
Formal Semantics for Tabular Expressions and Software Cost

Reduction Method

FORMAL SEMANTICS FOR TABULAR EXPRESSIONS AND

SOFTWARE COST REDUCTION METHOD

By

IMENE BOURGUIBA, B.Sc., M.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Imene Bourguiba, April2011

DOCTOR OF PHILOSOPHY (2011)

(Computer Science)

McMaster University

Hamilton, Ontario

TITLE: Formal Semantics for Tabular Expressions and Software Cost Reduction Method

AUTHOR: Imene Bourguiba, B.Sc., M.Sc.

SUPERVISOR: Dr. Ryszard janicki

NUMBER OF PAGES: xvi, 156

ii

Acknowledgements

I am thankful to my supervisor Dr. Ryszard Janicki, for his support and guidance.

Deepest gratitude are also due to the members of my supervisory committee, Dr. Farmer

and Dr. Sekerinski.

I would like to especially thank Dr. Moa for many fruitful and stimulating discussions.

I wish to express my love and gratitude to my beloved mother and my husband, for

their understanding and endless love, through the duration of my studies.

I am heartily thankful to the flowers of my life Eya and Alaa. Their laughs and smiles

brought joy to my life, and gave me strength during my PhD journey.

I would like to thank all people who have helped and inspired me during my doctoral

studies especially my brother, my sisters, and my friends.

Lastly, and most importantly, I dedicate my dissertation to the memory of my beloved

father.

iii

Abstract

Unambiguous and precise software specification can not be achieved without some use of

formal notation. Table-based specification techniques are both readable and convenient.

They allow the representation of systems specifications in a very compact and yet precise

manner. They scale to software systems, and they may be easily used even by people un

familiar with the application domain. Additionally, the use of table-based notations makes

it relatively easy to check for such properties as consistency and completeness. Among

the table-based specification techniques discussed in the literature, the most popular are the

Software Cost Reduction (SCR) method and tabular expressions. Both of these techniques

are successfully used in practice to formally specify software requirements.

The Software Cost Reduction (SCR) method is a formal method for specifying the

requirements of software systems that is based on tabular notation. SCR is used in a wide

range of applications.

The second technique tabular expressions comprises a collection of cells, with each

cell holding a single expression. The beauty of tabular expressions stems from both their

visual structure and their concise representation of mathematical functions and relations.

As a result, these expressions are suitable for use in every software engineering phase, from

establishing requirements to completing final testing.

To successfully be used in practice, the specification techniques chosen should be sup

ported by tools for creating, editing and transforming tables. Creating tools in the absence

iv

of reasonable formal semantics often results in failure. Formal semantics are also needed

to compose and decompose tables in a modular way.

Although SCR has been used in many projects and organizations to specify software re

quirements, perhaps surprisingly, its semantics are not well defined. Specifically, the sym

bols used in this method are ambiguous, especially those that serve to denote SCR events.

Further, the SCR method does not include either table composition or decomposition.

The tabular expressions technique was also lacking, though in different ways than SCR.

A literature review revealed that the techniques applied to address the challenges inherent

in tabular expressions composition have their own limitations.

The aim of this research, then, was to improve the semantics of both the SCR and the

tabular expressions specification methods. To this end, SCR tables were converted into

tabular expressions, as they have a rather precise semantics. Additionally, a new way to

model the SCR events with first order logic is presented. Finally, a simpler way to define

SCR events with propositional logic is proposed.

By improving the semantics of the two specification methods, numerous advantages

are realized. These include increasing the readability of tables, and eliminating previously

ambiguous symbols.

Moreover, improving the semantics enabled certain tasks to be carried out more easily,

such as facilitating the verification and validation process and improving the toolset sup

porting the SCR method. In moving towards a richer semantics, this research allowed for

the introduction of algebra for tabular expressions, as well as operators for tables compo

sition and decomposition. Further, the research revealed the inherent power of tabular ex

pressions. This was accomplished by composing a regression to demonstrate where tabular

expressions get their power in specifying functions, relations and programs. An application

of tabular expressions for three dimensions and higher is successfully presented. Next, a

language and a structure for tabular expressions is proposed. Then, it is shown how tabular

v

expressions could be represented by a lattice and by a vector space, respectively. Finally,

the discussion considers the ways in which such an enhanced tabular expressions appli

cation could also be applied to other fields, such as software engineering and computer

science.

vi

Contents

Abstract

List of Tables

List of Figures

1 Introduction

1.1 Motivation .

1.2 Outline . .

2 Table-based specification techniques

2.1 Introduction

2.2 Tabular expressions

2.3 Software Cost Reduction

2.4 Requirements State Machine Language

2.5 Function tables

2.6 Decision tables

2. 7 Verification and validation

2.8 Discussion

3 Tabular expressions vs Software Cost Reduction method

3.1 Introduction

3.2 Tabular expressions semantics

3.3 Transforming SCR tables into tabular expressions

3.3.1 Transforming Condition Tables

3.3.2 Transforming Event Tables ..

vii

iv

X

xii

2

3

4

5

5

6

10

13

16

19

21

24

26

26

27

41

41

44

3.3.3 Transforming Mode Transition Tables

3.4 Improving SCR semantics

3.4.1 Event Modelling in First-Order Logic

3.4.2 Model for the FOL L

3.4.3 Event Modeling in Propositional Logic

3.4.4 Illustrative example .

3.5 Discussion

4 Tabular Expressions Composition

4.1 Introduction

4.2 Cells composition of relation/function

4.3 Table composition of relational scenarios

4.4 Horizontal and vertical table composition

4.5 Table composition of mathematical functions

4.6 Discussion

5 Tabular Expressions Operators

5.1 Introduction

5.2

5.3

5.4

5.5

5.6

Improving the syntax and semantics of tabular expressions

Tabular expressions operators

5.3.1 Unary operator tabular expressions .

5.3.2 Inner operators tabular expressions.

5.3.3 Kronecker operators tabular expressions .

5.3.4 Outer operators tabular expressions

Partial order on tabular expressions .

Tabular expressions refinement

Algebra of tabular expressions

viii

45

47

49

58

62

65

66

70

70

71

75

83

85

86

90

90

91

93

93

98

101

107

109

117

121

5.7 Consistency and completeness

6 The Power of Tabular Expressions

Introduction 6.1

6.2

6.3

Tabular expressions and Turing machines

Language and Structure for Tabular Expressions .

6.3.1

6.3.2

Languages and Structures

Diagram Language

6.4 The lattice structure

6.5 Normal Tabular Expressions as a Vector Space .

6.6 Tabular expressions and programming languages

7 Conclusion

Appendix A

Appendix B

Bibliography

IX

. 122

124

. 124

. 125

. 128

. 128

. 129

130

132

. 133

136

139

144

150

List of Tables

2.1 Scenario's space T 8

2.2 The relation of the environment Re . 8

2.3 The relation of the system Rs . 8

2.4 The relation of the scenario . . 9

2.5 Condition table for Safety Injection . 12

2.6 Event table for Overridden 12

2.7 Mode transition table for Pressure 13

2.8 The AND/OR table . . 15

2.9 Vertical condition table 17

2.10 Horizontal condition table 17

2.11 Structured decision table 18

2.12 State transition table 19

2.13 Decision table 20

2.14 A Partitioned decision table . 21

3.1 Simple function table from older tabular expressions 29

3.2 Vertical condition table for Safety Injection 43

3.3 Condition table for heat 43

3.4 Vertical condition table for heat 43

X

3.5 Vertical condition table for Overridden

3.6 Event table for tpressure-latch

3.7 Vertical condition table for tpressure-latch

3.8 State transition table

3.9 Mode transition table for setting

44

45

45

47

47

3.10 State transition table for setting . 48

3.11 Vertical Condition Table for Safetylnjection with the "pred" symbol. 64

3.12 Vertical condition table for Safetylnjection with the "succ" symbol. . 64

3.13 Vertical condition table for Overridden with the "pred" symbol. 64

3.14 Vertical condition table for Overridden with the "succ" symbol. 65

3.15 State transition table for pressure with the "pred" symbol. . 68

3.16 State transition table for pressure with the "succ" symbol. . 69

4.1 The abbreviations and meanings of the output messages 78

xi

List of Figures

2.1 Four variable model .

2.2 A superstate example

2.3 Parallel state

2.4 Transition condition written in predicate calculus

2.5 The engagement criterion of Takeoff ..

3.1 Mathematical notation of the function f . .

3.2 The function f defined with predicate logic

3.3 The function f defined by a table .

3.4 Stage 0. A normal table

3.5 Stage 1. Assigning headers and a grid

3.6 Stage 2. Adding information flow . .

3.7 Stage 3. Identifying guards and value cells .

3.8 Stage 4. Examples of Cell Connection Graphs

3.9 Stage 5. Specifying predicate, relation and composition rule

3.10 A normal table and its cell connection graph.

3.11 Typel. Each element is either maximal or minimal. There is only one

11

14

14

15

20

27

28

28

30

31

31

32

33

33

35

maximal element. 37

Xll

3.12 Type2a. There is only one maximal element and a neutral element. The

neutral element belongs to Guards(T) . 37

3.13 Type2b. There is only one maximal element and a neutral element. The

neutral element belongs to Values(T) . 38

3.14 Type3a. There is a neutral element and more than one maximal element.

The neutral element belongs to Guards(T) 38

3.15 Type3b. There is a neutral element and more than one maximal element.

The neutral element belongs to Values(T) 38

3.16 Type4. Each element is either maximal or minimal. There is only one

minimal element . 39

4.1 The function g defined by an inverted table . 72

4.2 The function G defined by a vector table 73

4.3 The function rp defined by a table 74

4.4 The function h defined by a (generalized decision) table . 74

4.5 The relation of the environment of the checkout scenario (C heckoute) 78

4.6 The relation ofthe system of the checkout scenario (Checkouts) 79

4.7 The relation of the environment of the limit scenario (Limite) 80

4.8 The relation of the system Limit (Limits) 81

4.9 The relation of the environment of the checkout limit scenarios (C heckoutLimite) 81

4.10 The relation of the system ofthe checkout limit scenarios (C heckoutlimits) 82

4.11 The tables Tf,a and TJ,b 83

4.12 The table Tf,aa

4.13 The one-dimensional table Tf,c

4.14 Table T1 (left) and T2 (right)

4.15 Table T2 o T1

xiii

84

84

85

86

4.16 Table T1 o T2 • • . • • • 86

5.1 Signature of the function f. 91

5.2 A declaration table for the function f .. 92

5.3 Unary operator table Tuop· 94

5.4 Table Tg .. 94

5.5 Table Tgop 94

5.6 Unary operator table Tuop'· 95

5.7 Table Tg 1 . 95

5.8 Table Tg2· 96

5.9 Table Tg3 . 96

5.10 Table Tglop'. 96

5.11 Table Tg2op'. 96

5.12 Table Tg3op'. 97

5.13 Negation grid operator table. 97

5.14 Tabular representation of the negation of the relation R. 97

5.15 Tabular representation of the negation of the relation R. 97

5.16 Atomic table T1 98

5.17 Operator table .inner· 98

5.18 Atomic table T2 .• 98

5.19 Table Tl.innerT2. · 99

5.20 Atomic table T~ . . 100

5.21 Atomic table T22 • 100

5.22 Atomic table T 23 . 100

5.23 Table Tl.innerT22· 100

5.24 Table Tl.innerT23· 101

xiv

5.25 Table TKl· 102

5.26 Kronecker operator table [K] .. . 102

5.27 Table TK2· 102

5.28 Table T1Kl[KJK2· . 102

5.29 Table T2Kl[K]K2· . 103

5.30 Table T3Kl[KJK2· . 103

5.31 Table T4Kl[K]K2· . 103

5.32 Table Ti 1 . 104

5.33 Table Tj2. . 105

5.34 Table Til t><1 Ti2· . . 105

5.35 Table Tj1. . 105

5.36 Table Tj2. . 106

5.37 Table Tj3. . 106

5.38 Table Te . . 107

5.39 Extracted table Textr· . 108

5.40 Table T 8 •• • . 109

5.41 Table Tsexp· . 109

5.42 Table Td 110

5.43 Table Tddexp . 110

5.44 Table Td'dexp . . 110

5.45 Table 81 Ill

5.46 Table 8 2 Ill

5.47 A predicate expression table TP. . 114

5.48 A predicate expression table Tq. . 114

5.49 Negation operator table 115

5.50 The negation of the predicate expression tableT~ . 115

XV

5.51 Table Tp1 115

5.52 Table TPI[K]-,9Tq. 116

5.53 Simplified table Tp1 [K]-,9Tq. 116

5.54 Table Tsl 119

5.55 Table Ts2 119

5.56 Table Ts3 120

5.57 Table Ts4 120

5.58 Table Ts5 120

5.59 Table Ts6 120

6.1 A general representation of a tabular expression representing a Turing ma-

chine. 126

6.2 A general representation of a tabular expression representing a two-tape

Turing machine. 128

6.3 An example of a lattice representing the function f. 131

6.4 An example of a lattice representing the function f, and the components. . 131

6.5 Tabular representation of if statements. . 133

6.6 An example of a normal table H. . . 134

6. 7 Tabular representation of for loops. 135

A.l The Normal Table f 1

A.2 The Normal Table h

A.3 The Normal Table f = h U h

A.4 The inverted table 91

A.5 The inverted table 92

A.6 The inverted table 9 = 91 U 92

A.7 The vector table G1

xvi

140

140

140

141

. 141

141

142

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

A.8 The vector table G2 • . . . • •

A.9 The vector table G = G1 U G2

A.l 0 The generalized decision table h1 .

All The inverted table h2 • • . • • • .

A.12 The generalized decision table h = h1 U h2

B.l Typel. One header and one grid.

B.2 Vertical condition table

B.3 Tabular expression corresponding to VCT table.

B.4 Type2a. Two headers and one grid.

B.5 Horizontal condition table

B.6 Tabular expression corresponding to HCT table.

B.7 Type3. Two headers and one grid.

B.8 Structured decision table

B.9 Tabular expression corresponding to a decision table

B.lO Type3. Two headers and one grid.

B.ll State transition table

B.12 Tabular expression corresponding to STT table

1

142

142

. 143

. 143

. 143

. 144

. 145

145

145

. 146

. 147

. 147

148

148

. 148

. 149

. 149

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Chapter 1

Introduction

Formal notations are needed in order to have precise and unambiguous specifications [40].

Table-based specification techniques allow one to represent systems specifications in a

compact and precise manner. Tabular or table-based notations utilize dimensional space,

and are especially useful when many cases have to be considered or when functions are

built from elements of different types [28]. They scale to software systems and make the

checking of important properties, such as consistency and completeness, quite natural and

relatively easy [18]. In this thesis, we start by presenting table-based specifications tech

niques. The most important techniques that we found in the literature are tabular expres

sions, Software Cost Reduction (SCR), Requirements State Machine Language (RSML),

function tables, and decision tables. These techniques are used to specify and analyse soft

ware systems. They rely on a tabular notation, which is very helpful for increasing their

readability. They have a syntax and semantics of their own. Moreover, most of them en

compass the verification and validation process. We close the thesis by discussing and

comparing more detailed tabular expressions and SCR. Both are successfully used in prac

tice, especially to formally specify software requirements.

2

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1.1 Motivation

In order to be used in practice, techniques should be supported by tools for creating, editing,

and transforming tables, etc. Creating tools without a reasonable formal semantics may

and often will lead to their failure. Our research objective is to improve the syntax and

semantics of both SCR and tabular expressions. These two methods were chosen because

they are successfully used in practice.

SCR semantics is not well defined. In fact, the symbols adopted by the method are

ambiguous. Therefore, we transformed SCR tables into tabular expressions, since the latter

have a precise semantics. We present a new way to model the SCR events with first order

logic. We also depict another way to define SCR events with propositional logic.

For tabular expressions, as a step towards a richer semantics, we propose an algebra for

tabular expressions. In our algebraic model, we introduce new operators that allow us to

compose and decompose tabular expressions. The operators we came up with are classified

into unary operators, inner operators, Kronecker operators, and outer operators. We also

propose a refinement ordering relation on tabular expressions, and we depict an application

of a tabular expression for three dimensions and higher. To the best of our knowledge

this is the first time such an application has been proposed. Next, we present a language

and a structure for tabular expressions. Finally, we show how tabular expressions can be

represented by a lattice and by a vector space respectively.

By reaching our goals, we can build quality professional tools based on the new se

mantics. The two methods can be applied not only at the requirements level, but also at all

every phase of the software development process.

3

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1.2 Outline

In Chapter 2, we present five table-based specification techniques.

Among the presented techniques, we discuss in details the Software Cost Reduction

method and tabular expressions in Chapter 3. Also, we present the semantics of the two

methods, and we show how to convert SCR tables into tabular expressions, and how to

improve SCR semantics.

Chapter 4 presents the relational composition problem. We survey the literature regard

ing the relational/table composition problem, and we present examples to illustrate that.

Chapter 5 discusses the operators we developed, which are applied to tabular expres

sions, the partial order and the refinement ordering relation specified on tabular expressions,

as well as the algebra of tabular expressions.

In Chapter 6, we present the application of tabular expressions for three dimensions and

higher. Also, we depict a language and a structure for tabular expressions. Then, we show

how tabular expressions can be represented by a lattice and by a vector space respectively.

Finally in Chapter 7, we conclude and give directions for future work.

In Appendix A, we show how to extend Janicki's work to compose tables instead of

composing cells of one table. We give examples of composition of normal tables, inverted

tables, vector tables, and decision tables.

In Appendix B, we depict how function tables fit in the general framework of tabular

expressions.

4

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Chapter 2

Table-based specification techniques

2.1 Introduction

Unambiguous and precise software specification can hardly be achieved without some use

of formal notation. Table-based specification techniques are readable and convenient to

specify systems requirements. They permit one to depict systems specifications in a com

pact and precise manner. Besides, they make the checking of important properties such

as consistency and completeness quite natural and relatively easy. For requirements con

sistency, we have to check that there are no conflicting requirements or unwanted non

determinism. For requirements completeness, we have to ensure that the set of require

ments is complete, which means that there is a response for every possible input [13].

In this chapter, we present and analyse five table-based specifications techniques which

are tabular expressions, Software Cost Reduction (SCR), Requirements State Machine Lan

guage (RSML), function tables, and decision tables. A similar discussion on these tech

niques could be found at [5]. In Sections 2.2 to 2.6, we briefly describe each technique. In

Section 2.7, we discuss the verification and validation process for the presented techniques.

In Section 2.8, we depict the merits and disadvantages of the discussed techniques.

5

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

2.2 Tabular expressions

Tabular expressions are a generalisation of two dimensional tables as classical decision

tables and state transition tables that date back to early years in computer science [23].

Parnas pioneered the use of tabular expressions to document software requirements [21].

In the late 1970s, these tables were practically used in an ad hoc manner. The practical

experience showed that these tables are really suitable to present functions and relations.

Early versions were adopted by the U. S. Naval Research Laboratory in 1977 to write a

software requirements document for the Onboard Flight Program used in the U.S Navy's

carrier based attack aircraft, the A-7E [21]. Then in 1992, Alspaugh et al. [2] introduced the

software requirements specifications for the A-7E Aircraft representing the evolution of the

SCR project since 1977. Tables were chosen to ensure conciseness and completeness that

were not offered by textual format. In [48], the A-7 requirements model was re-examined

for real time systems application, and tables were improved. Tables were also adopted for

the software for the Darlington Nuclear Generating Station Shutdown System [10, 53], and

by the Software Quality Research Laboratory at McMaster University [31, 32, 45, 41, 54].

In [38], Parnas, presented for the first time a formal syntax and semantics for tabular

expressions. He proposed ten classes of tables. His classification was based on the types

of applications. More general application independent formal semantics was proposed

by R. Janicki in [25] and then refined in [26, 28]. Each class proposed by D.L. Parnas

in [38] could be seen as a special case of the generic model proposed by R. Janicki in

[25, 26, 28]. In principle a table is represented by a collection of cells where each cell

holds an expression. In [39], expressions are defined as an indexed set of mathematical

variables, and a set of constants. Tabular expressions are very convenient and very readable

especially for long and complex formulae. We will illustrate them by showing how they

can be used to formally specify scenarios.

6

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

In [7, 9], a formal scenario is defined as a 3-tuple (T, Re, R8). This tuple represents

a relational model of an informal scenario. The set T is the scenario's space or domain,

while Re and Rs are two disjoint relations representing the relation of the environment, and

the relation of the system respectively. The relation of the scenario is given by the relation

Re U R8 • The relation Re is a description of the behavior of the environment to the system

according to the scenario. The relation Rs is a specification of the system as reported by

the scenarios. Tabular expressions can easily be adopted to represent the relations of such

formal scenarios. To illustrate this, let us consider the following informal scenario.

Open Deposit Account: If the person is already holding an account (Account Holder), then

the response is "This person is already an account holder". If a person is not already an ac

count holder and if the amount offered to open an account is greater than MinAmount, then

the account is opened and a debit card is assigned to it. The opening balance is the amount

offered minus the opening fee. The bank's funds position is increased by the amount offered

to open an account and the response is "Account opened". Otherwise, if the amount offered

is less than MinAmount, then the response is "Overdrawn balances are not allowed". From

this informal scenario, the formal scenario given by the space, the relation of the environ

ment and the relation of the system are represented by Table 2.1, Table 2.2 and Table 2.3

respectively (>.represents the empty sequence). The 'prime' notation proposed in [38] is

used when writing appropriate predicates. It denotes the new value of the variable. For ex

ample the programming sentence if x<O then x=x+l translated into 'prime' notation

looks like x < 0 1\ x' = x + 1. The variables are state space component. For conciseness of

the notation, only the changed variables are presented, and the other variables remain un

changed. The relation of the scenario is presented in Table 2.4. Tables 2.1, 2.2, 2.3 and 2.4

are practically self explained. For more details about scenario formalisation and how in

practice to calculate Re U R8 , we refer the interested reader to [7, 9].

Tabular expressions are well suited to the design level [51]. In [33], the result of the

7

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Variable Name Variable Domain

Account Names
Holder Names
Output {exist, overdrawn, account- opened}

setOfAccountHolders 2Names (set of all names)
Amount Real
Balance [Account --+ Real]

BankFund Real
DebitCard [Account --+ {assigned, not- assigned}]

OpenAccount [Holder--+ Account]

Table 2.1: Scenario's space T

II Amount< 0 0 < Amount < Min Amount 2:: Min -

Holder=,\ Holder' E Names false false
1\ Amount' E Real

other false false false

Table 2.2: The relation of the environment Re

II Amount < 0 0 < Amount < Min Amount> Min

Holder f- ,\ false Output'=exist Output'=exist
1\ Holder E 1\ Holder' = ,\ 1\ Holder' = ,\

setOfAccountHolders 1\ Amount'< 0 1\ Amount'< 0
Holder f- ,\ false Output' =Overdrawn Output' -account-opened
1\ Holder rf_ 1\ Holder'=,\ 1\ setOfAccountHolder'=

setOfAccountHolders 1\ Amount'< 0 setOfAccountHoldersU {Holder}
1\ BankFund'=BankFund+Amount
1\ Account'=OpenAccount(Holder)
1\ DebitCard(Account')=assigned

1\ Balance(Account')=Amount-Fees
1\ Holder' = ,\ 1\ Amount'< 0

other false false false

Table 2.3: The relation of the system Rs

8

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

II Amount< 0 0 < Amount < Min Amount> Min - -
Holder=>. Holder' E A+ false false

1\ Amount' E R+
Holder i= >. false Output' -exist Output' -exist
1\ Holder E 1\ Holder' = >. 1\ Holder' = >.

setOfAccountHolders 1\ Amount'< 0 1\ Amount'< 0
Holder i= >. false Output'=Overdrawn Output' =account -opened
1\ Holder(/_ 1\ Holder'=.\ 1\ setOfAccountHolder'=

setOfAccountHolders 1\ Amount'< 0 setOfAccountHoldersU {Holder}
1\ BankFund'=BankFund+Amount
1\ Account'=OpenAccount(Holder)
1\ DebitCard(Account')=assigned

1\ Balance(Account')=Amount-Fees
1\ Holder' = >. 1\ Amount'< 0

other false false false

Table 2.4: The relation of the scenario

integration of all formal scenarios can be used to derive the functional architectural design

of simple systems. Besides, when the requirements are documented with tabular expres-

sions, it is easy to derive from them random testing, software integration test cases, and

oracles. In [34], test cases were generated from the tabular expressions representing formal

scenarios.

In [54], tabular expressions were adopted to model concurrent systems. A concurrent

system is considered as a collection of processes and shared objects. Once the processes

and the shared objects are determined, each process is represented by a Finite State Au

tomaton (FSA). Afterwards, these machines are merged in order to come up with a global

FSA which defines the concurrent system. Tabular expressions were adopted to depict the

transition function of the global finite state automata. Adopting a tabular notation to repre-

sent the transition function reduces the size of the table considerably. Indeed, an automaton

with m states and n events, has a transition function with m rows and n columns. For large

values of m and n, and when combining different processes, the table size could grow ex-

ponentially. However, Y. Yang and R. Janicki showed that with tabular expressions, the

number of rows and columns of the table representing the transition function decreased

9

PhD Thesis -I. Bourguiba- McMaster- Computing and Software

considerably. Also their work can be extended to add priority [54].

At McMaster University, the Software Quality Research Laboratory (SQRL) developed

a set of tools called Table Tool System (TTS) manipulating tabular expressions. Many mod

ules have been implemented to allow some operations on tables such as creating, editing,

analysing, interpreting, etc. The toolset is based on a set of modules that can be extended

to add other modules and without being knowledgeable about the previous ones [41].

2.3 Software Cost Reduction

The Software Cost Reduction (SCR) was originally developed in U.S. Naval Research Lab

to document the requirements for the A-7E aircraft [2], then it was successively improved

by a team led by C.L. Heitmeyer [19]. It is one of the most popular formal method based

on a tabular notation for specifying the requirements of software systems. The SCR re

quirements specification presents the system behaviour and environment. The environment

involves the controlled variables (quantities that the system controls), and monitored vari

ables (quantities that the system monitors). The environment generates a sequence of mon

itored events, and the system reacts to the monitoring events by changing their states. It

is represented by a state machine E = (S, S0 , Em, T), where S is the set of states, S0 is

the set of initial states (So ~ S), Em is the set of monitored events, and T is the transform

function, which from a current state s E S, and an event e E Em returns the next state

s' E S. The SCR state machine model is a special case of Parnas' Four Variable Model

(FVM) [37]. There are a couple of slightly different versions of the FVM. The one used

here is developed by Parnas and Madey to specify system requirements [40]. It is an exten

sion of the classical Two Variable Model (input and output) [37]. The FVM consists of four

sets of variables and four relations (see Figure 2.1). M represents the variables monitored

by the system. C depicts the variables controlled by the system. I outlines the input vari-

10

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

M REQ C

IN!~10UT
NAT ------o

Figure 2.1: Four variable model

abies. 0 designates the output variables. The relation NAT defines the natural constraints

required by the environment. The relation REQ presents the required system behaviour.

The relation IN describes the behaviour of the input. It maps the monitored variables into

input variables. The relation OUT describes the behaviour of the output. It maps the output

variables into the controlled variables.

The SCR formal model uses only the relations NAT and REQ to define the system

behaviour. In order to have a more concise specification, some constructs such as mode

classes and terms were added to the SCR model. The values of mode classes are modes.

Modes are classes of system states specifying the system behaviour. With SCR, each spec-

ification is organized into dictionaries and tables. The dictionaries represent static infor-

mation such as variables names and types, whereas the tables depict the variables changes

while responding to input events. In SCR, there are three kinds of tables to specify a sys-

tern: condition tables, event tables, and mode transition tables. The tables discussed here

describe a safety injections system and are borrowed from [15].

A condition table defines a variable according to a mode and a condition. A condition

is a predicate defined on a system state. For example, Table 2.5 identifies the controlled

variable Safety Injection as a function of Pressure and the term Overriddern. For instance

the first column of Table 2.5 indicates that if the Pressure is High or Permitted, or if the

Pressure is TooLow and Overridden is True then Safetylnjection is Off.

An event table defines a variable according to a mode and an event. An event represented

11

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

Mode Class
Pressure

High, Permitted
Too Low

Safety Injection

Conditions

True False
Overridden NOT Overridden

Off On

Table 2.5: Condition table for Safety Injection

I Mode Class I
Pressure

High
Too Low,
Permitted

Overridden

Events

False @T(Inmode)
@T(Block=On) @T(Inmode) OR

WHEN Reset=Off @T(Reset=On)
True False

Table 2.6: Event table for Overridden

by @T(c) means that condition c changes from false to true. For example, @T(Block=On)

when T(Reset=Off) means that the operator turns Block from Off to On when Reset is

Off. The @T(Inmode) means that the system enters into the class of modes in that row.

In Table 2.6, the mode Pressure is defined via the current mode, and the events defined on

the variable WaterPress. In Table 2.6, cell (2, 1) indicates that if the Pressure is TooLow or

Permitted, and Block changes to On When Reset is Off, then Overidden changes to True.

A mode transition table generates a destination mode from a mode and an event. In the first

row of Table 2.7, we see that if the Pressure is TooLow and WaterPres is greater than or

equal to Low then Pressure becomes Permitted.

SCR has a toolset SCR * which contains an editor, a dependency graph browser, a sim-

ulator, a consistency checker, and a verifier. The specification editor enables one to create

and modify requirements specification. The dependency graph browser depicts the de-

pendencies between the variables. The simulator allows the system to be executed. The

12

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

I OldMode I Event I NewMode I
Too Low @T(WaterPress 2 Low) Permitted

Permitted @T(WaterPress 2 Permit) High
Permitted @T(WaterPress <Low) Too Low

High @T(WaterPress < Permit) Permitted

Table 2.7: Mode transition table for Pressure

consistency checker permits one to check the specification for properties such as correct-

ness and completeness, while the verifier has the role to verify and analyse some properties

of the specification.

2.4 Requirements State Machine Language

The Requirements State Machine Language (RSML) was developed by the Irvine Safety

Research Group to specify the TCAS II (Traffic Alert and Collision Avoidance System), a

complex aircraft collision avoidance system [13]. It is based on hierarchical state machines.

It combines a tabular notation with a graphical representation based on Harel statecharts.

Harel statecharts are an extension of state-transition diagrams. They deal with hierarchy,

concurrency, and communication [11]. Since RSML is based on Harel statecharts, it sup-

ports the notion of superstates which are helpful in reducing the number of transitions. In

fact, the transitions could be from and to the superstate instead of having them from and

to sub-states. For instance in Figure 2.2, transition A ends at the superstate. Transition

C exits the superstate, which means it exits both of the states inside it, states R and S in

this case. Another important feature supported by RSML are the parallel states 1• They

contain more than a state machine separated by dashed lines. For instance in Figure 2.3,

1Called also "AND states", "orthogonal products", or "product states".

13

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Figure 2.2: A superstate example

s

c

I

---------------~-----------------

B

Figure 2.3: Parallel state

when the parallel state S is entered, all state machines A, B, C and D are entered as well.

The states are exited whenever a transition exits from the parallel state. These parallel

states decrease considerably the size of the specification. Transitions definitions in RSML

contain five parts, which are the source and destination of the transition, its location, the

triggering event, the output action which determines the events generated by the transitions

and the guarding conditions. At the beginning, the guarding conditions of the transitions

were written with predicate calculus as shown in Figure 2.4 (example borrowed from [13]).

However, the TCAS external reviewers had difficulties to read such expressions. In ad-

14

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

True-Tau-Cappedt_362 ~Time-To-CPA 1\

(Other-CapabilitYv-212 =/= TCAS-TNRA V
(Other-VRCv_209 =No-Intent/\ Two-Of-Threem-327)) 1\

((Down-Separation1_337(low-firm) ~ Alt-Threshold 1\

Up-Separationf_362(low-firm) ~ Alt-Threshold) V
(Current-Vertical-Separation f-332 > 150ft 1\

((Inhibit-Biased-Climb 1_339(low-firm) >Down-Separation J-337(low-firm)/\
Own-Tracked-Altt_349 <Other-Tracked-At tt_334)V

(Inhibit-Biased-Climbt_339(low-firm)~Down-Separationf-337(low-firm) 1\

Own-Trarked-Altf-349 >Other Tracked-Altf-334)))

Figure 2.4: Transition condition written in predicate calculus

Other-CapabilitYv-212 = TCAS-TAiRA
Other-VRCv-209 =No-Intent
Two-Of-Threem-327 =
True-Tau-Cappedf-362 <Time-To-CPA
Down-Separation f-3370ow-firm) < Alt-Threshold
Up-Separation f-362(low-firm) :::; Alt-Threshold)
Inhibit-Biased-Climb f-3390ow-firm)> Down
Separation f-3370ow-firm)
Own-Tracked-AitJ-349 <Other-Tracked-A! tf-334

Own-Tracked-AitJ-349 >Other-Tracked-A] tf-334

Current-Vertical-Separation/_332 > 150ft

Table 2.8: The AND/OR table

dition, such notation did not scale for complex expressions [12]. Hence, AND/OR tables

were adopted to specify the guarding conditions, and to increase readability. They contain

Boolean formulas expressed in Disjunctive Normal Form (DNF). Table 2.8 is an example

of an AND/OR table. The dot means "do not care". The leftmost column of the table

presents the predicates. A column is true if all its elements are true. If a column is true,

then all the table is evaluated to true as well.

NIMBUS is a requirements engineering environment where the RSML specification

could be executed. It allows one to evaluate an RSML specification dynamically. Also, it

15

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

enables engineers to execute the RSML specification early in the project. Once the speci

fication is refined, engineers could integrate some simulations or details on the embedding

or physical environment. So, with NIMBUS, the RSML specification is executed with the

interaction with other models such as user input, software simulations of the components,

models of the environment, etc.

2.5 Function tables

Function tables were successfully used to define requirements for the Darlington Nuclear

Power Plant Shutdown System [36, 10, 51]. In principle they use functions to describe

system's functionality for safety critical software systems. Technically, the function ta

bles are a special kind of tabular expressions [51], probably the most important kind of

tabular expressions. Function tables were constantly improved to satisfy developers and

requirements engineers. For instance, previous cumbersome symbols such as #, * used

as delimiters were removed. Also, other changes such as modifying tables format, helped

function tables to become more readable. There are four kinds of function tables: vertical

condition tables, horizontal condition tables, structured decision tables, and state transition

tables. The following tables are borrowed from [36].

In vertical condition tables, the left bottom cell indicates the name of the function. For

example, in Table 2.9, the name of the function is: f-trip. The other columns indicate the

value of the function when the condition of the respective columns is true. So, in this

example, the function f-trip is interpreted as:

f-trip = e-tripped if ((m-level >level-limit) AND (m-enable = e-enabled))

f-trip = e-not-tripped if NOT ((m-level >level-limit) OR NOT (m-enable = e-enabled)).

In horizontal condition tables, the right cells on the top indicate the function names. The

other rows indicate the conditions and the function values when the respectives conditions

16

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

VCT: trip

(m-level >level-limit) NOT(m-level > k-level-limit)
AND OR

(m-enable = e-enabled) NOT (m-enable = e-enabled)

f-trip e-tripped e-not-tripped

Table 2.9: Vertical condition table

HCT: foo-fee

Result
Conditions f-foo f-fee

m-Trip[1] = 1 e-tripped e-not-tripped
AND

m-Trip[1] :f:1
m-Trip[1] :f:1 e-tripped e-not-tripped

AND
m-Trip[2] =I
m-Trip[1] :f:1 e-not-tripped e-not-tripped

AND
m-Trip[2] :f: 1
m-Trip[1] =I e-tripped e-tripped

AND
m-Trip[2] = 1

Table 2.10: Horizontal condition table

are true. From Table 2.10, we can see that the function f-foo is defined as follows:

f-foo = e-tripped if ((m-Trip[I] =I) AND (m-Trip[2] :f: 1)),

f-foo = e-tripped if ((m-Trip[1] :f: 1) AND (m-Trip[2] = 1)),

f-foo = e-not-tripped if ((m-Trip [I] :f: 1) AND (m-Trip[2] :f: 1)),

f-foo = e-tripped if ((m-Trip[l] = 1) AND (m-Trip[2] = 1)),

and

f-fee = e-not-tripped if ((m-Trip[l] = 1) AND (m-Trip[2] :f: 1)),

f-fee = e-not-tripped if ((m-Trip[1] :f: 1) AND (m-Trip[2] =I)),

f-fee = e-not-tripped if ((m-Trip[1] :f: 1) AND (m-Trip[2] :f: 1)),

17

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Condition Macros:
w-trip-mg[m-ai, f-sp]
hitrp : m-ai ;;:::= f-sp
ddbnd: (m-ai < f-sp) AND (m-ai ;;::: (f-sp- k-db))
notrp: m-ai < (f-sp- k-db)
SOT: trip

Condition Statements 1
w-trip-mg[m-ai, f-sp1] hitrp

f-trip_ 1 = e-tripped -
Action Statements

f-trip = e-tripped X
f-trip = e-not-tripped

2 3
ddbnd ddbnd

T F

X
X

Table 2.11: Structured decision table

f-fee = e-tripped if ((m-Trip[l] = 1) AND (m-Trip[2] = 1)).

4
notrp

-

X

Structured decision tables have conditions states, action states, and rules. Also, they

may have conditions macros that come with the table to help shortening cells content, so

that the table will not be cumbersome.

From Table 2.11, the function f-trip is interpreted as:

f-trip = e-tripped if (m-ai ;;::: f-sp),

f-trip = e-tripped if ((m-ai < f-sp) AND

((m-ai;;::: (f-sp- k-db)) AND

(f-trip-1 = e-tripped)),

f-trip = e-not-tripped if ((m-ai < f-sp) AND

((m-ai;;::: (f-sp- k-db)) AND NOT

(f-trip-1 = e-tripped)),

f-trip = e-not-tripped if (m-ai < (f-sp- k-db)).

State transition tables represent next state functions. The top row contains the transition

conditions enabling the states change. The leftmost column designates the reachable states.

For instance, from Table 2.12, we see that when the system is in the state "e-time" and the

18

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

SIT: f-digitalwatch

Transition m-select (m-select (m-select (m-select (m-select
Condition = e-pressed = e-unpressed) = e-unpressed) = e-unpressed) = e-unpressed)
Previous AND AND AND AND

State
(m-start-stop (m-start-stop (m-start-stop (m-start -stop

.). = e-pressed) = e-pressed) = e-pressed) = e-pressed)
AND AND AND AND

(m-reset (m-reset (m-reset (m-reset
e-pressed) e-unpressed) e-unpressed) e-unpressed)

e-time e-in-time e-time e-time e-time e-time
e-in-time e-in-time e-in-time e-in-time e-in-time e-zero

e-zero e-stopwatch e-zero e-runningl e-running2 e-running2
e-runningl e-stopwatch e-runningl e-runningl e-running2 e-running2
e-running2 e-stopwatch e-stopped! e-stopped! e-running2 e-running2
e-stopped! e-stopwatch e-stopped! e-stopped! e-stopped e-stopped2
e-stopped2 e-stopwatch e-stopped2 e-runningl e-stopped e-stopped2
e-stopped e-stopwatch e-stopped e-stopped e-stopped e-zero

e-stopwatch e-stopwatch e-time e-time e-time e-time

Table 2.12: State transition table

condition "m-select = e-pressed" is TRUE, then the system will be in the "e-in-time" state.

It is very advantageous to adopt function tables. For instance, the safe state is easily

identified. By placing it at the rightmost column, it is easily identified by developers and

designers [53].

In [52], the developed tools support most of the development life-cycle phases. The

requirements tool allows to check for consistency and completeness. Both the requirements

tool and the design tool enable the generation of templates that are translated into PVS. At

the coding phase, function tables were converted into FORTRAN code, and this conversion

was very helpful for the verification [53]. Also, a simulation tool providing a platform for

testing was developed.

2.6 Decision tables

Decision tables have been used for many years in software engineering [23]. There are

many kinds of decision tables. In [22], Hoover and Chen adopted decision tables to define

19

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

((Flightphase =climb) AND (AC-Alt > 400) AND
(AC-Alt < Acc-Alt) AND (NOT Alt-Capt-Hold))

OR

((Flightphase =climb) AND (AC-Alt > 400) AND (AC-Alt < Acc-Alt) AND Alt-Capt-Hold
AND (Alt-Target > prev-AI t-Target))

Figure 2.5: The engagement criterion of Takeoff

Operational Procedure Takeoff Climb I Climb-lnt-Level I Cruise I
Input Variables States

Flightphase climb climb climb climb climb climb cruise
crmse

AC-ALt> 400 True True True * * * *
False

Compare LTEQ LT LT EQGT EQGT * GT
(AC-Alt, Acc-Alt) GT

Alt -Capt-Hold True False True False True True True
False

Compare LTEQ * GT * GT * EQ
(Alt-Trgt, prev-Alt-Tgt GT

Table 2.13: Decision table

functions and relations. The semantics of decision tables is based on propositional logic.

The tables contain only variable names and values. No logical symbols are used since the

logical connectives are expressed by the table structure itself [22]. They specify different

actions that the system has to consider. The actions are called "operational procedures". In

a decision table, there are two parts. The top part depicts the conditions of the operational

procedures called "engagement criterion". The bottom part outlines the behaviors of the

operational procedures. For instance, in Table 2.13 (example borrowed from [22]), the

engagement criterion of Takeoff is shown in Figure 2.5.

The kind of decision tables previously discussed are called simple decision tables. Par-

tioned decision tables represent the same information in a more compact way. The rows

and columns (separated by double lines) represent macro-rows and macro-columns where

20

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Operational Procedure II Takeoff II Climb II Climb-Int-Level II Cruise I
Input Variables States

Flightphase climb climb climb climb cruise
cruise

AC-ALt> 400 True True * * *
False

Compare LTEQ LT LTEQ * GT
(AC-Alt, Acc-Alt) GT

Alt -Capt-Hold True False True False True True True
False

Compare LTEQ * GT * GT * EQ
(Alt-Trgt, prev-Alt-Tgt GT

Table 2.14: A Partitioned decision table

each cell is a decision table (see Table 2.14). They have the same semantics as the sim-

pie decision tables. To check the consistency and completeness of decision tables, Hoover

and Chen introduced a tool named"Tablewise". It identifies the flaws causing the in con-

sistency and incompleteness of decision tables. Tablewise generates Ada code and English

documentation from the functions presented by decision tables.

2. 7 Verification and validation

The task of verification and validation of software products is very substantial, and it

has been an important area of research for more than three decades. This claim is still

true today, and many techniques are used for the verification and validation task ranging

from informal to formal. At the requirements level, once the problem is understood, the

task of verification and validation should be accomplished. At the verification stage one

should ask: "Am I building the product right", while at the validation stage the question

is: "Am I building the right product" should be asked [4]. For requirements verification,

we check some properties such the consistency, completeness and unambiguity of the re-

quirements [4]. For requirements validation, we seek whether there is a mismatch between

21

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

users' intentions and the requirements documents.

With their formal structure, tabular expressions are very convenient to check for con

sistency and completeness [28, 51]. Indeed, the disjointness of the headers of the table

ensures the consistency of the specification. Then, the complete input domain coverage

ensures that we have specified responses to every input combination. The domain coverage

condition also can be easily verified. The exact verification formulae depends on the type

of tabular expressions, but it is rather straightforward in each case [28, 51]. Tabular expres

sions are very helpful to verify partial completeness with the domain coverage theorem.

In [9], tabular expressions were used to represent the relational scenarios describing the

interactions between the system and its environment. It was proved that they simplify the

task of verification and validation. In fact, with tabular expressions it is easy to integrate the

scenarios when they are consistent, or to find the source of inconsistency otherwise. The

inconsistency between scenarios is detected during their integration. When the scenarios

are inconsistent, the client is asked for some clarifications about the inconsistency detected.

The completeness verification could be done on individual scenarios, or after integrating

the requirements.

The validation consists in checking the specification conformity to some of the user's

expectations. In [7, 9], the validation is performed at different levels. For instance, com

pleteness tests are performed on the integrated scenarios to ensure that the behaviour of the

system is complete. There are also other tests that are accomplished, such as ensuring that

there is no deadlock between the environment actions and system reactions.

In SCR, once the requirements are specified, properties such as consistency, complete

ness and correctness are checked [19]. For consistency, the disjointness property must be

satisfied. It guarantees that in each row, the conjunction of any two cells is false. For com

pleteness, the coverage property of condition tables must be satisfied. The disjunction of

the conditions of each row must be true.

22

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

To ensure that the specification captures the intended behavior, the user runs a simulator,

and then analyses the results. The input to the simulator could be a sequence of input events

or previously logged scenarios. From each input event and the current state, the simulator

determines the next state [20].

For RSML, the check for consistency and completeness is elaborated on the AND/OR

of the guarding conditions on the transitions [12, 13]. To check for consistency and com

pleteness, every state must have a deterministic behavior, and the disjunction of the guard

ing consitions on the transitions should be a tautology.

The NIMBUS environment based on RSML -e (Requirements State Machine Language

without events) to validate system requirements was adopted. Simulation and execution are

used to validate system's behavior. The Input/Output to the simulator could be stored and

then analysed, or some test scenarios could be generated. The analyst could start with

a user input or a simple model trying to imitate the environment actions. Then, as the

evaluation progresses and the specification is more refined, the analyst could come up with

more detailed models leading to better outcomes [47].

For the function tables [36], to check for consistency, the conditions of a function should

not overlap. However, when it happens that there is an overlap, the output should be same

for the overlapping conditions. For completeness, the disjunction of all the conditions of a

function should be a tautology. (The validation process was not discussed).

To check the consistency and completeness of decision tables, Hoover and Chen de

veloped a tool named "Tablewise" [22]. The consistency checking ensures that there is no

overlap between different operational procedures. For that, the authors proposed a table

containing the conjunction of the engagement criterion that belong to different operational

procedures. Unfortunately, the resulted table may be big and also it is time consuming to

check the overlap between all the operational procedures especially when the source table

is large. For completeness, first the authors introduced a coverage table which consists of

23

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

the negation of the disjunction of the engagement criterion. However, such a table may be

very big. So, the authors proposed what they called a "structured analysis" to localize flaws

in the table preventing it from defining a function. Validation was not discussed.

2.8 Discussion

In this section, we depict the merits and disadvantages of the previously discussed tech

niques [5]. All of the discussed techniques are used to specify and analyse software sys

tems. They rely on a tabular notation which is very helpful to increase readability. To

achieve that, some of the techniques combine another notation with the tabular one. For

instance, RSML is based on Harel statecharts, and it incorporates a graphical notation in

addition to the tabular one. For function tables, besides the use of tables, sometimes macros

are used to help shortening cells contents, and hence enabling the table not to be cumber

some.

It is very important to compose and decompose tables in a modular way. Specially for

large systems, the big table used to represent the system's behaviour could be decomposed

into smaller tables. For tabular expressions, the system's behaviour is represented by a

relation that might be complex. That complex relation should be decomposed into smaller

relations. In some cases, these relations are easily defined in some cells of the table. In

other cases, a cell may refer to another table [28]. The concept of table composition and

decomposition of tables is not adopted by the SCR method. Therefore, states and transi

tions are not decomposed. This issue might be a disadvantage of the method, especially

while specifying large systems. For RSML, hierarchy is supported, and the AND/OR table

decomposition is allowed. For function tables, the system is seen as a collection of tables

without considering composition and decomposition of tables. In order to have a more

compact notation, Hoover and Chen [22] proposed partitioned decision tables . They are

24

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

a kind of complex tables where the cells could be simple decision tables or part of simple

decision tables.

In order to check for properties such as consistency and completeness, most of the tech

niques use a similar way to check for tautologies, except for decision tables (Hoover and

Chen [22]), where the check for consistency and completeness is elaborated at a primitive

level as previously discussed at section 2.7.

In the literature there are other table-based specification techniques that we did not

include in our survey. The reason is that some of these specification techniques are mainly

based on a graphical notation, and they do not have a well defined syntax and semantics,

such as the StP (Structured Environment) technique [3]. There are other techniques that we

did not conclude since they do not take into consideration the verification and validation

for example the StP and VFSM (Virtual Finite State Machine) techniques [49].

25

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Chapter 3

Tabular expressions vs Software Cost

Reduction method

3.1 Introduction

Table-based specification techniques are readable and efficient. They allow us to express

a system specification in a very compact and precise way. Moreover, they scale nicely

when applied to practical software systems [19]. Among these table-based specification

techniques, we highlight SCR and tabular expressions which have been and are still suc

cessfully used in practice.

The Software Cost Reduction (SCR) is a quite popular formal method to specify system

requirements. It has been substantially improved and extended over the last decade [19].

However, its semantic is not very precise. Tabular expressions allow us to represent systems

specifications in a compact and still precise manner using a multi-dimensional syntax [27].

Moreover, their intuitive semantics make them more suitable for most applications and

easier for people who are not very familiar with the application domain. A comparison

between the two methods can be found in [6].

26

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

0 if x2::01\y=10

X if X< 01\ y = 10

f(x, y) =
y2 if X 2:: 0 1\ y > 10

-y2 if X 2:: 0 1\ y < 10

x+y if X< 01\ y > 10

x-y if X< 01\ y < 10

Figure 3.1: Mathematical notation of the function f

In this chapter we present the semantics of tabular expressions. Then, we present the

algorithms we devised to convert SCR tables into tabular expressions. The transformations

we use preserve the meaning of the original tables. Also, we give examples of such trans-

formations. The converted SCR tables are quite readable and could be easily interpreted

even by people who are not quiet familiar with the method. Later, we address the issue of

improving SCR semantics. We present a new way to model the SCR events with first order

logic. We also depict a simpler way to define SCR events with propositional logic. Finally,

we give an illustrative example. There are many advantages that are gained by improving

the SCR semantics. For instance, the task of verification and validation will be easier, and

the SCR toolset supporting the method will be improved.

Section 3.2 is devoted to present tabular expressions semantics. In Section 3.3, we

present the transformation of SCR tables into tabular expressions, and give simple examples

to illustrate the conversion. Section 3.4 presents how we improve SCR semantics. In

Section 3.5, we discuss the merits and disadvantages of tabular expressions and SCR.

3.2 Tabular expressions semantics

Tabular expressions are very convenient and readable especially for classic mathematical

notation [25]. For that purpose, we illustrate an example borrowed from [25] to represent

27

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

f(x,y) if X~ 01\ y = 10 then 0

else if X < 0 1\ y > 10 then X

else if X > 01\ y > 10 then y2

else if X > 01\y<lO then - y2

else if X < 01\y<lO then x+y

else if X < 01\y>lO then x-y

Figure 3.2: The function f defined with predicate logic

1 y = 10 1 y > 1o 1 y < 1o 1

0 y2 -y2

X x+y x-y

Figure 3.3: The function f defined by a table

a function with different notations. For instance, the function f (x, y) written in a mathe

matical notation is presented in Figure 3.1. Using predicate logic, the function f(x, y) is

presented in Figure 3.2. These two notations are not very readable although the function

described is quite simple. It is evident that the function is much more readable with tabular

notation as presented in Figure 3.3.

If tabular expressions have been successfully used for many years, it is because they

have a precise and well-defined semantics, and this fact should not be underestimated. A

lot of work has been done to develop the semantics of tabular expressions over the last two

decades [51]. At the beginning, the semantics of tabular expressions was rather informal

and emphasized on the uniform understanding of table functionality. For instance, Table 3.1

from older tabular expressions [51] was interpreted as:

28

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Result
Condition f_name

Condition 1 res 1
Condition 2 res 2

......... . ..
Condition n res n

Table 3.1: Simple function table from older tabular expressions

If Condition 1 then f_name =res 1

elseifCondition 2 then f_name =res 2

else if ...

elseifCondition n then f_name =res n

It was also required that:

Condition i 1\ Condition j {::} False \:/ i, j = 1, ... , n i i= j (disjointness)

and

Condition I V Condition 2 V ... V Condition n {::} True (completeness)

Later on, additional requirements (e.g. disjointness and completeness) were removed.

Nowadays, tables are checked for consistency and completeness with the disjointness and

domain coverage properties. That is achieved while considering the structure of the table,

and not its content.

Having formal semantics is fundamental for many reasons. For instance, the semantic

is needed to either link a table and its sub-tables, or to link tables with different types. In

both cases, if the table composition is done without a formal semantics, then the resulting

table may not correspond to a consistent description of the system [28, 51]. Another rea-

son is that tabular expressions have been proved to be invaluable for documenting software

requirements and design [51, 53]. Such documents read by different users should converge

to the same meaning of the table functionality, and in order to achieve that tabular expres-

sions should have well defined semantics. Another strong motivation is that in order to be

29

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

x < ool X > 00 X < 00

X > < 00 0 X -X 2

X < 0 X X < X X - X

Figure 3.4: Stage 0. A normal table

used in practice, tabular expressions should be supported by tools for creating, editing, and

transforming tables. Creating tools without a reasonable formal semantics may and often

will lead to their failure [37].

To present the formal definition of tabular expressions and their semantics, we illustrate

this in the following with an example of a normal function table at different stages of

development borrowed from [51]. Stage 0 is shown in Figure 3.4. A normal function table

is presented, where the elements of the headers are predicate expressions, and the elements

of the grid G are terms. A multi-dimensional table is composed of headers HI, H2 , ... , Hn,

and one grid G. Both headers and the grid are built from ordered cells containing some

expressions. The first stage is shown in Figure 3.5. There are two headers HI and H2 , and

one grid G presented with a double border. The headers and the grid of a table T form

what is called the raw skeleton table rraw, which is the tuple (HI, H2 , ... , Hn, G). Then

the flow of information amongst table components is determined to indicate "where do I

start reading the table and where do I get my result?" (see Figure 3.6). Table cells are

divided into two types: guard cells and value cells. Guard cells contain the predicates,

while value cells contain the results. Value cells are often (but not always) represented

30

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

x < ooj X > 00 X < 00

X > < 00 0 X -X

X < 0 X X < X X - X

H

Figure 3.5: Stage 1. Assigning headers and a grid

y < 101 y > 10 y < 10

y > < 10 0 y -y

~----------~ ~

X < 0 y y < y y - y

H

Figure 3.6: Stage 2. Adding information flow

31

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Hum.:es (H 1, H)
~HI

I I

X < ool X > 00 X < 00

~ H2

X > < 00 0 X -x2

~----------~ ~

X < 0 X X < X X - X

H

LHalues(H)

Figure 3.7: Stage 3. Identifying guards and value cells

with a double line border (see Figure 3.7). The information flow, the guard cells, and value

cells represent what is called the Cell Connection Graph (CCG) of the tabular expression.

CCG model information flow and provide a taxonomy of tabular expressions. Different

CCG's correspond to different types of tables. For instance, the CCG from left hand side

of Figure 3.8 corresponds to a normal table. The CCG is typically presented by an icon

which resembles it and is usually placed at the top left corner of the table (see left part of

Figure 3.1 0). After determining the CCG, the medium table skeleton rmed of the table is

defined as the following tuple rmed = (CCC, H1 , H2 , ... , Hn, G). Then, a well done table

skeleton rwell of the table is defined as rwell = (Pr, rr, Cr, CCC, H 1 , ... , Hn, G), where

Pr is a table predicate rule indicating how predicates are to be built from the contents

of table cells, rr is a table relation rule indicating how relations/functions are to be built

from the contents of table cells, Cr is a table composition rule which states how the global

relation/function is built from local representations. The shape of Cr depends on the type

32

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

H,
H,

H2 GJ H ~ 2

Type I Type 2a

Figure 3.8: Stage 4. Examples of Cell Connection Graphs

Humes (H
1
, H}

I
H2

X > < 00

Pr = H11\ H2

rr = G

X < 0

Cr : R = Ui=l,2,3,j=1,2 Rij

-

I

X <

0

X

~H,

ool X > 00 X < 00

!
X -x2

X < X X - X

H

LHalues(H)

Figure 3.9: Stage 5. Specifying predicate, relation and composition rule

33

PhD Thesis - I. Bourguiba- McMaster - Computing and Software

of a table, i.e. CCG.

For the normal table presented in Figure 3.9, we have: Pr = H 1 1\ H 2, rr = G, while

Cr is given by the relational formula Uf=1 UJ=1 Ri]• where ~j is a relation corresponding

to the expressions in the cells HI[i], H2[j] and G[i,j]. Finally, a tabular expression Tis

formally defined as:

T = (Pr, rr, Cr,, CCG, H 1 , ... , Hn, G, W, IN, OUT)

where W is a mapping assigning predicate expressions to guard cells, and relation expres

sions to value cells. IN is the set of inputs (e.g. Reals x Reals), and OUT is the set of

outputs. The predicate expressions have variables over IN, and the relation expressions

have variables over IN x OUT. The meaning (semantics) of a tabular expression T is

given by a relation Rr ~ IN x OUT, which is defined as:

Rr = Cr(Rc,).

For the normal table from Figure 3.10, Rr = ur=1 UJ=I ~J' where Rij are as defined

above. In Section 4.2 more examples are provided.

Now to be able to distinguish the semantics difference between different kinds oftables,

the CCG should be defined. The CCG could be depicted by an acyclic graph where the

nodes are the headers and the grids, and the arcs are the information flow between the

connected table components. The nodes are portioned into two classes which are guarded

components (Guards (T)) and value components (Values (T)). Each arc must start from or

end at the grid G [28]. Let Compt(T) = {H1 , H2 , ... , Hn, G}. A Cell Connection Graph is

34

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

cJ I y = 10 I y > 10 I y < 10 I

0 y2 -y2

X x+y x-y

Figure 3.10: A normal table and its cell connection graph.

an asymmetric relation:

f----t ~ Compt (T) x Compt (T)

s.t. VA, BE Compt (T)

(3.1) Af----t B-===? ((A= G VB= G) 1\ A-/= B)

The relation 8 is the transitive closure1 of f----t.

The reflexive transitive closure2 of the relation f----t is a partial order. A component A E

Compt(T) is maximal if:

A H B -===? B = A VB E Compt (T)

1 A~ B ~ (A~-------+ B) V (:JA1, A2, ... , Ak.A ~-------+ A1 ~-------+ A2 ~-------+ ... ~-------+ Ak ~-------+ B)
2A H B ~(A= B) V (A~-------+ B) V (:JA1,A2, ... ,Ak.A ~-------+ A1 ~-------+ A2 ~-------+ ••. ~-------+ Ak ~-------+B)

35

PhD Thesis - I. Bourguiba- McMaster - Computing and Software

A component A E Compt(T) is minimal if:

B ~ A ====? B = A VB E Compt (T)

A component A E Compt(T) is neutral if it is neither minimal nor maximal. The compo

nents containing cells describing domains cannot be maximal, and the components contain

ing cells describing values of the relation/function cannot be minimal. Thus the partition

of Comp(T) into Guards (T) and Values(T) should satisfy the following conditions:

(3.2)

Compt(T) = Guards(T) U Values(T)

Guards(T) n Values(T) = 0

A is maximal ====? A E Values(T)

A is minimal ====? A E Guards(T)

VA E Guards(T).VB E Values(T).A ~ B

Now the CCG is formally defined as a triple:

CCG = (Guards(T), Values(T), 1------t)

where, 1------t satisfies condition 3.1, Guards(T) and Values(T) satisfies condition 3.2.

There are six different kinds of CCGs:

Type 1: each element is either maximal or minimal, and there is only one maximal

element. An example of a CCG of type 1 is shown in Figure 3 .11.

Type 2a: there is only one maximal element and one neutral element, and the neutral

element belongs to Guards(T). An example is given in Figure 3 .12.

Type 2b: there is only one maximal element and one neutral element, and the neutral

36

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

H,

H2 ~ H3

Figure 3.11: Type1. Each element is either maximal or minimal. There is only one maximal
element.

[;]

H2 G H3

Figure 3.12: Type2a. There is only one maximal element and a neutral element. The
neutral element belongs to Guards(T)

element belongs to Values(T). An example is presented in Figure 3.13.

Type 3a: there is a neutral element and more than one maximal element, and the

neutral element belongs to Guards(T). An example is depicted in Figure 3.14.

Type 3b: there is a neutral element and more than one maximal element, and the

neutral element belongs to Values(T). An example is illustrated in Figure 3.15.

Type 4: each element is either maximal or minimal, and there is only one minimal

element. An example is given in Figure 3.16.

The previous examples illustrating the six kinds of CCGs are borrowed from [28]. In

the six examples the number of headers is equal to three. This classification introduced by

37

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

[;]

H2 ~ H3

Figure 3.13: Type2b. There is only one maximal element and a neutral element. The
neutral element belongs to Values(T)

[;]

H2 G [;J

Figure 3.14: Type3a. There is a neutral element and more than one maximal element. The
neutral element belongs to Guards(T)

[;J

H2 ~ [;J

Figure 3.15: Type3b. There is a neutral element and more than one maximal element. The
neutral element belongs to Values(T)

38

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

[;]

[;] G [;]

Figure 3.16: Type4. Each element is either maximal or minimal. There is only one minimal
element

Janicki is application independent. It was proposed in [25], and then refined in [26, 28].

D.L. Parnas proposed the first semantics analysis of tabular expressions based on types

of applications [38]. He suggested another classification for tabular expressions that is

based on types of applications [38]. He identified ten classes of tables:

Normal function tables: in a normal function table the elements of the headers are

predicate expressions, and the elements of the grid G are terms.

Inverted function tables: in an inverted function table T, the elements of the first

header H 1 are terms. The elements of the other headers H 2 , · • • , Hdim(T) are predi

cate expressions, and the elements of the grid G are predicate expressions as well.

Vector function tables: in a vector function table the elements of the headers

H 1, H 3 , · · · , Hdim(T) are predicate expressions. The elements of the grid G are terms.

The elements of the second header H 2 are variables.

Normal relation tables: in normal relation table, the elements of the headers and the

grid are predicate expressions. However there is a distinguished variables denoted by

"®" that should not appear in the headers.

Inverted relation tables: in an inverted relation table, the elements of the headers and

39

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

the grid are predicate expressions. The variables"®" may appear in the header HI

but not in the headers H 2 , · · · , Hdim(T) and the gird G.

Vector relation tables: in a vector relation table the elements of the headers

HI, H 3 , · • • , Hdim(T)• and the elements of G are predicate expressions. The elements

of H2 are variables.

Mixed vector tables: in a mixed vector table the elements of the headers

HI, H 3 , • · · , Hdim(T) are predicate expressions. The elements of the second header

H2 are variables, and the elements ofthe grid G could be either predicate expressions

or terms.

Predicate expressions tables: in predicate expressions tables, the elements of all head

ers and the grid are predicate expressions. The table T could be seen as a predicate.

Characteristic predicate tables: in a characteristic predicate table, the elements of the

headers and the grid are predicate expressions. The tableT could be seen as relation

for which the domain and range contain tuples of a fixed length.

Generalized decision tables: in a generalized decision table, the elements ofthe head

ers HI and H2 are terms. The other headers H 3 , • • • , Hdim(T) are not used in this class

of tables. The elements of the grid G are predicate expressions that contain in some

cases the symbol"#". In a cell the"#" symbol is replaced by its corresponding value.

Each class proposed by Pamas in [38] could be seen as a special case of the generic

model proposed by Janicki [25, 26, 28]. For instance, Type 1 corresponds to normal tables.

Type 2a corresponds to inverted, decision and generalized decision tables. Type 2b corre

sponds to vector tables. For types 3a, 3b and 4, we do not know any practical use for them

so far [28].

40

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Recently in [30], Jin and Parnas propose a new model for defining tabular expressions.

Tabular expressions are seen as an indexed set of grids, and a grid is viewed as an indexed

set of expressions. Tabular expressions are classified into table-types. A tabular expression

is given a meaning only if it has a previously defined type. To define an expression type, a

restriction schema, and evaluations schemas for tables are given. The restriction schema is

a predicate presenting the restrictions imposed on the table. An evaluation schema defines

equivalent expressions of a previously defined type. The model is applied on previous

defined tables such as normal function tables, inverted tables, generalized decision tables,

and new ones such as tables with redundant header grids, circular tables, and locator tables.

The new types of tables introduced in this work might be of interest in practice.

3.3 Transforming SCR tables into tabular expressions

In this section, we illustrate how SCR tables can be transformed into function tables, and

we provide examples for that. We present algorithms to convert SCR tables seen as two

dimensional arrays into function tables. Indeed, function tables are a special kind of tabular

expressions. In Appendix B, we show how function tables fit in the general framework of

tabular expressions.

3.3.1 Transforming Condition Tables

In the following we show how to convert SCR condition tables (CT) into vertical condi

tion tables (VCT) of function tables. In SCR, a condition table (CT) defines a variable

according to a mode and a condition. In vertical condition tables (VCT), the left bottom

cell indicates the name of the function. For example, in Table 3.2, the name of the function

is: f-Safetyinjection. The other bottom columns indicate the value of the function when the

condition of the respective columns is True. This implies that each value of the function can

41

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

be obtained from a disjunction of the conjunctions of the respective cell and its respective

mode value. This justifies our conversion given in Algorithm 3.1. Notice that in converting

a CT table into a VCT table, the last row remains the same, and it contains the name of

the function and its values. To have a simplified table, any expression of the form False V

Expression or True 1\ Expression is replaced with Expression. The time complexity of this

algorithm is 0(nm). As a result of the application of Algorithm 3.1 to convert the CT table

drawn in Table 2.5, we obtain the VCT table presented by Table 3.2. Both of the two tables

are behaviourally equivalent.

The condition table drawn in Table 3.3 defines the controlled variable heat. The con-

trolled variable heat is True if the variable setting is enabled and the variable desired is

True. Otherwise, if setting is disabled, or if setting is enabled and desired is False, the

variable heat is False. The example is borrowed from an SCR specification of a thermo-

stat [44]. We also apply Algorithm 3.1 to convert the condition table defining the controlled

variable heat presented in Table 3.3 into a vertical condition table. As a result of the con-

version, we obtain table 3.4.

Algorithm 3.1 Converting CT tables into VCT tables
{ n is the number of columns of the CT table}
for j from 1 to n - 1 do

Sum +--- False
{ m is the number of rows of the CT table}
for i from 1 to m - 1 do

Sum+--- Sum V (CT[i, 1] 1\ CT[i,j + 1])
end for
VCT[l,j] +---Sum

end for
for j from 1 to n - 1 do

VCT[2, j] +--- CT[m, j + 1]
end for

42

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

VCT: Safetylnjection

(Pressure = High) V (Pressure = Permitted) (Pressure= TooLow)
v 1\

(Pressure= TooLow) (Overridden= False)
1\ (Overridden= True)
f-Safetylnjection=Off f-Safety Injection=On

Table 3.2: Vertical condition table for Safety Injection

Setting = disabled True
Setting = enabled not -desired

heat False

Table 3.3: Condition table for heat

VCT: Heat

(Setting = disabled) (Setting = enabled)
v 1\

(Setting = enabled) 1\ (not-desired) (desired)
(f-heat =False) (f-heat =True)

Table 3.4: Vertical condition table for heat

43

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

VCT: Overridden

(Pressure= Too Low) (Pressure= High)
V (Pressure=Permitted)

1\ v
(block =On ((Pressure= TooLow)

1\ Reset = Off) V (Pressure=Permitted)
V (Reset= On))

f-Overridden= True f-Overridden=False

Table 3.5: Vertical condition table for Overridden

3.3.2 Transforming Event Tables

An event table defines a variable according to a mode and an event. An event occurs when a

condition value switches from True to False. The notation "@T(c)" means that condition

c becomes True, and the notation "@F(c)" denotes that condition c becomes False [19].

For example, @T(Block=On) when T(Reset=Off) means that the operator turns Block from

Off to On when the Reset is Off. In SCR, the notation @T(Inmode) means that the system

enters into the class of modes in that row. In Table 2.6, the mode Pressure is defined via

the current mode, and the events are defined on the variable WaterPress. Event tables and

condition tables are behaviourally equivalent. In fact, in both tables a variable is defined via

a mode and the change of a system state. Hence, event tables will also be transformed into

vertical condition tables. Therefore, Algorithm 3.1 can be used to convert an SCR event

table into a vertical condition table. As a result of applying it to convert the event Table 2.6

for Overridden, we obtain Table 3.5, which is behaviourally equivalent to it.

Another example is the event table presenting the latches of a measuring hydraulic

system [16] which is presented by Table 3.6. The event table is interpreted as the following:

The variable tpressure-latch is True if both variables mpressure-hold and tpressure-auto

are True, and it is False if the variable tpressure-auto is False.

The result of the conversion of the event Table 3.6, is Table 3.7. Both tables are be-

44

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Mode Events
@T(mpressure-hold and @ F(tpressure-auto)

tpressure-auto)
tpressure-latch True False

Table 3.6: Event table for tpressure-latch

VCT: tpressure-latch

(mpressure-hold = True) (tpressure-auto=False)
A

(tpressure-auto=True)
tpressure-latch=True tpressure-latch=False

Table 3.7: Vertical condition table for tpressure-latch

haviourally equivalent.

3.3.3 Transforming Mode Transition Tables

A mode transition table (MTT) generates a destination mode from a mode and an event.

Similarly, a state transition table (STT) represents next state functions, given a current

state and a condition. Modes are seen as classes of system states specifying the system

behaviour. Therefore, the two tables are behaviourally equivalent. In the following we

present an algorithm to show how mode transition tables (MTTs) are transformed into state

transition tables (STTs). In this algorithm we start by filling the rows of the STT table with

modes of the MTT table, and the columns of the STT table with events of the MTT table.

Since each cell in STT can be indexed by a modem and an event e as T[m, e], we can

easily compute the next state in STT as follows:

STT [MTT[i, l],MTT[i, 2]] +-- MTT[i, 3]

45

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

where MTT[i, 1] and MTT[i, 2] are the mode and event at row i, respectively. MTT[i, 3]

designates the next mode at row i. Then, we have to merge the rows having identical

states, and the columns having identical events to reduce the size of the table. The time

complexity to look for rows with identical states, the columns having identical events, and

merge them is O(n2). However, we were able to reduce the complexity to O(n) with the

indexing property of STTs tables that we proposed. In fact with the indexing property of

STTs tables, we access directly to fill in the new states since they are indexed by mode and

events. Finally, we fill the empty cells with the same current state to indicate that the state

remains the same.

Algorithm 3.2 Converting MTT tables into STT tables

{initialize the first row of STT to the MTT input events starting at cell [1, 2]}
{ n is the number of rows of MTT}
Let R be an empty set
for i from 1 to n do

add MTT[i, 1] toR
end for
Copy the elements of R into the first row of STT starting a cell [1, 2]
{initialize the first column of STT to the MTT input modes starting at cell [2, 1]}
Let C be an empty set
for i from 1 to n do

add MTT[i, 1] to C
end for
Copy the elements of C into the first column of STT starting a cell [2, 1]
for i from 1 to n do

STT[1, i + 1] +-- MTT[i, 2]
end for
for i from 2 to n do

STT [MTT[i, 1], MTT[i, 2]] +-- MTT[i, 3]
end for
{Handle STT's empty cells}
for every mode m and event e do

if STT[m, e] is an empty cell then
STT[m, e] +-- m

end if
end for

46

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

After applying algorithm 3.2, we find that Table 3.8 is behaviourally equivalent to Ta

ble 2.7. Also, Table 3.8 is more explicit than Table 2.7.

STT: f-Pressure

@T(WaterPress @T(WaterPress @T(WaterPress @T(WaterPress
2: Low) 2: Permit) <Low) <Permit)

Too Low Permitted Too Low Too Low Too Low
Permitted Permitted High Too Low Permitted

High High High High Permitted

Table 3.8: State transition table

We give another example borrowed from the SCR specification of the thermostat [44],

where Table 3.9 is a mode transition table defining the mode class setting. It specifies

whether the mode setting is enabled or disabled. We also apply algorithm 3.2, to convert

the mode transition table 3.9 into the state transition table 3.10. As a result, the two tables

are behaviourally equivalent.

3.4 Improving SCR semantics

In order to improve SCR semantics, and to avoid using ambiguous symbols (e.g. primed

notations and prefixed notations with "@" symbols), we depict a more rigorous way to

model SCR events with first order logic. In addition, we introduce a model for the first-

order language. We also present a simpler way to define SCR events with propositional

I Old Mode I Event I New Mode I
disabled @T(switch-on) enabled
enabled @T(not-switch-on) disabled

Table 3.9: Mode transition table for setting

47

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

STT: setting

@T(switch-on) @T(not-switch-on)
disabled enabled disabled
enabled disabled enabled

Table 3.10: State transition table for setting

logic. Then, we give an illustrative example.

In SCR, a Simple Condition is either True, False, or a logical statement of the form

r 0 v, where r belongs to the set of entity names, 0 is a relational operator 3 , and v

belongs to the type of r. The set of entity names contains mode class names, input and

output variables names, and term names. A Condition is a logical statement composed of

Simple Conditions connected by logical connectors.

A Basic Event is denoted by @T(c), where cis a simple condition meaning that condi-

tion c becomes True. Similarly, @F(c) means that condition c becomes False.

A Simple Conditioned Event is denoted by @T(c) WHEN d, where d is a condition. It

is defined as the following:

@T(c) WHEN d = c' 1\ •c 1\ d,

where the unprimed condition represents its old value, and the primed condition depicts

its new value. Finally, a Conditioned Event is composed of Simple Conditioned Events

connected by logical connectors.

Let us consider an example borrowed from [14]. The set of entity names denoted RF is

defined by:

RF ={Block, Reset, WaterPres, Pressure, Safetyinjection, Overridden}.

30 E { =, #<, >, :::;, ?:}

48

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

The type definitions are :

TY(Pressure) = {TooLow, Permitted, High}

TY(WaterPres) = {0, 1, 2, ... , 2000}

TY(Overridden) = {True, False}.

The conditions are specified on the values of entities in RF. For example, the condi

tioned event @T(Block=On) WHEN Reset=Off can be rewritten as :

Block' = On 1\ Block= Off 1\ Reset= Off

3.4.1 Event Modelling in First-Order Logic

Let L = (C, F, P) be a first-order language such that Cis a set of symbols called constants,

F is a set of symbols called function symbols, each with arity 2 1, and Pis a set of symbols

called predicate symbols, each with arity 2 1. P contains the binary predicate symbol"=".

Let V be the set of symbols called variables. V, C, F, and Pare pairwise disjoint.

A term in L is defined recursively as follows: a constant or a variable is a term. Given

a function symbol f with n-arity and the terms t 1 , ... , tn, f (t 1 , ... , tn) is a term.

A formula is defined as follows. Given a predicate P with n-arity, t 1 , ... , tn terms,

Pn(t1 , ... , tn) is a formula. •F, and VxF, 3xF are formula. Given two formulae F1 and

F2, F1 1\ F2 and F1 V F2 are formulae.

Given a language L = (C, F, P) defined as above, we extend it with two symbols pred

and succ. The symbol pred is needed to represent the past value of a term, and the symbol

succ is needed to know the future value of a given term.

The language L equipped with the two symbols pred and succ is said to be event

enabled. In fact, with our event-enabled language we are able to model the SCR system

in which the environment generates a sequence of events, and the system reacts to these

events by changing their states.

49

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

The terms pred(t) and succ(t) are defined as follows:

(3 .1) Definition.

If t is a constant, we have:

pred(t) = t

and,

succ(t) = t.

If t is a variable, then pred(t) and succ(t) are both atomic terms.

(3.2) Definition.

For a term t of the form fn(t1 , ... , tn), we have:

pred((fn)(tl, ... , tn)) = fn(pred(tt), ... ,pred(tn))

and,

succ((fn)(tl, ... , tn)) = fn(succ(tt), ... , succ(tn)).

(3.3) Definition.

- For a formula F of the form (t1 = t 2), we have:

and,

50

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

(3 .4) Definition.

For a formula F of the form (Pm(t 1 , ... , tm)), we have:

and,

succ((Pm)(tl, ... , tm)) = Pm(succ(tr), ... , succ(tm)).

(3.5) Definition.

For the formulas F1 and F2 we have:

and,

•(pred(FI)) = pred(·(FI))

pred(F1 V F 2) = pred(FI) V pred(F2)

pred(F1 1\ F2) = pred(FI) 1\ pred(F2)

-, (succ(FI)) = succ(-, (FI))

succ(F1 V F2) = succ(FI) V succ(F2)

succ(F1 1\ F2) = succ(FI) 1\ succ(F2).

(3.6) Definition.

- For every natural number n, we define the predn symbol as follows:

If n = 0, then predn(t) = t

If n ~ 1, then predn(t) = pred(predn-1(t)).

51

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Similary, for every natural number n, we define the succn symbol as follows:

If n = 0, then succn(t) = t.

If n ~ 1, then succn(t) = succ(succn-l(t)).

(3.7) Definition.

An event on a condition cis given by:

succ(c) 1\ -..,c

or equivalently:

c 1\ -..,pred(c).

(3.8) Definition.

For any term t:

pred(succ(t)) = t

and,

succ(pred(t)) = t.

With our definitions, we avoided the prefixed SCR notations with "@" to represent

events by @T(c) or @F(c). Hence, it becomes straightforward to express @F(c) in terms

of pred and succ. In fact, it is given by the forumla:

-..,c 1\ pred(c)

or equivalently:

-..,succ(c) 1\ c.

52

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

(3.9) Definition.

Ann-past event on a variable x denoted by event:;;(x) is defined by:

An n-future event on a variable x denoted by event~ (x) is defined by:

Ann-past (respectively n-future) event indicates if an event happens between the cur

rent and then-past (respectively n-future) time.

(3.1 0) Definition. Let f be a function symbol with k-arity, and k terms t 1 , ... , tk. We

call ann-past event of the function f, the formula denoted by event:;;(f)(t1 , ... , tk), and

defined by:

An n-future event on the function f is the formula denoted by event~ (f) (t 1 , ... , tk),

and defined by:

As an example of 1-past event, let "inc" be increment function which adds the value

one to any input value. event;:-(inc)(x = 1) is defined by:

•(pred(inc(x = 1)) = inc(x = 1))

~ •(pred(x = 2) = (x = 2))

~ True

This indicates that there is a 1-past event since the value of the variable x changed.

53

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

(3.11) Definition. Given a predicate symbol Q with q-arity, and q terms t 1 , ... , tq, an

n-past event on predicate Q is the formula event;; (Q) (t 1 , ... , tq) defined by:

Ann-future event on predicate Q is the formula event~(Q)(t1 , ... , tk) given by:

From the above definitions, we have the following lemma.

Lemma 3.4.1 Given a function symbol f with k-arity and k terms t1 , ... , tk> we have:

PROOF. By induction:

1) Let us verify that it is True for the base case n = 0

f(pred0 (ti), ... ,pred0 (tk)) = pred0 ((f(t1, ... , tk))

< Definition 6 >

True

2) Let us assume that for some n, we have:

f(predn(tt), ... ,predn(tk)) = predn(f(t1, ... , tk)).

54

PhD Thesis -I. Bourguiba- McMaster- Computing and Software

3) Let us prove that:

f(predn+l (t1), ... , predn+l (tk))

< By Definition 6 >

f(pred(predn(tt), . .. , pred(predn(tk))

< By Definition 2 >

pred(f(predn(tt), ... , predn(tk))

< By induction hypothesis >

pred(predn(f(t1, ... , tk)))

< By Definition 6 >

predn+l(f(tl, ... , tk))

Lemma 3.4.2 Given a function symbol f with k-arity and k terms t 1 , ... , tk. we have:

PROOF. By induction:

55

D

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1) Let us verify that it is True for the base case n = 0

j(succ0(t1), ... , succ0(tk)) = succ0((j(t1, ... , tk))

< Definition 6 >

f(tl, ...) tk) = f(tl, ...) tk)

True

2) Let us assume that for some n, we have:

3) Let us prove that:

f(succn+l(tl), ... , succn+l(tk))

< By Definition 6 >

f(succ(succn(tl), ... , succ(succn(tk))

< By Definition 2 >

succ(f(succn(tl), ... , succn(tk))

< By induction hypothesis >

succ(succn(f(tl, ... , tk)))

< By Definition 6 >

succn+1(J(tl, ... , tk))

56

0

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

(3.12) Definition.

Given a formula F, an F-guarded n-past event on variable x denoted by xiF is defined

by:

event;; (x) 1\ F

An F-guarded n-past event on function symbol f denoted by JIF is defined by:

event;; (f) 1\ F

An F-guarded n-past event on predicate symbol P denoted by PIF is defined by:

event;;(P) 1\ F

(3.13) Definition.

Given a formula F, an F-guarded n-future event on variable x denoted by xiiF is

defined by:

event~(x) 1\ F

An F-guarded n-future event on function symbol f denoted by JIIF is defined by:

event~ (f) 1\ F

An F-guarded n-future event on predicate symbol P denoted by PII F is defined by:

event~(P) 1\ F

57

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

3.4.2 Model for the FOL L

A model M for the first-order language Lis a two tuple (D, I), where Dis a nonempty do

main of individuals, and I is an interpretation function that assigns each constant, function

symbol, and predicate symbol in Lover D.

Let V ar be the set of variables, Term be the set of terms of L, Form be the set of

formulas of L, and I nt be the set of integers.

A variable assignment into M is a total function such that:

!.p : V ar x I nt -+ D

That is, a variable assignment into M maps each variable at some point in time to a

value in D.

Let V ar Assign(M) be the set of all variable assignment into M.

The valuation function for M is the function:

V: (TermUForm) x VarAssign x Int-+ DU {true, false}

It is defined by the following statements where !.p E V ar Assign and i E I nt:

- If x is a variable,

- If c is an individual constant,

V(x, !.p, i) = !.p(x, i)

V(c, !.p, i) = I(c)

58

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Iff is an n-ary function symbol and t 1 , ... tn are terms of L,

V(J(t1, ... tn), tp, i) = I(J)(V(t1, tp, i), ... , V(tn, tp, i))

- If P is an n-ary predicate and t 1 , · · · , tn are terms of L,

V(P(t1, · · · , tn), tp, i) = I(P)(V(t1, tp, i), · · · , V(tn, tp, i))

- 1ft is a term of L,

V(pred(t), tp, i) = V(t, tp, i- 1)

V(succ(t), tp, i) = V(t, tp, i + 1)

- If t 1 and t 2 are terms of L,

V(t1 = t 2 , tp, i) =false otherwise.

- IfF is a formula of the form P(t 1 , · · · , tn), where Pis an n-ary predicate and t 1 , ... tn

are terms of L,

V(--,F, tp, i) = true if V(F, tp, i) = false

V(,p, tp, i) =false otherwise

- If F 1 is a formula of the form P(t1, · · · , tn), where P is an n-ary predicate and

t 1 , ... tn are terms of L, F2 is a formula of the form P(t1, · · · , tm), where P is an

59

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

m-ary predicate and t 1 , · · · , tm are terms of L,

V(F1 V F2, <.p, i) =false if V(F1, <.p, i) =false 1\ V(F2, <.p, i) =false

otherwise V(F1 V F2 , <.p, i) =true

If F1 is a formula of the form P(t1, · · · , tn), where P is an n-ary predicate and

t1 , · • · , tn are terms of L, F2 is a formula of the form P(t1, · · · , tm), where Pis an

m-ary predicate and t 1 , · · · , tm are terms of L,

V(F1 1\ F2, <.p, i) =true if V(F1, <.p, i) =true 1\ V(F2, <.p, i) =true

otherwise V(F1 1\ F2 , <.p, i) =false

IfF is a formula of the form Vx(P(t1, · · ·, tn)), where Pis an n-ary predicate and

t 1 , · · · , tn are terms of L,

V(F, <.p, i) =true if V(F, ~.p[x-+ y], i) =true Vy E D

otherwise V(F, <.p, i) =false

- A formula A is valid in M if, for V<.p E Var Assign and i E Int,

Lemma3.4.3

V(A, <.p, i) =true.

V terms t of L, V(pred(succ(t)), <.p, i) = V(t, <.p, i).

60

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

PROOF.

Lemma3.4.4

PROOF.

V(pred(succ(t)), rp, i)

= V(succ(t), rp, i- 1)

= V(t,rp,i -1 + 1)

= V(t, rp, i).

V terms t of L, V(succ(pred(t)), rp, i) = V(t, rp, i).

V(succ(pred(t)), rp, i)

= V(pred(t), rp, i + 1)

=V(t,r.p,i+1-1)

= V(t, rp, i).

D

D

In some cases, we do not need all the power of first-order logic, and we simply could

adopt propositional logic. Hence, in the following subsection we present a simpler way to

model SCR events in propositional logic, where the conditions are simply propositions.

61

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

3.4.3 Event Modeling in Propositional Logic

Let L = (P, •, 1\, V) be a propositional logic, such that Pis a set of primitive symbols

called atomic formulae, -, is a unary operator, 1\ and V are two binary operators. The set

of propositions { •, 1\, V} is complete since every truth function can be represented by a

formula using only members of this set.

A formula is defined as follows:

A symbol P in P is a formula.

- Given two formulae F1 and F2 , ·F1 , F1 1\ F2 and F1 V F2 are formulae.

Given a propositional language L = (P, •, 1\, V), we extend it using two unary opera

tors pred and succ such that for every two formulae P and Q we have:

- pred(·P) = •pred(P).

- pred(P 1\ Q) = pred(P) 1\ pred(Q).

- pred(P V Q) = pred(P) V pred(Q).

succ(•P) = •succ(P).

succ(P 1\ Q) = succ(P) 1\ succ(Q).

succ(P V Q) = succ(P) V succ(Q).

- pred(succ(P)) = P.

- succ(pred(P)) = P.

We define succ similarly.

(3.14) Definition. For a natural number n, the unary operator predn is defined recursively

as follows:

62

PhD Thesis -I. Bourguiba- McMaster- Computing and Software

- pred0 (P) = P.

- predn(P) = pred(predn-l(P)).

- succn (P) = succ(succn-l (P)).

(3.15) Definition. An n-past event on formula F denoted by event;; (F) is defined:

Ann-future event on formula F denoted by event~ F is defined by:

(3.16) Definition. A formula R, an R-guarded n-past event on formula F denoted by PIR

is defined by:

event-;; (F) 1\ R.

An R-guarded n-future event on formula F denoted by PIIR is defined by:

event~ (F) 1\ R.

If we denote ,p V Q by P ==? Q, then,

pred(P ==? Q)-¢::> (pred(P) ==? pred(Q)).

Similarly,

63

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

(~pred(Pressure=High)) A (Pressure= High) (~pred(Pressure=TooLow)) A (Pressure=TooLow)
v v

(~pred(Pressure = Permitted)) A (Pressure = Permitted) (~pred(Overridden =False)) A (Overridden= False)
v

(~pred(Pressure=TooLow)) A (Pressure=TooLow)
A (~pred(Overridden =True)) A (Overridden= True)
(~pred(Safetylnjection=Off)) A (Safetylnjection=Off) (~pred(Safetylnjection=On)) A (Safetylnjection=On)

Table 3.11: Vertical Condition Table for Safetylnjection with the "pred" symbol.

(succ(Pressure=High)) A~(Pressure=High) (succ(Pressure-TooLow)) A~ (Pressure=TooLow)
v v

(succ(Pressure =Permitted)) A~ (Pressure= Permitted) (succ(Overridden =False)) A~ (Overridden= False)
v

(succ(Pressure=TooLow)) A~ (Pressure=TooLow)
A (succ(Overridden =True)) A~ (Overridden= True)
(succ(Safetylnjection-Off)) A~ (Safetylnjection=Off) (succ(Safetylnjection-On)) A~ (Safetylnjection-On)

Table 3.12: Vertical condition table for Safetylnjection with the "succ" symbol.

succ(P =? Q) {::} (succ(P) =? succ(Q)).

Also for P {::} Q, we have:

pred(P {::} Q) {::} (pred(P) {::} pred(Q)).

Similarly,

succ(P {::} Q) {::} (succ(P) {::} succ(Q)).

False (~pred(Pressure = High)) A (Pressure = High)
(~pred(Pressure=TooLow)) A (Pressure=TooLow) (~pred(Pressure=TooLow)) A (Pressure=TooLow)

v v
(~pred(Pressure = Permitted)) A (Pressure= Permitted) (~pred(Pressure = Permitted)) A (Pressure= Permitted)

A v
(~pred(Block=On)) A (Block=On) (~pred(Reset=On)) A (Reset=On)

A (~pred(Reset=Off)) A (Reset=Off)
(~pred(Overridden)) A (Overridden) (~pred(~ Overridden)) A(~ Overridden)

Table 3.13: Vertical condition table for Overridden with the "pred" symbol.

64

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

False (succ(Pressure- High)) 1\ --., (Pressure = High)
(succ(Pressure-Too Low)) 1\--., (Pressure-Too Low) V (succ(Pressure-Too Low)) 1\ --.,(Pressure-TooLow) V

(succ(Pressure =Permitted)) 1\ --., (Pressure = Permitted) 1\ (succ(Pressure =Permitted)) 1\ --., (Pressure = Permitted) V
(succ(Block=On)) 1\ --., (Block=On) (succ(Reset=On)) 1\ --., (Reset=On)

1\ (succ(Reset=Off)) 1\ --., (Reset=Off)
(succ(Overridden)) 1\ (--.,Overridden) (succ(Overridden)) 1\ (--.,Overridden)

Table 3.14: Vertical condition table for Overridden with the "succ" symbol.

3.4.4 Illustrative example

In this section, we provide examples where we transform SCR tables into new tables using

the pred and succ symbols. We convert the condition Table 2.5 into Table 3.11 using the

pred symbol. We also convert Table 2.5 into Table 3.12 using the succ symbol. All of these

tables are behaviourally equivalent.

Also we transformed Table 2.6 into Table 3.13, and Table 3.14 with the pre and succ

symbols respectilvely. Table 3.13 and Table 3.14 are behaviourally equivalent with the

difference that we used the pred symbol in Table 3.13, and the succ symbol in Table 3.14.

Besides, we converted the Mode Transition Table 2.7 into State Transition Tables with

the pred and succ symbols presented respectively in Tables 3.15 and 3.16 as well.

In SCR tables, there are some ambiguous notations that are not easily understood by

users/developers who are not quiet familiar with the SCR method. Also, for SCR condition

tables and event tables, it is not obvious that a variable is obtained by the conjunction of

the respective mode and event. In our transformed tables, we removed the Mode column,

and we write explicitly the mode with its respective event. In addition, with the two extra

symbols succ and pred, we improve SCR events definition. In fact, for any event, we

are able to determine all its predecessors and successors events. Besides, we avoid the

fuzziness of the notation used in SCR to denote that the unprimed variables represent the

old values of the variables, and the primed variables represent the new ones. From the

examples that we provided, it is clear that our transformed tables are more readable and

easier to interpret than SCR tables.

65

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

3.5 Discussion

In this section we present the merits and disadvantages of the two methods. For SCR, it

relies on a state-based model. Some constructs were added to the general SCR model trying

to make the specification more concise. Hence, the developers should be knowledgeable

about those concepts, and this makes the task of building the specification difficult. We

support our claim by a study on the application of SCR on a Space Station Biological

Research Project at the NASA Ames Research Center (ARC) [43]. As a matter of fact,

building the SCR specification took a lot of time. Also, the SCR project team had to

intervene, and use their expertise about mathematical models and state machine models

to help building the initial SCR specification, and then give it to the ARC developers for

modification and extension.

Tabular expressions are based on a relational model, and relations are easily adopted

by a wide range of people, even those who do not have a solid mathematical background.

Their structure helps to make many manipulations such as checking whether a group of

tables are behaviourally equivalent to another group of tables [27], or transforming a table

into another simplest table [51]. With tabular expressions, it is easy to handle some mathe

matical manipulations, and also to check the consistency and completeness [28, 51]. Also

with tabular expressions it is easy to build specification. For tabular expressions instead

of having different kinds of tables, R. Janicki proposed a general framework unifying all

kinds of tables previously proposed by D.L. Parnas, and where each kind of table could

be seen as a special case of the general framework. For the SCR method, it is based on

three kinds of simple tables and some constructs that were added to the language to specify

system requirements.

It is very important to compose and decompose tables in a modular way. Unfortunately,

the concept of table composition and decomposition of tables is not adopted by the SCR

66

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

method. Therefore, states and transitions are not decomposed. This issue might be a disad

vantage of the method, especially while specifying large systems. For tabular expressions,

the system's behaviour is represented by a relation that might be complex. That complex

relation should be decomposed into smaller relations. In some cases, these relations are

defined easily in some cells of the table. In other cases, a cell may refer to another table.

Hence, we can compose and decompose tables in a modular way.

For the SCR method, it is quiet popular and it has been used and experimented in

many industrial and academic organizations. However, it has some limitations regarding

its semantics which is quite intuitive [19]. Also, the symbols adopted by the method are

ambiguous. Moreover, the composition and decomposition of tables is not supported by

the SCR method, and causing scalability problems of the method for large systems. In

this work, we converted SCR tables into function tables, and in Appendix B, we showed

how function tables fit in the general framework of tabular expressions. The transformation

proposed is quite efficient and easy to implement. Many advantages are obtained with the

conversion that we proposed. The tables are more readable, and could be easily interpreted

even by people who are very knowledgeable of the domain. Besides, we avoid previous

ambiguous symbols (e.g. primed notations and prefixed notations with "@" symbols).

Hence, by improving SCR semantics, there are many tasks that could be carried out such

as facilitating the verification and validation process, and improving the toolset supporting

the SCR method.

67

SIT: f-Pressure

~pred (WaterPress 2 Low) ~pred (WaterPress 2 Low) ~pred (WaterPress 2 Low) ~pred (WaterPress 2 Low)
(\ (\ (\ (\

(Water Press 2 Low) (WaterPress >Low) (WaterPress 2 Low) (WaterPress 2 Low)
~pred (Pressure=TooLow) ~pred (Pressure=Permitted) ~pred (Pressure=TooLow) ~pred (Pressure=TooLow) ~pred (Pressure-Too Low)

(\ (\ (\ (\ (\

(Pressure=TooLow) (Pressure=Permi tted) (Pressure=TooLow) (Pressure=TooLow) (Pressure=TooLow)
~pred (Pressure=Permitted) ~pred (Pressure-Permitted) ~pred (Pressure-High) ~pred (Pressure-TooLow) ~pred (Pressure-Permitted)

(\ (\ (\ (\ (\

(Pressure=Permitted) (Pressure=Permitted) (Pressure= High) (Pressure=TooLow) (Pressure=Permitted)
~pred (Pressure-High) ~pred (Pressure-High) ~pred (Pressure-High) ~pred (Pressure-High) ~pred (Pressure-Permitted)

(\ (\ (\ (\ (\

(Pressure=High) (Pressure=High) (Pressure= High) (Pressure= High) (Pressure= High)

Table 3.15: State transition table for pressure with the "pred" symbol.

STT: f-Pressure

succ (WaterPress 2': Low) succ (WaterPress 2': Low) succ (WaterPress 2': Low) succ (WaterPress 2': Low)
1\ 1\ 1\ 1\

~ (WaterPress >Low) ~ (WaterPress >Low) ~ (WaterPress >Low) ~ (WaterPress >Low)
succ (Pressure=TooLow) succ (Pressure=Permitted) succ (Pressure=TooLow) succ (Pressure=TooLow) succ (Pressure=TooLow)

1\ 1\ 1\ 1\ 1\

~ (Pressure=TooLow) ~ (Pressure=Permitted) ~ (Pressure=TooLow) ~ (Pressure=TooLow) ~ (Pressure=TooLow)
succ (Pressure=Permitted) succ (Pressure=Permitted) succ (Pressure=High) succ (Pressure=TooLow) succ (Pressure=Permitted)

1\ 1\ 1\ 1\ 1\
~ (Pressure=Permitted) ~ (Pressure=Permitted) ~ (Pressure=High) ~ (Pressure=TooLow) ~ (Pressure=Permitted)
succ (Pressure=High) succ (Pressure= High) succ (Pressure= High) succ (Pressure= High) succ (Pressure=Permitted)

1\ 1\ 1\ 1\ 1\

~ (Pressure=High) ~ (Pressure= High) ~ (Pressure=High) ~ (Pressure=High) ~ (Pressure=High)

Table 3.16: State transition table for pressure with the "succ" symbol.

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Chapter 4

Tabular Expressions Composition

4.1 Introduction

The problem of composing a relation R from its parts Ra seems to be an open research

problem [26]. One of the biggest advantages of adopting tabular expressions is to be able

to easily specify a complex relation from its parts. In the context of tabular expressions the

composition 1 of a relation R from its parts Ra is important for many reasons. For instance,

it is very important to compose and decompose tables in a modular way. Therefore, we

need to know what is the relation, and what are its parts. Also for large systems, the big

table used to represent the system's behaviour could be decomposed into smaller tables

that are more readable. This composition/decomposition is needed at different levels of the

project life cycle.

Regarding the problem of the composition of tabular expression, we discuss the follow

ing approaches. In [26, 29, 28], Janicki et al. considered the composition of the cells of a

table representing a relation or a function. Deharnais et al. introduced relational operators

1 As Janicki pointed to it in [24], we also mean by composition "the act of putting together" and not the
mathematical composition.

70

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

for the composition of relational scenarios presented by tabular expressions [9]. In [31],

Kahl proposed a vertical and horizontal composition of tables. Mohrenschildt depicted the

composition of tables representing mathematical functions [35]. In the following sections

we describe each one of these approaches respectively. Section 4.6 is dedicated to discuss

the advantages and disadvantages of these approaches.

4.2 Cells composition of relation/function

The relation R defining a tabular expression may be complex, but it can be built from a

collection of relations Rc, where each Ra is easily specified. These relations are some-

times easily defined in some cells of the table. In other cases, a cell may refer to another

table. In tabular expressions, Cr is a table composition rule which states how the global

relation/function is built from the local ones. The shape of Cr depends on the kind of table

used [26, 29, 28]. In the following, we discuss several relations and show how they could

be composed from smaller and simpler relations. The examples are borrowed from [28].

The function f shown in Figure 3.1 and represented by the normal table drawn in Fig-

ure 3.3, is the composition of its local representations fi,j• with i = 1, 2, 3, and j = 1, 2.

For instance, h,2 : (-oo, 0) x (-oo, 10) ----+ Reals, and h,2 (x, y) = x- y for (x, y) E

dom(f3,2)·

!= u
iE{l,2,3}AjE{l,2}

Let us consider the function g defined as:

71

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

~
~

:II X+ y I X- y I y- X II

x<O O~x<y x?_y

x<y y~x<O x?_O

Figure 4.1: The function g defined by an inverted table

x + y if (x < 0 1\ y ?_ 0) V (x < y 1\ y < 0)

g(x, y) = X- y if (0 ~X< y (\ y ?_ 0) V (y ~X(\ y < 0)

y- x if (x ?_ y 1\ y ?_ 0) V (x ?_ 0 1\ y < 0)

The above function g is represented by an inverted table as shown in Figure 4.1. It is

the union of its local representations.

g = u %·
iE{ 1 ,2,3}/\j E{l ,2}

Now, let us consider the relation G defined as:

(YI = X1 + X2) (\ (y2X1 - X2 = y§)

1\ (y3 + x1x2 = IY31 3) if x2 ~ 0

(Yl = X1 - x2) 1\ (xi+ X2Y2 = IY21)

A(y3=x1) if x2>0

This relation G represents a vector table as shown in Figure 4.2. The relation G is the

composition of its local representations Gi,j• with i = 1, 2, and j = 1, 2, 3. Relations G1,1

72

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

YI = xi- x2 XI- X2

Y2XI + x2 = y~ XI+ X2Y2 = Y2

Y3 + xix2 = y~ Y3 =XI

Figure 4.2: The function G defined by a vector table

and G2,I are functions (this is indicated by the "=" symbol used after the variable YI in the

left header). Relations Gi,2 and Gi,3 have y2 and y3 as their output variables (this is pointed

by the symbol "I" used after the variables y2 and y3 in the left header). However, in this

case the relation G is not the union of its local representations Gi,j. Instead;

3 2

G=Q?)Ucij,
j=I i=I

where ® is a generalisation of the intersection operator, and the join operator from rela-

tional data base theory [28].

The decision table representing the function rp is shown in Figure 4.3. The function

rp is the composition of the local representations i{Ji,j• with i = 1, ... , 5, and j = 1, 2, 3.

For example, rp3 ,2(cloudy) =go to the beach. The function rp it is not the union of its local

representations rpi,j. Instead,
5 2

rp = U0i{Jij·
i=I j=I

The function h presents the following generalized decision table.

XI+ X2 if XIX2 < 20 (\ xdx2 > 30

XI - X2 if X1X2 ~ 20 1\ xdx2 < 30

X1X2 if xdx2 = 30

73

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

:11 go sailing gtb gtb I play bridge I garden IJ

Temperature E {hot, cool} * * hot * cool

Weather E {sunny, cloudy, rainy} sunny V cloudy sunny cloudy rainy cloudy

Windy E {true, false} tue false false

*=don't care, gtb =go to the beach

Figure 4.3: The function if defined by a table

~
~

< 20

> 30

?_ 20 true

< 30 # = 30

Figure 4.4: The function h defined by a (generalized decision) table

*

This function h can be represented by a generalized decision table as shown in Figure 4.4.

The function h is the composition of its local representations hi,)• with i = 1, 2, 3, and

j = 1, 2. For example, h2 ,1 (x1 , x2) = x1 - x2 • Also for the function h, it is not the union

of its local representations hi,j,
3 2

h = unhij·
i=l j=l

In Appendix A, we show how we extend Janicki's work to compose tables instead of

composing cells of one table. Some examples of composition of normal tables, inverted

74

false

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

tables, vector tables, and decision tables are provided as well.

4.3 Table composition of relational scenarios

In [9], tabular expressions are adopted to represent relational scenarios. A formal relational

scenario is a triple (T, Re, Rs) where T is a state space, Re is the relation of the environ

ment, Rs is the relation of the system. Re and Rs are two disjoint relations defined on

T. The tables are composed when the represented scenarios are consistent. Otherwise, the

source of inconsistency is detected. Two scenarios are consistent when their demonic meet

(discussed in the following) is defined. To compose two tables representing two scenarios

(T, Re1 , Rsi) and (T, Re2 , Rs2), the resulting table will have the union of the relations of the

environment, and the demonic meet of the relations of the system (T, Re1 U Re2 , Rs1 n Rs2).

The demonic meet of two relations P and Q is defined when:

(4.1) dom(Q) n dom(R) = dom(Q n R)

Condition 4.1 means that any element in the common domain of Q and R, it must have

at least one common image. When defined, the demonic meet of Q and R denoted by Q n R

is:

(4.2) Q n R = (Q n R) U (RT n Q) u (QT n R),

where T is the universal relation.

For instance, if P and Q are partial specifications of the same program, their demonic

meet represents the combination of specifications. A program satisfies Q n R if and only

if it satisfies P and Q. To illustrate it with an example, let Q ~ {(0, 3), (0, 4), (1, 5)} and

R ~ { (0, 3), (0, 6), (2, 5) }. When their demonic meet is defined, it means they agree on the

75

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

actions to be carried from their common domain. In this case, the common domain for P

and Q is { 0}, and they agree on at least one image which is { 3}. In this case, the demonic

meet of Q and R is:

Q n R = {(0, 3), (1, 5), (2, 5)}

However, if we slightly modify the previous example and take Q = { (0, 3), (0, 4), (1, 5)}

and R = {(0, 5), (0, 6), (2, 5)}, then the demonic meet is not defined since Condition 4.1 is

not satisfied. In fact, for their common domain { 0}, they have totally different images. We

say that Q and R are inconsistent. In the following we give an example borrowed from [9]

to illustrate scenarios composition represented by tabular expressions. The example is

about a library system, and is described by two scenarios. The first one illustrates books

checkout. The second one verifies the number of books that the user can borrow from the

library. The two scenarios are informally discussed in the following.

Checkout scenario:

"The reader comes in. The system is in the initial state of the readerserv menu. The user

enters the name of the reader. If the system does not know this name, then the user either

1. switches to the registration menu or

2. goes back to the initial state of the readerserv menu (and abandons the operation) or

3. reenters the name correctly.

If the system knows the reader's name, it asks whether the transaction is a checkout or

a document return. The user may choose to return to the initial state of the readerserv

menu (abandoning the operation) or choose the checkout option. In the latter case, for each

document that the reader wants to borrow, the system displays the list of books already

loaned to the reader and asks for the code of the new document; the user then enters the

code of the borrowed document, the system adds the document to the set of documents

76

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

borrowed by the reader and also registers who the document is loaned to (so that it is

possible to obtain the name of the borrower from a description of the document). The user

finally returns the system to the initial state of the readerserv menu".

The following structures are needed to formalise the relation of the environment of the

checkout scenario (C heckoute), and the relation of the system of the checkout scenario

(C heckout8):

A is a set of symbols. A+ depict nonempty finite sequences of elements of A, and .A

is the the empty sequence.

C is a set of commands. In this example, commands start with the symbol '@ '.

- Readers is the set of readers.

r depicts the reader's name.

- Documents is the set of documents

Loanedto: Documents ---+Readers is a partial function from a document to its bor

rower.

Has: Readers---+ ~(Documents) is a function mapping a reader to the documents he

is borrowing.

i is an input variable from the user to the system.

o is an output variable from the system to the user. In Table 4.1, the abbreviated

output messages and their meanings are represented.

M is a variable indicating the menu's name.

Therefore, the space Tc of the checkout scenario is defined by the following variables:

77

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Abbreviations Meanings
Enter the name of the reader
The name is unknown;enter the correct name
Is the operation a checkout or a return?
Enter the address

name?
unk;name?
co,return?
address?
Has(r);doc?
Has(r);limit

<List of documents borrowed by r> Enter new document
<List of documents borrowed by r> Your limit is reached

Table 4.1: The abbreviations and meanings of the output messages

o =name? o=unk;name? o=co.retum? o=Has(r);doc?

M=readerserv i 1 E A+ i' E A+ i'=@checkout false

A i =). V i'=@registration V i' =@readerserv

V i'=@readerserv

M=checkout false false false i 1 E A+

A i =).. Vi' =@readerserv

other false false false false

Figure 4.5: The relation of the environment of the checkout scenario (C heckoute)

Readers, r, Documents, Loanedto, Has, i, o, M.

other

false

false

false

The tables corresponding to the relation of the environment of the checkout scenario

(Checkoute), and the relation of the system of the checkout scenario (Checkouts) are

represented in Figure 4.5 and Figure 4.6 respectively.

The second scenarios verifies the number of books that the user can borrow from the

library. it is described in the following.

Limit-reached scenario:

"The reader comes in. The system is in the initial state of the readerserv menu. The user

78

1\ o =name? o=unk;name? o=co;return? o=Has(r);doc? other

M=readerserv o=co;return? 1\ r'=i o=co;return? 1\ r'=i false false false

1\ i E Readers 1\ onlychange(i,o,r) 1\ onlychange(i,o,r)

M=readerserv o=unk;name? 1\ r'=i r'=i false false false

1\ i E A+ 1\ i 'fc Readers 1\ onlychange(i,o,r) 1\ onlychange(i,o,r)

M=readerserv false M'=registration false false false

1\ i = @registration 1\ o' = address?

onlychange(M,i,o)

M=readerserv false false M'=checkout false false

1\ i = @checkout o'=Has(r);doc?

onlychange(M,i,o)

M=readerserv false o'=name? o'=name? false fasle

1\ i = @ readerserv onlychange(i,o) onlychange(i,o)

M=checkout false false false Has'=HasEB(r---+ (Has(r) U {i})) false

1\i E A+ Loandedto'=Loandedto U(i---+ r)

onlychange (i,has,Loandeto)

M=checkout false false false M' = readerserv false

1\i = @readerserv o' =name?

onlychange (M,i,o)

other false false false false false

Figure 4.6: The relation of the system of the checkout scenario (Checkouts)

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

M=readerserv

(\ i = >..

M=checkout

(\ i = >..

other

I o =name? I o=co;retum? o=Has(r);doc? other

i E A+ i'=@checkout false false

false false i'=@readerserv false

false false false false

Figure 4.7: The relation of the environment of the limit scenario (Limite)

inputs the name of the reader to the system. If the reader's name is known to the system,

then the system asks whether the transaction is a checkout or the return of a document.

The user chooses the checkout option. If the reader has reached his quota (limit number of

books he is permitted to borrow), the system displays the list of books already loaned to the

reader and indicates that the limit is reached. The user then chooses to return to the initial

state of the readerserv menu".

For the limit-reached scenario, it has the same declarations as the checkout scenario

with a new function Limit: Readers-+ N. The function Limit associates with each reader

the limit of documents that she can borrow. The tables corresponding to the relation of

the environment of the limit-reached scenario (limite), and the relation of the system of the

limit-reached scenario (limits) are represented in Figure 4.7 and Figure 4.8 respectively.

The composition of the relations of the systems of the checkout scenario presented in

Figure 4.6, and the limit-reached scenario presented in Figure 4.8 is obtained by computing

the demonic meet of the two relations. It is represented in Figure 4.1 0.

80

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

o=name? o=co;return? o=Has(r);doc? other

M=readerserv o'=co;return? false false false

1\ i E Readers 1\ r' = i

1\ onlychange(i,o,r)

M=readerserv false M'=checkout false false

1\ i = @checkout o' =Has(r);limit

Ai(Has(r)i :2: Limit(r) 1\ onlychange(M,i,o)

M=checkout false false M'=@readerserv false

1\ i = @ readerserv o' =name?

onlychange(M,i,o)

other false false false false

Figure 4.8: The relation of the system Limit (Limits)

o =name? o=unk;name? o=co,return? o=Has(r);doc? o=Has(r);limit other

M=readerserv i' E A+ i' E A+ i'=@checkout false false false

1\ i =).. V i'=@registration V i' =@ readerserv

V i' =@readerserv

M=checkout false false false i' E A+ i'=@readerserv false

1\ i =).. V i '=@ readerserv

other false false false false false false

Figure 4.9: The relation of the environment of the checkout limit scenarios
(C heckoutLimite)

81

M=readerserv

1\ i E Readers

M=readerserv

1\ i E A+

1\ i rf. Readers

M=readerserv

IIi = @registration

M=readerserv

1\ i = @checkout

lliHas(r)i > Limit(r)

M=readerserv

1\ i = @checkout

lliHas(r)i::; Limit(r)

M=readerserv

1\ i = @ readerserv

M=checkout

1\i E A+

M=checkout

1\i =@readerserv

other

1\ o =name? o=unk;name? o=co;retum? o=Has(r);doc? o=Has(r);limit? other

o'=co;retum? o'=co;retum? false false false false

1\ r' = i 1\r' = i

a=unk;name? r'=i false false false false

1\ r'=i 1\ onlychange(i,r)

1\ onlychange(i,o,r)

false M' =registration false false false false

1\ o' = address?

onlychange(M,i,o)

false false M'=checkout false false false

1\ o'=Has(r);doc?

1\ onlychange(M,i,o)

false false M'=checkout false fasle false

1\o' = Has(r);doc?

1\ onlychange(M,i,o)

false o'=name? o'=name? false false false

onlychange (i,o) onlychange (i,o)

false false false Has'=HasE8(r--+ (Has(r) U {i})) false false

1\ Loanedto'=Loanedto u(i --+ r)

1\ onlychange (i,Has,Loanedto)

false false false M'=readerserv false false

1\ o'=name?

1\ onlychange (M,i,o)

false false false false false false

Figure 4.10: The relation of the system of the checkout limit scenarios (C heckoutlimit8)

('1
00

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

1 y = 10 1 y > 10 1 y < 10

H2~~
Figure 4.11: The tables Tf,a and Tf,b

4.4 Horizontal and vertical table composition

In [31], Kahl claims that two-dimensional tables can be decomposed along any grid line.

For instance, table T drawn in Figure 3.3 can be decomposed into the two tables Tf,a and

T1,b represented in Figure 4.11. In this case the decomposition of table T is done along

header H 1 only. So, both resulting tables still have the same header H 2 . To compose two

tables of the same dimension, the table concatenation operator (Ill) is used. For instance we

have,

The operator Ill is associative,

However, it is not commutative. Indeed, the table T1,aiiiT1,b is "graphically" different from

The operator t> is used to concatenate a header h and an n-dimensional table t into an

(n + 1) dimensional table h t> t. In h t> t, the header h will be the first dimension of the

table, and the dimensions oft will be shifted in h t> t. The table Tf,aa represented in Figure

83

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

H1aa

I y = lo I

Figure 4.12: The table Tf,aa

II 0 X II

Figure 4.13: The one-dimensional table Tf,c

4.12 was decomposed into the header H 1aa and table T1,c drawn in Figure 4.13. The table

T1,c was turned around since it has only one header and the first header is placed at the top.

Now the operator t> is used to concatenate table Tf,c with header H 1aa to obtain table Tf,aa·

84

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

x:::;;O x>O m=A m=B

I x ~ -x I x ~ 2x I I x~x+11 x~x+21

Figure 4.14: Table T1 (left) and T2 (right)

4.5 Table composition of mathematical functions

In [35], tabular expressions were chosen to represent conditional statements. The author

proposed to slightly modify them in order to have a return value, and called them "state

transformation tables". State transformation tables are quite similar to SCR event tables

and SCR condition tables. A discussion on these tables was given in Section 2.3. The

approach followed in [35] is based on an algebraic composition of state transformation

tables using many sorted algebra. The proposed algorithms depend on the associativity of

the functions the tables are built over. The mathematical function composition denoted by o

is adopted. For instance, the composition of the two functions F := { x 1 ~ x 1 + x2 } and

G := {x2 ~ x2 + 1} results inFo G = {x1 ~ x 1 + x2 + 1,x2 ~ x2 + 1} (where

~ denotes substitution). To compose tables, one has to check whether or not headers

variables of the first table depend on the output variables of the second table. If headers

variables of a table T do not depend on the output variables of a table T', the composition

of the table T = (Hl, H 2
, ... Hk, G) and T' = (H'l, H'2 , ... H'r, G') will result in a table

T" = (H1 , H 2 , ... Hk, H'1 , H'2 , ... H'r, G") such that its headers are the union of the headers

of both table T and T', and its grid G" is obtained by composing the two grids G and G'.

As an example, the headers variables of table T2 do not depend on the output variables of

T1 (see Figure 4.14). Therefore, for the table T2 o T1, its headers are the union of the headers

of table T2 and the headers of table T1. Its grid is obtained by composing the grid of table

T2 to the grid of table T1. The table composing T2 and T1 is given in Figure 4.15. If the

85

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

II x<O x~O

I m = A II x f----t -x + 1 I x f----t 2x + 1
m = B x f----t -x + 2 x f----t 2x + 2

Figure 4.15: Table T2 o T1

m=AI\x+1<0 x f----t -x - 1
m=AI\x+1~0 x f----t 2x + 2
m=BI\x+2<0 x f----t -x - 2
m=BI\x+2~0 x f----t 2x + 4

Figure 4.16: Table T1 o T2

headers variables of a table T depend on the output variables of a table T', the composition

of the two tables T and T' will result in a table T" with one header H". H" is obtained by

composing each header cell of table T with each header cell of table T' with the respective

grid entry of table T'. The number of grid entries is the product of the gird entries of the

two tables T and T'. The new grid will be the composition of the grid entries of table T

with the grid entries of tables T'.

For instance, T1 o T2 drawn in Figure 4.16 has one header combining the headers cells

of tables T1 and T2 , and the respective grid entry of table T2 • The grid of T1 o T2 is the

composition of the grid entries of table T1 with those of T2 •

4.6 Discussion

In this section we discuss the approaches previously presented, and depict the advantages

and disadvantages of each one ofthem. Janicki et al. [26, 29, 28] introduced some operators

86

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

to compose table cells in order to obtain the relation or function represented by a tabular

expression. Cr is the table composition rule which states how the global relation/function

is built from the local ones. The shape of Cr depends on the kind of the tables used.

However, instead of composing table cells, we were able to extend this work and compose

tables. For the tables, we use the union operator to compose them. Then, for each kind of

table, we use the appropriate operators to compose cells table as discussed in Section 4.2.

The examples of table composition are presented in Appendix A. In [9], Desharnais et al.

use relational algebra for table composition. Tabular expressions were adopted to represent

relational scenarios. A formal relational scenario is presented by a triple (T, Re, R 8) where

T is a state space, Re is the relation of the environment, and Rs is the relation of the

system. To compose two tables representing two scenarios (T, Rei, Rsi) and (T, Re2 , R 82),

the resulting table depicts the union of the relations of the environment, and the demonic

meet of the relations of the system (T, Rei U Re2 , Rsi n Rs2). However, what they proposed

is restricted to relational scenarios only.

In [31], Kahl shows that the concatenation operator Ill used to concatenate tables is not

commutative, and that by swapping columns, the produced tables are "graphically differ

ent". In fact, we do not agree on this since from a semantic point of view the composed

tables are semantically equivalent. Therefore, such an operator should be commutative too.

He also assumed that the concatenation operator Ill is used to concatenate tables of the

same dimension. That worked in the example he adopted since he decomposed the table,

and then recomposed it using the Ill operator. However, in general this is not true, since we

are able to compose tables only if the variables have a common domain. Moreover, for the

1> operator there is not always a need to concatenate a header and an n-dimensional table t

into an (n+l) dimensional table h 1> t. In some cases, the new header to be added is part of

or complement the other header. In fact, if we want to add header Hib to table T1,a there

is no need to add a new header to table T1,a, since the values of header HI a (first header of

87

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

table Tf,a) and header H 1b complement each other. As a result, table Tf,a will remain with

two dimensions.

In [35], the composition of two tables gives a table with one header. The number of

grid entries is the product of the gird entries of the two tables to be composed. Hence, if

the two tables are big, it will be disadvantageous to have a one-dimensional table since that

resulting table will be of huge size. Moreover, the proposed approach in [35] is restricted

to functions only, and is adopting the composition of functions, which cannot be applied to

relations.

Under this approach, the composition of tabular expressions becomes the relational

composition of matrices.

In the literature, there are other techniques that approached this tabular composition

problem. In [45], Sekerinski tackled mainly the verification and refinement problem. How

ever, he had some operators such as table conjunction, table disjunction, table negation,

extending and contracting tables that could be seen as composition operators. We do have

some similarities between these operators and ours that will be discussed with more details

in the next chapter.

In [8], Desharnais et al. adopted an algebra of relations to define the semantics of

tabular expressions. They used a similar notation to the APL programming language. In

their work they considered 0-dimensional arrays called also scalars, }-dimensional arrays

called vectors, and 2-dimensional arrays called matrices. Headers are seen as vectors, and

the grid as ann-dimensional array. That relational composition of matrices is a special case

of an inner product.

In fact,

M;N=MU.;N

where ; is the relational composition operator.

88

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

For example,

(

PUR
(P Q). U (R S T) =

QUR

PUS

QUS
PUT)
QUT

89

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Chapter 5

Tabular Expressions Operators

5.1 Introduction

In this chapter we show how we improve the syntax and semantics of tabular expressions.

Then, we present the operators that we introduced, and which are classified into unary

operators, inner operators, and outer operators. Next, we define a partial order relation,

and a refinement ordering relation on tabular expressions. Then, we propose an algebra of

tabular expressions and finally, we present the verification process.

In the next section we show how we improve the syntax and semantics of tabular ex

pressions. In Section 5.3, we present the tabular expressions operators that we introduced.

In Section 5.4, we depict the partial order that we defined on tabular expressions. Sec

tion 5.5 is devoted to discuss the refinement relation specified on tabular expressions. In

Section 5.6, we present our algebra of tabular expressions. Finally, section 5.7 is dedicated

to present the verification process.

90

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

input variables x,y: Reals
output variables z: Reals

CCG cJ
Pr H11\ H2
rr G

Function name f and z = f(x,y)
Cr Uf=l u;=l fij·

Figure 5.1: Signature of the function f.

5.2 Improving the syntax and semantics of tabular expres-

sions

As discussed in Section 3.2, Janicki et al. [28] defined formally a tabular expression T as:

T = (Pr, rr, Cr,, CCG, H 1 , ... , Hn, G, w, IN, OUT).

The meaning (semantics) of a tabular expression Tis given by a relation Rr ~ IN x

OUT, and is defined as:

The signature of a table is defined by the tuple:

Signr = (Pr, rr, Cr, CCC),

and is presented by a two column table containing textual and graphical information.

The signature of a table contains the input and output variables, and their types, the CCG,

the table predicate rule, the table relation rule, the function name, and the table composition

rule. For instance, the signature of the normal table drawn in Figure 3.10 is shown in

Figure 5.1.

91

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

f

Variables

Domain

Figure 5.2: A declaration table for the function f.

In our work, for tabular expressions T Exp we distinguish two main components the

declaration table denoted by Tdw and the main table itself denoted by T. Hence, we

propose the following syntax for our tabular expressions.

For declaration tables, we find out that it is more appropriate to represent them in a

tabular way rather than having them depicted by a mixture of a graphical and textual way.

In fact, the tabular notation increases their readability. Declaration tables could also be

drawn at the left corner of the tabular expression. Hence, in our work, the declaration itself

is a tabular expression containing the name of the function, variables indexes, variables and

their domain. For instance, the table shown in Figure 5.2 is the declaration of the normal

table drawn in Figure 3.10. From the declaration table, we are able to determine the kind

of the table represented, Indeed, we also adopt the convention to represent the result values

with a double border. From the kind of table, we could also infer the table composition

rules which indicate how the global relation/function is built from local representations.

The main table depicts its content. It contains variables, constants, and operators ap

plied on the constants and/or variables. Tables are viewed as a stack of atomic expressions

and some operators that are applied on the atomic tabular expressions. Viewing tabular

92

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

expressions as stack of atomic expressions allows us to have build up of tables from the

atomic ones. We distinguish two classes of tables which are atomic tabular expressions

and operator tabular expressions. An atomic tabular expression is a tabular expression in

which all the expressions are either variables or constants. The tables drawn in Figures 5.16

and 5.18 are examples of atomic tabular expressions. An operator tabular expression is a

tabular expression in which the expressions are operators. The operators we propose are

classified with into unary operators, inner operators, Kronecker operators, and outer oper

ators. They are discussed in the following section.

5.3 Tabular expressions operators

In this section we discuss the different kinds of tabular expressions that we propose, and

the operators that we propose. Before going that far, we would like to highlight two notions

that we use in our work. Two tabular expressions have the same dimension, if they have

the same number of headers. Two tabular expressions have the same size, if they have the

same number of headers, the same number of cells in each header, and hence the same grid

size. From that, we infer that two tables having the same size have the same dimension, but

not vice versa.

5.3.1 Unary operator tabular expressions

In the following we define unary operator tabular expressions, their composition with tab

ular expressions, and we give examples to illustrate that.

(5.1) Definition. A unary operator tabular expression denoted Tuop is a tabular expression

composed of cells that contains unary operators only.

(5.2) Definition. Given a tabular expression T and a unary operator tabular expression

93

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

inc I inc I inc

Q II inc I inc I inc II

inc= increment by 1.

Figure 5.3: Unary operator table Tuop·

Figure 5.4: Table T9 •

Tuop with the same size as T, we define their composition TuapT by applying each unary

operator in Tuap to the corresponding expression in the cell ofT.

For instance, the application of the unary operator table Tuop shown in Figure 5.3 on the

table T9 drawn in Figure 5.4 is given by the table presented in Figure 5.5.

In the case where Tuop has smaller size than T, we extract from T all the subtables

having same size as Tuop· Then, we apply the unary operator table Tuop on each of the

Figure 5.5: Table Tgop

94

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

--, --,

D \1 inc I inc II

Figure 5.6: Unary operator table Tuop'·

Figure 5.7: Table T91 .

subtables of T. Hence, our result is a set of tabular expressions, and not a single table,

which gives a more accurate information regarding the behaviour of the system. As another

example, the unary operator table Tuop' shown in Figure 5.6 has a smaller size than the table

T9 drawn in Figure 5.4. Therefore, we start by extracting from table T9 all its subtables

having same size as table Tuop'· The extraction gives three tables T91 , T92 , and T93 shown

in Figures 5.7, 5.8, and 5.9 respectively. Then, after applying the unary operator table

Tuop' depicted in Figure 5.6 on each subtable, the result is given in three tables shown in

Figure 5.10, 5.11, and 5.12 respectively.

Of particular importance, we underline the negation grid unary operator that negates

only grid cells, and not the header cells. It is denoted by 'g·

For instance, the application of the negation grid unary operator shown in Figure 5.13

on the table drawn in Figure 5.14 is given by the table presented in Figure 5.15.

95

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Figure 5.8: Table T92 .

Figure 5.9: Table T93 •

1 ·(x < o) 1 ·(x = o) 1

·(y = o) I Ill 12 II
Figure 5.10: Table Tglop'·

1 ·(x < o) 1 ·(x > o) 1

Figure 5.11: Table T92op'·

96

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1 ·(x = o) 1 ·(x > o) 1

·(y = 0) I 112 13 II

Figure 5.12: Table Tg3op'·

Figure 5.13: Negation grid operator table.

x=O I x#O I

True False

False False

Figure 5.14: Tabular representation of the negation of the relation R.

x=O lx#OI

False True

True True

Figure 5.15: Tabular representation of the negation of the relation R.

97

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

y y

Figure 5.16: Atomic table T1 .

>

Figure 5.17: Operator table . inner.

5.3.2 Inner operators tabular expressions

In the sequel, we define inner operator tabular expressions, their composition with tabular

expressions, and we provide examples to illustrate that.

(5.3) Definition. An inner operator tabular expression is a tabular expression in which all

the expressions are binary operators.

j1o Jw 1

alEE
Figure 5.18: Atomic table T2 •

98

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

I y = 1o I y > 10

~ y-x y2

x2 x+y 0

Figure 5.19: Table Tl.innerT2.

(5.4) Definition. Given two tabular expressions T1 and T2 and an inner operator ·inner all

having the same size, their composition Tl-innerT2 is obtained by composing each cell from

T1 , the corresponding cell from ·inner. and T2 •

For example, the composition of the atomic table T1, the inner operator table ·inner ,

and the atomic table T2 drawn in Figure 5.16, 5.17, and 5.18 respectively, gives the table

Tl.innerT2 depicted in Figure 5.19.

The inner operator is also defined on two tables T1 and T2 where T1 has smaller size than

T2 • Given an inner operator tabular expression with same dimension as T1 , we can form

a set of tabular expressions by computing the composition of T1, the inner operator, and

each sub tabular expression of T2 that has the same dimension as T1 (when computing

the sub tabular expressions the order must be respected). For instance, table T1 shown in

Figure 5.16 has smaller size than tableT~ drawn in Figure 5.20. Hence, to compose the two

tables with the inner operator presented in Figure 5.17, we start by extracting from table T~

all its subtables having the same size as T1. The tables extracted from table T~ are shown in

Figures 5.18, 5.21, and 5.22 respectively. The composition of the atomic table T1, the inner

operator table .inner. and each extracted table from T2 , gives three tables. The composed

tables are shown in Figures 5.19, 5.23, and 5.24 respectively.

99

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

110 110 11o I

GJkWJ
L9J GLiil

Figure 5.20: Atomic tableT~.

l1o 110 I

Figure 5.21: Atomic table T22 .

l1o 110 I

Figure 5.22: Atomic table T23 •

G;]
Ld

1 y = 10 1 y > 10 1

Figure 5.23: Table Tl.innerT22·

100

PhD Thesis -I. Bourguiba- McMaster- Computing and Software

G;J
~

I y = lo I y > w I

0

X*Y x+2

Figure 5.24: Table Tl.innerT23·

5.3.3 Kronecker operators tabular expressions

In the following, we define Kronecker operators tabular expressions and their composition

with tabular expressions. Then, we give examples to illustrate that.

(5.5) Definition. A tabular Kronecker operator is a tabular expression in which all the

expressions are binary operators such as n, U, /\, *· etc. Given two tabular expressions T1

and T2 , and a Kronecker operator tabular expression [K], their composition T1 [K]T2 is the

set of tabular expressions obtained by composing every subtable of size one from T1 with

the Kronecker operator and table T2 • A subtable of size one is obtained by a cell from each

header with their corresponding grid cell.

For instance, the composition of tables TK 1 [K]TK2 shown in Figure 5.25, 5.26, and 5.27

respectively, gives the four tables drawn in Figures 5.28, 5.29, 5.30, and 5.31 respectively.

Later in Section 5.4, we give an example of Kronecker composition where the binary oper-

ator is/\.

101

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

~
~

1 y ~ 10 1 y < 10 1

1 2

3 4

Figure 5.25: Table TK1·

BEE
Figure 5.26: Kronecker operator table [K].

~
~

I y ~ 10 I y < 1o I

5 6

7 8

Figure 5.27: Table TK2·

~
~

I y ~ 10 I y < 1o I

5 6

7 8

Figure 5.28: Table T1K1[K)K2·

102

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

~
~

1 y ~ 1o 1 y < 10 1

10 12

14 16

Figure 5.29: Table T2Kl[K]K2·

~
~

I Y ~ 10 I Y < 10 I

15 18

21 24

Figure 5.30: Table T 3Kt[K]K2·

~
~

I y ~ 1o I y < 10 I

20 24

28 32

Figure 5.31: Table T4Kl[K]K2·

103

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Jx<OJx=OJx>OJ
a b c

Figure 5.32: Table Tj1

The Kronecker operator is a generalisation of the join operator 1• In [28], the join

operator adopted by Janicki and Wassyng is defined as:

where Tis a set of indices, { Dtlt E T} is family of sets, J, K, L, Mare subsets ofT,

and P, Q are the relations

tEJ tEK tEL tEM

The notation fitEJ Dt stands for the direct product of Dt. and xiJ designates the projection

of x on J.

For example let us consider the tables Tj 1 and Tj2 and their natural join drawn in Fig-

ures 5.32, 5.33, and 5.34 respectively.

The Kronecker composition of the tables Tj 1 [K] TJ2 shown respectively in Figures 5.32,

and 5.33 wiii result in three tables drawn respectively in Figures 5.35, 5.36, and 5.37.

The tables Tj1, Tj2, and Tj3, drawn in Figures 5.35, 5.36, and 5.37 respectively is equiv

alent to the table Tj 1 [XJ Tj 2 given in Figure 5.34.

1 The join operator is the same as the natural join database operator. It is denoted by R I><J S, where R and
S are relations. The result of the natural join is the set of all combinations of tuples in R and S that are equal
on their common domain.

104

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

y<O

y=O

y>O

d

f

h

e

g

z

Figure 5.33: Table Tj2 •

y<O

y=O

y>O

al\d

al\f

al\h

bl\e

bl\g

bl\i

c

c

c

Figure 5.34: Table Ti 1 f><l Tj2·

x < 0 I (x < 0) 1\ (x = 0) I

y<O al\d al\e

y=O al\f al\g

y>O al\h al\i

Figure 5.35: Table Tj1.

105

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

I (x < 0) 1\ (x = 0) I x = 0 I

y<O

y=O

y>O

b (\ d

b (\ f

b (\ h

Figure 5.36: Table Tj2•

bl\e

bl\g

bl\i

I (x < 0) 1\ (x > 0) I (x = 0) 1\ (x > 0) I x > 0 I

y<O

y=O

y>O

c (\ d

c (\ f

c (\ h

Figure 5.37: Table Tj3 .

106

cl\e c

cl\g c

cl\i c

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

y = 10 1 y > 10 1 y < 10 1

y-x y2 -y2

x2 x+y x-y

Figure 5.38: Table Te

5.3.4 Outer operators tabular expressions

Outer operators are composed of extractors called also reducers, used to reduce the tables,

and expanders used to expand the tables. In the following, we analyse the extractors and

expanders, and we give some illustrative examples.

(5.6) Definition. A tabular extractor operator denoted by"\" allows us to extract part of

the tabular expression. The header cells indexes are specified to determine the extracted

table. It is defined as the follwing:

Hl\(m,-··,n), H2\(p,-··,q), · · ·, Hm\(r,-··,s)·

For instance, the application of the extractor operator (H1\(l,2), H2\(2,3J) on the table Te

drawn in Figure 5.38 gives the extracted table given in Figure 5.39. From table Te, we

keep the first and the second cells from the first header, the second and third cells from the

second header, and their corresponding grid cells.

Expander operators tabular expressions

We distinguish two kinds of expansion: a spatial expansion, and a dimensional expansion.

107

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

~
~

I y > 1o I y < w I

x+y x-y

Figure 5.39: Extracted table Textr·

(5.7) Definition. Given a tableT, the spatial expansion operator denoted "®"consists in

adding expressions to the table, and hence will increase the size of its grid.

T ® expression.

For example, we want to expand the tableTs drawn in Figure 5.40, by adding the expression

(x < 0) to the first header. The new space expanded table Tsexp is given in Figure 5.41. In

the case where we do not have any information about the grid cells, we fill the empty cells

with False.

(5.8) Definition. The dimensional expansion denoted by "@", consists in adding new

headers, and this may or may not increase the size of the grid.

T @expression.

For example, we expand the table Td drawn in Figure 5.42 by adding a new dimension to

it. The new header consists in one cell of value (y = 10), and the new table Tddexp is given

in Figure 5.43. In this case, we did not increase the size of the grid. However, if we want

to add to the table Tddexp drawn in Figure 5.43 a new header containing a header cell with

the value (y > 10), and two grid cells with respective values y2
, and x + y, then the size of

108

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

1 y > 10 1 y < 10 1 y < 10 1

Figure 5.40: Table T8 •

1 y > 10 1 y < 10 1 y < 10 1

G;]
~

0

False

y2

False

Figure 5.41: Table Tsexp·

the grid will increase. The new table is shown in Figure 5.44.

-y2

False

5.4 Partial order on tabular expressions

The motivation for introducing a partial order into tables is to formalize some tabular ex

pressions aspects such as simplification of a tabular expression. In the following we con-

sider predicate expressions tables.

(5.9) Definition. A tabular expression is said to be false, if each grid cell is false or one

of its corresponding header cells is false.

(5.1 0) Definition. Two tables T1 and T2 are semantically equivalent that we denote by

T1 ""' T2 , if they represent the same relations.

(5.11) Definition. T ={SIS""' T}

109

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

G;Jral
~Q

Figure 5.42: Table Td.

I y = 1o I

G;JGJ
~GJ

Figure 5.43: Table Tddexp

G;J
~

I y = 1o I y > w I

0

X x+y

Figure 5.44: Table Td'dexp

110

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

II X X II

Figure 5.45: Table 51

x<O lx~ol

II X II

Figure 5.46: Table 5 2

Given a table T, let T be the class of tables semantically equivalent to it. Then, rv is an

equivalence relation. That is, reflexive, transitive, and symmetric.

(5.12) Definition. Size-of-T= Size-of-5, where 5 E T with 5 irreducible.

A table is irreducible if its size cannot be reduced. For example, tables 51 and 5 2

drawn in Figure 5.45 and 5.46 respectivelyare semantically equivalent. However, table 5 1

is reducible, it could be reduced to table 5 2 which is irreducible.

(5.13) Definition. 51[::;] 5 2 ~ 51 [K]-.,95 2 is False, where 51 and 5 2 are proper tables,

[K] is the Kronecker operator, and 'g is the negation grid operator.

A table is proper if for each header, all header cells are pairwise disjoint [38]. Informally,

5 1 [::;]52 means that 51 is part of 5 2 .

Ill

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Theorem 5.4.1 [~] is a partial order relation between tabular expressions.

PROOF. To prove that [~] is a partial order, we have to show that it is reflexive, symmetric,

and transitive.

To prove that[~] is reflexive, we have to show that VT. T[~]T.

Let T1(h1 , h2 , · · · , hn, gn) be an extracted table from T(H1 , H2 , · · · , Hn, Gn). where

h 1 , h 2 , · · · , hn are the headers of T1 and 9n its grid, and H1 , H2 , · · · , Hn are the

headers ofT and Gn its grid. Let T'(H~, H~, · · · , H~, -,Q~) be the complement of

the table T, where H{, H~, · · · , H~ are the headers ofT' and -,Q~ its grid.

Since T is proper, we have the following cases:

if h1 = H~, ... hn = H~, :::::> 9n = G~ :::::> 9n 1\ G~ is False

else (h1 1\ h2, ... 1\ hn 1\ 9m) 1\ (H{ 1\ H~, ... 1\ H~, f\-,G~) is False

Thus, TdK]-, 9T is False, hence T[~]T.

To prove that [~] is anti symmetric, we have to show that T1 [~]T2 1\ T2 [~]T1 :::::>

T1 = T2.

Let R1 be the relation representing the table T1(H1 , .. Hm, Gm), R2 the relation rep

resenting the table T2 (H{, .. H~, G~). and its complement

-,T2(H{, .. H~, -,Q~). Let (x1 , x2 , ... , xq) be a tuple in R1 • Assume by contradiction

that (x1 , x2 , ... , xq) is not in R2 .

Since T2 is proper and T1 [~]T2 , there exists a unique (H~, ... , H~) such that (x1 , ... , Xq)

is in (H{, ... , H~).

Let G~ be the grid cell associated with (H{, ... , H~). Since (x1 , ... , xq) is not in

R2, then (x1, ... , xq) is in -,Q~. Thus Gm 1\ -,Q~ is False. This contradicts our

assumption that T1 [~]T2 . Therefore, R1 ~ R2 .

112

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

By exchanging the indices 1 and 2, we obtain R2 S: RI. Thus, RI = R2 . Hence,

To prove that [:::;:] is transitive, we have to show that TI [::;]T2 1\ T2 [::;]T3 ::::? TI [::;]T3 •

if (HI 1\ H 2 , .. 1\ Hm) 1\ (Hi' 1\ H~, .. 1\ H;) is False then TI [K]-,9T3 is False, hence

TI [::;]T3

else let us suppose by contradiction that there exists (xi, ... , xm) that is in (HI, ... Hm, Gm)

but it is not in (Hi', ... H;, G~).

By hypothesis we have, TI[::;]T2 , therefore there exists a unique (Hi, ... , H~) such

that (xi, ... , Xm) is in Hi 1\ H~ ... 1\H~ 1\ G~. Given that T2 [::;]T3 , the tuple (xi, ... , Xm)

is in a unique (L~, ... L~, R~). Since (xi, ... , xm) is in (Hi' 1\ H~ ... 1\ H;, R~), then

(L~, ... L~, G~) = (Hi', .. H;, R~) (by uniqueness) Therefore, (xi, ... , xm) is not in

Gm 1\ -,Q~, which contradicts our assumption. Hence, TI [::;]T3 .

0

Example 5.4.1 To make our discussion simple, we take a predicate expression table where

the elements of the headers and the grid are predicate expressions.

For instance, to show that table Tp drawn in Figure 5.47 is [:::;:] than table Tq shown in

Figure 5.48, we have to show that TI[K]-,9T2 is False.

The application of the negation grid operator shown in Figure 5.49 on Table Tq drawn in

Figure 5.48 gives the TableT~ drawn in Figure 5.50. Now to apply the Kronecker operator

which is the binary operator 1\ in this example, we have to extract from Tp all the subtables

of size 1. So in this case, we will have 6 subtables. The first extracted table is given in

113

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

w<O I w=O

x=3 y=5 x+y=w

x<3 y>7 y-x=6

x>3 y2 = 4 y2 = 4

Figure 5.47: A predicate expression table TP'

H2
w <0 w=O w > 0

x=3 y=5 x+y=w x+y=z

x<3 y>7 y-x=6 y-y=z

x>3 y2 = 4 y2 = 4 z=y

Figure 5.48: A predicate expression table Tq.

figure 5.51. The application of the Kronecker operator on tables Tp1 and • 9Tq will result

in the table drawn in Figure 5.52.

The simplified table Tp1 [K]·9Tq drawn in Figure 5.53 is a false table. The application

of the Kronecker operator between each subtable of TP with •Tq results in a false table.

(5.14) Definition.

T1 [::;]DT2 iff TI[::;]T2 , size-of-T1 ::::; size-of-T2 , and the disjunction of the respective

headers cells of the two tables is the same.

Theorem 5.4.2 [::;]Dis a partial order relation between tabular expressions.

The proof goes along the same lines as the one of theorem 5.4.1.

114

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

I I

--, --, --,

--, --, --,

--, --, --,

Figure 5.49: Negation operator table.

w<O I w=O w>O

x=3 -,(y = 5) -,(x + y = w) -,(x+y=z)

x<3 -,(y > 7) -,(y- X= 6) -,(y- y = z)

x>3 --,(y2 = 4) --,(y2 = 4) -,(z = y)

Figure 5.50: The negation of the predicate expression tableT~

w < o 1

~II (y=s)\1

Figure 5.51: Table TP1

115

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

(x = 3) 1\ (x = 3)

(x = 3) 1\ (x < 3)

(x = 3) 1\ (x > 3)

(w < 0) 1\ (w < 0)

(y = 5) 1\ ~(y = 5)

(y = 5) 1\ ~(y > 7)

(y = 5) 1\ ~(y2 = 4)

(w < 0) 1\ (w = 0)

(y = 5) 1\~(x +y = w)

(y = 5) 1\ ~(y- X= 6)

(y = 5) 1\ ~(y2 = 4)

Figure 5.52: Table Tp 1 [K]-.9Tq.

w < 0 False

(w < 0) 1\ (w > 0)

(y = 5) 1\ ~(x + y = z)

(y = 5) 1\ ~(y- y = z)

(y = 5) 1\ ~(z = y)

False

x=3 False ~(y = 5) 1\ (x + y = w) ~(y = 5) 1\ (x+y = z)

False ~(y = 5) 1\ (y > 7) ~(y = 5) 1\ (y- X= 6) ~(y = 5) 1\ (y- y = z)

False ~(y = 5) 1\ (y2 = 4) ~(y = 5) 1\ (y 2 = 4) ~(y=5)1\(z=y)

Figure 5.53: Simplified table Tpi[K]-.9Tq.

116

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

(5.15) Definition. A functionS from tabular expressions to tabular expressions is said to

be a simplification function if S(T) [::;]DT and Sis strictly monotonic with respect to [::;]D.

It is easy to see the following sequence has a least element, which is the fix point of sn(Tn)·

5.5 Tabular expressions refinement

For tabular expressions, the refinement relation ~ is defined as:

(5.16) Definition. T E 1 ~ T E2 ~ T EI[::;JT E2

A tabular expression refines another tabular expression if it is part of it. A table refines

another means that it simplifies it. The refinement relation is a partial order, and that comes

from the fact that is [:::;] is a partial order.

Lemma 5.5.1 \IT E T E.TFalse ~ T, where TFalse is a table in which all the values are

False.

117

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

PROOF.

TFalse S: T

<¢:=:::}<Definition 16 >

TFalse[::=;]T

<¢:=:::}< Definition 13 >

TFalse[K]---,9 T {:}False

<¢:=:::} True

D

Lemma 5.5.2 VT E T E.T S: TNeutral• where TNeutral is a table in which all the values

are True

PROOF.

T S: TNeutral

<¢:=:::}<Definition 16 >

T[::=;]TNeutral

<¢:=:::}< Definition 13 >

T[K]---,gTNeutral {:}False

<¢:=:::}< Application of the negation operator >

T[K]TFalse {:}False

<¢:=:::}True

118

D

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1 y > 10 1 y < 10 1

Figure 5.54: Table Ts 1

1 y > 1o 1 y = 10 1

Figure 5.55: Table Ts2

(5.17) Proposition. Given a table T, let P(T) be the power set of the table T containing

all the sub-tables that refine it, and ~ be the refinement relation. The structure (P(T), ~)

is a lattice. The greatest element of the lattice is the neutral table (TNeutraz), and its least

element is the False table (TFalse).

In our lattice, we have the following properties:

The extractor and expanded operators were discussed in Subsection .

Example 5.5.1 For instance the empty table, and the tables drawn in Figures 5.54, 5.55,

5.56, 5.57, 5.58, 5.59, respectively, refine the table T 8 presented in Figure 5.40.

119

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

1 y < 10 1 y = 10 1

Figure 5.56: Table Ts3

I y > 1o I

Figure 5.57: Table Ts4

I Y < w I

Figure 5.58: Table Ts5

y = 10

Figure 5.59: Table Ts6

120

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

5.6 Algebra of tabular expressions

In the following we define an algebra of tabular expressions. We consider predicate expres

sions tables.

(5.18) Definition. An algebra of tabular expressions is a structure

where T E is a class of tabular expressions which are semantically equivalent, Tinner is a

class of inner operator tabular expressions, T[K] is a class of Kronecker operator tabu-

- -
lar expressions, TFalse is a class of False tabular expressions, and TNeutral is a class of

Neutral tabular expressions.

VT1 , T2 , and T3 E T E, our algebra of tabular expressions satisfies the following axioms:

(5.5) T1 [K]TNeutral = T1

(5.8) TI[K]TFalse = TFalse[K]Tl = TFalse

121

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

~- - -
Theorem 5.6.1 The structure (T E, Tinner, T[K], TFalse) is a semiring.

PROOF. (TE, Tinner) is a commutative monoid with identity element TFalse· It satisfies

axioms 5.1, 5.2, and 5.3. (TE, T[K]) is a monoid with identity element TNeutral· It sat

isfies axioms 5.4, and 5.5. ~nner distributes over T[K]. It satisfies axioms 5.6, and 5.7.

TFalse annihilates TE, with respect to T[K]. It satisfies axioms 5.8. Hence the structure

(TE, Tinner, T[K], TFalse) is a semiring.

5. 7 Consistency and completeness

For requirements specifications, it is fundamental to check for properties such consistency

and completeness. With their formal structure, tabular expressions are very convenient to

check for consistency and completeness [28, 51]. The disjointness of the headers of the

table ensures that the specification is consistent. Therefore, for each header Hk of size n,

the following property should be satisfied:

Tabular expressions are very helpful to verify partial completeness with the domain cover-

age theorem. The complete input domain coverage ensures that we have specified responses

to every input combination. Also, the domain coverage condition also can be easily veri-

fied. It consists in verifying the following property:

The exact verification formulae depends on the type of tabular expression, but is rather

straightforward in each case [28, 51]. Also for our tables, we propose to adopt the disjoint-

122

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

ness of the headers to check for consistency, and the domain coverage property to check for

completeness. We do not require our tables to be space complete. In fact, while gathering

the requirements, each user has a partial view of the system, and hence the tables will not be

space complete. Therefore, we only transform them into space complete tables whenever

there is a need for that.

123

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Chapter 6

The Power of Tabular Expressions

6.1 Introduction

Tabular expressions were successfully adopted because of their convenience especially in

making long and complex formulas easily readable. However, their use could be wider,

since they very powerful. In this chapter, we want to show the power of tabular expressions.

First, we present an application of tabular expressions for three dimensions and higher. To

the best of our knowledge, this is the first time such application has been presented [42, 50].

Next, we present a language and a structure for tabular expressions that we came up with.

Finally, we explain how tabular expressions can be represented by a lattice and by a vector

space respectively.

In the next section, we make a regression to show where tabular expressions get their

power in specifying functions, relations, and programs. In Section 6.3, we propose a lan

guage and a structure for tabular expressions. Then, in Sections 6.4 and 6.5 we show

how tabular expressions can be represented by a lattice and by a vector space respectively.

Representing tabular expressions by lattices and vector spaces, allows us to have more po

tential applications not only in software engineering, but also applications in mathematical

124

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

theory. Finally in Section 6.6, we show how tabular expressions can be used to embed

programming languages statements.

6.2 Tabular expressions and Turing machines

In this section, we show how programs can be specified by tabular expressions not by

looking at programs as a composition of simple, conditional and iterative statements but

as at their essence, namely Turing machines. To make the chapter self contained, in the

following we give a brief description on Turing machines, however for more details we

refer the reader to [46].

A Turing machine is an abstract model of computation that is able to simulate any com

puter program. It consists of an infinite tape allowing infinite memory capacity. The tape

composed of cells has a left end and is unbounded from the right. It has "0" and "1" sym

bols on the tape, and only one symbol is scanned at a time. It has a read/write head that

moves left or right on the tape. A Turing machine is determined by its current state, the

scanned symbol in the current cell pointed by the head, and a finite table of instructions

called also "transition function" or "action table". These instructions are usually repre

sented by a four-tuple <State0 , Symbol, NextState, Action>. Once the machine is in state

State0 , the head is pointing to the current cell containing Symbol, the action has to move to

"NextState" with "Action". The possible actions of a Turing machine are either to write a

symbol on the tape in the current cell, or to move the head one cell to the left, to the right,

or to stay at the same place.

Formally, a Turing machine is specified by a four tuple (S, Q, V, 5), where S = { s1 , ... , sn}

is a finite set of symbols, Q = { q1 , ... , qm} is a finite set of states, V = { d1 , ... , dp} is a

125

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Q
~

(q~, s~, d)

(q~, s;, d)

(q~, s~, d) (q;, s~, d)

(q~, s;, d) (q;, s;, d)

Figure 6.1: A general representation of a tabular expression representing a Turing machine.

finite set of directions, and o is a transition function defined by:

8: QxS-+QxSxD

(q, s) f---t (q', s', d)

In the following, we show how a Turing machine can be represented by a tabular ex-

pression. For instance, a Turing machine with 2 symbols and 3 states can be represented

by a tabular expression as the one shown in Figure 6.1, where q~ designates the new sate, s:
represents the new symbol, and d depicts the direction.

A multi tape Turing machine has a finite number of independent tapes. It is quite similar

to a single Turing machine. Although multi tape Turing machine seems to be quite powerful,

they do not compute more than single tape Turing machines. In fact, any multitape Turing

machine can be simulated by a single tape Turing machine. In a multitape Turing machine

each tape has a head. At each time the machine reads the scanned symbol pointed by each

head, writes the new symbol on each tape, moves each tape head, and make a transition to

the next sate.

The transition function of a multitape Turing machine is given by:

126

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

8: QxSxS-+QxSxSx1Jx1J

A Turing machine with multiple tapes can be represented using a tabular expression of

higher dimension. For instance, a two-tape Turing machine could be represented by a three

dimensional tabular expressions, with three headers. Two headers represent the symbols

of each tape, one header represent the state, and a three dimensional grid. In Figure 6.2,

we depict the general representation of a tabular expression representing a two-tape Turing

machine, where to each state, and each symbol from each tape corresponds a new state,

new symbols on each tape, and new moves on each tape head. Tabular expressions are

defined as a generalisation of two dimensional tables. However, all the examples found in

the literature so far handle only tabular expressions with two dimensions or less. In [30],

Jin and Parnas proposed a new type of tabular expression that use redundant information

in headers to define several functions, however, the gird is still two-dimensional. In this

work, we presented a general representation of a tabular expression representing a two-tape

Turing machine. In general, an n tapes Turing machine is represented by n + 1 dimensional

tabular expressions, with n a finite number. To the best of our knowledge, this is the first

application of a three dimensions and higher tabular expressions.

127

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

S I s
a

s 2 s
b

s 3 s
'

s 4 s d

Figure 6.2: A general representation of a tabular expression representing a two-tape Turing
machine.

6.3 Language and Structure for Tabular Expressions

6.3.1 Languages and Structures

A language .C is defined by:

A set of symbols.

A set of function symbols with arity 2:: 1.

- A set of predicate symbols with arity 2:: 1.

Given a language £, a structure for .C is specified by:

A set called carrier set. The elements of the carrier of a structure of a language are

called diagram symbols.

A set of functions each with arity n.

128

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

A set of predicates each with arity m.

6.3.2 Diagram Language

In this section we present our diagram language which is specified by:

Four 2-arity predicate symbols called neighbour, flow, component, and connection

such that:

\lx\ly, neighbour(x, y) = neighbour(y, x)

\lx\ly, connection(x, y) = connection(y, x)

Moreover, the connected predicate can be used to generate a component predicate as

follows:

\lx\ly, if connected (x, y), then component (x, y).

\lx\ly\lz, if connected (x, y) and connected (y, z), then component(x, z).

Component is an equivalence relation, hence it is reflexive, transitive, and symmetric. That

is:

\I x, component (x, x) is true

\lx\ly\lz, if component (x, y) and component (y, z), then component(x, z).

\lx\ly, if component (x, y), then component (y, x).

129

PhD Thesis - I. Bourguiba- McMaster - Computing and Software

A formula composed of a conjunction of connections is called a skeleton.

A formula composed of a conjunction of flows is called a diagram.

The skeleton on the equivalence classes of its diagram symbols is called pattern.

The diagram on the equivalence classes of its diagram symbols is called template.

6.4 The lattice structure

In the following we show how tabular expressions can be interpreted using lattices.

Let A be a point lattice in JR.n, where lR is the set of real numbers and n is a natural number.

The regular lattice A is given by:

n

A= {2.:: aieilai E Z},
i=O

where (e1 , ... , en) is the usual orthonormal basis of JR.n and Z is the set of integers.

The neighbour predicates defined in our diagram language is interpreted as follows.

Given two points x andy in the lattice, the neighbour(x, y) is true iff x and y are neighbours

in the lattice. The connection is interpreted as a predicate indicating whether or not two

points are neighbour and connected by a line. In Figure 6.3, the expressions x < 10 and

x 2: 10 are neighbours, and connected too. The .flow is interpreted as a predicate indicating

whether or not two components are connected by an arrow.

The component predicate allows us to group the connected points into a single class. In

the above example, we end up with three classes. In Figure 6.4, the three components are

represented by boxes. The three classes represent what we call pattern. The template is

obtained by the pattern and the flows which are represented by arrows.

Note that if the dots in the lattice of Figure 6.3 are drawn as cells, we obtain a tabular

expression. Thus, a tabular expression can be derived using lattices as shown by the above

example. The reason for using points of a lattice instead of cells is their simplicity.

130

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

X =10 X> 10 x< 10

j j j
X>= 10 0 x12. 12. -x

I I I I
x<O X x>x x-x

Figure 6.3: An example of a lattice representing the function f.

X> 10 .

X>= 10

I -
X< 10

Figure 6.4: An example of a lattice representing the function f, and the components.

131

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

6.5 Normal Tabular Expressions as a Vector Space

As we previously mentioned, a normal tabular expression can be interpreted using a point

lattice. By making the headers play the role of basis ei, and the expressions in the grid to

play the role of ai, a point Min the lattice can be written as:

Expressions associated to points in the lattice are then represented as:

n

x = Leiai·
i=l

The meaning of the sum and the product operators depend on the kind of tabular ex-

pression we are dealing with.

For example, the point JI.J1,1 corresponds to the expression:

(x 2: 10) 1\ (y = 10) 8 {0}.

The whole expression of the lattice corresponds to:

(x 2: 10) 1\ (y = 10) 8 {0}

EB (x 2: 10) 1\ (y > 10) 8 {y2
}

EB (x 2: 10) 1\ (y < 10) 8 {-y2
}

EB (x < 10) 1\ (y = 10) 8 {x}

EB (x < 10) 1\ (y > 10) 8 {x + y}

EB (x < 10) 1\ (y < 10) 8 {x- y}

The sum and the product operators are represented by the symbols EB and 8 respec

tively.

132

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Pl P2 Pn+l

Figure 6.5: Tabular representation of if statements.

6.6 Tabular expressions and programming languages

The framework introduced above allows tabular expressions to embed any language ex-

pressions including programming language statements.

Therefore we are able to represent conditional statements of the form if- elif -... else.

Also in [35], if statements were represented by tabular expression. For example a statement

of form

if c1 then PI elif c2 then P2, . . . else Pn+ 1

is represented by the one dimensional table drawn in Figure 6.5.

In this chapter, we propose to express for loops in a tabular expression form. For

that purpose, we need to define a tabular counter TC. A tabular counter holds the next

expression to evaluate. It can refer to another table. Also since it introduces recursion, it

allows us to represent nested tables with ease. For example in the normal table H shown in

Figure 6.6, we see that in cell (2, 2), the tabular counter holds the expression H(x, y) that

should be evaluated, and which introduces a form of recursion.

Afor loop can be generalized using the if ... elsif ... else and goto constructs. The goto

points to the beginning of if ... elsif ... else.

For example the following loop:

for (int il=O, ... , in=O; Cl(il, ... ,in); ++il, ... ,++in) {

133

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

I y = 1o I y > 10 I y < 1o I

x~O 0 y2 -y2

x<O X x+y x-y

TC = H(x,y)

Figure 6.6: An example of a normal table H.

stts;

can be written as:

int il=O, ... ' in=O;

Ll: if (Cl(il, ... , in))

stts;

++il; ... ;++in;

goto Ll;

The general construct can be translated as follows:

int il=O, ... , in=O;

Ll: if (Cl (il,

sttsl;

goto Ll;

... ' in)) {

134

PhD Thesis- I. Bourguiba- McMaster- Computing and Software

L2: elsif (C2 (il, ... , in))

stts2;

goto L2;

Lm : e 1 s if (Cm (i 1 , ... , in))

sttsm;

goto Lm;

else {

sttsO;

As a particular example, the for loop presented above can be expressed as the following

tabular expression given in Figure 6.7.

stts1 sttsz sttsn+l
TC = T(i1,i2, ... ,in) TC = T(i1,i2, ... ,in) TC = T(i1,i2, ... ,in)

Figure 6.7: Tabular representation of for loops.

135

PhD Thesis - I. Bourguiba- McMaster - Computing and Software

Chapter 7

Conclusion

In this thesis, we converted SCR tables into tabular expressions because tabular expressions

have a precise and rich formal semantics, while SCR is limited with regards to its seman

tics which is not well defined [19]. The conversion of SCR tables into tabular expressions

that we proposed, allows the SCR converted tables to inherit the semantics of tabular ex

pressions. The algorithms that we propose are quite efficient. Many advantages are gained

with the conversion that we presented. The tables are more readable, and can be easily in

terpreted even by people who do not have the knowledge of the domain. Furthermore, we

removed previous ambiguous symbols (e.g. primed notations and prefixed notations with

"@" symbols), and we proposed a new way to model SCR events with first order logic

and with propositional logic. Hence, by improving SCR semantics, there are many tasks

that can now be performed such as enabling the method to support table composition and

decomposition, and improving the toolset supporting the SCR method.

For tabular expressions, we improved both syntax and semantics. Now that, tabular

expressions are seen as a stack of atomic expressions and operators that are applied to

them, one can easily have a build up of tables from atomic ones. This buildup view en

hances building tools supporting the semantics. Also, we introduced a partial order and a

136

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

refinement ordering relation defined on tabular expressions, and we produced an algebra

for tabular expressions. In our algebraic model, we introduced new operators that allow us

to compose and decompose tabular expressions. Our algebra might be useful to solve the

open research problem which consists in composing a relation R from its parts R_" [26],

and thus coming up with a universal composition. A novelty in our work is that the compo

sition of two tables is not always a single table, but could be a set of tables. We introduced

a partial order relation, and a refinement ordering relation defined on tabular expressions.

Moreover, we presented an application of a tabular expressions for three dimensions

and higher. We showed that tabular expressions are very suitable for representing Turing

machines. In fact, the tabular representation of Turing machines increases their readability.

Also, to the best of our knowledge this is the first time that an application for tabular

expressions with dimensions greater than or equal to three has been proposed. We also

proposed a language and a structure for tabular expressions. Finally, we developed a lattice

and vector space representation for tabular expressions.

Future work

There is much subsequent work that can be carried on from ours. In the following, we

give some ideas for future work. In [17], Heitmeyer showed how the SCR model could

be extended to specify hybrid systems (systems containing both discrete and continuous

variables). However, time was not added to the general SCR model, and concurrency

was not discussed. Therefore, as a future work, we propose adding time to the general

SCR model so it can handle concurrent systems. For SCR events, we suggest that the

conditioned events will be executed by guarded commands where the condition and action

will be representing events.

To handle the algebra of tabular expressions that we introduced in a more abstract way,

137

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

we propose extending our work by adopting category theory. Category theory offers the

ease of manipulating mathematical structures and the relationship between them. In our

category, the objects will be the classes of tabular expressions, and the morphisms will

be the inner and Kronecker operators. Although a lot of work has been done and many

modules have been implemented, it will be very helpful to have a quality professional tool

supporting tabular expressions [51]. We suggest that the new model that we have proposed

for tabular expressions, we suggest that it will be applied not only at the requirements level,

but at every phase of the software development process model.

138

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Appendix A

In this appendix, we give examples to show how to extend Janicki's work to compose tables

instead of composing cells of one table. We give examples of composition of normal tables,

inverted tables, vector tables, and decision tables.

The normal table presented in Figure A3 is the union of the normal tables h and h

drawn in Figures AI, and A2 respectively.

The union of the inverted tables 91 and 92 drawn in Figures A4, and A5 respectively,

gives the inverted table 9 presented in Figure A6.

The union of the vector tables G1 and G2 drawn in Figures A7, and AS respectively,

gives the vector table G presented in Figure A9.

The union of the generalized decision tables h1 and h2 drawn in Figures AI 0, and All

respectively, gives the generalized decision table G presented in Figure Al2.

139

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

I y = 1o I

G;Jral
LdGJ

Figure A. I: The Normal Table h

G;]
Ld

1 y = 10 1 y > 10 1

0

X x+y

Figure A.2: The Normal Table h

G;]
Ld

1 y = 10 1 y > 10 1 y < 10 1

0 y2 -y2

X x+y x-y

Figure A.3: The Normal Table f = h U !2

140

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

:11 x+y X*Y II

a x<O x;;:::o

x<y yS:_x 0

Figure A.4: The inverted table 91

~
~

I

I

OS:.x<y x;;:::o

yS:.x<O x2::y

Figure A.5: The inverted table 92

X- y I y- X II

~
~

x<O

x<y

x;;:::o OS:_x<y

yS:_x yS:_x<O

Figure A.6: The inverted table 9 = 91 U 92

141

x;;:::y

x;;:::o

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

0 < X2 < Y

Y1 = Xl- X2 -x1 + x2

+ - 2 Y2Xl X2- Y2 -x1 + X2Y2 = y§

Y31 Y3 + X!X2 = y~ Y3 + XlX2 = y~

Figure A.7: The vector table 0 1

Y2l X1 + Y2 = y§

Y31 Y3 = X1

Figure A.8: The vector table 0 2

0 < X2 < y

Y1 = - Xl- X2 -x1 + X2 Xl + X2

- 2
Y2Xl- X2- Y2 -x1 + X2Y2 = y§ X1 + Y2 = Yi

Y31 Y3 + X!X2 = y~ Y3 +X!= y~ Y3 =X!

Figure A.9: The vector table 0 = 0 1 U 0 2

142

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

X1X2 # < 20 # 2: 20

xi/ x2 # > 30 # < 30

Figure A.lO: The generalized decision table h1

[lii9J
~

Figure All: The inverted table h2

< 20 # 2:20 # > 30

> 30 # < 30 # = 30

Figure A.l2: The generalized decision table h = h1 U h2

143

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

Appendix B

Here, we show how function tables fit in the general framework of tabular expressions.

There are four kinds of function tables: vertical condition tables, horizontal condition ta

bles, structured decision tables, and state transition tables. We take examples of function

tables borrowed from [36], and we show how they correspond to tabular expressions.

The vertical condition table can be seen as a one dimensional normal table with one

header and one grid as shown in Figure B.l. It correspond to Type 1 of Janicki's clas

sification [25, 26, 28]. For instance the vertical condition table depicted in Figure B.2 is

presented by the tabular expression drawn in Figure B.3.

The horizontal condition table can be seen as two dimensional inverted table. It cor

responds to Type 2a of Janicki's classification as shown in Figure B.4. For instance, the

horizontal condition table depicted in Figure B.8 is presented by the tabular expression

Figure B.l: Typel. One header and one grid.

144

VCT: trip

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

(m-level >level-limit) NOT(m-level > k-level-limit)
AND OR

(m-enable = e-enabled) NOT (m-enable = e-enabled)
f-trip e-tripped e-not-tripped

Figure B.2: Vertical condition table

(m-level >level-limit)

AND

(m-enable = e-enabled)

NOT(m-level > k-level-limit)

OR

NOT (m-enable = e-enabled)

I (f-trip=e-tripped) I NOT (f-trip=e-not-tripped)

Figure B.3: Tabular expression corresponding to VCT table.

drawn in Figure B.6.

The structured decision tables may have conditions macros that come with the table

helping shortening the cells content. In this example, the condition macros are:

w-trip-rng[m-ai, f-sp]

hitrp : m-ai 2:= f-sp

[;]

H2 G

Figure B.4: Type2a. Two headers and one grid.

145

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

HCT: foo-fee

Result
Conditions f-foo f-fee

m-Trip[1] = 1 e-tripped e-not-tripped
AND

m-Trip[1] #1
m-Trip[1] # 1 e-tripped e-not-tripped

AND
m-Trip[2] = 1
m-Trip[1] #1 e-not-tripped e-not-tripped

AND
m-Trip[2] # 1
m-Trip[1] = 1 e-tripped e-tripped

AND
m-Trip[2] = 1

Figure B.5: Horizontal condition table

ddbnd: (m-ai < f-sp) AND (m-ai ~ (f-sp- k-db))

notrp: m-ai < (f-sp- k-db)

The structured decision table corresponds to decision tables, which is type 2a in Jan

icki's classification as shown in Figure B.4. In this example, the structured decision table

depicted in Figure B.8 can be seen as the tabular expression shown in Figure B.9.

The state transition table (STT) can be seen as a two dimensional normal table with

two headers and one grid as shown in Figure B.lO. It corresponds to Type 1 of Janicki's

classification. For instance, the state transition table depicted in Figure B.11 is presented

by the tabular expression drawn in Figure B.12.

In [1], Abraham proposed that VCT and HCT correspond to vector tables. However,

we think that VCT, and HCT fit better into normal table, and inverted table respectively as

we proposed. Indeed, vector tables are useful to describe a function whose range is a set

of tuples [1]. However, this is not the case for HCT, and VCT (counterexamples are given

above).

146

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

f-foo f-fee II

m-Trip[l] = 1 e-tripped e-not-tripped

AND

m-Trip[l] =/= 1

m-Trip[l] =/= 1 e-tripped e-not-tripped

AND

m-Trip[2] = 1

m-Trip[l] =/= 1 e-not-tripped e-not-tripped

AND

m-Trip[2] =!= 1

m-Trip[l] = 1 e-tripped e-tripped

AND

m-Trip[2] = 1

Figure B.6: Tabular expression corresponding to HCT table.

HI

Hz GJ
Figure B.7: Type3. Two headers and one grid.

147

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

SDT: trip

Condition Statements 1 2 3 4
w-trip-mg[m-ai, f-spl] hitrp ddbnd ddbnd notrp

f-trip_ 1 = e-tripped - T F -

Action Statements
f-trip = e-tripped X X

f-trip = e-not-tripped X X

Figure B.8: Structured decision table

II f-trip=e-tripped I f-trip=e-tripped I f-trip=e-not-tripped I f-trip=e-not-tripped I

w-trip-mg[m-ai. f-spl] hitrp ddbnd ddbnd notrp

f-trip1 =e-tripped True False

Figure B.9: Tabular expression corresponding to a decision table

HI

H2 GJ
Figure B.IO: Type3. Two headers and one grid.

148

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

STI: f-digitalwatch

Transition m-select (m-select (m-select (m-select (m-select
Condition = e-pressed = e-unpressed) = e-unpressed) = e-unpressed) = e-unpressed)
Previous AND AND AND AND

State
(m-start-stop (m-start-stop (m-start-stop (m-start-stop

.). = e-pressed) = e-pressed) = e-pressed) = e-pressed)
AND AND AND AND

(m-reset (m-reset (m-reset (m-reset
e-pressed) e-unpressed) e-unpressed) e-unpressed)

e-time e-in-time e-time e-time e-time e-time
e-in-time e-in-time e-in-time e-in-time e-in-time e-zero

e-zero e-stopwatch e-zero e-runningl e-running2 e-running2
e-runningl e-stopwatch e-runningl e-runningl e-running2 e-running2
e-running2 e-stopwatch e-stopped! e-stopped! e-running2 e-running2
e-stopped! e-stopwatch e-stopped! e-stopped! e-stopped e-stopped2
e-stopped2 e-stopwatch e-stopped2 e-runningl e-stopped e-stopped2
e-stopped e-stopwatch e-stopped e-stopped e-stopped e-zero

e-stopwatch e-stopwatch e-time e-time e-time e-time

Figure B.ll: State transition table

(m-select (m-select (m-select (m-select (m-select
=e-pressed) =e-unpressed) =e-unpressed) =e-unpressed) =e-unpressed)

AND AND AND AND
(m-start-stop (m-start-stop (m-start-stop (m-start-stop

=e-unpressed) =e-unpressed) =e-unpressed) =e-unpressed)

e-time e-in-time e-time e-time e-time e-time

e-in-time e-in-time e-in-time e-in-time e-in-time e-zero

e-zero e-stopwatch e-zero e-running-1 e-running-2 e-running-2

e-running-1 e-stopwatch e-running-1 e-running-1 e-running-2 e-running-2

e-running-2 e-stopwatch e-stopped! e-stopped! e-running-2 e-running-2

e-stopped! e-stopwatch e-stopped! e-stopped! e-stopped e-stopped2

e-stopped2 e-stopwatch e-stopped2 e-running-1 e-stopped e-stopped2

e-stopped e-stopwatch e-stopped e-stopped e-stopped e-zero

e-stopwatch e-stopwatch e-time e-time e-time e-time

Figure B.12: Tabular expression corresponding to STT table

149

PhD Thesis - I. Bourguiba- McMaster- Computing and Software

Bibliography

[1] R. Abraham. Evaluating generalized tabular expressions in software documentation.

Master's thesis, Dept. of Electrical and Computer Engineering, McMaster University,

Hamilton, Ontario, Canada, 1997.

[2] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. Software re

quirements for the A-7E aircraft. Technical report, NRL-919. Naval Research Lab.,

Washigton, DC, 1992.

[3] Aonix. Software through pictures. www.aonix.com/stp.html, 2006. Last accessed

October 29, 2009.

[4] B. Bohem. Verifying and validating software requirements and design specifications.

IEEE Software, l(l):pages 75-88, January 1984.

[5] I. Bourguiba and R. Janicki. Table-based specification techniques. In International

Conference on Computers & Industrial Engineering 2009 (CIE39), pages 1520-1525,

Troyes, France, July 6-9, 2009. IEEE.

[6] I. Bourguiba and R. Janicki. Tabular Expressions vs Software Cost Reduction. In

H. Arabnia and H. Reza, editors, Proceedings of the 2009 International Conference

on Software Engineering Research & Practice (SERP 2009), volume 2, pages 403-

407, Las Vegas, USA, July 13-16,2009. 2009 CSREA Press.

150

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

[7] J. Desharnais, M. Frappier, R. Khedri, and A. Mili. Integration of sequential scenar

ios. IEEE Transactions on Software Engineering, 24(9):pages 695-708, September

1998.

[8] J. Desharnais, R. Khedri, and A. Mili. Interpretation of tabular expressions using

arrays of relations. In E. Orlowska and A. Szalas editors. Relational Methods for

Computer Science Applications, Vol. 65 of Studies in Fuzziness and Soft Comput

ing:pages 3-14, 2001. Springer-Physica Verlag.

[9] J. Desharnais, R. Khedri, and A. Mili. Representation, validation and integration of

scenarios using tabular expressions. Formal Methods in System Design, 2005. To

appear.

[10] G. A. D.L. Parnas and J. Madey. Assesment of safety-critical software in nuclear

power plants. Nuclear Safety, 32(2):pages 19-198, 1991.

[11] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):pages 231-274, June 1987.

[12] M. Heimdahl and B. J. Czerny. Using PVS to analyze hierarchical state-based re

quirements for completeness and consistency. In High-Assurance Systems Engineer

ing, (HASE '96), pages 252-256, Los Alamitos, CA, USA, 1996. IEEE Computer

Society.

[13] M. Heimdahl and N. G. Leveson. Completeness and consistency analysis of state

based requirements. In International Conference on Software Engineering. Proceed

ings of the 17th international conference on Software engineering, pages 3-14, 1995.

[14] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying and

151

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

analyzing requirements. In Proceedings of the Tenth Annual Conference on Computer

Assurance (COMPASS '95), pages 109-122, June 1995.

[15] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of require

ments specifications. ACM Transactions on Software Engineering and Methodology,

5(3):pages 231-261, 1996.

[16] C. Heitmeyer, J. Kirby, and B. Labaw. Applying the SCR requirements method to a

weapons control panel: An experience report. In Proceedings of FMSP'98. Second

Workshop on Formal Methods in Software Practice, Clearwater Beach, FL, USA,

Narch 4-5, 1998. ACM.

[17] C. L. Heitmeyer. Requirements specifications for hybrid systems. Hybrid Sys

tems Workshop III, Lecture Notes in Computer Science, 1066:pages 304-314, 1996.

Springer-Verlag.

[18] C. L. Heitmeyer. Formal methods for specifying, validating, and verifying require

ments. Journal of Universal Computer Science, 13(5):pages 606-618, May28, 2007.

[19] C. L. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for constructing

requirements specifications: The SCR toolset at the age of ten. Computer Systems

Science and Engineering, 20(1):pages 19-35, January 2005.

[20] C. L. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal specification, verifica

tion, and validation of requirements. In Proceedings of 12th Annual Conference on

Computer Assurance (COMPASS '97), pages 35-47. IEEE Computer Society, June

1997.

[21] K. Henninger, J. Kallander, D. Pamas, and J. Shore. Software requirements for the

152

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

A-7E Aircraft. NRL Memorandum. Technical report, 3876. U.S. Naval Research Lab,

1978.

[22] D. N. Hoover and Z. Chen. Tablewise, a decision table tool. In Proceedings of

the 9th Annual Conference on Computer Assurance COMPASS'95. Systems Integrity,

Software Safety and Process Security, pages 97-108, Gaithersburg, MD, USA, June

25-29, 1995.

[23] R. B. Hurlay. Decision Tables in Software Engineering. Prentice Hall PTR, Van

Nostrand, New York, 1983.

[24] R. Janicki. Remarks on mereology of direct products and relations. In J. Desharnais,

M. Frappier, W. MacCaull (eds.), Relational Methods in Computer Science, pages

65-84, 2002.

[25] R. Janicki. Towards a formal semantics of Parnas tables. In 17th International Con

ference on Software Engineering, pages 231-240, April23-30, 1995.

[26] R. Janicki and R. Khedri. On a formal semantics of tabular expressions. Science of

Computer Programming, 39(2):pages 189-213, March 2001.

[27] R. Janicki, D. Parnas, and J. Zucker. Tabular representations in relational documents.

In Proceedings of Relational Methods in Computer Science, pages 184-196. Springer

Verlag, 1997.

[28] R. Janicki and A. Wassyng. Tabular expressions and their relational semantics. Fun

damenta Informaticae, 67(4):pages 343-370, 2005.

[29] R. Janicki and A. Wassyng. On tabular expressions. In D.A. Stewart, ed. Proceedings

of CASCON 2003, pages 38-52, Ontario, Canada, October 2003.

153

PhD Thesis - I. Bourguiba - McMaster- Computing and Software

[30] Y. Jin and D. Parnas. Defining the meaning of tabular mathematical expressions.

Science of Computer Programming, 75(11):pages 980-1000, November 2010.

[31] W. Kahl. Compositional syntax and semantics of tables. Technical report, Software

Quality Research Laboratory Report no. 15. McMaster Univeristy, October 12, 2003.

[32] R. Khedri. Requirements scenarios formalization technique: N versions towards one

good version. Electronic Notes in Theoretical Computer Science, 44(3):pages 112-

135, 2003.

[33] R. Khedri and I. Bourguiba. Formal derivation of functional architectural design. In

I. C. Society, editor, Second International Conference on Software Engineering and

Formal Methods (SEFM'04), pages 356-365, Beijing, China, September 28-30,2004.

[34] R. Khedri and I. Bourguiba. Requirements scenarios based system-testing. In

Proceedings of the Sixteenth International Conference on Software Engineering &

Knowledge Engineering, pages 252-257, Alberta, Canada, June 20-24, 2004.

[35] M. Mohrenschildt. Algebraic composition of function tables. Formal Aspects of

Computing, 12:pages 41-51,2000.

[36] G. Mourn. Procedure for the specification of software requirements for safety crit

ical software. Technical report, CANDU Computer syterns Engineering Centre of

Excellence Procedure, Report CE-1001-PROC Rev.2, Apri12009.

[37] G. O'regan. Mathematical Approaches to Software Quality. Springer, 2006.

[38] D. Parnas. Tabular representation of relations. Technical Report CRL Report 260,

Telecommunications Research Institute of Ontario (TRIO), McMaster University,

Hamilton, Ontario, Canada, 1992.

154

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

[39] D. Parnas. Predicate logic for software engineering. IEEE Transactions on Software

Engineering, 19(9):pages 856-862, September 1993.

[40] D. Parnas and J. Madey. Functional documents for computer systems. Science of

Computer Programming, 25(l):pages 41-61, 1995.

[41] D. Parnas and D. Peters. An easily extensible toolset for tabular mathematical expres

sions. In Proceedings of the 5th International Conference on Tools and Algorithms

for Construction and Analysis of Systems. Lecture Notes in Computer Science, vol

ume 1579, pages 345-359, 1999.

[42] D. Peters. Private communication toR. Janicki, 2007.

[43] T. Pressburger. Software engineering research/developer collaborations in 2005.

Technical report, NASA Technical Report, March 7, 2006.

[44] T. Rothamel, Y. A. Liu, C. L. Heitmeyer, and E. I. Leonard. Generating optimized

code from SCR specifications. In Proceedings of the 2006 ACM SIGPLAN/SIGBED

Conference for Languages, Compilers, and Tools for Embedded Systems, LCTES

2006, pages 135-144, Ottawa, Ontario, Canada, June 2006.

[45] E. Sekerinski. Exploring tabular verification and refinement. Formal Aspects of Com

puting, 15(2-3):pages 215-236, November 2003. Springer-Verlag.

[46] M. Sipser. Introduction to the Theory of Computation. International Thomson Pub

lishing, 1996.

[47] J. Thompson, M. Whalen, and M. Heimdahl. Requirements capture and evaluation

in Nimbus: The light-control case study. Journal of Universal Computer Science,

6(7):pages 731-757, July 2000.

155

PhD Thesis - I. Bourguiba - McMaster - Computing and Software

[48] A. J. van Schouwen. The A-7 requirements model: Re-examination for real-time sys

tems and an application to monitoring systems. Technical report, 90-276. Queen's

University, Telecommunications Research Institute of Ontario (TRIO). Reprinted

as CRL Report 242 (Communication Research Laboratory, McMaster University,

Hamilton, Ontario, Canada, February 1992.

[49] F. Wanger. VFSM executable specification. In International Conference on Computer

Systems and Software Engineering, The Netherlands, May 4-8, 1992. IEEE Computer

Society.

[50] A. Wassyng. Private communication, December 2010.

[51] A Wassyng and R. Janicki. Tabular expressions in software engineering. In Pro

ceedings of International Conference on Software and Systems Engineering and their

Applications, volume 4, pages 1-16, Paris, December 2003.

[52] A. Wassyng and M. Lawford. Software tools for safety-critical software development.

International Journal on Software Tools for Technology. Special section on the indus

trialization of formal methods: a view from formal methods, 8(4/5):pages 337-354,

2006. Springer-Verlag.

[53] A Wassyng and M. Lawford. Lessons learned from a successful implementation of

formal methods in an industrial project. Proceedings FME 2003: Formal Methods,

International Symposium of Formal Methods. Lecture Notes in Computer Science,

2805:pages 133-153, September 8-14,2003.

[54] Y. Yang and R. Janicki. Modelling concurrency with tabular expressions. In Proceed

ings of the International Conference on Software Engineering Research and Practice

(SERP'04), volume 2, pages 455-461, June 2004.

156

	Bourguiba_Imene_2011_04_phd0001
	Bourguiba_Imene_2011_04_phd0002
	Bourguiba_Imene_2011_04_phd0003
	Bourguiba_Imene_2011_04_phd0004
	Bourguiba_Imene_2011_04_phd0005
	Bourguiba_Imene_2011_04_phd0006
	Bourguiba_Imene_2011_04_phd0007
	Bourguiba_Imene_2011_04_phd0008
	Bourguiba_Imene_2011_04_phd0009
	Bourguiba_Imene_2011_04_phd0010
	Bourguiba_Imene_2011_04_phd0011
	Bourguiba_Imene_2011_04_phd0012
	Bourguiba_Imene_2011_04_phd0013
	Bourguiba_Imene_2011_04_phd0014
	Bourguiba_Imene_2011_04_phd0015
	Bourguiba_Imene_2011_04_phd0016
	Bourguiba_Imene_2011_04_phd0017
	Bourguiba_Imene_2011_04_phd0018
	Bourguiba_Imene_2011_04_phd0019
	Bourguiba_Imene_2011_04_phd0020
	Bourguiba_Imene_2011_04_phd0021
	Bourguiba_Imene_2011_04_phd0022
	Bourguiba_Imene_2011_04_phd0023
	Bourguiba_Imene_2011_04_phd0024
	Bourguiba_Imene_2011_04_phd0025
	Bourguiba_Imene_2011_04_phd0026
	Bourguiba_Imene_2011_04_phd0027
	Bourguiba_Imene_2011_04_phd0028
	Bourguiba_Imene_2011_04_phd0029
	Bourguiba_Imene_2011_04_phd0030
	Bourguiba_Imene_2011_04_phd0031
	Bourguiba_Imene_2011_04_phd0032
	Bourguiba_Imene_2011_04_phd0033
	Bourguiba_Imene_2011_04_phd0034
	Bourguiba_Imene_2011_04_phd0035
	Bourguiba_Imene_2011_04_phd0036
	Bourguiba_Imene_2011_04_phd0037
	Bourguiba_Imene_2011_04_phd0038
	Bourguiba_Imene_2011_04_phd0039
	Bourguiba_Imene_2011_04_phd0040
	Bourguiba_Imene_2011_04_phd0041
	Bourguiba_Imene_2011_04_phd0042
	Bourguiba_Imene_2011_04_phd0043
	Bourguiba_Imene_2011_04_phd0044
	Bourguiba_Imene_2011_04_phd0045
	Bourguiba_Imene_2011_04_phd0046
	Bourguiba_Imene_2011_04_phd0047
	Bourguiba_Imene_2011_04_phd0048
	Bourguiba_Imene_2011_04_phd0049
	Bourguiba_Imene_2011_04_phd0050
	Bourguiba_Imene_2011_04_phd0051
	Bourguiba_Imene_2011_04_phd0052
	Bourguiba_Imene_2011_04_phd0053
	Bourguiba_Imene_2011_04_phd0054
	Bourguiba_Imene_2011_04_phd0055
	Bourguiba_Imene_2011_04_phd0056
	Bourguiba_Imene_2011_04_phd0057
	Bourguiba_Imene_2011_04_phd0058
	Bourguiba_Imene_2011_04_phd0059
	Bourguiba_Imene_2011_04_phd0060
	Bourguiba_Imene_2011_04_phd0061
	Bourguiba_Imene_2011_04_phd0062
	Bourguiba_Imene_2011_04_phd0063
	Bourguiba_Imene_2011_04_phd0064
	Bourguiba_Imene_2011_04_phd0065
	Bourguiba_Imene_2011_04_phd0066
	Bourguiba_Imene_2011_04_phd0067
	Bourguiba_Imene_2011_04_phd0068
	Bourguiba_Imene_2011_04_phd0069
	Bourguiba_Imene_2011_04_phd0070
	Bourguiba_Imene_2011_04_phd0071
	Bourguiba_Imene_2011_04_phd0072
	Bourguiba_Imene_2011_04_phd0073
	Bourguiba_Imene_2011_04_phd0074
	Bourguiba_Imene_2011_04_phd0075
	Bourguiba_Imene_2011_04_phd0076
	Bourguiba_Imene_2011_04_phd0077
	Bourguiba_Imene_2011_04_phd0078
	Bourguiba_Imene_2011_04_phd0079
	Bourguiba_Imene_2011_04_phd0080
	Bourguiba_Imene_2011_04_phd0081
	Bourguiba_Imene_2011_04_phd0082
	Bourguiba_Imene_2011_04_phd0083
	Bourguiba_Imene_2011_04_phd0084
	Bourguiba_Imene_2011_04_phd0085
	Bourguiba_Imene_2011_04_phd0086
	Bourguiba_Imene_2011_04_phd0087
	Bourguiba_Imene_2011_04_phd0088
	Bourguiba_Imene_2011_04_phd0089
	Bourguiba_Imene_2011_04_phd0090
	Bourguiba_Imene_2011_04_phd0091
	Bourguiba_Imene_2011_04_phd0092
	Bourguiba_Imene_2011_04_phd0093
	Bourguiba_Imene_2011_04_phd0094
	Bourguiba_Imene_2011_04_phd0095
	Bourguiba_Imene_2011_04_phd0096
	Bourguiba_Imene_2011_04_phd0097
	Bourguiba_Imene_2011_04_phd0098
	Bourguiba_Imene_2011_04_phd0099
	Bourguiba_Imene_2011_04_phd0100
	Bourguiba_Imene_2011_04_phd0101
	Bourguiba_Imene_2011_04_phd0102
	Bourguiba_Imene_2011_04_phd0103
	Bourguiba_Imene_2011_04_phd0104
	Bourguiba_Imene_2011_04_phd0105
	Bourguiba_Imene_2011_04_phd0106
	Bourguiba_Imene_2011_04_phd0107
	Bourguiba_Imene_2011_04_phd0108
	Bourguiba_Imene_2011_04_phd0109
	Bourguiba_Imene_2011_04_phd0110
	Bourguiba_Imene_2011_04_phd0111
	Bourguiba_Imene_2011_04_phd0112
	Bourguiba_Imene_2011_04_phd0113
	Bourguiba_Imene_2011_04_phd0114
	Bourguiba_Imene_2011_04_phd0115
	Bourguiba_Imene_2011_04_phd0116
	Bourguiba_Imene_2011_04_phd0117
	Bourguiba_Imene_2011_04_phd0118
	Bourguiba_Imene_2011_04_phd0119
	Bourguiba_Imene_2011_04_phd0120
	Bourguiba_Imene_2011_04_phd0121
	Bourguiba_Imene_2011_04_phd0122
	Bourguiba_Imene_2011_04_phd0123
	Bourguiba_Imene_2011_04_phd0124
	Bourguiba_Imene_2011_04_phd0125
	Bourguiba_Imene_2011_04_phd0126
	Bourguiba_Imene_2011_04_phd0127
	Bourguiba_Imene_2011_04_phd0128
	Bourguiba_Imene_2011_04_phd0129
	Bourguiba_Imene_2011_04_phd0130
	Bourguiba_Imene_2011_04_phd0131
	Bourguiba_Imene_2011_04_phd0132
	Bourguiba_Imene_2011_04_phd0133
	Bourguiba_Imene_2011_04_phd0134
	Bourguiba_Imene_2011_04_phd0135
	Bourguiba_Imene_2011_04_phd0136
	Bourguiba_Imene_2011_04_phd0137
	Bourguiba_Imene_2011_04_phd0138
	Bourguiba_Imene_2011_04_phd0139
	Bourguiba_Imene_2011_04_phd0140
	Bourguiba_Imene_2011_04_phd0141
	Bourguiba_Imene_2011_04_phd0142
	Bourguiba_Imene_2011_04_phd0143
	Bourguiba_Imene_2011_04_phd0144
	Bourguiba_Imene_2011_04_phd0145
	Bourguiba_Imene_2011_04_phd0146
	Bourguiba_Imene_2011_04_phd0147
	Bourguiba_Imene_2011_04_phd0148
	Bourguiba_Imene_2011_04_phd0149
	Bourguiba_Imene_2011_04_phd0150
	Bourguiba_Imene_2011_04_phd0151
	Bourguiba_Imene_2011_04_phd0152
	Bourguiba_Imene_2011_04_phd0153
	Bourguiba_Imene_2011_04_phd0154
	Bourguiba_Imene_2011_04_phd0155
	Bourguiba_Imene_2011_04_phd0156
	Bourguiba_Imene_2011_04_phd0157
	Bourguiba_Imene_2011_04_phd0158
	Bourguiba_Imene_2011_04_phd0159
	Bourguiba_Imene_2011_04_phd0160
	Bourguiba_Imene_2011_04_phd0161
	Bourguiba_Imene_2011_04_phd0162
	Bourguiba_Imene_2011_04_phd0163
	Bourguiba_Imene_2011_04_phd0164
	Bourguiba_Imene_2011_04_phd0165
	Bourguiba_Imene_2011_04_phd0166
	Bourguiba_Imene_2011_04_phd0167
	Bourguiba_Imene_2011_04_phd0168
	Bourguiba_Imene_2011_04_phd0169
	Bourguiba_Imene_2011_04_phd0170
	Bourguiba_Imene_2011_04_phd0171
	Bourguiba_Imene_2011_04_phd0172
	Bourguiba_Imene_2011_04_phd0173
	Bourguiba_Imene_2011_04_phd0174

