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Abstract
Systemic risk is the risk that an economic shock may result in the breakdown of

the fundamental functions of the financial system. It can involve multiple vectors of

infection such as chains of losses or consecutive failures of financial institutions that

may ultimately cause the failure of the financial system to provide liquidity, stable

prices, and to perform economic activities. This thesis develops methods to quantify

systemic risk, its effect on the financial system and perhaps more importantly, to

determine its cause.

In the first chapter, we provide an overview and a literature review of the topics

covered in this thesis. First, we present a literature review on network-based models

of systemic risk. Finally we end the first chapter with a review on market impact

models.

In the second chapter, we consider one unregulated financial institution with con-

stant absolute risk aversion investment risk preferences that optimizes its strategies in

a multi asset market impact model with temporary and permanent impact. We prove

the existence and derive explicitly the optimal trading strategies. Furthermore, we

conduct numerical exploration on the sensitivity of the optimal trading curve. This

chapter sets the foundation for further research into multi-agent models and systemic

risk models with optimal behaviours.

In the third chapter, we extend the market impact models to the multi-agent

setting. The agents follow a game theoretic strategy that is constrained by the reg-

ulations imposed. Furthermore, the agents must liquidate themselves if they become

insolvent or unable to meet the regulations imposed on them. This paper provides a

bridge between market impact models and network models of systemic risk.

In chapter four, we introduce a financial network model that combines the default

and liquidity stress mechanisms into a “double cascade mapping”. Unlike simpler

models, this model can quantify how illiquidity or default of one bank influences the

overall level of liquidity stress and default in the system. We derive large-network

asymptotic cascade mapping formulas that can be used for efficient network compu-

tations of the double cascade. Finally we use systemic risk measures to compare the

results of including with and without an asset firesale mechanism.
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Chapter 1

Market Impact and Systemic Risk

The focus and glue that brings all the portions of this thesis together is systemic risk.

The definition of systemic risk, much like the risk itself, is not easily determined or agreed

upon. Schwarcz (2008) narrows down systemic risk to the risk coming from a trigger

such as an economic shock leading to a domino effect such as a chain of losses or chain

of defaulted financial institutions. On the opposite side, Haldane (2010) elusively claims

systemic risk is a cost to society like emissions from the auto-industry. Regardless of

the definition of the risk, what is agreed upon is that systemic risk is catastrophic and is

inherent in the financial system. In this thesis, we will see that systemic risk can be created

unknowingly by individual institutions and is generated within the fabric which connects

financial institutions.

This thesis aims to develop and intertwine two strands of research that explore aspects

of systemic risk. The first strand is market impact models for the dynamics of asset prices

under realistic market conditions. The idea is to go beyond the traditional assumption

of a frictionless market and perfect competition, and to study how they impact market

prices purely through actions of individual agents. In an economic sense, if the agents

were contained within a financial system, their trades will impact the real economy in a

measurable way.

The second strand is random network cascade models. Random networks model

networks with low amounts of information, or simply networks that change so fast that

exact details cannot be captured or are no longer useful. In recent years, this has become a

1



popular approach to describe and simulate systemic risk on a banking network via cascade

models. This is a useful approach to understanding and measuring systemic risk, but what

it lacks is details on the mechanisms which formed the network and methods that link the

financial network modelled to the real economy.
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1.1 Understanding and Modelling the Financial Crisis

The financial crisis of 2007-08 changed for the worse the perception of the general public

and many governments on the effects of the financial sector as a whole (Turner (2010)).

Although called a financial crisis, it was very much a contagion that spread across the globe

and affected all sectors of the economy. The financial sector is an indispensable part of

the economic engine due to its function as financial intermediaries that provide liquidity

to the rest of the economy (Harding and Atkins (2014)). This function inherently carries

risk (Zazzaro (2002)), and as a result policy makers are faced with understanding and

controlling the risk brought on by the financial system. Furthermore, policy makers must

try to prevent a crisis from happening in the financial system and try to contain a crisis if

it does occur. This problem is further compounded by the heavy lobbying and the lack of

consensus among the economists (U.S. House of Representatives (2013)).

In the financial system, contagion is the idea that weak or unstable banks can turn

otherwise healthy banks unstable. Hurd (2016) lists the channels for contagion to spread

within the financial system as default contagion, market illiquidity and firesales, correlation,

and funding liquidity contagion. Cont et al. (2010) sought to understand the threshold

above which contagion will take hold in the financial system. Gai and Kapadia (2010a)

explored the extent of a default contagion spreading through financial networks and Gai

et al. (2011) studied liquidity contagion that is mathematically its mirror image. Market

illiquidity and firesales have been studied in the paper of Cifuentes et al. (2005), and even

more explicitly in market impact models of Almgren and Chriss (2001).

This concept of contagion, which is borrowed from biological systems, appears in var-

ious schools of economic thought. In monetary economic models with endogenous money,

for any growth to occur, at least one agent must be incurring additional debt (Wray (2001)).

This setup, when combined with real world data from the European Central Bank (ECB),

US Department of Commerce, and Office of Statistics, UK, showed that corporate savings

increased massively post crisis. This provided direct evidence of liquidity contagion and

lack of growth in all sectors. In addition, data showed that household debt levels stayed

constant across the board, while various governments around the world continued to im-

plement austerity. Under Neo-Chartalist monetary theory (Modern Monetary Theory),

this situation allows for no growth (Mitchell, 2001), and under monetary circuit theory,

3



financial institutions must pick up additional debt in order to maintain the economy at a

certain level (Godley and Lavoie, 2012). This further intertwining of the financial system

and sectors of the real economy brings additional dangers and complexity.

More recently, many central banks such as the Bank of Canada and the Bank of

England, started using models such as the Macro-Financial Risk Assessment Framework

(MFRAF-Anand (2013)). These are multi-period macroeconomic models with a financial

network cascade component inserted inside. Then the results of the macroeconomic model

are fed into the financial network component. In each period, the result of the financial

network cascade component is used for the next cycle of the macroeconomic model simula-

tion. Such models give a more precise understanding of the impact of the financial system

onto the real economy, and even more importantly show the feedback between the real

economy and the financial system. Such models also promote the idea that the crisis is

not a single crisis, but is rather a combined cycle of impacts of the real economy on the

financial system and the impact of the financial system on the real economy.

Financial network models are a valuable method of studying potential future financial

crises. From an economic perspective, they allow for the monitoring of the flow of funds

within the network, while also monitoring the status of the financial institutions through

their balance sheets. In addition, financial network models can provide a damage estimate

in monetary terms of a crisis in the system. One method of dealing with the lack of precise

and timely information of the nature of the financial network is to use random graphs

as a foundation for the study of the general properties of a financial network. Cascade

mechanisms are used to simulate simple deterministic behaviours such as those enforced

by bankruptcy rules and regulations. We shall investigate cascade mechanisms in greater

detail in the following sections.

1.1.1 Cascade Mechanisms

Cascade mechanisms are hard-coded deterministic behaviours that are simulated during a

crisis scenario within a network model of financial systems. They describe explicitly the

process of monitoring and changing the statuses of financial institutions (FI), commonly

referred to in graph theory literature as nodes, based on the conditions of their immediate

neighbours.
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Definition 1. For any N ≥ 1, the collection of directed graphs on N nodes is denoted G (N).

We consider that the set of nodes N is numbered by integers, i.e. N = {1, ..., N} := [N ].

Then g ∈ G (N), is a graph on N nodes and is a pair (N ,E ), where E is the set of directed

edges and E ⊂ N ×N . Each element l ∈ E is an ordered pair l = (v, w) called an edge

or link.

In particular, the cascade process generated must be feasible on any graph (directed

or undirected), which simply means that it must work on any arbitrary graph. It should

also be noted that while the cascade process can be applied to any graph, the result of the

cascade process is dependent on the random graph sampled. We define a random graph as

the following,

Definition 2. A random graph of size N is a probability distribution P on the finite set

G (N). P is invariant under permutations of the N node labels.

The complexity of the analytical solutions that describe the end results of the cascade

processes naturally depends on the types of the random graph families that sample random

graphs are chosen from.

Many of these cascade mechanisms are forced upon financial institutions by the regu-

lators and are triggered when specific conditions are met. For these cases, each end result of

the corresponding cascade process can be an assessment of the regulations that the cascade

mechanism is based upon. On the other hand, actions of self-interest and self-preservation

can also be modelled by cascade mechanisms, and provide insight into the effects created

in the network by an individual’s actions. Even more complex are the interactions between

the self-interest behaviours and regulation-driven behaviours: depending on the type of

interactions, these may lead to intractable analytical solutions. In the following sections, I

provide a brief summary of cascade mechanisms applied to financial cascade models.

Watts’ Cascade Model

The Watts’ cascade model, introduced in Watts (2002), is a well established starting point

for introducing cascade models. The model has many practical purposes, such as modelling

the spread of information like ideas, and cultural fads through the population, or even the

domino effects of infrastructure failure and organizational failure. Aside from the structure

provided by the random graph on which the cascade process takes place, each node is also
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given a threshold value φ. This φ value of a node represents the proportion of neighbouring

nodes with activated state 1 that are needed for its own state to become activated, that is

to change from 0 to 1.

The cascade model starts with all nodes in state 0, and changes a small number of

nodes to state 1 in order to propagate the cascade (usually a single node). There are a

few key features of this cascade model which differentiate it from the models which follow.

First, there is no additional information attached to the edges of the random graph, and

there is only one additional variable φ attached to the nodes. Second, there are only two

operating states for all nodes, 0 and 1. The cascade models that will be introduced later

on in this section will delve further into these two points.

Watts (2002) also defined the terminology of “vulnerable nodes”, which refers to nodes

with thresholds φ that will be breached as soon as one neighbouring node is activated.

These vulnerable nodes play an important role in determining the extent of the cascade

propagation when applied to finite tree graphs and infinite configuration graphs . This is

due to the inherent lack of finite loops in both of these random graph families. The mean

connectivity also plays a big influence on the size of the final cascade, with the cascade size

increasing monotonically for small values of connectivity reaching a “knife-edge” event at

which it jumps to nearly zero. This is illustrated in Figure 1.1 where the cascade model

is applied to Poisson random graphs of mean degree z, and threshold value of φ = 18%.

As the connectivity increases, there exist more highly connected vulnerable nodes, while

the overall proportion of vulnerable nodes decreases. Note that this model provides a

very simple view of a network cascade, and cannot reflect a real world network formed by

financial institutions, but even at this level of simplicity, the resulting cascades demonstrate

complexity and unpredictability.

Eisenberg and Noe Cascade Model

The cascade model by Eisenberg and Noe (2001) introduced nodes as financial nodes, edges

as liabilities, and more importantly was specifically designed as a financial network model.

As with the Watts’ model, in addition to the skeleton structure provided by the random

graph, each node is also assigned a starting equity value that serves as a threshold. Going

beyond the Watts’ model, each edge is also assigned a positive numeric value to represent
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the liability between two financial nodes. It is important to note that this cascade process

takes place on a directed random graph, where all edges are generated with directions.

More generally, any cascade model that includes the flow of liabilities will also be taking

place on a directed random graph.

The cascade mechanism for the Eisenberg and Noe (EN) cascade model is a loose

representation of the laws for corporate bankruptcy. First, if a financial node cannot meet

all of its obligations, it will only be required to hand over all of its current value in assets

and no more. Second, obligations are either paid in full or if obligations cannot be met,

then the value paid to creditors is in proportion of their nominal claim on the financial

nodes assets. A financial node only has two sources of funds to repay its obligations, the

first is its liquid assets that are on hand, the second is the honoured obligations from other

nodes. The goal of the EN cascade model is to compute a clearing vector, which is a vector

consisting of the total obligations each node will honour. This model is set up with an initial

clearing vector that is less than or equal to the sum of obligations, generated by summing

up the out edges of each node (i.e. one or more nodes cannot meet its obligations). This

paper improves on earlier papers by proving the existence of the final clearing vector, and

shows how it can be computed.

Gai and Kapadia Cascade Model (GK)

The model by Gai and Kapadia (2010a) further extends the conceptualization of nodes as

financial intermediaries by explicitly defining a stylistic balance sheet for each node. Once

again, on top of the structure provided by the directed random graph, each edge is given

a deterministic value of 1 that explicitly represents an interbank exposure. Based on the

interbank assets, a value is assigned to each node for the amount of capital it must hold as

a financial intermediary. The interbank liabilities are also given since the interbank asset

of one node is the interbank liability of its counterparty. Lastly, the non-interbank asset is

set proportionally to the interbank assets and the non-interbank liabilities are set to equal

the remaining portion of the balance sheet.

The rules for the cascade mechanism are:

1. a financial intermediary defaults once its capital reduces to zero;
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2. once a financial intermediary defaults, a zero recovery rule is implemented and the

corresponding asset values of its interbank neighbours are reduced to zero;

3. the capital buffers of banks are updated and checked for defaults

4. the cascade stops when no additional financial intermediaries default.

For the purposes of the Gai-Kapadia paper, all banks have identical interbank assets set to

20% of total assets, and capital requirements set to 4%. The initial shock was the removal

of all of the “external” assets of a single random node. The cascade results were generated

on the Poisson random graph following the examples set by Watts model. The results

were nearly identical to the results of the Watts’ model. The additional complexity of the

GK model is hidden in the balance sheet that each node carries. Sensitivity analysis was

done for the many parameters which form the balance sheet variables, to understand the

impact on the balance sheet to the final cascade results. Based on the setup above, as

the capital requirements are varied, the extent of the contagion, given that a contagion

occurred, remained the same. However the frequency of occurrences is reduced. Similarly,

when the recovery fraction is varied, the extent of a cascade remains unchanged but the

frequency is reduced. This model contains many more parameters than the Watts model,

but the cascade process is mathematically analogous to the Watts’ models cascade process

on a directed random graph.

Gai, Haldane, Kapadia Cascade Model (GHK)

Gai et al. (2011) extends the balance sheet of the previous model to better reflect realistic

balance sheets of financial intermediaries. In this model, the random graph is explicitly

referred to as the financial network, and the edges are now formally known as unsecured

claims between financial intermediaries. The key difference between this model and the

previous model is that this is a model of liquidity shock rather than default shock. Figure 1.2

shows the newly extended balance sheet of each node. The cascade mechanism is triggered

for a financial intermediary if the aggregate of all its liquid assets and its collateral assets

at a haircut rate is less than its interbank liabilities (i.e. there is a chance that the node

will face a liquidity shortage). The financial intermediary then converts a predetermined

proportion of its interbank assets into the liquid asset, reducing the interbank loan to its

debtors evenly. Some of these debtors themselves become illiquid, causing further liquidity
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Figure 1.2: Stylized balance sheet: A symmetrical balance sheet of a financial
institution on a random financial network. This balance sheet can be used
for both default contagion as well as ”stress” or funding liquidity contagion.

shocks. The cascade ends when no more interbank assets need to be converted. It is

important to note that in this model, financial intermediaries do not default: it is a model

that seeks to understand the amount of liquidity hoarding that occurs during a crisis and

the corresponding reduction in connectivity of the financial network.

The extensive number of parameters in the balance sheet leads to a multitude of

sensitivity analyses on stylized random graphs. For example, raising the liquid asset re-

quirement in this model has an analogous effect to raising the capital requirement of the

previous model. The paper also demonstrates that by selectively raising the liquid asset

requirements for highly connected banks while maintaining the same average liquid asset

requirement overall produces a more stable network. Finally, changing the proportion of

interbank assets converted to liquid assets produces the same result as adjusting the recov-

ery fraction parameter of the previous model (i.e. when a default happens the interbank

asset of the creditor is lost entirely). These results are analogous to the previous models,
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because mathematically the models utilize the same formal cascade process, but with the

contagion shocks moving in the opposite direction.

Hurd Gleeson Extended Watts’ cascade model

Hurd and Gleeson (2013) developed an extension of the Watts’ model, that introduced

random edge weights while preserving the cascade mechanism. More importantly, it pro-

vided an analytical solution for the cascade process when applied to configuration graphs.

The cascade process in Gai and Kapadia (2010a) is mathematically similar to the Watts

cascade process on a directed random graph: this allowed the analytic solutions to work

for a GK model with random edge weights. Given the symmetry between the GK model

and the GHK model, the same analytical solution method works for the GHK model as

well. While random graphs are used for financial networks because the data for edges in

the real financial network simply does not exist, similarly the data for the edge weights do

not exist either. In all previous models, it had been assumed that the edge weights were

equal, but there is no evidence to say this is the case at all. By including random edge

weights, a more accurate picture of a financial network can be presented, that hopefully

leads to more accurate predictions of the susceptibility to contagion.

1.1.2 Random Graph Theory

The foundation of financial network cascade models lies in the families of random graphs

that the cascade process is applied to. The specific type of random graphs used can greatly

alter the final result of the cascade process and as well as determine the computational

methods available. In the following sections, we shall discuss two broad categories of

random graphs in detail: configuration graphs and scale-free graphs.

Random Configuration Graphs

A random graph is defined as a graph selected with equal probability from the collection

of graphs with N nodes and v edges (Bollobás et al. (2003)). Now this definition does not

11



specify any method to generate such a random graph. A more pragmatic approach is to

use a subset of random graphs called random configuration graphs.

A set of random configuration graphs with N nodes is defined by a N -length sequence

of the degree of nodes, representing the number of edges each node will contain. Each

individual random configuration graph is constructed by connecting each edge uniformly

until the sequence of degrees is satisfied (Janson (2009)). Unlike the financial network,

where self-loops do not carry any meaning, this configuration graph construction process

admits self-loops with positive probability. This problem is dealt with in Janson et al.

(2014), which showed that in the limit as node numbers increase, simple configuration

graphs (graphs without self-loops) have positive probability in the set of configuration

multi-graphs. This theorem allows for the extension of many conclusions on configuration

multi-graphs to the family of simple configuration graphs.

To form random configuration graphs of infinite size, a sequence of node degree se-

quences (assuming feasibility) is required. The proportion of nodes of each degree value

within each finite random configuration graph must converge. This implies that many prop-

erties and consequences of infinite random configuration graph can be analyzed through the

construction process of finite random configuration graphs. Hurd and Gleeson (2013) uses

the fact that as the size of configuration graphs grow, the density of finite cycles reduces to

zero, and created the LTI assumption. They were able to develop a method to analytically

calculate cascade processes based on infinite configuration graphs with a specified degree

sequence and arbitrary edge connection probability also known as assortative graphs. This

is very important for financial networks because this allowed nodes, which represent finan-

cial institutions, to project preferences for other financial institutions they would like to

enter into a counterparty relationship with.

There are two commonly used subsets of random configuration graphs: k-regular

graphs, and Poisson graphs. k-regular random graphs are the simplest set of random

graphs: they contain random graphs which only have nodes of degree k. These k-regular

graphs are very useful at representing homogeneous networks, such as telecommunication

networks or electricity grids where similar equipment are used to form the network (Motter

and Lai (2002)). Poisson graphs are a subset of random configuration graphs with the

degree sequence taking a Poisson distribution with parameter z, where z is also the mean

degree of the graph. The benefit of Poisson graphs is that they can be constructed by
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uniformly wiring N nodes until mean degree z is satisfied. In applications, Poisson graphs

are used in Watts (2002); Gai and Kapadia (2010a); Gai et al. (2011), and are usually

considered as the default standin for a financial network since they provide a wide range of

nodes with different connectivity, representing the heterogeneity of financial institutions.

Scale-free Graphs

The family of scale-free graphs is a category of random graphs, where the degree distribution

follows a power law (Bollobás et al. (2003)). Many studies have suggested that networks

arising naturally in the real world display this property (Clauset et al. (2009)). This

category of random graphs is important to financial cascade models, due to empirical

evidence in Cont et al. (2010) and Boss et al. (2004) that shows the financial networks in

Brazil and Austria have a power law degree distribution.

The preferential attachment method is often used to generate a sample of a scale-

free graph. Under the preferential attachment method, the directed random graph begins

as a single node, then a choice is made with probability α that a new node is created

and pointing to an existing node, probability β that an edge is formed between existing

nodes and γ probability of a new node being created and an edge is formed pointing from an

existing node to it (in undirected graphs, α step and γ step are equivalent). The probability

of forming an edge with a node v is weighted by:

in-node P(v = vi) =
din(vi) + δin
t+ δinn(t)

(1.1)

out-node P(v = vi) =
dout(vi) + δout
t+ δoutn(t)

(1.2)

Here δin and δout are the preferential attachment parameters, din(v) and dout(v) are

the current in-degree and out-degree of node v and lastly n(t) is the number of nodes at

time t.
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Definition 3. The in-degree deg−(v) and out-degree deg+(v) of a node v ∈ N are

deg−(v) =
∑
w∈N

Mwv(g) (1.3)

deg+(v) =
∑
w∈N

Mvw(g). (1.4)

By increasing the preferential attachment parameters, the bias of selecting less highly

connected nodes is created. Through this growth process, the degree sequence distribution

will converge in distribution to a power law as shown in Bollobás et al. (2003).

The attributes of the network of the internet has provided a great degree of interest

for people to study preferential attachment and scale-free graphs. The border routers of

the Internet empirically have a degree distribution that is closely approximated by a power

law with tail parameter of 2.1, as shown in Willinger et al. (2002). This network data is

accessible to the public, and updated everyday: this accesiblity stands firmly in contrast to

the limited information available on the secretive networks of financial institutions. Hurd

et al. (2016) constructed a stylized model of a financial network using this method with the

power law tail parameter based on Cont et al. (2010). The sample graphs were grown until

attaining 1000 nodes, then the top 90 most connected node were extracted to represent

the high impact financial institutions, thus giving a theoretical picture of how financial

networks would look like as a scale-free graph.

Scale-free random graphs have a high density of short loops due to the preference

of highly connected nodes forming connections with each other. The feedback phenomena

introduced by the existence of loops makes analytical solutions to cascade models hard to

arrive at. Goh et al. (2003) produced analytical results of a cascade model based on a scale-

free graph using branching process techniques, but the key here is that the cascade process

itself produced a tree-like path. This special property of the cascade process allowed for

the affected nodes to grow into a tree graph, which in turn allowed the branching process

techniques to apply. Aside from special cascade processes such as the method used in

Goh et al. (2003), the majority of cascade models on scale-free random graphs require

Monte Carlo simulations (Motter and Lai (2002)). This is not without its downside, since

prior to each cascade process a scale-free random graph has to be sampled, and every

sample of a scale-free graph has to be grown one node and one edge at a time. This
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requires much more computational power to produce than configuration graphs. Zhang

and Moorsel (2009) developed a method to generate fast samples of scale-free graphs using

the preferential attachment method, that has been used in generating the scale-free random

graphs of Hurd et al. (2016).

1.2 Using Market Impact Models for Systemic Risk

The study of market impact models has a history of less than 30 years. What began

with the simple question of studying real trading strategy returns versus their theoretical

returns, became a long and arduous task of finding the underlying cause and the theoretical

models of the causes for these losses of returns. In this thesis, we propose to investigate

two aspects of market impact models. One is a problem first considered by Merton in

markets without friction and perfect competition. The second is a much newer problem,

where multiple agents dwell in a single market and the market impact is shared between

them.

1.2.1 Market Microstructure

Lehalle (2013) presented a detailed look at the market microstructure, as well as the “price

discovery” or price formation process. For a market to exist and trades to happen, there

must be both buy interests and sell interests. Even more importantly, these interests must

be able to meet and exist at the same time. Fundamentally, the purpose of the limit order

book is to take down the buy interests, list them according to their taking prices, and

symmetrically do so for the sell interests. A trade happens when a sell interest (market

order) meets a buy interest (limit order) and both are consumed, or vice versa. In this

way, unconsumed buy and sell interests are preserved in the limit order book. This simple

trade is governed by strict rules put into place by the market, which define the market

microstructure and price formation process:

1. the auction type;

2. tick size;
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3. interaction between trading platforms.

The primary equity market is simply listed firms raising capital via selling shares. But

once these shares are available to the secondary market for further reselling and buying,

the market microstructure takes over. Traditionally, the price formation process consisted

of investors providing interest in trades, intermediaries providing advice and connection to

exchanges, and finally market operators who will match the interests and create a trade.

Today, it is much more common to have a diverse market place, with many intermediaries

connected to many exchanges, with investors and traders who utilize High Frequency Trad-

ing (HFT) having direct access to certain trading pools, and exchanges bound by regulation

to trade at the optimal price. This more complex setup creates opportunities for developing

different types of market impact models for many different purposes. A well built market

impact model is formulated for the investor setup, intermediary connections, as well as the

exchange structure which forms the market microstructure.

1.2.2 Market Impact Models

Fundamentally, a market impact model describes the impact of limited liquidity on the price

dynamics of assets. It provides the link between large trades and the usually detrimental

influence they have on the prices of the assets. Controversially, a model may also be a

basis for certain actions such as a central bank buying government bonds to lower the

corresponding interest rates (Gatheral and Schied, 2013).

The goal of a market impact model is to determine how a large trade should be

executed with minimal costs and detrimental impact to the traded asset price. This usually

means breaking large trades into a sequence of smaller trades and purposely spacing them

out. The logic behind this is that there is finite liquidity on the traded asset, that can be

seen in the limit order book. As soon as a trade starts walking down the limit order, it in

effect is creating a new asset price by drawing out the liquidity away from the market. There

are various different assumptions used by market impact models, some where the limit

order book will “recover” in finite time and some where the limit order book is permanently

consumed. The following literature review of market microstructure describes these models,

including the Almgren-Chriss market impact model, and some of their applications.
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Arithmetic Brownian Motion was used as part of the price dynamics in the seminal

papers by Almgren and Chriss (Almgren and Chriss, 2001),(Almgren and Chriss, 1999).

This assumption leads to tractable analytic trading strategies for the optimal liquidation

problem. In particular, the expected size of future price changes in dollar values does

not depend on past price changes nor initial price. The usual drawback of the ABM

model of negative prices still occur in this case, and is sometimes amplified by the market

impact functions, as a large sell order could further drive the traded asset price down and

towards negative values. However, empirical evidence shows that for short trading horizons,

the ABM model closely approximates the GBM model and has minimal probability of

negative prices under realistic parameters. Finally, when comparing the optimal liquidation

strategies based on the Almgren-Chriss framework, Gatheral and Schied (2011) found that

even under extreme values of volatility and trading horizon, there are minimal differences

between the trading rate under ABM and GBM. As a result, this framework is used widely

by practitioners.

There are three types of market impact which affect the price of a traded asset. The

first is the temporary market price impact. It is the shortest market price impact by time.

It is assumed to be short enough that it is impossible for any other trades to take advantage

of the change in asset price created by the temporary market price impact of another trade.

As such, temporary market impact is usually associated with the velocity of trading and

directly impacts the cash account of the trader. A usual justification of temporary market

impact is walking across the ask-bid spread. Quadratic temporary impact is the simplest

convex function that guarantees the lack of price manipulation strategies. Transient market

price impact is based on the assumption that the orders in a limit order book will refill at

a certain rate after being consumed. It is used in second generation market impact models

which model limit book dynamics. Finally there is the permanent market price impact.

The idea behind it is that trades can and will reflect changes in the fundemental price of

assets. This means that if a trade occurs, and additional information on the fundemental

price of the asset is revealed by this trade, then the trading value of this asset will be

affected permanently. Linear permanent market impacts greatly reduce the complexity

and lead to tractable and analytical optimal trading strategies. Aside from the tractability,

linear permanent impact is also necessary to prevent the existence of price manipulation

strategies as shown by Gatheral and Schied (2011). There is empirical evidence for both

market impacts to be a multiple of a power law function with α = 0.89 and α = 1.6
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respectably, Almgren et al. (2005).

As mentioned above, certain price manipulation strategies may exist in market im-

pact models. Regularity of optimal trading strategies of market impact models involve

ruling out strategies which create a kind of arbitrage called “quasi-arbitrage”. Unlike tra-

ditional arbitrage, there is still risk involved in these strategies, which is to say that the

risk penalization is finite, and the expected return can become infinite.

Definition 4. The expected return on a portfolio is calculated as a weighted average of all

possible outcomes of the portfolio weighted by their probability of occurrence. Let X be the

returns on a portfolio then,

E[X] =

∫
ω∈Ω

X(ω)P (dω) (1.5)

The expected loss is simply the negative of the expected returns.

In market impact models, it is expected that the market impact caused by trading is

detrimental to the trader, and furthermore the market friction which is measured by the

temporary market impact further reduces the gains of market participants. Yet even with

these negative impacts, in many models, “quasi-arbitrage” strategies are possible. First we

will define the three fundamental types of “quasi-arbitrage” strategies.

Definition 5. Let St be an asset price process, and qt be the holding level of that asset.

Assuming qT+ = 0, then qt describes a liquidation strategy that generates the revenue:

RT (q) = −
∫ T

0

Sqt dqt. (1.6)

Here, Sqt is the asset price process that is impacted by strategy q. Similarly the liquidation

costs, which is the difference between the initial valuation of the asset and the amount of

value recovered after liquidation is:

CT (q) = q0S0 −RT (q). (1.7)

Definition 6. A price manipulation strategy q is a round trip strategy with strictly positive
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expected revenue:

E[R(q)] > 0, (1.8)

where R(q) = −
∫ T

0

S̃tdqt and q0 = qT

Definition 7. Transaction triggered price manipulation strategies are a set of strategies

q which generate strictly greater revenue than monotonic strategies (pure buy or pure sell

strategies).

E[R(q)] > sup(E[R(q̃)|q̃ is a monotonic strategy]) (1.9)

Definition 8. A negative liquidation cost strategy q is such that

E[R(q)] > q0S0 (1.10)

The existence of any of the three strategies above leads to the existence of an optimal

trading strategy which can generate unlimited expected returns. As stated previously, the

existence of such strategies is ruled out in linear-quadratic market impact models. We

present below two continuous time market impact models which follow the linear-quadratic

setup.

The following model was introduced in Bertsimas and Lo (1998). The fundamental

asset price (unaffected asset price) follows a geometric Brownian motion with µ and Σ as

the vector of returns and volatility matrix.

dSt
St

= µdt+ ΣdBt. (1.11)

Here, Bt is a vector of independent Brownian motions. The affected price that a trader

perceives takes the form:

S̃t = Stexp(

∫ t

0

g(q̇s)ds+ h(q̇t)), (1.12)

where g is the permanent impact function and h is the temporary impact function. The B-L

model does not admit negative prices, and cannot be forced into a negative price regime
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by market impact forces either. This benefit comes at a cost of not being able to derive

explicit optimal trading strategies, even with linear impact functions.

The Almgren-Chriss market impact model (Almgren and Chriss, 2001) is one of the

best known market impact models. In the continuous time version of this model proposed

in Bertsimas and Lo (1998), the unaffected traded asset price has the following dynamics,

once again with µ and Σ being the vector of returns and volatility matrix respectively,

dSt = µdt+ ΣdBt. (1.13)

Here, Bt is a vector of independent Brownian motions. The affected price that a trader

perceives takes the following form,

S̃t = St +

∫ t

0

g(q̇s)ds+ h(q̇t). (1.14)

g(∗) and h(∗) are real functions with g(0) = h(0) = 0. In particular g(∗) represents the

permanent impact on asset price, and h(∗) represents the temporary impact. The explicit

trading strategy for maximizing expected return under Linear-Quadratic impact functions

(g(x) = λx and h(x) = γx2) can be shown easily and is linear.

1.2.3 Optimal Liquidation

For a large trader trading in illiquid assets, the primary assumptions of classical arbitrage

pricing theory fail to apply. The first assumption that a competitive market exists, means

any trader may trade unlimited quantities of any relevant asset without affecting the as-

set’s market price. The second assumption that the market is frictionless, implies that no

transaction costs exist, see Cetin et al. (2004). Neither of these assumptions hold since

there are always transaction costs on even the most liquid assets. For a trader exiting a

dominant position in a particular asset, adverse impact on price is unavoidable. In par-

ticular, for large funds the decision to change even a small fraction of their assets under

management can result in very large transactions that comprise a major part of the average

daily traded volume of the assets. Similarly any trade would incur costs from crossing the

ask-bid spread and possible taxes. When these two assumptions fail, a notion of liquidity

risk comes apparent, and traders will aim to minimize such risk.
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As shown empirically in Perold (1988), the frictionless “paper” portfolio drastically

out-performed the realized portfolio with friction. Liquidity costs can not be viewed as a

negligible portion of the costs of trading, and need to be quantified and kept to a minimum.

On the other hand, these illiquid assets can be volatile in price and by taking additional

time to trade these assets to minimize liquidity costs, the trader will encounter greater

price uncertainty. Even more so in optimal portfolio selection, the optimal portfolio choice

becomes dependent on both the initial portfolio and the liquidity of the different types of

assets, seeAlmgren and Chriss (2001). Like the development of automatic order execution,

the problem of finding the optimal trading strategy becomes a mathematical problem, see

Schöneborn (2008). Financial Institutions (FI) can use such strategies for rebalancing their

portfolios and to achieve a specific target portfolio.

There are two competing methods for measuring the liquidity cost. The first method

comes from the models of Bertsimas and Lo (1998); Almgren and Chriss (2001), and various

others and can be considered as first generation market impact models. In first generation

models, the liquidity cost is modelled directly by temporary and permanent market impact

functions. These market impact functions are exogenously given and depend on the velocity

of trading and total trade size. The second method involves modelling the limit order book,

following the works of Obizhaeva and Wang (2013), Alfonsi and Schied (2010), and others.

In limit order book models, statistical parameters such as price resilience rate and density

of the limit order book are exogenously provided, and used to compute the liquidity cost

of trades.

Of particular interest to this thesis is the continuous time Almgren and Chriss market

impact model, where the asset price process is shown in the previous section. In this model,

the liquidity costs are directly generated from the permanent market impact from trades

as well as the temporary market impact. In addition to minimizing the liquidity cost of the

liquidation strategy, (Almgren and Chriss, 2001) set up a penalization term for the variance

of the return on the liquidation strategy. This variance penalization term, allows this

optimal liquidation problem to be reformulated as a mean-variance optimization problem.

Since this variance penalization factor is subjective to the investor’s risk tolerance, this

allowed for the tailoring of different liquidation strategies for different investors.

A drawback of the mean-variance optimal liquidation problem is that its solutions

are not time-consistent. Time-consistency arises when the optimal liquidation strategy
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determined at one time will not be viewed as optimal at a different point in time. In the AC

(Almgren-Chriss) continuous time market impact model setup, this is dealt with by limiting

the admissible set of strategies to static strategies, which are pre-committed. Lorenz and

Almgren (2011) utilized a discretization scheme and applied DPP to the continuous time

AC model. The single update strategy where the trading strategy is allowed to update at

the mid point of the trading period out-performed the pre-commitment strategy. They also

showed that the improvement via additional updates diminished at a high rate.

Additional methods of arriving at time-consistent optimal liquidation strategies in-

clude the works of Gatheral and Schied (2011) where penalization using quadratic variation

instead of variance was implemented. Furthermore in Schied et al. (2010), optimal liquida-

tion strategies with constant absolute risk aversion (CARA) was studied, and the adapted

optimal liquidation strategy was found to be a static strategy. This implies the optimal

liquidation strategy is also time-consistent. The exponential utility case can also be for-

mulated into a mean-variance optimization problem, hence the static optimal strategy can

be found through the mean-variance techniques based on the AC model.

1.2.4 Portfolio Optimization

Portfolio Optimization is a central topic of financial mathematics with seminal papers

including the likes of Markowitz (1952) and Merton (1969). Mean-Variance portfolio opti-

mization has a long and detailed history in financial mathematics. Markowitz (1952) set

the foundation for modern portfolio theory, by providing a measure of comparison between

different portfolios based on the mean and variance on their returns. In particular, port-

folios which have the lowest variance for a given level of expected returns form a surface

called the efficient frontier. Unsurprisingly, for market impact models, Mean-Variance opti-

mization was also one of the first methods to measure the risk aversion levels of individual

traders for optimal trading strategies. In Almgren and Chriss (2001), various strategies

were compared and their efficient frontiers were drawn based by varying the risk aversion

parameter.

Merton (1969) provided the first look at portfolio optimization in continuous time.

The paper explicitly aimed to determine the optimal portfolio composition of an investor

at every instance in time. A portfolio selection strategy is optimal when it maximizes
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the utility function of the investor for intermediate consumption and terminal wealth.

Closed form solutions for the cases of power, logarithmic and exponential utilities were

developed. The exponential utility case is equivalent to a mean-variance optimization

problem: This directly relates the risk aversion parameter of exponential utility and the

variance penalization parameter in the mean-variance framework.

Mathematically, mean-variance optimization allows us to take advantage of the nor-

mal innovations of Brownian motion, and produce closed form or analytic results for the

optimal trading problems. Furthermore, by being able to efficiently construct optimal

trading strategies under the mean-variance optimization framework, and combining with

arithmetic Brownian motion driving the underlying asset price dynamics, it becomes fea-

sible to optimize for risk measures such as Value-at-Risk by searching through the efficient

frontier (Almgren and Chriss, 2001).

More importantly, when implemented as part of market impact models in general, the

variance penalization term further reduces the possibility of the existence of quasi-arbitrage

strategies. In optimal liquidation problems, since the trading strategies are bounded due to

the given terminal condition, this drastically reduces the possible quasi-arbitrage strategies

available to a trader. In optimal portfolio selection, traders have access to strategies which

may become unbounded, and variance penalization becomes instrumental in disincentivis-

ing these types of strategies.

1.2.5 Multi-Agent Models

Multi-agent market impact models are a relatively new extension of market impact models

that accounts for the joint impact generated by all the participants of a market. A bank’s

optimal trading strategy on the other hand becomes impossible without the bank knowing

the positions of all other market participants. As shown in Facchinei and Kanzow (2007),

the multi-agent market impact models is a generalized Nash Equilibrium game, where each

agent is trying to optimize its own utility which depends on its own actions as well as

the actions of the other agents. The Nash equilibrium strategies which an agent may use

are defined as strategies which are optimal conditioned on the optimal strategy of all other

agents. Specific to market impact models, the connection and impact of one agent’s actions

to another is directly caused by the market price impact mechanisms.
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A paper on predatory trading (Brunnermeier and Pedersen, 2005) uses historical

events to justify banks having at least some knowledge of positions of other traders in

extreme circumstances. The most famous example of having knowledge of the positions

of other traders is perhaps LTCM (Long Term Capital Management) in 1998: many of

its counterparties were able to front run its positions, and more evidently “locals” on the

Chicago Exchange Board pits were able to exploit knowledge of LTCM’s short positions.

This leads to the suggestion that, for multi-agent market impact models dealing with

predatory trading, it could be possible that the predator traders have nearly full information

of the positions of the distressed trader, and the regulations and margin calls they face.

With such information, the predator agents are able to formulate optimal strategies, for

a given trading period length, using round trip strategies. Brunnermeier and Pedersen

(2005), further studied the effect of changing the trading period length, as well as the

effect of having mismatched trading periods between the distressed trader and the predator

traders.

Indeed, detailed knowledge of the positions of other traders and trading strategies

may be unlikly except for one-off distressed traders. For generalized differential games, the

unrealistic assumption of perfect information is typically made. In Zhang (2014), all initial

positions of traders are known to all other traders. The optimal trading strategy is defined

as the Nash Equilibrium strategy whereby no single trader can do better conditioned on

the trading strategies of all other traders. This implicitly implies that all traders trading

strategies are known and shared by all other traders. Using this perfect information setup,

Zhang was able to compute a multiplayer generalization of the AC model with equilibrium

strategies for optimal liquidation. Furthermore, the CARA utility and corresponding mean-

variance differential game can be solved in a similar method.

Chan and Milne (2014) reviews and analyzes the relationship between the stability of

the financial system and the behaviour of the agents in this system, banks, and the house-

holds. Although it is not explicitly a market impact model, the model developed in this

paper utilizes many common aspects such as asset price depreciation due to liquidation. It

also provides an economic basis for using market impact models to study financial stability.

Multi-agent models can be easier to handle when the volatility of the asset price

process is reduced to 0. In this case, the assumptions can be fit to a network-based systemic

risk model, similar to Cifuentes et al. (2005). Although this model does not optimize or
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anticipate the actions of other agents in the system, it does provide a direct linkage to

network-based systemic risk models.

In an extension to fit a multi-agent market impact model into a financial network, Tian

and Weinan (2014) used both mechanisms similar to that of Eisenberg and Noe (2001) and

an illiquid asset price subject to market price impact. Agents in the system are connected

via directed edges which represent interbank loans, and each agent also holds a particular

amount of illiquid asset which it may be required to sell if it is unable to meet its payment

obligations. The illiquid asset price is determined by the total amount of illiquid asset

liquidated during one period through an inverse demand function. In particular, agents in

this system are only permitted to sell this illiquid asset, and generate proceeds to pay off its

creditors. A set of heuristics and checks can be followed in order determine the equilibrium

strategy, the equilibrium asset price, and the payment vector of the system. The resulting

game is resolved in a single period.

1.3 Contributions of this Thesis

The two strands of research contained in this thesis may seem very distinct at first. How-

ever, I want to point out that price impact is fundamentally the same mechanism as asset

firesale contagion of systemic risk, and market impact models provide a natural setup to

explore the impacts of this contagion.

Network models of systemic risk also often suffer from the criticism of unrealistic

behaviour. In this thesis, the second goal of studying market impact models is to understand

the effects of optimal behaviour versus pre-determined threshold behaviours. The key here

is to understand these differences during a crisis, and on behaviours which are not forced

by regulations. One such behaviour is how the price of illiquid asset is determined in the

financial system. We can directly compare the difference between the results of an asset

firesale mechanism on a financial network, and the result of a multi-agent market impact

model.

More directly, single agent portfolio optimization for market impact models provides

the necessary tools to study the multiple agent case for market impact models. The phe-

nomenon of asset firesales only exists because of multiple agents in the same market. To
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be able to simulate this behaviour accurately in a network model, we first have to be able

to generate this effect from transactions of optimizing agents. These are only some of

the reasons to attempt to think of market impact models as part of systemic risk, and to

integrate their effects into other models for systemic risk.

In chapter two, we develop a market impact model with temporary and permanent

impact for a single utility optimizing financial institution. In this model, the financial

institution is able to influence the traded asset price through buying and selling, and is

penalized by a transaction cost based on the velocity of its trading. We prove the existence

of an analytic solution to the optimal trading strategy, and explored the sensitivities of this

optimal trading strategy. We created this single financial institution model to capture more

accurate behaviors of individual agents and indeed this model showed peculiar behaviors

that only exist in single player markets.

In chapter three, we develop an agent-based model utilizing the market impact model

from chapter two. We are able to build on the individual self-optimizing behaviors from

chapter two, and through game theoretic arguments arrive at analytical solutions which

are Nash Equilibrium strategies. These Nash Equilibrium strategies are affected by the

balance sheets of each agent in the system and the regulatory constraints. We also explicitly

calculate the individual agents’ contribution to the final asset price of this system. From a

systemic risk perspective, this model is exactly a model of a pure asset firesale contagion,

where agents do not have any connections to each other and can only influence the common

asset prices.

In chapter four, we develop a random network model for system risk. In this model,

the nodes on the directed graph are financial institutions, forming a random financial

network with edges being interbank lending exposures. There are two intertwined directed

cascade mechanisms in this model. The default cascade mechanism goes from debtor

bank to creditor bank as bankruptcies happen. The liquidity cascade goes from creditor

bank to debtor bank has liquidity hoarding occurs. In addition, a firesale mechanism was

implemented, which globally affects the fixed asset price of every financial institution in the

network. As shown in the previous chapter, this additional firesale mechanism provides a

source of systemic risk through self-preserving actions. We were able to construct a model of

89 European financial institutions based on EBA stress testing data, and compute various

systemic risk measures on the outcome of the cascade process.
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Chapter 2

Optimal Portfolios of Illiquid Assets

“Optimal Portfolios of Illiquid Assets” is a joint work with Dr. Tuan Tran and Prof.

Thomas Hurd. Contributions by the author include: 1. Data collection, computer pro-

gramming, and numerical analysis; 2. Equal share of drafting and majority of finalization

of the paper; 3. Equal share of the technical derivations of this paper, and numerous

studies into alternative solutions. As of Oct 31, 2016, this paper is under review for pub-

lication by SIAM Journal of Financial Mathematics. The page layout of this paper has

been changed to better fit the a thesis format, as well as merging the bibliography with the

thesis bibliography.

2.1 Introduction

Long after such landmark contributions as the Markowitz mean-variance strategy (Markowitz

(1952)) and the Merton portfolio model introduced in Merton (1969), our understanding

of optimal portfolio selection has continued to develop. We now have learned how to an-

alyze investment in imperfect markets that have frictions such as transaction costs (Davis

and Norman (1990), Perold (1988)) and price impact (Almgren and Chriss (2001), Alm-

gren (2003), Schöneborn (2008)), and have complex dynamics such as jumps (Cartea and

Jaimungal (2015), Moazeni et al. (2013) and Pham and Tankov (2008)). Indeed, this prob-

lem has generated hundreds of research papers. Our goal now is to present a solvable model
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of optimal investment for a large financial institution (FI) in a many-asset setting. It is

based on the expected utility maximization criterion, and it accounts for market illiquid,

which means the transaction costs to pay and the fact that trades have a permanent price

impact. The underlying investment assets, which may be very illiquid, are assumed to

follow Bachelier dynamics, meaning they are modelled by correlated arithmetic Brownian

motions. For these assumptions to make financial sense, the optimal strategy should be im-

plemented only over a time horizon [0, T ] short enough that the Bachelier dynamics remains

a reasonable approximation (we take as a benchmark T = 1/2 years in our examples).

The class of optimal strategies we obtain has several remarkable properties. First,

the general multidimensional problem has a closed-form solution expressible in terms of a

matrix-valued equation that can be efficiently computed with a controllable error. Second,

the solution depends on the full range of important parameters: temporary price impact,

permanent impact, risk aversion, the initial portfolio weights, the risk free interest rate,

and the parameters underlying the Bachelier dynamics. Thirdly, the optimal strategies,

which are a priori adapted processes that solve a version of Merton’s problem, turn out

to be deterministic over a finite time horizon and to solve a version of the Markowitz

mean-variance optimization. This property implies that our investment strategies are fully

consistent with dynamic programming, despite being deterministic solutions of a time-

inconsistent mean-variance optimization problem.

The aim of this paper is to study the effect of market illiquidity on the behaviour

of an FI.Funding illiquidity (see for example Brunnermeier and Pedersen (2009)) is the

distinct effect that the balance sheet of an FI may experience funding shocks caused by

unanticipated withdrawals by depositors. To keep the focus of the paper squarely on

market liquidity, funding illiquid is ruled out by the assumption that deposits are constant

and sufficient to support all asset purchases of the FI.

The proposed model and its solution is closely related to some important contributions

to the existing literature. Our solutions reduce to the Markowitz optimal portfolios, or

equivalently to Merton’s optimal solutions, when permanent and temporary impact are

both assumed to be zero. The posed finance problem is inspired by the mean-variance

optimal liquidation problem studied by Almgren and Chriss (2001), but differs in that

there is no constraint placed on the portfolio holdings at the terminal time T . Finally,

under certain initial conditions the FI will seek to liquidate a large position, creating what
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has been called an asset fire sale. Our strategies extend to this setting and give natural

criteria similar to those discussed by Brown et al. (2010) that solve the problem of the

order in which different assets are liquidated.

2.2 Optimal Portfolio Strategies

This paper will investigate the investment strategies of a large financial institution (FI)

with CARA risk preferences (CARA is short for constant absolute risk aversion that trades

continuously over a finite time horizon [0, T ] in a market with imperfect liquidity. This

is similar to a problem studied in Zhang (2014). The changes caused by rebalancing a

portfolio of a large FI may amount to a large fraction of the total daily volume traded of

these assets and significantly impact these assets’ prices. It is well understood that this

effect will lead the FI to break large orders into small portions spread over time to reduce

market liquidity costs, while still aiming to rebalance its portfolio. By taking additional

time to reduce liquidity costs, the FI now faces additional uncertainty in the price of the

assets. To handle this delicate balance between liquidity costs and price uncertainty, the

FI will be inclined to consider utility optimization.

There are sound economic reasons to optimize using an exponential (CARA) utility

function: It leads to a tractable time-consistent strategy where additional information does

not provide additional utility, and is similar to the original Mean-Variance optimization

of Almgren and Chriss (2001). Since the strategy is only implemented over [0, T ], at time

T the FI will update its information and continue in a similar way to rebalance over the

subsequent period. This rebalancing is necessary to account for shortcomings of the model,

changes in the balance sheet, and unanticipated eventsthat cause fundamental changes to

the parameters of the price dynamics.

A number of simplifications will be assumed about this problem. The total informa-

tion available to the FI up to any given instant of time t is modelled by a filtration {Ft}t≥0

on a given probability space (Ω,F ,P). The market consists of one risk-free asset with zero

interest rate, and d risky assets whose true price process is St = (S
(1)
t , ..., S

(d)
t )′ and whose

transaction price process is S̃t = (S̃
(1)
t , ..., S̃

(d)
t )′. Here and in the following, we adopt matrix

notation where M ′ denotes the matrix transpose of M . Let us denote the vector of the
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amounts held in risky assets by (qu)u∈[t,T ] and the vector of trading rates of the large trader

by vu := q̇u := dqu/du, u ∈ [t, T ].

Like Almgren and Chriss (2001) and others, we suppose that the price of risky assets

follows a d-dimensional Bachelier model with both linear permanent and linear temporary

market impact, para-parametrized by Λ and Γ respectively:

dSt = (Λvt + µ) dt+ Σ dBt ,

S̃t = St + Γvt . (2.1)

Here, Bt is a d−dimensional Brownian motion and Σ ∈ Rd×d is the volatility matrix. The

drift term µ = b − d + ΛQ ∈ Rd is assumed to be constant. It takes into account the

trending rate b, dividend rate d and aggregated permanent market price impact due to

external traders Q.

A more general formulation of the model that does not require linear market impact

is certainly possible, and will not change many of the same basic properties. However,

the assumption of linear impact leads to significantly more tractable optimal strategies.

Moreover, as shown by Gatheral and Schied (2011), so-called dynamic arbitrage is ruled out

by choosing the permanent impact to be linear. It is further assumed that the permanent

and temporary impact matrices Λ and Γ are symmetric and non-negative definite. The

assumption that Γ is symmetric is without loss of generality. On the other hand, Λ is

assumed to be symmetric not for economic reasons but for convenience: when it has an

anti-symmetric part, a somewhat more complicated explicit solution is obtainable. Models

similar to ours have been studied by Almgren and Lorenz (2007), Gatheral and Schied

(2011) and Schied and Schöneborn (2009).

2.2.1 The Merton Problem

Merton’s problem, introduced in Merton (1969), aims to determine the strategies followed

by utility optimizing investors in continuous time market models. To this end, we now

consider the most general portfolio strategy, or control process, that trades within the

market impact model (2.1) over some time interval [s, t] ⊂ R+. In our setting, each possible

strategy will be simply a d-dimensional trading rate process v = (vu)u∈[s,t] that is integrable
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and adapted to the information filtration {Ft}: We denote the set of such admissible

strategies by Πad[s, t]. The subclass of deterministic strategies where each value vu, u ∈ [s, t]

is Fs measurable is denoted by Πdet[s, t].

Given any control process v ∈ Πad[0, s] for 0 < t < s, the cash net of debt owed

Ct := Cv
t and marked-to-market equity, or assets net of debt owed, Xt := Xv

t := Ct + q′tSt

are given by:

Ct = C0 −
∫ t

0

v′uS̃u du = C0 −
∫ t

0

v′uSu du−
∫ t

0

v′uΓvu du , (2.2)

Xt = X0 +

∫ t

0

qu dSu −
∫ t

0

v′uΓvu du . (2.3)

where the second equation is obtained by integration by parts. Note that here and hence-

forth, the superscript v that labels processes controlled by v will be omitted.

The interpretation of (2.2) and (2.3) in terms of the firm’s balance sheet is that assets

are stochastic due to fluctuations of S, while the debt, thought of as deposits, is assumed to

be constant and sufficient to fund all trades. In other words, we focus on market illiquidity

without funding illiquidity. It is consistent with the Principle of Limited Liability that a

firm becomes insolvent when its equity Xt becomes negative. In the following, an insolvent

firm with negative equity XT < 0 at a time T , will be declared to be in default, implying

that the laws of bankruptcy will be applied to the firm.

The FI can now try to solve Merton’s optimal problem of a CARA investor with

constant absolute risk aversion parameter λ > 0 over any period [t, T ]. For each t, they

may express the value function Jt achieved in terms of a certainty equivalent value Wt,

Jt := −e−λWt := supv∈Πad[t,T ]

(
−E[−e−λXT |Ft]

)
. (2.4)

If the supremum exists, it is achieved by adopting an optimal control denoted by v∗(t) =

(v∗u(t))u∈[t,T ], which will be an adapted process over [t, T ]. The CARA investment problem

in general always satisfies the dynamic programming principle (see Schied et al. (2010)),

which means that for any s ≤ t ≤ T , v∗u(t) = v∗u(s) for all u ≥ t and

−e−λWs = supv∈Πad[s,t]

(
−E[e−λWt |Fs]

)
. (2.5)
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An investor restricted to deterministic strategies over [t, T ] cannot achieve a higher

certainty equivalent value than equation (2.4). Therefore, if W̃t is defined by

−e−λW̃t := supv∈Πdet[t,T ]

(
−E[−e−λXT |Ft]

)
(2.6)

then W̃t ≤ Wt. The first result of this paper, stated next, is that (2.4) is always optimized

by deterministic strategies and therefore Wt = W̃t for t ≥ 0. Moreover, it will be found

in subsequent sections that the optimal control and value functions can be expressed in

closed forms involving one-dimensional integrals that solve a system of ordinary differential

equations of Riccati type. First, however, a note about notation: Because v∗ and q∗ turn

out to be deterministic, we henceforth replace the stochastic process notation vu by function

notation v(u) and moreover suppress the dependence on the investment period [t, T ].

Theorem 1. Under the above modelling assumptions, there is a (possibly infinite) maximal

time T ∗ ∈ R+ ∪ {∞}) such that for any finite time horizon [t, T ] with 0 ≤ t ≤ T ≤ T ∗:

1. The optimal strategy v∗(u), u ∈ [t, T ] exists, is unique and Ft measurable, hence

deterministic.

2. The value function W̃t achieved over [t, T ], when restricted to deterministic strategies,

equals Wt.

3. The value function has the form Wt = Xt+V (T − t, q) where V (τ, q), τ = T − t solves

the non-linear partial differential equation

−∂τV + q′µ− λ

2
q′ΣΣ′q +

1

4
(Λq + ∂qV )′Γ−1(Λq + ∂qV ) = 0, V (0, q) = 0 (2.7)

on the domain [0, T ]× Rd.

4. Given initial holdings q at time t, the optimal portfolio holdings q∗(u) for u ∈ [t, T ]

solves the system of ODEs:

dq

du
=

Γ−1

2

(
∂qV (T − u, q)′ + Λq

)
, q(t) = q . (2.8)

The proof of this theorem is found in the Appendix. As we shall see in Section 2.3,

V (τ, q) is a quadratic form in q with time-dependent coefficients and thus the ODE (2.8)
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for q∗ is linear and can be solved explicitly.

2.2.2 Mean, Variance, Probability of Default and Time-Consistency

From equations (2.2) and (2.3) we can deduce that, if v is deterministic, then for any

0 ≤ s ≤ t ≤ T , the equity Xt conditioned on Fs is normally distributed with mean and

variance given by

E[Xt|Fs] = Xs +

∫ t

s

(
q′(u)(Λv(u) + µ)− v′(u)Γv(u)

)
du, (2.9)

VaR[Xt|Fs] =

∫ t

s

q′(u)ΣΣ′q(u) du . (2.10)

In particular, the fact that XT |Ft is always normal implies that

E[e−λXT |Ft] = e−λ(E[XT |Ft]−λ2 VaR[XT |Ft]) (2.11)

and hence from (2.6) and Theorem 1 one deduces that

Wt = W̃t = supv∈Πdet[t,T ]

(
E[XT |Ft]−

λ

2
VaR[XT |Ft]

)
. (2.12)

This demonstrates the well-known equality of the certainty equivalent value for CARA

optimization with the value function for Markowitz’ mean-variance (M-V) optimization, as

well as the coincidence of their optimal strategies, when the optimal equity processes under

consideration are all normally distributed.

In practice, the firm’sdefault probability (DP), meaning the probability that XT < 0,

may be preferable to variance as a risk measure for institutional investors, as it gives more

information about bad scenarios that need to be controlled. In the Bachelier model, the

normality that follows for deterministic strategies implies that over any time horizon [t, T ],

the Mean-Variance (M-V) criterion

33



Problem M-V

WV (t, T, q, x, E) := minv∈Πdet[t,T ] Var[XT |Ft] (2.13)

subject to E[XT |Ft] = E ,

and the Mean-Default Probability (M-DP) criterion

Problem M-DP

WDP (t, T, q, x, E) := minv∈Πdet[t,T ] P[XT < 0|Ft] (2.14)

subject to E[XT |Ft] = E ,

are both solved by the same optimal trading strategy when E[XT |Ft] = E > 0. This

is because P[XT < 0|Ft] is strictly increasing in Var[XT |Ft] as long as E[XT |Ft] > 0 is

fixed. Moreover, if v∗(λ) denotes the optimizer of (2.12), and X∗T (λ) is the optimal equity

it achieves, then v∗(λ) also optimizes problems (2.13) provided E = E(λ) := E[X∗T (λ)|Ft],

and also (2.14) if in addition E(λ) > 0 .

Since Merton’s optimal problem (2.4) satisfies Bellman’s Dynamic Programming Prin-

ciple at all times, its optimal strategies are “time-consistent”, which means that the optimal

strategies computed for any two periods [t, T ] and [s, T ] always coincide on the intersection

[s ∨ t, T ]. On the other hand, it is known that mean-variance optimization is generally

time-inconsistent and optimal adapted strategies starting at one time do not usually ap-

pear optimal at a later time. Surprisingly, Theorem 1 combined with equation 2.12 implies

that in the present context, both the mean-variance and mean-default probability prob-

lems (2.13) and (2.14) are in fact time-consistent, provided the optimization is restricted

to deterministic strategies. The following result summarizes these relationships.

Corollary 2. For any fixed time horizon [t, T ], let E(λ) = E[X∗T (λ)|Ft] be the expected

value of equity computed for the optimal strategy v∗(λ) of the CARA investment problem

(2.12) with risk aversion parameter λ. Let E and E be the infimum and supremum of E(λ)

when λ varies over [0,∞). Then:

1. For any E ∈ (E,E), there exists a unique λ = λ(E) such that E(λ) = E.
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2. For all possible values of E(λ), the deterministic optimal strategies v∗ of Problem

M-V coincide with the unique adapted optimal strategy v∗(λ) of (2.12).

3. The optimal strategies computed for any two periods [t, T ] and [s, T ] are time-consistent,

meaning they coincide on the intersection [s ∨ t, T ].

4. If E(λ) > 0, the deterministic optimal strategies v∗ of Problem M-V and Problem

M-DP also coincide with each other.

2.3 Explicit Optimal Strategies

We now exploit the tractability of Merton’s problem in the market impact setting to obtain

closed formulas (involving matrix algebra and one dimensional integration) for the optimal

trading curve of the financial institution (FI). The techniques invoked in this section are

closely related to the methods developed for the optimal liquidation problem in Almgren

and Chriss (2001).

Proposition 3. Under the modelling assumptions of Theorem 1, for any finite T with

T ≤ T ∗, the value function Wt := W (t, T, q, x) = x + V (τ, q), τ = T − t for any t ∈ [0, T ]

has the form

V (τ, q) = q′A(τ)q +B(τ)q + C(τ) (2.15)

where A,B,C are matrix valued functions of dimension [d, d], [1, d] and [1, 1] respectively

with A symmetric. These functions satisfy Riccati-type ODEs for τ > 0:

∂A

∂τ
− (A+ Λ/2)′Γ−1(A+ Λ/2) +

λ

2
ΣΣ′ = 0, A(0) = 0, (2.16)

∂B

∂τ
− BΓ−1(A+ Λ/2)− µ′ = 0, B(0) = 0, (2.17)

∂C

∂τ
− 1

4
BΓ−1B′ = 0, C(0) = 0. (2.18)

The next theorem, whose proof is given in Appendix A, solves this system of Riccati

equations in closed form in terms of E := Γ−1/2(Λ/2)Γ−1/2 and the symmetric square root

D of

D2 :=
λ

2
Γ−1/2ΣΣ′Γ−1/2 .
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It also provides a closed form for the optimal strategy q∗.

Theorem 4. 1. The solution of the system of Riccati equations (2.16)–(2.18) over the

maximal interval [0, T ∗] is given by

A(τ) = Γ
1
2

(
V (τ)U(τ)−1 − E

)
Γ

1
2 (2.19)

B(τ) = µ′
(
E − V (τ)

)
U−1(τ)Γ

1
2 (2.20)

C(τ) =
1

4
µ′
(∫ τ

0

(
E − V (s)

)(
U ′(s)U(s)

)−1
(E − V ′(s))ds

)
µ (2.21)

where µ := D−2Γ−1/2µ and the matrix valued functions U, V are given by

U(τ) = cosh(Dτ)−D−1 sinh(Dτ)E (2.22)

V (τ) = − sinh(Dτ)D + cosh(Dτ)E. (2.23)

2. The maximal time horizon T ∗ is

T ∗ = inf{τ > 0 : U(τ) is not invertible} .

T ∗ is finite if D < E and ∞ if D > E.

3. For any (t, T, q, x), the optimal trading curve q∗(u) over the period [t, T ] is

q∗(u) = Γ−1/2U(T − u)U−1(T − t)Γ1/2q (2.24)

+
1

2
Γ−1/2U(T − u)

∫ u

t

U−1(T − r)Γ−1/2B′(T − r)dr (2.25)

4. For any (t, T, q, x), the expected value and variance of the optimal terminal equity are:

E[X∗T (λ)|Ft] = x+ q′
(
A(T − t)− λ

2
L(T − t)

)
q (2.26)

+
(
B(T − t)− λ

2
M(T − t)

)
q + C(T − t)− λ

2
N(T − t) ,

VaR[X∗T (λ)|Ft] = q′L(T − t)q +M(T − t)q +N(T − t) , (2.27)

where formulas for L,M,N are given in Appendix A.
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In the special case when D and E are commuting matrices, these formulas decouple

into d one-dimensional problems, each of which is similar to the single risky asset case we

next discuss.

2.3.1 The Case of a Single Risky Asset

In the single risky asset case, one can verify that the scalar functions A,B,C and the

optimal trading strategy q∗(u) have comparatively simple formulas obtained by reducing

those given in Theorem 4. Notice that several distinct possibilities are determined by the

relation between D = Σ
√

λ
2Γ

and E = Λ
2Γ
.

Proposition 5. In the single asset case,

1. When D > E or 2λΓΣ2 > Λ2, denote K = tanh−1(E/D) we have U(τ) = cosh(Dτ−K)
coshK

.

The formulas can be rewritten in terms of hyperbolic functions as follows

A(τ) = −ΓD (tanh(Dτ −K) + tanhK) (2.28)

B(τ) =
µ

D

(
sinhK

cosh(Dτ −K)
+ tanh(Dτ −K)

)
(2.29)

C(τ) =
µ2

4ΓD3

(
(sinh2(Dτ −K)− 1)(tanh(Dτ −K) + tanhK)−Dτ

)
(2.30)

+
µ2

2ΓD2

(
tanhK − sinhK

cosh(Dτ −K)

)
. (2.31)

The optimal trading strategy is given by

q(u)∗ =
cosh(Dτu −K)

cosh(Dτt −K)
q +

µ

2ΓD2

(
1− cosh(Dτu −K)

cosh(Dτt −K)

)
(2.32)

+
µ sinhK cosh(Dτu −K)

2ΓD2
(tanh(Dτu −K)− tanh(Dτt −K)) , (2.33)

where τs = T − s.
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2. When D = E or 2λΓΣ2 = Λ2

A(τ) = 0 (2.34)

B(τ) =
µ

D

(
eDτ − 1

)
(2.35)

C(τ) =
µ2

2DλΣ2

(
1

2
e2Dτ − 2eDτ +Dτ +

3

2

)
. (2.36)

3. When D < E or 0 < 2λΓΣ2 < Λ2, denote K = coth−1(E/D) we have U(τ) =

− sinh(Dτ−K)
sinhK

. The formulas can be rewritten in terms of hyperbolic functions as follows

A(τ) = −ΓD [coth(Dτ −K) + cothK] (2.37)

B(τ) =
µ

D

(
− coshK

sinh(Dτ −K)
+ coth(Dτ −K)

)
(2.38)

C(τ) = − µ2

4ΓD3

(
(cosh2(Dτ −K) + 1)(coth(Dτ −K) + cothK) +Dτ

)
(2.39)

+
µ2

2ΓD2
(cothK +

coshK

sinh(Dτ −K)
). (2.40)

The optimal trading strategy is given by

q(u)∗ =
sinh(Dτu −K)

sinh(Dτt −K)
q +

µ

2ΓD2

(
1− sinh(Dτu −K)

sinh(Dτt −K)

)
(2.41)

−µ coshK sinh(Dτu −K)

2ΓD2
(coth(Dτu −K)− coth(Dτt −K)) , (2.42)

where τs = T − s.

4. When λ = 0, we have U(τ) = 1− Eτ and V (τ) = E. Moreover

A(τ) =
Λ

2

(
1− U(τ)

U(τ)

)
(2.43)

B(τ) =
µΓ

Λ

(
1− U(τ)2

U(τ)

)
(2.44)

C(τ) =
µ2Γ2

6Λ3

(
−U(τ)4 + 6U(τ)2 − 8U(τ) + 3

U(τ)

)
. (2.45)
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The optimal trading strategy is given by

q(u)∗ = U(τu)

(
q

U(τt)
+

µ

4ΓE2

(
U(τt) +

1

U(τt)
− U(τu)−

1

U(τu)

))
. (2.46)

The third and fourth cases are the cases where T ∗ < ∞, and one finds the solutions

become unbounded: limτ→T ∗ A(τ) = ∞. In cases 1 and 2, the solutions are bounded for

all τ , and T ∗ =∞.

2.3.2 Small Perturbations of Merton’s Solution

In his original paper Merton (1969), Robert Merton presented the exact solution to the

problem of optimal investment in a frictionless market for an asset price that follows a

geometric Brownian motion. His solution technique also leads to an exact solution of our

present model in the limit of zero market impact, Λ = 0,Γ = 0, which we will call the

“Merton solution”. It is of some interest to consider the explicit general solution from the

previous section as a perturbation of the Merton solution, and to investigate the nature

of its convergence as market impact goes to zero. We suppose that Λ = εΛ1,Γ = εΓ1

with small ε and denote by W (t, T, x, q, ε) the certainty equivalent value function with its

dependence on ε. For simplicity, we confine our attention to the single asset case of the

previous section.

The Merton solution over the period [t, T ] with initial conditions Xt = x, qt = q

involves an instantaneous trade that incurs no trading cost, to the optimal value qM := µ
λΣ2 .

This portfolio is then held constant. One can show that this strategy achieves the certainty

equivalent value function W (t, T, x, q, 0) = x+ µ2(T−t)
2λΣ2 which we note is independent of q.

Now, for small ε, the general solution of our model is given by Case 1 of Proposition

5, which leads to the following perturbative expansion

W (t, T, x, q, ε) = W (t, T, x, q, 0) + ε1/2Q(q) + o(ε3/2). (2.47)

where

Q(q) := Γ1D1q
2 +

µ

D1

q + (2E − 1)D1. (2.48)
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Here we define D1 = Σ
√

λ
2Γ1

which does not depend on ε and we have D = ε−1/2D1 →∞
as ε→ 0. It is obvious that E does not depend on ε either. Thus the value function of our

problem converges to the value function of the Merton solution with rate of convergence

ε1/2.

The optimal holding at the terminal time is given by

q∗T = qM + (qt − qM)
coshK

cosh(Dτ −K)
+ EqM

1− tanh(Dτ −K)

D(1− tanh2K)
. (2.49)

Here τ := T − t. It is straightforward that limε→0K = 0, hence limε→0 q
∗
T = qM .

Let Ã(τ) := U(τ)
V (τ)

= D tanh(Dτ −K), the trading rate at the initial time t is given by

vt = lim
s→t

q̇s (2.50)

= qtÃ(τ) + U(τ)
µ

2ΓD2

[
E(D2 − (Ã(τ))2)

D2 − E2
− Ã(τ)

U(τ)

]
(2.51)

= (qt − qM)D tanh(Dτ −K) +
µE coshK

2Γ1D2
1 cosh(Dτ −K)

. (2.52)

Note that limε→0 tanh(Dτ − K) = 1 and limε→0 cosh(Dτ − K) = ∞, we have

limε→0 vt = ±∞ depending on if qt > qM or qt < qM , i.e. the optimal strategy is to

trade rapidly in the beginning. We then conclude that the optimal trajectory q∗(u, ε)

converges to an L–shaped or Γ–shaped curve when the market impact tends to zero.

This result implies that when market impact is low, the firm will follow an optimal

trading strategy very close to the constant holding strategy of the Merton problem. A more

surprising fact is the portfolio which starts at the Merton portfolio will remain constant if

permanent impact has Λ1 = 0, and all strategies regardless of initial portfolios will move

towards the Merton portfolio for sometime initially. In the following subsection, we will

show similar results for the multi-asset case.
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2.4 Numerical Investigations

We now consider the investment behaviour of a hypothetical unregulated financial institu-

tion, such as a hedge fund or mutual fund. The firm trades a single risky asset, with initial

price S0 = $100, in a market with a 0% risk free rate of return. They use our CARA op-

timal investment model to trade over non-overlapping half-year trading periods: we focus

here on the period [0, T ], T = 1/2. The CARA risk aversion parameter λ is chosen to be

consistent with a target default probability of 1% for each period. Thus the firm will trade

aggressively to maximize their expected return with a quite high tolerance to the potential

of default.

The calibrated parameters of the model given in Table 3.2 are taken to be fixed at the

beginning of the period t = 0. Note that the firm uses the Bachelier model only for a short

period, and expects to recalibrate at the beginning of the each successive period. Since the

risky asset is illiquid, there is market impact related to the velocity of trading and the total

amount traded: these are assumed to give the temporary and permanent market impact

parameter estimates Γ = $10−7years/ (units traded)2 and Λ = $4 ∗ 10−8/unit.

Balance sheets for a small, medium and large firm will be considered, all with a risky

asset-to-equity ratio of 4 : 1. The initial stock holdings are q0 = [50000, 200000, 800000]

from which the initial firm equity and cash net of debt are then determined to be X0 =

0.25∗q0∗S0, C0 = −0.75∗q0∗S0 . In all three cases, as indicated above, the financial institu-

tion targets a fixed default probability under the optimal strategy. This is implemented by

choosing the internal risk aversion parameter λ so that the WDP (0, T, q0, X0, E(λ)) = 0.01.

Note that even though the optimal strategy does not depend on X0 for fixed λ, this specifi-

cation of λ depends on X0. Thus firms that differ only in X0 do adopt different investment

strategies.

2.4.1 The Efficient Frontier

Figure 2.1 shows for each of the three firms how the expected rate of return on equity

(ERR) and default probability (DP) for their CARA/MV/DP optimal strategies depend

as λ varies over the set of feasible values [0,∞). These quantities are computed by the
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Table 2.1: Benchmark Parameters

Calibrated Parameter Model Parameter Value
Initial Stock Price S0 = $100

Trading Period [0, T ], T = 0.5 year
20% Annualized Volatility Σ = $20/unit/

√
year

4% Annual Growth µ =4/unit/year
Temporary Market Impact Γ = $10−7year/ (unit)2

Permanent Market Impact Λ = $4 ∗ 10−8/unit
λ such that Probability of Default = 0.0005 λ varies

Initial Holdings q0 = [50000, 200000, 800000]
Initial Cash net Debt owing C0 = −0.75 ∗ q0 ∗ S0

Initial Equity X0 = 0.25 ∗ q0 ∗ S0

formulas

ERR(λ) =
1

T

(
E(λ)

X0

− 1

)
, DP(λ) = N

(
− E(λ)√

V (λ)

)
(2.53)

where N(·) denotes theCDF of the standard normal and E(λ), V (λ) are given by (2.26)

and (2.27) . Such a graph is called an efficient frontier, and it summarizes the results a

firm may achieve by adopting different possible risk aversion parameters.

As explained earlier, the three firms each select the optimal investment strategy given

by the value λ that leads to DP(λ) = 0.01: with the benchmark parameters given in Table

3.2, the three values they compute are λ = [2.56 × 10−7, 6.7 × 10−8, 1.83 × 10−8]. While

Figure 2.1 suggests that, ceteris paribus, larger firms have a lower efficient frontier, this

ordering can be made to reverse by increasing the permanent impact parameter.

2.4.2 Properties of the Optimal Trading Curve

To better understand the properties of the optimal investment strategies that result from

our method, we now investigate how the three hypothetical firms’ optimal trading in the sin-

gle asset case compare as important model parameters are varied away from the benchmark

parameters of Table 3.2. Figures 2.2 and 2.3 summarize the results of four experiments, and

show how the firms’ optimal trading strategies over the time period [0, 1/2] years change as

the asset rate of return, asset volatility, temporary market impact and permanent market

impact are made to vary one at a time. In each figure, the red curve denotes the benchmark

parametrization, while the other two curves show the result as one specific parameter is
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Figure 2.1: The efficient frontier for three firms with parameters given in
Table 3.2, showing their default probability and expected rate of return on
equity, when adopting their optimal portfolio with risk aversion parameters
λ varying over [0,∞).

varied upwards (blue curve) and downwards (green curves).

One point needs to be reiterated: for each choice of a set of parameters excluding the

risk aversion parameter λ, λ is computed to ensure that the firm’s default probability (DP)

is exactly 1%. Thus each curve in these figures corresponds to a different value of λ.

The effect on the optimal strategy of varying the asset rate of return µ and volatility Σ

is shown in Figure 2.2. It is not a surprise to observe that the optimal strategy will include

more of the risky asset as the rate of return is raised, or as the volatility is lowered. There is

a threshold value of Σ below which the firm switches from sell strategies to buy strategies.

Although not shown in the graph, one finds the reverse is the case for µ. Finally, the velocity

of selling strategies seems to retain a similar shape over time under these variations. Each

of these observations are borne out by more extensive investigations of the dependence on
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Figure 2.2: Effects on the benchmark optimal trading curve (red curve) for
three firms as one parameter changes upwards (blue curve) and downwards
(green curves). (a) shows the effect of changing µ, the mean rate of return of
the risky asset; (b) shows the effect of changing Σ, the volatility of the risky
asset. The vertical axis shows q, the amount of the risky asset being held
at any time during the trading period. Both figures were computed using a
trading period of half a year, while maintaining a probability of default of
1% for all trading curves.

these parameters.

In Figure 2.3a, the main effect of decreasing temporary impact Γ is seen to be to

move more quickly to the final holding level early in the period. This can be understood

as a change in the optimal balance between reducing temporary impact costs and price

uncertainty due to the asset volatility. To a lesser extent, one also sees in these examples

that the level of the final holdings decreases slightly as Γ increases.

The effect of permanent impact Λ on the strategy is more subtle. From Figure 2.3b,

a higher permanent impact parameter Λ leads to an optimal strategy ending with a higher

holding level. It also causes more curvature for the trading strategies, especially towards

the closing time where all trading curves seem to have positive slope. Indeed, directly

from (2.8), the general formula for the trading velocity, one verifies that at the close of the

period dq
du
|u=T= 1

2
Γ−1Λ. This means that as long as Λ is positive, every trader holding

long positions, whether leveraging up or down, will always end the period by buying more

shares. The reason is because permanent impact gives any trader a small opportunity to
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Figure 2.3: Effects on the benchmark optimal trading curve (red curve) for
three firms as one parameter changes upwards (blue curve) and downwards
(green curves). (a) shows the effect of changing the temporary impact pa-
rameter Γ; (b) shows the effect of changing the permanent impact parameter
Λ. The vertical axis shows q, the amount of the risky asset being held at any
time during the trading period. Both figures were computed using a trading
period of half a year, while maintaining a probability of default of 1% for all
trading curves.

push the asset prices in a favourable direction at the last moment. We call this the Ponzi

property of our market impact model: the gains it implies cannot be converted to cash

without bursting the small price bubble the trader has created.

2.4.3 Small Market Impact

The perturbative analysis of Section 2.3.2 provides an alternative framework for under-

standing the effect of permanent and temporary market impact. We investigate the middle-

sized firm with q0 = 2 × 105 and market impact parameters Γ(ε) = ε × 10−7, Λ(ε) =

ε × 4 × 10−8 for a sequence of values εn = 10−n, n = 0, 1, . . . approaching zero. Figure

2.4(a) shows how the optimal strategies converge for ε→ 0 to the constant Merton solution

for u ∈ (t, T ), but show rapid transient effects for u near both endpoints. The small Ponzi

effect near u = T can be turned off by taking Λ(ε) = 0, as shown in Figure 2.4(b).

These figures suggest that for reasonable parameter values and small market impact,
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our model will deliver strategies that are effectively similar to the Merton solution. The

observed relationship between the optimal strategies and the Merton solution, valid for

small market impact, actually remains true for intermediate levels of market impact such

as our benchmark parametrizations. One observes in Figures 2.2 and 2.3 that all strategies

tend to flatten as u approaches T , albeit with a small Ponzi effect at the end of the period.

It will be well worth studying the extent that the value of the holdings at which the strategy

flattens is well approximated by the Merton solution. As the market impact parameters

decrease, the flat portion of the curve becomes wider, and closer to the Merton solution.
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Figure 2.4: The behaviour of the optimal trading strategy for a decreasing
sequence of market impact parameters as described in Section 2.4.3. They
show convergence to the constant Merton solution.

An analysis similar to that of Section 2.3.2 allows us to understand the multi–asset

investment problem in the small market impact regime. Figure 2.5, we used the standard

asset parameters as Asset 2, with Asset 1 being the asset with the lower perturbed param-

eters from the previous cases, and Asset 3 having the higher perturbed parameters from

the previous cases. Figure 2.5(a), compares the uncorrelated case to the Merton solution.

Figure 2.5(b), compares the case of constant pairwise correlation ρ = 0.5 to the Merton

solution. In both cases we can see the behaviour similar to the one asset case above. It

should be noted that unlike the single asset case, a hedging strategy can be utilized for when

multiple assets are available, hence short selling of a illiquid asset class can be optimal.

We observe again in the multi-asset problem that when the market impact is small,
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Figure 2.5: The behaviour of the optimal three asset trading strategy in the
uncorrelated and correlated cases, when compared to the Merton solution.

the general optimal strategy is close to the Merton solution.

2.4.4 Bounded Optimal Trading Strategies

We have seen in Section 2.4.2 that in the single asset case, positive Λ creates the Ponzi

property that gives any trader an opportunity to push the price in their favour near the

end of the period. Case 1 of Proposition 5 shows that as long as Λ <
√

2λΓΣ, the optimal

strategies computed over any finite period [0, T ] remain bounded. However, when Λ >√
2λΓΣ, Case 3 of Proposition 5 implies that for the period [0, T ∗] with T ∗ = K̃/D, the

optimal strategy q∗(u) and the value function W both blow up at u = 0.

Similar possibilities arise in the multi-asset investment problem. As Λ increases,

eventually the matrix function U(t) becomes singular for some finite t = T ∗. Again, one

then finds that for the period [0, T ∗], the optimal strategy q∗(u) and the value function W

both blow up at u = 0.
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2.5 Remarks and Conclusions

The three hypothetical financial institutions studied in Section 2.4 face a typical investment

problem, namely to maximize their return on equity subject to an upper bound on the

downside risk, which is defined here as the probability of default. We have presented an

analytically tractable version of the optimal portfolio problem that can be justified in three

different ways: as utility optimization, as mean-variance optimization and as mean-default

probability optimization. Numerical evidence shows that the solutions generated by the

method have desirable and interesting features. Perhaps most importantly, we have learned

that these strategies closely track the classic Merton solution arising in the zero market

impact model.

We reiterate that while our optimal portfolio problem is closely related to the optimal

liquidation problem, they are quite distinct. However, it is clear that following the Almgren-

Chriss strategy to achieve a fixed target portfolio at time T will coincide with our strategy

for t < T if the portfolios coincide at T . Since our strategies come close to the Merton

constant solution qM , as long as the temporary and permanent impact is small enough and

q0 is close to qM , our optimal strategies are typically well approximated by the Almgren-

Chriss strategy that liquidates the amount q0 − qM over the period [0, T ].

The three benchmark firms have efficient frontiers shown in Figure 2.1 that quantify

by how much their rate of return will increase if they raise their tolerance to default.

We have observed that optimal trading strategies that account for market impact tend to

move over the trading period toward the Merton solution. If they are initially close to the

Merton solution, they will tend to remain close, which means the Merton solution is robust

to perturbations. The speed of approach increases as the temporary impact parameter Γ

decreases. In addition, the main effect of the permanent impact Λ is the Ponzi property

that is manifested by some amount of buying near the end of the period. This Ponzi effect

is typically small, but as Proposition 5 shows, it will dominate the character of the solution

when Λ becomes large enough to cause an asset price bubble.

Left to themselves, there is little incentive for such FIs to limit risk seeking. By

choosing a low value of λ, or equivalently, accepting a high leverage ratio, they can achieve

a high rate of return on capital. Since lower temporary impact and higher permanent impact
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are both relatively more advantageous to larger firms, one has situations where large firms

implement aggressive Ponzi style strategies. In scenarios where the assets perform badly,

there is a likelihood of serious asset price feedback that may adversely affect other financial

institutions holding common assets. Such asset price feedback, both bubbles and bursts,

has been identified in the literature, notably Cifuentes et al. (2005), as a critical channel

of systemic risk, popularly known as the asset fire sale channel. One application of our

model, yet to be explored in detail, will be its use to specify the natural behaviour of the

banks and financial institutions in a large financial system, and then to see how systemic

risk measures are affected by asset fire sales due to market impact. In this systemic risk

context, it will also be important to introduce the effects of funding illiquidity by modelling

the stochastic nature of deposits.

If large banks were permitted to act in their own self interest without regard to their

systemic effects, they would pose an unacceptable threat to financial stability. For that

reason, all banks are subjected to a regime of strict financial regulation, of which the most

important are limits to their capital asset ratio and liquidity coverage ratio. Under such

regulatory constraints, FIs’ investment strategies will differ dramatically from the optimal

strategies produced in the present paper. The optimal behaviour of such regulated financial

institutions will be the target of future modelling studies.

Appendix 2.A Proofs of Main Results

Proof of Theorem 1: In this proof we fix T to be finite. The existence of a maximal

T ∗ is a consequence of solving (2.7), which is analyzed in the proof of Proposition 3.

The Hamilton-Jacobi-Bellman (HJB) equation associated to (2.5) arises from the DPP by

assuming Markov controls vt = v(t, T,Xt, qt) and value function Wt := W (t, T,Xv
t , q

v
t ) for

deterministic functions v,W . For simplicity of exposition, we have omitted the potential

for dependence on the stock price St: the standard verification result used at the end of

this argument shows this is consistent.

Under these assumptions, the DPP implies that −e−λW (t,T,Xv
t ,q

v
t ) is a supermartingale
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for all v and a martingale for the optimal v∗, which leads to the HJB equation for W

∂tW + ∂XWq′µ+
1

2
q′ΣΣ′q[∂2

XXW − λ(∂XW )2]

+ supv[(∂qW
′ + ∂XWq′Λ)v − v′Γv∂XW ] = 0.

W (T, T,X, q) = X.

The ansatz W (t, T,X, q) = X + V (t, T, q) leads to the equation for V

∂tV + q′µ− λ

2
q′ΣΣ′q + supv[(∂qV

′ + q′Λ)v − v′Γv] = 0.

V (T, T, q) = 0.

The optimal feedback control is thus v∗ = Γ−1

2
(∂qV

′ + Λq), which is independent of X and

the price process, and hence deterministic. Using this control leads to

∂tV + q′µ− λ

2
q′ΣΣ′q +

1

4
(∂qV + Λq)′Γ−1(∂qV + Λq) = 0 . (2.54)

As we will shortly see in the proof of Proposition 3, this ODE has a unique smooth solution

which is deterministic, over any finite time interval [t, T ] for T less than a possibly infinite

maximal T ∗. Therefore, by the classical verification theorem, we have W = W̃ and the

other statements of the theorem follow.

Proof of Proposition 3: By Theorem 1 , the value function for Merton’s problem over

[t, T ] has the form W (t, T,X, q) = X + V (t, T, q), where V satisfies the ODE (2.54). This

ODE and the form (2.15) leads to Riccati equations with initial conditions for A,B,C

∂τA −1

4
(A+ A′ + Λ)Γ−1(A+ A′ + Λ) +

λ

2
ΣΣ′ = 0, A(0) = 0 (2.55)

∂τB −1

2
BΓ−1(A+ A′ + Λ)− µ′ = 0, B(0) = 0 (2.56)

∂τC −1

4
BΓ−1B′ = 0, C(0) = 0. (2.57)

Notice that if A is a solution of (2.16), then so is A′: By the uniqueness theorem for

solutions of ODEs, A = A′ and therefore A is symmetric.
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Proof of Theorem 4: Part 1: Note that λ
2
Γ−1/2ΣΣ′Γ−1/2 is positive definite and define

D to be its symmetric square root. If

Ã(τ) := Γ−1/2(A(τ) + Λ/2)Γ−1/2

then (2.16) becomes

∂τ Ã− Ã2 +D2 = 0, Ã(0) = E := Γ−1/2(Λ/2)Γ−1/2 . (2.58)

One can now check that the solution to (2.58) has the form Ã = V U−1, where U, V satisfy

the following linearODE with terminal condition[
∂τU
∂τV

]
=
[

0 −1
−D2 0

]
×
[
U
V

]
,

[
U(0)
V (0)

]
=
[
1

E

]
.

By block-diagonalization using

Q =
[
1 1

D −D
]
, Q−1 =

1

2

[
1 D−1

1 −D−1

]
one finds [

0 −1
−D2 0

]
= Q

[ −D 0
0 D

]
Q−1

and therefore, the solution of the matrix ODE is[
U(τ)
V (τ)

]
= Q

[
e−Dτ 0

0 eDτ

]
Q−1 ×

[
1

E

]
.

From the explicit forms

U(τ) = cosh(Dτ)− sinh(Dτ)D−1E (2.59)

V (τ) = − sinh(Dτ)D + cosh(Dτ)E (2.60)

one finds A(τ) = Γ1/2(Ã(τ)− E)Γ1/2 where

Ã(τ) = [− sinh(Dτ)D + cosh(Dτ)E][ cosh(Dτ)− sinh(Dτ)D−1E]−1. (2.61)
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The Riccati equation (2.17) for B can be solved by noting that B̃ = BΓ−1/2 solves

the ODE

∂τ B̃ − B̃Ã− µ′Γ−1/2 = 0.

Since ∂τU = −ÃU , we find ∂τ (B̃U) = (∂τ B̃ − B̃Ã)U = µ′Γ−1/2U which can be integrated

to give B̃(τ)U(τ) = µ′Γ−1/2(
∫ τ

0
U(s)ds) and thus

B(τ) = µ′Γ−1/2

(∫ τ

0

U(s)ds

)
U−1(τ)Γ1/2 .

It is straightforward that
∫ τ

0
U(s)ds = D−2[E − V (τ)] which gives the desired formula

B(τ) = µ′Γ−1/2D−2[E − V (τ)]U−1(τ)Γ1/2 .

In a similar fashion, one finds

C(τ) =
1

4

∫ τ

0

B(s)Γ−1B′(s)ds (2.62)

=
1

4
µ′
(∫ τ

0

(E − V (s))(U ′(s)U(s))−1(E − V ′(s))ds
)
µ, (2.63)

where µ := D−2Γ−1/2µ.

Part 2: This part is straightforward.

Part 3: From part 4 of Theorem 1, the optimal control q∗(u) over the period [t, T ]

solves

∂uq − Γ−1(A(T − u) + Λ/2)q =
1

2
Γ−1B′(T − u)

When this linear ODE is multiplied on the left by the integrating factor U−1(T − u)Γ1/2,

the left-hand side becomes an exact derivative:

∂u
[
U−1(T − u)Γ1/2q

]
= U−1(T − u)Γ1/2 × 1

2
Γ−1B′(T − u) .

Integration of this equation over [t, u] gives

U−1(T − u)Γ1/2q(u)− U−1(T − t)Γ1/2q =
1

2

∫ u

t

U−1(T − r)Γ−1/2B′(T − r)dr
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which leads to the desired formula.

Part 4: The Variance is calculated directly as follows

Vart(X
∗
T ) =

∫ T

t

q∗(s)′ΣΣ′q(s)∗ds = q′L(T − t)q +M(T − t)q +N(T − t) .

Rewrite q∗(u) = Ũ(T − u)Ũ−1(T − t)q+1
2
Ũ(T − u)I(u), where Ũ(T−u) := Γ−1/2U(T−

u) and I(u) :=
∫ u
t
Ũ−1(T − r)Γ−1B(T − r)dr. Explicit forms for L,M,N are calculated as

follows.

L(T − t) = (Ũ−1(T − t)′)
(∫ T

t

Ũ(T − r)′ΣΣ′Ũ(T − r)dr
)
Ũ−1(T − u) .

By using Fubini’s formula, we have

M ′(T − t) =

∫ T

t

Ũ−1(T − t)′Ũ(T − r)′ΣΣ′Ũ(T − r)I(r)dr

=

∫ T

t

(∫ T

s

Ũ−1(T − t)′Ũ(T − r)′ΣΣ′Ũ(T − r)dr
)
Ũ(T − s)−1Γ−1B(T − s)ds

= Ũ(T − t)′−1

∫ T

t

Ũ(T − s)L(T − s)Γ−1B(T − s)ds .

Similarly

N(T − t) =
1

4

∫ T

t

I(r)′Ũ(T − r)′ΣΣ′Ũ(T − r)I(r)dr

=
1

4

∫ T

t

(∫ T

s

I(r)′Ũ(T − r)′ΣΣ′Ũ(T − r)dr
)
Ũ−1(T − s)Γ−1B(T − s)ds

=
1

4

∫ T

t

M(T − s)Γ−1B(T − s)ds .
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Chapter 3

Asset Fire Sales and Systemic Risk

“Asset Fire Sales and Systemic Risk” is a joint work with Dr. Tuan Tran and Prof. Thomas

Hurd. Contributions by the author include: 1. computer programming, numerical analysis,

and finalization of the paper; 2. Equal share of the original idea of this paper which evolved

from our discussions; 3. Equal share of the technical derivations of this paper; 4. Equal

share of drafting. As of October 31, 2016, this paper is currently being finalized for journal

submission.

3.1 Asset Fire Sales and Systemic Risk

Recent research in systemic risk, notably Cifuentes et al. (2005), has recognized that market

illiquidity, manifested in so-called asset fire sales, is a critically important source of financial

instability. At a time of crisis, banks may be weakened to the extent that they need to

shrink their balance sheets by liquidating assets. This can lead to strong downward price

spirals that further impact the entire financial system. To understand this better, a number

of recent contributions, for example Caccioli et al. (2014), have proposed network models

with the fire sale contagion propagated indirectly from bank to bank through their trading

impact on the prices of assets they both own. Such models adapt the methodology of

Eisenberg and Noe (2001) that describes the end result of a stylized financial crisis as a

fixed point of a cascade mapping on the collection of balance sheets. From one point of
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view, such a crisis proceeds through stepwise iteration of the cascade mapping that distills

how banks update their balance sheets each step, ultimately approaching a fixed point or

cascade equilibrium.

As reviewed in Chapter 2 of Hurd (2016), such cascade models are called static,

meaning they make an oversimplification that no uncertainty occurs from time step to time

step. They also propose that each FI has a simple behaviour at each step that depends

deterministically on the state of their balance sheet, that at a moment in time has a stylized

form that might look like Table 4.2. It is assumed that during a crisis, their behaviour is

mostly self-protection, and should account for the need to stay solvent, to avoid deposit

runs, and avoid having to sell illiquid assets in a collapsing market. In fact, given the

regulatory regime that banks now face, one can assume they act in the simplest way they

can to remain compliant with important regulatory constraints.

Assets illiquid assets AF cash C

Liabilities long term debt D` short term debt Ds equity E

Table 3.1: Stylized balance sheet:

Basel III, the current regulatory regime for banks worldwide, differs most essentially

from earlier regulatory regimes by recognizing the need to go beyond controlling micropru-

dential risk (the risk of an individual bank failure), to trying to account for macroprudential

risks (the risk of system wide failures). However, in most existing models of systemic risk,

banks’ assumed behaviour does not explicitly anticipate the actions of other banks. Such

models can therefore give only a very incomplete picture of macroprudential risks in the

system. The goal of the present paper is to improve understanding of how a regulated

bank may behave at any time during a fire sale crisis when it anticipates the actions of

other banks. In particular, we propose that each FI adopts strategies that during a finan-

cial crisis will anticipate the potential for large scale deleveraging by all other FIs. With

this in mind, in addition to assuming the usual accounting principles, we make additional

simplifying modelling assumptions:

A1 There is a single common illiquid asset of which banks always hold non-negative

amounts, and the banks’ trades impact the market asset price;
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A2 Banks have perfect information about the balance sheets and hence strategies of all

other banks;

A3 Banks’ balance sheets are subject to a set of one or more regulatory constraints, and

banks must remain compliant;

A4 Banks trade each period to maximize their one-period return, subject to the regula-

tory constraints at the end of the period;

A5 Banks that cannot become compliant liquidate 100% of their illiquid assets and can

then be removed from the financial system;

A6 Small traders that are price takers and non-strategic clear the asset market each

period.

In addition to these economic and behavioural assumptions, Section 3.2 will also introduce

additional assumptions for mathematical convenience. Like other static cascade models

that are step-wise deterministic, we assume a simple deterministic asset price dynamics.

We propose a simple market clearing mechanism each period. We also focus on two specific

examples of regulatory constraints: the leverage ratio (LR) constraint and the liquidity

coverage ratio (LCR) constraint.

Some of these assumptions require additional justification and discussion. First, we

reiterate that the assumed balance sheets omit all interbank assets that are commonly

the focus of systemic risk networks: extending our model in this direction will be an

interesting future research project. The assumption of complete information is obviously

counterfactual, but is typical in game theory. We will comment on its implications in the

conclusions of the paper. A final point is that the idea that the crisis proceeds stepwise,

even if commonplace in the systemic risk literature, still begs the question of the time scale

involved: The picture we have is that the time step is short relative to one month, that is

to say, less than one week.

As we have just hinted, we will find that at any cascade step, determining the banks’

collective actions amounts to a classic example of a multi-player game (for a review of

game theory in economics, see Facchinei and Kanzow (2007)) whose solutions can be com-

prehensively analyzed. We will find there will be a finite collection of Nash equilibrium

solutions, amongst which is a unique Pareto optimal solution. In a certain sense, only
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the Pareto optimal solution should have economic meaning. Such Pareto solutions corre-

spond to bank strategies that are easy to compute, and can be taken as the natural bank

behaviour assumption that determines the cascade mapping at the core of new network

models of systemic risk. There is scope in the resultant network models for banks to ex-

hibit tipping point or threshold behaviour because, as we shall show, the Pareto optimal

solution is generally discontinuous in the underlying parameter space of the model.

The general modelling framework formulated in Section 2 is analyzed in Section 3,

leading to the main technical result of the paper, Theorem 8, that characterizes all Nash

equilibria in terms of the final asset price determined by the market clearing condition. In

Section 4 the paper also investigates more detailed properties of the model system under the

liquidity coverage ratio constraint, and in particular, we find an efficient explicit algorithm

to compute all Nash equilibriums. Section 5 explores certain numerical features of the

model. First, we look more closely at the nature of the tipping points that arise in the

case of N = 2 banks. Then we move on to larger networks, and investigate the impact on

network stability of banks that are in danger of non-compliance. Finally, the conclusions in

Section 6 discuss in more detail how these results change our view of the fire sale contagion

mechanism.

3.2 The multi-agent model

At a moment in time, say t = 0 or t = 1, the financial system under study will be thought

of as a collection of N banks, with balance sheets Bt, that are large strategic traders

subject to certain regulatory constraints. The collection of initial bank balance sheets

B0 := {Bi
0}, i ∈ {1, . . . , N} := [N ], as shown in Table 4.2, are composed of fixed assets Ai0,

cash Ci
0 and debt Di

0 = Ds,i
0 + D`,i separated into short-term and long-term parts. Their

equity Ei
0 := Ai0 +Ci

0−Di
0, assets minus liabilities, is positive unless the bank is insolvent.

We also assume banks each hold qi0 units of a single illiquid asset class, whose unit price,

S0, is assumed to remain constant until an auction at time t = 1. Then the values of fixed

assets are Ai0 = qi0S0. All this information about the initial state of bank i is recorded in

the vector

Bi
0 = (Ai0, C

i
0, D

s,i
0 , D

`,i
0 , E

i
0, q

i
0).
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Note in particular that our model does not permit interbank crossholdings.

Each bank is subject to a regulatory constraint H i(Bi
t) ≥ 0 that is checked on certain

dates. Usually the regulatory function H i is linear in the state variables Bi
t: Three examples

are given toward the end of this section. In our one-period setting, since t = 1 will be the

only monitoring date considered, the constraint will be checked on Bi
1.

The external economy will be described by a large collection of small traders that are

non-strategic price takers: their combined market effect is to purchase Y shares determined

from the price S by an aggregate demand function Y = D(S). This means that over the

period (0, 1), if each large trader trades |xi| units, a buy order if xi > 0 or a sell order

if xi < 0, the new price S1 will be determined by the aggregate demand supplied by the

banking system X :=
∑

i∈[N ] x
i through the market clearing condition X + Y = 0, which

implies

S1 = D−1(−X) . (3.1)

The goal of this model is to determine the natural strategic trading behaviour of such

regulated banks over the single period from t = 0 to t = 1, represented by xi = qi1− qi0, the

number of units they trade, and the final asset price S1 that results from these trades.

To have a well-posed and tractable problem, we make final assumptions, in addition

to those outlined in Section 3.1:

B1 The external demand function is linear, D(S) = 1
λ
(S0 − S), with λ called the market

illiquidity parameter. Hence the market clearing condition (3.2) at time t = 1 implies

S1 = S0 + λX (3.2)

B2 Banks pay proportional transaction costs γ|x|S1 with parameter γ ∈ [0, 1], for a buy

or sell trade of size |x|.

B3 No borrowing or short selling is permitted, no interest is earned on cash, and deposits

do not change over the period. The external market is deep enough to absorb the

total supply of illiquid assets, that is:

Smin := S0 − λ
N∑
i=1

qi0 ≥ 0. (3.3)
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B4 Each bank must satisfy its regulatory constraint H i = H i(Bi
1) ≥ 0 at t = 1, if

possible. A bank that at time t = 0 knows it cannot satisfy its regulatory constraint

at t = 1 must liquidate all its assets in that period, so that qi1 = 0.

Based on these Assumptions A and B, when the banking system trades the amounts

x = (xi)i∈[N ], the final asset price will be S1 = S0 + λX with X =
∑

i x
i and the balance

sheet at time t = 1 of any bank i will be

Ai1 = (qi0 + xi)S1, Ci
1 = Ci

0 − xiS1 − γ|xi|S1, (3.4)

Ds,i
1 = Ds,i

0 , Dl,i
1 = Dl,i

0 , Ei
1 = Ei

0 + qi0(S1 − S0)− γ|xi|S1 (3.5)

Suppose the bank i believes that the other banks will trade x−i units in the period.

Notice from (3.4) and (3.5) that this information determines Bi
1 = Bi

1(xi, x−i) as a function

of the trades (xi, x−i) through the final price S1 = S1(xi, x−i) = S0 + λ(xi +
∑

j 6=i x
j). The

regulatory functions H i can thus be rewritten as a function of (xi, x−i) : H i = H i(xi, x−i).

Under this condition, we summarize the above assumptions by proposing that each bank

chooses to trade an amount xi determined by solving the single period optimization problem:

if A i(x−i) := {xi ≥ −qi0, Ci
1(xi, x

−i) ≥ 0, H i(xi, x
−i) ≥ 0} 6= ∅

then xi ∈ arg max
xi∈A i(x−i)

Ei(xi, x−i)

else xi = −qi0 (3.6)

This is a rational strategy for each bank i in that it maximizes its equity conditioned

on knowing the other banks’ actions, as long as it can fulfil its regulatory constraints. In the

case where bank i cannot fulfil its regulatory constraint, it then has to liquidate all illiquid

assets and declare bankruptcy. The scheme can be seen to be equivalent to a standard

game theory problem by requiring that player i must trade xi ≥ −qi0 and introducing an

infinite penalty term for violating its constraints. That is, each player i trades xi ≥ −qi0
from which it receives a singular payoff:

E
i

:= Ei
1 −∞ · 1

(
xi > −qi0,min

(
Ci

1, H
i
)
< 0
)
. (3.7)
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The rational strategy of the bank i, xi now is defined by

xi ∈ arg max
xi≥−qi0

E
i
(xi, x−i) (3.8)

A player that knows x−i and tries to maximize the payoff (3.7) will always buy the amount

determined by (3.6). This game-theoretic representation of the problem justifies adopting

the concept of Nash Equilibrium:

Definition 9. A Nash Equilibrium strategy (NE) x∗ = (xi∗)i∈[N ] is any vector such that for

each i, xi∗ solves the single period optimization problem (3.6) for bank i when the remaining

banks trade the amounts x−i∗.

This paper will focus on stylized regulatory constraints that distill essential aspects

of the Basel III framework. To formulate them, it is helpful to introduce two additional

buffer variables: ∆i,s := Ci −Di,s and ∆i := Ci −Di.

1. Liquidity coverage ratio (LCR) requirement:

cash ≥ short term debt .

This means the bank is compliant at time t = 1 if ∆i,s
1 ≥ 0, that is

H i,L(xi, x−i) := ∆i,s
0 − (xi + γ|xi|)S1 ≥ 0 . (3.9)

Recall that the price S1 is also a function of trading strategies: S1 = S1(xi, x−i) =

S0 + λxi + λ
∑

j 6=i x
j. In this context, short term debt has the meaning of debt that

might mature or run during a 30-day crisis scenario.

2. Capital Adequacy Ratio (CAR) requirement:

Capital ≥ r × Risk Weighted Assets , for some fraction r ∈ [0, 1] .

In Basel III accord, the constant r is 8%. In this paper, capital is identical with

equity. As for risk-weighted assets, we suppose that the weight of cash is zero, while

the weight of risky asset is one. The CAR requirement thus becomes the leverage

requirement.
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Equity ≥ r × Fixed Assets , for some fraction r ∈ [0, 1] .

Note that cash is not included on the right hand side means that having a positive

amount of cash should not be penalized by the regulator because it can always be used

to pay down debt without changing equity. Thus the bank is compliant if Ei ≥ rAi,

or equivalently

H i,K(xi, x−i) := [(1− r)qi0 − rxi − γ|xi|]S1 + ∆i
0 ≥ 0. (3.10)

3. Mixed liquidity and capital (MLC) requirements: The mixed condition

cash ≥ short term debt ; equity ≥ r × fixed assets

means the bank is compliant if

H i,M = min{H i,L, H i,K} ≥ 0 . (3.11)

For each of the regulatory constraints LCR, CAR and MLC, we have similar results:

Theorem 6. Suppose that the regulatory functions take one of three forms (3.9), (3.10)

or (3.11). Then, there exists a vector-valued function F = (Fi) : RN → RN , where Fi

depends on x−i only, i.e. Fi(x
i, x−i) = Fi(x

−i) such that x∗ is a Nash Equilibrium solution

of problem (3.7) if and only if x∗ solves the fixed-point equation x∗ = F (x∗).

Proof of Theorem 6. We fix i and x−i and prove that the optimization problem of bank i

has a unique solution xi = F i(x−i). The proof works for a more general class of regulatory

functions H(x) := H i(x, x−i) that satisfy the condition:

Condition on H: For each i, the set H+ := {x ≥ 0 : H(x) ≥ 0} is a connected interval.

It is straightforward to verify that the Liquidity Coverage Ratio (3.9), Leverage Ratio

(3.10) and a mixture of both (3.11) all satisfy this condition. We also note that C := {x ≥
−qi0 : Ci

1(x, x−i) ≥ 0} is a connected interval.
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Now note that the equity of bank i is a piecewise quadratic in x:

E(x) := Ei
1(x, x−i) =

{
λγx2 + (λqi0 + γS−)x+ qi0S− + ∆i. if x ≤ 0
−λγx2 + (λqi0 − γS−)x+ qi0S− + ∆i if x ≥ 0

. (3.12)

where S− := S−i := S0 + λ
∑

j 6=i x
j.

Now suppose that H ∩C ∩ [0,∞) 6= ∅. Then it is either suboptimal (if 0 ∈H ∩C )

or inadmissible for the bank to sell because E(x) < E(0) ∀x < 0. Since E(x) is strictly

concave on [0,∞) and H ∩ C is non-empty and connected, E(x) has a unique maximum

on H ∩ C .

Next, suppose H ∩ C ∩ [0,∞) = ∅. Notice that, with γ ∈ [0, 1] the derivative of the

equity function for x ∈ [−qi0, 0] is positive because

E ′(x) = 2γλx+ λqi0 + γS− ≥ γλ(x+ qi0) + γSmin > 0.

Therefore, E(x) is increasing on [−qi0, 0]. Thus the unique maximum is the supremum of

the set H ∩ C ∩ [−q0, 0).

Finally, if H ∩ C is empty, then the unique solution is given by xi = −qi0.

We shall postpone computation of explicit strategies to the next section, where it is

shown that the equilibrium points of the game can be fully determined in terms of their

corresponding equilibrium prices.

An interesting feature of the Nash equilibrium solution is Pareto-optimality. This

concept is defined as follows

Definition 10. Let D be a subset of ΠN
i=1[−qi0,∞). A trading strategy of the system x̂ ∈ D is

called Pareto-optimal if there exists no other strategy x ∈ D that is better for all banks. More

precisely, let θi(x) ∈ {0, 1} be the survival indicator of the bank i associated to the strategy x,

i.e. θi = 0 if i defaults and θi = 1 otherwise. The solution x̂ := (x̂i)i=1,...,N is Pareto-optimal

if there exists no other solution x := (xi)i=1,...,N such that Ei(x) ≥ Ei(x̂), θi(x) ≥ θ̂i(x̂)∀i
and strict inequalities happen for some i.

In the sequel, the set D of interest will belong to one of the two cases:

1. Case 1: D = DNE is the set of all possible NE strategies.
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2. Case 2: D = Dad is the set of all admissible trading strategies, i.e.

Dad = {x ∈ ΠN
i=1[−qi0,∞) : E

i
(x) > −∞}. (3.13)

3.3 The Aggregate Response Function

Given a constraint H that is one of (3.9), (3.10), or (3.11), assume that there exists a Nash

Equilibrium strategy x∗ = {xi∗}i=1,...,N that satisfies (3.6). We then define

S∗ := S0 + λ
N∑
i=1

xi∗ (3.14)

to be the equilibrium price associated with the strategy vector x∗. The proof of Theorem 6

shows that for each i, xi∗ = Fi(x
−i∗) depends on x−i∗ only through S∗−i := S0 +λ

∑
j 6=i x

j∗ =

S∗−λxi∗. Thus, xi∗ = F i(S
∗
−i)) for some scalar function F i, and hence the optimal strategy

xi∗ for bank i is linked to the equilibrium price S∗ via the equation xi∗ = F i(S
∗ − λxi∗).

This is an implicit relation for xi∗ in terms of S∗ that may have multiple solutions. The

following lemma, easy to prove, provides a necessary and sufficient condition under which

such a relation can be solved uniquely by xi∗ = Gi(S
∗):

Lemma 7. The equation xi∗ = F i(S
∗− λxi∗) has unique solution xi∗ = Gi(S

∗) if and only

if the function s→ s+ λF i(s) is one-to one. Furthermore, Gi is defined by

Gi(S
∗) = F i((Id + λF i)

−1)(S∗). (3.15)

This implies that if an equilibrium price S∗ is known to all banks for some reason

(for example, if banks can rationally predict this price after taking into account trading

strategies of all other banks), then each bank is able to come up with an optimal trading

strategy that depends only on S∗. This realization is sufficient to prove the following

theorem that reduces the study of Nash equilibriums to the study of fixed points of a scalar

equation.

Theorem 8. Suppose that the regulatory functions take one of three forms (3.9), (3.10) or

(3.11). There exist N response functions (Gi)i=1...N , given explicitly by (3.20), (3.21), and

(3.22), that satisfy the following properties.
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1. If (xi)i=1...N is a vector of trading strategies such that bank i solves its own optimiza-

tion problem (3.6), then xi = Gi(S), where S = S0 + λ
∑N

i=1 x
i.

2. The Nash Equilibrium strategy xi∗ of bank i is related to the equilibrium price S∗ by

xi∗ = Gi(S
∗). Consequently, there is a one to one mapping between the set of Nash

Equilibrium points (xi∗) and the set of equilibrium prices S∗.

3. The Nash Equilibrium price S∗ is a solution of the fixed point equation

S = S0 + λG(S) (3.16)

where G(S) :=
∑N

i=1Gi(S) is called the aggregate response function.

The existence and properties of the individual response functions Gi(s) follow from

Lemma 7, we will need explicit formulas for the different constraint cases. We present the

argument for the LR case (3.10), and leave the other two similar cases for the reader.

For i fixed, and the final price S1 = S, we determine the optimal response x = G(S)

of bank i. The essential point in the computation is that when the constraint H ≥ 0

can be achieved, the function E(x) must always be maximized by varying x while keeping

S− := S − λx fixed.

First, note that x = G(S) ≥ 0 if and only if S ≥ − ∆
(1−r)q : If S ≥ − ∆

(1−r)q then

the bank will be compliant with x = 0 and this is a better strategy than any sell strategy

x < 0 because E(x) is increasing on [−q, 0] (selling reduces equity due to transaction costs);

conversely, if S < − ∆
(1−r)q then one can check that only sell strategies have the possibility

to yield H(x) ≥ 0.

Next, we assume S ≥ − ∆
(1−r)q and x = Gi(S) ≥ 0. Maximizing the quadratic Ei(x)

given by (3.12) over [0,∞) leads to

xE :=

(
q

2γ
− S−

2λ

)+

=

(
q

γ
− S

λ

)+

, (3.17)

which is an upper bound on Gi(S). Since the bank i is not allowed to borrow money, C ≥ 0,

which implies

Gi(S) ≤ xC :=
C

(1 + γ)S
. (3.18)
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Finally, the bank needs HK ≥ 0, hence

G(S) ≤ xH :=
(1− r)q
(r + γ)

+
∆

(r + γ)S
. (3.19)

From these three inequalities, we conclude that G(S) = min{xE, xC , xH} when S ≥ − ∆
(1−r)q .

Finally, we assume the complement: S < − ∆
(1−r)q and x = Gi(S) < 0. Then, the

inequality HK ≥ 0 becomes

(γ − r)xS + (1− r)qS + ∆ ≥ 0.

If r ≤ γ, there is no x < 0 and S that satisfies this requirement, therefore x = G(S) = −q.
On the other hand, if r > γ, the bank sells the minimum amount to achieve compliance

HK = 0, or if it cannot comply, sells −q, which leads to

G(S) = max

{
−q, (1− r)q

(r − γ)
+

∆

(r − γ)S

}
when r > γ .

This argument for the LR case and analogous arguments for the LCR and MLC cases

yield the desired formulas for the response functions Gi(S):

1. Liquidity coverage ratio:

Gi(S) =

 min{( q
i
0

γ
− S

λ
)+,

∆i,s
0

(1+γ)S
} if ∆i,s

0 ≥ 0

min{−qi0,
∆i,s

0

(1−γ)S
} if ∆i,s

0 < 0
(3.20)

2. Capital Adequacy Ratio:

Gi(S) =


min{( q

i
0

γ
− S

λ
)+,

Ci0
(1+γ)S

,
(1−r)qi0
(r+γ)

+
∆i

0

(r+γ)S
} if S ≥ − ∆i

0

(1−r)qi0
max{−qi0,

(1−r)qi0
(r−γ)

+
∆i

0

(r−γ)S
} if S < − ∆i

0

(1−r)qi0
, r > γ

−qi0 if S < − ∆i
0

(1−r)qi0
, r ≤ γ

(3.21)
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3. Mixed liquidity and capital ratio:

Gi(S) =



min{( q
i
0

γ
− S

λ
)+,

∆i,s
0

(1+γ)S
,

(1−r)qi0S+∆i
0

(r+γ)S
} Case A

max{−qi0,
∆i,s

0

(1−γ)S
} Case B1

max{−qi0,
∆i,s

0

(1−γ)S
,
rqi0S+∆i

0

(r−γ)S
} Case B2

max{−qi0,min{ rq
i
0S+∆i

0

(r−γ)S
,

∆i,s
0

(1−γ)S
}} Case C1

−qi0 Case C2

(3.22)

Here the cases are determined by:

Case A: S ≥ − ∆i
0

(1− r)qi0
and ∆i,s

0 ≥ 0

Case B1: S ≥ − ∆i
0

(1− r)qi0
and ∆i,s

0 ≤ 0 and r > γ

Case B2: S ≥ − ∆i
0

(1− r)qi0
and ∆i,s

0 ≤ 0 and r ≤ γ

Case C1: S ≤ − ∆i
0

(1− r)qi0
and ∆i,s

0 ≤ 0 and r > γ

Case C2: S ≤ − ∆i
0

(1− r)qi0
and ∆i,s

0 ≤ 0 and r ≤ γ

(3.23)

We see that the response function for the mixed constraint case is similar in form

to the leverage ratio only scenarios, and both these cases are somewhat more complicated

than the LCR case.

3.4 Existence and uniqueness of Nash Equilibria

Using the results from the previous section, we know that all equilibrium prices S∗ are

solutions of the equation (3.16). However, the opposite statement is not necessarily true.

The following theorem shows under what conditions the problem has at least one Nash

equilibrium solution. Moreover, it also shows that when the problem has multiple NE

solution, the higher the NE price is, the better the system will become.
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Theorem 9. Suppose that

• In the LCR case: S−min ≥ λmaxi=1...N{qi0}, where S−min := S0 − λ
∑

∆i,s
0 <0 q

i
0.

• In the CAR case: r > γ and Smin ≥ [K + 1]λmaxi=1...N{qi0}, where Smin := S0 −
λ
∑N

i=1 q
i
0 and K := 1−r

r+γ
.

Then, the following statements are true

1. There exists at least one NE solution to the problem (3.6).

2. The NE solution that corresponds to the largest NE price is Pareto-optimal amongst

all NE strategies in DNE.

Note that the technical condition for the LCR case is very easily satisfied, in particular

if S−min ≥ λ
∑

∆i,s
0 <0 q

i
0 and S−min

∑
∆i,s

0 <0 q
i
0(1 − γ) ≥ ∆−. The first requirement S−min ≥

λ
∑

∆i,s
0 <0 q

i
0 means that the market is large enough to completely absorb all liquidity put

on the market by distressed banks even if their leverage is 100% leverage. The second

requirement implies that if the distressed banks are merged as a single aggregate bank

that liquidates all its assets, it still remains able to meet the liquidity constraint. These

conditions are clearly very realistic requirements.

However, the technical condition for the CAR case is strong one. Under this condition,

a bank that is initially incompliant (knowing trading strategies of other banks) is not able

to meet the constraint again if it tries to buy the risky asset to rise the price up. The only

way to comply, if possible, is to sell part of its risky asset to deleverage its portfolio.

The next theorem studies the uniqueness of solutions of the problem.

Theorem 10. Suppose that

• In the LCR case: (S−min)2 > −λ∆−

1−γ , where ∆− :=
∑

∆i,s
0 <0 ∆i,s

0 .

• In the CAR case: (S−min)2 > − λ∆
r−γ , where ∆ :=

∑N
i=1[ci0 − di0].

Then the Nash equilibrium solution, if exists, is unique.

Exchangeable Banks: If the conditions given in the statement of Theorem 10 do not

hold, then there may be many equilibria with different sets of defaulted banks. One can

provide fully detailed results in the case of exchangeable banks, which means they have

the same balance sheets Bi = B and regulatory parameters. In the case of initially LCR-
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compliant banks, the monotonicity of the response function given by (3.20) easily implies

there always exists a unique Nash Equilibrium which is buy-only. The following proposition

sums up results on the existence and uniqueness of solutions in all possible cases where the

banks are initially noncompliant, ∆s
0 = ∆i,s

0 < 0.

Proposition 11. Suppose that N exchangeable banks have ∆s
0 < 0. Define

Smin := S0 −Nλq and S± :=
S0 ±

√
S2

0 +
4Nλ∆s

0

1−γ

2

and suppose that Smin ≥ λq.

1. If Smin ≥ − ∆s
0

(1−γ)q
then there exists a unique NE price S∗ = S+ in which all banks

survive.

2. If Smin < − ∆s
0

(1−γ)q
and

(a) S2
0 +

4Nλ∆s
0

1−γ > 0 and S+ > NS− then there exist unique NE price S∗ = S+. All

banks survive in this state.

(b) S2
0 +

4Nλ∆s
0

1−γ ≥ 0 and S+ < NS− then there exist two NE prices S∗ ∈ {S+, S−}.
All banks survive in these states.

(c) S2
0 + 4Nλ∆

1−γ < 0 then there exists a unique NE price S∗ = Smin in which all banks

default.

The following proposition sums up information for the CAR contraint case. Let us

denote K = 1−r
r−γ , S̃ = − ∆

(1−r)q ,∆ = C0 − D0 < 0 and suppose that Smin ≥ (K + 1)λq

and r > γ. As in the LCR case, we will consider the case where all banks are initially

incomplicant only, since the opposite case gives unique NE solution. Recall that the fixed

point equation now becomes

S − S0

Nλ
=

N∑
i=1

max{−q, xiH−(S)}1(S < S̃) +
N∑
i=1

min{xEC(S), xiH+(S)}1(S ≥ S̃),

where xiH± := (1−r)q0
(r±γ)

+ ∆0

(r±γ)S
and xEC(S) := min{( q0

γ
− S

λ
)+, C0

(1+γ)S
}.

Proposition 12. Case 1: Selling to survive. If the equation S = S0 +NλxiH+(S) has

no real solutions and
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1. If xiH−(Smin) > Smin−S0

Nλ
then there exists unique NE corresponding to the larger real

solution S2 of the equation xiH−(S) = S−S0

Nλ
.

2. Else

(a) If If xiH−(S) = S−S0

Nλ
has two real solutions S1 ≤ S2, Then S1, S2 are both NE

prices when S2 < NS1 and S2 is the only NE price otherwise.

(b) Else the system defaults at the unique NE state x = −q.

Case 2: Buying to survive. If the equation S = S0 +NλxiH+(S) has two real solutions

S3 ≤ S4 and

1. If xEC(S4) ≥ S4−S0

Nλ
: Then S3, S4 are both NE prices when S4 < NS3 and S4 is the

only NE price otherwise.

2. If xEC(S2) < S2−S0

Nλ
and xEC(S1) > S1−S0

Nλ
: Then S3 is the only NE price.

3. If xEC(S1) < S1−S0

Nλ
: Then the system default, i.e. x = −q. This is an example

of Prisoner’s Dilemma when banks fail to cooperate even when buying strategies are

available to save the system.

The proof of Proposition 11 is given in the appendix. The case of CAR constraint is

left to interested readers.

3.5 System under distress

In this section, we consider the situation when all banks in the network are under distress,

i.e. they are all initially incompliant. This is an appropriate simulation of reality when

the financial system is in crisis. In the first subsection, we show that in such a difficult

situation, banks tend to cooperate to reach a Pareto optimal state altogether. We then

provide in the second subsection a monotonic algorithm to find all Nash equilibrium states.
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3.5.1 A cooperative game

Consider a system where all banks initially violate the regulatory constraints, i.e. H i(0) ≤ 0

or all i. To ensurer the existence of Nash equilibria, we will assume that the technical

conditions given in Theorem 9 are satisfied. Under such conditions, we have the following

result.

Theorem 13. The following statements are true

1. There exists unique Pareto-optimal strategy for the system amongst all admissible

strategies in Dad. This strategy is a Nash equilibrium.

2. The NE price corresponding to this strategy is the largest solution of the fixed point

equation S = S0 + λG(S), where G(S) :=
∑N

i=1Gi(S) denotes the aggregate response

function.

The proof of this theorem is given in the appendix.

3.5.2 A monotonic algorithm to find NE solution

In this subsection we will provide an algorithm to find the NE prices of the constrained

Nash Equilibrium game. In general, the most straightforward algorithm is the following.

• Step 1: Solve the fixed point equation S = S0+λG(S). Note that this equation can be

reduced to piece-wise quadratic equations defined on consecutive intervals, therefore

it can be solved explicitly.

• Step 2: For each NE price S∗ that solves the above equation, we define xi∗ = Gi(S
∗)

and check if the vector x∗ satisfies the equation x = F (x∗).

The following algorithm provides a simpler method to find all NE solutions. It is based

on the idea that if the system is in distress, then each admissible strategy is dominated by

a NE strategy (from Theorem 13). Therefore, if starting with an admissible strategy, we

can improve this strategy step by step until we reach a NE one.
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Notice that when the regulatory constraint takes one of three forms LCR, CAR or

MLC and when the market is under distress, the fixed point equation for S now becomes

S = S0 + λ
N∑
i=1

Gi(S), Gi(S) = max(−qi0, xiH(S)), (3.24)

where xiH(S) denotes the unique feedback solution of the equation H(xi, x−i) = 0. Recall

that the functions Gi are non decreasing when H is LCR, CAR or MLC. For ease of notation,

for each subset A ⊆ [N ] we will denote Ac := [N ]\A and define

fA(S) := S − S0 − λ
∑
i∈A

xiH(S) + λ
∑
i∈Ac

qi0. (3.25)

Notice that this equation reduces to a quadratic one when H is LCR, CAR or MLC.

Algorithm

1. Step 1. Start with a guess A1 ⊆ [N ] as the set of hypothetical survival banks. This

first guess is found in such a way that equation fA1(S) = 0 has solution (the most

trivial guess is A1 = ∅). Denote S1 the largest solution of this equation.

2. With S = S1, define A2 = {i ∈ [N ] : Gi(S1) > −qi0}. Then solve the equation

fA2(S) = 0. Denote S2 the largest solution of this equation. Later we will prove

that S1 ≤ S2 or equivalently, A1 ⊆ A2. Furthermore, S2 corresponds to an admissible

strategy x = G(S2) for the system.

3. Repeat Step 2 we will obtain a monotonic sequence A2 ⊆ · · · ⊆ An. Step 3 stops

when An = An+1. Denote An = X1. This is the set of survival banks in a Nash

Equilibrium state. Moreover, it is the least favorable state if we start with A1 = ∅.

4. Step 4. Add one more hypothetical survival bank from Xc
1 to X1 if exists. More

precisely, we search i over Xc
1 and stop at the first i when the equation fB1(S) = 0

has solution, where B1 := X1 ∪ {i}. Now we repeat step 3 until we find the second

NE state, and keep going until we find all NE solutions.

The above algorithm is based on the following lemma.

Lemma 14. Let A ⊆ [N ] be such that the equation fA(S) = 0 has at least one solution.

Let SA be the largest solution of this equation. The following statements are true.
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1. Define B := {i : Gi(S
A) > −qi0}. Then the equation fB(S) = 0 has at least one

solution. Moreover, SB ≥ SA and SB corresponds to an admissible strategy for the

system. Consequently, there exists a NE state whose set of survival banks X contains

B.

2. Conversely, if X is the set of survival banks in a NE state and B ⊆ X, then the

equation fB(S) = 0 has at least one solution and SB ∈ [Smin, S0]. Moreover, the

mapping

2X 3 B → SB

is a non decreasing mapping.

3.6 A Game with Tipping Points

Since the assumption that all banks know the full balance sheets and trading strategies of

all other banks is counterfactual, it is important to investigate the robustness of the system

as a whole when banks implement strategies based on wrong information. The following

very simple example highlights the general statement that multiagent games such as ours

exhibit dramatic tipping points, that is, circumstances where a very small adjustment leads

to huge consequences.

We compare two scenarios involving N banks. The benchmark scenario, Scenario A,

has exchangeable banks that are marginally compliant with the LR requirement. In the

alternative, Scenario B, the only adjustment is that one bank transfers equal cash amounts

of K to the N − 1 remaining banks, leaving the total capital of the system unchanged.

We compare the outcomes using a systemic risk measure M that penalizes banks that are

sufficiently noncompliant:

Mε =
N∑
i=1

1(H i,K < −ε) (3.26)

In Scenario A, we assume:

C1 All banks exercise their Pareto strategy for the LR requirement, under the assumption

all other banks are identical to themselves.
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C2-A Banks have identical balance sheets B which are borderline compliant, i.e. HK
0 =

(1− r)q0S0 + ∆0 = 0, and furthermore, S0 ≥ Nλ(1−r)q
(r+γ)

.

In Scenario B, we assume [C1] and replace [C2-A] by:

C2-B The balance sheets of Scenario A are adjusted by transferring equal cash amounts of

K from one bank, now called non-compliant (NC), to the N − 1 remaining banks,

now called the compliant (C).

In Scenario A, the condition S0 ≥ N(1−r)q
(r+γ)

ensures that each bank follows (3.21) and

does nothing, x = 0. This results in an unchanged equilibrium price S1 = S0 and the

resultant systemic risk measure is Mε = 0.

In the alternative, Scenario B, the initially non-compliant (NC) bank assumes all

other banks are in a similar state of non-compliance, and will sell assets. The amount sold,

−xNC > 0, is computed by assuming the final price SNC = S0 + λNxNC < S0 that arises

when all N banks sell −xNC computed using (3.10) with ∆ replaced by ∆− (N − 1)K:

[(1− r)q − (r − γ)xNC ]SNC + ∆− (N − 1)K = 0 (3.27)

Neglecting terms of O(K2), one finds

xNC ∼
−(N − 1)K

λN(1− r)q − (r − γ)S0

+O(K2)

On the other hand, the initially compliant (C) banks have excess cash. They assume the

final price will be SC = S0 + λNxC > S0 that arises when all N banks buy xC computed

using (3.10) with ∆ replaced by ∆ +K:

[(1− r)q − (r + γ)xC ]SC + ∆ +K = 0 (3.28)

Again, neglecting terms of O(K2), one finds

xC ∼
K

λN(1− r)q − (r + γ)S0

+O(K2)

The actual final price is therefore S1 = S0 + λ[(N − 1)xC + xN ], which we note is strictly

73



between SNC and SC . The C-banks end up non-compliant with

HK
C = [(1− r)q− (r+ γ)xC ]S1 + ∆ +K = −λ[(1− r)q− (r+ γ)xC ][xC − xN ] < 0 ; (3.29)

while the NC-bank ends up compliant with

HK
NC = [(1− r)q− (r−γ)xNC ]S1 + ∆− (N −1)K = λ[(1− r)q− (r−γ)xNC ][xC−xN ] > 0 .

(3.30)

In fact, if

ε . Kλ(1− r)q
[

1

λN(1− r)q − (r + γ)S0

+
(N − 1)

λN(1− r)q − (r − γ)S0

]
+O(K2) ,

all N −1 initially compliant banks end up non-compliant with HK < −ε, and the resultant

risk measure will be the extreme value Mε = N − 1 in Scenario B. In other words, if the

safety buffer ε is small relative to the shock K, the dramatic result is that the initially non-

compliant bank becomes compliant, while all the remaining banks end up non-compliant,

due to the price impact caused by the selling of one bank!

One might object to this conclusion on the grounds that the non-compliant bank

is excessively pessimistic in assuming all other banks are also non-compliant, or that the

compliant banks are unjustifiably complacent. However, one can argue that non-compliant

banks, aware of their deficient information, will make pessimistic estimates in order to be

certain to comply. Moreover, the initially compliant banks, knowing they have an implied

ε buffer, seem to be at least partially justified in making such a complacent “business as

usual” assumption.

The overall conclusion is that when banks act rationally but with wrong information,

surprisingly dramatic tipping points can occur.

3.7 Systemic Risk Scenarios

In this section we study the effect of regulations on a market with a fixed number of

participants, and a single shared illiquid asset. The usual assumption of perfect information

is still kept, as well as the transaction costs and permanent price impact factors are shared
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by all market participants. Unless otherwise stated, all agents conform to the parameter

values given in the table below, with all dollar values perturbed within 10% of their mean

values under a uniform distribution.

Table 3.2: Sample Parameters

Parameter Parameter Value
Initial Stock Price S0 = $100

Temporary Market Impact Γ = 1%
Permanent Market Impact Λ = $10−7/unit

Initial Holdings q0 = 200000
Initial Cash C0 = $1000000

Initial Equity E0 = 5% of total asset
Number of agents N = 100

3.7.1 Liquidity Requirements
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Figure 3.1: The change in response function from varying level of liquidity
requirement as well as number of market participants

The result of having only the Liquidity Requirement enforced upon the banks is

straightforward. As seen in figure 3.1, the more liquid asset required to be held, the less

illiquid asset can be invested into. Furthermore it is relatively straightforward, when an

agent does not have enough liquid assets to satisfy this requirement, the agent will simply

sell until he can satisfy his requirement or liquidate himself while trying. All of this results

in a lower equilibrium price for the illiquid asset, and demonstrating that the more liquidity
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hoarded, the lower the marked to market price of the illiquid asset. We can also see that

by doubling the number of participants in the market, we further enhance the firesale effect

due to more agents needing to unload the illiquid asset in order to meet their liquidity

requirements. This is a stark comparison to the point of view of a single agent’s balance

sheet, where 10-20% of shares could have been maintained if only one bank was participating

in the market.

3.7.2 Stylized Experiments

For this experiment we start with a stylized system of exchangable banks which must satisfy

both the liquidity constraint as well as the leverage ratio constraint. The parameters given

are:

1. total fixed assets: NqS0 = $10Tr

2. number of banks: N = 10, 100

3. S0 = 100, γ = 0.02, r = 0.05

4. D`
0 = (1− r)qS0, Ds

0 = 0.05D`

5. C0 uniformly random over range [(1− η−)Ds
0, (1 + η+)Ds

0].

Furthermore the parameter λ is set so that S0 − λ ∗Nq = 1
2
S0. As shown in the previous

section, it is natural that the resulting illiquid asset price is lower than the initial price if the

banks enters into a sell strategy. On the other hand, by limiting the initial cash accounts of

the banks to exactly matching their short term debt requirements (η = 0), banks become

unable to execute buy strategies. The following figure demonstrates the above two points

and compares the possible strategies if the banks were required raise equity during the

trading period.

The above figure shows that when all agents are indeed on the boundary of the liq-

uidity constraint, buy strategies are not available even if the leverage constraint is relaxed.

More drastically, if regulators were to impose a harsher leverage constraint onto a system of

banks such as this one, it could result in the Nash Equilibrium strategy becoming limited

to a total system-wide liquidation event.
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Figure 3.2: The system of exchangable banks starts with initial r = 0.05, but
at the end of the trading period they must satisfy a new leverage requirement.
All banks are fully exchangable hench η = 0

The following two figures study the effects of heterogeneity on the banking system.

In particular each bank has a different amount of initial cash, while the total cash in the

system remained the same and as a result individual equity levels are changed accordingly

as well. By giving varying amount of initial cash account to each bank, all banks now must

execute different strategies, and even more so, banks are no longer at their constrained

optimal asset allocation initially. This results in a net loss to the system through the

transaction cost γ regardless of the resulting illiquid asset price value. In particular, when

banks assume that all other banks have the same balance sheet as itself, this leads to banks

which must sell to aim for a even lower price, and banks who simply want to spend all

excess cash to purchase less shares. As seen in Figure 3.3 (a), the red line is much lower

than its corresponding response function in Figure 3.3 (b), due to the above effect.

Overall, based on the previous figures of aggregate response function, there appears

to be a large asymmetry between the upward movement and the downward movement of

the price of the illiquid asset. In the all of the previous figures, it seems even with extra
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(b) Banks have full information

Figure 3.3: The heterogiety level of the agents with in the system is varied.

cash on hand to invest, the banks cannot push the illiquid asset price up high enough to

make it worthwile. Since the permanent market impact symmetrically impacts the illiquid

asset price, it falls to the proportional temporary impact factor to cause this effect. In fact,

when we study the equity maximization portion of the individual response functions, we

can see both that γ appears on the denominator of the first term, hence a minor increase

in γ will greatly reduce the optimal illiquid asset holding level to while maximizing equity.

A closer inspection also show that the second term S
λ
≈ O(N), hence also decreases the

optimal illiquid asset holding levels. This provides sound evidence of that having more

competition in the market reduces price manipulation behaviours.

3.8 Conclusions and Remarks

We studied the effects of regulatory constraints on a system of agents, and provide a

framework to further study multiple types of constraints simultaneously as well as obtain

the Pareto Nash Equilibrium explicitly in linear time. More specifically, we focused on two

typical regulatory constraints faced by a system of financial institution. The first one being

a constraint on the short term liquid asset an institution must maintain, the second one

being the leverage ratio. Both of these constraints have been implemented, and strictly

monitored in the real world setting by various regulatory agencies, providing the necessity
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as well as the interest to study these to regulatory constraints. In the following paragraphs,

we will provide a small summary of the effects of each regulatory constraint, as well as some

analysis into future work that could be built upon this paper.

For the liquidity requirement, if implemented by itself in this simple agent-based

model framework, the cost to the system is easy to measure and there are some qualitative

analysis of the Nash Equilbrium strategy can be done without finding the NE explicitly.

Based on our analysis from the previous sections, the only strategy capable of allowing a

bank to reach its minimum cash holding level is to sell the illiquid asset regardless of its

price. This creates to a downward pressure on the price of the illiquid asset, and in turn

damages the mark-to-market balance sheets of all agents in the system. This leads to the

case, where the more liquid asset institutions are required to hold, the lower the illiquid

asset price will become. This result is straightforward, and expected, and is one of the

reasons we chose to analyse liquidity requirement first.

The leverage ratio requirement can be viewed as a more harsh requirement than the

liquidity requirement. From our numerical studies, we can see that under the parameters

that we chose, there is always a lower equilibrium price point corresponding to a total

liquidation strategy of the system. The transaction cost and the negative pressure on the

illiquid asset, both impacts the equity level of the agents especially when the agents are

trying to convert illiquid asset into liquid assets which compounds the problem by costing

them liquid asset through the proportional transaction cost. This analysis shows the pro-

cyclicality of using leverage ratio as a regulatory constraint, where in times of crisis, the

simple drop of the illiquid asset price will breach the leverage threshold, and cause further

drops in asset prices.

In reality, banks are bound by vast amounts of regulatory constraints, even many

regulations themselves have competing interests. In this paper we show a proof of concept

for this agent-based simulation framework by analysing the effects of having two simulta-

neous regulatory constraints. Future work include implementating this agent-based model

framework directly into a network systemic risk model such as proposed by Eisenberg and

Noe (2001). The interbank network and the initial shock can be modelled by the short

term debt holdings of the agents. Also, a generalization of the linear demand function can

be used with minimal effects on the algorithm to determine the equilibrium price.
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Appendix 3.A Proofs of Main Results

Proof of Theorem 9

Proof. LCR case. We first prove the existence of solutions. To do so, let us get back to

the optimization problems of individual banks. If ∆i,s
0 ≥ 0, the optimal trading strategy of

bank i, knowing S∗−i is given by

xi∗ = Fi(x
−i∗) := (

qi0
2γ
−
S∗−i
2λ

)+ ∧
−S∗−i +

√
(S∗−i)

2 +
4∆i,s

i

1+γ

2λ
.

Otherwise, if ∆i,s
0 < 0, by using the condition in the statement of the theorem, we can write

the optimal strategy for the bank i as follows

xi∗ = Fi(x
−i∗) := −qi0 ∨

−S∗−i +

√
[(S∗−i)

2 +
4∆i,s

i

1−γ ]+

2λ
.

In this formula, the fractional term corresponds to the larger solution of the constraint

equation H i,K = 0 (if it exists), or the maximizer of H i,K in case H i,K = 0 has no solution.

In the former case, we chose the larger solution to minimize the selling amount and therefore

optimize the equity; while the latter case yields xi∗ = −qi0 because S∗−i ≥ 2λqi0. Writing

the optimal trading strategy this way, we can see that Fi is continuous.

Let us define F := (Fi)i=1...N and consider the fixed point equation x = F (x). Each

solution of this equation corresponds to a NE point of the game. It is easy to see that the

function F is bounded and continuous, therefore the fixed point equation has at least one

solution, which ensures the existence of NE points.

Now, consider two NE points x1, x2 associated to NE prices S1, S2, respectively. Sup-

pose that S1 < S2. We will prove that S2 is a better NE price than S1. Indeed, for initially

compliant banks, the functions Gi are non increasing in S, therefore x1
i ≥ x2

i . Note that

Ei(x) = ∆i
0 + (qi0 − γx)S, we can deduce that Ei(x

1) ≤ Ei(x
2). Therefore, S2 is better for

the bank i than S1 (note that they are both alive). Likewise, for the initially distressed

banks we have x1
i ≤ x2

i and Ei(x
1) ≤ Ei(x

2). The former implies that θi(x
1) ≤ θi(x

2). We

then come to a conclusion that in any case, S2 is always better for the system than S1.
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Note that the number of NE points cannot be larger than the number of solutions to the

equilibrium equation (3.16), which is finite. Therefore, the Pareto-optimal NE point of the

game exists and is uniquely determined by the largest NE price.

CAR case. We now prove the existence of solutions. If H(0, x−i∗) ≥ 0 then the optimal

strategy of the bank i is to buy. The computation of the optimal strategy of the bank i in

this case is quite straightforward

xi∗ = min{xiE(S−i∗), xiC(S−i∗), xiH+(S−i∗)},

where xiE(S−i∗), xiC(S−i∗)and xiH+(S−i∗) denote the values at which Ei(x, x−i∗) attains its

maximum, Ci(x, x−i∗) = 0 and H i(x, x−i∗) = 0, respectively. These functions are well

defined and bounded, continuous.

If H(0, x−i∗) ≥ 0 then the optimal strategy of the bank i is to sell. We use a similar

argument as in the LCR case to obtain

xi∗ = max{−qi0, xiH−(S−i∗)},

where

xiH−(S−i∗) = −S
−i∗ −Kλqi0

2λ
+

1

2λ

√(
(S−i∗ −Kλqi0)2 +

4λH i(0, x−i∗)

r + γ

)+

.

The response function F (x) is thus continuous and bounded. Consequently, the fixed point

equation x = F (x) has at least one solution. This proves the existence of a NE solution of

the problem.

We now show that if S1 and S2 are two NE prices such that S1 ≤ S2 then S2 is better

than S1 for the system. The technique of the proof is slightly different from the LCR case

because the response functions Gi are not necessarily monotonic. It suffices to prove that

Ei(S1) ≤ Ei(S2) for the case Gi(S1), Gi(S2) ≥ 0. Indeed, let Ŝi be the unique solution of

the equation

xiEC(S) := min{xiE(S), xiC(S)} = xiH−(S).

If S1 ≥ Ŝi then Gi(S1) = xiEC(S1) and Gi(S2) = xiEC(S2). Since xiEC is non increasing and
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S1 ≤ S2 we can deduce that x1 ≥ x2. Thus Ei(S1) ≤ Ei(S2).

Otherwise if S1 ≤ Ŝ then Gi(S1) = xH−(S1) and Gi(S2) ≤ xH−(S2). Note that

xH−(S) = 1−r
r−γ q

i
0 +

∆i
0

(r−γ)S
and Ei(S) = ∆i

0 + [qi0 − γGi(S)]S We have

Ei(S1) =
1 + r − γ
r − γ

∆i
0 +

r(1− γ)

r + γ
qi0S1 ≤

1 + r − γ
r − γ

∆i
0 +

r(1− γ)

r + γ
qi0S2 = Ei(S2).

Proof of Theorem 10

Proof. We consider the LCR case first. Rewrite the equation (3.16) in the form S − S0 −
λ
∑

i∈I+ Gi(S) = λ
∑

i∈I− Gi(S). Let us denote by p(S) and q(S) the functions on the left

and the right hand sides of this equation, respectively. We will show that the mapping G

is a contraction one with given conditions. It is easy to show that q([0,M)) ⊆ p([0,M))

for M > 0 large enough. Moreover, p, q has derivatives almost everywhere except at a

finite points and p′(S) ≥ 1 a.e. Therefore, the fixed point equation can be rewrite in the

form S = p−1(q(S)). We will show that p−1(q) is a contraction mapping on [0,∞). Indeed,

at a point S where both p, q have derivatives, by using the explicit form of p, q and the

hypothesis given in the statement of the theorem we have q′(S) ≤ λ∆−

(1−γ)S2 < 1. Therefore

(p−1(q(S)))′ = q′(S)
p′(p−1(q(S)))

< 1.

We now consider the CAR case. Denote S̃i := − ∆i
0

(1−r)qi0
and let Ŝi be the unique

solution of the equation

xiEC(S) := min{xiE(S), xiC(S)} = xiH−(S).

We can rewrite the response function Gi as follows

Gi(S) = [−qi0 ∨ xH−(S)]1(S < S̃i) + xH+(S)1(Ŝi ≥ S ≥ S̃i) + xEC(S)1(S > max{Ŝi, S̃i}).

Note that the functions [−qi0∨xH−] and xH+ are non decreasing, whereas the function xEC

is non increasing. We can then apply the same technique as in the LCR case to show that

under the conditions given in the statement of the theorem, te fixed point equation (3.16)
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can be reduced to a new one with contraction mapping, hence uniqueness of solutions.

Proof of Proposition 11

Proof. When all banks have the same set of parameters, the fixed point equation for S∗ is

given by (denote ∆ := −∆i and qi = q.)

S − S0

λ
= −N [q ∧ ∆

(1− γ)S
]. (3.31)

The fixed point equation for x∗ is given by

xi = −

q ∧ S−i −
√

[(S−i)2 − 4∆
1−γ ]+

2λ

 . (3.32)

Notice that Smin is solution of the equation

S − S0

λ
= −Nq,

and the condition Smin < − ∆
(1−γ)q

is to ensure that Smin solves (3.31). Notice that once

Smin solves (3.31), the condition Smin ≥ λq will ensure that xi = −q does not solve (3.32),

so xi = −q is never a Nash equilibrium solution. Furthermore, under the condition Smin <

− ∆
(1−γ)q

, if S± are two real solutions of the equation

S − S0

λ
= − N∆

(1− γ)S
↔ S2 − S0S +

λN∆

1− γ
= 0, (3.33)

then we can show that S± also solve (3.31). Consequently, S+ is always the Pareto-optimal

Nash equilibrium solution of the problem.

We now just have to determine under what condition, S− is also another price equi-
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librium. Notice that given S−, we can define xi via the equation xi = Gi(S−), or

xi =
−S−i ±

√
(S−i)2 − 4∆

1−γ

2λ
,

where S−i = S− − λxi. We can see that xi corresponds to a true Nash equilibrium if and

only if

xi < −
S−i
2λ

= −S− − λxi
2λ

↔ S− > −λxi.

However, from (3.33) we have S+S− = λN∆
1−γ . Hence

λxi = λG(S−) = − λ∆

(1− γ)S−
= −S+

N
.

Substitute this to the inequality S− > −λxi we arrive at

S− >
S+

N
↔ S+ < NS−.

This is the condition under which S− becomes a true Nash equilibrium price.

Proof of Theorem 13

Proof. We will prove this theorem for the LCR case only. The CAR case is similar (with

some slight modification).

1. Following Theorem 9, between two NE prices, the larger one is better for the

system. Then, it suffices to prove that any admissible trading strategy is dominated by a

NE one. We will prove a stronger statement: For any admissible strategy x ∈ Dad, there

exists a NE strategy x∗ such that x∗ ≥ x componentwisely.

We proceed the proof by induction. For N = 1 the statement is obvious because the

optimal trading stratey of an incompliant bank is to sell a minimal amount of risky asset

until the liquidity requirement is met. We suppose that this holds true until N = n. We

will show that the statement is also true for N = n+ 1.

Indeed, suppose that x = (x0
1, x

0
−1) is an admissible strategy. From the case N = 1,

when knowing x0
−1 the bank 1 can find an optimal strategy x1

1 ≥ x0
1. Consider the system in
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the new state (x1
1, x

0
−1). Since x1

1 ≥ x0
1, this new strategy is still an admissible one because

it is better than the old one x for the system. By induction hypothesis, when knowing x1
1

the banks {2, . . . , n + 1} can find a NE strategy x1
−1 ≥ x0

−1 which is a better strategy for

the system than x0
−1. We repeat this process infinite times to obtain an increasing sequence

of admissible trading strategies (xk1, x
k
−1) such that

xk+1
1 = F1(xk−1), xk+1

−1 = F−1(xk1).

Since this sequence is increasing and bounded by zero, it converges to some limit x∗.

Moreover, by the continuity of the functions Fi, we can pass by limit and obtain the

following equations

x∗1 = F1(x∗−1), x∗−1 = F−1(x∗1).

This means that x∗ is a NE strategy that dominates the initial strategy x.

2. It remains now to show that the largest NE price coincides with the largest solution

of the equation (3.16). Indeed, let S∗max be the largest solution of (3.16). It is obvious that

S∗max is larger than any NE price. By contradiction, we suppose that S∗max is not yet a NE

price and will show that there exists a larger NE price. Indeed, let denote xi∗ := Gi(S
∗
max)

and define S∗−i := S∗max − λxi∗. Following the proof of Theorem 9, we have

xi∗ = F̃i(x
−i∗) := −qi0 ∨

−S∗−i ±
√

[(S∗−i)
2 +

4∆i,s
i

1−γ ]+

2λ
.

Here, the function F̃i might take one of two forms depending on the constraint equation

xi∗(S∗−i + λxi∗)(1 − γ) = ∆i,s
i . In general we have F̃i ≤ Fi. Moreover, the contradictory

hypothesis implies that there exists i such that F̃i < Fi, (i.e. this bank acts irrationally).

Let us define

B := ΠN
i=1[xi∗, 0]. (3.34)

Since Gi is a non decreasing function for initially distressed banks and non increasing

otherwise, it is obvious that F (B) ⊆ B. By the Brouwer’s fixed point theorem, there exists

z ∈ B, z 6= x∗ such that F (z) = z. Define Sz := S0 + λ
∑N

i=1 zi., then Sz is a NE price and

Sz > S∗max, which is a contradiction.
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Proof of Lemma 14

Proof. 1. By comparing the functions fB and fA, it is easy to check that fB(SA) ≤ 0,

which implies that SA ≤ SB.

For all i ∈ B we have Gi(S
B) ≥ Gi(S

A) > −qi0. Therefore, SB corresponds to an

admissible strategy for the system. By Theorem 13, any admissible strategy is dominated

by a NE strategy.

2. By a similar method as in the previous part, we can show that fA(SX) ≥ 0.

Moreover, by definition of fA, we have fA(Smin) ≤ 0. So, there exists a maximum number

SA ∈ [Smin, S
X ] such that fA(SA) = 0.

Now if C ⊆ D ⊆ X, then we can check that fD(SC) ≤ 0, thus SC ≤ SD.
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Chapter 4

Double Cascade Model of

Financial Crises

“Double Cascade Model of Financial Crises” has been published in International Journal of

Theoretical and Applied Finance and is a joint work with Prof. Thomas Hurd, Dr. Davide

Cellai, and Dr. Sergey Melnik. The contributions of the author include: 1. Computer

programming, numerical analysis. 2. Equal share of technical derivation of this paper,

equal share of finalization of this paper, equal share of drafting. Modifications from the

original paper include formatting and merging of the bibliography with thesis bibliography.

In section 4.6, the author has made the following additions to the original paper, 1. Asset

Firesale Mechanism, 2. Systemic Risk Measures, 3. Numerical analysis of the impact of

asset firesales using Monte Carlo simulation based on the EU network.

4.1 Introduction

Since the banking crisis of 2007-2008, the types of shocks transmitted through interbank

networks during a crisis now thought to be important include not only shocks arising

from defaulting banks, but a number of additional phenomena, most notably asset shocks

originating with forced sales by banks of illiquid assets and funding liquidity shocks as

illiquid banks recall loans from other banks. A comprehensive treatment of these contagion
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effects and how they can be computed in stylized financial network specifications can be

found in Hurd (2016).

A well-developed strand of literature on bank default cascade models, starting with

Eisenberg and Noe (2001) and reviewed in Upper (2011), is based on a network of banks

wherein insolvency of a given bank, defined as a bank whose net worth becomes non-

positive, will generate shocks to the asset side of the balance sheet of each of its creditor

banks. Under some circumstances, such“downstream” shocks can cause further insolvencies

that may build up to create a global insolvency cascade. One such contribution is by Nier

et al. (2007) that uses Monte Carlo simulation to determine how the key network parameters

for their model of defaults in a stylized random network of 25 banks can influence the total

number of defaults in a nonlinear, indeed sometimes nonmonotonic, fashion. The paper of

Gai and Kapadia (2010a) and its extension by Gleeson et al. (2012), adapt the Watts (2002)

network model of information cascades to the context of financial systems, deriving both

analytical and Monte Carlo results for the dependence of the default cascade on different

structural parameters. May and Arinaminpathy (2010) present approximate analytical

formulas for the Nier et al model and Gai-Kapadia model that can explain some of the

main properties of the simulation results found in those papers. Amini et al. (2012) and

Amini et al. (2013) develop a simple but general analytical criterion for resilience to default

contagion, based on an asymptotic analysis of default cascades in heterogeneous networks.

More recently, after remarking on the observed “freezing” of interbank lending around

the time of the Lehman collapse, papers by Gai and Kapadia (2010b), Gai et al. (2011)

and Lee (2013) adopt variations of an idea that funding illiquidity1 of a bank can also

be transmitted contagiously through interbank exposures. They argue that a bank whose

liquid assets are insufficient to cover demands on its liabilities will be illiquid or “stressed”,

and must reduce its interbank lending, thereby creating shocks to the liability side of its

debtor banks’ balance sheets. Such“upstream” shocks can cause illiquidity stress in other

banks that in some circumstances may build up to create a global illiquidity cascade.

A third channel, sometimes called market illiquidity or the asset fire sale effect, is

identified by Cifuentes et al. (2005) who consider a network of banks that hold a common

1Funding illiquidity, being the insufficiency of liquid assets to cover a run on liabilities, is distinct from
market illiquidity, where assets become difficult to sell due to an oversupply in the market. See Tirole
(2011) and Brunnermeier and Pedersen (2009) for a detailed analysis of these concepts.
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asset. As stress in the system builds up, some banks are forced to sell large positions in

the illiquid asset, leading to a downward price spiral coupled to worsening bank balance

sheets across the network. This mechanism has been extended to the sharing of multiple

assets in a paper by Caccioli et al. (2014).

These papers simplify by omitting economic details that obscure their focus on a

single channel of systemic risk. They share the view that the end result of a crisis is a new

equilibrium that is reached through a sequence of mechanistic steps where banks update

and modify their balance sheets in response to price changes and shocks transmitted from

other banks. Usually, properties of the system at step n of the cascade can be computed in

terms of the properties at step n−1, yielding a set of equations that can be called a cascade

mapping. In some models, an analytic cascade mapping can be found that yields a detailed

picture of systemic risk without the need for Monte Carlo simulation based computations.

Even in such cases however, large scale benchmarking of the analytic approximation method

against Monte Carlo simulations is undertaken to validate its use.

An important question now arises whether one can successfully integrate two or more

such cascade mechanisms, incorporate “spillover” effects in a realistic, analytically tractable

way, and discern new features of systemic risk. The purpose of the present paper is to do

exactly this, by introducing a network model of a double illiquidity-insolvency cascade, and

deriving an analytic cascade mapping that describes it. This double cascade model, shown

schematically in Figure 4.1, can resolve issues not addressable within a single cascade model,

for example, to quantify the effect of a bank’s behavioural response to liquidity stress on

the level of eventual defaults in the entire system. In particular, one can show that a bank

that reacts to stress at a time of crisis by shrinking its own interbank lending, thereby

inflicting liquidity shocks to its debtor banks, will also protect itself from default due to

interbank default shocks.

In the literature on how contagion channels “spill over” into each other, Diamond

and Rajan (2005) explain the liquidity, solvency and behaviour of banks through the role

they play in intermediating between lenders and borrowers. As discussed in Tirole (2011),

the holding of very illiquid assets can cause solvent banks (those with positive equity) to

default due to their inability to raise enough liquidity to meet short-term needs. Battiston

et al. (2012) model the robustness dynamics of a network of banks linked by their interbank

exposures, highlighting the feedback effects of a “financial accelerator” mechanism on the
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Figure 4.1: A schematic diagram of part of a financial network, showing banks
and their balance sheets connected by directed edges representing interbank
exposures. Default shocks are transmitted in the forward “downstream”
direction, while liquidity or stress shocks are transmitted in the upstream
direction.

level of systemic risk. Roukny et al. (2013) further develop this idea, investigating the

systemic impact of network topologies and different levels of market illiquidity and applying

this methodology to the Italian interbank money market from 1999 to 2011.

It should be made clear that in order to focus on pure contagion effects, the double

cascade model and the above models simplify by explicitly ruling out certain other systemic

mechanisms that have been explored in the economics and finance literature. In the original

paper, the most important economic effect that is ruled out is the asset “fire sale”, which

means that for the duration of the crisis, changing values of fixed assets are ignored. This

is now further investigated following the numerical studies section. Some of the above

references discuss the impact of financial cascades on the non-financial economy and the

consequent feedback into the financial markets. They find that fire sales of assets amplify

any cascade that takes hold in the network. Using readily available data from the European

Banking Authority (EBA), we were able to measure the addition of the fire sale effect and

determine whether out main conclusions are robust to such an extension.

Section 2 of the paper sets out the network framework and assumptions underlying

the balance sheet structure of banks, the timing of the crisis and bank behaviour. These

assumptions lead to stock flow consistent rules for the transmission of shocks through the

double stress/default cascade, including the conditions for banks to become stressed or
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defaulted. Section 3 develops our main technical contribution, which yields an explicit

analytic cascade mapping for default and stress probabilities valid in a large heterogeneous

network of banks with random balance sheets and interbank exposures and connectivity

given by a random“skeleton”. Section 4 provides a parallel development of default and

stress probabilities for cascades on networks where it is assumed that the skeleton of inter-

bank connections is known explicitly, but balance sheets and exposure sizes are random.

Several representative financial experiments are reported in Section 5. First we summarize

experiments that validate the accuracy of the cascade mapping by direct comparison of

large network analytics to Monte Carlo simulation results. Secondly, we investigate the

relationship between the level of stress and default, verifying our assertion that average

default probability decreases as average stress probability increases. A final experiment

demonstrates that our analysis is still useful when pushed to a highly heterogeneous speci-

fication of the model that is consistent with known heuristics of financial networks, such as

fat-tailed degree and exposure distributions, and the 2011 stress testing data on 90 large

banks in the EU system. We observed that the stylized EU network is very resilient, and

only extremely large shocks to the average default buffer size will trigger a cascade of de-

faulted and stressed banks. Piggy backing on the numerical analysis of this section, we

were able to include the firesale effect as part of the simulation process to demonstrate the

interactions between these three channels of contagion.

One conclusion of this paper is that our analytic asymptotic results on default and

stress probabilities are broadly consistent with results from Monte Carlo simulations on

random networks. A second conclusion is that under the assumption of no asset fire sales,

stress and default are inversely related: as banks respond to stress more vigorously, creating

more network stress, they protect the network from default. Finally, based on numerical

studies, we conclude that firesale effect does amplify the systemic risk of the financial

network, and provides another link between the stress contagion and the default contagion.

4.2 Cascade Mechanisms

The assumptions we now make lead to a stylized network model admitting double cascades

of illiquidity and insolvency that can be computed efficiently under a wide range of initial

conditions. The picture to adopt is that of a system hit “out of the blue” by a large
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shock that triggers a systemic crisis that proceeds stepwise in time. Many realistic effects

that would significantly complicate our model are left out. For example, banks respond

mechanistically according to simple stylized rules rather than dynamically optimizing their

behaviour. We take a static view, and ignore external cash flows, interest payments and

price changes for the duration of the cascade. We make an assumption of zero-recovery

on interbank assets on the default of a counterparty during the cascade. Our assumptions

imply that insolvency (that is, when equity is nonpositive) is equivalent to default (that

is, the bank can no longer pay some liability). This means that even when stressed, banks

always pay recalled interbank liabilities in full, until the moment they become insolvent.

We make a final market price assumption, that the balance see price of a unit of the fixed

asset is the equilibrium price determined by an inverse demand function. This assumption

implies that the balance sheet is updated due to changes in the equilibrium price of the

fixed asset, and insolvence could occur due to it. It should be noted for the analytical

analysis sections we rule out other channels of systemic risk, in particular asset fire sales.

The network consists of a collection of N banks, labelled by numbers from the set

N = {1, 2, . . . , N}, each structured with a balance sheet as shown in Figure 4.2.

The subset of debtor banks of a bank v ∈ N is called thein-neighbourhood of v,

denoted by N −
v , and the in-degree is the number of debtors jv = |N −

v | . Similarly the

bank’s creditor banks form a subset called the out-neighbourhood N +
v of v whose size

kv = |N +
v | is called the out-degree. The web of interbank counterparties is called the

“skeleton”, and is identifiable as a directed graph, i.e. a collection of directed arrows,

called edges, between pairs of nodes. Each debtor-creditor pair v, w with w ∈ N +
v is

denoted by an edge ` = (vw) pointing from v to w.2 The type (j, k) of a bank v is its

in-degree j = jv and out-degree k = kv, and we write v ∈ Njk. The type (k, j) = (k`, j`) of

an edge ` = (vw) is the out-degree k` = kv of the debtor bank v and the in-degree j` = jw

of the creditor bank w, and we write ` ∈ Ekj.

The bank equity or net worth ∆v = max(AFv + AIBv + ALv − LDv − LIBv , 0) of bank v

incorporates limited liability, which assumes that the bank must default and be forced to

liquidate at the first moment it becomes insolvent, that is, its liabilities exceed its assets.

2The convention that arrows point from debtors to creditors means that default shocks propagate in
the downstream direction. Confusingly, much of the systemic risk literature uses the reverse convention
that arrows point from creditors to debtors.
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Liquid Assets

Default
Buffer

Unsecured
Interbank
Liabilities

L IB

Ωvw'1

Ωvw'2

External
Deposits

L D

Ωw v2

Ω
1w v

Figure 4.2: The stylized balance sheet of a bank v with in-degree jv = 3
and out-degree kv = 2. Banks w1, w2, w3 are debtors of v while w′1, w

′
2 are its

creditors. The total exposure of v to w1 is denoted with Ωw1v, and so on. The
default buffer ∆ of bank v is the difference between assets and liabilities, and
the “stress buffer” Σ is the preferred asset class from which it pays creditors’
demands.
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Thus ∆v can be interpreted as the bank’s default buffer that must always be kept positive

to avoid default.

Banks are also concerned about the possibility of runs on their liabilities, and try to

keep a positive buffer of liquid assets AL (such as cash and government bonds), henceforth

called the stress buffer Σ, which are the preferred asset class from which to pay creditors’

demands. A bank v with Σv fully depleted to zero will be called stressed. This does

not mean the bank isilliquid in the sense of being unable to meet the creditors’ demands.

Rather it means that the bank is experiencing a significant degree of stress in meeting

these demands and must turn to other assets, first interbank assets, then fixed assets, to

realize the needed cash. The no fire sale assumption means that as long as they are solvent,

stressed banks always meet their payment obligations.

The interbank liabilities LIB and assets AIB decompose into bilateral interbank ex-

posures. For any bank v and one of its creditors w ∈ N +
v , we denote by Ωvw the total

exposure of w to v. Then we have the constraints

AIBv =
∑
w∈N −

v

Ωwv; LIBv =
∑
w∈N +

v

Ωvw . (4.1)

Prior to the onset of the crisis, all banks are assumed to be in the normal state. Then,

on day n = 0, a collection of banks, possibly all banks, are assumed to experience initial

shocks. Two kinds of initial shocks are possible. First, an asset shock causes a drop in

the mark-to-market value of the fixed asset portfolio, and reduces the default buffer. If the

downward asset shock leads to ∆ ≤ 0, the bank must default. The second kind of shock is

a demand shock by the external depositors that reduces the stress buffer. If the demand

shock leads to Σ ≤ 0, the bank becomes stressed.

Timing and Bank Behaviour Assumptions:3

1. Prior to the crisis, all banks are in the normal state, neither stressed nor insolvent.

The crisis commences on day 0 after initial shocks trigger the default or stress of one

or more banks;

2. Balance sheets are recomputed daily on avmark-to-market basis and banks respond

3Treating cascade steps as daily is simply an aid to understanding.
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daily on the basis of their newly computed balance sheets. All external cash flows,

interest payments, and asset and liability price changes are ignored throughout the

crisis. Note that if asset firesale effects are not incorporated, the fixed asset portion

of the balance sheet will remain constant through out the crisis.

3. An insolvent bank, characterized by ∆ = 0, is forced into liquidation by the regulator.

At this moment, each of its creditor banks are obliged to write down its defaulted

exposures to zero thereby experiencing a solvency shock that reduces its default buffer

∆.

4. A stressed bank, defined to be a non-defaulted bank with Σ = 0, reacts one time

only, at the moment it becomes stressed, by reducing its interbank assets AIB to

(1− λ)AIB where λ taken to be a fixed constant across all banks during the crisis. It

does so by recalling a fraction λ of its interbank loans, thereby transmitting a stress

shock to the liabilities each of its debtor banks. Since nondefaulted banks are able to

pay all of their liabilities, such recalled loans are repaid in full.

5. A newly defaulted bank also triggers maximal stress shocks (i.e. with λ = 1) to each

of its debtor banks as its bankruptcy trustees recall all its interbank loans, reducing

AIB to 0;

6. Stress shocks reduce any bank’s stress buffer Σ and stressed banks remain stressed

until the end of the cascade or until they default.

Remark 1. The stress parameter λ was introduced by Gai et al. (2011) to simplify banks’

response to liquidity stress and to capture the effect of liquidity hoarding. We suppose that

banks react sufficiently strongly to stress by choosing λ ∈ [0.4, 1], to capture the picture

that they hoard liquidity to preempt the need for further response later in the crisis. Unlike

default, a bank is free to set its response to liquidity: both λ and the size of the stress

buffer Σ are its own policy decisions. In a more realistic and complex model, λ would be

endogenously determined for each bank, reflecting the cumulative demands on its liabilities.

The dynamics of the cascade that follow from these assumptions is stock flow con-

sistent. This means that as long as both counterparties are solvent, every transaction

involves four equal and opposite balance sheet adjustments: to both the assets and lia-

bilities of both counterparties. The dynamics also has the property that it is completely

determined by a reduced set of balance sheet data that consists of the collection of buffers
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∆,Σ and interbank exposures Ω.

We shall now apply the cascade rules to a financial network found on day 0 of the

crisis in an initial state described by the following elements: the interbank links which form

a directed graph E on the set of banks v ∈ N , called the skeleton; the buffers ∆v,Σv for

nodes v ∈ N ; and the exposures Ωvw for edges ` = (vw) ∈ E . After n cascade steps, we

identify Dn, the set of defaulted banks, Sn, the set of undefaulted banks that are under

stress after n steps, and D c
n ∩ S c

n which contains the remaining undefaulted, unstressed

banks.4 In our model, banks do not recover from either default or stress during the crisis,

so the sequences {Dn}n∈N and {Dn ∪Sn}n∈N are non-decreasing.

To say that a bank v is defaulted at step n means that default shocks to step n − 1

exceed its default buffer:

Dn :=


{∆v = 0} for n = 0

{
v |

∑
w∈N −

v
Ωwvξ

(n−1)
wv ≥ ∆v

}
for n ≥ 1 ,

(4.2)

where the variables ξ indicate the fractional sizes of the various default shocks impacting

v. Similarly, for any upstream neighbour w ∈ N −
v , we say that v is defaulted at step n

without regarding w and write v ∈ Dn 6r w under the conditions

Dn 6r w :=


{∆v = 0} ∩N +

w for n = 0

{
v ∈ N +

w |
∑

v′∈N −
v \w Ωv′vξ

(n−1)
v′v ≥ ∆v

}
for n ≥ 1 .

(4.3)

Finally, to say v is stressed at step n means both that it is not yet defaulted and the stress

shocks to step n− 1 exceed the stress buffer, i.e. Sn = D c
n ∩ Ŝn where

Ŝn :=


{Σv = 0} for n = 0

{
v |

∑
w∈N +

v
Ωvwζ

(n−1)
vw ≥ Σv

}
for n ≥ 1 ,

(4.4)

4For any set B, Bc denotes its complement. For an event defined by some condition P , for example
v ∈ Dn, the indicator function for that event is written 1(P ).

96



where the variables ζ indicate the fractional sizes of the stress shocks impacting v.

Accounting for the fact that at the moment when v becomes stressed it reduces its

interbank exposures, one can see that for n ≥ 1 the fractions ξ(n) are given recursively by

ξ(n)
wv :=


ξ

(n−1)
wv when w ∈ Dn−1 ∪D c

n

1 when w ∈ Dn \Dn−1 and v ∈ Ŝ c
n−1

1− λ when w ∈ Dn \Dn−1 and v ∈ Ŝn−1 ,

(4.5)

with the initial values ξ
(0)
wv = 1(w ∈ D0). Similarly, accounting for the assumption that de-

faulted creditors transmit a maximal stress impact, whereas stressed creditors only transmit

a stress shock of a fraction λ of the interbank exposure, one has for n ≥ 0

ζ(n)
vw :=


0 when w ∈ Ŝ c

n ∩ (D c
n 6r v)

λ when w ∈ Ŝn ∩ (D c
n 6r v)

1 when w ∈ Dn 6r v .

(4.6)

The reader will be curious to see the 6r condition in (4.6). The rationale is that

the 6r condition explicitly eliminates an apparent feedback where the stress shock to v

from w at step n seems to depend on the default state of v at step n− 2. This feedback is

apparent, not real, because any stress shock to a defaulted bank is inconsequential.

The above prescription completely characterizes the cascade mapping of the system

to itself. This mapping arrives at the fixed point that represents the end of the crisis in at

most 2N steps when acting on a network of N banks. The next two sections are devoted

to the derivation of two probabilistic versions of this double cascade mapping: first for the

case of networks with random skeletons, and second for the case of networks with random

balance sheets on a fixed skeleton.

4.3 Networks with Random Skeletons

Our model of a random financial network has three layers of structure: the skeleton (a ran-

dom directed graph (N ,E )); the buffer random variables ∆v,Σv, v ∈ N and the random
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exposures Ω`, ` ∈ E . We give a complete specification of the distributional properties of

these random variables.

The skeleton (N ,E ) is a random directed assortative configuration graph (ACG)

of the type studied by Hurd (2015), generalizing the well-known undirected configuration

random graph model introduced in Bender and Canfield (1978) and Bollobás (1980). The

model is parametrized by N and the node and edge type distributions

Pjk = P[v ∈ Njk], Qkj = P[` ∈ Ekj], j, k ≤ K (4.7)

where for simplicity in the following we assume in and out-degrees j, k are bounded by a

constant K. P and Q can be considered as bivariate distributions which have marginals:

P+
k :=

∑
j

Pjk, P−j :=
∑
k

Pjk, Q+
k :=

∑
j

Qkj, Q−j :=
∑
k

Qkj . (4.8)

Assortativity is defined to be the Pearson correlation of Q, considered as a bivariate prob-

ability distribution. Several studies of real financial networks, notably Bech and Atalay

(2010), highlight the fact and relevance of their observed negative assortativity.

Definition 11 (The ACG Construction). The node and edge type probability laws P,Q are

consistent if:

z :=
∑
j

jP−j =
∑
k

kP+
k ,

Q+
k = kP+

k /z, Q−j = jP−j /z, for all j, k ≤ K. (4.9)

Given consistent data N,P,Q, a random graph (N ,E ) with N nodes is sampled as follows:

1. Draw a sequence of N node-type pairs X = ((j1, k1), . . . , (jN , kN)) independently from

P , and accept the draw if and only if it is feasible, i.e.
∑

v∈N jv =
∑

v∈N kv, and

this defines the number of edges E that will result. Label the vth node with kv out-

stubs (each out-stub is a half-edge with an out-arrow, labelled by its degree kv) and jv

in-stubs, labelled by their degree jv. Define the partial sums

u−j =
∑
v

1(jv = j), u+
k =

∑
v

1(kv = k), ujk =
∑
v

1(jv = j, kv = k), (4.10)

98



the number e+
k = ku+

k of k-stubs (out-stubs of degree k) and the number of j-stubs

(in-stubs of degree j), e−j = ju−j .

2. Conditioned on X, the result of Step 1, choose an arbitrary ordering `− and `+ of

the E in-stubs and E out-stubs. The matching sequence, or “wiring”, W of edges is

selected by choosing a pair of permutations σ, σ̃ ∈ S(E) of the set E . This determines

the edge sequence ` = (`− = σ(`), `+ = σ̃(`)) labelled by ` ∈ E , to which is attached a

probability weighting factor ∏
`∈E

Qkσ(`)jσ̃(`)
. (4.11)

The ACG simulation algorithm defines the required class of random graphs, but is

infeasible because the acceptance condition in Step 1 is achieved only rarely, and drawing

random permutations as in Step 2 is impractical. The paper Hurd (2015) proposes an

approximate simulation algorithm that appears to work well in practice.

The non-negative default buffer random variables ∆v, v ∈ N have point masses at

x = 0 that represent the bank initial default probability p0
v. We assume that the distribution

functions of ∆v depend only on the type (j, k), and have the following form:

Djk(x) = P[∆v ≤ x | v ∈ Njk] ;
d

dx
Djk(x) := p0

jkδ0(x) + djk(x) . (4.12)

where djk(x) ≥ 0 is a specified function with
∫∞

0
djk(x)dx = 1 − p0

jk. Similarly, the stress

buffer Σv has a point mass at x = 0 that represents this bank’s initial stress probability

q0
v and a distribution function that depends only on its node type (j, k). Thus the stress

buffer distribution functions of nodes v ∈ Njk have the following form:

Sjk(x) = P[Σv ≤ x, v /∈ D0 | v ∈ Njk] ;
d

dx
Sjk(x) := q0

jkδ0(x) + sjk(x) . (4.13)

where sjk(x) ≥ 0 is a specified function with
∫∞

0
sjk(x)dx = 1 − p0

jk − q0
jk. The exposure

random variables Ω`, ` ∈ E are positive (i.e. there is zero probability to have a zero weight)

and have distributions that depend only on the edge type (k, j). These can be specified by

the distribution functions

Wkj(x) = P[Ω` ≤ x | ` ∈ Ekj];
d

dx
Wkj(x) = wkj(x) . (4.14)
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Finally, conditional on the random skeleton (N ,E ), the collection of random variables

{∆v,Σv,Ω`} is assumed to be mutually independent.

It was proven in Hurd (2016) that the probability measure on random networks just

defined has a property calledlocally tree-like independence (LTI) extending the well-known

locally tree-like property of configuration graphs that cycles of any fixed finite length occur

with an asymptotically zero density as the number of nodes N goes to infinity for fixed

P,Q. The probabilistic analysis to follow rests on this extended type of independence that

holds as N →∞:

The locally tree-like independence (LTI) property: Consider the double cascade

model defined by the collection of random variables (N ,E ,∆,Σ,Ω). Let N1,N2 ⊂ N be

any two subsets that share exactly one node N1 ∩N2 = {v} and let X1, X2 be any pair of

random variables where for each i = 1, 2, Xi is determined by the information on Ni. Then

X1 and X2 are conditionally independent, conditioned on the information ∆v,Σv, jv, kv

located at the node v.

The cascade mapping we now propose is based on the observation that a probability

such as P[v ∈ Dn] that depends on the nth order neighbourhood of the node v can be

approximated iteratively, in terms of the probabilities of the states of the first order neigh-

bouring nodes and edges of v at step n − 1. The accuracy of such a scheme depends on

the degree of dependence between the states of these first order neighbours of v. In ideal

situations, there is no dependence at all, and the cascade mapping is exact. In our present

model, there are two sources of residual dependence amongst these neighbours, and our

approximation amounts to neglecting this residual dependence.

Let us define

p
(n)
jk = P [v ∈ Dn | v ∈ Njk] ,

q
(n)
jk = P [v ∈ Sn | v ∈ Njk] ,

p̃
(n)
jk = P

[
v ∈ Dn 6r w | v ∈ Njk ∩N +

w

]
,

q̂
(n)
jk = P

[
v ∈ Ŝn | v ∈ Njk

]
.

(4.15)

where p
(n)
jk is the probability that a (j, k)-node has defaulted by time n, q

(n)
jk is the probability
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that a (j, k)-node is stressed at time n, p̃
(n)
jk is the probability that a (j, k)-node has defaulted

by time n, without regarding of one of its in-neighbours, and q̂
(n)
jk is the probability that a

(j, k)-node satisfies the stress condition (4.4) at time n. Our aim is to compute p
(n)
jk , q̂

(n)
jk , p̃

(n)
jk ,

plus an auxiliary quantity

t
(n)
kj = P

[
ξ(n)
wv = 1 | (w, v) ∈ Ekj

]
, (4.16)

recursively over n. It is also convenient to define

p
(n)
k = P[v ∈ Dn | kv = k] =

∑
j

p
(n)
jk Pj|k ,

p̃
(n)
j = P[v ∈ Dn 6r w | jv = j, v ∈ N +

w ] =
∑
k

p̃
(n)
jk Pk|j , (4.17)

q̂
(n)
j = P[v ∈ Ŝn | jv = j] =

∑
k

q̂
(n)
jk Pk|j ,

where Pj|k :=
Pjk

P+
k

, Pk|j :=
Pjk

P−j
.

Our computations will rely on two facts. The first is that if X, Y are two indepen-

dent random variables with probability density functions (PDFs) fX(x) = F ′X(x), fY (y) =

F ′Y (y), then

P [X ≥ Y ] = E [1(X ≥ Y )] =

∫
R

∫
R
1(X ≥ Y )fX(x)fY (y) dxdy

=

∫
R
FY (x)fX(x) dx =

〈
FY , fX

〉
.

(4.18)

In general, the Hermitian inner product on R is defined as 〈f, g〉 =
∫∞
−∞f̄(x)g(x) dx, but

here, both operands are real functions and the conjugate operator disappears. A second

fact is that if X1, X2, · · · , Xn are n independent random variables with PDFs fXi , then the

PDF of the sum X = X1 +X2 + · · ·+Xn is the convolution

fX = fX1 ~ fX2 ~ · · ·~ fXn = ~n
k=1fXk , (4.19)

where the convolution product of two functions is the function defined by (f ~ g)(x) =∫
R f(y)g(x− y)dy. For convolution powers, we write ~n

k=1fX = f ~n
X .
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The following cascade mapping provides a closed set of recursive formulas for n ≥ 1

starting with p
(0)
jk = p̃

(0)
jk , q̂

(0)
jk , t

(0)
kj = p

(0)
k determined by the initial shock and stress proba-

bilities.

Cascade Mapping: For any n ≥ 1, suppose p
(n−1)
jk , q̂

(n−1)
jk , p̃

(n−1)
jk , t

(n−1)
kj are known. The

cascade mapping gives the quantities p
(n)
jk , q̂

(n)
jk , p̃

(n)
jk , t

(n)
jk recursively by

p
(n)
jk =

〈
Djk,

(
g

(n−1)
j

)~j〉
, (4.20)

p̃
(n)
jk =

〈
Djk,

(
g

(n−1)
j

)~j−1
〉
, (4.21)

q̂
(n)
jk =

〈
Sjk,

(
h

(n−1)
k

)~k〉
, (4.22)

t
(n)
kj = t

(n−1)
kj + (p

(n)
k − p

(n−1)
k )(1− q̂(n−1)

j ) , (4.23)

where Djk and Sjk are defined in (4.12) and (4.13), respectively, and we use (4.17) to

compute p
(n−1)
k′ , q̂

(n−1)
j′ , p̃

(n−1)
j′ . Moreover, the stress probabilities q

(n)
jk are determined by

1− q(n)
jk − p

(n)
jk = P[v ∈ Ŝ c

n ∩D c
n | v ∈ Njk]

=
(

1− q̂(n)
jk

)(
1−

〈
Djk,

(
g̃

(n−1)
j

)~j〉)
. (4.24)

The probability distribution functions in these formulas are also computed recursively:

g
(n−1)
j (x) =

∑
k′

[
(1− p(n−1)

k′ )δ0(x) + t
(n−1)
k′j wk′j(x)

+(p
(n−1)
k′ − t(n−1)

k′j ) · 1

1− λ
wk′j(x/(1− λ))

]
·Qk′|j , (4.25)

h
(n−1)
k (x) =

∑
j′

[
(1− q̂(n−1)

j′ )(1− p̃(n−1)
j′ ))δ0(x) + p̃

(n−1)
j′ wkj′(x)

+q̂
(n−1)
j′ (1− p̃(n−1)

j′ ) · 1

λ
wkj′(x/λ)

]
·Qj′|k , (4.26)

g̃
(n−1)
j (x) =

∑
k′

[
(1− p(n−1)

k′ )δ0(x) + p
(n−1)
k′ wk′j(x)

]
·Qk′|j (4.27)

with Qk|j =
Qkj

Q−j
, Qj|k =

Qkj

Q+
k

.

Justification: To justify (4.20) we need to suppose that the collection of random variables
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Ωwvξ
(n−1)
wv for different w ∈ N −

v are mutually conditionally independent. However, there

are two sources of dependence: the first is the usual breaking of the LTI property for finite

N due to cycles in the skeleton, the second, specific to this model, is the dependence on

whether v is in Sn−1. Our approximation is to neglect both sources of dependence, allowing

the use of (4.18) to give

p
(n)
jk = P[∆v ≤

∑
w∈N −

v

Ωwvξ
(n−1)
wv | v ∈ Njk]

=

〈
Djk,

(
g

(n−1)
j

)~j〉
. (4.28)

where

g
(n−1)
j (x) =

∑
k′

Qk′|j
d

dx
P[Ωwvξ

(n−1)
wv ≤ x | v ∈ Njk, w ∈ N −

v , kw = k′] . (4.29)

Under the conditions v ∈ Njk, w ∈ N −
v , kw = k′, the events

{ξ(n−1)
wv = 0}, {ξ(n−1)

wv = 1},{ξ(n−1)
wv = 1− λ} have conditional probabilities

1− p(n−1)
k′ , t

(n−1)
k′j , (p

(n−1)
k′ − t(n−1)

k′j ) respectively and the three events are conditionally inde-

pendent of Ωwv assuming the LTI property. These facts lead to (4.25).

To verify (4.21), we use (4.3) instead of (4.2) and follow these same steps. To verify

(4.22), we use (4.4), (4.15) and (4.18) to give the formula

q̂
(n)
jk = P[Σv ≤

∑
w∈N +

v

Ωvwζ̂
(n)
vw | v ∈ Njk] =

〈
Sjk,

(
h

(n−1)
k (x)

)~k〉
(4.30)

where

h
(n−1)
k (x) =

∑
j′

d

dx
P[Ωvwζ̂

(n−1)
vw ≤ x | v ∈ Njk, w ∈ N +

v , jw = j′] Qj′|k . (4.31)

To verify (4.26), note that under the conditions kv = k, w ∈ N +
v , jw = j′, the events

{ζ̂(n−1)
vw = 0}, {ζ̂(n−1)

vw = 1}, {ζ̂(n−1)
vw = λ} are equivalent to the events

{w ∈ Ŝ c
n−1 ∩ D c

n−1 6r v}, {w ∈ Dn−1 6r v}, {w ∈ Sn−1} and hence have conditional

probabilities (1− q̂(n−1)
j′ )(1− p̃(n−1)

j′ ), p̃
(n−1)
j′ , q̂

(n−1)
j′ (1− p̃(n−1)

j′ ) respectively. To verify (4.23),

we apply the LTI property again to compute the conditional probability of the disjoint
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union {ξ(n)
wv = 1} = {ξ(n−1)

wv = 1} ∪ {w ∈ Dn ∩D c
n−1, v ∈ Ŝ c

n−1} defined by (4.5).

Finally, to verify (4.24), we note that Ŝ c
n ∩D c

n = Ŝ c
n ∩{∆v >

∑
w∈N −

v
Ωwv1{w∈Dn−1}}.

By LTI, these last two events are independent conditioned on v ∈ Njk, and the required

formula results by following the steps taken to prove (4.20).

Remark 2. We see from this argument that the cascade mapping has two sources of error.

The first, stemming from cycles in the skeleton that cause finite size corrections to the

LTI property, is familiar, and known to behave like O(N−1) on configuration graphs as the

network size N grows to infinity, and to be zero on finite tree graphs. The second source

of error is less familiar and stems from dependence due to the assumption that the default

shocks that impact v are diminished by a factor 1−λ when v becomes stressed, that is, they

depend on whether v is stressed or not.

The iterates of this cascade mapping converge as n→∞ to a fixed set of probabilities

that represent the eventual state of the system at the end of the cascade. These final

probabilities can be used to measure the overall impact of the crisis. For example, the

expected number of eventually defaulted and stressed banks are

Expected number of defaulted banks = N
∑
jk

Pjk p
(∞)
jk = N

∑
k

P+
k p

(∞)
k (4.32)

Expected number of stressed banks = N
∑
jk

Pjk q
(∞)
jk . (4.33)

4.4 Networks with Fixed Skeletons

The goal of the present section is to derive approximate probabilistic formulas describing

the double cascade on a network where the skeleton is actually known (deterministic) and

finite, while the buffers and weights are random. This analysis will allow us to address

systemic risk in tractable models of real observed financial networks, without the need for

Monte Carlo simulations.

Let A = Avv′ , v, v
′ ∈ N be the nonsymmetric adjacency matrix of the fixed di-

rected graph (N ,E ). We number the nodes in N by v = 1, 2, . . . , N and the links by

` = 1, 2, . . . , E where E =
∑

1≤v,v′≤N Avv′ . The buffer random variables ∆v,Σv at each

node are assumed to have a mass p
(0)
v , q

(0)
v at 0 (representing the initial default and stress
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probabilities) and continuous support with density functions d(x), sv(x) on the positive

reals. The edge weights Ω`, ` ∈ E have continuous support with densities w`(x) on the

positive reals but no mass at 0. The random variables {∆v,Σv,Ω`}, v ∈ N , ` ∈ E are

assumed to be an independent collection.

The aim of this section is to use the LTI property as an approximation to derive

formulas for the marginal likelihoods p
(∞)
v , q

(∞)
v for the eventual default and stress of all

individual nodes, as well as the possibility to compute formulas for more detailed systemic

quantities. This approximation is not exact for the same two reasons as before: there is

dependence between the default shocks hitting a bank v due to the stress response, and

when there are cycles in the skeleton. In general, when the skeleton is a single random

realization from a configuration graph ensemble, we expect the LTI approximation to get

better with increasing N . We now present an approximate analysis, paralleling the previous

section, of the sequence of probabilities

p(n)
v = P[v ∈ Dn] ,

q(n)
v = P[v ∈ Sn] ,

p̃(n)
wv = P[v ∈ Dn 6r w] ,

q̂(n)
v = P[v ∈ Ŝn] ,

(4.34)

for each node v or edge wv. For the same reason as before we need in addition to track

t(n)
wv = P

[
ξ(n)
wv = 1 | v ∈ N +

w

]
. (4.35)

Inductively, we have

p(n)
v =

〈
Dv,~v′∈N −

v

(
g

(n−1)
v′v

)〉
, (4.36)

p̃(n)
wv =

〈
Dv,~v′∈N −

v \w

(
g

(n−1)
v′v

)〉
, (4.37)

q̂(n)
v =

〈
Sv,~v′∈N +

v

(
h

(n−1)
vv′

)〉
, (4.38)

t(n)
wv = t(n−1)

wv + (p(n)
w − p(n−1)

w )(1− q̂(n−1)
v ) , (4.39)

q(n)
v = 1− p(n)

v −
(
1− q̂(n)

v

) 〈
Dv,~v′∈N −

v

(
g̃

(n−1)
v′v

)〉
. (4.40)
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The PDFs can be computed as before under the LTI approximation:

g(n−1)
wv (x) = (1− p(n−1)

w )δ0(x) + t(n−1)
wv wwv(x)

+ (p(n−1)
w − t(n−1)

wv ) · 1

1− λ
wwv(x/1− λ) , (4.41)

h(n−1)
vw (x) = (1− q̂(n−1)

w )(1− p̃(n−1)
vw )δ0(x) + p̃(n−1)

vw wvw(x)

+q̂(n−1)
w (1− p̃(n−1)

vw ) · 1

λ
wvw(x/λ) , (4.42)

g̃(n−1)
wv (x) = (1− p(n−1)

w )δ0(x) + p(n−1)
wv wwv(x) . (4.43)

4.5 Numerical Experiments

In this section, we report briefly on numerical experiments that illustrate the methods de-

veloped in this paper. Firstly, we aim to convince the reader that the LTI method correctly

computes the fixed point of the double cascade mapping in networks with large values of

N by cross validating it using an independently coded Monte Carlo (MC) implementation.

For efficiency, the LTI implementation uses a Fast Fourier Transform approach to com-

pute the convolutions in (4.20)-(4.23). This technique was developed in Hurd and Gleeson

(2013) and is sketched in Appendix A. Secondly, we will show how the LTI method can

lead to answers to questions about the nature of systemic risk, particularly the intertwining

of stress and default. Thirdly, we shall show how the method performs in a challenging

stylized network specified to reflect the complex characteristics of a 2011 dataset on the

network of 90 most systemically important banks in the European Union.

4.5.1 Experiment 1: Verifying the LTI Method

This experiment aims to verify that the LTI method performs as expected when applied to

a stylized financial network whose specification is similar to that given in Gai and Kapadia

(2010a). It consists of a random directed Poisson skeleton with N = 20000 nodes and mean

degree z = 10, where each node v can be viewed as a bank with a default buffer ∆v = 0.04

and stress buffer Σv = 0.035. Unlike the deterministic interbank exposures used in Gai and

Kapadia (2010a), the weight Ω` of an edge ` is taken from a log-normal distribution with

mean µ` = 0.2j−1
` , and standard deviation 0.383µ`. Note that this specification makes the
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exposure size dependent on the lending bank. An initial shock is applied to the network

that causes each bank to default with a 1% probability.

We compare the final fractions of defaulted and stressed banks as computed using

MC simulation with 1000 realizations and the LTI analytic formulas in (4.32) and (4.33).

It is simple to generate a directed Poisson random graph of size N with mean degree

z > 0: one simply selects directed edges independently from all N(N − 1) potential edges,

each with probability p = z/(N − 1). The resultant bi-degree distribution is a product of

binomials, Pjk = P[v ∈ Njk] = Bin(N − 1, p, j)×Bin(N − 1, p, k), which for large N nodes

is approximately a product of Poisson(z) distributions.

Figure 4.3 plots the results as functions of the stress response parameter λ, with error

bars that represent the 10th and 90th percentile of the MC result. It shows the expected

agreement between MC and LTI analytics, with discrepancies that can be attributed to

finite N effects present in the MC simulations.
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Figure 4.3: Experiment 1. The mean default and stress cascade sizes com-
puted by MC simulations (symbols) and LTI analytics (lines). The skeleton
is a Poisson directed network with N = 20000 nodes and mean degree z = 10.
All banks have default buffers ∆v = 0.04 and stress buffers Σv = 0.035. An
edge weight Ω` of an edge ` is taken from a log-normal distribution with
mean µ` = 0.2j−1

` and standard deviation 0.383µ`. Error bars indicate the
10th and 90th percentiles of the MC result.
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One fundamental property of our model is clearly shown in this experiment: stress

and default are negatively correlated. This fact can be explained by the stress response

which enables banks to react to liquidity shocks before they default, by reducing their

interbank exposures. This response creates yet more stress, but leads to a more resilient

network. The “knife-edge” property of default cascades is also clearly shown: In the model

parametrization we chose, a very small increase in λ dramatically alters the stability of the

network. We also note that MC error bars are very large near the knife-edge.

4.5.2 Experiment 2: A Stylized Poisson Network

The next experiment focuses again on Poisson networks, with the aim to better understand

the effects of various parameters on network resilience. In general, we continue to find

confirmation that the LTI results accurately reflect observations from MC simulations.

Experiment 2A: Effects of Default and Stress Buffers

We consider how the parametrized financial network of Experiment 1 in a default-susceptible

state with λ = 0.5 can be made resilient to random shocks by either increasing the default

buffers or decreasing the stress buffers. Such changes, for example, can be prompted by

financial regulators.

In Fig. 4.4(a) we illustrate how the change in default buffers affects the default cascade

size. We observe a very fast transition from 100% default cascade to almost no default as ∆

increases over the interval [0.04, 0.045]. This knife-edge property is observable in both the

LTI analytics and in the MC simulations. Note again that the MC error bars, representing

the 10th and 90th percentiles, become very large near the knife-edge.

In Fig. 4.4(b), we examine the influence of the stress buffer on the default cascade

size. If stress buffers are reduced, banks start to react to stress shocks more quickly, which

can in turn dramatically reduce default cascade risk in the network. Figures 4.4(a) and (b)

show that there may be several approaches to improving network resilience.
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Experiment 2B: Effects of Graph Connectivity and Stress Response

Aside from mandating changes to the behaviour of banks during or prior to a crisis by

imposing constraints on stress and default buffers, regulators can also influence the shape

of the financial network as a whole. In Experiment 2B, we demonstrate how systemic risk

is influenced by the skeleton itself. To this end, we calculate the sizes of default and stress

cascades in a directed Poisson network as a function of the connectivity parameter z and

the stress response λ. In our simple model specification, the mean degree z is the only

parameter that controls the shape of the skeleton, whereas in a more realistic modelling

approach the skeleton may have many more parameters.

In this experiment, we increased the model complexity by assuming each bank has a

random default buffer taken from a log-normal distribution with mean 0.18 and standard

deviation 0.18, and a stress buffer from an independent log-normal distribution with mean

0.12 and standard deviation 0.12. The edge weights Ω` come from a log-normal distribution

with mean and standard deviation proportional to (j`k`)
−0.5, with the average edge weight

on the entire network equal to 1. Once again we apply an initial shock so that each bank

has 1% chance of defaulting initially.

In Figs. 4.5(a) and (b), we respectively show the mean sizes of default and stress
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Figure 4.4: Experiment 2A. The mean default cascade size as a function of
(a) default buffer ∆ and (b) stress buffer Σ. The LTI analytic approximation
(lines) correctly predicts MC simulations results (symbols). Here λ = 0.5
and other parameters are chosen as in Experiment 1 (Fig. 4.3).
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cascades as functions of network mean degree z and the stress response λ. For clarity of

the graphics, we do not show the MC simulations, as they agree, in a similar fashion as

earlier, with the LTI analytics . Again, in these plots we notice the strong anti-correlation

between stress and default probabilities as we vary z and λ. It is also interesting to observe

that the final level of stress is not monotonic in the connectivity parameter z.
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Figure 4.5: Experiment 2B. The sizes of the mean default cascade (a) and
the mean stress cascade (b) on a directed Poisson network as functions of the
network mean degree z and stress response parameter λ. Here the values of
edge weights (interbank exposures), default and stress buffers are taken from
log-normal distributions as specified in the text. Other parameters are the
same as in Fig. 4.3.

4.5.3 Experiment 3: An EU-Inspired Network with 90 Nodes

It is well known that Poisson random graphs are an inadequate description of real economic

networks, so we are interested in having a rough picture of the systemic risk of actual

financial networks. In Experiment 3, we consider a single realization of a 90 node graph

that aims to capture stylized features of the interbank network of the European Union. We

computed cascade dynamics on this network using both the MC simulations and the LTI

analytic method of Section 4.4 for networks with a fixed skeleton. As a preliminary step

(not reported), we validated the consistency of the LTI analysis by verifying that the two

methods agree as expected on a number of tree networks.
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Numerous studies of real-world financial networks, notably Bech and Atalay (2010)

and Cont et al. (2010), have observed their highly heterogeneous structure and concluded

that in and out-degrees have fat tailed distributions, as do exposure sizes, and presumably,

buffers. Our schematic model of 90 EU banks was designed to capture these basic statistical

features, and as well to fit aggregated statistics from data published on the 2011 ECB stress

testing of systemically important banks in the European Union. We show the skeleton of

our stylized network in Figure 4.6. The details of its construction and the specifications

for buffer and exposure distributions are given in Appendix B.

Figure 4.6: A representation of the skeleton of the 90 bank network of Ex-
periment 3. We do not show the edge directions here to avoid cluttering the
figure. The nodes are plotted with total degree increasing in the clockwise
direction, with the minimally connected bank being the rightmost node.

In the first part of the experiment, we calculate the mean sizes of stress and default

cascades that start from the default of one random bank in the EU network. Figure

4.7(a) shows the mean default and stress cascade sizes as functions of the stress response

parameter λ. This graph shows no evidence of cascading (beyond the initially defaulted

bank and the stress it causes to its immediate neighbors), demonstrating that the MC

and analytic computations agree that the EU network in June 2011 was resilient to such a

shock.
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Figure 4.7: Experiment 3: sizes of default and stress cascades on a stylized
EU interbank network starting from the default of a single randomly chosen
bank. (a) Cascade sizes for various values of the stress response λ. The EU
financial system at the time of the 2011 stress testing exercise appears to be
resilient to single-bank shocks. (b) The same system as in (a) where a dire
pre-shock crisis has reduced the bank default buffers to 10% of their original
value, and stress buffers to a fraction of their value indicated on the x-axis.

To move the EU network to a knife-edge situation where a large scale double cascade

can be triggered by the default of a single bank, we found it was necessary to imagine a

dire crisis where prior to the default shock, the Core Tier 1 Capital of all institutions (i.e.

their default buffers) has been decimated to 10% of their initial amount. Furthermore, each

bank’s stress buffer is also reduced to a certain fraction of its original value. In Fig. 4.7(b)

we take λ = 0.7 and show the cascade sizes versus the remaining fraction of stress buffers.

The MC simulations show that for smaller shocks the size of a stress cascade first

dominate default cascades: the banking system becomes highly illiquid, but most banks

are able to protect themselves from default. Beyond a certain critical value of the global

shock, however, default cascades take over stress cascades, as banks are hit by a shock so

high that they default immediately, without the possibility to protect themselves as they

would if they got first in the stressed state. Our analytical approach is able to capture the

essence of these mechanisms, identifying correctly the critical point where default cascades

overtake stress cascades. The quantitative size of the cascades away from this critical point,

however, is less well matched by the analytical model, probably because of the presence of

short cycles in the skeleton. As cycles tend to slow down the cascades, the transitions are
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smoother in the MC. It is quite interesting that, in spite of our two approximations, our

model is able to capture the general mechanisms: a peak in the number of stressed banks

is a signal that can indicate quite precisely the point where systemic default takes over in

a banking network.

4.6 Asset Firesale

One drawback of the base model provided in the previous section is the lack of a direct

linkage between the stress (funding illiquidity) and solvency. As a result, an institution

which has fully withdrawn from the financial network is now immune to the default cas-

cade. Realistically, there are many additional pathways of contagion that do not involve

transmission from immediate neighbours. One such mechanism is the firesale effect.

In this section, we build on the base model by using a firesale contagion based on the

equilibrium price model of Cifuentes et al. (2005), and study the additional systemic risk

posed on the EU network by this new channel of contagion. The foundation of this firesale

effect is the macro-economic impact on the price of the fixed assets of each institution in the

system. In general, when a financial institution defaults, its fixed assets will be liquidated

to the market at some point, in which case additional supply is injected into the market.

moreover, when a financial institution chooses to hoard cash, it decreases the demand in

the market for these fixed assets, and further reduces their marked to market price.

4.6.1 Model Setup

We restrict our setup in the following sections to the finite network constructed in the

previous section based on the major financial institutions in the EU. Let us once again define

A = Avv′ , v, v
′ ∈ N to be the nonsymmetric adjacency matrix of the fixed directed graph

(N ,E ), which represents the EU network. We number the nodes in N by v = 1, 2, . . . , N

and the links by ` = 1, 2, . . . , E where E =
∑

1≤v,v′≤N Avv′ . The buffer random variables

∆v,Σv at each node are assumed to have a mass p
(0)
v , q

(0)
v at 0 (representing the initial default

and stress probabilities) and continuous support with density functions dv(x), sv(x) on the

positive reals. The edge weights Ω`, ` ∈ E have continuous support with densities w`(x) on
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the positive reals but no mass at 0. The random variables {∆v,Σv,Ω`}, v ∈ N , ` ∈ E are

assumed to be a conditionally independent collection.

In addition to the previously defined default and stress cascade, we implement the

asset firesale cascade mechanism in the following way. The fixed asset portion AFv of

all banks in the network is assumed to consist of a single asset type. The aggregate

supply of this illiquid asset across the network as a function of price (p) is denoted by

s(p) = α
∑

v|∆v≤0A
F
v + s0, where α is a positive constant and s0 is the precrisis supply

level. The aggregate demand of this illiquid asset across the network is denoted d(p) =

d0 − β
∑

v|Σv≤0 λA
IB
v , where β is a positive constant and d0 is the precrisis demand level.

After the onset of the crisis, banks will only liquidate their fixed assets if bankruptcy occurs,

resulting in additional supply of this illiquid asset to the market. Similarly, if interbank

lendings are withdrawn in the network during the crisis, this removes the possibility of

using these funds to purchase illiquid assets and resulting in reduced demand of the illiquid

asset. Combining the above two equations, we denote the excess supply function of the

network during the crisis as s̃ = s−s0 +d0−d. Finally, there exist external traders trading

in the illiquid asset outside of the network, who are purely price takers and are assumed to

clear the market with the following inverse demand function during the crisis:

p = e−s̃ = e−α
∑
v|∆v≤0 A

F
v −β

∑
v|Σv≤0 . (4.44)

We make the assumption that the price throughout the crisis cannot exceed the starting

price of 1. α and β are chosen so that, if all FIs within the network were to put their fixed

assets into liquidation, a price drop of 15% would occur, and similarly if all interbank loans

were withdrawn, then a price drop of 10% would occur.

In addition, we will modify the timing and behaviour assumptions and cascade mech-

anism in order to precisely define our asset firesale cascade as part of the general cascade

mechanism.

Timing and Bank Behaviour Assumptions:

Assumption 2 is replaced with 2′.

2′. Total amount of fixed asset belonging to defaulted banks and the total value of in-

terbank loans recalled by stressed banks are updated. Balance sheets are recomputed daily
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on a mark-to-market basis and banks respond daily on the basis of their newly computed

balance sheets. All external cash flows, interest payments, and liability price changes are

ignored throughout the crisis. The fixed asset price follows the price given by the inverse

demand function subject to the total excess supply of the network as of the start of the

current day.

Cascade Mechanism:

An additional equation to describe the updates to the default buffer is added and

equation (4.2) is replaced with the following, where the default buffer ∆ is replaced with

the default buffer at cascade step n, ∆(n) as defined below.

∆(n)
v = ∆v − AFv (1− e−α

∑
v∈Dn

AFv −β
∑
v∈Sn

λAIBv ) (4.45)

Dn :=


{∆v = 0} for n = 0

{
v |

∑
w∈N −

v
Ωwvξ

(n−1)
wv ≥ ∆

(n−1)
v

}
for n ≥ 1 ,

(4.46)

It should be noted that based on the above equations and behaviour assumptions,

our asset firesale mechanism solely impacts the default buffer of banks, and any additional

defaults which may occur are implemented through the existing default cascade mechanism.

The asset firesale mechanism also links the impact from the stress cascade to the default

cascade through the term representing the aggregate demand of the network in the fixed

asset price inverse demand function.

4.6.2 Systemic Risk Measures

The safety of the financial system cannot be judged on the expected default size alone. We

must also measure the rare events, since the study of risk is the study of tail events. We

will now focus on the precisely defining measures for the tail systemic risk of this financial

system system.

Value at Risk (VaR) is a measure of the riskiness of an investment portfolio. It

measures the amount in dollar values at risk limited to a specified time frame T . The loss
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which is incurred on the portfolio wealth X must exceed α probability of occurring within

the time frame. Mathematically it is defined as:

Definition 12. Value at Risk (VaR) over the time horizon [0, T ] with confidence level α

is,

VaRα(XT ) = inf{x ∈ R : P(XT + x < 0) ≤ 1− α}. (4.47)

Furthermore, let G be a set of random financial networks satisfying a set of parameters

θ. Let {Dn}θn∈N and {Sn}θn∈N be a sequence of sets of defaulted and stressed banks

generated by the cascade mechanism described previously on G . Let AIBθ be the total

amount of interbank assets lost due to default by the end of a cascade process. Then

we define the following systemic risk measures for our particular cascade mechanism for a

random financial network:

Definition 13. The α percentile Systemic Value at Risk (SVaR) at the end of the cascade

is:

SVarα(G ) =
VaRα(AIBθ )∑

v A
IB
v

(4.48)

In other words, Systemic Value at Risk can be viewed as the proportion of inter-

bank asset in the financial system that was lost due to defaults as a result of the cascade

mechanism.

The Systemic Expected Shortfall(SES) modeled after Expected Shortfall of a portfolio

is a risk measure, that measures the expected loss of a portfolio conditioned on a loss that

exceeds VaRα has occurred.

Definition 14. Systemic Expected Shortfall of a Random Financial Network with α con-

fidence level at the end of the cascade is,

SESα(G ) =
1

α

∫ α

0

SVaRs(G )ds (4.49)

where SVaR is the Systemic Value at Risk.

Acharya et al. (2010) defined Marginal Expected Shortfall of a financial firm as its

short-run expected loss conditional on the market taking a loss greater than its Value at
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Risk at α level. In relation to cascade models on FRN, we will define Systemic Marginal

Expected Shortfall (SMES) as the probability that a specific bank is defaulted conditioned

on the Systemic Value at Risk of the financial network has been breached.

Definition 15. Systemic Marginal Expected Shortfall (SMES) for a bank v at the end of

the cascade with α percentile is,

SMESα(v) = E[1v∈Dθ
∞
|AIBθ ≥ SVaRα(G )

∑
v

AIBv ]. (4.50)

Systemic Marginal Expected Shortfall can also be thought of as the probability that a

certain bank will contribute towards the systemic expected shortfall at a probability level

α percentile.

We will use the systemic risk measures defined above as part of the additional nu-

merical exploration into the impact of the asset firesale mechanism in the next section.

4.6.3 Numerical Experiments

We explore the effects of the asset firesale mechanism on the EU network from the section

4.5.3, using 5000 Monte Carlo simulations for each experiment. In addition, we utilize

the systemic risk measures defined previously to explore the tail effects of the cascade

mechanisms on the EU network which was previously deemed safe from contagion.

Figure 4.8 demonstrates the additional impact of the asset firesale on even the simplest

systemic risk measures, the expected default rate and expected stress rate. As seen in

the figures, the effect is definately visible, in general 5 additional institutions default on

average even when the firesale effect is added. Furthermore, the effect of the stress reaction

is similarly invisible even with the firesale effect. This figure also shows that the firesale

effect increases the number of defaulted banks and its effect is monotonically increasing

with the stress response parameter. This is in contrast to the previous results where the

effect of the default cascade decreases monotonically with respect to the stress response

parameter λ.

Figure 4.9 paints a starker picture of this banking network when the firesale mecha-

nism is applied. The measure here is essentially a Value at Risk for the number of defaulted
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Figure 4.8: Effect of firesales on default and stress contagion in the European
interbank network. A comparison of 5000 Monte Carlo simulations based on
the original double cascade parametrization of the EU network with and
without the firesale mechanism.
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Figure 4.9: The number of defaulted banks at various percentiles is computed
with and without firesale mechanism as a function of the stress response
parameter λ.

banks. In this case, at the 70th percentile, we see no difference between the expected de-

fault size, but at anything above the 99th percentile, we see cases of total system wide

default contagion. When the firesale mechanism is not applied, we can see that the result

is actually quite similar to the mean cascade size with only 3 banks defaulting at the 99th

percentile. This gives us a first look at the impact of the asset firesale mechanism on a tail

measure.

We further show the dangers of tail events to the European banking network through

Figure 4.10 and Figure 4.11, which shows the Systemic Value at Risk and Systemic Expected

Shortfall at various percentiles. This demonstrates the tremendous damage which will occur

to the European interbank network in these rarer events. We can also see pronounced effect

of the firesale price impact from the stress response parameter λ. Hoarding additional cash

reserves will lead to additional technical defaults due to reduced marked to market AF prices

for the banks in this network. Finally at the 99th percentile, we see that the contagion will

spread to the whole system regardless of the stress response. This is additional indication

of the importance of tail events in this financial network.

In Figure 4.12, we plot the Marginal Expected Shortfall of two banks with very dif-

ferent number of counterparties. The two figures tell two distinct stories. The highly

connected node is able to shock the entire network by first directly shocking enough neigh-
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Figure 4.10: The Systemic Value at Risk is computed for the RFN calibrated
based on the EBA data. The figures show the resulting SVaR at various per-
centiles and with and without firesale mechanism. The plots are constructed
by varying the stress response parameter λ.
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Figure 4.11: The Systemic Expected Shortfall for the FRN based on the
European network. SES is computed with and without firesale mechanism
and as a function of the stress response parameter λ.
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Figure 4.12: The Systemic Marginal Expected Shortfall is computed for two
different banks while varying the stress response parameter λ. This figure
compares the effect of connectivity on banks and their default probability
when the financial network is on the brink of collapse.

bours such that a global cascade happens or enough pricing shock occurs that causes a

global cascade. It is also more likely to receive a shock from a counterparty simply due to

having a higher number of counterparties. On the other hand, the less connected bank is

constrained by the number of counterparties it can shock, and receive default shocks from.

The SMES shows that the less connected bank’s default during crisis is predominantly

caused by the increased asset firesale effect driven by increases in the stress parameter λ.

4.7 Conclusions

Our double cascade model is a natural extension of a strand of systemic risk research that

studies elementary models that build in either default or stress cascades, but not both.

Only by combining the default and stress mechanisms into a single model can one measure

such features as the intuitively obvious effect of banks using the stress response to reduce

their risk of default.

Developing a feasible and reliable computation framework for a model as complex as

ours poses challenges that have been met in the experiments described in Section 5. We

have demonstrated how computations can be done by two complementary approaches: the
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Monte Carlo (MC) method and the locally tree-like independence (LTI) analytic method.

Having these two approaches, each with its pros and cons, allows cross validation, increasing

confidence in the results one obtains. MC simulation, with its natural flexibility, remains

the workhorse computational framework for general systemic network risk. However, where

it applies, the LTI method, given its relation to similar methods in other areas of network

science, adds the possibility to understand the flow of the cascade in a different and some-

times better way than one can with MC simulations alone. For example, using LTI one can

determine sensitivities to changing parameters through explicit differentiation. In some sit-

uations, for example in simulating general assortative (P,Q) configuration models, the MC

method is infeasible or leads to unacceptably long run times, whereas the LTI method can

be computed without difficulty. Ultimately what is important is that both methods have

complementary strengths and weaknesses, and when used in combination lead to robust

and reliable conclusions about a wide range of network effects.

Our numerical experiments explore only a small sample of simple model specifications,

leaving many promising financial networks to be investigated using our techniques. While

the systemic importance of parameters such as network connectivity, mean buffer strength,

and the size of the interbank sector have been studied previously, other parameters such

as the stress response, the buffer and exposure variances, and graph assortativity, remain

almost completely unexplored. The effect of market illiquidity, specifically causing asset

firesales have been implemented and studied in the later sections of this chapter. Financial

network databases, and the statistical methods for matching such data to the model, are

still in an underdeveloped state, but are needed to tie down the wide range of parameters

in our model. Planned future investigations of the double cascade model and its extensions

will uncover and explain further interesting and unexpected systemic risk phenomena, and

find uses by policy makers and regulators.

The double cascade model gave a individual response function for each financial insti-

tution to “protect” itself during crisis events via withdrawing from the interbank network.

While this was more realistic behaviour at an agent level, it did not take into account of

its feedback to non-network-based contagions. Through the addition of the firesale effect,

done by directly impacting the marked to market price of each financial institution’s fixed

assets, we were able to link the individual behaviour of liquidity hoarding to the default

contagion in the network.
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In the numerics sections, we show two very fundamental results about the European

banking network. The first is that the addition of the firesale effect increases default

contagion since it can only lower the marked to market price of the fixed assets, but this

particular effect is minimal to the expected default cascade size measure. The second result

is much more drastic than the first. The expected default cascade measure may show that

the European banking network is safe from contagion, but when we apply traditional risk

measures to systemic risk, and study similar tail behaviours, we see a much starker picture.

At the 99th percentile of our risk measures, total financial system collapse becomes the

norm. Already bad situations are compounded further by extreme firesale pricing spirals,

and we witness the direct impact of additional liquidity hoarding destroying the entire

system through the asset firesale mechanism.
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Appendix 4.A Discrete Probability Distributions and

the Fast Fourier Transform

Numerical implementation of these models follows the methods outlined in Hurd and Glee-

son (2013). In this section, we analyze the case where all random variables {∆v,Σv,Ω`}
take values in a specific finite discrete set M = {0, 1, . . . , (M − 1)} with a large value M .

It is well known that in this situation the convolutions in (4.19) are slow to compute by

direct integration, but can be performed exactly and efficiently by use of the discrete Fast

Fourier Transform (FFT).

LetX, Y be two independent random variables with probability mass functions (PMF)

pX , pY taking values on the non-negative integers {0, 1, 2, . . . }. Then the random variable

X + Y also takes values on this set and has the probability mass function (PMF) pX+Y =

pX ∗ pY where the convolution of two functions f, g is defined to be

(f ∗ g)(n) =
n∑

m=0

f(m)g(n−m) . (4.51)

Note that pX+Y will not necessarily have support on the finite set M if pX , pY have support

on M . This discrepancy leads to the difficulty called “aliasing”.

We now consider the space CM of C-valued functions on M = {0, 1, . . . ,M − 1}.
The discrete Fourier transform, or fast Fourier transform (FFT), is the linear mapping

F : a = [a0, . . . , aM−1] ∈ CM → â = F (a) ∈ CM defined by

âk =
∑
l∈M

ζklal , k ∈M . (4.52)

where the coefficient matrix Z = (ζkl) has entries ζkl = e−2πikl/M . The “inverse FFT”

(IFFT), is given by the map a→ ã = G (a) where

ãk =
1

M

∑
l∈M

ζ̄klal , k ∈M . (4.53)

If we let ā denote the complex conjugate of a, we can define the Hermitian inner product
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between

〈a, b〉 :=
∑
m∈M

āmbm . (4.54)

We also define the convolution product of two vectors:

(a ∗ b)(n) =
∑
m∈M

a(m) b(n−m modulo M), n ∈M . (4.55)

Note that this agrees with (4.51) if and only if the sum of the supports of a and b is in M .

Otherwise the difference is called an aliasing error: our numerical implementations reduce

or eliminate aliasing errors by taking M sufficiently large.

The following identities hold for all a, b ∈ CM :

1. Inverse mappings: a = G (F (a)) = F (G (a)) ;

2. Conjugation: G (a) = 1
M

F (ā) ;

3. Parseval Identity: 〈a, b〉 = M〈ã, b̃〉 = 1
M
〈â, b̂〉 ;

4. Convolution Identities: ã ·∗b̃ = (̃a ∗ b), â ·∗b̂ = (̂a ∗ b) ,

where ·∗ denotes the component-wise product.

As an example to illustrate how the above formulas help, we observe that a typical

formula (4.20) can be computed instead by the formula

p
(n)
jk =

1

M
〈F (D),

(
ĝ

(n−1)
j

)j
〉 , (4.56)

where D̂ = F (D), ĝ
(n−1)
j = F (g

(n−1)
j ) and the power is the component-wise vector mul-

tiplication. Such FFT-based formulas can be computed systematically, very efficiently, if

the discrete probability distributions for ∆,Σ,Ω are initialized in terms of their Fourier

transforms.
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Appendix 4.B EU Network Construction

In 2011, the European Banking Authority (EBA) made public a dataset5 on the interbank

exposures of a selection of 90 medium to large European banks, as well as other information

such as their Core Tier 1 Capital and Risk Weighted Assets. In this dataset, interbank

exposures are aggregated by country on the liability side, which means we only know the

aggregated amount each bank v has lent to all banks in each EU country c. In this Appendix

we explain how we built the synthetic network in Experiment 3 that mimics stylized facts

of real financial networks and uses this EBA data as a source of additional information

about interbank liabilities and bank balance sheets.

Motivated by the ubiquitous relevance of networks with fat-tailed degree distributions,

as reported in papers such as Cont et al. (2010); Bech and Atalay (2010), we built the

skeleton based on the preferential attachment model of Bollobás et al. (2003). Given four

parameters α, γ, δ− and δ+ and letting β = 1−α− γ, this model grows a random directed

network from a finite initial “seed graph” using three rules:

1. With probability α, add a new vertex v together with an edge from v to an existing

vertex w, where w is chosen according to jw+δ− (that is, with probability proportional

to jw + δ−).

2. With probability β, add an edge from an existing vertex v, chosen according to kv+δ+,

to an existing vertex w, chosen according to jw + δ−.

3. With probability γ, add a new vertex v together with an edge from an existing vertex

w to v, where w is chosen according to kw + δ+.

This method is known to lead to fat-tailed degree distributions P−j ∼ j−τ− and P+
k ∼ k−τ+

with Pareto exponents τ− = 1 + 1+δ−(α+γ)
α+β

, τ+ = 1 + 1+δ+(α+γ)
γ+β

. The four parameters

α = 0.169, γ = 0.169, δ− = δ+ = 4.417 are determined by the following conditions: we

assumed Pareto exponents τ− = τ+ = 4 (ensuring finiteness of certain moments), that

α = γ, and that the mean degree is z = 10 (which is a typical value observed in financial

networks). To achieve this, we searched over a range of values of α, generating for each α

1000 samples of networks each consisting of N = 1000 nodes. For each realized network

5http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011
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sample, we selected the subnetwork of the 90 most connected nodes and calculated its mean

degree z. Finally we selected the α value which provided a mean degree z closest to 10. This

set of parameters was then used to produce the skeleton of Experiment 3 by generating a

single sample of a (directed) scale-free graph with N = 1000 nodes, and retaining its most

connected subnetwork of 90 nodes.

In order to build bank balance sheets, we assumed an LTI compatible specification of

the buffer and exposure random variables as log-normally distributed conditionally on the

network topology:

∆v = (kvjv)
β1 exp[a1 + b1Xv] , (4.57)

Σv =
2

3
(kvjv)

β1 exp[a1 + b1X̃v] , (4.58)

Ωv = (kvjv)
β2 exp[a2 + b2X`]. (4.59)

where the collection {Xv, X̃v, X`} consists of independent standard normal random vari-

ables. To fix the parameter values, first we arbitrarily set β1 = 0.3 and β2 = −0.2, with the

rationale that the default buffer should increase with bank connectivity, while a larger num-

ber of counterparties should imply lower average bilateral exposures. We used the reported

Core Tier 1 Capital as a proxy for the default buffers, and thus we matched the first and

second sample moments E[∆v] and E[∆2
v] using equation (4.57). Since we found no proxy

in the data for the stress buffers Σ, we arbitrarily selected the same parameters as for ∆,

but with a prefactor 2/3. Finally, matching equation (4.59) with sample moments E[AIBv ]

and E[(AIBv )2], from the aggregated interbank exposure data, gives us enough equations to

determine the full list of parameters: β1 = 0.3, a1 = 8.03, b1 = 0.9, β2 = −0.2, a2 = 8.75,

b2 = 1.16.
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Chapter 5

Conclusion

Research on systemic risk has been growing throughout the past decade. Nonetheless,

systemic risk is still stigmatized as a risk that can only be measured by regulators. Fur-

thermore, society as a whole has become dependent on regulations to minimize the effects

of systemic risk. This thesis aims to build on the foundations of systemic risk set in the lit-

erature with richer modelling of individual agent contributions and more accurate measures

for these contributions towards the systemic risk of the financial system. This richer mod-

elling allows individual agents within the financial system to better determine how their

actions lead to additional systemic risk. In addition, by accurately measuring systemic risk,

these agents can internalize its impact to their own welfare and have an incentive to adjust

their actions to lower systemic risk. We also discuss many contributing factors to systemic

risk that can only be changed by additional regulations. We hope that through this thesis,

individuals within the financial system and regulators of the financial system can better

understand their contribution towards systemic risk and be able to more effectively control

it.

Four years ago, Professor Hurd opened the door for me to start a journey to explore

and perhaps extend the research in systemic risk. We started our research focusing on

network-based systemic risk models. I distinctly remember when I read Duncan Watts

seminal paper on information cascades for the first time, I wondered if his model could be

used for systemic risk, and could systemic risk models be useful for all the other aspects

of society he mentioned? I still can’t answer that question, but during these four years,
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I’ve learned to incorporate more than just the Watts cascade model as part of studying the

systemic risk of financial systems. I have been able to incorporate methods from statistical

mechanics, biology, and in this thesis, market impact models as part of an effort to further

understand systemic risk.

This thesis started out from the introduction chapter as two topics of research, market

impact models and network-based systemic risk, and perhaps forcefully joined together by

my continuous insistence that they are both required as part of systemic risk. In this

section, now that the bodies of work have been explored individually, I want to conclude

with an overview of the big picture, the synthesis of this thesis. In this way, I hope to

convince the reader that indeed these two topics can be brought together, not just in an

ad-hoc manner, and to leave a trail of possibilities that arise from the union of these two

topics.

Let us first review the chapters of this thesis as a whole and the links which connect

them. There exist direct relationships between consecutive chapters. Chapter 2 provided

the understanding of how a single agent would optimize with market impact: without this,

the multi-agent setup of Chapter 3 would not be possible. Chapter 3 showed that asset

price impact can be approximated in aggregate reasonably well, which led to the addition

of asset firesale contagion to Chapter 4.

Another way to look at these three chapters side by side, is to understand the dif-

ferences in the assumptions in the models in these chapters. One aspect which makes the

models in the three chapters different is the fundamental set of information of the agents.

In chapter two, the entire universe consists of a single agent, hence the single agent is

allowed to act without competition or outside influence. As a result, the agent can even

create asset price manipulation strategies. In the third chapter, the agent still has perfect

information, but it comes at a cost of having other agents competing with him. In this

case, if all agents indeed follow the Pareto Optimal Nash Equilibrium strategy, then the

outcome is expected by all the agents. Yet, even in this scenario, we can already see that

the impact of dividing agents up into smaller individual agents reduces the resulting market

price of the illiquid asset. Finally in chapter 4, the agents’ information sets are limited to

only the size of the interbank lending between immediate neighbours. In particular, a pure

asset firesale contagion would produce similar results to that of a liquidity constraint game

from chapter 3. This leads to the suggestion that the much more plausible assumption of

129



the network-based information set is equivalent to perfect information assumption for some

systemic risk contagions.

A usual assumption of network-based systemic risk, and even many similar agent-

based models with market impact, is that while a crisis happens, agents are constrained

to a sell only strategy. Though this assumption leads to an easier system to analyse, it

removes the possibility for well positioned financial institutions to take advantage of this

situation. In Chapter 2 and Chapter 3, we showed that it is often in the interest of the

agents to purchase risky assets if their constraints allow them, regardless of the future price

of the risk asset. It is a worthwhile step in the development of systemic risk to allow for

normal behaviour of agents to exist throughout a crisis and is an interesting challenge for

new Ph.D. student.

Chapter two provided the foundation for work on a single agent performing portfolio

optimization in a financial market with price impact. This work already allows for multiple

risky assets to exist in the market, and even allows for hedging strategies to exist. This

model fundamentally assumes that the preferences of the management of the financial in-

stitution are allowed to be carried out without question. In practice, financial institutions’

risk seeking preferences are more bound by regulatory limits than their own appetites.

Naturally, this forms additional constraints on this portfolio optimization scheme. Gener-

alizing the mean-variance framework introduced in chapter two, these constraints can be

viewed as probabilistic penalties and allow the optimal portfolio and trading strategy to

be computed similarly. An interesting and open question arises from such a setup: is it

the regulators that will be computing this optimization scheme to determine the riskiness

of the financial institution, or is it the financial institution itself? Mathematically, the

technology of chapter two provides a firm basis for the solution to both questions.

Another line of thought away from increasing the complexity of the model is to in-

crease the number of agents. We came up with the models in chapter three utilizing this

line of thought, but we made fundamentally big changes to the market impact models

along the way. In chapter three, we focused and favoured the concept that agents abso-

lutely knew when they must liquidate themselves. As such, this required illiquid assets

with zero volatility. Naturally, a different model would arise if we assumed the stochastic

asset price process as shown in chapter two, and allowed many agents to compete for these

assets. This model would be a true multiplayer extension of the model in chapter two.
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Conceptually, the Nash Equilibrium solution can be found in a similar way, with much

higher dimensionality. A major technical challenge is the issue of unbounded solutions.

This problem arises due to moving away from optimal liquidation strategies and allowing

for a degree of freedom in the terminal portfolio. Since the terminal portfolio is variable,

there now exists a possibility for unbounded strategies. This effect may be amplified with

additional agents in the market, though it is hoped that the opposite occurs since another

agent will be able to make a profit against a possible Ponzi scheme easily. One key benefit

of such a model compared to the model in chapter three is that these Nash Equilibrium

strategies are continuous time trading strategies, and the issues such as front running will

occur naturally.

As the previous idea brings the work of chapter two closer to chapter three, the

implementation of multiple assets to the model of chapter three would allow the two models

to be compared side by side, apples to apples. The implementation of multiple assets for

the model in chapter three is straightforward. The asset price processes would not differ

from the single asset case and the agents’ objective functions and constraints would not

change either. The majority of the changes would come from the nature of the response

functions, since the boundary formed by selling or buying the asset until the constraint is

now a surface rather than a point.

Chapter three also showed that asset firesale mechanisms by themselves do impact

financial networks significantly even when direct connections between agents do not exist.

This leads to many unanswered questions as to what would happen if asset firesale mech-

anisms were involved in a financial network with direct connections between agents. In

chapter four, we explored an ad-hoc method of stitching together the cascade mechanisms

based on connectivity between agents and an asset firesale mechanism but this is simply

one possible method of doing so. In the opposite direction, a few lines of thoughts also

exist for the cases where we start with the multi-agent market impact model from chapter

three and wished to implement a network model on top of it. One idea would be to use

the market impact model to generate the shock, which triggers the network cascade model.

The idea behind this type of setup is based on the fact that network-based systemic risk

models require an exogenous shock to trigger the cascade. This exogenous shock is usually

vague in description, but with a multi-agent market impact model, the exogenous shock

can be the result of a price shock from the external market which sets up the network for
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the cascade mechanisms.

Another possible method to bring these two types of models together is to look at

what weaknesses the two models possess and if the other model can effectively remove these

weaknesses. One of the implausible assumptions made by the multi-agent market impact

model from chapter three is the assumption of perfect information amongst the agents in

the system. This assumption is very common in game theory literature, but nevertheless

still unjustifiable in the real world. One common implementation to restrict perfect infor-

mation, is to limit perfect information locally such as on a grid or lattice, or upon direct

interaction when agents come into contact. This requires a structure which defines the

distance between the agents of this game. Coincidentally, on a network structure, distance

between agents is well defined, and the scope of information sharing is usually limited to

the edges which are directly connected to the agents. In this sense, the technology from

network-based models for systemic risk is well suited for game theory with imperfect infor-

mation. Taking baby steps, I believe that an agent-based model similar to chapter three,

based on a network model with perfect information limited to immediate neighbours will

provide a more accurate picture of asset firesales as part of systemic risk, and is feasible

with techniques similar to those of existing network models.

Network-based systemic risk models like that of chapter four build upon each other

and allow us to study more complex cascade mechanisms, and multiple cascade mechanisms

at the same time. For example, cascade mechanisms using soft thresholds which allow for

partial losses, have only been studied one at a time. I also believe that a soft threshold

cascade mechanism for liquidity hording can be analysed analytically in conjunction with

an asset firesale mechanism. All of these ideas allow for a pedagogical approach to studying

cascade mechanisms one step at a time and provide wonderful research opportunities for

the next few years. Finally, I wish to speculate on a research topic which may be much

further down the line. The cascade model in chapter four, and similar network models of

systemic risk assume the existence of the network structure as given. I believe that game

theoretic methods similar to those of chapter three may also explain why, banks will form an

interbank network as a result of one period of trading. In particular, I want to understand

what drives networks to form with properties, such as fat tailed degree distributions and

core-periphery structure. In many ways, this is a vast and open field of research, which is

quite new and may hold many possibilities. Since the techniques developed in this thesis
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cannot be directly applied to understanding the question of how these networks are formed

and their mysteries, I feel this will be a research topic that lies much further down the road.
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