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Abstract 

Timing analysis of a real-time control program is often required to verify that the sys
tem meets timing requirements. For example, if a real-time control program responds 
too slowly or too quickly, then the system may become unstable and fail. Traditional 
methods to determine timing bound estimates are often restrictive, labour-intensive, 
and error-prone. This thesis proposes an automated method of obtaining best- and 
worst-case timing bounds on unstructured assembly code without the need for man
ual annotation of loop or recursive call bounds. A prototype tool suite takes an 
assembly program as input and then generates the static control-fiow graph. The 
generated static control-fiow graph is then automatically translated into a timed au
tomata model that models instruction processing times and adds variables to model 
the processor state. The resulting timed automata's transition relation represents the 
dynamic control-flow graph of the program. Fastest and slowest trace algorithms in 
recent prototype versions of UPPAAL, a timed automata model checker, are then used 
to extract tight best- and worst-case execution times of the program. The method is 
applied to code examples for two different low-end (i.e ., no cache or pipeline) 8 and 
16-bit microcontroller architectures, the PIC and IBM1800. 
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Chapter 1 

Introduction 

Why do we need the timing bounds of an embedded real-time program ? 

Embedded real-time systems are used to control many tasks in the physical world 

that were not previously controlled with computers. These include safety-critical 

tasks such as the control of nuclear power generating stations, aerospace and auto

motive vehicles, and telecommunication systems among others. A commonality of 

these tasks is that they are increasingly being implemented as software programs 

controlling embedded real-time systems. A system failure due to a missed timing 

deadline may result in catastrophic loss of human and/ or economic resources. More

over, on a volume basis, nearly all processors (up to 98%) manufactured are used in 

embedded systems[41]. Therefore, a great deal of research effort has gone into devel

oping methods to verify that these systems meet functional requirements to ensure 

correct operation. 

More recently, research on determining timing bounds of embedded systems has 

been pursued. The timing bounds include both the Worse Case Execution Time 

(WCET) and Best Case Execution Time (BCET) of the system. The timing bounds 

are used in the validation of the timing requirements of the systems. The timing 

of the execution of a real-time program is critical in determining if the functional 

requirements are met, because control of physical systems require that decisions must 

made by some hard real-time limit. Furthermore, a large variance in timing of control 

decisions may make the physical system unstable. Timing bounds are also used in 

schedulability analysis of the system, and determining the capabilities (and cost) of 

1 



2 MASc Thesis- M.H. Pavlidis McMaster - Computing and Software 

the processor required to implement the system. 

This thesis presents a method of determining the timing bounds of an embedded 

real-time program from assembly/object code, including the execution paths that re

sult in the BCET and WCET of the program. The method differs from the current 

methods used to find timing bounds (or commonly only the WCET) of real-time 

programs. A prototype timing analysis tool based on the method allows for the veri

fication of timing requirements of an implementation and can be used in determining 

timing requirements when reverse engineering a legacy system. 

1.1 Motivation 

This section provides the motivation for the development of the timing analysis tool. 

It includes an overview of the reverse engineering project, of which the tool is a com

ponent. Further, the current difficulties in timing analysis that we desire to overcome 

are presented, and the utility of determining execution timing bounds described. 

1.1.1 The Reverse Engineering Project 

The motivation to build a timing analysis tool is part of a larger project to obtain 

high-level software requirements from assembly code. The project, Reverse Engineer

ing High-Level Requirements from Assembly Code, involves a group of researchers 

from McMaster University's Software Quality Research Laboratory (SQRL) work

ing jointly with system engineers from Ontario Power Generation (OPG) to develop 

methods and a Reverse Engineering Tool Suite (Figure 1.1). The methods and tools 

are intended assist in reverse engineering legacy assembly language safety-critical 

real-time programs to high-level requirements. The project was funded by OPG and 

Communication and Information Technology Ontario ( CITO), from April 2003 to 

April 2005. 

The direction of the project presented herein was constrained by the following 

requirements. The reverse engineering program of interest, Boiler Pressure Control 

(BPC) was to be based on a non-structured assembly code (sparsely commented), and 

a legacy processor (IBM1800 Data Acquisition and Control System) with a limited 

instruction set and a simple architecture without pipeline or cache. Both best- and 
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Requirements Repository 

Figure 1.1: Reverse Engineering Tool Suite Uses Hierarchy 

worst-case execution times are required. Finally, it was necessary to address and 

overcome limitations of a previous timing analysis tool by fully automating the timing 

analysis process. 

1.1.2 Timing Analysis Difficulties 

The conceptual use of WCET in scheduling algorithms for hard real-time systems 

has long been studied [27], but determining the actual precise execution time bounds 

of real-time programs is difficult, error-prone, and time consuming. More recently, 

research has focused on determining the WCET estimate that is a safe overestimate 

using static analysis of the program source or object code. 

Static timing analysis methods have reduced much of the time and effort required 

to obtain timing bound results, but they do not entirely eliminate the human-in-the

loop required to add annotations for control fiow. The required annotations include 

determining loop iteration bounds, branching fiow and infeasible paths, and behaviour 

due to function calls and recursion. Some methods to automatically determine pro

gram behaviour have been developed [13] , but these are restricted to special cases of 
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structured code and/or require high-level source code (recall the constraint of reverse 

engineering assembly code). 

1.1.3 Timing Bound Uses 

To answer the opening question why we need to determine the timing bounds of real

time programs?, we look at the uses of the timing bounds. First is the need to 

determine timing bounds that satisfy functional timing requirements and timing tol

erances in reverse engineering safety-critical real-time programs to high-level require

ments. Moreover, determining the timing bounds of an implementation can be used 

in the forward development process to validate a program implementation against 

functional timing requirements, and verify that the jitter is acceptable for the spec

ified timing tolerances [43]. Finally, other uses for timing bounds include selection 

of sampling frequency, data rates, schedulability, hardware (i.e., processor) selection, 

and compiler optimisation. 

1.2 Related Work 

In this section, the work directly related to the development of the Symbolic Timing 

Analysis of Real-Time Systems (STARTS) tool suite is presented. It includes work 

previously completed for the Reverse Engineering project , and other tools used in its 

implementation. 

1. 2.1 Timing Analysis Tool 

A WCET Analysis Tool (WAT) was developed by Sun [36] . The tool was developed 

to be the T iming Analysis Tool (TAT) component of the Reverse Engineering Tool 

Suite. The interactive tool consists of a path-based WCET calculation. It partially 

automates analysis, but it still requires intensive manual annotation to identify loops 

and determine their bounds, and to mark infeasible paths. Further, the traces are 

generated as sequential textual output . 

These limitations of the WAT motivated development of a tool that automates 

the process to eliminate time consuming and error-prone manual annotations. It also 
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identified the need for a graphical visualisation of the traces as an aid in comprehen

sion for the reverse engineering efforts. Additionally, a tool that finds both BCET 

and WCET is preferred to one that only computes the latter. The development of 

· the WAT provides a methodology for obtaining possible execution traces and insight 

into troublesome IBM1800 instructions that complicate feasible path determination. 

The feasible paths are found by pruning the infeasible edges from the output of a 

Control Flow Graph tool. 

1.2.2 Control Flow Graph Tool 

Everets [14] implemented a tool for generating a static control flow graph (CFG) rep

resenting an approximation of the possible execution paths of the BPC code. The tool, 

Lst2Gxl, is a part of one of the lowest-level components, the Graph Analysis Tool, 

of the Reverse Engineering Toolset. Lst2Gxl uses the compiler generated code listing 

(LST) file to create a CFG with each instruction represented as a node in the graph. 

The graph nodes include additional annotations that contain relevant information 

from the assembly code that can be further used to determine the feasible dynamic 

execution paths. Figure 1.2 is an example of a CFG generated from a code segment of 

the IBM1800 assembly code. The CFG is represented in Graph eXchange Language 

(GXL) [19], an Extensible Markup Language (XML) sub-language designed to be a 

standard exchange format for graphs. The GXL-based CFG can be processed by Ex

tensible Stylesheet Language Transformation (XSLT) [47], an XML-based language 

used for the transformation of XML documents, to another XML-based document. 

For example in Section 6.2.4, an XSLT specification is defined to transform a CFG 

in GXL to an XML-based timed automata model used by UPPAAL. 

1.2.3 UPPAAL 

UPPAAL is a graphical tool for modelling, simulation and verification of real-time 

systems [42] , depicted in Figure 1.3. It is appropriate for systems that can be modelled 

as a collection of non-deterministic processes with finite control structure and real

valued clocks (i.e., timed automata) , communicating through channels and/or shared 

data structures. 

Typical application areas include real-time controllers, communication protocols, 
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Figure 1.2: Control Flow Graph of an IBM1800 code segment 
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and other systems in which timing aspects are critical. UPPAAL is a joint develop

ment between real-time system researchers at Uppsala University, in Sweden, and 

Aalborg University, in Denmark. It provides a model checking engine to verify safety 

and bounded liveness properties expressed as reachability queries [24, 3]. It was ini

tially released in 1995, and it continues to be actively developed and supported on 

MS Windows, Linux, and Mac OS X platforms. Throughout the years, many no

table improvements have been made to UPPAAL, including efficient data structures 

and algorithms, symmetry reduction, and symbolic representations that dramatically 

reduce computation time and memory space use in light of possibly enormous state 

space explosion. 

The most recent stable release , version 4.0.1 (as of June 2006), includes a stan

dalone verification engine, fastest trace generation (for BCET) 1
, XML-based TA 

model, process priorities, progress measures, bounded integer ranges, meta variables, 

and user-defined functions. These features permit the modelling of microprocessor 

architecture and instruction execution used to perform timing analysis by the method 

proposed in this thesis. 

1The slowest trace generation is currently possible in an unreleased prototype version of UPPAAL. 
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1.3 Contributions 

In this thesis the timing analysis of real-time programs is examined and an alternative 

method of obtaining best- and worse-case execution times of assembly-level software is 

developed. The major contribution of this thesis is a new method of obtaining timing 

bounds that is made possible by a transformation system from a static control-fiow 

graph to a timed automaton model of the program. The primary contribution of this 

method is to introduce a static timing analysis method that provides the following: 

• A transformation system from static control-fiow graph to timed automata 

model of the program and hardware architecture. 

• Calculation of tight and safe timing bounds of unstructured assembly code. 

• Timing bounds and respective traces are obtained automatically without the 

need for manual annotations. 

• Timing bound and trace computation make use of pre-existing efficient optimi

sations of state space representation and searching provided by UPPAAL. 

• A prototype implementation, the STARTS tool suite, used to develop and val

idated the proposed method automates the timing analysis process. 

• Safety and liveness properties of the implementation can be verified, providing 

alternative means of validating the implementation in addition to testing. 

• Traces through the timed automata model can be simulated providing a graph

ical visualisation of the program execution paths. 

1.4 Outline 

:rhe remaining chapters of this thesis are organised as follows: 

• Chapter 2 presents terminology and definitions used throughout the thesis. 

• Chapter 3 provides an overview of current t iming analysis methods and tools. 
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• Chapter 4 discusses model checking timed automata for use in timing analysis, 

then presents a method for generating a timed automaton model of the program. 

• Chapter 5 details the transformation process of a static control-How graph to 

timed automaton model of a real-time program. 

• Chapter 6 describes the prototype tool suite STARTS. 

• Chapter 7 presents timing analysis results for the IBM1800 and the PIC target 

architectures. 

• Chapter 8 draws conclusions, details the benefits of the work presented and 

provides an overview of the possible future work to overcome the method 's 

current limitations. 
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Chapter 2 

Preliminaries 

In this chapter we introduce the terminology and definitions used throughout the 

thesis. 

2.1 Terminology 

2.1.1 Timing Bound Properties 

This section provides the terminology used to describe timing bound properties of 

interest. Figure 2.1 graphically demonstrates the relationship between the properties. 

Worst Cast Execution Time (WCET): The slowest of all possible execution times 

of a program, or a program fragment. It is typically given in terms of cycles, or 

seconds if the CPU clock rate is known. 

Best Cast Execution Time (BCET): The fastest of all possible execution times 

of a program, or a program fragment. It is typically given in terms of cycles, or 

seconds if the CPU clock rate is known. 

Jitter: The largest execution time variation (i.e., the difference between WCET and 

BCET) of a program, or program segment. 

Safe: A WCET (or BCET) estimate is safe if it does not underestimate ( overesti

mate) the actual WCET (BCET). 

11 
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Tight: A WCET (or BCET) estimate is tight when the estimate is as close to the 

actual WCET (BCET) as possible, but remains safe (i.e., the WCET (BCET) 

estimate is equal to actual WCET (BCET)) . 

Actual BCET Actual WCET 

Tighter BCET Tighter WCET 
Possible Execution Times 

._.. _____ Jitter ------i~ 

Figure 2.1: Timing Bound Properties 

2.2 Definitions 

2.2.1 Control Flow Graph Model 

A control fiow graph describes the possible execution paths through the program. 

Each node of the graph represents an assembly-level instruction. Each directed edge 

out of a node represents the next instruction that may execute. We extend the model 

of the CFG to include annotated nodes. The annotation of the nodes includes relevant 

information required to perform control and data fiow analysis when converting the 

CFG to a timed automata. 

Modelling each instruction as a separate node in the graph differs from many of the 

common approaches to CFG generation, that encapsulate a sequence of sequential, 

non-branching, non-backtracking, instructions into a basic block1
. The basic block 

model is sufficient when determining control-fiow, but in order to later model data

flow and timing effects of processors (i.e., interrupt service routines, pipelines, caches, 

etc.) it is necessary to model each instruction atomically. 

Definition 2.1 A Control Flow Graph (CFG) is a possibly cyclic directed graph 

given by the tuple, 

1 A basic block is a sequence of instructions with a single entry point at the beginning and a single 
exit point at the end 
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G = (N, E,no) 

where N is a finite set of nodes, E ~ N x N is the set of directed edges, n 0 zs a 

unique start node. For regular cases, all nodes n E N are reachable from n 0 . 

The following definit ion augments a CFG to include annotated nodes. Nodes are 

annotated with the fields from the assembly / machine-level instruction. The annota

tions include the relevant fields (e.g., instruction address, opcode, operands, object 

code, etc.) and their respective values. 

D efinition 2.2 An Annotated Control Flow Graph (Annotated CFG) is a pos

sibly cyclic directed graph given by the tuple, 

where N is a finite set of nodes, E ~ N x N is the set of directed edges, n 0 zs a 

unique start node, .\ : N -----+ P (I x I:) is a function that maps a node to its set of 

annotations, where I is the finite set of instruction fields, and I: is the set of values 

for the instruction fi elds. 

For regular cases, all nodes in N are reachable from n0 . It is possible to have a 

disconnected graph, where there exists a set of nodes that are not reachable from n 0 . 

Such nodes are still included in the graph, as they may indicate a special segment of 

instructions or a problem with the generation of the CFG. This issue is dealt with in 

the transformation of the CFG to a TA, detailed in Section 5.3.5. 

The Annotated CFG represents all possible execution paths of the instructions of 

the program. The annotations represent all relevant information for each instruction. 

An explicit execution path is defined by a trace that represents one possible sequence 

of instructions executed by the program. 

D efinition 2.3 A CFG Execution Trace is any finite string of instruction nodes 

connected by edges from the Annotated CFG of the form n 0 ~ n 1 -----+ • • • -----+ ni· 

Where E(x,y) is the directed edge from the node labelled x to the node labelled y. 
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2.2.2 Timed Automata 

The theory of timed automata was initially developed by Alur and Dill [5], as an 

extension of finite-state Bi.ichi automata with clock variables. A timed automaton is 

structured as a directed graph with nodes representing locations and edges represent

ing transitions. 

Constraints on the clocks are used to restrict the behaviour of the automaton and 

enforce progress properties. Clock constraints on locations, called invariant condi

tions , force a transition when a clock value would violate the clock invariant. The 

transition (if one exists) is required because states where the clock invariant is violated 

are considered infeasible. 

Transitions of the automaton have clock constraints guarding the transition edge, 

called triggering conditions, restricting when a transition can be taken based on the 

clock guard. Transitions include clock resets, where some clock variables are reset to 

zero when the transition is taken. 

Definition 2.4 A Timed Automaton is a tuple, 

A = ( L, C, l0 , E, I) , 

where L is a finite set of locations, C is a finite set of non-negative real-valued clocks, 

10 E L is an initial location, E ~ L x B(C) x 2c x L is a set of edges labelled by guards 

and a set of clocks to be reset, and I: L-+ B(C) assigns location invariants to clocks, 

where B(C) = { x, c, rv I X E c (\ c E N (\ rvE { <, ::;, ==, ~, >} : X rv c} is the set of 

guards on clocks. 

Bengtsson et al. [8] provide an extension of the classical theory of timed automata 

to ease the task of modelling with a more expressive language. The extension adds 

more general data type variables (i.e. , boolean, integer) , in an attempt to make the 

modelling language closer to real-time high-level programming languages. 

Definition 2.5 An Extended Timed Automaton is a tuple, 

Ae = (L, C, V, A, lo, E, I) , 

where L is a finite set of locations, C is a finite set of non-negative real-valued clocks, 

V is a set of finite data variables. A is the set of synchronising actions where 
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A= {a?Ja E A} U { a !J a E A}. l0 E L is an initial location, E ~ L x B(C, V) x 2R x L 

is a set of edges label led by guards and a set of reset operations, R. Finally, 

I: L--+ B(C, V) assigns location invariants to clocks, where 

B(C, V) = { X, i, C, rv I X E C 1\ i E V 1\ C EN 1\ rvE { <, ~' ==, ::::, > } : X rv C Vi rv C} 

is the set of guards on clocks . 

Definition 2.6 A TA Trace is any finite string of instruction locations connected 

by transitions from the Annotated TA model of the form l0 ~ h --+ · · · --+ li· Where 

T( x,y) is the transition from the location labelled x to the location labelled y. 
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Chapter 3 

Timing Analysis Overview 

In this chapter several of the current methods to compute the timing bounds of 

real-time systems are presented. The benefits and limitations of each method are dis

cussed. T hese methods of comput ing the WCET differ from the method proposed in 

this thesis. It should be noted that the proposed method was developed independent 

of the techniques of the previous work. It allowed for a fresh approach that diverges 

from the status quo to solve some of the current limitations of WCET estimation. 

In particular, automatically determining loop bounds, complex flow , and avoiding 

infeasible execution paths without manual annotation. 

3 .1 Dynamic Timing Analysis 

In industry, WCET is commonly computed by measurements on many executions 

of the program code, known as dynamic timing analysis. Measurement of execution 

time are performed by hardware, software, or a hybrid of both types of tools. 

3.1.1 Hardware Measurements 

Hardware measurements use oscilloscopes and logic analysers to monitor system out

puts by connecting probes to the processor and system bus pins. Oscilloscopes and 

logic analysers can be used to calculate the frequency of control loops (e.g. , cyclic ex

ecutives) , and the response time from input stimulus to controlled output response. 

17 
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Hardware measurement methods have minimal intrusiveness on the software be

ing measured because probing does not affect execution time or order of execution. 

However , the methods can only be used on a system when the hardware setup per

mits the connection of the analysing probes. An example of a scenario that does not 

permit the use of such tools would be an embedded safety-critical system, where it 

is not be safe to connect probes to hardware or run test cases they may result in a 

system failure. 

Oscilloscope measurements only provide results from externally visible signals, 

and cannot determine the internal state of the processor or executing program. How

ever, the granularity of logic analysers is at the machine instruction level. For both 

methods, the measurements of numerous test executions are logged, and the changes 

of signals over time are analysed to determine the timing results. Although these 

methods provide the smallest timing resolutions, as with all of the dynamic WCET 

methods, it cannot typically guarantee safe timing bounds because in general test 

cases cannot be exhaustive. The latter is also true for the software measurement 

techniques described below. 

3.1.2 Software Measurements 

Software measurements involve adding instrumentation points into the source code of 

the program or around the program. An example of software measurement methods 

are function profiling tools (e.g., gprof() [17]) that measure the execution profile of 

called subroutines , providing a call graph and associated execution time. Another 

is using instrumentation points that drive output pins that can be measured with 

hardware to determine the execution time. 

Unfortunately, adding instrumentation code into a real-time program changes the 

timing, execut ion path and, for complex processors with cache and pipelines, proces

sor dynamics, of the program proper. It results in an overestimation for the timing 

bounds. The impact on the WCET bound is an overestimated result , that is more 

safe. The impact on the BCET bound is far more critical to the analysis of response 

jitter, since the overestimation can push the BCET bound into to the right of the 

safe BCET time region, as illustrated in Figure 2.1, leading to an underestimated 

response jitter. 
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Software measurements that do not add instrumentation points in the code require 

operating system or emulator support to obtain the start and end times of execution. 

The former has a high granularity (i.e., program level) and high timing resolution 

that is dependent on the operating platform (i.e., UNIX time() command). Emulation 

provides instruction level granularity, low timing resolution, and can provide execution 

traces, but development of an emulator can be costly and time consuming. 

3.1.3 Dynamic Timing Analysis Feasibility 

Despite its common use in industry, it is very difficult for dynamic timing analysis 

to ensure safe timing bound results. The methods yield timing bounds that are 

within the range of possible execution time (Figure 2.1). The initial state and input 

selection of test cases strives to push the results outward toward the actual bounds. 

For safety-critical real-time systems, if system response is too fast or too slow it 

can cause the system to enter a state that is unstable and uncontrollable , resulting in 

possible catastrophic failure. Thus dynamic timing analysis techniques do not provide 

a feasible solution to our problem with its previously stated set of constraints. The 

requirement to obtain safe timing bounds motivated the investigation of static timing 

analysis methods. More recently, dynamic measurement techniques have been used 

to enhance static analysis in [44] for high-end processors that cannot be effectively 

analysed due to computational complexity. We note that to avoid these complexities 

and because of market factors, we limit our analysis to the class of processor that are 

low-end, for which static timing analysis is feasible. 

3.2 Static Timing Analysis 

Static timing analysis involves the use of analytical methods to determine timing 

bounds from program code (high-, assembly-, or object-level) without executing the 

code. Each stage of static timing analysis provides information about a program 

and its execution architecture used to obtain a safe and tight (as possible) WCET. 

This section outlines the three stages of static WCET analysis, commonly presented in 

literature, and presents some timing analysis tools that provide static timing analysis. 
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3.2.1 Flow Analysis 

The first stage of static timing analysis involves determining possible sequences of 

instruction execution of the program. This includes sequential blocks of instructions, 

branching and conditional branching instructions, and number of loop iterations. For 

the latter, the common approaches require manual annotation of loop iterations. This 

thesis presents a method that does not require manually determining loop bounds a 

priori. The fiow analysis is represented by a CFG, where instructions are represented 

by nodes and the execution path is determined by the directed edges. 

In cases where source code is available, the fiow analysis stage may also determine 

called functions and recursions. Based on the constraints of the reverse engineering 

problem, high-level source code will not be considered in the implementation of the 

timing analysis tool, and it is only mentioned for completeness. 

Flow analysis must determine a safe execution path approximation, that includes 

all feasible paths with as few infeasible paths as possible. In the method proposed 

in this thesis, Low-level Analysis (Section 3.2.2) of the architecture yields conditions 

on edges that prevent inclusion of infeasible paths in the timing bound calculation. 

Calculation methods that do not perform partial data fiow simulation do not maintain 

enough of the state information to eliminate infeasible paths from the calculation of 

the timing bounds. This results in time bounds that are less tight. The task of ftow 

analysis is decomposed into three steps: Extraction, Representation, and Calculation 

conversiOn. 

Extraction of fiow information for assembly-level code involves the identification 

of all possible paths for each instruction based on the operational semantics of the 

architecture, typically defined informally in the technical manuals of the target pro-

cessor. 

Once fiow information is extracted, it is necessary to introduce notation to rep

resent it. The representation of fiow analysis may take the form of some type of 

graph [34, 37, 45] or tree [33, 10], source code annotation [22], or by defining a lan

guage to describe the possible paths through the program [31, 21]. Together with 

fiow information, loop identification and loop iteration bounds are added to the fiow 

representation. Commonly, loop information is annotated manually. Since manual 

annotation is prone to error and tedious, there have been some developments in au-
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tomatically identifying loops and related iteration bounds at assembly-level code for 

some classes of well-structured loops [18]. 

The choice of representation may negatively impact the capabilities of the related 

Calculation method (Section 3.3) to find safe and tight timing bounds. In the final 

step, Calculation conversion, the fiow information is mapped to a form that is a 

feasible input for the chosen method of computing the bounds. In addition to fiow 

information to perform the calculation, the execution time of the underlying hardware 

architecture must be determined by low-level analysis. 

3.2.2 Low-Level Analysis 

The precise execution time of each instruction is determined at the low-level analysis 

stage. The target architecture instruction set defines each atomic action the processor 

performs, and how long each action takes. The execution time of each instruction 

is impacted by the complexity of the architecture. Microprocessor designers add 

physical complexity to increase instruction throughput with pipelined and out-of-order 

execution, and to decrease memory access delays with cache. We leave investigation 

of these types of processors to future work as they are outside of the scope of our 

problem definition. 

Logical complexity is added the the hardware architecture with interpreted in

structions, where the operator mnemonic (or opcode) alone does not determine the 

action of the instruction. Further, for some complex architectures (i.e. , CISC-based 

processors like the Intel x86 line) instructions are interpreted into a set of micro

instructions encapsulated in the hardware and hidden from the instruction set. More 

logical complexity of the instruction set requires interpreting the instruction opera

tor, fiag bits, and operands. This is done to understand the action performed by the 

processor for each instruction format, and accordingly the precise execution time. 

For example, the IBM1800 instruction set's precise execution time of an instruc

tion depends on the instruction length of a single- or double-word (i.e., format bit 

F = 0 or F = 1, respectively) , if the instruction register or index registers are used 

(i.e., tag bits T = 0 or T = {1, 2, 3}, respectively), and if indirect addressing is 

used. The execution time, or execution cycle count, must be determined for each 

case and then converted to the format used in the final stage, namely the timing 
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bound calculation. 

3.2 .3 Calculation 

Once the fiow and architecture timing information is determined, it is possible to 

compute the execution t iming bounds of the program. The flow representation, ar

chitecture information, and calculation method chosen impact the tightness of the 

timing calculations, and the time and space complexity of the computation. Of

ten, the method to extract and represent timing is closely related to the calculation 

method used. Each common type of calculation method is described in more detail 

in the next section. This thesis proposes a different calculation method technique to 

compute timing bounds in Chapter 4. 

3.3 Execution Time Calculation Methods 

This section provides an overview of the current set of static analysis calculation 

methods. It describes the capabilities and limitations of the methods to compute 

t iming bounds given program flow and low-level architecture timing results. There 

are three main types of calculation methods often referenced in literature: path-based, 

tree-based, and implicit path enumeration technique (IPET) 1
. 

3.3.1 Path-based 

Path-based calculation methods utilise graph based representations of program fiow 

and timing annotation to compute execution t imes of paths through the graph and 

then search for the longest path to find the WCET. 

The fiow graph representation is a CFG where the t iming of each instruction 

or basic block on the nodes, and loops are identified and annotated with iteration 

bounds. CFGs of this type with t iming information are often called Timing Graphs 

(TGs). The TG is used to explicitly enumerate each possible execution path based on 

the graph, then searches for the longest. Determining the explicit path permits cal-

1 Throughout this section, all references to timing bounds, both WCET and BCET, are referred 
to as WCET to maintain consistency with the literature that is primarily focused only on WCET. 
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culating tighter timing results due to the architecture dependent effects of execution 

of particular sequences of instructions. 

For programs with many branches and/or loops it is obvious that the number 

of possible paths quickly explodes. Utilising the fact that path-based methods are 

manageable for limited segments of code, such as a single loop or branch path, the 

complexity of enumerating the paths is mitigated by decomposing the TG into a 

scope graph [12] . A scope graph is constructed from subgraphs of the TG, where each 

subgraph is a node representing a scope. Each scope corresponds to a loop or function 

contained in the TG subgraph. The WCET calculation then works hierarchically on 

the scopes. The longest path must verified to ensure that it is a feasible path. If 

it is not , the next longest path is chosen for the WCET calculation and is check for 

feasibility. Moreover , for unstructured code (i .e., assembly-level or optimised object 

code) it can be difficult to determine the scope that a node of the TG belongs to. 

Finally, the task of identifying loops and associated loop bounds must be performed 

manually or automatically, prior to the calculation phase of analysis . 

Piece-wise calculation strategies, such as the scope graph, result in an overesti

mated (i.e., less tight) WCET if data-flow information reaches over the borders of 

the decomposed pieces. The problem is illustrated by considering a triangular loop, 

a nested loop where the number of iterations of the inner loop is dependent on the 

iteration count of the outer loop (see Figure 3.1). The inner loop yields a worst-case 

iteration bound of 10, as does the outer loop. Thus, the piece-wise calculation over 

the path would result in 100 executions of inner loop body, while the actual result 

should only be 55. 

for(i = 0; i < 10; i++) 
for(j = i; j < 10; j++) 

body 

Outer Loop bound: 10 
Inner Loop bound: 10 
Piece-wise Execution count: 10 x 10 = 100 
Actual Execution count: :Li~o i = 55 

Figure 3.1: Triganular Loop Example 

Path-based calculation methods are useful to obtain explicit execution traces for 

timing bounds but are limited by the complexity of the analysed program, yielding 
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safe but less tight results. 

3.3.2 Tree-based 

Tree-based calculat ion generates the WCET by a bottom-up traversal of a syntax

tree of the program. The syntax-tree is a representation of the program where the 

nodes describe the structure of the program at the source-code level, and the leaves 

represent basic blocks. 

The syntax-tree is derived from the fiow representation (i.e. , timing graph). Tim

ing is computed by translating each node into an equation that expresses the timing of 

its children nodes, then summing the expressions following a set of rules for traversing 

the tree. 

Tree-based calculation was first introduced by Park and Shaw [32], as timing 

schema. It was further extended to include hardware level timing influences, such as 

pipelines and cache. It is a simple and efficient method to compute WCET, but it 

requires source-level code or highly structured assembly-code. Some instruction sets, 

such as the IBM1800 or PIC microcontroller , are inherently unstructured. That is, 

branches and loops are not easily identifiable by mechanical or manual methods. Fur

ther , compiler optimisations of object-code results in unstructured code. Therefore, 

tree-based calculation is unsuitable for the constraints imposed upon the work of this 

thesis, but is feasible in specific cases of small and well-structured source-code. 

3.3.3 Implicit Path Enumeration Technique 

Due to the space and time complexity issues encountered with the previous calcula

tion methods, Implicit Path Enumeration Technique (IPET) , as the name suggests, 

does not find every execution path to determine the WCET. The methods initially 

developed in [26, 30, 34] state the problem of finding the WCET by maximising a 

sum that is restricted by a set of constraints modelling program fiow and hardware 

timing (Figure 3.2). 

The -WCET is found either by constraint solving methods, or more popularly, 

by integer linear programming (ILP). The advantages of this method is that each 

path does not have be explicitly determined. Instead the behaviour is expressed as 

a set of constraints. More importantly, the calculation stage of finding the WCET 
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WCET =max( L xi* ti), 
iEBB 

{a set of constrains on \fiEBBxi} , 
where BE is the set of all basic blocks, 

Xi is the execution count of the basic block, 
ti is its execution time. 

Figure 3.2: IPET Objective Function and Constraints 
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is performed by ILP methods and tools (e.g., lp_solve() [11]) that are extensively 

researched and efficient. This serves to remove the onus on the WCET tools by way of 

reuse. An analogous strategy is used for the proposed calculation method described 

in the next chapter. 

IPET offioads the calculation stage of analysis to other tools, but the earlier 

stages of determining loops and loop bounds are still required. Depending on the 

analysed code, this process is often done manually and it is tedious and prone to 

error. An additional limitation of IPET is that the WCET path is not explicitly 

defined. Instead, only a number representing the amount of time or number cycles 

the worst-case path would take is reported. Determining the explicit WCET path 

requires additional processing. The actual WCET path is valuable information when 

analysing the behaviour of the program and requires an additional processing stage to 

search for the path. Despite this limitation, IPET is the favoured calculation method 

of the popular academic and commercial WCET tools. 

3.4 WCET Tools 

This section provides an overview of some of the popular timing analysis tools. These 

tools are designed to find WCET and they are branded as such, but some are also 

capable of determining BCET. 

The primary motivation for commercial development of tools is their effective and 

efficient use in industry and current practical issues that the theory of static timing 

analysis aids in overcoming. Ermedahl has developed the following set of requirements 
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that a WCET tool should support [12]: 

• The tool should produce safe and tight estimates of the WCET and provide 

deeper insight into the timing behaviour of the analysed program and target 

hardware. 

• The tool should be reasonably retargetable, supporting several type of proces

sors with different hardware configurations. It is valuable to provide insight in 

how different hardware features will affect the execution time. 

• The tool should be able to handle optimised and unstructured code. Also, code 

for which some of the source-code is not available (e.g., library functions and 

hand-written assembler). 

• The tool and analysis should be reasonably automatic, easy to use and should 

not require any complex user interaction. 

• The user should be able to interact with the tool and provide additional infor

mation for tightening the WCET estimate, (e.g. , constraints on variable values 

and information on infeasible paths). 

• The user should be able to specify which part of the code to measure, ranging 

from individual statements, loops and functions to the whole program. 

• The user should be able to view extracted results on both a source code and 

object code level. The information should provide insight in code parts which 

are executed, and how often. 

A survey of available tools, both academic and commercial, yields no tool that 

fully supports all of the requirements listed above. The reasons noted for the ab

sence of such a tool are the complexity in determining precise timing behaviour of 

modern processors (with pipelines, caches, branch prediction, etc.), and the fact that 

embedded system engineers are unfamiliar with static analysis methods, thus limiting 

the market for theses tools. Moreover, there is a belief that the market for timing 

analysis tools is small because the number of high-end processors used in embedded 

systems is proportionally very small. While this is true for the high-end processors 
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that these tools target, since these tools are primarily focused on solving the hard 

problem of processors with high complexity. There is generally a lack of focus on 

low-end processors, despite the tremendous market size in terms of volume. The 

processor market for 4-, 8-, 16-bit, DSPs and microcontrollers is over 90%, with the 

simple 8-bit processors making up 55% of the market . Further, of the less than 10% 

market share of 32-bit processors, 98% of those are used in embedded systems [41]. 

Thus, despite the huge potential market for timing analysis tools for these low-end 

processors, the research and industrial communities have largely ignored this market 

in favour of attempting to solve more complex problems for processors with a small 

market share. 

Herein lies the motivation for developing a tool that provides precise timing analy

sis for high volume, low-end processors. Having the capability of proving that a given 

task can safely execute on a less powerful processor yields significant production cost 

savings. This is instead of using a much more powerful processor to ensure timing 

behaviour is safe but at a higher unit cost. 

Another reason for the lack of tools that fully support the list of requirements 

is that most tools support WCET analysis at either source-code level or object-code 

level. The difficulty these methods introduce is in the mapping of high-level fiow 

information from source-code down to low-level object-code in order to compute the 

timing bounds. The compiler is the logical component that links the source-code 

fiow with the object level timing information. Unfortunately, many compilers are 

closed-source provided by the processor manufacturer, and open-source compilers 

(i.e., gcc[16]) generate much less efficient object code. 

Obtaining the fiow of data information (e.g., loop bounds) automatically from 

source code is significantly less complex than from object code, that requires main

taining fiow of data between registers and memory. For the Reverse Engineering 

project, we are in effect only considering the latter case because the program was 

implemented in assembly. Further, at the source level the variable names are more 

meaningful to the analyst than memory and register addresses. Regardless of whether 

the methods to obtain loop bounds operate on source- or object-code are manual or 

automatic, the problem of converting the information into a form for the calculation 

state remains. 

Academic WCET tools have developed out of the motivation for a proof-of-concept 
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implementation of a new theoretical approach, or to provide a set of functions that 

allow for theory to be examined and extended. Development of the academic type of 

tools tends to stall once it reaches a desired level of stability, or the researchers move 

on to other areas of interest. 

One such example is the research prototype Cinderella [25] , developed at Princeton 

University, that has not been actively developed for ten years. Cinderella determines 

both BCET and WCET for the Intel i910 and Motorola M68000 processors. It pro

vides a graphical development environment from source-code to object-code, and the 

mapping between them. 

In Cinderella, timing bound calculation is based on the IPET developed by Li 

and Malik [26]. The tool determines the linear constraints for cache and pipeline 

behaviour of the processors, but requires manual annotation of fiow behaviour to 

tighten the timing bounds. For example, the triangular loop problem (Figure 3.1) 

would require the analyst to determine the linear constraint x3 = 55 x1 , where x1 

represents the outer for-loop 's basic block, and x3 represents the inner-loop body's 

basic block. Another limitation of the prototype is that it does not provide the 

best- and worst-case execution paths because it depends on IPET for timing bound 

calculation. 

The tool provides the capability to retarget the timing bound estimation of differ

ent hardware platforms through a well-defined C++ interface. Retargeting requires 

the implementation of backends for the object file , instruction set , and machine model. 

Cinderella provides a good model of modularisation to separate the computation and 

interface implementation from the backend modules that perform the control fiow 

and low-level analysis . 

Other academic tools are prototype research implementations strictly focused on 

source-code level dependent analysis . These are not feasible to extend for this work 

due to the dependence on high-level source-code and manual annotation requirements. 

They include Calcwcet_1 67 [40] that is an implementation of Kirner and Puschner 

[21] for the Siemens C167CR processor from the Vienna University of Technology 

and Heptane [2] static WCET analyser for several processors from ACES Group at 

IRIS A. 

Some research projects have evolved into commercial products. One such tool 

is Bound-T [39] from Tidorum Ltd. in Finland. Bound-T supports several architec-
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tures and analyses machine-level code to compute WCET and its execution path. 

It automatically determines loop bounds for counter-type loops and allows for user 

assertions on the program behaviour. Another commercial tool is aiT [1], an im

plementation of the Abstract Interpretation and ILP method developed by Theiling 

et al[38]. aiT is targeted for high-end processors with cache and pipelines and it 

computes the WCET and graphically displays the worse-case execution path, but 

aiT requires manual annotations of loop and recursion bounds and does not find the 

BCET. 
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Chapter 4 

T iming Analysis by Timed 

Automata Model 

This chapter presents a method of finding precise (i.e., safe and tight) timing bounds, 

both BCET and WCET, of a program implementation on a specific hardware plat

form. First, the related work of modelling real-time programs with timed automata 

and associated results are presented. Second, is an overview of our method of finding 

timing bounds automatically from assembly/ object-code (or related representation) 

without requiring manual annotation for loop bounds and infeasible paths. In the 

following chapter, we present the transformations from CFG representation of the 

program to the TA model used in UPPAAL to find the timing bounds using the 

method proposed in this chapter. 

4.1 R elated Work 

The related work to our proposed method of finding timing bounds begins with an 

overview of timed automata and model checking. Then an overview of an example 

of model checking an assembly-level implementation, where the interrupt behaviour 

(and implicitly timing behaviour) is of interest. Finally, we summarise previous work 

that presents an argument against the feasibility of using model checking to find 

timing bounds followed by a rebuttal counter-argument of the claim. 

31 
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4.1.1 Timed Automata 

The original theory of timed automata was developed by Alur and Dill [5, 6], for mod

elling and verifying real-time systems. A continuous-time timed automaton model is 

a finite-state Biichi automaton with a finite set of non-negative real-valued clocks. 

The automaton is an abstract model of a real-time system, providing a state transi

tion system of the modelled system. It is represented as a directed graph, with nodes 

representing locations and edges representing transitions. 

Constraints on the clocks are used to restrict the behaviour of the automaton 

and enforce progress properties. Clock constraints on locations, called invariant con

ditions, are invariants forcing a transition when the state would violate the clock 

invariant. 

Transitions of the automaton have clock constraints guarding the transition edge, 

called triggering conditions, restricting when a transition can be enabled based on the 

clock guard. Transitions include clock resets, where some clock variables are reset to 

zero. 

Describing a complete system in one timed automaton is large and cumbersome, 

thus TA have been extended with communication signals on transitions. The real

time system can then be described as a set of timed automata, with each process of 

the system decomposed into its own automata. Later, the theory of timed automata 

was later extended by Bengtsson et al. [8], to include data variables in the state space, 

that can be used in transition guards and updates. 

4.1.2 M odel Checking 

Given a real-time system modelled as a timed automaton, system properties can 

be expressed as temporal logic formulas and model checked. The temporal logic 

commonly used is Timed Computation Tree Logic (TCTL) [4], and is used to express 

safety and liveness properties of the system. Model checkers search the automata 

state space exhaustively until a counterexample is found to refute a claimed system 

property of the model. Due to the potential of state space explosion, model checker 

implementations use data structures, approximation methods, and symbolic states to 

efficiently represent and search the state space. Further, some model checkers (e.g. , 

UPPAAL) restrict clock guards to maintain convex zones and check only a subset of 



MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 33 

TCTL formulae . Consequently, the model checking results are generated faster , in 

less space, making checking of larger models feasible. 

Model checking has proven to be very successful in the verification of system 

requirements and design models against system specification properties. In particular, 

model checking has been used in practice for verifying real-time embedded safety

critical systems design, potentially identifying design errors early in the development 

cycle . The behaviour of the system design is modelled according to the state transition 

system notation used by the model checker (e.g., t imed automata) with respect to 

high-level abstract actions that the system performs. The model is created manually 

by, or in collaboration with, a domain expert of the system, and care must be taken 

to accurately represent the system. 

The model representation of the system abstracts away the details of the under

lying software and hardware systems execution, and only models significant timing 

events [15] (e.g. , deadlines , periods, feasible WCET). When the design model success

fully verifies against the specification properties, the system is implemented accord

ing to the design in the selected programming language and compiled for the target 

hardware. Foreshadowing our method proposed in the next section, an interesting 

observation can be made; although model checking is a widely accepted method of 

verifying the system design, attempts to verify system implementations are typically 

done by executing test cases on the implementation and/ or manual inspection. 

4.1.3 Model Checking Implementations 

Published examples of the use of model checking representations of implementations 

are sparse. One such example, by Fidge and Cook [15] , is a case study that investi

gated the behaviour of interrupt-driven software. 

The case study models the assembly code of an aircraft altitude computation 

and display program, to be referred to as Altitude Display, that reads an altimeter 

and computes an estimate for the aircraft 's altitude. The program asynchronously 

requests the current value from the altimeter and the value is returned to the program 

by way of an interrupt . While waiting for the interrupt , the program computes an 

estimate of the altitude. If the interrupt from the altimeter does not arrive in time, 

the estimate is displayed instead of the actual value returned from the altimeter . The 
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assembly code is modelled in the Symbolic Analysis Laboratory (SAL, one of the SRI 

Formal Ware tools) [35], with each state representing a basic block of assembly code. 

The motivation for the case study is an interest in the behaviour of the interrupt

driven program, that depends on the relative arrivals of the interrupt over time and 

its impact on the accuracy of the altitude displayed. Instead of modelling all possible 

interrupt points, only those points in time when significant events occur (i .e. , the 

cases when the altimeter responds on time or not) are modelled. Many equivalent 

states are thereby eliminated when modelling interrupt behaviour of the program's 

execution. 

Model checkers, such as SAL, exhaustively search the state space until a coun

terexample is found to refute a claimed property of the model, or the system is found 

to satisfy the property. In the case of SAL's Bounded Model Checker and the model of 

the Altitude Display program, the property claim is a temporal logic formula assert

ing reachability of the last instruction. Modelling the Altitude Display task in SAL 

involves understanding the behaviour of the code and manually modelling its effects 

on the register and memory values, program fiow (i .e., assignment of the program 

counter), and the instruction cycle execution time of each action. The first is directly 

translated from the assembly code, while the latter two are implicitly described in 

the code and require knowledge of the hardware environment for precise execution 

time and program counter assignment . The execution time is modelled by a variable, 

Now, of type Time, that is used to guard actions and is updated on the transitions 

with a value representing the execution time of the instructions model by the associ

ated action. Moreover, the interrupt behaviour of the hardware is used to model the 

different possible significant events, modelling equivalent actions. Thus, a limitation 

of the method is that it requires complete understanding of the given assembly code 

and hardware environment to correctly manually model the task. 

A further limitation of the method presented by Fidge [15] that prevents it from 

being used to obtain timing bounds from model checking is that SAL searches for 

the shortest counterexample to the property given as a temporal logic formula. In 

this case, it would be a reachability property to the guarded action representing 

the last basic block of assembly code. The counterexample found is the shortest 

trace, in terms of number of transitions, through the model representing the program 

code. Thus, SAL's Bounded Model Checker is not capable of finding the fastest and 
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slowest traces, with respect to the variable modelling time, because its search does 

not explicitly take time (or time variables) into consideration when searching for the 

counterexample. Moreover, there is no way to express the temporal logic property 

to find fastest/slowest timed traces. Therefore, in its current form, the SAL model 

checker is not a feasible tool to use to find timing bounds of program implementations 

by model checking. 

4.1.4 Timing Analysis by Model Checking 

The lack of publications in the area of performing timing analysis with model check

ing possibly indicates that model checking alternatives do not offer advantages to the 

present static timing analysis methods. Wilhelm [46] presents several methods for 

using model checking and argues that none offer acceptable performance. The solu

tions focused on target hardware with cache, which this thesis does not address, but 

the method applies this work. The cited problems with the model checking methods 

were that the state space is too large or require too many model checking iterations 

to find a precise upper bound. 

Metzner [28] countered the argument that model checking is adequate for finding 

timing bounds and, furthermore, can improve the results. The method models the 

program and its interaction with the hardware as an automaton. The automaton 

includes a set of variables, some of which are used to track time consumed. It begins 

with the source C program with annotation to bound loop iterations. The annotations 

are preserved in the translation into assembly code. The assembly code is used to 

generate an automaton. The automaton representation is a C program that is used 

as input to the OFFIS verification environment. The automaton is model checked 

for a reachability query to a termination point for some cycles bound N. Based on 

the result, the bound is then increased or decreased as appropriate until a tight value 

is obtained for the upper bound of execution cycles. Typically the approach uses a 

binary search method to choose the next attempt for N. The experimental results 

revealed that the multiple model checking iterations do not lead to an infeasible 

method. 

Metzner's method and results indicate that timing analysis by model checking 

is feasible. It finds a precise bound and provides a concrete execution path for the 
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WCET of the program. However, the method does not satisfy the constraints set 

out in Section 1.1.1. In particular, the method requires manual annotation of loop 

bounds and high-level source code. 

4.2 Method Overview 

This section provides an overview of the method proposed to find timing bounds 

by model checking a timed automaton. The process differs from the traditional 

static timing analysis methods, but we identify where each traditional stage (i.e. , 

Flow Analysis, Low-Level Analysis, Calculation) relates to our proposed method. As 

previously noted, we desire an automated push-button method that automatically 

finds the bounds of a real-time program implementation, without user intervention to 

identify function calls, loops and loop bounds, input values, etc. An implementation 

based on this method is detailed in Chapter 6, the STARTS tool suite, and Figure 

4.1 illustrates the process used by the tool. 

Figure 4.1: STARTS Tool Architecture 

To achieve a completely automated timing bound calculation tool, the user inputs 
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to the tool must be a representation of the program that will run on the target 

hardware (i.e., an assembly listing or object code), and the start and end instruction 

addresses of the analysed portion of the program. The given instruction addresses 

may be the first and last instructions of the program or some segment within the 

code. Each processing stage is illustrated with an example from a code segment 

(Figure 4.2) of a control program written in IBM1800 assembly. The example code 

segment performs a majority vote of 3 input bits from XR2 (Index Register 2) , and 

loops three times storing the count of high bits in XR3. 

ADDR REL OBJECT ST . NO . LABEL OPCD FT OPERANDS COMMENT 
35C9 0 0000 0703 DI2F3 DC 0 
35CA 0 6203 0704 LDX 2 3 
35CB 0 6300 0705 LDX 3 0 ZERO DI COUNT 
35CC 0 4810 0706 BSC 
35CD 0 7301 0707 MDX 3 1 
35CE 0 1001 0708 SLA 1 
35CF 0 72FF 0709 MDX 2 -1 
35DO 0 70FB 0710 MDX *-5 
35D1 00 66002099 0711 LDX L2 BPCD RESTORE PAGE 

Figure 4.2: Example - IBM1800 assembly code 

4. 2.1 Control Flow Analysis 

The timing tool uses the given inputs to process and compute the timing bounds auto

matically. The first processing stage is the Flow Analysis stage that generates a static 

control flow graph ( CFG) representation of the program. The CFG nodes represent 

instructions and are annotated with relevant instruction information (i.e. , opcode, 

operands, etc.) for later processing. The edges represent the possible subsequent 

instructions that can be executed (see Figure 4.3). 

The CFG edges are generated by computing the possible changes to the program 

counter for each instruction. For program segments that are loops or subroutines, 

the CFG does not duplicate the instruction nodes (i.e., they are only represented 

once in a static CFG). Thus, subroutines have multiple in-bound edges to the first 

instruction node of the called subroutine. Similarly, the last node of the subroutine 

typically has out-bound edges that return to each of its callers. In the static CFG, 

it is not possible to determine which return edge should be taken. It would require 

generating a set of dynamic CFGs, for each call to a subroutine call. In our process, 
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Figure 4.3: Example - Annotated Control Flow Graph 

the information from the node annotations is used in a later stage to model the data 

fiow that determines the correct return edge. 

4. 2.2 Transformat ion to a Timed Automat a 

In the second processing stage, the CFG is transformed into an extended Timed 

Automata (TA). The extension on the classical TA model is defined for use with 

the real-time model checker UPPAAL. It provides a rich expression language that 

includes a network of TA, clock and variable tests and updates , bounded integer 

variables, synchronisation channels, and user defined functions. 

The transformation combines the CFG with a Hardware Model of the target hard

ware. The Hardware Model contains the timing information of each instruction and 

other timing related behaviour of the target microprocessor. Creation of the Hard

ware Model represents the Low-Level Analysis static analysis stage, and it provides 
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information independent of the given program. 

The transformation to a TA uses the flow information from the CFG, and combines 

it with the timing information from the Hardware Model. With one exception, the 

locations and edges in the TA are, in a one-to-one mapping with the CFG nodes 

and edges, respectively. As we will see in section 5.3.6, there is a special type of 

instruction that requires two additional locations and edges to separate the clock and 

variable guards. Without separating the guards, the model checker finds a deadlock 

state that does not actually occur in the program. The additional locations and edges 

are required to correctly model the program's timing and behaviour. The annotations 

from the CFG nodes, and timing information from the Hardware Model, are used to 

define clock invariants on locations, and the edge clock and variable guards, variable 

updates , and synchronisation channels. The location invariants model instruction 

execution time delay, the edge guards restrict the possible transitions with respect to 

clock time and variable assignment, and the edge updates assign values to variables 

modelling the data flow. These are used to define the state space of the control and 

data flow of the program when model checking the TA (see Figure 4.4). UPPAAL 

requires manual placement of all labels. All invariants , updates , and synchronisation 

labels are placed at the upper left corner of the automata figure to reduce clutter and 

maintain readability. 

4.2.3 Data Flow Analysis 

The task of identifying loops, the iteration bounds of loops, and depths of recursion 

calls are frequently performed manually. The process is time consuming and error

prone. For methods that automatically determine loop and recursion bounds, the 

bound information must still be mapped into a form suitable for the traditional 

calculation methods. Utilising the extended TA model, the behaviour of data fiow, 

and its effects on the control flow of the program, are modelled. The states they 

define are then automatically maintained by the model checker without the need for 

manual intervention. 

TheTA model 's variables can be used to represent the values of the actual memory 

locations (e.g., general registers, special registers, stack, etc.). The edge update is 

used to change the value of the variable corresponding to the actual assignment that 
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Figure 4.4: Example - UPPAAL Timed Automaton 

would occur when the instruction is executed. While the model checker examines the 

state space of the model, the edge guards and updates restrict the possible values of 

the variables. Thus for the variables representing loop counters, the state space of 

the model is restricted to the actual number of iterations the program could possibly 

execute. The loop bounds are automatically determined without requiring explicit 

identification of the loop, the loop counter, or the loop bound. 

Variables can be maintained to represent input values, computed values, values 

that are used in conditional branches, and the return instruction address of a subrou

tine call. The effect of guarding and updating the variables on the state space of the 

model is that it restricts the possible execution traces to the actual execution traces 

of the program running on the target hardware. Moreover, the static CFG represents 

a superset of all possible execution paths through the program. Thus, all infeasible 

paths in the dynamic CFG are excluded from the state space of the program model 

using variable guards. The execution time of the feasible execution traces can be cal

culated from the clock delay that is enforced on each location by its clock invariant 

and the clock guards of its edge(s) . 
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4. 2.4 Calculating Timing Bounds 

Creating a TA model from the CFG, followed by annotating the model with timing 

information from the Hardware Model and data fiow information from the CFG an

notation, results in a precise model of the program execution. Further, the model 

includes clock invariants, guards, and updates that provide the precise clock delay of 

the actual program execution. 

The model checker must feature the capability to find the fastest and slowest traces 

based on t he accumulated clock delay of theTA model (e.g., as is done in a prototype 

version of UPPAAL) . The real-time model checker can be used to calculate the timing 

of the BCET and WCET of the program. The reachability checker for the slowest 

trace must include the capability to detect infinite loops and ensure termination, as 

UPPAAL provides [7]. 

The model checker attempts to verify a reachability property from the initial 

location (i.e. , the user given start instruction address) to the end location (i.e. , the 

given end instruction address). Instructing the model checker to generate fastest 

and slowest witnessing traces when verifying the reachability property produces the 

BCET and WCET traces, respectively, for the modelled program. The value of the 

accumulated clock delay at the end of the trace represents the number of clock cycles 

the trace execution would require on the target microprocessor. If the clock rate of 

the target processor is known, the program's timing bounds could also be expressed 

in units of time. 



42 MASc Thesis- M.H. Pavlidis McMaster - Computing and Software 



Chapter 5 

A Timing Analysis Transformation 

System 

The details of the transformation process from machine-code representation to CFG, 

and CFG to TA, previously described are presented in this chapter. The primary focus 

is on the latter transformation of the CFG representation of the program instructions 

to a TA model that describes the execution of the instructions. The instruction 

set operations are decomposed into six types of transformations, categorised by the 

instruction's effects on control- and data-fiow. The TA model obtained from the 

transformations is used to determine the BCET and WCET of the program. 

5.1 Control Flow Graph Representation 

The transformation from assembly- or machine-code to a static CFG representation 

is the first step of the process to generate a TA that can be used for timing analysis. 

The primary contribution of this thesis is the timing analysis of real-time programs by 

model checking Timed Automata. Thus, the details of the CFG generation is outside 

its scope. The reader is referred to [37, 23, 21, 45] for in-depth details of how the 

graph representing execution paths of the program is constructed. Here, we limit the 

description of the CFG to what is required to proceed to the next processing step, 

transformation to a TA. 

With respect to the transformation process, it is assumed that all the paths 

43 
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through the CFG represent at least all the feasible execution paths of the program. 

The transformation to a TA requires the CFG nodes to be annotated with specific 

relevant instruction information (i.e., instruction address, opcode, operands, etc.). 

A complete list of the required information depends on the instruction set and the 

hardware architecture. Thus, the precise node annotations will vary between target 

architectures. In general, the annotations must include all the fields of the assembly 

code instruction and the instruction address. The information in the annotated CFG 

is combined with the Hardware Model of the target architecture to transform the 

model into a TA describing the behaviour of the program's execution. 

5.2 Timed Automata Representation 

The second step of the transformation process is from the CFG representation of the 

program to a TA model. The model is transformed into a format that can be used 

with TA model checker that will generate the BCET and WCET. 

The instructions of the program, represented as the nodes of the CFG, are mapped 

directly to locations in the TA. The execution time of each instruction is represented 

by a clock invariant on the location of the form x ::; n, where x is a clock maintaining 

the instruction execution time, and n E N. The units of n may be a clock cycle, 

an instruction cycle, or the smallest fraction of instruction execution time, and is 

defined in the Hardware Model. The invariant creates a delay transition in the TA 

that represents the passage of time (clock cycles) for the execution of the instruction, 

by allowing the TA to remain at the location. The invariant forces one of the feasible 

action transitions to occur when the delay at the location equals the execution time. 

The action transitions include a clock guard, of the form x == n, that prevents the 

transition from occurring early. 

The action transitions indicate the possible subsequent executable instructions. 

Each transition includes the clock guard described above, that enforces the instruc

tion's execution time, and a reset of the clock (i.e., v[x := 0]) for the next location. 

Additional data variable guards are added to restrict the possible traces to feasible 

execution traces. For example, if memory location x34Bl stores a loop bound, and 

x34BO stores a loop counter, then the transition that represents exiting a loop will 

have a variable guard of the form, x34BO 2: x34Bl. Similarly, a transition from some 



MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 45 

location that goes to the first instruction of the loop will have a variable guard of 

the the form x34BO < x34Bl. The variables used in the guards are maintained via 

a transition update, much like the clocks. The values assigned to t he variables rep

resent the same values that the processor would assign during execut ion. In effect , 

the model checker emulates the data flow of the program via updates of the data 

variables in the model. 

5.3 CFG to TA Transformations 

To obtain a TA representation of the program that can be used with a model checker 

to extract BCET and WCET, the Hardware Model information is combined with the 

CFG to transform the graph into a TA that preserves the feasible execution timing 

and behaviour. 

The instruction set architecture for a particular target hardware is decomposed 

into six classes of instructions. Each class corresponds to the effect the instruction has 

on the data variables, enabled transitions, and execution time delay. The features of 

the instruction set determines the completeness of the data-flow required for guard

ing loop and recursion bounds. That is , those instructions that update data variables 

involve data-flow, instructions that have guarded transitions that reference data vari

ables, and other instructions that only represent time elapsing with no update or 

guard on data variables . 

When all the data-flow is modelled, every instruction with multiple transitions 

(represented as out-bound edges in the CFG) has guarded transitions\ and the exe

cution path is deterministic with respect to the selection of input variable values. 

If only a subset of the data-flow is required to determine loop or recursive call 

bounds, then conditional instructions with multiple transitions that are not related 

to loops can be modelled as non-deterministic (i. e. , unguarded) transitions. With 

respect to timing analysis, including unguarded conditional instructions will result 

in BCET and WCET that may be less tight. Conversely, the visualisation of the 

program provided by the non-deterministic transitions in the TA model is useful for 

reverse engineering efforts. The unguarded conditional instructions allows an analyst 

1The term guarded transitions is used herein for all transitions that have data variable guards, 
since every transition has a clock guard representing t he execut ion time. 
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to choose a particular transition without having to trace back to the input value 

required to enable the guard on that transition. 

The instruction set is decomposed into classes of transformations based on the 

operations the instruction requires in the TA. The six classes of transformations of in

structions are: Sequential, Sequential Updating, Non-sequential Updating Jump, Un

guarded Branching, Uniform Execution Time Guarded Branching, and Non-uniform 

Execution Time Guarded Branching. The transformation of each class of instruction, 

from CFG to TA representations , is defined below. Implementation of the transfor

mation for a particular target hardware requires each instruction of the architecture 

to be classified, and the appropriate guards and updates to be determined. Examples 

of two implementations, for the IBM1800 and 8-bit PIC microcontroller, can be found 

in Appendices A and B, respectively. 

5.3.1 Sequential Instruction 

Sequential instructions are the nodes in the CFG with a single out-bound edge to the 

next sequential instruction that do not modify the data state space (i.e., no assignment 

to data variables is required for data-fiow). Some examples of instructions of this class 

are: nop, and arithmetic or logical instructions that are not required for data-fiow. 

The next sequential instruction is identified by two nodes, m and n, in the Anno

tated CFG. Recall that A.(m) is a function that returns the set of annotation field and 

value pairs. If (address , z ) E A.(m), where z is the memory address of the instruction, 

then n is the sequential instruction after m and (address , z + 1) E A.(n). 

The transformation from CFG to TA is a one-to-one mapping of the node to a 

location, and edge to a transition. The location is annotated with a label (possibly 

the instruction address, opcode, or some other desired combination of annotation 

values), an invariant of the form x ::; c (where c the execution time obtained from the 

Hardware Model), and a clock guard of the the form x == c. The transition update 

has one entry, the reset of the clock variable x for t he form x = 0. The transition is 

illustrated in Figure 5.1. In this example, the delay asserted with the invariant and 

guard is nine clock cycles or time units. 
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Figure 5.1: Sequential Instruction Transformation 

5.3.2 Sequential Updating Instruction 

47 

Sequential updating instruction transitions are an extension of Sequent ial instruction 

t ransition, that include an additional transition update. The update is an assign

ment to the dat a variable representing the memory location that is modified by the 

instruction. In effect , the transition update assignment to the data variable emulates 

the operation performed by the hardware execution of the instruction. 

If the instruction operation changes a memory location that is used to determine 

control-fiow (i.e., loop counter , call return address) then the t ransformation of the 

sequential instruction must be of this class. The multiple updates on a transition 

in the TA model are represented by a comma spaced list of assignment statements. 

When all data-fiow requires to modelling, then all sequential instructions (except 

for nop) should be Sequential updating instruct ions. The transition is illustrated in 

Figure 5.2. 

The source of the value in the updat e assignment to a data variable is either: 

(1) a literal obtained from the instruction operand(s), (2) a memory location (that 

is modelled as a data variable) obtained from the instruction operand(s) , or by a 

selection over a range of input values that represents obtaining an external input 

value (e.g. , a digital input from a sensor). 
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Figure 5.2: Sequential Updating Instruction Transformation 

5.3.3 Non-sequential Instruction 

Non-sequential instructions are nodes in the CFG with out-degree equal to one, sim

ilar to the previously described classes of instructions. The difference is that the 

destination node of the edge represents a non-sequential (i.e. , if (address, z) E -X(m) , 

then (address , z + 1) rf- -X(n) ). The types of instructions that are classified as Non

sequential are branch always (e.g, jump) , subroutine call and return, or branches to 

an interrupt service routine (ISR) and the ISR return instruction. 

These instructions usually update data variables, such as setting bits in the Pro

gram Status Register (PSR), store the return instruction address of a call, or push/pop 

values from the stack which is modelled in the TA as an array of integer variables. 

The transformation is illustrated in Figure 5.3. 

5.3.4 Unguarded Branching Instruction 

Branching instructions are nodes in the CFG with multiple out-bound edges. The 

multiple-edged instructions represent two types of instructions: true branch instruc

tions where the next instruction is chosen based on a comparison of some condition, 

or the instruction that is a return of a subroutine. In the case of the former, there are 

typically two or three out-bound edges representing the path taken if the condition is 

true/false , or <, = , >. For the latter, data variable guards must be used (described 

below in Uniform Time Guarded Branching Instruction). 

In instances where it is not required to maintain full data-fiow and the instruction 
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Figure 5.3: Non-sequential Instruction Transformation 
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is not used to determine loop and call bounds, the transformation for these types of 

instructions does not need to include data variable guards on the transitions. The Un

guarded branching instruction transformation maps the CFG node to a location in the 

TA model, and maps the edges to transitions from the location to the corresponding 

target locations. The transformation is similar to the Sequential and Non-sequential 

transforms. The clock guards on the transitions are the number of clocks it take to 

execute each of the branches, and the invariant on the location is the largest clock 

value of all the clock guards. There are no data variable guards. The update resets 

the instruction clock, and assigns data variables as necessary, as determined by the 

Hardware Model. The transformation is illustrated in Figure 5.4. 

X== 18 

x=O 

x3498 ____ MDX 

==18 

x=O 

x3497. __ MDX x3496 ____ MDX 

Figure 5.4: Unguarded Branching Instruction Transformation 

The timing bounds (BCET / WCET) may be less tight by not adding data vari

able guards to the transitions of the branching instructions. The trace through the 
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location is deterministic when the program is executing on real data on the target 

hardware, but the model does not have guards on that data so the trace in the TA 

model is non-deterministic (i.e., all transitions are enabled). When the model checker 

finds the fastest and slowest trace though theTA model, the values that would cause 

the control-How path to take such traces may not be the same values expected during 

execution. When the requirement of data-fiow is weakened in this way, the feasible 

traces of theTA are less restricted and my expose unexpected behaviour due to incor

rect input data. With respect to timing analysis, Unguarded branching instruction 

transformations should be avoided, but they may be useful when the TA model is 

also used to visualise program execution and other reverse engineering tasks. 

5.3.5 Uniform Time Guarded Branching Instruction 

For branching instructions with data variable guards there are two classes of instruc

tions. This class, the Uniform time guarded branching instruction, is an extension of 

Unguarded branching instruction that also has multiple out-bound edges but elimi

nates the non-determinism introduced by the previous class by adding data variable 

guards to the transitions. The data variable guard on an out-bound transition rep

resent the condition that needs to be satisfied for the execution of the program to 

take that path. In the TA model, only one of the transitions is enabled after the 

time delay, instead of all of them which is the case for the Unguarded Branching 

Instruction. 

Instructions in this branching class have a unique property, the clock guards on 

all the transitions are the same. That is, the execution time of the instruction does 

not vary with the branch taken. Guarded transitions with different clock guards 

(i.e., different branch execution times) introduce a problem in the TA model and 

are handled by the next class of instructions, Non-uniform time guarded branching 

instructions. 

The transformation of instructions of the Uniform Time Guarded Branching class 

from the CFG to a TA model maps the instruction node to a location, and each edge 

is mapped to a transition. The transition is similar to all previous transformations. 

The value c of invariant on the location (of the form x :S c) is the same value of 

the clock guards on each transition (of the form x ==c). The additional transition 
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guards impose the conditions required to model the equivalent behaviour of the branch 

instruction execution. The data variable guards for branch instructions must be 

disjoint and complete , to avoid potential deadlock or mult iple enabled transition 

states that do not correctly describe the behaviour of the program's execution. The 

update includes the clock variable reset and, if any, the appropriate assignments to 

data variables. The transition is illustrated in Figure 5.5. 

X==10 
&& ((xr2>=0 && -1 +Xr2<=0) 
II (xr2<0 && - 1+Xf2>·~0)) 

x=O, xr2+=--1 

x35d1 .... LDX 

x35cf .... MDX 

D X<=10 

X="'10 
&& ((xr2> oo0 && -1+xr2>0) 
II (xr~!<O ,~& -1 +Xr2<0)) 

x=O . xr2+=-1 

x35dO .... MDX 

Figure 5.5: Uniform Time Guarded Branching Instruction Transformation 

According to the classification criteria given for the Uniform time guarded branch

ing instruction, it includes the instructions that return from a subroutine call. The 

CFG is a static CFG, so there is only one correct return edge for a subroutine return 

instruction for a dynamic trace, but that edge cannot be determined from the CFG 

alone. This problem is over come in theTA model using a data variable to store the 

return address of the calling instruction. 

In the case of the return instruction, the number of out-bound edges depends on 

the number of times the subroutine is called. In theTA model, each transition from 

the location represents a return instruction that must be guarded with a condition 

that checks the instruction address of the transition target with the data variable that 

stores the current return instruction address for the subroutine. Structuring the TA 

model in this way results in a trace that can only take the correct return transition, 

because the data variable guard on the return instruction address guarantees it is the 

only enabled transition. Further, the time execution time for a return is constant 

among all the transitions. Hence, the transformation of a return instruction is classi

fied as a Uniform time guarded branching instruction. A return instruction example 

is illustrated in Figure 5.6. 
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Figure 5.6: Return Instruction Transformation 

5.3.6 Non-Uniform Time Guarded Branching Instruction 

Non-uniform time guarded branching instructions are similar to instructions of the 

previous class, but differ in one important aspect. The execution time of the multiple 

transitions take different clock times. If the clock guards are transformed using the 

method applied for Uniform Time Guarded Branching instruction of the previous 

subsection, deadlock states are introduced into theTA model when no deadlock occurs 

in the program. 

The potential deadlock in the model stems from the fact that the invariant on the 

location must be the largest clock value of all the transition clock guard values. The 

invariant allows for a delay transition to model the execution time of the instruction. 

As a result , the invariant value must be the maximum clock delay. The data variable 

guards on the transitions of a branching instruction are disjoint and complete. Based 

on the value of the data variable in the guard, only one of the multiple transitions 

is enabled , and that occurs only when the instruction clock satisfies the clock guard. 

An example of theTA model is illustrated in Figure 5.7. 

The deadlock state is introduced when the transition has a satisfied data variable 

guard and a clock guard with a value less than the maximum embodied by invariant 

value. The transition is only enabled when the clock guard is satisfied. That is, at the 

value of the clock variable that represents the execution time of taking that branch. 

In this case, TA model does not force taking the enabled transition, because it can 

remain at the location while the clock invariant is satisfied. In this case, there are no 

enabled transitions when the instruction clock reaches its upper bound enforced by 
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X==1 X==2 
&& ( dr[ 128*b+41] & pow(2, 7))==0 && (dr[ 128*b+41 ] & pow(2,7)) !=0 

X=O X=O 

Figure 5.7: Potential Deadlock on Guarded Branching Instruction Transformation 

the invariant. Therefore, the model checker identifies a deadlock state that does not 

accurately refiect the behaviour of the program. 

To overcome the introduction of a deadlock state that does not occur in the 

program code, the mapping of location and edges does not follow the typical one-to

one as with all other transformations. The instructions of this transform class have a 

one-to-(n + 1) node to location mapping, where n is the number of out-bound edges. 

Similar to the previous transforms, one of the locations represents the instruction. 

This location is an urgent location (i.e., time is not allowed to pass in an urgent 

location), so it does not model the execution time delay of the instruction. It is the 

target of all in-bound transitions to the instruction and has n data variable guarded 

transitions representing the paths to the subsequent instructions. The targets of these 

transitions are not the next instruction locations, rather they are auxiliary locations 

create by the transformation. The auxiliary locations model the execution time of the 

instruction, thus the transformation puts the clock invariant on the auxiliary location 

for each branch. 

The edges of the CFG that represent the possible branches of the instruction are 

mapped one-to-two into transitions in the TA model. The first transition is from the 

instruction location to the respective auxiliary location. There is no update assign

ment or clock guard on the transition. The only guard is the data variable guard 

representing the condition that needs to be satisfied to take the branch. The second 

transition is from the auxiliary location to the instruction location that represents the 

target of the edge from the CFG. This transition is annotated with all the the appro-
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priate guards and updates (similar to the previous classes of transformations). The 

transition guard includes the clock guard that models execution time, and the same 

data variable guard from the first mapped transition. It also includes a reset of the 

instruction clock, and any necessary data variable assignments. This transformation 

is illustrated in Figure 5.8. 

xda_btfss 

(drl128"b+41 ] & pow(2,7j) ~= 0 

X<=1 

X==1 
&& (tJr[128'tJ+41] & pow(2,7))=oc0 

x.~o 

xdb_.goto 

X<=2 

X==2 
&& (drl128'b+41] & pow(2,7))!"'0 

x.~o 

xdc_bsl 

Figure 5.8: Non-Uniform Time Guarded Branching Instruction Transformation 

5.4 Summary 

The TA model generated by the transformations on the CFG describes the timing 

and behaviour of the source assembly program. The execution time of the instruction 

is modelled by the delay transition that is caused by the combination of the clock 

invariant on the location and the clock guard on transitions. The behaviour of the 

the program is modelled by the data variable guards and data variable update on the 

transitions. The updates emulate the program's assignments to memory locations, 

and the guards restrict the traces through the model to only the feasible execution 

traces. 

With a formalisation of the transformations, the behaviour of the program de

scribed by the TA model can be proven correct (i.e., the model includes only the 

feasible traces) using structural induction over the instructions of the program. In

formally, it is shown that the behaviour described by theTA model is correct because 

the result of the transformation of each instruction exhibits the same operations that 

occur in the processor executing the machine code. 



Chapter 6 

STARTS Tool Suite 

This chapter describes the prototype tool suite, STARTS, developed to investigate 

and validate the proposed method of performing timing analysis of real-time pro

grams by model checking a timed automata model. The details of the tool 's software 

requirements and limitations are presented, followed by the usage of the the tool and 

a description of the intermediate processing stages. 

6.1 Tool Suite Description 

This section outlines the operating environment of the STARTS tool suite, including 

its software dependencies and limitations of its use. 

6.1. 1 Operating Environment 

The STARTS tool suite prototype is a command line based application. The tool is 

currently implemented for UNIX-based operating systems, but it can be extended to 

run on MS Windows. The command line parameters of the tool reference the input 

program file and other user-defined options. Presently, the tool supports assembly 

programs for the IBM1800 and 8-bit PIC target hardware as input. The output files 

of the STARTS tool is a timed automata model for UPPAAL, and the BCET and 

WCET traces. UPPAAL binaries are available for MS Windows, Linux, Sun Solaris, 

and Apple Mac OS X (10.4, as a Universal Binary). Due to the dependance on 
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UPPAAL to create the traces, the operating environment of the STARTS tool suite is 

limited to these platforms. 

6.1.2 Software Dependencies 

The third-party software packages required to use the STARTS tool suite are: 

Ruby: An object-oriented programming language used to call the various tools to 

perform the intermediate processing steps. 

Lst2Gxl: A tool to create the CFG from an IBM1800 assembly program listing. 

gxltodot: A tool that creates an attributed graph file from the GXL representation 

of the CFG. 

Graphviz's dot: A filter for drawing directed graphs that reads attributed graph 

files and writes drawings, and is used to create CFG figures and to obtain co

ordinates for the TA model. 

xsltproc: An XSL Transformation tool that converts the CFG into a TA model. 

Uppaal's verifyta: A command line based version of the model checker used to 

generate the BCET and WCET, and respective traces. 

The software tools provided by the STARTS tools suite are: 

PICdasm2gxl: A tool to create the CFG from a disassembled PIC program. 

dot2cooridinates: A tool to obtain the layout co-ordinates from dot. 

mergeGXLloc: A tool to combine the output of dot2coordinates with the GXL 

representation of the CFG. 
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6.1.3 Limitations 

Indirect Addressing 

The addressing modes supported by STARTS are limited to immediate and direct 

addressing. For the former, the literal value is obtained directly from the operands 

of an instruction. For direct addressing, the memory location of the operand value 

is determined from the instruction operands. For both, the values for the transition 

guards and updates of the transformation are obtained from the instruction operands 

only. 

The current implementations for the IBM1800 and PIC do not include support 

for indirect addressing in the source program. Indirect addressing is a scheme in 

which the address specifies a memory location that contains the memory location 

address of the operand value. The transformations map memory locations to integer 

data variables in theTA model. Thus, indirect addressing data-flow cannot be easily 

modelled in UPPAAL because it requires a method to link data variable values with 

data variable names. This method requires further investigation. 

IBM1800 Data-Flow and Control-Flow 

The IBM1800 Instruction Set Architecture was the first attempt at performing timing 

analysis with the proposed method of using timed automata and a TA model checker. 

The initial challenge to eliminate the need for manual annotation to loops and sub

routine calls required adding data-flow guards and updates on memory location data 

variables. 

The IBM1800 architecture provides three special Index Registers (XR) that can 

be used to store loop counters. In combination with the Modify Index and Skip 

(MDX) instruction, that adds the operand value to the indicated XR and skips the 

following instruction if the modified XR reaches zero or changes sign, they realise the 

implementation of loops in the IBM1800. 

A subroutine call is implemented with the Branch and Store Instruction Regis

ter (BSI) instruction. The operand value is a memory location. The BSI instruction 

stores the current value of the Instruction Register (i.e., program counter) , then mod

ifies the Instruction Register so control-flow branches to the next following memory 

location. The return from the subroutine is implemented with the Branch or Skip on 
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Condition (BSC), that performs an unconditional branch to the instruction that was 

stored by the BSI instruction. 

To simplify experimentation to determine the feasibility of the proposed timing 

analysis method, only the data-fiow required to model loops and subroutine calls for 

the IBM1800 is modelled. Other data-fiow of inputs, arithmetic and logic instructions, 

or conditional branching instructions, are not included in the model. Therefore, 

the control-fiow of the model contains some non-deterministic branches that do not 

accurately represent the deterministic execution of the program. This may result in 

timing bounds that are not tight. 

The second architecture implemented was for the PIC microcontroller. The PIC 

does not have special registers that are used for loop counters similar to the IBM1800. 

This required all the memory locations to be modelled, and its data-fiow to be 

maintained in the model. With all the data-fiow modelled, the problem of non

deterministic branches can be eliminated by adding the appropriate data variable 

guards to the transitions. With the knowledge gained from developing the Hardware 

Model and transformations for the PIC, the IBM1800 implementation can be revised 

to model the complete and accurate data- and control-How. 

6.2 Using the Tool 

This section provides an overview of the use of the STARTS tool suite. Figure 6.1 (a 

reproduction of Figure 4.1) details the inputs, outputs, and intermediate processing 

stages of the tool suite. 

6.2.1 Input Source Assembler Program 

The format of the source program required for performing the timing analysis of 

IBM1800 programs is the assembly listing. The assembly listing is the output of the 

assembler that contains assembler-language instructions, machine-language instruc

tions , memory addresses, and possibly other information. 

The format for PIC programs is the disassembled machine-code of the program. 

The disassembled representation is used because the output of the disassembler is 

easier to parse than the assembly listing. Further , the instructions operands are all 
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Figure 6.1: STARTS Tool Architecture 
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hexadecimal values, instead of some assembler-language variable names that require 

further computation to determine the memory address or value. 

6.2.2 Selecting the Code Segment 

Along with the required source program, the user may specify start and end instruc

tion address of the code segment to be analysed. These instruction addresses are 

used in theTA model and by theTA model checker. Unless otherwise specified, the 

STARTS tool will assume the first instruction is the start instruction, which becomes 

the initial location in the TA model. The end instruction address is used to define 

the reachability property for the model checker, and used to generate the BCET and 

WCET traces. 

6.2.3 Generating the Control-Flow Graph 

The STARTS tool realises this stage of the process for the IBM 1800 architecture by 

using the Lst2Gxl tool (see Section 1.2.2). There are some issues with regards to the 

paths in the CFG generated. In the BPC example code some instructions branch 

outside BPC program code, thus the graph lacks an edge to the external code and 

the edge that returns to the next sequential instruction. Also, the graph generation 

lacks the capability to identify indirect addressing and branching. Thus, imposing 

the same limitation on the STARTS tool. 

The STARTS tool implementation for the PIC microcontroller includes built-in 

CFG generation from the output of disassembled machine-code. The STARTS tool 

development was a proof-of-concept. This approach was used because it was the 

simplest to parse and required the least amount of non-critical development time. For 

the most part, the PIC architecture control-fiow is straightforward to generate and is 

realised in the current implementation. The complex fiow (e.g., indirect addressing, 

interrupt branch points) has been left to future work. Thus, the P IC implementation 

does not handle indirect addressing and interrupts must be analysed separately from 

the main program. 

The generated CFG is represented in GXL, an XML-based format developed as a 

graph exchange language. The GXL output is used to generate a graph figure of the 
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static CFG of the program using dot , and it is used as the input file to generate the 

timed automata model of the program execution. 

6.2.4 Generating the Timed Automata Model 

The timed automata model of the behaviour and timing of the program execution is 

generated by an XSL transformation. The behaviour, timing, and hardware effects 

(i.e., the Hardware Model) of each instruction format are encapsulated in template 

rules of an XSLT stylesheet. The rules define the transformation from the XML-based 

input file to an XML-based TA output file, based on the transformations described 

in Section 5.3. An XSLT processor is used to apply the XSLT stylesheet of the 

Hardware Model to the CFG, represented as a GXL file, to generate the XML output 

of a UPPAAL TA model. The model includes an automaton of the transformed CFG, 

and any other automata required to model the hardware behaviour and timing (e.g. , 

A/D conversion, clock t imer interrupts). 

The layout of the locations and transitions in the TA model must be manually 

placed in the graphical version of UPPAAL , typically performed in the Editor win

dow of the application. STARTS automatically obtains the co-ordinates from dot , 

resulting in a TA layout that is similar to the CFG figure. 

6.2.5 Generating BCET and WCET '!races 

Using the TA model of the program with guards and updates to enforce the actual 

behaviour and timing of the program's execution, the best- and worst-case execution 

times are generated using the UPPAAL verification engine, verifyta. In addition to 

the TA model file, a query file is required as input. 

The query file contains the reachability queries that the verifier will check and use 

to generate the traces. The first property is a liveness property that the model of the 

program will always eventually (e.g. , A<> bpc . x35d3_BSC) reach the last instruction 

of the code segment (e.g., x35d3_BSC is given as the last instruction). It verifies the 

program will not deadlock or loop infinitely, and that it will eventually reach the last 

instruction of the code segment. If a deadlock or infinite loop is found by the model 

checker then a trace is generated to the problem location. 
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The second property verified checks that the model of the program possibly reaches 

the last instruction location (e.g., E<> bpc. x35d3_BSC) . If the first property is satis

fied, this property will also be satisfied. The second property is used in combination 

with UPPAAL's Diagnostic Trace options Fastest and Slowest, to find the BCET and 

WCET traces, respectively. The resulting BCET and WCET are determined from 

the final value of a clock variable that accumulates the time delay from the start to 

the end instruction locations of each trace. 

6.2.6 Trace Visualisation in UPPAAL 

The BCET and WCET trace can be loaded in the Simulator component of the graph

ical version of UPPAAL. The Simulator is a validation tool that enables examination 

of the possible dynamic executions of a model and is used to visualise execution 

traces generated by the verifier. It supports stepping through the model transition

by-transition, or replaying the entire trace. 

The Sirrntlator display includes four panels: the Simulation Control (i.e., a listing 

of the current enabled transitions, current simulation trace, and trace control buttons) 

on the left, the Variables Panel (i.e., clock and data variable values) in the middle, 

the Process Panel (i.e., an instance of the model graph indicating the current location 

and transition in red) on the upper right , and a Message Sequence Chart on the lower 

right. The following set of figures illustrates a simulation of a WCET trace from the 

initial state (Figure 6.2), to an intermediate state with a choice of enabled transitions 

(Figure 6.3) , and the final state (Figure 6.4). The time delay of the WCET trace of 

the example IBM1800 code segment presented in the figures is 177 clocks, or 44.25 

p,s. 

The simulation of the program model effectively represents emulation of the pro

gram execution. In forward development, the simulation can be verified against the 

program code to verify the behaviour of the model is consistent with the source code. 

In reverse development , the simulation visualisation augments comprehension of the 

program behaviour and aids in identifying input dependent behaviour. The simula

tion capabilities are not limited to the generated traces, but it can be used to trace 

any feasible execution path that is in the state space of the model. 
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Chapter 7 

Timing Analysis Results 

This chapter presents results analysing programs for the IBM1800 and PIC ·target 

architectures using the STARTS tool suite. 

7.1 Timing Analysis Results 

The timing analysis results of using the method introduced in this thesis are il

lustrated with examples from the IBM800 Boiler Pressure Control code and PIC

microcontroller code of a PID controller used to stabilise an inverted pendulum. A 

second PIC example is based on the inverted pendulum code to control the levitation 

of a permanent magnet beneath a solenoid. 

7.2 IBM1800 Timing Analysis Results 

The code segments of the IBM1800 assembly program analysed are from the Boiler 

Pressure Control (BPC) program that was the focus of the reverse engineering project 

(Section 1.1.1). The complete program could not be analysed due to absent or su

perfluous edges in the CFG (discussed in Section 6.2.3) , instead functions within the 

program were analysed. 

Functions in the BPC code were identified manually as segments of instructions 

from the assembly code that are connected nodes in the CFG. A function is identified 

by the first and last instruction address . A subgraph of the BPC program's entire 
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CFG is generated that includes only the connected instruction nodes of the function. 

The BPC functions analysed include Boiler Pressure Median (MEDIAN), Corrected 

Hilborn Average (HLBN), Setback Majority Vote (DI2F3) , and the Turbine Feedback 

Calculation (TRBFB) that also calls DI2F3 . The TRBFBns is the same function but the 

path that shortcuts the feedback calculation is made unfeasible. The last example 

demonstrates the different traces through the DI2F3 subroutine that affects the branch 

taken after the subroutine has completed for the BCET and WCET traces of the 

feedback calculation. 

The code examples were small enough to allow manual verification of the results 

generated by the STARTS tool suite is correct and presented in Table 7.1. 

Table 7.1: IBM1800 BPC Results 

I Function II BCET (clocks) I BCET (J-ts) I WCET (clocks) I WCET (J-ts) I 
MEDIAN 45 10.25 143 35.75 

HLBN 1437 359.25 4461 1115.25 
DI2F3 147 36.75 177 44.25 
TRBFB 452 113 771 192.75 

TRBFBns 646 161.5 771 192.75 

Sun [36] analysed the same TRBFB segment of code with the WCET tool he im

plemented. The worse-case execution path generated by the tool is exactly the same 

at the WCET trace generated by UPPAAL. Sun's WCET reported by the tool was 

189.5 ms (units should be J-tS). The difference from the STARTS output of 192.75 J-tS 

is attributed to small differences in the execution time assigned to some instructions. 

For example, the first LD instruction of the code segment is 3. 75 J-tS in Sun's work, but 

17 clocks (or 4.25 J-tS) in the STARTS hardware model. The execution time of each 

instruction was obtained from the IBM1800 Functional Characteristics manual [20]. 

The source of the discrepancy in instruction execution times could not be determined. 

7.3 PIC Timing Analysis Results 

The program used to experiment with the PIC implementation of the STARTS tool 

suite was a Software PID Control of an Inverted Pendulum Using the PIC16F684 
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[9] provided by Microchip. The assembly code implementation includes loops, sub

routine calls, A/ D input conversion, and an ISR. Experimentation with the code 

provided insights in to handling data-flow, subroutine calls, and additional hardware 

functionality. 

The assembly code of the inverted pendulum controller was modified by a student 

for a graduate course project. The project was to design and implement a controller 

that stabilises the magnetic levitation of a permanent magnet beneath a solenoid by 

controlling the current flow and direction through the solenoid. The program is a 

busy-wait loop that modifies the output of the program's feedback control loop after 

the ISR updates the input sensor value. The ISR is triggered by an internal clock 

timer initially set to update the input value, and accordingly execute the feedback 

control loop to modify the output value, every 256Hz. The implementation of the 

magnetic levitation controller realised a system that would not remain stable for 

longer than short periods of time. 

Analysing the implementation with the STARTS tool, the WCET of the feedback 

control loop was calculated to be 867 cycles, and the WCET of the ISR was 51 cycles. 

Thus the combined worse-case execution time of the ISR and the feedback control loop 

was 918 cycles, or 114. 75p,s . The combined execution time is the minimum period 

required for the interrupt timer. By identifying the WCET of the feedback control 

loop and the ISR, the maximum frequency of the interrupt timer was computed to 

be 8714Hz. Therefore the setting for the clock timer to interrupt was changed from 

256Hz to 8kHz, and increasing the response rate resulted in a stable system. 
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Chapter 8 

Conclusions and Future Work 

In this thesis the timing analysis of real-time programs is examined and an alternative 

method of obtaining best- and worse-case execution times of assembly-level software is 

developed . The major contribution of this thesis is a new method of obtaining timing 

bounds that is made possible by a transformation system from a static control-fiow 

graph to a timed automaton model of the program. The model describes the state 

space of the program's dynamic behaviour and timing. The state space is searched 

with the timed automata model checker UPPAAL to generate fastest and slowest 

traces. The STARTS tool suite is a proof-of-concept implementation used to validate 

the method developed in this thesis. 

In summary, the major benefits of the timing analysis method proposed in this 

thesis are: 

• A transformation system from static control-flow graph to timed automata 

model of the program and hardware architecture. 

• Calculation of tight and safe timing bounds of unstructured assembly code. 

• Timing bounds and respective traces are obtained automatically without the 

need for manual annotations. 

• Timing bound and trace computation make use of pre-existing efficient optimi

sations of state space representation and searching provided by UPPAAL. 
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• A prototype implementation, the STARTS tool suite, used to develop and val

idated the proposed method automates the timing analysis process. 

• Safety and liveness properties of the implementation can be verified, providing 

alternative means of validating the implementation in addition to testing. 

• Timed Automata model representation traces can be simulated providing a 

graphical visualisation of the program execution paths. 

In the remainder of this chapter, the first section details the major benefits of 

this contribution in comparison to other timing analysis methods. It is followed 

by an outline of future work that would contribute to overcoming present hardware 

architecture features. Solving the future work problems will provide the STARTS 

tool the capabilities to become a robust timing analysis tool suite. 

8.1 Method Benefits 

8.1.1 Tight and Safe Lower and Upper Time Bounds 

The TA model defines the entire state space of the real-time program's execution. 

The symbolic traces generated by UPPAAL describe the precise execution paths that 

result in the best- and worse-case execution times of the program. Thus the best

and worst-case timing bounds obtained from model checking a TA representation of 

the program are both safe (i.e, not over/ underestimated, respectively) and tight (i.e. , 

not under/ overestimated, respectively). 

8.1.2 Automatic Path Determination 

The benefit of the method in comparison to other static timing analysis methods 

that generate explicit execution paths is that the manual annotation required to 

identify loop bounds, infeasible paths, and return instruction addresses is not required. 

Further , the source program is not required to be high-level code or highly structured 

assembly code. 

Timing analysis of the program from the CFG is difficult due to the problem of 

the subroutine call return paths from the static CFG. The issue is overcome with 
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the addition of data variable guards on transitions that only enable the transition 

corresponding to the correct return path. 

The task of manually asserting the loop and recursive call bounds is time con

suming and error prone. TheTA model includes data variables that update the loop 

counters and data variable guards on the transitions that represent the conditional 

branch out of the loop. Also, the return instruction address is maintained for each 

recursive call and the appropriate return instruction guard ensures that the correct 

transition is enabled. As a result , this combination of guards and updates automat

ically bounds loops and recursive calls within the state space of the model without 

the need of manual intervention. 

8.1.3 Concrete Execution Paths 

The BCET and WCET traces describe concrete execution paths through the program. 

The traces also provide input values that generate the paths. The traces may not 

be unique, rather they are one of many possible traces with the same total execution 

time. The traces can be analysed to determine the input values, and the values can be 

used as test cases for the program to verify the results using dynamic timing analysis 

methods. 

8.1.4 Safety and Liveness Verification 

For safety-critical hard real-time systems, much care is taken to ensure that safety 

properties are maintained and that stringent timing requirements are met. Verifi

cation of the properties and requirements of an implementation can be difficult and 

time consuming. The TA model of the implementation can be used for more than 

obtaining timing bounds. Various safety and liveness properties can be verified by 

the TA model checker UPPAAL. 

Model checking that the program will always eventually reach the last instruction 

of the code segment (e.g., the branch to the beginning of the control loop) verifies 

the liveness property (i.e., A<> p, where p is a location) that the program will not 

deadlock or livelock, and that it will always reach the last instruction of the code 

segment . If a state exists with no enabled transitions or an infinite loop is detected, 

UPPAAL will generate a trace to the problem location. The location indicates the 
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instruction in the program where the deadlock or livelock occurs. When generating 

the WCET trace, this property is checked prior to generating the trace to ensure 

termination of the worse-case trace. 

Reachability properties (i. e, E<> p) to instructions of interest can be used to verify 

that instructions of the implementation are on a feasible execution path. That is, the 

instruction is reachable from the beginning of the program (i.e., helping to identify 

dead code). With t races enabled, if the property is satisfied then a trace will be 

generated to the instruction that can be used for further analysis of the program's 

functional and timing behaviour. 

Safety properties of the program can be verified with the above temporal prop

erties to ensure an instruction is reached, or that it is reached within a specific time 

limit . Another safety property t hat can be verified makes use of the leads to (i.e. , 

p --> q) property, meaning whenever p holds eventually q will hold as well. p --> q 

is equivalent to A[] (p imply A<> q). This property can be used to verify that an 

instruction will always be executed at some point after some other instruction. An 

example is a safety property that states: if a shutdown signal is detected the sys

tem must shutdown. Whether the implementation satisfies the safety property can 

be verified by checking the property p --> q, where p is the instruction where the 

shutdown signal is detected and q is the instruction that shutdowns the system. 

Other properties can be verified with respect to execution states of the program, 

values or range of values on inputs or memory locations. Thus, the TA model of 

program can be used for numerous tasks other than finding timing bounds. It is useful 

in forward development to verify system requirements, and for the identification of 

system requirements in reverse development . 

8.1.5 Execution Path Visualisation 

In addition to verifying specific properties of a real-time program, the model can be 

used to effectively emulate the program's execution. Using the Simulator component 

of UPPAAL, the execution path of the program is visualised graphically. Input values 

and locations with multiple enabled transitions can be selected manually and the 

resulting traces examined. 

The visualisation can be used in reverse engineering efforts to facilitate under-
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standing of the program's behaviour. In particular , when assembly code is unstruc

tured and contains many branches and loops, the simulation of the execution clearly 

demonstrates the control-flow of the program. 

For example, the BPC function HLBN, obtains 14 input values, corrects them, then 

calculates the average. Tracing through the source code is difficult because there are 

seven iterations of a loop, and each loop calls the correction subroutine twice as it 

steps through subsequent input values. Simulating the BCET or WCET traces for 

the code segment, quickly and clearly identifies the 14 calls to the subroutine and the 

seven loop iterations. 

8.1.6 Accurate Modelling of Parallel Execution 

Using networks of communicating timed automata, the behaviour and timing of the 

execution of parallel processes can be modelled. An example of this is the analog

to-digital (A/ D) converter automaton in the PIC model. The program loops until 

the A/D conversion of an input is complete and then proceeds with execution. This 

expands the state space to include all possible input values that can be obtained from 

the A/ D conversion. 

In future work, other automata could be added that model timers, interrupt service 

routines, preemptive execution, or the external environment. This would potentially 

result in a more complete model that includes support for analysis of these types of 

complex architecture features. This topic is discussed further in Section 8.2.3. 

8.1. 7 Leveraging UPPAAL 

UPPAAL is a tool developed for modelling, validation and verification of real-time 

system design. In addition to design verification, using it with the method developed 

in this thesis allows verification of program implementation. As a result , both ends 

of the development cycle can use the same underlying tool. This continuity of the 

development tool throughout the process aids in adoption of formal methods tools in 

real-time program development. 

Another advantage to using UPPAAL in the context of timing analysis is akin to 

the use of linear programming solvers with the IPET static analysis method. In the 

case of the latter, tools such as lp_sol ve are robust, mature, and highly optimised. 
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Such tools are used to off'-load the calculation stage of timing analysis from the 

timing tool. Similarly, UPPAAL is a mature tool with numerous optimisations to 

symbolically represent the infinite state space of the timed automata. It quickly 

and efficiently searches the symbolic states space, removing the burden of developing 

similar algorithms for the STARTS tool. 

8.2 Future Work 

The future work described in this section outlines the outstanding issues that are 

required to be solved to provide the STARTS tool with robust capabilities to auto

matically generate and analyse a timed automata model for various hardware archi

tectures. The following issues have been identified for future work: 

• Indirect memory address references and indirect branching included m the 

model. 

• Complex hardware features similar to the A/D converter, such as special instruc

tion set features, interrupt clock timers, watchdog timers, preemption, caches, 

and pipelines support. 

• Identification and handling of overfiow and out-of-range operations. 

• Limiting the state space explosion when generating traces of models with large 

input value ranges. 

• Extending support for other processors and identifying architectures that cannot 

be modelled. 

• Formalisation of the transformations and proof of execution path equivalence. 

8.2.1 Indirect Addressing 

The scheme chosen to model memory address locations as integer variable names 

makes indirect memory addressing infeasible. The scheme is imposed by the available 

data variables supported by UPPAAL. A method needs to be devised in order to obtain 

the value of the memory location variable that is represented by the integer value of 
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some other memory location variable. Such a method could possibly use a function1 

to set or return the appropriate value. 

The current control-How graph generation tools do not maintain information re

quired to include branching to instructions via indirect addressing. The indirect 

branching must be included in the CFG for the indirect branching transitions to be 

included in the model. Further, the model must support indirect addressing if the 

transitions of an indirect branch are guarded with the target instruction address (e.g., 

indirect reference to a return instruction address) . 

8.2.2 Overflow and Out-of-Range Detection 

The TA model defines the state space of feasible execution paths and values for the 

program. The model can be used to verify that the implementation does not perform 

an operation that will cause an overflow or out-of-range assignment , or to identify 

input values that result in an overflow. Overflow in a hard real-time system can have 

catastrophic results, thus overflow detection is important to the verification of an 

implementation. 

For example, an input value used in an arithmetic operation that will overflow 

the size of the memory location that stores the result. An 8-bit memory location 

can be represented in the model by a bounded integer within the range [0, 255] or 

[-127,128] . The model checker can detect any out-of-range assignments that are in the 

state space of the model, thereby identifying the instruction and a value that creates 

an overflow. 

The documented behaviour of UPPAAL when an out-of-range integer variable as

signment occurs is to stop the simulation or verification and report the error to the 

user. A simple example was created that models a pathological loop where the loop 

counter and loop bound are both incremented. The example revealed UPPAAL did 

not stop and identify the error as documented, but proceeds without performing the 

assignment to the integer variable. A bug report was submitted2 and the problem 

was corrected in the recently released version 4.0.1. A full investigation of overflow 

and out-of-range detection can now be performed. 

1 UPPAAL supports function declarations. 
2http://bugsy.grid.aau.dk/cgi-bin/bugzilla/show_bug . egi?id=48 
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8.2.3 Preemption and Interrupts 

The current model does not include support for preemption and interrupt service 

routines (ISR). ISR code segments are disconnected from the main program in the 

control-How graph. The separate code segments currently must be analysed separately 

from the main program and manually. 

One method proposed, but not investigated , is to include ISR in the timed au

tomata model and add transitions to and from ever location where interrupts are 

enabled in the segment of locations representing the ISR. This unnecessarily increases 

the state space of the model and clutters the graph layout of the model. A possible 

alternative could be to create a separate automaton for the ISR instructions with 

an additional initial location with a single transition to the first instruction of the 

ISR. The transition can be guarded with conditions, such as, interrupts enabled and 

interrupt triggered. An additional automaton could model the environment , clock 

t imer , or any other interrupt trigger. 



Bibliography 

[1] Abslnt, "aiT: Worse-Case Execution Time Analyzers." http : I /www. absint . 

com/ait/ , 2006. 

[2] ACES Group, "Heptane static wcet analyzer." http: I /www. iris a. fr I aces/ 

work/heptane-demo/heptane.html , 2003. 

[3] L. Aceto, A. Bergueno, and K. G. Larsen, "Model checking via reachability test

ing for timed automata," in In Proceedings of the 4th International Workshop 

on Tools and A lgorithms for the Construction and Analysis of Systems. Gul

benkian Foundation, Lisbon , Portugal, 31 March - 2 April, 1998. (B . Steffen, 

ed.), Lecture Notes in Computer Science 1384, pp. 263- 280, 1998. 

[4] R. Alur, C. Courcoubetics, and D. Dill, "Model Checking for Real-Time Sys

tems," in Fifth Annual IEEE Symposium on Logic in Computer Science, (Wash

ington, D.C.), pp. 414- 425, IEEE Computer Society Press, June 1990. 

[5] R. Alur and D. Dill, "Automata for modeling real-time systems, in lecture notes 

in computer science 443 ," in Proc. of the 17th International Colloquium on Au

tomata, Languages and Programming, Springer-Verlag, 1990. 

[6] R. Alur and D. Dill , "Automata for modelling real-time systems," Theoretical 

Computer Science, vol. 126, no. 2, pp. 183- 236, Apr. 1994. 

[7] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, "Beyond liveness: Efficient 

parameter synthesis for time bounded liveness," in Formal Modeling and Analysis 

of Timed Systems, Third International Conference, FORMATS 2005, Uppsala, 

Sweden, Septem ber 26-28, 2005, Proceedings (P. Pettersson and W . Yi, eds.) , 

vol. 3829 of Lecture Notes in Computer Science, pp. 81- 94, Springer, 2005. 

79 



80 MASc Thesis- M.H. Pavlidis McMaster - Computing and Software 

[8] J. Bengtsson, K. G. Larsen, F . Larsson, P. Pettersson, and W. Yi , "UPPAAL 

- a Tool Suite for Automatic Verification of Real- Time Systems," in Proc. of 

Workshop on Verification and Control of Hybrid Systems III , no. 1066 in Lecture 

Notes in Computer Science, pp. 232- 243, Springer- Verlag, Oct. 1995. 

[9] J. Charais and R. Laurens, "An964 - software pid control of an inverted pen

dulum using the pic16f684." http: I /www .microchi p . com/stellent/idcplg? 

IdcService=SS_GET_PAGE&nodeid=1824&appnote=en021807, 2006. 

[10] A. Colin and G. Bernat, "Scope-tree: A program representation for symbolic 

worst-case execution time analysis," in ECRTS, p. 50, IEEE Computer Society, 

2002. 

[11] K. Eikland and P. Notebaert, "lp__solve." http : //lpsolve . sourcefor ge.net/ 

5 . 5/ , 2006. 

[12] A. Ermedahl, A Modular Tool Architecture for Worst-Case Execution Time Anal

ysis. PhD thesis, Uppsala University, Sweden, May 14 2003. 

[13] A. Ermedahl and J. Gustafsson , "Deriving annotations for tight calculation of 

execution time," in European Conference on Parallel Processing, pp. 1298- 1307, 

1997. 

[14] K. Everets, "Assembly language representation and graph generation in a pure 

functional programming language," Master 's thesis, Dept. of Computing and 

Software, McMaster University, December 2004. 

[15] C. Fidge and P. Cook, "Model checking interrupt-dependent software," 12th 

Asia-Pacific Software Engineering Conference (APSEC 705), Jan. 01 2005. 

[16] Free Software Foundation, "Gee, the gnu compiler collection." http: I /www. gnu. 

org/softwar e/gcc/, 2006. 

[17] Free Software Foundation, "Gnu binutils." http: I / www. gnu . org/ software/ 

bi nutils/ , 2006. 



MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 81 

[18] C. Healy, M. Sjodin, V. Rustagi, and D. B. Whalley, "Bounding loop iterations 

for timing analysis," in IEEE Real Time Technology and Applications Sympo

sium, pp. 12- 21 , 1998. 

[19] R. Holt , A. Winter , and A. Schrr, "Gxl: Towards a standard exchange format," 

2000. 

[20] IBM Systems Reference Library, IBM 1800 Functional Characteristics, 

eighth ed., July 1969. 

[21] R. Kirner and P. Puschner, "Timing analysis of optimised code," 2003. 

[22] R. Kirner, R. Lang, G. Freiberger, and P. P. Puschner, "Fully automatic worst

case execution time analysis for matlab/simulink models," in ECRTS, pp. 31- 40, 

IEEE Computer Society, 2002. 

[23] R. Kirner and P. Puschner, "Supporting control-flow-dependent execution times 

on WCET calculation," Dec. 07 2000. 

[24] K. G. Larsen, P. Pettersson, and W. Yi , "Model-Checking for Real-Time Sys

tems," in Proc. of Fundamentals of Computation Theory, no. 965 in Lecture 

Notes in Computer Science, pp. 62- 88, Aug. 1995. 

[25] Y.-T. S. Li, "Cinderella 3.0 home page." http: I /www . princeton. edu/~yauli/ 

cinderella-3.0/ , 1996. 

[26] Y.-T. S. Li and S. Malik, "Performance analysis of embedded software using 

implicit path enumeration," in Workshop on Languages, Compilers, 8 Tools for 

Real-Time Systems, pp. 88- 98, 1995. 

[27] C. L. Liu and J. W. Layland, "Scheduling algorithms for multiprogramming in 

a hard-real-time environment," Journal of the ACM, vol. 20, no. 1, pp. 46- 61, 

1973. 

[28] A. Metzner, "Why model checking can improve WCET analysis," in CAV, Com

puter Aided Verification, 16th International Conference, CAV 2004 , Boston, 

MA, USA, July 13-17, 2004, Proceedings (R. Alur and D. Peled, eds.), vol. 3114 

of Lecture Notes in Computer Science, pp. 334- 347, Springer, 2004. 



82 MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 

[29] Microchip Technologies Inc. , PIC12F629/675 Data Sheet - 8-Pin FLASH-Based 

8-Bit CMOS Microcontrollers, 2003. 

[30] G. Ottosson and M. Sjodin, "Worst-case execution time analysis for modern hard

ware architectures," in ACM SIGPLAN 1997 Workshop on Languages, Compil

ers, and Tools for Real- Time Systems (LCT-RTS'97), 1997. 

[31] C. Y. Park, "Predicting program execution times by analyzing static and dy

namic program paths ," Real-Time Systems, vol. 5, no. 1, pp. 31-62, 1993. 

[32] C. Y. Park and A. C. Shaw, "Experiments with a program timing tool based on 

source-level timing schema," Computer, vol. 24, no. 5, pp. 48- 57, 1991. 

[33] P. Puschner and C. Koza, "Calculating the maximum execution time of real-time 

programs," Real- Time Systems, vol. 1, no. 2, pp. 159- 176, 1989. 

[34] P. P. Puschner and A. V. Schedl, "Computing maximum task execution times

A graph-based approach," Real-Time Systems, vol. 13, no. 1, pp. 67- 91 , 1997. 

[35] SRI International, "Symbolic analysis laboratory." http : I I sal. csl. sri. com/ , 

2006. 

[36] J. Sun, "Documentation and tools to support worst case execution time analysis ," 

Master 's thesis, Dept. of Computing and Software, McMaster University, April 

2005. 

[37] H. Theiling, "Extracting safe and precise control flow from binaries," in RTCSA, 

pp. 23- 30, IEEE Computer Society, 2000. 

[38] H. Theiling, C. Ferdinand, and R. Wilhelm, "Fast and precise WCET prediction 

by separated cache and path analyses," Real- Time Systems, vol. 18, no. 2/ 3, 

pp. 157- 179, 2000. 

[39] Tidorum Ltd. , "Bound-t execution time analyzer." http: I /www. tidorum . fi/ 

bound-t/ , 2006. 

[40] TU-Vienna, "calc_wceL167." http : I /www. vmars. tuwien. ac . at/~raimund/ 

calc_wcet/ , 2004. 



MASc Thesis - M.H. Pavlidis McMaster - Comput ing and Software 83 

[41] J. Turley, "The two percent solution." http : I /www. embedded. com/ 

showArt i cle . jhtml ?articleiD=9900861 , December 2002. 

[42] UPPAAL, "About uppaal." http : I /uppaal. com/ , 2006. 

[43] A. Wassyng, M. Lawford, and X. Hu, "Timing tolerances in safety-critical soft

ware," in FM 2005: Formal Methods, International Symposium of Formal Meth

ods Europe, Newcastle, UK, July 18-22, 2005, Proceedings (J. Fitzgerald, I. J. 

Hayes, and A. Tarlecki , eds.), vol. 3582 of Lecture Notes in Computer Science, 

pp. 157- 172, Springer , 2005. 

[44] I. Wenzel, R. Kirner , B. Rieder , and P. Puschner, "Measurement-based worst

case execution time analysis," SEUS, vol. 00, pp. 7- 10, 2005. 

[45] I. Wenzel, B. Rieder , R. Kirner, and P. P. Puschner , "Automatic timing model 

generation by CFG partitioning and model checking," in DATE, pp. 606- 611 , 

IEEE Computer Society, 2005. 

[46] R. Wilhelm, "Why AI+ ILP is good for WCET, but MC is not , nor ILP alone," 

in Verification, Model Checking, and Abstract Interpretation, 5th International 

Conference, VMCA I 2004 , Venice, January 11-13, 2004, Proceedings (B. Steffen 

and G. Levi, eds.), vol. 2937 of Lecture Notes in Computer Science, pp. 309- 322, 

Springer, 2004. 

[47] World Wide Web Consortium, "T he extensible stylesheet language family (xsl) ." 

http : //www. w3.org/Style/XSL/ , 2006. 



84 MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 



Appendix A 

Timing Analysis for the IBM 1800 

A.l IBM1800 Overview 

The IBM 1800 Data Acquisition and Control System is a legacy control computer 

developed in the 1960s and 1970s. The IBM1800 was designed for real-t ime process 

control and high-speed data acquisition applications. It has been used as an industrial 

control computer for automation of production plants to power generating stations. 

A.l.l Architecture and Instruction Set Details 

The IBM1800 instruction set architecture is composed of 32 single and/ or double 

16-bit word instructions. In contrast to most current architectures that follow the 

separation principal, the IBM1800 stores instructions and data together in a common 

address space on a core storage device. The instruction set includes complex arith

metic, logic, and control-flow operations. The processor contains several registers for 

working data, in particular three Index Registers (XR1 , XR2, XR3). 

The Index Registers are used as counters, typically for computing memory offsets, 

loop iteration counts, or for branching conditions. The architectures includes three 

specific instructions for manipulation of the Index Regist ers . Literal or memory loca

tion values can be loaded and stored via the LDX and STX instructions respectively. 

The third instruction performs an addition operation on the value of an Index Reg

ister with the value of the operand, di sp, then skips the next instruction if the result 

is equal to zero or changes sign, illustrated in Table A.l. Thus, only a subset of the 
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data-fiow is required since loops can be modelled considering only the values in the 

Index Registers and the operations acting upon them. 

Table A.l: Control-fiow behaviour of the MDX instruction 

I Initial Value II No Skip Skip 

XRi > 0 XRi+D>O XR+D:::;o 
XR-i:::; 0 XRi+D<O XRi+D;::: 0 

Subroutine calls are initiated with the BSI instruction that stores the return 

address (i.e. , the program counter) to the memory address given by the operand, and 

begins executing the instruction following that address . Control is returned to the 

calling routine with a ESC or BSI instruction referencing the same memory address 

as its target memory address. Thus, the dynamic control-fiow can be modelled using 

the target address as its guard. Further, due to the BSI method of calling subroutines 

recursion is not supported by the IBM1800. 

A.2 IBM1800 Timing Analysis Transformations 

The following table lists the all the instruction set formats. It includes the location 

invariant for the instruction and transition guard and updates for the transition that 

satisfies the condition field. No condition indicates a location with a single transition. 

[Indirect] indicates an indirect addressing instruction format and is not implemented 

in STARTS. The instruction clock variable reset (x = 0) is omitted from all updates 

for space and readability considerations. Further, .6.(x ) and E(x) in the Guards are 

replace by the following conditions: 

.6.(x) = (XRx > 01\ XRx + disp > 0) v (XRx:::; 01\ XRx + disp < 0) 
E(x ) = (XRx > 01\ XRx + disp:::; 0) V (XRx:::; 01\ XRx + disp;::: 0) 

I Opcode I Format I Tag I Target Condition I Invaria nt Guard 

A 0 0-3 X ::0: 17 X = 17 

A 1 0 X ::0: 24 X= 24 

A 1 1-3 X ::0: 25 X= 25 

AD 0 0-3 X ::0: 27 X= 27 

Update 
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AD 1 0 X::::: 33 X= 33 
AD 1 1-3 X< 35 X= 35 

AND 0 0-3 X< 17 X= 17 
AND 1 0 X::::: 24 X= 24 

AND 1 1-3 X< 25 X= 25 

ESC 0 0-3 x::;8 x=8 

ESC 1 0-3 = Source+1 X::::: 16 x=8 

ESC 1 0 -f Source+1 X< 16 X= 16 

ESC 1 1-3 = Source+1 X< 17 x=8 

ESC 1 1-3 [Indirect] X::::: 17 X= 17 

ESI (short) 0 0-3 = Source+1 X::::: 15 x=8 

ESI (long) 0 0-3 = Source+2 X < 15 x=8 

ESI (short) 0 0-3 -f Source+1 X::::: 15 X= 15 ['operands'] <- Source+1 

ESI (long) 0 0-3 -f Source+2 X ::::: 15 X= 15 ['opera nds '] <- Sou rce+2 

ESI (short) 1 0-3 = Source+1 X< 24 x=8 

ESI (long) 1 0-3 = Source+2 X ::::: 24 x=8 

ESI (short) 1 0 -f Source+1 X< 24 X= 24 ['operands'] <- Source+ l 

ESI (long) 1 0 -f Source+2 X< 24 X= 24 ['operands '] <- Source+2 

ESI (short) 1 1-3 -f Source+1 X::::: 25 X= 25 ['operands '] <- Source+1 

ESI (long) 1 1-3 -f Source+2 X::::: 25 X= 25 ['operands'] <- Source+2 

CMP 0 0-3 a ll X::::: 18 X= 18 

CM P 1 1-3 a ll X::::: 25 X= 25 

CMP 1 1-3 all X< 26 X= 26 

D 0 0-3 X::::: 171 X= 171 

D 1 1-3 X::::: 176 X= 176 

D 1 1-3 X::::: 178 X= 178 

DCM 0 0-3 a ll X::::: 27 X= 27 

DCM 1 1-3 a ll X< 33 X= 33 
DCM 1 1-3 a ll X::::: 35 X= 35 
EOR 0 0-3 X::::: 17 X= 17 

EOR 1 0 X::::: 24 X= 24 

EOR 1 1-3 X< 25 X= 25 

LD 0 0-3 X::::: 17 X= 17 

LD 1 1-3 X::::: 24 X= 24 

LD 1 1-3 X< 25 X= 25 

LDD 0 0-3 X::::: 25 X= 25 

LDD 1 1-3 X< 32 X= 32 

LDD 1 1-3 X::::: 33 X= 33 

LDS x::;8 x=8 

LDX 0 0 x<9 x=9 

LDX 0 1 x<9 x= 9 XR1 <- 'operands' 

LDX 0 2 x::;9 x=9 XR2 <- 'operands ' 

LDX 0 3 x::;9 x=9 XR3 <- 'operands' 

LDX 1 0 X::::: 15 X= 15 

LDX 1 1 X::::: 15 X= 15 XR1 <- sub(' bina ry ' ,5) 

LDX 1 2 X::::: 15 X= ]5 XR2 <- sub('binary ',5) 

LDX 1 3 X< 15 X= 15 XR3 <- sub('bina.ry ',5) 
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lVI 0 0-3 X~ 61 X= 61 

lVI 1 1-3 X~ 68 X = 68 

lVI 1 1-3 X~ 69 X= 69 

MDX 0 0 X~ 10 X= 10 

MDX 0 1 No Skip X~ 10 X= 10 (\ 6. (1) XR1 +- 'operands ' 

MDX 0 1 Skip X~ 10 x = 10 /\ E(1) XR1 +- 'operands' 

MDX 0 2 No Skip X~ 10 X = 10 (\ 6. (2) XR2 +- 'operands' 

MDX 0 2 Skip X~ 10 X= 10 (\ E(2) XR2 +- 'operands' 

MDX 0 3 No Skip X~ 10 X = 10 (\ 6. (3) XR3 +- 'operands ' 

MDX 0 3 Skip X~ 10 x = 101\ E(3) XR3 +- 'operands' 

MDX 1 (L) 0 X~ 41 X= 41 

MDX 1 (L) 1 No Skip X~ 41 X = 41 (\ 6. (1) XR1 +- ['operands '] 

MDX 1 (L) 1 Sk ip X< 41 X= 41 (\ E(1) XR1 +- ['opera nds'] 

MDX 1 (L) 2 No Ski p X< 41 X = 41 (\ 6. (2) XR2 +- ['operands'] 

MDX 1 (L) 2 Skip X~ 41 X= 41 (\ E(2) XR2 +- ['operands'] 

MDX 1 (L) 3 No Skip X~ 41 X = 41 (\ 6.(3) XR3 +- ['operands '] 

MDX 1 (L) 3 Sk ip X~ 41 X= 41 (\ E(3) XR3 +- ['operands'] 

MDX 1 (I) 0 X~ 19 X= 19 

MDX 1 (I) 1 No Skip X~ 19 X= 19 (\ 6. (1) [Indirect] 

MDX 1 (I) 1 Sk ip X~ 19 X= 19 (\ E(1) [Indirect] 

MDX 1 (I) 2 No Skip X~ 19 X = 19 (\ 6.(2) [Indirect] 

MDX 1 (I) 2 Skip X~ 19 X= 19 (\ E(2) [Ind irect] 

MDX 1 (I) 3 No Skip X~ 19 X = 19 (\ 6. (3) [Ind irect] 

MDX 1 (I) 3 Skip X~ 19 X= 19 (\ E(3) [Indirect] 

NOP X~ 8 x=8 

OR 0 0-3 X~ 17 X= 17 

OR 1 0 X~ 24 X = 24 

OR 1 1-3 X~ 25 X= 25 

s 0 0-3 X~ 17 X= 17 

s 1 0 X~ 24 X= 24 

s 1 1-3 X~ 25 X= 25 

SD 0 0-3 X~ 27 X= 27 

SD 1 0 X~ 33 X= 33 

SD 1 1-3 X~ 35 X= 35 

SLA 0 'operands '-4 < 0 x~8 x=8 

SLA 0 'operands'-4 < 0 x ~'operands ' +4 x = 'operands'+4 

SLA 1-3 X~ 67 X~ 8 (\X~ 67 

SLC 0 'operands'-4 ~ 0 x~8 x=8 

SLC 0 'operands'-4 < 0 x ~'operands'+4 x = 'operands'+4 

SLC 1-3 X~ 69 X~ 10 (\X~ 69 

SLCA 0 'operands '-4 ~ 0 x~8 x =8 

SLCA 0 'operands'-4 < 0 x $'operands'+4 x = 'operands '+4 

SLCA 1-3 X~ 69 X~ 10 (\X~ 69 

SLT 0 'operands'-4 < 0 x<8 x=8 

SLT 0 'operands'-4 < 0 x $'operands'+4 x = 'operands '+4 

SLT 1-3 X< 67 X~ 8 (\X~ 67 

SRA 0 'operands'-4 < 0 x<8 x=8 



MASc Thesis - M.H. Pavlidis McMaster - Computing and Software 89 

SRA 0 'operands '-4 < 0 x :5'ope rand ti '+4 x = 'o pe ra nds '+ 4 

SRA 1-3 X< 67 X > 8 1\ X :S 67 
SRT 0 'operands'-4 < 0 x < 8 x= 8 

SRT 0 'operands'-4 < 0 x :S 'operands '+ 4 x = 'ope rand s '+4 

SRT 1-3 X < 67 X 2': 8 1\ X :S 67 
STD 0 0-3 X< 25 X= 25 
STD 1 1-3 X :S 32 X= 32 

STD 1 1-3 X :S 33 X= 33 

STO 0 0-3 X :S 17 X = 17 

STO 1 1-3 X :S 24 X = 24 

STO 1 1-3 X :S 25 X = 25 

STS 0 0-3 X< 15 X= 15 

STS 1 0 X :S 24 X = 24 

STS 1 1-3 X :S 25 X= 25 

STX 0 0-3 X< 15 X = 15 
STX 1 0-3 X< 24 X = 24 

RTE 0 'operands'-4 :S 0 x:S 8 x= 8 

RTE 0 'operands '-4 < 0 x _$ 'o pe rands'+4 x = 'o pe rand s'+ 4 

RTE 1-3 X< 67 X 2': 8 1\ X :S 67 
WAIT x:S 8 x= 8 

XIO 0 0-3 X :S 33 X 2': 25 1\ X :S 33 
XIO 1 0 X :S 40 X 2': 32 1\ X :S 40 

XIO 1 1-3 X < 41 X > 33 1\ X :S 41 
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Appendix B 

Timing Analysis for the PIC 

Micro controller 

B.l PIC Overview 

The series of PIC microcontrollers are a RISC family of programmable processors 

produced by Microchip Technology Inc. The PIC12F629 /75 model [29] of the mi

crocontroller is the target architecture implementation of the PIC instruction set 

architecture. It is a CMOS Flash-based 8-bit microcontroller architecture in an 8-pin 

package and features 4 channels for the 10-bit Analog-to-Digital (A/D) converter, 1 

channel comparator and 128 bytes of EEPROM data memory. This device is used 

for automotive, industrial, appliances and consumer entry-level product applications 

that require field re-programmability. The PIC microcontroller is used for a wide 

range of embedded systems from simple controllers, such as the Apple iPod remote, 

to hard real-time motor controllers and communication system components. Other 

models of the PIC will have a similar hardware model to the one developed for the 

STARTS tool suite. 

B.l.l Architecture and Instruction Set Features 

The PIC instruction set is small, 35 single word instructions, and highly orthogo

nal. Each instruction executes in one instruction cycle ( 4 oscillator cycles), except 

branching instructions that may take two cycles. The instructions with transitions 
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of diH"erent execution delays are in the Non-Uniform Guarded Branching class of 

instructions. 

The arithmetic operations, addition and subtraction, on literal values performs 

a two's complement operation. Literal operands representing negative numbers are 

encoded in the range 128 to 255 and must be converted to its correct negative value 

prior to performing the operation in the model. 

The data memory map includes several special registers that are read and/ or writ

ten to . They contain or set configuration information about the processor state and 

its auxiliary features . Some of these features include setting the processors clock rate, 

A/D convertor, interrupt timers , or reading the processor status register , interrupt 

and peripheral control registers. The other registers are general purpose and are used 

by the executing program for local variables and constants. There are no special 

registers for loop bounds and counters, thus the entire data-flow must be modelled 

to automatically determine loop iteration bounds. 

The A/ D conversion is initiated by setting bit 1 of the ADCON register to 1. The 

processor performs the analog data acquisition, converts it to a digital representation 

and clears the set bit, generating an interrupt if enabled. The model of the A/D 

conversion is done in a separate automaton that is a higher priority than the program 

model automaton. 

The processor stack is eight levels deep and stores the return instruction address of 

the next instruction from the calling routine (i.e. the value of the program counter). 

It operates a circular buH.er should the call depth grow larger than eight, thus losing 

the first values pushed on the stack. The instruction set cannot directly read or write 

to the stack, and there are no status bits set to indicate stack overflow or underflow. 

Therefore, the model of the stack does not permit a call depth greater than 8 and the 

model checker will discover those programs that violate the maximum call depth. 

B.2 PIC Timing Analysis Transformations 

The following table lists the all the instruction set formats. It includes the location 

invariant for the instruction and transition guard and updates for the transition that 

satisfies the condition field. No condition indicates a location with a single transition. 

The instruction clock variable reset (x = 0) is omitted from all updates for space 
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and readability considerations. Memory locations and literal values are indicated by 

italicised variable name (e.g. , W, f , d, k) , and the contents of memory locations are in

dicated by parentheses. Stared(*) opcodes indicate Non-Uniform Guarded Branching 

instructions that have different execution times depending on the transition. 

Opcode Operands I Condition Invariant Guard Update 

ADDLW k X< 1 x= 1 (W ) .-- (W ) + twos(k) 
ADDWF J ,d d=O X< 1 X= 1 (W) ,___ (W) +(f) 

ADDWF f , d d = 1 x<1 x= 1 (f) ,___ (W) + (f ) 
ANDLW k X< 1 x= 1 (W) <--- (W)&k 
ANDWF J,d d = O X< 1 x= 1 (W ) <--- (W )&(f) 

ANDWF J,d d = 1 x< 1 x= 1 (f) .-- (W)&(J) 

BCF f , b X< 1 x= 1 (f) <- (!)&(255- 2b) 

BSF J ,b X< 1 x= 1 (f) <- (!)1(255- 2b) 

BTFSC* J , b No skip X< 1 X = 1 A (f)&2b -:f- 0 

BTFSC* J , b Skip x:S: 2 X = 2 A (f)&2b = 0 

BTFSS* J,b No skip X< 1 X = 1 A (f)&2b = 0 
BTFSS* J , b Skip x< 2 X = 2 A (f)&2b -:f- 0 
CA LL k x<2 x=2 :stack[tosJ- 'addre:s:s'+ l , to:s- tos+ l 

CLRF f X< 1 x= 1 (f)<---- 0 
CLRW X< 1 x=1 (W) <-0 

CLRWDT x< 1 x= 1 
DECF J,d d = O X< 1 x=1 (W) ,_(f)- 1 

DECF f ,d d = 1 X< 1 x=1 (f)<---- (f)- 1 
DECFSZ* f , d d = OA No Skip X :'S 1 X= 1 (W) ,_(f)- 1 

DECFSZ* f , d d = OA Skip x< 2 x=2 (W) <---(f)- 1 

DECFSZ* J,d d = 1A No Skip X< 1 x=1 (f)<--- (f)- 1 
DECFSZ* J , d d = 1A Skip X< 1 X= 1 (f)<--- (f)- 1 

GOTO k X< 1 x=1 
INCF f ,d d = O X< 1 x= l (W) .--(f)+ 1 
INCF f , d d = 1 x< 1 x= 1 (f)<- (f)+ 1 

INCFSZ* J , d d = OA No Skip x< 1 x= 1 (W) ,_(f)+ 1 
INCFSZ* J , d d = OA Skip x< 2 x=2 (W) ,___(f)+ 1 
INCFSZ* f , d d = 1A No Skip x< l x= 1 (f ) <- (f)+ 1 
!NCFSZ* f,d d = l A Skip x<1 x= l (f)<- (f)+ 1 
IORLW k x< 1 x=1 (W) ,____ (W)Ik 
IORWF f , d d = O X< 1 x= l (W) ,_ (W)I(J) 
IORWF f , d d = 1 x:S:1 x= 1 (f) ,____ (W)I(f) 
MOVF f , d d =O X< 1 x= 1 (W) ,___(f) 
MOVF J , d d = 1 X< 1 x= 1 (f) <- (f) 

MOYLW k X :'S 1 x= 1 (W) <- twos(k) 
MOYWF f X< 1 x= 1 (f)<-(W) 

NOP X< 1 x= 1 
RETFIE x<2 x = 2/\ stack[tos-1] = TgtAddr tos ,_ tos-1 

RETLW k x< 2 x = 2/\ stack[tos- 1] = TgtAddr (W) <- k, tos <- tos-1 
RETURN x< 2 x = 2/\ stack[tos-1 ] = TgtAdd r tos <- tos- 1 
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RLF J,d d=O x:s; 1 x= 1 (W) +-(f)<< 1 

RLF f ,d d=1 x:s; 1 x= 1 (f)+- (f)< < 1 

RRF f , d d=O x<1 x=1 (W) +-(f)>> 1 

RRF f , d d=1 x:s; 1 x= 1 (! ) +- (! ) >> 1 

SLEEP X :s; 1 x=1 
SUBLW k X :s; 1 x= 1 (W) +- twos(k) - (W) 

SUBWF J,d d = O X :s; 1 X= 1 (W) +- (f ) - (W) 

SUBWF J,d d=1 X :s; 1 x= 1 (f) +- (f) - (W) 

XORLW k X :s; 1 x= 1 (W) +- (WY\k 

XORWF' f , d d=O X :s; 1 x= 1 (W ) +- (W)f' (!) 
XORWF J,d d=1 X :s; 1 X= 1 (f) +- (W)A (J) 

7431 22 
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