
j
TOWARDS A UTOMATED

CONSTRUCTION OF TABULAR

EXPRESSIONS

By

YAZHI WANG, B.S.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

©Copyright by Yazhi Wang, April 2006

MASTER OF SCIENCE (2006)
(Computing and Software)

TITLE:

McMaster University
Hamilton, Ontario

Towards Automated Construction of Tabular Expressions

AUTHOR: Yazhi Wang, B.S.
(Beijing University of Posts and Telecommunications, China)

SUPERVISOR: Dr. Alan Wassyng

NUMBER OF PAGES: xiii , 117

ii

Abstract

Deriving precise descriptions of existing programs using automated actions plays a

significant role in software engineering, especially in projects that are not well docu

mented. Tabular expressions (tables) are practical formalized specification notations

that can be used in place of conventional mathematical expressions. Building func

t ion tables from source code is a tremendous aid to understand the behavior of target

programs for inspectors and maint ainers. However , generating those tables manually

is tedious and time consuming.

This thesis presents an automated method that will help extract vector function

tables from imperative programs in C. By dealing with the three primitive constructs

(assignments, alternations, iterations) we aim to translate the target programs into

functional documentation using tabular expressions. We discuss the difficulties we

encountered and t he methods we chose to overcome t hose difficulties. Loop termi

nation and pattern matching are also discussed in our analysis. Currently, we stop

short of producing the tabular expressions, but it is easy to see that tables can be

generated from the expressions produced by our tool.

lll

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

lV

Acknowledgments

The completion of this degree was made possible through the support and cooper

ation of many people. First of all , I thank my supervisor, Dr. Alan Wassyng. I

am grateful for his guidance. Above all , I appreciate his time and patience as he

reviewed the numerous drafts of this t hesis. I am also grateful to Dr. William Farmer

and Dr. Ridha Khedri for serving on my committee. I appreciate their comments and

their willingness to sacrifice their time and energy to help me. I thank Dr. Jeffery

Zucker for giving so many comments on my academic writing in English. I appreciate

the research support that I received from Dr. Jacques Carette, Dr. Wolfram Kahl

and Dr. Emil Sekerinski . I would also like to thank the administrative st aff in the

Department of Computing and Software for their help . I am particularly grateful

to Laurie LeBlanc for her assistance. Finally, I thank my family for their love and

support over t he years. In particular , I thank my loving girl friend, Jie Wu. Without

her unfailing love and emotional support , I doubt that I would ever have finished.

Furthermore, she helped by reviewing numerous drafts of this thesis. Above all , I

realize just how many people have supported me and contributed to this degree in

one form or another. I am deeply grateful to everyone that has helped and supported

me over the years of my graduate study.

v

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

vi

Contents

Abstract

Acknowledgements

List of Figures

1 Introduction

1.1 Motivation .

1.2 Our Approach .

1.3 Contributions and Thesis Scope

1.3. 1 Contributions

1.3.2 Thesis Scope

2 Specification Recovery from Code

2.1 Overview of Reverse Engineering

2.2 Major methods of Specification Recovery

2.2 .1 FermaT

2.2.2 Strongest Postcondition

2.2.3 Loop Invariant

2.3 Conclusion

3 Literature Survey of Tabular Specifications

3.1 Functional Documentation

3.2 Tabular Representation In Functional Documentation

3.2.1 Limited Domain Relations

Vll

iii

iii

ix

1

1

2

3

3

3

5

5

6

6

9

12

17

19

19

20
20

MSc. Thesis - Yazhi Wang

4

3.3

3.2.2 Tabular Representation .

3.2.3 Program Function Table

Conclusion .

Analysis

McMaster- Computing and Software

21

22

24

25

4. 1 Automatic Table Generation Difficulties 25

4.1.1 Main Difficuties 25
4.1.2 Solutions ... 28

4.2 Overview of Analysis 28

4.3 Simple Assignments . 30

4.4 Alternation .. 33

4.5 Loops Overview 35

4.5.1 Main Problems 36

4.5.2 Loop Elimination Algorithm 46

4.5.3 Nested Loops .. 47

4.6 A more detailed example 47

5 Requirements 51

5.1 Assumptions . 51

5.2 Input 52

5.2.1 Abstract Syntax Tree . 52

5.2.2 Code List 53

5.3 Interfaces 0 ••• 56

5.4 Output and display 56

5.5 Other Requirements 56

6 Tool Implementation 57

6. 1 Data Structure 57

6.1. 1 LCC Data Structures . 57

6.1.2 New Data Structures 60

6.2 System Implementation . . 69

6.3 Procedure Implementation 69

6.3.1 Evaluation 69

viii

McMaster- Computing and Software

6.3.2 Loop Elimination

6.4 A Real Example .

7 Results

7.1 Straight line code

7.2 Alternation . ..

7.3 Iterations

7.3.1 Single-level Iterations .

7.3.2 Nested Iterations .. .

8 Conclusions and Future Work

Bibliography

Appendix:

IX

MSc. Thesis - Yazhi Wang

74
77

81

81

82

84
84
85

87

89

95

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

X

List of Figures

2.1 General model for software re-engineering . 6

2.2 Black box representation of (a) wp (b) sp . 10

2.3 Strongest postcondition semantics 11

2.4 Suite of tools for AutoSpec 12

2.5 Algorithm of generating W(i+ 1) . 14

2.6 Algorithm of predicate abstraction 15

2.7 Architecture of dynamical detection of invariant 16

4.1 Unstructured code •••• 0 26

4.2 Equivalent structured code . 26

4.3 Floating underflow 0 ••• • 28

4.4 Analysis process 30

4.5 A simple computing example . 31

4.6 An example with multi-assignments 31

4.7 An example of swap 0 •••• • 32

4.8 Algorithm of straight line code . 33

4.9 Execution branches under given conditions 34

4.10 Sum of positive parameters . 35

4.11 Algorithm of alternations .. 36

4.12 Sum of consecutive integers 37

4.13 Maximum of an array 38

4.14 Values in multi-assignments 39

4.15 An example with simple alternation . 41

xi

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

4.16 Table representing Figure 4.13 42

4.17 Pat tern for addition. . 44

4.18 Pattern for maximum . 44

4.19 Pattern for maximum . 44

4.20 Procedure Pattern Matching 45

4.21 Iteration count 46

4.22 Algorithm of nested loops 47

4.23 An example with nested Loops 48

4.24 Inner loop eliminated 49

4.25 Expression by recurrence equations 49

4.26 Pattern style expressions 49

4.27 Equivalent assignments 50

4.28 Tabular expression representing code in Figure 4.13

5.1 Table generation tool

5.2 EBNF definition of expressions

5.3 An example of an abstract syntax tree

5.4 Code list representation of alternations

5.5 Code list representation of iterations

5.6 Code list representation of DO iteration

6.1 System architecture

6.2 Big picture of Evaluation .

6.3 Procedure code Walker

6.4 Procedure Evaluation .

6.5 Procedure Path Splitting

6.6 Loop Elimination

6.7 Procedure Loop Operator

6.8 Procedure Pattern Matching

6.9 Code list of a real example .

6.10 Loop structure of the example

6.11 Code list after Loop Elimination .

Xll

50

52

53

53

54

55

55

69

70

71

72

73

74

75

76

78

78

79

McMaster- Computing and Software

6.12 Final result of Evaluation .

7.1 The result of the straight line code

7.2 Table representing Figure 4.7

7.3 An example of PID controller

7.4 The result of PID example ..

7.5 The result of the single-level loop

7.6 An example with nested loops

7. 7 The result of t he nested loop .

X Ill

MSc. Thesis - Yazhi Wang

79

82

82

83

83

84
85

86

MSc . Thesis- Yazhi Wang McMaster - Computing and Software

Xl V

Chapter 1

Introduction

1.1 Motivation

Deriving precise descriptions of existing behaviour from code using automated ac

tions plays a significant role in software engineering, especially in projects that are

not well documented. In this reverse engineering step people want to extract intended

behaviours from code. To describe those programs in a more readable way, t abular

expressions are used more and more in critical projects, starting from the 1970s when

David Lorge Parnas and others at U.S. Naval Research Laboratories used them to

document requirements for the A-7E aircraft [1 6]. Later in the Darlington Shutdown

Systems of Ontario Hydro, now Ontario Power Generation (OPG) , tables were ex

tracted from the code manually to help evaluate those programs. Although it is more

than two decades from the time that tabular expression were first used , there are

not many tools which support this readable and precise expression. As Wassyng and

Lawford ment ioned in [53], alt hough UML had no semantic basis, it has proved to

be extremely successful in industry. The success of UML, to a large extent , can be

attributed to the comprehensive tool support that was available for it. Therefore we

can confidently say t abular expressions could become more accepted in industry if we

make a full toolkit to support them.

This thesis presents a proof-of-concept prototype tool for software maintainers to

generate function tables in an automated way from C language for further analysis.

1

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

Inspection and verification can be made easier with help such a tool. Based on static

program analysis this tool produces expressions that describe the behaviour of the

code. The expressions are intended to be at a high level of abstraction than the code,

and in a form that can be used to populate the cells of a vector function table.

1. 2 Our Approach

Through decades of endeavor in reverse engineering researchers have invented sev

eral different ways to derive high level specifications from programs. For example,

Ward built a language called the "Wide Spectrum Language" [50] [48] r47] which in

cludes low-level programming constructs and high-level abstract specifications within

a single language. Although people generally regard reverse engineering as a method

for deriving the design from source code, different specifications are used related to

particular reverse engineering projects.

So, in our particular context we want to create function tables from high-level

imperative languages. A major difficulty in reverse engineering is that we often lack

the big picture of the system as developed at the design stage. One way to reconstruct

this picture is to extract the relations that describe the behaviour of individual func

tions in the code, so that the mathematical composition of the functions describes the

overall behaviour. Our goal is to structure the mathematical expressions for each code

function so that we are able to describe each code function using t abular expressions .

The approach described in this thesis applies to a single code function at a time.

One important thing is the variable set of monitored and controlled variables which

should be caught before our analysis. All controlled variables will be represented

in formula expressed by vector function tables. We know that the function of the

program is combined by all partial relations which are represented in every tabular

cell. For those relations we have one branch of execution related to it. Combining

all the simple assignments in those respective execution branches , we can get the

final results of every output variable by symbolic evaluation. Things become more

complex when we encounter loop structures. This thesis presents a variable's function

in recurrence equations which can help us to deal with analysis in automatic actions.

2

McMaster- Computing and Software MSc . Thesis - Yazhi Wang

Also by using pattern matching technology we can simplify our results into more

readable forms.

1.3 Contributions and Thesis Scope

1.3.1 Contributions

Our major contributions are:

• We provided an automated table generation tool that will support the creation

of tabular expressions.

• We showed one way in which we can extract functions that describes the behav

iour of a code variable by recurrence equations, which can help us understand

programs in an easier way and make it possible for the analysis to be handled

by tools.

• We developed a method of pattern matching to deal with loop statements in

static program analysis.

• We described a good experience of how to use formal semantics in real industry

world and how to implement them in a tabular expression toolkits.

1.3.2 Thesis Scope

We discuss relevant literature concerning previous reverse engineering, tabular expres

sion in Chapter 2 and 3. Chapter 4 presents our analysis and the methods we used

to derive functional descriptions of code written in a high level language. Chapters 5

and 6 include the requirements of our tool and how we implemented this tool. Then

we discuss testing results for our tool are shown in Chapter 7. Finally, we present

our conclusions about contribution and future work in Chapter 8.

3

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

4

Chapter 2

Specification Recovery from Code

This chapter briefiy introduces existing methods which can derive specifications from

source code, and references relevant literature.

2.1 Overview of Reverse Engineering

The objective of our Table Generation Tool is to produce an abstract specification

from an imperative program written in C. A number of concepts and useful ideas in

reverse engineering have emerged through recent research and experience. A survey in

this valuable literature will tremendously help us in our analysis and implementation.

Software reverse engineering as defined in [5] , also known as both renovation and

reclamation, is the examination and alteration of a software system to reconstitute it

in a new form, and the subsequent implementation of the new form.

The goal of software re-engineering is to t ake an existing system and generate

from it a new system which is called the target system, that has the same properties

as a system created by modern software development methods. These desired soft

ware properties include: maintainability, portability, reliability, reusability, quality of

documentation, testability, and usability [4].

Figure 2. 1 contains a graphical depiction of a process model for reverse and re

engineering [4] . In the figure, two triangles are used to represent the different levels

of abstraction. The arrows show the direction of the software process steps. In

5

MSc. Thesis - Yazhi Wang

Reverse
Engineering
(Abstraction)

Concept

Design

Implementation

System A

(Alteration)

re-think

re -specify

re-design

re -cede

McMaster- Computing and Software

Requirements

Design

Implementation

System B

Forward
Engineering
(Refinement)

Figure 2.1: General model for software re-engineering

the triangle for System B the process of refinement is performed from Concept to

Implementation. In contrast with B System, the triangle for A shows the figure of

performance of abstraction.

2.2 Major methods of Specification Recovery

Specification Recovery from code is the process of deriving a higher level abstraction

from target programs which is within the domain of Software Re-Engineering. A

number of methods have been developed to achieve this mission in recent research.

These methods include both informal methods and formal methods.

Relevant formal methods are presented below.

2.2 .1 FermaT

In his paper [50], Ward presents an approach to extract high-level specifications from

unstructured source code. This method is based on a theory of program refinement

and transformation, which is used as the basis for the development of a catalogue of

powerful semantics-preserving transformations. Ward's transformations are based on

6

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

a rigorous mathematical foundation. Without such a foundation, it is all too easy to

assume that a part icular transformation is correct , and come to rely upon it , only to

discover that there are certain special cases where the transformation is not correct.

Foundations

In FermaT project a new formal language, Wide Spectrum programming Language

(called WSL) , is used as a lower level programming language and high level specifi

cation language at the same t ime. All the transformation techniques between these

two levels have been proven correct and have mechanically checkable applicability

conditions [50]. This method helps the user do the transformations with confidence.

Infinite first order logic has been used to express the weakest precondit ion of programs

in the kernel language of WSL.

Notation P{S}Q (called a Hoare Triple) presents a partial correctness model of a

program's execution, which means if S st arts in a st ate satisfying P and terminates

then its terminating state satisfies Q. We call P the precondition, which describes

the set of init ial states, and we call Q postcondition, which describes the set of final

states. So the weakest precondition wp(S, Q) describes the set of all states in which

statement S starts and terminates with postcondition Q true. We sometime use

wlp(S, Q) to describes the weakest liberal precondition, which indicates that it refers

to partial correctness and includes the non-termination cases.

There are also some theorems which are the foundations of FermaT project [7]:

Theoreml: If P =} W , then

W{S}Q =:;. P{S}Q

Theorem2: wp(S, Fal se) {::}Fal se

Theorem3: For any mechanism (program) S, and any postcondit ions Q and R,

we have

wp(S , Q) 1\ wp(S , R) {::} wp(S , Q 1\ R)

Theorem4: For any mechanism (program) S, and any postconditions Q and R,
we have

7

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

wp(S, Q) v wp(S, R) =? wp(S, Q v R)

Theorem5: For any deterministic mechanism (program) S, and any postcondi

tions Q and R, we have

wp(S, Q) v wp(S, R) {::} wp(S, Q v R)

Since the application of the weakest precondition predicate transformer [8], weak

est precondition techniques are primarily used for program derivation and specifica

tion . In reverse engineering projects led by M.Ward, wp plays a role as a guideline

for constructing formal specifications.

Major Stages of Specification Recovery with FermaT

FermaT is a program transformation system based on the theory of program refine

ment as equivalence developed in [45] and applied to Reverse Engineering in [49].

This transformation system is intended as a practical tool in software maintenance

and programming comprehension.

In [49], four st ages are adopted to extract a formal specification from given pro

gram. The first three stages are carried out with a prototype of FermaT , st art ing

with the original program and applying general purpose transformations. However ,

the last st age involves user intervention. During the four stages, wp has been used to

prove the correctness in the transformation.

First Stage: Restructure and Simplify

In the first stage some structure-like switches are re-expressed as primary struc

tures in a kernel language. Users do not have to understand the semantics of t he

target programs before transforming them. The system t akes care of all the cor

rectness conditions and the details of those transformations. Commonly what are

"cleaner semant ics"? the stage of restructuring to re-express t arget programs with

more clear semantics is widely adopted.

Second Stage: Abstract Data Types

After the restructuring st age, high level abstract dat a types are extracted from

the target programs. A semi-automated method of t his abstraction involves human

8

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

input in selecting abstract equivalents. Some simple types can be transformed auto

matically.

Third Stage: Restructure and Simplify Again

This stage is similar to the first stage. However , the simplification targets are the

abstract data types produced during the previous stage.

Fourth Stage: Specification Level

To date, totally automated methods can not be implemented in this final stage of

abstracting the specification. Two methods are introduced in specification abstrac

tion . One uses loop invariants which are conditions preserved by a loop throughout

its execution. Loop invariants are really significant in specification recovery. We will

talk about them more in later sections. The other method involves changing the

data structure. A list data structure is introduced in high level specification lan

guage and related operations can be used to describe equivalent operations which are

implemented by loops in low level programming languages.

Conclusions

The methods and t echniques we discussed above present a new approach which is

based on a wide spectrum language including both a lower level programming lan

guage and a high level specification language. Most of this work focuses on the

programming transformation which is proven correct by using the concept of weak

est precondition. The disadvantage of this approach is that the abstraction of the

specification still depends on human intervention.

2.2.2 Strongest Postcondition

There is another different analysis method emerging in the project AUTOSPEC [12],

in which the Strongest Postcondition is adopted to construct a high level specification

from programs written in imperative languages like C. In this section we will discuss

this approach and its related support tools.

9

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

Background

As M. Ward did in his approach, G. Gannod also uses Hoare triples as the formal

notation in his research. However , he uses the strongest postcondit ion in contrast

with the weakest precondition.

We already discussed the Hoare triple P{S}Q to present the partial correctness

of a program. wp(S, Q) can identify the weakest precondition of statement S and

postcondition Q. G. Gannod uses this triple differently, so t hat sp(S, P) represents

the strongest postcondition, meaning that if a program starts in state P, then t he

execution of S will place the program in state sp(S, P) if S terminates. Figure 2.2

shows the difference between these two methods , as depicted in [10].

{Q} s { R} { Q} s { R}

wp(S, R)

(a) (b)

Figure 2.2: Black box representation of (a) wp (b) sp

This forward derivation rule which is shown in Figure 2.3 can be used as a pred

icate transformer to extract high level specifications. The use of these predicate

transformers for reverse engineering have different implications compared with wp.

Using wp means that the postcondition is known. Nevertheless, the postcondition

is always what we want when we try to derive the specification. So we notice that

the approach using wp can only be used as a guideline on which all proof about

the transformation is based. As such, it seems that sp is more applicable to reverse

engineering.

10

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

Analysis to Primitive Constructs

In order to derive the strongest postcondition of target programs, methods that deal

with the primitive constructs such as assignment, alternation, sequence, iteration and

procedure are needed. In his paper [10], G. Gannod describes the semantics of the

predicate transformers wlp and spas they apply to each primitive and then, for reverse

engineering purposes, describes specification recovery in terms of Hoare triples.

Construct sp Semantics

sp(x := e, Q) = (3v :: Q~ 1\ x = e~)

sp(I F, Q) = sp(S1, B1 1\ Q) V ... V sp(Sn, Bn 1\ Q)
sp(DO,Q) = -,B 1\ (3i: 0 ~ i: sp(!Fi,Q))

Figure 2.3: Strongest postcondition semantics

Gannod gives the semantics for these primitive constructs (shown in Figure 2.3),

by which the strongest postcondition is used directly as a predicate transformer.

A suite of Tools to support

To make these research methods more practical to use, Gannod also provides a suite

of tools to support them [12]. The tools include:

AUTOSPEC: supports the construction of specifications using the semantics of

the strongest postcondition predicate transformer;

SPECG EN: derives abstract specifications from as-built specifications;

SPECEDIT: a specification editor with a graphical user interface front-end that

supports the construction of syntactically correct specifications;

TPROVER: a tableau theorem prover that verifies the consistency of specifica

tions that are modified by a user.

Gannod also describes the relationship between the tools, as shown in Figure 2.4.

In this figure, circles are used to represent processes, parallel lines represent data

stores, rectangles represent actors, and arrows represent fiow of data.

11

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Source Code

Figure 2.4: Suite of tools for AutoSpec

Conclusion

In project AutoSpec, Gannod describes a suite of tools which can help an inspector

extract specifications from source code. His method includes one prototype tool and

abstraction process. The specifications produced by these tools make the behavior

of the programs more understandable than if t he inspectors simply reviewed source

code. However , invariants are necessary in the process of this specification recovery.

His method can be classified as semi-automatic for this reason.

2.2.3 Loop Invariant

In the previous section, we mentioned that invariants are used in recent research work.

Actually, invariants play a very important role in software verificat ion and inspection.

Especially in the analysis of source code involved with iterations, underst anding the

related loop invariants is a t remendous aid to inspectors and maintainers.

A loop invariant for a loop in a program is a proposition composed of variables

from the program t hat is t rue before the loop, during each iterat ion of the loop, and

12

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

after the loop completes (if it completes). There is always great interest in finding

loop invariants by automatic method in reverse engineering. Significant work in this

field using compiler techniques was done in the 1970's. However , since then, novel

methods concerning automatic loop invariant detection methods were absent until

theorem provers and artificial intelligence work were adopted in this research area.

Also, dynamic analysis, which means invariants are extracted from execution results,

has been implemented successfully in the project Daikon. In this section we will

concentrate on recent methods.

The Induction-Iteration Method

The method of induction-iteration was introduced originally by Suzuki and lshihata

in their paper [43] about array boundary checking. In this method they attempt to

find the weakest liberal precondition (wlp) of the source code being analyzed. The

weakest liberal precondition shows the partial correctness of target programs. For the

weakest liberal precondition of specific loops Suzuki and lshihata present a recursive

predicate:

W(O) = wlp(Loop-body, Q)

W(i + 1) = wlp(Loop-body, W(i))

where Loop-body represents the statements in the loop body, and Q is the postcon

dition of the target program. Then t he weakest liberal precondition of one loop is the

conjunction of all W(i). Their Algorithm can be described by the following pseudo

code (from [43]) in Figure 2.5:

The major concept in this algorithm is to derive an L(j) , where L(j) =

1\j;:::i;:::oW(i), and if this L(j) is true it implies W(i + 1).

Suzuki and lshihata noticed that for some particular programs this algorithm can

not terminate and the set of W(i) can be increased exponentially. For this reason this

method can only deal with relatively simple loops.

13

MSc. Thesis - Yazhi Wang McMaster- Computing and Softwar-e

Induction_Iteration() : Success
{

Failure

}

i = 0; Create formula W(O);
while (i < maximum number of iterations)
{

}

switch
(TheoremProver ((L(i-1) implies W(i))){

True: return Success;
Otherwise: {

}

switch (TheoremProver(wlp(<on-entry-to-loop>,W(i)))) {
True: W(i + 1) = wlp(S,W(i)) ; i = i + 1;
Otherwise: return Failure;
}

}

Figure 2.5: Algorithm of generating W(i+ 1)

Proof Attempts

Researchers noticed t hat automated methods that blindly search for invariants can

result in many failed attempts. One possible way to improve the search is to analyze

the failed proof attempts. The basic concept is to direct a successful approach by

manually analyzing failed attempts .

In paper [18] Ireland and Stark made considerable steps in proof planning by

using a proof approach called rippling, a heuristic used often in guiding inductive

proof plans. Actually, rippling is t he process of rewriting, which converts the target

into some known proper form. There rewrite rules are called "wave rules".

The rippling approach performs really well on some simple loops, However, for

larger programs, the method needs to be improved. Also nested loops will be dealt

with only in the future work in their project.

14

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

Predicate Abstraction

Another popular method to derive invariants is based on predicate abstraction, an

abstract interpretation technique [6] in which the abstract domain is constructed from

a set of predicates over the program variables [14]. One advantage of this method

is that it can infer universally-quantified loop invariants, which are important when

verifying programs with data types like arrays.

In this method, those predicates are generated from source code using a heuristic

method. Given a set of predicates for loops, the process of deriving loop invariants

can be reduced to an easier problem of guessing a relevant set of simple predicates.

The pseudo code (from [14]) for inferring loop invariants is described in Figure 2.6:

<Formula, Stmt> infer (Stmt C, Stmt S) {
let "{P, I} while e do B" = S;

}

Stmt H = havoc(targets(B));
AbsDomain r = Abstraction(Norm(true, C));

while (true)
{

}

Formula J = (r);
Stmt A = "assume e I J"·

'
Stmt B' = traverse("C ; H ; A" ,B);
Formula Q = Norm(true, "C; H; A; B' ");
AbsDomain next= r union Abstraction(Q);
if (next= r) return <J,B'>;

r = next;

Figure 2.6: Algorithm of predicate abstraction

We refer t he reader to [14] for a full understanding of this algorithm. The basic

idea of this algorithm is that new invariants are calculated by original invariants and

an Abstraction (Q). Flanagan and Qadeer also discussed some optimization methods

in algorithms of the abstraction process, which significantly reduce the number of

15

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

predicate clauses that need to be enumerated.

There still are some shortcomings for the method of predicate abstractions by

Flanagan and Qadeer. As they said in their paper, the target predicate needs to

be designated before abstraction. Also this method is limited by the annotation

language. However , their method is a good example of using an advanced artifi

cial intelligence technique for deriving invariants. Their capability of dealing with

universally-quantified invariants is another novel feature of this method.

Dynamic Invariant Detection

After reviewing these methods of static analysis to derive loop invariants, we noticed

that there is a dynamic invariant detection method as well, by which different invari

ants are based on different test suites. This procedure is not just for loop invariants,

other program invariants can also be detected.

Daikon [9], a prototype tool created by Ernst and his colleagues , demonstrates the

feasibility of dynamically detecting invariants. Their approach is to run the target

program, examine the values the program computes, check the potential invariants

over these values, and report those that are true for the test suite. The major process

is described in Figure 2.7 taken from [9].

Original
program

instrument

Instrumented

Detect
invariants

Figure 2.7: Architecture of dynamical detection of invariant

In Daikon project, several techniques are discussed in four major fields. These

are:

16

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

• Polymorphism elimination

• Redundant invariants

• Comparability

• Return values

Dynamically detecting program invariants expands a programmer 's ability to

gather information pert inent to software evolution tasks. By combining this ap

proach with existing static analysis techniques, a programmer may be able to gain

the best of both the static and the dynamic worlds. Static analysis tends to be sound,

but t he st ate of the art does not accurately handle very large programs or all pro

gramming languages and features. In contrast, dynamic techniques tend to be more

practical in terms of applicability to arbit rary programs and often seem to provide

useful information despite their inherent unsoundness [9].

Conclusion

From the 1970 's to t he present, automatic methods to detect invariants cont inue to

expand. These invariants cannot only be used to understand the behavior of target

programs, but they can benifit other related reverse engineering research.

2.3 Conclusion

In this chapter, we discussed several techniques for specification recovery. In those

methods we notice that most of it still involves human intervent ion in t he process.

Some totally automated methods limits in relatively simple examples . However , the

success of this research work demonstrates t he feasibility of automatic methods ap

plyingq to extract high level specification from source code. Also they can t rigger

ideas that may lead us to invent novel methods.

17

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

18

Chapter 3

Literature Survey of Tabular

Specifications

This chapter presents a literature survey on functional documentation as proposed

by D. Parnas and J. Madey [34]. The discussion focuses on Limited-Domain relations

and their tabular representations .

3.1 Functional Documentation

Functional is not used in its vernacular sense, but with its standard mathematical

meaning. In mathematics, function means a mapping between two sets of elements

(called domain and range, respectively) such that every element of the domain is

mapped to exactly one element in the range. If the latter condition is not satisfied,

the mapping is called a relation [34]. In this paper Parnas and Madey present their

idea that all properties of computer systems and their components are seen as a set

of mathematical relations instead of using vague, imprecise and intuitive language.

Also several "functional documentations" are defined to describe the system and com

ponents systematically and precisely. However , their goal is to describe the contents

of key computer systems - not their form. These documents include the following:

• System Requirements Document

19

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

• System Design Document

• Software Requirements Document

• Module Interface Specification

• Internal Design Document

This division into documents is intended to provide "separation of concerns".

Different audiences are interested in different documents. For the aim of this research,

we want to extract the high level Program Function Table from source code. This

documentation is a sub-document of the Module Internal Design document.

3.2 Tabular Representation In FUnctional Docu

mentation

The Program Function Table describes the effects of a program's execution precisely.

To this aim we introduce Limited Domain Relations, and their application to program

description and specification.

3.2.1 Limited Domain Relations

A digital computer can usefully be viewed as a finite state machine whose operation

consists of a sequence of state-changes . If we are not concerned with the intermediate

states of executions, then every deterministic program can be described as a program

function whose domain is the set of initial states and whose range is the set of final

states [28] .

A function can not describe a nondeterministic program. For the simple reason

that a nondeterministic program started in one start state may terminate in one of

several final states. So relations are more appropriate to represent general programs.

Furthermore, we need additional information to describe the set of starting states for

which termination can be guaranteed. Here we give some formal structures from [33]:

20

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

• A binary relation Ron a given set U is a set of ordered pairs with both elements

from U, i.e. R <;;;; U x U. The set U is called the Universe.

• The set of pairs R could also be defined by its characteristic predicate, R' (p, q) ,

i.e. R = {(p, q): U x UIR'(p, q)}.

• The domain and range of R can be expressed as follows:

Dom(R) = {pl3q[R(p, q)]}

Range(R) = { ql3p[R(p, q)]}

• Let U be a set. A limited-domain relation (LD-relation) on U is an ordered pair

L = (RL, CL), where:

RL , the relational component of L, is a relation on U, RL <;;;; U x U,

CL, the competence set of L , is a subset of the domain of RL, CL C

Dom(R£).

In detail , LD-relations can be used to describe the effects of program execution if

we see set U as the program state set . CL can also be designed to identify the state

set in which termination can be guaranteed.

In our thesis, we discuss only deterministic programs, so the relation can be de

scribed as a function. One and only one element in the range can be mapped from

an element of the domain.

3.2.2 Tabular Representation

An LD-relation can be represented by conventional mathematical notations. However,

the experience of several projects (A-7E, Darlington Shutdown Systems, Bell Labs)

was that tabular expressions (function tables) enable us to describe LD-relations in

a visual, easy to understand format [19].

There are several advantages to using tabular expressions. Firstly, functions im

plemented by digital computers exhibit discontinuities, which can occur at arbitrary

points in the domain of the function [19]. Also the type of domain and range of

21

MSc . Thesis - Yazhi Wang McMaster - Computing and Software

a function can be different in common cases. Those characteristics of conventional

mathematical notations make the description of the behaviour of such functions too

complex and hard to read. Tabular expressions are an ideal notation to give both

precise and readable descriptions of these functions.

Tables can also help in thinking. Though questions of decidability and compu

tational complexity are not affected by using tabular expression, this notation is of

great help in practice. For discussion see [19]. When someone first determines the

structure of the table, making sure that the headers cover all possible cases, we can

then turn our attention to completing the individual entries in the table. The use of

the tabular format helps to make sure that no cases are forgotten.

Tables can help in communication. One project might involve people from different

backgrounds. People need one universal notation in all these documents, which means

that the notation should be easy to learn and understand. Tabular notation is based

on predicate logic, which is almost universally understood, and the visual aspect of

the notation helps people communicate.

Tables help in inspection. For a very big project, by using tables inspection work

can be divided and conquered by a systematic procedure. First , inspectors need to

make sure that the set of rows and columns are complete with no overlaps. Then

they can consider every entry in the table sequentially. Inspectors can therefore take

breaks between inspection of cells.

For all these features of tabular notations, we see that extracting tabular expres

sions from source code can be a tremendous aid to inspectors and maintainers in

understanding the behavior of programs. Our aim is to be able to build these tabular

expressions automatically from the code.

3.2.3 Program Function Table

We have already discussed that a program can be described by LD-relations. If this

program is deterministic these relations are functions. By using tabular expressions

we can get a program function table that describes this program.

In [35], function tables are divided into in a variety of forms which include normal

function tables, inverted function tables, vector fun ction tables, normal relation tables

22

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

and so on. Of course, new forms can be invented for particular environments.

In this thesis , we choose vector function tables as our output tables . For a given

source code, we intend to extract the functions between output variables and input

variables.

In [35], a vector function table, T , is a table in which the elements of the main grid ,

G, are terms, the elements of H 1 , H 3, ... , H dimentiionality(T) are predicate expressions,

and the elements of H2 are single variables.

Consider this example of C code that computes the sum of the absolute value of

two parameters.

int sum_of_abs(int a,b)

{

int sum;

if (a>O)

{

if (b>O) sum a+b ;

else sum a-b;

}

else

{

if (b>O) sum b-a;

else sum -a-b;

}

return sum;

}

The following vector function table represents the behavior of that C code.

a>O a<O

b > O b < O b>O b <O

I sun~= a+b a-b b - a - a - b

1\NC(a, b)

23

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Note: NC(a, b) represents that the variables a and b are not changed after the

program execution.

3.3 Conclusion

In an earlier section we discussed the functional documentation, LD-relations and

Tabular representation. We noticed that the tabular expression is an ideal notation

to describe effects of program executions. With the characteristic of discontinuity and

type difference between domain and range, tabular notations are more applicable than

conventional mathematical notations. Extracting these program function tables from

source code could be a tremendous aid to inspectors and maintainers to understand

the behavior of the program easily. In later chapters we will begin our analysis and

methods in the implementation of this tool.

24

Chapter 4

Analysis

In this chapter, we present the general difficulties in generating function tables from

source code in an automatic way, as well as the basis of the methods we used in the

tool.

4.1 Automatic Table Generation Difficulties

Reverse engineering presents a different set of very challenging problems from forward

engineering same as our attempt to build function tables. If it were easy to automate

t he generation of function tables from code, it would already be common practice.

There are clearly difficulties in doing t his, and this section describes the challenges

specific to this task.

4.1.1 Main Difficuties

Unstructured P rograms

The first challenge is the quality of the code itself. This depends on the programmers

who developed the code, except in those cases in which the code was generated

automatically or developed in compliance with rigorous coding guidelines. Sometimes

t he code is not just difficult for analysts to read, but some programmers even use GoTo

- like instructions to implement their algorithms. See the example in Figure 4.1

25

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

1:

2:

3:

int i=O;

i++;

if (i!=10)

goto 3;
else

goto 2;
goto 1;

printf("Program Completed.\n");

exit;

printf("%d squared %d\n",i,i*i);

goto 1;

Figure 4.1: Unstructured code

For the example in Figure 4.1, we notice that the equivalent structured program

in Figure 4.2 is more readable and more easily analyzed.

Unstructured programs make analysis more difficult, which is one reason struc

tured programming constructs are so heavily recommended. For the purpose of this

thesis we assume that the code is reasonably structured.

int i;
for(i=O;i<10;i++){

printf("%d squared= %d",i,i*i);
}

printf("Program Completed.\n");

Figure 4.2: Equivalent structured code

26

McMaster - Computing and Software MSc. Thesis - Yazhi Wang

Specific Language Difficulties

Obscure syntax and ill-defined semantics can confuse us when we try to understand

specific language constructs. Programming languages like C are sometimes more

complex than we think. Even if you are an experienced C programmer, there are still

some statements that can frustrate you. For example

int i=O;

printf("\%d \%d \%d",i++,i++,i++);

Many programmers are frustrated and confused when they discover the result of

this simple instruction. Even dift"erent compiler developers implement it in different

ways . The result compiled by Visual C++ 6.0 is "0 0 0" and "2 1 0" is the result

compiled by GCC v2.X.X.

Loops

Loops are often a big problem in reverse engineering. Part ially because the definit ion

of recursive loops used in operational semantics of imperative language is not com

positional. Obviously loops are really convenient and necessary for searching, sorting

and many other computations. The difficulty is how we can derive the functionality

from the instructions in the loop body.

Another challenge is to determine the t ermination of loops. The result does not

only depend on the algorithm of related loops. Termination may also be influenced

by processor architecture. For example from numerical computation in Figure 4.3, we

can see that this mathematically non-terminating loop will finally stop after underfiow

occurs.

Implementation Reality

Difficulties in implementation are easily overlooked when we discuss the difficult ies

in analysis. Many of these problems became apparent while developing our analysis

tool, and we will discuss them later in section 4.3, 4.4, and 4.5.

27

MSc. Thesis - Yazhi Wang

float i=1;

while (i=O){

i = i I 2;

}

McMaster - Computing and Software

Figure 4.3: Floating underfiow

Gaps in human and machine

Manual extraction of function tables from code is time consuming, but analysts have

been doing this successfully for more than 15 years. Automating this process has

proved to be difficult , partially because humans are flexible in their approach and can

tailor the basic process to fit the current problem in ways that are not understood

well enough to automate.

4.1.2 Solutions

The first two difficulties really encourage us to do more preparation before we actually

do the analysis. It therefore makes sense to conclude that a "clean-up" stage should

be added into our process. In [2] Breuer and Lano [1] state that translating the source

language into a more structured language is an essential preparation that results in

the code being restructured to some extent to reveal its "essential structure" . The aim

is to structure the code so that each stat ement has clean semantics and corresponds

to a meaningful fragment of a program specification.

We will discuss problems 3 through 5 later in section 4.3 , 4.4, and 4.5.

4.2 Overview of Analysis

Above we discussed t he difficulties we faced in developing the analysis built-in to

our tool. In later sections we will discuss a more detailed analysis related to main

difficulties . In section 4.4 we present the major algorithm used in our tool.

As we mentioned in Chapter 1, the high level imperative language C is our analysis

28

McMaster - Computing and Software MSc. Thesis - Yazhi Wang

target. Based on the difficult ies we discussed in the previous section and other reverse

engineering experience documented in [2], including a clean-up stage is a really helpful

preparation for static program analysis. As we said, a well-structured program with

clean semant ics makes our process more efficient . In t he chapter dealing with tool

implementation we discuss code lists and how this data structure helps us transform

the original code into a well-structured equivalent.

In order to extract a vector function t able from a specific program t he main work

of the tool is to derive the functions of output variables in terms of input variables

under all condit ions. We know that every terminating program can be described by

a mathematical function. So given a program P we let X be the set of all input

variables and Y be the set of all output variables. The function :F corresponding to

P can be expressed by

Y = :F(X) and :F = (fi , h , .. . , f n)

So we can see that for every single output variable Y; E Y , Y; = J;(X). If we can

derive all the functions Ji from the program, we can describe those functions by the

appropriate t abular expression.

Imperative language programs comprise simple assignments and cont rol state

ments which contain condit ional statements and loops. At t his stage of our work we

have not considered except ions and interrupts. Also in order to make our analysis eas

ier we deal with only integer types , and do not handle other complex data structures.

We also consider sub-programs as future work too in this thesis.

We use the following grammar to describe the target code:

Code .. _ Blocks+; ..

Block .. _ Assignment I IF _stmt I LOOP __stmt; ..

Assignment .. _ VariD := Expr; ..

IF __stmt .. _ IF Predicate THEN Code ELSE Code; ..

LOOP_stmt .. _ WHILE Predicate DO Code; ..

From the grammar we can see that there are three kinds of blocks we should deal

with. For each kind of block we are interested in the final :F instead of how each

29

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

is implemented in the process. We will discuss the analysis of each kind of block

separately.

Before that discussion, we present a picture to describe the process overview of our

tool. In Figure 4.4, we see that we take C code as our input, which is then parsed and

translated into an intermediate language. Then, by loop elimination and evaluation

techniques we derive the functionality of the target code.

Evaluation

~--~-~j~;-~-;~~~~~--1
[... :

Simplification

Display

Figure 4.4: Analysis process

4.3 Simple Assignments

Assignments are a core component of any imperative language. They can be expressed

by< Variable> ::=< Expression>. Intuitively, for every single assignment we de

scribe the variable' immediately prior to execution as value as 'V, which is known as

"V before". From the operational semantics of the assignment we get the value V'

after execution, which which is known as "V after". So what is V' '? The answer is

derived from the Expression on the right side of the assignment. In evaluating Ex

pression, we use the "value before" of each variable. We also note that the semantics

of sequential assignment are compositional.

30

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

From the intuitive analysis presented above we know that for every simple assign

ment we have that< Variable> ::=< Expression >. Whatever the variable name,

we represent the left variable by Yi E Y. The value of the expression on the right

will be the new value of }i , so Yi = fi(X) . For example, consider the very simple

assignment in C shown below:

int x,y;

y=2*x+15;

Figure 4.5: A simple comput ing example

In Figure 4.5 , we see that the value of 2x'x+15 will be the value of y'. This

function can be expressed by f i = AX : Z . 2 xx+ l 5. So we can see that it is

never difficult to derive t he function fi from a single assignment . However , we are

more interested in code with sequential assignments. Here we give an example with

sequential assignments.

int a,b,c; a=O; (1)

b=a+100; (2)

c=c+b; (3)

a=c; (4)

Figure 4.6: An example with multi-assignments

As Figure 4.6 shows, t here are three variables which are all in both X andY. It

is easy to ascertain t hat t hey are in both X and Y since they occur on t he left and

right hand sides in the assignments. We have not paid any attention to temporary

variables which will affect the results . We assume that all these variables have their

init ial values as 'a, 'b and 'c. According to the four statements in Figure 4.6, we

define four functions h , h , h , f 4 . and we can see that

h = AX :N. 0

h = AX: N. x+ lOO

31

MSc. Thesis- Yazhi Wang

h =)..x,y: N. x+y

!4 = AX: N. X

McMaster- Computing and Software

In order to account for every step of the code we show the result for every

statement :

after (1): a' = h ()
after (2): b' = h('a, 100) = h(h(), 100)

after (3): c! = h('c,' b) = h('c, h(h(), 100))

after (4): a' =' c = J2('c, f2(f"l() , 100))

In the above expression, all the before and after signs are used appropriately

in every statements. From the step results of every statement we find that the final

functions for each output variable can be composed from the results in previous

steps. Theoretically , the final result is correct because the operational semantics of

simple assignments are compositional.

We have seen that in order to derive the correct value after execut ion of several

pure assignment blocks we just need to record all changes in every assignment . In

our algorithm, we build an assignment list in which every entry contains the current

value of a variable and every variable can only have one entry in the list.

Another problem concerns expression simplification. Consider this example:

int a,b;
a = a + b;

b = a - b;

a = a - b;

Figure 4.7: An example of swap

The statements in Figure 4.7 result in swapping the values of variables a and b.

Rather than the more common swap function which uses a temporary variable, here

we prefer to use this method when the system does not have much memory available.

32

McMaster- Computing and Software

So the function which describes the above program is:

a'= 'b

b' ='a

MSc. Thesis - Yazhi Wang

However, from the steps we used above, we can only get that

a'= ('a+'b)-(('a+'b)-'b)

b' = ('a+'b)-'b

Although the final result is equivalent to the result we wanted, the former re

sult is preferable for readability. This simple example tells us that a simplification

step would improve our final result . Since this is not focus of the research in

this thesis, we just used a Computer Algebra System to help us implement this

simplification.

The result of this analysis is embodied in the algorithm to extract the function

that represents the simple assignment block is presented below:

1) extract input and output variables from the assignment into X , Y ;
2) get the next code statement which should be dealt with;
3) put the left value variable name into the assignment list, if it exists then use the
existing one;
4) put the right value expression into this assignment entry in the list and substitute

all variables in the expression by all their values in the assignment list.

5) go to step (2) again until the end of code.

Figure 4.8: Algorithm of straight line code

4.4 Alternation

Alternations are frequently used in imperative languages. As we defined in overview

they have the grammar:

33

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

IF Predicate THEN Codel ELSE Code2.

Predicate here is a boolean expression which determines which branch the execution

will take. Codel and Code2 represent those two branches .

Figure 4.9: Execution branches under given conditions

In the previous section we presented an algorithm which deals wit h sequential

assignment code blocks. For any execution branch it is not difficult to extract the

final function for every output variable, modeled on the algorithm for sequential

assignment blocks (see Figure 4.9) . Thi~ provides us with the components offunction

F. From this point on we can regard a code block with one condition statement as

two sequential assignments blocks in which some parts overlap. From each of these

blocks we can derive one component of the function F . This is the case when there

is one condition in the code block. For more conditions we can split the block into

more blocks. If there are n conditions , then the number of blocks would be 2n.

Here is another example:

The program in Figure 4.10 computes the value of sum to be the sum of posit ive

values of a and b. Since there are two conditions in the code, we copy the code into

four blocks as shown below:

So from those four code blocks we can extract four functions F1 ,Fz ,F 3,F 4 ac

cording to the four possible preconditions. We can see that the semantics of this

34

McMaster- Computing and Software

int sum,a,b;
sum = 0;

if (a>O) sum += a;
if (b>O) sum += b;

MSc. Thesis - Yazhi Wang

Figure 4.10: Sum of positive parameters

1.

{a > OI\b> O}
sum=O;

sum=sum+a;

sum=sum+ b;

2.

{a > OI\ b:SO}
sum=O;

sum=sum+a

3.

{a:SOI\b > O}
sum= O;

sum=sum+b;

4.

{a:SO/\ b :S O}

sum= O;

function conform to the semantics of a tabular expression that represents function

F. This means that there will be no difficulty in expressing the function in a tabular

representation.

Here we modify our algorithm to be suitable to code with conditions.

4.5 Loops Overview

Loops are the biggest challenge in our analysis. The operational semantics of loops

may be defined by recurrence equations, which makes it hard to derive the explicit

function from loop body. In this section we discuss the main problems we faced in our

analysis of loops, and present our partial solution to the analysis of loop structures.

As in previous sections, we give two typical examples of loops in Figures 4.12 and

4.13.

The reason we give two examples here is that we want to begin from some specific

loop examples and identify the associated recurrence relations and rules and use them

to come up with general solut ions.

We notice that for both of t hese examples the number of iterations is controlled

35

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

1) Extract input and out variables from assignments into X , Y;
2) Get next sentence which should be dealt with from code;
3) If this sentence is a condition statement, do 4 else do 5;

4) If the condition is decidable already, then get next sentence from the relative branch
and do 2. Or record the condition and copy current assignment list and deal with
every branch respectively.

5) Put the left value variable name into assignment list, if it exists t hen use the old

one;

6) Put the right value expression into this assignment entity in list and substitute all
variables in expression by all value in assignment list .
7) Go to step (2) again unt il the end of code.

Figure 4.11: Algorithm of alternations

by logical condit ions of output variables involved in guards. Within the loop body

there are still code blocks which may contain the control statements we mentioned

before. However , if we take the inner most loop as our st art ing-point all the loops

may not show up. So, if we can make our algorithm robust enough, nested loops

should not be an exception. We also notice that semantics of the assignments in t he

loop body are totally different from the ones outside. So we will devote some sections

in the thesis to discuss the problems thoroughly.

4.5.1 Main Problems

Problem Description

Our aim is to eliminate the loop structure in the source program. In other words, we

aim to represent the behaviour embodied in a loop as straight line code. To do t his we

need to know the values of all variables changed by the loop, at the termination of the

loop. This of course assumes that the loop does terminate. To help us understand the

explicit functions implemented in the program, we choose to represent all functions

using recurrence equations. To do this we assume we know the values of all variables

after n-1 iterations of the loop body. So, if we can describe the value of each variable

in the loop after n iterations in terms of values of all the variables after n-1 iterations,

36

McMaster - Computing and Software

int i,num,sum;

sum=i=O;

while (i <= num)
{

}

sum+= i;
i++;

MSc. Thesis - Yazhi Wang

Figure 4.12: Sum of consecutive integers

we can define a recurrence relation for the value of each variable. Then we can use a

pattern matching algorithm to get a more readable function definition. Before we go

further with our algorithm, we need to deal with some important details. Note that

analysis can be made much more complex if we have to take into account unpredictable

programming habits and styles.

Multi-Assignment for Single Variable

First thing we should think about is multi-assignments in every execution branch.

For a complex system which has complicated functionality there certainly can be

multi-assignment to one variable during any execution branch. Take an example like

this:

The above program in Figure 4.14 computes the sum of the maximum value in

every row. Actually this example also demonstrates other interesting points like

nested loops and conditions in the loop etc. However , in this section we just consen

t rate on multi-assignments.

So when we are dealing with new assignments in any branch we have to make

sure there is a unique assignment ent ity for each variable in the assignment list data

structure. For any assignment in the code, if there is no assignment entity according

to t he variable name of the left value we put a new entity into the assignment list.

Ot herwise we just use the old entity. For the right value of this assignment which

37

MSc. Thesis- Yazhi Wang

/*sample maximum*/

int max(int a[], unsigned int num)
{

}

int c,i;

i=O;
while (i<num) {

if (c<a [i])
c=a [i] ;

i++ ;

}

return c;

McMaster- Computing and Software

Figure 4.13: Maximum of an array

should be an expression, we should substit ute all variables in the expression if there

is an assignment entity which has the same name. Then all variables in this right

value expression are just all the variables after n-1 iterations. After dealing with all

assignments in t he code in every execution branch, we will have the final assignment

entity list in which every variable has the expression represented by variables after

n-1 iterations and also there is one and only one entity corresponding to every output

variable.

Mathematically, with this process we build an assignment list in which there

are entities representing the function F1 for every output variable. Furthermore, we

notice that this process can use our simple assignment algorithm directly except that

this function F; will not be the final function for this variable. It just shows the

functionality of related variables after n iterations in terms of variables after n-1

iterations.

38

McMaster - Computing and Software

int max, sum, c[] [], i, j;

max=O;

sum=O;
for (i=O;i<m;i++)
{

}

for (j=O;j<n ; j++)
{

}

if (max<c [i] [j])

max = c[i] [j];
sum += max;
max = 0;

MSc. Thesis - Yazhi Wang

Figure 4. 14: Values in multi-assignments

Recurrence Relations

The next detail we consider is the recurrence equation for every output variable. As

we said earlier, there is one and only one entity in the assignment list corresponding

to every output variable and the right value expression is represented by all variables

after n-1 iterations. In the example of computing the sum of consecutive integers in

Figure 4.12, we notice

sum+= i;

We define a function f here to represent just this statement. So

sum' = f(' sum,' i) in which f = >. x, y : N. x+y;

Unfortunately this is only correct when this statement is outside loops, which also

means that the above function just shows the relationship of variables after n itera

tions in terms of values of variables after n-1 iterations. However, what we want is

t he relationship of values of variables after termination of the loop (assuming it does

terminate), in terms of values of variables immediately prior to the loop.

39

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

In order to go further with our analysis of loops, here we explicitly st ate our

assumption that the loop we are analyzing terminates after n iterations. We will

discuss the termination problem in later sections. We use recurrence equations to

derive the function that describes a loop's behaviour, as follows. We define V ar I Dn

to mean the value of VariD after n iterations.

For the example of computing a sum we can derive these recursive functions:

and

sumn = {
'sum

sumn- 1 + c[in-d

{
,.

. z
Zn =

in- 1 + 1

n = O
n > O

n = O
n> O

For these recurrence equations of output variables sum and i, when n equals 0 that

means no instructions in the loop body have been executed even for one time. The

loop is then equivalent to skip. Otherwise the result depends on the previous values.

Under the semantics of the loop in an imperative language, we can derive re

currence equations for each output variable. In later sections we will show more

situations analyzed by this representat ion and discuss how we use this representation

in our analysis.

Conditions in Loop

Another issue is IF statements in the loop body. Because we begin from the inner

most loop from source code we want to deal with. There is no loop statement in

current code. However , we still need to think about IF st atements in a loop. Just as

in the example of computing the maximum value in Figure 4.13. As we discussed in

the section concerning conditions, the IF stat ement can split the execut ion path into

different branches . For every branch we provide an assignment list corresponding to

it .

40

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

1. 2.

{max S c[i]}
max=c[i];

{max> c[i]}
skip;

We can see that the value of max after n iterations could be either c[i] or the old

max (after n-1 iteration). Fort unately we still can use recurrence equations to record

output variables in this situation by giving more conditions. See this:

{

'max

maxn = c[in-1]

maxn- 1

n=O
(n > 0) 1\ (maXn- 1 < c[in-d)

(n > 0) 1\ (maXn- d 2 c[in-1]

We see that the result of output variable max is more complex than the variables

we mentioned in the previous section for the reason that there is one more condition

in the loop body. One thing we should pay attention to is that we use the previous

value of a variable itself if there is no relative assignment corresponding to this output

variable.

Let me recall an example with similar conditions outside loops. Think about this :

int max,a,b;

if (a>b)

max a· ,

else

max b· ,

Figure 4.15: An example with simple alternation

Using the algorithm we discussed ealier, we can represent the program in Figure

4.15 by the table in Figure 4.16.

However, we also can present this program by an expression of the form:

41

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

'a >' b 'a S:.' b

lmax'= l I 'a 'b I

Figure 4.16: Table representing Figure 4.13

{
'a

max=
'b

'a >' b

'aS:.' b

It may seem confusing that conditions in a loop body have been dealt with totally

differently from those outside of loops. We know that conditions outside loops lead

to more sections in tables. That is why we use tables to make our expressions more

readable. However, what we did with conditions in loops is that we present all

semantics of conditions in one recursive expression. So does this hurt the readability

of the tabular expression? Of course not. Loops are complex structures in imperative

languages. They can be used in very complicated functions. Without recurrence

equations it is really hard to express those functions in other ways. So we describe

all those conditions in one function expression and deal with it by pattern matching

method. Then, we can perform further analysis by describing complex functions in

this simple way.

Until now all we endeavored to do is to present variable functions in an explicit

way. However, t his not what we want at the end. We next consider whether we can

extract some more common expressions from those recurrence equations. From all the

examples we gave before, all those functions can be represented by more meaningful

expressions like "sum" or "maximum".

For the very simple example of i, we give the i definition to:

{
,.

. I
In=

in-1 + 1

n=O

n>O

with no doubt, this function can be rewritten as a more meaningful expression, so

that:

in=' i + n

42

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

So our question is how can we get this kind of result in general and how many similar

kinds of functions can we recognize.

In the next section we discuss how to (partially) fulfil our expectations by using

a method of pattern matching.

Pattern Matching

Pattern matching plays a significant role in our method. Once we derive the recur

rence equation for every output variable, we already have a description of the func

tionality of the loop for every output variable. However , we need a more readable

definition for such functions.

In this section we discuss how we classify the recurrence equation into more read

able expressions.

Let us focus on some simple examples to begin our analysis. Consider the example

of the index i again.

. { zo
Zn =

in-1 + 1

n=O
n>O

As we said before, we try to find a way to transform this expression into a more

readable format in = i + n. From this example we can find some features which are

essential for us to identify the explicit function. One is that the main relation of the

right value expression is a binary function '+'. Also one argument is itself and the

other is a constant value. Based on those features we can extract a recognizable form

for this function. So, if we can organize those features into a pattern, we can make

the transformation automatically. Thus , we come up with the pattern style shown in

Figure 4.17.

The essence of this classification is that we record relevant features and ignore

t rivial details. Let us consider a more complex example to test our method. Consider

the recurrence relation we derived for maximum, shown in Figure 4.18.

We begin with those features which can help us identify the explicit function.

The first one is that there is one more condition besides (n > 0). We notice that for

this condition the main relation is > and the first argument is itself and the second

43

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Figure 4.17: Pattern for addition

{

'max

TIWXn = c[in-1]
maxn-1

n = O
(n > 0) 1\ (maXn-1 < c[in- 1])
(n > 0) 1\ (maxn-1) 2: c[in- 1]

Figure 4.18: Pattern for maximum

argument is related to the output variable (we call all expressions in which there are

output variables, output-related) . The second feature is that both assignments are

related to the variables in the condition. To make it clear, we pack all those features

together into the pattern shown in Figure 4.19.

Figure 4.19: Pattern for maximum

In these patterns , the "type_A" and "type_B" connectors are used to indicate

whether the connected entities are 'assignments' or 'conditions' , respectively. v _var

stands for the output variables which are assigned by new values in the execution of

loop body. And v _self means the variables which are referred in the assignments of

themselves.

44

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

From these two examples we need to identify all those features which are important

in developing the final result . We start by defining all the specific entities by assigning

all relevant types. Then we classify the targeted recurrence equation into a pattern

by related features . Every pattern is a structure composed of particular types. There

also should be a patterns database in which all patterns are stored. We use designated

rules to classify t hose recurrence equation into a pattern structure and then compare

them to determine whether it is can be recognized and be transformed into a more

readable definition. The pattern matching process can be shown in Figure 4.20.

LoglrnUy C'onfrolled Loop

while(

b=b+.t[l]

Loop PaHtl'lll StJ·uctm·fo

Figure 4.20: Procedure Pattern Matching

Iteration Count

We did not mention one thing which is really important to show the description of

functionality. That is whether we can denote t he final iteration count n, if the loop

terminates. In our analysis until now we always assumed that our target programs will

terminate. Like earlier sections we still begin from a simple example to see whether

we can deduce a more general solution. Consider the example in Figure 4.21.

45

MSc . Thesis - Yazhi Wang

int i , begin,end;

i=begin ;
while (i<end)
{

i ++;

}

McMaster- Computing and Software

Figure 4.21: Iteration count

For the above program, we ignored trivial detail which was not essential to this

section. Our aim is to derive the value of n from the program. We know that the

predicate (i<end) can determine whether the loop terminates . Variable end is an

input variable here and from an earlier section we know that

in =' i + n

For this particular example in = begin + n, so if we substitute the variable i in

predicate (i <end), we get that

begin + n < end ==;. n < end - begin

However, in other cases it may not be as easy to derive the exact expression for n.

Commonly we still assume that there exists a value of n such that after n iterations

the guard is true and after n+ 1 iterations the guard becomes false.

4.5.2 Loop Elimination Algorithm

This section presents the detailed algorithm we use for loop elimination. An assign

ment list will record all the assignments in the loop body. The list is initially NULL.

46

McMaster - Computing and Software MSc. Thesis - Yazhi Wang

1) Extract input and out put variables from assignments into X , Y.
2) Walk through the whole code block and record all loop.

3) Ident ify a loop to "eliminate", starting with the inner-most nested loop.
4) For the identified loop, build an assignment list from the code blocks in the loop
body using the algorithm that applies to straight-line code.
5) Build recurrence equations for every output variables in t his loop.
6) Perform pattern matching for every recursive function.

7) Evaluate the variables in the loop guard and to try to find the iteration count if
possible.

8) Go back to 3 unt il there is no loop.

9) From the beginning of the code blocks, perform the straight-line code algorit hm
again.

Figure 4.22: Algorit hm of nested loops

4.5.3 N ested Loops

In fact, in the above algorithm in Figure 4.22 , we already mentioned how to deal with

nested loops. We notice that for the target code blocks, we first build some structure

corresponding to every loop in the program. Then we deal with the first inner loop

first . In the process , we try to use the pattern matching method to change the loop

structure into simple assignments. Later we deal with outer loops using the same

algorithm. Consider the nested example in Figure 4.23.

This program computes the maximum value of the sum of every row of matrix c.

By our algorithm in Figure 4.22 we deal with the inner loop first. We can find two

pat terns defining sum and product . So we can derive the "program" in Figure 4.24,

equivalent to the original code.

We can see that by using pattern matching the inner loop has been eliminated

successfully. Then we can use our algorit hm again to cope wit h the outer loop.

4 .6 A more detailed example

After discussing t hese problems we conclude by walking t hrough the final algorithm

we use to analyze C source code. To underst and t he detailed steps we present a

47

MSc. Thesis - Yazhi Wang

int max, sum, c[] [], i, j;

max=O;sum=O;
for (i=O;i<m;i++)
{

}

for (j=O;j<n;j++)
sum += c [i] [j];

if (max<sum)

max=sum;
sum=O;

McMaster- Computing and Software

Figure 4.23: An example with nested Loops

description of the whole process and how we deal wit h some specific examples.

Consider the example in Figure 4.13. The program calculates the maximum value

of every element in an array. According to our algorithm we need to eliminate the

loop structures, from the inner-most loop to outer-most loop. In this example there

is just one loop in the source code, so we eliminate only this loop.

First , we analyze the assignments in the loop body, and then we can give the

recurrence equations for variables i and c, as shown in Figure 4.25.

Second , we want to represent those functions in normal forms other than the

recurrence equations in Figure 4.25. As we discussed in earlier sections we use a

pattern matching technique to do this transformation. An abstraction step is needed

to extract the essential functionality from this recurrence equations as shown in Figure

4.26.

After pattern matching, hopefully we can get an equivalent assignment (Figure

4.27) for every output variables in that loop, which is the major concept behind loop

elimination.

At the end, we only have simple assignments and alternations in the source code

without any iterations. Then, we perform the evaluation procedure to get the final

functions for every output variable. This can then be represented by the t abular

expression shown in Figure 4.28.

48

McMaster- Computing and Software MSc . Thesis - Yazhi Wang

int max , sum, c[] [], i, j;

max=O;sum=O;
for (i=O;i<m;i++) {

{

sum += 2::;,;:-~ c[i][j];j = n- 1;

}

}

if (max<sum)

max=sum;
sum=O;

c(n) ~ {

Figure 4.24: Inner loop eliminated

.() { i(O) : n = 0
~ n =

i(n - 1) + 1 : n > 0

c(O)
a[i(n - 1)]

c(n - 1)

n = O
n > 0 1\ c(n - 1) < a[i(n- 1)]
n > 0 1\ c(n- 1) 2 a[i(n- 1)]

Figure 4.25: Expression by recurrence equations

Figure 4.26: Pattern style expressions

49

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

i(n) = i(O) + n
c(n) = c(O) 7>? max~~';- 1 (a[k])

Figure 4.27: Equivalent assignments

true

i- num

c = maxZ~~- 1 (a[k])

1\NC(a, num)

Figure 4.28: Tabular expression representing code in Figure 4.13

50

Chapter 5

Requirements

This chapter identifies the requirements for our tool.

5.1 Assumptions

For any unexplored field, one is commonly advised to begin with assumptions which

simplify the analysis domain. Our tool is no exception. The major object of our

project is to construct automatic derivations of tabular expressions. Using simplifying

assumptions will prevent us from being sidetracked from the main issues.

We know that the C programming language is a complex high level imperative

language which is very popular and widely used in industry. Considering the com

plexity of C, and our time constraint , we make some simplifying assumptions instead

of dealing with the whole C language. In our analysis domain, we take the data type

int as the only type we handle. More data types can be postponed to future work.

Another assumption we make is to deal only with well-structured programs. The

experience of the Shutdown System of the Ontario Power Generation shows that non

modular programs cause really frustrating problems for tabular expressions even when

generated by hand [1]. So we restrict our t arget domain to well-structured programs.

Intuitively, there should not be any GOTO statements in code blocks.

51

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

5.2 Input

In all st at ic program analysis tools one essential thing is to identify t he input domain.

Usually developers prefer abstract syntax trees as their input. A number of tools have

been developed for static analysis of abstract syntax trees. Our approach, by contrast ,

uses code list as input .

int a,b,c[];

I
I

a=O; Table · for (b=O;b<c;b++)
. { Generation "

if(a<c[b])
II' Vector function

Tool tables
a=c[b];

" }

Figure 5. 1: Table generation tool

5.2.1 Abstract Syntax Thee

As stated above, most research work on code static analysis uses abstract syntax t rees

as the input . For a programming language, syntax is concerned with the structure of

programs. Concrete syntax is the representation of phrases as strings. It is concerned

with the readability and ambiguity of a language which is formally defined by its

words and its sentence structure. In contrast with concrete syntax, abstract syntax

focuses on the basic structure of the language. An abstract syntax tree is commonly

built from the syntax analysis by the parser. Researchers usually prefer to take the

abstract syntax tree as the input instead of specific concrete representation strings.

As an example of an EBNF definit ion of program expressions, consider Figure 5.2 .

For a simple arithmetic expression like "9+ (8-6)", the tokens are 9, +, (, 8, -, 6,

). The syntax tree will be as in Figure 5.3

52

McMaster- Computing and Software

expr term

expr
expr

'+'
, _,

term
term

term factor

factor

number

term '* ' factor
term ' / ' factor
number
' (' expr ')'
[' 0 ' .. ' 9 ']+ ;

MSc. Thesis - Yazhi Wang

Figure 5.2: EBNF definition of expressions

9

+

I \

I \
8 6

Figure 5.3: An example of an abstract syntax tree

5.2.2 Code List

In Chapter 4 we discussed the process overview of our analysis. We noticed that C

source code is parsed and translated by LCC into an intermediate language, called

code-list [25] . Our analysis and operat ion is then based on this intermediate language.

In accordance with the aims of our research, LCC is an open source compiler for

mult iple architecture. There are several advantages in choosing this intermediate

language rather than abstract syntax trees:

• cleaner semantics than with the C language

• same representat ion for alternat ions and iterat ions result ing from different code

structures

• providing a base that makes it easier to implement evaluation rules

53

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Figure 5.4: Code list representation of alternations

• the analysis is similar to abstract syntax trees analysis, so it is easy to apply it

to other high level languages.

Consider, for example, an alternation statement of the form:

int a,b,sum;

if (++b>O) sum=a+b; else sum=a-b;

Notice that t he structures represented by the code list of this code extract, as shown

in Figure 5.4, have the same semantics as the original C program.

By means of such structures, code lists can provide programs coded in C with

clear semantics. Notice also that equivalent programs in different formats can have

the same code list representations.

For example, the two loops:

and

int sum,i,a[] ;

for (i=O;i<n;i++) sum+= i;

int sum,i,a[] ;

i=O ;

while (i<n) {sum sum+ i;i++;}

54

McMaster- Computing and Software

i=O

i<n

.. ·,, ... ,.
I

I

sum = sum+i; i = i +I;

MSc. Thesis - Yazhi Wang

Figure 5.5: Code list representation of iterations

------------------------·,\ ~ - -·
\
\ _.·
... / .

sum = sun1+i ; i = i +I ;

i< n

Figure 5.6: Code list representation of DO iteration

They can both be described by the code list in Figure 5.5, making it easier for us

to focus on the structure rather than various kinds of loop forms.

Of course, for loops with different semantics, there is a difference in representation.

Consider, for example:

int sum,i,a[];

i=O;

do {sum sum+ i; i++;} while (i<n)

We can see a difference in the sequence for this in Figure 5.6, compared to Figure

5.5, reflecting the semantic difference.

55

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

In summary, code lists provide a good intermediate language for the analysis of C

code. In the implementation of our tool, we will extend the syntax of this intermediate

language for the purpose of loop elimination. We will also use this language to express

the final values of output variables.

5.3 Interfaces

The format of the table generation tool will be a simple executed file. The application

input which records the C source code is designated by command line arguments.

Some other options used for debugging code list structures will be considered too.

The user interface produced by our tool is as follows:

TableTool -target=table [-showlist] <C Code file>

<>: means this argument is required

[] : means this argument is optional

-target: identify the target result, we keep the old interface of

compiler.

-showlist : display the code list we want to analyze.

C Code file: designate the input C file

5.4 Output and display

The output of the function tables will be represented in text strings for the purpose

of display. Graphic outputs are not the major effort in this research, t hough it could

increase the readability of tabular expressions. A readable output with clear semantics

will be acceptable for this version of our tool.

5. 5 Other Requirements

Because of time constraints , we dealt only with a subset of C. Our tool will require

extensions at a later date.

56

Chapter 6

Tool Implementation

In this chapter we discuss how our table generation tool is developed. Based on the

algorithm we abstracted in Chapter 4, we now present more implementation details.

6.1 Data Structure

In the development of our tool, a number of dat a structures are used to make our

algorithm efficient and extensible. In this section we will list all the major data

structures and t heir functions. Because we use the open source compiler LCC to help

us with the parsing, we have adopted some data structures from LCC [25] .

In this section we will introduce all the major data structures and t heir support ive

functions , if any. To make our description more understandable and systematic,

we provide a dat a structure schema to display our design intent ions. So for every

structure we will have the following four sections: definition , description, elements,

and supports .

Also we categorize all data structures in several groups, such that those in each

group perform similar processes.

6.1.1 LCC Data Structures

A number of dat a structures were designed in the LCC project. We list all those

that are involved in our tool. In the requirements documentation, we designate the

57

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

code lists as the major input. The structure of the code lists and their elements are

discussed in this section.

Code

Definition:

typedef * struct code {

enum { Blockbeg, Blockend, Local, Add~ess, Defpoint,

Label,

} kind;

Code prev, next;

union {

struct {

Start,

int level;

Symbol *locals;

Gen,

Table identifiers, types;

Env x;

} u;

} Code;

} block;

Node forest;

Description:

Jump, Switch

Code is constructed as a bidirectional list. There is just one code list correspond

ing to every input program. In our analysis we have to walk through the whole code

list to inspect the input program.

Elements:

The element kind identifies the class of this code entity. The respective semantics

of these kinds lead to different operation procedures.

58

McMaster- Computing and Software MSc . Thesis - Yazhi Wang

The elements prev and next connect all the code into a bidirectional link. They

are sequentially dependent from the beginning to the end.

The element u records the actual information about this code entity. Like the

member forest all simple assignment descriptions are stored in this structure.

We will talk about t he Node structure later.

Supports:

Code code(int kind);

The function code creat es a new code data structure by accepting parameters of

kind which designate the class of this code entity.

Node

Definition:

struct node {

};

short op;

short count;

Symbol syms[3];

Node kids[2];

Node link;

Xnode x;

Description:

Node is the essential structure for building the code list . Conceptually, it is

an extensive abstract syntax tree. All simple assignments and control st atement

information are recorded in the code list.

Elements:

The element op identifies the operation code of t his node.

The element syms records the symbol information related to t his node.

59

MSc. Thesis- Yazhi Wang McMaster - Computing and Software

The element kids points to the next level nodes if any exist. For example, if t his

node is designated as the operator ADD, then t he element kids points to the two

arguments of this operator.

The element link connects to the next node. Usually, if there are several simple

assignments in a row, LCC links them together by the element link.

Supports:

extern Node newnode(int op, Node left, Node right, Symbol p);

The function newnode takes major elements of Node as arguments and returns

a new node structure.

6.1.2 New Data Structures

Assignments Class

• Condition

definition:

typedef struct condition{

Node con;

con_type type;

struct condition * left;

struct condition * right;

Assign *a;

} Condition;

Description:

The structure Condition plays a very important role in the presentation of

the assignment list. As we mentioned in our analysis, when we encounter IF

statements, we will split code blocks into parts with overlapping blocks. In

order to record the predicates corresponding to all the code split blocks, every

IF statement has the Condition structure.

60

McMaster - Computing and Software MSc. Thesis - Yazhi Wang

Element:

The element con ident ifies the boolean expression in an IF st atement.

The element type shows whether this condition is connected by an assignment

list or just a condition recorder.

The element left points to the assignment list corresponding to the split code

block when the condition is true.

The element right points to the assignment list corresponding to the split code

block when the condit ion is false.

The element a is connected to an assignment list corresponding to a split code

block.

Supports:

Condition* newcondition();

int is_in_c(Condition *tree, Condition *leaf);

void printtable(Condition *tree);

The function newcondition builds a new condition structure containing default

values.

The function is_in_c , a seeking function, returns true if the leaf is in the tree

structure tree.

The function printtable can print the whole condition structure out in a text

string representation.

• Assign

Definition:

typedef struct assignment{

char *name;

int temp;

enum {Const, Bool, Undo, LOOP, RES} type;

61

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

union

{

int i·
'

Node forest;

struct func *fn;

char *str;

} value;

struct assignment *next;
} Assign;

Description:

The structure Assign records the evaluated result for every variable in the

relative code blocks. We notice that there is an element next which connects

all assignments into a list . For every execution branch there is one and only

one assignment list corresponding to it.

Elements:

The element name identifies the variable name.

The element temp shows whether this variable is temporary.

The element type tells the type of this evaluated result of this variable. It is

used with the union structure value.

The element value stores the real evaluated result of every variable.

The element next points to the next Assign structure, which build an assign

ment list to describe the whole execution branch.

Supports:

Assign* newassign();

void printassign(Assign *a,int head);

Assign *assigntail(Assign *a);

int copyassign(Assign *src, Assign **dst);

int findvar(Assign *list, char *name, Assign **ret);

62

McMaster- Computing and Software MSc . Thesis- Yazhi Wang

The function newassign builds a new Assign structure containing default

values.

The function printassign can print out the whole Assign structure in text

mode. Parameter head designates whether to print the assignment variable

name out or the right hand expression.

The function assigntail puts the new Assign a at the end of the current

assignments list.

The function copyassign copies the whole assignments list from src to dst.

The function findvar , a seeking function, searches the assignments list list to

find the entity with name name.

Loops Class

• Loop

Definition:

typedef struct loop{

int done;

Code begin;

Code end;

int sknum;

Node Tn;//n termination, no guarantee to that

Node node;

Variant *variant;

Assign *asg;

} Loop;

Description:

Loop is used to describe the loop structure in code blocks. In a program with

nested loops , there is more t han one loop in the code blocks. For our algorithm,

63

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

we need to deal with the inner-most loop first , and then the outer ones. So we

need to record all loop structures for later analysis.

Elements:

The element done shows whether this loop has been dealt with.

The elements begin and end record the beginning and end code list entities

for the loop. All the entities between begin and end constitute the whole code

during execution of the loop body.

The element sknum stores the number of loops in the loop stack. Because we

should deal with the inner-most loop first, we must push the outer loops into

the stack for later use.

The element Tn shows the number of iterations if possible. We know that

even for terminating loops, it is not always possible to compute the number of

iterations.

The element node records information about the guard of every loop.

The element variant is a list containing all the variant variables.

The element asg records all assignments corresponding to the code blocks in

t he loop body.

Supports:

Not applicable.

• Pattern

Definition:

typedef struct pattern{

Definition *def;

Node (*result)(PPara *);

struct pattern *next;

} Pattern;

64

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

Description:

The structure Pattern is designed for the process of pattern matching so as

to get a more common definition for functions with recurrence equations. All

patterns are stored in the database, to be linked together.

Elements:

The element def present the major structure of Pattern. This can determine

the explicit function by the information included in the Definition structure

(see below).

The element result points to a function which will be executed when the pattern

is matched.

The element next links all the patterns into one list.

Supports:

void getpatterns();

The function getpatterns builds the global pattern list from a particular store,

currently a piece of description in code.

• Definition

Definition:

typedef struct definition{

con_type type;

Entity *en;

struct definition *left;

struct definition *right;

} Definition;

Description:

65

MSc. Thesis- Yazhi Wang McMaster - Computing and Software

The structure Definition records the major features of a function. All recur

rence equations will be classified into this pattern style structure before pattern

matching.

Elements:

The element type denotes whether this function is a combination of two func

tions under a given condition.

The element en describes this condition if type is type_C. Otherwise en de

scribes the function.

The elements left and right point to the left and night components of the

combined function under the stated condition.

Supports:

int eq_pattern(Definition *src, Definition *dst) ;

The function eq_pattern compares two Definition structures and returns true

if their contents are same.

• Entity

Entity:

typedef struct entity{

pattern_type type;

struct entity *left;

struct entity *right;

} Entity;

Description:

The structure Entity describes the all the features related to a given pattern.

It contains t he function and the arguments.

Elements:

66

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

The element type denotes the function.

The element left and right point to the corresponding arguments.

Supports:

new_entity(Entity **ret,pattern_type type,pattern_type left,

pattern_type right);

int eq_entity(Entity *s,Entity *d);

T he function new _entity builds a new Entity structure with values of type ,

left and right .

The function eq_entity compares two Entity structures s and d and returns

true if their contents are same.

• Variant

Variant:

typedef struct loop_variant{

char *name;

struct loop_variant *next;

} Variant;

Description:

The structure Variant links all the output variables together. It helps the

analyzer determine whether a variable is an output variable.

Elements:

Element name designates the variable name.

Element next points to t he next entity.

Supports:

Not applicable.

67

MSc. Thesis- Yazhi Wang

Variables Class

• Varname

definition:

typedef struct varname{

char *name;

McMaster- Computing and Software

enum {var_unknown,var_const,var_common,var_array1,var_array2} type ;

char *arg[2];

} Varname;

Description:

The structure Varname records all the common variables and arrays in the

same structure. It facilitates variable comparison.

Elements:

The element name records the major name of this variable.

The element type shows t he type of this variable.

The element arg tells the offset if this variable is an array.

Supports:

char *showvar(Varname var);

char *getname(Node nd,Varname *var);

The function showvar prints var out in text mode.

The function getname builds a new Varname structure var from structure

Node.

68

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

Figure 6.1: System architecture

6.2 System Implementation

In Chapter 4, we discussed the algorithm to transfer the input program to the final

tabular expressions. In this section we will discuss all the major components and

their control flow . To help the reader understand these, we give the big picture in

Figure 6.1.

6.3 Procedure Implementation

From Figure 6.1 we can see that there are two major procedures in our system. In

this section we will discuss details of these two procedures. In order to identify their

functions and their interaction, we will describe all the data they have to deal with,

the output they create, and all side effects. To help the reader understand all this ,

we give second level data flows in later sections.

6.3.1 Evaluation

Evaluation is performed by the procedures Walker , Path Splitting and Evaluation

procedures . The relationship between these procedures as shown in Figure 6.2

69

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Figure 6.2: Big picture of Evaluation

The procedure Walker

This is the major function dealing with all the entities from the code list. It decides

how our algorithm should cope with each code entity, representing the abstract syntax

of our input programs. Walker should deliver statements such as simple assignments

or IF st atements into corresponding procedures to be analyzed. However loops are a

special type of control structure that require more analysis, which will be done in t he

procedure Loop Analyzer.

Examining Figure 6.3, we not ice that the main part of Walker is a loop, which

deals with every entity from the code list which we are going to analyze.

• Input:

Walker t akes t he code list as its input . This is a kind of abstract syntax graph

structure.

• Output and Side Effects:

Actually Walker does not do much work with the data structures related to

our algorithm. It will hand all t he work to procedures like Evaluation or Path

Splitting after which the assignment lists are created.

70

McMaster- Computing and Software

Get entity from
code list

Entity
Analyser

MSc. Thesis- Yazhi Wang

Figure 6.3: Procedure code Walker

The procedure Evaluation

This plays a significant role in our algorithm. It is involved in most of the major

procedures. For the functionality of Evaluation a global variable a_current is used

to record the current states for the input program.

In Figure 6.4 we give the control flow of procedure evaluation.

• Input:

Evaluation takes an expression as input . Based on the current assignment list

which actually plays the role of a state we can provide the value after applying

the substitution.

71

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

Figure 6.4: Procedure Evaluation

• Output and Side Effects:

With Evaluation, we can get the new value of the variable, which is the left

value of this assignment. Also we need to update t he entity related to this

output variable in the current assignment list. Things are more complicated

if Evaluation is called by statements in the loop body. We need to form the

result value in the expression of the recurrence equation. Fortunately this is

not difficult for the data structure Assign.

The procedure Path Splitting

From the earlier part of t his chapter we know that the data structure Condition has

been used to record all conditions in IF statements. Path Splitting is the procedure

which generates all the assignment lists according to the execution branches generated

72

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

by an IF statement.

Figure 6.5: Procedure Path Splitting

• Input:

One of the inputs is the code entity of the IF statement we want to analyze. At

the same t ime, it is similar to the global variable a_current in the procedure

Evaluation, since there is another global variable c_current that has been

used to record information about the current execution branch.

• Output and Side Effects:

When Walker encounters an IF statement in the code list, it distributes this

entity to the procedure Path Splitting, which first evaluates the condition

in the IF statement. If the result evaluates to either true or false , we walk

73

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

Code List

Figure 6.6: Loop Elimination

through the corresponding execution branch. However, in most cases we can not

evaluate the condition. Then we make both assumpt ions about this condition, to

let Walker proceed through both of these execut ion branches. So we push one

execution branch onto t he stack for later use, and walk the other one through.

6.3.2 Loop Elimination

We have seen that loop elimination includes several procedures which solve major

problems such as recurrence equations, abstraction and pattern matching. We have

already given these analysis in Chapter 4. In order to clarify the detailed procedure

of loop elimination, we give a second level flowchart in Figure 6.6

Loop Analyzer

Loop Analyzer is responsible for dealing with loop relevant problems. In Figure 6.7

the main algorithm of this procedure is shown.

From this fiowchart we find that there are three other procedures involved in this

procedure. They co-operate to deal with loop structures in the input code. For the

code blocks in every loop body, we found that there is a strong resemblance between

assignments and IF statements, and t he corresponding ones in the loop body. So we

74

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

Figure 6.7: Procedure Loop Operator

use procedure Walker in both these analyse, which should make our method more

efficient .

• Input :

Loop Analyzer requires the loop data structure, which includes all the infor

mation on the loop. This structure should be built as part of the initialization

step.

• Output and Side Effects:

Throughout all loop related procedures, equivalent simple assignments are cre

ated to substitute for the loop statement. By executing this procedure repeat-

75

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

edly, we can also cope with nested loops.

Pattern Matching

After walking through the statements in inside one loop body, there is an assignment

list which records all the recurrence equations of the output variables. Pattern

Matching attempts to drive these recurrence equation into common expressions

when possible.

Figure 6.8: Procedure Pattern Matching

• Input:

76

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

For every output variable from a specific loop, we already have got its recurrence

equation. We take these variables as this procedure's input. There is also a

database for loop patterns. We use all the patterns in this database to try to

recognize those recursive expressions.

• Output and Side Effects:

If the recurrence equation of some output variable has been matched with any

pattern in patterns database an explicit expression will be returned to the re

lated variable. This process is repeated in the case of nested loops.

N derivation

The procedure N Derivation is designed to decide whether a loop terminates, and in

how many iterations, based on some preconditions. However, it is extremely complex

to derive this value in a systematic way. Here we just supply an intuitive solution for

a very simple example. There is room for improvement here in future work.

Tabular Display

After we walk through the code list, we present all functions in the data structure

Condition which states all the assignment lists . Tabular expressions are known for

theirs readability, so we display these functions by means of tabular representations.

As discussed in earlier chapters, we use vector function tables in our tool here.

6.4 A Real Example

To make t he algorithm more understandable, we present a real example with debug

ging. Consider Example 4.23 in Chapter 4. This includes alternations and iterations,

which can really take us through all the steps of our implementation.

From our analysis in Chapter 4, we know we must build the code list from source

code at the beginning. By using all t he data structures listed in the first section of

this chapter, we construct the list shown in Figure 6.9.

77

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

Figure 6.9: Code list of a real example

Figure 6.10: Loop structure of the example

In this example we perform loop elimination according to our algorithm. For every

loop in the code we build a loop structure to contain all t he information we need.

Then we go through all the assignments in the loop body to create t he assignments

list , before representing t hese variables by recurrence equations. In Figure 6.10 we

can see the structure of our implementation.

Then, from the assignment list in the loop structure, we produce the recurrence

equation of every output variable. As discussed in Chapter 4, we can transform

t hese recurrence equations to normal form. After this loop elimination procedure, we

rebuild t he code list as shown in Figure 6.11.

In t he end, all loops have been eliminated, from the inner-most ones to the outer

most ones . Then we can begin to evaluate all the assignments from the code list. In

Figure 6.12 we show the inside structure representing the final values of the output

variables. We can see that it is easy to build tables from the information in this link.

78

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

Figure 6.11: Code list after Loop Elimination

Assign
list name name "i"

type

value

~~n~e~xt:._i--- NULL

Figure 6.12: Final result of Evaluation

79

MSc. Thesis- Yazhi Wang McMaster - Computing and Software

80

Chapter 7

Results

In this chapter we show some results of applying our methods and tool to typical

examples. From these examples we see that our tool works well in these cases. Using

pattern matching techniques several explicit functions can be extracted from the loop

structures. Although currently we have only a few patterns in our database, it seems

promising that we will be able to construct patterns that are successful within specific

domains. Because of time constraints we display our results in text mode. However,

we can see that those results can be represented by tabular expression without much

difficulty. Also, these testing results can also provide direction for future work.

7.1 Straight line code

Simple assignments are the basic statements in imperative language. The solution for

straight line code describes the functionality of the code for every output variables.

Figure 7.1 shows the results from our tool applied to the example in Figure 4.7.

We see that our tool first prints out the input , output and update variables list. Then,

the final value of every variable is displayed. For straight line code t here is no other

execution branch in the code, so we use "true" as the only applicable condition.

From the results shown in Figure 7.1 , we can easily build the tabular expression

of this example as shown in Figure 7.2. As we said that our tool represented in this

thesis is just a prototype tool. The output as shown in Figure 7.2 will be the future

81

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

v '- ''O FX '
1''"

EJie I;.dlt)Oew I e rmlnal ~o t:telp

jGe t Loop Pa t t e rn Database . ..

[Generatin g tables ..•

,-·--r------------------------ -- ---------------·
[i nput:
!update: b , a
[ou tpu t :

]TRUE : a = b

; b = a

)note:

fEnd

I
• rrooU1bugs lcc-4.2] # I
...... ·::-~~~··h~~~""""'·.::::·· ~: "~:~"~:~ ;:·::··:···· " ::~··· .

Figure 7.1: The result of the straight line code

work of this research.

7.2 Alternation

Conditions or alternative st atements are the statements with alternative choice that

use IF or SWITCH/CASE keywords, which are also primitive control statements in

imperative languages . The readability of tabular expressions helps inspectors and

MITJ
BCTI

Figure 7.2 : Table representing Figure 4.7

82

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

maintainers understand the descriptions of the behaviors of target programs with

conditions. Consider an example from PID controller software as shown in Figure

7.3.

int derivative_term;

derivative term derivative term *kd;

derivative term derivative term >>5;

if (derivative_term > 120){

derivative_term 120;
}

Figure 7.3: An example of PID controller

We see that the result can be outputted as shown in Figure 7.4.

Generating tables ...

'input: kd,
,update: derivative_term
:output:

I

I
I
I
i
I
~

' (((derivative_term*kd)» S) <= 120): derivative_ term = (derivative _ternl*kd) >> 5 I
i(((derivative_term• kd)» S) > 120): derivative_ term =- 1.20 ; Ri

~ote: I

I
i

End I
t

Figure 7.4: The result of PID example

83

MSc. Thesis - Yazhi Wang McMaster - Computing and Software

7.3 Iterations

So far we have seen that our tool can analyze programs consist ing of straight line

code and alternations. Although the result for any output variable could be a huge

expression, it still accurately ident ifies t he correct final value of t hat output variable.

However, if there are loops in the code, the pattern matching technique probably can

not recognize all the functions. Recurrence equations will be used as well for general

examples. Next we present some result of iteration examples.

7.3.1 Sing le-level Iterations

First consider single-level loops as in Figure 4.12.

f!le t;;dlt ¥Jew J:ermtnal -'io l:lclP

iG<>t Loop Pattern Database

[-- --
f.l.nput : num .
\upda t e: b, a
jo u t put:

!TRUE : b = (O+sum ((O+x))) ; a= num

;no t e:
ix= [O . . ((num-·0) - 1)]

!End

il!;~.~ .. t.~.bug~···· l"":::~ :. ~J. ~

Figure 7.5: The result of t he single-level loop

In this example the function returns the sum of consecut ive integers from 0 to

num. For our result in Figure 7.5, we notice that we use a temporary index variable

84

McMaster- Computing and Software MSc. Thesis - Yazhi Wang

x in final value of variable b. We declare those temporary index variables in a section

called note. In this example we see that x is in the range from 0 to num.

7.3.2 Nested Iterations

For programs with nested loops, we will show that the pattern matching results are

used repeatedly. Therefore, a well-defined pattern can be used many times in code

with loops and will recognize the pattern as many times as it occurs.

Consider an example with nested loops shown in Figure 7.6

int i,j,d,b,c[1024] [1024];

int m,n;
d=O;
for (i=1;i<n;i++)
{

}

for (j=1;j<m;j++)
{

if (b<c [i] [j J)

}

d += b;

b=O;

b = c[i] [j];

Figure 7.6: An example with nested loops

In this example we see that we first get the maximum values of every row in an

array c. Then we put the sum of those maximum values into variable d . In Figure

7.7 we show the result outputted by our tool.

We see t hat there are two temporary index variables in note section for every level

of loops. The key word max in the result of output variable d means we get pattern

matching successfully for the inner loop to get maximum. Then we can do pattern

matching again for outer loop to get the final result for variable d . For detailed

process of this loop elimination we describe it in Figure 4.22.

85

MSc. Thesis - Yazhi Wang

'V

: file j;_dlt ¥Jew Iermlnal Qo J:!elp

!Cec Loop ·patcern Dacabase ...

!Generating tables . . .

~ input: n . 11 , c,
~pdate : b, i, j, d
!output: i ________________ ___ ________ _

McMaster- Computing and Software

I

h'RuE : d = (O+suftl ((O?>'?max(c [(l+x)][(l+y)])))) i = n-1+1

j =· 01- 1+1

; b = 0

inot'e:

i x~ [o .. ((n -1)-1))

jy=[O .. ((m-1)-1))

l
·--

Figure 7.7: The result of the nested loop

86

Chapter 8

Conclusions and Future Work

In this thesis we have presented methods and a tool implementation for automatic

recognition of expressions implemented in code, and this can lead to automatic table

generation. We have also displayed results of particular examples, for which our

application works well on a set of typical cases, and for which the techniques presented

are applicable. This research work makes major contributions in the following ways:

• Proves the possibility of total automatic methods to generate function tables

from high level imperative languages.

• Inspects all steps of automatic table generation process. We encountered and

analyzed major difficulties in the automatic generation methods, and recorded

our experience about specification recovery from code.

• Uses a Pattern Matching technique to abstract high level specifications from

loops. This incomplete matching methods give a new way to extract the explicit

functions out of target code with loops.

• Builds a practical tool to help software inspection. Every successful methodol

ogy always has comprehensive strong tool support [53]. This research work has

started an attempt to develop the tools support this method.

There are still a number of problems we have to face to make our method and

tool more complete.

87

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

• More data types should be considered in the future. Only int type has been

dealt with in our tool. New involvement of t hose more complex data types will

require a comprehensive data fiow analysis and data abstraction process.

• Automatic method for iteration termination determination and iteration count

derivation will be a focus of future research.

• Although we found that our tool is applicable in many cases, we still need to

prove the soundness of pattern matching method in a more rigorous way.

• Procedures are also another problem we did not discuss in this thesis because

of existent of time being. More research will be targeted on this issue in future.

88

Bibliography

[1] Archinoff, G.H., Hohendorf, R.J ., Wassyng, A. , Quigley, B. , Borsch, M.R. , Veri
fication of the Shutdown System Software at the Darlington Nuclear Generating

Station, Proceedings of the International Conference on Control and Instrumen
tation in Nuclear Installations, Glasgow, May 1990.

[2] Breuer, P. and Lano, K. , Creating Specifications from Code: Reverse-engineering
Techniques, Journal Software Maintenance: Research and Pratice, vol. 3, 1991,
pp. 145-162.

[3] Britton, K.H. , Parker , R.A., and Parnas, D.L., A Procedure for Designing Ab

stract Interfaces for Device Interface Modules, Software Fundamentals , Collected

Papers by David L.Parnas , Addison-Wesley, ISBN 0-201-70369-6. pp. 295- 313,
2001.

[4] E. Byrne. A Conceptual Foundation for Software Reengineering. In Proceedings
for the Conference on Software Maintenance, pages 226C235. IEEE, 1992.

[5] Chikofsky, E. and Cross, J ., Reverse Engineering and Design Recovery: A Tax
onomy. IEEE Software, 7(1): 13- 17, January 1990.

[6] Cousot , P. , Cousot , R. , Abstract Interpretation: a Unified Lattice Model for

Static Analysis by Construction or Approximation of Fixpoints , Proceedings of
POPL'77, ACM Press, Los Angeles , California, pp. 238-252.

[7] Dijkstra, E., Scholten, C., A Discipline of Programming, Page 18-19, 1976.

[8] Dijkstra, E., Scholten, C., Predicate Calculus and Program Semantics, Springer
Verlag, 1989.

89

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

[9] Ernst , M. , Cockrell, W. , Notkin, D., Quickly Detecting Relevant Program In
variants, Proceedings of the 22nd International Conference on Software Engi
neering(ICSE2000), Limerick, Ireland, 2000.

[10] Gannod, G. , Cheng, B. , Strongest Postcondition as t he Formal Basis for Reverse
Engineering. To appear in Journal of Automated Software Engineering. An ear
lier version of this paper appeared in the Proceedings for t he SecondWorking
Conference on Reverse Engineering, 1996.

[11] Gannod, G. , Cheng, B., Using Informal and Formal Techniques for the Reverse

Engineering of C programs, international conference on Software Maintaince,

Nov. 1996, pp. 265-274.

[12] Gannod, G., Cheng, B., A suite of tools for facilitating reverse engineering using
formal methods, Technical Report ASUCSE-TR99-02, Arizona State University,
May, 1999

[13] Gannod, G. , Cheng, B. , A Formal Approach for Reverse Engineering: A Case
Study, In Proceedings of the 6th Working Conference on Reverse Engineering,
IEEE, October , 1999

[14] Flanagan, C., Qadeer, S., Predicate Abstraction for Software Verification, Pro
ceedings of the 29th Annual ACM SIGLPAN-SIGACT Symposium on Principles
of Programming Languages . ACM Press, 2002.

[15] Heninger , K. , Specifying Software Requirments for Complex Systems: New Tech
niques and Their Application, Collected Papers by David L.Parnas, Addison
Wesley, ISBN 0-201-70369-6. pp. 111- 133. 2001.

[16] Heninger , K. , Kallander ,J ., Parnas,D.L. , and J .Shore, Software Requirements for
the A-7E Aircraft , Naval Res. Lab., Memo Rep. 3876, Washington, DC, Nov. 27,

1978.

[17] Hirvisalo, V. Combining Static Analysis and Simulation to Speed up Cache Per
formance Evaluation of Programs. Nordic Workshop on Software Development
Tools and Techniques, Copenhagen, IT University of Copenhagen, pp. 117- 128,

August 2002.

90

McMaster - Computing and Software MSc. Thesis - Yazhi Wang

[18] Ireland, A. , Stark, K. , On the Automatic Discovery of Loop Invariants , 4th Nasa

Langley Formal Methods Workshop , 1997.

[19] Janicki , R. , Parnas , D.L. , Zucker, J. , Tabular Representations in Relational
Documents, in Relational Methods in Computer Science, Brink, C., Kahl , W. ,
Springer Verlag Vienna, pp. 184- 196, 1997.

[20] Janicki, R., Khedri , R. , On Formal Semantics of Tabular Expressions, Science of
Computer Programming, 39(2001) , 189- 214, 2001.

[21] Janicki, R. , Wassyng, A., On Tabular Expressions, In D.A. Stewart , ed. Pro

ceedings of CASCON 2003, Markham, Ontario, Canada, 38- 52 , October 2003.

[22] Janicki, R. , Wassyng, A. , Tabular Expressions and Their Relational Semantics,

Fundamenta lnformaticae, Vol. 68 , 1-28, 2005.

[23] Joannou , P. , Wassyng, A. , Modelling for Requirements Analysis and Design ,
in Software Important to Safety in Nuclear Power Plants, International Atomic
Energy Agency, Vienna, Technical Reports Series No. 367, 1994.

[24] Kahl , W ., Compositional Syntax and Semantics of Tables, SQRL Report No.
15 , McMaster University, Hamilton, Ontario, Canada, 2003, to appear in Formal
Methods in System Design.

[25] Fraser, Christopher W. , Hanson, David R. , A Retargetable C Compiler: Design
and Implementation, Addison-Wesley, 1995

[26] Lee, L. and Hwang, S.H., Abstract Simulator: A DSP Software Timing Analysis

Tool; web pdffile, URL: http : j jwww.icspat.comjpapers j 97mfi.pdf ;

[27] Li, Y.S ., Malik, S. , Performance Analysis of Embedded Software Using Implicit
Path Enumeration in Proceeding of the 32nd Design Automation Conference,
page 456- 461 , 1995.

[28] Mills , H.D., The new math of computer programming, Commun. ACM, 18, 1,
pp. 43-48, Jan. 1975.

[29] Parnas , D.L., Precise Description and Specification of Software, Software Fun
damentals, in Mathematics of Dependable System II , edited by V. Stavridou,
Clarendon Press , pp. 1- 14, 1997.

91

MSc. Thesis- Yazhi Wang McMaster- Computing and Software

[30] Parnas, D.L., On the Criteria Be Used in Decoposing Systems, Communications
of the ACM, 15, 12 , pp. 1053-1058, Dec 1972.

[31] Parnas, D.L. , Some Software Engineering Principles , Software Fundamentals,

Collected Papers by David L.Parnas, Addison-Wesley, 664 pgs., ISBN 0-201-
70369-6, 2001.

[32] Parnas , D.L. , Predicate Logic for Software Engineering, IEEE Transaction on

Software Engineering, Vol.19 , No. 9, 1993, pp. 856- 862, Sep. 1993.

[33] Parnas, D.L., Madey, J. , Iglewski , M., Precise Documentation of Well-Structured
Programs, IEEE Transactions on Software Engineering, pp 948- 976, Vol. 20 ,
No.12, Dec.1994.

[34] Parnas, D.L., Madey, J. , Functional Documentation for Computer Systems En
gineering, in Science and Computer Programming, (Elsevier) 25[1], pp. 41- 61,

Oct . 1995.

[35] Parnas, D.L. , Tabular Representation of Relations, CRL Report 247, McMaster
University, Communications Research Laboratory, TRIO(Telecommunications
Research Institute of Ontario), 17 pages, Oct. 1992.

[36] Parnas, D.L. , Lawford , M., The Role of Inspection in Software Quality Assur
ance, IEEE Transaction on Software Engineering, Vol.29, No.8, pp 674- 676 Aug.

2003.

[37] Parnas, D.L., Less Restrictive Constructs for Structured Programs, Software

Fundamentals, Collected Papers by David L.Parnas, Addison-Wesley, 2001,
ISBN 0-201-70369-6. pp. 31- 48.

[38] Parnas, D.L. , Some Software Engineering Principles, Software Fundamentals ,
Collected Papers by David L.Parnas, Addison-Wesley, 2001, ISBN 0-201-70369-
6. pp. 255- 266.

[39] Parnas, D.L. , Design Software for Ease of Extension and Contraction, Soft

ware Fundamentals, Collected Papers by David L.Parnas, Addison-Wesley, 2001,

ISBN 0-201-70369-6. pp. 269- 290.

92

McMaster- Computing and Software MSc. Thesis- Yazhi Wang

[40] Parnas, D.L. , Inspection of Safety-Critical Software Using Program-Function

Tables , Collected Papers by David L.Parnas , Addison-Wesley, 2001 , ISBN 0-
201-70369-6. pp. 371- 382.

[41] Shen, H., Implementation of Table Inversion Algorithms, CRL Report 315, Mc

Master University, Communications Research Laboratory, TRIO, Dec. 1995.

[42] Shen, H. , Zucker , J.I ., Parnas, D.L. , Tabular Transformation Tools: Why and
How, proceedings of the Eleventh Annual Conference on Computer Assurance
(COMPASS ' 96), publised by IEEE and NIST, Gaithersburg, MD., pp. 3- 11 ,
June 1996.

[43] Susuki, N., Ishihata, K., Implementation of an Array Bound Checker, 4th ACM
Symposium on Principles of Programming Languages, Los Angeles , CA, 1977

[44] Xu, J., On Inspection and Verification of Software with Timing Requirements ,

IEEE Transaction on Software Engineering, Vol.29, pp. 705- 720, No.8, Aug.
2003.

[45] Ward, M.P. , Proving Program Refinements and Transformations, Oxford Uni
versity, DPhil Thesis, 1989

[46] Wang, Yali , Display Management System, (A tool to support the Display
Method) , CRL Report 297, McMaster University, Communications Research
Laboratory, TRIO, Apr. 1995.

[47] Ward , M.P., The FermatT Assembler Re-engineering Workbench, International

Conference on Software Maintenance 2001 , 6th-9th, Florence, Italy IEEE Com

puter Society, pp. 659-662, November 2001.

[48] Ward, M.P., Reverse Engineering from Assembler to Formal Specification via
Program Trans-formations, 7th Working Conference on Reverse Engineering,
23rd-25th Nov. , Brisbane, Queensland, Australia, 2000.

[49] Ward , M.P., Bennett, K.H ., A Pratical Program Transformation System For
' Reverse Engineering, Working Conference on Reverse Engineering, May 21-23,
1993

93

MSc. Thesis - Yazhi Wang McMaster- Computing and Software

[50] Ward, M.P., Specification from Source Code - Alchemists' Dream or Practical
Reality? 4th Reengineering Forum, Sep.19-21 , 1994, Victoria, Canada, 1994.

[5 1] Wassyng, A., Lawford , M. , Lessons Learned from a Successful Implementation
of Formal Methods in an Industrial Project , Proc. of FME03 (Formal Methods
Europe), Lecture Notes in Computer Science 2805, Springer 2003, pp. 133- 153.

[52] Wassyng, A. , Janicki , R. , Using Tabular Expressions, In Proceedings of Interna
tional Conference on Software and Systems Engineering and their Applications,

Paris, Vol. 4, 1- 17, December 2003.

[53] Wassyng, A. , Lawford, M., Software Tools for Safety-Crit ical Software Develop
ment , International Journal of Software Tools for Technology Transfer , 2006.

94

Appendix:

A CD containing the source code for the proof-of-concept tool is included

95

	Wamg_Yazhi_2006_04_master0001
	Wamg_Yazhi_2006_04_master0002
	Wamg_Yazhi_2006_04_master0003
	Wamg_Yazhi_2006_04_master0004
	Wamg_Yazhi_2006_04_master0005
	Wamg_Yazhi_2006_04_master0006
	Wamg_Yazhi_2006_04_master0007
	Wamg_Yazhi_2006_04_master0008
	Wamg_Yazhi_2006_04_master0009
	Wamg_Yazhi_2006_04_master0010
	Wamg_Yazhi_2006_04_master0011
	Wamg_Yazhi_2006_04_master0012
	Wamg_Yazhi_2006_04_master0013
	Wamg_Yazhi_2006_04_master0014
	Wamg_Yazhi_2006_04_master0015
	Wamg_Yazhi_2006_04_master0016
	Wamg_Yazhi_2006_04_master0017
	Wamg_Yazhi_2006_04_master0018
	Wamg_Yazhi_2006_04_master0019
	Wamg_Yazhi_2006_04_master0020
	Wamg_Yazhi_2006_04_master0021
	Wamg_Yazhi_2006_04_master0022
	Wamg_Yazhi_2006_04_master0023
	Wamg_Yazhi_2006_04_master0024
	Wamg_Yazhi_2006_04_master0025
	Wamg_Yazhi_2006_04_master0026
	Wamg_Yazhi_2006_04_master0027
	Wamg_Yazhi_2006_04_master0028
	Wamg_Yazhi_2006_04_master0029
	Wamg_Yazhi_2006_04_master0030
	Wamg_Yazhi_2006_04_master0031
	Wamg_Yazhi_2006_04_master0032
	Wamg_Yazhi_2006_04_master0033
	Wamg_Yazhi_2006_04_master0034
	Wamg_Yazhi_2006_04_master0035
	Wamg_Yazhi_2006_04_master0036
	Wamg_Yazhi_2006_04_master0037
	Wamg_Yazhi_2006_04_master0038
	Wamg_Yazhi_2006_04_master0039
	Wamg_Yazhi_2006_04_master0040
	Wamg_Yazhi_2006_04_master0041
	Wamg_Yazhi_2006_04_master0042
	Wamg_Yazhi_2006_04_master0043
	Wamg_Yazhi_2006_04_master0044
	Wamg_Yazhi_2006_04_master0045
	Wamg_Yazhi_2006_04_master0046
	Wamg_Yazhi_2006_04_master0047
	Wamg_Yazhi_2006_04_master0048
	Wamg_Yazhi_2006_04_master0049
	Wamg_Yazhi_2006_04_master0050
	Wamg_Yazhi_2006_04_master0051
	Wamg_Yazhi_2006_04_master0052
	Wamg_Yazhi_2006_04_master0053
	Wamg_Yazhi_2006_04_master0054
	Wamg_Yazhi_2006_04_master0055
	Wamg_Yazhi_2006_04_master0056
	Wamg_Yazhi_2006_04_master0057
	Wamg_Yazhi_2006_04_master0058
	Wamg_Yazhi_2006_04_master0059
	Wamg_Yazhi_2006_04_master0060
	Wamg_Yazhi_2006_04_master0061
	Wamg_Yazhi_2006_04_master0062
	Wamg_Yazhi_2006_04_master0063
	Wamg_Yazhi_2006_04_master0064
	Wamg_Yazhi_2006_04_master0065
	Wamg_Yazhi_2006_04_master0066
	Wamg_Yazhi_2006_04_master0067
	Wamg_Yazhi_2006_04_master0068
	Wamg_Yazhi_2006_04_master0069
	Wamg_Yazhi_2006_04_master0070
	Wamg_Yazhi_2006_04_master0071
	Wamg_Yazhi_2006_04_master0072
	Wamg_Yazhi_2006_04_master0073
	Wamg_Yazhi_2006_04_master0074
	Wamg_Yazhi_2006_04_master0075
	Wamg_Yazhi_2006_04_master0076
	Wamg_Yazhi_2006_04_master0077
	Wamg_Yazhi_2006_04_master0078
	Wamg_Yazhi_2006_04_master0079
	Wamg_Yazhi_2006_04_master0080
	Wamg_Yazhi_2006_04_master0081
	Wamg_Yazhi_2006_04_master0082
	Wamg_Yazhi_2006_04_master0083
	Wamg_Yazhi_2006_04_master0084
	Wamg_Yazhi_2006_04_master0085
	Wamg_Yazhi_2006_04_master0086
	Wamg_Yazhi_2006_04_master0087
	Wamg_Yazhi_2006_04_master0088
	Wamg_Yazhi_2006_04_master0089
	Wamg_Yazhi_2006_04_master0090
	Wamg_Yazhi_2006_04_master0091
	Wamg_Yazhi_2006_04_master0092
	Wamg_Yazhi_2006_04_master0093
	Wamg_Yazhi_2006_04_master0094
	Wamg_Yazhi_2006_04_master0095
	Wamg_Yazhi_2006_04_master0096
	Wamg_Yazhi_2006_04_master0097
	Wamg_Yazhi_2006_04_master0098
	Wamg_Yazhi_2006_04_master0099
	Wamg_Yazhi_2006_04_master0100
	Wamg_Yazhi_2006_04_master0101
	Wamg_Yazhi_2006_04_master0102
	Wamg_Yazhi_2006_04_master0103
	Wamg_Yazhi_2006_04_master0104
	Wamg_Yazhi_2006_04_master0105
	Wamg_Yazhi_2006_04_master0106
	Wamg_Yazhi_2006_04_master0107
	Wamg_Yazhi_2006_04_master0108
	Wamg_Yazhi_2006_04_master0109
	Wamg_Yazhi_2006_04_master0110

