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Abstract 

Clustering involves partitioning a given data set into several groups. 

based on some similarity/ dissimilarity measurements. Cluster analysis has 

been widely used in information retrieval, text and web mining, pattern recog­

nition, image segmentation and software reverse engineering. 

K-means is the most intuitive and popular clustering algorithm and 

the working horse for clustering. However, the classical K-means suffers from 

several flaws. First, the algorithm is very sensitive to the initialization method 

and can be easily trapped at a local minimum regarding to the measurement 

(the sum of squared errors) used in the model. On the other hand, it has been 

proved that finding a global minimal sum of the squared errors is NP-hard even 

when k = 2. In the present model forK-means clustering, all the variables are 

required to be discrete and the objective is nonlinear and nonconvex. 

In the first part of the thesis, we consider the issue of how to derive an 

optimization model to the minimum sum of squared errors for a given data 

set based on continuous convex optimization. For this, we first transfer the 

K-means clustering into a novel optimization model, 0-1 semidefinite program­

ming where the eigenvalues of involved matrix argument must be 0 or 1. This 

provides an unified way for many other clustering approaches such as spec­

tral clustering and normalized cut. Moreover, the new optimization model 
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also allows us to attack the original problem based on the relaxed linear and 

semidefinite programming. 

Moreover, we consider the issue of how to get a feasible solution of 

the original clustering from an approximate solution of the relaxed problem. 

By using principal component analysis, we construct a rounding procedure 

to extract a feasible clustering and show that our algorithm can provide a 2-

approximation to the global solution of the original problem. The complexity 

of our rounding procedure is O(nk
2
(k-l)/2 ), which improves substantially a 

similar rounding procedure in the literature with a complexity O(nk
3

/
2 ). In 

particular, when k = 2, our rounding procedure runs in 0( n log n) time. To the 

best of our knowledge, this is the lowest complexity that has been reported in 

the literature to find a solution to K-means clustering with guaranteed quality. 

In the second part of the thesis, we consider approximation methods 

for the so-called balanced hi-clustering. By using a simple heuristics, we prove 

that we can improve slightly the constrained K-means for hi-clustering. For 

the special case where the size of each cluster is fixed, we develop a new 

algorithm, called Q-means, to find a 2-approximation solution to the balanced 

hi-clustering. We prove that the Q-means has a complexity O(n2 ). 

Numerical results based our approaches will be reported in the thesis 

as well. 
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Chapter 1 

Introduction 

In this chapter, we first give a overview of the clustering analysis and the 

prevailing clustering methods, and then we introduce the so-called constrained 

clustering, which is one of the focuses of this thesis. 

1.1 What is Clustering Analysis? 

Clustering analysis is an important technique in the rapidly growing field 

known as exploratory data analysis and is being applied in a variety of en­

gineering and science disciplines. Typically classified as a subfield of data 

mining, as data mining itself, clustering analysis has its own multidisciplinary 

nature, it has been widely studied by experts in a number of research commu­

nities, including machine learning, statistics, social science, optimization and 
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computational geometry [21]. 

More formally, the clustering problem describes the problem where the 

goal is to partition a given set of n entities (also known as patterns or points 

etc.) S = { s 1 , · · · . sn} into several groups based on how similar/ dissimilar 

they are, such that entities within the same group are similar to each other 

and entities that belong to two different groups are dissimilar to some extent. 

An example of clustering is depicted in Figure 1.1. The input entities are 

shown in Figure 1.1(a), and the desired clusters are shown in Figure 1.1(b). 

Here, entities belong to the same cluster are given the same label. 

y 
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Figure 1.1: Data Clustering. 
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It is important to stress the difference between clustering (unsupervised 

classification) and discriminant analysis (supervised classification). In super­

vised classification, some predefined labels are available for the data sets, and 

a collection of already labeled entities are given (known as training set); the 

task is to classify a newly encountered, yet unlabeled, pattern into one of the 

predefined groups associated with the labels. Typically, the training set is used 

to learn a classification scheme which in turn is used to label or predict a new 

pattern's group. However, in the case of clustering, the task is to group a given 

collection of unlabeled patterns into meaningful clusters. In a sense, labels are 

associated with clusters too, but these category labels are data driven; i.e., 

they are learned solely from the data. 

Clustering techniques have been applied to a wide variety of research 

problems. It also plays an important role in solving many engineering and 

practical problems. We will list some of them following, it is by no means 

exhaustive though. 

• Medicine: Clustering diseases, cures for diseases, or symptoms of dis­

eases can lead to very useful taxonomies [60]. 

• Archeology: Researchers have attempted to establish taxonomies of 

stone tools, funeral objects, etc. by applying cluster analytic techniques 

[60]. 

3 



Master Thesis - Y. Wei -McMaster- Computing and Software 

• Image segmentation: Different clustering algorithms are used to ob­

tain segment labels for each pixel of a image, in order to identify potential 

classifications image pixels [49]. 

• Information retrieval: A knowledge-based clustering scheme can usu­

ally enhance the efficiency of information retrieval greatly [21]. 

• Market analysis: In market analysis, clustering analysis is often used 

in Market Segmentation, which describes the division of a market into 

homogeneous groups which will respond differently to promotions, com­

munications, advertising and other marketing mix variables [28]. 

• Software reverse engineering: Software system evolve over time and 

their original design is constantly being modified to reflect the results of 

a series of corrective, perfective, or enhancing maintenance activities. in 

this context, architectural recovery is a key activity in supporting mainte­

nance tasks such as re-engineering, objectification or restructuring. This 

discipline is the so-called software reverse engineering. Clustering tech­

niques could be applied to extract the components or subsystems of the 

legacy system, it is believed in [47] that partition clustering is the suit­

able way for the recovery of cohesive subsystems in order to obtain higher 

quality design for the system. A more comprehensive review about this 
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field could be found in [58]. 

Since, in all the above-listed cases, there is little prior information (e.g., 

statistical models) available about the data, and the decision-maker must make 

as few assumptions as possible about the data. It is under these restrictions 

that clustering methodology is particularly appropriate for the exploration of 

interrelationships among the data entities to extract an assessment of their 

structure. [28] gives an excellent summary about the various circumstances 

where clustering analysis could be applied. 

1.2 Similarity Measures 

Similarity is fundamental to the definition of a cluster, together with feature 

selection, it is the first step in a clustering analysis task. It is of essence 

that how the distance between two patterns are defined in the feature space. 

Therefore, we list some typical similarity measures that are commonly used in 

practice, it can roughly be divided to two categories: distance and measure. 

1.2.1 Distance 

The similarity of two patterns can simply be measured by distance between 

them, there are a number of distances which could be used to measure the 
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similarity of the patterns: 

• Minkowski Distance 

Minkowski Distance is defined by 

d 

dp(si, Sj) = (L(sit- Sjt)P) 11P 
t=l 

where the Si and Sj represent the entities in the data set. 

Minkowski distance is the generalization of several well-known distances, 

if p = 1, it is the 'City block' distance; If p = oo, it is also know as 

Chebyshev distance. When p = 2, it is just Euclidean Distance: 

d 

d2(si, sj) = (L(sit- Sjt)
2

)
112 

t=l 

• Lance Distance 

• Mahalanobis Distance 

Since the linear correlation among entities can distort distance measures, 

it could be alleviated by applying a whitening transformation to the data 

or by using the squared Mahalanobis distance 

6 
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where the entities si and Sj are assumed to be row vectors, and I: is 

the sample covariance matrix of the patterns or the known covariance 

matrix of the pattern generation process; dM assigns different weights to 

different feature based on their variances and pairwise linear correlations. 

1.2.2 Measure 

The similarity of two patterns can also be measured by measures instead of 

distance. In what follows, we will give an example of the measures. 

• Czekanowski Coefficient 

1 
_ 2 L:~=l min( sit, Sjt) 

2:~= 1 (sit + Sjt) 

Another common measure is association-based similarity, emerging in 

relationship-based Clustering, one typical example is Jaccard similarity, for an 

introduction in more details, we refer to [52]. 

Among the various distance or measure metrics above, Euclidean Dis-

tance is nevertheless the one that is most widely adopted in practice, especially 

in the so-called minimal sum-of-squared criterion (MSSC), where the sum of 

squared Euclidean distance from each entity to its assigned cluster center is 

minimized. MSSC is the most intuitive and broadly used criterion for numer-
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ous clustering algorithms [28]. 

1.3 Clustering Algorithms 

The main task of clustering analysis is to organize data by abstracting under­

lying structure either as a grouping of individuals or as a hierarchy of groups. 

It follows naturally that clustering methods can be grouped into one of two 

main categories: partitioning methods or hierarchical methods, depending on 

the strategies used in clustering. 

In hierarchical clustering, an objective function is used locally as the 

merging or splitting criterion. In general, hierarchical algorithms can not pro­

vide optimal partitions for their criterion. To the contrast, partitional methods 

assume given the number of clusters to be found and then look for the optimal 

partition based on the objective function. The most important distinction 

between hierarchical and partitional approach is that hierarchical methods 

produce a nested series of partitions while partitional methods produce only 

one. Most partitional methods can be further classified as deterministic or 

stochastic, depending on whether the traditional optimization technique or a 

random search of the state space is used in the process. Figure 1.2 from [28] 

gives a good taxonomy for the different methods for clustering analysis. 

We will give a brief review about the these two main approaches in the 
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Figure 1.2: A taxonomy of clustering approaches. 

remaining part of this section. To make it concise, the review focuses on the 

existing approaches that are related to the work in this thesis. For a more 

comprehensive survey for all these clustering methods in Figure 1.2, we refer 

to [28]. 

1.3.1 Hierarchical Clustering Methods 

A hierarchical method yields a dendrogram representing the nested grouping 

of the pattern and similarity levels at which grouping changes. When there is 

a natural hierarchical structure underlying in the data, gene expression data 

in bioinfomatics for instance, hierarchical method is spontaneously the right 

algorithm to resort to. 
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There are mainly two categories of the hierarchical methods in terms of 

the way to construct the dendrogram: agglomerative or divisive. For the ag­

glomerative approach, every pattern is treat as a single cluster in the beginning 

and it is agglomerated with other patterns to form a higher level cluster, until 

some stopping criterions are met. The divisive approach works in the reverse 

way, the whole data set are perceived as on cluster at first and is divided into 

two clusters, namely hi-clustering at each step to from a hierarchical structure. 

There are two local criterions for merging or splitting in the hierarchi­

cal clustering algorithms: single-link [50] or complete-link [40; 56]. These two 

criterions differ in the way they characterize the similarity between a pair of 

clusters. In the single-link method, the distance between two clusters is the 

minimum of the distances between all pairs of patterns drawn from the two 

clusters (one pattern from the first cluster, the other from the second). In 

the complete-link algorithm, the distance between two clusters is the maxi­

mum of all pairwise distances between patterns in the two clusters. In either 

case, two clusters are merged to form a larger cluster based on minimum dis­

tance criteria. It has been observed that the complete-link algorithm produces 

tightly bound or compact clusters [4]. The single-link algorithm, by contrast, 

suffers from a chaining effect [41]. It has a tendency to produce clusters that 

are straggly or elongated. Figure 1.3 and Figure 1.4 gives an illustration of 

10 



Master Thesis - Y. Wei -McMaster- Computing and Software 

hierarchical clustering by single-link criterion. The dendrogram can be bro-

ken at different levels to yield different clusterings of data. Figure 1.4 can be 

interpreted either as agglomerative, if constructed bottom-up, or divisive if 

constructed top-down. 

Figure 1.3: Points falling in three clusters. 

In terms of algorithms design, one famous agglomerative clustering al-

gorithm is in [56], Ward constructed an agglomerative approach has a com-

plexity of 0( n2 log n) where n is the number of entities, based on the MSSC 

criterion. In general, divisive hierarchical clustering is more difficult, however, 

in low dimension, Hansen provided an algorithm running in 0( nd+llog n) time 

in [23], where d is the dimension of the space to which the entities belong. 

11 
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Figure 1.4: The dendrogram obtained using the single-link algorithm. 

1.3.2 Partitioning Clustering Methods 

A partitional clustering algorithm obtains a single partition from the data set. 

It is used when the data set is very large, where a hierarchical algorithm is pro-

hibitive due to its high computational cost. The partitional approach usually 

produces clustering by optimizing a criterion function defined either locally 

or globally. The most common used criterion is the one we induced earlier, 

the MSSC. Partitional algorithms optimizing this criterion is also known as 

Squared Error Algorithm, the classical K-means algorithm is a typical example 

of the Squared Error Algorithm. 

Among various partitioning methods, the classical K-means algorithm 

12 
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is the most popular clustering algorithm so far, and many partitioning algo-

rithms are heuristics based on K-means and its variants [25; 43]. It was first 

introduced by MacQueen in 1967 [39]. Since then, different versions of this al-

gorithm have been studied by many authors [51], K-means algorithm usually 

uses a criterion that minimizes the sum-of-squared Euclidean distance from 

each entity to its assigned cluster center, namely the MSSC. More rigorously, 

given a set S of n points in a d-dimensional Euclidean space 1 , denoted by 

i = 1 · · · n} 
' ' 

the task of a partitional MSSC is to find an assignment of the n points into k 

disjoint clusters S = (81 , · · · , Sk) centered at cluster centers Cj (j = 1, · · · , k) 

based on the total sum-of-squared Euclidean distances from each point si to 

its assigned cluster centroid ci, i.e., 

k ISil 2 

f(S) = L L lls;i)- Cjll ' (1.1) 
j=l i=l 

where ISj I is the number of points in sj' and s~j) is the ith point in sj. Note that 

if the cluster centers are known, then the function f(S) achieves its minimum 

when each point is assigned to its closest cluster center. When objects within 

each cluster are distributed according to a spherical Gaussian, with the same 

1 In this thesis, we always assume that n ~ k > 1, because otherwise the underlying 

clustering problem becomes trivial. 

13 



Master Thesis - Y. Wei -McMaster- Computing and Software 

covariance for all clusters, MSSC is a good measure [14]. 

Geometrically speaking, assigning each point to the nearest center fits 

into a framework called Voronoi Program, and the resulting partition is named 

Voronoi Partition. On the other hand, if the points in cluster Sj are fixed, 

then the function 

is minimal when 

The classical K-means algorithm [39], based on the above two observations, is 

described in Algorithm 1: 

Algorithm 1 K-means Clustering Algorithm 
Step 1: Choose k cluster centers randomly generated in a domain containing 

all the points, 

Step 2: Assign each point to the closest cluster center, 

Step 3: Recompute the cluster centers using the current cluster member-

ships, 

Step 4: If a convergence criterion is met, stop; Otherwise go to step 2. 

Figure 1.5 illustrates how K-means algorithm works, it iteratively up-

date the centroids of the clusters and the partition derived by these centroids 

14 
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until convergence. Essencially, K-means algorithm performs coordinate de­

scent in the objective function (1.1). 

Start c2 
.. ·. 

Figure 1.5: K-means algorithm illustration. 

The complexity of K-means algorithm is O(tkn), where tis the number 

of times we run the algorithm, k is the number of clusters and n is the number 

of patterns. It is the low complexity and efficiency that makes K-means ex­

tremely popular in practice. However, although widely adopted in partitioning 

clustering, K-means also has some drawbacks: 

1. K-means is sensitive to initial choice of cluster centers, the clustering can 

be very different by starting from different centers. 

2. K-means tends to converge to a local optimum, in most cases K-means 

can not find the global minimum of the measurement used in the model. 

15 
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3. There is no approximation bound available forK-means and its variants. 

4. In the case of constrained clustering which we will introduce in next 

section, K-means can not be applied directly. 

The main motivation of this research is to attach the above-mentioned 

issues. 

1.3.3 Other Clustering Methods 

Besides hierarchical and partition cluster methods, there are also some other 

clustering methods proposed by expertise from various disciplines. These 

methods depict the ideas of different subjects and exhibit the innate mul­

tidisciplinary nature of clustering analysis. We list some typical methods and 

their basic ideas here, for a more comprehensive introduction, we still refer to 

[5; 28]. 

K-Nearest Neighbor{KNN) Clustering: In this approach, each un­

labeled pattern is assigned to the cluster of its k nearest labeled neighbors 

as long as the average distance to the k neighbors is below a threshold 

[33]. 

Mixture Models: In the mixture model approach, we have an under­

lining assumption that the patterns are drawn from one of several distri-

16 
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butions, and the goal is to identify the parameters of each model. The 

most common assumption is that individual components of the mixture 

density are Gaussian, and in this case the parameters of the individ­

ual Gaussians are to be estimated by the procedure. The most famous 

algorithm based on this approach is Expectation Maximization (EM) 

algorithm, a general purpose maximum likelihood algorithm for missing-

data problems [12]. 

Artificial Neural Networks (ANN): ANN approaches have been used 

extensively for both classification and clustering [48]. The most common 

ANN s used for clustering include Kohonens learning vector quantization 

(LVQ) and self organizing map (SOM) [31] and adaptive resonance the­

ory (ART) models [10]. These networks have simple architectures with 

single layers and the weights are learnt by iteratively changing them un­

til a termination criterion is satisfied. These learning or weight changing 

procedures are similar to some used in classical clustering approaches. 

For example the procedure used in the LVQ is similar to the K-means 

algorithm. 

Fuzzy Clustering: In traditional clustering methods, each pattern be­

longs to one and only one cluster. Therefore, the resultant clusters are 

17 
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disjoint. Fuzzy clustering extends this notion to associate each pattern 

with every cluster using a membership function [62]. The output of this 

approach is not a partition of the patterns. 

Global Search: Including well known heuristic approaches to global 

optimization: Genetic Algorithm (GA), Simulated Annealing (SA) and 

Tabu Search (TS), although these global search methods performs bet­

ter than K-means, they suffer from sensitivity to the selection of the 

control parameters. [43] gives a comparison of the performance of these 

heuristics and a hybrid system based on them is proposed. 

1.4 Constrained Clustering 

In many applications, finding clusters that satisfy user-specified constraints is 

highly desirable. This leads to the so-called constrained clustering, which was 

first introduced in [7]. [53] gives a taxonomy of constraints for clustering in 

the application perspective, for self-completeness, we list it as below: 

1. Constrained on individual objects: This constraint confines the set 

of objects to be clustered, e.g., cluster only luxury mansions of value 

over one million dollars. It can be easily handled by preprocessing where 

we conduct a feature selection or reduce the patterns to those consist 

18 



Master Thesis - Y. Wei -McMaster- Computing and Software 

with the constraints. The problem is then turned into a ordinary uncon­

strained clustering problem. 

2. Obstacle objects as constraints: For example, we want to cluster 

some geographical data for a city, the city may have rivers, bridges, 

highways, lakes, mountains, etc. Such obstacles and their effects must be 

captured in the clustering process, this can be done by adding restriction 

on the distance function among objects. Notice that the Must-Link 

and Cannot-Link constraints belong to this category. In [11], these two 

constraints are studied and a variant of K-means algorithm is proposed. 

3. Clustering parameters as "constraints": Some "constraints" may 

serve as the parameters in a clustering algorithm, e.g., the number of 

clusters, k. Such parameters, since specifiable by users, usually are not 

considered as constraint. 

4. Constraints imposed on each individual cluster: These constraints 

corresponds to that each individual cluster is confined to some predefined 

constraints, most typically, constraints on the cardinality of each resul­

tant clusters. 

The fourth case in the above list is also called balanced clustering. A 

special case of balanced-clustering is that the number of entities in each re­

sultant cluster is fixed. Both of these two cases have extensive applications in 
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practice. For instance, in the design of wireless sensor networks, it is desirable 

to have a network whose load is balanced. Another example is in cluster­

ing analysis arising from market analysis, a direct marketing campaign often 

starts with segmenting customers into groups of roughly equal size or equal 

estimated revenue generation, (based on, say, market basket analysis, or pur­

chasing behavior at a web site), so that the same number of sales teams (or 

marketing dollars) can be allocated to each segment. This is the theme of the 

second part this thesis. 

1.5 Organization of this thesis 

The thesis is organized as follows. In chapter 2, we review the clustering liter­

ature from an optimization perspective and some related works are addressed. 

In chapter 3, we first transfer the K-means clustering into a novel optimiza­

tion model, 0-1 semidefinite programming where the eigenvalues of involved 

matrix argument must be 0 or 1, this new optimization model also allows us to 

attack the original problem based on the relaxed linear and semidefinite pro­

gramming. In chapter 4, we consider the approximate algorithms for solving 

the 0-1 SDP, a new approximation method which extracts a feasible clustering 

via PCA (Principal Component Analysis) is proposed. It could also be shown 

that our algorithm can provide a 2-approximation to the global solution of the 
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original problem. This two chapters compose of the first part of this thesis. 

In the following part, we first introduce the so-called balanced hi-clustering 

problem and propose several algorithms to tackle this problem in chapter 5, 

and an approximation algorithm with an upper bound is proposed. In chapter 

6, based on the idea in chapter 5, we focus on the fixed size hi-clustering prob­

lem, an algorithm by reformulating the problem to a Quadratic Programming 

(QP) problem is proposed, it enjoys a lower computational complexity and 

has a nice approximate bound in the mean time. Preliminary computational 

results are reported in chapter 7 for the methods proposed in previous sections, 

and finally, we conclude the thesis by a few remarks. 

1.6 Contributions 

Finally, we summarize our contributions in this thesis here. Firstly, we come 

up with a united framework called 0-1 SDP, which is not only able to encom­

pass the MSSC model but also several other clustering criterions. Second, a 

general scheme for relaxation algorithms and some approximation algorithms 

based on LP /SDP relaxation are proposed. In particular, an approximation 

algorithm based on PCA is addressed and we prove that it could give us a 

2-approximation solution to the global optimum. In the remaining part of the 

thesis, we consider specifically the balanced hi-clustering, an improved algo-
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rithm based on an existing one and an algorithm with an approximation bound 

are proposed. Finally, we focus on the hi-clustering problem with fixed size, a 

novel heuristic called Q-means is proposed to attach this problem. Numerical 

experiments are performed to validate the performance our algorithms. 
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Chapter 2 

Literature Review 

In this chapter, we will give a brief overview about the optimization tech­

niques used in partition clustering methods and some related approximation 

algorithms for {balanced} clustering proposed in literature. 

2.1 Clustering Analysis and Optimization 

While a few clustering problems were expressed as mathematical programs 

before, systematic use of this approach was only advocated about 25 years 

ago [46; 55]. For partition methods, typical optimization algorithms applied 

include: dynamic programming, graph theoretical algorithms, branch-and­

bound, cutting planes, column generation and heuristics. [24] gives an ex­

cellent review for the use of mathematical programming in general clustering 
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analysis. Since our work focus on the partition method with MSSC model, we 

will elaborate more for this special case. 

Recall the MSSC objective function (1.1), it can be described by the 

following bilevel programming problem (see for instance [9; 35]). 

n 

min Lmin{!!si - c1!!
2

, ·· ·,!lsi- ck!l
2

} . 
CI ··· ,c lc i=l 

(2 .1) 

Figure 2.1 illustrates a plot of the MSSC function in R 1 for a data set with 20 

points. If k > 1, from an optimization point of view, this function is nonconvex 

and nonsmooth. It can be shown that this function has many shallow local 

minimizers, which are close to each other. This is why K-means algorithm is 

easily trapped into local optimum. 

lo-10 

Figure 2.1: Objective function in R 2 . 
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Another way to model MSSC is based on the assignment. Let X = 

[xij] E Rnxk be the assignment matrix defined by 

If Si is assigned to Sj; 

Otherwise. 

As a consequence, the cluster center of the cluster Sj, as the mean of all the 

points in the cluster, is defined by 

Using this fact, we can represent (2.1) as 

mm 
Xij 

S.T. 

t t x· ·lis·- 2::~=1 X!jS!II2 
j=1 i=1 tJ t 2::~=1 Xlj 

k 

L Xij = 1 ( i = 1, · · · , n) 
j=1 

n 

""' X .. > 1 (J. = 1 · · · k) ~ tJ- , , 

i=1 

X .. E {0 1} (i = 1 · · · n· ). = 1 .. · k) tJ , , , , , , 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The constraint (2.3) ensures that each point si is assigned to one and only one 

cluster, and (2.4) ensures that there are exactly k clusters. This is a usually 

large-scale mixed integer programming with nonlinear objective [24], which is 

NP-hard. It is complex enough not to be amenable to the direct application 

of general-purpose global optimization methods. The difficulty of the problem 

consists of two parts. First, the constraints are discrete. Secondly the objective 
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is nonlinear and nonconvex. Both the difficulties in the objective as well as in 

the constraints make MSSC extremely hard to solve. Therefore, in order to 

ensure the practicality of the nonsmooth optimization approach to clustering, 

proper identification and use of local optimization methods is very important. 

Some heuristics, like K-means and its variants, can be interpreted as one kind 

of these local optimization methods. 

2.2 Related Work 

As the difficulty we mentioned above, approximation methods play an very 

important role for solving (2.2). There are several different ways to approxi­

mate (2.2). For example, by solving the so-called K-Medians problem we can 

obtain a 2-approximately optimal solution for (2.2) in O(nk+1 ) time [22]. In 

[34], Mutousek proposed a geometric approximation method that can find an 

(1 + t:) approximately optimal solution for (2.2) in O(n logk n) time, where 

the constant hidden in the big-0 notation depends polynomially on C 1
. Al­

though theoretically efficient, no numerical results have been reported based 

on Mutousek's algorithm. Another efficient way of approximation is to attack 

the original problem (typically NP-hard) by solving a relaxed polynomially 

solvable problem. This has been well studied in the field of optimization, in 

particular, in the areas of combinatorial optimization and semidefinite pro-
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gramming [18]. We noted that recently, Xing and Jordan [59] considered the 

SDP relaxation for the so-called normalized k-cut spectral clustering. 

For balanced clustering, the related work is relatively less. In [8], 

Bradley et'al proposed a so-called constrained K-means algorithm for balanced 

clustering, where a Linear Programming (LP) problem is solves iteratively at 

each step, one of our algorithms is to improve the constrained K-means in the 

case of hi-clustering. Other constrained clustering problems are discussed in 

[7; 53]. 

27 



Master Thesis - Y. Wei -McMaster- Computing and Software 

28 



Chapter 3 

0-1 SDP Model for K-means 

clustering 

In this chapter, we first establish the equivalence between K-means type clus­

tering and the so-called 0-1 SDP model in the first section, in the following 

section, the interrelation between 0-1 SDP and other clustering approaches is 

elaborated. 
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3.1 From MSSC to 0-1 SDP 

3.1.1 0-1 Semidefinite Programming 

In general, SDP refers to the problem of minimizing (or maximizing) a linear 

function over the intersection of a polyhedron and the cone of symmetric and 

positive semidefinite matrices. The canonical SDP takes the following form 

min Tr(WZ) 

(SDP) S.T. Tr(BiZ) = bi for i = 1, · · · , m 

z~o 

Here Tr(.) denotes the trace of the matrix, and Z ~ 0 means that Z is positive 

semidefinite. If we replace the constraint Z ~ 0 by the requirement that 

Z 2 = z, then we end up with the following problem 

min Tr(WZ) 

(0-1 SDP) S.T. Tr(BiZ) = bi for i = 1, · · · , m 

Z 2 = z z = zr , 

We call it 0-1 SDP owing to the similarity of the constraint Z2 = Z to the 

classical 0-1 requirement in integer programming. 
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3.1.2 Equivalence of MSSC to 0-1 SDP 

In this subsection we show that MSSC can be modelled as 0-1 SDP. We mention 

that the equivalence between MSSC and 0-1 SDP was first established in 

[44]. However, for self-completeness, we still give a detailed description of 

the reformulation process. 

By rearranging the items in the objective of (2.2), we have 

f(S,S) (3.1) 

where Ws E Rnxd denotes the matrix whose i-th row is the transfer sf of the 

vector si· Since X is an assignment matrix, we have 

n n n n 

xT X= diag (L xlu· .. 'L xlk) = diag (L Xi!, ... 'L Xik)· 
i=l i=l i=l i=l 

Let 

we can write (3.1) as Tr(WsW§'(I- Z)) = Tr(W§'Ws)- Tr(W§'WsZ). Obvi-

ously Z is a projection matrix satisfying Z 2 = Z with nonnegative elements. 

For any integer m, let em be the all one vector in Rm. We can write the 

constraint (2.3) as 
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It follows immediately 

Moreover, the trace of Z should equal to k, the number of clusters, i.e., 

Tr(Z) = k. 

Therefore, we have the following 0-1 SDP model for MSSC 

min Tr(WsWJ(I- Z)) (3.2) 

Ze = e, Tr(Z) = k, 

z 2: o,z = zr,z2 = z. 

We first give a technical result about positive semidefinite matrix that will be 

used in our later analysis. 

Lemma 3.1.1. For any symmetric positive semidefinite matrix Z E Rnxn, 

there exists an index i 0 E { 1, · · · , n} such that 

Proof. For any positive semidefinite matrix Z, it is easy to see that 

zii 2: 0, i = 1, ... 'n. 

Suppose the statement of the lemma does not hold, i.e., there exists io =/= io 

such that 
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Then the submatrix 

is not positive semidefinite. This contradicts to the assumptuion in the lemma. 

Now we are ready to establish the equivalence between the models (3.2) 

and (2.2). 

Theorem 3.1.2. Solving the 0-1 SDP problem {3.2} is equivalent to finding a 

global solution of the integer programming problem {2.2}. 

Proof. From the construction of the 0-1 SDP model (3.2), we know that one 

can easily construct a feasible solution for (3.2) from a feasible solution of 

(2.2). Therefore, it remains to show that from a global solution of (3.2), we 

can obtain a feasible solution of (2.2). 

Suppose that Z is a global minimum of (3.2). Obviously Z is positive 

semidefinite. From Lemma 3.1.1 we conclude that there exists an index i 1 such 

that 

Let us define the index set 
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Since Z 2 = Z, we have 

which implies 

2:::: (Zi1})2 = zi1i11 
jEI1 

From the choice of i 1 and the constraint 

n 

2:: zil} = L zid = 1, 
j=l jEI1 

we can conclude that 

This further implies that the submatrix Zx1x1 is a matrix whose elements are 

all equivalent, and we can decompose the matrix Z into a bock matrix with 

the following structure 

(3.3) 

consider the reduced 0-1 SDP as follows 

mm (3.4) 
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Repeating the above process, we can show that if Z is a global minimum of 

the 0-1 SDP, then it can be decomposed into a diagonal block matrix as 

where each block matrix Ziziz is a nonnegative projection matrix whose ele-

ments are equal, and the sum of each column or each row equals to 1. 

Now let us define the assignment matrix X E Rnxk 

xij = { 
1 

0 otherwise 

One can easily verify that Z = X(XT x)-1Xr. Our above discussion illus-

trates that from a feasible solution of (3.2), we can obtain an assignment matrix 

that satisfies the condition in (2.2). This finishes the proof of the theorem. 

Note that for a given data set S, the trace Tr(WsW§) becomes a 

fixed quantity. Therefore, we can solve the MSSC model via the following 

optimization problem 

max (3.5) 

Ze = e, Tr(Z) = k, 

Z ~ 0, Z = zr, Z 2 = Z. 

To distinguish the above problem from the original MSSC model, we call the 

objective in the above formulation as the refined objective for the MSSC model. 
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It is worthwhile comparing (3.2) with (2.2). First, the objective in (3.2) 

is linear while the constraint in (3.2) is still nonlinear, even more complex than 

the 0-1 constraint in (2.2). The most difficult part in the constraint of (3.2) is 

the requirement that Z 2 = Z. Several different ways for solving (3.2) will be 

discussed in the next chapter. 

3.2 0-1 SDP Reformulation for Other Cluster-

ing Approaches 

In this subsection, we show that the 0-1 SDP can also be used for other 

clustering approaches based on other measurements. Let us consider the more 

general 0-1 SDP model for clustering 

min Tr(W(I- Z)) (3.6) 

Ze = e, Tr(Z) = k, 

z ~ o, Z 2 = z, z = zr, 

where W is the so-called affinity matrix whose entries represent the similarities 

or closeness among the entities in the data set. In the MSSC model, we use the 

geometric distance between two points to characterize the similarity between 

them. In this case, we have Wii = sf Sj. However, we can also use a general 
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function ¢(si, sj) to describe the similarity relationship between si and sj. For 

example, let us choose 

() > 0. (3.7) 

In order to apply the classical K-means algorithm to (3.6), we can first use the 

singular eigenvalue decomposition method to decompose the matrix W into 

the product of two matrices, i.e., W = uru. In this case, each column of U 

can be cast as a point in a suitable space. Then, we can apply the classical K-

means method for MSSC model to solving problem (3.6). This is exactly the 

procedure what the recently proposed spectral clustering follows [3; 42; 57; 59; 

61]. However, we now have a new interpretation for spectral clustering, i.e., a 

variant of MSSC in a different kernel space. It is worthwhile mentioning that 

certain variants of K-means, called weighted kernel K-means, can be adapted 

to solve (3.6) directly without using the SVD decomposition of the affinity 

matrix [13]. 

We note that recently, the k-ways normalized cut and spectral cluster-

ing received much attention in the machine learning community, and many 

interesting results about these two approaches have been reported [20; 36; 42; 

49; 57; 59; 61; 63]. In particular, Zha et'al [63] discussed the links between 

spectral relaxation and K-means. Similar ideas was also used in [42]. An SDP 

relaxation for normalized k-cut was discussed [59]. The relaxed SDP in [59] 
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takes a form quite close to ( 4.2). For self-completeness, we next describe briefly 

how the k-ways normalized cut can be embedded into the 0-1 SDP model. Let 

us first recall the exact model for normalized k-cut [59]. Let W be the affinity 

matrix defined by (3. 7) and X be the assignment matrix in the set Fk defined 

by 

Let d =Wen and D = diag (d). The exact model for normalized k-cut in [59] 

can be rewritten as 

(3.8) 

If we define 

then we have 

Following a similar process as in the proof of Theorem 3.1.2, we can show that 

the model (3.8) equals to the following 0-1 SDP: 

min (3.9) 

1 1 
Zd2 = d2, Tr(Z) = k, 

z ~ 0, Z2 = z, z = zr. 
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The only difference between (3.6) and (3.9) is the introduction of the scaling 

matrix D. 

Except for the above mentioned cases, the 0-1 SDP model can also be 

applied to the so-called balanced clustering we introduced in first chapter [8], 

where the number of entities in every cluster is restricted. One special case of 

balanced clustering is requiring the number of entities in every cluster must be 

equal or large than a prescribed quantity, i.e., !Gil 2:: ii. It is straightforward 

to see such a problem can be modelled as a 0-1 SDP by adding the constraint 

zii ::; k to (3.6), which leads to the following problem 

min Tr(W(I- Z)) 

1 
zii::;-::-, i=1,···,n, 

n 

Ze = e, Tr(Z) = k, 

z 2:: o, Z2 = z, z = zr, 

(3.10) 

These results shows the power of our 0-1 SDP model, it is the underlin-

ing framework for numerous different-first-look clustering algorithms and even 

balanced clustering. 
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Chapter 4 

Approximation Algorithms for 

0-1 SDP 

A general scheme for approximation algorithms to solve the 0-1 SDP based on 

relaxation is addressed in the first part of this chapter, then a new approxi­

mation method based on PCA is proposed, finally the solutions from the new 

approximate algorithm is evaluated. 

4.1 Relaxation Algorithms for Solving 0-1 SDP 

In this section we discuss how to solve the 0-1 SDP model for clustering. For 

simplification of our discussion, we restrict us to the model (3.6). Throughout 

the paper, we further assume that the underlying matrix W is positive definite 
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or semidefinite. This assumption is satisfied in the MSSC model as well as in 

the so-called spectral clustering where the kernel matrix is defined by (3.7). It 

is worth mentioning that although we restrict our discussion to (3.6), however, 

with a little effort, our results can be extended to (3.9) as well. 

The section consists of three parts. In the first subsection, we propose 

a general scheme for solving (3.6). In the second part, an algorithm based 

on LP relaxation is proposed as an example. Finally, we introduce a new 

approximation method for (3.6). 

4.1.1 General Scheme for Solving 0-1 SDP based on Re­

laxation 

In this subsection, we discuss various algorithms for solving the 0-1 SDP model 

(3.6). From a viewpoint of the algorithm design, we can categorize all the 

algorithms for (3.6) into two groups. The first group consists of the so-called 

feasible iterative algorithms, where all the iterates are feasible regarding the 

constraints in (3.2) and the objective is increased step by step until some 

termination criterion is reached. The classical K-means algorithm described 

in the introduction can be interpreted as a special feasible iterative scheme 

for attacking (3.6). It is also easy to see that, many variants of the K-means 

algorithm can also be interpreted as specific iterative schemes for (3.6). 
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The second group of algorithms for (3.6) consists of approximation 

algorithms that are based on LP /SDP relaxation. We starts with a general 

procedure for those algorithm, which is depicted in Algorithm 2. 

Algorithm 2 Approximation Algorithm Based on Relaxation 
Step 1: Choose a relaxation model for (3.2), 

Step 2: Solve the relaxed problem for an approximate solution, 

Step 3: Use a rounding procedure to extract a feasible solution to (3.2) 

from the approximate solution. 

The relaxation step has an important role in the whole algorithm. For 

example, if the approximation solution obtained from Step 2 is feasible for 

(3.6), then it is exactly an optimal solution of (3.6). On the other hand, when 

the approximation solution is not feasible regarding (3.6), we have to use a 

rounding procedure to extract a feasible solution. 

4.1.2 LP Relaxation 

In this subsection, we propose an LP relaxation for (3.6), it is an example 

for the general relaxation scheme we introduced in last subsection. First we 

observe that if Si and Sj, Sj nd sk belong to the same clusters, then si and sk 

belong to the same cluster. In such a circumstance, from the definition of the 
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matrix Z we can conclude that 

Such a relationship can be partially characterized by the following in­

equality 

Correspondingly, we can define a metric polyhedron MET1 by 

Therefore, we have the following new model 

min Tr(W(I- Z)) (4.1) 

Ze = e, Tr(Z) = k, 

z 2:: 0, 

Z E MET. 

If the optimal solution of (4.1) is not a feasible solution of (3.6), then as 

we mentioned, we need to refer to the rounding procedure to extract a feasible 

solution for (3.6). 

1 A similar polyhedron MET had been used by Karisch and Rendl, Leisser and Rendl in 

their works [30; 32] on graph partitioning. We changed slightly the definition of MET in 

[32] to adapt to our problem. 
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Solving ( 4.1) directly for large-size data set is clearly unpractical due 

to the huge amount O(n3) of constraints. However, this LP relaxation model 

can still provide a lower bound for the global optimum of (3.6) for small scale 

data sets. Some preliminary results are reported in [44]. 

4.1.3 Other Related Work 

Besides the LP relaxation, various relaxations and rounding procedures have 

been proposed for solving (3.6) in the literature as well. For example, Xing 

and Jordan [59] considered the SDP relaxation for normalized k-cuts and pro­

posed a rounding procedure based on the singular value decomposition of the 

solution Z of the relaxed problem, i.e., Z = UTU. In their approach, every 

row of UT is cast as a point in the new space, and then the weighted K-means 

clustering is performed over the new set of those points in Rk. Similar works 

for spectral clustering can also be found in [20; 36; 42; 57; 63] where the 

singular value decomposition of the underlying matrix W is used and a K­

means-type clustering based on the eigenvectors of W is performed. In the 

above-mentioned works, the solutions obtained from the weighted K-means 

algorithm for the original problem and that based on the eigenvectors of W 

has been compared, and simple theoretical bounds have been derived based 

on the eigenvalues of W. 
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The idea of using the singular value decomposition of the underlying 

matrix W is natural in the so-called principal component analysis (PCA) [29]. 

In [15], the link between PCA and K-means clustering was also explored and 

simple bounds were derived. In particular, Drineas et'al [17] proposed to use 

singular value decomposition to form a subspace, and then perform K-means 

clustering in the subspace Rk. They proved that the solution obtained by solv­

ing the K-means clustering in the reduced space can provide a 2-approximation 

to the solution of the original K-means clustering. 

We note that in [49], Shi and Malik used the eigenvector of a projection 

matrix of W (not W itself) onto a subspace to construct a feasible partitioning 

for the original problem. Our work follow a similar idea as [49]. We first use 

singular value decomposition to obtain the k- 1 eigenvectors corresponding 

to the first k- 1 largest eigenvalues of a projection matrix of W, and then we 

perform K-means clustering in Rk-l. This allows us to improve the complexity 

of the algorithm for solving the subproblem in the reduced space. As we shall 

see later, such a rounding procedure can also provide a 2-approximation to the 

original problem with theoretical guarantee. 
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4.2 A New Approximation Method 

In this section, we describe our SDP-based approximation method for (3.6). 

We start our discussion on various relaxation forms for (3.6). 

First, recall that in (3.6), the argument Z is stipulated to be a pro­

jection matrix, i.e., Z 2 = z, which implies that the matrix z is a positive 

semidefinite matrix whose eigenvalues are either 0 or 1. A straightforward re-

laxation to (3.6) is replacing the requirement Z 2 = Z by the relaxed condition 

It: Z t: 0. 

Note that in (3.6), we further stipulate that all the entries of Z are nonnegative, 

and the sum of each row(or each column) of Z equals to 1. This means the 

eigenvalues of Z is always less than 1. In this circumstance, the constraint 

Z :::S I becomes superfluous and can be waived. Therefore, we obtain the 

following SDP relaxation 2 

min Tr(W(I- Z)) 

Ze = e, Tr(Z) = k, 

z ~ o,z t: 0. 

(4.2) 

The above problem is feasible and bounded below. We can apply many ex-

2In [59], the constraint Ze = e in (3.6) is replaced by Zd = d, where d is a positive 

scaling vector associated with the affinity matrix. 
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isting optimization solvers such as interior-point methods to solve (4.2). It is 

known that an approximate solution to ( 4.2) can be found in polynomial time. 

However, we should point out that although there exist theoretically polyno-

mial algorithm for solving ( 4.2), most of the present optimization solvers are 

unable to handle the problem in large scale efficiently. 

Another interesting relaxation to (3.6) is to further relax ( 4.2) by drop-

ping some constraints. For example, if we remove the nonnegative requirement 

on the elements of Z, then we obtain the following simple SDP problem 

min Tr(W(I- Z)) (4.3) 

Ze = e, Tr(Z) = k, 

I~ Z ~ 0. 

In the sequel we discuss how to solve (4.3). Note that if Z is a feasible solution 

for ( 4.3), then we have 

which implies )ne is an eigenvector of Z corresponding to its largest eigenvalue 

1. For any feasible solution of (4.3), let us define 

It is easy to see that 

1 T zl = z- -ee . 
n 

1 T 1 T 1 T Z1 = (I- -ee )Z = (I- -ee )Z(I- -ee ), 
n n n 
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i.e., Z1 represents the projection of the matrix Z onto the null subspace of e. 

Moreover, it is easy to verify that 

Tr(Zl) = Tr(Z) - 1 = k - 1. 

Let W1 denote the projection of the matrix W onto the null space of e, i.e., 

1 T 1 T 
W1 =(I- -ee )W(I- -ee ). 

n n 
(4.5) 

Then, we can reduce ( 4.3) to 

min (4.6) 

Let >.1 , · · · , >.n_1 be the eigenvalues of the matrix W1 listed in the order of 

decreasing values. The optimal solution of ( 4.6) can be achieved if and only if 

k-1 

Tr(W 1Zl) = 2: >.j. 
i=1 

This gives us an easy way to solve (4.6) and correspondingly (4.3). The algo-

rithmic scheme for solving ( 4.3) can be described in Algorithm 3. From our 

above discussion, we immediately have: 

Theorem 4.2.1. Let Z* be the global optimal solution of (3.6}, and >.1 , · · · , >.k-1 

be the first largest eigenvalues of the matrix W1 . Then we have 

k-1 

Tr(W(I- Z*)) 2:: Tr(W)- ~eTWe- L Aj. 
n i=1 
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Algorithm 3 Relaxation Algorithm 
Step 1: Calculate the projection W1 via (4.5); 

Step 2: Use singular value decomposition method to compute the first k -1 

largest eigenvalues of the matrix W1 and their corresponding eigenvectors 

v1 . . . vk-1 

' ' ' 

Step 3: Set 

We point out that if k = 2, then Step 2 in the above algorithm uses 

the eigenvector corresponding to the largest eigenvalue of W1 . Our relaxation 

method is very similar to the one used by Shi and Malik [49] (See also [57]) for 

image segmentation where the normalized k-cut clustering problem with k = 2 

was discussed. Similar bounds for normalized k-cuts and spectral clustering 

can also be found in [15; 42]. 

Note that solving the relaxed problem ( 4.3) can not provide a solution 

for the original problem (3.6). In the sequel we propose a rounding proce-

dure to extract a feasible solution for (3.6) from a solution of the relaxed 

problem ( 4.3) provided by the relaxation Algorithm 1. Our rounding proce-

dure follows a similar vein as the rounding procedure in [17]. Let us denote 

V = (~v\ · · ·, ~vk-1 ) E Rnx(k-1) the solution matrix obtained from 

relaxation Algorithm 3. We can cast each row of V as a point in Rk-1, and thus 
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we obtain a data set of n points in ark-l, i.e., V = { v11 · • · , vn}· Then we per-

form the classical K-means clustering for the data set V. From Theorem 3.1.2, 

this equals to solving the following 0-1 SDP problem 

mm Tr ((I- Z) ~ A1v1(v1)T) 

Ze = e, Tr(Z) = k, 

z 2: o, Z2 = z, z = zr, 

(4.7) 

For constrained K-means clustering, then we need to solve the following sub-

problem 

min (4.8) 

Ze = e, Tr(Z) = k, 

z 2: O,Z2 = z,z = zr, 

Finally, we partition all the entities in the original space based on the clustering 

on V, i.e., the entities si, Sj belong to the same cluster if and only if vi, Vj are 

in the same cluster. 

The whole algorithm is described in Algorithm 4. 
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Algorithm 4 Approximation Algorithm 
Step 1: Calculate the projection of the matrix W onto the null space of e, 

i.e., 

1 T 1 T W1 = (I- -ee )W(I- -ee ); 
n n 

Step 2: Use singular value decomposition method to compute the first k -1 

largest eigenvalues of the matrix W1 and their corresponding eigenvectors 

vl . . . vk-1. 
' ' ' 

Step 3: Solve problem (4.7) (or (4.8)) for (constrained) K-means clustering; 

Step 4: Assign all the entities inS based on the assignment obtained from 

step 3. 

4.3 Estimation of the Approximate Solution 

In this section, we estimate the approximation solution provided by our al-

gorithm. We first consider the case for the classical K-means clustering. It 

should be pointed out that in [17], Drineas et'al considered a similar algo-

rithm based on the singular value decomposition of W and showed that their 

algorithm can provide a 2-approximation to the original K-means clustering. 

However, since the working subspace in our algorithm is quite different from 

what in [17], a new analysis is necessary to investigate the approximation ratio 

of the solution obtained from Algorithm 4. 

We now discuss the case of hi-clustering. One reason for this is that 
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for hi-clustering, the subproblem involved in Step 3 of Algorithm 4 is in ~- In 

such a case, the task in Step 3 of Algorithm 4 reduces to partitioning the data 

set V = {vi E ~' i = 1, · · · , n} into two clusters based on the MSSC model. 

Therefore, we can refer to the Refined K-means clustering in one dimension 

(Algorithm 5) . 

Algorithm 5 is similar to the algorithm in [23] for divisive k-clustering 

in low dimension. The idea is that a minimum sum of squares bipartition of 

a set maximizes the product of the squared distance between the centroids of 

C1 and C, the center of the whole data set, and the ratio of the cardinalities 

of C1 and C2 , namely Ndvi- vii 2/N2 , and this function is actually unimodal, 

the detail proof of this theorem can be found in [23]. It is straightforward to 

see that for hi-clustering problems in ~ based on the MSSC model, the above 

procedure can find a global solution in O(nlogn) time. 

If k 2:: 3, then we can resort to the algorithm in [17] to solve prob­

lem (4.7). It is easy to see that the algorithm takes O(nk2 (k-l)/2 ) time to 

find the global solution of the subproblem in Step 3 of Algorithm 4, which is 

roughly a nJ12 fraction of the running time when the same procedure is ap­

plied to solve the subproblem in [17]. This is because the working space in our 

algorithm is one dimension less than the space in [17]. In case of hi-clustering, 

the improvement is substantial since we can use our simple refined K-means 
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Algorithm 5 Refined K-means in One Dimension 
Step 0: Input the data set V = { v1, v2, · · · , vn}; 

Step 1: Calculate the center v = Ev;EV vd N, where N is the cardinality 

of V and sort the sequence so that vii ~ Vi2 • • • ~ vin, here { i1, · · · , in} is a 

permutation of the index set { 1, · · · , n}; 

Step 2: 

for l = 1 to n do 

calculate the center of the first part of the partition, Cf = {vii, · · · , Viz} 

Vt = (l- 1)iit-1 + Vip 

and evaluate the function 

f(l) = N1(iiz- v) 2 /(N- N1). 

if f(l) < f(l- 1) then 

output C1 = { Vip · · · , Viz_J, C2 = { Vip · · · , Vin} as the final solution 

end if 

end for 

in one dimension. 

We next progress to estimate the solution obtained from Algorithm 4. 

Let Z* be a global solution to (3.6) and Z is the solution provided by Algo-
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rithm 2. Let us define 

(4.9) 

It follows 

O· 
' 

(4.10) 

0. (4.11) 

From Theorem 4.2.1, we have 

Tr(W(I- Z*)) 2:: Tr(W(I- U)). (4.12) 

It follows 

Tr(W(I- Z)) = Tr(W(I- U + U- Z)) :S Tr(W(I- Z*)) + Tr(W(U- Z)). 

The above relation implies that if 

Tr(W(U- Z)) :S Tr(W(I- Z*)), ( 4.13) 

then 

Tr(W(I- Z)) :S 2Tr(W(I- Z*)), 

i.e., in the worst case, the solution provided by Algorithm 4 is a 2-approximation 

to the original K-means clustering. 

In what follows we prove ( 4.13), which can be equivalently stated as 

Tr(W(I- Z* + Z- U)) 2:: 0. (4.14) 
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By the choices of Z*, Z and U, it is easy to verify 

(I - Z* + Z - U)e = 0, (4.15) 

eeT - eeT - eeT 
(I --)(I -Z*+Z -U) =(I --)(I -Z*+Z -U)(I --). (4.16) 

n n n 

It follows immediately that 

Tr(W(I- Z* + Z- U)) = .!_Tr(W(I- Z* + Z- U)eeT) + Tr(W1(I- Z* + Z- U)) 
n 

= 'fr( (I~ Z' + Z ~ U) ~ A,v'(v')T) 

'fr ((I~ Z' + Z ~ U) ~ A,v'(v')T)) 

+'fr ((I~ z• + Z ~ U) ~ A,v'(v')') 

'fr (<z ~ Z') ~ A,v'(v')T)) + 'fr ((I~ z· + Z) ~ A,v'(v')T) 

> Tr( (Z ~ Z') ~ A,v'(v')T)} 

where the last equality is given by (4.10) and (4.11), and the last inequality is 

implied by the fact that the matrix I - Z* + Z is positive semidefinite. Recall 

that Z is the global solution of subproblem ( 4. 7) and Z* is only a feasible 

solution of ( 4. 7), we therefore have 

which further implies (4.13). 
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Now we are ready to state the main result in this chapter, which follows 

immediately from (4.12) and (4.13). 

Theorem 4.3.1. Suppose that Z* is a global solution to problem (3.6) and Z 

is the solution provided by Algorithm 4. Then, we have 

Tr(W(I- Z)) ~ 2Tr(W(I- Z*)). 

In what follows we estimate the approximation rate of the solution pro­

vided by Algorithm 4 for constrained K-means clustering. It worth mentioning 

that in such a case, no polynomial algorithm has been reported in the litera­

ture to find a global solution of subproblem ( 4.8). However, suppose a global 

solution to ( 4.8) can be located, then by following a similar argument as in 

the proof of Theorem 4.3.1, we can prove the following result. 

Theorem 4.3.2. Suppose that Z* is a global solution to problem (3.10) and 

Z is the solution provided by Algorithm 4. Then, we have 

Tr(W(I- Z)) ~ 2Tr(W(I- Z*)). 
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Chapter 5 

Balanced Hi-clustering 

From this chapter, we start discussing the second part of this thesis, first, we 

consider the so-called balanced bi-clustering problem, an improved algorithm 

based on existing ones and an algorithm with an approximation bound are 

proposed. 

5.1 Motivation 

The main problem we consider here is hi-clustering, hi-clustering involves with 

partitioning the data set into two clusters. It is one of the fundamental issues 

in clustering. This is particularly true in the so-called hierarchical divisive clus­

tering where at each step, a hi-clustering is performed. Due to its importance, 

hi-clustering has drawn much attention from various researchers, especially 
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from the expertise in computational geometric community [2; 22; 27; 34]. 

Although we can embed balanced clustering in our model ( 4.8), we 

require every cluster shares the same lower bound. There might be situations 

that we require different clusters satisfied different lower bounds. In this case, 

we need to explore new avenue to solve the the balanced hi-clustering problem. 

Motivated by the above requirements, in the second part of this thesis, 

we consider the balanced hi-clustering and its special case, where the size of 

each resultant clusters is fixed. From a mathematical viewpoint, balanced 

clustering can be casted as a constrained optimization problem. We note that 

in [8], Bradley et al proposed to use linear optimization technique to solve the 

subproblem in their model. In our work, we use the same theoretical framework 

as that in [8]. However, by restricting us to the balanced hi-clustering, we 

propose a local search method that can be used to find the optimal solution 

of the subproblem in the model. We show that our simple heuristics enjoys a 

lower complexity than the approach suggested in [8]. 

Since the problem (1.1) is NP-hard and many algorithms like K-means 

can only locate a local minimum, the issue of how to find a good approximate 

solution to (1.1) has caught the attention of many experts in the field. An 

early remarkable work in this direction is due to Hasegawa et'al who showed 

that by using the so-called K-Medoids method [22; 27], we can obtain a 2-
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approximation solution to problem (1.1). Based on a similar idea as in [22], we 

propose an algorithm that can provide a 2-approximation solution to balanced 

hi-clustering. 

5.2 Definition of Problem 

The problem we consider is to partition a set of n entities into the space to 

two clusters based on the MSSC model, subject to some constraints on the 

cardinality of each cluster. More rigorously, given a data set S of n entities in 

an Euclidean space, our task is to find a partition ( C1 , C2 ) of the data set S 

such that: 

(5.1) 

here (c1 , c2 ) is the geometry center of (C1 , C2). It can be easily proved that, 

without the constraints, (5.1) is equivalent to the model that we originally 

defined for hi-clustering: 

n 

min L min{llsi- c11! 2, !lsi- c21i 2} 
C!,C2 

i=l 

(5.2) 

For the unconstrained hi-clustering problem (5.2), J. Matousek [34] 

proposed a (1+.s)-approximately optimal algorithm in time O(logn+.s-2d(d-l)) 
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with a preprocess the set S in 0( n log n) time, where d is the dimensional 

number of the space where the entities belong to. However, we can not utilize 

these results directly due to the constraints we have. On the other hand, 

the algorithm in [34] itself is very difficult to use in practice. This inspires 

us to design efficient heuristics to tackle the constrained problem with an 

appropriate approximate rate. 

5.3 Brute-force Algorithm 

In Algorithm 6, we describe a brute-force algorithm that can find an optimal 

of the constrained problem. 

Algorithm 6 can solve the constrained problem exactly. Unfortunately, 

the running time of the algorithm is O(n71 +1), which means in the extreme 

case 7 1 = n/2, complexity might be as high as O(nn/2+1 ). This is definitely 

impractical. 
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Algorithm 6 Brute-force Algorithm 

t = oo, c; = 0, c~ = s 

for each subset C1 of S with size 71 ::; IC1I ::; (n- 72) do 

Compute c1, the center of C1 , and c 2 , the center of C2 ; 

Calculate the sum-of-squared error 

iff< t then 

t = J; 

Replace the existing optimal partition ( c;, C2) by the current partition 

end if 

end for 

Output the bipartition ( c;, C2) as a solution; 

5.4 Improved Constrained K-means Algorithm 

for Hi-clustering 

To solve (5.1), we can also use the constrained K-means algorithm proposed in 

[8]. For self-completeness, we will describe the so-called constrained K-means 
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algorithm here briefly. 

Following the same argument as in chapter 1, (5.1) is equivalent to the 

problem below, where Xij is the assignment matrix. 

min 
Xij 

S.T. L~=l Xij = 1 (i = 1, ... , n) 

Xij 2 0 (i = 1,··· ,n;j = 1,2) (5.3) 

An iterative algorithm, which is similar to the classic K-means ap-

proach, is proposed in [8] to solve the problem (5.3), the algorithm is described 

in Algorithm 7: 

According to Proposition 2.3 and Proposition 3.1 in [8], Algorithm 7 will 

eventually terminate in a finite number of iterations at a cluster assignment 

that is locally optimal such that Xij E {0, 1} The time complexity of this 

algorithm depends on the algorithm that is chosen for the subproblem (5.4). 

In [8], fast network simplex algorithms are used for solving the sub-problem, 

the running time for the fast network simplex algorithm is at least O(nlog2 n) 

according to [1]. 

In the sequel, we propose a simple heuristic for the balanced hi-clustering 

problem. Our algorithm is easy to implemented and has better complexity. 
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Algorithm 7 Constrained K-means Algorithm 

Given cluster centers ci and c~ at iteration t, compute ci+l and c~+l at 

iteration t + 1 in following 2 steps: 

Step 1. Cluster Assignment. 

Let x~j be a solution to the following linear program with ci and c~ fixed: 

min 
Xij 

S.T. I:~=l Xij = 1 (i = 1, ... , n) 

xij ~ o (i = 1,s,n;j = 1,2) 

Step 2. Cluster Update. 

Update Cf and C~ as follows: 

Otherwise. 

(5.4) 

(5.5) 

Stop when c;+l = c;, j = 1, 2, otherwise increment t by 1 and go to step 

1. 

Given ci and c~, a partition of the date set, Cf and C~, is derived. If Cf and 

c~ satisfy the constraints that we have in (5.4), i.e. if !Gil ~ TI, IC~I ~ 72, it is 

right a solution for the subproblem (5.4); Otherwise, we can use the following 

rounding procedure to extract a solution that satisfies the constraints in (5.4). 
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Without loss of gentility, suppose we need to move some entities from C1 to 

C2: 

Rounding Procedure 1 

for every Si E C1 do 

Compute the change of objective function by moving Si to c2, i.e. Calcu­

late a function J(si) = llsi- c2ll - llsi- cd for si; 

end for 

Sort all the entities based on f(si), move (IC1I- T1) entities which have the 

least f ( si) to c2 to make the constraints satisfied. 

This procedure is essentially a greedy algorithm, the time complexity 

of this procedure is 0( n log n). It provides us a partitioning that satisfies the 

constraints in (5.4). We can claim such a partitioning is an optimal solution 

to (5.4). To see this, suppose to the contrary that the solution provided by the 

rounding procedure is not optimal, then, we can reduce the objective function 

in (5.4) by moving some entities from c2 to cl, or swapping two entities in 

C1 and C2 . This is definitely impossible as either moving one entity from C2 

to cl or swapping two entities in cl and c2 will lead to an increase of the 

objective function. 

Therefore, by using the rounding procedure 1, we have the improved 

constrained K-means algorithm as described in Algorithm 8. 

66 



Master Thesis - Y. Wei -McMaster- Computing and Software 

Algorithm 8 Improved Constrained K-means Algorithm 

Given cluster centers ci and c~ at iteration t, compute ci+l and c~+l at 

iteration t + 1 via the following 2 steps: 

Step 1. Cluster Assignment. 

Assign all the entities to clusters Cf and C~ based on their distances to ci 

and c~ respectively; if such a partition is infeasible for (5.4) , then use the 

rounding procedure 1 to find the optimal solution of problem 5.4. 

Step 2. Cluster Update. 

Update the cluster centers by 

{ 

,k,""" t s· t+l IC·I L..tsiECj t 
C· = J 

J 

d. 
J 

If ICJI > 0 
(5.6) 

Otherwise. 

Stop if c~+l = cj, j = 1, 2; Otherwise increment t by 1 and go to step 1. 

The complexity of Algorithm 8 is O(Tn log n), where Tis the times that 

we run this algorithm. After it stops, Algorithm 8 will end up with a local 

optimum solution, if the solution is not derived from the rounding procedure. 

In what follows, we introduce a a 'dynamic' rounding procedure, which 

is more precise than the rounding procedure 1. Note that if we move an entity 

Si from C1 to C2, the centroids of these two clusters after the movement can 
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be easily calculated by [51] 

Correspondingly, the change of the objective function value cased by this move 

is 

This provides a way to examine how the objective function changes if we move 

one entity in the data set from one cluster to the other. 

In this new rounding procedure, we update the centroids of the two 

clusters immediately after a reassignment occurs. Without loss of gentility, 

suppose we need to move ~ points from cl to c2 to satisfy the balanced 

constraints: 

Rounding Procedure 2 

repeat 

For every si E C1 , calculate v(si) i.e. the change of objective function by 

Move the point with min{ v(si)} to C2 , then update the centroids of two 

clusters according to the formula introduced above; 

until ~ points have been moved from cl to c2 

The complexity of this 'dynamic' procedure is O(n2), which leads to 

O(Tn2
) of algorithm 8 if rounding procedure 2 is used. We also mention that 

68 



Master Thesis - Y. Wei -McMaster- Computing and Software 

the rounding procedure 2 could also be applied after algorithm 8 stops. It will 

consequently serve as a local search procedure, where we run the procedure to 

reduce the objective function further until min{ v( si)} > 0 or any movement 

will violate the balanced constraints. This two-phase heuristic is similar to 

HK-means [25] for unconstrained clustering. 

5.5 An 2-Approximation Algorithm 

Though efficient, unfortunately, Algorithm 8 can not provide a global opti­

mum solution of the underlying problem even with the local search procedure 

following. In fact, this is one main disadvantage of all K-means type heuristics. 

It has been observed that K-means could converges to a local minimum that is 

arbitrary bad compared to the true global optimal solution. Such an example 

is shown in Figure 5.1: 

.:. .· .· .· .· .· .· .· .· .· .· 0 '!. .· .· .· .· .· .· .· .· .· .· .~.<:. ·. ·. ·. ·. ·. -~ 0 0::::: ~. 

·0····································0·········· 

............... :\: ................................. + 

Data points 

Optimial centers 

Heuristic centres 

Figure 5.1: K-means can produce arbitrarily bad solution 

For k = 2 and where y/2 < x < y. The optimal sum-of-squared error 
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is x2 I 4, but it is easy to verify that the solution shown at the bottom is 

centroidal and has a sum-of-squared error of y2 I 4. By increasing the ratio y I x 

the approximation rate for K-means algorithm can be made arbitrarily high. 

To find a global solution for the MSSC model, many heuristics for k-

clustering, based on methods such as branch-and-bound searching, gradient 

decent, simulated annealing and genetic algorithms have been proposed and 

studied by various researchers [6; 16; 54]. However, No proven approxima-

tion bounds are known for these methods. In particular, Hasegawa et'al [22] 

proposed to use the so-called K-Medoids method to solve problem (1.1) and 

showed that their method can provide a 2-approximation solution to prob-

lem (1.1). In the sequel, we will consider a similar algorithm for the balanced 

case. 

First, we introduce a stronger constrained hi-clustering problem as fol-

lows. Given a data set S of n entities, we consider the following partitioning 

problem: 

In other words, we impose the requirement that the centroids of these two 

clusters must be chosen from entities in the corresponding clusters. We have 
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Lemma 5.5.1. The constrained bi-clustering problem (5. 7) for n entities in 

any fixed dimension d can be solved in O(n3 logn) time. 

Proof. We can enumerate all pair of entities in the data set as the (c1 , c2 ) in 

(5.7). For every fixed pair of (c1 , c2), we can use the step 1 in Algorithm 3 to 

find a solution for problem (5.7). Since every run of such a procedure takes 

0( n log n) time and in total we have n( n -1) /2 pairs, the constrained problem 

(5.7) can be solved in O(n3 logn) time. 

We next present a technical result that will be used in our later analysis. 

Lemma 5.5.2. Given a data setS= {s1 , · · · , sn} with si E ~d, i = 1, · · · , n, 

centered at its geometric centroid c = 
1
1

1 
'Es;ES Si· If a point s E ~d satisfies 

lis-ell~ llsi-cll, Vi= 1,··· ,n, 

then we have 

s;ES s;ES 

Proof. It is straightforward to see that 

L llsi- sll 2 

s;ES s;ES 

s;ES s;ES 

s;ES 

~ 2 L llsi- cll 2
, 

s;ES 
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where the last inequality follows from the assumption in the lemma. This 

finishes the proof of the lemma. 

The next lemma leads to the Algorithm 9, which will be proposed later, 

and the approximation rate of the solution provided by Algorithm 9. 

Lemma 5.5.3. For the constrained problem (5. 7}, the sum-of-squared error 

of optimum solution is at most twice the sum-of-squared error of optimum 

solution of problem (5.1}. 

Proof. Let {(c1 , C1), (c2 , C2)} be an optimum solution of (5.1). For such a 

fixed partition ( C1 , C2), we consider the following constrained minimization 

problems 

min lis- cill i = 1, 2. 
sEC; 

(5.8) 

Denote the solutions of the above two problems by c~ and c~ respectively. From 

Lemma 5.5.2, we obtain 

2: lie~ - sll2 + 2: 11c;- sll2 :::; 2 (2: llc1- sil2 + 2: llc2- sil2) (5.9) 
sEC1 sEC2 sEC1 sEC2 

Recall the fact that the partition ( C1, C2 ) satisfy the constraints in problem 

(5.1) and thus (c~, C1, c~, C2 ) is also a feasible solution of problem (5.7). This 

implies that the sum-of-squared error of the optimal solution to problem (5. 7) 

is less than or equal to the sum-of-squared error of the optimal solution of 

problem (5.8), which further concludes the lemma. 
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Based on the above analysis, we propose the following algorithm. 

Algorithm 9 2-Approximation Algorithm 
for every pair of ( c1, c2) where c1, c2 E S do 

Use (cb c2) as the starting centers and apply Algorithm 2 to solve prob-

lem (5.1). 

end for 

Output the bipartition with smallest sum-of-squares error as a solution. 

Combining Lemma 5.5.1 and Lemma 5.5.3, we have 

Theorem 5.5.4. For a given set of n entities, Algorithm 9 can provides a 

2-approximate solution to problem (5.1}, and the time complexity of the algo-

rithm is O(Tn3 1og n), where T is the maximal number of iterations in running 

Algorithm 2. 
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Chapter 6 

An Approximate Method to 

Hi-clustering with Fixed Size 

In this chapter, we consider the special case of balance bi-clustering where the 

sizes of cluster are fixed, we propose a new method (called Q-means), which 

could not only give a 2-approximation bound theoretically, but also enjoys a 

lower iteration bound than our algorithm for general balanced bi-clustering. 

75 



Master Thesis - Y. Wei -McMaster- Computing and Software 

6.1 Definition of Problem 

In this section, we consider a special case of the balanced hi-clustering, called 

fixed size hi-clustering. Mathematically, this problem can be described as: 

S.T. fg;t = R (R ?_ 1) (6.1) 

Here (c1 , c2 ) is the geometry center of (C1, C2). 

A straightforward algorithm to solve problem (6.1) is to execute the 

rounding procedure introduced in last chapter after the classic K-means al­

gorithm stops to obtain a solution that satisfies the additional constraint. In 

such an approach, the information from the constraint is not used. The al­

gorithm simply performs an unguided search and tries to locate a feasible 

solution at last passively. We can also try all the pairs in the data set as 

starting centers, and use an algorithm similar to Algorithms 8 and 9 to solve 

problem (6.1). Following the results from last chapter, such an algorithm will 

have a complexity O(n3 logn). In the following section, we proposed a more 

efficient algorithm, called Q-means to solve problem (6.1). Our new method 

uses the constraint in problem (6.1) to select the starting centers as required 

in Algorithm 8 and 9. As we shall see later, such a heuristics will improve the 

efficiency of the algorithm substantially. 
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6.2 Q-means Algorithm 

For a given data set S, let us denote its centroid by c, i.e., c = ~ .L:~=l Si. 

Suppose that we partition the set s into two clusters cl, c2, where Cl and 

c2 are the two cluster centroids respectively. Without loss of generality, we 

assume IC1I 2: IC2I > 0. It is easy to verify the following relation 

(1 - t)c1 + tc2 = c for some t E (0, !J. 

which can be equivalently stated as: 

(6.2) 

Therefore, we have: 

For every entity si, let Q = 1/t and define 

Then, we have 

Using the above notation, we can rewrite the MSSC model as the following 

bilevel optimization problem 

n 

min L(llsi- c1ll 2 + min{O, ¢(c1, si)} ). 
q,Q i=l 
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For any given cluster center c1 and fixed Q, we can determine the cluster 

that each entity belongs to by the property function ¢(c1 , si)· If ¢(c1, si) ~ 0, 

then si E C1; otherwise, si E C2. Let us define the active index set I = 

i : ¢( c1 , si) < 0. Then the MSSC model can be transformed into a quadratic 

programming( QP) problem: 

(6.4) 

From our above discussion, it becomes clear that solving problem (6.4) equals 

to assigning entities to two clusters whose centroids are c1 and c1 + Q(c- c1) 

respectively. On the other hand, given two geometric centers (c1 , c2 ) of cluster 

For our problem (6.1), since ~~~~ = R, we have: 

Q=R+l. 

Therefore, when R is fixed, the geometric centers of the two clusters (c1 , c2 ) 

together with c have the relation (6.2) with Q = R + 1. We mention that the 

converse statement is not true in general, i.e., Q can not determine precisely 

the size ratio of two clusters. However, we still expect that Q can give us some 

guidelines to control the relative cardinality of the two clusters. This inspires 

us to consider the so-called Q-means algorithm described in Algorithm 10: 
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Algorithm 10 Q-means Algorithm 
Given size ratio requirement R (R ~ 1); 

Step 1: Initialization 

Choose an entity in the space as the starting center of cluster C1 , say c1 . 

Set Q = R + 1, i = 1, ci = c1. 

Step 2: Iteration 

Identify the active set I = { i : ¢( ci, si) S 0}; 

Find ci+l the solution of the quadratic problem (6.4) based on the current 

active index set I. Goto Step 2 if ci =!= ci+1; 

Step 3: Rounding 

Use the rounding procedure 1 or 2 in Section 2.3 to find a solution that 

satisfies the size ratio constraint. 

Step 4: Alternation 

Set Q = 1- 1/(R + 1), repeat step 2 and step 3. 

Step 5: Choose the better one from the two solutions obtained from these 

two procedures as the final output. 

In principle, Q-means is a heuristic similar to K-means. We iteratively 

reduce the objective function until convergence and then use the rounding 

procedure to find a solution that satisfies the constraint. Similar to K-means, 

Q-means is also very sensitive to the choice of initial starting entity and also 
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very easy to be trapped in some local optimum after a few iterations. The com-

plexity of Algorithm 10 is O(Tnlogn) if the rounding procedure 1 is applied, 

where T is the maximal number of iterations in running Algorithm 10. 

Alternatively, if we use rounding procedure 2, it will suffer a complexity 

of O(Tn2
), but enjoys a better solution in return, since we conduct an even 

more 'greedy' approach than in the rounding procedure 1. It depends on the 

problem scale to decide which rounding procedure should be used. We will 

illustrate this idea in the numerical result chapter. 

On the other hand. to get a good approximation solution, we employ 

the idea described in last chapter. However, in the special case of (6.1), we just 

need to try every entity in the set as the starting center used in the Q-means 

algorithm and then compute another center via the relation (6.2). This reduces 

the complexity of the whole procedure from O(n2 ) to O(n) of enumerating all 

possible starting entities for the hi-clustering problems. 

Algorithm 11 Revised Q-means 
Step 1: Try every entity in the data set as the starting center in Algo-

rithm 10. 

Step 2: Output the best bipartition ( c;, c;) as a solution. 

The time complexity of this algorithm is O(n2 logn) if using rounding 

procedure 1, O(n3 ) if using rounding procedure 2. In what follows we derive 
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an upper bound for the solution produced by the revised Q-means algorithm. 

Theorem 6.2.1. The sum-of-squared error of the solution derived by Alga-

rithm 11 is at most twice the sum-of-squared error of optimum solution of 

problem {6.1}. 

Proof. Let { ( c1, CI), ( c2, C2)} be the optimal solution of the problem ( 6.1). Let 

us denote the solutions of the problems (5.8) by c~ and c~ respectively. Define 

It follows 

llci- c2ll = Rllc1- c~ll, 

II c; - c1ll = ~ II c2 - c; II· 

From the above two relations, we must have either 

or 

(6.5) 

(6.6) 

Without loss of generality, we can assume the inequality (6.5) holds. By 
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Lemma 5.5.2, we have 

Recall the fact that the pair ( c~, ci) was used in Algorithm 11 as the starting 

centers for two clusters. Therefore, the sum-of-square error provided by the 

final output from Algorithm 11 must be less than or equal to SSE. In a similar 

vain, we can derive the same conclusion when (6.6) holds. This finishes the 

proof of the theorem. 
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Chapter 7 

Computational Results 

In this chapter, we present some preliminary computation results for the algo­

rithms we have discussed before, it consists of two parts, the first part is about 

the hi-clustering via PCA, which is proposed in chapter 4, the second part is 

about the Q-means algorithm. 

7.1 Numerical Experiments for Hi-clustering 

via PCA 

To test the performance for Algorithm 4 in the case of hi-clustering, we have 

done some preliminary numerical experiments on several data sets from the 
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UCI Machine Learning Repository1 and internet newsgroups. All the exper­

iments are done by using Matlab on a personal computer with a Pentium 4 

1700 MHz Processor and a 256M memory. The power method is applied for 

calculating the largest eigenvalue and eigenvector for the matrix [19]. 

It should be mentioned that although the subproblem ( 4. 7) can be 

solved by using the procedure in [17], the running time of the procedure is 

clearly too much for reasonably large data set. Due to this fact, in our exper-

iments, we restrict us only to hi-clustering. 

Data Sets from the UCI Machine Learning Repository 

• Soybean Data Set (small): see also [37]. This data set has 47 in-

stances and each instance has 35 normalized attributes. 

• The Spath's Postal Zones: This data set is from [51] about the post 

zones in Bavaria. It has 89 entities with each having 3 attributes. 

• Spam E-mail Database: created by M. Hopkins et alfrom Hewlett­

Packard Labs. It has 4601 samples, 57 attributes. For purpose of cluster­

ing, we have removed the last boolean attribute which indicates whether 

the e-mail was consider spam or not. 

In our experiments, we use a two-phase strategy. After we obtain the 

1 http: j jwww.ics. uci.edu/-mlearn/MLRepository.html 
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partition of the data sets from Approximation Algorithms 4, we use the clas­

sical K-means to further improve the partition. In other words, we only use 

Algorithms 4 as a starting strategy for K-means clustering. In the following 

tables, we list the solutions from both phase 1 and phase 2. 

Since, for all the first two data sets, the global optimum has already 

been reported in [44] by using a linear programming model in the case of k = 2, 

we list it in the Global Opt. column as reference. The global solution for the 

third data set has been reported in [45]. 

Table 7.1: Results on three UCI data sets 

data set Stage 1 Stage 2 Global Opt. 

Soybean 404.4593 404.4593 404.4593 

The Spath's 6.0255e + 11 6.0255e + 11 6.0255e + 11 

Spam E-mail 9.43479784e + 08 9.43479784e + 08 9.43479784e + 08 

Numerical Results for Balanced Hi-Clustering 

We also test our algorithm for balanced hi-clustering. To find a global solution 

to balanced hi-clustering, we adapt the LP model in chapter 4 slightly to 

incorporate balanced constraints. The solution obtained from the LP model 

gives us a lower bound for the global optimum of the balanced hi-clustering. 
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We also pointed out that for the third data set, its relatively large size 

prevents us from the use of the LP model due to the enormous amount O(n3 ) of 

constraints involved in the model. In such a case, since we know the optimum 

partition of the third data set does not comply with the balanced constraint, 

which means some rounding must be performed to satisfy the constraint, it 

will lead the final two clusters have a size ratio of 1:2, recall that the Q-means 

algorithm we proposed also works for fix size hi-clustering, therefore, the result 

from Q-means heuristic for the third data set is listed instead, the size ratio 

constraint for Q-means is 1:2. 

In the experiments for the last two data sets, we require that each 

cluster has at least n/3 entities. For the soybean data set, we require each 

cluster has at least 22 entities. This is because the data set itself is fairly 

balanced already( the optimal hi-clustering has a (20, 27) distribution). Table 

7.2 summaries the results. 

Table 7.2: Results for Balanced Bi-clustering 

data set Stage 1 Stage 2 LP/Q-means 

Soybean 419.5473 418.5273 418.5273 

The Spath's 1.6310e + 012 1.6310e + 012 1.6310e + 012 

Spam E-mail 1.4049e + 09 1.4046e + 09 1.4046e + 09 
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From the above tables we can see that the solution from phase 1 is very 

close to the solution from phase 2. In all the case, the solution from phase 2 

match the global solution of the underling problem. 

Internet N ewsgroups 

Text mining has been popular in document analysis, search engine and knowl­

edge discovery in large volume of text data. We have also performed experi­

ments on newsgroups articles submitted to 20 newsgroups2 . This data set has 

also been used in [15; 20; 63], where a similar framework as ours was used to 

solve the problem. The algorithm we use is still the two-phase heuristic which 

is introduced in last section. 

This data set consists of about 20,000 articles (email messages) evenly 

distributed among the 20 newsgroups. We list the name of the newsgroups 

together with the associated group labels in Table 7.3. 

Before constructing the word-document matrices, we perform the pre­

processing by using the bow toolkit, a preprocessor similar to what employed 

in [15; 20; 63]. In particular, we use the tokenization option such that the 

UseNet headers are stripped, since the headers include the name of the correct 

2The news group data together with the bow tookit for preprocessing can be downloaded 

from http:/ /www-2.cs.cmu.edu/afs/cs/project/theo-ll/www/naive-bayes.html 
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Table 7.3: Newsgroups and Their Labels 

NGl alt.atheism NGll rec.sport.hockey 

NG2 comp.graphics NG12 sci.crypt 

NG3 comp.os.ms-windows.misc NG13 sci.electronics 

NG4 comp.sys.ibm. pc.hardware NG14 sci.med 

NG5 comp.sys.mac.hardware NG15 sci.space 

NG6 comp.windows.x NG 16 soc.religion.christian 

NG7 misc.forsale NG17 talk.politics.guns 

NG8 rec.autos NG18 talk.politics.mideast 

NG9 rec.motorcycles NG19 talk.politics.misc 

NGlO rec.sport. baseball NG20 talk.religion.misc 

newsgroup, and we also apply stemming [38]. Afterwards, we apply the stan­

dard tf.idf weighting scheme and normalized each document vector to have unit 

Euclidean length. Finally, we conduct feature selection where 500 words are 

selected according to the mutual information between words and documents 

in unsupervised manner. 

In our experiment, we choose 50 random document vectors each from 

two newsgroups. Then we apply our approximation algorithm to the problem. 

The results are summarized in table 5.3. Note that, since the global optimum 
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are not known for these data sets, again, we use the linear programming re­

laxation model proposed in chapter 4 to get an lower bound on the global 

optimum. More specifically, we implement the LP relaxation model (4.1) in 

chapter 4 using package CPLEX 7.1 with AMPL interface on an IBM RS-6000, 

by solving this LP problem, we can obtain a lower bound for the global op­

timum solution. Apparently, if the solution obtained from the LP relaxation 

equals to the solution provided by our two-phase heuristic, then it must be a 

global optimal solution of the original problem. 

From the experiments, we can conclude that our deterministic two­

phase heuristic performs very well on these data sets and it finds the global 

optimum for most of these data sets. 

Table 7.4: Results on internet newsgroup data sets 

data set Stage 1 Stage 2 LP 

NG1/NG2 92.6690 92.6630 92.6630 

NG2/NG3 94.0377 94.0377 94.0377 

NG8/NG9 93.7051 93.5380 93.4007 

NG10/NG11 92.0785 92.0299 92.0299 

NG1/NG15 91.9277 91.9011 91.9011 

NG18/NG19 92.2275 92.2035 92.2035 
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7.2 Numerical Experiments for Q-means 

In this section, we present some preliminary computational results to illustrate 

the performance of our proposed Q-means algorithm, compared with the naive 

'rounding K-means algorithm'. The performance of two rounding procedures 

is mentioned as well. The data sets that we used in the experiments include 

a synthetic data set and some well-known benchmarks in machine learning 

literature. 

For fairness, we use the same starting strategy for the two algorithms, 

which means forK-means, we enumerate all the entities as one of the centroid 

and calculate the other one according to the size ratio constraint, just like what 

we do in Q-means. It follows that K-means will run deterministically. Also, 

the same rounding procedure in both K-means and Q-means. The running 

time and solution quality of two algorithms are compared. 

The hardware environment is the same as we mentioned in last section, 

the CPU time is in seconds. 

7.2.1 Synthetic Data Sets 

We first use a random generator to produce various two-dimensional synthetic 

data sets approximately in the mixture Gaussian distribution [26], which are 

recognized as one of best test beds for MSSC clustering. Four data sets contain-
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ing 4000 entities in [0,0] x [1,1] plane, are generated for our experiments, SOl 

with v = 0.05, r = 0.0, S02 with v = 0.10, r = 0.2, S03 with v = 0.10, r = 0.4, 

S04 with v = 0.15, r = 0.4. (v means variance and r stands for noise level.) 

The Q-means algorithm and the naive "rounding K-means" algorithm 

are compared on above four data sets, whose distribution are represented by 

figures 7.1 and 7.2: 

. . . . ~ 
.... 

. ' . . : :>>':'_}',:.·.:· .: .. .:,: . ~. ·<: .:·· 
..... 
....... ~ .. .... : :· ·.· ... ·:·.~···.~--~-.·:·. 

·.: •,': •, .. 
. ; . . ·:.. .:: .... • ;· . ; :'. :-:.~ : . 

Figure 7.1: Synthetic Set (a) and (b) 

Figure 7.2: Synthetic Set (c) and (d) 
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The following result is obtained by using rounding procedure 1 in both 

algorithms, the size ratio is fixed as 1:3 for these four data sets. 

Table 7.5: K-means vs. Q-means (Rounding Procedure 1) 

data set v r K-means (CPU time) Q-means (CPU time) 

SOl 0.05 0.0 9.121028 (14.432218) 9.121028 (9.513855) 

S02 0.10 0.2 165.422969 (61.143902) 165.422969 (33.010462) 

S03 0.10 0.4 280.028264 (80.566430) 280.028264 (38.851260) 

S04 0.15 0.4 281.542429 (109.471963) 281.044463 (42.279831) 

The similar result, which is derived by using rounding procedure 2, is 

given below: 

Table 7.6: K-means vs. Q-means (Rounding Procedure 2) 

data set v r K-means(CPU time) Q-means(CPU time) 

SOl 0.05 0.0 9.121028 (13.834134) 9.121028 (8.171109) 

S02 0.10 0.2 165.354702 (117.635497) 165.354702 (93.065645) 

S03 0.10 0.4 278.773878 (287.669128) 278.769649 (242.697759) 

S04 0.15 0.4 279.253263 (340.284469) 279.207675 (272.663927) 

From the tests above, on the one hand, it turns out that Q-means 

outperforms 'rounding K-means' in terms of both running time and solution 
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quality, regardless which rounding procedure is used. On the other hand, 

the rounding procedure 2, which has a higher complexity, could indeed find 

better solutions than rounding procedure 1, but takes much longer running 

time. Therefore, for small sale data sets, the rounding procedure 2 should be 

used to derive better solution without increasing the running time too much, 

whereas for large data set, rounding procedure 1 should be applied. 

7.2.2 Data Sets in Literature 

We have also tested the Q-means algorithm on the the following test problems 

in literature. The first two problems are small scale, therefore, the rounding 

procedure 2 is used. For the third data set, which is relatively large, we apply 

the rounding procedure 1 instead. 

• The Spath's Postal Zones Data Set 

This data set is from [51] about the post zones in Bavaria. It has 89 

entities with each having 3 characteristics. Given the same CPU time 

(indicated in the table) for the two algorithms, the result is summarized 

in the Table 7. 7. 

• Soybean Data Set (large) 

The second data set we use is the Soybean data (large) from the UCI 
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Table 7.7: The Spath's Postal Zones Data 

size ratio K-means (CPU time) Q-means (CPU time) 

1:1 177 4654 778161 (0.094566) 1774654778161 (0.019134) 

1:2 1621271650670 (0.076535) 1621271650670 (0.018398) 

1:3 1536771626734 (0.048473) 1536771626734 (0.017221) 

1:4 1472023822662 (0.061756) 1472023822662 (0.017208) 

Machine Learning Repository3
, see also [37]. This data set has 307 in-

stances and each instance has 35 normalized attributes. The result is 

summarized in the Table 7.8. 

Table 7.8: The Soybean Data (large) 

size ratio K-means (CPU time) Q-means (CPU time) 

1:1 4558.433495 ( 4.225763) 4558.433495 (1.594678) 

1:2 4517.974430 (3.419375) 4517.974430 (1.409188) 

1:3 4478.362896 (0.897566) 4478.362896 (0.326273) 

1:4 4543.901639 (0.331163) 4543.901639 (0.085307) 

From the above results, it can be seen that the solution of two algorithms 

are the same, the reason is that the scales of these two data sets are 

relatively small, it is easy for both algorithm to locate the global optimum 

3http: / jwww .ics. uci.edu/-mlearn/MLRepository.html 
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with rounding procedure 2. However, the Q-means algorithm still enjoys 

smaller running time. In the next experiment, we will test on a large 

data set. Notice that the rounding procedure 1 is used since, as the 

problem scale (number of entities and dimension) grows, the rounding 

procedure 2 has turned impractical. 

• Spam E-mail Database 

The third data set we use is the Spam E-mail Database, which is created 

by M. Hopkins et al. It has 4601 samples, 57 attributes (we remove the 

last boolean attribute which indicates whether the e-mail was consider 

spam or not). We obtain the following result for this data set: 

Table 7.9: Spam E-mail Database 

size ratio K-means (CPU time) Q-means (CPU time) 

1:1 1609292966.72 (2060.0481) 1586877787.41 (301.9538) 

1:2 1405187739.99 (1807.5085) 1404622481.26 (334.4043) 

1:3 1276474668.00 (1800.1751) 1276437654.01 (334.0490) 

1:4 1276437654.01 (1565.5531) 1187542869.25 (311.2299) 

It should point out that for the first and second experiments, since 

the rounding procedure 2 is applied, most CPU time is spent on the round­

ing process, therefore, the difference between K-means and Q-means is not 
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that significant if rounding procedure 1 is applied. However, if only rounding 

procedure 1 is used, from experiment 3 we observe a substantial improvement. 

From the above experiments we can conclude that, at least for these 

data sets, Q-means has outperformed regular K-means plus the rounding 

process in terms of both running time and solution quality. This is not surpris­

ing, as we pointed out earlier, besides reducing the complexity of enumerating 

all the entities, Q-means uses the constraint to guide the search process rather 

than to satisfy the constraint passively as in the rounding K-means. 
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Chapter 8 

Conclusion and Future Works 

For the first part in this thesis, we reformulated the classical MSSC as a 0-1 

SDP. Our new model not only provides a unified framework for several existing 

clustering approaches, but also opens new avenues for clustering. An approx­

imation method based on the SDP relaxation and PCA has been proposed to 

attack the underlying 0-1 SDP. It is shown that in the worst case, our method 

can provide a 2-approximate solution to the original classical or constrained 

K-means clustering. Preliminary numerical tests indicate that our two-phase 

algorithm can always find a global solution for hi-clustering. 

For the second part, we proposed several algorithms to deal with the 

so-called balanced and fixed size hi-clustering problems. For the balanced hi­

clustering, the improved constrained K-means algorithm in this paper provides 
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a good alternative for the constrained K-means proposed in [8]. For the fix 

size case, the Q-means algorithm could extract a solution which theoretically 

has worst case approximation ratio at most two. Its theoretical properties are 

verified via our preliminary limited experiments. This is fair to conclude that 

Q-means is also good alternative for rounding K-means algorithm in practice, 

when fix size constraint is encountered. 

There are several different ways to extend our results. First, for general 

k ~ 3, although subproblem ( 4. 7) can be solved by using the procedure in [17], 

its complexity is still exponential in k. This makes the algorithm impractical 

for relatively large data set. Secondly, the current model can deal with only 

a simple case of constrained K-means clustering. The issue of how to deal 

with general constrained K-means clustering still remains open. It worths 

mentioning that, in this case, Q-means is a feasible choice if we know in advance 

that the optimum partition of the data set does not comply with the balanced 

constraints, since if this is true, the balanced clustering problem can be reduced 

to the fix-size constrained problem. Third, for the second part of our work, 

at present our algorithms can only deal with hi-clustering now. It will be 

interesting to investigate how our ideas can be extended to deal with balanced 

and fix size k-clustering with k > 2. It is also an interesting topic to study 

how the idea of Q-means could be extended to the balanced hi-clustering or 
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even k-clustering cases, which could possibly lead to new techniques for the 

balanced clustering. 
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