SYMBOLIC TIMING ANALYSIS OF REAL-TIME SYSTEMS



SYMBOLIC TIMING ANALYSIS OF
REAL-TIME SYSTEMS

By
MARK H. PavLipDis, B.ENG & MGT.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software
McMaster University

© Copyright by Mark H. Pavlidis, September 14, 2006



Abstract

Timing analysis of a real-time control program is often required to verify that the sys-
tem meets timing requirements. For example, if a real-time control program responds
too slowly or too quickly, then the system may become unstable and fail. Traditional
methods to determine timing bound estimates are often restrictive, labour-intensive,
and error-prone. This thesis proposes an automated method of obtaining best- and
worst-case timing bounds on unstructured assembly code without the need for man-
ual annotation of loop or recursive call bounds. A prototype tool suite takes an
assembly program as input and then generates the static control-flow graph. The
generated static control-flow graph is then automatically translated into a timed au-
tomata model that models instruction processing times and adds variables to model
the processor state. The resulting timed automata’s transition relation represents the
dynamic control-flow graph of the program. Fastest and slowest trace algorithms in
recent prototype versions of UPPAAL, a timed automata model checker, are then used
to extract tight best- and worst-case execution times of the program. The method is
applied to code examples for two different low-end (i.e., no cache or pipeline) 8 and
16-bit microcontroller architectures, the PIC and IBM1800.

il



MASc Thesis - M.H. Pavlidis

McMaster - Computing and Software




Acknowledgments

I am grateful for the support, guidance, and motivation of my supervisor Dr. Mark
Lawford throughout the years that lead to the preparation and experience that made
this work possible. Also, for presenting me with a challenging problem to solve that
culminated in the tools and methods herein.

I'd like to acknowledge the financial support from McMaster University’s Depart-
ment of Computing and Software, the Natural Sciences and Engineering Research
Council of Canada, Communication and Information Technology Ontario, and On-
tario Power Generation.

Thanks to all my colleagues and friends for their support in of my research efforts,
the constructive criticism, and thoughtful suggestions. Having an outlet to verbalise
my ideas to better understand my thoughts helped to solidify solutions to problems,
regardless if anything I said was understood. Further, I greatly appreciate the family
and friends that provided me with non-research related support and balance in life
when I needed it most.

Finally, I would like give a special thank you to my wife and my parents for their
unwavering encouragement and support throughout my many, many years in school.



vi

MASc Thesis - M.H. Pavlidis

McMaster - Computing and Software




Contents

Contents

List of Figures

1

2

List of Tables

Introduction

1.1 Motivation . . . . . . . . . e
1.1.1 The Reverse Engineering Project . . . . . ... ... .. ...
1.1.2 Timing Analysis Difficulties . . . . . . .. .. ... ... ...
1.1.3 Timing Bound Uses . . . . . . . .. .. .. ... ........

1.2 Related Work . . . . . ... .. .. . . ...
1.2.1 Timing Analysis Tool . . . . . . .. .. .. ... ... .....
1.2.2  Control Flow Graph Tool . . ... ... ... ... ......
1.23 UPPAAL . . . . . e

1.3 Contributions . . . . . . . . . ...

1.4 Outline. . . . . . . e

Preliminaries

D] TerminolEEY « = « s « s s 55 5 ¢ 2 52 3 & 5 €5 6 5% 5 E Y FH W WE ¥
2.1.1 Timing Bound Properties . . .. .. ... ... ... .....

Dt DEIRIONE « « « o 0 ¢ 5 ¥ 5 0 90 4 #% 5 % 3 8 8 8 %5 55 &5 B F F B ¥ HE S 5 R
2.2.1 Control Flow Graph Model . . . . ... .. ... .. .....
228 Thoied Avfomala « o s + « s v s s an s s s e o5 s 5888 %5

Timing Analysis Overview

3.1 Dynamic Timing Analysis . . . . . ... ... .. ... ... .....
3.1.1 Hardware Measurements . . . . . . . . . . .. .. .. .....
3.1.2 Software Measurements . . . . . . . . . . . ... ... ... ..
3.1.3 Dynamic Timing Analysis Feasibility . . . ... ... ... ..

3.2 Static Timing Analysis . . . . . . . . .. .. .. oL

vil

vii

x1

xiii

CO 00 Ul Ul = W= = W o N =



viii MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software
321 Flow Analysis . . . . . . . ... .. .. ... o 20

322 Low-level Analysis « - « s+ s « « 95 v 5 58 ¢ 5 4 5 65 ¢ 5 % 6 3 21

3.2.3 Calculation . . ... ... .. .. .. 22

3.3| Execution Time Calculation Methods . . . . . . ... ... ... ... 22
3.3.1 Path-based . ... ... ... ... ... ... ... 22

3.3.2 Tree-based . . . . . . . . . ... 24

3.3.3 Implicit Path Enumeration Technique . . . . . . ... .. ... 24

g WOEETTBEE 5 s s s s s ca s s s 6 E s 0 % 686 ¢ 4 865 5@ 8 &4 25

4 Timing Analysis by Timed Automata Model 31
4.1/ Related Work . . . . . . . . . . .. 31
4.1.] Timed AGbomats - « « « » » o5 mow v & % 85 ¥ &5 & 5 5 & ¥ & 32

4.1.2 Model Checking . . . . . . . . .. . ... ... . 32

4.1.3 Model Checking Implementations . . . . ... ... ... ... 33

4.1.4 Timing Analysis by Model Checking . . .. ... ... .... 35

4.2 Method Overview . . . . . . . . . . . . . e 36
4.2.1 Control Flow Analysis . . . ... ... ... ... ....... a7

4.2.2 Transformation to a Timed Automata . . .. ... ... ... 38

423 DataFlow Analysis . . . . . .. ... ... ... ........ 39

4.2.4 Calculating Timing Bounds . . . . . .. ... ... ...... 41

5 A Timing Analysis Transformation System 43
5.1 Control Flow Graph Representation . . . . . .. ... ... ...... 43
5.2 Timed Automata Representation . . .. .. ... ... ... ..... 44
5.3| CFG to TA Transformations . . . . . . . . . . . . . ... ... .... 45
5.3.1 Sequential Instruction . . . . . ... ... oL 46

5.3.2 Sequential Updating Instruction . . . . . . . .. ... ... .. 47

5.0.8 Non-sequential Instroetion . « « = « ¢ 5 5 55 ¢ a8 a5 55 5 9 s 48

5.3.4 Unguarded Branching Instruction . . . . .. .. .. ... ... 48

5.3.5  Uniform Time Guarded Branching Instruction . . . .. .. .. 50

5.3.6 Non-Uniform Time Guarded Branching Instruction . . .. .. 52

Bl BRIRIIEEY .« « o5 v 6 5% % ¢ % % B D4 A FE S ES UK EED ED R X o4

6 STARTS Tool Suite 55
6.1| Tool Suite Description . . . . . . . . .. . ... . L. 55
B.1.] Operatitg EGVIPORTRORE o 5 « 5 2 s s s w5 5 a 5 55 s 6 5 & 55

6.1.2 Software Dependencies . . . . . . .. ... ... ... ... 56

6.1.3 Limitations . . . . . . . . . . . e e 57

B3 Ueingthe Tool . : : ¢ o5 s s s vs sn #n e e e s 558 messenss 58
6.2.1 Input Source Assembler Program . . .. ... ... ... ... 58




MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software ix
6.2.2  Selecting the Code Segment . . . . ... ... ... ...... 60

6.2.3 Generating the Control-Flow Graph . . . . . . ... ... ... 60

6.2.4 Generating the Timed Automata Model . . . ... ... ... 61

6.2.5 Generating BCET and WCET Traces . . . . .. ........ 61

6.2.6 Trace Visualisation in UPPAAL . . . .. ... ... ... ... 62

7 Timing Analysis Results 67
7.1 Timing Analysis Results . . . . . ... ... ... ... ........ 67
7.2 IBM1800 Timing Analysis Results . . . . .. ... ... ... ..... 67
T2 PIOC Timing Analysis Besults - « « » ¢« s o 55 s s 58 s ¢ s 5 5 5 4 a 68

8 Conclusions and Future Work 71
Bl Method Bonshits . « « s 5 5 5 « 5 2 5 5 ¢ 6 6 05 o0 s mus s v 685 &4 3 12
8.1.1 Tight and Safe Lower and Upper Time Bounds . .. .. . .. 72

8.1.2 Automatic Path Determination . . ... ... ......... 72

8.1.3 Concrete Execution Paths . . . . . ... ... ... ...... 73

8.1.4 Safety and Liveness Verification . . . . ... ... ....... 73

8.1.5 Esgecution Path Visualisation . = s« « s ¢ 65 ¢ s 5 55 5 5 5 74

8.1.6  Accurate Modelling of Parallel Execution . . . . . . ... ... 75

B.l.¥ leversgng UPPAAL : « s 5 s s s s o s s a2 a5 6 s 6 55 ¢ 4 & 75

82 Future Work . . . . . . . . ... 76
B2l Indirect Addressing .  « = o+ + ¢ 555 « s 65 65 5 5 €5 5 & 3 76

8.2.2 Overflow and Out-of-Range Detection . . . . . . . . ... ... P

823 Preemption and TIRerruphs « + « « » v 5 s 5 6 & 55 + 5 53 % « 78
Bibliography 79
A Timing Analysis for the IBM 1800 85
A1 IBM1800 Overview . . . . . . . . i v i it 85
A.1.1 Architecture and Instruction Set Details . . . . .. ... ... 85

A.2 IBM1800 Timing Analysis Transformations . . . . . . ... ... ... 86

B Timing Analysis for the PIC Microcontroller 91
B.1 PIC Overview . . . . . . . . . . e e e 91
B.1.1 Architecture and Instruction Set Features . ... .. ... .. 91

B.2 PIC Timing Analysis Transformations . . ... ... .. .. ... .. 92



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software




List of Figures

1.1
1.2
1.3

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.9
5.6
9.7
5.8

6.1
6.2
6.3
6.4

Timing Bound Properties . . . . . ... ... ... ... ... .. 12
Triganular Loop Example . . . . .« . 0 6 0 s s 5 535 v s0 58 5 5 23
IPET Objective Function and Constraints . . . . .. .. ... .. .. 25
STARTS Tool Architecture . . . . . . .. ... ... ... . ..... 36
Example — IBM1800 assembly code . . . . . .. ... ... ... ... 37
Example — Annotated Control Flow Graph . . . . .. .. .. ... .. 38
Example — UPPAAL Timed Automaton . . . . . . ... ... ... .. 40
Sequential Instruction Transformation . . . . ... ... ... .... 47
Sequential Updating Instruction Transformation . . . . . . . .. . .. 48
Non-sequential Instruction Transformation . . . . . . . ... ... .. 49
Unguarded Branching Instruction Transformation . . . . .. .. . .. 49
Uniform Time Guarded Branching Instruction Transformation . . . . 51
Return Instruction Transformation . . . .. .. ... ... ... ... 52
Potential Deadlock on Guarded Branching Instruction Transformation 53
Non-Uniform Time Guarded Branching Instruction Transformation . 54
STARTS Tool Architecture . . . . . . . .. .. ... ... ... .... 59
Uppasl Simulstor Bxample 1 . « ¢ s « 25 1 ¢ s 55 s s s wa v 28 5 5 3 63
Uppaal Simulator Example 2. . . . . . . .. .. ... .. ... ... 64
Uppaal Simulator Example 3. . . . . . ... ... ... ... ... .. 65

xi



xii

MASc Thesis - M.H. Pavlidis

MecMaster - Computing and Software




List of Tables

7.1 IBMI1800 BPC Results . . ... ... ... ...

A.1 Control-flow behaviour of the M DX instruction

xiil



xiv MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software




Chapter 1

Introduction

Why do we need the timing bounds of an embedded real-time program?

Embedded real-time systems are used to control many tasks in the physical world
that were not previously controlled with computers. These include safety-critical
tasks such as the control of nuclear power generating stations, aerospace and auto-
motive vehicles, and telecommunication systems among others. A commonality of
these tasks is that they are increasingly being implemented as software programs
controlling embedded real-time systems. A system failure due to a missed timing
deadline may result in catastrophic loss of human and/or economic resources. More-
over, on a volume basis, nearly all processors (up to 98%) manufactured are used in
embedded systems[41]. Therefore, a great deal of research effort has gone into devel-
oping methods to verify that these systems meet functional requirements to ensure
correct operation.

More recently, research on determining timing bounds of embedded systems has
been pursued. The timing bounds include both the Worse Case Execution Time
(WCET) and Best Case Ezecution Time (BCET) of the system. The timing bounds
are used in the validation of the timing requirements of the systems. The timing
of the execution of a real-time program is critical in determining if the functional
requirements are met, because control of physical systems require that decisions must
made by some hard real-time limit. Furthermore, a large variance in timing of control
decisions may make the physical system unstable. Timing bounds are also used in
schedulability analysis of the system, and determining the capabilities (and cost) of

1



2 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

the processor required to implement the system.

This thesis presents a method of determining the timing bounds of an embedded
real-time program from assembly /object code, including the execution paths that re-
sult in the BCET and WCET of the program. The method differs from the current
methods used to find timing bounds (or commonly only the WCET) of real-time
programs. A prototype timing analysis tool based on the method allows for the veri-
fication of timing requirements of an implementation and can be used in determining

timing requirements when reverse engineering a legacy system.

1.1 Motivation

This section provides the motivation for the development of the timing analysis tool.
It includes an overview of the reverse engineering project, of which the tool is a com-
ponent. Further, the current difficulties in timing analysis that we desire to overcome

are presented, and the utility of determining execution timing bounds described.

1.1.1 The Reverse Engineering Project

The motivation to build a timing analysis tool is part of a larger project to obtain
high-level software requirements from assembly code. The project, Reverse Engineer-
ing High-Level Requirements from Assembly Code, involves a group of researchers
from McMaster University’s Software Quality Research Laboratory (SQRL) work-
ing jointly with system engineers from Ontario Power Generation (OPG) to develop
methods and a Reverse Engineering Tool Suite (Figure 1.1). The methods and tools
are intended assist in reverse engineering legacy assembly language safety-critical
real-time programs to high-level requirements. The project was funded by OPG and
Communication and Information Technology Ontario (CITO), from April 2003 to
April 2005.

The direction of the project presented herein was constrained by the following
requirements. The reverse engineering program of interest, Boiler Pressure Control
(BPC) was to be based on a non-structured assembly code (sparsely commented), and
a legacy processor (IBM1800 Data Acquisition and Control System) with a limited

instruction set and a simple architecture without pipeline or cache. Both best- and



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software 3

I
I

Requirements V&V Tools AU___‘ Requirements Repository
(Scenario Analysis, Testing, etc.)

I

Timing Analysis Tool ‘

~

Functionality Analysis &
Design Recovery Tools

s |

JJ Graph Analysis Tools J_I
| —"| Graph Generation Tools & Library

Semantic Analysis Tools

Semantic Analysis Library

Assembly Representation
Library & Emulators

Figure 1.1: Reverse Engineering Tool Suite Uses Hierarchy

worst-case execution times are required. Finally, it was necessary to address and
overcome limitations of a previous timing analysis tool by fully automating the timing
analysis process.

1.1.2 Timing Analysis Difficulties

The conceptual use of WCET in scheduling algorithms for hard real-time systems
has long been studied [27], but determining the actual precise execution time bounds
of real-time programs is difficult, error-prone, and time consuming. More recently,
research has focused on determining the WCET estimate that is a safe overestimate
using static analysis of the program source or object code.

Static timing analysis methods have reduced much of the time and effort required
to obtain timing bound results, but they do not entirely eliminate the human-in-the-
loop required to add annotations for control flow. The required annotations include
determining loop iteration bounds, branching flow and infeasible paths, and behaviour
due to function calls and recursion. Some methods to automatically determine pro-

gram behaviour have been developed [13], but these are restricted to special cases of



4 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

structured code and/or require high-level source code (recall the constraint of reverse

engineering assembly code).

1.1.3 Timing Bound Uses

To answer the opening question why we need to determine the timing bounds of real-
time programs?, we look at the uses of the timing bounds. First is the need to
determine timing bounds that satisfy functional timing requirements and timing tol-
erances in reverse engineering safety-critical real-time programs to high-level require-
ments. Moreover, determining the timing bounds of an implementation can be used
in the forward development process to validate a program implementation against
functional timing requirements, and verify that the jitter is acceptable for the spec-
ified timing tolerances [43]. Finally, other uses for timing bounds include selection
of sampling frequency, data rates, schedulability, hardware (i.e., processor) selection,

and compiler optimisation.

1.2 Related Work

In this section, the work directly related to the development of the Symbolic Timing
Analysis of Real-Time Systems (STARTS) tool suite is presented. It includes work
previously completed for the Reverse Engineering project, and other tools used in its

implementation.

1.2.1 Timing Analysis Tool

A WCET Analysis Tool (WAT) was developed by Sun [36]. The tool was developed
to be the Timing Analysis Tool (TAT) component of the Reverse Engineering Tool
Suite. The interactive tool consists of a path-based WCET calculation. It partially
automates analysis, but it still requires intensive manual annotation to identify loops
and determine their bounds, and to mark infeasible paths. Further, the traces are
generated as sequential textual output.

These limitations of the WAT motivated development of a tool that automates

the process to eliminate time consuming and error-prone manual annotations. It also



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 5

identified the need for a graphical visualisation of the traces as an aid in comprehen-
sion for the reverse engineering efforts. Additionally, a tool that finds both BCET
and WCET is preferred to one that only computes the latter. The development of
the WAT provides a methodology for obtaining possible execution traces and insight
into troublesome IBM1800 instructions that complicate feasible path determination.
The feasible paths are found by pruning the infeasible edges from the output of a
Control Flow Graph tool.

1.2.2 Control Flow Graph Tool

Everets [14] implemented a tool for generating a static control flow graph (CFG) rep-
resenting an approximation of the possible execution paths of the BPC code. The tool,
Lst2Gxl, is a part of one of the lowest-level components, the Graph Analysis Tool,
of the Reverse Engineering Toolset. Lst2Gxl uses the compiler generated code listing
(LST) file to create a CFG with each instruction represented as a node in the graph.
The graph nodes include additional annotations that contain relevant information
from the assembly code that can be further used to determine the feasible dynamic
execution paths. Figure 1.2 is an example of a CFG generated from a code segment of
the IBM1800 assembly code. The CFG is represented in Graph eXchange Language
(GXL) [19], an Extensible Markup Language (XML) sub-language designed to be a
standard exchange format for graphs. The GXL-based CFG can be processed by Ex-
tensible Stylesheet Language Transformation (XSLT) [47], an XML-based language
used for the transformation of XML documents, to another XML-based document.
For example in Section 6.2.4, an XSLT specification is defined to transform a CFG
in GXL to an XML-based timed automata model used by UPPAAL.

1.2.3 UPPAAL

UPPAAL is a graphical tool for modelling, simulation and verification of real-time
systems [42], depicted in Figure 1.3. It is appropriate for systems that can be modelled
as a collection of non-deterministic processes with finite control structure and real-
valued clocks (i.e., timed automata), communicating through channels and/or shared
data structures.

Typical application areas include real-time controllers, communication protocols,



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

address = 35cf
opcode = MDX
operands = -1

address = 35ca
opcode = LDX
operands = 3

address = 35¢cb
opcode = LDX
operands = 0

address = 35d0
opcode = MDX
operands = *-5

address = 35d1
opcode = LDX
operands = BPCD

address = 35d3
opcode = BSC
operands = DI2F3

address = 35cc
opcode = BSC
operands = -

address = 35¢d
opcode = MDX
operands = 1

address = 35ce
opcode = SLA
operands = |

Figure 1.2: Control Flow Graph of an IBM1800 code segment



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software T

000 fusersimhol

el

{ kditor  Simulator  Verifier |

£ U Dragout @ Name: loopEx Parameters:
s Project
. Dedarations 4
¥ S lnopEx
Deciarations . e mr
System declarations e . Lo, g ——

=0, lonp.counter = § |

:
o R
L N, ot counter 4w 1
P

\_/';ﬂ 2% && Uoop. counter < inop bound}

Position Description

Figure 1.3: UPPAAL 3.6 Screenshot - Modelling Editor

and other systems in which timing aspects are critical. UPPAAL is a joint develop-
ment between real-time system researchers at Uppsala University, in Sweden, and
Aalborg University, in Denmark. It provides a model checking engine to verity safety
and bounded liveness properties expressed as reachability queries [24, 3]. It was ini-
tially released in 1995, and it continues to be actively developed and supported on
MS Windows, Linux, and Mac OS X platforms. Throughout the years, many no-
table improvements have been made to UPPAAL, including efficient data structures
and algorithms, symmetry reduction, and symbolic representations that dramatically
reduce computation time and memory space use in light of possibly enormous state
space explosion.

The most recent stable release, version 4.0.1 (as of June 2006), includes a stan-
dalone verification engine, fastest trace generation (for BCET)!, XML-based TA
model, process priorities, progress measures, bounded integer ranges, meta variables,
and user-defined functions. These features permit the modelling of microprocessor
architecture and instruction execution used to perform timing analysis by the method
proposed in this thesis.

1The slowest trace generation is currently possible in an unreleased prototype version of UPPAAL.



8 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software

1.3 Contributions

In this thesis the timing analysis of real-time programs is examined and an alternative
method of obtaining best- and worse-case execution times of assembly-level software is
developed. The major contribution of this thesis is a new method of obtaining timing
bounds that is made possible by a transformation system from a static control-flow
graph to a timed automaton model of the program. The primary contribution of this

method is to introduce a static timing analysis method that provides the following:

e A transformation system from static control-flow graph to timed automata

model of the program and hardware architecture.
e Calculation of tight and safe timing bounds of unstructured assembly code.

e Timing bounds and respective traces are obtained automatically without the

need for manual annotations.

e Timing bound and trace computation make use of pre-existing efficient optimi-

sations of state space representation and searching provided by UPPAAL.

e A prototype implementation, the STARTS tool suite, used to develop and val-

idated the proposed method automates the timing analysis process.

e Safety and liveness properties of the implementation can be verified, providing

alternative means of validating the implementation in addition to testing.

e Traces through the timed automata model can be simulated providing a graph-

ical visualisation of the program execution paths.

1.4 Outline

The remaining chapters of this thesis are organised as follows:
e Chapter 2 presents terminology and definitions used throughout the thesis.

e Chapter 3 provides an overview of current timing analysis methods and tools.



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 9

e Chapter 4 discusses model checking timed automata for use in timing analysis,

then presents a method for generating a timed automaton model of the program.

e Chapter 5 details the transformation process of a static control-flow graph to

timed automaton model of a real-time program.
e Chapter 6 describes the prototype tool suite STARTS.

e Chapter 7 presents timing analysis results for the IBM1800 and the PIC target

architectures.

e Chapter 8 draws conclusions, details the benefits of the work presented and
provides an overview of the possible future work to overcome the method’s
current limitations.



10 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software




Chapter 2
Preliminaries

In this chapter we introduce the terminology and definitions used throughout the

thesis.

2.1 Terminology

2.1.1 Timing Bound Properties

This section provides the terminology used to describe timing bound properties of

interest. Figure 2.1 graphically demonstrates the relationship between the properties.

Worst Cast Execution Time (WCET): The slowest of all possible execution times
of a program, or a program fragment. It is typically given in terms of cycles, or

seconds if the CPU clock rate is known.

Best Cast Execution Time (BCET): The fastest of all possible execution times
of a program, or a program fragment. It is typically given in terms of cycles, or

seconds if the CPU clock rate is known.

Jitter: The largest execution time variation (i.e., the difference between WCET and

BCET) of a program, or program segment.

Safe: A WCET (or BCET) estimate is safe if it does not underestimate (overesti-
mate) the actual WCET (BCET).

1 1



12 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software

Tight: A WCET (or BCET) estimate is tight when the estimate is as close to the
actual WCET (BCET) as possible, but remains safe (i.e., the WCET (BCET)
estimate is equal to actual WCET (BCET)).

Actual BCET Actual WCET

Tighter BCET Tighter WCET
Possible Execution Times

DU —>|

Figure 2.1: Timing Bound Properties

Safe BCET time

2.2 Definitions

2.2.1 Control Flow Graph Model

A control flow graph describes the possible execution paths through the program.
Each node of the graph represents an assembly-level instruction. Each directed edge
out of a node represents the next instruction that may execute. We extend the model
of the CFG to include annotated nodes. The annotation of the nodes includes relevant
information required to perform control and data flow analysis when converting the
CFG to a timed automata.

Modelling each instruction as a separate node in the graph differs from many of the
common approaches to CFG generation, that encapsulate a sequence of sequential,
non-branching, non-backtracking, instructions into a basic block!. The basic block
model is sufficient when determining control-flow, but in order to later model data-
flow and timing effects of processors (i.e., interrupt service routines, pipelines, caches,

etc.) it is necessary to model each instruction atomically.

Definition 2.1 A Control Flow Graph (CFG) is a possibly cyclic directed graph
given by the tuple,

LA basic block is a sequence of instructions with a single entry point at the beginning and a single
exit point at the end



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 13

Gr = (N,E,TL())

where N is a finite set of nodes, E C N x N is the set of directed edges, ng is a

unique start node. For regular cases, all nodes n € N are reachable from ny.

The following definition augments a CFG to include annotated nodes. Nodes are
annotated with the fields from the assembly/machine-level instruction. The annota-
tions include the relevant fields (e.g., instruction address, opcode, operands, object

code, etc.) and their respective values.

Definition 2.2 An Annotated Control Flow Graph (Annotated CFG) is a pos-
sibly cyclic directed graph given by the tuple,

GA = (N,E,no,\, 1,%)

where N is a finite set of nodes, E C N x N s the set of directed edges, ng is a
unique start node, A : N — P(I x X) is a function that maps a node to its set of
annotations, where I is the finite set of instruction fields, and % is the set of values
for the instruction fields.

For regular cases, all nodes in N are reachable from ng. It is possible to have a
disconnected graph, where there exists a set of nodes that are not reachable from ng.
Such nodes are still included in the graph, as they may indicate a special segment of
instructions or a problem with the generation of the CFG. This issue is dealt with in
the transformation of the CFG to a TA, detailed in Section 5.3.5.

The Annotated CFG represents all possible execution paths of the instructions of
the program. The annotations represent all relevant information for each instruction.
An explicit execution path is defined by a trace that represents one possible sequence
of instructions executed by the program.

Definition 2.3 A CFG Ezxecution Trace is any finite string of instruction nodes

connected by edges from the Annotated CFG of the form ng =2 ng — -+ — Ny

Where €z, is the directed edge from the node labelled x to the node labelled y.



14 MASec Thesis - M.H. Pavlidis = McMaster - Computing and Software

2.2.2 Timed Automata

The theory of timed automata was initially developed by Alur and Dill [5], as an
extension of finite-state Biichi automata with clock variables. A timed automaton is
structured as a directed graph with nodes representing locations and edges represent-
ing transitions.

Constraints on the clocks are used to restrict the behaviour of the automaton and
enforce progress properties. Clock constraints on locations, called invariant condi-
tions, force a transition when a clock value would violate the clock invariant. The
transition (if one exists) is required because states where the clock invariant is violated
are considered infeasible.

Transitions of the automaton have clock constraints guarding the transition edge,
called triggering conditions, restricting when a transition can be taken based on the
clock guard. Transitions include clock resets, where some clock variables are reset to

zero when the transition is taken.

Definition 2.4 A Timed Automaton is a tuple,
A= (L7Ca l07 E,I),

where L is a finite set of locations, C is a finite set of non-negative real-valued clocks,
lo € L is an initial location, E C L x B(C) x 2¢ x L is a set of edges labelled by guards
and a set of clocks to be reset, and I : L — B(C) assigns location invariants to clocks,
where B(C) = {x,c,fv lzeCAceNAre{<,<,==2>>}: 2~ c} is the set of

guards on clocks.

Bengtsson et al. [8] provide an extension of the classical theory of timed automata
to ease the task of modelling with a more expressive language. The extension adds
more general data type variables (i.e., boolean, integer), in an attempt to make the

modelling language closer to real-time high-level programming languages.
Definition 2.5 An Extended Timed Automaton is a tuple,
Ae = (La C» Vy Aa l()v E,I),

where L is a finite set of locations, C is a finite set of non-negative real-valued clocks,

YV is a set of finite data variables. A is the set of synchronising actions where



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 15

A= {a?la € A} U {a!la € A}. |y € L is an initial location, E C LxB(C,V)x 2R x L
is a set of edges label led by guards and a set of reset operations, R. Finally,
Z:L— B(C,V) assigns location invariants to clocks, where

BiC. V)= {:c,i,c,fv |lzeCANieEVAceENA~E {<,§,=:,2,>}:a:~c\/z’~c}
18 the set of guards on clocks.

Definition 2.6 A TA Trace is any finite string of instruction locations connected
by transitions from the Annotated TA model of the form Iy e ly = ---—1;. Where

T(a,y) 18 the transition from the location labelled x to the location labelled y.



16 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software




Chapter 3
Timing Analysis Overview

In this chapter several of the current methods to compute the timing bounds of
real-time systems are presented. The benefits and limitations of each method are dis-
cussed. These methods of computing the WCET differ from the method proposed in
this thesis. It should be noted that the proposed method was developed independent
of the techniques of the previous work. It allowed for a fresh approach that diverges
from the status quo to solve some of the current limitations of WCET estimation.
In particular, automatically determining loop bounds, complex flow, and avoiding

infeasible execution paths without manual annotation.

3.1 Dynamic Timing Analysis

In industry, WCET is commonly computed by measurements on many executions
of the program code, known as dynamic timing analysis. Measurement of execution

time are performed by hardware, software, or a hybrid of both types of tools.

3.1.1 Hardware Measurements

Hardware measurements use oscilloscopes and logic analysers to monitor system out-
puts by connecting probes to the processor and system bus pins. Oscilloscopes and
logic analysers can be used to calculate the frequency of control loops (e.g., cyclic ex-
ecutives), and the response time from input stimulus to controlled output response.

17



18 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

Hardware measurement methods have minimal intrusiveness on the software be-
ing measured because probing does not affect execution time or order of execution.
However, the methods can only be used on a system when the hardware setup per-
mits the connection of the analysing probes. An example of a scenario that does not
permit the use of such tools would be an embedded safety-critical system, where it
is not be safe to connect probes to hardware or run test cases they may result in a
system failure.

Oscilloscope measurements only provide results from externally visible signals,
and cannot determine the internal state of the processor or executing program. How-
ever, the granularity of logic analysers is at the machine instruction level. For both
methods, the measurements of numerous test executions are logged, and the changes
of signals over time are analysed to determine the timing results. Although these
methods provide the smallest timing resolutions, as with all of the dynamic WCET
methods, it cannot typically guarantee safe timing bounds because in general test
cases cannot be exhaustive. The latter is also true for the software measurement

techniques described below.

3.1.2 Software Measurements

Software measurements involve adding instrumentation points into the source code of
the program or around the program. An example of software measurement methods
are function profiling tools (e.g., gprof() [17]) that measure the execution profile of
called subroutines, providing a call graph and associated execution time. Another
is using instrumentation points that drive output pins that can be measured with
hardware to determine the execution time.

Unfortunately, adding instrumentation code into a real-time program changes the
timing, execution path and, for complex processors with cache and pipelines, proces-
sor dynamics, of the program proper. It results in an overestimation for the timing
bounds. The impact on the WCET bound is an overestimated result, that is more
safe. The impact on the BCET bound is far more critical to the analysis of response
jitter, since the overestimation can push the BCET bound into to the right of the
safe BCET time region, as illustrated in Figure 2.1, leading to an underestimated

response jitter.



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 19

Software measurements that do not add instrumentation points in the code require
operating system or emulator support to obtain the start and end times of execution.
The former has a high granularity (i.e., program level) and high timing resolution
that is dependent on the operating platform (i.e., UNIX time() command). Emulation
provides instruction level granularity, low timing resolution, and can provide execution

traces, but development of an emulator can be costly and time consuming.

3.1.3 Dynamic Timing Analysis Feasibility

Despite its common use in industry, it is very difficult for dynamic timing analysis
to ensure safe timing bound results. The methods yield timing bounds that are
within the range of possible execution time (Figure 2.1). The initial state and input
selection of test cases strives to push the results outward toward the actual bounds.
For safety-critical real-time systems, if system response is too fast or too slow it
can cause the system to enter a state that is unstable and uncontrollable, resulting in
possible catastrophic failure. Thus dynamic timing analysis techniques do not provide
a feasible solution to our problem with its previously stated set of constraints. The
requirement to obtain safe timing bounds motivated the investigation of static timing
analysis methods. More recently, dynamic measurement techniques have been used
to enhance static analysis in [44] for high-end processors that cannot be effectively
analysed due to computational complexity. We note that to avoid these complexities
and because of market factors, we limit our analysis to the class of processor that are

low-end, for which static timing analysis is feasible.

3.2 Static Timing Analysis

Static timing analysis involves the use of analytical methods to determine timing
bounds from program code (high-, assembly-, or object-level) without executing the
code. Each stage of static timing analysis provides information about a program
and its execution architecture used to obtain a safe and tight (as possible) WCET.
This section outlines the three stages of static WCET analysis, commonly presented in

literature, and presents some timing analysis tools that provide static timing analysis.



20 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software

3.2.1 Flow Analysis

The first stage of static timing analysis involves determining possible sequences of
instruction execution of the program. This includes sequential blocks of instructions,
branching and conditional branching instructions, and number of loop iterations. For
the latter, the common approaches require manual annotation of loop iterations. This
thesis presents a method that does not require manually determining loop bounds a
priori. The flow analysis is represented by a CFG, where instructions are represented

by nodes and the execution path is determined by the directed edges.

In cases where source code is available, the flow analysis stage may also determine
called functions and recursions. Based on the constraints of the reverse engineering
problem, high-level source code will not be considered in the implementation of the

timing analysis tool, and it is only mentioned for completeness.

Flow analysis must determine a safe execution path approximation, that includes
all feasible paths with as few infeasible paths as possible. In the method proposed
in this thesis, Low-level Analysis (Section 3.2.2) of the architecture yields conditions
on edges that prevent inclusion of infeasible paths in the timing bound calculation.
Calculation methods that do not perform partial data flow simulation do not maintain
enough of the state information to eliminate infeasible paths from the calculation of
the timing bounds. This results in time bounds that are less tight. The task of flow
analysis is decomposed into three steps: Extraction, Representation, and Calculation

conversion.

Extraction of flow information for assembly-level code involves the identification
of all possible paths for each instruction based on the operational semantics of the
architecture, typically defined informally in the technical manuals of the target pro-

Ccessor.

Once flow information is extracted, it is necessary to introduce notation to rep-
resent it. The representation of flow analysis may take the form of some type of
graph [34, 37, 45] or tree [33, 10], source code annotation [22], or by defining a lan-
guage to describe the possible paths through the program [31, 21]. Together with
flow information, loop identification and loop iteration bounds are added to the flow
representation. Commonly, loop information is annotated manually. Since manual

annotation is prone to error and tedious, there have been some developments in au-



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 21

tomatically identifying loops and related iteration bounds at assembly-level code for
some classes of well-structured loops [18].

The choice of representation may negatively impact the capabilities of the related
Calculation method (Section 3.3) to find safe and tight timing bounds. In the final
step, Calculation conversion, the flow information is mapped to a form that is a
feasible input for the chosen method of computing the bounds. In addition to flow
information to perform the calculation, the execution time of the underlying hardware

architecture must be determined by low-level analysis.

3.2.2 Low-Level Analysis

The precise execution time of each instruction is determined at the low-level analysis
stage. The target architecture instruction set defines each atomic action the processor
performs, and how long each action takes. The execution time of each instruction
is impacted by the complexity of the architecture. Microprocessor designers add
physical complexity to increase instruction throughput with pipelined and out-of-order
execution, and to decrease memory access delays with cache. We leave investigation
of these types of processors to future work as they are outside of the scope of our
problem definition.

Logical complexity is added the the hardware architecture with interpreted in-
structions, where the operator mnemonic (or opcode) alone does not determine the
action of the instruction. Further, for some complex architectures (i.e., CISC-based
processors like the Intel x86 line) instructions are interpreted into a set of micro-
instructions encapsulated in the hardware and hidden from the instruction set. More
logical complexity of the instruction set requires interpreting the instruction opera-
tor, flag bits, and operands. This is done to understand the action performed by the
processor for each instruction format, and accordingly the precise execution time.

For example, the IBM1800 instruction set’s precise execution time of an instruc-
tion depends on the instruction length of a single- or double-word (i.e., format bit
F =0 or F = 1, respectively), if the instruction register or index registers are used
(i.e., tag bits T = 0 or T = {1,2,3}, respectively), and if indirect addressing is
used. The execution time, or execution cycle count, must be determined for each

case and then converted to the format used in the final stage, namely the timing



22 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

bound calculation.

3.2.3 Calculation

Once the flow and architecture timing information is determined, it is possible to
compute the execution timing bounds of the program. The flow representation, ar-
chitecture information, and calculation method chosen impact the tightness of the
timing calculations, and the time and space complexity of the computation. Of-
ten, the method to extract and represent timing is closely related to the calculation
method used. Each common type of calculation method is described in more detail
in the next section. This thesis proposes a different calculation method technique to

compute timing bounds in Chapter 4.

3.3 Execution Time Calculation Methods

This section provides an overview of the current set of static analysis calculation
methods. It describes the capabilities and limitations of the methods to compute
timing bounds given program flow and low-level architecture timing results. There
are three main types of calculation methods often referenced in literature: path-based,

tree-based, and implicit path enumeration technique (IPET)!.

3.3.1 Path-based

Path-based calculation methods utilise graph based representations of program flow
and timing annotation to compute execution times of paths through the graph and
then search for the longest path to find the WCET.

The flow graph representation is a CFG where the timing of each instruction
or basic block on the nodes, and loops are identified and annotated with iteration
bounds. CFGs of this type with timing information are often called Timing Graphs
(TGs). The TG is used to ezplicitly enumerate each possible execution path based on

the graph, then searches for the longest. Determining the explicit path permits cal-

!Throughout this section, all references to timing bounds, both WCET and BCET, are referred
to as WCET to maintain consistency with the literature that is primarily focused only on WCET.



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 23

culating tighter timing results due to the architecture dependent effects of execution
of particular sequences of instructions.

For programs with many branches and/or loops it is obvious that the number
of possible paths quickly explodes. Utilising the fact that path-based methods are
manageable for limited segments of code, such as a single loop or branch path, the
complexity of enumerating the paths is mitigated by decomposing the TG into a
scope graph [12] . A scope graph is constructed from subgraphs of the TG, where each
subgraph is a node representing a scope. Each scope corresponds to a loop or function
contained in the TG subgraph. The WCET calculation then works hierarchically on
the scopes. The longest path must verified to ensure that it is a feasible path. If
it is not, the next longest path is chosen for the WCET calculation and is check for
feasibility. Moreover, for unstructured code (i.e., assembly-level or optimised object
code) it can be difficult to determine the scope that a node of the TG belongs to.
Finally, the task of identifying loops and associated loop bounds must be performed
manually or automatically, prior to the calculation phase of analysis.

Piece-wise calculation strategies, such as the scope graph, result in an overesti-
mated (i.e., less tight) WCET if data-flow information reaches over the borders of
the decomposed pieces. The problem is illustrated by considering a triangular loop,
a nested loop where the number of iterations of the inner loop is dependent on the
iteration count of the outer loop (see Figure 3.1). The inner loop yields a worst-case
iteration bound of 10, as does the outer loop. Thus, the piece-wise calculation over
the path would result in 100 executions of inner loop body, while the actual result
should only be 55.

for(i = 0; i < 10; i++) Outer Loop bound: 10
for(j = i; j < 10; j++) Inner Loop bound: 10
body Piece-wise Execution count: 10 x 10 = 100

Actual Execution count: Z;ﬁo i =955

Figure 3.1: Triganular Loop Example

Path-based calculation methods are useful to obtain explicit execution traces for
timing bounds but are limited by the complexity of the analysed program, yielding



24 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

safe but less tight results.

3.3.2 Tree-based

Tree-based calculation generates the WCET by a bottom-up traversal of a syntax-
tree of the program. The syntax-tree is a representation of the program where the
nodes describe the structure of the program at the source-code level, and the leaves
represent basic blocks.

The syntax-tree is derived from the flow representation (i.e., timing graph). Tim-
ing is computed by translating each node into an equation that expresses the timing of
its children nodes, then summing the expressions following a set of rules for traversing
the tree.

Tree-based calculation was first introduced by Park and Shaw [32], as timing
schema. It was further extended to include hardware level timing influences, such as
pipelines and cache. It is a simple and efficient method to compute WCET, but it
requires source-level code or highly structured assembly-code. Some instruction sets,
such as the IBM1800 or PIC microcontroller, are inherently unstructured. That is,
branches and loops are not easily identifiable by mechanical or manual methods. Fur-
ther, compiler optimisations of object-code results in unstructured code. Therefore,
tree-based calculation is unsuitable for the constraints imposed upon the work of this

thesis, but is feasible in specific cases of small and well-structured source-code.

3.3.3 Implicit Path Enumeration Technique

Due to the space and time complexity issues encountered with the previous calcula-
tion methods, Implicit Path Enumeration Technique (IPET), as the name suggests,
does not find every execution path to determine the WCET. The methods initially
developed in [26, 30, 34] state the problem of finding the WCET by maximising a
sum that is restricted by a set of constraints modelling program flow and hardware
timing (Figure 3.2).

The WCET is found either by constraint solving methods, or more popularly,
by integer linear programming (ILP). The advantages of this method is that each
path does not have be explicitly determined. Instead the behaviour is expressed as

a set of constraints. More importantly, the calculation stage of finding the WCET



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 25

WCET = max( Z 2y % 1),

i€BB

{a set of constrains on V;cppz;},
where BB s the set of all basic blocks,
x; 18 the execution count of the basic block,
t; 18 1ts execution time.

Figure 3.2: IPET Objective Function and Constraints

is performed by ILP methods and tools (e.g., 1p_solve() [11]) that are extensively
researched and efficient. This serves to remove the onus on the WCET tools by way of
reuse. An analogous strategy is used for the proposed calculation method described
in the next chapter.

IPET offloads the calculation stage of analysis to other tools, but the earlier
stages of determining loops and loop bounds are still required. Depending on the
analysed code, this process is often done manually and it is tedious and prone to
error. An additional limitation of IPET is that the WCET path is not explicitly
defined. Instead, only a number representing the amount of time or number cycles
the worst-case path would take is reported. Determining the explicit WCET path
requires additional processing. The actual WCET path is valuable information when
analysing the behaviour of the program and requires an additional processing stage to
search for the path. Despite this limitation, IPET is the favoured calculation method
of the popular academic and commercial WCET tools.

3.4 WCET Tools

This section provides an overview of some of the popular timing analysis tools. These
tools are designed to find WCET and they are branded as such, but some are also
capable of determining BCET.

The primary motivation for commercial development of tools is their effective and
efficient use in industry and current practical issues that the theory of static timing

analysis aids in overcoming. Ermedahl has developed the following set of requirements



26 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

that a WCET tool should support [12]:

e The tool should produce safe and tight estimates of the WCET and provide
deeper insight into the timing behaviour of the analysed program and target

hardware.

e The tool should be reasonably retargetable, supporting several type of proces-
sors with different hardware configurations. It is valuable to provide insight in

how different hardware features will affect the execution time.

e The tool should be able to handle optimised and unstructured code. Also, code
for which some of the source-code is not available (e.g., library functions and

hand-written assembler).

e The tool and analysis should be reasonably automatic, easy to use and should

not require any complex user interaction.

e The user should be able to interact with the tool and provide additional infor-
mation for tightening the WCET estimate, (e.g., constraints on variable values

and information on infeasible paths).

e The user should be able to specify which part of the code to measure, ranging

from individual statements, loops and functions to the whole program.

e The user should be able to view extracted results on both a source code and
object code level. The information should provide insight in code parts which

are executed, and how often.

A survey of available tools, both academic and commercial, yields no tool that
fully supports all of the requirements listed above. The reasons noted for the ab-
sence of such a tool are the complexity in determining precise timing behaviour of
modern processors (with pipelines, caches, branch prediction, etc.), and the fact that
embedded system engineers are unfamiliar with static analysis methods, thus limiting
the market for theses tools. Moreover, there is a belief that the market for timing
analysis tools is small because the number of high-end processors used in embedded

systems is proportionally very small. While this is true for the high-end processors



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software 27

that these tools target, since these tools are primarily focused on solving the hard
problem of processors with high complexity. There is generally a lack of focus on
low-end processors, despite the tremendous market size in terms of volume. The
processor market for 4-, 8, 16-bit, DSPs and microcontrollers is over 90%, with the
simple 8-bit processors making up 55% of the market. Further, of the less than 10%
market share of 32-bit processors, 98% of those are used in embedded systems [41].
Thus, despite the huge potential market for timing analysis tools for these low-end
processors, the research and industrial communities have largely ignored this market
in favour of attempting to solve more complex problems for processors with a small

market share.

Herein lies the motivation for developing a tool that provides precise timing analy-
sis for high volume, low-end processors. Having the capability of proving that a given
task can safely execute on a less powerful processor yields significant production cost
savings. This is instead of using a much more powerful processor to ensure timing

behaviour is safe but at a higher unit cost.

Another reason for the lack of tools that fully support the list of requirements
is that most tools support WCET analysis at either source-code level or object-code
level. The difficulty these methods introduce is in the mapping of high-level flow
information from source-code down to low-level object-code in order to compute the
timing bounds. The compiler is the logical component that links the source-code
flow with the object level timing information. Unfortunately, many compilers are
closed-source provided by the processor manufacturer, and open-source compilers

(i.e., gee[16]) generate much less efficient object code.

Obtaining the flow of data information (e.g., loop bounds) automatically from
source code is significantly less complex than from object code, that requires main-
taining flow of data between registers and memory. For the Reverse Engineering
project, we are in effect only considering the latter case because the program was
implemented in assembly. Further, at the source level the variable names are more
meaningful to the analyst than memory and register addresses. Regardless of whether
the methods to obtain loop bounds operate on source- or object-code are manual or
automatic, the problem of converting the information into a form for the calculation

state remains.

Academic WCET tools have developed out of the motivation for a proof-of-concept



28 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

implementation of a new theoretical approach, or to provide a set of functions that
allow for theory to be examined and extended. Development of the academic type of
tools tends to stall once it reaches a desired level of stability, or the researchers move
on to other areas of interest.

One such example is the research prototype Cinderella [25], developed at Princeton
University, that has not been actively developed for ten years. Cinderella determines
both BCET and WCET for the Intel 19910 and Motorola M68000 processors. It pro-
vides a graphical development environment from source-code to object-code, and the
mapping between them.

In Cinderella, timing bound calculation is based on the IPET developed by Li
and Malik [26]. The tool determines the linear constraints for cache and pipeline
behaviour of the processors, but requires manual annotation of flow behaviour to
tighten the timing bounds. For example, the triangular loop problem (Figure 3.1)
would require the analyst to determine the linear constraint x3 = 55 x1, where x1
represents the outer for-loop’s basic block, and x3 represents the inner-loop body’s
basic block. Another limitation of the prototype is that it does not provide the
best- and worst-case execution paths because it depends on IPET for timing bound
calculation.

The tool provides the capability to retarget the timing bound estimation of differ-
ent hardware platforms through a well-defined C++ interface. Retargeting requires
the implementation of backends for the object file, instruction set, and machine model.
Cinderella provides a good model of modularisation to separate the computation and
interface implementation from the backend modules that perform the control How
and low-level analysis.

Other academic tools are prototype research implementations strictly focused on
source-code level dependent analysis. These are not feasible to extend for this work
due to the dependence on high-level source-code and manual annotation requirements.
They include Calc_weet_167 [40] that is an implementation of Kirner and Puschner
[21] for the Siemens C167CR processor from the Vienna University of Technology
and Heptane [2] static WCET analyser for several processors from ACES Group at
IRISA.

Some research projects have evolved into commercial products. One such tool
is Bound-T [39] from Tidorum Ltd. in Finland. Bound-T supports several architec-



MASc Thesis - M.H. Pavlidis  McMaster - Computing and Software 29

tures and analyses machine-level code to compute WCET and its execution path.
[t automatically determines loop bounds for counter-type loops and allows for user
assertions on the program behaviour. Another commercial tool is aiT [1], an im-
plementation of the Abstract Interpretation and ILP method developed by Theiling
et al[38]. aiT is targeted for high-end processors with cache and pipelines and it
computes the WCET and graphically displays the worse-case execution path, but

aiT requires manual annotations of loop and recursion bounds and does not find the

BCET.



30 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software




Chapter 4

Timing Analysis by Timed
Automata Model

This chapter presents a method of finding precise (i.e., safe and tight) timing bounds,
both BCET and WCET, of a program implementation on a specific hardware plat-
form. First, the related work of modelling real-time programs with timed automata
and associated results are presented. Second, is an overview of our method of finding
timing bounds automatically from assembly/object-code (or related representation)
without requiring manual annotation for loop bounds and infeasible paths. In the
following chapter, we present the transformations from CFG representation of the
program to the TA model used in UPPAAL to find the timing bounds using the
method proposed in this chapter.

4.1 Related Work

The related work to our proposed method of finding timing bounds begins with an
overview of timed automata and model checking. Then an overview of an example
of model checking an assembly-level implementation, where the interrupt behaviour
(and implicitly timing behaviour) is of interest. Finally, we summarise previous work
that presents an argument against the feasibility of using model checking to find

timing bounds followed by a rebuttal counter-argument of the claim.

31



32 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

4.1.1 Timed Automata

The original theory of timed automata was developed by Alur and Dill [5, 6], for mod-
elling and verifying real-time systems. A continuous-time timed automaton model is
a finite-state Biichi automaton with a finite set of non-negative real-valued clocks.
The automaton is an abstract model of a real-time system, providing a state transi-
tion system of the modelled system. It is represented as a directed graph, with nodes
representing locations and edges representing transitions.

Constraints on the clocks are used to restrict the behaviour of the automaton
and enforce progress properties. Clock constraints on locations, called invariant con-
ditions, are invariants forcing a transition when the state would violate the clock
invariant.

Transitions of the automaton have clock constraints guarding the transition edge,
called triggering conditions, restricting when a transition can be enabled based on the
clock guard. Transitions include clock resets, where some clock variables are reset to
Z€ero.

Describing a complete system in one timed automaton is large and cumbersome,
thus TA have been extended with communication signals on transitions. The real-
time system can then be described as a set of timed automata, with each process of
the system decomposed into its own automata. Later, the theory of timed automata
was later extended by Bengtsson et al. [8], to include data variables in the state space,

that can be used in transition guards and updates.

4.1.2 Model Checking

Given a real-time system modelled as a timed automaton, system properties can
be expressed as temporal logic formulas and model checked. The temporal logic
commonly used is Timed Computation Tree Logic (TCTL) [4], and is used to express
safety and liveness properties of the system. Model checkers search the automata
state space exhaustively until a counterexample is found to refute a claimed system
property of the model. Due to the potential of state space explosion, model checker
implementations use data structures, approximation methods, and symbolic states to
efficiently represent and search the state space. Further, some model checkers (e.g.,
UPPAAL) restrict clock guards to maintain convex zones and check only a subset of



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 33

TCTL formulae. Consequently, the model checking results are generated faster, in
less space, making checking of larger models feasible.

Model checking has proven to be very successful in the verification of system
requirements and design models against system specification properties. In particular,
model checking has been used in practice for verifying real-time embedded safety-
critical systems design, potentially identifying design errors early in the development
cycle. The behaviour of the system design is modelled according to the state transition
system notation used by the model checker (e.g., timed automata) with respect to
high-level abstract actions that the system performs. The model is created manually
by, or in collaboration with, a domain expert of the system, and care must be taken
to accurately represent the system.

The model representation of the system abstracts away the details of the under-
lying software and hardware systems execution, and only models significant timing
events [15] (e.g., deadlines, periods, feasible WCET'). When the design model success-
fully verifies against the specification properties, the system is implemented accord-
ing to the design in the selected programming language and compiled for the target
hardware. Foreshadowing our method proposed in the next section, an interesting
observation can be made; although model checking is a widely accepted method of
veritying the system design, attempts to verify system implementations are typically

done by executing test cases on the implementation and/or manual inspection.

4.1.3 Model Checking Implementations

Published examples of the use of model checking representations of implementations
are sparse. One such example, by Fidge and Cook [15], is a case study that investi-
gated the behaviour of interrupt-driven software.

The case study models the assembly code of an aircraft altitude computation
and display program, to be referred to as Altitude Display, that reads an altimeter
and computes an estimate for the aircraft’s altitude. The program asynchronously
requests the current value from the altimeter and the value is returned to the program
by way of an interrupt. While waiting for the interrupt, the program computes an
estimate of the altitude. If the interrupt from the altimeter does not arrive in time,

the estimate is displayed instead of the actual value returned from the altimeter. The



34 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

assembly code is modelled in the Symbolic Analysis Laboratory (SAL, one of the SRI

FormalWare tools)[35], with each state representing a basic block of assembly code.

The motivation for the case study is an interest in the behaviour of the interrupt-
driven program, that depends on the relative arrivals of the interrupt over time and
its impact on the accuracy of the altitude displayed. Instead of modelling all possible
interrupt points, only those points in time when significant events occur (i.e., the
cases when the altimeter responds on time or not) are modelled. Many equivalent
states are thereby eliminated when modelling interrupt behaviour of the program’s
execution.

Model checkers, such as SAL, exhaustively search the state space until a coun-
terexample is found to refute a claimed property of the model, or the system is found
to satisfy the property. In the case of SAL’s Bounded Model Checker and the model of
the Altitude Display program, the property claim is a temporal logic formula assert-
ing reachability of the last instruction. Modelling the Altitude Display task in SAL
involves understanding the behaviour of the code and manually modelling its effects
on the register and memory values, program flow (i.e., assignment of the program
counter), and the instruction cycle execution time of each action. The first is directly
translated from the assembly code, while the latter two are implicitly described in
the code and require knowledge of the hardware environment for precise execution
time and program counter assignment. The execution time is modelled by a variable,
Now, of type Time, that is used to guard actions and is updated on the transitions
with a value representing the execution time of the instructions model by the associ-
ated action. Moreover, the interrupt behaviour of the hardware is used to model the
different possible significant events, modelling equivalent actions. Thus, a limitation
of the method is that it requires complete understanding of the given assembly code

and hardware environment to correctly manually model the task.

A further limitation of the method presented by Fidge [15] that prevents it from
being used to obtain timing bounds from model checking is that SAL searches for
the shortest counterexample to the property given as a temporal logic formula. In
this case, it would be a reachability property to the guarded action representing
the last basic block of assembly code. The counterexample found is the shortest
trace, in terms of number of transitions, through the model representing the program
code. Thus, SAL’s Bounded Model Checker is not capable of finding the fastest and



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software 35

slowest traces, with respect to the variable modelling time, because its search does
not explicitly take time (or time variables) into consideration when searching for the
counterexample. Moreover, there is no way to express the temporal logic property
to find fastest/slowest timed traces. Therefore, in its current form, the SAL model
checker is not a feasible tool to use to find timing bounds of program implementations
by model checking.

4.1.4 Timing Analysis by Model Checking

The lack of publications in the area of performing timing analysis with model check-
ing possibly indicates that model checking alternatives do not offer advantages to the
present static timing analysis methods. Wilhelm [46] presents several methods for
using model checking and argues that none offer acceptable performance. The solu-
tions focused on target hardware with cache, which this thesis does not address, but
the method applies this work. The cited problems with the model checking methods
were that the state space is too large or require too many model checking iterations
to find a precise upper bound.

Metzner [28] countered the argument that model checking is adequate for finding
timing bounds and, furthermore, can improve the results. The method models the
program and its interaction with the hardware as an automaton. The automaton
includes a set of variables, some of which are used to track time consumed. It begins
with the source C program with annotation to bound loop iterations. The annotations
are preserved in the translation into assembly code. The assembly code is used to
generate an automaton. The automaton representation is a C program that is used
as input to the OFFIS verification environment. The automaton is model checked
for a reachability query to a termination point for some cycles bound N. Based on
the result, the bound is then increased or decreased as appropriate until a tight value
is obtained for the upper bound of execution cycles. Typically the approach uses a
binary search method to choose the next attempt for N. The experimental results
revealed that the multiple model checking iterations do not lead to an infeasible
method.

Metzner’s method and results indicate that timing analysis by model checking

is feasible. It finds a precise bound and provides a concrete execution path for the



36 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

WCET of the program. However, the method does not satisfy the constraints set
out in Section 1.1.1. In particular, the method requires manual annotation of loop
bounds and high-level source code.

4.2 Method Overview

This section provides an overview of the method proposed to find timing bounds
by model checking a timed automaton. The process differs from the traditional
static timing analysis methods, but we identify where each traditional stage (i.e.,
Flow Analysis, Low-Level Analysis, Calculation) relates to our proposed method. As
previously noted, we desire an automated push-button method that automatically
finds the bounds of a real-time program implementation, without user intervention to
identity function calls, loops and loop bounds, input values, etc. An implementation
based on this method is detailed in Chapter 6, the STARTS tool suite, and Figure
4.1 illustrates the process used by the tool.

Input Data
(code segment
start/end instruction
addresses)

1

Assembled Program
(assembly listing,
object code)

(

STARTS )
Tool

Flow Analysis

A
Hardware
Model
(XSLT)

CFGto TA
Transformation

UPPAAL TA
(XML)

( Model Check generating Traces )

k I BCET Trace ” WCET Trace I J

j AN
BCET xtr Timing Bounds WCET.xtr

Figure 4.1: STARTS Tool Architecture

To achieve a completely automated timing bound calculation tool, the user inputs



MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software 37

to the tool must be a representation of the program that will run on the target
hardware (i.e., an assembly listing or object code), and the start and end instruction
addresses of the analysed portion of the program. The given instruction addresses
may be the first and last instructions of the program or some segment within the
code. Each processing stage is illustrated with an example from a code segment
(Figure 4.2) of a control program written in IBM1800 assembly. The example code
segment performs a majority vote of 3 input bits from XR2 (Index Register 2), and

loops three times storing the count of high bits in XR3.

ADDR REL OBJECT  ST.NO. LABEL OPCD FT OPERANDS COMMENT

35C9 0 0000 0703 DI2F3 DC 0

35CA 0 6203 0704 LDX 23

35CB 0 6300 0705 ILDX 30 ZERO DI COUNT
35CC 0 4810 0706 BSC =

35CD 0 7301 0707 MDX 31

35CE 0 1001 0708 SLA 1

35CF 0 T72FF 0709 MDX 2 -1

35D0 O 70FB 0710 MDX *-5

35D1 00 66002099 0711 LDX L2 BPCD RESTORE PAGE

Figure 4.2: Example — IBM1800 assembly code

4.2.1 Control Flow Analysis

The timing tool uses the given inputs to process and compute the timing bounds auto-
matically. The first processing stage is the Flow Analysis stage that generates a static
control flow graph (CFG) representation of the program. The CFG nodes represent
instructions and are annotated with relevant instruction information (i.e., opcode,
operands, etc.) for later processing. The edges represent the possible subsequent
instructions that can be executed (see Figure 4.3).

The CFG edges are generated by computing the possible changes to the program
counter for each instruction. For program segments that are loops or subroutines,
the CFG does not duplicate the instruction nodes (i.e., they are only represented
once in a static CFG). Thus, subroutines have multiple in-bound edges to the first
instruction node of the called subroutine. Similarly, the last node of the subroutine
typically has out-bound edges that return to each of its callers. In the static CFG,
it is not possible to determine which return edge should be taken. It would require

generating a set of dynamic CFGs, for each call to a subroutine call. In our process,



38 MASc Thesis - M.H. Pavlidis = McMaster - Computing and Software

address = 35¢[
opeode = MDX
operands = - |

address = 35d1
opeode = LDX
operands = BPCD

opeode = LDX
operands = 0

address = 35d3
opeode = BSC
operands = DI2I3

a
opeode = MDX
operands = 1

address = 35ce
opeode = SLA
operands = |

Figure 4.3: Example — Annotated Control Flow Graph

the information from the node annotations is used in a later stage to model the data

flow that determines the correct return edge.

4.2.2 Transformation to a Timed Automata

In the second processing stage, the CFG is transformed into an extended Timed
Automata (TA). The extension on the classical TA model is defined for use with
the real-time model checker UPPAAL. It provides a rich expression language that
includes a network of TA, clock and variable tests and updates, bounded integer
variables, synchronisation channels, and user defined functions.

The transformation combines the CFG with a Hardware Model of the target hard-
ware. The Hardware Model contains the timing information of each instruction and
other timing related behaviour of the target microprocessor. Creation of the Hard-
ware Model represents the Low-Level Analysis static analysis stage, and it provides



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software 39

information independent of the given program.

The transformation to a TA uses the flow information from the CFG, and combines
it with the timing information from the Hardware Model. With one exception, the
locations and edges in the TA are, in a one-to-one mapping with the CFG nodes
and edges, respectively. As we will see in section 5.3.6, there is a special type of
instruction that requires two additional locations and edges to separate the clock and
variable guards. Without separating the guards, the model checker finds a deadlock
state that does not actually occur in the program. The additional locations and edges
are required to correctly model the program’s timing and behaviour. The annotations
from the CFG nodes, and timing information from the Hardware Model, are used to
define clock invariants on locations, and the edge clock and variable guards, variable
updates, and synchronisation channels. The location invariants model instruction
execution time delay, the edge guards restrict the possible transitions with respect to
clock time and variable assignment, and the edge updates assign values to variables
modelling the data flow. These are used to define the state space of the control and
data flow of the program when model checking the TA (see Figure 4.4). UPPAAL
requires manual placement of all labels. All invariants, updates, and synchronisation
labels are placed at the upper left corner of the automata figure to reduce clutter and
maintain readability.

4.2.3 Data Flow Analysis

The task of identifying loops, the iteration bounds of loops, and depths of recursion
calls are frequently performed manually. The process is time consuming and error-
prone. For methods that automatically determine loop and recursion bounds, the
bound information must still be mapped into a form suitable for the traditional
calculation methods. Utilising the extended TA model, the behaviour of data flow,
and its effects on the control flow of the program, are modelled. The states they
define are then automatically maintained by the model checker without the need for
manual intervention.

The TA model’s variables can be used to represent the values of the actual memory
locations (e.g., general registers, special registers, stack, etc.). The edge update is

used to change the value of the variable corresponding to the actual assignment that



40 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software

x=EBfrd=8345
L xy A=At

§ ; 120 && ~1+xr2<=0)
22 & & -14+X12»=0))

1 {xr30 8K 14xr3<0})

A{35ce_SLA

Figure 4.4: Example - UPPAAL Timed Automaton

would occur when the instruction is executed. While the model checker examines the
state space of the model, the edge guards and updates restrict the possible values of
the variables. Thus for the variables representing loop counters, the state space of
the model is restricted to the actual number of iterations the program could possibly
execute. The loop bounds are automatically determined without requiring explicit
identification of the loop, the loop counter, or the loop bound.

Variables can be maintained to represent input values, computed values, values
that are used in conditional branches, and the return instruction address of a subrou-
tine call. The effect of guarding and updating the variables on the state space of the
model is that it restricts the possible execution traces to the actual execution traces
of the program running on the target hardware. Moreover, the static CFG represents
a superset of all possible execution paths through the program. Thus, all infeasible
paths in the dynamic CFG are excluded from the state space of the program model
using variable guards. The execution time of the feasible execution traces can be cal-
culated from the clock delay that is enforced on each location by its clock invariant

and the clock guards of its edge(s).



MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software 41

4.2.4 Calculating Timing Bounds

Creating a TA model from the CFG, followed by annotating the model with timing
information from the Hardware Model and data flow information from the CFG an-
notation, results in a precise model of the program execution. Further, the model
includes clock invariants, guards, and updates that provide the precise clock delay of
the actual program execution.

The model checker must feature the capability to find the fastest and slowest traces
based on the accumulated clock delay of the TA model (e.g., as is done in a prototype
version of UPPAAL). The real-time model checker can be used to calculate the timing
of the BCET and WCET of the program. The reachability checker for the slowest
trace must include the capability to detect infinite loops and ensure termination, as
UPPAAL provides [7].

The model checker attempts to verify a reachability property from the initial
location (i.e., the user given start instruction address) to the end location (i.e., the
given end instruction address). Instructing the model checker to generate fastest
and slowest witnessing traces when verifying the reachability property produces the
BCET and WCET traces, respectively, for the modelled program. The value of the
accumulated clock delay at the end of the trace represents the number of clock cycles
the trace execution would require on the target microprocessor. If the clock rate of
the target processor is known, the program’s timing bounds could also be expressed

in units of time.



42 MASc Thesis - M.H. Pavlidis =~ McMaster - Computing and Software




Chapter 5

A Timing Analysis Transformation

System

The details of the transformation process from machine-code representation to CFG,
and CFG to TA, previously described are presented in this chapter. The primary focus
is on the latter transformation of the CFG representation of the program instructions
to a TA model that describes the execution of the instructions. The instruction
set operations are decomposed into six types of transformations, categorised by the
instruction’s effects on control- and data-flow. The TA model obtained from the
transformations is used to determine the BCET and WCET of the program.

5.1 Control Flow Graph Representation

The transformation from assembly- or machine-code to a static CFG representation
is the first step of the process to generate a TA that can be used for timing analysis.
The primary contribution of this thesis is the timing analysis of real-time programs by
model checking Timed Automata. Thus, the details of the CFG generation is outside
its scope. 