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Abstract 

Hawking's Singularity Theorem establishes the existence of a cosmologi­
cal singularity in a spacetime for which no global assumptions about causal­
ity are made. This theory has been useful for predicting the occurrence of 
singularities in a spacetime without solving Einstein's field equation. This 
paper is an exposition of the tools and some of the theory required to prove 
and apply Hawking's theorem. Emphasis is placed on practical methods 
for applying this result to the flat, dust-filled Robertson-Walker spacetime, 
and the black hole interior of the Kruskal extension of the Schwarzschild 
spacetime. 
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Chapter 0 

Introduction 

An event in space and time can be thought of as an occurrence at a particular 
instant in time and position in space. A 4-dimensional continuum of events 
is called a spacetime. Formally, a spacetime M is a connected 4-dimensional 
time-oriented manifold that is furnished with a non-degenerate metric tensor 
g of Lorentz signature. The unfamiliar concepts in this definition will be 
made precise in the following chapter. 

In the early twentieth century, it was generally accepted that the laws 
of physics are independent of the choice of coordinates used to describe said 
laws. This principle of general covariance had a significant impact on the 
development of the Theory of General Relativity, wherein Einstein proposed 
that all physical laws can be described completely by a Lorentz metric and its 
covariant derivatives. Via Einstein's field equations, he postulated that the 
structure of a spacetime relates to its matter distribution. Provided solutions 
to Einstein's equation can be found and understood, mathematicians and 
physicists can link the curvature of (M, g) to its stress-energy-momentum 
tensor. One of the first physicists to do so was Schwarzschild in 1916 when 
he derived a solution of the Ricci flat Einstein equations for a static, spher­
ically symmetric body. Schwarzschild's solution and the Robertson-Walker 
solutions for a homogeneous and isotropic spacetime are the main examples 
of this exposition. 

Example 0.0.1 The Robertson-Walker cosmological model is the space­
time with the metric 

{ 

dr2 + sin2 r (d02 + sin2 0 d¢2) 

ds2 = -dt2 + a2(t) dr2 + r 2 (d02 + sin2 0 d¢2
) 

dr2 + sinh2 r (d02 + sin2 0 d¢2
). 

(1) 

1 
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The solutions for a(t) (called the Friedmann solutions and listed in Table 1) 
correspond to the different spatial geometries of constant sectional curvature 
as well as the different types of matter that were commonly considered the 
dominant contributors to the stress-energy tensor. Up until recently, most 
of the energy density of the present universe was believed to be concentrated 
in galaxies. On the immense scales we are concerned with, each galaxy can 
be thought of as a "grain of dust." The detection of a cosmic microwave 
background suggests there are other forms of energy, such as dark energy. 
Analysis of the cosmic microwave background provides a glimpse of the 
universe as it was 300 000 years after the big bang, while research on a 
cosmic neutrino background may provide information about the universe 
just moments after its beginning. 

The Robertson-Walker model seems to be a good approximation for the 
geometry of our universe on a large scale. The distribution of galaxies ap­
pears to be homogeneous and isotropic: the same in all directions when 
viewed from our galaxy. The three choices of (1) represent the possibil­
ities that the universe is either "open" or "closed." Flat and hyperbolic 
spaces correspond to a universe that is expanding forever (open), whereas 
the spherical case corresponds to a universe that will eventually contract 
(closed). 

Table 1 
Friedmann solutions for Robertson-Walker 

dust filled and radiation filled cosmological models 

Types of Matter 
Spatial geometry Dust: models present universe Radiation: models early universe 

Flat a= r/' a = ( 4C') l/4 ti/2 

t = ~ rl 
Hyperbolic a=~ C(coshT] -1) a= VC' [(1 + *')2

- 1]1/2 

t = ! C(sinh TJ- TJ) 
Spherical a= ~ 0(1- COST]) a= -../C' [1- (1- *')2]112 

t = * C(TJ- sinTJ) 

C - ~ C' = B1rpa4 
- 3 ' 3 ° 

Example 0.0.2 The Schwarzschild metric 

2m 2m 
ds2 = -(1- -)dt2 + (1- -t1dr2 + r 2 (dfJ2 + sin2 0 d¢2

) (2) 
r r 
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describes the exterior ( r > 2m) gravitational field of a static, spherically 
symmetric body with mass m in a spacetime for which the only source of 
gravitation is the star itself (hence the spacetime is Ricci flat). Relativisti­
cally significant, this model has accurately predicted the motion of planets, 
the "bending of light," and "time delay" effects observed within our so­
lar system. When considering stars with large enough mass (at least twice 
that of our Sun), (2) depicts the exterior region of a black hole, that is, a 
star which has undergone complete gravitational collapse. One of the issues 
when interpreting (2) involves distinguishing between actual physical singu­
larities and coordinate singularities. The coordinate singularity appearing 
at r = 2m is known as the Schwarzschild horizon. A change of coordinates 
(cf ex. 1.5.3) will smoothly extend Schwarzschild's solution past the horizon 
and allow us to study the interior (r <2m) region. The extension is known 
as the K ruskal spacetime and is integral to our appreciation of the geometry 
of a Schwarzschild black hole. 

Both of these exact solutions to Einstein's equation produce models of space­
times which are singular, that is, spacetimes for which there is a point where 
our current physical laws fail. The big bang of the Robertson-Walker solu­
tion and the black hole singularity of the Schwarzschild solution are popular 
topics of discussion, though the general notion of a singularity still eludes a 
universally accepted formulation. 

Until the 1960s, the solutions to Einstein's equation that implied grav­
itational collapse assumed spherical symmetry. This assumption simplified 
calculations but left physicists wondering if the singularity found was merely 
a consequence of symmetry. Penrose was among those pondering whether 
the presence of perturbations that destroy spherical symmetry might alter 
the singular state of the spacetime. In his 1965 article "Gravitational col­
lapse and space-time singularities," Penrose published the first result which 
showed the existence of a black hole singularity without any assumption of 
symmetry (see Theorem 5.2.3). This result led Hawking to establish similar 
theorems. In his 1967 article "The occurrence of singularities in cosmology. 
III. Causality and singularities," he addressed the following questions: 

"First, without any global assumption being made about causal­
ity, could it be proved that there are solutions which evolve from 
a non-singular state to an inevitable singularity and which are 
fully general in the sense that a small perturbation of the initial 
state could not prevent the occurrence of a singularity? Sec­
ondly, would there be a singularity in any solution which could 
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represent the observed universe? Thirdly, what would be the 
nature of the singularity?" [H] 

In Theorem 1 of [H] (cf Theorem 5.1.3), Hawking showed that a singular­
ity is unavoidable in a spacetime containing a compact Riemannian surface 
whose normal geodesics are all converging. 

This project is intended to be a comprehensive guide to understand­
ing spacetimes and singularities for students who have taken introductory 
courses in manifold theory and Riemannian geometry. The main focus is to 
give an exposition of the tools and some of the theorems required to prove 
and apply Hawking's Singularity Theorem. In Chapters 1 and 2 the reader 
is introduced to some of the relevant aspects of Lorentzian geometry. Em­
phasis is placed on the particular properties that differ from Riemannian 
geometry. Chapters 3 and 4 delve into the causality relationships of a space­
time, i.e. the conditions under which an event may influence other events. 
The approach in Chapter 4 is more geometrical than that of Chapter 3. It 
sets up much of the theory required to prove the singularity theorems that 
are presented in Chapter 5. The two version:;; of Hawking's singularity theo­
rems proved in this exposition (Theorems 5.1.2 and 5.1.4) appear as they are 
stated in [0]. The original version in [H] has a more relativistic approach, 
and the physics-inclined student is encouraged to read Chapters 6 and 8 of 
[HE]. 

The proofs of Hawking's theorems show that a spacetime M is geodes­
ically incomplete provided some curvature conditions hold on M and that 
there is a timelike geodesic {i} which is orthogonal to a Riemannian hy­
persurface S C M, and {ii} for which there is a conjugate point of this 
surface. A timelike geodesic is one that travels along the "time dimension" 
of M. It maximizes the length (or "proper time") of curves joining two 
events (Proposition 1.2.2). In order to maximize the length of a timelike 
curve joining S to an event in the future of S, we must find a sequence 
of curves whose lengths approach this supremum and then take their limit 
(Theorem 4.4.1). Along this maximum geodesic, and in part because of the 
curvature conditions on M, there is a variation of timelike geodesics normal 
to S which focus to a point (Theorem 2.1.2). This conjugate point is where 
the known physical laws fail; it is the singularity of M. Conditions on the 
physical structure of M guarantee that no timelike curves reach an event 
in the future of the singularity. This is easily done if every event in M is 
predictable by S. Otherwise, further physical properties of Mare needed to 
show the required result (Proposition 3.2.3). 



Chapter 1 

Geometric Preliminaries 

The aim of this chapter is to discuss and present those concepts and com­
putations in Lorentz geometry relevant to Hawking's singularity theorems. 
The emphasis will be on the geometrical properties of a Lorentz manifold 
that differ from those of a Riemannian one. Both Lorentz and Riemannian 
manifolds are special cases of semi-Riemannian manifolds, so many of the 
conventions of Riemannian geometry will hold for Lorentz manifolds as well. 
Unless otherwise indicated, the reader may assume that this is the case, 
though a change in sign may be necessary on occasion. 

One key difference that arises in the study of Lorentz geometry is in 
the notions of distance and length for timelike curves. To appreciate these 
differences we begin by introducing Lorentz manifolds and discussing the 
causal character of lengths and curves. 

1.1 Lorentz Metric and Causal Character 

A smooth manifold M furnished with a nondegenerate metric tensor g of 
index v ~ 0 is called a semi-Riemannian (or pseudo-Riemannian) manifold. 
The index v of g is the maximal dimension of a subspace in TpM on which g 
is negative definite. For such a semi-Riemannian manifold M and point p E 
M there is an orthonormal basis v1 , ... , Vn of TpM such that g( Vj, Vj) = -1 
for 1 ~ j ~ v, g(vb vi)= 1 for v+ 1 ~ i ~ n, and g(vi, Vj) = 0 fori -:f. j. If 
x1

, ... , xn is a local coordinate system on M, then the local components of 
g are gij = g(oi, Oj) (1 ~ i,j ~ n), which is sometimes denoted as (8i, oi)· 
For arbitrary vector fields V = ~ Vioi and W = ~ Wioi, 

5 
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A Lorentz manifold M is a semi-Riemannian manifold of dimension 2:: 2 and 
index v = 1. The signature of a Lorentz metric is -, +, ... , + whereas the 
signature of a Riemannian metric is +, ... , +. Spacetimes are defined as 
4-dimensional Lorentz manifolds, so we will primarily be concerned with the 
case v = 1, though the theory presented for a Lorentz manifold can easily 
be generalized. 

The analogue to Euclidean space for a Lorentz manifold is Minkowski 
space lRf with metric tensor ds2 = -dt2 + ( dx1 ) 2 + ... + ( dxn- 1 )2. Minkowski 
space with n = 4 is the relativistic model for a spacetime without any 
gravitational influence. 

Similar to the Riemannian case, the metric tensor of M makes each 
tangent space TpM isometric to lRf. The isometry group of TpM is the semi­
orthogonal group called the Lorentz group, 0(1,n- 1) ={BE Gl(n,JR): 
Bt rJ B = rJ, rJ = diag( -1, 1, ... , 1)}. This is analogous to the Riemannian 
case where the orthogonal group O(n) ={A E Gl(n,IR): At A= I}. Notice 
that the number of negative signs in the diagonal matrix rJ corresponds to 
the value of the index v. The Lorentz group can be used to describe the 
orientability of a Lorentz manifold, as we shall see in section 1.3. 

Definition 1.1.1 The causal character of v E TpM is: 

spacelike if (v, v) > 0 or v = 0, 

null if (v, v) = 0 and v =/= 0, 

timelike if (v, v) < 0. 

The norm (or speed) lvl ofv is defined as I (v,v) 11/ 2 . 

The set of null vectors in TpM is called the null cone Ap (or lightcone) at 
p E M. Timelike vectors lie in the interior of Ap, whereas spacelike vectors 
lie outside. 

It is possible to study TpM abstractly as a scalar product space of index 
1 and dimension 2:: 2. In such a case, TpM is called. a Lorentz vector space. 
The causality of a subspace W of a Lorentz vector space V is defined as 
follows: 

1. W is spacelike if glw is positive definite. 

2. W is timelike if glw is nondegenerate of index 1. 

3. W is lightlike if glw is degenerate. 
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Furthermore, W is timelike only if W .L = { v E V : ( u, v) = 0 \;/ u E W} is 
spacelike, and vise versa. W is lightlike (that is, degenerate) if and only if 
W .L is lightlike. The following diagram helps illustrate these points. Define 
A as the nullcone of V. 

C§ 
{i) W spacelike {ii) W timelike {iii) W lightlike 

Proposition 1.1.2 Let v, wE TvM be timelike vectors such that (v, w) < 0. 

(i} The reverse Schwartz inequality holds: 

I (v, w) I 2: lvllwl with equality iff v and w are collinear. 

(ii} The reverse triangle inequality holds: 

I vi + lwl ~ lv + wl, with equality iff v and w are collinear. 

Proof. (i) Since (v, w) < 0 there is an a > 0 such that w = av + u, 
where u is orthogonal to v (and hence spacelike). w is timelike so 

(w, w) = (av + u, av + u) = a2 (v, v) + (u, u) < 0. 

Then, 

(v, w)2 = (v, av + u)2 = a2 (v, v)2 = ( (w, w) - (u, u)) (v, v) 2: (w, w) (v, v). 

If equality holds, then u = 0 and w = av. 

(ii) lv + wf - I (v + w, v + w) I = - (v + w, v + w) 
- - (v, v)- 2 (v, w)- (w, w) 

> - (v, v) + 2lvllwl - (w, w) by part (i) 

- lvl2 + 2lvllwl + lwl2 

- (lvl + lwD2
· 

Equality will hold iff lvllwl = - (v, w) and part (i) shows collinearity. D 
Smooth curves can also have a causal character. A curve a : I ~ M 

is called spacelike if all of its velocity vectors a' ( s) are spacelike; likewise 
for null and timelike. Intuitively, a timelike curve describes the motion of 
an object through time; its movement into the future or into the past. An 
arbitrary curve may not necessarily have a causal character. However, a 
geodesic "Y : I ~ M always does since "Y' is parallel and hence the causal 
character of ry' remains unchanged along 'Y. 
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1.2 Reparametrizations and Timelike 
Geodesics 

In Riemannian geometry a piecewise smooth curve segment a : I ---+ M 
with a' ( s) =!= 0 for s E I can be reparametrized by arc length to a unit 
speed piecewise smooth curve segment. In Lorentz geometry the unit speed 
parameter depends on the causality of the curve. 

Definition 1.2.1 Let a : [a, b] ---+ M be a piecewise smooth curve segment 
in a semi-Riemannian manifold M. The arc length of a is 

L(a) = 1b la'(s)l ds. 

For a spacelike curve, this definition of arc length is the same as Riemannian 
arc length. However for a timelike curve, the sign is different and we use the 
term "proper time" synonymously with length, 

1b ( )1/2 
T = a - (a'(s); a'(s)) ds. 

Proper time is an important concept for our discussion of singularities and 
will be dealt with in more detail in Chapter 4 where we will reparametrize 
timelike geodesics by T. 

As in the Riemannian case, a geodesic 1 : I ---+ M in a Lorentz manifold 
is a curve whose acceleration is zero: 1" = 0. The standard existence 
theorems for ordinary differential equations hold, as do the properties of the 
exponential map expP : TpM ---+ M, which takes lines through the origin of 
TpM to geodesics of M through p. Consequently, expP maps a small enough 
star-shaped neighbourhood of 0 E TpM diffeomorphically onto a normal 
neighbourhood U of p in M. Unlike the Riemannian case however, timelike 
geodesics do not have the property of being locally length minimizing. 

Proposition 1.2.2 Let M be a Lorentz manifold and U a normal neigh­
bourhood of p E M. If there exists a timelike curve in U from p to q, then 
the longest such curve is the unique (up to reparametrization) timelike geo­
desic in U from p to q. 

Sketch of proof. This is a straightforward analogue of the Riemannian 
case. One uses the Gauss Lemma [L] (p. 102) to decompose u' as 

u' = - (a', U) U + N, 
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where U is a timelike unit vector field along a and N is spacelike. Then, 

la'l2 = (-(a', a'))= I (a', U) Ul2 -INI2 ~ I (a', U) 12 . 

However, I (a', U) I = d(~:u), where r is the radius function of M defined by 
r(q) = I exp;1(q)l. The length of a is 

L(a) = 11 

la'l ds ~ 11

1 (a', U) Ids 

= t d(r o a) ds 
} 0 ds 

= r(q). 

Equality will hold if and only if la'l is constant. 
A curve a: I---t Miscalled inextendible (or maximal) if I is the largest 

possible domain for a; if a: J ---t M with J :::>I then J =I. An inextendible 
timelike geodesic with finite length is called a timelike incomplete geodesic. 
Timelike geodesic incompleteness means that particles could move freely 
along a timelike geodesic whose future or past histories do not exist outside 
of a finite interval of proper time. 

A null curve has zero length, so a null geodesic is called incomplete if it 
cannot be extended to arbitrary values of its affine parameter. 

Timelike and null (geodesic) incompleteness are frequently used to char­
acterize a· singular spacetime. On a manifold with Lorentz metric any two 
points that are connected by a timelike curve can be connected by one of 
arbitrarily small proper time, so there is no generalization of Riemannian 
distance. Note moreover, that unlike a Riemannian metric, a Lorentz metric 
does not define a topological metric. Consequently, the Hopf-Rinow theorem 
does not hold and we are left with only geodesic incompleteness to describe 
a singular spacetime. 

1.3 Time-Orientability 

Time orientability allows a continuous choice of the future nullcone in TpM 
to each point as the point varies over M. It is the Lorentz counterpart to 
the orientability associated to a Riemannian manifold. 

An orientable Riemannian manifold N can be defined by considering 
how the orthogonal group O(n) acts on orthonormal bases of TqN, (q E 

N). Let e1, ... , en and !I, ... , fn be orthonormal bases of TqN. Then fi = 
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L_ biiei ( 1 S j S n) defines a matrix ( bii) E 0( n). If ( bii) is an element of 
the special orthogonal group SO(n) C O(n), then the two bases have the 
same orientation. The index of SO(n) [O(n), SO(n)] is equal to 2, so this 
equivalence relation describes two equivalence classes of orientations of TqN. 
An orientation of N is a function A that smoothly assigns an orientation of 
TqN to each q E N. What is meant by "smooth" is that for each q E N 
there is a coordinate system whose induced local orientation agrees with A on 
some neighbourhood of q. N is orientable provided it admits an orientation. 

The orientation of a Lorentz manifold M is described in much the same 
way. However the orthogonal group 0(1, n-1) ={BE Gl(n, IR): Bt TJ B = 
TJ, TJ = diag( -1, 1, ... , 1)} now has four connected components (unlike O(n) 
which has 2). Let (hii) E 0(1, n- 1) be the Lorentz counterpart of (bii) as 
defined above. The components of the Lorentz group are designated by: 

o++(1, n- 1) = {(hii) E 0(1, n- 1): hn > 0, and det(hii) > 0 i,j =/= 1} 
o+-(1, n- 1) = {(hii) E 0(1, n- 1): hn > 0, and det(hij) < 0 i,j =/= 1} 
o-+(1, n- 1) = {(hii) E 0(1, n- 1): hu < 0, and det(hij) > 0 i,j =/= 1} 
o--(1, n- 1) = {(hij) E 0(1, n- 1): hu < 0, and det(hii) < 0 i,j =/= 1} 

Corollary 1.3.1 {see {OJ 9. 7{3)} The sets o++ u o--, o++ u o+-, and 
o++ u o-+ are subgroups of 0( 1, n - 1). 

Each of these subgroups has index 2 (in the group theoretic sense), and 
consequently each describes two equivalence classes, which allow three possi­
ble ways to orient M. If (hii) E S0(1, n-1) = o++ U o-- then TpM and M 
are orientable in the Riemannian sense. If (hij) Eo++ U o+- then hn > 0, 
and TPM admits a time-orientation. Similarly, if (hii) Eo++ U o-+ then 
det(hii) > 0 (i,j =!= 1) and TpM admits a space-orientation. 

Intuitively, a manifold for which future and past directions can be consis­
tently chosen is called time-orientable, and a particular choice of orientation 
will time-orient M. 

M is time-orientable if a future and past nullcone can be consistently chosen for 
eachpE M. 
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Lemma 1.3.2 Let M be time-orientable. There exists a smooth timelike 
vector field X E X(M). 

Sketch of proof. Let 7 be a time-orientation of M. 7 is smooth, so for 
each p E M there is a smooth vector field Xu on a neighbourhood U of p 
such that Xu E Tq for each q E U. Let <P be a partition of unity subordinate 
to the covering of M by neighbourhoods U0 • 'Pa E <P is non-negative and 
timecones are convex, so the vector field X = 2::: c.p0 Xua is timelike. 

Exercise: Prove the converse of Lemma 1.3.2. 

If M is time-oriented, a differentiable timelike curve is future-directed 
if the tangent at each of its points lies in the interior of the future null­
cone of those points. Similarly, a future-directed causal (or non-spacelike) 
curve is one whose tangent vectors to each of its points is either future­
pointing timelike, or null. Corresponding definitions hold for past-directed 
curves. Relativistically, a future-pointing timelike curve a : I ~ M such 
that I a' ( r) I = 1 for the proper time parameter r E I is called a material 
particle. A future-pointing null geodesic 1 : I ~ M is called a lightlike par­
ticle. A photon, for instance, is a lightlike particle. The tangent directions 
of light determine a lightcone and the tangent lines of a material particle lie 
inside of this cone. Thus any material particle must travel at a speed less 
than the speed of light. 

For the remainder of this exposition, consider M an n-dimensional time­
oriented Lorentz manifold unless otherwise specified. 

1.4 Submanifolds and Warped Products 

Definition 1.4.1 Let i : P ~ M be the inclusion map of a regular sub­
manifold P c M, where M is a semi-Riemannian manifold. P is a semi­
Riemannian submanifold of M if the pull back i*(g) is a metric tensor on 
P. 

A vector field X E X( M) can be orthogonally decomposed as X = 
XT + X.i where the tangential component of X is -XT E X(P) and the 
normal component X.l E X(P).i. The Levi-Civita connection \7 of M can 
also be orthogonally decomposed into tangential and normal components: 

\7vW = \7vW + II(V, W) V, WE X(M). 
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'\7 is the Levi-Civita connection on P and '\7 v W = ("V v W) T. The normal 
component of '\7 v W defines the Second Fundamental Form tensor, I I (V, W) 
of Pc M. 

Example 1.4.2 The Levi-Civita Connection 
Let M be the Lorentz manifold with metric 

ds2 = 2F(u, v)dudv = F(u, v)(du ® dv + dv ® du), 

for F( u, v) > 0. Consider the spacelike curve .6. = { u = v} with orthonormal 
frame X = Jp(ov + 8u), and let U = Jp(ov- 8u) be the future-poiting 
timelike unit normal to .6.. 

The covariant derivative of X can be determined by considering 

The calculation can be reduced to 

("V(av+Du)(Ov + Ou),ov- Bu) - - (ov + Ou, "Vav+a..(ov- Bu)) 
- - (ov + Ou, "Vav-Du(av +au)) 

1-
= -2 '\7 Dv-Du (au+ av, au+ av) 

1-- -2 '\7 811 -a..(2F) 

= - dd I F((u, u) + t( -1, 1)) 
t t=O 

= (aF aF)I au av (u,u) 

In the next chapter we will make use of the shape operator I I of P c M 
in order to simplify calculations. For V E X(P) and Z E X(P)..L, define 
II(V, Z) = ("VvZ)T. II and II provide the same information, in fact 

( II(V, Z), w) = - (II(V, W), Z) for all V, W E X(P), Z E X(P)..L. To 

see this, consider "Vv (Z, W) = ("VvZ, W) + (Z, "VvW) = 0. Then 

("VvZ, W) =- (z, "VvW) <=> ( II(V, Z), w) = -(I I(V, W), Z). 

In the special situation of warped products (defined below) the second 
fundamental form may be computed easily, as developed by O'Neill (1983). 
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Definition 1.4.3 Suppose B and Fare semi-Riemannian manifolds and let 
f > 0 be a smooth function on B. The warped product M = B x f F is the 
product manifold B x F furnished with metric tensor 

where 7T and a are the projections of B x F to B and F respectively. 

Lemma 1.4.4 (see [OJ 7.35) If V, W are vector fields in the lift ofF, then 
the Second Fundamental Form of the fiber can be expressed as 

II(V, W) = -((V, W) /f) grad f 
. .. 8f 

wzth grad f = I::i,j glJ a;cr8j. 

Proof. Let X be in the lift of B. Then 

(II(V, W), X)=- (Ji(V,X), w) =- (Y'vX, W) =- (Y'xV, W). (1.1) 

Furthermore, X (V, W) = X(P (V, W) IF o a), writing f for f o 7T. 

Claim: \7 x V =(X f / J)V. 

X (V, W) - 2fXf((V, W) IF o a) 

- 2(Xf I f) (V, W) 

and by the Koszul formula: 

2 (Y'xV, W) = X (V, W) + V (W,X)- W (X, V) 

- (X, [V, W]) + (V, [W, X]) + (W, [X, V]) 

we get 

2 (Y'xV, W) =X (V, W) = 2(Xf/ f) (V, W) and Y'xV = (Xf / J)V. 

Equation ( 1.1) becomes 

-((X f / J)V, W) = -( (V, W) / J)X f = -( (V, W) /f) (gradf, X) 

and the result follows. D 
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1.5 Examples and Computations in Lorentz 
Geometry 

Example 1.5.1 Ricci Tensor, Raf3 

Consider the Robertson-Walker spacetime M with metric 

ds2 = -dt2 + a2 (t) ( dr2 + sin2 r(dlP + sin2 e d¢2
)), 

where a(t) is as in example 0.0.1. 
To compute the Ricci tensor Raf3 = E Ra-rf3.., we begin by computing the 

nonzero Christoffel symbols 

r~. = ~ """' km ( a~m 8gim - 8gij ) 
~J 2 L..tg 8xi + axj axm . 

m 

Taking a'= a'(t) we get: 

rt = aa' rr 

r~e = aa' sin2 r 
r~¢ = - sin r cos r sin2 e 
r 8 = r<t> = .£Q!! r8 r¢ sinr 

r~¢ = aa' sin2 r sin2 e 
roe = - sin r cos r 

r:¢ = - sin 0 cos e 
r<t> cosO 

84> = sinO 

r r - re - r<t> - a' tr- te- t.p-a-

The Riemannian tensor can now be calculated using the equation 

pr _ p(J _ Rtf> _ a' 
~"trt- ~"tet- tt/>t- -a 
Rt = aa" rtr 

Rt II ' ete = aa sm r 
R~tt/> = a a" sin 2 r sin 2 0 

R~er = R~t/>r = ( a') 2 + 1 
Rore = RttJ>e = ((a')2 + 1) sin2 r 
R~4> = R:e4> = ( ( a')2 + 1) sin2 r sin2 0 

Thus the components of the Ricci tensor are: 

Rtt = -3a" 
a 

Rrr = aa" + 2( a') 2 + 2 
Roe = (aa" + 2(a')2 + 2) sin2 r 
R4>4> = (aa" + 2(a') 2 + 2) sin2 rsin2 0. 

"" .. ( " ta')2 1 ) The scalar curvature is equal toR= L.. g"Ru = 6 aa + 7 + a2 . 
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Example 1.5.2 Einstein's Equation 
Using the equations from the above example, we can verify Einstein's 

field equation for the Robertson-Walker spherical spacetime. In component 
form, 

1 
Gab= Roo- 2R~b = 81rTab 

where Gab is Einstein's gravitational tensor, R is the scalar curvature, and 
Tab is the stress-energy tensor. The most general form that the stress-energy 
tensor can take for a homogeneous and isotropic spacetime is that of a perfect 
fluid: 

T = (p + p)U*U* + pg. 

where U* is the one-form metrically equivalent to the future-pointing time­
like unit vector field U on M, pis the energy density function, and p = (p/3) 
is the pressure function. The stress-energy tensor components are 

Tu = p T.. = pg.. for • =J t. 

Thus the components of Einstein's gravitational tensor are 

(a')2 3 
- 3 -- + - = 87rp 

a2 a2 

a" (a'? 1 
- -2 - - - - - = 87rp. 

a a2 a2 G .. 

Rewriting these equations gives one of the general evolution equations 
for homogeneous, isotropic spacetimes: 

a" 
3- = -47r(3p + p). 

a 

Exercise: Verify that Schwarzschild's model of a spacetime (cf ex. 0.0.2) is Ricci flat. 

Example 1.5.3 Change of Coordinates 
Consider the Schwarzschild spacetime M as the warped product M = 

JR. x JR.+ x EP with metric 

ds2 = -(1-
2
m)dt2 + (1-

2
m)-1dr2 + r 2 (dfP + sin2 

(} d¢2
). (1.2) 

r r 

r:O 
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This cosmological model of a black hole appears to have two singularities; 
one at r = 0 (the actual singularity) and the other at r =2m (the horizon). 
With a change of coordinates we will show that the singularity at the horizon 
is merely due to a breakdown of coordinates in (1.2). 

In a warped product, the leafs lR x IR+ x { q} are totally geodesic and 
isometric to each other. Thus, in order to derive the extension of M it is 
reasonable to assume it will likewise be a warped product with fiber S2 , and 
we will focus on the plane 

2 ( 2m) 2 ( 2m) -1 2 ds = - 1 - - dt + 1 - - dr 
r r 

in order to remove the coordinate singularity. 
We begin by looking at outgoing and ingoing radial null geodesics: null 

geodesics that travel away from and toward the horizon and which satisfy 

To solve for tin terms of r, rewrite c;;)2 = (T_;m)2 as dt = T-;mdr. 
Then 

t=±(r+2mln(
2
: -1)) +0, CER 

Let r = r + 2m ln ( 2~ - 1) and define null coordinates w and x by 

w=t-r x = t+r. 

Therefore, 

2 ( 2m) ds = - 1 - - dwdx. 
r 

(1.3) 

r is now a function of w and x described by r + 2m ln ( 2~ - 1) = w2x. 
Solving for ( 2~- 1), (1.3) can be written as 

2m e-r/2m w-x 

ds2 = -( e-:rm)dwdx. 
r 

Let U = ewf4m and V = -e-xf4m; (1.4) becomes 

ds2 =-32m3 e-r/2mdUdV, 
r 

(1.4) 

(1.5) 
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where UV = -( 2~ - l)er/2m. This form of the metric allows us to infer 
easily that there is no singularity at r =2m (see the discussion in (i) below). 
In order to simplify future calculations we will make two more coordinate 
changes, rewriting (1.5) as a metric with (i) null coordinates and (ii) a 
timelike and spacelike coordinate. 

(i) Let u = jii- U and v = -jii-v, with uv = (r- 2m) er/2m-l and 

t = 2mln 1~1- Then 

Establish the notation f(r) = (r- 2m)er/2m-l for r > 0. Since f' > 0, 
f is a diffeomorphism onto the open set ( -~m, oo). The equation r = 
f- 1 ( uv) defines a smooth positive function on the region uv > -~m in 
the uv-plane. Thus, r is defined implicitly by the relation f(r) = uv, 
and r = 2m is shown to be a break down of coordinates rather than 
a physical singularity. For further discussion, please refer to example 
5.1.6. The extended Schwarzschild metric becomes 

(ii) Let T = U+V and X = V-U with X 2 - T 2 = (.L.. - 1)er/2m and 
2 r ' 2m 

t = 2mln ~~~~~ = 4mtanh- (~).Then (1.2) can be rewritten as 

This smooth extension of the Schwarzschild solution was first described 
by Kruskal in the article "Maximal Extension of Schwarzschild Metric" ( 1960). 
A manifold with metric (1.6) or (1.7) is called a Kruskal spacetime and will 
be denoted by the warped product K = B x r S 2 • From the form of the 
metric ( 1. 7), one sees that the metric on B x { q} is conformally equivalent 
to an open set in Minkowski space JR~. 

Physical interpretation. In the (X, T) coordinates a spacelike curve of B 
takes the form 

X 2 - T 2 = ( ..!...__- 1)er/2
m for r > 0. 

2m 
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The physical singularity at r = 0 is represented by the curve X 2 - T 2 = -1. 
The Kruskal extension can be illustrated by the following diagrams. 

r=2m, -t-•10 

Region I is the asymptotically flat region that corresponds to the exterior 
(r > 2m) of the Schwarzschild spacetime. An in-falling material (or light­
like) particle will cross the horizon X = T (r = 2m) and enter region II. 
In region II the particle experiences such a strong gravitational pull that 
within finite proper time it will fall into the singularity at X= (T2

- 1)112 , 

never able to escape back to region I. Region III is known as a "white hole," 
it has the time reversed properties of II. A particle in region II must have 
originated at the singularity X = -(T2 -1)112 and will leave III within finite 
time, entering region IV. Region IV has properties identical to region I. For 
additional physical interpretations of the Kruskal extension, please see the 
detailed discussion in [W) section 6.4. 

Example 1.5.4 Second Fundamental Form 
If we consider the Robertson-Walker spacetime M = lR x aS3 and the Kruskal 
spacetime K = B Xr 8 2 as warped products we can use Lemma 1.4.4 to 
compute I I of their fibers. 

ForM, II(V, W) = (V, W) (a'ja)U, where U = Ot· This follows imme­
diately since grad a= -a'U. 

For K, we can compute I I of the orthogonal frame of 8 2
. 

II(oe, Be) = 
(8e,8e) 
..:.....:...:.._..:... grad r = -r grad r 

r 

(o<J>, O<J>) grad r = -r sin2 () grad r 
r 

Solving for grad r in terms of Ou and Ov will allow us to write I I in the 
Kruskal null coordinates u and v. 

d '""' ij~ ~. gra r = L....- g ~ i u3 . . ux 
~.J 
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= (1-
2
m) Or· 
r 

One may compute dr as a linear combination of du and dv from the 
relation 
uv = (r- 2m)e2~ -l (cf example 1.5.3(i)): 

2m (du dv) dr = 2m (1 - -) - + - , 
r u v 

uv i= 0. 

From this, the dual relationship follows easily. We get, 

1 2m 1 
Or= -

4 
(1- -)-1(u8u + v8v) and grad r = -(u8u + v8v)· 

m r 4m 

Thus, 

Also for K, we may consider the curve { u = v} as a subspace of B and 
compute its second fundamental form. By example 1.4.2, 

Define F(u, v) = h(r) and uv = f(r). Then 

oF = h'(r) or = h'(r) v, 
au au f'(r) 

and, 
oF = h'(r) or = h'(r) u. 
ov 8v f'(r) 

Thus at u = v the covariant derivative, and hence, the second fundamental 
form vanishes. 



Chapter 2 

Focal Points and Convergence 

With some background in Lorentz geometry, we are now able to begin ex­
ploring the circumstances under which a spacetime may be singular. 

Define a variation of a curve segment a: [a, b] -+Mas a two-parameter 
map x : [a, b] x ( -£5, b) -+ M such that a(s) = x(s, 0) for all a ~ s ~ b. 
x is called a fixed endpoint variation if its first and last transverse curves 
(t-parameter curves) are constant. In this case, all of the longitudinal curves 
(s-parameter curves) go from p = a(a) to q = a(b), and the variation vector 
field V vanishes at a and b. If every longitudinal curve of x is a geodesic, 
then x is a one-parameter family of geodesics. 

By studying variations through geodesics we can examine the effect of 
curvature on nearby geodesics. In order to study geodesics with respect to 
a variation, it is helpful to consider the set of all piecewise smooth curve 
segments a : [0, b] -+ M from p to q as a manifold. We can then think of 
(the nonnull) geodesics as the critical points of the length function L. The 
first variation of arc length, L', vanishes at its critical points, at which the 
second derivatives of L become interesting. 

Definition 2.0.5 Let CJ : [0, b] -+ M be a nonnull geodesic such that a(O) = 
p and CJ(b) = q. The index form lu of CJ is 

where Vis the variation vector field V(s) = ftlt=O x(s, t), A is the transverse 
acceleration vector field of x, and € =sgn(CJ', CJ') = ±1 (+ 1 if CJ is spacelike, 
-1 if CJ is timelike). 

20 
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By definition Ia(V, V) = L"(O), so the index form provides the same 
information as the second variation of arc length. If the variation vector 
field Vis tangent to 0', then V.L = 0 and Ia(V, V) = 0. Thus, without loss of 
generality, we can restrict the index form to If, the index form of variation 
vector fields V that are everywhere orthogonal to 0'. 

The index form provides a quantitative way to measure the effect of cur­
vature on a variation through geodesics. In particular If offers information 
about the existence of conjugate points, and consequently, whether geodesics 
fail to be minimizing or maximizing (depending on their causal character). 

Points p, q E M are conjugate along a geodesic segment 0', if there is a 
Jacobi field J(t) along 0' that vanishes at p and q, but is not everywhere 
zero (see figure (i) below). An important property of points conjugate top 
is that they are precisely the points where the exponential map expP fails to 
be a local diffeomorphism. For instance, every geodesic starting at a point 
p in the sphere sn(R) of radius R will meet at the antipodal point. The 
exponential map is a diffeomorphism on the ball in TPSn(R) centered at 0 
with radius 1rR. However, there are points on the boundary of this ball for 
which expP is not a local diffeomorphism. Moreover, each Jacobi field on 
sn(R) that vanishes at p has its first zero at the antipodal point. 

Similarly, the existence of conjugate points can relate the curvature of 
a spacetime with its topological structure. The main area of interest in 
this chapter is the existence of focal points, points which are conjugate 
to a submanifold rather than another point. As we shall see in Chapters 
4 and 5, points that are conjugate to submanifolds describe the situation 
when a timelike geodesic fails to maximize the proper time between two 
points. Furthermore, we shall see that focal points are the points at which 
a spacetime may fail to be timelike (or null) complete. 

To describe a focal point, we must first define a P-Jacobi field. Essen­
tially a P-Jacobi field, as depicted in figure (ii), is the variation vector field 
of a variation x through normal geodesics such that J(O) is tangent to the 
submanifold P c M. 

I' P' 
(i) conjugate points (ii)P-Jacobi field 

Definition 2.0.6 A Jacobi field J along a geodesic 0' normal to P C M is 
called a ?-Jacobi field if it satisfies the following conditions: 
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(i) J(O) is tangent toP, 

{ii} ('\lu'(O)Jf = U(J(O),o-'(0)). 

A P-Jacobi field of a fixed endpoint variation x is tangent to P at J(O) 
and vanishes at J(b). For such an x, the term (a-', A) lg of the index form 
reduces to - (o-'(0), A(O)) since the last transverse curve of xis constant. If 
a is the first transverse curve of x, then 

(a-' (0), A(O)) = (a-' (0), (a' (0) )J.) = (a-' (O),I I( a' (0), a' (0)) = (a-' (0) ,I I( J(O), J(O))) . 

Thus the index form can be written as 

Iu(V, V) = I :,,fob (V'J., V'J.)- (Rvu'V, a-') du- I:,, (a-', II(J(O), J(O))). 

Since the Jacobi equation is linear, the set of normal Jacobi fields forms 
a (2n - 2)-dimensional vector space. The set of P-Jacobi fields forms an 
(n- !)-dimensional vector space, so the space of P-Jacobi fields on o- that 
vanish at a focal point has dimension at most n- 1. It is left as an exercise 
to the reader to verify these statements. 

Proposition 2.0.7 (see [OJ 10.28} A Jacobi field J along a geodesic o- is a 
P-Jacobi field if and only if it is the variation vector field of a variation x 
of o- through normal geodesics. 

Proof. Given such a variation x, it is not difficult to see that the vari­
ation vector field must satisfy the conditions of a P-Jacobi field. Consider 
J ( s) = ~ I t=O x ( s, t). The first transverse curve a of x lies in P with 
a'(O) = J(O), see figure (ii) above. Thus J(O) is tangent to P. What is left 

to show is II(J(O),o-'(0)) = (vu'(o)l) T. Let Z(t) = tsls=O x(s,t) be the 

vector field on a that is normal to P, so that Z(O) = o-'(0). Then 

(Y'a'(o)z) T = II(a'(O),Z(O)) = II(J(O),o-'(0)). 

However 

- a a a a -
\7 a'(o)Z = at lt=O as ls=O x(s, t) = OS ls=O at lt=O x(s, t) = \7 u'(o)J, 

and the second condition follows. 
For the reverse direction, see [0]. 0 

If x of Proposition 2.0.7 is a fixed endpoint variation of o-: [0, b] - M, 
then o-(b) is a focal point of P. 
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Definition 2.0.8 Let a be a geodesic of M that is normal to P c M. Then 
a(r), r =I= 0 is a focal point of P along a provided there is a nonzero ?-Jacobi 
field J(t) on a with J(r) = 0. 

One may think of a focal point as the intersection point of two geodesics 
that are orthogonal to P and infinitesimally close together, as in the diagram 
below (diagram not to scale). 

In order to determine the existence of focal points one can examine the 
initial rate of convergence of geodesics passing orthogonally through P. This 
rate of convergence (i.e. the convergence of P as defined below) measures 
the "bending" of Pin the spacetime M. Intuitively, one might think of how 
light bends and focuses depending on the concavity of a lens. Similarly, the 
convergence of P establishes whether geodesics spread out or focus. This 
in turn predicts how P will change as it flows along these geodesics. If the 
convergence is nonzero, the resulting surfaces will either expand or contract 
depending on the direction of the outward normal. Analogous concepts are 
discussed in [HE) and [W). The expansion and extrinsic curvature of a Rie­
mannian hypersurface in the spacetime M provide a relativistic explanation 
of this geometrical property. The description used here is the one stated in 
[OJ and is defined explicitly as follows. 

Definition 2.0.9 Let P be a semi-Riemannian submanifold of M with mean 
curvature vector field H. The convergence of P is the real-valued function 
k on the normal bundle N P such that 

k(z) = (z,Hp} = di!P trace liz for z E TpPJ. 

For a spacelike hypersurface in M, 

where e1 , ... ,en-l is any orthonormal basis for TpP. 
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If P is a spacelike hypersurface in M there are two choices for an out­
ward normal vector. Either z is future-pointing or z is past-pointing. In the 
former case, k > 0 is a necessary condition for the focusing of orthogonal 
geodesics. Conversely, if z is past-pointing, then k should be negative for 
geodesics to focus. 

(i) U is past-pointing, k < 0 (ii) U is future-pointing, k < 0 

2.1 Focal Points and Timelike Curves 

The existence of focal points along timelike geodesics reveals much about 
the intrinsic geometry of a semi-Riemannian manifold. For instance, as 
we will discuss later, the expansion (or contraction) of our universe can be 
predicted by its curvature and the convergence of the spacelike hypersurface 
S = { t = constant}. If the initial rate of convergence of S is positive 
along a future-pointing timelike geodesic, S will contract as t -t oo. In 
particular, the timelike geodesics will be focused toward a point conjugate 
to S. Initially, we look at how the existence of focal points affects the index 
form of ?-Jacobi fields. 

Theorem 2.1.1 (see [OJ 10.34) 

1. Let(J: [O,b]-t M be ageodesicsegmentfromP to apointq (with sign t) 
that is nonnull, and such that (7 1(s)..L C Tu(s)M is spacelike. If there 
are no focal points of (7(0) E P along (7, then the index form I(; is 
definite (positive if t = 1, negative if t = -1). 

2. If there is a focal point (7( s), 0 < s < b, along (7, then I u is not 
semi-definite. 

Proof of 1. Choose a basis Yi, ... , Yn-l for the ?-Jacobi fields on (7. 
Let V be the variation vector field of a fixed endpoint variation x along (7. 
It is possible to show that there exist unique piecewise smooth functions fi 
defined on [0, b] such that V = 2:: fiYi· This is left as an exercise for the 
reader. We would like to evaluate du(V, V). To simplify the calculation, we 
first establish two lemmas. 
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Lemma 1: If V, W are P-Jacobi fields on a then (V', W) = (V, W'). 
We show this in two parts: 

i) (V', W) - (V, W') is constant. 

(V', W)' - (V", W) + (V', W') 

= (Rvu'a', W) + (V', W') by Jacobi equation 

= - (Rv u' W, a') + (V', W') 

By symmetry of the Riemannian curvature tensor, (V', W)' = (V, W')'. 
Integrate both sides to get (V', W) - (V, W') = constant. 

ii) (V'(O), W(O)) = (V(O), W'(O)). 
Since W is a P-Jacobi field, W(O) is tangent toP. Therefore, 

(V'(O), W(O)) - (V'(o?, W(O)) 

= ( II(V(O), a'(O)), W(O)) (2.1) 

= -(I I(V(O), W(O)), a'(O)), (2.2) 

where (2.1) follows from part (ii) of Definition 2.0.6, and (2.2) from 
the fact that V and Ware perpendicular to a. The result follows from 
the symmetry of I I. 

Lemma 2: Let Y1, ... , Yr be Jacobi fields along a such that (Y:', }j) = 
(Yi, Yj) for all i,j. If V = L:fiYi then, 

(V', V')- (Rvu'V,a') =(A, A)+ (V,B)', 

where A= E f!Yi, B =I: fiY:'. 
Write V' = A+ B. Then (V', V') = (A, A)+ 2 (A, B)+ (B, B). Now compute 
(V,B)': 

(V, B)' = (V', B)+ (V, B') 

= (A+ B, B)+ (v, I: fiY:') + (v, I: fir:") 

= (A, B)+ (B, B)+ (L fi}j, L fiY:') + (v, L fiRY;u'a') 

= (A, B)+ (B, B)+ L fiff (}j, Y:') + (V, R'£/iY;u'a') 

= (A, B)+ (B, B)+ (L fiYJ, L fiYi) + (V, Rvu'a') 

= (A, B)+ (B, B)+ (A, B)- (a', Rvu'V). 
Thus, (A, A)+ (V, B)' = (A, A)+ 2 (A, B)+ (B, B)- (Rvu'V, a') 

= (V', V')- (Rvu'V,a'), which finishes the proof of this lemma. 
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Assuming I a'l = 1, then by Lemma 2 the index form becomes: 

El,.(V, V) - 1b (V', V') - (Rv,., V, a') du- (a'(O), II(V(O), V(O))) 

- 1b (A, A) du + (V, B) 1g- (a'(O), II(V(O), V(O))). (2.3) 

However, x is a fixed endpoint variation so V(b) = 0. We can rewrite the 
term (V, B) 1g as: 

(V, B) 1g - - (V(O), B(O)) 

- - ( v(o), L fi(o)r:'(O)) 

- -L fi(O) (V(O), r:'(O)) 

- - L fi(O) (V(O), r:'(O) T) 

- - Lfi(o) (v(o),II(Yi(O),a'(o))) 

- - (v(O),II(V(O),o-'(0))) 

- (a'(O),I I(V(O), V(O))). 

Hence (V, B) 1g cancels out with the last term in (2.3). Furthermore, (A, A) 2:: 
0 since A is a linear combination of spacelike Jacobi fields. Therefore, 
El,.(V, V) 2:: 0. If d,.(V, V) = 0 then J: (A, A) = 0 ::;. (A, A) = 0 ::;. A= 0, 
which implies that each fi is constant and V = 0. D 

The rigorous proof of part 2 of Theorem 2.1.1 is left as an exercise. 
Intuitively, the argument goes as follows. Suppose a(s) is a focal point of a. 
There is a timelike geodesic (3 that is infinitely close to alro,s] with the same 
endpoints and length. The broken timelike curve (3 + al(s,b] has length equal 
to L( a). By smoothing out this corner we produce a timelike curve whose 
length is greater than that of a. Now, if V is a smooth tangent vector field 
along a pointing toward the longer curve and such that V(O) = V(b) = 0, 
then I,.(V, V) should be positive. 

The following theorem establishes a relationship between the curvature 
of a spacetime and the existence of focal points along timelike geodesics. It is 
a key ingredient in the proof of Hawking's Singularity Theorem ( cf Theorem 
5.1.2). 

Theorem 2.1.2 ((OJ 10.37} Let P be a spacelike hypersurface in an n­
dimensional Lorentz manifold M, and let a be a geodesic normal toP at the 
point p = o-(0). Suppose 
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1. k(a'(O)) = (a'(O),Hp) > 0. 

2. Ric( a', a') ~ 0. 

Then there is a focal point a( r) of P along a with 0 < r ::; k(u~(O)), provided 

a is defined on this interval. 

Proof. To prove the theorem, it suffices to show that Elu is not positive 
definite. Suppose I a'l = 1 and let k = k(a'(O)). Choose an orthonormal 
basis { ei} for Tp(P) and extend it to a parallel orthonormal frame of spacelike 
vector fields {Ei} along a. Define a function f : [0, tl --+ [0, 1] by f(u) = 
1-ku such that f Ei is a piecewise smooth vector field with(! Ei)(O) E Tp(P) 
and (!Ei)(i) = 0. Now consider Elu(!Ei,JEi)· Since fEi is orthogonal to 
a, If = Iu. Thus, 

1 

Elu(JEi,JEi) - 17< ((!Ei)'l.,(!Ei)'1.)- (RJE;u'fEi,a')du 

- (a'(O), I I((J Ei)(O), (! Ei)(O) )) 
1 

t" ( l. 1.> 2 = Jo -kEi , -kEi - f (RE;u'Ei, a') du 

- (a'(O), I I(Ei(O), Ei(O)) 
1 

- k -1'k f 2 (RE;u'Ei, a') du- (a'(O), I I(ei, ei)). 

The E/s are spacelike, so summing over i gives: 

1 

L Elu(J Ei,J Ei) = (n- l)k -1'k P Ric( a', a')du- (a'(O), (n- 1)Hp) 

1 

= (n -1)k -1'k f 2 Ric(a',a')du- (n -l)k 

1 

= -1'k f 2 Ric( a', a')du (2.4) 

By assumption Ric(a',a') ~ 0. Therefore Elu(!Ei,fEi)::; 0 for at least 
one value of i, and by Theorem 2.1.1(1) there must be a focal point of P 
along a. 0 
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2.2 Focal Points and Null Curves 

There is an analogue to Theorem 2.1.2 that examines the connection between 
the convergence of a submanifold with codimension 2 and the existence 
of focal points along a null geodesic. Whereas Theorem 2.1.2 pertains to 
the existence of maximal timelike geodesics as well as incomplete timelike 
curves, the subsequent proposition will provide insight on the existence of 
incomplete null curves. 

Proposition 2.2.1 ([OJ 10.43) Let PC M be a spacelike submanifold with 
codimension 2 of the Lorentz manifold M, and let H be the mean normal 
curvature vector field of P. If fJ is a null geodesic normal toP at fJ'(O) = p 
such that: 

i) k = k(fJ'(O)) = ((J'(O), Hp) > 0 

ii) Ric(fJ1 ,fJ1
) 2:0, 

then there is a focal point fJ( r) of P along fJ with 0 :::; r :::; ~ provided fJ is 
defined on this interval. 

A consequence of focal points along a null geodesic is stated below. This 
theorem is also useful for describing aspects of the causal structure of a 
singular spacetime. 

Theorem 2.2.2 ([OJ 10.51} Let P be a spacelike submanifold of M. If 
a: [0, b] -+ M is a piecewise smooth causal curve from P to a point q EM, 
then there is a piecewise smooth timelike curve arbitrarily near a that runs 
from P to q. However, this does not hold if a is a null geodesic normal to 
P along which there are no focal points of P before q. 

Exercises: 

1. Discuss the differences between the proofs of Theorem 2.1.2 and Proposition 2.2.1. 

2. Prove Theorem 2.2.2. 



Chapter 3 

Causal Structure of Spacetimes 

The causal character of curves and vectors was briefly discussed in Chapter 
1, in this chapter we shall look at the conditions that determine the causal 
structure of M as whole. The focus will be mainly on the future definitions 
of sets which comprise the causal structure of M, however definitions and 
theory for past versions of these sets are described simply by reversing time­
orientation. 

Let p, q E M. We say that p chronologically precedes q if there is a 
future-pointing timelike curve segment from p to q, written asp« q. The 
set of all such q E M is called the chronological future of p and is denoted 

J+ (p) = { q E M : p « q}. 

The point p causally precedes q (p < q) if there is a future-pointing causal 
curve segment from p to q. The causal future of pis 

J+(p) = {q EM: p ~ q, i.e. p < q or p = q}. 

In Minkowski spacetime, J+(p) is an open set and J+(p) is closed; the bound­
ary of both sets is formed by the future nullcone of p. This is not necessarily 
the case in an arbitrary spacetime (cf example 3.0.6). 

Theorem 3.0.3 Let M be a spacetime and let p E M. There exists a convex 
normal neighbourhood C of p. Furthermore the chronological future of p in 
the manifold C, J+(p,C), is open inC (and in M). 

For the proof of this theorem please refer to [HE]. Theorem 3.0.3 links 
the causality of a spacetime M to its topology. In particular, it implies 
that the relation «, and hence the set J+(p), is open. It follows that the 

29 
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chronological future of a subset A c M, defined as J+(A) = upEA J+(p), 
is also an open set in M. The causal future of A is defined similarly as 
J+(A) = upEA J+(p). Notice the relations « and ::; are transitive and that 
J+(A) = J+(J+(A)) = J+(J+(A)) c J+(A). 

Exercise: If p,q,r E C then either q E J+(p,C), r E J+(q,C) or q E J+(p,C), r E 
J+(p,C) imply r E J+(p,C). 

Let q E J+(p) and a : [0, b] ~ M is a causal (nonspacelike) curve 
from p to q. The image of [0, b] is compact, so we can cover a by a finite 
subcover of convex neighbourhoods. If a is not a null geodesic in some 
convex neighbourhood C', then using Theorem 3.0.3 it is possible to deform 
a into a timelike curve in C'. We can then extend this deformation to the 
other convex neighbourhoods to obtain a timelike curve from p to q. 

Corollary 3.0.4 ([Wj p. 191} If q E J+(p) '- J+(p), then any causal curve 
connecting p to q must be a null geodesics. 

The following lemma is also a consequence of Theorem 3.0.3. 

Lemma 3.0.5 Let A C M. 

i} intJ+(A) = J+(A), 

ii} J+(A) C J+(A) with equality iff J+(A) is closed, 

iii} aJ+(A) = aJ+(A). 

Example 3.0.6 Consider the spacetime M = IRi '- {PI. ... Pk} and let 
A C M be the single point A = {p} as in the diagram below. While in 
Minkowski space J+(A) = J+(A), in this case q E J+(A) but q rt, J+(A). 
J+(A) is still an open subset of J+(A), but J+(A) is not closed. 

A subset A c M is called achronal if J+(A) n A = 0, i.e. for any two 
events p, q E A, q cannot be in J+(p). Similarly, A is called acausal if 
q rt, J+(p), for p =f q in A. J+(A) C J+(A), so an acausal set is an achronal 
one. 
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Definition 3.0. 7 Let A be a closed achronal set. The edge of A is the set of 
events p E A such that for every open neighbourhood U of p there are points 
q E I+ (p, U) and r E I- (p, U) and a timelike curve from r to q that misses 
A. 

A 

A is a closed hypersurface if and only if edgeA n A = 0. This fact is 
not obvious (see [0] pages 413-414 for proof) but is useful in the following 
proposition. Define a future set F as a subset of M such that I+(F) c F. 

Proposition 3.0.8 ([OJ 14.27} The (nonempty) boundary of a future set F 
(similarly a past set) is a closed achronal hypersurface. 

Proof. Let p E oF. Pick q E I+(p) such that I-(q) is a neighbourhood 
of p containing a point p' of F. By construction q E I+(p') and consequently 
q E I+(F) C F as well. Thus I+(p) must be contained in F. The com­
plements of future sets are past sets, so I- (p) C M -...... F also holds. Ergo, 
I+(oF) n I-(oF) = 0 and oF is achronal. Clearly oF has no edge points 
since I+(p) C intF and I-(p) is contained in the exterior of F. 0 

3.1 Cauchy Hypersurfaces 

A curve is called past-inextendible if it is defined on the domain (a, b) but not 
on (a- 8, b) for 8 > 0. Inextendible curves are important in determining the 
causality and possible singularities of a spacetime M. For example they relay 
information about the predictability of the future of M. If A is an achronal 
set in M, the events predictable by A are the ones that can be reached by 
past-inextendible causal curves that cross A. This set of events corresponds 
to the future Cauchy development (or future domain of dependence) of A: 

n+(A) = {p E M: every past-inextendible causal curve through p meets A} 

In particular, A c n+(A) and D+(A) c J+(A). The Cauchy development 
(or full domain of dependence) of A is defined as D(A) = D+(A) u n-(A). 

Example 3.1.1 1. Consider the warped product M = JR~ x F with met­
ric g = -dt2 + f(t) 2g0 . The achronal spacelike subset A = {t = c : 
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cis constant} has future Cauchy development n+(A) = J+(A) = {(t, x, y, z): 
t 2:: c }. Minkowski space, IR~ x JR3 , is one example of a spacetime with a 
metric of cohomogeneity one, and so has sets A and n+(A) such as these. 
Also in Minkowski space, the future nullcone A+= {(t, x, y, z): t > (x2+y2+ 
z2

)
112

} contains the subset B+ = {(t, x, y, z): -t2 +x2 +y2 +z2 = -1, t > 0} 
with future Cauchy development as depicted below (i). Similarly, the set 
B_ = {(t, x, y, z) : -t2 + x2 + y2 + z2 = -1, t < 0} in the past nullcone has 
future Cauchy development as in (ii): 

(i) B+ (t > 0) (ii) B_ (t < 0) 

2. Let M = ( JR~ x 8 1) " {p}, and S a spacelike circle as in the figure 

below. In this case there is a point q E aJ+(S) that does not have a past­
endpoint in M. Thus D+(S)-=/= J+(S), and in fact, D+(S) is the union of S 
and the open region between Sand the null geodesics a and /3. 

An achronal set S c M for which D(S) =Miscalled a Cauchy hyper­
surface. If D(S) = M the entire future (resp. past) of M can be predicted 
by the events in S. An alternative definition for a Cauchy hypersurface is 
that S must be met exactly once by every inextendible timelike curve in M. 

Exercise: Verify that these definitions are equivalent. Hint for one direction, derive 
a contradict~on by constructing a past-inextendible timelike curve that misses S. Then 
construct an inextendible one. 

3.2 Cauchy Horizons 

When a subset is not a Cauchy hypersurface there may be points in the 
future (or past) of S which are not in n+(S) (or n-(S)). Consider the 
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manifold M = IRf - {p} and let S be any subset of M that precedes p: __ ., 
--- I 

I 
I 

I 
'D-+(s) 1 

I I 

I I 
I -------s----_ I I------ - -............., 

Then q E J+(p) but q tf. D+(S). The future boundary of D+(S) is called 
the future Cauchy horizon of S. 

Definition 3. 2.1 If S is an achronal set, its future Cauchy horizon is: 

The Cauchy horizon of Sis defined as H(S) = H+(S) U H-(S). 
Intuitively one can think of H+(S) as separating D+(S) from the rest of 

J+(S). 
..... ...... J-l(s) 

..... .... 
'\ 

"D-+( s) del* {his Se,{ 

-----------------5 
Example3.2.2 Let B+ = {(t,x,y,z) -t2 +x2 +y2 +z2 = -1, t > 
0} C A+ and B_ = {(t,x,y,z): -t2 + x2 + y2 + z2 = -1, t < 0} CA-. 
Referring to diagram (i) in example 3.1.1(1), it is clear that H+(B+) = 0 
and H-(B+) = A+. From diagram (ii) we infer that H+(B_) = A- and 
H-(B_) is empty. 

Lemma 3.2.3 ({0} 14.52) If A is a closed achronal set oD+(A) = AU 
H+(A). 

Sketch of proof Assume p E oD+(A) " A " H+(A). This implies p 
must also be in I+(A) (cf Lemma 1 below). It is now possible to find a 
point q E I+(p) n D+(A) such that I+(A) n I-(q) is a neighbourhood of p 
contained in D+(A). This contradicts our choice of p. The reverse inclusion 
follows from the definition of H+(A). 

Proposition 3.2.4 ((OJ 14.53} LetS be a closed acausal hypersurface. Then 

1. H+(S) = I+(S) n oD+(S) = D+(S) " D+(S). In particular, 
H+(S) n S = 0. 
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2. If H+(S) #- 0 then H+(S) is a closed achronal hypersurface. 

3. Starting at each point of H+(S) there is a past-inextendible null geo­
desic without conjugate points that is entirely contained in H+ ( S). 
(Future extended as far as possible in H+ ( S), such null geodesics are 
called generators of H+(S).) · 

Proof. Part 1 is left as an exercise. 
Part 2: If H+(S) #- 0 then H+(S) is a closed achronal hypersurface. 
By definition H+(S) = D+(S) '- I-(D+(S)) = D+(S) u {M '- I-(n+(S))}, 
so H+(S) is closed. For achronality, it suffices to show I-(H+(S) )nH+(S) = 
0. This is clear as I-(H+(S)) c I-(D+(S)) = I-(n+(S)) c M" H+(s). 
Lastly, we need to show H+(S) is a hypersurface. 
Claim: P = n+(S) u J-(S) is a past set. . 
Consider I-(P) = I-(n+(s) u I-(S)) = I-(n+(S)) u I-(1-(S)). 
However, I-(S) = I-(1-(S)) and I-(n+(S)) = n+(S) '- fJD+(S), so 

r(P) = I-(n+(S)) u I-(s) = [D+(S) '- fJD+(S)J U J+(S) c P. 

. By Proposition 3.0.8, fJP is a closed achronal hypersurface. Since S is 
acausal I+(S) n I-(S) = 0, and by part 1 H+(S) = J+(S) n fJD+(s) = 
I+(S) n a[D+(S) u I-(S)] = I+(S) n fJP. This equality implies H+(S) is 
also a hypersurface. 

Part 3: Starting at each point of H+(S) there is a past-inextendible null 
geodesic without conjugate points that is entirely contained in H+(S). 
We begin by stating two lemmas, the first of which will be proved following 
this proposition. 

Lemma 1: ((OJ 14.51) Let A be a closed achronal set. Then D+(A) = 
{p E M : every past-inextendible timelike curve through p meets A}. 

Lemma 2: ([OJ 14.30{2)) Let a be a past-inextendible causal curve 
starting at p that does not meet a closed set S. If a is not a conjugate­
free null geodesic, there is a past-inextendible timelike curve starting at a(O) 
that does not meet S. 

By Part 1, if p E H+(S) there exists a past-inextendible causal curve 1 
starting at p that does not meet S. Lemma 1 implies 1 cannot be timelike 
and Lemma 2 asserts 1 must be a conjugate-free null geodesic. What is left 
to show is that 1 does not leave H+(S). Take H+(S) = D+(S) '- n+(S) as 
in Part 1. If 1( r) E n+ ( S) for some r > 0 then 1 would have to meet S by 
definition of n+(S). On the other hand if 1(s) fj. D+(S) for some s > 0, 
there is a past-pointing past-inextendible timelike curve {3 starting at 1(s) 
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that avoids S. Applying Lemma 2 to the causal curve 1i[o,s] + (3 contradicts 
Lemma 1 since 1(0) = p E D+(S) by assumption. 0 

Proof of Lemma 1. T C D+ (A): Let p ~ D+ (A) and pick a point 
r E J-(p, M-..... D+(A)). There is a past-inextendible causal curve that starts 
at r and misses A. By Lemma 2 of Proposition 3.2.4 there is a past­
inextendible timelike curve through p that does not cross A, which implies 
P f/. T. 
D+(A) C T: Assume there exists p E D+(A) -..... T. Let a be a past­
inextendible timelike curve that starts at p and avoids A. Since p f/. A, p 
has a convex neighbourhood C which is disjoint from A. Let a(s) = r E C 
be a point that chronologically precedes p (r « p). This implies J+(r,C) is 
an open neighbourhood of p containing some point q E n+(A). 

"' / 

/ 

A 
/ , 

Denote the geodesic segment from q to r in C by a qr. The past-pointing 
timelike curve Uqr + ai[s,oo) constitutes a past-inextendible timelike curve 
that does not meet A. This contradicts q E n+ (A). 0 

Problems: 

1. Prove part 1 of Proposition 3.2.4. Hint use Lemma 3.2.3 

2. Discuss the relevance of Theorem 2.2.2 to Lemma 2 above. 

3. Prove Lemma 2 above. 

3.3 Cauchy Hypersurfaces Revisited 

The following proposition relates the predictability of future events of a sub­
manifold with its future Cauchy horizon. This is relevant to the discussion 
of singularities since one of the conditions for a spacetime to be singular is 
that it possesses a future Cauchy hypersurface (as defined below). 

Proposition 3.3.1 LetS be a closed hypersurface in M. Then H+(S) = 0 
if and only if J+(S) c n+(S). In this case, S is called a future Cauchy 
hypersurface. 
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Proof. Assume there is an event p E J+(S) "D+(S). This is possible 
# :3 1 a causal curve segment and r > 0 s.t. 1(r) E an+(S) " S c 
an+(s) n J+(s). Thus, p E J+(s)"D+(s) <=? 1 (r) E an+(s) n J+(s) <=? 

s+(s) =f 0. o 

Corollary 3.3.2 A subset S C M is a Cauchy hypersurface if and only if 
H(S) is empty. 

Example 3.3.3 De Sitter spacetime is the warped product M = IR~ x 83 

with metric 

Referring to example 3.1.1(1), the hypersurface S = {t = c: cis constant} 
in M is Cauchy since n+(S) = J+(S) (similarly n-(S) = J-(S)), and thus 
D(S) = M. Consequently, 

The analogous property holds for s-(S), and therefore the Cauchy horizon 
H(S) = H+(S) u s-(S) = 0. 

Warped products have an additional property that relates the existence 
of a Cauchy hypersurface in the base to one in the spacetime. 

Theorem 3.3.4 ([OJ 14.33} Let M = B x 1 F be a warped product with F 
complete. M has a Cauchy hypersurface if and only if B does. 

In Chapter 4 we will see that the two-dimensional base of the Schwarz­
schild spacetime M contains a Cauchy hypersurface (the curve { t = c}). By 
the above theorem, so will the exterior region of the black hole. We will in 
fact show more than this. By examining the Kruskal extension of M we can 
apply Theorem 3.3.4 to the entire spacetime, interior as well as exterior. 



Chapter 4 

Existence of Maximal Geodesic 

In a Riemannian manifold two points contained in a convex set can be 
joined by a unique minimizing geodesic. In a Lorentz manifold timelike ra­
dial geodesics have the opposite feature of being the unique longest curves 
joining two points in a convex neighbourhood. A key ingredient in the proof 
of Hawking's singularity theorems is the existence of a maximal (or inex­
tendible) timelike geodesic, which will be established in this chapter. Some 
interesting connections between the causality and geometry of a Lorentz 
manifold will be developed. Albeit the proofs are a bit technical, the ex­
amples and diagrams will help illustrate some of the important ideas. We 
begin by describing a tool that is used repeatedly throughout the section, 
most notably in Lemmas 4.1.2 and 4.4.2, and Theorem 4.2.6. 

Definition 4.0.5 Let {an} be an infinite sequence of future pointing causal 
curves in M and let 9\ be a convex covering of M, i.e. a covering by convex 
sets for which U, V C 9\ implies U n V C 9\. Define a limit sequence for 
{an} relative to 9\ as a (finite or infinite) sequence p = Po < p1 < ... in M 
satisfying: 
(Ll} for each Pi there exists a subsequence {am} and for all m, numbers 
Sm0 < Sm1 < ... < Smi SUCh that 

1. limm_.00 (am(sm;)) =Pi for each j S i 

2. for each j < i the points Pi,Pi+l and the curve segments amltsm;,smi+
1

] 

for all m are contained in a single set Ci E 9\. 

(L2} if {Pi} is infinite then it is nonconvergent. If {Pi} is finite then it has 
more than one point, and no strictly longer sequence satisfies (Ll}. 

37 
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Proposition 4.0.6 ([OJ 14.8) Let { o:n} be a sequence of future-pointing 
causal curves that satisfy the conditions: 

{ii) there is a neighbourhood of p that contains only finitely many of the 
curves O:n (use the notation {o:n} """""+ p). 

Then with respect to any convex covering Vl, { o:n} has a limit sequence 
starting at p. 

Proof. There are three parts to this proof: 
1. Constructing {Pi}: Let Vt' be a locally finite covering by open sets ~ 
such that each ~ is compact and contained in a convex set in Vl. Pick 
~0 C 9l' such that infinitely many o:n's start in ~0 and leave 230 . We can 
find a subsequence with the properties Po:n(O)} -t p and {1o:n(sn)} -t Pb 
for P1 E 8~o-

Now pick a set ~1 C Vt' containing p1 . If infinitely many 1 o:~s leave ~1 
then as before there is a subsequence {2o:n} c eo:n} that converges to a 
point P2 on 8~1-

Repeat this process until we have a limit sequence of points {Pi}· Note that 
if there is more than one ~i containing Pi we will pick the one used the 
fewest times before. 

The condition (11) of Definition 4.0.5 holds with Ci any element of Vl 
that contains 23i. It follows that Pi+l >Pi since the relation ~ is closed on 
Ci and by construction Pi+1 =/=Pi· 

2. If {Pi} is infinite, we need to show it is nonconvergent. Assume 
{Pi} -t q for some q E M. Pick ~ E Vt' containing q, so that Pi E ~ for 
all but finitely many i. Since ~ is compact and Vt' is locally finite, only 
finitely many elements of Vt' meet ~. Thus there must be some ~i that was 
chosen with infinitely many Pi in its boundary by the construction in part 
1. However ~ contains almost all of the p/s and with only finitely many in 
8~. This contradicts the way we chose Pi. 



McMaster University - Mathematics 39 

3. If {Pi} is finite (p = Po < P1 < ... < Pk), only finitely many kan 
can leave ~k· Let {am} C {kan} be the subsequence of extendible curves 
trapped in ~k (see exercise below). Now, assume 

am: [0, bm] ----+ M such that am(bm)-+ q for some q E 93k 

If q = Pk then Po < . . . < Pk = q cannot be extended and still satisfy 
(Ll). On the other hand, if q i= Pk then both (Ll) and (L2) hold for 
Po < · · · < Pk < Pk+l = q. 0 

Exercise: Let o: be a causal curve contained in a compact subset of a convex open set 
in M. Show o: is extendible. Hint o: : (0, B) --+ M is extendible if for every { Si} C (0, B) 
with Si--+ B, there is a q EM such that o:(si)--+ q. 

4.1 Back to the Future? 

There are some properties of the causal structure of our universe (and any 
reasonable relativistic model for our universe) that are generally accepted. 
For instance traveling back and forth in time is something that perhaps only 
Marty McFly can do well. So, despite our dreams, it makes sense to consider 
noncompact spacetime manifolds which do not contain any closed timelike 
curves (such spacetimes are said to satisfy the chronology condition). How­
ever, we can demand even more, and consider spacetimes that satisfy not 
only the causality condition (no closed causal curves), but also the strong 
causality condition, i.e. manifolds for which there are no "almost closed" 
curves. The strong causality condition on a compact set K C M says that 
for all p E K and any neighbourhood U of p, there exists a neighbourhood 
V C U of p such that every causal curve segment with endpoints in V lies 
entirely in U. So if a curve starts arbitrarily close to a point p E M and 
leaves a fixed neighbourhood of p it cannot return arbitrarily close to p. 

Lemma 4.1.1 ([OJ 14.13} Suppose the strong causality condition holds on 
a compact subset K of M. If a is a future-inextendible causal curve starting 
inK, ·then there is an s > 0 such that a(t) ¢ K for all t 2: s. Namely, a 
will eventually leave K and never return. 
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Proof. Assume otherwise, then if a : [0, B) -+ M forB ~ oo, there is 
a sequence {si} in [0, B) with {si}-+ Band {a(si)} C K. K is compact, 
so we can find a subsequence {a(si)} that converges to a point p E K. As 
a has no future endpoint it is possible to find another sequence { ti} -+ B 
with {a( ti)} ~ p. By taking a further subsequence we can suppose there 
is a neighbourhood U of p that contains none of the a{ ti). Since both { s i} 
and { ti} converge to B they have subsequences which alternate: s1 < h < 
s2 < t2 ... 

The curves al[sk,skHl are "almost closed", and this contradicts the strong 
causality of M at p. D 

The following lemma will be used, among other things, to determine 
the length of a maximal geodesic. The proof relies on the notions of limit 
sequences and convergence of causal curves. If {Pi} is a limit sequence for 
{an} let >..i be the future pointing causal geodesics from Pi to Pi+l as in 
(L1). The future-pointing piecewise smooth causal curve>..= .L >..i is called 
the quasi-limit of {an} with vertices Pi· A piecewise smooth curve whose 
segments are geodesics will be referred to as a broken geodesic. 

Lemma 4.1.2 ([OJ 14.14} Suppose the strong causality condition holds on 
a compact subset K of M. Let {an} be a sequence of future pointing causal 
curve segments inK such that { an(O)} -+ p and { an(1)} -+ q f= p for points 
p, q E K. Then there is a future-pointing causal broken geodesic >.. from p to 
q and a subsequence {an;} C {an} such that 

Proof. By Proposition 4.0.6, we can choose a convex covering so that 
{an} has a limit sequence {Pi} starting at p. In the case {Pi} is infinite, the 
corresponding quasi-limit>.. is a future-inextendible causal curve starting at 
p. By Lemma 4.1.1 >..must leave K and never return. In particular, there is 
a vertex Pitt. K, implying all of the {an}'s must leave K and contradicting 
the hypotheses. 

Therefore the limit sequence {Pi} must be finite. It starts at p, ends at 
lim an; ( 1) = q, and has quasi-limit >... To simplify notation, write the index 
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Consider a convex set Ci. The length of the ith segment of am is at most the 
separation of its points in Ci: 

Hence, 
k 

L(am) :$ Lm = L IPm;Pmi+J 
i=O 

The vector pq and its norm jpql depend continuously on (p, q). Thus the 
sequence {Lm} converges to 2:: !PiPi+ll = L(>..). Furthermore, 

4.2 Global Hyperbolicity 

In addition to being strongly causal many reasonable models of our universe 
also appear to be globally hyperbolic. For every pair of events in the space­
time M that can be joined by a causal curve segment, there is a (maximal) 
causal geodesic joining them as well. 

Definition 4.2.1 M is globally hyperbolic provided 

(i) the strong causality condition holds 

(ii) for each p < q, J(p, q) = J+(p) n J-(q) is compact. 

It can be proved that a spacetime is globally hyperbolic if and only if it 
contains a Cauchy hypersurface. Thus, the entire future and past history of 
a globally hyperbolic manifold is predictable. Definition 4.2.1 is motivated 
by the following proposition. 

Proposition 4.2.2 (see (OJ 14.19} Forp < q, if the set J(p,q) is compact, 
and the strong causality condition holds on it, then there is a causal geodesic 
from p to q whose length is the supremum of the lengths of future-pointing 
causal curve segments from p to q. 
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Example 4.2.3 
1. Minkowski spacetime lRf : is globally hyperbolic. This follows imme­

diately from example 3.1.1 ( 1), where we saw that S = { t = c} is a Cauchy 
hypersurface. 

2. Robertson- Walker spacetime M = lR X aS : the hypersurface S(t0 ) = 
{ ( t0 , p) : p E S} with t0 constant is a Cauchy hypersurface. Since this metric 
is of cohomogeneity one, U = ~ is the velocity vector for a timelike curve 
"f. U cannot equal zero, so 'Y will never reach an extreme point and change 
direction. Therefore, S(t0 ) will be met exactly once by each inextendible 
timelike curve. Global hyperbolicity also follows from the warped product 
structure of M. 

3. Kruskal spacetime K = BxrS2
: Choosing the coordinates {T, X, e, ¢} 

( cf ex. 1.5.3) the metric of K takes the form 

32m3 

ds2 = -- exp-r/2m( -dT2 + dX2
) + r2 (d82 + sin2 e d¢2

). 
r 

Claim: K is globally hyperbolic. 
Consider the Kruskal plane B with metric ds2 = 32~3 

exp-r/2m( -dT2 + 
dX2 ). For r > 0, B is conformally equivalent to Minkowski space (ds2 = 
-dT2 + dX2

) and conformal metrics determine the same causal structure 
(since they have the same nullcone). Thus {T = c} is Cauchy and B is 
globally hyperbolic. InK = B XrS2

, the spacelike hypersurface {T = c} x 8 2 

is also Cau~hy. This follows immediately from Theorem 3.3.4, the proof of 
which uses Lemma 4.1.1 to show that an inextendible curve in B must be 
inextendible in M as well. 

Exercise: Let A be a spacelike hypersurface in the Schwarzschild exterior N. Show 
there exists an inextendible curve in the spacetime N U BL that does not meet A; BL is 
the Schwarzschild interior (or black hole). Show that N and BL are two globally hyper­
bolic spacetimes. 

Global hyperbolicity is a strong condition to place on a spacetime and it is 
not required in the singularity theorems presented in this exposition. Instead 
we need only consider subsets of M that are globally hyperbolic. 1-{ C M is 
a globally hyperbolic subset provided (i} the strong causality condition holds 
on 1-l, and (ii} if p, q E 1-{ with p < q then J(p, q) is compact and contained 
in 1-l. The subset we are interested in is the Cauchy development D(S) of 
a hypersurface S C M. The typical approach is to show first that for S 
achronal, intD(S) is globally hyperbolic. Then, using Lemma 4.2.5 below, 
one can prove the following: 
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Theorem 4.2.4 ([OJ 14.43} If S is an acausal regular hypersurface in M, 
then D(S) is open (hence globally hyperbolic). 

Lemma 4.2.5 ([OJ 14.42) An achronal spacelike hypersurface S is acausal. 

Proof. Assume there exists a future-pointing causal curve segment a 
with endpoints a(O) and a(1) in S. If a is not a null geodesic then it 
admits a fixed endpoint deformation to a timelike curve - contradicting the 
achronality of S. On the other hand if a is a null geodesic, we can find a 
timelike curve arbitrarily near a because a'(O) is not normal to S. This also 
contradicts the achronality of S. 0 

For the purposes of this project, we need not show intD(S) is globally 
hyperbolic and can thereby sidestep the proof of Theorem 4.2.4. Instead, 
we prove the following: 

Theorem 4.2.6 Let A be an acausal regular hypersurface of M. Then the 
Cauchy development D(A) of A is globally hyperbolic. 

Lemma 4.2. 7 ([OJ 14.37} If A is acausal and p E D(A), then every inex­
tendible causal curve through p meets both J-(A) and J+(A). 

Proof. By Lemma 1 of Proposition 3.2.4, n+(A) c AU J+(A), so we 
can pick a point p E AU I+(A). Let a be a past-inextendible causal curve 
starting at p with a(O) = p, a(1) « p, a(2) « p etc. We can find points 
P1, P2, ... so that a(1) « P1 « p, a(2) « P2 « P1, ... By induction, for all 
n 2:: 1, a(n) « Pn « Pn-1· Joining each Pn-1 to Pn by timelike segments 
will form a past-pointing causal curve f3 with [3(0) = p. 

In this construction, we can choose Pn close enough to a(n) that {Pn} 
does not converge (i.e. d(pn, a(n)) < ~). Ergo, f3 is an inextendible causal 
curve starting in D(A) n J+(A) c n+(A) such that each f3(s) has a point of 
a in J-(f3(s)). Every past-inextendible causal curve starting in n+(A) must 
meet A, so f3 meets A and a must meet J-(A). 

The same construction holds for past versions of these sets simply by 
reversing the time-orientation. The result follows. 0 

Proof of theorem 4.2.6. In order to show D(A) satisfies the definition 
of a globally hyperbolic set, we break this proof up into proving four claims: 

Claim 1: The causality condition holds on D(A); there are no closed 
curves in D(A). 
Assume there exists a causal loop 'Y at p E D(A). Traversing 'Y repeatedly 
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yields an inextendible causal curve i, which must meet A. But i will meet 
A repeatedly and this contradicts the acausality of A. 

Claim 2: The strong causality condition holds on D(A). 
Suppose in order to derive a contradiction, there exist future-pointing causal 
curve segments an : [0, 1] ~ M such that {an(O)} ~ p, {an(1)} ~ p, and 
every an leaves a fixed neighbourhood U 3 p. 

<.tol~<.<•l 
Let {Pi} be the future-directed limit sequence of {an} starting at p. If 
{Pi} is finite, the sequence ends at lim an(1) = p, implying p < p and 
contradicting claim 1. Therefore {Pi} must be infinite and the quasi-limit 
A future inextendible. By Lemma 4.2.7, A will enter and remain in J+(A), 
so there is a vertex PiE J+(A). There is a subsequence {am} with am(s) E 
J+(A) for s E [0, 1] (after reparametrization) so that limm_.00 am(s) =Pi· 
Since Pi =J. p, Proposition 4.0.6 applies and {aml[s,IJ} has a past-directed 
limit sequence {Pi} starting at p. If {.Pi} is finite, it ends at lim am ( s) = Pi, 
and as before this contradicts Pi > p. 

r "' 
<(.,(1) 

An infinite {Pi} has a past-inextendible quasi-limit >. that starts at p and 
meets J-(A). Consequently, for some t E [s, 1] am(t) is in J-(A). This 
contradicts the acausality of A since am is future-pointing and am(s) E 
J+(A). 

Claim 3: For p:::; q in D(A), J(p, q) is compact. 
When p = q, J(p, q) = {p} and we are done by part 1. Assume p < q and 
let {xn} C J(p,q). We need to find a subsequence of {xn} which converges 
to a point in J(p, q). 

r C: : :...~" ----=:>. \ 
• -t-l ------

' 'I'; • 

Let an be a future-pointing causal curve segment from p to q through Xn· 

Let 9l be a convex covering of M for which Ci c !.R, and Ci is compact and 
contained in a convex open set. Note, all limit sequences will be with respect 
to 9l 



McMaster University- Mathematics 45 

Suppose p = Po < P1 < ... < Pk = q is a limit sequence and {am} a 
subsequence as in (Ll) of Definition 4.0.5. There exists i < k such that for 
infinitely many m the point Xm lies on the ith segment alrsm;,smi+d of am. 

By (Ll) al!sm;,Smi+d lies in ci and hence so do the points Xm· Thus the 
sequence { Xm} converges to a point x E Ci. Since the relation ::; is closed 
on ci, Pi ::; X::; Pi+l implies p::; X::; q. Thus X E J(p, q). 

Next we must derive a contradiction to the statement: every limit se­
quence for {an} starting at pis infinite. Let .X be the corresponding quasi­
limit. We can find a subsequence {am} and (by reparametrizing) an s E [0, 1] 
so that 

Since Pi =f q we can construct a past directed limit sequence {qi} for amhs,l] 
starting at q. If {qi} is finite it ends at limam(s) = Pi, and p < p1 < 
... < Pi < ... < q1 < q is a finite limit sequence for {an} starting at p -
contradicting the statement above. 

Hence, { qi} is an infinite sequence with quasi-limit J.L. By Lemma 4.2. 7 
J.L reaches J-(A), and so there must be some qi E I-(A). This implies that 
am(s) E J-(A) for some s. This contradicts the way we chose am and the 
acausality of A. 

Claim 4: If p::; q E D(A) then J(p, q) c D(A). 
Without loss of generality, assume p < q. There are two cases: 

(i) p, q E J+(A). 
Pick a point q+ E J+(q)nD(A) c n+(A). The set N = J+(A)ni-(q+) 
is open and contains J(p, q). Let a be a past-pointing causal curve from 
q+ to some point y EN. A is acausal and y E J+(A), so a does not 
meet A andy E n+(A). Hence N c D(A). 

(ii) p E J-(A) and q E J+(A). 
Let p- E J-(p) n n-(A) and q+ E J+(q) n D(A). The set N = 
J+(p-)ni-(q+) is an open neighbourhood of J(p, q) contained in D(A). 
If x EN, let a and r be past-pointing causal curve segments from q+ 
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to x and from x to p- respectively . 
.,"""' --N-

........ -- ,. 
't r - r .... t+ 

~ ' 

---- .,. ..... ---' 
Since A C D(A) suppose x ft. A. The acausality of A implies at least 
one of the curves u, r does not meet A. If u does not, x E n+(A). If 
T does not, X E n-(A). In either case, N c D(A). 

Therefore D(A) satisfies the properties of a globally hyperbolic subset. 0 

4.3 Time Separation 

Recall from the discussion in Chapter 1 that a timelike curve a : I ---+ M can 
be reparametrized by its own "proper time" r. We can broaden this notion 
of time to describe the separation of two points in an arbitrary time-oriented 
Lorentz manifold. 

Definition 4.3.1 If p, q EM, the time separation r(p, q) from p to q is: 

sup{L(a) :a is a future-pointing causal curve segment from p to q}. 

r(p, q) = oo if the set of lengths is unbounded and r(p, q) = 0 if q ft. J+(p). 
If Sis a subset of M, then r(S,q) = sup{r(p,q): pES}. 

One can think of time separation as a dual to Riemannian distance; while 
d minimizes, r maximizes. Thus r satisfies the reverse triangle inequality, 

r(p,q) +r(q,r) ~ r(p,r) V p ~ q ~ r. 

The time separation r(p, q) represents the proper time of a slowest trip in 
M from p to q. 

Lemma 4.3.2 ((OJ 14.17) The time separation function r M x M ---+ 

[0, oo] is lower semi-continuous. 

Proof. If r(p, q) = 0, sup{ L( a)} = 0 and there is nothing to prove. 
Suppose q E I+(p) and 0 < r(p, q) < oo. Given b > 0 we want to find 
neighbourhoods U and V of p and q respectively, such that if p' E U and 
q' E V, then r(p', q') > r(p, q)- d. 
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Let a be a timelike curve as in the following diagram: 

,"';-.......... 4ll(. 

'p ' 
: P"'?- r. : 
' / 

/ 

47 

C is a convex neighbourhood of q containing the point q1 , and L( a) > 
r(p, q)- ~· 
Denote the geodesic segment from r tor' inC by [r, r']. Clearly, the length 
of [r, r'] depends continuously on the endpoints r and r'. Pick a neighbour­
hood V of q such that [q1 , q] a causal curve for every q' E V and where 
L([q1, q']) > L([q1, q])- ~· Since [q1 , q] is a geodesic, L([q1 , q]) is greater or 
equal to the length of a between q1 and q. 
A corresponding construction at the endpoint p produces a similar neigh­
bourhood U of p. The points p' E U and q' E V can be joined by a causal 
curve of length 

L = r(p',q') > L(a)- ~ > r(p,q)- 6. 

When r(p, q) = oo the same argument applies to show that for any B > 0 
there are neighbourhoods as above such that r(p', q') > B. D 

4.4 Maximal Geodesics 

We can now use some of the tools developed so far to show that for a (real­
istic) spacetime it is always possible to find a timelike geodesic of maximal 
length. 

Theorem 4.4.1 ([OJ 14.44) LetS be a closed achronal spacelike hypersur­
face in M. If q E D+(S) then there exists a geodesic "Y from S to q of length 
r( S, q). Hence, "Y is normal to S and has no focal points of S before q. h 
is timelike except in the trivial case q E S). 

Outline of proof: The time separation function T is continuous on the 
compact set of points J-(p) n n+(S) and hence attains a maximum at 
a point p E S. To determine a curve with this maximum length, find a 
sequence of causal curves whose lengths approach r(p, q). The quasi-limit 
of this sequence will have length equal to r(p, q). 

Prior to the proof, we establish two important lemmas. 

Lemma 4.4.2 ([OJ 14.40} For Sand q as in Theorem 4.4.1, the set J-(q)n 
n+(S) is compact. 
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Proof. If q E S, there is nothing to show. 
Suppose q E J+(S) n D(S), and let {xn} be an infinite sequence in J-(p) n 
n+(S). Let an be a past-pointing causal curve segment from q to Xn· If 
any subsequence of { xn} converges to q we are done. Otherwise, there is a 
past-directed limit sequence { qi} for {an} starting at q. If { qi} is infinite, 
it is nonconvergent by definition. Thus there must be some Xn E J-(s), 
contradicting the choice of {xn}· On the other hand, if {qi} is finite, we can 
find a subsequence {xm} C {xn} converging to x E J-(q). 

,. 
/ 

Let u be a timelike curve from q+ E n+(S) n J+(q) to x. If u meets S then 
either x E 8 C D+(S) or x E J-(S) (which implies there is an Xn E J-(S)). 
If u avoids s, then X E n+(S). 0 

Lemma 4.4.3 ((OJ 14.21) IJU is an open globally hyperbolic set and q E U, 
then the function x t-+ r(x, q) is continuous on U. 

Proof. Previously we proved T is lower semi-continuous, so it suf­
fices to show that T is upper semi-continuous. Suppose T is not upper 
semi-continuous at the point (p, q) E U x U. Then there is a 8 > 0 
and sequences {Pn} and { Qn} that converge to p and q respectively, with 
r(pn, qn) 2:: r(p, q) + 8. Since r(pn, Qn) > 0 we can find a causal curve seg­
ment an with L(an) > r(pn, Qn)- ~· U is open, so it contains points p- « p 
and q+ » q such that {Pn} C J+(p-) and {qn} C I-(q+). Thus an is 
contained in the compact set J(p-, q+). By Lemma 4.1.2 the quasi-limit .A 
satisfies 

lim L(am) S L(.A). 
m--+0 

Then L(an) > r(pn, Qn)- ~ 2:: r(p, q) + 8- ~· Applying Lemma 4.1.2 again 
gives 

L(.A) 2:: limn ..... oL(an) 2:: r(p, q) + 8, 

contradicting the definition ofT. 0 

Remark 4.4.4 The argument in the proof of Lemma 4.4.3 is similar to the 
one required to prove Proposition 4.2.2. As an exercise, prove Proposition 
4.2.2. 
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Proof of Theorem 4.4.1. Consider the set J-(q)nS. By Lemma 4.4.2 
J-(q) n S is compact. Lemma 4.4.3 applies to the globally hyperbolic set 
D( S), asserting that x ~---+ r( x, q) is continuous on J- ( q) n S and takes a 
maximum value at a point p E S. This maximum value is r(p, q) = r(S, q). 
Let {an} be future pointing causal curve segments from p to q whose lengths 
approach r(p,q). {an} C J(p,q) and by Lemma 4.1.2 there exists a broken 
geodesic 1 from p to q with L('Y) = r(p, q). If 'Y breaks, there is a longer 
causal curve from p to q, hence 'Y must be unbroken. 

If q ~ S then p « q implies L( 'Y) = r(p, q) > 0. Thus 'Y is timelike (if 'Y 
were a null geodesic, there would be a fixed endpoint deformation of 'Y to a 
timelike curve with longer length). 

To prove 'Y is normal to S look at the First Variation Formula for a fixed 
endpoint variation x of an unbroken geodesic: 

L'(O) = -€ 1b ('Y", V) du- :_ L (~!'(ui), Vi)+:_ (1', V) 1g 
c 0 c c 

Clearly 1" = 0 and ~'Y'(ui) = 0. For variations with two fixed endpoints 
V(O) = V(b) = 0. Therefore L'(O) = 0. Now let x be a fixed endpoint 
variation from S to q with variation vector field J(t), where J(O) E Tp(S). 
Then 0 = L'(O) = ('Y', J(O)) and 1 is orthogonal to S. 
It follows from Theorem 2.1.1{2) that 'Y has no focal points. D 

Example 4.4.5 Timelike Radial Geodesics in Schwarzschild Spacetime. 
Recall the metric for Schwarzschild spacetime: 

ds2 = - ( 1 -
2~) dt2 + ( 1 -

2~) -l dr2 + r 2 
( dfP + sin2()d¢2

). 

In this example we parametrize an inextendible timelike radial geodesic with 
zero angular momentum by the affine parameter proper time and show that 
it is incomplete (inextendible with finite length). Relativistically, the ex­
ample illustrates how a material particle will appear to a distant observer 
to take an infinite amount of time to reach the horizon ( r = 2m) of the 
Schwarzschild black hole, while by its own proper time crossing the horizon 
and reaching the singularity (r = 0) in finite time. 

Without loss of generality let () = 1r /2 and consider the geodesics that lie 
in this equatorial plane. A timelike geodesic parametrized by proper time 
satisfies the equation: 
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We can rewrite equation ( 4.1) by considering the constants of motion: 

E = (1- 2m) dt and L = r2 d</> 
r d-r d-r 

([WJ p. 139). L is the angular momentum of a particle and by assumption 
is equal to zero. Substituting into equation ( 4.1) gives 

( ~~ r = 
2~ _ ( 1 _ E 2

). (4.2) 

To determine an expression for T we can rearrange ( 4.2) and integrate. 

Jd-r = j dr 
J2r; - (1- E2) 

_ j rdr 

J1 - E2 J 1:_7£2 r - r 2 

1 J rdr 
= J1 - E2 . f(&)2 _ (r _ _!!!_)2 y 1-E 1-E2 

To simplify the calculation, let a = 1~2 and make the substitution r - a = 
acos'l/J. The integral now becomes: 

T = 

= 

= 

1 j a(1+cos'l/J) (-asin'l/l)d'l/1 
J1- E 2 y'a2(1- cos2'1/J) 

-
1 j a(1 + cos'l/J)d'l/1 

J1- E2 

a (-'1/1- sin'I/J) 
v1-E2 

- (1- E2~J1- E2 (- '1/J +sin(-'1/1)) 

- (l _ ~2)3/2 (77 +sin 77) (4.3) 

It is convenient to write T and r in terms of 17 as in ( 4.3) and as in our 
substitution for r = 1~2 (1 +cos 77) = 1~2 cos2 ~77 ( 4.4) because it allows 
us to easily see what happens to T as r approaches 0 and 2m. Specifically, 
as r---+ 2m, ry--+ 11H = 2sin-1 E and at r---+ 0, 7}---+ 7}o = 1r. This indicates 
the following effect on -r: 
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As 

and as m 
r ---7 0, T ---7 To = (1 - E2)3/2 7r < oo. 

To see the effects on t as r approaches the horizon we would like to 
express t as a function of ry. Taking similar steps to the above and using 
(4.4) we determine 

dt Ecos2lry -= 2 
dr cos2 ~1} - cos2 ~'f/H 

Apply chain rule to get: 

dt E (cos4 ~'TJ) m 

dry = (1 - E2)3/2 ( cos2 ~'TJ- cos2 ~'TJH) 

This can be integrated to yield 

Em [1 . 2 ] [tan ~'f/H +tan ~'f/] t= ( E 2)312 -
2

(ry+smry)+(1-E )ry +2mln 1 1 1 - tan21JH - tan 2ry 

[C]. As rJ ---7 'f/H one can see that t ---7 oo. 



Chapter 5 

Singularity Theorems 

We now have the tools required to state and prove Hawking's singularity 
theorems. The main focus will be on the theorems which affirm the exis­
tence of incomplete timelike geodesics in a spacetime with nonnegative Ricci 
curvature. Two theorems by Penrose and Penrose-Hawking are presented 
(without proof) in an attempt to acquaint the reader with some of the ear­
liest singularity theorems designed to show the existence of a black hole 
singularity. A theorem by Birkhoff is also mentioned. It shows that locally 
the Schwarzschild solution is the only C2 solution of the Ricci flat Einstein 
field equation that is spherically symmetric. 

5.1 Hawking's Theorems 

Definition 5.1.1 LetS be a spacelike hypersurface in M with future-pointing 
unit normal U and mean curvature vector field H. The future convergence 
k of Sis the real-valued function 

1 
k = (U, H)= --

1 
trace lis. 

n-

Remark Recall from example 1.5.1 the general evolution equation for a 
Robertson-Walker model of our universe: 3a"/a = -47r(p + 3p). Provided 
p > 0 and p ~ 0 (a" < 0), this equation predicts that the universe is not 
"standing still". Consequently, it is either always expanding (a'> 0) or con­
tracting (a' < 0) (though there may be an exception at the instant of time 
when expansion changes to contraction). This expansion can be explained 
by the spacelike Cauchy hypersurface S(t0 ) = {(t0 ,p): pES, t0 constant} 

52 
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having negative past convergence, i.e. k = (U, H) < 0 when U is past­
pointing. These hypersurfaces bend outwards as time keeps on ticking into 
the future, and the distance between galaxies (which travel on timelike geo­
desics) is extended. Likewise, as one goes backwards in time and the rate of 
expansion gets faster (a" < 0, a' > 0) the distance between galaxies is much 
less. Thus, general relativity predicts that at a finite time ago the universe 
was singular; the big bang. Some physical evidence for expansion comes from 
the observed cosmological redshift of light emitting from distant galaxies. At 
the time of emission, the wavelength of light is assumed to be the same for 
each galaxy. However as light travels long distances through space toward 
an earthbound observer the universe expands and the wavelengths elongate. 
The observed light is shifted toward the red end of the spectrum (hence the 
name redshift). 

Theorem 5.1.2 ([OJ 14-55A) Suppose Ric(v, v) ~ 0 for every timelike tan­
gent vector to M. Let S be a spacelike future Cauchy hypersurface with future 
convergence k 2:: b > 0. Then every future-pointing timelike curve starting 
in S has length at most t. 

Proof. Consider the chronological future of S, J+(S). It is the set of 
points for which there is a future pointing timelike curve that starts in S. 
The objective is to show J+(S) c {p E M: r(S,p) :::; H since r(S,p) by 
definition is the supremum of the length of all future pointing causal curves 
from Stop. By Theorems 4.4.1 and 2.1.2, n+(S) c {p EM: r(S, q):::; H· 
This follows as there is a normal timelike geodesic 1 from S to any point 
q E n+ ( S) that has no focal points before q and whose length L( 1) = r( S, q). 
Furthermore, L( 1) :::; t (otherwise there would be focal points along 1 before 
q). 

J+(s) c n+(s) follows immediately from the fact that s is a future 
Cauchy hypersurface and hence satisfies J+(S) c n+(S). Recall, J+(S) = 
intJ+(S). D 

In some versions of Theorem 5.1.2, M is required to be globally hyper­
bolic. This places undesirable and stringent conditions on the global struc­
ture of M. While the hypothesis of a future Cauchy hypersurface is not as 
restrictive, it is a strong condition nonetheless. Hawking strengthened the 
above theorem by removing any condition on the global causality of M. 

Theorem 5.1.3 ([Hj p. 192) M cannot be timelike geodesically complete 
if: 
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1. The energy momentum tensor obeys the inequality, Tabwawb ? twawaT 
for any timelike vectorwa. (This is satisfied by a perfect fluid of density 
p and pressure p if p + p ~ 0, p + 3p ~ 0.) 

2. There is a compact, imbedded, three-dimensional, spacelike submani­
fold S (i.e. S is a compact spacelike hypersurface without edges). 

3. The contraction of the second fundamental form of S is either every­
where positive or everywhere negative. (This means that the unit nor­
mals to S are everywhere diverging or everywhere converging.) 

The version of Hawking's Singularity Theorem that we will prove has 
been refined slightly and appears in [OJ. 

Theorem 5.1.4 ((OJ 14.55B) Suppose Ric(v,v) ~ 0 for every v E TM. 
Let S be a compact spacelike hypersurface with future convergence k > 0. 
Then M is future timelike incomplete. 

Proof. We may suppose S is connected. Let b > 0 be the minimum of 
k on S. 
Claim: There exists an inextendible future-pointing normal geodesic start­
ing in S that has length :S t. 
Without loss of generality, assume that S is achronal. It is always possible 
to find a covering of Lorentz manifolds 1r : M - M such that S C M is 
achronal and isometric to Sunder 1r. By Lemma 4.2.5 an achronal hyper­
surface is acausal and thus, as in Theorem 5.1.2, 

1 
D+(S) C {p EM: r(S,p) :S b}. 

There are two cases to consider: either (i) the future Cauchy horizon of 
S is empty, H+(S) = 0, or (ii) H+(S) =I= 0. If the former holds, S is a 
future Cauchy hypersurface and Theorem 5.1.2 applies. Consider case (ii) 
and assume for contradiction that M is timelike complete. We will need 
some lemmas. 

Lemma 1: If q E H+(S) there exists a normal geodesic from S to q of 
length r(S, q) :S t· 
Let { qn} be a sequence of events in n+ ( S) that converge to q. For each 
qn there is a normal geodesic that starts in S and has length r(S, qn) :S t· 
Define the set B in the normal bundle N S of S as 

1 
B = {v ENS: v = 0 or vis future pointing with lvl :S b}. 
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It is a compact set since S is. The normal exponential map exp.l : N S ---t M, 
which takes v ~---+ '"Yv(1), where/vis a geodesic with ~~(0) = v, acts on Bin the 
following way: for every qn there is a vector Vn E B such that exp.l(vn) = qn. 
Since B is compact, { vn} converges to some vector v E B, and by continuity, 
{qn} converges to exp.l(v) = '"Yv(1). Thus '"Yv(1) = q. 

By construction, T(S, qn) = lvnl converges to Jvl ~ t· The map p ~---+ 
T(S, p) is lower semi-continuous, so Jvl ~ T(S, q). In fact, by the premise 
that M is complete, the two are equal. The geodesic /v is defined on [0,1], 
and therefore T(S, q) = L(lv) = Jvl ~ t· 

Lemma 2: q ~---+ T(S, q) is strictly decreasing on past-pointing generators 
of H+(S). (cf Proposition 3.2.4) 
Let a : I ---t M be such a generator and let s < t be in I. By Lemma 1 there 
exists a past-pointing timelike geodesic a with L(a) = T(S, a(t)). a is null 
and the broken causal curve al!s, tJ +a can be lengthened by a small fixed 
endpoint deformation so that, 

T(S, a(s)) > L(aJr8 , tJ +a) ~ L(a) = T(S, a(t)). 

Now, returning to the proof of the theorem, we derive the contradiction. 
By assumption M is (timelike) complete, so exp.l : NS ---t M is defined 
on all of B. Since H+(S) is closed and contained in the continuous image 
of the compact set B, H+(S) is compact. When restricted to H+(S), the 
lower semi-continuous map p ~---+ T(S,p) will take on a finite minimum at 
some point. This contradicts Lemma 2, since there is a generator extending 
pastward from each point of H+(S). Therefore /v is inextendible. 0 

Example 5.1.5 The big bang 
Consider the Robertson-Walker model of a fiat, dust-filled universe: 

This is the warped product M = lR Xa S with nonzero warping function 
a = (3t)213 . In Example 4.2.3(2), we saw that the hypersurface S(t0 ) is 
Cauchy, thus we can apply Theorem 5.1.2 to demonstrate a singular state 
in the spacetime M. 

(i) Ric(U, U) ~ 0. 
Let U = -Ot be a past-pointing unit normal on S(t0 ). Ric(U, U) = 
-3a" fa (cf ex. 1.5.1), which by the Remark above is non-negative. 
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Explicitly: 

Ric(U, U) 
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- ( -3) ( -2/9)(3t)~ 
(3t)i 

- ~(3t)-2 
3 

> 0 

(ii) U is past-pointing, so the past convergence k = (U, H) should be 
negative. 
Since S(t0 ) is a hypersurface, the mean normal curvature vector can 
be calculated from 

where e1 , e2 , e3 is an orthonormal basis for Tp(S). Recalling example 
1.5.4, I I(X, Y) = (X, Y) (a' Ja)U, for all X, Y E Tp(S). Thus, 

(2/3)(3t)-113 

- (ei,ei) (3to)2/3 U 

- ~(t0 1 )U. 
9 

Inputting this into the formula for past convergence yields: 

Thus t = 0 is a physical singularity of M. 

Example 5.1.6 The Schwarzschild Black Hole 
In this application of Theorem 5.1.2 we consider the interior region (r < 

2m) of the Schwarzschild black hole with metric 

ds2 = -(1-
2
m)dt2 + (1-

2
m)-1dr2 + r 2 (d02 + sin2 e d¢2). 

r r 
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As one may infer from the metric when 0 < r <2m, Or is a future-pointing 
timelike vector. Since the Schwarzschild model of a spacetime is Ricci flat, 
to apply Hawking's theorem we need to verify (i) E = {r = constant} is 
a Cauchy hypersurface, and (ii) the future convergence k of E is positive. 
To do this we use the Kruskal null coordinates ( u, v, e, ¢) for the extension 
K = B X r S2

. The metric takes the form null coordinates ( u, v' e' ¢) for the 
extension K = B x r S2 . The metric takes the form 

Recall from Chapter 1 the relationship between coordinates (r-2m)er/2m-l = 
uv. The spacelike hypersurface E in the black hole (interior) region coincides 
with the hypersurface { uv = -c, c > 0} x S2 c K. 

(i) { uv = -c, c > 0} x S2 is a Cauchy hypersurface. 

By Theorem 3.3.4 it is enough to show that { uv = -c} is Cauchy in B. 
This can be visualized by considering the region v > 0 in the uv-plane . ., 

, .. _J) \l .. ~ 
------~~r~=z=~----~4~ 

The curves uv = -c form hyperbolas as depicted in the diagram except 
that r = 2m gives the coordinate axes. Every particle (material or 
light like) in the interior region moves inward toward the singularity 
([0] 13.30), and so every curve {uv = -c} will be intersected by both 
of the future-pointing null vectors Ov and -Ou. Thus, {uv = -c} is a 
Cauchy hypersurface by definition. 

(ii) k = (H, v) > 0, where v is the future-pointing unit normal on E. 
The orthonormal frame for E is given by 

1 
e1 = (vov- uou), 

v-2uvF 

and the future-pointing unit normal is 

1 
v = ..j (vov + uou)· 

-2uvF 
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In order to determine k, we may compute 

1 3 -

k = 3 L (\7e;ei, v) 
i=l 

Recalling example 1.5.4, we first consider 

-1 
- - (gradr, v) 

r 
-1 

J (vov + UOu, VOv + UOu) 
4mr -2uvF 
J-2uvF 

= 
4mr 

Similarly, 

-1 
- - (gradr, v) 

r 
vt---=2-u-v p= 

4mr 

Then, 

(\7elel,v) - (-2u~F)312 (\7vav-ua,.(v8v- UOu),vov + uou) 

-1 -
= ( _ 2uvF)3/2 ( VOv - UOu, \7 v8v+u8..( VOv - UOu)) 

1 -
= (-2uvF)3/2 \7v8v+ua..(uvF) 

uv ( oF oF) 
= (-2uvF)312 2F + v ov + u ou 

To compute ~ + ~~ recall from example 1.5.3, F( u, v) = h( r) = 
8r;2

e1-r/2m and uv = f(r) = (r- 2m)er/2m-l. Then~~= h'(r)~: = 

u ~;~~~ and similarly for 0::. Substituting these into the above equality 
gives 

= uv ( h'(r)) 
( -2uvF)3/2 2F- 2uv f'(r) 

1 (- 1 + uv el-r/2m (2m+ r)) 
J-2uvF r2 
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Finally, the future convergence of ~ is: 

3m- 2r 
3r312vf2m- r 

0 "d d 3m > prov1 e r < ~-

Therefore for a small enough value of r it is possible to find a Cauchy hy­
persurface whose future convergence is positive. Hence, r = 0 is an actual 
singularity rather than a coordinate singularity as r = 2m is. 

5.2 Penrose-Hawking Theorems 

The previous two theorems establish the existence of spacetime singulari­
ties in a broad cosmological context. The results by Penrose and Penrose­
Hawking examine specifically the case of a black hole singularity. The reader 
is directed to [HE] for their proofs. 

Penrose's theorem ascertains sufficient conditions for the existence of 
singularities in a context relevant to complete gravitational collapse without 
any assumption of symmetry. The criterion used by Penrose to generalize 
models such as Schwarzschild's is the possession of a trapped surface by a 
spacetime M. 

Definition 5.2.1 A spacelike submanifold of M is called a trapped surface 
provided its mean curvature vector field H is past-pointing. 

Lemma 5.2.2 Let P be a spacelike submanifold of M with codimension 2: 2. 
The following are equivalent: 

1. k(v) = (H, v) > 0 for all future-pointing null vectors v normal toP. 

2. k(w) = (H, w) > 0 for all future-pointing causal vectors w normal to 
P. 

3. H is past-pointing timelike. 
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Typically in spacetime models the trapped surface is S2
, though this 

need not be the case. A strictly causal definition of a trapped surface is 
given in [WJ. Intuitively, it describes the surface as being in such a strong 
gravitational field that even the "outgoing" lightrays (null geodesics) are 
dragged back toward the singularity. Since nothing can travel faster than 
light, the material particles are also trapped and forced into surfaces of 
smaller and smaller area. 

Theorem 5.2.3 {Penrose) Let M be a globally hyperbolic spacetime with 
noncompact Cauchy hypersurface S. Suppose Ric( v, v) :2: 0 for all null 
vectors tangent to M. Suppose further that M contains a closed achronal 
trapped surface T with codimension 2. Then M is future null incomplete. 

The unwanted condition that M is globally hyperbolic can be eliminated 
with some additional assumptions as in the theorem by Penrose-Hawking 
below. 

Theorem 5.2.4 (Penrose-Hawking) Suppose a spacetime satisfies the fol­
lowing 4 conditions: 

1. Ric( v, v) :2: 0 for all timelike and null vectors. 

2. The generic condition is satisfied, i.e. every non-spacelike geodesic 
contains a point at which 

where U is the tangent vector to the geodesic. 

3. The chronology condition holds on M (no closed timelike curves). 

4. At least one of the following properties hold: 

i) M contains a compact achronal set without edge, 

ii) M contains a closed trapped surface, 

iii) there existsp E M such that the future convergence of future­
directed null geodesics emanating from p is positive. 

Then M is timelike or null incomplete. 
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Remark. Items 4(i) and 4(ii) are a bit redundant given the definition 
of trapped surfaces used here. However the purely causal definition offered 
in [W] and [HE] seems to be the popular choice among physicists and it 
does not make any claims about future convergence. Either definition can 
be used to satisfy the theorem. 

Example 5.2.5 Trapped Surfaces in Schwarzschild Black Hole. 
For the future-pointing null vector -VOu the future convergence of S 2 is 

Therefore 52 is a trapped surface in K. 

Exercise: Verify that the Schwarzschild black hole satisfies the generic condition. 

5.3 Birkhoff's Theorem 

Schwarzschild's exact solution to Einstein's field equations was the first to 
demonstrate properties of a spherically symmetric spacetime. His work was 
elaborated on by Birkhoff, who in 1923 proposed that any Ricci flat spheri­
cally symmetric spacetime is locally equivalent to the Schwarzschild model. 
As stated in [HE], 

Theorem 5.3.1 (Birkhoff) Any C2 solution of Einstein's empty space equa­
tions which is spherically symmetric in an open set V, is locally equivalent 
to part of the maximally extended Schwarzschild solution in V. 

The proof in [HE] considers an open neighbourhood of an event in an arbi­
trary spherically symmetric spacetime with metric of the form 

-dt2 

ds 2 = + X 2 (t r)dr2 + Y 2 (t r)(dfP + sin2 
() d""2

) F2 (t, r) ' ' 'fJ • 

For this open set, one can write Einstein's field equations as a system of dif­
ferential equations in F, X, and Y, and then for a Ricci flat solution, derive 
the Schwarzschild metric as in (5.1.6). 
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Exercise: A stationary Ricci flat solution to Einstein's field equation need not be 
spherically symmetric. The Kerr metric 

+ 

where :E = r 2 + a2 cos2 e 
n r 2 + a2 + e2 

- 2mr 

and e, a, and m are parameters, is the only known axisymmetric, stationary solution of 
Einstein's vacuum field equation. 

(i) Show that the Kerr metric reduces to the Schwarzschild solution when e =a= 0. 

(ii) Determine when the singularities of the Kerr solutions exist and whether or not 
they are true physical singularities. Hint use the curvature invariant ~i kl Rii kl. 

(iii) Determine the trapped surface of the Kerr black hole. Hint a change in coordinates 
may be helpful, see [HE]. 
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