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Abstract 

Mechanized mathematics systems, especially Theorem Provers (TP) and Com­

puter Algebra Systems (CAS), can play a very helpful role in handling relational 

calculus. Computer Algebra Systems help to automate tedious symbolic com­

putations. However, they lack the ability to make sophisticated derivations of 

logical formulas. Correspondingly, a Theorem Prover is powerful in deriving the 

truth-value of a logical formula. Nevertheless, it is not suitable for dealing with 

symbolic expressions. 

The main goal for our research is to investigate the automation of relational 

calculus using existing mechanized mathematics technologies. Particularly, we 

elaborated a heuristic that enables the assignment of tasks to PVS and Maxima to 

help perform relational calculus. As well we built a proof-of-concept tool that 

supports this calculus. · 

To fulfill our objective, we adopted the following steps: 

1. Investigated and evaluated the characteristics and capabilities of TPs and 

CASs. This step led us to select PVS and Maxima as the tools to be used 

by our system. 

2. Explored a strategy that governs setting tasks to PVS and Maxima in 

order to perform relational calculus. Then, we propose a task assignment 

heuristic based on this strategy. 

3. Designed and built a proof-of-concept tool that makes use of PVS and 



iv 

Maxima to help perform relational calculus. 

4. Assessed our tool by using it to handle some illustrative examples of oper­

ations on concrete relations. 

In our work, relations are given by their characteristic predicates. We assume 

as well that predicates that are provided to our proof-of-concept tool are in a 

Disjunctive Normal Form. We adopt a linear notation for the representation of 

propositions, quantifications, and expressions. We fall short of providing a user 

interface, which makes the use of the tool that we built slightly difficult. 
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Chapter 1 

Introduction 

The concept of a relation plays an important role in many areas of computer 

science such as program semantics, graph theory, relational database, and logic 

programming [SS93]. 

Relational algebra is a mathematical structure that involves a set of relations 

to which we associate a set of operators. These operators include union, inter­

section, complement, composition, and inverse. For more details on relational 

algebra, we refer readers to Section 2.2.1. 

There are many tools built to handle relational algebra and relation algebra 

(the first is a model of the second). Some of them are introduced in RelMiCS 

(Relation Methods in Computer Science) site [Rel06], such as RALF [KH98, 

Hat98], RELVIEW [BBMS98], and RALL [v0G97]. 

Relational algebra is used to express mathematical problems which can be 

solved by using mechanized mathematics systems. Mechanized mathematics is 

the study of how computer can be used to support, improve, and automate the 

mathematical reasoning process [FvMOO]. There are two main classes of mech­

anized mathematics systems: Theorem Provers (TPs) and Computer Algebra 

Systems ( CASs). 

1 
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A TP provides mechanized support for proving conjectures using axiomatic 

theory. Mathematical expressions are manipulated using a fixed set of inference 

rules [Rus03]. An axiomatic theory is used to describe a collection of mathemati-

cal models which have similar structures [FvMOOJ. A TP is wide in scope and uses 

rigorous mathematics, but it provides little support for computation [FvMOO]. We 

refer readers to Section 3.1 for more details on TPs. 

A CAS is a software package that is designed to compute mathematical for­

mulas. The principle purpose of a CAS is to automate tedious and difficult 

symbolic manipulation problems. It handles symbolic expressions and it is rel­

atively easy to use, but it does not always provide reliable results. Besides, it 

does not offer conjecture proving since its mathematical knowledge is represented 

algorithmically [FvMOO]. We elaborate with more details on CASs in Section 3.2 

In our research, we aim at investigating means to demonstrate the feasibil­

ity of mechanizing relational calculus using available mechanized mathematics 

technologies. 

1.1 Related tools 

There are some tools. that can be colligated to our research. The relationship is 

either from the perspective of using relation algebras or from the perspective of 

using a combination of CASs and TPs. We classify them into two classes: Tools 

that handle relation algebras and tools that use a combination of CASs and TPs. 

Subsections 1.1.1 and 1.1.2 discuss these two classes, respectively. 

1.1.1 Tools that handle relation algebras 

RALF (Relation ALgebraic Formula Manipulation) [Hat98, KH98] is an inter­

active assistant proof system for relation-algebraic formulas. The main purpose 



1. Introduction 3 

of RALF is to provide proofs for manipulating relation-algebraic reasonings in a 

calculational style, i.e., the proof can be represented as a sequence of transfor-

mations. 

In RALF, the proof strategy is backward reduction, i.e., the system starts from 

the input theorem needed to be proved, applies the given rules, and derives the 

proof step by step to reach the valid theorems. The given rules can be meta, 

transformation, and inference rules [KH98] The system presents a formula as a 

graphical tree, in which the rewritten sub-formulas are chosen by mouse clicks. 

The following is an illustrative example which is borrowed from [Hat98]. It 

presents the proof steps of the theorem R h: II -+ R = R; R which states that when 

a relation is a subset of the identity, then it is equal to its relational composition 

with itself. This input theorem is put at the root of the graphical tree. In the 

derivation of the proof, the bold-faced expressions indicate the sub-expression 

which will be transformed in the next proof step. This corresponds to the selected 

sub-tree of the formula tree in the system. After applying transformation rules or 

meta rules step by step, it reduces to the trees corresponding to the universally 

valid theorems R; R h: R =} R; R h: R and R h: II =? R h R. 

R;RCR=}R·RCR 
R·RCRlt=}'R-RcR 

' ' ! RCIT=}R;RCR 

RCIT=}RCR 
RCl=}lt;ItCR 

RCIT=}IT'--' ;RCR 

RCIT=}RCR RCIT=}R'--';RCR 
RCIT=}RnR;IT'--'CR RCIT=}ITnR'--';RCR 

RCIT=} (RnR;IT'--') (ITnR '--' ;R) CR;R 

RClt=} RnRcR; R 
RCIT=}RCR;R 

RCIT=}R=R;R 
==} Ri;;;:l--+ R= R;R 

RELVIEW [BBMS98] is an interactive computer system for calculating with 

relations and relational programs. It represent relations as graphs. A homoge­

neous relation is displayed as a directed graph, while a heterogeneous relation is 

depicted as a Boolean matrix. 
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The main purpose of RELVIEW is to evaluate expressions which are induc­

tively constructed from the basic relational operations (e.g.,-, A'&, I, and* for 

complement, transposition, intersection, union, and multiplication, respectively), 

residuals, quotients, relational functions, tests, and relational programs defined 

by users [BBMS98]. A relational function is denoted by f (XI, · · · , Xn) = t where 

f is the function name, xi,···, Xn are the relational parameters, and t is there­

lational term. For example, relational function f, which computes the expression 

R n RR+, is represented as f(R) = R&- (R * trans(R)) [BBMS98]. A relational 

program, which is stored in a text file, is a while-program based on input binary 

relations. The structure of a relational program contains a head line, declara­

tion part, and its body. The headline contains the program's name and a list 

of formal parameters. The declaration part consists of the declarations of local 

relational domains, local relational functions, and local variables. The body is a 

sequence of statements which are separated by semicolons and terminated by the 

return-clause. 

The following is an example of a relational program given in [BBMS98). It 

uses Prim's method to compute the relations of a spanning tree for a nonempty, 

undirected, and connected graph with relation E. The predefined operations dam 

and ran compute the domain and the corresponding range of a relation. Fur­

thermore, the base operation atom yields for a non-empty relation a sub-relation 

which contains exactly one ordered pair. 

Prim(E) 

DECL T, v 

BEG T atom(E); 

v = dom(T) lran(T); 

WHILE -empty(-v) 

DO 
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T T I atom(v * -v~ & E); 

v = dom(T)Iran(T) 

OD 

RETURN Tl r. 

END. 

5 

RALL (Relation Algebraic Language and Logic) [vOG97] is a proof assistant sys­

tem for relational calculus based on the TP lsabeii/HOL. It provides the full lan­

guage of heterogeneous relation algebra including higher-order operators, such as 

join, meet, complement, and quantification over relations. In addition, it enables 

the verification of the type correctness of all involved formulas for heterogeneous 

relations [vOG97]. 

The system supports capabilities for both interactive and automatic theo­

rem proving. The interactive nature primarily represents forward and backward 

chaining in which each step is a predicate logic or an algebraic manipulation 

of terms, substitutions of equal to equal relations, and estimations of relational 

inclusions performed by using monotonicity of operators [vOG97]. The auto­

matic nature represents a transformation from relational algebraic formulas into 

propositional logic, i.e, an inclusion is turned into an implication, a join into 

a disjunction, a meet into a conjunction. For example, x ~ y U z becomes 

V(x I x E atom: x ~ y U z-+ x ~ y V x ~ z) [vOG97]. 

1.1.2 Tools that use a combination of CASs and TPs 

Maple-PVS [SG05], as its name suggests, is an interface between Maple and PVS. 

The main objective of the interface is to handle all the communications (e.g., 

relay messages) between them. It allows a Maple user, from its session, to access 

checkable proof environment of PVS. The activities of the interface are accessed 
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by three main components: the filter, the GUI front end, and the wrapper. The 

filter is responsible for classifying PVS outputs into different categories. Then, it 

relays all messages to the GUI front end. The GUI front end provides a graphical 

front end to Maple-PVS and distributes messages to T ci/Tk window and Maple. 

The wrapper is used to initialize the interface, assemble PVS commands, get 

inputs and outputs, and shutdown the interface. 

Besides the tool Maple-PVS, MathScheme [Mat06] is a project which aims at 

developing a TP and a CAS to develop a new approach to mechanized mathe­

matics where it merges the formal deduction and the computation into a single 

activity. 

Compared to other related approaches, the one adopted in the thesis is the 

only one that uses the batch modes of a TP and a CAS to handle relational 

calculus. The most important difference is that our approach uses a heuristic to 

assign tasks to be performed by these tools. For more details on heuristic, we 

refer readers to Chapter 5. 

1.2 Motivation for our research 

We think that mechanized mathematics systems, especially TPs and CASs, can 

have a critical impact on solving relational algebraic problems. The characteris­

tics of a CAS help to automate the tedious or complicated symbolic computation. 

However, a CAS does not have the ability to make sophisticated derivations of 

logical formulas. Correspondingly, a TP is powerful in making logical formulas 

verification, but it meets difficulties in dealing with symbolic expressions. 

For an illustrative example, we consider the following conjecture: 

V(x I x E IR: 3 * x 2
- 7 * x + 1 = 0 ::::> x ~ 0) (1.1) 
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From [Wes99, page 41, problem AS], all the chosen CASs in the test suite stud­

ied in the referred paper lack the capabilities to establish the truth value of 

this universal quantification. In general, a CAS does not have a mechanism for 

verifying the correctness of a deduction. We attempt to ask a TP, for exam­

ple PVS, to determine its truth value. However, with the limitation of PVS in 

dealing with symbolic expressions, it is challenging for it to handle the equation 

3 * x 2 -7 * x + 1 = 0. Also, from [Wes99, page 44, problem G6], it shows that this 

equation can be successfully solved by almost all CASs. Thus, we use a CAS to 

deal with it first. Then, Maxima is selected to compute it by the command solve: 

C%i1)solve(3 * x~2- 7 * x + 1, x); 

C%o1) [x = - (sqrt(37) - 7)/6, x = (sqrt(37) + 7)/6] 

Then, substituting x = - sqrt(~7)- 7 or x = sqrt(~7)+7 into (1.1), we get: 

V(x I x E 1ft : x = - sqrt(367) - 7 V x = sqrt(367) + 7 ==? x ~ 0) (1.2) 

Representing (1.2) in a PVS theory as follows: 

forall_quantifier: THEORY 

BEGIN 

x: VAR real 

forall_expression: LEMMA(FORALL x: x = ((7-sqrt(37))/6) 

OR x = ((7+sqrt(37))/6) IMPLIES x>=O) 

END forall_quantifier 

PVS makes the verification and returns the status "Q.E.D", which is short 

for Latin phrase "quod erat demonstrandum" in meaning that "which was to be 

proved". Thus, with one time use of a CAS to find the solutions of the expression 

and then using a TP to verify the universally quantified formula, we can get the 

final result. 
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For more details on the application of the combination of a TP and a CAS, we 

attempt another example: ::J(x I x EN: d~~) = x 1\ y(1.5) = 0 1\ y(x) = 0). 

In order to compute the conjecture, we can process according to the following 

steps: 

1. We use a CAS to solve the differential equation d~) = x. We get y(x) = 

x
2

2 
+c. Using y(1.5) = 0, we get y(x) = 4x~-9 . Representing this in Maxima, 

we need to use the following commands: 

C%i1) equation: diff(y,x)=x; 

C%o1) dy/dx=x 

C%i2) ode2(equation,y,x); 

C%o2) y = x-2/2 + %c 

C%i3) ic1(%,x=1.5,y=O); 

(%o3) y = (4x-2-9)/8 

2. We invoke a TP to prove the following conjecture: ::J(x I x E R: 4x~-9 = 0). 

Again, a TP might not be able to prove this universal quantification due 

to the polynomial in its body. We still need a CAS to solve the equation 

4x~-9 = 0. We get x = -;3 or x = ~· Using the solve command of Maxima, 

we get: 

• 
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(%i4) solve(ev(%,y=O)); 

(%o4) [x = - 3/2, x = 3/2] 

9 

3. After that, the TP has the ability to give the results for the conjecture 

3(x I x E IR: (x = -;3 ) V (x = ~)). 

Using the strategy grind of PVS to make the verification for the conjecture 

which is coded in the following PVS theory: 

exists_quantifier: THEORY 

BEGIN 

x: VAR real 

exists_expression: LEMMA(EXISTS x: x = -3/2 OR x = 3/2) 

END exists_quantifier 

Then, substituting the values of x into PVS conjecture and representing it 

in a PVS theory file, we finally get the result: 

exists_ expression 

1-------

{i}(EXISTS x: X -3/2 DR X = 3/2) 

We proceed it as follows: 

Rule? (grind) 

Trying repeated skolemization, instantiation, and if-lifting, 

Q.E.D. 

Therefore, using a CAS twice to deal with the expressions and then using a 

TP, we obtain the final result. 
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1. 3 Problem statement 

In the rest of the thesis, we handle relations through their characteristic pred-

icates. The calculus that we use involves five fundamental operators: union, 

intersection, inverse, composition, and complement. Operations on relations are 

translated into the corresponding operations on their characteristic predicates. 

Therefore, they are operations on predicates. 

For example, we attempt to use the operator Union to compute the union of 

two relations. We take the first following predicate:3(z I z E lR : x + z = y- z). 

This predicate can be considered as representing the following relation R1 

{ (x, y) I x, y E lR: 3(z I z E lR: x + z = y- z)}. 

We take a second predicate: 3(z I z E N : d~~x) = - z; 

assume that it represents the relation 

1\ y(z) = 0). Let us 

R2 = {(x,y) I x,y E lR: 3(z I zEN: dyd(x) =- zx 1\ y(z) = 0)}. 
X y 

Then, 

{(x, y) I x, y E lR: 3(z I z E lR: x + z = y- z) 

V 3 ( Z I Z E N : d~~) = - z; 1\ y ( Z) = 0) } 

For more details on operations on relations, we refer readers to Section 2.2. 

As illustrated in Section 1.2, a TP or a CAS cannot solely deal with the 

obtained quantification. A TP meets the difficulties in simplifying and solving 

symbolic and numeric expressions while a CAS lacks the capabilities in establish­

ing the truth value of the predicate that involves them. 



1. Introduction 11 

1.4 Objectives and contributions of our re­

search 

The main objectives of the thesis consist of: 

1. Investigating and evaluating the characteristics and capabilities of two sep­

arated classes of mechanized mathematics systems, TPs and CASs, and 

make decisions to choose two suitable systems to be used by our system. 

2. Designing and building a proof-of-concept tool which makes use of PVS and 

Maxima to perform relational calculus. 

3. Exploring a strategy in scheduling tasks to PVS and Maxima to perform 

relational calculus and provide a heuristic to meet this strategy. 

4. Assessing our proof-of-concept tool by handling some illustrative examples. 

Therefore, our main contribution consists of investigating the feasibility of the 

automation of relational calculus using existing mechanized mathematics tech­

nologies. Specially, we elaborated a heuristic that enables the assignment of tasks 

to PVS and Maxima in the aim to perform relational calculus. We as well built 

proof-of-concept tool that supports this calculus. 

1.5 Structure of the thesis 

The rest of the thesis is structured as follow: 

Chapter 2 introduces the mathematical background of the thesis. 

Chapter 3 introduces theorem proving systems and computer algebra systems. 

Chapter 4 gives the design that we adopt for the proposed proof-of-concept tool. 

Chapter 5 explores the heuristic on which the scheduling of the invocation of 
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PVS and Maxima is based and lays out representative examples that we use to 

assess our system. 

Chapter 6 presents our conclusion and gives an idea about potential future work. 



Chapter 2 

Mathematical Background 

This chapter introduces the mathematical concepts needed for the thesis. It 

includes sets, relations, predicates, relation algebra, polynomial, the natural de­

duction, and disjunctive normal forms. 

2.1 Sets 

A set is a collection of distinct elements [SS93, Chapter 1]. There are two main 

ways to represent a set: enumeration and comprehension. Set enumeration lists 

all the elements of a set. The set is delimited by "{" and "}" and its elements 

are separated by commas. For example, A= {2, 4, 6, 8} denotes a set with four 

elements 2, 4, 6, and 8. Set comprehension (or set builder) states the properties 

the elements must satisfy to be a member of the set. It is represented in the form 

{ x1 : t1, · · · , Xn : tn I P : E} where Xi is a bound variable, ti is a type of Xi for 

i E [1, · · · , n], P is a predicate, and E is an expression. For example, a set of all 

positive integer numbers whose squares are less than or equal to 25, is denoted 

by A = { x : /Z I x ~ 0 : x2 
:::; 25}. 

A set theory considers sets constructed from some collections of elements. 

13 
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This collection of elements is called the domain of discourse or universe of values, 

denoted by U. The universe is considered as the type of every set variable in the 

theory. In the traditional form, set comprehension is denoted by { x : t I P} or 

{xI P}. 

When x is a member of a set A, we denote it by x E A. The cardinality of 

a finite set A, denoted by IAI, is the number of elements of A. Set S is finite, 

with cardinality or size n for some natural number n, if there exists a bijective 

function f : (O .. n- 1) ~ S; otherwise, Sis infinite [GS93]. Empty set, denoted 

by 0 or {}, is the set which has cardinality equal to 0. The power set of X, 

denoted by P(X) or 2x, is the set of all subsets of X. 

2.1.1 Operations on sets 

Let A and B be sets, and let U denote the universe. The operations on sets are 

defined as follows (where :£. denotes defined as): 

Subset A~ B-¢:::=::} V(x I x E A: x E B) 

Proper subset A C B -¢:::=::} A ~ B 1\ A =!= B 

Superset A ;:2 B -¢:::=::} B ~ A 

Proper superset A => B -¢:::=::} B C A 

Union A U B :£. { x I x E A V x E B} 

Intersection 

Difference 

Complement 

Disjoint 

An B 6 {xI x E A 1\ x E B} 

A- B ~{xI x E A 1\ x ~ B} 

A 
6 U- A 6 {xI x E U 1\ x ~A} 

disj (A, B) -¢:::=::} A n B = 0. 
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2.2 Relations and predicates 

Let A and B be two sets. The Cartesian product of A and B, denoted by Ax B, 

is the set of all ordered pairs (a, b) where a E A and bE B, i.e. Ax B = {(a, b) I 

a E A 1\ bE B}. Every subset R of the Cartesian product of A and B is called 

a relation, i.e. R ~ A x B. If A = B, R is called a homogeneous relation, i.e. 

R ~ A x A. If A =/= B, R is called a heterogeneous relation. R has the type 

A...._. B, which we denote by RA ..... B· 

We list three special relations: 

(1) Empty relation: j_A....,B = {(x, y) I false} 

(2) Universal relation: T A+->B = { (x, y) I true} 

(3) Identity relation: For every set A, IIA+->A = {(x,x) I x E A} 

Operations on Relations 

Let P and Q be homogeneous binary relations. We present the following opera-

tions on relations: 

Union P U Q 1:=. { ( x, y) I ( x, y) E P V ( x, y) E Q} 

Intersection p n Q 1:=. {(x, y) I (x, y) E p 1\ (x, y) E Q} 

Inverse p~ t> {(y,x) I (x,y) E P} 

Complement P :£ { (x, y) I (x, y) tf_ P} 

Domain dom(P) t> {xI :J(y 1: (x, y) E P)} 

Range ran(P) 1:=. {y I :J(x 1: (x, y) E P)} 

Composition P;Q :£ {(x, z) I :J(y 1: (x, y) E P 1\ (y, z) E Q)} 

defined iff P and Q are defined on a same set A (i.e., P c A x A 

and Q C A x A since P and Q are homogeneous binary relations.) 

For simplicity, we write :J(y I : (x, y) E P) instead of :J(y I true : (x, y) E P). 
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2.2.1 

2. Mathematical Background 

Relation algebra and relational algebra 

Definition. A heterogeneous abstract relation algebra is a structure (R, U, n, ;, 

-, -l) on a nonempty set R, whose elements are called relations. Each relation 

R E R is associated with a type A <---> B. We have the following conditions: 

(i) The operations - (complement) and ~ (inverse) are total operations. 

The operations U (supremum), n (infimum), and; (composition) are partial. 

a) The operation QA....,B U Rc ..... D is defined iff A= C and B =D. 

b) The operation Q A<->B n Rc ..... D is defined iff A = C and B = D. 

c) The operation QA._.8 ; Rc ..... D is defined iff B =C. 

We have: 

Q A<->B U Rc ..... D : A <---> B 

QA ..... s n Rc ..... D : A<---> B 

RA<->B : A <---> B 

(RA ..... B)~ : B <--->A 

QA<->B; RB<->C :A<---> c 

(ii) Each structure (BA ..... B, U, n, _LA....,B, T A ..... s), where BA....,B is the set of the 

relation having the type A <---> B, is a complete atomic boolean algebra. 

(iii) For each relation R: A<---> B, there exists a left identity 1I8 ....,8 : B <--->Band 

a right identity IIA....,A : A <---> A such that: IIA._.A; RA ..... B = RA._.s; 1I8 ....,8 = 

(v) The Schroder rule holds: 

QA._.s; RB ..... c ~ SA ..... c 
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(vi) The Tarski rule holds: Rs._.c i= l_B+->C ===? T A+->B; Rs+->c; T C<-->D = T A<->D· 

A relational algebra is a model of relation algebra where R is the set of binary 

relations. 

2.2.2 Predicates 

Predicates are applications of boolean functions whose arguments may be of type 

other than the set of Boolean Jffi , denoted by f : ~ --* Jffi where ~ is a type in 

higher-order logic. The predicates over ~ form a function space that we write 

p(~), i.e. 

P(~) = {! I f: ~ __.... lffi} 

A predicate p : ~ __.... lB determines a set AP ~ ~ such that Ap = { CT E ~ I p( CT)}. 

Examples of predicates ~;tre greater, even, and succ. The arguments of predicates 

are expressions, i.e, arguments can be constants, variables and operations com­

bining them. These arguments are also called terms. Terms with operations and 

constants are called ground terms. Examples of terms are: ~, and b2
- 4 *a* c. 

Let r be a predicate, x a variable, 

y E { x I r} {:=:;> r[x := y] for any expression y. 

This result is borrowed from [GS93, Chapter 11]. It formalizes the connection be­

tween sets and predicates: a predicate is a representation for the set of argument­

values for which it is true. 
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To each predicate r, there corresponds a set comprehension { x : t J r}, which 

contains the objects in t that satisfy r. Then, r is called a characteristic predicate 

of the set. 

2.3 Polynomial 

A polynomial is a furiction of the form 

where a0 is called the constant coefficient, an is called the leading coefficient, and 

n is called the degree of the polynomial. A root or a zero of a polynomial p is a 

number (such that p(() = 0. 

2.4 Natural deduction 

The Natural Deduction (ND) is used to provide the logical rules to simplify the 

logical formulas of the predicate. These rules are also discussed in the heuristic 

in Chapter 5. 

The following definition of ND is borrowed from [GS93]. ND is a method 

to construct patterns of reasonings or proofs in natural languages. There are 

two main inference rules for each operator and each constant: an introduction 

rule and an elimination rule. Introduction rules produce complex statements 

from smaller statements by introducing connectives. Elimination rules produce 

simpler statements from complex statement by eliminating connectives. 

Table 2.1 presents the inference rules for ND. In the table, for each operator 

or constant*, the corresponding rules are named as *-I and *-E for introduction 

rule for * and elimination rule for *, respectively. For example, the introduction 



2. Mathematical Background 19 

and elimination rules for 1\ are 1\-I and 1\-E. Each inference rule is a schema, 

and substituting boolean expressions for the variables p, q, and r in it yields an 

inference rule as shown in Table 2.1. 

Table 2.1: Inference rules for natural deduction 

Introduction rules Elimination rules 

Name Rule Name Rule 

/\-I 1?...._!j_ 1\-E E....!::...!J. E....!::...!J. 
p 1\ q p ' q 

V-I _P_ _.!1_ V-E 1!. V g,, p =? r, q =? r 
p v q' q v p T 

=::}-! 1!.1 , ... ,Pn 1- q =}-E 1!.· p =? 9. 
Pl/\ .. ·1\pn =? q q 

=.-I 1!.*9.· 9. =? 1!. =.-E 1!. = 9. 1!. = q 
p = q p =? q' q=>p 

•-I 1!. 1- q 1\ ~q •-E ~1!. 1- q 1\ ~g, 

~p p 

true-! 1!. = 1!. true-E true 
true p = p 

false-! ~true false-E ~false 

false true 

2.5 Disjunctive normal form and conjunctive 

normal form. 

The following definitions are borrowed from [End 72]. 

A propositional formula is in Disjunction Normal Form (DNF) if it is a dis-

junction of conjunctions of literals. A propositional formula is in Conjunctive 

Normal Form (CNF) if it is a conjunction of disjunctions of literals. A literal is . 

For example, the expression ( x 1\ y 1\ •z) V ( x 1\ •y 1\ z) V ( •x 1\ y 1\ z) is a D NF and 

( x V y V •z) 1\ ( x V •y V z) 1\ ( •X V y V z) is a CNF. Every propositional formula 

is logically equivalent to a DNF or a CNF [End72, page 49]. 
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2.6 Linear notation 
2. Mathematical Background 

In our system, we use a linear notation to represent a quantification, a proposition 

(which can be handled by PVS), and an expression (which can be handled by 

Maxima). The format of a linear notation is structured as follows: 

_Ql_ (__ffi_ __Q2_ _ill_) 
For a formula, ( 1) denotes quantifier symbol Forall or Exists, ( 2) denotes the 

list of bound variables which are separated by commas, (3) denotes the domain 

range of variables, and ( 4) denotes the body context of the quantification. The 

body context can be one of the following kinds: a Boolean value True or False, 

an expression, a proposition, another quantification, or the conjunction of them. 

For example, Forall(x, y, z I x in real, y in real, z in real : x + (y + z) = 

(x + y) + z) and Forall(x I x in real : Exists(y, z I y in real, z in int : x = 

2 AND x + y + z = 3 AND x * y * z = 1)) are two quantifications represented 

in the linear notation. 

For a proposition, (1) denotes the keyword "lemma", (2) denotes the list of 

bound variables which are separated by commas, (3) denotes the domain range 

of variables, and ( 4) denotes the proposition context. 

For example, lemma(x I x in nat : x > 1 =? x > 2 denotes the proposition 

x>1=?x>2 

For an expression, (1) denotes a Maxima keyword, such as solve for solving an 

equation, integrate for simplifying an integration, diff for simplifying a differenti­

ation, (2) denotes the list of bound variables which are separated by commas, (3) 

denotes the domain range of variables, and ( 4) denotes the expression context. 

For example, solve(x I x in real : x 3 
- 5 * x + 4 = 0) denotes the solving of 

the polynomial equation x 3 - 5 * x + 4 = 0. 

In the implementation, this predicate or expression is represented as a string 
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2. 7 Conclusion 
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In this Chapter, we presented the basic notion and gave established results that 

form the ground on which the proof-of-concept tool we built stands. This chapter 

introduced as well some terms that are used in the sequel of the Thesis. 
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Chapter 3 

Theorem Provers and Computer 

Algebra Systems 

In Chapter 1, we illustrated the fact that a TP or a CAS alone cannot be of a great 

help in performing relational calculus. A TP faces challenges in the simplification 

of symbolic expressions and a CAS lacks the capabilities in making derivations. 

In order to overcome this difficulty, the idea of using a combination of a TP and 

a CAS to handle relational calculus is introduced and will be investigated in the 

sequel. 

In this chapter, we aim at elaborating on the roles of TPs and CASs and 

on the TP and CAS that we choose to use. A TP provides mechanized sup­

port for proving conjectures using axiomatic theory. Examples of TPs include 

HOL [GM93], IMPS [FGT93], Isabelle [NPW02], PVS [ORS92], and TPS [ABB93]. 

A CAS is designed for performing symbolic computation. Symbolic computation 

can provide substitution of symbolic values for expressions, differentiation with 

respect to one or all variables, finding solutions of linear or polynomial equations, 

decomposition of polynomials, factorization of polynomial terms, integration of 

indefinite or definite integrals [Wik06a]. 

23 
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In [Wes99], Wester described a comprehensive test suite for symbolic mathe­

matics softwares. He selected 542 mathematical problems and attempted to solve 

them with seven mathematics software systems: Axiom [JS92], Derive [KVOO], 

Macsyma [Hel91], Maple [Hec93], Mathematica [Wol88], MuPAD [MuP06], and 

Reduce [Ray87]. The selected ones provide both the breadth and the depth of 

the problems in CASs [Wes99]. Among the seven CASs, Maple, Mathematica, 

and Macsyma are evaluated as strongest systems [Wes99]. Section 3.2 gives the 

literature reviews of CASs. 

In our research, we use the batch mode of a TP and a CAS to perform 

relational calculus. The batch mode means that specifications and proofs of a 

TP or commands of a CAS being processed are not displayed. We can put all the 

conjectures that need to be proved by a TP or all the expressions that need to be 

simplified by a CAS in text files and then pass them to the corresponding system. 

After processing in batch mode, they generate files containing the results. 

This chapter is organized as follows. The main characteristics of TPs and 

the reasons for choosing PVS as our TP are discussed in Section 3.1. The main 

characteristics of CASs and the reasons for choosing Maxima as our CAS are 

discussed in Section 3.2. 

3.1 Theorem provers 

3.1.1 PVS 

PVS, short for Prototype Verification System [ORS92], is a mechanized com­

putation system for formal specification and verification. PVS is a system that 

consists of a specification language, a theorem prover, and various utilities and 

documentation [Owr04]. 
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The specification language of PVS is based on typed higher order logic, ex­

tended with predicate subtype and dependent type. Typed higher order logic 

consists of base types, abstract data types, and uninterpreted types. Base types 

are built-in types such as boolean, reals, and integers. Abstract data types in­

clude set, tuple, record, list, and binary trees [ORS92]. Uninterpreted types are 

the types introduced by users. Predicate subtype is a type that contains the 

elements of a given type satisfying a given predicate, e.g, the type of non-zero 

numbers [ORS92]. Dependent types are the types that depend on values. For 

instance, we consider the function type rem : [nat, d : {n : nat I n/ = 0} ---> 

{ r : nat I r < d} J. The declaration for rem indicates the range of the remainder 

function, which depends on the second argument [OSRSCOl]. 

A PVS specification is organized into parameterized theories which consist 

of assumptions, definitions, axioms, and theorems. PVS expressions include the 

usual arithmetics and logical operators, function applications, quantifiers, vari­

ables with freely overloaded names, i.e, multiple variables can be defined with 

the same name, and an extension prelude of built-in theories [ORS92]. 

The logic of PVS includes structural rules, propositional rules, quantifier rules, 

and equality rules. Structural rules permit a weaker statement that can be derived 

from a stronger one by adding either antecedent formulas or consequent formulas. 

For example, the relation r1 c r2 holds between two lists when all the formulas in 

r 1 is a subset of the list r 2, i.e, ~~~~~ w holds if r 1 ~ r 2 and i11 ~ i12 [ OSRSCOl]. 

The propositional rules consist of a propositional Axiom rule, the Cut rule for 

introducing case split, a rule for lifting If conditionals to the top level of a formula, 

and basic rules such as conjunction, disjunction, implication, and negation. The 

quantifier rules include a rule for substituting universally quantified variables 

with constants and a rule for replacing existentially quantified variables with 

terms. The equality rules include a rule for substituting one side of an equality 
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premise by another [ORS92]. 

PVS proof checker supports the development of readable proofs in all stages 

of the proof development life cycle. It handles a set of primitive inference rules, 

a mechanism to program these rules into strategies, a facility to rerun proofs, 

and a feature to verify that all secondary proof obligations, (e.g, type correctness 

conditions), have been discharged [ORS92]. A proof can be saved in a file and 

rerun automatically or rerun in single step mode. It is represented as a tree 

graph, allowing users easily to see all the branches of proofs [GH06]. For more 

details on PVS theorem proof, we refer readers to [ORS92]. 

The built-in commands support very powerful automaton that contains deci­

sion procedures for linear arithmetic, propositional simplification, and automatic 

rewriting [SORSCOl]. In addition, a proof can be constructed by primitive proof 

rules which are programmed as strategies. Proof strategy is considered as a tem­

plate which contains patterns of inference steps. PVS provides a large number 

of strategies. These strategies can be used to prove a variety of theorems. They 

can be used as a starting point for the proof of any conjecture. 

3.1.2 Isabelle 

Isabelle [NPW02] is a generic theorem prover system which supports a platform 

in which different logics can be represented by specifying their syntax and infer­

ence rules. The system represents rules as propositions and constructs proofs by 

combining rules [Pau94]. 

The specification language of Isabelle is originated from functional program­

ming language, especially Meta Language (ML) [NPW02]. Based on the char­

acteristics of ML, the syntax of Isabelle can be easily extended [Mar06]. Its 

specification allows one to import various theories, but it does not permit param-



3. Theorem Provers and Computer Algebra Systems 27 

eterization [Mar06]. It generates automatically an induction principle for each 

recursive data type. 

There are various kinds of logics implemented in Isabelle. Its most important 

logic is meta logic. Other logics can be built based on it by asserting axioms and 

declaring types. The meta logic is a form of higher order logic. The rules of meta 

logic are represented in Natural Deduction form. Natural Deduction is a means 

to formalize reasoning patterns in natural languages [GS93]. Some inference rules 

that work in meta logic are: introduction, elimination, substitution, implication, 

negation, and quantifier rule. The inference rules are specified by using three 

meta-level connectives: implication =?, quantification /$, and equality ==. For 

more details on its logic, we refer readers to [NPW02]. 

Isabelle provides tactics and tacticals. The first are proof commands. Tac­

ticals which are called also proof strategies are functions which build new proof 

commands (i.e., tactics) using more basic ones [GH06]. A tactic is represented 

as an M L function where the input is a goal, the output is a list of subgoals 

along with a proof. A goal is a list of terms paired with a term, corresponding to 

the hypothesis and conclusion of a theorem. Tactics written directly in M L may 

fail in various ways and they usually cannot cause theorems to appear, thus, it 

is difficult to trace the failures [GM93]. In addition, it does not give elaborate 

proof support and it is not easy to see which branch belongs to a proof [Mar06]. 

Isabelle has often been seen as a tool for implementing various logics and 

examining proof systems. 

3.1.3 HOL 

The HOL system is a computer program for constructing formal specifications 

and proofs in higher order logic. It supports reasoning in many areas, including 
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program correctness and refinement, hardware design and verification, compiler 

verification, and proofs in real-time systems [GM93]. 

In HOL, the specification language is a higher order logic which allows func­

tions and relations to be passed as arguments to other functions and rela­

tions [GM93]. 

The HOL logic contains the syntax and semantics of categories of types and 

terms. The types are expressions that denote sets. The terms are elements of 

the sets that are denoted by corresponding types. There are four kinds of types: 

type variables denoting arbitrary sets in the universe lU, atomic types denoting 

fixed sets in the universe, compound types denoting operations for constructing 

sets denoting the type of functions, and functions types. The type structure is 

a two-tuple (F, n) where F is a set of atomic types and function types, and n is 

its corresponding arities. The terms of the logic are expressions that represent 

elements of the sets denoted by types. Terms are classified into four groups: con­

stants, variables, function applications denoting the combinations of the function 

symbols with the constants and variables, and A-abstractions denoting a A term 

AX.t where AX.t denotes a function v ~----+ t[v/x] in which t[vjx] is the result of 

substituting v for x in t [GM93]. For more details on its logic, we refer readers 

to [GM93]. 

The primary components that make theorem proving work in HOL are: the 

theory, the derived inference rules, tactic and tacticals. A theory is a record of 

already proved facts including type structure, a set of defined constants and a 

set of axioms (an axiom is represented by a list of sequents). A derived inference 

rule is considered as an ML procedure that implements a pattern of inferences 

and generates every primitive step of the proof. In each derived inference rule, all 

the hypotheses must appear as conclusions of some earlier inferences appearing 

in the proof. A tactic is a means of organizing the construction of proofs and 
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tacticals are used to create tactics [GM93]. For more details about its theorem 

proofs, we refer readers to [GM93]. 

It is often used as an open platform for theorem proving research. Users can 

add external tools to HOL and embed language just by programming in ML. 

3.1.4 Motivation for the selection of PVS 

Rationale for selecting PVS 

In general, our system can be connected through an interface module to any 

theorem provers. However, to build the prototype needed for our work, we have 

selected PVS. Our selection is motivated by the following: 

(1) In PVS, proof strategies built into the theorem prover handle different classes 

of theorem proofs automatically. We can write all the theorems needed to 

be verified and their proof strategies in text files and pass them to PVS to 

be processed together. 

(2) PVS supports batch mode in which specifications and theorems are not 

displayed while they are automatically processed. In batch mode, there 

is no direct interaction with PVS; it processes whatever provided files and 

terminates after completing the last of them. Then, it generates the log file 

for the proof results of input theorems. 

(3) PVS is continuously upgraded and its documentation is regularly updated 

online. 

( 4) PVS is evaluated as one of the most effective in decision procedure [Art95]. 
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How is PVS used by our tool? 

To verify conjectures in batch mode by PVS, one writes all conjectures intended 

to be proved and their proof strategies into text files and then sends both of them 

to PVS. 

The strategy grind is sufficient for processing almost all the conjectures that 

our system handles. The strategy grind attempts to apply rewrite rules and 

lemmas to the handled conjecture [SORSCOl]. 

To run PVS in batch mode, the user needs two files .el and .pvs. The file 

. pvs handles the specification of PVS theories. The . el handles the batch. The 

command pvs -batch -load filename. el can be used to run the batch file filename. el 

in the batch mode of PVS. 

For instance, we use the batch mode to verify the conjecture 

V(x, y, z I x EN 1\ yEN 1\ zEN: x + (y + z) = (x + y) + z). 

First, we represent the specification of this conjecture in the file named pvsThe­

ory.pvs as below: 

pvstheory: THEORY 

BEGIN 

x, y, z: VAR nat 

associative_ax:AXIOM FORALL x, y, z: x + (y + z) 

= (x + y) + z 

END 

Second, we use the batch file pvsFile. el to run this theory. The content of 

batchFile.el is shown below. The pvs-validate macro is used to change context 

to the specified directory /PVS and run the commands, collecting the output 

into the log file pvsFile.log. The prove-formulas-theory command runs the speci-
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fication file pvsTheory.pvs using the proof strategy grind, and the last command 

prints out the message Completed. 

(pvs-validate "pvsFile .log" .. - /PVS" 

(typecheck "pvsFile") 

(prove-formulas-theory "pvsFile" "(grind)")) 

(pvs-message ''Completed'')) 

Last, we use the batch command pvs -batch -l pvsFile.el-v 3 to run pvsFile.el. 

After running the batch, it returns the .log file the result Q.E.D, i.e., the conjec­

ture is proved. In our system design, the module PVS!nterface is used to execute 

PVS in order to handle theories in batch mode. 

3.2 Computer algebra systems 

3.2.1 Maple 

Maple [Hec93] is a commercial CAS developed in Waterloo University at the end 

of eighties. Maple's language is close to C and other declarative programming 

languages. It is written in its own language in which the source code is available 

to users, allowing users to inspect or modify according to their requirements. 

The following comniands, which are borrowed from [So06], evaluates the 

integration of a random polynomial. This example creates a random polynomial 

of two variables x and y and by using the created polynomial, we calculate the 

integration of level 1, 2, and 3. The purpose of the example is to provide brief 

ideas about the commands of Maple and show that a CAS can deal with various 

kinds of complicated symbolic expressions. 
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>f:= randpoly([x,y]); 

f := -50 x + 23 x{~4} + 75 xy{~3} - 92 x~3 y~3 + 74 x y~4 

>g1:= int(f,x); 

g1:= -25x{~2} + 23/5 x~5 + 75/2 x~2 y~3- 23x~4 y~2 

+ 2x~3 y~3 + 37x~2 y~4 

>int(%, x); 

-25/3 x~3 + 23/30 x~6 + 25/2 x~3 y~3 - 23/5 x~5 y~2 

+ 1/2 x~4 y~3 + 37/3 x~3 y~4 

>int(%, x); 

-25/12 x~4 + 23/210 x~7 + 25/8 x~4 y~3 - 23/30 x~6 y~2 

+ 1/10 x~5 y~3 + 37/ 12 x~4 y~4 

>int(%, y); 

-25/12 x~4 y + 23/210 x~7 y + 25/32 x~4 y~4 - 23/90 x~6 y~3 

+ 1/40 x~5 y~4 + 37/60 x~4 y~5 

>int(%, y); 

-25/24 x~4 y~2 + 23/420 x~7 y~2 + 5/32 x~4 y~5 - 23/360 x~6 y~4 

+ 1/200 x~5 y~5 + 37/360 x~4 y~6 

Maple is evaluated as the fastest CAS. Moreover, it did extremely well in the 

test suite [Wes99, pages 41-60], especially in dealing with algebra and solving 

equations. 

3.2.2 Mathematica 

Mathematica [Wol88] is a commercial CAS which has been developed and dis­

tributed by Wolfram Research Incorporation since 1988. 

It is written in C. It offers a functional programming language which features 

higher-order functions, pattern matching, and lazy evaluation [Wes99]. A higher-
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order function means that a function can be passed as arguments of another 

function. Lazy evaluation allows arguments of a function only evaluated when 

they are needed. 

The following example, which is borrowed from [Bla92], attempts to use the 

commands Integrate, D, and simplify to calculate numerically the integration, 

differentiation, and simplification of expressions, respectively. 

In [1] : = Integrate [1/ (2 + 3x~2) ~3, x] 

Out[1] = x/(8(2 + 3x~2)~2) + 3x/(32(2 + 3x~2)) 

+ (3ArcTan[3x/Sqrt[6]])(32Sqrt[6]) 

In [2] : = D [%, x] 

Out[2] = 3/(64(1 + 3x~2/2)) - 3x~2/(2(2 + 3x~2)~3) 

+ 1/(8(2 + 3x~2)~2) - 9x~2/(16(2 + 3x~2)~2) 

+ 3/(32(2 + 3x~2)) 

In[3] := simplify[%] 

Out[3] = (2 + 3x~2)~-3 

In [Wes99, pages 41-60], it illustrates its strength in exact calculation of in­

finite integral and numerical calculation optimization. However, its language is 

the most distinctive of the other CASs. It is the least resembles a procedure lan­

guage, such as C, thus, it is the hardest to pick up for those with programming 

experience. In addition, it includes an interface that is difficult to use from the 

command line. 

3.2.3 Macsyma 

Macsyma is a commercial CAS originally developed at Massachusets Institute 

Technology (MIT) from 1968 to 1982. It is one of the most mature CASs. 

It is written in Common Lisp. Its input commands must end with either a 
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semi colon or a dollar sign. If the command is terminated by a semi colon, the 

result is printed out, otherwise, it is calculated but not printed out. Its language 

is case-insensitive. 

In Macsyma, when a user first runs the application, it displays the prompt 

(cl), i.e., the first command line has the label (cl). The subsequent displayed 

output has the label ( d1). Each of the successive input-output pairs is labelled 

(en), (dn) for n = 1, 2, 3, 4, ... 

The example below, which is borrowed from [?], illustrates how to find all 

roots of a polynomial equation: 

(c1)(2 *X+ 1)-3 = 13.5 * (x-5 + 1); 

(d1)(2x + 1)-3 = 13.5(x-5 + 1) 

(c2)allroots(%); 

(d2)[x = 0.829675, X= -1.0157557, X= 0.9659626 

%i- 0.4069597, X= -0.9659626 %i- 0.4069597, 

X = 1. 0000001] 

Compared to other CASs, Macsyma contains a very user-friendly interface [Wes99, 

page 315]. In addition, from [Wes99, page 41-60], it shows that Macsyma did the 

most successful in the test suite, especially in the area of algebra and special 

functions. 

3.2.4 Maxima 

Maxima is an open source CAS which is distributed under the GNU General 

Public License. It is descended from the original Macsyma developed at MIT in 

1982 and continuously maintained and upgraded until recently [Web05]. 

It is also written in Common Lisp. Different from Macsyma, its language is 

case sensitive. In Maxima, when a user first runs the application, it displays the 
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prompt (%il). The subsequent displayed output has the label (%ol). Each of 

the successive input-output pairs is labeled (%in), (%on) for n = 1, 2, 3, 4, · · · 

In the following, we present an example which is borrowed from [Web05]. It 

sequences to get the differentiation, take the integration, and solve the equation 

of the expression 5 * xA3- 4 * x- 1. 

(%i1) expr: (5 * x-3 - 4 * X - 1); 

C%o1) 5x-3 - 4x - 1 

C%i2) diff (expr, x); 

C%o2) 15x-2 - 4 

C%i3) integrate(expr,x,1/3,5/3); 

C%o3) 80/27 

(%i4) solve (expr, x); 

C%o4) [x = -(sqrt(5) + 5)/10, x = (sqrt(5) - 5)/10, x = 1] 

Due to the inheritance, Maxima has the advantages of Macsyma. Further more, 

because of its characteristics as an open-source system, Maxima is continuously 

maintained and upgraded by a strong community in the computer algebra area. 

3.2.5 Motivation for the selection of Maxima 

Rationale for selecting Maxima 

All the above CASs (and many more) can deal with symbolic computation. How­

ever, we choose Maxima for the following reasons: 

(1) Maxima has comparable capabilities in symbolic and numeric computation 

to Mathematica, Maple, and Macsyma. However, we can legally get a free 

copy of Maxima while the others are commercial. This is useful especially 
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for the ones who attempt to use our tool, they do not need to access to a 

commercial product. 

(2) The interface is user-friendly and the language is easy to use [Web05]. This 

helps us quickly in getting familiar with the system and convenient in writ­

ing the commands in files used in the batch mode. 

(3) Its source and documentation have been maintained and developed simul­

taneously. Although other systems, such as Maple and Mathematica are also 

upgraded, Maxima has a strong community that supports it. 

How is Maxima used by our tool? 

In our tool, we use the batch mode of Maxima to simplify the expressions of a 

Diophantine representation of a relation. To run it in batch mode, we use the 

option -batch or -b. The commands to simplify the mathematical expressions are 

written in batch files. The commands are terminated with ; or $. These files 

have the extension .me, .mac, or .dem. For instance, we want to calculate the 

integration of the polynomial: x3 - x2 
- 2 * x. We present the commands of 

Maxima to deal the polynomial in the file batchfile. mac as follows: 

e:integrate(x~3- x~2- 2*x,x); stringout(result,e); 

The command "stringout(result,e)" writes the expression to the file "result" 

in the same format of the input expression. 

Running in batch mode of Maxima by the command maxzma 

b batchfile.mac, we obtain the following: 

(%i1) e:integrate(x~3 -x~2- 2*x,x); stringout(result,e); 

C%o1) x~4/4 - x~3/3 - x~2 

(%i2) 
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(%o2) /home/nguyehtt/Maxima/result 

The output file gets the following result 
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In our system design, the module Maximalnterface is used to execute Max­

ima to handle expressions in batch mode. 

3.3 Conclusion 

For our approach, we concentrate on two classes of systems, TPs and CASs, to 

help our tool in handling relational calculus. In order to choose the most appro­

priate system from each class, we reviewed the literature of the widely known TPs 

and CASs. Their characteristics are compared and evaluated. PVS and Max­

ima are selected to interface with our prototype tool. At the end, the mechanisms 

to implement the batch mode of PVS and Maxima together with illustrative ex­

amples are described. 
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Chapter 4 

System Design 

As we described in Section 1.2, a combination of usage of a TP and a CAS 

can help to perform relational calculus. A TP meets challenges in dealing with 

simplifying symbolic expressions and a CAS does not have the ability to make 

sophisticated derivations of logical formulas. However, a predicate might contain 

symbolic expressions. Therefore, a combination of a TP and a CAS is a solution 
c 

to the difficulties faced by each of these technologies. A tool to automatically 

handle the combined usage of a TP and a CAS to perform relational calculus is 

the main contribution of our thesis. In this chapter, we discuss the design of a 

proof-of-concept tool. 

The purpose of the design phase is to derive a system that meets the require­

ments specification. It includes the following activities [Bud93]: 

- Postulate a solution 

- Create a model for the solution 

- Evaluate the model following the original requirement 

- Elaborate the model to produce a detailed specification of the solution 
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In this chapter, we concentrate on building a proof-of-concept automated 

concrete relational calculus tool named CRCS (short for Concrete Relational 

Calculus Simplification). This proof-of-concept tool is implemented using func­

tional programing language Haskell, and it interfaces with PVS and Maxima. It 

works on a Linux platform. It is intended to perform relational operators (union, 

intersection, composition, inverse, and complement). Each argument of a rela-

tional operation is stored in a text file. Then, the simplified result of an operation 

is written into a file. A heuristic is used to schedule a list of calls of PVS or Max-

ima in order to help simplify the relational calculus. 

The rest of the chapter is structured as follows: Section 4.1 gives the overview 

of the system. In Section 4.2, we discuss the architectural design of CRCS. 

4.1 Overview of the system 

As described in the introduction of this chapter, CRCS system takes relations 

stored in files as inputs and communicate with two systems PVS and Maxima. 

The system overview is given in the Figure 4.1 . 

., ., 
iS 
c 
0 

~ 
a: 

PVS system CRCS Maxima system 

Figure 4.1: Overview of CRCS system 
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4.2 Architectural design 

After giving the overview of the system, we introduce its architecture. The qual­

ity of the architectural design can be enhanced by adopting the following princi­

ples [GJM03]: 

(1) Modularization principle is used to make the design easy to implement and 

manage. Each module denotes an individual work assignment. The notion 

of the work assignment is a portion small enough for a single programmer 

to implement in a reasonable time. A module has functional relation with 

other modules, which are called its clients, by USES relation. We say that 

a module A uses a module B if some programs in module A rely on the 

behavior of some programs in module B to accomplish their tasks [GJM03]. 

(2) Design for change, which is a motto adopted by Parnas [GJM03], is a way to 

make software easily modified as requirements change. This technique uses 

the Information Hiding principle. The concept of information hiding means 

that each module contains a secret which it hides from other modules. In 

general, the hidden information in each module can be divided into three 

main classes [HS99]: 

- Behavior hiding where secrets are input formats, screen formats, and the 

text messages. 

- Software decision hiding where secrets are internal data structures and al­

gorithms. 

- Machine hiding where secrets are hardware machine or virtual machine. 

As illustrated in Figure 4.2, the architectural design of our system involves 

mainly three components: RelationaLOperations_Preparation, Simplification, 
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and Heuristic. A software component is a system element providing a prede­

fined global service. A component can be further decomposed into modules. 

I 
Main 

J 
~ 

Relationai_Operations_Preparation I Setup 
I 

1 

I 

Simplification 

I 

1 
-----------------------------

Legend 

I I 

lc::=JI Component 

I I Heuristic Module 

~ A uses B 
-------------------------------

Figure 4.2: The main components of the proof-of-concept tool 

4.2.1 Module decomposition 

Using the principles of modularization [Par72], the CRCS is decomposed into a 

set of modules. Figure 4.3 and Figure 4.4 give the modules of the components Re­

lational_Operations_Preparation and Simplification, respectively. The Heuristic 

component is discussed in the next chapter. 
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The module guide that presents the descriptions of the secret and service of 

each module is given in Appendix A. In Appendix B, we provide the detailed 

design of a selection of important modules. 

4.2.2 Data flow diagram 

Data Flow Diagram (DFD) is a notation for specifying the processes and flows of 

data between these processes [GJM03]. Data can be stored in data repositories, 

flowed in data flows, and transferred to or from the external environment. The 

basic elements of a DFD are: 

- Bubbles are used to represent transformations. It identifies a transformation 

used to process input data and acquire output data. 

- Arrows are used to represent data flows. It indicates direction of flow of 

named data. 

- Parallel lines are used to represent data stores. It denotes the places where 

data structures are stored. 

- Rectangles are used to represent external entities. It specifies the source or 

destination of a transaction. 

For more information about the DFD, we refer readers to [GJM03, PP99]. 

Figure 4.5 gives the main DFD of the system. We note that certainly the DFD 

of Figure 4.5 can be refined more details on the flows of data. 
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4.3 Conclusion 

We introduced the features of our proof-of-concept tool CRCS and the techniques 

to implement it. The principle of information hiding is used to decompose the 

system into modules. We encapsulate those that are likely to change in the 

module secret, allowing to keep the module interface stable even if there is some 

change in the implementation. Such a design makes the system easy to develop 

and maintain. 
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Chapter 5 

Heuristic of Scheduling Modules 

We find in [Wik06b] the following definition for a heuristic: 

A heuristic is a set of rules for solving a problem. A heuristic provides 

a quick means of solving a problem, utilizing a known rule of simplifi­

cation to arrive at a solution in a shorter time than other conventional 

methods. 

This means that a heuristic does not guarantee to be successful in dealing with a 

problem, however, it can solve the problem in a shorter time than a formal way. 

In our research, we propose a heuristic to simplify relational calculus using 

available mechanized mathematics technologies. It provides some rules to allow 

us to assign tasks to PVS and Maxima while dealing with relational calculus. 

Achieving our objective in a formal way requires from us a lot of mathematical 

knowledge about mathematical reasoning. This requires us to spend much more 

research work relative to the scope of a Master thesis. 

Before exploring the heuristic, first, we give our strategy in deriving the heuris­

tic. The strategy introduces the high level options to construct the heuristic. The 

options of our strategy are presented in Section 5.1 and the heuristic rules are 

described in Section 5.2. 
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The notions of Diophantine representation of relations, disjunction normal 

form, and natural deduction are key mathematical background in our approach. 

5.1 Strategy 

In order to obtain guidelines or base options for our heuristic, we come up with 

a strategy. A strategy is defined as "a method including options and priorities 

towards the achievements of a defined goal objective" [Col96]. 

5.1.1 The elements of our strategy 

Our strategy on which we aim to base our heuristic consists of the following 

elements: 

1. In assigning tasks to a TP and a CAS, we favor the use of a TP. 

As it is stated in the [FvMOO], a CAS is usually restricted to just a few 

areas of mathematics and often unreliable while a TP tends to be wide in 

scope and mathematically rigorous. Therefore, a TP is considered to be 

more stable and more rigorous while dealing with a predicate. Often, one 

can establish the truth value of a predicate without handling its symbolic 

expressions that might involve integrals and differential equations. 

In addition, in our research, we work frequently with quantifications and 

propositions. From [Wes99, page 41], a list of quantifications have been 

tested by CASs, however, all the chosen CASs lack the ability to establish 

their truth values while handling quantifications and propositions is one of 

major concerns of a TP. 

For instance, let us consider the statement: false=? (x5 -3*x4 +5*x3 -2 = 

0 1\ rooo ~dx = 0) V V(x I x E IR. 1\ x > 0 : x2 > 4 =? x > 2). Ji (x 2 -25) - - -
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For this quantification, a TP itself is enough to verify the predicate and 

returns true based on the rule false =? P =true with any value of P. 

2. We use some rules of natural deduction to minimize the usage of both a TP 

and a CAS. 

Since CASs are unreliable, they cannot always succeed. Even for TPs, they 

are more rigorous, however, they are complicated to use. Minimizing the 

usage of not only CASs but also TPs makes our work more efficiently. In 

the following, a method to deal with this problem is presented. 

We attempt to apply the Introduction rule and Elimination rule of natural 

deduction rules, which are introduced in Section 2.4. We use only introduc­

tion and elimination rules for conjunction (A) and disjunction (V) which 

are described in the Table 2.1 as A- I, V-I, A- E, and V- E since all the 

other operators, such as=?, •, ::::::, can be transformed into the combination 

of these two operators (For more details about the equivalent transforma­

tion from other operators to A and V, we refer readers to Section 2.5). In 

the following, we give some cases using these rules to simplify the conjunc­

tion and the disjunction of predicates. Without loss of generality, we apply 

these rules to two formulas named p and q. 

1. In the conjunction of p and q: p A q 

1.1 For example if p is true, then we can simplify p A q to q by elimi­

nating p in the conjunction. 

1.2 If any of p or q returns false, then it returns false. 

2. In the disjunction of p and q: p V q 

2.1 If any of p or q returns true, then it returns true. 
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2.2 For example, if p is false, then we can simplify p V q to q by 

eliminating p. 

For instance, we have a disjunction: 

true V (x 5 
- 3 * x 4 + 5 * x3 

- 2 = 0 1\ J0
00 

~dx = 0) V V(x I 
(xL25) 

X E JR 1\ X 2 0: X2 2 4 =}X 2 2). 

Using the V- E, we can easily get the result true without using a CAS to 

solve two equations x 5 
- 3 * x4 + 5 * x3 

- 2 = 0 and J0
00 
~dx = 0 or 

(xL25) 

a TP to handle the quantification V(x I x E Tit 1\ x 2:: 0 : x2 2:: 4 =} x 2 2). 

3. We give different priorities to the tasks that can be handled by a CAS. 

While testing many kinds of symbolic expressions in [Wes99, pages 41-60] 

by CASs, the test suite returns results in various levels of successes (For 

more details about the level of successes, we refer readers to [Wes99, page 

37]). Based on the results given in [Wes99J, we also classify our CAS tasks 

into different levels of priorities. We set higher priority to the tasks which 

our CAS is more successful in computing. For more details, we consider the 

following example. Suppose that we have two kinds of symbolic expressions. 

One is the solving of a polynomial equation, e.g. x 3 - 3 * x + 1 = 0, and the 

other is the computing an integration, e.g. J0
00 
~dx. In our work, we 

(xL25) 

give higher priority to the first one since the ability a CAS to be successful 

in handling it is higher. 
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5. 2 Heuristic 

5.2.1 Design of the heuristic subsystem 
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The design of the sub-system Heuristic and its module guide are introduced as 

follows: 

Heuristic 

Get list Element ClasslfyCASProblems 

Derivation of Heuristic Module 

Figure 5.1: Derivation of Heuristic system 

1. Module: Heuristic 

Service: Provides the heuristic rules to simplify relational calculus. 

Secret: The sequence of functions to provide the rules. Secret type: algo­

rithm. 

2. Module: BuildTwoDList 

Service: Builds a two-dimension list from a DNF relation. 

Secret: The algorithm is to build a two-dimension list from a DNF relation. 

Secret type: algorithm. 
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3. Module: GetListElement 

Service: Gets a predicate element of a row. 

Secret: The algorithm is to get a predicate element of a row. Secret type: 

algorithm. 

4. Module: GetDisjunctionBlock 

Service: Gets a disjunction block from a two-dimension list. 

Secret: The algorithm to get a disjunction block. Secret type: algorithm. 

5. Module: Assign2DListWeight 

Service: Assigns the weight for all elements of a two-dimension list. 

Secret: The algorithm to assign weights for these elements. Secret type: 

algorithm. 

6. Module: AssignElementWeight 

Service: Assigns weight for each element of a two-dimension list. 

Secret: The algorithm to assign weight for each element. Secret type: 

algorithm. 

7. Module: DisjunctionBlockWeight 

Service: Calculates the weight of a disjunction block. 

Secret: The algorithm to calculate a disjunction block. Secret type: algo­

rithm. 

8. Module: SortTwoDList 

Service: Sorts the weights of the row and the column of a two-dimension 

list. 
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Secret: The algorithm to sort the two-dimension list. Secret type: algo­

rithm. 

9. Module: SelectCandidate 

Service: Selects the predicate to simplify. 

Secret: The function to choose that predicate. Secret type: algorithm. 

10. Module: InterpretPVSResult 

Service: Interprets the log file generated by PVS and provides PVS result 

file following the format we need. 

Secret: The algorithm to transfer PVS log file into the result file we need. 

Secret type: algorithm. 

11. Module: InterpretMaximaResult 

Service: Interprets the log file generated by Maxima and provides Max­

ima result file following the format we need. 

Secret: The algorithm to transfer Maxima log file into the result file we 

need. Secret type: algorithm. 

12. Module: Convergence Verification 

Service: Verifies the convergence of the simplification result. 

Secret: The algorithm to verify the convergence of the simplification result. 

Secret type: algorithm. 

5.2.2 Prioritizing tasks 

The options we provide in the strategy require us to set priority to the tasks 

handled by PVS and Maxima and the tasks handled among Maxima itself. A 

weight system to standardize the priority of these tasks in numbers is given. 
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5.2.2.1 Weight system 

Let a be a DNF predicate such that a = 11 V · · · V /k where each /i is a 

conjunction /i = f3i 1 1\ · · · 1\ f3im · 

We start by first assigning weights to each of the f3ij or to the expressions in 

their bodies. Then we assign weight to each of /i· 

As introduced in Section 2.5, the relation that we consider is represented as a 

DNF predicate a. From a, we build a two-dimension table. A row i of the table is 

obtained from the corresponding disjunction block of the DNF ( ai). A disjunction 

block ( /i) is constituted by sentence symbols or the negation of sentence symbols 

(f3ij). Each element of the table is a two-tuple in which the first member is 

obtained from the predicate of a disjunction block or from the expression that it 

contains and the second member is its initial weight. In addition, we take the 

first element of the row i to store the weight of /i· Initially, we assign the value 0 

to the weight. Then, we assign the weight of each element based on the rules we 

introduce below. After that, we sort the rows of the table such that the highest 

weight of the row and its sorted elements become the first row, and so on. After 

sorting, we start to simplify predicates or expressions of the table. The predicate 

to simplify is chosen in the order of its presence in the table. Based on the weight, 

we choose PVS or Maxima to deal with the corresponding predicate or expression. 

The rules to assign weight for f3ij are introduced in the following: 

1. We set f3ij to 1, if the predicate is true or false. 

2. We set f3ij to ~' if the predicate can be directly handled by PVS. 

3. We set f3ij to ~, if the expression can be handled by Maxima in almost all 

the cases. 

4. We set f3ij to ~, if it is not guaranteed that the expression can be handled 
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by Maxima. 
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5. We set /3ij to 9
1
9 , if the predicate or the expression has been processed. 

Then, /3ij is sorted to become the last element of its row. 

For example, we consider two conjunctions as follows: 

')'1 = ( x3 
- 3 * x2 + 2 )' = 0 1\ J0

00 
( x2 + 1) dx = 0 

1'2 = :J(x I x EN: x 2: 0 =? x 2: 3) 1\ 2 * x2
- 5 * x + 2 = 0 

')'1 consists of two expressions (x 3
- 3 * x2 + 2)' = 0 and J0

00
(x2 + 1)dx = 0. 

We assign the value ~ to both of them since they are not guaranteed to be solved 

successfully by Maxima. 

')'2 consists of one predicate (quantification) and one expression, 3 ( x I x E N : 

x 2: 0 =? x ~ 3) and 2 * x2
- 5 * x + 2 = 0, respectively. We assign the value ~ 

to the first one since it can be directly handled by PVS. We assign the value ~ 

to the second one since solving a polynomial equation by Maxima is successful in 

almost all the cases. 

Once each /3ij or the expressions forming it are weighed, we proceed to weigh 

the /'i· For every f'i, we assign to it the weight 

(5.1) 

where j is the index of an element of a row and Wf3ij is the weight assigned to f3ij· 

For illustration on how to evaluate weight of each /'i, we take the example 

given above again. 
m 

The weight of ')'1 according to the equation 5.1 is equal to "'f:.wf3i; = ~ + ~ = ~ 
j=1 

m 

and the weight of ')'2 is equal to "'f:.wf3ij = ~ + ~ = ~· 
j=1 

Hence, we will proceed by handling first ')'2 then ')'1 . We note that more in 

depth assessment of our weight system could reveal ideas for a better weight 

system. However, our heuristic is based on the weight given by the equation 5.1. 
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We note as well that the weight system we use does not always give the expected 

results. For instance, we have: 

/'I = x 3 
- 5 * x 2 + 7 * x - 3 

(\/3 * x 2 + 7 * x + 13 = 3) 

0 1\ (J0
00 

x 3 
- 3 * x + 1 dx 

/'I = (2 *X> 2 =}X > 2) 1\ (3 * x 3
- 4 * X2

- 5 *X+ 2 = 0). 

0) 1\ 

Following the rules of the weights given above, we assign the weights of el­

ements of /'I corresponding to ~, ~, and ~ and the weight of elements of ')'2 

corresponding to ~ and i. The weight of /'I is equal to WI = ~ + ~ + i = g. The 

weight of ')'2 is equal to w 2 = ~ + i = ~~. We see that WI > w2, however, 1'2 is 

easier to solve than /'I· 

Each time we finish simplifying a predicate or an expression, we change its 

weight to 
9
I
9

. Then, we sort the row. The recently processed element will become 

the last element and the next element will become the first one. We continue to 

deal with the elements of the row until all elements obtain the weight 9I9 • After 

processing a row completely, we sort the table. The recently processed row will 

become the last row of the table and the next row will become the first one. We 

continue to deal with the rest of the rows until all the elements are processed. 

The general ideas introduced above are described in the following steps: 

Step 1. Use module BuildTwoDList to build a two-dimension table from a 

DNF predicate. 

Step 2. Use module AssignTwoDListWeight to assign corresponding weights 

for elements (f3iJ) of each row and the weight of each row ( /'i) of the table. 

Step 3. Use module SortTwoDList to sort the weights of the table. First, this 

module sorts the weights of the rows, then sorts the weights of each row. 

Step 4. Use module UpdateList to update the result and the weight of each 

predicate or expression after it is processed by PVS or Maxima. 

Step 5. Use module Simplification to simplify the DNF predicate. This mod-
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ule use all the modules we introduce in the above steps for the simplification 

process. 

Step 6. Iterate the simplification process by calling module Simplification 

many times to get a simplified result. 

Step 7. Use module ResultDisplay to display the result of the simplified DNF 

predicate. 

5.2.3 Illustrative examples 

To illustrate how the system uses the heuristic rules that we propose, we give an 

example. We consider the following Diophantine representation of a relation: 

\f(x I x E lR : x2 
- 3 * x + 2 = 0 1\ J0

00 
2 * x - 1 dx = 0 1\ 0 :::; x ::=; 3) 

V X> 2 (\ (x2
- 2 *X+ 3)' = 0 

V x > 2 1\ True. 

The above quantification inside the example is equivalent to the follow-

ing conjunction: \f(x I x E lR : x2 
- 3 * x + 2 = 0) 1\ \f(x I x E lR : 

f0
00 

2 * X - 1 dx = 0) 1\ \f (X I X E lR : 0 ::=; X ::=; 3). 

The executions of the above steps 1, 2, 3 are illustrated respectively by Ta­

bles 5.1, 5.2, 5.3, 5.4, and 5.5 which represent the content of the two-dimension 

table built by BuildTwoDList module. The execution of step 4 is illustrated by 

Tables 5.5, 5.6, and 5.7. The execution of step 5 is illustrated by Table 5.8 and 

5.9. 

A cell in each of the following tables represents a predicate or an expression 

together with its weight: 
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Table 5.1: Build a table from an input DNF predicate. 

(~, 0) (x2 
- 3 * x + 2 = 0, 0) (fc~ h X - 1 = 0, 0) (0 :5 X :5 3, 0) 

(~, 0) (x > 2, 0) ((x2
- h x + 3)' = 0, 0) 

(~, 0) (x > 2, 0) (True, 0) 

Table 5.2: Assign weight for predicates. 

(~, 0) (x2 -3*x+2=0, ~) (J0
00

hx-1=0,-!) (0 :5 X :53, ~) 

(~, 0) (x>2,~) ((x2 - h x + 3)' = 0, -!) 

(~, 0) (x>2,~) (True, 1) 

Table 5.3: Calculate weight for a row. 

(~, 1.08) (x2 -3*x+2=0, ~) Uooo 2 *X- 1 = 0, -!) (0 :5 X :53, ~) 

(~, 0. 75) (x>2,~) ((x2
- 2 * x + 3)' = 0, -!) 

(U, 1.50) (x>2,~) (True, 1) 

Table 54· Sort the table 
(~, 1.50) (True, 1) (x > 2, ~) 

(U, 1.08) (0 :5 X :53, ~) (x2 - 3 * x + 2 = 0, ~) Uooo 2 * x- 1 = 0, -!) 

(~, 0.75) (x>2,~) ((x2 -2*x+3)'=0, -!) 

Table 5.5: Change the weight of a predicate or an expression to 9
1
9 each 

time it is processed and sort the row. 

(U, 1.50) (x > 2, ~) (True, 9
1
9 ) 

(~, 1.08) (0 :5 X :53, ~) (x2 -hx+2=0,~) (f0
00 hx-1=0,-!) 

(U, 0.75) (x>2,~) ( (x2 
- 2 * x + 3)' = 0, -!) 

Table 5.6: Each time a row is processed completely, we sort the table 

(U, 1.08) (0:5x:53,~) (x2 -hx+2=0,~) (J;'2*x-1=0,-!) 

(U, 0.75) (x>2,~) ((x2 -hx+3)'=0, -!) 

(~, 0.02) (x > 2, 9
1
9 ) (True, 9

1
9 ) 
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Table 5. 7: Returns the original quantifier symbols back 

(x = 1, 9
1
9 ) (x > 2, ifg) 

(x > 2, 9
1
9 ) (True, ifg) 

('v'(x I xElR : ('v'(x I x E lR : 0 :::; x :::; 3), ifg) ('v'(x I X E JR : 

x=0Vx=1), 9
1
9 ) x=1Vx=2), 9

1
9 ) 

Table 5.8: Use PVS to simplify predicates. 

x=1 X> 2 

x>2 True 

false 'v'(x I x E lR : 0 :::; x :::; 3) 'v'(x I x E lR : x = 1 V x = 2) 

Table I:.:: 
2 

Use natural deduction to I simplify the D N F predicate. 

We obtain at the end the following result: (x = 1/\ x > 2) V (x > 2) which 

can be simplified further to obtain x > 2. 

5.3 Limitation 

The following factors can impact the result and the usage of our system: 

1. CRCS is built on two specific TP and CAS: PVS and Maxima. Therefore, it 

is limited by the limitation of these systems. For example, Maxima (and a 

CAS in general) fails to deal with many symbolic problems and PVS is not 

always successful in handling a theory. 

2. The heuristic does not guarantee the success in all the cases. 
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3. For consistency and simplicity, we use linear notation to represent quan­

tifications and symbolic expressions. However, this makes our system rigid 

since it requires the user to clearly give, in the notation, the nature of the 

operation to be performed. 

4. Two modules P VB Translator and Maxima Translator of the implementation 

are able to translate only sub-languages of those handled by both tools 

PVS and Maxima. 

5. In some cases, the system needs to iterate on the result many times to get 

the simplest result. 

5.4 Tool Assessment 

Each module that we developed was carefully tested. The whole system as it is 

at the current time has been assessed using examples similar to following. 

1. V(x I x E JR.: v'x2 + 1 = x- 2 1\ J0

00 x2
- 2 * x dx = 0) 

V ::J(x I x E JR. : x = 2 =? x :2: 3) 

V x 2 = 4 =? x = 2 1\ ( x 3 
- 3 * x 2 + 5 * x )' = 0 

2. ( x3 
- 5 * x2 + 7 * x - 3 = 0) 1\ (J0

00 
x 3 

- 3 * x + 1 dx 

( v'3 * x 2 + 7 * x + 13 = 3) 

V ((x 3 -4*x)' = 0) 1\ (x :2:-3 =? x :2: -4) 

V (2 *X > 2 =}X> 2) 1\ (3 * x 3 - 4 * x2
- 5 *X+ 2 = 0) 

0) 1\ 

Applying module "BuildTwoDList.hs" to build the two-dimension list of the 

above second DNF predicate. 
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BuildTwoDList> buildList "solve(x I x in real: x-3 - 5 * x-2 

+ 7 * x-3) AND solve(x I x in real: integrate(x I x in real: 

x-3 - 3 * x+1)=0) AND solve(x I x in real: sqrt(3 * x-2 + 7 

* x+13) =3) OR solve(x I x in real: diff(x I x in real: 

x-3 - 4 * x)=O) AND lemma(x I x in int: x>=-3 IMPLIES x >= -4) 

OR lemma(x x in nat: 2 * x > 2 IMPLIES x > 2) 

AND solve(x x in real: 3 * x-3 - 4 * x-2 - 5 * x + 2 0)" 

We then obtain the following list: 

[[("#",O.O),("solve(x I x in real:x-3-5* x-2+7* x-3)",0.0), 

("solve(x I x in real: integrate(x I x in real: x-3 - 3* x+1) 

=0)",0.0), ("solve(x I x in real: sqrt(3* x-2 + 7* x+13) =3)", 

0.0)] ,[("#",O.O),("solve(x I x in real: diff(x x in real: 

x-3-4* x)=O)",O.O), ("lemma(x x in int: x>=- 3 

IMPLIES x >=-4)" ,0.0)], [("#" ,0.0), ("lemma(x I x in nat: 

2* x > 2 IMPLIES x > 2)",0.0), ("solve(x 

3* x-3-4* x-2-5* x+2 = 0)",0.0)]] 

x in real: 
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Applying module AssignTwDListWeight.hs to assign the weights to the predi-

cates or expressions of a DNF predicate. 

AssignTwoDListWeight> assignTwoDListWeight [[("solve(x I x in 

real:x-3-5*x-2+7*x-3)",0.0),("solve(x I x in real: 

integrate(x I x in real: x-3-3*x+1)=0)",0.0),("solve(x I x in real: 

sqrt(3*x-2+7*x+13) =3)",0.0)], [("solve(x I x in real: 

diff(x I x in real: x-3-4*x)=O)",O.O),("lemma(x I x in int: x >=-3 

IMPLIES x >= -4)",0.0)] ,\newline [("lemma(x I x in nat: 2*x > 2 

IMPLIES x > 2)",0.0), ("solve (x I x in real: 

3*x-3- 4*x-2- 5*x + 2 = 0)",0.0)]] 
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The list is updated by adding the weight assigned to each cell. The result is the 

following. 

[[("#",0.91),("solve(xl x in real:x-3-5*x-2+7*x-3)",0.33), 

("solve(xl x in real: integrate(xl x in real: x-3-3*x+1)=0)",0.25), 

("solve(xl x in real: sqrt(3*x-2+7*x+13) =3)",0.33)], 

[("#",0.75),("solve(xl x in real: diff(xl x in real: x-3-4*x)=O)", 

0.25),("lemma(xl x in int: x >=-3 IMPLIES x >= -4)",0.50)], 

[("#",0.83),("lemma(xl x in nat: 2*x > 2 IMPLIES x > 2)",0.50), 

("solve(xl x in real: 3*x-3- 4*x-2- 5*x + 2 = 0)",0.33)]] 

Applying SortTwoDList.hs to sort the two-dimension list. 

SortTwoDList> sortTwoDList [[("#",0.91),("solve(x I x in real: 

x-3-5*x-2+7*x-3)",0.33),("solve(x I x in real: 

integrate(x I x in real: x-3-3*x+1)=0)",0.25),("solve(x I x in real: 

sqrt(3*x-2+7*x+13) =3)",0.33)] ,[("#",0.75),("solve(x I x in real: 

diff(x I x in real: x-3-4*x)=0)",0.25),("lemma(x I x in int: x >=-3 

IMPLIES x >= -4)",0.50)],\newline [("#",0.83), 

("lemma(x 

("solve(x 

x in nat: 2*x > 2 IMPLIES x > 2)",0.50), 

x in real: 3*x-3- 4*x-2- 5*x + 2 = 0)",0.33)]] 

We obtain the following sorted list based on the decreasing weights of the first 

cell of each line in the list. The result is the following. 

[[(11#" ,0.91), ("solve(x I x in real: sqrt(3*x-2+7*x+13) =3) 11 ,0.33), 

("solve(x I x in real:x-3-5*x-2+7*x-3)",0.33),("solve(x I x in real: 

integrate(x x in real: x-3-3*x+1)=0)",0.25)],[( 11 #",0.83), 

("lemma(x 

("solve(x 

x in nat: 2*x > 2 IMPLIES x > 2)",0.50), 

x in real: 3*x-3 -4*x-2 -5*x +2 = 0)",0.33)], 
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[(!'#",0.75),("lemma(x I x in int: x >=-3 IMPLIES x >= -4)",0.50), 

("solve(x I x in real: diff(x I x in real: x-3-4*x)=0)",0.25)]] 

65 

Applying module UpdateList.hs to update the two-dimension list. The following 

is the illustration of how to update the elements of the first line of the list. 

UpdateList> updateElement [[("solve(x I x in real: 

sqrt(3*x-2+7*x+13) =3)",0.33),("solve(x I x in real: 

x-3-5*x-2+7*x-3)",0.33),("solve(x I x in real: 

integrate(x I x in real : x-3-3*x+1)=0)",0.25)] 

We obtain a new line in which the result of processed element is updated and 

sorted and it becomes the last element of the new line. 

[[("solve(x x in real:x-3-5*x-2+7*x-3)",0.33), 

("solve(x I x in real: integrate(x I x in real: x-3-3*x+1)=0)",0.25), 

("x = -4/3 OR x = -1" ,0.01)] 

Illustration of how to update a whole row of the list. 

UpdateList> updateRowN [[("solve(x I x in real: 

sqrt(3*x-2+7*x+13) =3)",0.33),("solve(x x in real: 

x-3-5*x-2+7*x-3)",0.33),("solve(x I x in real: 

integrate(x I x in real : x-3-3*x+1)=0)",0.25)] 

We get the following: 

[("x = 3 OR x 1",0.01),("x = -4/3 OR x = -1",0.01), 

("x = -sqrt(3)-1 OR x = sqrt(3)-1 OR x = 2 OR x = 0" ,0.01)] 

Illustration of how to update the whole list. 
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UpdateList> updateTwoDListN [[("solve(x x in real: 

sqrt(3*x~2+7*x+13) =3)",0.33), ("solve(x I x in real: 

x~3-5*x~2+7*x-3)",0.33), ("solve(x I x in real: 

integrate(x I x in real: x~3-3*x+1)=0)",0.25)], 

[("lemma(x I x in nat: 2*x > 2 IMPLIES x > 2)",0.50), 

("solve(x I x in real: 3*x~3- 4*x~2- 5*x + 2 = 0)",0.33)], 

[("lemma(x I x in int: x >=-3 IMPLIES x >= -4)",0.50), 

("solve(x I x in real: diff(x I x in real: x~3-4*x)=0)",0.25)]] 

We obtain the following relatively simplified list: 

[[("x = 3 OR x = 1",0.01),("x = -4/3 OR x = -1",0.01), 

("x = -sqrt(3)-1 OR x = sqrt(3)-1 OR x = 2 OR x = 0",0.01)], 

[("False" ,0.01), ("x 1/3 OR x = -1 OR x 2" ,0.01)], [(!'True" ,0.01), 

("x = -2/sqrt(3) OR x = 2/sqrt(3)",0.01)]] 

Further simplification. 

Simplification>removeWeights [[("x = 3 OR x=1",0.01),("x -4/3 

OR x = -1",0.01),("x = -sqrt(3)-1 OR x = sqrt(3)-1 

OR x 2 OR x 0" ,0.01)], [("False" ,0.01), 

("x = 1/3 OR x = -1 OR x = 2",0.01)], [("True",0.01), 

("x = -2/sqrt(3) OR x = 2/sqrt(3)",0.01)]] 

We get the following list: 

[["x = 3 OR x = 1","x -4/3 OR x = -1","x = -sqrt(3)-1 

OR x = sqrt(3)-1 OR x = 2 OR x = 0"], ["False","x = 1/3 

OR x = -1 OR x = 2"], ["True","x = -2/sqrt(3) OR x = 2/sqrt(3)"]] 

Applying natural deduction rules on the DNF. 
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Simplification> simplifyTwoDList [ ["x = 3 OR x = 1", "x = -4/3 

OR x = -1","x = -sqrt(3)-1 OR x = sqrt(3)-1 OR x = 2 OR x = 0"], 

["False", "x = 1/3 OR x = -1 OR x = 2"], ["True", "x = -2/sqrt (3) 

OR x = 2/sqrt (3) "]] 

We obtain the following list: 

[["x 3 OR x = 1","x -4/3 OR x = -1'',"x = -sqrt(3)-1 

OR x = sqrt(3)-1 OR x = 2 OR x = O"],["False"] ,["x = -2/sqrt(3) 

OR x = 2/sqrt (3) "]] 

Displaying the simplified DNF predicate. 
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Simplification> displaySimplification [ ["x = 3 OR x = 1", "x = -4/3 

OR x = -1", "x = -sqrt(3)-1 OR x = sqrt(3)-1 OR x = 2 OR x = 0"], 

["False"] ,["x = -2/sqrt(3) OR x = 2/sqrt(3)"]] 

We obtain the following result: 

"(x = 3 OR x = 1 AND x = -4/3 OR x = -1 AND x = -sqrt(3)-1 

OR x sqrt(3)-1 OR x = 2 OR x = 0) OR (x = -2/sqrt(3) 

OR x 2/sqrt(3))" 

5.5 Conclusion 

In this approach, we present a relation as a predicate given in a DNF. We call 

each item of a DNF predicate an element. An element can be an expression 

(taken from a quantification), a proposition, or a Boolean value. 

In this chapter, we ~iscussed how to use a heuristic for scheduling PVS and 

Maxima to simplify DNF predicates. First, a strategy is created to provide general 

options for the heuristics. Then, a set of specific heuristic rules developed based 
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on the strategy. These rules introduce a weight system to evaluate the priority 

of elements of the DNF predicate and the combination of their corresponding 

conjunctions. Two corresponding kinds of weights are given: weight for each 

element of a DNF predicate and weight for conjunctions of elements. The weight 

of a conjunction is calculated based on the sum of inverse of the weights of its 

elements. After assigning weights, the simplification process is carried out. The 

process uses the rules of the weight system we proposed for assigning PVS and 

Maxima to work until finishing the last element of the predicate. The simplifi­

cation process can be iterated many times. Our design includes a module called 

Convergence Verification that makes sure that the process stops. 



Chapter 6 

Conclusion and Future Work 

Mechanized mathematics tools play a very important role in verifying properties 

of engineering artifacts in general and software in particular. We presented a 

proof-of-concept tool that uses current mechanized mathematics technologies to 

support relational dtlculus. We illustrated how a CAS meets difficulties in giving 

the truth value of predicates while a TP is not capable to handle symbolic ex­

pressions. To deal with this problem, we proposed the usage of a combination of 

a TP and a CAS. We first reviewed the literature on TPs and CASs. Then, we 

shortly described the tools that deal with relation algebras. We gave the rationale 

behind the selection of PVS and Maxima. Then, we proposed a heuristic that en­

ables the assignment of tasks to either PVS or Maxima. Finally, we designed and 

built a proof-of-concept tool based on the proposed heuristic that uses PVS and 

Maxima to support relational calculus. 

6.1 Contribution 

The main contributions of our thesis are the following. 

• Explore a heuristic to schedule the tasks handled by PVS and Maxima. 
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• Design and implement a proof-of-concept tool that uses existing technolo­

gies to help perform relational calculus. We note that some modules of the 

system are not completed (for example, the interface module). However, 

the critical modules of the system have been developed and tested. 

6.2 Future work 

As a follow up on the work presented in this thesis, we propose the following as 

future work: 

• We assume that the predicate is represented in a DNF. However, predicates 

are not always represented in this format. Thus, adding a module which 

can transform any predicate into its DNF is necessary. 

• We fall short of providing a user interface which make the use of the tool 

slightly difficult to the user. 

• We adopted a rigid linear notation for the representation of quantifications 

and expressions. Exploring other notations to represent them is needed for 

a more flexible tool. 

• We used some default strategies to prove theorems (e.g., strategy "grind"). 

The user-defined PVS strategies should be saved in a file called "pvs­

strategies" . Currently, we do not allow users to access "pvs-strategies" file 

directly. One should consider allowing users to input their own strategies. 

• Defining Haskell data structures that enable us to capture PVS syntax and 

Maxima syntax would be of a great need for a thorough translation to 

PVS and Maxima languages. Currently, both translation modules handle 

only subsets of languages of both tools. 
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The main point that rises from the research exercise carried through this thesis 

work is that the currently available mechanized mathematics technologies can be 

used to ease relational calculus. However, we conjecture that the development 

of an integrated environment where both computer algebra and theorem prover 

are merged together would make a tool such the one we propose in this thesis 

unnecessary. 
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Appendix A 

Module Guide of the System 

A Module Guide provides the service and the secret of each module. The service 

describes the functions the module gives. The secret indicates the likely change 

encapsulated by the module. In the following, we introduce the module guide of 

CRCS. 

(1) Name: Main Module 

Service: Integrates together all the functions of the system. 

Secret: The algorithm to integrate the functions of the system. Secret 

type: software decision hiding (algorithm). 

(2) Name: Operation_Selection Module 

Service: Integrates together all the functions relating to the calculus op-

erations. 

Secret: The algorithm to integrate these functions. Secret type: soft­

ware decision hiding (algorithm). 

(3) Name: Setup Module 

Service: Allows users to setup working directories for the system. 

Secret: The input formats of the working directories. Secret type: be­

havior hiding (input formats). 
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(4) Name: Union Module 

Service: Computes the union of the two relations. 

Secret: The algorithm to compute the union of the two arguments. Se­

cret type: software decision hiding (algorithm). 

(5) Name: Intersection Module 

Service: Computes the intersection of the two relations. 

Secret: The algorithm to compute the intersection of the two arguments. 

Secret type: software decision hiding (algorithm). 

(6) Name: Composition Module 

Service: Computes the composition of the two relations. 

Secret: The algorithm to compute the composition of the two argu­

ments. Secret type: software decision hiding (algorithm). 

(7) Name: Inverse Module 

Service: Computes the inverse of a relation. 

Secret: The algorithm to compute the inverse of the argument. Secret 

type: software decision hiding (algorithm). 

(8) Name: Complement Module 

Service: Computes the complement of a relation. 

Secret: The algorithm to compute the complement of the argument. 

Secret type: software decision hiding (algorithm). 

(9) Name: CheckCondl Module 

Service: Checks whether the union or the intersection operation is defined 

or not. 

Secret: The algorithm to check the condition. Secret type: software 

decision hiding (algorithm). 
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(10) Name: CheckCond2 Module 

Service: Checks whether the composition operation is defined or not. 

Secret: The algorithm to check the condition. Secret type: software 

decision hiding (algorithm). 

(11) Name: BuildUnion Module 

Service: Builds and produces a new relation which characterises the 

union of the relations. 

Secret: The algorithm to build the union. Secret type: software decision 

~ hiding (algorithm). 

(12) Name: UnionOutput Module 

Service: Outputs the computed union relation file. 

Secret: The screen format to return the relation result. Secret type: 

behavior hiding (screen formats). 

(13) Name: Buildlntersection Module 

Service: Builds and produces a new relation which characterises the in­

tersection of the relations. 

Secret: The algorithm to build the intersection. Secret type: software 

decision. hiding (algorithm). 

(14) Name: IntersectionOutput Module 

Service: Outputs the computed intersection relation file. 

Secret: The screen format to return the relation result. Secret type: 

behavior. 

(15) Name: BuildComposition Module 

Service: Builds and produces a new relation which characterises the com­

position of the relations. 

Secret: The algorithm to build the composition. Secret type: software 

decision hiding (algorithm). 
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(16) Name: CompositionOutput Module 

Service: Outputs the computed composition relation file. 

Secret: The screen format to return the relation result. Secret type: 

behavior. 

(17) Name: BuildComplement Module 

Service: Builds and produces a new relation which characterises the com­

plement of the relation. 

Secret: The algorithm to build the complement. Secret type: software 

decision hiding (algorithm). 

(18) Name: ComplementOutput Module 

Service: Outputs the computed intersection relation file. 

Secret: The screen format to return the relation result. Secret type: 

behavior. 

(19) Name: Buildlnverse Module 

Service: Builds and produces a new relation which characterises the in­

verse of the relation. 

Secret: The algorithm to build the complement. Secret type: software 

decision hiding (algorithm). 

(20) Name: InverseOutput Module 

Service: Outputs the computed intersection relation file. 

Secret: The screen format to return the relation result. Secret type: 

behavior. 

(21) Name: PredicateSimplification Module 

Service: Integrate all the modules related to simplifying an input predi­

cate. 

Secret: The sequence of the modules to simplify an input predicate. 

Secret type: software decision hiding (algorithm). 
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(22) Name: PredicateHolder Module 

Service: Uses a format file to hold the data structure of the input predi-

cate. 

Secret: The algorithm to store the predicate. Secret type: software 

decision hiding (algorithm). 

(23) Name: PVSTranslator Module 

Service: Translates an input predicate into the format which can be read 

by PVS. 

Secret: The syntax of PVS. Secret type: machine hiding (virtual ma­

chine). 

(24) Name: PVSinterface Module 

Service: Uses PVS to make the derivation of the input predicate and 

generates the log file for the result proof of the theorem. 

Secret: The language to call the batch mode of PVS to make the deriva­

tion. Secret type: machine hiding (virtual machine). 

(25) Name: PVSinterpretResult Module 

Service: Interpr-ets the log file generated by PVS and provides the 

PVS theorem result file. 

Secret: The algorithm to transfer PVS log file into the result file we 

need. Secret type: software decision hiding (algorithm). 

(26) Name: MaximaTranslator Module 

Service: Translates an input predicate into the format which can be read 

by Maxima. 

Secret: The syntax of Maxima. Secret type: machine hiding (virtual 

machine). 
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(27) Name: MaximalnterpretResult Module 

Service: Interprets the log file generated by Maxima and provides the 

result file in the form we need. 

Secret: The algorithm to transfer Maxima log file into the result file we 

need. Secret type: software decision hiding (algorithm). 

(28) Name: Maximalnterface Module 

Service: Uses Maxima to compute the input predicate. 

Secret: The language used to invoke Maxima. Secret type: software 

decision hiding (algorithm). 

(29) Name: List Update 

Service: Updates the result returned by Maxima or PVS to the corre­

sponding processed expression or predicate. 

Secret: The algorithm to update the result. Secret type: software deci­

sion hiding (algorithm). 

(30) Name: String Module 

Service: Builds a list of functions for managing strings of the system. 

Secret: The data type String. Secret type: software decision hiding 

(data structure). 

(31) Name: MessageDisplay Module 

Service: Displays the contents of the system messages. 

Secret: The format of text messages. Secret type: behavior hiding (text 

message). 



Appendix B 

Detailed Design of the System 

We give the access program and detailed information of a selection of modules 

that can give a good idea about the overall system. 

PVS'franslator Module 

The module reads the input predicate file, translates its content, and returns a 

theory file which can be read by PVS. The content of input file and output file 

must follow strictly the format of our predicate and PVS theory, respectively. It 

contains the following main access functions: 

1. predicateToPVSString ::String--+ String 

It translates an input predicate string into a string which can be read by 

PVS. 

2. translateProposition ::String--+ String 

It translates a proposition predicate. 

3. translateComplex :: String--+ String 

It translates a quantification. 
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4. beginTheory :: String 

It declares theory name which is appropriate to put at the beginning of a 

PVS theory. 

5. importN ewTheory ::String---+ String 

It displays all the declarations of imported theories. 

6. getAllTheories :: String ---+ [String] 

It gets all theories obtained from the input predicate. 

7. getQuantRange :: String---+ [String] 

It gets quantification ranges obtained from the input predicate. 

8. displayVar Declaration:: String---+ String 

It displays declarations of all variables obtained from the input predicate. 

9. getListO JV ar AndType :: String ---+ [ (String, String)] 

It gets list of tuples of variable and its corresponding type obtained from 

the input predicate. 

10. getTupleO fVar AndType :: String---+ (String, String) 

It gets a tuple of variable and its corresponding type obtained from the 

input predicate. 

11. translatePropLemma :: String---+ String 

It translates proposition lemma. 

12. translateComplexLemma :: String---+ String 

It translates quantification lemma. 
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13. translateContextBody :: String---+ String 

It translates context body of the input predicate. 

14. getQuantifierSymbols :: String ---+ [String] 

It gets all quantifier symbols of the input predicate. 

15. numberO ]Quantifier Symbols :: String---+ Int 

It returns the number of quantifier symbols of the input predicate. 

16. remDuplicate :: Orda => [a] ---+ [a] 

It removes duplicate theory from the theory list. 

17. separateByComma :: String---+ [String] 

It returns a list of strings separated by commas. 

18. numberO ]Colons :: String---+ Int 

It returns the number of colons of the input predicate. 

19. combineList :: [a] .:....., [a] ---+ [a] 

It combines two lists which have the same type. 

20. endTheory :: String 

It displays the ending of a PVS theory. 

MaximaTranslator Module 

The module reads input predicate file, translates its content, and returns a theory 

file which can be read by Maxima. The content of input file and output file must 

follow strictly the format of our predicate and Maxima expressions, respectively. 

It contains the following main access functions: 
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1. predicateToM aximaString ::String --4 String 

It translates an input predicate string into a string which can be read by 

Maxima. 

2. translateProposition :: String --4 String 

It translates an input proposition predicate. 

3. getM aximaK eywords :: String --4 [String] 

It gets Maxima keywords obtained from the input predicate. 

4. numberO f M aximaK eywords :: String --4 I nt 

It returns the number of Maxima keywords obtained from the input predi­

cate. 

5. numberO fQuantifierSymbols :: String --4 Int 

It returns the number of quantifier symbols of the input predicate. 

6. numberO !Colons:: String --4 Int 

It returns the number of colons of the input predicate. 

7. getLower Bound:: String --4 String 

It gets the lower bound of an integration. 

8. getUpper Bound:: String --4 String 

It gets the upper bound of an integration. 

9. separateByComma ::String --4 [String] 

It returns a list of strings separated by commas. 
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10. elementO fTheoryList :: String--+ Bool 

It checks whether a theory obtained from the input predicate is a member 

of declared PVS theory list or not. 

PVSinterface Module 

This module provides the interface to communicate with PVS system. It uses 

the PVS batch mode and the default strategies to verify the submitted theories. 

These files are passed to PVS which generates ".log" file containing the result. 

Maximalnterface Module 

This module provides the interface to communicate with Maxima system. It uses 

the Maxima batch mode to simplify the symbolic expressions or solve the equa­

tions. The files containing expressions are passed to it. When Maxima completes 

its task, it generates ".log" file containing the result. 

Predicate Module 

This module provides the interface to get or set the relation. The data structure 

of a relation can be one of three types: a Boolean value, a formula relation 

represented by a string, or a record which is defined recursively. 

The data type of the relation is represented as follows: 
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data Predicate a = Pcmplx 

{ symbol :: Quantifsymbol 

, variables :: [String] 
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-complex predicate 

, quantrange :: Pred -quantifier range 

, cxbody :: Predicate a } -context body 

I Ppred { smbody :: Pred } -proposition predicate 

I Pbool { blbody :: Bool } deriving Show -Boolean predicate 

This module contains the following access functions: 

1. getVariables :: String--> String 

It gets the list of variables obtained from the input predicate string. 

2. getNthVariable :: Int--> String--> String 

It gets the Nth variable of the input predicate string. 

3. getQuantijrange :: String--> String 

It returns the quantifier range obtained from the input predicate string. 

4. getQuantifier ::String--> String 

It returns the quantifier symbol obtained from the input predicate string. 

5. getPredicate :: String--> String 

It returns the sub-Predicate from the input predicate string. 

6. isP Bool ::String--> Bool 

It determines whether the input is a Boolean predicate or not. 

7. isPpred :: String--> Bool 

It determines whether the input is a proposition predicate or not. 
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8. isPcmplx :: String---> Bool 

It determines whether the input is a quantification or not. 

9. showPredicate :: Predicate a---> String 

It shows the predicate. 

10. setSymbol :: Predicate a---> Quanti! symbol---> Predicate a 

It sets a quantifier symbol of the predicate. 

11. setQuantrange :: Predicate a ---> Pred ---> Predicate a 

It sets a quantifier range of the predicate. 

12. setCxbody :: Predicate a---> Predicate a---> Predicate a 

It sets a context body of the predicate. 

13. setSmbody :: Predicate a---> Pred---> Predicate a 

It sets a symbol of the proposition predicate. 

14. setBlbody :: Predicate a ---> Bool ---> Predicate a 

It sets Boolean body of the predicate. 
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