. It checks if relation r between elements 

of types V L and V LR is injective. 
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let injectiver r ( vl, vlr) = 
let rl = reformlist r vl 

in let rec identity varlist 

match varlist with 

[]----+ TRUE 

VAR(hd) :: tail ----+ AND([EQ( VAR(hd' "1"), VAR(hd)); 

identity tail]) 

_ ----+ FALSE 

in valid (IMPLIES( EXISTS( vlr, AND([r; rl])), identity vl)) 

(h) Function totalr r vls 

It checks if relation r between elements of types V L and V LA is total. 

let totalr r vls = match vls with 

(vl, vla) ----+ valid (EXISTS(vla, r)) 

4. Implementation of theorems 

This part is introduced in Chapter 5. 

5. Case study and examples 

This part is illustrated in Chapter 6, 7, and 8 separately. 
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Chapter 5 

Implementation of Theorems 

5.1 Principle of Proof 

We divide our theorem implementations into four kinds. 

1. 'fransforming tables that turn out to be useful intermediate steps when com

bining larger tables. 

Each goal is a series of logical and boolean operations on elements of two tables 

and comes directly from applying a theorem. 

2. Operations on tabular predicates. 

Each goal is a logical operation between a tabular predicate and a plain predicate 

or two tabular predicates. 

3. Precondition or weakest precondition. 

In rare cases, we will use the result directly from applying a theorem as our goal. 

A simpler formula which is equivalent to the result is preferred. Therefore, two 

kinds of parameters are included in each function, one specifies the information 

to be conveyed on the conditional part of a theorem and another one is our goal 
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formula. A result is first constructed from the information provided and the 

theorems applied. This result is then compared with our goal formula by {::} 

operator, that is, a new formula is constructed. If Simplify can prove our new 

formula, our goal is valid. 

4. Tabular verification and refinement. 

Each theorem is considered as an alternative statement. It is implemented by 

taking variables in if part as parameters. 

A function definition in OCaml which implement a theorem consists of a self

explaining function name and some parameters in their own formats. An error will 

be raised when a calling function pass parameters which do not match the requiring 

format. If a theorem has side conditions, the validation functions of its side conditions 

will be executed before its implementation. Some functions may implement two or 

more theorems together since our goals may require applying a list of theorems in a 

certain order without thinking of intermediate formulae. 

In the following sections, we illustrate the implementation for some particular 

theorems. Not all the theorems are implemented in our project because of space 

limit, others can be written in a similar way. 

5.2 Implementation of Tabular Transformation 

• Implementation of Theorem 2.8(a) 

Function rtea implements Theorem 2.8 (replacing table elements)(a) by taking 

a pair of tables (TABLE(tl), TABLE(t2)) as its parameter. It is required that 

tl and t2 have the same structures; if not, an error will be raised. 
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let rtea = function 

(TABLE(t1), TABLE(t2)) --+ 

let pt = ref true in 

let mhl = Array.length tl.headm and mh2 = Array.length t2.headm in 

let nhl = Array.length tl.headn and nh2 = Array.length t2.headn in 

let mbl = Array.length tl.body and mb2 = Array.length t2.body in 

let nbl = Array.length tl.body.(O) and nb2 = Array.length t2.body.(O) in 

if mhl = mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2 then begin 

for i = 0 to mhl - 1 do 

pt := !pt 1\ valid (IMPLIES(tl.headm.(i), t2.headm.(i))) 

done; 

for j = 0 to nhl - 1 do 

pt := !pt 1\ valid (IMPLIES(tl.headn.(j), t2.headn.(j))) 

done; 

for i = 0 to mbl - 1 do 

for j = 0 to nb 1 - 1 do 

if tl.headm -=1 [Ill 1\ tl.headn -=1 [Ill then 

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); tl.headn.(j)]), 

IFF( t1. body.( i). (j), t2. body.( i) .(j)))) 

else if tl.headm = [Ill 1\ tl.headn -=1 [Ill then 

pt := !pt 1\ valid (IMPLIES(AND([TRUE; tl.headn.(j)]), 

IFF( tl. body.( i).(j), t2. body.( i) .(j)))) 

else if tl.headm -=1 [Ill 1\ tl.headn = [Ill then 

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); TRUE]), 

IFF( tl. body.( i).(j), t2 .body.( i).(j)))) 

else 

done 

pt := !pt 1\ valid (IMPLIES(AND([TRUE; TRUE]), 

IFF ( t1 . body. ( i) . (j) , t2. body. ( i) . (j)))) 

done; !pt end 

else raise (Failure "Twoutabularupredicatesuhaveu 

uuuuudifferentustructures") 

_ --+ raise (Failure "theufirstuparameteruofufunction 

uuurteaushouldubeuaupairuofupredicatesuinutabularuform") 
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• Implementation of Theorem 2.9 

Function sjrc ifrow from1 from2 is a procedure to implement Theorem 2.9 (split

ting and joining rows and columns). It takes ifrow, from1, from2, and a pair 

of tables (TABLE(tl), TABLE(t2)) as parameters. ifrow is a boolean value 

representing splitting and joining a row if true and splitting and joining a col

umn if false. The positions of rows (columns) to be joined in table t2 are 

stored in parameters froml and from2 where from1 < from2. The posi

tion of row( column) to be split ted in table t1 is equal to froml. Positions are 

counted from number 0. 

let sjrc ifrow from1 from2 = function 

(TABLE(t1), TABLE(t2)) ----+ 

let pt = ref true in 

let mhi = Array.length t1.headm in 

let nh1 = Array.length t1.headn in 

let mb1 = Array.length tl.body and mb2 = Array.length t2.body in 

let nb1 = Array.length t1.body.(O) and nb2 = Array.length t2.body.(O) in 

if ((ifrow 1\ mb2 = mb1 + 1 1\ from2 < mb2 1\ from1 < from2) V 

((• ifrow) 1\ nb2 = nb1 + 1 1\ from2 < nb2 1\ from1 < from2)) 

then begin 

for i = 0 to mh1 - 1 do 

if ifrow 1\ i < from1 then 

pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i))) 

else if ifrow 1\ i = from1 then 

pt := !pt 1\ valid (IFF(ti.headm.(i), 

0 R ( [ t2. headm. (!rami ) ; t2. headm. (Jrom2)]))) 

else if ifrow 1\ i > from1 1\ i < from2 then 

pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i))) 

else if ifrow 1\ i = from2 then 

pt := !pt 

else if ifrow 1\ i > from2 then 

pt := !pt 1\ valid (IFF(ti.headm.(i), t2.headm.(i + 1))) 
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else pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i))) 

done; 

for j = 0 to nhl - 1 do 

if ifrow =false 1\ j < froml then 

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j))) 

else if ifrow =false 1\ j = froml then 

pt := !pt 1\ valid (IFF(tl.headn.(j), 

OR([t2.headn.(Jrom1 ); t2.headn.(Jrom2)]))) 

else if ifrow =false 1\ j > froml 1\ j < from2 then 

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j))) 

else if ifrow =false 1\ j = from2 then 

pt := !pt 

else if ifrow =false 1\ j > from2 then 

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j + 1))) 

else pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j))) 

done; 

for i = 0 to mbl - 1 do 

for j = 0 to nbl - 1 do 

if ifrow 1\ i < froml then 

pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j))) 

else if ifrow 1\ i = froml then 

pt := !pt 1\ valid (IFF(tl.body.(i).(j), 

OR([t2 .body.(Jroml ).(j); t2. body.(Jrom2).(j)]))) 

else if ifrow 1\ i > froml 1\ i < from2 then 

pt := !pt 1\ valid (JFF(tl.body.(i).(j), t2.body.(i).(j))) 

else if ifrow 1\ i = from2 then 

pt := !pt 

else if ifrow 1\ i > from2 then 

pt := !pt 1\ valid (JFF(tl.body.(i).(j), t2.body.(i + 1).(j))) 
else if ifrow =false 1\ j < froml then 

pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j))) 

else if ifrow =false 1\ j = froml then 

pt := !pt 1\ valid (IFF(tl.body.(i).(j), 

OR([t2 .body.( i).(Jroml ); t2 .body.( i).(Jrom2)]))) 
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else if ifrow =false 1\ j > from1 1\ j < from2 then 

pt := !pt 1\ valid (IFF(t1.body.(i).(j), t2.body.(i).(j))) 

else if ifrow =false 1\ j = from2 then 

pt := !pt 

else pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j + 1))) 

done 

done; !pt 

end else raise (Failure "Twoutableustructuresuorutheuposi tionsufor 

uusplittinguandujoiningudounotufollowutheurequirement") 

_ --> raise (Failure "theufourthuparameteruofufunctionusjrc 

uuuushouldubeuaupairuofupredicatesuinutabularuform") 

5.3 Implementation of Operations on Tabular Pred-

icates 

• Implementation of Theorem 3.4(a) 

Function ptimpa1 t s is the implementation of Theorem 3.4 (predicate-table 

implication)( a) where t = TABLE(t1) and sis a plain predicate. 

let ptimpa1 t s = match t with 

TABLE( t1) --. 

let pt = ref TRUE in 

let pt1 = ref true in 

for i = 0 to (Array.length tl.body) - 1 do 

for j = 0 to (Array.length tl.body.(O)) - 1 do 

if tl.headm #- [Ill 1\ t1.headn #- [Ill then 

pt := AND([tl.headm.(i); tl.headn.(j); tl.body.(i).(j)]) 

else if t1 .headm = [Ill 1\ tl.headn #- [Ill then 

pt := AND([t1.headn.(j); tl.body.(i).(j)]) 

else if t1 .headm #- [Ill 1\ t1.headn = [Ill then 

pt := AND([t1.headm.(i); tl.body.(i).(j)]) 
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else 

pt := tl.body.(i).(j) 

done; 

pt1 := valid (IMPLIES(!pt,s)) 1\ !ptl 

done; 

!pt1 

_ ----t raise (Failure "theufirstuparameteruofufunctionuptimpa1 

uuuuushouldubeuau table") 

• Implementation of Theorem 3.4( c) 

Function ptimpc t s is the implementation of theorem 3.4 (Predicate-Table Im

plication) (c). It takes the same parameter as function ptimpal. It has side 

condition that headers of table t1 covers s. The side condition is checked before 

executing theorem proving. An error will be raised if it is not satisfied. 

let ptimpc t s = match t with 

TABLE(t1) ----t 

if' ((covers tl.headm s) 1\ (covers tl.headn s)) then raise (Failure 

"theusideuconditionsuofutheoremu3. 4uareunotusatisfied" ); 

let pt = ref TRUE in 

let pt1 = ref true in 

for i = 0 to (Array.length tl.body) - 1 do 

for j = 0 to (Array.length tl.body.(O)) - 1 do 

if tl.headm -/= [Ill 1\ tl.headn -/= [Ill then 

pt := AND([tl.headm.(i); tl.headn.(j); tl.body.(i).(j)]) 

else if tl.headm = [Ill 1\ tl.headn -/= [Ill then 

pt := AND([tl.headn.(j); tl.body.(i).(j)]) 

else if tl.headm -/= [Ill 1\ tl.headn = [Ill then 

pt .- AND([tl.headm.(i); tl.body.(i).(j)]) 

else 

pt := tl.body.(i).(j) 

done; 

pt1 := valid (IMPLIES(s, !pt)) 1\ !ptl 
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done; 

!ptl 

--7 raise (Failure "theufirstuparameteruofufunctionuptimpcu 

uuuushouldubeuautable") 

5.4 Proof of Precondition and Weakest Precondi-

tion 

• Proof of Precondition 

Suppose pres is our stated precondition for operation S, and pre S is derived 

precondition from program statements. If pres ¢:;> pre S is valid, then our 

conjecture is proved. A statement can be represented by a formula (a relation 

between initial and final state spaces) and a list of variables of the initial state 

space. 

type statement ST of form x form list 

Function pre b p is defined where p is a procedure of type statement, b is our 

stated precondition of procedure p. 

let pre b p = 

match p with 

ST( op, vl) -----> 

let vl1 = replacelist vl 

in let pred = IFF(b, (EXISTS(vl1, op))) 

in valid pred 

• Proof of Precondition with Tabular Predicates 
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Similarly, if a procedure p is a tabular predicate, function pret b p is called to 

derive its precondition. 

let pret b p = match p with 

ST(TABLE(t1), vl) ----+ 

let pt = ref TRUE in 

let pt1 = ref true in 

let vl1 = replacelist vl in 

fori = 0 to (Array.length t1.body) - 1 do 

for j = 0 to (Array.length t1.body.(O)) - 1 do 

pt := EXISTS( vl1, tl.body.( i).(j)); 

pt1 := valid (IFF(b, !pt)) A !pt1 

done; 

done; 

!ptl 

_ ----+ raise (Failure "theuseconduparameteruofufunctionupretu 

uuuushouldubeuaupairuofuautableuanduauvariableulist") 

• Proof of Weakest Precondition 

In our implementation of wp b p c, p is a program of type statement, c is 

the postcondition of p. We justify that b is the weakest precondition for p to 

establish c. 

let wp b p c 

match p with 

ST( op, vl) ----+ 

let c1 = reformlist c vl 

in let pred = IFF(b, IMPLIES(op, c1)) 

in valid pred 

• Implementation of Theorem 5.4 
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Function wpt b p c is the implementation of Theorem 5.4 (Weakest Precon-

dition with Predicates)(a). It is different from wp b p c in that operation 

p = ST(T ABLE(t1), vl) is in tabular form. It has side condition that headers 

of table t1 are total and disjoint. 

let wpt b p c = match p with 

ST(TABLE(t1), vl) --+ 

if -, ( (total t1 . headm) 1\ (total t1 . headn) 1\ 

(jointdisjoint (tl.headm, tl.headn))) then raise (Failure 

"theusideucondi t ionsuofu theoremu5. 4uareunotusat isf ied"); 

let pt = ref TRUE in 

let pt1 = ref true in 

let c1 = reformlist c vl in 

fori = 0 to (Array.length t1.body) - 1 do 

for j = 0 to (Array.length tl.body.(O)) - 1 do 

pt := IMPLIES(t1.body.(i).(j), c1); 

pt1 := valid (IFF(b,!pt)) 

done; 

done; 

!pt1 

_ --+ raise (Failure "theuseconduparameteruofufunctionuwptu 

uuuushouldubeuaupairuofuautableuanduauvariableulist") 

5.5 Implementation of Verification with Predicates 

Theorem 5.5 (Tabular Verification with Predicates) does not have the side condi-

tions of totality and disjointness of the headers and does not even require the table 

to be in standard form. Hence it can always be used to verify that a tabular relation 

under a given precondition establishes a given postcondition. A special application 

of it is to verify that an invariant is preserved by an operation in tabular form. Al-
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ternatively we can verify the invariant by first deriving the weakest precondition for 

operation to establish the invariant and then showing in a second step that the invari-

ant implies the weakest precondition. This again results in proof conditions that are 

identical to those by applying Theorem 5.5 and then eliminating the primed variables 

with the one-point rule. 

Our tool will automatically create proof obligation of Theorem 5.5, one for each 

body element, with functional program tvp b p c. Parameter pis the specification for 

an operation of type statement, consisting of a characteristic predicate relation in tab-

ular form and the domain of this relation represented by a list structure; parameters 

b and c are the precondition and postcondition of p respectively. 

let tvp b p c = match p with 

ST(TABLE(t1), vl) ---. 

let pt = ref TRUE in 

let pt1 = ref true in 

let c1 = reformlist c vl in 

for i = 0 to (Array.length t1.body) - 1 do 

for j = 0 to (Array.length t1.body.(O)) - 1 do 

if t1.headm -=/= [Ill 1\ t1.headn -=/= [Ill then 

pt := AND([b; t1.headm.(i); t1.headn.(j); t1.body.(i).(j)]) 

else if t1.headm = [Ill 1\ t1.headn -=/= [Ill then 

pt := AND([b; TRUE; t1.headn.(j); t1.body.( i).(j)]) 

else if t1.headm -=/= [Ill 1\ t1 .headn = [Ill then 

pt AND([b; t1.headm.(i); TRUE; t1.body.(i).(j)]) 

else 

pt := AND([b; TRUE; TRUE; t1.body.(i).(j)]); 

pt1 := valid (IMPLIES(!pt, c1)) 1\ !pt1 

done; 

done; 

!pt1 

I _ ---. raise (Failure "theuseconduparameteruofufunctionutvpu 
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A variation of Theorem 5.5 verifies the correctness of a program in form of plain 

predicate relation. Its implementation vp b p c takes the same parameter as the 

function tvp b p c except that pis ST(op, vl) instead of ST(T ABLE(t1), vl). 

let vp b p c = match p with ST( op, vl) -+ 

let c1 = reformlist c vl in valid (IMPLIES(AND([b; op]), c1 )) 

5.6 Implementation of Refinement 

5.6.1 Implementation of Algorithmic Refinement 

Specifications can be transformed into more concrete or more abstract ones, where 

either the concrete or the abstract or both are given in tabular form. In algorithmic 

refinement, both specifications are over the same state space. A new data type 

RE is created to combine the concrete specification and abstract specification in 

terms of their statement type. Although both specifications have the same set of 

variables, they have to be listed to show their integrity. Theorem 7.1 (Refining to 

Table) is implemented by function rtt p where p represents the concrete and abstract 

specifications of type RE. 

let rtt p = match p with 

RE(ST(TABLE(t1), vl), ST(TABLE(t2), vlr)) -+ 

let pt = ref true in 

let mhl = Array.length tl.headm and mh2 = Array.length t2.headm in 

let nhl = Array.length tl.headn and nh2 = Array.length t2.headn in 

let mbl = Array.length tl.body and mb2 = Array.length t2.body in 

let nbl = Array.length tl.body.(O) and nb2 = Array.length t2.body.(O) in 

if mhl mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2 then begin 

for i = 0 to mhl - 1 do 
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pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i))); 

done; 

for j = 0 to nh1 - 1 do 

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j))); 

done; 

for i = 0 to mb1 - 1 do 

for j = 0 to nb1 - 1 do 

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); tl.headn.(j); 

tl.body.(i).(j)]), t2.body.(i).(j))); 

done 

done; !pt end 

else raise (Failure "Twoutabularupredicatsuforualgori thmicu 

uuuurefinementuhaveudifferentustructures") 

_ ----+ raise (Failure "theuparameteruofufunctionurtt 

uuuushouldubeuaupairuofustatementsuinutabularuform") 

5.6.2 Implementation of Data Refinement 

• Implementation of Theorem 6.1 and Theorem 6.2 in one Function 

Encoding Q <:::;; P l R is sound if R is injective; decoding P j R <:::;; Q is sound if 

R is total. 

As encoding and decoding differ only in the restriction of R, we define a func-

tion drpp p r flag to implement coding operation with parameter flag = 0 

representing an encoding validation and flag = 1 representing a decoding val-

idation. Parameter p is specifications of type RE; r is the coding relation in 

plain predicate form. 

let drpp p r flag = match p with 

RE(ST(op1, vl), ST(op2, vlr)) ----+ 

let vl1 = replacelist vl in 

let r1 = reformlist r ( vl@vlr) in 
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if flag = 0 then 

injectiver r ( vl, vlr) 1\ 

valid (IMPLIES(op2, EXISTS( vl@vll, AND([r; op1; r1])))) 

else 

totalr r ( vl, vlr) 1\ 

valid (IMPLIES(EXISTS( vl@vll, AND([r; op1; r1])), op2)) 

• Implementation of Theorem 7.4(b) and 7.l(b) in one Function 

Specifically, we can push these three refinement operators into the cells of tables 

like we do for other relational operators. In this section, we illustrate the use of 

Theorem 7.4(b) for a data abstraction that reduces the state space and theorem 

7.1 (b) for a algorithmic abstraction that reduces the non-determinism in one 

function. 

In first order logic, {::} is used to denote equivalent predicate( e.g. bv and bv' 

are equivalent iff bv {::} bv'). The symbol is also extended to relations rep

resented by boolean functions (e.g. let BV, BV' : X --7 Y --7 Bool and 

BVxy = bv,BV'xy = bv', BV,BV' are equivalent iff bv {::} bv' for any x,y). A 

relation or matrix can be replaced by its equivalent relation or matrix within 

any formula or tabular expression. Given two operations in standard form and 

their abstraction relation by 

P 1 xv xv' 

If 

(::lxv · r 1\ cv1) {::} cv2 

(::lxv · r 1\ bv1) {::} bv2 

cv2 
P2 yv yv' = --+----

- bv2 1\ cv2 1\ (::lxv, xv' · r 1\ pm1 1\ r') =} pm2 
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To prove the above conclusion, we start from the third condition and a logic 

rule, say a 1\ b =? a for any a, b: 

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? pm2 

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? bv2 1\ cv2 

==} < < if a =? b, a =? c then a =? b 1\ c > > 

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? bv2 1\ cv2 1\ pm2 

< < condition 1 and 2 > > 

(3xv · r 1\ bv1 ) 1\ (3xv · r 1\ cvl) 1\ (3xv, xv' · r l\pm1 1\ r') =? bv2 1\ cv2 l\pm2 

< < definition of tabular predicate > > 

(
-----------+----3_x_v __ ·_r_l\ __ cv_l _____ ) =? ( 

3xv · r 1\ bv1 3xv, xv' · r 1\ pm1 1\ r' 

==} << Theorem 7.4(b) and transitivity of=?>> 

(P1 l R) yv yv' =? ( cv
2 

) 

bv2 pm2 

< < definition of P2 yv yv' > > 

(P1 l R) yv yv' =? P2 yv yv' 

< < any yv, yv' and definition of ~ > > 

The validation of such an abstraction is defined by function drpb p r where p 

is a pair of operations representing the concrete specification (H) and abstract 

specification (P2 ) in terms of refinement datatype RE, r is the abstraction 

relation ( R) between two specifications. 

let drpb p r = match p with 

RE(ST( TABLE( t1 ), vl), ST( TABLE( t2), vlr)) --. 

let pt = ref true in 

let vl1 = replacelist vl in 
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let r1 = reformlist r (vl@vlr) in 

let mh1 = Array.length t1.headm and mh2 = Array.length t2.headm 

in let nh1 = Array.length t1.headn and nh2 = Array.length t2.headn 

in let mb1 = Array.length t1.body and mb2 = Array.length t2.body in 

let nb1 = Array.length t1.body.(O) and nb2 = Array.length t2.body.(O) 

in if mh1 = mh2 1\ nh1 = nh2 1\ mb1 = mb2 1\ nb1 = nb2 

then begin 

for i = 0 to mh1 - 1 do 

pt := !pt (\ 

valid (IFF( EXISTS( vl, AND([r; t1.headm.(i)])), t2.headm.( i))) 
done; 

for j = 0 to nh1 - 1 do 

pt := !pt (\ 

valid (IFF(EXISTS( vl, AND([r; t1.headn.(j)])), t2.headn.(j))) 

done; 

for i = 0 to mb1 - 1 do 

for j = 0 to nb 1 - 1 do 

pt := !pt 1\ totalr r ( vl, vlr) 1\ valid (IMPLIES(AND 

([t2.headm.(i); EXISTS(vl@vl1, AND([r; t1.body.(i).(j); 

r1])); t2 .headn. (j)]), t2. body. ( i) .(j))) 

done 

done; ! pt end 

else raise (Failure "Twoutabularupredicatesuforudata 

uuuuabstractionuhaveudifferentustructures") 

_ ---+ raise (Failure "theufirstuparameteruofufunctionudrpb 

uuuushouldubeuaupairuofustatementsuinutabularuform") 

• Implementation of Theorem 7.5 

We consider the case that the refinement relation rather than the specification 

is in tabular form. More precisely, we consider the refinement relation being 

defined by an inverted vector table. This theorem is applied in our elevator 

floor reached operation refinement. To represent an encoding relation as a 
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vector table can reduce largely the running time of Simplify validation. 

Theorem 7.5 (Data Refinement with Vector Table) is implemented by calling 

function drv RE(ST(op1, vl), ST(op2, vlr)) r where op1 is abstract specification 

in plain predicate form, op2 is refining specification in tabular form, and r is 

the vector table of refinement relation. 

let drv p r = match (p, r) with 

(RE(ST(opl, vl), ST(TABLE(t2), vlr)), TABLE(rt)) --+ 

let pt = ref ( injectiver r ( vl, vlr)) in 

let op11 = ref TRUE and op12 = ref TRUE in 

let headml = Array.create (Array.length rt.body) TRUE in 

let mhl = Array.length rt.headn and mh2 = Array.length t2.headm in 

let nhl = Array.length rt.headn and nh2 = Array.length t2.headn in 

let mbl = Array.length rt.body.(O) and mb2 = Array.length t2.body in 

let nbl = Array.length rt.body.(O) and nb2 = Array.length t2.body.(O) 

in if mhl = mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2 

then begin 

for i = 0 to mhl - 1 do 

pt := !pt 1\ valid (IFF(rt.headn.(i), t2.headm.(i))); 

done; 

for j = 0 to nhl - 1 do 

pt := !pt 1\ valid (IFF(reformlist rt.headn.(j) vlr, t2.headn.(j))); 

done; 

for i = 0 to mbl - 1 do 

for j = 0 to nbl - 1 do 

fork = 0 to (Array.length rt.body) - 1 do 

headml.(k) +-- reformlist rt.headm.(k) [rt.headm.(k)]; 

op11 ·- replace ( rt.headm.(k ), rt. body.(k ).( i)) opl; 

op12 := replace (headml.(k), rt.body.(k).(j)) !op11 

done; 

pt := !pt 1\ valid (IFF(t2.body.(i).(j), !op12)); 

done 

done; !pt end 
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else raise (Failure "Theuresultuofuapplyingutabularurefinement 

relationuonuspecificationuhaveudifferentustructureuwithut2") 

I _ ----+ raise (Failure "theufirstuparameteruofufunctionudrpu 

uuushouldubeuaupairuofustatementsuwithuoneuinutabularuform, 

uuutheuseconduparameteruofufunctionudrpushouldubeuautable") 
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Chapter 6 

Luxury Sedan Car Seat Case Study 

In order to demonstrate how to apply tabular specification theorems to reactive 

systems, in this chapter we give a luxury sedan car seat example consisting of several 

operations. We first study how to formalize the example, then derive properties 

supported by the system and come up with a specification for each operation. Since 

no parallel operations are allowed, a control has to be enforced by first order logic. 

The priority control can be implemented by a condition lying in the header of an 

operation table. Sequential operations are more difficult to define in a first order 

logic style. A sequence of events are dependent each other, the post-condition of one 

event will be the pre-condition of the next event. 

At last we state how to implement a proof that each single operation including 

tables or plain formulae preserves a property with the theorem functions. We focus on 

the proof of two parallel groups of operations where motors per group are active in a 

time order. The disjoint events of our car seat system can be realized by making two or 

more events in one table and distinguishing them with different parameters. A priority 

control can be stated in plain words or fulfilled by adding conditions conjuncted with 

original conditions. A formal proof is implemented and its logical principle is stated 
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for the latter one. 

6.1 Requirement 

Our single front car seat is an automated control system. In total five motors are 

to be controlled: 

• Rear Height Motor (RH) 

• Longitudinal Adjustment Motor (LA) 

• Front Height Motor (FH) 

• Backrest Motor (B) 

• Head Restraint Motor (HR) 

LA 

Figure 6.1: Controlling a Luxury Sedan Car Seat 
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These determine the position of the car seat as shown in Figure 6.1 

Each seat has a panel through which the adjustments are made (panel is not shown). 

The panel has following 13 buttons: 

• RH up, RH down 

• LA forward, LA backward 

• FH up, FH down 

• B forward, B backward 

• HR up, HR down 

• M, M1, M2 (memory) 

The first ten buttons control the respective motors: while RH up is pressed, the RH 

motor moves up until the stop position (see below about stop positions) and similarly 

for the other buttons. Pressing the M1 button while holding the M button causes the 

current adjustment positions to be stored in memory 1, while pressing the M2 button 

while holding the M button causes the current adjustment positions to be stored in 

memory 2. Pressing M1 causes the adjustments stored in memory 1 to be retrieved 

and set. Likewise, pressing M2 causes the adjustments stored in memory 2 to be 

retrieved and set. 

Calibration. When supplied with electricity for the first time, or after a power failure, 

the seat has to be calibrated by moving all motors to their respective home positions. 

This is done by turning on each motor and waiting until its home position sensor 

signals that the home position has been reached. The home positions are the front 

stop for LA and B and the upper stop for RH, RH, and HR. The sensors generate 

the events "LA home", "B home", etc. 
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Priorities. The seat adjustment motors are divided into two groups. Only one motor 

per group can be active at a time: 

• Group 1 with LA and RH: LA has priority over RH. 

• Group 2 with B, FH, and HR: B has priority over FH, which has priority over 

HR. 

For example, if both LA forward and RH up are pressed on the panel, first LA 

is moved and only then RH. Likewise, these priorities have to be considered when 

moving the seat to an adjustment stored in memory and during calibration. 

Buttons. Pressing and releasing a button of the panel generate each an event. The 

events are called "HR up pressed", "HR up released", etc. 

Motors. Each motor can be in the state up, stop, down or forward, stop, backward, 

respectively. 

Positioning. Each motor is equipped with a Hall sensor. The Hall sensor generates 

a "tick" on each rotation. The position of each motor is determined by incrementing 

and decrementing the number of ticks after calibration. The number of ticks required 

for movement from one stop to the other is: 

• RH: 250 ticks 

• LA: 600 ticks 

• FH: 250 ticks 

• B: 1100 ticks 

• HR: 130 ticks 
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The events generated are called "RH tick", "LA tick", etc. After calibration only the 

ticks are used for keeping track of the position, in particular for reaching either stop 

position. 

6. 2 Organization 

We distinguish four modes of the car seat controller: 

• Calibrating mode, the initial mode; 

• Normal mode, when the seat can be adjusted through the panel; 

• Memory mode, when the adjustments from memory 1 or memory 2 are retrieved 

and set; 

• Memory Set mode, when current adjustments are stored in memory 1 or memory 

2. 

We use following global variables, all of which are of type integer: 

• lapos, rhpos, bpos, fhpos, hrpos: for the current positions of the motors; 

• lam1, rhm1, bm1, fhm1, hrml: the positions stored as memory 1; 

• lam2, rhm2, bm2, fhm2, hrm2: the positions stored as memory 2; 

• laset, rhset, bset, fhset, hrset: used for passing the positions to be set. 

The events created by pressing an up button or down button of the same motor are 

considered as disjoint events and represented as a single table with different para

meters. "RH up pressed" and "RH down pressed" are formalized asp= rhup and 
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p = rhdown. Iffirst "RH down" and then "RH up" is pressed without releasing "RH 

down", the event "RH up pressed" is ignored. 

The motor movement events will trigger the motor tick events. When a motor 

behavior cause its Hall sensor increment or decrement one rotation, a tick is generated 

to determine the position change of the motor. To make the tick table total, we add a 

column with condition motor equals stop to indicate no change of position generated 

in that state. 

In Normal mode, the priorities are taken into account as follows: If, for example, 

RH is in state up and an LA forward pressed event is received, the RH motor is 

stopped and LA goes to state forward. Once an LA released event is received, the 

LA motor stopped and require that the user releases and pressed the button for RH 

up again. 

In Calibration mode, a series of motor movements within a group is arranged as 

follows: If B motor, FH motor and HR motor are not in their home positions, B 

motor is turned on first, FH motor and HR motor wait until B's home position sensor 

signals that the home position has been reached, then B motor is stopped and FH 

goes to state up. When both B motor and FH motor are stopped, HR motor goes 

to its upper stop. Memory mode has the similar movement as Calibration mode, 

the only difference is that LA and B goes forward, and RH, FH, and HR goes up in 

former, while LA and B goes forward or backward, and RH, FH, and HR goes up or 

down in latter depending on the current positions of the motors and the positions to 

be set to mode Memory. 

There are two groups of states, corresponding to motor movement: forward, 

backward, stop and up, down, stop. The field of button selection f, b, u, d correspond a 

control of forward, backward, up, down movement respectively. We use button= m? 

to indicate the memory button m? being pressed. Table 6.1 list all variables in car 
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Variable Representation Type 
labutton LA motor buttons 
bbutton B motor buttons J,b 

rhbutton RH motor buttons 
fhbutton FH motor buttons 
hrbutton HR motor buttons u,d 
button Memory buttons m1,m2 

lamotor LA motor movements 
bmotor B motor movements forward, backward, stop 

rhmotor RH motor movements 
fhmotor FH motor movements 
hrmotor HR motor movements upward, downward, stop 

Table 6.1: Variables in Car Seat Control 

seat control. As we stated before, any variable belonging to an enumeration type 

should have its type specified. We specify motor movement variables in our defined 

axiom file. 

(DISTINCT forward backward stop) 

(OR (EQ lamotor backward) CEQ lamotor forward) (EQ lamotor stop)) 

(OR (EQ lamotor1 backward) (EQ lamotor1 forward) (EQ lamotor1 stop)) 

(OR (EQ bmotor backward) (EQ bmotor forward) CEQ bmotor stop)) 

(OR (EQ bmotor1 backward) CEQ bmotor1 forward) CEQ bmotor1 stop)) 

(DISTINCT up down stop) 

(OR (EQ rhmotor down) (EQ rhmotor up) (EQ rhmotor stop)) 

(OR (EQ rhmotor1 down) (EQ rhmotor1 up) (EQ rhmotor1 stop)) 

(OR (EQ fhmotor down) (EQ fhmotor up) (EQ fhmotor stop)) 

(OR (EQ fhmotor1 down) (EQ fhmotor1 up) (EQ fhmotor1 stop)) 

(OR CEQ hrmotor down) (EQ hrmotor up) (EQ hrmotor stop)) 

(OR (EQ hrmotor1 down) CEQ hrmotor1 up) (EQ hrmotor1 stop)) 
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6.3 Normal Mode and Its Properties 

6.3.1 Types of Motor Adjustment Buttons 

The variables in normal mode are specified in file myaxiom. ax as follows. 

(DISTINCT f b) 

(OR (EQ labutton f) (EQ labutton b)) 

(OR (EQ bbutton f) (EQ bbutton b)) 

(DISTINCT u d) 

(OR (EQ rhbutton u) (EQ rhbutton d)) 

(OR (EQ fhbutton u) (EQ fhbutton d)) 

(OR CEQ hrbutton u) (EQ hrbutton d)) 

Note that we only specify the initial state for motor button variables since they occur 

only in conditions. 

6.3.2 Releasing Motor Adjustment Buttons 

Motor movement events generated by releasing the first ten buttons always make 

motors stop. The definitions of the relations over variables lamotor, rhmotor, bmotor, 

f hmotor, and hrmotor are as listed: 

laupreleased = (lamotorl =stop); ladownreleased = (lamotorl =stop) 

rhupreleased = (rhmotorl =stop); rhdownreleased = (rhmotorl =stop) 

bupreleased = (bmotorl =stop); bdownreleased = (bmotorl =stop) 

fhupreleased = (fhmotorl =stop); fhdownreleased = (fhmotorl =stop) 

hrupreleased = (hrmotorl =stop); hrdownreleased = (hrmotorl =stop) 
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6.3.3 Pressing Group 1 Motor Adjustment Buttons 

Motor movement events generated by pressing the first ten buttons trigger the 

corresponding motor tick events. We consider these two events of each motor into 

one relation which is represented by a tabular predicate. We describe group 1 event 

tables in detail. Group 2 event tables in Normal mode follow the same rule. 

Table 6.2 is the tabular representation of LA Motor Button Pressed lapressed over 

variables lamotor, lapos. The left header indicates the condition whether forward or 

backward button is pressed. The upper header is the conditional predicate relating 

to the current position of LA motor. 

lapos = 0 lapos > 0 A lapos lapos = 599 

< 599 

labutton = f lamotor1 = stop A lamotor1 = lamotor1 = 

lapos 1 = lapos forward A lapos1 forward A lapos1 

= lapos- 1 = lapos- 1 

labutton = b lamotor1 = lamotor1 = lamotor1 = stop A 

backward A lapos 1 backward A lapos 1 lapos1 = lapos 

= lapos + 1 = lapos + 1 

Table 6.2: LA Motor Button Pressed lapressed 

An invariant holds in LA Normal mode movement: The range of motor movement 

is from 0 to 599, formally expressed by InvLA: 

0 ::::;: lapos < 600. 

To prove the invariant is preserved by lapressed, we simply call function tvp b p 

c with parameter b = c = InvLA, p = (op, d). The formula op is lapressed parsed to 

type form and the domain dis [lamotor, lapos]. 
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An export function reader in parse.ml is used to read lamotor, lapos as variable 

names, lapressed as program specification, bl as precondition, c1 as postcondition. 

let lapressed = reader "BEGTABuLHEADERulabutton=fu$ulabutton=b/ I 
UHEADERulapos=Ou$ulapos>Ou&ulapos<599u$ulapos=599//ulamotor1=stopu& 

lapos1=laposu$ulamotor1=forward&ulapos1=lapos-1u$ulamotor1=forwardu& 

lapos1=lapos-1//ulamotor1=backward&lapos1=lapos+1u$lamotor1=backward 

&ulapos1=lapos+1u$ulamotor1u=stopu&ulapos1u=ulapos//uENDTAB" 

in let pi ST(lapressed, [reader "lamotor";reader "lapos"]) 

in let bi = reader "laposu>=u0u&ulaposu<u600" 

in let ci = reader "laposu>=u0u&ulaposu<u600" 

in if ( tvp bi pi c1) then begin 

... print lapressed to screen and a latex file ... 

... inform the invariant hold ... 

end; 

The lb-'JEX printout of LA motor button pressed operation is shown below. 

\begin{longtable}{lclclclcl} 

\hline & \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}=\texttt{O} 

& \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} $>$ \texttt{O} 

$\wedge$ \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}&\texttt{l} 

\texttt{a}\texttt{p}\texttt{o}\texttt{s} = \texttt{5}\texttt{9} 

\texttt{9}\\& &$<$\texttt{5}\texttt{9}\texttt{9}& \\ \hline \texttt{l} 

\texttt{a}\texttt{b}\texttt{u}\texttt{t}\texttt{t}\texttt{o}\texttt{n} 

= \texttt{f} & \texttt{l}\texttt{a}\texttt{m}\texttt{o}\texttt{t} 

\texttt{o}\texttt{r}\texttt{1} = \texttt{s}\texttt{t}\texttt{o} 

\texttt{p} $\wedge$ & \texttt{l}\texttt{a}\texttt{m}\texttt{o} 

\texttt{t}\texttt{o}\texttt{r} \texttt{1} = & \texttt{l}\texttt{a} 

\texttt{m}\texttt{o}\texttt{t} \texttt{o}\texttt{r}\texttt{1} =\\ & 

\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} 
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\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} & \texttt{f} 

\texttt{o}\texttt{r}\texttt{w}\texttt{a}\texttt{r}\texttt{d} $\wedge$ 

\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} & 

\texttt{f}\texttt{o}\texttt{r}\texttt{w}\texttt{a}\texttt{r}\texttt{d} 

$\wedge$ \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} 

\\ & & =\texttt{l}\texttt{a} \texttt{p}\texttt{o}\texttt{s}-\texttt{1} 

& = \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} - \texttt{1}\\ 

\hline \texttt{l}\texttt{a}\texttt{b}\texttt{u}\texttt{t}\texttt{t} 

\texttt{o}\texttt{n} = \texttt{b} & \texttt{l}\texttt{a}\texttt{m} 

\texttt{o}\texttt{t}\texttt{o}\texttt{r}\texttt{1} = &\texttt{l} 

\texttt{a}\texttt{m}\texttt{o}\texttt{t}\texttt{o}\texttt{r}\texttt{1} 

= & \texttt{l}\texttt{a}\texttt{m}\texttt{o}\texttt{t}\texttt{o} 

\texttt{r}\texttt{1} = \texttt{s}\texttt{t}\texttt{o}\texttt{p} 

$\wedge$\\ & \texttt{b}\texttt{a}\texttt{c}\texttt{k}\texttt{w} 

\texttt{a}\texttt{r}\texttt{d} $\wedge$\texttt{l}\texttt{a}\texttt{p} 

\texttt{o}\texttt{s}\texttt{1} &\texttt{b}\texttt{a}\texttt{c} 

\texttt{k}\texttt{w}\texttt{a}\texttt{r}\texttt{d}$\wedge$ \texttt{l} 

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} & \texttt{l} 

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} = \texttt{l} 

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\\ & = \texttt{l}\texttt{a} 

\texttt{p}\texttt{o}\texttt{s} + \texttt{1} & = \texttt{l}\texttt{a} 

\texttt{p}\texttt{o}\texttt{s}+\texttt{1} &\\ \hline 

\caption{LA Motor Button Pressed $lapressed$}\end{longtable} 

To consider the priority in group 1 motor movements triggered by LA forward, LA 

backward, RH up, and RH down button pressed events, we add a condition lamotor = 
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stop conjoined with the original condition into the left header of RH movement table: 

rhpos = 0 rhpos < 249 1\ rhpos = 249 

rhpos > 0 

rhbutton = u 1\ rhmotor1 = stop rhmotor1 = up 1\ rhmotor1 = up 1\ 

lamotor = stop 1\ rhpos1 = rhpos rhpos1 = rhpos- rhpos1 = rhpos -

1 1 

rhbutton = d 1\ rhmotor1 = down rhmotor1 =down rhmotor1 = stop 

lamotor = stop 1\ rhpos1 = rhpos 1\ rhpos 1 = rhpos 1\ rhpos1 = rhpos 

+1 +1 

(rhbutton = u V rhmotor1 = stop rhmotor1 = stop rhmotor1 = stop 

rhbutton = d) 1\ 1\ rhpos1 = rhpos 1\ rhpos1 = rhpos 1\ rhpos1 = rhpos 

lamotor # stop 

Table 6.3: RH Motor Button Pressed rhpressed 

The invariant of RH movement in normal mode is similar to LA movement: The 

range of RH motor movement is from 0 to 249, formally expressed by InvRH: 

0 ::::; rhpos < 250. 

The sketch of the proof can be referred to those stated for LA. The implementation 

of our proof in Ocaml is: 

let rhpressed = reader "BEGTABuLHEADERurhbuttonu=u&lamotoru=stopu$ 

rhbutton=d&lamotor=stop$(rhbutton=uuorurhbutton=d)&lamotor/=stop// 

UHEADERurhpos=O$urhpos<249&urhpos>Ou$urhpos=249u//urhmotor1=stop& 

rhpos1=rhpos$rhmotor1=up&rhpos1=rhpos-1$rhmotor1=up&rhpos1=rhpos-1 

//rhmotor1=down&rhpos1=rhpos+1u$urhmotor1=down&rhpos1=rhpos+1u$ 

rhmotor1=stop&rhpos1=rhposu//urhmotor1=stop&rhpos1=rhposu$ 

rhmotor1=stop&rhpos1=rhposu$urhmotor1=stop&rhpos1=rhposu//uENDTAB" 

in let p1 = ST(rhpressed, [reader "rhmotor";reader "rhpos"]) 
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in let bi = reader "rhposu>=u0u&urhpos<u250" 

in let c1 = reader "rhposu>=u0u&urhpos<u250" 

in if ( tvp bi pi c1) then begin 

... print rhpressed to screen and a latex file ... 

... inform the invariant holds ... 

end; 

6.3.4 Pressing Group 2 Motor Adjustment Buttons 

In principle, tabular representations of group 2 motor movements controlled through 

the panel have the similar features as those of group 1. For B motor forward or back-

ward button pressed event and B tick event triggered by it, we have the table: 

bpos = 0 bpos < 1099 1\ bpos = 1099 

bpos > 0 

bbutton = f bmotor1 = stop 1\ bmotor1 =forward bmotor1 = forward 

bpos1 = bpos 1\ bpos1 = bpos - 1\ bpos1 = bpos -

1 1 

bbutton = b bmotor1 = bmotor1 = bmotor1 = stop 1\ 

backward 1\ bpos 1 backward 1\ bpos1 bpos1 = bpos 

= bpos + 1 = bpos + 1 

Table 6.4: B Motor Button Pressed bpressed 

The invariant of B motor movement in normal mode is formally presented as: 

0 :::::; bpos < 11 00 

The formal proof in terms of implementation is: 

let bpressed = reader "BEGTABuLHEADERubbutton=ufu$ubbutton=ubu/ I 
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UHEADERubposu=uOu$ubposu<u1099u&ubposu>u0u$ubposu=u1099u// 

bmotor1u=ustopu&ubpos1=bposu$ubmotor1=forwardu&ubpos1=bpos-1u$ 

bmotor1u=uforwardu&ubpos1=bpos-1//ubmotor1=backward&bpos1=bpos+1u$ 

bmotor1=backward&bpos1=bpos+1u$ubmotor1=stop&bpos1=bpos//uENDTAB" 

in let p1 ST( bpressed, [reader "bmotor" ;reader "bpos "]) 

in let bl = reader "bposu>=u0u&ubposu<u1100" 

in let c1 = reader "bposu>=u0u&ubposu<u1100" 

in if ( tvp b1 p1 c1) then begin 

... print bpressed to screen and a latex file ... 

... inform the invariant holds ... 

end; 

For FH motor up or down button pressed event and FH tick event triggered by 

it, we have the following table: 

fhpos = 0 fhpos < 249 1\ fhpos = 249 

fhpos > 0 

fhbutton = u 1\ fhmotor1 = stop fhmotor1 = up 1\ fhmotor1 = up 1\ 

bmotor = stop 1\ fhpos1 = fhpos fhpos1 = fhpos- fhpos1 = fhpos -

1 1 

fhbutton = d 1\ fhmotor1 =down fhmotor1 = down fhmotor1 = stop 

bmotor = stop 1\ fhpos 1 = fhpos 1\ fhpos 1 = fhpos 1\ fhpos1 = fhpos 

+ 1 + 1 

( fhbutton = u V fhmotor1 = stop fhmotor1 = stop fhmotor1 = stop 

fhbutton = d) 1\ 1\ fhpos1 = fhpos 1\ fhpos1 = fhpos 1\ fhpos1 = fhpos 

bmotor i= stop 

Table 6.5: FH Motor Button Pressed fhpressed 
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The invariant of FH motor movement in normal mode is formally presented as: 

0::; fhpos < 250 

The formal proof in terms of implementation is: 

let fhpressed = reader "BEGTABuLHEADERufhbutton=u&ubmotor=stopu$ 

fhbutton=d&bmotor=stopu$(fhbutton=uuorufhbutton=d)&bmotor/=stop// 

UHEADERufhpos=Ou$fhpos<249&fhpos>Ou$ufhpos=249u//ufhmotor1=stopu& 

fhpos1=fhpos$fhmotor1=up&fhpos1=fhpos-1$fhmotor1=up&fhpos1=fhpos-1 

//fhmotor1=down&fhpos1=fhpos+1u$ufhmotor1=down&fhpos1=fhpos+1u$ 

fhmotor1=stop&fhpos1=fhposu//ufhmotor1=stop&fhpos1=fhposu$ 

fhmotor1=stop&fhpos1=fhposu$ufhmotor1=stop&fhpos1=fhposu//uENDTAB" 

in let pi ST(fhpressed, [reader "fhmotor";reader "fhpos"]) 

in let bl = reader "fhposu>=u0u&ufhposu<u250" 

in let c1 = reader "fhposu>=u0u&ufhposu<u250" 

in if ( tvp bl pl c1) then begin 

... print fhpressed to screen and a latex file ... 

... inform the invariant holds ... 

end; 

131 



Master Thesis- N. Zhou- McMaster- Computing and Software 

For HR motor up or down button pressed event and HR tick event triggered by 

it, we have the table as follows: 

hrpos = 0 hrpos < 129 1\ hrpos = 129 

hrpos > 0 

hrbutton = u 1\ hrmotor1 = stop hrmotor1 = up 1\ hrmotor1 = up 1\ 

bmotor = stop 1\ 1\ hrpos1 = hrpos hrpos 1 = hrpos - hrpos 1 = hrpos -

fhmotor = stop 1 1 

hrbutton = d 1\ hrmotor1 = down hrmotor1 =down hrmotor1 = stop 

bmotor = stop 1\ 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos 

fhmotor = stop +1 + 1 

(hrbutton = u V hrmotor1 = stop hrmotor1 = stop hrmotor1 = stop 

hrbutton = d) 1\ 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos 1\ hrpos 1 = hrpos 

(bmotor =I= stop 

V fhmotor =/= 

stop) 

Table 6.6: FH Motor Button Pressed fhpressed 

The invariant of FH motor movement in normal mode is formally presented as: 

0 ~ hrpos < 130 

The formal proof of the invariants in terms of implementation is: 

let hrpressed = reader "BEGTABuLHEADERuhrbutton=uuu&ubmotor=ustopu& 

fhmotoru=ustopu$uhrbuttonu=udu&ubmotoru=ustopu&ufhmotoru=ustopu$ 

(hrbuttonu=uuoruhrbuttonu=d)u&u(bmotoru/=stopuorufhmotoru/=stop)u/1 

UHEADERuhrposu=uOu$uhrposu<u129u&uhrposu>u0u$uhrposu=u129u// 

hrmotor1=stopu&uhrpos1=hrposu$uhrmotor1=upu&uhrpos1=hrpos-1u$ 

hrmotor1=upu&uhrpos1=hrpos-1u//uhrmotor1=down&uhrpos1=hrpos+1u$ 
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hrmotor1=downu&uhrpos1=hrpos+1u$uhrmotor1u=ustopu&uhrpos1=hrposu// 

hrmotor1=stop&hrpos1=hrposu$uhrmotor1=stop&hrpos1=hrposu$ 

hrmotor1=stop&hrpos1=hrposu//uENDTAB" 

in let pl ST(hrpressed, [reader "hrmotor";reader "hrpos"]) 

in let bl reader "hrposu>=u0u&uhrposu<u130" 

in let c1 reader "hrposu>=u0u&uhrposu<u130" 

in if (tvp bl pl c1) then begin 

... print hrpressed to screen and a latex file ... 

... inform the invariant holds ... 

end; 

6.4 Memory and Memory Set Mode 

6.4.1 Memory Mode and Its Properties 

Same as in Normal mode, there are two groups of motor movements in Memory 

mode. A motor in group 1 and any one motor in group 2 can be running concurrently. 

But all motors in one group must move in a time order to reach their setting positions. 

RH is adjusted after LA sets; FH is adjusted after B sets while HR is adjusted after 

both B and FH sets. We define operation latoset over variable lamotor to be a single 

LA movement to its setting position. A predicate representation of latoset as a table 

is shown below: 

lapos = laset lapos < laset lapos > laset 

lamotor1 = stop lamotor1 =backward lamotor1 = forward 

Table 6. 7: LA Motor Moving to Its Setting latoset 

Its definition in the implementation is as follows: 

let defiatoset = "BEGTABuUHEADERulaposu=ulasetu$ulaposu<ulasetu$ 
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laposu>ulasetu//ulamotor1u=ustopu$ulamotor1u=ubackwardu$ 

lamotor1u=uforwardu//uENDTAB" in 

let latoset = reader defiatoset in 

... print latoset to screen and a latex file ... 

Similarly, rhtoset, btoset, fhtoset and hrtoset are defined as well. 

rhpos = rhset rhpos < rhset rhpos > rhset 

rhmotor1 = stop rhmotor1 = down rhmotor1 = up 

Table 6.8: RH Motor Moving to Its Setting rhtoset 

let defrhtoset = "BEGTABuUHEADERurhposu=urhsetu$urhposu<urhsetu$ 

rhposu>urhsetu//urhmotor1u=ustopu$urhmotor1u=udownu$ 

rhmotor1u=uupu//uENDTAB" in 

let rhtoset = reader defrhtoset in 

... print rhtoset to screen and a latex file ... 

bpos = bset bpos < bset bpos > bset 

bmotor1 = stop bmotor1 = backward bmotor1 =forward 

Table 6.9: B Motor Moving to Its Setting btoset 

let defbtoset = "BEGTABuUHEADERubposu=ubsetu$ubposu<ubsetu$ 

bposu>ubsetu//ubmotor1u=ustopu$ubmotor1u=ubackwardu$ 

bmotor1u=uforwardu//uENDTAB" in 

let btoset = reader dejbtoset in 

... print btoset to screen and a latex file ... 

134 



Master Thesis- N. Zhou- McMaster- Computing and Software 

fhpos = fhset fhpos < fhset fhpos > fhset 

fhmotor1 =stop fhmotor1 = down fhmotor1 = up 

Table 6.10: FH Motor Moving to Its Setting fhtoset 

let deffhtoset = "BEGTABuUHEADERufhposu=ufhsetu$ufhposu<ufhsetu$ 

fhposu>ufhsetul/ufhmotor1u=ustopu$ufhmotor1u=udownu$ 

fhmotor1u=uupu/ /uENDTAB" in 

let jhtoset = reader deffhtoset in 

... print fhtoset to screen and a latex file ... 

hrpos = hrset hrpos < hrset hrpos > hrset 

hrmotor1 = stop hrmotor1 = down hrmotor1 =up 

Table 6.11: HR Motor Moving to Its Setting hrtoset 

let defhrtoset = "BEGTABuUHEADERuhrposu=uhrsetu$uhrposu<uhrsetu$ 

hrposu>uhrsetul/uhrmotor1u=ustopu$uhrmotor1u=udownu$ 

hrmotor1u=uupul/uENDTAB" in 

let hrtoset = reader defhrtoset in 

... print hrtoset to screen and a latex file ... 

The system rule is modeled in first order logic as: 

latoset 1\ (laset = lapos ==? rhtoset) 1\ btoset 1\ (bset = bpos ==? fhtoset) 1\ 

(bset = bpos 1\ fhset = fhpos ==? hrtoset). 

Difference is made depending on which memory button is pressed. For instance, 

pressing M1 causes the adjustments stored in memory 1 to be retrieved as: laset = 

lam11\ rhset = rhm11\ bset = bm11\ fhset = fhm11\ hrset = hrm1, and this further 

imply our Memory mode rule. Below is the tabular predicate of Memory mode system 
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named memory. 

button = m1 laset = lam1 A rhset = rhm1 A bset = bm1 A fhset = fhm1 A 

hrset = hrm1 ===? latoset A (laset = lapos ===? rhtoset) A 

btoset A (bset = bpos ===? fhtoset) A (bset = bpos A fhset 

= fhpos ===? hrtoset) 

button = m2 laset = lam2 A rhset = rhm2 A bset = bm2 A fhset = fhm2 A 

hrset = hrm2 ===? latoset A (laset = lapos ===? rhtoset) A 

btoset A (bset = bpos ===? fhtoset) A (bset = bpos A fhset 

= fhpos ===? hrtoset) 

Table 6.12: Memory Mode Movement memory 

One obvious property of memory is that when all motors reach their setting 

positions, they are stopped. Actually, if we state "all motors are stopped" all stop : 

lamotor =stop A rhmotor =stop A bmotor =stop A fhmotor =stop 

A hrmotor = stop 

as the postcondition of memory, the weakest precondition will be "all motors reach 

their setting positions" alltoset : 

laset = lapos A rhset = rhpos A bset = bpos A fhset = fhpos A hrset = hrpos. 

The proof of our weakest precondition of program memory to establish our post

condition takes following three steps: 

1. Make axioms according to system requirement of memory mode 

(a) Variable button is of enumeration type and should be specified. 

(DISTINCT m1 m2) (OR CEQ button m1) (EQ button m2)) 
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(b) Since all cases in the sub-operations of memory mode are considered, tables 

(latoset, rhtoset, btoset, fhtoset and hrtoset) should be total. 

(OR (AND CEQ lamotor1 backward) (> laset lapos)) 

(AND CEQ lamotor1 forward) ( < laset lapos)) 

(AND (EQ lamotor1 stop) CEQ laset lapos))) 

(OR (AND CEQ rhmotor1 down) (> rhset rhpos)) 

(AND CEQ rhmotor1 up) (< rhset rhpos)) 

(AND CEQ rhmotor1 stop) (EQ rhset rhpos))) 

(OR (AND CEQ bmotor1 backward) (> bset bpos)) 

(AND CEQ bmotor1 forward) (< bset bpos)) 

(AND (EQ bmotor1 stop) (EQ bset bpos))) 

(OR (AND CEQ fhmotor1 down) (> fhset fhpos)) 

(AND CEQ fhmotor1 up) (< fhset fhpos)) 

(AND CEQ fhmotor1 stop) (EQ fhset fhpos))) 

(OR (AND (EQ hrmotor1 down) (> hrset hrpos)) 

(AND (EQ hrmotor1 up) (< hrset hrpos)) 

(AND CEQ hrmotor1 stop) (EQ hrset hrpos))) 

Input operation memory based on several sub operations which already exists 

by using type expression 0 P. 

OP takes the name and the predicate representation of an operation as its pa

rameters. Denoting the nesting tables with it makes the tabular structure more 

explicit. The trick is that we leave the detailed specification of sub operation 

out when we care only about its function in an overall operation. For OP(n,J), 

inputting (OP n f), our program will print n to standard outputs, but f to a 

file which will be verified by Simplify. 
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3. Call function wpt b p c with parameter b = allstop, c = alltoset, and p 

memory. 

The code of the proof implemented in OCaml is as follows: 

let memory = reader ( 11 BEGTABuLHEADERubutton=m1u$ubutton=m2ul I 

laset=lam1u&urhset=rhm1u&ubset=bm1u&ufhset=fhm1u&uhrset=hrm1u=>u 

(0Pulatosetu 11 
A defiatoset A 

11 )u&u(laset=laposu=>u(OPurhtosetu 11 
A 

defrhtoset A 
11
)) u&u ( OPubtosetu 11 

A defbtoset A 

11
) u&u (bset=bposu=> 

(0Pufhtosetu 11 
A deffhtoset A 

11
) )u&u(bset=bposu&ufhset=fhposu=> 

(0Puhrtosetu 11 
A defhrtoset A 

11
)) ul I ulaset=lam2u&urhset=rhm2u& 

bset=bm2u&ufhset=fhm2u&uhrset=hrm2u=>uCDPulatosetu 11 
A defiatoset A 

11
) u&u (laset=laposu=>u (0Purhtosetu 11 

A defrhtoset A 

11
)) u&u (0Pubtosetu 11 

A defbtoset A 
11

) u&u (bset=bposu=>u (0Pufhtosetu 11 
A deffhtoset A 

11
)) u&u (bset 

=bposu&ufhset=fhposu=>uCDPuhrtosetu 11 
A defhrtoset A 

11
) )ul luENDTAB 11

) 

in let p = ST(memory, [reader 11 lamotor 11 ;reader 11 rhmotor 11
; 

reader 11 bmotor 11 ;reader 11 fhmotor 11 ;reader 11 hrmotor 11
]) 

in let b = reader 11 lasetu=ulaposu&urhsetu=urhposu&ubsetu=ubposu& 

fhsetu=ufhposu&uhrset=hrpos 11 

in let c = reader 11 lamotor=stopu&urhmotor=stopu&ubmotor=stopu& 

fhmotor=stopu&uhrmotor=stop 11 

in if ( wpt b p c) then begin 

... print memory to screen and a latex file ... 

. .. inform successful verification of memory weakest precondition ... 

end 

6.4.2 Memory Set Mode 

Initially, the positions stored in memory 1 and 2 are both set to motor home 

positions~O. Memory Set mode is functioned by a set of assignment statements. To 

set memory 1 or 2 to the current positions of motors, the states of all motors should 

be stop. This guard condition is in the upper header of Memory Set table. There are 
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no properties deriving from this table. Variables in this mode are the same as those 

in memory mode. 

lamotor = stop 1\ rhmotor = lamotor # stop V rhmotor # 

stop 1\ bmotor = stop 1\ stop V bmotor # stop V 

fhmotor = stop 1\ hrmotor = fhmotor # stop V hrmotor # 

stop stop 

button =m1 lam11 = lapos 1\ rhm11 = lam11 = lam1 1\ rhm11 = rhm1 

rhpos 1\ bm11 = bpos 1\ fhm11 1\ bm11 = bm1 1\ fhm11 = fhm1 

= fhpos 1\ hrm11 = hrpos 1\ hrm11 = hrm1 

button =m2 lam21 = lapos 1\ rhm21 = lam21 = lam2 1\ rhm21 = rhm2 

rhpos 1\ bm21 = bpos 1\ fhm21 1\ bm21 = bm2 1\ fhm21 = fhm2 

= fhpos 1\ hrm21 = hrpos 1\ hrm21 = hrm2 

Table 6.13: Memory Set Mode 

6.5 Calibration Mode and Its Properties 

When a seat is calibrated, all motors move in a way similar to that in Memory 

mode. But LA and B can not move backward; RH, FH, and HR can not move down 

since the home positions are the front stops for LA and B and the upper stops for RH, 

FH, and HR. For instance, the single LA movement to its home position latohome 

can be written as follows: 

lapos = lahome lapos # lahome 

lamotor1 = stop lamotor1 = forward 

Table 6.14: LA Motor Moving to Its Home latohome 
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Its definition in Ocaml programming language is: 

let deflatohome = "BEGTABuUHEADERulaposu=ulahomeu$ulaposul=ulahomeul I 

lamotor1u=ustopu$ulamotor1u=uforwardul luENDTAB" in 

let latohome = reader deflatohome in 

... print latohome to screen and a latex file ... 

Other motor movement to their home position rhtohome,btohome,fhtohome,and 

hrtohome are defined similarly. 

rhpos = rhhome rhpos -=/= rhhome 

rhmotor1 = stop rhmotor1 = up 

Table 6.15: RH Motor Moving to Its Home rhtohome 

let defrhtohome = "BEGTABuUHEADERurhposu=urhhomeu$urhposul=urhhomeul I 

rhmotor1u=ustopu$urhmotor1u=uupul luENDTAB" in 

let rhtohome = reader defrhtohome in 

... print rhtohome to screen and a latex file ... 

bpos = bhome bpos -=/= bhome 

bmotor1 = stop bmotor1 = forward 

Table 6.16: B Motor Moving to Its Home btohome 

let defbtohome = "BEGTABuUHEADERubposu=ubhomeu$ubposul=ubhomeul I 

bmotor1u=ustopu$ubmotor1u=uforwardulluENDTAB" in 

let btohome = reader defbtohome in 

... print btohome to screen and a latex file ... 
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fhpos = fhhome fhpos f. fhhome 

fhmotor1 = stop fhmotor1 = up 

Table 6.17: FH Motor Moving to Its Home fhtohome 

let deffhtohome = "BEGTABuUHEADERufhposu=ufhhomeu$ufhposu/ =ufhhomeu/ I 

fhmotor1u=ustopu$ufhmotor1u=uupu//uENDTAB" in 

let jhtohome = reader deffhtohome in 

... print fhtohome to screen and a latex file ... 

hrpos = hrhome hrpos f. hrhome 

hrmotor1 = stop hrmotor1 = up 

Table 6.18: HR Motor Moving to Its Home hrtohome 

let defhrtohome = "BEGTABuUHEADERuhrposu=uhrhomeu$uhrposu/=uhrhomeu/ I 

hrmotor1u=ustopu$uhrmotor1u=uUPul/uENDTAB" in 

let hrtohome = reader dejhrtohome in 

... print hrtohome to screen and a latex file ... 

The calibration consists of five sub operations latohome, rhtohome, btohome, jht-

ohome, and hrtohome. The relation among them named calibrate embody the pri-

ority of motor movements: 

latohome 1\ (lahome = lapos ==? rhtohome) 1\ btohome 1\ (bhome = bpos ==? 

jhtoset) 1\ (bhome = bpos 1\ fhhome = fhpos ==? hrtoset). 

We observe that during calibration, all motors are stopped if they are in their 

respective home positions. We state it formally as pre : 

lahome = lapos 1\ rhhome = rhpos 1\ bhome = bpos 1\ fhhome = fhpos 1\ 
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hrhome = hrpos. 

pre is the weakest precondition of program calibrate to establish postcondition po : 

lamotor =stop 1\ rhmotor =stop 1\ bmotor =stop 1\ fhmotor =stop 1\ 

hrmotor =stop. 

We assume all cases in the sub-operations of calibration mode are considered for 

proving our weakest precondition of program calibrate to establish our postcondition. 

Tables (latohome, rhtohome, btohome, fhtohome and hrtohome) are supposed to be 

total, which is set as axioms: 

(OR (AND (EQ lahome lapos) (EQ lamotor1 stop)) 

(AND (NEQ lahome lapos) (EQ lamotor1 forward))) 

(OR (AND (EQ rhhome rhpos) (EQ rhmotor1 stop)) 

(AND (NEQ rhhome rhpos) (EQ rhmotor1 up))) 

(OR (AND (EQ bhome bpos) (EQ bmotor1 stop)) 

(AND (NEQ bhome bpos) (EQ bmotor1 forward))) 

(OR (AND (EQ fhhome fhpos) (EQ fhmotor1 stop)) 

(AND (NEQ fhhome fhpos) (EQ fhmotor1 up))) 

(OR (AND (EQ hrhome hrpos) (EQ hrmotor1 stop)) 

(AND (NEQ hrhome hrpos) CEQ hrmotor1 up))) 

Then, we call function wp b p c with b =pre, c = po, and p = calibrate to justify that 

b is the weakest precondition of operation p in form of plain predicate to establish 

postcondition po. 

let calibrate = reader (11 (0Pulatohomeu 11 
A defiatohome A 

11 )u&u 

(lahome=laposu=>u (0Purhtohomeu 11 
A defrhtohome A 

11
)) u&u (OPubtohome 

11 
A defbtohome A 

11
) u&u (bhome=bposu=>u (OPufhtohomeu 11 

A deffhtohome A 
11
)) 

&u (bhome=bposu&ufhhome=fhposu=>u (OPuhrtohomeu 11 
A defhrtohome A 

11
)) 

11
) 

in let p = ST(calibrate, [reader 11 lamotor 11 ;reader 11 rhmotor 11
; 
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reader "bmotor";reader "fhmotor";reader "hrmotor"]) 

in let b = reader "lahomeu=ulaposu&urhhome=rhposu& 

bhome=bposu&ufhhome=fhposu&uhrhome=hrpos" 

in let c = reader "lamotor=stopu&urhmotor=stopu& 

bmotor=stopu&ufhmotor=stopu&uhrmotor=stop" 

in if (wp b p c) then begin 

... print calibrate to screen and a latex file ... 

... inform successful verification of calibrate weakest precondition ... 

6.6 Summary 

The result of proving properties for the first three modes are shown in Figure 

6.2. All (sub-) operations and their related motors are listed in columns "(Sub) 

Operation" and "Related Motors" respectively. In column "Proof Condition", we list 

the number of proof obligations generated for each operations by applying the theorem 

given in column "Theorems Applied". The length of proof predicates are listed in 

column "Size"; when a proof predicate relate to tabular operations, the structure of 

the tables are also given. In column "Time/Tabular", we give the user times that 

Simplify needs for proofs of properties of specifications in tabular form; in column 

"Time/Plain", we give the user times that Simplify needs for proofs of properties of 

the same specifications as plain predicates. Note that user time of proof related to 

memory, which is the largest specification in this example, is less than the user time 

of proof related to memory as plain predicate. 

Our car seat example is suited for both statecharts and tables. We formalize the 

example, come up with a specification in tabular form and proved properties of the 

specification. Weakest preconditions are determined for single operations. System 

invariants are checked by showing that the initialization establishes them and that 
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(Sub) Related Proof Size 
Time(msec) 

Theorems Applied Mode Operation Motors Condition Tabular Plain 

(Jato home) LA 2rows,2cols 
(rhtohome) RH 2rows,2cols 

Calibration (btohome) B 2rows,2cols 

(fhtohome) FH 2rows,2cols 

(hrtohome) HR 2rows,2cols 

calibrate 
LA,RH,B 

I 54 Weakest precondition ,FH,HR 221c 

lap res sed LA 6 
3rows,4cols 

7 2 253c 

rhpressed RH 9 4rows,4cols 
9 4 3 75c 

bpressed B 6 3rows,4cols 
9 2 Tabular Verification Normal 231c 

with Predicates 

fhpressed FH 9 
4rows,4cols 

10 5 372c 

hrpressed HR 9 4rows,4cols 
10 5 411 c 

(Ia to set) LA 2rows,3cols 
(rhtoset) RH 2rows,3cols 
(btoset) B 2rows.3cols 

Memory (fhtoset) FH 2rows,3cols 

(hrtoset) HR 2rows,3cols 

memory LA,RH,B 2 2row s,2co Is 86 131 Weakest Precondition 
,FH,HR 422c with Predicates 

Figure 6.2: Performance of Proof in Car Seat Control 

all operations preserve them. Nesting operation structure is expressed by replacing 

internal operation predicates with their names. Most priorities are considered within 

tables except priorities of movements among different modes (e.g. Motor movements 

in Memory mode have higher priorities than those in Normal mode). A table is illus-

trated for each type of operation. We only introduce in detail group one movements 

for each mode. Tabular specifications for group two movements are derived in a 

similar way. 
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Chapter 7 

Modeling a Visitor Information 

System 

7.1 Example Introduction 

A real life example is a visitor information system for managing a conference 

site [34]. Visitors come to a site to attend meetings. Each meeting is required to take 

place in a designated conference room, at a certain day. A meeting may require the 

use of a dining room for lunch. Booking a dining room requires lunch information, 

including the number of places needed. Several constraints have to be observed: 

1. A conference room can host only one meeting. 

2. A meeting may need more than one conference rooms. 

3. All participants of a meeting take lunch in the same dining room. 

4. Participants from several meetings can occupy the same dining room. 

5. A visitor can attend only one meeting. 
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6. A meeting may involve several visitors. 

At a first step in modeling, we have to find the different kinds of objects of concern. 

Usually they appear as nouns in natural language descriptions. 

1. Visitor 

2. DiningRoom 

3. ConferenceRoom 

4. Meeting 

We assume that each visitor, dining room, conference room, and meeting has a unique 

name, say given as a string. There are a different set of meetings taking place and a 

different set of visitors attending those. Hence we define two variables. 

visitors: set of Visitor 

meetings: set of Meeting 

the set of registered visitors 

the set of meetings taking place 

As the next step, we state the relationships between the various objects. Each 

registered visitor attends a meeting and only one meeting. Hence we define attends 

as a mapping from registered visitors to the meetings taking place, a mapping is a 

set F S:: I x 0 such that if (x, y), (x, y') E F, then y = y': 

attends: map Visitor to Meeting 

dom attends = visitors 

ran attends s:;: meetings 

The last two lines express that every visitor must register to a meeting, but there 

can be a meeting without any visitors(yet). 

Each meeting occupies at least one conference room, but no conference rooms can 

be shared between meetings. We model this as an injective relation between meetings 

and conference rooms: 
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convenes: rei Meetings to ConferenceRoom 

dom convenes = meetings 

injective( convenes) 

The last line expresses that each meeting must take place in one conference room. 

Each meeting takes lunch in a dining room, if it requires lunch at all. However, 

several meetings can share a dining room. We express this as a mapping between 

meetings taking place and dining rooms: 

eats: map Meeting to Dining Room 

dom eats ~ meetings 

If we use (attends o eats t 1 = eats - 1 o attends - 1 to relate each dining room to all 

the visitors eating in there, we may consider the implicit requirement that the total 

number of visitors eating in a dining room must not exceed capacity of the dining 

room. Let 

capacity: map DiningRoom to integer 

total( capacity) 

be a function returning the maximal capacity of each dining room, where \fdr · 

capacity(dr) > 0. Then we may add: 

V dr E ran eats · #( (attends o eats) - 1 { dr}) ::; capacity( dr) 

Since in Simplify the universal quantifier and the existential quantifier are assumed 

to have the range of integers, in our implementation we can reformulate above pred

icate by limiting dr to type ran eats 

dr E ran eats==? #((attends o eats )-1 { dr}) ::; capacity( dr ). 

Based on the above data structure, the system has to support following operations 

[31]: 

1. createMeeting: create a new meeting 
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2. cancelMeeting: delete meeting, provided no dining room, conference rooms, and 

visitors are associated with that meeting. 

3. cancelMeetingArrangement: delete meeting with all associated rooms and visi

tors. 

4. enter Visitor: create a new visitor entry. 

5. remove Visitor: remove visitor from the system. 

6. addVisitorToMeeting, remove VisitorFromMeeting: as the name says. 

7. bookDiningRoom,cancelDiningRoom: for a particular meeting 

8. bookConferenceRoom, cancelConferenceRoom: for a particular meeting. 

7.2 Specification of Visitor Information System 

Invariants have to hold throughout the operations to maintain the data structure 

of function for variable attends and eats, and injective relation for variable meetings. 

Besides invariants, we solve the Completeness issue for each procedure: Does the 

specification cover all possible cases, or did we forget some cases? Completeness of

ten implies (some sort of) definedness which is expressed by preconditions. Assertion 

statements are served as precondition of the procedure. For a program segment with 

alternative statements, precondition of it is the coverage of the condition. We arrive 

at this functional specification from a holistic point of view, considering the whole 

system. 

module VisitorlnformationSystem 

var visitors: set of String (* set of Visitor *) 
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var meetings: set of String 

var attends: map String to String 

var convenes: rei String to String 

var eats: map String to String 

(* set of Meeting *) 

(* map Visitor to Meeting *) 

(* rei Meeting to ConferenceRoom *) 

(* map Meeting to DiningRoom *) 

{invariant:(dom attends<;;;; visitors) 1\ (ran attends<;;;; meetings) 1\ 

( dom convenes <;;;; meetings) 1\ map( attends) 1\ injective( convenes) 1\ 

map( eats) 1\ ( dom eats <;;;; meetings) 1\ 

('i!dr E ran eats· #((attends o eats )-1
{ dr}) ~ capacity(dr))} 

public procedure createMeeting(val m: String) 

m =/= nil 1\ m =/= "" 1\ m ~ meetings 1\ meetings 1 = meetings U { m} 

public procedure cancelMeeting(val m: String) 

mE meetingsl\m ~ ran(attends)l\m ~ dom(convenes)l\m ~ dom(eats)l\ 

meetings! =meetings- { m} 

public procedure cancelMeetingArrangement(val m: String) 

mE meetings 1\ meetings!= meetings- {m}/\ 

attends!= attends- revrelate(m, attends)/\ 

convenes!= convenes- relate(m, convenes)/\ 

eatsl =eats- relate(m,eats) 

public procedure enterVisitor(val v: String) 

v =/= nil 1\ v =/= "" 1\ v ~ visitors 1\ visitors 1 = visitors U { v} 

public procedure removeVisitor(val v: String) 

v E visitors 1\ v ~ dom (attends) 1\ visitors 1 = visitors - { v} 

public procedure addVisitorToMeeting(val v: String, val m: String) 

v E visitors 1\ mE meetings 1\ v ~ dom(attends) 1\ attends!= attendsU 
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{ ( v, m)} 1\ ( •(dr E ran( eats) ==? card(revrelate(dr, attends! o eats)) ::; 

capacity(dr)) 1\ eatsl =eats- relate(m, eats) V (dr E ran( eats)==? 

card(revrelate(dr, attends! o eats)) ::; capacity(dr)) 1\ eatsl =eats) 

public procedure remove Visitor FromM eeting( val v : String) 

v E dom(attends) 1\ attends!= attends- relate(v, attends) 

public procedure visitorlnfo(val v: String, res mt: String) 

v E visitors 1\ v E v E visitors 1\ v ~ v ~visitors 

dom(attends) dom( attends) 

mt1 = mt1 = "" mt1 =nil 

concate(ran(relate(v, 

attends))) 

Table 7.1: Checking Meeting Attended visitorlnfo 

public procedure bookDiningRoom(val m: String, val d: String) 

m E meetings 1\ d =I= nil 1\ m ~ dom( eats) 1\ ( dr E ran( eats U { ( m, d)}) ==? 

card(revrelate(dr, compose( attends, eats U {(m, d)}))) ::; capacity(dr))l\ 

eatsl =eats U {(m, d)} 

public procedure cancelDiningRoom(val m: String) 

mE dom(eats) 1\ eatsl =eats- relate(m, eats) 

public procedure bookConferenceRoom(val m: String, val c: String) 

mE meetings 1\ c =I= nil 1\ c ~ran( convenes)/\ 

convenes!= convenesU {(m,c)} 

public procedure cancelConferenceRoom(val c: String) 
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c E ran( convenes) 1\ convenes!= convenes- revrelate(c, convenes) 

public procedure conferenceRooms(val m: String, res cr: String) 

m E meetings 1\ m E m E meetings 1\ m ~ m ~meetings 

dom( convenes) dom( convenes) 

cr1 = cr1 = "" cr1 =nil 

concate(ran(relate(m, 

convenes))) 

Table 7.2: Conference Room conferenceRooms 

public procedure diningRooms(val m: String, res dr: String) 

mE meetings 1\ mE m E meetings 1\ m ~ m ~meetings 

dom(eats) dom(eats) 

d1 = d1 = '"' d1 =nil 

concate(ran(relate(m, 

eats))) 

Table 7.3: Dining Room diningRooms 

begin visitors, meetings, attends, convenes, eats := ¢, ¢, ¢, ¢, ¢ 

end 
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7.3 Axiom 

Since Simplify only accepts a sequence of first order formulae as input, the prop

erties and operations of set, relation and function are not acceptable directly. But 

Simplify proves its formulae assuming some set of axioms, we can define properties 

and operations in terms of functions which are called axioms and customize the axiom 

set in Simplify before validating each predicate. There are a large amount of axioms 

for set, relation and function properties and operations. A few of them are applied 

in this example to prove our stated invariants. Axioms are presented in a style which 

Simplify can recognize. Their explanations in the combination of alternative state

ment (to limit the definedness of an axiom), conventional symbol and first order logic 

are also provided following each of them. 

1. MEMBER 1 

(FORALL (x y s) 

(PATS (MEMBER X (INSERT s y))) 

(IMPLIES (NEQ x y) CEQ (MEMBER x (INSERT s y)) (MEMBER x s)))) 

if x =I= y then (xEs U {y} ¢:?xEs) A (x tf. s U {y} ¢:? x tf. s) 

2. MEMBER 2 

(FORALL (x xs ys) 

(PATS (MEMBER x (DELETE xs ys))) 

(IMPLIES (NEQ (MEMBER x xs) true) 

(NEQ (MEMBER x (DELETE xs ys)) true))) 

if X tf. XS then X tf. XS - ys 
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3. MEMBER 3 

(FORALL (x xs ys) 

(PATS (MEMBER x (dom (DELETE xs ys)))) 

(IMPLIES (NEQ (MEMBER x (dom xs)) true) 

(NEQ (MEMBER x (dom (DELETE xs ys))) true))) 

if x 1. dam xs then x 1. dam (xs- ys) 

4. MEMBER 4 

(FORALL (x xs ys) 

(PATS (MEMBER x (ran (DELETE xs ys)))) 

(IMPLIES (NEQ (MEMBER x (ran xs)) true) 

(NEQ (MEMBER x (ran (DELETE xs ys))) true))) 

if x 1. ran xs then x 1. ran (xs- ys) 

5. SUBSET 1 

(FORALL (y xs ys) 

(PATS (SUBSET xs (INSERT ys y))) 

(IMPLIES (EQ (SUBSET xs ys) true) 

CEQ (SUBSET xs (INSERT ys y)) true))) 

if xs r::;; ys then xs r::;; ys U {y} 

6. SUBSET 2 

(FORALL (x xs ys) 

(PATS (SUBSET xs (DELETE ys (INSERT EMPTY x)))) 
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(IMPLIES (AND (NEQ (MEMBER x xs) true) CEQ (SUBSET xs ys) true)) 

(EQ (SUBSET xs (DELETE ys (INSERT EMPTY x))) true))) 

if x tf_ xs 1\ xs ~ ys then xs ~ ys - { x} 

7. SUBSET 3 

(FORALL (xs ys zs) 

(PATS (SUBSET (dom (DELETE xs zs)) ys)) 

(IMPLIES CEQ (SUBSET (dom xs) ys) true) 

CEQ (SUBSET (dom (DELETE xs zs)) ys) true))) 

if dom xs ~ ys then dom (xs- zs) ~ ys 

8. SUBSET 4 

(FDRALL (xs ys zs) 

(PATS (SUBSET (ran (DELETE xs zs)) ys)) 

(IMPLIES CEQ (SUBSET (ran xs) ys) true) 

CEQ (SUBSET (ran (DELETE xs zs)) ys) true))) 

if ran xs ~ ys then ran (xs- zs) ~ ys 

9. SUBSET 5 

(FORALL (x y xs ys) 

(PATS (SUBSET (dom (INSERT ys (PAIR x y))) xs)) 

(IMPLIES (AND CEQ (MEMBER x xs) true) 

(EQ (SUBSET (dom ys) xs) true)) 

(EQ (SUBSET (dom (INSERT ys (PAIR x y))) xs) true))) 
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if x E xs 1\ dom ys <;;;; xs then dom (ys U (x, y)) <;;;; xs 

10. SUBSET 6 

(FORALL (x y xs ys) 

(PATS (SUBSET (ran (INSERT ys (PAIR x y))) xs)) 

(IMPLIES (AND (EQ (MEMBER y xs) true) 

(EQ (SUBSET (ran ys) xs) true)) 

CEQ (SUBSET (ran (INSERT ys (PAIR x y))) xs) true))) 

if y E xs 1\ ran ys <;;;; xs then ran (ys U (x, y)) <;;;; xs 

11. UNION 1 

(FORALL (xs) 

(PATS (UNION xs EMPTY)) 

(EQ (UNION xs EMPTY) xs)) 

XS U cp = XS 

12. UNION 2 

(FORALL (xs ys y) 

(PATS (UNION xs (INSERT ys y))) 

CEQ (UNION xs (INSERT ys y)) (INSERT (UNION xs ys) y))) 

xsU(ysU{y}) = (xsUys)U{y} 

13. DELETE 1 

(FORALL (x xs) 

(NEQ (MEMBER x (dom (DELETE xs (relate x xs)))) true)) 

155 



Master Thesis- N. Zhou- McMaster- Computing and Software 

x rf_ dom (xs- l{x }I) 

14. DELETE 2 

(FORALL (x xs) 

(NEQ (MEMBER x (ran (DELETE xs (revrelate x xs)))) true)) 

x rf_ ran (xs -l{x}I-I) 

15. DOMAIN 1 

(FORALL (xs x1 x2) 

(PATS (dom (INSERT xs (PAIR x1 x2)))) 

(EQ (dom (INSERT xs (PAIR x1 x2))) (INSERT (dom xs) x1))) 

dom (xs U (xi, x2)) = dom xs U {xi} 

16. RANGE 1 

(FORALL (xs x1 x2) 

(PATS (ran (INSERT xs (PAIR x1 x2)))) 

(EQ (ran (INSERT xs (PAIR x1 x2))) (INSERT (ran xs) x2))) 

17. INJECTIVE 1 

(FORALL (xs ys) 

(PATS (injective (DELETE xs ys))) 

(IMPLIES (EQ (injective xs) true) 

CEQ (injective (DELETE xs ys)) true))) 
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if injective xs then injective (xs- ys) 

18. INJECTIVE 2 

(FORALL (x x1 xs) 

(PATS (injective (INSERT xs (PAIR x x1)))) 

(IMPLIES (AND CEQ (injective xs) true) 

(NEQ (MEMBER x1 (ran xs)) true)) 

CEQ (injective (INSERT xs (PAIR x x1))) true))) 

if (injective xs) 1\ (x1 E ran xs) then injective (xs U {(x, x1)}) 

19. MAP 1 

(FORALL (xs ys) 

(PATS (map (DELETE xs ys))) 

(IMPLIES CEQ (map xs) true) (EQ (map (DELETE xs ys)) true))) 

if map xs then map (xs- ys) 

20. MAP 2 

(FORALL (x x1 xs) 

(PATS (map (INSERT xs (PAIR x1 x)))) 

(IMPLIES (AND (EQ (map xs) true) 

(NEQ (MEMBER x1 (dom xs)) true)) 

CEQ (map (INSERT xs (PAIR x1 x))) true))) 

if (map xs) 1\ (x1 tt- dom xs) then map (xs U (x1, x)) 

21. CAPACITY 1 
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(FORALL (y xs ys m v) 

(IMPLIES CEQ (MEMBER y (ran (DELETE ys (relate m ys)))) true) 

(<= (card (revrelate y 

(compose (UNION xs (INSERT EMPTY (PAIR v m))) 

(DELETE ys (relate m ys))))) 

(card (revrelate y (compose xs ys)))))) 

\:fy E ran ys · #(((xs U (v, m)) o (ys -l{m}J))-1[{y}])::; #((xs o ys)-1[{y}]) 

22. CAPACITY 2 

(FORALL (y xs ys zs) 

(IMPLIES CEQ (MEMBER y (ran ys)) true) 

(<= (card (revrelate y (compose (DELETE xs zs) ys))) 

(card (revrelate y (compose xs ys)))))) 

\:fy E ran ys · #(((xs- zs) o ys)- 1 [{y}]) ::; #((xs o ys)-1 [{y}]) 

23. CAPACITY 3 

(FORALL (y xs ys zs) 

(IMPLIES (EQ (MEMBER y (ran ys)) true) 

(<= (card (revrelate y (compose xs (DELETE ys zs)))) 

(card (revrelate y (compose xs ys)))))) 

\:fy E ran ys · #((xs o (ys- zs))-1[{y}])::; #((xs o ys)-1 [{y}]) 

7.4 Proving Invariants and Preconditions 

Like the formal proof in terms of implementation in our CarSeat example, we 

prove preconditions and the system invariant preserved for each procedure in this 

158 



Master Thesis- N. Zhou- McMaster- Computing and Software 

information system based on predicate. Invariant and preconditions are already pred

icate except that set and relation properties and operations should be transformed to 

self-defined functions. 

The invariant vi of the system can be represented in predicate by our input notation: 

dom(attends)<:visitors & ran(attends)<:meetings & 

dom(convenes)<:meetings & map(attends)=true & map(eats)=true & 

injective(convenes)=true & dom(eats) <:meetings & 

(dr:ran(eats)=>card(revrelate(dr,compose(attends,eats)))<=capacity(dr)) 

The proof of invariant for each procedure is calling function tvp (or vp) b p c where 

procedure p = ST( op, vl) and op is a predicate in tabular (plain) form, b = c = vi. 

Preconditions are validated by calling function pret (or pre) b p where parameters b 

and p are the same as those of tvp (or vp). We include the source code of the proof 

in the following subsections. 

public procedure createM eeting( val m : String) 

let createMeeting = reader "m/=nilu&um/=EMPSTRu&um/: umeetingsu& 

meetingsl=meetingsuUu{m}" 

in let p = ST(createMeeting, [reader "meetings"]) 

in let b = reader "m/=nilu&um/=EMPSTR&um/ :meetings" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print createMeeting to screen and a latex file ... 

... print b as precondition of createMeeting ... 

... print bi as system invariant preserved by createMeeting ... 

end 

public procedure cancelMeeting(val m: String) 

let cancelMeeting = reader "m:meetingsu&um/:ran(attends)u& 
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m/:dom(convenes)u&um/:dom(eats)u&umeetingsl=meetings--{m}" 

in let p = ST( cancelMeeting, [reader "meetings"]) 

in let b = reader "m:meetingsu&um/:ran(attends)u& 

m/:dom(convenes)u&um/:dom(eats)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print canceiMeeting to screen and a latex file ... 

... print b as precondition of canceiMeeting ... 

... print bi as system invariant preserved by canceiMeeting ... 

end 

public procedure cancelM eetingArrangement( val m : String) 

let cancelMeetingArrangement = reader "m:meetingsu& 

meetings1=meetings--{m}u&uattends1=attends--revrelate(m,attends)u& 

convenes1=convenes--relate(m,convenes)&eats1=eats--relate(m,eats)" 

in let p = ST( cancelMeetingArrangement, 

[reader "meetings";reader "attends";reader "convenes";reader "eats"]) 

in let b = reader "m:meetings" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print createMeetingArrangement to screen and a latex file ... 

... print b as precondition of createMeetingArrangement ... 

... print bi as system invariant preserved by createMeetingArrangement ... 

end 

public procedure enterVisitor(val v: String) 

let enter Visitor = reader 

"v/=nilu&uv/=EMPSTRu&uvu/:uvisitorsu&uvisitorslu=uvisitorsuUu{v}" 

in let p = ST(enterVisitor,[reader "visitors"]) 

in let b = reader "v /=nilu&uv /=EMPSTRu&uv I: visitors" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print enterVisitor to screen and a latex file ... 

... print b as precondition of enterVisitor. .. 
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... print bi as system invariant preserved by enterVisitor ... 

end 

public procedure removeVisitor(val v: String) 

let remove Visitor = reader 

"vu: uvisi torsu&uv/: udom(attends)u&uvisitors1u=uvisi torsu--u{ v }" in 

let p = ST(removeVisitor, [reader "visitors"]) 

in let b = reader "v:visitorsu&uv/:dom(attends)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print removeVisitor to screen and a latex file ... 

... print b as precondition of removeVisitor ... 

... print bi as system invariant preserved by removeVisitor ... 

end 

public procedure addVisitorToMeeting(val v: String, val m: String) 

let add VisitorToM eeting = reader "v: visi tors&m: meet ings&v I: dom (attends) 

&uattends1u=uattendsuUu{PAIR(v,m)}u&u((notu(dr:ran(eats)u=> 

card(revrelate(dr,compose(attends1,eats)))<=capacity(dr)) 

&eats1=eats--relate(m,eats))or((dr:ran(eats)=>card(revrelate 

(dr, compose (attends1, eats))) <=capaci ty(dr) )u&ueats1=eats))" 

in let p = ST(addVisitorToMeeting, [reader "attends";reader "eats"]) 

in let b = reader "v:visitorsu&um:meetingsu&uv/:dom(attends)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print addVisitorToMeeting to screen and a latex file ... 

... print bas precondition of addVisitorToMeeting ... 

... print bi as system invariant preserved by addVisitorToMeeting ... 

end 

public procedure remove Visitor FromM eeting( val v : String) 
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let remove VisitorFromMeeting = reader 

"vu:udom(attends)u&uattendsl=attends--relate(v,attends)" 

in let p = ST(removeVisitorFromMeeting, [reader "attends"]) 

in let b = reader "v:dom(attends)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print removeVisitorFromMeeting to screen and a latex file ... 

... print b as precondition of removeVisitorFromMeeting ... 

... print bi as system invariant preserved by removeVisitorFromMeeting ... 

end 

public procedure visitorlnfo(val v: String, res mt: String) 

let visitorlnfo = reader "BEGTABuUHEADERuv:visitorsu&uv:dom(attends)u$ 

v:visitorsu&uv/:dom(attends)u$uv/:visitorsu//umt1u= 

concate(ran(relate(v,attends)))u$umt1=EMPSTRu$umt1=nil//uENDTAB" 

let p = ST( visitor Info, [reader "mt "]) 

in let b = reader "TRUE" 

in if (pret b p) 1\ ( tvp bi p ci) then begin 

... print visitorlnfo to screen and a latex file ... 

... print b as precondition of visitorlnfo ... 

... print bi as system invariant preserved by visitorlnfo ... 

end 

public procedure bookDiningRoom(val m: String, val d: String) 

let bookDiningRoom = reader "m: meet ingsu&ud/ =nilu&um/ : dom (eats) & 

(dr:ran(eatsuUu{PAIR(m,d)})=>card(revrelate(dr,compose(attends, 

eatsuUu{PAIR(m,d)}))) <=capaci ty(dr) )&eatsl=eatsuUu{PAIR(m, d)}" 

in let p = ST(bookDiningRoom, [reader "eats"]) 

in let b = reader "m:meetingsu&ud/=nilu&um/:dom(eats)u& 

(dr:ran(eatsuUu{PAIR(m,d)})u=>ucard(revrelate(dr,compose(attends, 
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eatsuUu{PAIR(m,d)}))) <=capaci ty(dr))" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print bookDiningRoom to screen and a latex file ... 

... print b as precondition of bookDiningRoom ... 

... print bi as system invariant preserved by bookDiningRoom ... 

end 

public procedure cancelDiningRoom(val m: String) 

let cancelDiningRoom = reader 

"m:dom(eats)u&ueats1u=ueatsu--urelate(m,eats)" 

in let p = ST(cancelDiningRoom, [reader "eats"]) 

in let b = reader "m:dom(eats)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print canceiDiningRoom to screen and a latex file ... 

... print bas precondition of canceiDiningRoom ... 

... print bi as system invariant preserved by canceiDiningRoom ... 

end 

public procedure bookConferenceRoom(val m: String, val c: String) 

let bookConferenceRoom = reader "m:meetingsu&uc/=nilu& 

cu/:ran(convenes)u&uconvenes1u=uconvenesuUu{PAIR(m,c)}" 

in let p = ST(bookConferenceRoom, [reader "convenes"]) 

in let b = reader "m:meetingsu&uc/=nilu&uc/:ran(convenes)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print bookConferenceRoom to screen and a latex file ... 

... print b as precondition of bookConferenceRoom ... 

... print bi as system invariant preserved by bookConferenceRoom ... 

end 

public procedure cancelConferenceRoom(val c: String) 

let cancelConferenceRoom = reader "c: ran (convenes) u& 
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convenes1u=uconvenesu--urevrelate(c,convenes)" 

in let p = ST(cancelConferenceRoom, [reader "convenes"]) 

in let b = reader "c:ran(convenes)" 

in if (pre b p) 1\ ( vp bi p ci) then begin 

... print canceiConferenceRoom to screen and a latex file ... 

... print b as precondition of canceiConferenceRoom ... 

... print bi as system invariant preserved by canceiConferenceRoom ... 

end 

public procedure conferenceRooms(val m: String, res cr: String) 

let conferenceRooms = reader "BEGTABuUHEADERum:meetingsu& 

m:dom(convenes)u$um:meetings&m/:dom(convenes)u$um/:meetingsu// 

cr1=concate(ran(relate(m,convenes)))$cr1=EMPSTR$cr1=nil//ENDTAB" 

in let p = ST(conferenceRooms, [reader "cr"]) 

in let b = reader "TRUE" 

in if (pret b p) 1\ ( vp bi p ci) then begin 

... print conferenceRooms to screen and a latex file ... 

... print b as precondition of conferenceRooms ... 

... print bi as system invariant preserved by conferenceRooms ... 

end 

public procedure diningRooms(val m: String, res dr : String 

let diningRooms = reader "BEGTABuUHEADERumu:meetingsu& 

m:dom(eats)u$um:meetingsu&um/:dom(eats)u$um/:meetingsu// 

d1=concate(ran(relate(m,eats)))u$ud1=EMPSTRu$ud1=nil//uENDTAB" 

in let p = ST(diningRooms, [reader "d"]) 

in let b = reader "TRUE" 

in if (pret b p) 1\ ( vp bi p ci) then begin 

... print diningRooms to screen and a latex file ... 

. .. print b as precondition of diningRooms ... 

... print bi as system invariant preserved by diningRooms ... 
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end 

7.5 Conclusion 

The result of our implementation is listed in Figure 7.1. We choose two opera

tions, createMeeting and visitorinfo to demonstrate how to read our result. We 

use the theory of precondition to prove the completeness of createM eeting, which 

generate 1 proof obligation. Our proof predicate is 7 4 characters long. We use the 

theorem of verification with predicates to prove our invariant holds in the ex

ecuting of createM eeting, which generate 1 proof obligation. The proof predicate 

of it contains 719 characters. The proofs related to operation crea~eM eeting takes 

9 millisecond. We use the theory of precondition with tabular predicates to 

prove the completeness of visitorinfo, which generate 3 obligations. We use the 

theorem of tabular verification with predicates to prove our invariant holds in 

the executing of visitor Info, which generate 3 obligations. The proof predicates for 

the precondition and the invariant related to visitor Info contain 117 and 783 char

acters respectively. The proofs related to tabular specification visitor Info takes 7 

millisecond. The proofs related to visitor Info as plain predicate takes 4 millisecond. 

The specification of the visitor information system is straightforward according to 

requirement except the procedure addVisitorToM eeting. It state that after a visitor 

is added to a meeting, if a dining room has been booked for the meeting and the 

total number of visitors eating in the dining room exceeds the capacity of the dining 

room, the booking should be canceled. Although Simplify supports relations, it only 

includes the ordering relations on integers. Simplify also include function definition, 

but in our case, domain and range can not be modeled by functions defined in Simplify. 
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Proof 
Size 

Time(msec) 
Theorems Applied 

Operation Condition Tabular Plain 

createMeeting l;l 74c;719c 9 Precondition; Verification with Predicates 

cancelMeeting 1;1 134c;75lc 10 Precondition: Verification with P rcdicates 

cancelrv1eetingArrangement 1;1 150c;810c ll Precondition; Verification with P rcdicatcs 

enterVisitor 1;1 74c;719c 8 Precondition;Vcrification with Predicates 

remove Visitor 1;1 78c;723c 51 Precondition ;V crification with Predicates 

addVisitorToMeeting 1;1 266c;900c 18 Precondition;Verification with Predicates 

remove Vis itorFro mMeeting 1;1 68c;724c 9 Precondition :Verification with P red icatcs 

vis ito rlnfo 
3;3 

2rows,3cols 
7 4 

Precondition with Tabular Predicates; 
ll7c;783c Tabular Verification with Predicates 

bookDiningRoom 1;1 260c;808c 16 Prccondition;Verification with Predicates 

cancelDiningR oom 1;1 53c;712c 9 Precondition;Verification with Predicates 

bookConferenceRoom 1;1 96c;734c 8 Precondition;Vcrification with Predicates 

cance1ConferenceRoom 1;1 76c;731c 4 Prccondition;Verit1cation with Predicates 

conferenceRooms 3;3 2rows,3cols 7 4 Precondition with Tabular Predicates; 
t20c:786c Tabular Verification with Predicates 

diningRooms 3;3 2rows,3cols 8 4 Precondition with Tabular Predicates; 
t05c:77t c Tabular Verilication with Predicates 

Figure 7.1: Performance of Proof in Visitor Information System 

Therefore, we model our binary relations as sets of pairs and our function as a special 

binary relation. When modeling sets, relations and functions, different axioms must 

be built for different procedures. We pick exactly those axioms by generate and test 

method, check if each axiom is helpful in proving our stated properties. 
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Chapter 8 

Elevator Control Refinement 

8.1 Controlling Elevators 

A typical passenger elevator will have [I]: 

• General controls 

- Pressing call buttons to choose a floor. 

- Pressing door open and door close buttons to instruct the elevator to close 

immediately or remain open longer. 

- Controlling an alarm switch to signal that passengers have been trapped 

in the elevator. 

- Controlling the lights and ventilation fans switches in the elevator. 

• Floor numbering, the numbering scheme used for a building's floors. 

• Elevator scheduling 

• Special operating modes 
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In this chapter, call button pressed operation is abstracted from a concrete specifica

tion, elevator scheduling is stepwise refined to execute the elevator algorithm. 

8.2 Call Button Pressed Abstraction 

8.2.1 Case Introduction 

First, we illustrate an example on abstracting elevator call button pressed oper

ation [32]. Integer variable floor stands for the current floor; variable reqs is a set 

of integers, for the floors to which requests exist; variable mode would take values 

up, down, waiting as the current direction of the elevator. Table 8.1 specifies the 

operation buttonPressed of requesting the elevator at floor f. 

mode = waiting mode i- waiting 

f > floor reqs1 = { f} 1\ model = up 1\ reqs1 = reqs U {f} 1\ model= 

floor!= floor mode 1\ floor! = floor 

f = floor reqs1 = {} 1\ model = waiting reqs1 = reqs 1\ model =mode 

1\ floor! = floor 1\ floor! = floor 

f < floor reqs1 = { f} 1\ model = down 1\ reqs1 = reqs U { f} 1\ model = 

floor! = floor mode 1\ floor! = floor 

Consider applying decoding to the relation buttonPressed over variables mode 

and reqs as defined above, our intention is to abstract variable reqs with a Boolean 

variable r that only reflects if reqs is empty and to abstract variable mode with a 

Boolean variable w that only reflects whether mode is waiting or not. Thus this 

abstraction reduces the state space to two Boolean variables. A typical use of such 

an abstraction is to allow (automated) proofs about the abstraction, for example the 
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property that if there are no requests then the mode must be waiting. Formally our 

decoding relation is 

RW(reqs, mode)(r, w) = (r = reqs =1- {}) 1\ (w =mode= waiting) 

8.2.2 Axioms 

As stated before, any program variable belongs to an enumeration type or boolean 

type should be specified about its type. In this example, three program variable-

mode,r,w have their types specified: 

(DISTINCT up down waiting) 

(OR CEQ mode waiting) (EQ mode down) CEQ mode up)) 

(OR CEQ model waiting) CEQ model down) (EQ model up)) 

(DISTINCT true false) 

(OR (EQ r true) (EQ r false)) 

(OR (EQ rl true) (EQ rl false)) 

(OR CEQ w true) CEQ w false)) 

(OR (EQ wl true) (EQ wl false)) 

Other properties of set used in this example are followed by their explanation: 

• EMPTY 

(FORALL (xs x) 

(PATS (INSERT xs x)) 

(NEQ (INSERT xs x) EMPTY)) 

xs U {x} =1- ¢ 

• MEMBER 
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(FORALL (x s) 

(PATS (MEMBER x (INSERT s x))) 

(EQ (MEMBER x (INSERT s x)) true)) 

xEsU{x} 

• DELETE 

(FORALL (xs ys x) 

(PATS (MEMBER x (DELETE xs ys))) 

(IMPLIES CEQ (MEMBER x ys) true) 

(NEQ (MEMBER x (DELETE xs ys)) true))) 

if x E ys then x 1. xs - ys 

8.2.3 Result and Further Simplification 

Call button pressed operation combines algorithmic refining to table (Theorem 

7.1 b) with data refinement with predicates (Theorem 7.4 b) for data abstraction. 

The result after further simplifications is the tabular predicate used for defining the 

relation abButtonPressed: 

w =true w = false 

f > floor rl =true Awl =false A rl = true A wl = w A floorl 

floorl = floor =floor 

f = floor rl = false A wl = true A rl = r A wl = w A floorl = 

floorl = floor floor 

f < floor rl = true A wl = false A rl =true Awl = w A floorl 

floorl = floor = floor 
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The formal proof of above abstraction by our decoding relation RW(reqs, mode)(r, w) 
is implemented by calling function drpb passing two parameters with p = p and r = r: 

let buttonPressed = reader 

11 BEGTABuLHEADERufu>uflooru$ufu=uflooru$ufu<ufloorul I 
UHEADERumodeu=uwaitingu$umodeul=uwaitingull 

reqs1={f}u&umode1=upu&ufloor1=floor$u 

reqs1=reqsuUu{f}u&umode1=modeu&ufloor1=floorll 

reqs1={}u&umode1=waitingu&ufloor1=flooru$ 

reqs1=reqsu&umode1=modeu&ufloor1=floorll 

reqs1={f}u&umode1=downu&ufloor1=flooru$ 

reqs1=reqsuUu{f}u&umode1=modeu&ufloor1=floorlluENDTAB 11 

in let abButtonPressed = reader 
11 BEGTABuLHEADERuf>flooru$uf=flooru$uf<floorul I 
UHEADERuw=trueu$uw=falseull 

r1=trueu&uw1=falseu&ufloor1=flooru$ur1=trueu&uw1=wu&ufloor1=floorll 

r1=falseu&uw1=trueu&ufloor1=flooru$ur1=ru&uw1=wu&ufloor1=floorll 

r1=trueu&uw1=falseu&ufloor1=flooru$ur1=trueu&uw1=wu&ufloor1=floorll 

ENDTAB 11 

in let p = RE(ST(buttonPressed, [reader 11 mode 11 ;reader 11 reqs 11
]), 

ST(abButtonPressed, [reader 11 w11 ;reader 11 r 11
])) 

in let r = reader 11 (r=trueu<=>ureqsul={}) u&u ( w=trueu<=>umode=wai ting) 11 

in if ( drpb p r) then begin 

... print buttonPressed, abButtonPressed and r to standard output ... 

... inform result of data abstraction from buttonPressed by decoding 

relation r is algorithmically abstracted to abButtonPressed ... 

end 
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We now use Theorem 2.9 (with transposition) to join the first and last row. 

w =true w =false 

f =1- floor r1 = true 1\ w1 = false 1\ r1 = true 1\ w1 = w 1\ floor! 

floor! = floor =floor 

f =floor r1 = false 1\ w1 = true 1\ r1 = r 1\ w1 = w 1\ floor! = 

floor! = floor floor 

It is verified by calling function SJrC passing four parameters with ifrow 

true, froml = 0, from2 = 2, and (TABLE(tl), TABLE(t2)) = 

(joinButtonPressed, abButtonPressed). 

let joinButtonPressed = reader "BEGTABuLHEADERuf/=flooru$uf=flooru/ I 

UHEADERuw=trueu$uw=falseu// 

r1=trueu&uw1=falseu&ufloor1=floor$ur1=trueu&uw1=wu&ufloor1=floor// 

r1=falseu&uw1=trueu&ufloor1=floor$ur1=ru&uw1=wu&ufloor1=floor// 

ENDTAB" 

in if ( sjrc true 0 2 (joinButtonPressed, abButtonPressed)) then begin 

... inform joining the first and last row of abButtonPressed is joinButtonPressed ... 

... print joinButtonPressed to screen and a latex file ... 

end 

The final result of applying Theorem 2.8(a) to simplify the rightmost column is 

the table below. 

w =true w = false 

f =1- floor r1 = true 1\ w1 = false 1\ r1 = true 1\ w1 = false 1\ 

floor! = floor floor! =floor 

f = floor r1 = false 1\ w1 = true 1\ r1 = r 1\ w1 = false 1\ floor! 

floor! = floor =floor 
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The formal proof is implemented by calling function rtea passing one parameter 

with (TABLE(tl), TABLE(t2)) = (joinButtonPressed, simpButtonPressed). 

let simpButtonPressed = reader "BEGTABuLHEADERuf/=flooru$uf=flooru/ I 

UHEADERuw=trueu$uw=falseu// 

r1=trueu&uw1=falseu&ufloor1=floor$ur1=trueu&uw1=falseu&ufloor1=floor 

//ur1=falseu&uw1=trueu&ufloor1=floor$ur1=ru&uw1=falseu&ufloor1=floor 

//uENDTAB" 

in if (rtea (joinButtonPressed, simpButtonPressed)) then begin 

... inform using Theorem 2.8{a) to simplify the rightmost column of joinButtonPressed 

is simpButtonPressed ... 

. :.print simpButtonPressed to screen and a latex file ... 

end 

8.3 Elevator Scheduling Refinement 

8.3.1 Case Introduction 

In contrast to the abstraction of buttonPressed, we will present a refinement of 

scheduling in which we increase the state space. When a traveling elevator reaches a 

specific floor, which is captured by a sensor, the system will determine the membership 

of current floor from the set of requested floors and perform different sequences of 

operations. 

1. Current floor is not in requested floors, formally represented by rs = 0. 

(a) Motor keeps moving, formally represented by s =false. 

(b) Door is still closed, formally represented by c = true. 

(c) Mode remains busy, formally represented by w =false. 
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2. Current floor is in one-element set of requested floors, formally represented by 

rs = 1. 

(a) Motor stops, formally represented by s =true. 

(b) Door opens, formally represented by c =false. 

(c) Mode becomes idle, formally represented by w =true. 

3. Current floor is in multiple-element set of requested floors, formally represented 

by rs = 2. 

(a) Motor stops. 

(b) Door opens. 

(c) Mode remains busy. 

Based on above requirement, we define our abstract specification as: 

w = false/\floor1 = floor/\(rs = 0/\cl = true/\s1 = false/\w1 = w/\rs1 = 

rsVcl = false/\s1 = true/\rs1 = 01\(rs = 2/\w1 = falseVrs = 1/\w1 =true)) 

In the case of scheduling abstract specification we make following observations: 

• The abstract boolean variable s, c and w could be replaced by enumeration 

variable motor, door and mode respectively to indicate their concrete states. 

• We could consider more detailed relations between current floor and the set of 

requested floors by introducing set reqs. 

• The refinement through relation SCWRS(s,c,w,rs)(motor,door,mode,reqs) 

can be broken into two steps by a composition relation SCW(s, c, w)(motor, door, 

mode) o RS(rs)(reqs). The reason is that SCW(s, c, w)(motor, door, mode) is 
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represented as a plain predicate while RS ( r s) (mode) is represented as a vec

tor predicate table and the refinements on these two encoding relations apply 

different theorems. 

8.3.2 Stepwise Data Refinement 

The refinement on encoding relation SCW(s, c, w)(motor, door, mode): 

(c =true{:} door= closed) 1\ (s =true{:} motor= stop) 1\ (w =true{:} 

mode = waiting) 

can be represented in plain predicate stepRefScheduling as: 

mode# waiting 1\ floorl =floor 1\ (rs = 0 1\ doorl =closed 1\ motorl # 

stop 1\ model =mode 1\ rsl = rs V doorl =open 1\ motorl =stop 1\ rsl = 

01\ (rs = 21\ model# waiting V rs = 1 1\ model= waiting)) 

The formal proof of above refinement is implemented by calling function drpp 

passing two parameters with p = p and r = r: 

let scheduling = reader "w=falseu&ufloor1=floor& 

((rs=Ou&uc1=trueu&s1=falseu&uw1=wu&urs1=rs)uoru(c1=false&s1=true& 

rs1=0u&((rs=2u&uw1=false)uoru(rs=1u&uw1=true))))" 

in let r = reader "(c=trueu<=>udoor=closed)u& 

(s=trueu<=>umotoru=ustop) u&u ( w=trueu<=>umode=wai ting)" 

in let stepRefScheduling = reader "mode/=wai ting&floor1=floor 

&((rs=Ou&udoor1=closedu&umotor1/=stopu&umode1=modeu&urs1=rs)uor 

(door1=openu&umotor1=stopu&urs1=0u&u((rs=2u&umode1/=waiting) 

oru(rs=1u&umode1=waiting))))" 

in let p = RE(ST(scheduling, [reader "c";reader "s";reader "w"]), 

ST(stepRefScheduling, [reader "door";reader "motor";reader "mode"])) 

in if drpp p r 0 then begin 

... print scheduling, stepRefScheduling and r to standard output ... 

... inform result of data abstraction from scheduling by 

175 



Master Thesis- N. Zhou- McMaster- Computing and Software 

encoding relation r is stepRefScheduling ... 

end 

For the relation of current floor and the set of requested floors, we can divide it 

into five categories: 

1. Current floor is not in requested floors, represented as: floor rt reqs. 

2. Current floor is in requested floors and there are no requests in both up and 

down directions, represented as: 

floor E reqs 1\ -{3f · f E reqs 1\ f >floor) 1\ -{3f · f E reqs 1\ f <floor). 

3. Current floor is in requested floors and there are only requests in down direction, 

represented as: 

floor E reqs 1\ -.(3f · f E reqs 1\ f >floor) 1\ (3f · f E reqs 1\ f <floor). 

4. Current floor is in requested floors and there are only requests in up direction, 

represented as: 

floor E reqs 1\ (3f · f E reqs 1\ f >floor) 1\ -.(3f · f E reqs 1\ f <floor). 

5. Current floor is in requested floors and there are requests in both directions, 

represented as: 

floor E reqs 1\ (3f · f E reqs 1\ f >floor) 1\ (3f · f E reqs 1\ f <floor). 
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We reflect above relation to our abstract relation by a vector table: 

floor 1- floor E floor E floor E floor E 

reqs reqs 1\ -{3 reqs 1\ -{3 reqs 1\ (:3 reqs 1\ (:3 

f. f E reqs f. f E reqs f. f E reqs f. f E reqs 

1\f> 1\f> 1\f> 1\f> 

floor) 1\ floor) 1\ (:3 floor) 1\ floor) 1\ (:3 

•(:3 f. f E f. f E reqs •(:3 f. f E f. f E reqs 

reqs 1\ f < 1\f< reqs 1\ f < 1\f< 

floor) floor) floor) floor) 

rs= 0 1 2 2 2 

Table 8.5: E~coding Relation R(rs)(reqs) 
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We apply theorem 7.5 (Data Refinement with Vector Table) to get the refinement 

of intermediate specification StepRefScheduling on encoding relation RS(rs)(reqs). 

It can be represented in standard table as: 

floor~ floor E floor E floor E floor E 

reqs1 reqs1 1\ reqs1 1\ reqs1 1\ reqs1 1\ 

-{3f.f ---{3 f. f (3 f. f (3 f. f 

E reqs1 E reqs1 E reqs1 E reqs1 

1\f> 1\f> 1\f> 1\f> 

floor) 1\ floor) 1\ floor) 1\ floor) 1\ 

·(3 f. f (3 f. f ·(3 f. f (3 f. f 

E reqs1 E reqs1 E reqs1 E reqs1 

1\f< 1\f< 1\f< 1\f< 

floor) floor) floor) floor) 

floor~ reqs mode =1- FALSE FALSE FALSE FALSE 

waiting 

1\ door1 

=closed 

1\ motor1 

=1- stop 1\ 

model= 

mode 1\ 

floor1 = 

floor 

floor E reqs 1\ mode =1- FALSE FALSE FALSE FALSE 

•(3 f. f E reqs waiting 
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1\ f > floor) 1\ 1\ doorl 

•(:l f. f E reqs =open 1\ 

1\ f < floor) motorl = 

stop 1\ 

model= 

waiting 

1\ floor1 

=floor 

floor E reqs 1\ mode =/= FALSE FALSE FALSE FALSE 

•(:l f. f E reqs waiting 

1\ f > floor) 1\ 1\ doorl 

(:J f. f E reqs =open 1\ 

1\ f < floor) motorl = 

stop 1\ 

model =/= 

waiting 

1\ floor1 

= floor 

floor E reqs 1\ mode =/= FALSE FALSE FALSE FALSE 

(:J f. f E reqs waiting 

1\ f > floor) 1\ 1\ doorl 

•(:l f . f E reqs =open 1\ 

1\ f < floor) motorl = 

stop 1\ 

model =/= 
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waiting 

1\ floor! 

= floor 

floor E reqs 1\ mode i- FALSE FALSE FALSE FALSE 

(3 f. f E reqs waiting 

1\ f > floor) 1\ 1\ door1 

(3 f. f E reqs =open 1\ 

1\ f < floor) motor!= 

stop 1\ 

model i-

waiting 

1\ floor! 

=floor 

It is implemented by calling function drv with parameter p = p and r = r. 

let r = reader "BEGTABuLHEADERurs=u/ I 

UHEADERufloor/:reqsu$ufloor:reqsu&unotu(#flf:reqsu&uf>floor) 

&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu&unotu(#flf:reqsu& 

f>floor)u&u(#flf:reqsu&uf<floor)u$ufloor:reqsu&u(#flf:reqs 

&uf>floor)u&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu& 

(#flf:reqsu&uf>floor)u&u(#flf:reqsu&uf<floor)u/1 

Ou$u1u$u2u$u2u$u2u//uENDTAB" 

in let refScheduling = reader "BEGTABuLHEADERu 

floor/:reqsu$ufloor:reqsu&unotu(#flf:reqsu&uf>floor)u& 

notu(#flf:reqsu&uf<floor)u$ufloor:reqsu&unotu(#flf:reqsu& 

f>floor)u&u(#flf:reqsu&uf<floor)u$ufloor:reqsu&u(#flf:reqs 

&uf>floor)u&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu& 

(#flf:reqsu&uf>floor)u&u(#flf:reqsu&uf<floor)u//uUHEADER 

floor/:reqs1u$ufloor:reqs1u&unotu(#flf:reqs1u&uf>floor) 
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&unotu(#flf:reqs1u&uf<floor)u$ufloor:reqs1u&unot 

(#flf:reqs1u&uf>floor)u&u(#flf:reqs1u&uf<floor)u$ 

floor:reqs1u&u(#flf:reqs1u&uf>floor)u&unotu(#flf:reqs1u& 

f<floor)u$ufloor:reqs1u&u(#flf:reqs1u&uf>floor)u& 

(#flf:reqs1u&uf<floor)u//umode/=waitingu&udoor1=closedu& 

motor1/=stopu&umode1=modeu&ufloor1=flooru$uFALSEu$uFALSEu$uFALSEu$ 

FALSE//mode/=waitingu&udoor1=openu&umotor1=stopu&umode1=waiting 

&floor1=flooru$uFALSEu$uFALSEu$uFALSEu$uFALSE//umode/=waitingu& 

door1=openu&umotor1=stopu&umode1/=waitingu&ufloor1=flooru$uFALSEu$ 

FALSEu$uFALSEu$uFALSE//umode/=waitingu&udoor1=openu&umotor1=stopu& 

mode1/=waitingu&ufloor1=flooru$uFALSEu$uFALSEu$uFALSEu$uFALSE// 

mode/=waiting&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$ 

FALSEu$uFALSEu$uFALSEu$uFALSE//uENDTAB" 

in let p = RE(ST(stepRefScheduling, [reader "rs"]), 

ST(refScheduling, [reader "reqs"])) 

in if ( drv p r) then begin 

... print stepRefScheduling, refScheduling and r to standard output ... 

... inform data refinement of operation stepRefScheduling by encoding 

relation r is refScheduling ... 

end 

We make following adjustment to clarify table structure. 

1. Push upper header to each cell of table body. 

2. Remove columns which equal to FALSE. 

3. Lift predicate mode -=f waiting to upper header. 

4. Splitting table by copying one column to another with mode = up and mode = 

down as their upper header corresponding to each column. 
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After reorganization, we have following specification in tabular form: 

mode = up mode= down 

floor rt reqs floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl = 

closed 1\ motorl f= stop 1\ closed 1\ motorl f= stop 1\ 

model =mode 1\ floor1 = model =mode 1\ floorl = 

floor floor 

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl = 

-{:3 f . f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\ 

1\ f > floor) 1\ model = waiting 1\ floor1 model =waiting 1\ floorl 

--.(3 f . f E reqs = floor =floor 

1\ f < floor) 

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl = 

--.(3 f . f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\ 

1\ f > floor) 1\ model f= waiting 1\ floorl model f= waiting 1\ floor1 

(3 f. f E reqs =floor =floor 

1\ f <floor) 

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl = 

(3 f. f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\ 

1\ f > floor) 1\ model f= waiting 1\ floor1 mode 1 f= waiting 1\ floor1 

--.(3 f. f E reqs =floor =floor 

1\ f < floor) 

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl = 

(3 f. f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\ 

1\ f > floor) 1\ model f= waiting 1\ floor1 model f= waiting 1\ floor1 

(3 f. f E reqs =floor =floor 
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1\ f <floor) 

By above specification, a single elevator can decide where to stop. It is still 

not refined enough to decide the direction for a busy elevator. There are several 

algorithm to decide which request to service next such as elevator algorithm and 

heuristic algorithm [1]. We will adopt the elevator algorithm here to demonstrate an 

algorithmic refinement. The elevator algorithm is executed: 

1. Continue traveling in the same direction while there are remaining requests in 

that same direction. 

2. If there are no further requests in that direction, then become idle, or change 

direction if there are requests in the opposite direction. 

Besides above algorithm, our algorithm refinement also specify the state changes of 

set reqs when a specific floor is reached by an assignment statement instead of set 

properties. The final refinement table according to theses modification is: 

mode = up mode = down 

floor tf. reqs reqsl = reqs 1\ doorl = reqsl = reqs 1\ doorl = 

closed 1\ motorl = up 1\ closed 1\ motorl = down 1\ 

model = up 1\ floor1 = model = down 1\ floorl = 

floor floor 

floor E reqs 1\ reqs 1 = reqs - {floor} 1\ reqs 1 = reqs - {floor} 1\ 

-{:3 f. f E reqs doorl = open 1\ motorl = doorl = open 1\ motorl = 

1\ f > floor) 1\ stop 1\ model= waiting 1\ stop 1\ model =waiting 1\ 

-{:3 f. f E reqs floor1 =floor floor1 = floor 

1\ f < floor) 
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floor E reqs 1\ reqs 1 = reqs - {floor} 1\ reqs1 = reqs - {floor} 1\ 

---{3 f. f E reqs door1 = open 1\ motor1 = door1 = open 1\ motor1 = 

1\ f > floor) 1\ stop 1\ mode1 = down 1\ stop 1\ mode1 = down 1\ 

(3 f. f E reqs floor1 =floor floor1 =floor 

1\ f < floor) 

floor E reqs 1\ reqs1 = reqs - {floor} 1\ reqs1 = reqs - {floor} 1\ 

(3 f. f E reqs door1 =open 1\ motor1 = door1 = open 1\ motor1 = 

1\ f > floor) 1\ stop 1\ mode 1 = up 1\ stop 1\ mode 1 = up 1\ 

•(3 f. f E reqs floor1 = floor floor1 = floor 

1\ f < floor) 

floor E reqs 1\ reqs1 = reqs- {floor} 1\ reqs 1 = reqs - {floor} 1\ 

(3 f. f E reqs door1 = open 1\ motor1 = door1 = open 1\ motor1 = 

1\ f > floor) 1\ stop 1\ mode 1 = up 1\ stop 1\ mode1 = down 1\ 

(3 f. f E reqs floor1 =floor floor1 =floor 

1\ f < floor) 

The formal proof of applying Theorem 7.1(b) is implemented by calling function 

rtt passing one parameter with p = p: 

let adjScheduling = reader "BEGTABuLHEADERufloor I: reqsu$ 

floor:reqsu&unot(#flf:reqs&f>floor)u&unot(#flf:reqs&f<floor) 

$ufloor:reqsu&unotu(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor) 

$ufloor:reqsu&u(#flf:reqs&f>floor)u&unotu(#flf:reqs&f<floor) 

$ufloor:reqsu&u(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)u// 

UHEADERumode=upu$umode=downu// 

floor/:reqs1u&door1=closedu&motor1/=stop&mode1=mode&floor1=floor$ 

floor/:reqs1u&door1=closedu&motor1/=stop&mode1=mode&floor1=floor// 

floor/:reqs1u&door1=open&motor1=stop&mode1=waiting&floor1=flooru$ 

floor/:reqs1u&door1=open&motor1=stop&mode1=waiting&floor1=flooru// 
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floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$ 

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=floor// 

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$ 

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=floor// 

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$ 

floor/:reqs1&door1=open&motor1=stop&mode1/=waiting&floor1=floor// 

ENDTAB" 

in let algScheduling = reader "BEGTABuLHEADERufloor I: reqsu$u 

floor:reqsu&unot(#flf:reqs&f>floor)u&unot(#flf:reqs&f<floor) 

$ufloor:reqsu&unotu(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor) 

$ufloor:reqsu&u(#flf:reqs&f>floor)u&unotu(#flf:reqs&f<floor) 

$ufloor:reqsu&u(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)u// 

UHEADERumode=upu$umode=downu// 

reqs1=reqs&door1=closed&motor1=up&mode1=up&floor1=flooru$ 

reqs1=reqs&door1=closed&motor1=down&mode1=down&floor1=flooru// 

reqs1=reqs--{floor}&door1=open&motor1=stop&mode1=waiting&floor1= 

floor$ureqs1=reqs--{floor}&door1=open&motor1=stop&mode1=waitingu& 

floor1=floor//reqs1=reqs--{floor}&door1=open&motor1=stop&mode1=down 

&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop&mode1= 

down&floor1=floor//reqs1=reqs--{floor}&door1=open&motor1=stop& 

mode1=up&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop& 

mode1=up&floor1=flooru//reqs1=reqs--{floor}&door1=open&motor1=stop& 

mode1=up&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop& 

mode1=down&floor1=flooru//ENDTAB" 

in let p = RE(ST(algScheduling, [reader "reqs";reader "door"; 

reader "motor";reader "mode"]), ST(adjScheduling, 

[reader "reqs";reader "door";reader "motor";reader "mode"])) 

in if ( rtt p) then begin 

... print adjScheduling, algScheduling and r to standard output ... 

... inform algorithm refinement of operation adjScheduling by 

encoding relation r is algScheduling ... 

end 
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8.4 Summary 

The result of our implementation is listed in Figure 8.1. We applied the theorems 

of refining to table and data refining with predicates for an abstraction. The 

result of such a proof is a table with the same structure as the concrete table. The 

abstraction reduces the size of our specification from 176 characters to 115 characters. 

The proof related to tabular abstraction takes 17 millisecond. The proof related to 

abstraction in terms of plain predicate specification takes 14 millisecond. We apply 

the theorem of splitting and joining rows and columns to join the first and last 

row, and get a table with 3 rows and 3 columns. Finally, the theorem of replacing 

table elements is used to simplify the rightmost column. The elevator scheduling 

is stepwise refined to execute the elevator algorithm. The theorem of soundness of 

encoding is applied in order to prove the first step of our refinement, the proof of 

which takes the longest running time (29,118 millisecond) in our applications. We 

apply the theorem of data refinement with vector table to prove the second 

step of our refinement in 70 millisecond; while the encoding relation is represented 

by plain predicate, Simplify fails to prove the valid of it. We apply the theorem of 

refining to table to refine our tabular specification in the same state space, the 

proof of which takes 30 millisecond. The proof of such a refinement in terms of plain 

predicate specification takes 32 millisecond. 

From the elevator example, we observe that data refinement (abstraction) and 

algorithmic refinement (abstraction) are normally applied together to refine (abstract) 

a specification. Data refining can be carried out in a stepwise manner and different 

elements of a composite relation could be represented in different forms. Tabular 

refinement are successfully implemented in elevator system. 
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Proof Coding Abstract Refined Time(msec) 
Theorems Applied Operation Condition Size Size Size 

Tabular Plain 

Button 4 rows 4 rows Refining to Table 
Pressed 6 28c 3 cols 3 cols 17 14 

Data Refining with redicates 
115c 176c 

3 rows 
3 cols 11 Splitting and Joining Rows 

SOc and Columns 

3 rows 
3 cols II Replacing Table Elements 

88c 

I 62c 103c 139c 29,118 Soundness of Encoding 

Scheduling 25 2 row 6 rows 
6 cols 139c 6 cols 70 fail Data Refmement with 
222c 785c Vector Table 

6 rows 6 rows 
25 3 cols 3 cols 30 32 Refining to Table 

708c 734c 

Figure 8.1: Performance of Proof in Elevator Control 
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Chapter 9 

Conclusion and Future Work 

In this thesis, we presented an implementation of a new table tool which includes 

support for both specifications and refinements. A parser is developed based on the 

recursive descent parsing technique such that our formulae can be inputted through 

either an export function reader or an expression of data type form directly. A 

printing file include the functions to print a single formula to screen and a :r5fEX 

file respectively. A number of theorems are applied in our validation functions. Our 

source code has three files defining the compilation units, table. ml, print. ml, and 

parse. ml. When their compiled files are linked together with a Unix library to produce 

a executable file (e.g. theprogram), the command is as follows: 

ocamlc -o theprogram Unix.cma parse.cmo print.cmo table.cmo 

In such an order, the definitions and declarations contained in table. ml can refer to 

definition in print. ml, parse. ml, and Unix. cma; print can refer to parse and Unix; 

parse can refer to Unix. 

We did several experiments to call our validation functions. They are examples of 

control system and information management system. Axioms for each example are 

set to specify types and properties. It can be seen that it is much easier and more 
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convenient to specify and refine a program in its tabular predicate form. Large ma

nipulations are broken into several small parts. Concerns are divided so that designer 

and theorem prover can solved them separately. By introducing this implementation, 

we are able to design simple and complex cases of tabular specification and refinement 

and generate executable code for them in OCaml programming language. 

One plain predicate in car seat example is proved in longer time than its equivalent 

tabular predicate. All plain predicates in visitor information system example are 

proved in shorter time than their equivalent tabular predicates. One plain predicate 

in elevator example is proved in longer time than its equivalent tabular predicate. 

One valid plain predicate in elevator example is failed to prove its correctness by 

Simplify. We conclude that large predicates can be proved more efficient if they are 

in tabular form. By applying theorem of tabular specification and refinement, failures 

of Simplify are reduced since the inputs of Simplify are smaller decomposed predicates 

instead of complex predicates. 

According to our implementation and previous works, there are some possible 

improvement in specifying and refining a program, such as: 

• The output to screen are now ASCII characters and can be replaced by Unicode. 

• Optimization could be made on existing code. 

• More theorems are to be developed together with examples applying them. 

• Specification and refinement can be manipulated on 10 classes of tables defined 

by Parnas. 

• Algorithmic refinement could be extended to its definition on partial relations. 

The theorems and implementation of it could be derived. 
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