
Implementation of Tabular Verification and Refinement

IMPLEMENTATION OF TABULAR VERIFICATION AND

REFINEMENT

By

NING ZHOU, B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Ning Zhou, February 2007

MASTER OF 8CIENCE(2006)

CoMPUTING AND SoFTWARE

McMaster University

Hamilton, Ontario

TITLE: Implementation of Tabular Verification and Refinement

AUTHOR: Ning Zhou, B.Eng.

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: xiv, 195

11

Abstract
It has been argued for some time that tabular representations of formal spec

ifications can help in writing them, in understanding them, and in checking them.

Recently it has been suggested that tabular representations also help in breaking

down large verification and refinement conditions into a number of smaller ones.

The article [32] developed the theory, but the real proof in terms of an im

plementation is not provided. This project is about formalizing tables in a theorem

prover, Simplify, defining theorems of [32] in terms of functions written in the OCaml

programming language, and conducting some case studies in verifying and refining

realistic problems.

A parser is designed to ease our job of inputting expressions. Pretty-print is

also provided: all predicates and tables of the examples in our thesis are automatically

generated.

Our first example is a control system, a luxury sedan car seat. This example

gives us an overall impression on how to prove correctness from tabular specification.

The second example specifies a visitor information system. The design features of

this example involve modeling properties and operations on sets, relations and func

tions by building self-defined axioms. The third example illustrates another control

system, an elevator. Theorems of algorithmic refinements, stepwise data refinements,

and the combination of algorithmic abstraction and data abstraction are applied cor

respondingly to different operations.

iii

iv

Acknowledgements
First and foremost I would like to sincerely thank my supervisor, Dr. Emil

Sekerinski, for his insightful guidance, great patience and generous support; for his

careful review and corrections to the draft of this thesis.

I am also grateful to the professors of my graduate courses, and my classmates,

for making this a fun and enjoyable learning experience.

Especially, I am indebted to my parents and my daughter Karen Song. To

them, I dedicate this thesis.

v

vi

Contents

List of Figures

List of Tables

1 Introduction

1.1 Formal Manipulation of Tabular Expressions

1.2 Contributions

1.3 Structure of the Thesis

xi

xiii

1

1

1

3

2 Related Work 5

2.1 Application of Tabular Specification . 5

2.1.1 Navy's A-7 Aircraft Documentation . 5

2.1.2 Functional Tables Applied in Shutdown Systems . 7

2.1.3 Documentation of Non-deterministic Programs . . 8

2.1.4 An Example of the Use of Tables in System Documentation 9

2.2 Syntax, Semantics, and Transformations of Ten Kinds of Tables 11

2.3 Automatic Tabular Documentation Tools . 17

2.3.1 RSML for Process-Control Systems 17

2.3.2 Model Checking . 18

2.3.3 SCR* 19

vii

2.3.4 Tablewise

2.3.5 TABLE Construct in PVS

2.4 Table Tool System

3 Tabular Verification and Refinement Overview

3.1 Terminology and Notation .

3.1.1 Properties of Vectors

3.1.2 Relations

3.1.3 Relational Operation

3.1.4 Precondition and Weakest Precondition .

3.2 Tabular Predicates

3.3 Operations on Tabular Predicates

3.4 Tabular Relations . .

3.5 Tabular Verification .

3.6 Refinement

3. 7 Tabular Refinement .

4 Design Features

4.1 Interface with Simplify

4.2 Pattern Matching in Function Definition

4.3 Unified Data Type

4.4 Variable Types of Theorems

4.5 Structure of Implementation

4.5.1 Parser

4.5.2 Notations for Sets and Relations.

4.5.3 Printing

4.5.4 Theorem Proving

viii

21

22

25

27

27

27

28

28

29

31

33

35

36

39

43

45

45

47

49

50

52

52

54

57

90

5 Implementation of Theorems

5.1 Principle of Proof

5.2 Implementation of Tabular Transformation

5.3 Implementation of Operations on Tabular Predicates

5.4 Proof of Precondition and Weakest Precondition .

5.5 Implementation of Verification with Predicates .

5.6 Implementation of Refinement

5.6.1 Implementation of Algorithmic Refinement

5.6.2 Implementation of Data Refinement .

6 Luxury Sedan Car Seat Case Study

6.1 Requirement .

6.2 Organization

6.3 Normal Mode and Its Properties .

6.3.1 Types of Motor Adjustment Buttons

6.3.2 Releasing Motor Adjustment Buttons .

6.3.3 Pressing Group 1 Motor Adjustment Buttons

6.3.4 Pressing Group 2 Motor Adjustment Buttons

6.4 Memory and Memory Set Mode

6.4.1 Memory Mode and Its Properties

6.4.2 Memory Set Mode

6.5 Calibration Mode and Its Properties

6.6 Summary

7 Modeling a Visitor Information System

7.1 Example Introduction

7.2 Specification of Visitor Information System .

ix

99

99

100

104

106

108

110

110

111

117

118

121

124

124

124

125

129

133

133

138

139

143

145

145

148

7.3 Axiom •••••••• 0 ••• 0 • 0 •• 152

7.4 Proving Invariants and Preconditions 158

7.5 Conclusion 165

8 Elevator Control Refinement 167

8.1 Controlling Elevators 167

8.2 Call Button Pressed Abstraction . 168

8.2.1 Case Introduction . 168

8.2.2 Axioms • 0 •• 0 • 169

8.2.3 Result and Further Simplification 170

8.3 Elevator Scheduling Refinement 173

8.3.1 Case Introduction 173

8.3.2 Stepwise Data Refinement 175

8.4 Summary ••••• 0 • 0 0 • 186

9 Conclusion and Future Work 189

X

List of Figures

2.1 The Dialogue Box

2.2 Command Mode Table for Dialogue Box

2.3 State Mode Table for Dialogue Box

2.4 A Normal Function Table .

2.5 An Inverted Function Table

2.6 A Vector Function Table .

11

12

12

13

13

13

2.7 A Normal Relation Table. 14

2.8 An Inverted Relation Table 14

2.9 A Vector Relation Table 14

2.10 A Mixed Vector Table . 15

2.11 A Predicate Expression Table 15

2.12 A Characteristic Predicate Table 16

2.13 A Generalized Decision Table 16

2.14 An AND/OR Table 18

2.15 WaterPres Mode Transition Table for Press 20

2.16 One-Dimensional Vertical and Horizontal Tables 23

2.17 A Two-Dimensional Table and Its Corresponding Enumeration Table 23

2.18 The SRC Table Represented in PVS 24

Xl

6.1 Controlling a Luxury Sedan Car Seat ...

6.2 Performance of Proof in Car Seat Control

7.1

8.1

Performance of Proof in Visitor Information System

Performance of Proof in Elevator Control

xii

118

144

166

187

List of Tables

2.1 Condition Table, Magnetic heading(/ /MAGHDGR/ /)output value . 6

2.2 Event Table, when AUTOCAL Light switched on/off 7

2.3 A Mode Transition Table . 19

2.4 A Simple Decision Table . 21

4.1 Logical Operators and Quantifiers . 53

4.2 A Sample Table 54

4.3 A Sample Vector Table . 54

6.1 Variables in Car Seat Control 123

6.2 LA Motor Button Pressed lapressed

6.3 RH Motor Button Pressed rhpressed

6.4 B Motor Button Pressed bpressed . .

6.5 FH Motor Button Pressed fhpressed

6.6 FH Motor Button Pressed fhpressed

6.7 LA Motor Moving to Its Setting latoset .

6.8 RH Motor Moving to Its Setting rhtoset

6.9 B Motor Moving to Its Setting btoset ..

6.10 FH Motor Moving to Its Setting fhtoset

6.11 HR Motor Moving to Its Setting hrtoset

Xlll

125

128

129

130

132

133

134

134

135

135

Master Thesis- N. Zhou- McMaster- Computing and Software

6012 Memory Mode Movement memory

6013 Memory Set Mode 0 0 0 0 0 0 0 0 0

6014 LA Motor Moving to Its Home latohome

6015 RH Motor Moving to Its Home rhtohome

6016 B Motor Moving to Its Home btohome 0 0

6017 FH Motor Moving to Its Home f htohome

6018 HR Motor Moving to Its Home hrtohome

701 Checking Meeting Attended visitorlnfo

702 Conference Room conferenceRooms

703 Dining Room diningRooms 0 0

805 Encoding Relation R(rs)(reqs)

xiv

136

139

139

140

140

141

141

150

151

151

177

Chapter 1

Introduction

1.1 Formal Manipulation of Tabular Expressions

The use of tabular expressions in the specification of programs is motivated by

the discontinuous input/output behavior of programs. Sekerinski continues this line

by deriving a number of theorems to support formal manipulations on tables in [32].

Many of the theorems have an intuitive interpretation, but the side conditions which

are also derived are less obvious.

The expressions which is dealing with are predicates-as they allow an abstract

specification of the input/ ouput behavior-and relations-as they model non-deterministic

programs. Our project is the implementation of the theorems in [32]. The definition

of precondition in [34] is also applied in our thesis.

1.2 Contributions

Our contributions in the research of tabular specification and refinement include:

• Define a unified data type farm, based on which all first-order logic predicates,

1

Master Thesis - N. Zhou- McMaster- Computing and Software

tables, set properties and operations, and relations and functions in terms of

sets of pairs are expressed.

• Design a small parser to ease the work of inputting expressions directly by

programmers who develop examples.

• Implement a function to pretty print any expression of farm, including tables,

by its ASCII character to screen; implement a function for printing expressions

to :f:\\TEX files.

• The side conditions are checked before implementing theorems. The results are

printed by S-expressions which can be recognized and validated by Simplify.

• Develop examples and case studies to apply theorems. Build axioms for types

and properties in each example.

• The proofs of invariants, weakest precondition, precondition, algorithmic refine

ment, data refinement are illustrated.

Our work provides a demonstration on how tabular predicates and tabular relations

help in formal manipulations that occur in the process of verifying and refining spec

ifications. We argue that

1. the structure of tables leads to a natural way of decomposing their manipulation;

and

2. tabular manipulation rules are easier to memorize and apply than their textual

counterparts.

We illustrate these claims with three examples. It turns out that some of the theorems

are applied frequently and others are less useful.

2

Master Thesis- N. Zhou- McMaster- Computing and Software

Our adoption of OCaml as our programming language is based on the fact that

ML was designed for theorem proving [28]. Objective Caml is an implementation of

the ML language, based on the Caml Light dialect extended with a complete class

based object system and a powerful module system in the style of Standard ML [5]. It

adds object-oriented features into the functional programming language and produces

higher performance.

We send our formulae to the automatic theorem prover Simplify for validation.

Simplify is the proof engine of the Extended Checkers ESC/ Java and ESC/Modula-3.

The input to Simplify is a formula of untyped first-order logic with function symbols

and equality [7].

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 introduces related work on applications of tables in software engi

neering and table tool systems.

• Chapter 3 gives an introduction to the design features of our project. It in

cludes the interface of our program with Simplify, pattern matching in function

definition, types, and structure of implementation.

• Chapter 4 models theorems in terms of functions. It first explains the principle

of the proof, then selects some typical theorems from each section in [32] to

demonstrate the proof.

• Chapter 5 studies the case of a Luxury Sedan Car Seat in its specification and

verification by applying functions of Chapter 4.

3

Master Thesis- N. Zhou- McMaster- Computing and Software

• Chapter 6 illustrates an information management system where axioms about

sets, functions and relations are used.

• Chapter 7 gives an elevator example to show algorithmic and data refining

operations in control systems. Call button pressed operation is abstracted to

a state space including two boolean variables. Elevator scheduling is specified

by an abstract relation. It is then stepwise refined to our specification which

executes the elevator algorithm.

• Chapter 8 draws conclusions from our work, in addition to discussing future

work.

4

Chapter 2

Related Work

Tables support a divide and conquer approach to understanding a complicated

question by breaking large amounts of information into several small parts. Illumi

nated by their application in an aircraft project to specify the controls, the use of

tables for software documentation is formalized and tabular expressions are defined

by logical expressions and conventional mathematical formulae.

2.1 Application of Tabular Specification

2.1.1 Navy's A-7 Aircraft Documentation

The first application of this technique was documenting the requirements of ex

isting flight software for the Navy's A-7 aircraft [14]. When the Naval Research

Laboratory and the Naval Weapons Center rebuild the operational flight program,

software engineering techniques were not suitable for this project because of stringent

resource limitations for the old program. New techniques allowed them to achieve

completeness, precision, and clarity within a 500-page document. Function charac

teristics described in tables make it easy to find answers to specific questions and to

5

Master Thesis- N. Zhou- McMaster- Computing and Software

MODE
DIG, *DI*, *I+

Wag sl*,*Grid*
IMS fail

I IMAGHDGRI I
value

CONDITIONS
Always X

(NOT IIMSOMODEI =$0ffnone$) IIMSMODEI =$0ffnone$
angle defined by 0 (North)
IMAGHCOSI and IMAGHSINI

Table 2.1: Condition Table, Magnetic heading (/ IMAGHDGRI I) output value

detect gaps and inconsistencies in specifications. Two kinds of tables are introduced:

condition tables, which are used to define some aspect of an output value that is

determined by an active mode, and event table, which show when demand functions1

should be performed or when periodic functions2 should be started or stopped.

Table 2.1 gives an example of a condition table. Each row corresponds to a group

of one or more modes in which this function acts like. Each condition column at one

row characterizes the time intervals within a mode, so it must be exclusive to the

other columns in the same mode. All condition columns together at one row describe

the entire time the program is executing within a mode, so they must be complete.

To find the information appropriate for a given mode and given condition, first find

the row corresponding to the mode, find the condition within the row, and follow

that column to the bottom of the table. An "X" instead of a condition indicates that

information at the bottom of the column is never appropriate for that mode. With

the condition table, one can easily check any inconsistency of the periodic functions.

Each row in an event table corresponds to a mode or group of modes. Table entries

are events that cause an action to be taken when the system is in a mode associated

with the row. At the bottom of the column is the action triggered by that event.

The event table in Table 2.2 specifies that the autocalibration light controlled by

output data item I I AUTOCALI I be turned on when the two listed modes are entered

1performed differently in different event request.
2 performed differently in different time intervals.

6

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

MODE EVENTS
Lautocal @T(In mode) @F(In mode)
Sautocal
ACTION // AUTOCAL/ /:=On // AUTOCAL/ /:=Off

Table 2.2: Event Table, when AUTOCAL Light switched on/off

and off when they are exited. Symbol":=" is used to denote assignment. The event

@T(In mode) occurs when all the conditions represented by the mode become true,

i.e, when the mode is entered. @F(In mode) occurs when any one of the conditions

represented by the mode becomes false, i.e., when the system changes to a different

mode.

Formulating questions with tabular notation in this program helps to separate

concerns before trying to answer them.

2.1.2 Functional Tables Applied in Shutdown Systems

Program functions describe the precise effect of a deterministic program without

describing the intermediate states. The upper header of a program function table

consists of predicates partitioning the function's domain, while the left header contains

program variable names. The entries store the final variable values in corresponding

conditions. An example in [25] shows a simple program and the tabular expression of

the relational specification of that program. The tables ease the expressions in that:

1. Tables reveal the intended structure of the expression.

2. Tables replace repetition parts of the subexpression with a single name.

3. Because each table entry only applies to a small part of the function's domain,

the expression in that entry can be simplified.

7

Master Thesis- N. Zhou- McMaster- Computing and Software

A large safety-critical project using program-function tables was the inspection of

the shutdown systems of the Darlington Nuclear Power Generating Station in Ontario,

Canada [24]. Since conventional approach of software inspection is not good enough

for safety-critical software, function documentation is applied where long programs

are decomposed into sequences of state changes. Each part in the decomposition

implements its assigned function. The entire program can be precisely specified and

documented with tabular representations of the program function. Requirement ta

bles are also constructed based on formal mathematical notation by nuclear safety

experts. The correctness of the software is assessed by program experts who are

in charge of showing program function tables and requirement tables expressing the

same information through a step-by-step transformation.

2.1.3 Documentation of Non-deterministic Programs

Non-deterministic programs cannot be fully described by program functions since

a program started in a safe state may terminate in one of several distinct final states.

A relation, meaning here a binary relation has following definitions [27]:

• A binary relation R on a given set U is a set of ordered pairs with both elements

from U, i.e. R <;::; U x U. The set U is called the Universe.

• The set of pairs R could also be defined by its characteristic predicate, R(p, q),

i.e. R = {(p,q): U xU I R(p,q)}.

• The domain and the range of R can be expressed as follows:

Dom(R) ={pI :lq[R(p, q)]}, Range(R) = {q I :lp[R(p, q)]}.

A limited domain relation(LD-relation) on U is an ordered pair L = (RL, CL), where:

• RL, the relational component of L, is a relation on U, i.e. RL <;::; U x U,

8

Master Thesis- N. Zhou- McMaster- Computing and Software

• CL,thecompetencesetofL,isasubsetofthedomainofRL,i.e. CL <;;;; Dom(RL)·

In order to explain how to use LD-relations especially in tabular form to specify

a program in [27], Parnas analyzes the problem of writing an operation which finds

the maximum of two integer values stored in programming variables:

• Rewrite a characteristic predicate of a relation directly as a table.

• Check the overlap of a table header.

• Express some rows of a table by standard notation and combine both notations

together.

• Use abbreviation to represent predicates.

• Narrow long conditions.

• Replace relational operator.

Two examples are taken to illustrate Display Method-Binary search and Dutch

national flag. In these two examples, the specification of the procedure invocation

is written in terms of the combination of simple predicates and tabular predicates.

Both specification of subproblems in the declaration and statements in the declaration

body are written in terms of formal parameters.

2.1.4 An Example of the Use of Tables in System Documen

tation

Tables can also be used for semi-formal specifications of computing systems [36].

The general method applies to deterministic systems and is based on describing the

system by a function

9

Master Thesis- N. Zhou- McMaster- Computing and Software

n:SxC---+S

where S and C are appropriately chosen sets of states and commands, respectively.

A classification of the inter-connection between states and commands, and of the

algebraic structure of the state-transition function n, determine the way tables can

be generated.

The interface of the dialogue box shown in Figure 2.1 provides the features for

entering and deleting numeric values in X fields, toggling both of the check boxes B

and I, and selecting the focus of the dialogue box. The behavior of the dialogue box

is modeled by the system model (S, C; n). The carrier and operators of this algebra

are defined by :

1. The set of states is the Cartesian product.

S = Focus x N x B x B

where set Focus = { x, b, i} holds the possible locations in the dialogue box, N

is the set of natural numbers, and B is the set of Boolean values.

2. The set of commands is defined to hold all possible events the system can receive.

C = Digits U Del U Space U FocusC, where

(a) Digits= {0, ... , 9} of digit events.

(b) Del = {del} of delete events.

(c) Space = {space} of toggle events.

(d) FocusC = {x, b, Z} of focus selection events.

3. System specification is the function diag : S x C ---+ S.

It defines the behavior of the dialogue box is documented by the table in Figure

2.2. This decomposition fits the command-state decomposition. Here the semi

formal definition of diag(s, c) starts by first classifying the command c and

10

Master Thesis - N. Zhou -McMaster- Computing and Software

then secondly the state s. The main header enumerates the control events and

then each sub-header enumerates the local state conditions employed for each

command event.

Alternatively, a state-command decomposition of the diag function can be used.

This generates the table shown in Figure 2.3. Here the semi-formal definition

of diag(s, c) starts by first classifying the states and then secondly the control

event c.

X

Figure 2.1: The Dialogue Box

2.2 Syntax, Semantics, and Transformations of Ten

Kinds of Tables

Parnas summarizes his findings on tabular specifications and describes ten kinds

of tables [23], giving their syntax and semantics based on the fact that tabular no

tation is useful for improving the readability of long mathematical definition, and

is particularly well-suited to software documentation. The ten ways in which tables

may be interpreted as predicates and functions are:

1. Normal Function Tables

A normal function table, T, is a table in which the elements of the main grid,

G, are terms and the elements of the headers are predicate expressions.

11

Master Thesis- N. Zhou- McMaster- Computing and Software

I Focus[x](s) I Focus[bi](s) I
Digits(c)

I ins(s,c) I id(s ,c) I
I Focus [x](s) I Focus [bi](s) I

Del(c)

I del(s) id(s,c) I

Space(c)
I Focus [b i](s) Focus[x](s) I

I toggle(s,c) id(s,c) I
I All(s)

FocusC(c)
I cycle(s,c) I

Figure 2.2: Command Mode Table for Dialogue Box

I Digits(c) I Del(c) I Space(c) I FocusC(c) I
Focus[x](s)

I ins(s,c) I del(s,c) I id(s,c) I cycle(s,c) I

I Digits(c) I Del(c) I Space(c) I Fo~usC(c) I
F o c us [b i] (s)

I id(s,c) I id(s,c) I toggle(s,c) I cycle(s,c) I

Figure 2.3: State Mode Table for Dialogue Box

2. Inverted Function Tables

An inverted function table, T, is a table in which the elements of the main

grid, G, are predicate expressions, the elements of H2 , ..• , Hdim(T) are predicate

expressions, and the elements of H 1 are terms.

3. Vector Function Tables

12

Master Thesis - N. Zhou- McMaster- Computing and Software

y = 27 y > 27 y < 27

27 + ..;27 54+ ..;27 y2 + 3
27+J-(x-3) y + J-(x- 3) y2 + (x- 3)2

27+JX=3 2xy+Jx-3 y2+(3-x)2
G

Figure 2.4: A Normal Function Table

x+y x-y xxy

y<3 y=3 y>3
y<x y>x y=x
y < -x y > -x y= -X

G

Figure 2.5: An Inverted Function Table

A vector function table, T, is a table in which the elements of the main grid,

G, are terms, elements of H 1, H 3 , ... , Hdim(T) are predicate expressions, and the

elements of H 2 are single variables.

w<O w=O w > 0

x+w+q x+2-q x-w
y+2 x+y x+y+2
z-w z z+w

G

Figure 2.6: A Vector Function Table

4. Normal Relation Tables

A normal relation table, T, is a table in which the elements of the main grid

and headers are predicate expressions. The expressions in the main grid and

headers are constructed from the usual variables except that one variable, which

will be written, "®", may not appear in the headers.

5. Inverted Relation Tables

13

Master Thesis- N. Zhou- McMaster- Computing and Software

VY < 21 y>O

x2 +y2 = ®:l x2 = y2 true
y2 =®:l x2 =®:L false
x2 =®:L x-®>3 x2 +y2 = ®:L

G

Figure 2.7: A Normal Relation Table

An inverted relation table, T, is a table in which the elements of the main grid

and headers are predicate expressions. The expressions in H2 , ... , Hdim(T) and

G are constructed using the usual variables except that one variable, which will

be written "®", may not appear. The expressions in H 1 may include "®".

®=3

y>3 y=3 y<3
y<O y?_O false

y > 100 y = 100 y < 100
G

Figure 2.8: An Inverted Relation Table

6. Vector Relation Tables

A vector relation table, T, is a table in which the elements of the main grid,

G, are predicate expressions, the elements of H 1 , H3 , ... , Hdim(T) are predicate

expressions, and the elements of H2 are single variables.

w < 0 w=O w > 0

y>3 x2 = 4 x"2=w
y<O y=x+2 y = JxJ + 2

z2 = x2 + y2 + w2 z2 = x2 + y z=5
G

Figure 2.9: A Vector Relation Table

14

Master Thesis- N. Zhou- McMaster- Computing and Software

7. Mixed Vector Tables

A mixed vector table, T, is a table in which the elements of the main grid, G,

are either predicate expressions or terms, the elements of H 1, H 3 , .. . Hdim(T) are

predicate expressions, and the elements of H 2 are single variables.

w < 0 w=O w>O

x+w+q x+2-q x-w
y2=x+2 y=x+2 y = lxl + 2

z2 = x2 + y2 + w2 z2 = x2 + w2 z=5
G

Figure 2.10: A Mixed Vector Table

8. Predicate Expression Tables

A predicate expression table, T, is a table in which the elements of the main

grid, G, and all headers are predicate expressions.

w<O w=O w > 0

y=5 y+x=w x+y=z
y>7 y-x=6 x-y=z

y2 = 4 y2 = 4 z=y
G

Figure 2.11: A Predicate Expression Table

9. Characteristic Predicate Tables

A characteristic predicate table, T, is a predicate expression table where the deco-

rations (the symbols""' and "'") are considered part of the variable name. It can

be viewed as the set of ordered pairs that constitutes the relation. Characteristic

predicate tables are especially useful in tabular verification and refinement [32]

to derive weakest precondition and data refinement theorems.

15

Master Thesis- N. Zhou- McMaster- Computing and Software

'x = 3
'x < 3
'x > 3

H2

'w < 0

(x' = w') 1\

(w' = 'x)

y' = 'x
y'"" =4

'w=O 'w > 0

(x' = w') 1\

(w' = 'y) 1\ w' = x' = 'y
(w' = 'y)

y' = 'y 'w=w'
x' +w' = 'y y' = 'x

Figure 2.12: A Characteristic Predicate Table

10. Generalized Decision Tables

G

A generalized decision tables, T, is a table in which the elements of the main

grid, G, are predicate expressions that may contain a distinguished variable,

which we shall denoted by "#", and the elements of H1 and H2 are terms that

do not include"#". Ha, ... , Hdim(T) are not used in this interpretation of tables.

x+y x-y

< 20 # < 20
#?. 20 # = 20

true # > 20
G

Figure 2.13: A Generalized Decision Table

Problems arise when considering the best kind of tables to represent a function.

In order to transform a table to a simpler form of the same kind, Zucker describes

the change of a table's dimension and the transformation between a normal and an

inverted function table in [37]. The concept of proper table is clarified in an algebraic

way. Terms, conditions of a table and the table itself are defined over many-sorted

signatures.

16

Master Thesis - N. Zhou- McMaster- Computing and Software

2.3 Automatic Tabular Documentation Tools

2.3.1 RSML for Process-Control Systems

The article [16] defines general analysis criteria that can be applied to black-box

requirements specified for process-control systems. Particular attention is focused on

the properties of robustness and lack of ambiguity. Semantic analysis techniques asso

ciated with a specific model, Requirements State Machine (RSM), and a specification

language, Requirements State Machine Language (RSML), are developed to ensure

that these criteria are satisfied for a given specification.

RSML's application on an industrial aircraft collision avoidance system, Traffic

Alert and Collision Avoidance System II (TCAS II), are first introduced in [19].

RSML has the features in common with Statecharts: superstates, AND decomposi

tion, arrays, and connectives. The syntactic and semantic additions to Statecharts

are: directed communications, external events, interface definitions, component state

machines, transition definitions, macros and functions, transition buses, cross refer

encing and identifier types, identity transitions, timing, and step semantics.

The guarding conditions on the transitions are described by a tabular represen

tation of disjunctive normal form (DNF) called AND/OR tables instead of predicate

calculus which makes it easier to parse an expression. The far-left column of the

AND/OR table contains the logical phrases, each other column is a conjunction of

the logical phrases, all columns together are disjunction of each conjunct term which

make it much easier to parse the expression. A dot denotes "don't care" for omissions.

The table in Figure 2.14 is equivalent to predicate:

((Expression-1 1\--, Expression-3) V (--, Expression-2 1\ Expression-3))

AND/OR tables are provided in analysis procedures to find completeness, con

sistency and safety errors in specifications. Although in the TCAS II requirements

17

Master Thesis- N. Zhou- McMaster- Computing and Software

A
N
D

Expression-!

Expression-2

Expression-3

OR

Figure 2.14: An AND/OR Table

specification, automated analysis tools use Binary Decision Diagrams (BDDs) for

the manipulation of the guarding conditions [11], the readability and reviewability

of the AND/OR tabular representation make the error be discovered quickly by the

application experts.

2.3.2 Model Checking

The Software Cost Reduction (SCR) requirements method comes from A-7 aircraft

operational flight documentation. Faulk [8] provides formal definitions for the A-7

model, van Schouwen [35] extends the original SCR method for the safety-critical

components of the Darlington nuclear power plant. The characteristic of this model

are compositional, event-driven, mode-machines.

Atlee demonstrate how model checking can be used to verify safety properties for

event-driven systems in [3]. A model checking system, MCB, is used for formalizing

the semiformal event-driven SCR requirements. MCB accepts a system's behavior

requirements as a finite state machine and the safety assertions as temporal logic

formulae. First, the transformation algorithm formalizes the software requirements.

Then, it can be verified or disproved that the tabular specifications and the relation-

ships between conditions were entered correctly. The shortcoming is that the model

checker only analyzes properties of mode transition tables. The mode transition tables

18

Master Thesis- N. Zhou- McMaster- Computing and Software

Old Mode Conditions New Mode
ml eoc1,1,1 eoc1,1,2 eoc1,1,p ml,l

eoc1,2,1 eoc1,2,2 eoc1,2,p m1,2

eoci,k,I eoci,k,2 eoc1,k,p m1,k

mn eocn,I,I eocn,I,2 eocn,l,p mn,l

eocn,2,1 eocn,2,2 eocn,2,p mn,2

eocn,k,I eocn,k,2 eocn,k,p mn,k

Table 2.3: A Mode Transition Table

are of the form in Table 2.3.

Each row in the table specifies the event causing the transition from the mode on

the left to the mode on the right. A table entry in the middle of the table may be an

event (@T,@F) triggered by a change of the condition, or a condition value (t,f) which

are depended by the event. The global tabular specification is then converted into

a CTL machine. The model checker accepts a CTL machine and a CTL formula3 ,

and determines whether the formula holds in the machine or not, which can perform

state-based model checking using CTL model checker.

2.3.3 SCR*

Parnas and Medey [26] introduced the four-variable model to provide a formal

framework for semantic decomposition. The four-variable model describes the sys-

tern behavior (functional or non-functional requirements) as a set of mathematical

relations on four sets of variables - monitored and controlled variables and input

and output data items. Four-Variable Model together with four other constructs -

modes, terms, conditions, and events are SCR constructs [13]. The tabular notation

3 Computational tree logic (CTL) is a temporal logic. It uses atomic propositions as its building
blocks to make statements about the states of a system. CTL then combines theses propositions
into formulae using logical operators and temporal operators.

19

Master Thesis - N. Zhou - McMaster - Computing and Software

in SCR specifications facilitates industrial application of the method. There are three

kinds of tables - event tables, condition tables and mode transition tables. Event and

condition tables are the same as those in the A-7 documentation. Mode t ransition

tables in [13] are similar to Table 2.3 except that several depended conditions and

one input triggered event are combined together to build a new event by a logical

expression of form:

@T(Cond1) WHEN [Cond2]

Below is an example of a mode transition table which describes a mode (monitored

variable) as a function of an old mode and an event.

W aterPres Mode Figure 2.15: WaterPres Mode Transition Table for
Press

Old Mode I Event I New Mode
Too Low @T(WaterPres 2: Low) Permitted

Permitted @T(WaterPres 2: Low) High
Permitted @T(WaterPres < Low) TooL ow

High @T(WaterPres < Permit) Permitted

We consider Water Pres mode class are divided into three segment mode - TooLow,

Permitted, and High by two constants Low and Permit. The first row illustrates that

if the old mode is TooLow, then after the event which makes water pressure below

Low exceed Low mark, the new mode of WaterPres is Permitted.

Illuminated by the Four-Variable Model, a formal requirement model, finit e-state

automaton system model, was invented to provide a precise and detailed semantics for

the SCR method [13] . It describes the input and output variables, conditions, events ,

and other constructs that make up an SCR specification in terms of that automaton.

The model also describes how a set of table functions, called table functions , can be

derived from the SCR tables. These table functions define the transform which maps

the current state and an input event to a new state.

20

Master Thesis - N. Zhou- McMaster- Computing and Software

A powerful and robust CASE tool, SCR *, was developed on this model to support

automatic detection of errors expressed in the SCR tabular notation [12]. The toolset

which is written in C++ and runs on SPARC workstation includes a specification

editor for creating and modifying the specification, a simulator for symbolically exe-

cuting the system, and two formal analysis tools. One analysis tool is a consistency

checker for testing the specifications for consistency with a formal requirement model;

the other is a verifier for checking that the specifications satisfy selected application

properties.

2.3.4 Tablewise

Decision tables are widely used for specifying finite functions, such as finite state

transitions [15]. Table 2.4 is a simple decision table that specifies an input-output

relation. The first two columns list the input variables and the possible values, called

states, that each may take. The top row lists the possible output values(operational

procedures, or modes to be entered). The rest of the table is called its body. Each

row of the body belongs to the variable listed in the first column in that row. Each

column, or scenario, represents the conjunction of its cells.

II Operational Procedure I Op Proc 1 I Op Proc 2 II
Senarios Seen 1 Seen 2 Seen 3
Inputs Values

SI1 SI, S2 S1 SI s2

Sh sl, ... , Sn SI s2 Sn

Table 2.4: A Simple Decision Table

Hoover and Chen have demonstrated the utility of Tablewise in [15]. Tablewise

performs three kinds of logical analysis of decision tables: detecting overlap between

engagement criteria of different operational procedures(failure of consistency), detect-

21

Master Thesis - N. Zhou- McMaster- Computing and Software

ing scenarios not covered by any engagement criterion(failure of completeness), and

detecting structural defects in a decision table that prevent it from being functional.

Besides logical analysis, Tablewise can generate code implementing a decision table

and English-language text describing it.

Completeness is more difficult to detect than overlap since no one column in

the table is responsible for the absence of others. In order to localize flaws causing

incompleteness, a form of structural analysis is developed. It finds minimum sets of

variables that the table correlates in a way that precludes functionality. Therefore,

overlap and structural analysis together is a method for analyzing functionality of

decision tables.

2.3.5 TABLE Construct in PVS

In addition to these independent table tools, a simple construct for tabular specifi

cation is added to PVS [22]. This construct is useful for many purposes since it coop

erates with other utilities of PVS. The side condition of the construct is that the rows

and columns are disjoint and exclusive. This utility is used in requirements analysis

for Space Shuttle flight software by colleagues at NASA and Lockheed-Martin [6] [29].

Lawford et al. [18] use the capability to verify decomposition of proof obligations, on

second thoughts, extending the 4-variable model to an 8-variable model by adding tol

erance relations. TABLE constructs of PVS has an input syntax for one-dimensional,

two-dimensional and enumeration tables and allowing blank entries when a specific

condition can no longer arise. These tables are translated to internal IF-THEN-ELSE

constructs of PVS theorem prover and printed as true tables by 15-'IE;X. typesetting.

One-dimensional tables have vertical and horizontal formats shown in Figure 2.6.

Each row is included by I and II except that the upper header of a horizontal table

22

Master Thesis- N. Zhou- McMaster- Computing and Software

use I [...]1 to alert parser that it present the information in a different order.

sign_ vtable(x): signs = TABLE sign_htable(x): signs =TABLE
%------------------%
I X< 0 I -1 II %-----------------------------------%

%------------------% I[x<O I x=O I x>O]I
I x = 0 I 0 II %-----------------------------------%

%------------------%
I X> 0 I 1 II

I -I I 0 I I I I
ENDT ABLE %-----------------------------------%

ENDT ABLE %-------------------%

Figure 2.16: One-Dimensional Vertical and Horizontal Tables

Enumeration Tables are a syntactic variation of one-dimensional or two-dimensional

tables where the conditions to a table are of the form x = expression for some single

identifier x. Figure 2. 7 gives a two-dimensional table and its corresponding enumer-

ation tables.

tw o-dimensional(state, input): some_type = TABLE
% ---%
I I [state = a] I [state = b] I
%---%
I input = x I p I q I
% ---%
I input= y I s I t I
% ---%

ENDTABLE

enumeration(state, input): some_type =TABLE
state , input

%-----------------------------%
I I [X]I [y]I
%-----------------------------%
I a I p I s I
%-----------------------------%
I b I q I t I

ENDT ABLE %-----------------------------%

Figure 2.17: A Two-Dimensional Table and Its Corresponding Enumeration Table

The PVS TABLE construct can not represent decision tables supported by Table-

wise. The TABLE construct interprets a scenario of a decision table as the argument

list to a function X to be applied to each cell of that scenario. Thus, function X

and an operational procedure is represented as a vertical one-dimensional PVS table.

We can also use tabular specifications in a theorem proving context to identify the

anomaly in either our expectations or our formalization of the specification.

23

Master Thesis- N. Zhou- McMaster- Computing and Software

Transition relations provide a way to pose and examine invariant or reachable

property by simulating the tabular manner of the SCR method. To model the mode

transition table of Figure 2.5 in PVS, a condition is specified as a predicate on inputs

to the system, then atT (@T), atF (@F), T, F, and de ("don't care") are higher order

functions. The corresponding PVS representation is shown in Figure 2.8.

event_constructor: TYPE= [condition ->event]
EC: TYPE= event_constructor
PC(A,B)(a,b)(p,q):bool = A(a)(p,q) & B(b)(p,q)
% Note: PC stands for "pairwise conjunction"

original(s: modes, (p, q: monitored_vars)): modes=
LET

x = (WaterPres >=Low, WaterPres <Permit),
X = (LAMBDA (a,b: EC) : PC (a,b) (x) (p, q))

IN TABLEs
I TooLow I TABLE

%-------------l------------------l------------------1--------------------ll
I X (atT, de) I Permitted II

%--1--------------------1 I
I ELSE I TooLow II

%--I------------------ --1 I
ENDTABLE II

I Permitted I TABLE
% -------------1------------------1------------------1--------------------1 I
I X (atT, de) I High I I

% -------------I---------------- --1----------------- -I------------------ --1 I
I X(atF, de) I TooLow II

% --I------------------ --1 I
I ELSE I Permitted I I

% --I------------------- -I I
ENDTABLE II

I High I TABLE
% -------------l------------------1------------------l--------------------ll
I X (de, atT) I Permitted II

%--I------------------- -I I
I ELSE I High I I

% --1--------------------1 I
ENDTABLE II

ENDTABLE

Figure 2.18: The SRC Table Represented in PVS

24

Master Thesis - N. Zhou- McMaster- Computing and Software

A state transition relation can be derived from the corresponding mode transi

tion table. The branching time temporal logic CTL provides a method to specify

some properties of the computations induced by a transition relation. The PVS

model-check command can verify formulae specified by CTL. Overall, the PVS treat

ment requires no customized development: it builds on capacities such as tables,

typechecker-generated proof obligations, dependent typing, higher-order functions,

model-checking and theorem proving.

2.4 Table Tool System

Abraham outlines the documentation methods in [2] for software products devel

oped by Software Engineering Research Group (SERG) at McMaster University, and

describes how a generalized model of tabular expressions has been applied to build

a tool that evaluates a broad class of software documentation. An application of the

Table Tool System (TTS) that interprets a group of tabular expressions is also pro

vided. C code generated by the tool will evaluate the logical expressions contained in

an input specification. Expression evaluation is useful when checking a specification

or for testing an implementation against its specification.

The model presented in [17] covers most of the known table types for documenting

Software Engineering projects, and admits precise classification and definition of new

types of tables. The central concept in the approach is cell information flow graph

(CCG) which characterizes the information flow among table cells. A raw table

skeleton is defined by a header and a grid. It is extended to a medium table skeleton

by adding a CCG. A well done table skeleton consists of a table predicate rule, a

table relation rule, a table composition rule and a medium table skeleton. A tabular

expression is a tuple of a well done table skeleton, a mapping which assigns a predicate

25

Master Thesis- N. Zhou- McMaster- Computing and Software

expression to each guard cell and a relation expression to each value cell, together

with a set of inputs and outputs. Using tabular expressions in [17] enables us to

use mathematical precision in the documentation of software requirements, eases

the methods of extending and/or modifying tables, and most importantly, helps in

building automated tools that are able to interpret tabular expressions.

26

Chapter 3

Tabular Verification and

Refinement Overview

The utility of tabular specification in Chapter 2 are proposed for structuring com

plex mathematical expressions or informal operations. In their formal manipulation,

tabular predicates and tabular relations are explored to be used in program verifi

cation and refinement based on pre- and post-conditions. This chapter is literately

summarized from [32]. We present it here to make the thesis self-contained.

3.1 Terminology and Notation

3.1.1 Properties of Vectors

A vector pv is disjoint if all its elements are mutually exclusive, •(pvi 1\pvk) for all

i and k with i =/= k. Two vectors pv and qv are jointly disjoint if •(pvil\qvj l\pvkl\qv1)

for all i,j, k, l with either i =1- k or j =1- l. If pv and qv are jointly disjoint, then the

conjunction of any two elements of pv(qv) does not need to be false in isolation but

only if conjoined with an element of qv(pv). Vector pv covers (at least) c if one of its

27

Master Thesis- N. Zhou- McMaster- Computing and Software

elements is true if c is true, c ===? Vi · pvi and covers exactly c if c = Vi · pvi. Vector

pv is total if it covers true. Vector pv partitions c if it is disjoint and covers exactly c.

3.1.2 Relations

It is usual to describe relations using boolean expressions. A boolean expression

can be presented in a tabular form [23]. Notational conventions in [27] are used

to increase the readability of tables. A non-deterministic program is modeled by a

relation of type XV----. XV'----. Bool with initial state space XV and final state space

XV'. Let P be a program specified by the characteristic predicate of a relation, and

let xv1 , ... ,xvk be variables in P which form its state space, XV= (xv1, ... , xvk)· Then:

• "xv/' (to be read "xvi before") denotes the value of the program variable vi

before an execution of P,

• "xv:" (to be read "xvi after") denotes the value of the variable vi after a ter

minating execution of P,

• Since Ocaml does not support prime as its' composition of variable name, we use

vil instead of v: in the implementation of tabular specification and refinement

using this programming language.

3.1.3 Relational Operation

We define the constant relations _L (empty relation), T (universal relation), I d

(identity relation), and for relations P and Q the operations P (complement), p-l

(inverse), PnQ (intersection), PUQ (union), PoQ (relational composition) as well

as the predicates P <::::: Q and P :2 Q (inclusion):

28

Master Thesis- N. Zhou- McMaster- Computing and Software

l_ xv xv' =false

T xv xv' = true

(P U Q) xv xv' = P xv xv' V Q xv xv'

(P n Q) xv xv' = P xv xv' 1\ Q xv xv'

I d xv xv' = xv = xv'

P xv xv' = -,p xv xv'

p-l xv xv' = P xv' xv

(Po Q) xv xv' = (3yv · P xv yv 1\ Q yv xv')

(P ~ Q) = (Vxv, xv' · P xv xv'::::} Q xv xv')

(P :2 Q) = (Vxv, xv' · P xv xv'-¢:::: Q xv xv')

A relation Pis functional if p-I o P ~ Id and injective if Po p-l ~!d. Relation

P is called a condition if Po T = P. The domain LP of a relation P is defined

by L.P =PoT. A relation Pis total if L.P = T, or equivalently Id ~Po p-l.

Relation Pis surjective if L,p-l = T, or equivalently Id ~ p-loP. We make use

of generalized union Ui E I· P; and generalized intersection ni E I·?;, for arbitrary

index set I. Relations have the following facts.

Let P, Q, ?;, Qi be relations and C a condition:

(a) Po (Ui E I· Qi) = Ui E I· Po Qi

(b) (Ui E I·?;) o Q = Ui E I· P; o Q

(c) Po (ni E I· Qi) ~ ni E I· Po Qi

(d) (ni E I · P;) o Q ~ ni E I · Pi o Q

(e) P o (ni E I · Q i) = ni E I · P o Q i

(f) (ni E I· P;) o Q = ni E I· P; o Q

(g) (CnP)oQ=Cn(PoQ)

if P is functional.

if Q is injective.

3.1.4 Precondition and Weakest Precondition

Assuming that the set of program variables is fixed, we can determine for any

statement a characterizing predicate over unprimed and primed variables.

29

Master Thesis - N. Zhou- McMaster- Computing and Software

The theory about deriving precondition from program statements is shown as

below [34]:

If an operation S over initial state xv1, ... ,xvm and final state xvi, ... ,xv~ is given by a

predicate P,

S(xv1, ... , xvm)(xvi, ... , xv~) = P

then its precondition is:

preS= (3xv~, ... , xv~ · P)

The domain LP of a program P is interpreted either as the enabledness domain

(or guard) of P or as the termination domain (or precondition) of P. The weakest

precondition [P]C of program P to establish post condition C characterizes those

initial states in which P is never going to lead to a state outside C:

[P]C = PoC

If LP is interpreted as the enabledness domain of program P, then [P] C characterizes

those initial states in which either P is not enabled or P is enabled and leads to a

state in C. If LP is interpreted as the termination domain of program P, then [P]C

characterizes those initial states in which either P does not terminate or P terminates

and leads to a state in C. In this case we would refer to [P]C as the weakest liberal

precondition. Leaving both interpretations open, we uniformly refer to [P]C as the

weakest precondition for P to establish C.

The weakest precondition can equivalently be defined in terms of predicates. We

assume that the state consists of a vector xv of variables and that the initial and final

state space are products of the same type:

Theorem 5.1 (Weakest Precondition).

[P]C xv xv' = Vxv' · P xv xv':::::? C xv' xv'

30

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

3.2 Tabular Predicates

Tabular predicates are predicates written as a disjunction of conjunctions. A

tabular predicate with one header consisting of predicates p, q, rand a body consisting

of predicates s, t, u is defined by

~I~ I~ =(pl\s)V(ql\t)V(rl\u)

In general, let I be a finite and non-empty set of indices and let pv be an indexed

collection of predicates that we call a vector, with elements pv; fori E J. Tables with

a single header are one-dimensional. With pv and qv vectors over the same index

set, we introduce a shorthand for a table with header pv, and body qv, defined by

generalizing the above example:

pv . -- = Vz · pv; 1\ qv;
qv

On vectors pv and qv over the same index set -,pv, pv 1\ qv, pv V qv, pv ==? qv, pv <¢= qv,

and pv = qv are all defined by the pointwise extension of the corresponding operators

on Bool, e.g. (pv 1\ qv); = pv; 1\ qv;. On occasion we identify a predicate p with a

vector with all elements being p. This also allows us to write expressions like p 1\ pv,

with the meaning of (p 1\ pv); = p 1\ pv;, and similarly for other Boolean operators.

In general, ann-dimensional table has n headers; here we restrict ourselves to one-

and two-dimensional tables. Let I and J be index sets, let pv be an !-indexed vector,

let qv be a J -indexed vector, and let rm be a doubly indexed collection of predicates

that we call a matrix, with elements rm;,j for i E I and j E J. We introduce a

shorthand for a two-dimensional tabular predicate with headers pv, qv and body rm :

.. = Vz J · pv; 1\ qv 1\ rm· · l J Z,]

We also use a shorthand with multiple vectors in one header, with the special case of

one vector being a single predicate:

31

Master Thesis- N. Zhou- McMaster- Computing and Software

On matrices rm and sm over the same index sets •rm, rm 1\ sm, rm V sm, rm =?

sm, rm {= sm, and rm = sm are all defined by the pointwise extension of the

corresponding operators on Bool, e.g. (•rm)i,j = •rmi,j· On occasion we identify

a predicate p with a matrix with all elements being p. This also allows us to write

expressions like p 1\ pm, with the meaning of (p 1\ pm)i,j = p 1\ pmi,j, and similarly

for other Boolean operators. We will also identify a vector pv with a matrix with all

columns being pv. This allows us to write expressions like pv 1\pm, with the meaning

of (pv 1\ pm)i,j = pvi 1\ pmi,j, and similarly for other Boolean operators.

Some basic transformations of tabular predicates are:

Theorem 2.1 (Transposing).

- .~-_l~ Pvrrm- = Tv/ rrr;:r·
Theorem 2.2 (Swapping Rows and Columns).

I qv I rv = I rv I qv
pv qm rm - pv I rm qm

Theorem 2.3 (Splitting and Joining Tables).

I qv I rv = /q~ v~
pv qm rm - --pvrqm p'IJ. rrm

Theorem 2.4 (Extending and Contracting).

I qv I rv = ~-=-1~=?-~
pv qm rm -])Vfqm- - pvTQm])Vfqm~

Theorem 2.5 (Lifting and Flattening).

(a)*"= p~vrv
(b) ~ = Vi· P;ivl\ rmi

32

sl\t

sv V tv

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

Theorem 2.8 (Replacing Table Elements).

Theorem 2.9 (Splitting and Joining Rows and Columns).

lqVr, ... - I q I r I···
pv sv . . . - pv sv sv ...

3.3 Operations on Tabular Predicates

We give some basic theorems about common Boolean operators applied to tables.

Theorem 3.1 (Table Negation)

(a) --, (~) = 1\i j · pvi 1\ qv · =? •rmi · -~~m- ' J J

(b) ~ (1"J I ,q:) => 1"' I ~:.

(c) ~(1"J I ~;:) ~ pv I ~;:

if pv, qv are total

if pv, qv are jointly disjoint

(~) - I qv (d) --, - pVf rm- = pv •rm if pv, qv are total and jointly disjoint

Theorem 3.2 (Table Conjunction)

(a) ~ 1\ ~ <¢== -+-q=------v -r;urr::rn· pVfSm pv rm 1\ sm

b- lqv_/\~= I qv
() ~ pv fSm- - pv rm 1\ sm

33

if pv, qv are jointly disjoint

Master Thesis- N. Zhou- McMaster- Computing and Software

Theorem 3.3 (Table Disjunction).

I q21___v ~= I qv
~ P1JT.Sm- pv rm V sm

Theorem 3.4 (Predicate-Table Implication).

(a) (1fV I ;~ => s) "' (IIi, j · pv; II qv; II rm;,; => s)

(b) (s =} I q_v__) =} (1\i, j · sl\pvii\QVj =} rmi,j) if pv, qv are jointly disjoint.
~

(c) (s =:;, ~) ~ (1\i,j · s 1\pvi 1\ qvj =:;, rmi,j) if pv covers s, qv covers s. PvJrm

(d)
(

s =} ~) = (1\i J. · s 1\ pv· 1\ qv · =} rm· ·) Pv-frm , z J z,J

if pv covers s, qv covers s and pv, qv are jointly disjoint.

(c) (8 => 1fV I ;~) = _s_=}_p_v-+1-:-:-r-=qm_v_

(f) (s => 1fV I ;;,) = -p-v-+1-
8
-=}_;:q'-vr_m_ if pv, qv are total and jointly disjoint.

Theorem 3.5 (Table Implication).

(a) (~=>~) ~ 1\i, j · pvi 1\ qvj 1\ rmi,j =} smi,j

(b) (~=>~) =} I qv if pv, qv are total.
pv rm =} sm

(c) (PV~ => Pv-tfm-) ~ I qv if pv, qv are jointly disjoint.
pv rm =:;, sm

(d) (~ ~) I qv pv rm =} pv sm = pv rm =:;, sm

if pv, qv are total and jointly disjoint.

Theorem 3.6 (Table Equivalence).

(a) (~ = ~) ~ 1\i j · pvi 1\ qv· =} (rmi · = smi ·) JJVTTffi- pv I sm ' 1 '
1

'1

34

Master Thesis- N. Zhou- McMaster- Computing and Software

(b) (pv I ;~ = pv I :~) <= -p-v-+-1-rm______,:_v_s_m if pv, qv are jointly disjoint.

(~-~) I qv (c) ~=··pvTsm pv rm=sm

if pv, qv are total and jointly disjoint.

3.4 Tabular Relations

Tabular relations are defined in analogy to tabular predicates using generalized

intersection and union. Let PV and QV be vectors of relations and let RM be a

matrix of relations:

PV I~~ = ui,j · PVi n QVi n RMi,j

All operations on relations are pointwise extended to operations on vectors and rna-

trices. On occasion we identify a relation P with a vector or a matrix with all

elements being P. For example, this allows us to write Po PV, with the meaning

of (P o PV)i = P o PVi. There is a direct relationship between tabular predicates

and tabular relations. Let pv and qv be vectors of predicates, let rm be a matrix

of predicates, let PV and QV be vectors of relations, and let RM be a matrix of

relations. If

QVi x y = qvj,

then the following two definitions of relation S are equivalent:

IQV -~ s = PV RM ' s X y = pv I. rm-
This relationship between tabular predicates and tabular relations allows us to switch

between them as convenient. This also allows us to lift all theorems on tabular

predicates to tabular relations as needed. In particular the notions of disjointness

and coverage carry over to relations.

35

Master Thesis- N. Zhou- McMaster- Computing and Software

Operations on tabular relations are:

Theorem 4.1 (Table Domain).

"(BV I~~)~ BV I "c;:M

Theorem 4.2 (Table Composition).

(a) I cv BV PM oQ= I cv
BV PMoQ

(b) So I QV
PV RM

c I SoQV
SoPVSoRM

(c) So I QV
PV RM

I SoQV
SoPV SoRM

if S is functional

3.5 Tabular Verification

A typical use of weakest preconditions is for checking invariance properties: an

operation P establishes condition C if [P]C = T and P preserves C if C r:::;; [P]C. Con-

sequently we give theorems for deducing that a weakest precondition-if expressed

as a predicate-is either universally true or is weaker than a given precondition. We

make use of the following facts about weakest preconditions. Assume P, ~ are rela-

tions, for an arbitrary index set I, and B, Care conditions:

Lemma 5.1.

(a) [Ui E I· P;]C = ni E I· [P;]C

(b) [BnP]C=BU[P]C

We give some theorems for determining weakest preconditions of operations in tab-

ular form. For a matrix PV and a condition C let [P M]C stand for PM with the

36

Master Thesis - N. Zhou- McMaster- Computing and Software

weakest precondition applied to each element, formally ([P M]C)i,j = [P Mi,j]C :

Theorem 5.2 (Tabular Weakest Precondition).

(a) I cv
BV [PM]C

c [nv I j;~]c if BV, CV are total

(b) I cv
BV [PM]C

::J [nv I j;~]c if BV, CV are jointly disjoint

(c) I cv
BV [PM]C [nv I j;~]c if BV, CV are total and jointly disjoint.

We note that typically only (c) is useful as (a) results in a precondition may be too

restrictive and (b) may not result in a precondition for the given postcondition at

all. While (c) allows the precondition to be determined by considering each case in

the body of the program in turn, it does have the side conditions of totality and

disjointness. We give an alternative theorem that does not have these side conditions

but allows only inclusion to be shown, although it gives a necessary and sufficient

condition for it. Thus it can always be used to verify that a tabular relation under

a given precondition establishes a given postcondition:

Theorem 5.3 (Tabular Verification).

n c; [nv I j;~] c = i,j · Bn BV; ncv; c; [PM,,,]C

For the case that the table is given by a tabular predicate and the postcondition

by a predicate, we can give the analogue of Theorem 5.2. For brevity, we give only

the analogue of Theorem 5.2(c). We assume that the state consists of a vector

xv of variables. If pm is a matrix of predicates, we write Vx · pm for every matrix

element universally quantified over x, formally (Vx·pm)i,j = (Vx·pmi,j)· Let f[xv\ev]

stand for expression f with each variable in xv simultaneously substituted by the

corresponding expressions in ev.

37

Master Thesis - N. Zhou- McMaster- Computing and Software

Theorem 5.4 (Weakest Precondition with Predicates). If standard relation

P and condition C are given by

P xv xv' = ~b cv , C xv xv' = c -bv-1 pv

and if bv, cv are total and jointly disjoint we have

I

cv [P]C xv xv' = -,--+----,-------,-----_____,------,---cc
- bv Vxv' · pm::::} c[xv\xv']

Next we give a theorem that does not have the side conditions of totality and dis

jointness of the headers and does not even require the table to be in standard form.

Hence it can also be applied to inverted tables:

Theorem 5.5 (Tabular Verification with Predicates). If conditions B, C and

relation P are given by

B xv xv' = b, P xv xv' = · f. qy_
~'

C xv xv' = c

we have

B ~ [P]C = 1\i, j · b 1\ pvi 1\ qvi 1\ rmi,j ::::} c[xv\xv']

For an operation given by a vector table we have a simplified rule for determining

its precondition. Let f[xv\em] stand for a vector of expressions, with each ele

ment obtained by substituting xv with one column of matrix em in f, formally

(f[xv\em])j = f[xv\emi].

Theorem 5.6 (Weakest Precondition of Vector Table). If standard vector

relation V and condition C are given by

Vxvxv'= I bv
xv' = em '

C xv xv' = c

we have

[V]C xv xv' = 1\j · bvi ::::} c[xv\emi]

38

Master Thesis- N. Zhou- McMaster- Computing and Software

While the theorem allows the precondition to be calculated, the precondition is a

conjunction rather than a table. We can give an alternative theorem that gives a

tabular precondition but has side conditions:

Theorem 5.7 (Tabular Weakest Precondition of Vector Table). If standard

vector relation V and condition C are given by

,_ I bv V XV XV = 1 ' xv = em
C xv xv' = c

and if bv is total and disjoint we have

[VJ C XV xv' ==: [b\ J
CXV em

Finally we give a theorem that does not have the side conditions of totality and

disjointness. It follows directly from Theorem 5.5.

Theorem 5.8 (Verification with Vector Table). If conditions B, C and vector

relation V are given by

B xv xv' = b,

we have:

V xv xv' = I pv
xv' = em '

B ~ [V]C = 1\j · b 1\ pvj =? c[xv\emJ]

3.6 Refinement

C xv xv' = c

In general, refinement is the process of deriving an implementation from a speci-

fication and verifying the correctness of the derivation [20].

Programs are given a new semantics with the merit that a specification written as

a first-order predicate can be refined, step by step, to a program via the rules of Pred-

icate Calculus. The semantics allows a free mixture of predicate and programming

notations, and manipulation of programs [10].

We formalize the notation of program refinement defined on partial relations [34].

We say that S is refined by T, written S ~ T, if

39

Master Thesis - N. Zhou- McMaster- Computing and Software

1. dom S ~ dom T

2. ldom Sl nT <:: S

The operator Is I "lifts" a set to a relation, Is I x y = (x E s).

Algorithmic refinement is simplified assuming program P and Q are defined on

total relations with the same domain. If P <;:; Q, then we say that P refines Q [32].

Refinement is a process that allows non-determinism to be reduced. Refinement is

reflexive, P <;:; P, meaning that each programs is refined by itself. Refinement is also

transitive, P <;:; Q and Q <;:; R implies P <;:; R, meaning that programs can be refined

in a stepwise manner. If P <;:; Q holds, then P is called the (more) concrete and Q

the (more) abstract program.

Data refinement is the systematic replacement of a state space (abstract data) by

another one (concrete data) in program development. Data refinement is considered

as an operator rather than a relation within the refinement calculus framework [4].

The encoding operator l is defined so that S l D is the most general (least refined)

data refinement of statement S with respect to an abstraction statement D (an ab

straction statement models the relationship between the concrete and the abstract

state space). Using Galois connections it is found that under certain restrictions

there exists a dual decoding operator j which allows us to calculate the least general

(most refined) abstraction S j D of a given (concrete) statement S with respect to

abstraction statement D.

We consider two variants of data refinement, downward (forward) data refinement

and upward (backward) data refinement [9]. The encoding and decoding operators are

similar to those of [4]. Suppose P, Q are homogeneous relations of possibly different

types, an encoding operator P l R is introduced:

P l R = R-1 o Po R provided R is injective

40

Master Thesis- N. Zhou- McMaster- Computing and Software

Program Q downward refines program P via relation R if R o Q ~ P o R holds.

Symmetrically, a decoding operator P j R is introduced:

P j R = R-1 o Po R provided R is total

Program P upward refines program Q via relation R if P o R ~ R o Q holds.

If R is either injective or total, a coding operator is introduced:

P 1 R = R-1 o Po R

We give a theorem that apply only to encoding:

Theorem 6.1 (Soundness of Encoding).

Q ~ P l R '* R o Q ~ P o R if R is injective

We give a theorem that apply only to decoding:

Theorem 6.2 (Soundness of Decoding).

P j R ~ Q '* P o R ~ R o Q if R is total

We note that coding is monotonic in its first argument (but not in its second), which

follows directly from its definition:

Theorem 6.3 (Monotonicity of Coding).

P~Q'*P1R~Q1R

We state some facts about the first argument of the coding operator.

Theorem 6.4. Suppose I is an index set and C is a condition:

(a) j_ 1 R = j_

(b) (Ui E I · Pi) 1 R = (Ui E I · Pi 1 R)

(c) (ni E I· I{) 1 R ~ (ni E I· Qd R)

(d) (C n P) 1 R ~ (R-1 o C) n (P 1 R)

41

Master Thesis- N. Zhou- McMaster- Computing and Software

We note that for a relation R and condition C, the condition R-1 o C is the image

of C under R. As Theorem 6.4(c) and (d) state inclusion and not equality, they are

only useful for decoding when distributing the decoding operator into conjunctions.

Next we state how coding behaves in its second argument:

Theorem 6.5 Suppose I is an index set:

(a) p! j_ = j_

(b) P J T = T

(c) P! Id = P

(d) P! (R o S) = (P! R)! S

(e) (Ui E I · P J R;) <;;:;; P J (Ui E I · Ri)

(f) P 1 (ni E I · Ri) <;;:;; (ni E I · P 1 Ri)

if p =I= j_

We continue with theorems that apply only to encoding. Distributivity through

conjunctions in the first argument can be strengthened to equality with an injective

encoding relation. Encoding subdistributes through relational composition:

Theorem 6.6 Suppose R is an injective relation:

(a) (ni E I· Pi) l R = (ni E I· Qi) l R

(b) (CnP)lR=(R- 1 oC)n(PlR)

(c) (P1 l R) o (P2 l R) <;;:;; (P1 o P2) l R

We conclude with a theorem that applies only to decoding. Decoding also subdistrib

utes through relational composition, though in the other direction than encoding:

Theorem 6. 7 Suppose R is a total relation:

(P1 o P2) j R <;;:;; (P1 j R) o (P2 j R)

42

Master Thesis- N. Zhou- McMaster- Computing and Software

3. 7 Tabular Refinement

We give theorems on how specifications can be transformed into more concrete

or more abstract ones, where either the concrete or the abstract or both are given in

tabular form.

First we consider that both specifications are over the same state space. Assume

PV and QV are vectors of relations, RM is a matrix of relations, and S is a relation:

Theorem 7.1 (Refining to Table).

(a) I
QV

-p==-v-:-t--=R:---;M:-::- <:_::: S = 1\i, j · PVi n QVj n RMi,j <:_::: S

(b) -p=-=v:-11-~=-M-=-v=--- <:_::: PV I ~~ -¢::= 1\i,j · PVi n QVj n RMi,j <;::: SMi,j

Refining to a vector table allows for a simplified rule:

Theorem 7.2 (Refining to Vector Table). If vector relation P and relation Q

are given by

I
pv

P xv xv' = -----:----t-=-
xv' = em'

we have

pv
Q xv xv' =-

qv

P <:_::: Q <== (1\j · pvj =? qv[xv'\emi])

Note that while above theorem can be applied even if Q is not a standard relation, P

is a standard vector relation only if Q is a standard relation. We now give a general

theorem when the concrete and abstract state are related through relation R:

Theorem 7.3 (Data Refining a Table). Assume BV, CV are vectors of condi-

tions:

(a) (I cv
BV PM) lR=

I R-l 0 cv
R 1 oBV PM l R

if R is injective.

(b) (I cv
BV PM) !R=

I R-l 0 cv
R-1 oBV PM 1 R

if R is injective.

43

Master Thesis - N. Zhou- McMaster- Computing and Software

To allow a direct application of above theorem, we derive the corresponding theorem

when the relation is given by a tabular predicate. We extend the use of existential

quantifications to matrices of predicates, with the meaning that the quantification

is applied to each element, formally (::Jx · pm)i,j = (::Jx · pmi,j):

Theorem 7.4 (Data Refining with Predicates). Given relation Pin standard

form and relation R by

p xv xv' =b _l__c cvv '
~

R xv yv = r

and writing r' for r with xv, yy substituted by xv', yv' we have:

(a) (P l R) yv yv' = (3xv · r 1\ cv) 3xv · r 1\ bv 3xv, xv' · r 1\ pm 1\ r'

if R is injective.

(b) (P 1 R) yv yv' ~
(3xv · r II 1m

3xv · r 1\ cv) 3xv, xv' · r 1\ pm 1\ r'

We consider the case that the refinement relation rather than the specification is

in tabular form. More precisely, we consider the refinement relation being defined

by an inverted vector table, that is a table in which only the variables of the initial

state appear in the left header and variables of the final state appear only in the

upper header and body. For simplicity we consider a refinement relation with only

two columns.

Theorem 7.5 (Data Refinement with Vector Table). Assume inverted vector

relation R is given by:

R xv yv = I c I d xv = ev fv

Writing c', d', ev', fv' for c, d, ev, fv with yv substituted by yv' we have

c' d'
(P 1 R) yv yv' = c Pevev' Pevfv'

d P fv ev' P fv fv'

44

Chapter 4

Design Features

4.1 Interface with Simplify

Simplify accepts a sequence of first order formulas as input, and attempts to prove

each one [21].

Simplify [-print] [-ax axfile] [-nose] [-noprune] [-help] [-version] [file]

Simplify implements a semi-decision procedure for its inputs: it can sometimes

fail to prove a valid formula. But it is conservative in that it never claims that an

invalid formula is valid [21]. Simplify handles propositional connectives by backtrack

ing search and includes complete decision procedures for the theory of equality and

for linear rational arithmetic, together with some heuristics for linear integer arith

metic that are not complete. Simplify's handling of quantifiers by pattern-driven

instantiation is also incomplete [7].

Complex valid formulae including quantifiers may require much longer running

time for Simplify to prove, or even cause Simplify fail to prove their correctness. If

Simplify can prove the formula, it prints valid. If it cannot prove the formula, it

normally prints a conjunction of literals that it believes to satisfy the negation of the

45

Master Thesis- N. Zhou- McMaster- Computing and Software

formula.

Three options are used in our application:

1. The -nose options causes Simplify to simply output "valid" or "invalid" ;

2. The -ax flag allows us to specify an alternate axiom set, and the AXIOMDIR

environment variable allows us to specify where Simplify should look for that

axiom set.

3. The file argument is provided such that S-expression formulae are read one at

a time from the file, and proved.

The syntax of formulae is based on S-expressions, with one S-expression per for-

mula.

formula ::= "(" (AND I OR) { formula } ")" I

"("NOT formula")" I

" (" IMPLIES formula formula ")" I

"(" IFF formula formula ")" I
"(" FORALL "(" var* ")" formula ")" I

"(" EXISTS "(" var* ")" formula ")" I

"(" PROOF formula*")" I
literal

literal ::= "(" ("EQ" I "NEQ" I"<" I"<=" I">" I">=")

term term")" I
"(""DISTINCT" term term+")"

"TRUE" I "FALSE" I <propVar>

term ::= var I integer I "(" func {term}")"

"var'"s (variables), "func'"s (functions), and "propVar"'s (propositional variables) are

represented as" Atom.T" 's.

The formula

(DISTINCT terml ... termN)

46

Master Thesis - N. Zhou- McMaster- Computing and Software

represents a conjunction of distinctions between all pairs of terms in the list.

<funcs> 's are uninterpreted, except for "+", "-", and "*", which represent the ob

vious operations on integers. "/" is interpreted by our self-defined functions in our

axioms.

4.2 Pattern Matching in Function Definition

The input to Simplify is a formula of untyped first-order logic with function and

relations, including equality. That is, the language includes the propositional con-

nectives /\, V, •, ==?,and{:?; the universal quantifier V, and the existential quantifier

3 [7]. To define functions we need to apply universal quantifier to all independent

variables such that the variable can be replaced by any value. Simplify handles quan-

tifiers by pattern-driven instantiation. Pattern matching starting with keyword

PATS is used to find the relevant structure and to substitute the matching part

(function name and its inputs) with function outputs. Pattern matching can benefit

from guard. Guards can be used to augment pattern matching with the possibility

to skip a pattern even if the structure matches. Guards are realized in Simplify by

the left part of implication. Following S-expression in Simplify is a function which

defines the arithmetic division operation on two positive integers.

(FORALL (x y)

(PATS (div1 x y))

(AND (IMPLIES (>= x y) (EQ (div1 x y) (+ (div1 (+ x (* -1 y)) y) 1)))

(IMPLIES (< x y) (EQ (div1 x y) 0))))

47

Master Thesis - N. Zhou- McMaster- Computing and Software

This is a recursive definition and similar to the respective mathematic notation:

{

divl(x- y) + 1 x;?: y
divl(x, y) =

divl(x,y) = 0 x < y

An absolute function can be defined without pattern matching since the disjunction

of the left side of all the implication are total:

(FORALL (x y)

(AND (IMPLIES (>= x 0) CEQ Cabs x) x))

(IMPLIES (< x 0) (EQ Cabs x) (* -1 x)))))

A division function on two integers are extended to:

(FORALL (x y)

(PATS (/ X y))

(AND (IMPLIES (AND (>= X 0) (> y 0))

CEQ (/ X y) (div1 X y)))

(IMPLIES (AND (>= X 0) (< y 0))

CEQ (/ X y) (* -1 (div1 x Cabs y)))))

(IMPLIES (AND (< X 0) (> y 0))

CEQ (/ X y) (* -1 (div1 Cabs x) y))))

(IMPLIES (AND (< X 0) (< y 0))

(EQ (/ x y) (div1 (abs x) Cabs y))))))

The pattern matching here plays a role of guard to skip a division xjy with y = 0.

Note that if a pattern matches a function defined on the right side of an implication,

then the left side of the implication states the domain of the function. It is similar

to an alternative statement. Theses functions are the additional axioms to which

Simplify refers before validating predicates.

48

Master Thesis- N. Zhou- McMaster- Computing and Software

4.3 Unified Data Type

Our data type form is defined to match Simplify grammar. Besides that, we also

add properties and operations of sets to form. There are two kinds of variables

variables in the left header of a vector table, represented by V ECV AR("varname")

and otherwise, represented by V AR("varname"). Another type expression OP is

applied in Chapter 6. OP takes a predicate name and a predicate definition as

its parameter, passes the predicate definition as inputs to Simplify but prints the

predicate names to the screen and Ib'IE;X files. Such a use is also sugar for reading

the foregone predicate into the current background predicate by our parser.

For simplicity we only define the data type of two-dimensional tables; one dimen-

sional table can be deemed as a special two-dimensional table with row header or

column header being TRUE and other columns or rows of table body being copied

from the first column or row. Table structure is modeled by a TABLE construct

followed by a record as its parameter which consists of left header, upper header and

table body. Row header and column header are expressed by one dimensional arrays;

table body is expressed by a two dimensional array. Elements of arrays are predicates

including tables. So this is a mutually recursive definition.

Among ten kinds of tables summarized by Parnas [23], TABLE construct can rep-

resent normal, inverted and vector function tables with integer return type, normal,

inverted and vector relation tables, predicate expression tables, and characteristic

predicate tables. In this thesis we use one class of tables, called characteristic predi

cate tables, together with its variation of vector tables.

type form = CONST of int

I VAR of string

I VECVAR of string

I SUM of form x form

49

Master Thesis - N. Zhou- McMaster- Computing and Software

DIFF of form x form

PROD of form x form

QUOT of form x form

FUN of string x form list

OP of string x form

EMPTY

INSERT of form x form

DELETE of form x form

MEMBER of form x form

UNION of form x form

SUBSET of form x form

TRUE

FALSE

EQ of form x form

NEQ of form x form

LT of form x form

LE of form x form

GT of form x form

G E of form x form

AND of form list

OR of form list

IMPLIES of form x form

IFF of form x form

NOT of form

FORALL of form list x form

EXISTS of form list x form

TABLE of tables

and tables = { headm :form array;headn :form array;body :form array array}

4.4 Variable Types of Theorems

In the logic of [32] and this thesis, typing is implicit, so all variables of the theorems

(distinguishing from program variables) are implicitly (if not explicitly) universal

50

Master Thesis - N. Zhou- McMaster- Computing and Software

quantified over the right type. In Simplify, individual variables range over the space

of individual values which includes integers and maps [7].

If a program variable is of numerical or string type, we can simply map it to

the space of individual values with the same name; if a program variable belongs to

boolean or enumeration type where the domain of the program variable may have

effect on the behavior of the program, we have to explicitly state the space of values

of that type. In Simplify, we do this by two steps:

1. make all values in Type space distinct by a general distinction of the form

DISTINCT(tl, ... , tn).

2. make the variable t total over its Type by a disjunction of the form OR(t =

tl, ... , t = tn)

For each typed program variable, we set these two formulae into our self-defined axiom

file and they will be loaded each time the main program is initialized. One typical

example is modeling car seat movement where longitudinal adjustment motor only

has three states-forward, backward and stop. Another example is elevator button

pressed refinement where program variable r takes a boolean value true or false.

These two examples will be illustrated in the following chapters.

If a program variable x in specification Z has a type Y, Y is a set and the elements

of Y are not specified, we can limit the domain of x by the predicate x E Y ===? Z.

If a program variable is of abstract type (e.g. set), functions have to be defined

to model properties and operations of that type (e.g. insert, delete and member). A

program variable of composite type (e.g. tuple and array) follow the same rule as that

of abstract type. These functions are also stored in our axiom file. The modeling

of visitor information system in Chapter 7 illustrates how to define functions that

specify the properties and operations of set and relation (a set of pairs). Note that

51

Master Thesis - N. Zhou- McMaster- Computing and Software

a program variable of initial and final states should be typed if they both occur in a

specification.

Type checking is not implemented in our application of theorems since the types

of program variables are confined by functions.

4.5 Structure of Implementation

Our implementation of theorems in OCaml includes three parts:

1. Parser

2. Printing

3. Theorem proving

We introduce each part briefly in this section.

4.5.1 Parser

The idea of designing a parser comes from difficulties we met when inputting a

long and complicated predicate, especially a table or a set manipulation, directly

by our data type form. The parser also assists in better understanding and error

checking procedures or operations in our examples.

The characters are first scanned: processed into tokens such as keywords, identi

fiers, special symbols and numbers. The parser is supplied a list of tokens. A token is

either an identifier, an integer constant or a keyword. Calling scan performs lexical

analysis on a string and returns the resulting list of tokens [28].

We use recursive decent parsing technique [33] to construct a top-down parser

directly in OCaml. Literal TRUE and FALSE are inputted as they are; variable

52

Master Thesis - N. Zhou- McMaster- Computing and Software

Precedence Operator Input Example form expressions
0 () () (a+ b)l4 QUOT(ADD(a, b),4)
1 X * a*b PROD(a, b)
1 I alb QUOT(a,b)
2 + + a+b ADD(a, b)
2 a-b SUB(a, b)
3 a=b EQ(a, b)
3 =I= I= al = b NEQ(a,b)
3 < < a<b LT(a, b)
3 < <= a<= b LE(a, b)
3 > > a>b GT(a, b)

3 > >= a>= b GE(a, b)
4 --, not not a> b NOT(GT(a, b))
5 1\ & a> O&b > 0 AND([GT(a, O);GT(b, 0)])
6 V or a> 0 orb> 0 OR([GT(a, O);GT(b, 0)])
7 ===} => a> 0 => b > 0 IMPLIES(GT(a, O),GT(b, 0))
7 {::} <=> a> 0 <=> b > 0 IFF(GT(a, O),GT(b, 0))
8 v ! !xlx > 0 FORALL([x],GT(x ,0))
8 :J # #x,ylx > y EXISTS([x; y],GT(x, y))

Table 4.1: Logical Operators and Quantifiers

VAR(" id") is inputted as id; variable VECVAR(" id") in the left header of a vector

table is inputted as id = ; integer CONST(12) is inputted as 12. Tables 3.1list logical

operators and quantifiers.

The inputting environment of tables is similar to the tabular environment in ~TEX.

typesetting. The keyword BEGTAB starts a tabular input environment while END

TAB finishes it. The left header starts by keyword LHEADER, ends by symbol

I I, and its elements are separated by symbol $; Upper header start by keyword

UHEADER, ends by symbol I I, and its elements are separated by symbol $; there

is no prefix keyword for the tabular body, symbol $ is used to separate elements of

each row, symbol I I starts a new line. Left header or upper header can be omitted

but table body can not. For example, Table 4.2 can be inputted by

53

Master Thesis- N. Zhou- McMaster- Computing and Software

c>O d>O e>O
a>O x<y y<z x<z
b>O y<z x<y x<z

Table 4.2: A Sample Table

"BEG TAB LHEADER a > 0 $ b > 0 I I UHEADER c > 0 $ d > 0 $ e > 0 I I

X < y $ y < z $ X < z I I y < z $ X < y $ X < z I I ENDTAB"

A vector table is a table in which only the variables of the initial state appear

in the left header and variables of the final state appear only in the upper header

and body. In this project, vector tables have the same input environment as normal

tables except that the left header should be an identifier followed by symbol = and

table body is a matrix of arithmetic expressions. For instance, the input of Table 4.3

is "BEG TAB LHEADER x = $ y = z I I UHEADER c > 0 $ d > 0 $ e > 0 I I

3 $ 7 $ 9 I I 2 $ 4 $ 8 I IENDTAB"

c>O d>O e>O

X= 3 7 9

y=z 2 4 8

Table 4.3: A Sample Vector Table

4.5.2 Notations for Sets and Relations

Other form expressions relate to the properties and operations of set, relation

and function. We list their input syntax, their meaning is explained by plain words

or conventional symbols, and translation into our farm type expressions .

. {}
- An empty set¢.

-EMPTY

54

- Inserting element x1, x2, ... Xn sequentially into Empty set

Master Thesis- N. Zhou- McMaster- Computing and Software

- (INSERT (... (INSERT (INSERT EMPTY x1) x2) ...)xn)

e XS- -ys

- Deleting elements of set ys from set xs (i.e. xs- ys).

- DELETE(xs, ys)

e XS U ys

- The union of set xs and set ys (i.e. xs U ys).

- UNION(xs, ys)

• xs <: ys

- If xs is a subset of ys (i.e. xs <:;:; ys), then it is evaluated to true.

- EQ(SUBSET(xs; ys),VAR("true"))

e X: XS

- If x is an element of set xs (i.e. x E xs), then it is evaluated to true.

- MEMBER(xs,ys),VAR("true"))

• PAIR(a, b)

- A relation is represented by a set of pairs (i.e. {(a1, b1), (a2, b2)}).

- FUN(" PAIR" ,[x; y])

• dom(xs)

- The domain of binary relation xs.

- FUN("dom" ,[xs])

55

Master Thesis- N. Zhou- McMaster- Computing and Software

• ran(xs)

- The range of binary relation xs.

- FUN("ran" ,[xs])

• relate(x, xs)

- A relation which is the subset of binary relation xs where the domain of

the relation is { x}.

- FUN("relate" ,[x; xs])

• revrelate(x, xs)

- A relation which is the subset of binary relation xs where the range of the

relation is { x}.

- FUN("revrelate" ,[x; xs])

• injective(xs)

- If binary relation xs is injective, then it evaluates to true.

- FUN(" injective" ,[xs])

• map(xs)

- If binary relation xs is a function, then it evaluates to true.

- FUN("map" ,[xs])

• card(xs)

- The cardinality of set xs (i.e. #xs).

- FUN(" card" ,[xs])

56

Master Thesis- N. Zhou- McMaster- Computing and Software

• compose(xs, ys)

- The composition of the relations xs and ys.

- FUN(" compose" ,[xs])

• EMPSTR

- The empty string "".

- EMPSTR

• concate(xs)

Concatenate a set of strings separated with spaces.

- FUN("concate" ,[xs])

4.5.3 Printing

Module Print fulfills three printing functions:

1. Function prints with parameters predi and margin

One auxiliary function predtable takes a predicate table and returns a plain

predicate corresponding to the table. Function prints takes a predicate with

possible embedded tables and returns an equivalent predicate without tables,

printing that predicate in Simplify syntax based on S-expression. A formula is

printed in a nested structure and a margin is added to the output file if needed.

57

Master Thesis- N. Zhou- McMaster- Computing and Software

let predtable t1 =
let t2 = ref [l in

fori = 0 to (Array.length tl.body) - 1 do

for j = 0 to (Array.length t1.body.(O)) - 1 do

if tl.headm -=f [Ill 1\ t1.headn -=f [Ill then

match tl.headm.(i) with

VECVAR(x) ----+ t2 := AND([tl.headn.(j); EQ(VAR(x),

tl.body.(i).(j))]) :: !t2

I _----+ t2 := AND([t1.headm.(i); tl.headn.(j); tl.body.(i).(j)]) ::!t2

else if t1.headm = [Ill 1\ t1 .headn -=f [Ill then

t2 := AND([TRUE; tl.headn.(j); tl.body.(i).(j)]) ::!t2

else if tl.headm-=/ [Ill 1\ tl.headn = [Ill then

(match t1 . headm. (i) with

VECVAR(x) ----+ t2 := EQ(VAR(x), tl.body.(i).(j)) :: !t2

I _ ----+ t2 := AND([t1.headm.(i); TRUE; tl.body.(i).(j)]) ::!t2)

else

t2 .- AND([TRUE; TRUE; t1.body.(i).(j)]) ::!t2

done

done;

OR(!t2)

let prints predi margin

let space = ref margin in

let flag = ref 0 in

let rec transformlist = function

I [l ----7 [l
I head :: tail ----+ transstring head ·· transformlist tail

and transstring = function

CONST(x) ----+ string_of _int x

VAR(x) ----+ if x = 1111 then 11 EMPSTR 11 else x

SUM (term1 , term2) ----+

11
(+u 11

A transstring term1 A
11 u 11

A transstring term2 A
11) 11

DIFF(term1, term2) ----+

11 (-u 11
A trans string term1 A

11 u 11
A trans string term2 A

11) 11

58

Master Thesis - N. Zhou- McMaster- Computing and Software

DELETE(terml, term2) -+

" (DELETEu" A transstring terml A "u" A transstring term2 A ") "

PROD(terml, term2) -+

" (*u" A transstring terml A" u" A transstring term2 A") "

QUOT(terml, term2) -+

" (/ u" A transstring terml A" u" A transstring term2 A") "

FUN(x, termlist) -+ (String.concat "" ["(";x;"u";

String. con cat "u" (transformlist termlist)]) A ") "

EMPTY -+ "EMPTY"

INSERT(terml, term2) -+

"(INSERTu" A transstring terml A "u"Atransstring term2 A")"

MEMBER(terml, term2) -+

" (MEMBERu" A transstring terml A" u" A transstring term2 A") "

UNION(terml, term2) -+

"(UNIONu" A transstring terml A "u" A transstring term2A")"

SUBSET(terml, term2)-+

" (SUBSET u" A transstring terml A "u" A transstring term2 A ") "

TRUE -+

if !flag = 1 then begin space := !space A "uu";

let s = "\n" A !space A "TRUE" in

space := String.sub !space 0 (String.length !space- 2); s end

else begin let s = !space A "TRUE" in flag := 1; s end

FALSE -+

if !flag = 1 then begin space := !space A

let s = "\n" A !space A "FALSE" in

II II.
uu '

space := String.sub !space 0 (String.length !space- 2); send

else begin let s = !space A "FALSE" in flag := 1; s end

EQ(terml, term2) -+

space := !space A "uu";

let s = "\n" A ! space A " (EQu" A transstring terml A "u"

A transstring term2 A") "

in space := String.sub !space 0 (String.length !space- 2); s

NEQ(terml, term2) -+

space := !space A "uu";

59

Master Thesis - N. Zhou- McMaster- Computing and Software

let s = "\n" A !space A" (NEQu" Atransstring term1 A

"u" A transstring term2 A ") "

in space := String.sub !space 0 (String.length !space- 2); s

LT(term1, term2) ----7

space := !space A "uu";

let s = "\n" A !space A" (<u" A transstring term1 A

"u" A transstring term2 A ") "

in space := String.sub !space 0 (String.length !space- 2); s

LE(term1, term2) ----7

space := !space A "uu";

let s = "\n" A !space A" (<=u" A transstring term1 A

"u" A transstring term2 A ") "

in space := String.sub !space 0 (String.length !space- 2); s

GT(term1, term2) ----7

space := !space A "uu";

lets = "\n"A !spaceA"(>u"Atransstring term1A

"u" A trans string term2 A ") "

in space := String.sub !space 0 (String.length !space- 2); s

GE(term1, term2) ----7

space := !space A "uu";

lets = "\n"A !spaceA"(>=u"Atransstring term1A"u"A

transstring term2 A ") "

in space := String.sub !space 0 (String.length !space- 2); s

AND(formlist) ----7

if !fiag = 1 then begin space := !space A "uu";

lets= "\n"A!spaceA"(AND"A

(String.concat "u" (transformlist formlist)) A ")" in

space := String.sub !space 0 (String.length !space - 2);

s end else begin fiag := 1;1et s = (!space A "(AND" A

(String. concat "u" (transformlist formlist)) A ") ")

in s end

OR(formlist) ----7

if !fiag 1 then begin space .- !space A

lets = "\n"A !spaceA "(OR"A

60

II II.

uu '

Master Thesis - N. Zhou- McMaster- Computing and Software

(String.concat "u" (transformlist formlist))' ")"in

space := String.sub !space 0 (String.length !space - 2); s

end else begin

flag:= 1;1et s = (!space ' "(OR"' (String.concat "u"

(transformlist formlist)) ' ") ") in s end

IMPLIES(form1, form2) --+

if !flag = 1 then begin space := !space ' "uu";

lets = "\n"' !space' "(IMPLIES"'

transstring form1 ' "u" ' transstring form2' ") " in

space := String.sub !space 0 (String.length !space- 2); s

end else begin

flag:= 1; lets = !space ' "(IMPLIES"'

transstring form1 ' "u" ' transstring form2 ' ") " in s end

IFF(Jorm1, form2) --+

if !flag = 1 then begin space:= !space ' "uu";

let s = "\n"' !space ' "(IFF" '

transstring form1 'transstring form2' ")" in

space:= String.sub !space 0 (String.length !space- 2); send

else begin flag := 1; let s = !space ' "(IFF" '

transstring form1 'transstring form2' ")" in s end

NOT(Jorm1) --+

if !flag = 1 then begin space:= !space ' "uu";

lets = "\n"' !space' "(NOT"'transstring formr")" in

space := String.sub !space 0 (String.length !space- 2); s end

else begin flag := 1;1et s = !space '

" (NOT"' transstring form1' ")" in s end

FORALL(y,jorm1) --+

let shell x ys = match x with

I VAR(xx) --+ xx ' "u" ' ys

I - --+ ys

in let y2 = List.fold_right shell y "" in

if !flag = 1 then begin space := !space ' II II.

uu '

lets = "\n"' !space' "(FORALL("'y2'")"'

transstring form1 '")" in

61

Master Thesis- N. Zhou- McMaster- Computing and Software

space := String.sub !space 0 (String.length !space- 2); s end

else begin flag := 1; let s = !space A

11 (FORALL (11
A y2 A

11) 11
A transstring formt A

11) 11 in s end

EXISTS(y,Jormt) -+

let shell x ys = match x with

I VAR(xx) -+ xx A

11 u 11
A ys

I - -+ ys

in let y2 = List.fold_right shell y 1111 in

if !flag = 1 then begin space := !space A

let s = 11 \n 11
A !space A

II II.

uu '

11 (EXISTS (11
A y2 A

11) 11
A transstring formt A

11) 11 in

space := String.sub !space 0 (String.length !space- 2); s end

else begin flag := 1; let s = !space A

11 (EXISTS (11
A y2 A

11
)

11
' transstring formt A

11
)

11 in s end

TABLE(tablet) -+ transstring (predtable tablet)

OP(x,formt) -+ let s = !space A transstring formt in s

_ -+ raise

(Failure 11 theuparameteruofutransstringushouldubeuauformula 11
)

in transstring predi

2. Function pretty_print with parameter predi

It prints all formulae, including tables, on standard output. Plain formulae are

expressed by infix structure with parenthesis to override operator precedence.

The ASCII code operators refer to those of B language. Tables are expressed by

their original structure with parallel lines composed of'-' character and vertical

lines composed of 'I' character. Changing lines are controlled in both plain

formulae and tables.

(* A record type used in function pretty_ print and latex_ print, it is similar

to record table except that each element of arrays is a string representing the

formula which is supposed to send output to terminals or files *)

type tstr = { hdm :string array; hdn :string array; bd :string array array}

62

Master Thesis- N. Zhou- McMaster- Computing and Software

(* A record type used in function pretty_ print only in order to record the number

of lines of each element and the maximum characters of each line. Since a single

cell of a table may occupy several lines, if the length of the content in this cell

is greater than the default maximum value, we need to memorize the number of

lines and characters for each element. We also have to divide the original string

element in a cell into a list of strings according to the content for each line. *)

type rest = { hdmtri : (int x int x string list) array;

hdntri : (int x int x string list) array;

bdtri : (int x int x string list) array array}

let pretty_ print predi =

let tt = ref (-1) in

let flag = ref 0 in

let rec transformlist prec

I [J __. [J
I head :: tail --->

function

transstring prec head · · transformlist prec tail

and transset = function

EMPTY ---> 11
{

11

INSERT (terml , term2) ---> (match terml with

INSERT(tl, t2) ---> transset terml A

11
,

11
A transstring 0 term2

EMPTY ---> transset terml A transstring 0 term2

- ____, "")

_ ---> razse

(Failure 11 theuparameteruof utranssetushouldubeuaupairuofu terms 11
)

(*A function called to print table in ASCih)

and print_ table t1 =

let mh = Array.length tl.headm in

let nh = Array.length tl.headn in

let mb = Array.length tl.body in

let nb = Array.length tl.body.(O) in

let tst = {hdm = Array.create mh 1111 ;hdn = Array.create nh 1111
;

bd = Array.make_matrix mb nb 1111
} in

for i = 0 to mh- 1 do

tst.hdm.(i) t-- transstring 0 tl.headm.(i)

63

Master Thesis- N. Zhou- McMaster- Computing and Software

done;

for j = 0 to nh - 1 do

tst.hdn.(j) t- transstring 0 tl.headn.(j)

done;

for i = 0 to mb - 1 do

for j = 0 to nb - 1 do

tst.bd.(i).(j) t- transstring 0 t1.body.(i).(j)

done

done;

(* Compute the default number of characters for m header and body. *)

let compmax = let maxt = ref 0 in

for j = 0 to mh - 1 do

maxt := max !maxt (String.length tst.hdm.(j)) done;

!maxt in

let bdefault = if mh = 0 then (120- nb- 1)lnb

else if compmax < 18 then (120 - nb - 1 - compmax - 1) I nb

else (102 - nb - 2) I nb in

let hdefault = if mh = 0 then 0

else if compmax < 18 then compmax else 18 in

(* compute function return a record matching the structure of res by computing

each element of a tabular formula in terms of string*)

let compute remain default

let temp = ref "" in

let left = ref [] in

let col = if (String .length ! remain) > default

then default else (String.length !remain) in

let row = ref 0 in

while (String.length !remain) > default do

row := !row + 1;

let s = ref default in

while !s 2': 0 1\ String.get !remain !s =1- ' ' do

s := !s -1

done;

temp ·- !remain;

64

Master Thesis - N. Zhou- McMaster- Computing and Software

remain ·-

if !s 2': 0 then

if ! s = (String .length ! remain) - 1

then 1111 else

String.sub !remain (!s + 1) ((String.length !remain)- (!s)- 1)

else String. sub ! remain default ((String .length ! remain)

- default);

left := (if !s 2': 0 then String.sub !temp 0 !s

else String.sub !temp 0 default) :: !left

done;

if String. length !remain = 0 then (!row, col, List. rev !left)

else (!row + 1, col, List. rev (!remain :: !left)) in

(*This record stores the information of a table. Each element of the table

consists of a triple. The first element of a triple stores the number of lines

of each cell; the second stores the number of characters for each line of each

cell; the third stores the list of strings of each cell, and each string in the list

corresponds to the line to be filled in each cell.*)

let res = {hdmtri = Array.create mh (0,0, []);

hdntri = Array.create nh (0, 0, []);

bdtri = Array.make_matrix mb nb (0,0, [])}in

for i = 0 to mh - 1 do

rcs.hdmtri.(i) +--- compute (ref tst.hdm.(i)) hdefault

done;

for j = 0 to nh - 1 do

rcs.hdntri.(j) +--- compute (ref tst.hdn.(j)) bdefault

done;

for i = 0 to mb - 1 do

for j = 0 to nb - 1 do

rcs.bdtri.(i).(j) +--- compute (ref tst.bd.(i).(j)) bdefault

done

done;

(* Compute the number of lines of each row and distance of each column by

computing the maximum number of lines of all elements in the same row and the

maximum distance of all elements in the same colunm, and put those numbers

65

Master Thesis- N. Zhou- McMaster- Computing and Software

into two one-dimensional arrays.*)

let rowar = Array.create (mb + 1) 0 in

let colar = Array.create (nb + 1) 0 in

letfsttri =function I (a,_,_) """"""' a in

let sndtri =function I (_,b,_) """"""' bin

let thdtri = function I (-,_,c) """"""' c m
let maxt = ref 0 in

for j = 0 to nh - 1 do

maxt := max !maxt (Jsttri rcs.hdntri.(j)) done;

rowar.(O) <--- !maxt;

let maxt = ref 0 in

for i = 0 to mh - 1 do

maxt := max !maxt (sndtri rcs.hdmtri.(i)) done;

colar.(O) <--- !maxt;

for i = 0 to mb - 1 do

let maxt = ref 0 in

rowar.(i + 1) <---if mh > i then begin

for j = 0 to nb - 1 do

maxt := max !maxt (Jsttri rcs.bdtri.(i).(j)) done;

max !maxt (fsttri rcs.hdmtri.(i)) end

else begin

done;

for j = 0 to nb - 1 do

maxt := max !maxt (Jsttri rcs.bdtri.(i).(j)) done;

!maxt end

for j = 0 to nb - 1 do

let maxt = ref 0 in

colar.(j + 1) <---if nh > j then

begin for i = 0 to mb- 1 do

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done;

max ! maxt (sndtri res. hdntri. (j)) end

else begin for i = 0 to mb - 1 do

maxt .- max !maxt (sndtri rcs.bdtri.(i).(j)) done;!maxt end

done;

66

Master Thesis - N. Zhou- McMaster- Computing and Software

(*Draw the outline of a table according to the horizontal and vertical distances

for each row and column, at the same time record the position of each line of

each cell corresponding to a string to fill in contents, and store the contents

and positions in a list of pairs in order to replace blank by contents in the next

step.*)

lets ref "\nl" in

let p ref [l in

for j 0 to nb do

if j =/= 0 V mh =/= 0 then begin

done;

for k = 0 to colar.(j)- 1 do s := !s • "-"; done;

s := if j = nb then !s else !s • "-";end

s := !s • "I \n I";
for i = 0 to mb do

if i =/= 0 V nh =/= 0 then begin

for rowi = 0 to rowar.(i)- 1 do

for j = 0 to nb do

if j =/= 0 V mh =/= 0 then begin

p := if i =!= 0 1\ j =/= 0 then

if (List.length (thdtri rcs.bdtri.(i - 1).(j - 1))) > rowz

then (String.length !s,

List.nth (thdtri rcs.bdtri.(i- 1).(j- 1)) rowi) ::!p

else !p

else if i = 0 1\ j =!= 0

then if rcs.hdntri =/=[Ill 1\

(List .length (thdtri res. hdntri. (j - 1))) > rowz

then (String.length !s,

List.nth (thdtri rcs.hdntri.(j- 1)) rowi) :: !p

else !p

else if i =!= 0 1\ j = 0

then if rcs.hdmtri =/= [Ill 1\

(List .length (thdtri res. hdmtri. (i - 1))) > rowi

then (String.length !s,

List.nth (thdtri rcs.hdmtri.(i- 1)) rowi) :: !p

67

Master Thesis ~ N. Zhou ~McMaster~ Computing and Software

else !p

else !p;

for colj = 0 to colar.(j)- 1 do s := !s A

11 u 11 done;

s := !s A
11 I 11 end

done;

s : = ! s A
11 \n I 11

done;

if i i= mb then begin

for j = 0 to nb do

end

done;

for colj = 0 to colar.(j)- 1 do s := !s A

11
-

11 done;

s := if j = nb V (j = 0 1\ mh = 0) then !s else !s A

11 + 11

done;

s := !s A

11 I \n I 11 end;

for j = 0 to nb do

if j i= 0 V mh i= 0 then begin

end

done;

for colj = 0 to colar.(j) - 1 do s := !s A
11

-
11 done;

s := if j = nb then !s else !s A

11
-

11

s : = ! s A
11 I \n 11

;

(*Fill the contents into cells starting from the recording position*)

for i = 0 to (List.length !p) - 1 do

for j = 0 to (String.length (snd (List.nth !p i)))- 1 do

String.set !s ((fst (List.nth !p i)) + j)

done

done;

(String.get (snd (List.nth !p i)) j)

(* Set flag before returning to the execution of plain formula*)

flag ·- 0;

!s

and transstring prec = function

I CONST(x) __. let s11 = string_of _int x in

68

Master Thesis - N. Zhou- McMaster- Computing and Software

if !flag= 0 then tt := !tt + (String.length s11); s11

VAR(x) --+ if x = 1111 then

begin if !flag= 0 then tt := !tt + 2; "\"\ 11
" end

else begin if !flag= 0 then tt := !tt + (String.length x); x end

VECVAR(x) --+ if !flag= 0 then tt := !tt+ (String.length x)+1; x'"= 11

SUM(term1, term2) --+ if prec > 9 then begin

if !flag= 0 then tt := !tt + 5;
11

(
11 'transstring 9 term1 ' 11 u+u 11

' transstring 9 term2 '") 11

end else begin

if !flag= 0 then tt := !tt + 3;

transstring 9 term1 ' 11 u+u 11
' transstring 9 term2 end

DIFF(term1, term2) --+ if prec > 9 then begin

if !flag = 0 then tt := !tt + 5;
11

(
11 'transstring 9 term1 ' 11 u-u 11

' transstring 9 term2 ' 11
)

11

end else begin

if !flag= 0 then tt := !tt + 3;

transstring 9 term1 ' 11 u-u 11
' transstring 9 term2 end

DELETE(term1, term2) --+ if prec > 9 then begin

if !flag= 0 then tt := !tt + 5;
11

(
11 'transstring 9 term1 ' 11 u-u 11

' transstring 9 term2 '") "

end else begin

if !flag = 0 then tt := ! tt + 3;

transstring 9 term1 ' 11 u-u 11
' transstring 9 term2 end

PROD(term1, term2) --+ if prec > 10 then begin

if !flag = 0 then tt := !tt + 5;
11

(
11 'transstring 10 term1 ' 11 u*u 11

' transstring 10 term2' 11
)

11

end else begin

if !flag = 0 then tt := !tt + 3;

transstring 10 term1 ' 11 u*u 11
' transstring 10 term2 end

QUOT(term1, term2) --+ if prec > 10 then begin

if !flag = 0 then tt := !tt + 5;

II (II' transstring 10 term1 'II ul U II' transstring 10 term2 ' II) II

end else begin

if !flag = 0 then tt := !tt + 3;

69

Master Thesis- N. Zhou- McMaster- Computing and Software

transstring 10 term1 A

11 u/ u 11
A transstring 10 term2 end

FUN(11 PAIR 11 ,[VAR(s1); VAR(s2)]) ----+

if !flag = 0 then tt :=!tt + 3 + (String.length s1) + (String.length s2);
II (II A s 1 A II ' II A s2 A II) II

FUN(11 compose 11 ,[VAR(s1); VAR(s2)]) ----+ if !flag= 0 then

tt := !tt + 1 + (String.length s1) + (String.length s2);
s1 A II. II A s2

FUN(x, termlist) ----+ if !flag = 0 then begin let ss1 = ref 1111 in

flag := 1;

ss1 := (String.concat 1111 [x; 11
(

11 ;String.concat 11
,

11

(transformlist 0 termlist)]) A

11
)

11
;

tt := !tt + String. length !ss1;

flag := 0;

!ss1 end else (String.concat 1111 [x; 11
(

11 ;String.concat 11
,

11

(transformlist 0 termlist)]) A

11
)

11

EMPTY ----+ if !flag= 0 then tt := !tt + 2; 11
{}

11

INSERT(term1, term2) ----+ let ss1 = ref 11 11 in if !flag = 0 then begin

flag := 1;

ss1 := transset (INSERT(term1, term2)) A

11
}

11
;

tt := !tt + String.length !ss1;

flag := 0;

!ss1 end else begin ss1 := transset (INSERT(term1, term2)) A
11

}
11

;

!ss1 end

UNION(term1, term2) ----+ if prec > 9 then begin

if !flag = 0 then tt := !tt + 6;
11

(
11

A transstring 9 term1 A

11 u \\I u 11
A transstring 9 term2 A

11
)

11

end else begin

if !flag= 0 then tt := !tt + 4; transstring 9 term1 A
11 u\ \/u 11

A

transstring 9 term2 end

SUBSET(term1, term2) ----+ if prec > 9 then begin

if !flag = 0 then tt := !tt + 6;
11

(
11

A transstring 9 term1 A
11 u<: u 11

A

transstring 9 term2 A

11
)

11 end else begin

if !flag= 0 then tt := !tt + 4; transstring 9 term1 A

11 u<: u 11
A

70

Master Thesis- N. Zhou- McMaster- Computing and Software

transstring 9 term2 end

TRUE --. if !flag = 0 then tt := !tt + 4; "TRUE"

FALSE --. if !flag = 0 then tt := !tt + 5; "FALSE"

OP(x,Jorml) --. if !flag = 0 then tt := !tt + (String.length x); x

EQ(MEMBER(terml, term2), VAR("true")) --.

if prec > 7 then begin if !flag= 0 then tt :=!tt + 5;

" (" ' transstring 7 terml ' "u : u" ' transstring 7 term2 ' ") "

end else begin if !flag= 0 then tt :=!tt + 3;

transstring 7 terml ' "u : u" ' transstring 7 term2 end

EQ(terml, term2) --.

if prec > 7 then begin if !flag = 0 then tt := !tt + 5;

" (" 'transstring 7 terml ' "u=u" ' transstring 7 term2' ") " end

else begin if !flag = 0 then tt := !tt + 3;

transstring 7 terml ' "u=u" ' trans string 7 term2 end

NEQ(MEMBER(terml, term2), VAR("true"))--.

if prec > 7 then begin if !flag = 0 then tt :=!tt + 6;

" (" ' transstring 7 terml ' "u/ : u" 'transstring 7 term2 ' ") " end

else begin if !flag= 0 then tt :=!tt + 4;

transstring 7 terml ' "ul: u" ' transstring 7 term2 end

NEQ(terml, term2) --.

if prec > 7 then begin if !flag = 0 then tt := !tt + 6;

"("'transstring 7 terml'"ul=u"'transstring 7 term2'")" end

else begin if !flag = 0 then tt := !tt + 4;

transstring 7 terml '" ul =u" 'transstring 7 term2 end

LT(terml, term2) --.

if prec > 7 then begin if !flag = 0 then tt := !tt + 5;

" ("' transstring 7 terml '" u<u"' transstring 7 term2' ") " end

else begin if !flag = 0 then tt := !tt + 3;

transstring 7 terml '" u<u" 'transstring 7 term2 end

LE(terml, term2) --.

if prec > 7 then begin if !flag = 0 then tt := !tt + 6;

" ("' transstring 7 terml '" u<=u"' transstring 7 term2' ") " end

else begin if !flag = 0 then tt := !tt + 4;

trans string 7 terml '" u<=u"' transstring 7 term2 end

71

Master Thesis- N. Zhou- McMaster- Computing and Software

G T (terml , term2) ---+

if prec > 7 then begin if !flag = 0 then tt := !tt + 5;
11 (

11 A transstring 7 terml A 11 u>u 11 A transstring 7 term2 A 11
)

11 end

else begin if !flag = 0 then tt := !tt + 3;

transstring 7 terml A

11 u>u 11
A transstring 7 term2 end

GE(terml, term2) ---+

if prec > 7 then begin if !flag = 0 then tt := !tt + 6;
11

(
11 A trans string 7 terml A 11 u>=u 11 A trans string 7 term2 A 11

)
11 end

else begin if !flag = 0 then tt := !tt + 4;

transstring 7 terml A

11 u>=u 11
A transstring 7 term2 end

AND(Jormlist) ---+ if prec > 4 then begin

if !flag = 0 then begin

tt := !tt + 1;

let s11 = ref 11
(

11 in

let temp = ref 11 11 in

let rec andean = function

I [] ---+ s11 := !s11 A

11
)

11

I hd :: [] ---+ tt := !tt+1; temp := !s11 A transstring 4 hd;

if !tt > 120 then if !s11 f 11
(

11 then

begin tt := 0; s11 :=!s11 A

11 \n 11
A transstring 4 hd end

else begin tt := 1; s11 := 11 \n 11
A !s11 Atransstring 4 hd end

else s11 := !temp;

andean []

hd :: tl ---+ tt := !tt+3; temp := !s11 A transstring 4 hd;

if !tt > 123 then if !s11 f 11
(

11 then begin tt := 3;

s11 := !s11 A 11 \n 11 A transstring 4 hd A 11 u&u 11 end

else begin tt := 4;

s11 := 11 \n 11 A !s11 A transstring 4 hd A 11 u&u 11 end

else if !tt > 120 then begin tt := 3; s11 ·- !tempA 11 \nu&u 11

end else s11 := !temp A

11 u&u 11
;

andean tl

in andean formlist; !s11 end

else 11
(

11
A (String. concat 11 u&u 11

(transformlist 4 formlist)) A

11
)

11

end else begin

72

Master Thesis- N. Zhou- McMaster- Computing and Software

if !flag = 0 then begin

let s11 = ref 1111 in

let temp = ref 11 11 in

let rec andean = function

I [] ----+ s11 := !s11

I hd :: [] ----+ temp := !s11 ' transstring 4 hd;

if !tt > 120 then begin tt := 0;

s11 := !s11 ' 11 \n 11
' transstring 4 hd end

else s11 := !temp;

andean []

hd :: tl ----+ tt := !tt + 3; temp := !s11 ' transstring 4 hd;

if !tt > 123 then begin

tt := 3; s11 :=!s11 ' 11 \n 11 'transstring 4 hd' 11 u&u 11 end

else if !tt > 120 then begin tt := 3; s11 :=!temp' 11 \nu&u 11 end

else s11 := !temp ' 11 u&u 11
;

andean tl

in andean formlist;

!s11 end

else String. co neat 11 u&u 11
(transformlist 4 formlist) end

OR(formlist) ----+ if prec > 3 then begin

if !flag = 0 then begin tt := !tt + 1;

let s11 = ref 11
(

11 in

let temp = ref 11 11 in

let rec orcon = function

I [] ----+ s11 := !s11 ' 11
)

11

I hd :: [] ----+ tt := !tt+ 1; temp := !s11 'transstring 3 hd;

if !tt > 120 then if !s11 =1- 11
(

11 then begin tt := 0;

s11 := !s11 ' 11 \n 11
' transstring 3 hd end

else begin tt := 1;

s11 := 11 \n 11
' !s11 ' transstring 3 hd end

else s11 := ! temp;

orcon []

hd :: tl ----+ tt := !tt + 4; temp := !s11 ' transstring 3 hd;

if !tt > 124 then if !s11 =1- 11
(

11 then begin tt := 4;

73

Master Thesis- N. Zhou- McMaster- Computing and Software

s11 := !s11 A
11 \n 11

A transstring 3 hd A

11 uOru 11 end

else begin tt := 5;

s11 := 11 \n 11
A !s11 A transstring 3 hd A

11 uOru 11 end

else if !tt > 120 then begin tt := 4;

s11 := !temp A

11 \nuoru 11 end else s11 .- !temp A

11 uOru 11
;

orcon tl

in orcon formlist;

!s11 end else 11
(

11
A (String.concat 11 uOru 11

(transformlist 3 formlist)) A

11
)

11

end else begin

if !flag = 0 then begin

let s11 = ref 1111 in

let temp = ref 1111 in

let rec orcon = function

I [] ---+ s11 := !s11

I hd :: [] ---+ temp := !s11 A transstring 3 hd;

if !tt > 120 then begin tt := 0;

s11 := !s11 A
11 \n 11

A transstring 3 hd end

else s11 := ! temp;

orcon []

hd :: tl ---+ tt := !tt+4; temp := !s11 A transstring 3 hd;

if !tt > 124 then begin tt := 4;

s11 := !s11 A
11 \n 11

A transstring 3 hd A

11 uOru 11 end

else if !tt > 120 then begin tt := 4;

s11 := !temp A

11 \nuoru 11 end else s11 ·- !temp A

11 uoru 11
;

orcon tl

in orcon formlist;

!s11 end

else String. concat 11 uoru 11
(transformlist 3 formlist) end

IMPLIES(form1, form2) ---+ if prec > 2 then begin

if !flag = 0 then begin tt := !tt + 1;

let s11 = ref 11
(

11 in

let temp = ref 1111 in

let tempi = ref 11 11 in

74

Master Thesis- N. Zhou- McMaster- Computing and Software

temp := !sii A transstring 2 formi;

if !tt > 120 then begin tt := 1;

sii := 11 \n 11
A !sii A transstring 2 formi end

else sii := !temp;

tt := !tt+4;

if !tt > 120 then begin tt := 4;

sii := !sii A

11 \n 11
A

11 u=>u 11 end

else sii := !sii A

11 u=>u 11
;

tempi := !sii A transstring 2 form2;

tt := !tt + 1;

if !tt > 120 then begin tt := 1;

sii := !sii A
11 \n 11

A transstring 2 form2 A
11

)
11 end

else sii := !tempi A
11

)
11

;

!sii end

else 11
(

11
A transstring 2 formi A

11 u=>u 11
A

transstring 2 form2 A

11
)

11 end

else begin

if !flag = 0 then begin let sii

let temp = ref 11 11 in

let tempi = ref 11 11 in

ref 1111 in

temp := !sii A transstring 2 formi;

if !tt > 120 then begin tt := 0;

sii := 11 \n 11
A !sii A transstring 2 formi end

else sii := !temp;

tt:= !tt+4;

if !tt > 120 then begin tt := 4; sii :=!sir 11 \n 11
A

11 u=>u 11 end

else sii := !sii A

11 u=>u 11
;

tempi := !sii A transstring 2 form2;

if !tt > 120 then begin tt := 1;

sii := !sii A

11 \n 11
A transstring 2 form2 end

else sii := !tempi;

!sii end

else transstring 2 formi A

11 u=>u 11
A transstring 2 form2 end

IFF(Jormi, form2) ---+ if prec > 2 then begin

75

Master Thesis- N. Zhou- McMaster- Computing and Software

if !flag = 0 then begin tt := !tt + 1;

let sii = ref "(" in

let temp = ref 11 11 in

let tempi = ref 1111 in

temp := !sii A transstring 2 formi;

if !tt > 120 then begin tt := 1;

sii := 11 \n 11
A !sii A transstring 2 formi end

else sii := !temp;

tt := !tt + 5;

if !tt > 120 then begin tt := 5; sii := !sii A

11 \nu<=>u 11 end

else sii := !sii A

11 u<=>u 11
;

tempi := lsii A transstring 2 form2;

tt := !tt + 1;

if !tt > 120 then begin tt := 1;

sii := !sii A

11 \n 11
A transstring 2 form2 A

11
)

11 end

else sii := !tempi A

11
)

11
; !sii end

else 11
(

11
A transstring 2 forml A

11 u<=>u 11
A transstring 2 form2 A

11
)

11

end else begin

if !flag = 0 then begin let s11 = ref 1111 in

let temp = ref 1111 in

let templ = ref 1111 in

temp := ls11 A transstring 2 forml;

if !tt > 120 then begin tt := 0;

s11 := 11 \n 11
A !s11 A transstring 2 forml end

else s11 := ! temp;

tt := !tt+5;

if !tt > 120 then begin tt := 5; s11 := !s11 A

11 \nu<=>u 11 end

else sli := !s11 A

11 u<=>u 11
;

templ := ls11 A transstring 2 form2;

if !tt > 120 then begin tt := 0;

s11 := !s11 A

11 \n 11
A transstring 2 form2 end

else s11 := ltempl;

!s11 end

else transstring 2 formi A

11 u<=>u 11
A transstring 2 form2 end

76

Master Thesis- N. Zhou- McMaster- Computing and Software

NOT(Jorml) ---* if prec > 5 then begin

if !flag = 0 then begin tt := !tt + 6;

let s11 = ref 1111 in

let temp = ref 1111 in

temp := 11 (notu 11
A transstring 5 forml A

11
)

11
;

if !tt > 120 then begin tt := 6;

s11 := 11 \n 11
A

11 (notu 11
A transstring 5 forml A

11
)

11 end

else s11 := !temp;

!s11 end

else 11 (notu 11
A transstring 5 forml A

11
)

11 end

else begin

if !flag = 0 then begin tt := !tt + 4;

let s11 = ref 1111 in

let temp = ref 11 11 in

temp := 11 notu 11
A transstring 5 forml;

if ! tt > 120 then begin tt := 4;

s11 := 11 \n 11
A

11 notu 11
A transstring 5 forml end

else s11 := !temp;

!s11 end

else 11 notu 11
A transstring 5 forml end

FORALL(y,Jorml) ____.

(* Shell V AR() of expression V AR(m), leaving m to be concatenated into a

string of variables*)

let shell x ys = match x with

I VAR(xx)---* xxA 11
,

11 Ays

I -----?- II II

- '
in let yl = List.fold_right shell y 1111

in let y2 = if yl = 1111 then 1111

else String.sub yl 0 ((String.length yl)- 1) in

if !flag = 0 then begin tt := !tt + 5 + (String.length y2);

let s11 = ref 11 11 in

let temp = ref 11 11 in

if !tt > 120 then begin tt := 5 + (String.length y2);

s11 := 11 \n 11
A

11 (! 11
A y2 A

11 .u 11 end

77

Master Thesis - N. Zhou- McMaster- Computing and Software

elses11:= 11 (! 11 Ay2A 11 .u 11
;

temp := ls11 A transstring 1 form1 A

11
)

11
;

if ltt > 120 then begin tt := 0;

s11 := ls11 A
11 \n 11

A transstring 1 form1 A

11
)

11 end

else s11 := !temp; ls11 end

else 11 (! 11 A y2 A 11 • u 11 A transstring 1 form1 A 11
)

11

EXISTS(y,Jorm1) -t

let shell x ys = match x with

I VAR(xx) ---> xx A
11

,
11

A ys

I ---+ II II
- '

in let y1 = List.fold_right shell y 1111

in let y2 = if y1 = 1111 then 1111

else String.sub y1 0 ((String.length y1)- 1) in

if !flag = 0 then begin tt := !tt + 5 + (String.length y2);

let s11 = ref 1111 in

let temp = ref 1111 in

if ltt > 120 then begin tt := 5 + (String.length y2);

s11 := 11 \n 11
A

11 (# 11
A y2 A

11 .u 11 end

else s11 := 11 \n 11 A 11 #(11 A y2 A 11 .u 11 ;

temp := !s11 A transstring 1 form1 A
11

)
11

;

if ltt > 120 then begin tt := 0; s11 ·- 11 \n 11
A

transstring 1 form1 A

11
)

11 end

else s11 := !temp;

!s11 end else 11 (# 11
A y2 A

11
• u 11

A transstring 1 form1 A

11
)

11

(*A table included in a formula should be printed as a new line*)

TABLE(table1) ---> tt := 0; flag:= 1; prinLtable table1

_ ---> raise (Failure
11 theuparameteruofutransstringushouldubeuauformula 11

)

in transstring 0 predi

3. Function latex_print with parameter predi

It prints all formulae, including tables, on Is\'IEX files. The formulae have the

same structure as those of 2 except that all characters and tables are in Is\'IEX

78

Master Thesis- N. Zhou- McMaster- Computing and Software

typesetting. Plain predicates are broken into individual lines of the appropriate

size by LITgX typesetting. In order to control changing lines in tables, we set

the alphabetic characters to the typewriter font where each glyph has the same

width as all others.

let latex_ print predi

let flag = ref 0 in

(* Replace symbols at last in order to count the number of characters the latex

output.*)

let rep st

let tmp ref"" in

let i = ref 0 in

while !i < (String.length st) do

(match st.[!i] with

'!' -+ tmp ·- !tmp A "$\ \forall$"

'@' -+ tmp ·- !tmp A "$\\in$"

'#' -+ tmp ·- !tmp A "$\\exists$"

'$' -+ tmp ·- !tmp A "$\\notin$"

'%' -+ tmp - !tmp A "$\ \neq$"

'<' -+ if !i + 1 < (String .length st)

begin i -
I. + 1· tmp - !tmp A
0 z

'
else tmp - !tmp A "$<$"

'-' tmp !tmp
A

"$\\leq$" -+ -

'>' -+ tmp ·- !tmp A "$>$"

'?' -+ tmp ·- !tmp A "$\\geq$"

'&' -+ tmp ·- !tmp A "$\\wedge$"
,_,

-+ if !i + 1 < (String .length st)

begin i -
I. + 1· tmp - !tmp A
0 z

'
'-' -+ tmp ·- !tmp A "$\\neg$"

'*' -+ tmp ·- !tmp A "$\\times$"

'/' -+ tmp ·- !tmp A "$\\div$"

'{' -+ tmp - !tmp A "\\{"
'}' -+ tmp ·- !tmp A "\\}"

'I' -+ tmp ·- !tmp A "$\\cup$"

79

(\ st.[!i + 1] = '>' then

"$\ \Leftrightarrow$" end

(\ st.[!i + 1] = '>' then

"$\ \Longrightarrow$" end

Master Thesis - N. Zhou- McMaster- Computing and Software

'\001' --+ tmp .- !tmp A "$\\subseteq$"

'\002' --+ tmp .- !tmp A "$\\eire$"

'\003' --+ tmp .- !tmp A "$\\vee$"

c --+ if (c 2': ' 0 ' 1\ c :::::; ' 9 ') V (c 2': ' A ' 1\ c :::::; ' Z ') V

(c2':'a' 1\ c::;'z') V c='.'

then tmp := !tmp A "\\texttt{" A (Char.escaped c) A"}"

else tmp := !tmp A (Char. escaped c));

z := !i + 1

done;

!tmp in

let ree transformlist prec

I [J --+ [J

function

I head :: tail --+ transstring prec head ·· transformlist prec tail

and transset = function

EMPTY --+ if !flag 0 then "\ \{" else "{"

INSERT(term1, term2) --+

(match term1 with

INSERT(t1, t2) --+ transset term1 A "," A transstring 0 term2

EMPTY --+ transset term1 A transstring 0 term2

- -----7 "")

I _ --+ raise

(Failure "theuparameteruof u transsetushouldubeuaupairuof uterms ")

(* Print table on a latex file, the difference from function pretty_ print is that

horizontal and vertical distances for each cell is not computed, the only separate

symbol for a column is a & and for a row is a \hline *)

and prinLtable t1 =

let mh = Array.length t1.headm in

let nh = Array.length t1.headn in

let mb = Array.length t1.body in

let nb = Array.length t1.body.(O) in

let tst = {hdm = Array.create mh "";hdn = Array.create nh "";

bd Array.make_matrix mb nb ""} in

for i = 0 to mh - 1 do

80

Master Thesis- N. Zhou- McMaster- Computing and Software

tst.hdm.(i) +--- transstring 0 tl.headm.(i)

done;

for j = 0 to nh - 1 do

tst.hdn.(j) +--- transstring 0 t1 .headn.(j)

done;

for i = 0 to mb - 1 do

for j = 0 to nb - 1 do

tst. bd. (i). (j) +--- transstring 0 t1. body. (i). (j)

done

done;

(*Compute the default number of characters for m header and body. *)

let compmax = let maxt = ref 0 in

for j = 0 to mh - 1 do

maxt := max !maxt (String.length tst.hdm.(j)) done; !maxt in

let bdefault = if mh = 0 then (75- 5 x nb /2- 3) / nb else if compmax < 15

then (75- 5 x nb/2- 5- compmax)/nb else (60- 5 x nb/2- 5)/nb in

let hdefault = if mh = 0 then 0 else if compmax < 15

then compmax else 15 in

(* compute function return a record matching the structure of res by computing

each element of a tabular formula in terms of string*)

let compute remain default

let temp = ref 1111 in

let left = ref [] in

let col = if (String.length !remain) > default

then default else (String .length ! remain) in

let row = ref 0 in

while (String.length !remain) > default do

row := !row + 1;

let s = ref default in

while !s 2: 0 1\ String.get !remain !s i- ' ' do

s := !s - 1

done;

temp := !remain;

remain :=if !s 2:0 then if !s = (String.length !remain) -1 then 1111

81

Master Thesis- N. Zhou- McMaster- Computing and Software

else String.sub !remain (!s + 1)

((String.length !remain)- (!s)- 1)

else String.sub !remain default

((String .length ! remain) - default);

left := (if !s 2 0 then String.sub !temp 0 Is

else String.sub !temp 0 default) :: !left

done;

if String.length !remain = 0 then (!row, col, List. rev !left)

else (!row + 1, col, List.rev (!remain :: !left)) in

(* This record stores the information of a table, and each element of the table

consists of a triple. The first element of a triple stores the number of lines

of each cell; the second stores the number of characters for each line of each

cell; the third stores the list of strings of each cell, and each string in the list

corresponds to the line to be filled in each cell. *)

let res = { hdmtri = Array.create mh (0, 0, []);

hdntri = Array.create nh (0, 0, []);

bdtri = Array.make_matrix mb nb (0, 0, [])}in

for i = 0 to mh - 1 do

rcs.hdmtri.(i) ;---- compute (ref tst.hdm.(i)) hdefault

done;

for j = 0 to nh - 1 do

rcs.hdntri.(j) ;---- compute (ref tst.hdn.(j)) bdefault

done;

for i = 0 to mb - 1 do

for j = 0 to nb- 1 do

rcs.bdtri.(i).(j) ;---- compute (ref tst.bd.(i).(j)) bdefault

done

done;

(* Compute the number of lines of each row and distance of each column by

computing the maximum number of lines of all elements in the same row and the

maximum distance of all elements in the same colunm, and put those numbers

into two one-dimensional arrays. *)

let rowar = Array.create (mb + 1) 0 in

82

Master Thesis - N. Zhou- McMaster- Computing and Software

let colar = Array.create (nb + 1) 0 in

let fsttri = function I (a,-,_) ----+ a in

let sndtri = function I (-, b, -) ----+ bin

let thdtri = function I (_, _, c) --+ c m

let maxt = ref 0 in

for j = 0 to nh- 1 do maxt ·- max !maxt (fsttri rcs.hdntri.(j)) done;

rowar.(O) +-- !maxt;

let maxt = ref 0 in

fori = 0 to mh -1 do maxt ·- max !maxt (sndtri rcs.hdmtri.(i)) done;

colar.(O) +-- !maxt;

for i = 0 to mb - 1 do

let maxt = ref 0 in

rowar.(i + 1) +--if mh > i then begin

for j = 0 to nb - 1 do

maxt := max !maxt (fsttri rcs.bdtri.(i).(j)) done;

max ! maxt (fsttri res. hdmtri. (i)) end

else begin for j = 0 to nb- 1 do

done;

maxt := max !maxt (fsttri rcs.bdtri.(i).(j)) done;

!maxt end

for j = 0 to nb - 1 do

let maxt = ref 0 in

colar.(j + 1) +-- if nh > j then

begin for i = 0 to mb- 1 do

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done;

max ! maxt (sndtri res. hdntri. (j)) end

else begin for i = 0 to mb- 1 do

maxt := max !maxt (sndtri rcs.bdtri.(i).(j)) done; !maxt end

done;

(* Insert some material in the table preamble *)

let str = ref "\\begin{longtable}{l" in

for i = 0 to nb do

if if= 0 V mh f=Othen str := !str' "cl"

done;

83

Master Thesis- N. Zhou- McMaster- Computing and Software

str := !str A "}\n\ \hline\n";

(* Upper header of a table *)

if nh of- 0 then begin

for rowi = 0 to rowar.(O) - 1 do

if mh # 0 then str := !str A "u&u";

for j = 0 to nb - 2 do

str := !str A (if List.length (thdtri rcs.hdntri.(j)) > rowz

then rep (List. nth (thdtri res. hdntri. (j)) rowi)

else "u") A "u&u"

done;

str : = ! str A (if List .length (thdtri res. hdntri. (nb - 1)) > rowi

then rep (List.nth (thdtri rcs.hdntri.(nb- 1)) rowi)

else "u") A "\ \\ \"

done;

str ·- !str A "\n\ \hline\n"

end;

(* Left header and body of a table *)

for i = 0 to mb - 1 do

for rowi = 0 to rowar.(i + 1)- 1 do

str := !str A (if mh = 0 then "u"

else if List.length (thdtri rcs.hdmtri.(i)) > rowi then

(rep (List.nth (thdtri rcs.hdmtri.(i)) rowi)) A "u&u"

else "u&u");

for j = 0 to nb - 2 do

str : = ! str A (if List .length (thdtri res. bdtri. (i). (j)) > rowz

then rep (List.nth (thdtri rcs.bdtri.(i).(j)) rowi)

else "u") A "u&u"

done;

str := !strA (if List.length (thdtri rcs.bdtri.(i).(nb- 1)) > rowi

then rep (List. nth (thdtri res. bdtri. (i). (nb - 1)) rowi)

else "u") A "\ \\ \";

done;

str := !str A "\n\ \hline\n"

84

Master Thesis- N. Zhou- McMaster- Computing and Software

done;

(* End of a table, set flag before returning to the execution of plain formula.

*)

str := !str A

11
\ \end{longtable}\n 11

;

flag .- 0;

!str

and transstring prec = function

CONST(x) --> string_ of _int x

VAR(x) --> if x = 1111 then 11
\

11
\

1111 else x

VECVAR(x) -> xA 11 = 11

SUM(term1, term2) --> if prec > 9 then
11 (11

A transstring 9 term1 A
11 u+u 11

A transstring 9 term2 A
11

)
11

else transstring 9 terml A

11 u+u 11
A trans string 9 term2

DIFF(term1, term2) --> if prec > 9 then
11

(11
A trans string 9 terml A

11 u-u 11
A transstring 9 term2 A

11
)

11

else transstring 9 term1 A

11 u-u 11
A transstring 9 term2

DELETE(terml, term2) --> if prec > 9 then
11

(11
A transstring 9 terml A

11 u-u 11
A transstring 9 term2 A

11
)

11

else transstring 9 terml A

11 u-u 11
A transstring 9 term2

PROD(terml, term2) --> if !flag = 0 then if prec > 10 then
11

(
11

A transstring 10 terml A
11 u \\ timesu 11

A transstring 10 term2 A
11

)
11

else transstring 10 term1 A

11 u\ \timesu 11
A transstring 10 term2

else if prec > 10 then
11

(
11

A trans string 10 terml A
11 u*u 11

A transstring 10 term2 A
11

)
11

else transstring 10 terml A

11 u*u 11
A transstring 10 term2

QUOT(term1, term2) --> if !flag = 0 then if prec > 10 then
11

(
11

A trans string 10 terml A

11 u \ \di Vu 11
A transstring 10 term2 A

11
)

11

else transstring 10 terml ' 11 u\ \di Vu 11
A transstring 10 term2

else if prec > 10 then
11

(
11

A transstring 10 term1 A "ul u 11
A transstring 10 term2 A

11
)

11

else transstring 10 terml A

11 u/ u 11
A transstring 10 term2

FUN(11 PAIR 11 ,[VAR(s1); VAR(s2)])--> 11
(

11
A sl A

11
,

11
A s2 A

11
)

11

FUN(11 compose",[VAR(s1); VAR(s2)]) -->

85

Master Thesis- N. Zhou- McMaster- Computing and Software

if !flag= 0 then s1 ~ "u\ \circu" ~ s2 else s1 ~ "u\002u" ~ s2

FUN(x, termlist) -+ (String.concat ""

[x;" (";String. concat " , " (transformlist 0 termlist)]) ~ ") "

EMPTY -+ if !flag = 0 then "\ \{\ \}" else "{}"

INSERT(term1, term2) -+ if !flag = 0 then

transset (INSERT(term1, term2)) ~ "\ \}"

else transset (INSERT(term1, term2)) ~ "}"

UNION(term1, term2) -+ if !flag = 0 then if prec > 9 then

" (" ~ transstring 9 term1 ~ "u \\ cupu" ~ transstring 9 term2 ~ ") "

else transstring 9 term1 ~ "u\ \cupu" ~ transstring 9 term2

else if prec > 9 then

" (" ~ transstring 9 term1 ~ "u I u" ~ transstring 9 term2 ~ ") "

else transstring 9 term1 ~ "u I u" ~ transstring 9 term2

SUBSET(term1, term2) -+ if !flag = 0 then if prec > 9 then

"(" ~ transstring 9 term1 ~ "u\ \subsetequ" ~

transstring 9 term2 ~ ") "

else transstring 9 term1 ~ "u\ \subsetequ" ~ transstring 9 term2

else if prec > 9 then

" (" ~ transstring 9 term1 ~ "u \00 1u" ~

transstring 9 term2 ~ ") "

else transstring 9 term1 ~ "u \00 1u" ~ transstring 9 term2

TRUE -+ "TRUE"

FALSE -+ "FALSE"

OP(x,form1) -+ x

EQ(MEMBER(term1, term2), VAR("true")) -+

if !flag = 0 then if prec > 7 then

" (" ~ transstring 7 term1 ~ "u \ \inu" ~trans string 7 term2 ~ ")"

else transstring 7 term1 ~ "u\ \inu" ~ transstring 7 term2

else if prec > 7 then

" (" ~ transstring 7 term1 ~ "u«lu" ~ transstring 7 term2 ~ ") "

else transstring 7 term1 ~ "u«lu" ~ transstring 7 term2

EQ(term1, term2) -+ if prec > 7 then

" (" ~ transstring 7 term1 ~ "u=u" ~ transstring 7 term2 ~ ") "

else transstring 7 term1 ~ "u=u" ~ transstring 7 term2

86

Master Thesis- N. Zhou- McMaster- Computing and Software

I NEQ(MEMBER(term1, term2), VAR(11 true 11))----+ if !flag= 0 then

if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u \\not inu 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u\ \notinu 11
A transstring 7 term2

else if prec > 7 then
11

(11
A transstring 7 term1 A

11 u$u 11
A transstring 7 term2 A

11)
11

else transstring 7 term1 A

11 u$u 11
A transstring 7 term2

NEQ(term1, term2) ----+ if !flag = 0 then if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u \ \nequ 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u \ \nequ 11
A transstring 7 term2

else if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u%u 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u%u 11
A transstring 7 term2

LT(term1, term2) ----+ if !flag = 0 then if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u<u 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1A 11 u<u 11 Atransstring 7 term2

else if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u<u 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u<u 11
A transstring 7 term2

LE (term1 , term2) ----+ if !flag = 0 then if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u \ \lequ 11

A transstring 7 term2 A

11
)

11

else transstring 7 term1A

11 u\\lequ 11
A transstring 7 term2

else if prec > 7 then
11

(
11

A transstring 7 term1 A
11
u- u

11
A transstring 7 term2 A

11
)

11

else transstring 7 term1 A

11 u-u 11
A trans string 7 term2

GT(term1, term2) ----+ if !flag = 0 then if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u>u 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u>u 11
A transstring 7 term2

else if prec > 7 then 11
(

11
A transstring 7 term1 A

11 u>u 11
A

transstring 7 term2 A

11
)

11

else transstring 7 term1 A

11 u>u 11
A transstring 7 term2

G E (term1 , term2) ----+ if !flag = 0 then if prec > 7 then
11

(
11

A transstring 7 term1 A
11 u \ \gequ 11

A transstring 7 term2 A
11

)
11

else transstring 7 term1 A

11 u \ \gequ" A transstring 7 term2

87

Master Thesis- N. Zhou- McMaster- Computing and Software

else if prec > 7 then

" (" ' transstring 7 terml ' "u? u" 'transstring 7 term2 ' ") "

else transstring 7 terml '" u? u" 'trans string 7 term2

AND(Jormlist) -+ if !flag = 0 then if prec > 4 then

" ("' (String. con cat "u \\ wedgeu" (transformlist 4 formlist))' ") "

else String. con cat "u \\ wedgeu" (transformlist 4 formlist)

else if prec > 4 then

" ("' (String. concat "u&u" (transformlist 4 formlist)) ' ") "

else String. concat "u&u" (transformlist 4 formlist)

OR(formlist) -+ if !flag = 0 then if prec > 3 then

" (" ' (String. concat "u \\ veeu 11
(transformlist 3 formlist))' ") "

else String. concat 11 u \\ veeu" (transformlist 3 formlist)

else if prec > 3 then

" (" ' (String. con cat "u \ 003u" (transformlist 3 formlist)) ' ") "

else String.concat "u\003u" (transformlist 3 formlist)

IMPLIES(Jorml, form2) -+

if !flag = 1 then begin space := !space ' "uu";

lets = "\n"' !space' "(IMPLIES"'

transstring forml '"u" 'transstring form2' ")" in

space := String.sub !space 0 (String.length !space- 2); s

end else begin

flag := 1; let s = !space ' "(IMPLIES"'

transstring forml '"u"'transstring form2'")" ins end

IFF(Jorml, form2) -+

if !flag = 1 then begin space := !space ' "uu";

let s = "\n"' !space ' "(IFF" '

transstring forml 'transstring form2' ")" in

space := String.sub !space 0 (String.length !space- 2); s end

else begin flag := 1; let s = !space ' "(IFF" '

transstring forml 'transstring form2' ")" in s end

NOT(Jormi) -+ if !flag = 0 then

if prec > 5 then "(\\neg" ' transstring 5 formi ' ")"

else "\\neg" ' transstring 5 formi

else

88

Master Thesis - N. Zhou- McMaster- Computing and Software

if prec > 5 then 11
(-

11
A transstring 5 forml A

11
)

11

else 11
-

11
A transstring 5 forml

FORALL(y,form1) --+

(* Shell V AR() of expression V AR(m), leaving m to be concatenated into a

string of variables*)

let shell x ys = match x with

I VAR(xx)--+ XXA 11 , 11 Ays

I - -+ II' II

in let y 1 = List .fold_ right shell y 11 11

in let y2 = if y1 = 1111 then 1111 else

String.sub yl 0 ((String.length y1)- 1) in

if !flag = 0 then
11 (\ \f orallu 11

A y2 A
11 • u 11

A transstring 1 forml A
11) 11

else 11 (! u 11
A y2 A

11
• u 11

A transstring 1 forml A
11)

11

EXISTS(y,form1) --+

let shell x ys = match x with

I VAR(xx)--+ xx A
11

,
11

A ys

I - ---7 ","

in let y1 = List.fold_right shell y 1111

in let y2 = if yl = 1111 then 1111 else

String.sub yl 0 ((String.length y1)- 1) in

if !flag = 0 then
11
(\ \existSu 11

A y2 A
11 .u 11

A transstring 1 forml A
11

)
11

else 11 (#u 11
A y2 A

11 • u 11
A transstring 1 forml A

11)
11

TABLE(table1) --+ flag:= 1; 11 $ 11
A prinLtable tablet A

11 $u 11

_ --+ razse

(Failure 11 theuparameteruofutransstringushouldubeuauformula1 11
) in

(*Before calling transstring function, insert some material in the latex preamble*)
11 \\documentclass{article}\n\\usepackage{longtable}\n11

A

11
\ \begin{ document} \n$u 11

A(transstring 0 predir 11 $\n 11
A

11
\ \end{ document } 11

89

Master Thesis- N. Zhou- McMaster- Computing and Software

4.5.4 Theorem Proving

It is the main part of our program which contains the following functions:

1. Function valid pred checks if the given predicate is valid or not by invoking

Simplify to prove it.

let valid pred

try

(* Open the named file for writting *)

let outchannel =
open_ouLgen [Open_creat; Open_trunc; Open_wronly] 6448 "outfile"

and outfile = prints pred 1111 in

(* Write the string on the given output channel *)

outpuLstring outchannel (out file);

(* Flush the buffer associated with the given output channel, performing all

pending writes on that channel *)

flush outchannel;

(* Close the given channel, flushing all buffered write operations *)

close_ out outchannel;

(* Unix system call, the -nose options causes Simplify to simply output valid

or invalid, if the argument -ax file is given, Simplify looks for file. ax. Set the

AXIOMDIR environment variable in .bash_profile, Simplify looks for that file

in the given directory. *)

if Unix .system ("Simplifyu-axumyaxiomu-noscuoutf ileu>uabc")

= WEXITED 127

then exit 0;

(* Open the named file for reading *)

let inchannel = open_in_gen [Open_rdonly] 6448 "abc"

(* Read characters from the given input channel, until a newline character is

encountered *)

90

Master Thesis- N. Zhou- McMaster- Computing and Software

in let infile = inpuLline inchannel

(*The output invalid contains a character 'n' which is not in output valid, this

function is used to check if the given Simplify formula is valid or invalid *)

in --, (String. contains in file 'n')

(* If encountering the end of file, terminate program normally *)

with End_ of _file --+ exit 0

2. Some auxiliary functions

Since a variable x in its final state is expressed by xl, the functions below are

used to replace x by xl in its context:

(a) Function replace (ul, u2) t

It replaces each occurrence of ul in predicate t by u2. Specially, if V AR(x)

occurs in t and ul = VECVAR(x), it is replaced by u2. This function

could be used to replace a variable in the left header of a vector table by

its expressions in body matrix.

let rec replace (ul , u2) t =
match t with

VAR(x) --+ if VAR(x) = ul V VECVAR(x) = ul then u2 else VAR(x)

VECVAR(x) --+ if VECVAR(x) = ul then u2 else VECVAR(x)

CONST(x) --+ CONST(x)

DELETE(terml, term2) --+

DELETE(replace (ul, u2) terml, replace (ul, u2) term2)

SUM(terml, term2) --+

SUM (replace (ul , u2) terml , replace (ul , u2) term2)

DIFF(terml, term2)--+

DIFF(replace (ul, u2) terml, replace (ul, u2) term2)

PROD(terml, term2)--+

PROD(replace (ul,u2) terml,replace (ul,u2) term2)

QUOT(terml, term2)--+

91

Master Thesis - N. Zhou- McMaster- Computing and Software

QUOT(replace (u1, u2) term1, replace (u1, u2) term2)

FUN(x, termlist) --+

FUN(x, List.map (replace (u1, u2)) termlist)

EMPTY --+ EMPTY

INSERT(term1, term2) --+

INSERT (replace (u1, u2) term1 , replace (u1, u2) term2)

MEMBER(term1, term2) --+

MEMBER(replace (u1,u2) term1, replace (u1,u2) term2)

UNION(term1, term2) --+

UNION(replace (u1,u2) term1, replace (u1,u2) term2)

SUBSET(term1, term2) --+

SUBSET(replace (u1, u2) term1, replace (u1, u2) term2)

TRUE --+ TRUE

FALSE --+ FALSE

EQ(term1, term2) --+

EQ (replace (u1, u2) term1 , replace (u1 , u2) term2)

NEQ(term1, term2) --+

NEQ(replace (u1, u2) term1, replace (u1, u2) term2)

LT(term1, term2) --+

LT(replace (u1, u2) term1, replace (u1, u2) term2)

LE(term1, term2) --+

LE (replace (u1, u2) term1 , replace (u1 , u2) term2)

GT(term1, term2) --+

G T (replace (u1, u2) term1 , replace (u1 , u2) term2)

GE(term1, term2) --+

G E (replace (u1, u2) term1 , replace (u1 , u2) term2)

OP(x, form1) --+ OP(x, replace (u1, u2) form1)

AND(formlist) --+ AND(List. map (replace (u1, u2)) formlist)

OR(formlist) --+ OR(List.map (replace (u1, u2)) formlist)

IMPLIES(form1, form2) --+

IMPLIES(replace (u1, u2) form1, replace (u1, u2) form2)

IFF(form1, form2) --+

IFF(replace (u1, u2) form1, replace (u1, u2) form2)

NOT(form1) --+ NOT(replace (u1, u2) form1)

92

Master Thesis- N. Zhou- McMaster- Computing and Software

FORALL(x,Jorm1) --t

let rec replaces (u1 , u2) s

match s with

[l --t [l
I hd :: tail --t replace (u1, u2) hd :: replaces (u1, u2) tail

in FORALL(replaces (u1, u2) x, replace (u1, u2) form1)

EXISTS (x ,Jorm1) --t

let rec replaces (u1 , u2) s

match s with

[l --t [l
I hd :: tail --t replace (u1 , u2) hd :: replaces (u1 , u2) tail

in EXISTS(replaces (u1, u2) x, replace (u1, u2) form1)

TABLE (table1) --t replace (u1 , u2) (predtable table1)

(b) Function reformlist pred varl

It concatenates each variable in the variable list varl with the character

'1' and generates a new predicate from pred by replacing each occurrence

of the variable which belongs to varl with the concatenated one.

let rec reformlist pred varl =
match varl with

[] --t pred

VAR(hd) :: tail--t letpred1 =(replace (VAR(hd), VAR(hd."1")) pred)

in reformlist pred1 tail

VECVAR(hd) :: tail --t let pred1 =(replace (VECVAR(hd),

VECVAR(hd."1")) pred) in reformlist pred1 tail

I _ --t pred

(c) Function replacelist predlist

It concatenates each variable in the variable list predlist with the character

'1' and generates a new variable list from predlist by replacing each variable

with the concatenated one.

93

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

let rec replacelist predlist

match predlist with

[l ---7 [l
I VAR(hd) :: tail ---+ VAR(hd' "1 ") :: replacelist tail

I - ---+ [J

3. Validation functions of side conditions

Some theorems require tables to have particular properties, we represent those

through functions that return if a table has these properties or not. All vectors

below are represented by one dimensional arrays and an Ocaml code segment

is followed by each interpretation.

(a) Function disjoint pv checks if vector pv is disjoint.

let disjoint pv =

let len= Array.length pv in

let reference = ref true in

for i = 0 to len - 1 do

for j = 0 to len - 1 do

if (i =/= j) 1\ (valid (AND([pv.(i);pv.(j)]))) then

reference := false

done

done;

!reference

(b) Function jointdisjoint (pv, qv)

It checks if pv and qv are jointly disjoint.

94

Master Thesis- N. Zhou- McMaster- Computing and Software

let jointdisjoint (pv, qv) =

let lenpv = Array.length pv in

let lenqv = Array.length qv in

let reference = ref true in

if lenpv = 0 then reference ·- disjoint qv;

if lenqv = 0 then reference := disjoint pv;

for i = 0 to lenpv - 1 do

for j = 0 to lenqv - 1 do

for k = 0 to lenpv - 1 do

for l = 0 to lenqv - 1 do

if ((i t= k) v (j t= l)) 1\

(valid (AND([pv.(i); qv.(j);pv.(k); qv.(l)]))) then

reference ·- false

done

done

done

done;

!reference

(c) Function coversatleast pv c

It checks if vector pv covers at least c.

let coversatleast pv c =

let len = Array.length pv in

let reference = ref [FALSE] in

for i = 0 to len - 1 do

reference ·- pv.(i) :: !reference

done;

len= 0 V valid (IMPLIES(c, OR(!reference)))

(d) Function covers pv c

It checks if vector pv covers exactly c.

95

Master Thesis- N. Zhou- McMaster- Computing and Software

let covers pv c =
let len = Array.length pv in

let reference = ref [FALSE] in

for i = 0 to len - 1 do

reference ·- pv.(i) :: !reference

done;

len= 0 V valid (IFF(c, OR(!reference)))

(e) Function total pv

It checks if vector pv is total.

let total pv =

covers pv TRUE

(f) Function partition pv c

It checks if vector pv partitions c.

let partition pv c =

disjoint pv 1\ covers pv c

(g) Function injectiver r vls

Since a relation between elements of types V L and V LR is a function of

type V L-+ V LR-+ Bool, lists vl and vlr are used to represent types V L

and V LR of relation r respectively. It checks if relation r between elements

of types V L and V LR is injective.

96

Master Thesis- N. Zhou- McMaster- Computing and Software

let injectiver r (vl, vlr) =
let rl = reformlist r vl

in let rec identity varlist

match varlist with

[]----+ TRUE

VAR(hd) :: tail ----+ AND([EQ(VAR(hd' "1"), VAR(hd));

identity tail])

_ ----+ FALSE

in valid (IMPLIES(EXISTS(vlr, AND([r; rl])), identity vl))

(h) Function totalr r vls

It checks if relation r between elements of types V L and V LA is total.

let totalr r vls = match vls with

(vl, vla) ----+ valid (EXISTS(vla, r))

4. Implementation of theorems

This part is introduced in Chapter 5.

5. Case study and examples

This part is illustrated in Chapter 6, 7, and 8 separately.

97

Master Thesis- N. Zhou- McMaster- Computing and Software

98

Chapter 5

Implementation of Theorems

5.1 Principle of Proof

We divide our theorem implementations into four kinds.

1. 'fransforming tables that turn out to be useful intermediate steps when com

bining larger tables.

Each goal is a series of logical and boolean operations on elements of two tables

and comes directly from applying a theorem.

2. Operations on tabular predicates.

Each goal is a logical operation between a tabular predicate and a plain predicate

or two tabular predicates.

3. Precondition or weakest precondition.

In rare cases, we will use the result directly from applying a theorem as our goal.

A simpler formula which is equivalent to the result is preferred. Therefore, two

kinds of parameters are included in each function, one specifies the information

to be conveyed on the conditional part of a theorem and another one is our goal

99

Master Thesis- N. Zhou- McMaster- Computing and Software

formula. A result is first constructed from the information provided and the

theorems applied. This result is then compared with our goal formula by {::}

operator, that is, a new formula is constructed. If Simplify can prove our new

formula, our goal is valid.

4. Tabular verification and refinement.

Each theorem is considered as an alternative statement. It is implemented by

taking variables in if part as parameters.

A function definition in OCaml which implement a theorem consists of a self

explaining function name and some parameters in their own formats. An error will

be raised when a calling function pass parameters which do not match the requiring

format. If a theorem has side conditions, the validation functions of its side conditions

will be executed before its implementation. Some functions may implement two or

more theorems together since our goals may require applying a list of theorems in a

certain order without thinking of intermediate formulae.

In the following sections, we illustrate the implementation for some particular

theorems. Not all the theorems are implemented in our project because of space

limit, others can be written in a similar way.

5.2 Implementation of Tabular Transformation

• Implementation of Theorem 2.8(a)

Function rtea implements Theorem 2.8 (replacing table elements)(a) by taking

a pair of tables (TABLE(tl), TABLE(t2)) as its parameter. It is required that

tl and t2 have the same structures; if not, an error will be raised.

100

Master Thesis- N. Zhou- McMaster- Computing and Software

let rtea = function

(TABLE(t1), TABLE(t2)) --+

let pt = ref true in

let mhl = Array.length tl.headm and mh2 = Array.length t2.headm in

let nhl = Array.length tl.headn and nh2 = Array.length t2.headn in

let mbl = Array.length tl.body and mb2 = Array.length t2.body in

let nbl = Array.length tl.body.(O) and nb2 = Array.length t2.body.(O) in

if mhl = mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2 then begin

for i = 0 to mhl - 1 do

pt := !pt 1\ valid (IMPLIES(tl.headm.(i), t2.headm.(i)))

done;

for j = 0 to nhl - 1 do

pt := !pt 1\ valid (IMPLIES(tl.headn.(j), t2.headn.(j)))

done;

for i = 0 to mbl - 1 do

for j = 0 to nb 1 - 1 do

if tl.headm -=1 [Ill 1\ tl.headn -=1 [Ill then

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); tl.headn.(j)]),

IFF(t1. body.(i). (j), t2. body.(i) .(j))))

else if tl.headm = [Ill 1\ tl.headn -=1 [Ill then

pt := !pt 1\ valid (IMPLIES(AND([TRUE; tl.headn.(j)]),

IFF(tl. body.(i).(j), t2. body.(i) .(j))))

else if tl.headm -=1 [Ill 1\ tl.headn = [Ill then

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); TRUE]),

IFF(tl. body.(i).(j), t2 .body.(i).(j))))

else

done

pt := !pt 1\ valid (IMPLIES(AND([TRUE; TRUE]),

IFF (t1 . body. (i) . (j) , t2. body. (i) . (j))))

done; !pt end

else raise (Failure "Twoutabularupredicatesuhaveu

uuuuudifferentustructures")

_ --+ raise (Failure "theufirstuparameteruofufunction

uuurteaushouldubeuaupairuofupredicatesuinutabularuform")

101

Master Thesis- N. Zhou- McMaster- Computing and Software

• Implementation of Theorem 2.9

Function sjrc ifrow from1 from2 is a procedure to implement Theorem 2.9 (split

ting and joining rows and columns). It takes ifrow, from1, from2, and a pair

of tables (TABLE(tl), TABLE(t2)) as parameters. ifrow is a boolean value

representing splitting and joining a row if true and splitting and joining a col

umn if false. The positions of rows (columns) to be joined in table t2 are

stored in parameters froml and from2 where from1 < from2. The posi

tion of row(column) to be split ted in table t1 is equal to froml. Positions are

counted from number 0.

let sjrc ifrow from1 from2 = function

(TABLE(t1), TABLE(t2)) ----+

let pt = ref true in

let mhi = Array.length t1.headm in

let nh1 = Array.length t1.headn in

let mb1 = Array.length tl.body and mb2 = Array.length t2.body in

let nb1 = Array.length t1.body.(O) and nb2 = Array.length t2.body.(O) in

if ((ifrow 1\ mb2 = mb1 + 1 1\ from2 < mb2 1\ from1 < from2) V

((• ifrow) 1\ nb2 = nb1 + 1 1\ from2 < nb2 1\ from1 < from2))

then begin

for i = 0 to mh1 - 1 do

if ifrow 1\ i < from1 then

pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i)))

else if ifrow 1\ i = from1 then

pt := !pt 1\ valid (IFF(ti.headm.(i),

0 R ([t2. headm. (!rami) ; t2. headm. (Jrom2)])))

else if ifrow 1\ i > from1 1\ i < from2 then

pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i)))

else if ifrow 1\ i = from2 then

pt := !pt

else if ifrow 1\ i > from2 then

pt := !pt 1\ valid (IFF(ti.headm.(i), t2.headm.(i + 1)))

102

Master Thesis- N. Zhou- McMaster- Computing and Software

else pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i)))

done;

for j = 0 to nhl - 1 do

if ifrow =false 1\ j < froml then

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j)))

else if ifrow =false 1\ j = froml then

pt := !pt 1\ valid (IFF(tl.headn.(j),

OR([t2.headn.(Jrom1); t2.headn.(Jrom2)])))

else if ifrow =false 1\ j > froml 1\ j < from2 then

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j)))

else if ifrow =false 1\ j = from2 then

pt := !pt

else if ifrow =false 1\ j > from2 then

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j + 1)))

else pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j)))

done;

for i = 0 to mbl - 1 do

for j = 0 to nbl - 1 do

if ifrow 1\ i < froml then

pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j)))

else if ifrow 1\ i = froml then

pt := !pt 1\ valid (IFF(tl.body.(i).(j),

OR([t2 .body.(Jroml).(j); t2. body.(Jrom2).(j)])))

else if ifrow 1\ i > froml 1\ i < from2 then

pt := !pt 1\ valid (JFF(tl.body.(i).(j), t2.body.(i).(j)))

else if ifrow 1\ i = from2 then

pt := !pt

else if ifrow 1\ i > from2 then

pt := !pt 1\ valid (JFF(tl.body.(i).(j), t2.body.(i + 1).(j)))
else if ifrow =false 1\ j < froml then

pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j)))

else if ifrow =false 1\ j = froml then

pt := !pt 1\ valid (IFF(tl.body.(i).(j),

OR([t2 .body.(i).(Jroml); t2 .body.(i).(Jrom2)])))

103

Master Thesis - N. Zhou- McMaster- Computing and Software

else if ifrow =false 1\ j > from1 1\ j < from2 then

pt := !pt 1\ valid (IFF(t1.body.(i).(j), t2.body.(i).(j)))

else if ifrow =false 1\ j = from2 then

pt := !pt

else pt := !pt 1\ valid (IFF(tl.body.(i).(j), t2.body.(i).(j + 1)))

done

done; !pt

end else raise (Failure "Twoutableustructuresuorutheuposi tionsufor

uusplittinguandujoiningudounotufollowutheurequirement")

_ --> raise (Failure "theufourthuparameteruofufunctionusjrc

uuuushouldubeuaupairuofupredicatesuinutabularuform")

5.3 Implementation of Operations on Tabular Pred-

icates

• Implementation of Theorem 3.4(a)

Function ptimpa1 t s is the implementation of Theorem 3.4 (predicate-table

implication)(a) where t = TABLE(t1) and sis a plain predicate.

let ptimpa1 t s = match t with

TABLE(t1) --.

let pt = ref TRUE in

let pt1 = ref true in

for i = 0 to (Array.length tl.body) - 1 do

for j = 0 to (Array.length tl.body.(O)) - 1 do

if tl.headm #- [Ill 1\ t1.headn #- [Ill then

pt := AND([tl.headm.(i); tl.headn.(j); tl.body.(i).(j)])

else if t1 .headm = [Ill 1\ tl.headn #- [Ill then

pt := AND([t1.headn.(j); tl.body.(i).(j)])

else if t1 .headm #- [Ill 1\ t1.headn = [Ill then

pt := AND([t1.headm.(i); tl.body.(i).(j)])

104

Master Thesis- N. Zhou- McMaster- Computing and Software

else

pt := tl.body.(i).(j)

done;

pt1 := valid (IMPLIES(!pt,s)) 1\ !ptl

done;

!pt1

_ ----t raise (Failure "theufirstuparameteruofufunctionuptimpa1

uuuuushouldubeuau table")

• Implementation of Theorem 3.4(c)

Function ptimpc t s is the implementation of theorem 3.4 (Predicate-Table Im

plication) (c). It takes the same parameter as function ptimpal. It has side

condition that headers of table t1 covers s. The side condition is checked before

executing theorem proving. An error will be raised if it is not satisfied.

let ptimpc t s = match t with

TABLE(t1) ----t

if' ((covers tl.headm s) 1\ (covers tl.headn s)) then raise (Failure

"theusideuconditionsuofutheoremu3. 4uareunotusatisfied");

let pt = ref TRUE in

let pt1 = ref true in

for i = 0 to (Array.length tl.body) - 1 do

for j = 0 to (Array.length tl.body.(O)) - 1 do

if tl.headm -/= [Ill 1\ tl.headn -/= [Ill then

pt := AND([tl.headm.(i); tl.headn.(j); tl.body.(i).(j)])

else if tl.headm = [Ill 1\ tl.headn -/= [Ill then

pt := AND([tl.headn.(j); tl.body.(i).(j)])

else if tl.headm -/= [Ill 1\ tl.headn = [Ill then

pt .- AND([tl.headm.(i); tl.body.(i).(j)])

else

pt := tl.body.(i).(j)

done;

pt1 := valid (IMPLIES(s, !pt)) 1\ !ptl

105

Master Thesis- N. Zhou- McMaster- Computing and Software

done;

!ptl

--7 raise (Failure "theufirstuparameteruofufunctionuptimpcu

uuuushouldubeuautable")

5.4 Proof of Precondition and Weakest Precondi-

tion

• Proof of Precondition

Suppose pres is our stated precondition for operation S, and pre S is derived

precondition from program statements. If pres ¢:;> pre S is valid, then our

conjecture is proved. A statement can be represented by a formula (a relation

between initial and final state spaces) and a list of variables of the initial state

space.

type statement ST of form x form list

Function pre b p is defined where p is a procedure of type statement, b is our

stated precondition of procedure p.

let pre b p =

match p with

ST(op, vl) ----->

let vl1 = replacelist vl

in let pred = IFF(b, (EXISTS(vl1, op)))

in valid pred

• Proof of Precondition with Tabular Predicates

106

Master Thesis - N. Zhou- McMaster- Computing and Software

Similarly, if a procedure p is a tabular predicate, function pret b p is called to

derive its precondition.

let pret b p = match p with

ST(TABLE(t1), vl) ----+

let pt = ref TRUE in

let pt1 = ref true in

let vl1 = replacelist vl in

fori = 0 to (Array.length t1.body) - 1 do

for j = 0 to (Array.length t1.body.(O)) - 1 do

pt := EXISTS(vl1, tl.body.(i).(j));

pt1 := valid (IFF(b, !pt)) A !pt1

done;

done;

!ptl

_ ----+ raise (Failure "theuseconduparameteruofufunctionupretu

uuuushouldubeuaupairuofuautableuanduauvariableulist")

• Proof of Weakest Precondition

In our implementation of wp b p c, p is a program of type statement, c is

the postcondition of p. We justify that b is the weakest precondition for p to

establish c.

let wp b p c

match p with

ST(op, vl) ----+

let c1 = reformlist c vl

in let pred = IFF(b, IMPLIES(op, c1))

in valid pred

• Implementation of Theorem 5.4

107

Master Thesis - N. Zhou- McMaster- Computing and Software

Function wpt b p c is the implementation of Theorem 5.4 (Weakest Precon-

dition with Predicates)(a). It is different from wp b p c in that operation

p = ST(T ABLE(t1), vl) is in tabular form. It has side condition that headers

of table t1 are total and disjoint.

let wpt b p c = match p with

ST(TABLE(t1), vl) --+

if -, ((total t1 . headm) 1\ (total t1 . headn) 1\

(jointdisjoint (tl.headm, tl.headn))) then raise (Failure

"theusideucondi t ionsuofu theoremu5. 4uareunotusat isf ied");

let pt = ref TRUE in

let pt1 = ref true in

let c1 = reformlist c vl in

fori = 0 to (Array.length t1.body) - 1 do

for j = 0 to (Array.length tl.body.(O)) - 1 do

pt := IMPLIES(t1.body.(i).(j), c1);

pt1 := valid (IFF(b,!pt))

done;

done;

!pt1

_ --+ raise (Failure "theuseconduparameteruofufunctionuwptu

uuuushouldubeuaupairuofuautableuanduauvariableulist")

5.5 Implementation of Verification with Predicates

Theorem 5.5 (Tabular Verification with Predicates) does not have the side condi-

tions of totality and disjointness of the headers and does not even require the table

to be in standard form. Hence it can always be used to verify that a tabular relation

under a given precondition establishes a given postcondition. A special application

of it is to verify that an invariant is preserved by an operation in tabular form. Al-

108

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

ternatively we can verify the invariant by first deriving the weakest precondition for

operation to establish the invariant and then showing in a second step that the invari-

ant implies the weakest precondition. This again results in proof conditions that are

identical to those by applying Theorem 5.5 and then eliminating the primed variables

with the one-point rule.

Our tool will automatically create proof obligation of Theorem 5.5, one for each

body element, with functional program tvp b p c. Parameter pis the specification for

an operation of type statement, consisting of a characteristic predicate relation in tab-

ular form and the domain of this relation represented by a list structure; parameters

b and c are the precondition and postcondition of p respectively.

let tvp b p c = match p with

ST(TABLE(t1), vl) ---.

let pt = ref TRUE in

let pt1 = ref true in

let c1 = reformlist c vl in

for i = 0 to (Array.length t1.body) - 1 do

for j = 0 to (Array.length t1.body.(O)) - 1 do

if t1.headm -=/= [Ill 1\ t1.headn -=/= [Ill then

pt := AND([b; t1.headm.(i); t1.headn.(j); t1.body.(i).(j)])

else if t1.headm = [Ill 1\ t1.headn -=/= [Ill then

pt := AND([b; TRUE; t1.headn.(j); t1.body.(i).(j)])

else if t1.headm -=/= [Ill 1\ t1 .headn = [Ill then

pt AND([b; t1.headm.(i); TRUE; t1.body.(i).(j)])

else

pt := AND([b; TRUE; TRUE; t1.body.(i).(j)]);

pt1 := valid (IMPLIES(!pt, c1)) 1\ !pt1

done;

done;

!pt1

I _ ---. raise (Failure "theuseconduparameteruofufunctionutvpu

109

Master Thesis- N. Zhou- McMaster- Computing and Software

A variation of Theorem 5.5 verifies the correctness of a program in form of plain

predicate relation. Its implementation vp b p c takes the same parameter as the

function tvp b p c except that pis ST(op, vl) instead of ST(T ABLE(t1), vl).

let vp b p c = match p with ST(op, vl) -+

let c1 = reformlist c vl in valid (IMPLIES(AND([b; op]), c1))

5.6 Implementation of Refinement

5.6.1 Implementation of Algorithmic Refinement

Specifications can be transformed into more concrete or more abstract ones, where

either the concrete or the abstract or both are given in tabular form. In algorithmic

refinement, both specifications are over the same state space. A new data type

RE is created to combine the concrete specification and abstract specification in

terms of their statement type. Although both specifications have the same set of

variables, they have to be listed to show their integrity. Theorem 7.1 (Refining to

Table) is implemented by function rtt p where p represents the concrete and abstract

specifications of type RE.

let rtt p = match p with

RE(ST(TABLE(t1), vl), ST(TABLE(t2), vlr)) -+

let pt = ref true in

let mhl = Array.length tl.headm and mh2 = Array.length t2.headm in

let nhl = Array.length tl.headn and nh2 = Array.length t2.headn in

let mbl = Array.length tl.body and mb2 = Array.length t2.body in

let nbl = Array.length tl.body.(O) and nb2 = Array.length t2.body.(O) in

if mhl mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2 then begin

for i = 0 to mhl - 1 do

110

Master Thesis- N. Zhou- McMaster- Computing and Software

pt := !pt 1\ valid (IFF(tl.headm.(i), t2.headm.(i)));

done;

for j = 0 to nh1 - 1 do

pt := !pt 1\ valid (IFF(tl.headn.(j), t2.headn.(j)));

done;

for i = 0 to mb1 - 1 do

for j = 0 to nb1 - 1 do

pt := !pt 1\ valid (IMPLIES(AND([tl.headm.(i); tl.headn.(j);

tl.body.(i).(j)]), t2.body.(i).(j)));

done

done; !pt end

else raise (Failure "Twoutabularupredicatsuforualgori thmicu

uuuurefinementuhaveudifferentustructures")

_ ----+ raise (Failure "theuparameteruofufunctionurtt

uuuushouldubeuaupairuofustatementsuinutabularuform")

5.6.2 Implementation of Data Refinement

• Implementation of Theorem 6.1 and Theorem 6.2 in one Function

Encoding Q <:::;; P l R is sound if R is injective; decoding P j R <:::;; Q is sound if

R is total.

As encoding and decoding differ only in the restriction of R, we define a func-

tion drpp p r flag to implement coding operation with parameter flag = 0

representing an encoding validation and flag = 1 representing a decoding val-

idation. Parameter p is specifications of type RE; r is the coding relation in

plain predicate form.

let drpp p r flag = match p with

RE(ST(op1, vl), ST(op2, vlr)) ----+

let vl1 = replacelist vl in

let r1 = reformlist r (vl@vlr) in

111

Master Thesis - N. Zhou- McMaster- Computing and Software

if flag = 0 then

injectiver r (vl, vlr) 1\

valid (IMPLIES(op2, EXISTS(vl@vll, AND([r; op1; r1]))))

else

totalr r (vl, vlr) 1\

valid (IMPLIES(EXISTS(vl@vll, AND([r; op1; r1])), op2))

• Implementation of Theorem 7.4(b) and 7.l(b) in one Function

Specifically, we can push these three refinement operators into the cells of tables

like we do for other relational operators. In this section, we illustrate the use of

Theorem 7.4(b) for a data abstraction that reduces the state space and theorem

7.1 (b) for a algorithmic abstraction that reduces the non-determinism in one

function.

In first order logic, {::} is used to denote equivalent predicate(e.g. bv and bv'

are equivalent iff bv {::} bv'). The symbol is also extended to relations rep

resented by boolean functions (e.g. let BV, BV' : X --7 Y --7 Bool and

BVxy = bv,BV'xy = bv', BV,BV' are equivalent iff bv {::} bv' for any x,y). A

relation or matrix can be replaced by its equivalent relation or matrix within

any formula or tabular expression. Given two operations in standard form and

their abstraction relation by

P 1 xv xv'

If

(::lxv · r 1\ cv1) {::} cv2

(::lxv · r 1\ bv1) {::} bv2

cv2
P2 yv yv' = --+----

- bv2 1\ cv2 1\ (::lxv, xv' · r 1\ pm1 1\ r') =} pm2

112

R xv yv = r

Master Thesis - N. Zhou- McMaster- Computing and Software

To prove the above conclusion, we start from the third condition and a logic

rule, say a 1\ b =? a for any a, b:

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? pm2

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? bv2 1\ cv2

==} < < if a =? b, a =? c then a =? b 1\ c > >

bv2 1\ cv2 1\ (3xv, xv' · r 1\ pm1 1\ r') =? bv2 1\ cv2 1\ pm2

< < condition 1 and 2 > >

(3xv · r 1\ bv1) 1\ (3xv · r 1\ cvl) 1\ (3xv, xv' · r l\pm1 1\ r') =? bv2 1\ cv2 l\pm2

< < definition of tabular predicate > >

(
-----------+----3_x_v __ ·_r_l\ __ cv_l _____) =? (

3xv · r 1\ bv1 3xv, xv' · r 1\ pm1 1\ r'

==} << Theorem 7.4(b) and transitivity of=?>>

(P1 l R) yv yv' =? (cv
2

)

bv2 pm2

< < definition of P2 yv yv' > >

(P1 l R) yv yv' =? P2 yv yv'

< < any yv, yv' and definition of ~ > >

The validation of such an abstraction is defined by function drpb p r where p

is a pair of operations representing the concrete specification (H) and abstract

specification (P2) in terms of refinement datatype RE, r is the abstraction

relation (R) between two specifications.

let drpb p r = match p with

RE(ST(TABLE(t1), vl), ST(TABLE(t2), vlr)) --.

let pt = ref true in

let vl1 = replacelist vl in

113

Master Thesis - N. Zhou- McMaster- Computing and Software

let r1 = reformlist r (vl@vlr) in

let mh1 = Array.length t1.headm and mh2 = Array.length t2.headm

in let nh1 = Array.length t1.headn and nh2 = Array.length t2.headn

in let mb1 = Array.length t1.body and mb2 = Array.length t2.body in

let nb1 = Array.length t1.body.(O) and nb2 = Array.length t2.body.(O)

in if mh1 = mh2 1\ nh1 = nh2 1\ mb1 = mb2 1\ nb1 = nb2

then begin

for i = 0 to mh1 - 1 do

pt := !pt (\

valid (IFF(EXISTS(vl, AND([r; t1.headm.(i)])), t2.headm.(i)))
done;

for j = 0 to nh1 - 1 do

pt := !pt (\

valid (IFF(EXISTS(vl, AND([r; t1.headn.(j)])), t2.headn.(j)))

done;

for i = 0 to mb1 - 1 do

for j = 0 to nb 1 - 1 do

pt := !pt 1\ totalr r (vl, vlr) 1\ valid (IMPLIES(AND

([t2.headm.(i); EXISTS(vl@vl1, AND([r; t1.body.(i).(j);

r1])); t2 .headn. (j)]), t2. body. (i) .(j)))

done

done; ! pt end

else raise (Failure "Twoutabularupredicatesuforudata

uuuuabstractionuhaveudifferentustructures")

_ ---+ raise (Failure "theufirstuparameteruofufunctionudrpb

uuuushouldubeuaupairuofustatementsuinutabularuform")

• Implementation of Theorem 7.5

We consider the case that the refinement relation rather than the specification

is in tabular form. More precisely, we consider the refinement relation being

defined by an inverted vector table. This theorem is applied in our elevator

floor reached operation refinement. To represent an encoding relation as a

114

Master Thesis - N. Zhou- McMaster- Computing and Software

vector table can reduce largely the running time of Simplify validation.

Theorem 7.5 (Data Refinement with Vector Table) is implemented by calling

function drv RE(ST(op1, vl), ST(op2, vlr)) r where op1 is abstract specification

in plain predicate form, op2 is refining specification in tabular form, and r is

the vector table of refinement relation.

let drv p r = match (p, r) with

(RE(ST(opl, vl), ST(TABLE(t2), vlr)), TABLE(rt)) --+

let pt = ref (injectiver r (vl, vlr)) in

let op11 = ref TRUE and op12 = ref TRUE in

let headml = Array.create (Array.length rt.body) TRUE in

let mhl = Array.length rt.headn and mh2 = Array.length t2.headm in

let nhl = Array.length rt.headn and nh2 = Array.length t2.headn in

let mbl = Array.length rt.body.(O) and mb2 = Array.length t2.body in

let nbl = Array.length rt.body.(O) and nb2 = Array.length t2.body.(O)

in if mhl = mh2 1\ nhl = nh2 1\ mbl = mb2 1\ nbl = nb2

then begin

for i = 0 to mhl - 1 do

pt := !pt 1\ valid (IFF(rt.headn.(i), t2.headm.(i)));

done;

for j = 0 to nhl - 1 do

pt := !pt 1\ valid (IFF(reformlist rt.headn.(j) vlr, t2.headn.(j)));

done;

for i = 0 to mbl - 1 do

for j = 0 to nbl - 1 do

fork = 0 to (Array.length rt.body) - 1 do

headml.(k) +-- reformlist rt.headm.(k) [rt.headm.(k)];

op11 ·- replace (rt.headm.(k), rt. body.(k).(i)) opl;

op12 := replace (headml.(k), rt.body.(k).(j)) !op11

done;

pt := !pt 1\ valid (IFF(t2.body.(i).(j), !op12));

done

done; !pt end

115

Master Thesis- N. Zhou- McMaster- Computing and Software

else raise (Failure "Theuresultuofuapplyingutabularurefinement

relationuonuspecificationuhaveudifferentustructureuwithut2")

I _ ----+ raise (Failure "theufirstuparameteruofufunctionudrpu

uuushouldubeuaupairuofustatementsuwithuoneuinutabularuform,

uuutheuseconduparameteruofufunctionudrpushouldubeuautable")

116

Chapter 6

Luxury Sedan Car Seat Case Study

In order to demonstrate how to apply tabular specification theorems to reactive

systems, in this chapter we give a luxury sedan car seat example consisting of several

operations. We first study how to formalize the example, then derive properties

supported by the system and come up with a specification for each operation. Since

no parallel operations are allowed, a control has to be enforced by first order logic.

The priority control can be implemented by a condition lying in the header of an

operation table. Sequential operations are more difficult to define in a first order

logic style. A sequence of events are dependent each other, the post-condition of one

event will be the pre-condition of the next event.

At last we state how to implement a proof that each single operation including

tables or plain formulae preserves a property with the theorem functions. We focus on

the proof of two parallel groups of operations where motors per group are active in a

time order. The disjoint events of our car seat system can be realized by making two or

more events in one table and distinguishing them with different parameters. A priority

control can be stated in plain words or fulfilled by adding conditions conjuncted with

original conditions. A formal proof is implemented and its logical principle is stated

117

Master Thesis- N. Zhou- McMaster- Computing and Software

for the latter one.

6.1 Requirement

Our single front car seat is an automated control system. In total five motors are

to be controlled:

• Rear Height Motor (RH)

• Longitudinal Adjustment Motor (LA)

• Front Height Motor (FH)

• Backrest Motor (B)

• Head Restraint Motor (HR)

LA

Figure 6.1: Controlling a Luxury Sedan Car Seat

118

Master Thesis- N. Zhou- McMaster- Computing and Software

These determine the position of the car seat as shown in Figure 6.1

Each seat has a panel through which the adjustments are made (panel is not shown).

The panel has following 13 buttons:

• RH up, RH down

• LA forward, LA backward

• FH up, FH down

• B forward, B backward

• HR up, HR down

• M, M1, M2 (memory)

The first ten buttons control the respective motors: while RH up is pressed, the RH

motor moves up until the stop position (see below about stop positions) and similarly

for the other buttons. Pressing the M1 button while holding the M button causes the

current adjustment positions to be stored in memory 1, while pressing the M2 button

while holding the M button causes the current adjustment positions to be stored in

memory 2. Pressing M1 causes the adjustments stored in memory 1 to be retrieved

and set. Likewise, pressing M2 causes the adjustments stored in memory 2 to be

retrieved and set.

Calibration. When supplied with electricity for the first time, or after a power failure,

the seat has to be calibrated by moving all motors to their respective home positions.

This is done by turning on each motor and waiting until its home position sensor

signals that the home position has been reached. The home positions are the front

stop for LA and B and the upper stop for RH, RH, and HR. The sensors generate

the events "LA home", "B home", etc.

119

Master Thesis- N. Zhou- McMaster- Computing and Software

Priorities. The seat adjustment motors are divided into two groups. Only one motor

per group can be active at a time:

• Group 1 with LA and RH: LA has priority over RH.

• Group 2 with B, FH, and HR: B has priority over FH, which has priority over

HR.

For example, if both LA forward and RH up are pressed on the panel, first LA

is moved and only then RH. Likewise, these priorities have to be considered when

moving the seat to an adjustment stored in memory and during calibration.

Buttons. Pressing and releasing a button of the panel generate each an event. The

events are called "HR up pressed", "HR up released", etc.

Motors. Each motor can be in the state up, stop, down or forward, stop, backward,

respectively.

Positioning. Each motor is equipped with a Hall sensor. The Hall sensor generates

a "tick" on each rotation. The position of each motor is determined by incrementing

and decrementing the number of ticks after calibration. The number of ticks required

for movement from one stop to the other is:

• RH: 250 ticks

• LA: 600 ticks

• FH: 250 ticks

• B: 1100 ticks

• HR: 130 ticks

120

Master Thesis - N. Zhou- McMaster- Computing and Software

The events generated are called "RH tick", "LA tick", etc. After calibration only the

ticks are used for keeping track of the position, in particular for reaching either stop

position.

6. 2 Organization

We distinguish four modes of the car seat controller:

• Calibrating mode, the initial mode;

• Normal mode, when the seat can be adjusted through the panel;

• Memory mode, when the adjustments from memory 1 or memory 2 are retrieved

and set;

• Memory Set mode, when current adjustments are stored in memory 1 or memory

2.

We use following global variables, all of which are of type integer:

• lapos, rhpos, bpos, fhpos, hrpos: for the current positions of the motors;

• lam1, rhm1, bm1, fhm1, hrml: the positions stored as memory 1;

• lam2, rhm2, bm2, fhm2, hrm2: the positions stored as memory 2;

• laset, rhset, bset, fhset, hrset: used for passing the positions to be set.

The events created by pressing an up button or down button of the same motor are

considered as disjoint events and represented as a single table with different para

meters. "RH up pressed" and "RH down pressed" are formalized asp= rhup and

121

Master Thesis- N. Zhou- McMaster- Computing and Software

p = rhdown. Iffirst "RH down" and then "RH up" is pressed without releasing "RH

down", the event "RH up pressed" is ignored.

The motor movement events will trigger the motor tick events. When a motor

behavior cause its Hall sensor increment or decrement one rotation, a tick is generated

to determine the position change of the motor. To make the tick table total, we add a

column with condition motor equals stop to indicate no change of position generated

in that state.

In Normal mode, the priorities are taken into account as follows: If, for example,

RH is in state up and an LA forward pressed event is received, the RH motor is

stopped and LA goes to state forward. Once an LA released event is received, the

LA motor stopped and require that the user releases and pressed the button for RH

up again.

In Calibration mode, a series of motor movements within a group is arranged as

follows: If B motor, FH motor and HR motor are not in their home positions, B

motor is turned on first, FH motor and HR motor wait until B's home position sensor

signals that the home position has been reached, then B motor is stopped and FH

goes to state up. When both B motor and FH motor are stopped, HR motor goes

to its upper stop. Memory mode has the similar movement as Calibration mode,

the only difference is that LA and B goes forward, and RH, FH, and HR goes up in

former, while LA and B goes forward or backward, and RH, FH, and HR goes up or

down in latter depending on the current positions of the motors and the positions to

be set to mode Memory.

There are two groups of states, corresponding to motor movement: forward,

backward, stop and up, down, stop. The field of button selection f, b, u, d correspond a

control of forward, backward, up, down movement respectively. We use button= m?

to indicate the memory button m? being pressed. Table 6.1 list all variables in car

122

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

Variable Representation Type
labutton LA motor buttons
bbutton B motor buttons J,b

rhbutton RH motor buttons
fhbutton FH motor buttons
hrbutton HR motor buttons u,d
button Memory buttons m1,m2

lamotor LA motor movements
bmotor B motor movements forward, backward, stop

rhmotor RH motor movements
fhmotor FH motor movements
hrmotor HR motor movements upward, downward, stop

Table 6.1: Variables in Car Seat Control

seat control. As we stated before, any variable belonging to an enumeration type

should have its type specified. We specify motor movement variables in our defined

axiom file.

(DISTINCT forward backward stop)

(OR (EQ lamotor backward) CEQ lamotor forward) (EQ lamotor stop))

(OR (EQ lamotor1 backward) (EQ lamotor1 forward) (EQ lamotor1 stop))

(OR (EQ bmotor backward) (EQ bmotor forward) CEQ bmotor stop))

(OR (EQ bmotor1 backward) CEQ bmotor1 forward) CEQ bmotor1 stop))

(DISTINCT up down stop)

(OR (EQ rhmotor down) (EQ rhmotor up) (EQ rhmotor stop))

(OR (EQ rhmotor1 down) (EQ rhmotor1 up) (EQ rhmotor1 stop))

(OR (EQ fhmotor down) (EQ fhmotor up) (EQ fhmotor stop))

(OR (EQ fhmotor1 down) (EQ fhmotor1 up) (EQ fhmotor1 stop))

(OR CEQ hrmotor down) (EQ hrmotor up) (EQ hrmotor stop))

(OR (EQ hrmotor1 down) CEQ hrmotor1 up) (EQ hrmotor1 stop))

123

Master Thesis- N. Zhou- McMaster- Computing and Software

6.3 Normal Mode and Its Properties

6.3.1 Types of Motor Adjustment Buttons

The variables in normal mode are specified in file myaxiom. ax as follows.

(DISTINCT f b)

(OR (EQ labutton f) (EQ labutton b))

(OR (EQ bbutton f) (EQ bbutton b))

(DISTINCT u d)

(OR (EQ rhbutton u) (EQ rhbutton d))

(OR (EQ fhbutton u) (EQ fhbutton d))

(OR CEQ hrbutton u) (EQ hrbutton d))

Note that we only specify the initial state for motor button variables since they occur

only in conditions.

6.3.2 Releasing Motor Adjustment Buttons

Motor movement events generated by releasing the first ten buttons always make

motors stop. The definitions of the relations over variables lamotor, rhmotor, bmotor,

f hmotor, and hrmotor are as listed:

laupreleased = (lamotorl =stop); ladownreleased = (lamotorl =stop)

rhupreleased = (rhmotorl =stop); rhdownreleased = (rhmotorl =stop)

bupreleased = (bmotorl =stop); bdownreleased = (bmotorl =stop)

fhupreleased = (fhmotorl =stop); fhdownreleased = (fhmotorl =stop)

hrupreleased = (hrmotorl =stop); hrdownreleased = (hrmotorl =stop)

124

Master Thesis- N. Zhou- McMaster- Computing and Software

6.3.3 Pressing Group 1 Motor Adjustment Buttons

Motor movement events generated by pressing the first ten buttons trigger the

corresponding motor tick events. We consider these two events of each motor into

one relation which is represented by a tabular predicate. We describe group 1 event

tables in detail. Group 2 event tables in Normal mode follow the same rule.

Table 6.2 is the tabular representation of LA Motor Button Pressed lapressed over

variables lamotor, lapos. The left header indicates the condition whether forward or

backward button is pressed. The upper header is the conditional predicate relating

to the current position of LA motor.

lapos = 0 lapos > 0 A lapos lapos = 599

< 599

labutton = f lamotor1 = stop A lamotor1 = lamotor1 =

lapos 1 = lapos forward A lapos1 forward A lapos1

= lapos- 1 = lapos- 1

labutton = b lamotor1 = lamotor1 = lamotor1 = stop A

backward A lapos 1 backward A lapos 1 lapos1 = lapos

= lapos + 1 = lapos + 1

Table 6.2: LA Motor Button Pressed lapressed

An invariant holds in LA Normal mode movement: The range of motor movement

is from 0 to 599, formally expressed by InvLA:

0 ::::;: lapos < 600.

To prove the invariant is preserved by lapressed, we simply call function tvp b p

c with parameter b = c = InvLA, p = (op, d). The formula op is lapressed parsed to

type form and the domain dis [lamotor, lapos].

125

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

An export function reader in parse.ml is used to read lamotor, lapos as variable

names, lapressed as program specification, bl as precondition, c1 as postcondition.

let lapressed = reader "BEGTABuLHEADERulabutton=fu$ulabutton=b/ I
UHEADERulapos=Ou$ulapos>Ou&ulapos<599u$ulapos=599//ulamotor1=stopu&

lapos1=laposu$ulamotor1=forward&ulapos1=lapos-1u$ulamotor1=forwardu&

lapos1=lapos-1//ulamotor1=backward&lapos1=lapos+1u$lamotor1=backward

&ulapos1=lapos+1u$ulamotor1u=stopu&ulapos1u=ulapos//uENDTAB"

in let pi ST(lapressed, [reader "lamotor";reader "lapos"])

in let bi = reader "laposu>=u0u&ulaposu<u600"

in let ci = reader "laposu>=u0u&ulaposu<u600"

in if (tvp bi pi c1) then begin

... print lapressed to screen and a latex file ...

... inform the invariant hold ...

end;

The lb-'JEX printout of LA motor button pressed operation is shown below.

\begin{longtable}{lclclclcl}

\hline & \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}=\texttt{O}

& \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} $>$ \texttt{O}

\wedge \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}&\texttt{l}

\texttt{a}\texttt{p}\texttt{o}\texttt{s} = \texttt{5}\texttt{9}

\texttt{9}\\& &$<$\texttt{5}\texttt{9}\texttt{9}& \\ \hline \texttt{l}

\texttt{a}\texttt{b}\texttt{u}\texttt{t}\texttt{t}\texttt{o}\texttt{n}

= \texttt{f} & \texttt{l}\texttt{a}\texttt{m}\texttt{o}\texttt{t}

\texttt{o}\texttt{r}\texttt{1} = \texttt{s}\texttt{t}\texttt{o}

\texttt{p} \wedge & \texttt{l}\texttt{a}\texttt{m}\texttt{o}

\texttt{t}\texttt{o}\texttt{r} \texttt{1} = & \texttt{l}\texttt{a}

\texttt{m}\texttt{o}\texttt{t} \texttt{o}\texttt{r}\texttt{1} =\\ &

\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1}

126

Master Thesis- N. Zhou- McMaster- Computing and Software

\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} & \texttt{f}

\texttt{o}\texttt{r}\texttt{w}\texttt{a}\texttt{r}\texttt{d} \wedge

\texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} &

\texttt{f}\texttt{o}\texttt{r}\texttt{w}\texttt{a}\texttt{r}\texttt{d}

\wedge \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1}

\\ & & =\texttt{l}\texttt{a} \texttt{p}\texttt{o}\texttt{s}-\texttt{1}

& = \texttt{l}\texttt{a}\texttt{p}\texttt{o}\texttt{s} - \texttt{1}\\

\hline \texttt{l}\texttt{a}\texttt{b}\texttt{u}\texttt{t}\texttt{t}

\texttt{o}\texttt{n} = \texttt{b} & \texttt{l}\texttt{a}\texttt{m}

\texttt{o}\texttt{t}\texttt{o}\texttt{r}\texttt{1} = &\texttt{l}

\texttt{a}\texttt{m}\texttt{o}\texttt{t}\texttt{o}\texttt{r}\texttt{1}

= & \texttt{l}\texttt{a}\texttt{m}\texttt{o}\texttt{t}\texttt{o}

\texttt{r}\texttt{1} = \texttt{s}\texttt{t}\texttt{o}\texttt{p}

\wedge\\ & \texttt{b}\texttt{a}\texttt{c}\texttt{k}\texttt{w}

\texttt{a}\texttt{r}\texttt{d} \wedge\texttt{l}\texttt{a}\texttt{p}

\texttt{o}\texttt{s}\texttt{1} &\texttt{b}\texttt{a}\texttt{c}

\texttt{k}\texttt{w}\texttt{a}\texttt{r}\texttt{d}\wedge \texttt{l}

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} & \texttt{l}

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\texttt{1} = \texttt{l}

\texttt{a}\texttt{p}\texttt{o}\texttt{s}\\ & = \texttt{l}\texttt{a}

\texttt{p}\texttt{o}\texttt{s} + \texttt{1} & = \texttt{l}\texttt{a}

\texttt{p}\texttt{o}\texttt{s}+\texttt{1} &\\ \hline

\caption{LA Motor Button Pressed $lapressed$}\end{longtable}

To consider the priority in group 1 motor movements triggered by LA forward, LA

backward, RH up, and RH down button pressed events, we add a condition lamotor =

127

Master Thesis - N. Zhou- McMaster- Computing and Software

stop conjoined with the original condition into the left header of RH movement table:

rhpos = 0 rhpos < 249 1\ rhpos = 249

rhpos > 0

rhbutton = u 1\ rhmotor1 = stop rhmotor1 = up 1\ rhmotor1 = up 1\

lamotor = stop 1\ rhpos1 = rhpos rhpos1 = rhpos- rhpos1 = rhpos -

1 1

rhbutton = d 1\ rhmotor1 = down rhmotor1 =down rhmotor1 = stop

lamotor = stop 1\ rhpos1 = rhpos 1\ rhpos 1 = rhpos 1\ rhpos1 = rhpos

+1 +1

(rhbutton = u V rhmotor1 = stop rhmotor1 = stop rhmotor1 = stop

rhbutton = d) 1\ 1\ rhpos1 = rhpos 1\ rhpos1 = rhpos 1\ rhpos1 = rhpos

lamotor # stop

Table 6.3: RH Motor Button Pressed rhpressed

The invariant of RH movement in normal mode is similar to LA movement: The

range of RH motor movement is from 0 to 249, formally expressed by InvRH:

0 ::::; rhpos < 250.

The sketch of the proof can be referred to those stated for LA. The implementation

of our proof in Ocaml is:

let rhpressed = reader "BEGTABuLHEADERurhbuttonu=u&lamotoru=stopu$

rhbutton=d&lamotor=stop$(rhbutton=uuorurhbutton=d)&lamotor/=stop//

UHEADERurhpos=O$urhpos<249&urhpos>Ou$urhpos=249u//urhmotor1=stop&

rhpos1=rhpos$rhmotor1=up&rhpos1=rhpos-1$rhmotor1=up&rhpos1=rhpos-1

//rhmotor1=down&rhpos1=rhpos+1u$urhmotor1=down&rhpos1=rhpos+1u$

rhmotor1=stop&rhpos1=rhposu//urhmotor1=stop&rhpos1=rhposu$

rhmotor1=stop&rhpos1=rhposu$urhmotor1=stop&rhpos1=rhposu//uENDTAB"

in let p1 = ST(rhpressed, [reader "rhmotor";reader "rhpos"])

128

Master Thesis- N. Zhou- McMaster- Computing and Software

in let bi = reader "rhposu>=u0u&urhpos<u250"

in let c1 = reader "rhposu>=u0u&urhpos<u250"

in if (tvp bi pi c1) then begin

... print rhpressed to screen and a latex file ...

... inform the invariant holds ...

end;

6.3.4 Pressing Group 2 Motor Adjustment Buttons

In principle, tabular representations of group 2 motor movements controlled through

the panel have the similar features as those of group 1. For B motor forward or back-

ward button pressed event and B tick event triggered by it, we have the table:

bpos = 0 bpos < 1099 1\ bpos = 1099

bpos > 0

bbutton = f bmotor1 = stop 1\ bmotor1 =forward bmotor1 = forward

bpos1 = bpos 1\ bpos1 = bpos - 1\ bpos1 = bpos -

1 1

bbutton = b bmotor1 = bmotor1 = bmotor1 = stop 1\

backward 1\ bpos 1 backward 1\ bpos1 bpos1 = bpos

= bpos + 1 = bpos + 1

Table 6.4: B Motor Button Pressed bpressed

The invariant of B motor movement in normal mode is formally presented as:

0 :::::; bpos < 11 00

The formal proof in terms of implementation is:

let bpressed = reader "BEGTABuLHEADERubbutton=ufu$ubbutton=ubu/ I

129

Master Thesis - N. Zhou- McMaster- Computing and Software

UHEADERubposu=uOu$ubposu<u1099u&ubposu>u0u$ubposu=u1099u//

bmotor1u=ustopu&ubpos1=bposu$ubmotor1=forwardu&ubpos1=bpos-1u$

bmotor1u=uforwardu&ubpos1=bpos-1//ubmotor1=backward&bpos1=bpos+1u$

bmotor1=backward&bpos1=bpos+1u$ubmotor1=stop&bpos1=bpos//uENDTAB"

in let p1 ST(bpressed, [reader "bmotor" ;reader "bpos "])

in let bl = reader "bposu>=u0u&ubposu<u1100"

in let c1 = reader "bposu>=u0u&ubposu<u1100"

in if (tvp b1 p1 c1) then begin

... print bpressed to screen and a latex file ...

... inform the invariant holds ...

end;

For FH motor up or down button pressed event and FH tick event triggered by

it, we have the following table:

fhpos = 0 fhpos < 249 1\ fhpos = 249

fhpos > 0

fhbutton = u 1\ fhmotor1 = stop fhmotor1 = up 1\ fhmotor1 = up 1\

bmotor = stop 1\ fhpos1 = fhpos fhpos1 = fhpos- fhpos1 = fhpos -

1 1

fhbutton = d 1\ fhmotor1 =down fhmotor1 = down fhmotor1 = stop

bmotor = stop 1\ fhpos 1 = fhpos 1\ fhpos 1 = fhpos 1\ fhpos1 = fhpos

+ 1 + 1

(fhbutton = u V fhmotor1 = stop fhmotor1 = stop fhmotor1 = stop

fhbutton = d) 1\ 1\ fhpos1 = fhpos 1\ fhpos1 = fhpos 1\ fhpos1 = fhpos

bmotor i= stop

Table 6.5: FH Motor Button Pressed fhpressed

130

Master Thesis - N. Zhou- McMaster- Computing and Software

The invariant of FH motor movement in normal mode is formally presented as:

0::; fhpos < 250

The formal proof in terms of implementation is:

let fhpressed = reader "BEGTABuLHEADERufhbutton=u&ubmotor=stopu$

fhbutton=d&bmotor=stopu$(fhbutton=uuorufhbutton=d)&bmotor/=stop//

UHEADERufhpos=Ou$fhpos<249&fhpos>Ou$ufhpos=249u//ufhmotor1=stopu&

fhpos1=fhpos$fhmotor1=up&fhpos1=fhpos-1$fhmotor1=up&fhpos1=fhpos-1

//fhmotor1=down&fhpos1=fhpos+1u$ufhmotor1=down&fhpos1=fhpos+1u$

fhmotor1=stop&fhpos1=fhposu//ufhmotor1=stop&fhpos1=fhposu$

fhmotor1=stop&fhpos1=fhposu$ufhmotor1=stop&fhpos1=fhposu//uENDTAB"

in let pi ST(fhpressed, [reader "fhmotor";reader "fhpos"])

in let bl = reader "fhposu>=u0u&ufhposu<u250"

in let c1 = reader "fhposu>=u0u&ufhposu<u250"

in if (tvp bl pl c1) then begin

... print fhpressed to screen and a latex file ...

... inform the invariant holds ...

end;

131

Master Thesis- N. Zhou- McMaster- Computing and Software

For HR motor up or down button pressed event and HR tick event triggered by

it, we have the table as follows:

hrpos = 0 hrpos < 129 1\ hrpos = 129

hrpos > 0

hrbutton = u 1\ hrmotor1 = stop hrmotor1 = up 1\ hrmotor1 = up 1\

bmotor = stop 1\ 1\ hrpos1 = hrpos hrpos 1 = hrpos - hrpos 1 = hrpos -

fhmotor = stop 1 1

hrbutton = d 1\ hrmotor1 = down hrmotor1 =down hrmotor1 = stop

bmotor = stop 1\ 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos

fhmotor = stop +1 + 1

(hrbutton = u V hrmotor1 = stop hrmotor1 = stop hrmotor1 = stop

hrbutton = d) 1\ 1\ hrpos1 = hrpos 1\ hrpos1 = hrpos 1\ hrpos 1 = hrpos

(bmotor =I= stop

V fhmotor =/=

stop)

Table 6.6: FH Motor Button Pressed fhpressed

The invariant of FH motor movement in normal mode is formally presented as:

0 ~ hrpos < 130

The formal proof of the invariants in terms of implementation is:

let hrpressed = reader "BEGTABuLHEADERuhrbutton=uuu&ubmotor=ustopu&

fhmotoru=ustopu$uhrbuttonu=udu&ubmotoru=ustopu&ufhmotoru=ustopu$

(hrbuttonu=uuoruhrbuttonu=d)u&u(bmotoru/=stopuorufhmotoru/=stop)u/1

UHEADERuhrposu=uOu$uhrposu<u129u&uhrposu>u0u$uhrposu=u129u//

hrmotor1=stopu&uhrpos1=hrposu$uhrmotor1=upu&uhrpos1=hrpos-1u$

hrmotor1=upu&uhrpos1=hrpos-1u//uhrmotor1=down&uhrpos1=hrpos+1u$

132

Master Thesis - N. Zhou- McMaster- Computing and Software

hrmotor1=downu&uhrpos1=hrpos+1u$uhrmotor1u=ustopu&uhrpos1=hrposu//

hrmotor1=stop&hrpos1=hrposu$uhrmotor1=stop&hrpos1=hrposu$

hrmotor1=stop&hrpos1=hrposu//uENDTAB"

in let pl ST(hrpressed, [reader "hrmotor";reader "hrpos"])

in let bl reader "hrposu>=u0u&uhrposu<u130"

in let c1 reader "hrposu>=u0u&uhrposu<u130"

in if (tvp bl pl c1) then begin

... print hrpressed to screen and a latex file ...

... inform the invariant holds ...

end;

6.4 Memory and Memory Set Mode

6.4.1 Memory Mode and Its Properties

Same as in Normal mode, there are two groups of motor movements in Memory

mode. A motor in group 1 and any one motor in group 2 can be running concurrently.

But all motors in one group must move in a time order to reach their setting positions.

RH is adjusted after LA sets; FH is adjusted after B sets while HR is adjusted after

both B and FH sets. We define operation latoset over variable lamotor to be a single

LA movement to its setting position. A predicate representation of latoset as a table

is shown below:

lapos = laset lapos < laset lapos > laset

lamotor1 = stop lamotor1 =backward lamotor1 = forward

Table 6. 7: LA Motor Moving to Its Setting latoset

Its definition in the implementation is as follows:

let defiatoset = "BEGTABuUHEADERulaposu=ulasetu$ulaposu<ulasetu$

133

Master Thesis - N. Zhou- McMaster- Computing and Software

laposu>ulasetu//ulamotor1u=ustopu$ulamotor1u=ubackwardu$

lamotor1u=uforwardu//uENDTAB" in

let latoset = reader defiatoset in

... print latoset to screen and a latex file ...

Similarly, rhtoset, btoset, fhtoset and hrtoset are defined as well.

rhpos = rhset rhpos < rhset rhpos > rhset

rhmotor1 = stop rhmotor1 = down rhmotor1 = up

Table 6.8: RH Motor Moving to Its Setting rhtoset

let defrhtoset = "BEGTABuUHEADERurhposu=urhsetu$urhposu<urhsetu$

rhposu>urhsetu//urhmotor1u=ustopu$urhmotor1u=udownu$

rhmotor1u=uupu//uENDTAB" in

let rhtoset = reader defrhtoset in

... print rhtoset to screen and a latex file ...

bpos = bset bpos < bset bpos > bset

bmotor1 = stop bmotor1 = backward bmotor1 =forward

Table 6.9: B Motor Moving to Its Setting btoset

let defbtoset = "BEGTABuUHEADERubposu=ubsetu$ubposu<ubsetu$

bposu>ubsetu//ubmotor1u=ustopu$ubmotor1u=ubackwardu$

bmotor1u=uforwardu//uENDTAB" in

let btoset = reader dejbtoset in

... print btoset to screen and a latex file ...

134

Master Thesis- N. Zhou- McMaster- Computing and Software

fhpos = fhset fhpos < fhset fhpos > fhset

fhmotor1 =stop fhmotor1 = down fhmotor1 = up

Table 6.10: FH Motor Moving to Its Setting fhtoset

let deffhtoset = "BEGTABuUHEADERufhposu=ufhsetu$ufhposu<ufhsetu$

fhposu>ufhsetul/ufhmotor1u=ustopu$ufhmotor1u=udownu$

fhmotor1u=uupu/ /uENDTAB" in

let jhtoset = reader deffhtoset in

... print fhtoset to screen and a latex file ...

hrpos = hrset hrpos < hrset hrpos > hrset

hrmotor1 = stop hrmotor1 = down hrmotor1 =up

Table 6.11: HR Motor Moving to Its Setting hrtoset

let defhrtoset = "BEGTABuUHEADERuhrposu=uhrsetu$uhrposu<uhrsetu$

hrposu>uhrsetul/uhrmotor1u=ustopu$uhrmotor1u=udownu$

hrmotor1u=uupul/uENDTAB" in

let hrtoset = reader defhrtoset in

... print hrtoset to screen and a latex file ...

The system rule is modeled in first order logic as:

latoset 1\ (laset = lapos ==? rhtoset) 1\ btoset 1\ (bset = bpos ==? fhtoset) 1\

(bset = bpos 1\ fhset = fhpos ==? hrtoset).

Difference is made depending on which memory button is pressed. For instance,

pressing M1 causes the adjustments stored in memory 1 to be retrieved as: laset =

lam11\ rhset = rhm11\ bset = bm11\ fhset = fhm11\ hrset = hrm1, and this further

imply our Memory mode rule. Below is the tabular predicate of Memory mode system

135

Master Thesis- N. Zhou- McMaster- Computing and Software

named memory.

button = m1 laset = lam1 A rhset = rhm1 A bset = bm1 A fhset = fhm1 A

hrset = hrm1 ===? latoset A (laset = lapos ===? rhtoset) A

btoset A (bset = bpos ===? fhtoset) A (bset = bpos A fhset

= fhpos ===? hrtoset)

button = m2 laset = lam2 A rhset = rhm2 A bset = bm2 A fhset = fhm2 A

hrset = hrm2 ===? latoset A (laset = lapos ===? rhtoset) A

btoset A (bset = bpos ===? fhtoset) A (bset = bpos A fhset

= fhpos ===? hrtoset)

Table 6.12: Memory Mode Movement memory

One obvious property of memory is that when all motors reach their setting

positions, they are stopped. Actually, if we state "all motors are stopped" all stop :

lamotor =stop A rhmotor =stop A bmotor =stop A fhmotor =stop

A hrmotor = stop

as the postcondition of memory, the weakest precondition will be "all motors reach

their setting positions" alltoset :

laset = lapos A rhset = rhpos A bset = bpos A fhset = fhpos A hrset = hrpos.

The proof of our weakest precondition of program memory to establish our post

condition takes following three steps:

1. Make axioms according to system requirement of memory mode

(a) Variable button is of enumeration type and should be specified.

(DISTINCT m1 m2) (OR CEQ button m1) (EQ button m2))

136

2.

Master Thesis- N. Zhou- McMaster- Computing and Software

(b) Since all cases in the sub-operations of memory mode are considered, tables

(latoset, rhtoset, btoset, fhtoset and hrtoset) should be total.

(OR (AND CEQ lamotor1 backward) (> laset lapos))

(AND CEQ lamotor1 forward) (< laset lapos))

(AND (EQ lamotor1 stop) CEQ laset lapos)))

(OR (AND CEQ rhmotor1 down) (> rhset rhpos))

(AND CEQ rhmotor1 up) (< rhset rhpos))

(AND CEQ rhmotor1 stop) (EQ rhset rhpos)))

(OR (AND CEQ bmotor1 backward) (> bset bpos))

(AND CEQ bmotor1 forward) (< bset bpos))

(AND (EQ bmotor1 stop) (EQ bset bpos)))

(OR (AND CEQ fhmotor1 down) (> fhset fhpos))

(AND CEQ fhmotor1 up) (< fhset fhpos))

(AND CEQ fhmotor1 stop) (EQ fhset fhpos)))

(OR (AND (EQ hrmotor1 down) (> hrset hrpos))

(AND (EQ hrmotor1 up) (< hrset hrpos))

(AND CEQ hrmotor1 stop) (EQ hrset hrpos)))

Input operation memory based on several sub operations which already exists

by using type expression 0 P.

OP takes the name and the predicate representation of an operation as its pa

rameters. Denoting the nesting tables with it makes the tabular structure more

explicit. The trick is that we leave the detailed specification of sub operation

out when we care only about its function in an overall operation. For OP(n,J),

inputting (OP n f), our program will print n to standard outputs, but f to a

file which will be verified by Simplify.

137

Master Thesis- N. Zhou- McMaster- Computing and Software

3. Call function wpt b p c with parameter b = allstop, c = alltoset, and p

memory.

The code of the proof implemented in OCaml is as follows:

let memory = reader (11 BEGTABuLHEADERubutton=m1u$ubutton=m2ul I

laset=lam1u&urhset=rhm1u&ubset=bm1u&ufhset=fhm1u&uhrset=hrm1u=>u

(0Pulatosetu 11
A defiatoset A

11)u&u(laset=laposu=>u(OPurhtosetu 11
A

defrhtoset A
11
)) u&u (OPubtosetu 11

A defbtoset A

11
) u&u (bset=bposu=>

(0Pufhtosetu 11
A deffhtoset A

11
))u&u(bset=bposu&ufhset=fhposu=>

(0Puhrtosetu 11
A defhrtoset A

11
)) ul I ulaset=lam2u&urhset=rhm2u&

bset=bm2u&ufhset=fhm2u&uhrset=hrm2u=>uCDPulatosetu 11
A defiatoset A

11
) u&u (laset=laposu=>u (0Purhtosetu 11

A defrhtoset A

11
)) u&u (0Pubtosetu 11

A defbtoset A
11

) u&u (bset=bposu=>u (0Pufhtosetu 11
A deffhtoset A

11
)) u&u (bset

=bposu&ufhset=fhposu=>uCDPuhrtosetu 11
A defhrtoset A

11
))ul luENDTAB 11

)

in let p = ST(memory, [reader 11 lamotor 11 ;reader 11 rhmotor 11
;

reader 11 bmotor 11 ;reader 11 fhmotor 11 ;reader 11 hrmotor 11
])

in let b = reader 11 lasetu=ulaposu&urhsetu=urhposu&ubsetu=ubposu&

fhsetu=ufhposu&uhrset=hrpos 11

in let c = reader 11 lamotor=stopu&urhmotor=stopu&ubmotor=stopu&

fhmotor=stopu&uhrmotor=stop 11

in if (wpt b p c) then begin

... print memory to screen and a latex file ...

. .. inform successful verification of memory weakest precondition ...

end

6.4.2 Memory Set Mode

Initially, the positions stored in memory 1 and 2 are both set to motor home

positions~O. Memory Set mode is functioned by a set of assignment statements. To

set memory 1 or 2 to the current positions of motors, the states of all motors should

be stop. This guard condition is in the upper header of Memory Set table. There are

138

Master Thesis - N. Zhou- McMaster- Computing and Software

no properties deriving from this table. Variables in this mode are the same as those

in memory mode.

lamotor = stop 1\ rhmotor = lamotor # stop V rhmotor #

stop 1\ bmotor = stop 1\ stop V bmotor # stop V

fhmotor = stop 1\ hrmotor = fhmotor # stop V hrmotor #

stop stop

button =m1 lam11 = lapos 1\ rhm11 = lam11 = lam1 1\ rhm11 = rhm1

rhpos 1\ bm11 = bpos 1\ fhm11 1\ bm11 = bm1 1\ fhm11 = fhm1

= fhpos 1\ hrm11 = hrpos 1\ hrm11 = hrm1

button =m2 lam21 = lapos 1\ rhm21 = lam21 = lam2 1\ rhm21 = rhm2

rhpos 1\ bm21 = bpos 1\ fhm21 1\ bm21 = bm2 1\ fhm21 = fhm2

= fhpos 1\ hrm21 = hrpos 1\ hrm21 = hrm2

Table 6.13: Memory Set Mode

6.5 Calibration Mode and Its Properties

When a seat is calibrated, all motors move in a way similar to that in Memory

mode. But LA and B can not move backward; RH, FH, and HR can not move down

since the home positions are the front stops for LA and B and the upper stops for RH,

FH, and HR. For instance, the single LA movement to its home position latohome

can be written as follows:

lapos = lahome lapos # lahome

lamotor1 = stop lamotor1 = forward

Table 6.14: LA Motor Moving to Its Home latohome

139

Master Thesis- N. Zhou- McMaster- Computing and Software

Its definition in Ocaml programming language is:

let deflatohome = "BEGTABuUHEADERulaposu=ulahomeu$ulaposul=ulahomeul I

lamotor1u=ustopu$ulamotor1u=uforwardul luENDTAB" in

let latohome = reader deflatohome in

... print latohome to screen and a latex file ...

Other motor movement to their home position rhtohome,btohome,fhtohome,and

hrtohome are defined similarly.

rhpos = rhhome rhpos -=/= rhhome

rhmotor1 = stop rhmotor1 = up

Table 6.15: RH Motor Moving to Its Home rhtohome

let defrhtohome = "BEGTABuUHEADERurhposu=urhhomeu$urhposul=urhhomeul I

rhmotor1u=ustopu$urhmotor1u=uupul luENDTAB" in

let rhtohome = reader defrhtohome in

... print rhtohome to screen and a latex file ...

bpos = bhome bpos -=/= bhome

bmotor1 = stop bmotor1 = forward

Table 6.16: B Motor Moving to Its Home btohome

let defbtohome = "BEGTABuUHEADERubposu=ubhomeu$ubposul=ubhomeul I

bmotor1u=ustopu$ubmotor1u=uforwardulluENDTAB" in

let btohome = reader defbtohome in

... print btohome to screen and a latex file ...

140

Master Thesis- N. Zhou- McMaster- Computing and Software

fhpos = fhhome fhpos f. fhhome

fhmotor1 = stop fhmotor1 = up

Table 6.17: FH Motor Moving to Its Home fhtohome

let deffhtohome = "BEGTABuUHEADERufhposu=ufhhomeu$ufhposu/ =ufhhomeu/ I

fhmotor1u=ustopu$ufhmotor1u=uupu//uENDTAB" in

let jhtohome = reader deffhtohome in

... print fhtohome to screen and a latex file ...

hrpos = hrhome hrpos f. hrhome

hrmotor1 = stop hrmotor1 = up

Table 6.18: HR Motor Moving to Its Home hrtohome

let defhrtohome = "BEGTABuUHEADERuhrposu=uhrhomeu$uhrposu/=uhrhomeu/ I

hrmotor1u=ustopu$uhrmotor1u=uUPul/uENDTAB" in

let hrtohome = reader dejhrtohome in

... print hrtohome to screen and a latex file ...

The calibration consists of five sub operations latohome, rhtohome, btohome, jht-

ohome, and hrtohome. The relation among them named calibrate embody the pri-

ority of motor movements:

latohome 1\ (lahome = lapos ==? rhtohome) 1\ btohome 1\ (bhome = bpos ==?

jhtoset) 1\ (bhome = bpos 1\ fhhome = fhpos ==? hrtoset).

We observe that during calibration, all motors are stopped if they are in their

respective home positions. We state it formally as pre :

lahome = lapos 1\ rhhome = rhpos 1\ bhome = bpos 1\ fhhome = fhpos 1\

141

Master Thesis- N. Zhou- McMaster- Computing and Software

hrhome = hrpos.

pre is the weakest precondition of program calibrate to establish postcondition po :

lamotor =stop 1\ rhmotor =stop 1\ bmotor =stop 1\ fhmotor =stop 1\

hrmotor =stop.

We assume all cases in the sub-operations of calibration mode are considered for

proving our weakest precondition of program calibrate to establish our postcondition.

Tables (latohome, rhtohome, btohome, fhtohome and hrtohome) are supposed to be

total, which is set as axioms:

(OR (AND (EQ lahome lapos) (EQ lamotor1 stop))

(AND (NEQ lahome lapos) (EQ lamotor1 forward)))

(OR (AND (EQ rhhome rhpos) (EQ rhmotor1 stop))

(AND (NEQ rhhome rhpos) (EQ rhmotor1 up)))

(OR (AND (EQ bhome bpos) (EQ bmotor1 stop))

(AND (NEQ bhome bpos) (EQ bmotor1 forward)))

(OR (AND (EQ fhhome fhpos) (EQ fhmotor1 stop))

(AND (NEQ fhhome fhpos) (EQ fhmotor1 up)))

(OR (AND (EQ hrhome hrpos) (EQ hrmotor1 stop))

(AND (NEQ hrhome hrpos) CEQ hrmotor1 up)))

Then, we call function wp b p c with b =pre, c = po, and p = calibrate to justify that

b is the weakest precondition of operation p in form of plain predicate to establish

postcondition po.

let calibrate = reader (11 (0Pulatohomeu 11
A defiatohome A

11)u&u

(lahome=laposu=>u (0Purhtohomeu 11
A defrhtohome A

11
)) u&u (OPubtohome

11
A defbtohome A

11
) u&u (bhome=bposu=>u (OPufhtohomeu 11

A deffhtohome A
11
))

&u (bhome=bposu&ufhhome=fhposu=>u (OPuhrtohomeu 11
A defhrtohome A

11
))

11
)

in let p = ST(calibrate, [reader 11 lamotor 11 ;reader 11 rhmotor 11
;

142

Master Thesis - N. Zhou- McMaster- Computing and Software

reader "bmotor";reader "fhmotor";reader "hrmotor"])

in let b = reader "lahomeu=ulaposu&urhhome=rhposu&

bhome=bposu&ufhhome=fhposu&uhrhome=hrpos"

in let c = reader "lamotor=stopu&urhmotor=stopu&

bmotor=stopu&ufhmotor=stopu&uhrmotor=stop"

in if (wp b p c) then begin

... print calibrate to screen and a latex file ...

... inform successful verification of calibrate weakest precondition ...

6.6 Summary

The result of proving properties for the first three modes are shown in Figure

6.2. All (sub-) operations and their related motors are listed in columns "(Sub)

Operation" and "Related Motors" respectively. In column "Proof Condition", we list

the number of proof obligations generated for each operations by applying the theorem

given in column "Theorems Applied". The length of proof predicates are listed in

column "Size"; when a proof predicate relate to tabular operations, the structure of

the tables are also given. In column "Time/Tabular", we give the user times that

Simplify needs for proofs of properties of specifications in tabular form; in column

"Time/Plain", we give the user times that Simplify needs for proofs of properties of

the same specifications as plain predicates. Note that user time of proof related to

memory, which is the largest specification in this example, is less than the user time

of proof related to memory as plain predicate.

Our car seat example is suited for both statecharts and tables. We formalize the

example, come up with a specification in tabular form and proved properties of the

specification. Weakest preconditions are determined for single operations. System

invariants are checked by showing that the initialization establishes them and that

143

Master Thesis - N. Zhou- McMaster- Computing and Software

(Sub) Related Proof Size
Time(msec)

Theorems Applied Mode Operation Motors Condition Tabular Plain

(Jato home) LA 2rows,2cols
(rhtohome) RH 2rows,2cols

Calibration (btohome) B 2rows,2cols

(fhtohome) FH 2rows,2cols

(hrtohome) HR 2rows,2cols

calibrate
LA,RH,B

I 54 Weakest precondition ,FH,HR 221c

lap res sed LA 6
3rows,4cols

7 2 253c

rhpressed RH 9 4rows,4cols
9 4 3 75c

bpressed B 6 3rows,4cols
9 2 Tabular Verification Normal 231c

with Predicates

fhpressed FH 9
4rows,4cols

10 5 372c

hrpressed HR 9 4rows,4cols
10 5 411 c

(Ia to set) LA 2rows,3cols
(rhtoset) RH 2rows,3cols
(btoset) B 2rows.3cols

Memory (fhtoset) FH 2rows,3cols

(hrtoset) HR 2rows,3cols

memory LA,RH,B 2 2row s,2co Is 86 131 Weakest Precondition
,FH,HR 422c with Predicates

Figure 6.2: Performance of Proof in Car Seat Control

all operations preserve them. Nesting operation structure is expressed by replacing

internal operation predicates with their names. Most priorities are considered within

tables except priorities of movements among different modes (e.g. Motor movements

in Memory mode have higher priorities than those in Normal mode). A table is illus-

trated for each type of operation. We only introduce in detail group one movements

for each mode. Tabular specifications for group two movements are derived in a

similar way.

144

Chapter 7

Modeling a Visitor Information

System

7.1 Example Introduction

A real life example is a visitor information system for managing a conference

site [34]. Visitors come to a site to attend meetings. Each meeting is required to take

place in a designated conference room, at a certain day. A meeting may require the

use of a dining room for lunch. Booking a dining room requires lunch information,

including the number of places needed. Several constraints have to be observed:

1. A conference room can host only one meeting.

2. A meeting may need more than one conference rooms.

3. All participants of a meeting take lunch in the same dining room.

4. Participants from several meetings can occupy the same dining room.

5. A visitor can attend only one meeting.

145

Master Thesis- N. Zhou- McMaster- Computing and Software

6. A meeting may involve several visitors.

At a first step in modeling, we have to find the different kinds of objects of concern.

Usually they appear as nouns in natural language descriptions.

1. Visitor

2. DiningRoom

3. ConferenceRoom

4. Meeting

We assume that each visitor, dining room, conference room, and meeting has a unique

name, say given as a string. There are a different set of meetings taking place and a

different set of visitors attending those. Hence we define two variables.

visitors: set of Visitor

meetings: set of Meeting

the set of registered visitors

the set of meetings taking place

As the next step, we state the relationships between the various objects. Each

registered visitor attends a meeting and only one meeting. Hence we define attends

as a mapping from registered visitors to the meetings taking place, a mapping is a

set F S:: I x 0 such that if (x, y), (x, y') E F, then y = y':

attends: map Visitor to Meeting

dom attends = visitors

ran attends s:;: meetings

The last two lines express that every visitor must register to a meeting, but there

can be a meeting without any visitors(yet).

Each meeting occupies at least one conference room, but no conference rooms can

be shared between meetings. We model this as an injective relation between meetings

and conference rooms:

146

Master Thesis- N. Zhou- McMaster- Computing and Software

convenes: rei Meetings to ConferenceRoom

dom convenes = meetings

injective(convenes)

The last line expresses that each meeting must take place in one conference room.

Each meeting takes lunch in a dining room, if it requires lunch at all. However,

several meetings can share a dining room. We express this as a mapping between

meetings taking place and dining rooms:

eats: map Meeting to Dining Room

dom eats ~ meetings

If we use (attends o eats t 1 = eats - 1 o attends - 1 to relate each dining room to all

the visitors eating in there, we may consider the implicit requirement that the total

number of visitors eating in a dining room must not exceed capacity of the dining

room. Let

capacity: map DiningRoom to integer

total(capacity)

be a function returning the maximal capacity of each dining room, where \fdr ·

capacity(dr) > 0. Then we may add:

V dr E ran eats · #((attends o eats) - 1 { dr}) ::; capacity(dr)

Since in Simplify the universal quantifier and the existential quantifier are assumed

to have the range of integers, in our implementation we can reformulate above pred

icate by limiting dr to type ran eats

dr E ran eats==? #((attends o eats)-1 { dr}) ::; capacity(dr).

Based on the above data structure, the system has to support following operations

[31]:

1. createMeeting: create a new meeting

147

Master Thesis - N. Zhou- McMaster- Computing and Software

2. cancelMeeting: delete meeting, provided no dining room, conference rooms, and

visitors are associated with that meeting.

3. cancelMeetingArrangement: delete meeting with all associated rooms and visi

tors.

4. enter Visitor: create a new visitor entry.

5. remove Visitor: remove visitor from the system.

6. addVisitorToMeeting, remove VisitorFromMeeting: as the name says.

7. bookDiningRoom,cancelDiningRoom: for a particular meeting

8. bookConferenceRoom, cancelConferenceRoom: for a particular meeting.

7.2 Specification of Visitor Information System

Invariants have to hold throughout the operations to maintain the data structure

of function for variable attends and eats, and injective relation for variable meetings.

Besides invariants, we solve the Completeness issue for each procedure: Does the

specification cover all possible cases, or did we forget some cases? Completeness of

ten implies (some sort of) definedness which is expressed by preconditions. Assertion

statements are served as precondition of the procedure. For a program segment with

alternative statements, precondition of it is the coverage of the condition. We arrive

at this functional specification from a holistic point of view, considering the whole

system.

module VisitorlnformationSystem

var visitors: set of String (* set of Visitor *)

148

Master Thesis- N. Zhou- McMaster- Computing and Software

var meetings: set of String

var attends: map String to String

var convenes: rei String to String

var eats: map String to String

(* set of Meeting *)

(* map Visitor to Meeting *)

(* rei Meeting to ConferenceRoom *)

(* map Meeting to DiningRoom *)

{invariant:(dom attends<;;;; visitors) 1\ (ran attends<;;;; meetings) 1\

(dom convenes <;;;; meetings) 1\ map(attends) 1\ injective(convenes) 1\

map(eats) 1\ (dom eats <;;;; meetings) 1\

('i!dr E ran eats· #((attends o eats)-1
{ dr}) ~ capacity(dr))}

public procedure createMeeting(val m: String)

m =/= nil 1\ m =/= "" 1\ m ~ meetings 1\ meetings 1 = meetings U { m}

public procedure cancelMeeting(val m: String)

mE meetingsl\m ~ ran(attends)l\m ~ dom(convenes)l\m ~ dom(eats)l\

meetings! =meetings- { m}

public procedure cancelMeetingArrangement(val m: String)

mE meetings 1\ meetings!= meetings- {m}/\

attends!= attends- revrelate(m, attends)/\

convenes!= convenes- relate(m, convenes)/\

eatsl =eats- relate(m,eats)

public procedure enterVisitor(val v: String)

v =/= nil 1\ v =/= "" 1\ v ~ visitors 1\ visitors 1 = visitors U { v}

public procedure removeVisitor(val v: String)

v E visitors 1\ v ~ dom (attends) 1\ visitors 1 = visitors - { v}

public procedure addVisitorToMeeting(val v: String, val m: String)

v E visitors 1\ mE meetings 1\ v ~ dom(attends) 1\ attends!= attendsU

149

Master Thesis- N. Zhou- McMaster- Computing and Software

{ (v, m)} 1\ (•(dr E ran(eats) ==? card(revrelate(dr, attends! o eats)) ::;

capacity(dr)) 1\ eatsl =eats- relate(m, eats) V (dr E ran(eats)==?

card(revrelate(dr, attends! o eats)) ::; capacity(dr)) 1\ eatsl =eats)

public procedure remove Visitor FromM eeting(val v : String)

v E dom(attends) 1\ attends!= attends- relate(v, attends)

public procedure visitorlnfo(val v: String, res mt: String)

v E visitors 1\ v E v E visitors 1\ v ~ v ~visitors

dom(attends) dom(attends)

mt1 = mt1 = "" mt1 =nil

concate(ran(relate(v,

attends)))

Table 7.1: Checking Meeting Attended visitorlnfo

public procedure bookDiningRoom(val m: String, val d: String)

m E meetings 1\ d =I= nil 1\ m ~ dom(eats) 1\ (dr E ran(eats U { (m, d)}) ==?

card(revrelate(dr, compose(attends, eats U {(m, d)}))) ::; capacity(dr))l\

eatsl =eats U {(m, d)}

public procedure cancelDiningRoom(val m: String)

mE dom(eats) 1\ eatsl =eats- relate(m, eats)

public procedure bookConferenceRoom(val m: String, val c: String)

mE meetings 1\ c =I= nil 1\ c ~ran(convenes)/\

convenes!= convenesU {(m,c)}

public procedure cancelConferenceRoom(val c: String)

150

Master Thesis - N. Zhou- McMaster- Computing and Software

c E ran(convenes) 1\ convenes!= convenes- revrelate(c, convenes)

public procedure conferenceRooms(val m: String, res cr: String)

m E meetings 1\ m E m E meetings 1\ m ~ m ~meetings

dom(convenes) dom(convenes)

cr1 = cr1 = "" cr1 =nil

concate(ran(relate(m,

convenes)))

Table 7.2: Conference Room conferenceRooms

public procedure diningRooms(val m: String, res dr: String)

mE meetings 1\ mE m E meetings 1\ m ~ m ~meetings

dom(eats) dom(eats)

d1 = d1 = '"' d1 =nil

concate(ran(relate(m,

eats)))

Table 7.3: Dining Room diningRooms

begin visitors, meetings, attends, convenes, eats := ¢, ¢, ¢, ¢, ¢

end

151

Master Thesis- N. Zhou- McMaster- Computing and Software

7.3 Axiom

Since Simplify only accepts a sequence of first order formulae as input, the prop

erties and operations of set, relation and function are not acceptable directly. But

Simplify proves its formulae assuming some set of axioms, we can define properties

and operations in terms of functions which are called axioms and customize the axiom

set in Simplify before validating each predicate. There are a large amount of axioms

for set, relation and function properties and operations. A few of them are applied

in this example to prove our stated invariants. Axioms are presented in a style which

Simplify can recognize. Their explanations in the combination of alternative state

ment (to limit the definedness of an axiom), conventional symbol and first order logic

are also provided following each of them.

1. MEMBER 1

(FORALL (x y s)

(PATS (MEMBER X (INSERT s y)))

(IMPLIES (NEQ x y) CEQ (MEMBER x (INSERT s y)) (MEMBER x s))))

if x =I= y then (xEs U {y} ¢:?xEs) A (x tf. s U {y} ¢:? x tf. s)

2. MEMBER 2

(FORALL (x xs ys)

(PATS (MEMBER x (DELETE xs ys)))

(IMPLIES (NEQ (MEMBER x xs) true)

(NEQ (MEMBER x (DELETE xs ys)) true)))

if X tf. XS then X tf. XS - ys

152

Master Thesis- N. Zhou- McMaster- Computing and Software

3. MEMBER 3

(FORALL (x xs ys)

(PATS (MEMBER x (dom (DELETE xs ys))))

(IMPLIES (NEQ (MEMBER x (dom xs)) true)

(NEQ (MEMBER x (dom (DELETE xs ys))) true)))

if x 1. dam xs then x 1. dam (xs- ys)

4. MEMBER 4

(FORALL (x xs ys)

(PATS (MEMBER x (ran (DELETE xs ys))))

(IMPLIES (NEQ (MEMBER x (ran xs)) true)

(NEQ (MEMBER x (ran (DELETE xs ys))) true)))

if x 1. ran xs then x 1. ran (xs- ys)

5. SUBSET 1

(FORALL (y xs ys)

(PATS (SUBSET xs (INSERT ys y)))

(IMPLIES (EQ (SUBSET xs ys) true)

CEQ (SUBSET xs (INSERT ys y)) true)))

if xs r::;; ys then xs r::;; ys U {y}

6. SUBSET 2

(FORALL (x xs ys)

(PATS (SUBSET xs (DELETE ys (INSERT EMPTY x))))

153

Master Thesis - N. Zhou- McMaster- Computing and Software

(IMPLIES (AND (NEQ (MEMBER x xs) true) CEQ (SUBSET xs ys) true))

(EQ (SUBSET xs (DELETE ys (INSERT EMPTY x))) true)))

if x tf_ xs 1\ xs ~ ys then xs ~ ys - { x}

7. SUBSET 3

(FORALL (xs ys zs)

(PATS (SUBSET (dom (DELETE xs zs)) ys))

(IMPLIES CEQ (SUBSET (dom xs) ys) true)

CEQ (SUBSET (dom (DELETE xs zs)) ys) true)))

if dom xs ~ ys then dom (xs- zs) ~ ys

8. SUBSET 4

(FDRALL (xs ys zs)

(PATS (SUBSET (ran (DELETE xs zs)) ys))

(IMPLIES CEQ (SUBSET (ran xs) ys) true)

CEQ (SUBSET (ran (DELETE xs zs)) ys) true)))

if ran xs ~ ys then ran (xs- zs) ~ ys

9. SUBSET 5

(FORALL (x y xs ys)

(PATS (SUBSET (dom (INSERT ys (PAIR x y))) xs))

(IMPLIES (AND CEQ (MEMBER x xs) true)

(EQ (SUBSET (dom ys) xs) true))

(EQ (SUBSET (dom (INSERT ys (PAIR x y))) xs) true)))

154

Master Thesis - N. Zhou- McMaster- Computing and Software

if x E xs 1\ dom ys <;;;; xs then dom (ys U (x, y)) <;;;; xs

10. SUBSET 6

(FORALL (x y xs ys)

(PATS (SUBSET (ran (INSERT ys (PAIR x y))) xs))

(IMPLIES (AND (EQ (MEMBER y xs) true)

(EQ (SUBSET (ran ys) xs) true))

CEQ (SUBSET (ran (INSERT ys (PAIR x y))) xs) true)))

if y E xs 1\ ran ys <;;;; xs then ran (ys U (x, y)) <;;;; xs

11. UNION 1

(FORALL (xs)

(PATS (UNION xs EMPTY))

(EQ (UNION xs EMPTY) xs))

XS U cp = XS

12. UNION 2

(FORALL (xs ys y)

(PATS (UNION xs (INSERT ys y)))

CEQ (UNION xs (INSERT ys y)) (INSERT (UNION xs ys) y)))

xsU(ysU{y}) = (xsUys)U{y}

13. DELETE 1

(FORALL (x xs)

(NEQ (MEMBER x (dom (DELETE xs (relate x xs)))) true))

155

Master Thesis- N. Zhou- McMaster- Computing and Software

x rf_ dom (xs- l{x }I)

14. DELETE 2

(FORALL (x xs)

(NEQ (MEMBER x (ran (DELETE xs (revrelate x xs)))) true))

x rf_ ran (xs -l{x}I-I)

15. DOMAIN 1

(FORALL (xs x1 x2)

(PATS (dom (INSERT xs (PAIR x1 x2))))

(EQ (dom (INSERT xs (PAIR x1 x2))) (INSERT (dom xs) x1)))

dom (xs U (xi, x2)) = dom xs U {xi}

16. RANGE 1

(FORALL (xs x1 x2)

(PATS (ran (INSERT xs (PAIR x1 x2))))

(EQ (ran (INSERT xs (PAIR x1 x2))) (INSERT (ran xs) x2)))

17. INJECTIVE 1

(FORALL (xs ys)

(PATS (injective (DELETE xs ys)))

(IMPLIES (EQ (injective xs) true)

CEQ (injective (DELETE xs ys)) true)))

156

Master Thesis - N. Zhou- McMaster- Computing and Software

if injective xs then injective (xs- ys)

18. INJECTIVE 2

(FORALL (x x1 xs)

(PATS (injective (INSERT xs (PAIR x x1))))

(IMPLIES (AND CEQ (injective xs) true)

(NEQ (MEMBER x1 (ran xs)) true))

CEQ (injective (INSERT xs (PAIR x x1))) true)))

if (injective xs) 1\ (x1 E ran xs) then injective (xs U {(x, x1)})

19. MAP 1

(FORALL (xs ys)

(PATS (map (DELETE xs ys)))

(IMPLIES CEQ (map xs) true) (EQ (map (DELETE xs ys)) true)))

if map xs then map (xs- ys)

20. MAP 2

(FORALL (x x1 xs)

(PATS (map (INSERT xs (PAIR x1 x))))

(IMPLIES (AND (EQ (map xs) true)

(NEQ (MEMBER x1 (dom xs)) true))

CEQ (map (INSERT xs (PAIR x1 x))) true)))

if (map xs) 1\ (x1 tt- dom xs) then map (xs U (x1, x))

21. CAPACITY 1

157

Master Thesis - N. Zhou- McMaster- Computing and Software

(FORALL (y xs ys m v)

(IMPLIES CEQ (MEMBER y (ran (DELETE ys (relate m ys)))) true)

(<= (card (revrelate y

(compose (UNION xs (INSERT EMPTY (PAIR v m)))

(DELETE ys (relate m ys)))))

(card (revrelate y (compose xs ys))))))

\:fy E ran ys · #(((xs U (v, m)) o (ys -l{m}J))-1[{y}])::; #((xs o ys)-1[{y}])

22. CAPACITY 2

(FORALL (y xs ys zs)

(IMPLIES CEQ (MEMBER y (ran ys)) true)

(<= (card (revrelate y (compose (DELETE xs zs) ys)))

(card (revrelate y (compose xs ys))))))

\:fy E ran ys · #(((xs- zs) o ys)- 1 [{y}]) ::; #((xs o ys)-1 [{y}])

23. CAPACITY 3

(FORALL (y xs ys zs)

(IMPLIES (EQ (MEMBER y (ran ys)) true)

(<= (card (revrelate y (compose xs (DELETE ys zs))))

(card (revrelate y (compose xs ys))))))

\:fy E ran ys · #((xs o (ys- zs))-1[{y}])::; #((xs o ys)-1 [{y}])

7.4 Proving Invariants and Preconditions

Like the formal proof in terms of implementation in our CarSeat example, we

prove preconditions and the system invariant preserved for each procedure in this

158

Master Thesis- N. Zhou- McMaster- Computing and Software

information system based on predicate. Invariant and preconditions are already pred

icate except that set and relation properties and operations should be transformed to

self-defined functions.

The invariant vi of the system can be represented in predicate by our input notation:

dom(attends)<:visitors & ran(attends)<:meetings &

dom(convenes)<:meetings & map(attends)=true & map(eats)=true &

injective(convenes)=true & dom(eats) <:meetings &

(dr:ran(eats)=>card(revrelate(dr,compose(attends,eats)))<=capacity(dr))

The proof of invariant for each procedure is calling function tvp (or vp) b p c where

procedure p = ST(op, vl) and op is a predicate in tabular (plain) form, b = c = vi.

Preconditions are validated by calling function pret (or pre) b p where parameters b

and p are the same as those of tvp (or vp). We include the source code of the proof

in the following subsections.

public procedure createM eeting(val m : String)

let createMeeting = reader "m/=nilu&um/=EMPSTRu&um/: umeetingsu&

meetingsl=meetingsuUu{m}"

in let p = ST(createMeeting, [reader "meetings"])

in let b = reader "m/=nilu&um/=EMPSTR&um/ :meetings"

in if (pre b p) 1\ (vp bi p ci) then begin

... print createMeeting to screen and a latex file ...

... print b as precondition of createMeeting ...

... print bi as system invariant preserved by createMeeting ...

end

public procedure cancelMeeting(val m: String)

let cancelMeeting = reader "m:meetingsu&um/:ran(attends)u&

159

Master Thesis- N. Zhou- McMaster- Computing and Software

m/:dom(convenes)u&um/:dom(eats)u&umeetingsl=meetings--{m}"

in let p = ST(cancelMeeting, [reader "meetings"])

in let b = reader "m:meetingsu&um/:ran(attends)u&

m/:dom(convenes)u&um/:dom(eats)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print canceiMeeting to screen and a latex file ...

... print b as precondition of canceiMeeting ...

... print bi as system invariant preserved by canceiMeeting ...

end

public procedure cancelM eetingArrangement(val m : String)

let cancelMeetingArrangement = reader "m:meetingsu&

meetings1=meetings--{m}u&uattends1=attends--revrelate(m,attends)u&

convenes1=convenes--relate(m,convenes)&eats1=eats--relate(m,eats)"

in let p = ST(cancelMeetingArrangement,

[reader "meetings";reader "attends";reader "convenes";reader "eats"])

in let b = reader "m:meetings"

in if (pre b p) 1\ (vp bi p ci) then begin

... print createMeetingArrangement to screen and a latex file ...

... print b as precondition of createMeetingArrangement ...

... print bi as system invariant preserved by createMeetingArrangement ...

end

public procedure enterVisitor(val v: String)

let enter Visitor = reader

"v/=nilu&uv/=EMPSTRu&uvu/:uvisitorsu&uvisitorslu=uvisitorsuUu{v}"

in let p = ST(enterVisitor,[reader "visitors"])

in let b = reader "v /=nilu&uv /=EMPSTRu&uv I: visitors"

in if (pre b p) 1\ (vp bi p ci) then begin

... print enterVisitor to screen and a latex file ...

... print b as precondition of enterVisitor. ..

160

Master Thesis - N. Zhou- McMaster- Computing and Software

... print bi as system invariant preserved by enterVisitor ...

end

public procedure removeVisitor(val v: String)

let remove Visitor = reader

"vu: uvisi torsu&uv/: udom(attends)u&uvisitors1u=uvisi torsu--u{ v }" in

let p = ST(removeVisitor, [reader "visitors"])

in let b = reader "v:visitorsu&uv/:dom(attends)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print removeVisitor to screen and a latex file ...

... print b as precondition of removeVisitor ...

... print bi as system invariant preserved by removeVisitor ...

end

public procedure addVisitorToMeeting(val v: String, val m: String)

let add VisitorToM eeting = reader "v: visi tors&m: meet ings&v I: dom (attends)

&uattends1u=uattendsuUu{PAIR(v,m)}u&u((notu(dr:ran(eats)u=>

card(revrelate(dr,compose(attends1,eats)))<=capacity(dr))

&eats1=eats--relate(m,eats))or((dr:ran(eats)=>card(revrelate

(dr, compose (attends1, eats))) <=capaci ty(dr))u&ueats1=eats))"

in let p = ST(addVisitorToMeeting, [reader "attends";reader "eats"])

in let b = reader "v:visitorsu&um:meetingsu&uv/:dom(attends)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print addVisitorToMeeting to screen and a latex file ...

... print bas precondition of addVisitorToMeeting ...

... print bi as system invariant preserved by addVisitorToMeeting ...

end

public procedure remove Visitor FromM eeting(val v : String)

161

Master Thesis - N. Zhou- McMaster- Computing and Software

let remove VisitorFromMeeting = reader

"vu:udom(attends)u&uattendsl=attends--relate(v,attends)"

in let p = ST(removeVisitorFromMeeting, [reader "attends"])

in let b = reader "v:dom(attends)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print removeVisitorFromMeeting to screen and a latex file ...

... print b as precondition of removeVisitorFromMeeting ...

... print bi as system invariant preserved by removeVisitorFromMeeting ...

end

public procedure visitorlnfo(val v: String, res mt: String)

let visitorlnfo = reader "BEGTABuUHEADERuv:visitorsu&uv:dom(attends)u$

v:visitorsu&uv/:dom(attends)u$uv/:visitorsu//umt1u=

concate(ran(relate(v,attends)))u$umt1=EMPSTRu$umt1=nil//uENDTAB"

let p = ST(visitor Info, [reader "mt "])

in let b = reader "TRUE"

in if (pret b p) 1\ (tvp bi p ci) then begin

... print visitorlnfo to screen and a latex file ...

... print b as precondition of visitorlnfo ...

... print bi as system invariant preserved by visitorlnfo ...

end

public procedure bookDiningRoom(val m: String, val d: String)

let bookDiningRoom = reader "m: meet ingsu&ud/ =nilu&um/ : dom (eats) &

(dr:ran(eatsuUu{PAIR(m,d)})=>card(revrelate(dr,compose(attends,

eatsuUu{PAIR(m,d)}))) <=capaci ty(dr))&eatsl=eatsuUu{PAIR(m, d)}"

in let p = ST(bookDiningRoom, [reader "eats"])

in let b = reader "m:meetingsu&ud/=nilu&um/:dom(eats)u&

(dr:ran(eatsuUu{PAIR(m,d)})u=>ucard(revrelate(dr,compose(attends,

162

Master Thesis- N. Zhou- McMaster- Computing and Software

eatsuUu{PAIR(m,d)}))) <=capaci ty(dr))"

in if (pre b p) 1\ (vp bi p ci) then begin

... print bookDiningRoom to screen and a latex file ...

... print b as precondition of bookDiningRoom ...

... print bi as system invariant preserved by bookDiningRoom ...

end

public procedure cancelDiningRoom(val m: String)

let cancelDiningRoom = reader

"m:dom(eats)u&ueats1u=ueatsu--urelate(m,eats)"

in let p = ST(cancelDiningRoom, [reader "eats"])

in let b = reader "m:dom(eats)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print canceiDiningRoom to screen and a latex file ...

... print bas precondition of canceiDiningRoom ...

... print bi as system invariant preserved by canceiDiningRoom ...

end

public procedure bookConferenceRoom(val m: String, val c: String)

let bookConferenceRoom = reader "m:meetingsu&uc/=nilu&

cu/:ran(convenes)u&uconvenes1u=uconvenesuUu{PAIR(m,c)}"

in let p = ST(bookConferenceRoom, [reader "convenes"])

in let b = reader "m:meetingsu&uc/=nilu&uc/:ran(convenes)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print bookConferenceRoom to screen and a latex file ...

... print b as precondition of bookConferenceRoom ...

... print bi as system invariant preserved by bookConferenceRoom ...

end

public procedure cancelConferenceRoom(val c: String)

let cancelConferenceRoom = reader "c: ran (convenes) u&

163

Master Thesis- N. Zhou- McMaster- Computing and Software

convenes1u=uconvenesu--urevrelate(c,convenes)"

in let p = ST(cancelConferenceRoom, [reader "convenes"])

in let b = reader "c:ran(convenes)"

in if (pre b p) 1\ (vp bi p ci) then begin

... print canceiConferenceRoom to screen and a latex file ...

... print b as precondition of canceiConferenceRoom ...

... print bi as system invariant preserved by canceiConferenceRoom ...

end

public procedure conferenceRooms(val m: String, res cr: String)

let conferenceRooms = reader "BEGTABuUHEADERum:meetingsu&

m:dom(convenes)u$um:meetings&m/:dom(convenes)u$um/:meetingsu//

cr1=concate(ran(relate(m,convenes)))$cr1=EMPSTR$cr1=nil//ENDTAB"

in let p = ST(conferenceRooms, [reader "cr"])

in let b = reader "TRUE"

in if (pret b p) 1\ (vp bi p ci) then begin

... print conferenceRooms to screen and a latex file ...

... print b as precondition of conferenceRooms ...

... print bi as system invariant preserved by conferenceRooms ...

end

public procedure diningRooms(val m: String, res dr : String

let diningRooms = reader "BEGTABuUHEADERumu:meetingsu&

m:dom(eats)u$um:meetingsu&um/:dom(eats)u$um/:meetingsu//

d1=concate(ran(relate(m,eats)))u$ud1=EMPSTRu$ud1=nil//uENDTAB"

in let p = ST(diningRooms, [reader "d"])

in let b = reader "TRUE"

in if (pret b p) 1\ (vp bi p ci) then begin

... print diningRooms to screen and a latex file ...

. .. print b as precondition of diningRooms ...

... print bi as system invariant preserved by diningRooms ...

164

Master Thesis- N. Zhou- McMaster- Computing and Software

end

7.5 Conclusion

The result of our implementation is listed in Figure 7.1. We choose two opera

tions, createMeeting and visitorinfo to demonstrate how to read our result. We

use the theory of precondition to prove the completeness of createM eeting, which

generate 1 proof obligation. Our proof predicate is 7 4 characters long. We use the

theorem of verification with predicates to prove our invariant holds in the ex

ecuting of createM eeting, which generate 1 proof obligation. The proof predicate

of it contains 719 characters. The proofs related to operation crea~eM eeting takes

9 millisecond. We use the theory of precondition with tabular predicates to

prove the completeness of visitorinfo, which generate 3 obligations. We use the

theorem of tabular verification with predicates to prove our invariant holds in

the executing of visitor Info, which generate 3 obligations. The proof predicates for

the precondition and the invariant related to visitor Info contain 117 and 783 char

acters respectively. The proofs related to tabular specification visitor Info takes 7

millisecond. The proofs related to visitor Info as plain predicate takes 4 millisecond.

The specification of the visitor information system is straightforward according to

requirement except the procedure addVisitorToM eeting. It state that after a visitor

is added to a meeting, if a dining room has been booked for the meeting and the

total number of visitors eating in the dining room exceeds the capacity of the dining

room, the booking should be canceled. Although Simplify supports relations, it only

includes the ordering relations on integers. Simplify also include function definition,

but in our case, domain and range can not be modeled by functions defined in Simplify.

165

Master Thesis- N. Zhou- McMaster- Computing and Software

Proof
Size

Time(msec)
Theorems Applied

Operation Condition Tabular Plain

createMeeting l;l 74c;719c 9 Precondition; Verification with Predicates

cancelMeeting 1;1 134c;75lc 10 Precondition: Verification with P rcdicates

cancelrv1eetingArrangement 1;1 150c;810c ll Precondition; Verification with P rcdicatcs

enterVisitor 1;1 74c;719c 8 Precondition;Vcrification with Predicates

remove Visitor 1;1 78c;723c 51 Precondition ;V crification with Predicates

addVisitorToMeeting 1;1 266c;900c 18 Precondition;Verification with Predicates

remove Vis itorFro mMeeting 1;1 68c;724c 9 Precondition :Verification with P red icatcs

vis ito rlnfo
3;3

2rows,3cols
7 4

Precondition with Tabular Predicates;
ll7c;783c Tabular Verification with Predicates

bookDiningRoom 1;1 260c;808c 16 Prccondition;Verification with Predicates

cancelDiningR oom 1;1 53c;712c 9 Precondition;Verification with Predicates

bookConferenceRoom 1;1 96c;734c 8 Precondition;Vcrification with Predicates

cance1ConferenceRoom 1;1 76c;731c 4 Prccondition;Verit1cation with Predicates

conferenceRooms 3;3 2rows,3cols 7 4 Precondition with Tabular Predicates;
t20c:786c Tabular Verification with Predicates

diningRooms 3;3 2rows,3cols 8 4 Precondition with Tabular Predicates;
t05c:77t c Tabular Verilication with Predicates

Figure 7.1: Performance of Proof in Visitor Information System

Therefore, we model our binary relations as sets of pairs and our function as a special

binary relation. When modeling sets, relations and functions, different axioms must

be built for different procedures. We pick exactly those axioms by generate and test

method, check if each axiom is helpful in proving our stated properties.

166

Chapter 8

Elevator Control Refinement

8.1 Controlling Elevators

A typical passenger elevator will have [I]:

• General controls

- Pressing call buttons to choose a floor.

- Pressing door open and door close buttons to instruct the elevator to close

immediately or remain open longer.

- Controlling an alarm switch to signal that passengers have been trapped

in the elevator.

- Controlling the lights and ventilation fans switches in the elevator.

• Floor numbering, the numbering scheme used for a building's floors.

• Elevator scheduling

• Special operating modes

167

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

In this chapter, call button pressed operation is abstracted from a concrete specifica

tion, elevator scheduling is stepwise refined to execute the elevator algorithm.

8.2 Call Button Pressed Abstraction

8.2.1 Case Introduction

First, we illustrate an example on abstracting elevator call button pressed oper

ation [32]. Integer variable floor stands for the current floor; variable reqs is a set

of integers, for the floors to which requests exist; variable mode would take values

up, down, waiting as the current direction of the elevator. Table 8.1 specifies the

operation buttonPressed of requesting the elevator at floor f.

mode = waiting mode i- waiting

f > floor reqs1 = { f} 1\ model = up 1\ reqs1 = reqs U {f} 1\ model=

floor!= floor mode 1\ floor! = floor

f = floor reqs1 = {} 1\ model = waiting reqs1 = reqs 1\ model =mode

1\ floor! = floor 1\ floor! = floor

f < floor reqs1 = { f} 1\ model = down 1\ reqs1 = reqs U { f} 1\ model =

floor! = floor mode 1\ floor! = floor

Consider applying decoding to the relation buttonPressed over variables mode

and reqs as defined above, our intention is to abstract variable reqs with a Boolean

variable r that only reflects if reqs is empty and to abstract variable mode with a

Boolean variable w that only reflects whether mode is waiting or not. Thus this

abstraction reduces the state space to two Boolean variables. A typical use of such

an abstraction is to allow (automated) proofs about the abstraction, for example the

168

Master Thesis- N. Zhou- McMaster- Computing and Software

property that if there are no requests then the mode must be waiting. Formally our

decoding relation is

RW(reqs, mode)(r, w) = (r = reqs =1- {}) 1\ (w =mode= waiting)

8.2.2 Axioms

As stated before, any program variable belongs to an enumeration type or boolean

type should be specified about its type. In this example, three program variable-

mode,r,w have their types specified:

(DISTINCT up down waiting)

(OR CEQ mode waiting) (EQ mode down) CEQ mode up))

(OR CEQ model waiting) CEQ model down) (EQ model up))

(DISTINCT true false)

(OR (EQ r true) (EQ r false))

(OR (EQ rl true) (EQ rl false))

(OR CEQ w true) CEQ w false))

(OR (EQ wl true) (EQ wl false))

Other properties of set used in this example are followed by their explanation:

• EMPTY

(FORALL (xs x)

(PATS (INSERT xs x))

(NEQ (INSERT xs x) EMPTY))

xs U {x} =1- ¢

• MEMBER

169

Master Thesis~ N. Zhou ~McMaster~ Computing and Software

(FORALL (x s)

(PATS (MEMBER x (INSERT s x)))

(EQ (MEMBER x (INSERT s x)) true))

xEsU{x}

• DELETE

(FORALL (xs ys x)

(PATS (MEMBER x (DELETE xs ys)))

(IMPLIES CEQ (MEMBER x ys) true)

(NEQ (MEMBER x (DELETE xs ys)) true)))

if x E ys then x 1. xs - ys

8.2.3 Result and Further Simplification

Call button pressed operation combines algorithmic refining to table (Theorem

7.1 b) with data refinement with predicates (Theorem 7.4 b) for data abstraction.

The result after further simplifications is the tabular predicate used for defining the

relation abButtonPressed:

w =true w = false

f > floor rl =true Awl =false A rl = true A wl = w A floorl

floorl = floor =floor

f = floor rl = false A wl = true A rl = r A wl = w A floorl =

floorl = floor floor

f < floor rl = true A wl = false A rl =true Awl = w A floorl

floorl = floor = floor

170

Master Thesis - N. Zhou- McMaster- Computing and Software

The formal proof of above abstraction by our decoding relation RW(reqs, mode)(r, w)
is implemented by calling function drpb passing two parameters with p = p and r = r:

let buttonPressed = reader

11 BEGTABuLHEADERufu>uflooru$ufu=uflooru$ufu<ufloorul I
UHEADERumodeu=uwaitingu$umodeul=uwaitingull

reqs1={f}u&umode1=upu&ufloor1=floor$u

reqs1=reqsuUu{f}u&umode1=modeu&ufloor1=floorll

reqs1={}u&umode1=waitingu&ufloor1=flooru$

reqs1=reqsu&umode1=modeu&ufloor1=floorll

reqs1={f}u&umode1=downu&ufloor1=flooru$

reqs1=reqsuUu{f}u&umode1=modeu&ufloor1=floorlluENDTAB 11

in let abButtonPressed = reader
11 BEGTABuLHEADERuf>flooru$uf=flooru$uf<floorul I
UHEADERuw=trueu$uw=falseull

r1=trueu&uw1=falseu&ufloor1=flooru$ur1=trueu&uw1=wu&ufloor1=floorll

r1=falseu&uw1=trueu&ufloor1=flooru$ur1=ru&uw1=wu&ufloor1=floorll

r1=trueu&uw1=falseu&ufloor1=flooru$ur1=trueu&uw1=wu&ufloor1=floorll

ENDTAB 11

in let p = RE(ST(buttonPressed, [reader 11 mode 11 ;reader 11 reqs 11
]),

ST(abButtonPressed, [reader 11 w11 ;reader 11 r 11
]))

in let r = reader 11 (r=trueu<=>ureqsul={}) u&u (w=trueu<=>umode=wai ting) 11

in if (drpb p r) then begin

... print buttonPressed, abButtonPressed and r to standard output ...

... inform result of data abstraction from buttonPressed by decoding

relation r is algorithmically abstracted to abButtonPressed ...

end

171

Master Thesis- N. Zhou- McMaster- Computing and Software

We now use Theorem 2.9 (with transposition) to join the first and last row.

w =true w =false

f =1- floor r1 = true 1\ w1 = false 1\ r1 = true 1\ w1 = w 1\ floor!

floor! = floor =floor

f =floor r1 = false 1\ w1 = true 1\ r1 = r 1\ w1 = w 1\ floor! =

floor! = floor floor

It is verified by calling function SJrC passing four parameters with ifrow

true, froml = 0, from2 = 2, and (TABLE(tl), TABLE(t2)) =

(joinButtonPressed, abButtonPressed).

let joinButtonPressed = reader "BEGTABuLHEADERuf/=flooru$uf=flooru/ I

UHEADERuw=trueu$uw=falseu//

r1=trueu&uw1=falseu&ufloor1=floor$ur1=trueu&uw1=wu&ufloor1=floor//

r1=falseu&uw1=trueu&ufloor1=floor$ur1=ru&uw1=wu&ufloor1=floor//

ENDTAB"

in if (sjrc true 0 2 (joinButtonPressed, abButtonPressed)) then begin

... inform joining the first and last row of abButtonPressed is joinButtonPressed ...

... print joinButtonPressed to screen and a latex file ...

end

The final result of applying Theorem 2.8(a) to simplify the rightmost column is

the table below.

w =true w = false

f =1- floor r1 = true 1\ w1 = false 1\ r1 = true 1\ w1 = false 1\

floor! = floor floor! =floor

f = floor r1 = false 1\ w1 = true 1\ r1 = r 1\ w1 = false 1\ floor!

floor! = floor =floor

172

Master Thesis - N. Zhou- McMaster- Computing and Software

The formal proof is implemented by calling function rtea passing one parameter

with (TABLE(tl), TABLE(t2)) = (joinButtonPressed, simpButtonPressed).

let simpButtonPressed = reader "BEGTABuLHEADERuf/=flooru$uf=flooru/ I

UHEADERuw=trueu$uw=falseu//

r1=trueu&uw1=falseu&ufloor1=floor$ur1=trueu&uw1=falseu&ufloor1=floor

//ur1=falseu&uw1=trueu&ufloor1=floor$ur1=ru&uw1=falseu&ufloor1=floor

//uENDTAB"

in if (rtea (joinButtonPressed, simpButtonPressed)) then begin

... inform using Theorem 2.8{a) to simplify the rightmost column of joinButtonPressed

is simpButtonPressed ...

. :.print simpButtonPressed to screen and a latex file ...

end

8.3 Elevator Scheduling Refinement

8.3.1 Case Introduction

In contrast to the abstraction of buttonPressed, we will present a refinement of

scheduling in which we increase the state space. When a traveling elevator reaches a

specific floor, which is captured by a sensor, the system will determine the membership

of current floor from the set of requested floors and perform different sequences of

operations.

1. Current floor is not in requested floors, formally represented by rs = 0.

(a) Motor keeps moving, formally represented by s =false.

(b) Door is still closed, formally represented by c = true.

(c) Mode remains busy, formally represented by w =false.

173

Master Thesis - N. Zhou- McMaster- Computing and Software

2. Current floor is in one-element set of requested floors, formally represented by

rs = 1.

(a) Motor stops, formally represented by s =true.

(b) Door opens, formally represented by c =false.

(c) Mode becomes idle, formally represented by w =true.

3. Current floor is in multiple-element set of requested floors, formally represented

by rs = 2.

(a) Motor stops.

(b) Door opens.

(c) Mode remains busy.

Based on above requirement, we define our abstract specification as:

w = false/\floor1 = floor/\(rs = 0/\cl = true/\s1 = false/\w1 = w/\rs1 =

rsVcl = false/\s1 = true/\rs1 = 01\(rs = 2/\w1 = falseVrs = 1/\w1 =true))

In the case of scheduling abstract specification we make following observations:

• The abstract boolean variable s, c and w could be replaced by enumeration

variable motor, door and mode respectively to indicate their concrete states.

• We could consider more detailed relations between current floor and the set of

requested floors by introducing set reqs.

• The refinement through relation SCWRS(s,c,w,rs)(motor,door,mode,reqs)

can be broken into two steps by a composition relation SCW(s, c, w)(motor, door,

mode) o RS(rs)(reqs). The reason is that SCW(s, c, w)(motor, door, mode) is

174

Master Thesis- N. Zhou- McMaster- Computing and Software

represented as a plain predicate while RS (r s) (mode) is represented as a vec

tor predicate table and the refinements on these two encoding relations apply

different theorems.

8.3.2 Stepwise Data Refinement

The refinement on encoding relation SCW(s, c, w)(motor, door, mode):

(c =true{:} door= closed) 1\ (s =true{:} motor= stop) 1\ (w =true{:}

mode = waiting)

can be represented in plain predicate stepRefScheduling as:

mode# waiting 1\ floorl =floor 1\ (rs = 0 1\ doorl =closed 1\ motorl #

stop 1\ model =mode 1\ rsl = rs V doorl =open 1\ motorl =stop 1\ rsl =

01\ (rs = 21\ model# waiting V rs = 1 1\ model= waiting))

The formal proof of above refinement is implemented by calling function drpp

passing two parameters with p = p and r = r:

let scheduling = reader "w=falseu&ufloor1=floor&

((rs=Ou&uc1=trueu&s1=falseu&uw1=wu&urs1=rs)uoru(c1=false&s1=true&

rs1=0u&((rs=2u&uw1=false)uoru(rs=1u&uw1=true))))"

in let r = reader "(c=trueu<=>udoor=closed)u&

(s=trueu<=>umotoru=ustop) u&u (w=trueu<=>umode=wai ting)"

in let stepRefScheduling = reader "mode/=wai ting&floor1=floor

&((rs=Ou&udoor1=closedu&umotor1/=stopu&umode1=modeu&urs1=rs)uor

(door1=openu&umotor1=stopu&urs1=0u&u((rs=2u&umode1/=waiting)

oru(rs=1u&umode1=waiting))))"

in let p = RE(ST(scheduling, [reader "c";reader "s";reader "w"]),

ST(stepRefScheduling, [reader "door";reader "motor";reader "mode"]))

in if drpp p r 0 then begin

... print scheduling, stepRefScheduling and r to standard output ...

... inform result of data abstraction from scheduling by

175

Master Thesis- N. Zhou- McMaster- Computing and Software

encoding relation r is stepRefScheduling ...

end

For the relation of current floor and the set of requested floors, we can divide it

into five categories:

1. Current floor is not in requested floors, represented as: floor rt reqs.

2. Current floor is in requested floors and there are no requests in both up and

down directions, represented as:

floor E reqs 1\ -{3f · f E reqs 1\ f >floor) 1\ -{3f · f E reqs 1\ f <floor).

3. Current floor is in requested floors and there are only requests in down direction,

represented as:

floor E reqs 1\ -.(3f · f E reqs 1\ f >floor) 1\ (3f · f E reqs 1\ f <floor).

4. Current floor is in requested floors and there are only requests in up direction,

represented as:

floor E reqs 1\ (3f · f E reqs 1\ f >floor) 1\ -.(3f · f E reqs 1\ f <floor).

5. Current floor is in requested floors and there are requests in both directions,

represented as:

floor E reqs 1\ (3f · f E reqs 1\ f >floor) 1\ (3f · f E reqs 1\ f <floor).

176

Master Thesis- N. Zhou- McMaster- Computing and Software

We reflect above relation to our abstract relation by a vector table:

floor 1- floor E floor E floor E floor E

reqs reqs 1\ -{3 reqs 1\ -{3 reqs 1\ (:3 reqs 1\ (:3

f. f E reqs f. f E reqs f. f E reqs f. f E reqs

1\f> 1\f> 1\f> 1\f>

floor) 1\ floor) 1\ (:3 floor) 1\ floor) 1\ (:3

•(:3 f. f E f. f E reqs •(:3 f. f E f. f E reqs

reqs 1\ f < 1\f< reqs 1\ f < 1\f<

floor) floor) floor) floor)

rs= 0 1 2 2 2

Table 8.5: E~coding Relation R(rs)(reqs)

177

Master Thesis- N. Zhou- McMaster- Computing and Software

We apply theorem 7.5 (Data Refinement with Vector Table) to get the refinement

of intermediate specification StepRefScheduling on encoding relation RS(rs)(reqs).

It can be represented in standard table as:

floor~ floor E floor E floor E floor E

reqs1 reqs1 1\ reqs1 1\ reqs1 1\ reqs1 1\

-{3f.f ---{3 f. f (3 f. f (3 f. f

E reqs1 E reqs1 E reqs1 E reqs1

1\f> 1\f> 1\f> 1\f>

floor) 1\ floor) 1\ floor) 1\ floor) 1\

·(3 f. f (3 f. f ·(3 f. f (3 f. f

E reqs1 E reqs1 E reqs1 E reqs1

1\f< 1\f< 1\f< 1\f<

floor) floor) floor) floor)

floor~ reqs mode =1- FALSE FALSE FALSE FALSE

waiting

1\ door1

=closed

1\ motor1

=1- stop 1\

model=

mode 1\

floor1 =

floor

floor E reqs 1\ mode =1- FALSE FALSE FALSE FALSE

•(3 f. f E reqs waiting

178

Master Thesis - N. Zhou- McMaster- Computing and Software

1\ f > floor) 1\ 1\ doorl

•(:l f. f E reqs =open 1\

1\ f < floor) motorl =

stop 1\

model=

waiting

1\ floor1

=floor

floor E reqs 1\ mode =/= FALSE FALSE FALSE FALSE

•(:l f. f E reqs waiting

1\ f > floor) 1\ 1\ doorl

(:J f. f E reqs =open 1\

1\ f < floor) motorl =

stop 1\

model =/=

waiting

1\ floor1

= floor

floor E reqs 1\ mode =/= FALSE FALSE FALSE FALSE

(:J f. f E reqs waiting

1\ f > floor) 1\ 1\ doorl

•(:l f . f E reqs =open 1\

1\ f < floor) motorl =

stop 1\

model =/=

179

Master Thesis- N. Zhou- McMaster- Computing and Software

waiting

1\ floor!

= floor

floor E reqs 1\ mode i- FALSE FALSE FALSE FALSE

(3 f. f E reqs waiting

1\ f > floor) 1\ 1\ door1

(3 f. f E reqs =open 1\

1\ f < floor) motor!=

stop 1\

model i-

waiting

1\ floor!

=floor

It is implemented by calling function drv with parameter p = p and r = r.

let r = reader "BEGTABuLHEADERurs=u/ I

UHEADERufloor/:reqsu$ufloor:reqsu&unotu(#flf:reqsu&uf>floor)

&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu&unotu(#flf:reqsu&

f>floor)u&u(#flf:reqsu&uf<floor)u$ufloor:reqsu&u(#flf:reqs

&uf>floor)u&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu&

(#flf:reqsu&uf>floor)u&u(#flf:reqsu&uf<floor)u/1

Ou$u1u$u2u$u2u$u2u//uENDTAB"

in let refScheduling = reader "BEGTABuLHEADERu

floor/:reqsu$ufloor:reqsu&unotu(#flf:reqsu&uf>floor)u&

notu(#flf:reqsu&uf<floor)u$ufloor:reqsu&unotu(#flf:reqsu&

f>floor)u&u(#flf:reqsu&uf<floor)u$ufloor:reqsu&u(#flf:reqs

&uf>floor)u&unotu(#flf:reqsu&uf<floor)u$ufloor:reqsu&

(#flf:reqsu&uf>floor)u&u(#flf:reqsu&uf<floor)u//uUHEADER

floor/:reqs1u$ufloor:reqs1u&unotu(#flf:reqs1u&uf>floor)

180

Master Thesis - N. Zhou- McMaster- Computing and Software

&unotu(#flf:reqs1u&uf<floor)u$ufloor:reqs1u&unot

(#flf:reqs1u&uf>floor)u&u(#flf:reqs1u&uf<floor)u$

floor:reqs1u&u(#flf:reqs1u&uf>floor)u&unotu(#flf:reqs1u&

f<floor)u$ufloor:reqs1u&u(#flf:reqs1u&uf>floor)u&

(#flf:reqs1u&uf<floor)u//umode/=waitingu&udoor1=closedu&

motor1/=stopu&umode1=modeu&ufloor1=flooru$uFALSEu$uFALSEu$uFALSEu$

FALSE//mode/=waitingu&udoor1=openu&umotor1=stopu&umode1=waiting

&floor1=flooru$uFALSEu$uFALSEu$uFALSEu$uFALSE//umode/=waitingu&

door1=openu&umotor1=stopu&umode1/=waitingu&ufloor1=flooru$uFALSEu$

FALSEu$uFALSEu$uFALSE//umode/=waitingu&udoor1=openu&umotor1=stopu&

mode1/=waitingu&ufloor1=flooru$uFALSEu$uFALSEu$uFALSEu$uFALSE//

mode/=waiting&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$

FALSEu$uFALSEu$uFALSEu$uFALSE//uENDTAB"

in let p = RE(ST(stepRefScheduling, [reader "rs"]),

ST(refScheduling, [reader "reqs"]))

in if (drv p r) then begin

... print stepRefScheduling, refScheduling and r to standard output ...

... inform data refinement of operation stepRefScheduling by encoding

relation r is refScheduling ...

end

We make following adjustment to clarify table structure.

1. Push upper header to each cell of table body.

2. Remove columns which equal to FALSE.

3. Lift predicate mode -=f waiting to upper header.

4. Splitting table by copying one column to another with mode = up and mode =

down as their upper header corresponding to each column.

181

Master Thesis - N. Zhou- McMaster- Computing and Software

After reorganization, we have following specification in tabular form:

mode = up mode= down

floor rt reqs floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl =

closed 1\ motorl f= stop 1\ closed 1\ motorl f= stop 1\

model =mode 1\ floor1 = model =mode 1\ floorl =

floor floor

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl =

-{:3 f . f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\

1\ f > floor) 1\ model = waiting 1\ floor1 model =waiting 1\ floorl

--.(3 f . f E reqs = floor =floor

1\ f < floor)

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl =

--.(3 f . f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\

1\ f > floor) 1\ model f= waiting 1\ floorl model f= waiting 1\ floor1

(3 f. f E reqs =floor =floor

1\ f <floor)

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl =

(3 f. f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\

1\ f > floor) 1\ model f= waiting 1\ floor1 mode 1 f= waiting 1\ floor1

--.(3 f. f E reqs =floor =floor

1\ f < floor)

floor E reqs 1\ floor rt reqsl 1\ doorl = floor rt reqsl 1\ doorl =

(3 f. f E reqs open 1\ motorl = stop 1\ open 1\ motorl = stop 1\

1\ f > floor) 1\ model f= waiting 1\ floor1 model f= waiting 1\ floor1

(3 f. f E reqs =floor =floor

182

Master Thesis - N. Zhou- McMaster- Computing and Software

1\ f <floor)

By above specification, a single elevator can decide where to stop. It is still

not refined enough to decide the direction for a busy elevator. There are several

algorithm to decide which request to service next such as elevator algorithm and

heuristic algorithm [1]. We will adopt the elevator algorithm here to demonstrate an

algorithmic refinement. The elevator algorithm is executed:

1. Continue traveling in the same direction while there are remaining requests in

that same direction.

2. If there are no further requests in that direction, then become idle, or change

direction if there are requests in the opposite direction.

Besides above algorithm, our algorithm refinement also specify the state changes of

set reqs when a specific floor is reached by an assignment statement instead of set

properties. The final refinement table according to theses modification is:

mode = up mode = down

floor tf. reqs reqsl = reqs 1\ doorl = reqsl = reqs 1\ doorl =

closed 1\ motorl = up 1\ closed 1\ motorl = down 1\

model = up 1\ floor1 = model = down 1\ floorl =

floor floor

floor E reqs 1\ reqs 1 = reqs - {floor} 1\ reqs 1 = reqs - {floor} 1\

-{:3 f. f E reqs doorl = open 1\ motorl = doorl = open 1\ motorl =

1\ f > floor) 1\ stop 1\ model= waiting 1\ stop 1\ model =waiting 1\

-{:3 f. f E reqs floor1 =floor floor1 = floor

1\ f < floor)

183

Master Thesis - N. Zhou- McMaster- Computing and Software

floor E reqs 1\ reqs 1 = reqs - {floor} 1\ reqs1 = reqs - {floor} 1\

---{3 f. f E reqs door1 = open 1\ motor1 = door1 = open 1\ motor1 =

1\ f > floor) 1\ stop 1\ mode1 = down 1\ stop 1\ mode1 = down 1\

(3 f. f E reqs floor1 =floor floor1 =floor

1\ f < floor)

floor E reqs 1\ reqs1 = reqs - {floor} 1\ reqs1 = reqs - {floor} 1\

(3 f. f E reqs door1 =open 1\ motor1 = door1 = open 1\ motor1 =

1\ f > floor) 1\ stop 1\ mode 1 = up 1\ stop 1\ mode 1 = up 1\

•(3 f. f E reqs floor1 = floor floor1 = floor

1\ f < floor)

floor E reqs 1\ reqs1 = reqs- {floor} 1\ reqs 1 = reqs - {floor} 1\

(3 f. f E reqs door1 = open 1\ motor1 = door1 = open 1\ motor1 =

1\ f > floor) 1\ stop 1\ mode 1 = up 1\ stop 1\ mode1 = down 1\

(3 f. f E reqs floor1 =floor floor1 =floor

1\ f < floor)

The formal proof of applying Theorem 7.1(b) is implemented by calling function

rtt passing one parameter with p = p:

let adjScheduling = reader "BEGTABuLHEADERufloor I: reqsu$

floor:reqsu&unot(#flf:reqs&f>floor)u&unot(#flf:reqs&f<floor)

$ufloor:reqsu&unotu(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)

$ufloor:reqsu&u(#flf:reqs&f>floor)u&unotu(#flf:reqs&f<floor)

$ufloor:reqsu&u(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)u//

UHEADERumode=upu$umode=downu//

floor/:reqs1u&door1=closedu&motor1/=stop&mode1=mode&floor1=floor$

floor/:reqs1u&door1=closedu&motor1/=stop&mode1=mode&floor1=floor//

floor/:reqs1u&door1=open&motor1=stop&mode1=waiting&floor1=flooru$

floor/:reqs1u&door1=open&motor1=stop&mode1=waiting&floor1=flooru//

184

Master Thesis - N. Zhou- McMaster- Computing and Software

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=floor//

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=floor//

floor/:reqs1u&door1=open&motor1=stop&mode1/=waiting&floor1=flooru$

floor/:reqs1&door1=open&motor1=stop&mode1/=waiting&floor1=floor//

ENDTAB"

in let algScheduling = reader "BEGTABuLHEADERufloor I: reqsu$u

floor:reqsu&unot(#flf:reqs&f>floor)u&unot(#flf:reqs&f<floor)

$ufloor:reqsu&unotu(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)

$ufloor:reqsu&u(#flf:reqs&f>floor)u&unotu(#flf:reqs&f<floor)

$ufloor:reqsu&u(#flf:reqs&f>floor)u&u(#flf:reqs&f<floor)u//

UHEADERumode=upu$umode=downu//

reqs1=reqs&door1=closed&motor1=up&mode1=up&floor1=flooru$

reqs1=reqs&door1=closed&motor1=down&mode1=down&floor1=flooru//

reqs1=reqs--{floor}&door1=open&motor1=stop&mode1=waiting&floor1=

floor$ureqs1=reqs--{floor}&door1=open&motor1=stop&mode1=waitingu&

floor1=floor//reqs1=reqs--{floor}&door1=open&motor1=stop&mode1=down

&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop&mode1=

down&floor1=floor//reqs1=reqs--{floor}&door1=open&motor1=stop&

mode1=up&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop&

mode1=up&floor1=flooru//reqs1=reqs--{floor}&door1=open&motor1=stop&

mode1=up&floor1=flooru$ureqs1=reqs--{floor}&door1=open&motor1=stop&

mode1=down&floor1=flooru//ENDTAB"

in let p = RE(ST(algScheduling, [reader "reqs";reader "door";

reader "motor";reader "mode"]), ST(adjScheduling,

[reader "reqs";reader "door";reader "motor";reader "mode"]))

in if (rtt p) then begin

... print adjScheduling, algScheduling and r to standard output ...

... inform algorithm refinement of operation adjScheduling by

encoding relation r is algScheduling ...

end

185

Master Thesis - N. Zhou- McMaster- Computing and Software

8.4 Summary

The result of our implementation is listed in Figure 8.1. We applied the theorems

of refining to table and data refining with predicates for an abstraction. The

result of such a proof is a table with the same structure as the concrete table. The

abstraction reduces the size of our specification from 176 characters to 115 characters.

The proof related to tabular abstraction takes 17 millisecond. The proof related to

abstraction in terms of plain predicate specification takes 14 millisecond. We apply

the theorem of splitting and joining rows and columns to join the first and last

row, and get a table with 3 rows and 3 columns. Finally, the theorem of replacing

table elements is used to simplify the rightmost column. The elevator scheduling

is stepwise refined to execute the elevator algorithm. The theorem of soundness of

encoding is applied in order to prove the first step of our refinement, the proof of

which takes the longest running time (29,118 millisecond) in our applications. We

apply the theorem of data refinement with vector table to prove the second

step of our refinement in 70 millisecond; while the encoding relation is represented

by plain predicate, Simplify fails to prove the valid of it. We apply the theorem of

refining to table to refine our tabular specification in the same state space, the

proof of which takes 30 millisecond. The proof of such a refinement in terms of plain

predicate specification takes 32 millisecond.

From the elevator example, we observe that data refinement (abstraction) and

algorithmic refinement (abstraction) are normally applied together to refine (abstract)

a specification. Data refining can be carried out in a stepwise manner and different

elements of a composite relation could be represented in different forms. Tabular

refinement are successfully implemented in elevator system.

186

Master Thesis- N. Zhou- McMaster- Computing and Software

Proof Coding Abstract Refined Time(msec)
Theorems Applied Operation Condition Size Size Size

Tabular Plain

Button 4 rows 4 rows Refining to Table
Pressed 6 28c 3 cols 3 cols 17 14

Data Refining with redicates
115c 176c

3 rows
3 cols 11 Splitting and Joining Rows

SOc and Columns

3 rows
3 cols II Replacing Table Elements

88c

I 62c 103c 139c 29,118 Soundness of Encoding

Scheduling 25 2 row 6 rows
6 cols 139c 6 cols 70 fail Data Refmement with
222c 785c Vector Table

6 rows 6 rows
25 3 cols 3 cols 30 32 Refining to Table

708c 734c

Figure 8.1: Performance of Proof in Elevator Control

187

Master Thesis - N. Zhou- McMaster- Computing and Software

188

Chapter 9

Conclusion and Future Work

In this thesis, we presented an implementation of a new table tool which includes

support for both specifications and refinements. A parser is developed based on the

recursive descent parsing technique such that our formulae can be inputted through

either an export function reader or an expression of data type form directly. A

printing file include the functions to print a single formula to screen and a :r5fEX

file respectively. A number of theorems are applied in our validation functions. Our

source code has three files defining the compilation units, table. ml, print. ml, and

parse. ml. When their compiled files are linked together with a Unix library to produce

a executable file (e.g. theprogram), the command is as follows:

ocamlc -o theprogram Unix.cma parse.cmo print.cmo table.cmo

In such an order, the definitions and declarations contained in table. ml can refer to

definition in print. ml, parse. ml, and Unix. cma; print can refer to parse and Unix;

parse can refer to Unix.

We did several experiments to call our validation functions. They are examples of

control system and information management system. Axioms for each example are

set to specify types and properties. It can be seen that it is much easier and more

189

Master Thesis - N. Zhou- McMaster- Computing and Software

convenient to specify and refine a program in its tabular predicate form. Large ma

nipulations are broken into several small parts. Concerns are divided so that designer

and theorem prover can solved them separately. By introducing this implementation,

we are able to design simple and complex cases of tabular specification and refinement

and generate executable code for them in OCaml programming language.

One plain predicate in car seat example is proved in longer time than its equivalent

tabular predicate. All plain predicates in visitor information system example are

proved in shorter time than their equivalent tabular predicates. One plain predicate

in elevator example is proved in longer time than its equivalent tabular predicate.

One valid plain predicate in elevator example is failed to prove its correctness by

Simplify. We conclude that large predicates can be proved more efficient if they are

in tabular form. By applying theorem of tabular specification and refinement, failures

of Simplify are reduced since the inputs of Simplify are smaller decomposed predicates

instead of complex predicates.

According to our implementation and previous works, there are some possible

improvement in specifying and refining a program, such as:

• The output to screen are now ASCII characters and can be replaced by Unicode.

• Optimization could be made on existing code.

• More theorems are to be developed together with examples applying them.

• Specification and refinement can be manipulated on 10 classes of tables defined

by Parnas.

• Algorithmic refinement could be extended to its definition on partial relations.

The theorems and implementation of it could be derived.

190

Bibliography

[1] Elevator. Wikimedia Foundation, Inc, September 2006.

[2] R. Abraham. Evaluating generalized tabular expressions in software documen

tation. Master's thesis, McMaster University, Hamilton, Ont., February 1997.

[3] J.M. Atlee and J. Gannon. State-based model checking of event-driven system

requirements. IEEE Transaction Software Engineering, 19(1):24-40, January

1993.

[4] R-J. Back and J. von Wright. Encoding, decoding, and data refinement. Formal

Aspects of Computing, 12(5):313-349, 2000.

[5] Bazaar. Ocaml - mllanguage implementation with a class-based object system.

Debian, 1997-2006. http:/ jpackages.debian.org/oldstable/devel/ocaml.

[6] J. Crow and B. Di Vito. Formalizing space shuttle software requirements:

four case studies. ACM Transactions on Software Engineering and Methodol

ogy (TOSEM), 7(3):296-332, July 1998.

[7] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program

checking. Journal of the ACM, 52(3):365-473, May 2005.

191

Master Thesis- N. Zhou- McMaster- Computing and Software

[8] S.R. Faulk. State Determination in Hard-Embedded Systems. Phd thesis, Uni

versity of North Carolina, Chapel Hill, 1989.

[9] J. He, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In B. Robinet

and R. Wilhelm, editors, Proceedings of the European symposium on program

ming on ESOP 86, pages 187-196. Lecture Notes in Computer Science 213,

Springer-Verlag, 1986.

[10] Eric C.R. Hehner. Predicate programming. Communications of the ACM,

27(2):144-151, February 1984.

[11] M.P.E. Heimdahl and N.G. Leveson. Completeness and consistency in hierar

chical state-based requirements. IEEE Transactions on Software Engineering,

22(6):363-377, June 1996.

[12] C. Heitmeyer, A.Bull, C. Gasarch, and B. Labaw. SCR: A toolset for specifying

and analyzing requirements. In Proceedings of the 1Oth Annual Conference on

Computer Assurance, pages 109-122, New York, June 1995. IEEE.

[13] C.L. Heitmeyer, R.D. Jeffords, and B. G. Labaw. Automated consistency checking

of requirements specifications. ACM Transactions on Software Engineering and

Methodology, 5(3):231-261, July 1996.

[14] K.L. Heninger. Specifying software requirements for complex systems: New

techniques and their application. IEEE Transactions on Software Engineering,

SE-6(1):2-13, January 1980.

[15] D.N. Hoover and Z. Chen. Tablewise, a decision table tool. In Md. Gaithers

burg, editor, Proceedings os the 10th Annual Conference on Computer Assurance

(COMPASS '95}, pages 97-108, New York, June 1995. IEEE.

192

Master Thesis- N. Zhou- McMaster- Computing and Software

[16] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B. Melhart. Software require

ments analysis for real-time process-control systems. IEEE Transactions on Soft

ware Engineering, 17(3):241-258, March 1991.

[17] R. Janicki and A. Wassyng. On tabular expressions. In Proceedings of the 2003

Conference of the Centre for Advanced Studies on Collaborative Research, pages

92-106, Toronto, Ont., 2003. IBM Centre for Advanced Studies Conference, IBM

Press.

[18] M. Lawford, J. McDougall, P. Froebel, and G. Mourn. Practical application of

functional and relational methods for the specification and verification of safety

critical software. InT. Rus, editor, Proceedings Algebraic Methodology and Soft

ware Technology, 8th International Conference, AMAST 2000, Iowa City, Iowa,

USA, May 2000, volume 1816 of LNCS, pages 73-88. Springer, May 2000.

[19] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements

specification for process-control systems. IEEE Transactions on Software Engi

neeering, 20(9):684-707, 1994. September.

[20] S. Nejati. Refinement relations on partial specifications. Master's thesis, Univer

sity of Toronto, Department of Computer Science, University of Toronto, 2003.

[21] G. Nelson and D. Detlefs. Extended Static Checking for Java. Compaq Systems

Research, Palo Alto, CA, Compaq Computer Corporation edition, 1999,2000.

[22] S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, types, and

model checking. In Slightly expanded version of a paper presented at the Con

ference on Tools and Algorithms for the Construction and Analysis of Sys

tems(TACAS '97), volume 1217 of LNCS, pages 366-383, Enschede, The Nether

lands, April 1997. Springer-Verlag.

193

Master Thesis- N. Zhou- McMaster- Computing and Software

[23] D.L. Parnas. Tabular representation of relations. CRL Report 260, McMaster

University, October 1992.

[24] D.L. Parnas. Inspection of safety-critical software using program-function tables.

In Proceedings of the IFIP World Congress, volume III, pages 270-277, August

1994.

[25] D.L. Parnas, G.J.K. Asmis, and J. Madey. Assessment of safety-critical software

in nuclear power plants. Nuclear Saftety, (32):189-198, 1991.

[26] D.L. Parnas and J. Madey. Functional documentation for computer systems en

gineering (version 2). Technical Report CRL 237, Telecommunications Research

Institution of Ontrario, McMaster University, Hamilton, Ontario, 1991.

[27] D.L. Parnas, J. Madey, and M. Iglewski. Formal documentation of well

structured programs. CRL Report 259, Communications Research Laboratory,

McMaster University, 1992.

[28] L.C. Paulson. ML for the Working Programmer. The Press Syndicate of the

University of Cambridge, The Pitt Building, Trumpington Street, Cambridge

CB2 1RP, United Kingdom, second edition edition, 1996.

[29] L.W. Roberts and M. Berims. Using formal methods to assist in the requirements

analysis of the space shuttle hac change request (cr 90960e). Technical Report

JSC 27599, NASA Johnson Space Center, Houston,TX, September 1996.

[30] G. Schmidt and T. Strohlein. Relations and Graphs, Discrete Mathematics for

Computer Scientists. Springer-Verlag, August 1992.

194

Master Thesis- N. Zhou- McMaster- Computing and Software

[31] E. Sekerinski. Computer Science 3EA3-Software Design II Assignment 1, pages

1-3. McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4K1,

October 2002.

[32] E. Sekerinski. Exploring tabular verification and refinement. Formal Aspects of

Computing, 15(2-3):215-236, November 2003.

[33] E. Sekerinski. Computer Science 4 TB3 Compiler Construction, pages 84-90.

McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4K1, Sep

tember 2005.

[34] E. Sekerinski. Computer Science 703-Software Design, chapter Lecture 3-

Abstract Programs, Lecture 5-Functional Specification, pages 59-92. McMaster

University, 1280 Main Street West Hamilton, Ontario, L8S 4K1, January 2006.

[35] A.J. van Schouwen. The A-7 requirements model: Re-examination for real-time

systems and an application for monitoring systems. Technical Report TR 90-276,

Queen's University, Kingston, Ontario, 1990.

[36] A.J. Wilder and J.V. Tucker. System documentation using tables-a short

course. CRL Report 306, Communications Research Laboratory, McMaster Uni

versity, 1995.

[37] J .I. Zucker. Transformations of normal and inverted function tables. Formal

Aspects of Computing, 8(6):679-705, May 1996.

195

