
MULTI-VIEW SOFTWARE ARCHITECTURE RECONSTRUCTION 



MULTI-VIEW SOFTWARE ARCHITECTURE RECONSTRUCTION USING 

DESIGN, DYNAMIC, AND STATIC ANALYSES 

By 
Nima Dezhkam 

A Thesis 
Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 
for the Degree 

Masters of Applied Science 

McMaster University 
Copyright© by Nima Dezhkam, 2006 



DEGREE: MASTERS OF APPLIED SCIENCE (2006) 

DEPARTMENT: Computing and Software 

University: McMaster University, Hamilton, Ontario 

TITLE: Multi-view Software Architecture Reconstruction 

AUTHOR: Nima Dezhkam, B.Sc. 

SUPERVISOR: Dr. Kamran Sartipi 

NUMBER OF PAGES: x, 87 

11 



Abstract 

Most approaches in the reverse engineering literature generate a single view of a soft

ware system. However, a single view recovery restricts the scope of the reconstruction 

process to limited types of information. In this thesis, we propose a multi-view ap

proach that recovers three views of software systems: design, behavior, and structure. 

The design view is reconstructed through transforming a number of task scenarios 

into design diagrams (class diagrams, ER diagrams, and activity diagrams) using a 

novel scenario domain model that allows us to parse the task scenarios and populate 

an objectbase of actors and actions. The behavior view is represented through a 

set of profiles that contain the dynamic information extracted from executing a set 

of relevant task scenarios on the software system. This set of task scenarios cov

ers frequently used software features. The obtained profiling information serves as 

the dynamic characteristics of the software system that would be embedded into the 

structure view recovery. Finally, we propose a pattern based structure view recovery 

that defines the high-level architecture of the software system using abstract compo

nents and interconnections. In this context, both static and dynamic aspects of the 

software system are used to collect software entities into cohesive components with 

reduced dynamic interactions. The whole process is modelled as a Valued Constraint 

Satisfaction Problem (VCSP). As a case study we applied the proposed approach on 

the Xfig drawing tool with promising results. 

lll 



Acknowledgements 

I would like to express my sincere and gratitude to all those who gave me the possi

bility to complete this thesis. I am deeply grateful to my supervisor Prof. Kamran 

Sartipi whose help, stimulating suggestions and encouragement helped me in all the 

time of research for and writing of this thesis. His overly enthusiasm and integral 

view on research and his mission for providing high-quality work has made a deep 

impression on me. Besides of being an excellent supervisor, he was as close as a 

relative and a good friend to me. 

I would like to thank my co-supervisor Prof. Mark Lawford who kept an eye on the 

progress of my work and always was available when I needed his advises. I appreciate 

my official M.A.Sc. defense committee Prof. Rida Khedri and Prof. Sanzheng Qiao 

for their constructive criticism and excellent advice. 

I wish to thank all my colleagues, both past and present in the Department of 

Computing and Software in McMaster University for their assistance during the pro

gression of this research. I also would like to thank my kind friends who supported 

me throughout my studies and research. 

IV 



Contents 

1 Introduction 

1.1 Software architecture recovery 

1.2 Problem statement 

1.3 Proposed approach 

1.4 Contributions of this research 

1.5 Organization of the thesis 

2 Related work 

2.1 Structure view recovery . ....... 

2.2 Scenario-based design view recovery . 

2.3 Behavior view recovery 

2.4 Multi-view recovery .. 

3 Formal representations of different views 

3.1 Design view 

3.2 Behavior view 

3.3 Structure view . 

4 Proposed multi-view framework 

4.1 Design view recovery . . . . . . 

v 

1 

2 

3 

5 

5 

6 

7 

7 

8 

9 

10 

12 

13 

14 

15 

18 

18 



4.2 Behavior view recovery . 

4.3 Structure view recovery . 

5 Design view recovery 

5.1 

5.2 

5.3 

5.4 

5.5 

Introduction ... 

Proposed framework for design view recovery . 

Scenario generation (stage 1) . . . 

Scenario decomposition (stage 2) 

Design diagram generation(stage 3) 

5.6 Case study: Fast-food restaurant system 

5.6.1 Stage 1: Scenario generation ... 

5.6.2 Stage 2: Scenario decomposition . 

5.6.3 Stage 3: Design diagram generation 

6 Behavior view and structure view recovery 

6.1 Introduction . . . . . . . . . . 

6.2 Combined static-dynamic model 

6.3 Static pre-processing 

6.3.1 Fact extraction 

6.3.2 Source graph generation 

6.3.3 Similarity matrix generation 

6.3.4 Search space reduction 

6.4 Dynamic pre-processing 

6.4.1 Software system instrumentation 

6.4.2 Execution of scenarios .. . . 

6.4.3 Analysis of execution profiles 

6.5 Pattern matching ........ . 

vi 

19 

20 

21 

21 

22 

24 

25 

29 

31 

32 

33 

36 

43 

43 

45 

48 

49 

49 

51 

53 

54 

56 

56 

57 

57 



60501 

60502 

60503 

605.4 

Valued Constraint Satisfaction Problem 0 

Modelling the recovery process 0 0 

Modelling constraints with XML 

Iterative pattern matching 

7 Xfig case study 

701 Design view generation 

702 

701.1 Scenario generation 

701.2 Scenario decomposition 0 

701.3 Design diagram generation 

Combined static-dynamic architecture recovery 

70201 

70202 

70203 

Static pre-processing 0 0 

Dynamic pre-processing 

Iterative pattern matching 

8 Discussion and conclusion 

Bibliography 

Vll 

58 

59 

60 

61 

69 

69 

70 

70 

72 

73 

73 

74 

75 

78 

79 



List of Tables 

5.1 List of actions in order taking component and corresponding to Follow 

relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

7.1 Part of the sorted domain and similarity values for "iniLdraw" function. 74 

7.2 Part of the execution profile of the first scenario in Figure 7.4. . . . . 75 

Vlll 



List of Figures 

4.1 Proposed multi-view process to extract three views of a software system. 19 

5.1 The proposed design construction framework from scenarios. . . . . . 23 

5.2 Scenario generation template form for a fast-food restaurant system. . 26 

5.3 Scenario Domain Model to parse a scenario and populate an objectbase. 27 

5.4 A part of the objectbase created from the scenarios #1 to #12. 34 

5.5 Generated Entity-Relationship diagram for the order taking component. 37 

5.6 Generated class diagram for order taking component. . . 38 

5. 7 Generated function diagram for order taking component. 40 

5.8 Generated network diagram for fast-food restaurant system. 41 

5.9 Generated activity diagram for order taking component representing. 42 

5.10 Generated class diagram of the whole restaurant system. 

6.1 Enhanced Alborz architecture recovery environment. 

42 

45 

6.2 An example of a small source graph with 9 nodes and 16 edges. 51 

6.3 An example of entity similarity association calculation with w = 0.5. . 53 

6.4 XML schema of the constraint query. . . . . . . . . . . . 67 

6.5 An example of an XML representing aa constraint query. 68 

7.1 Generated scenarios for drawing part of Xfig. . . . . . . . . . . . . . . 71 

IX 



7.2 Generated ER diagram for drawing part of Xfig. . . . . . . . . . . 72 

7.3 Generated activity diagram for drawing and editing parts of Xfig. 72 

7.4 Generated scenarios for a particular set of features of Xfig. . 75 

7.5 a. Recovered components based on static information only. b. Re-

covered components based on static information only, and dynamic 

information being demonstrated. c. Recovered components based on 

both static and dynamic information. . . . . . . . . . . . . . . . . . . 77 

X 



Chapter 1 

Introduction 

Software systems and their platforms become costly to maintain after being used for 

10-15 years. There exist several reasons for this incident, such as: lack of updated 

documentation; error-prone operation caused by patches and feature improvements; 

cease of platform support from the provider; and adopting new technologies (plug

ins or inter-operability techniques). In this context, the target system would turn 

into a legacy system where in most cases the organizations are forced to perform a 

maintenance (reverse / re-engineering) operation to keep their software operational 

rather than replacing the system with a new one. This is mainly because the re

placement of the legacy systems is very expensive in terms of required budget and 

time. Having a large number of users that have operated the company's business for 

several years with a single system, makes the replacement of the system infeasible in 

some cases. In this context, software maintenance should be performed to make the 

legacy system meet their changing business requirements. In this regard, having a 

good understanding of the system is crucial in maintaining the software assets. 

1 



CHAPTER 1. INTRODUCTION 2 

1.1 Software architecture recovery 

Software architecture is a valuable type of information about the system that increases 

its understandability. There is no single definition for software architecture. One of 

the major definitions which is proposed by Software Engineering Institute (SEI) is as 

follows: 

"Software architecture describes the structure of the components of a program/system, 

their interrelationships, and principles and guidelines governing their design and evo

lution over time. "[4] 

Consequently, software architecture recovery is considered to be a major activity 

in software reverse engineering for the sake of software maintenance. 

Software architecture recovery refers to extracting the description of system com

ponents and their relationships from a low-level software representation such as source 

code that can be used for a software maintenance activity [10]. 

In this regard, different architecture recovery t echniques have been proposed that 

can be categorized as follows: 

• Clustering techniques that try to group together system entities into clusters 

based on their similarities. 

• Concept lattice analysis techniques that consider a relation between the objects 

in the system and their attribute values and visualize the structure of their 

relations in a lattice. 

• Pattern based techniques that define a high-level architecture (pattern) for the 

system and try to find the defined pattern in the source code. 

• System visualization and analysis t echniques that allow one to define and visu

alize the hierarchy of the subsystems in a software system based on the depen-



CHAPTER 1. INTRODUCTION 3 

dencies between system entities. 

1.2 Problem statement 

There are a large number of approaches to software architecture recovery that focus 

on a single view of the system. However, a single view approach is restricted to the 

limitations of that view. For example, a static analysis approach lacks the run-time in

formation about the system. Static analysis approaches consider only the "existence" 

of data/ controls dependencies among software components and stay silent about dy

namic information such as frequency of such dependencies being used in the runtime 

execution of the system. The interactive and dynamic nature of component-based 

applications, and the importance of minimizing inter-component traffic necessitate 

the dynamic analysis of dependencies between software entities and leveraging the 

result of this analysis in combination with static analysis information to enhance the 

component clustering practice. In general, different views of a software system are 

the result of applying separation of concerns on a software engineering activity such 

as software development or reverse engineering. There are a number of techniques 

proposed in the area of forward engineering that approach software development from 

different software views. Zachman's framework [57] and Krutchen 's 4+1 views [27] 

are two examples of such approaches. However, in the reverse engineering context, 

recovering the software views, such as design, behavior, and structure views, of a 

legacy system is much more challenging than forward engineering because of the poor 

documentation and un-tracked changes made to the system. The structure view, 

which is recovered based on static analysis techniques, is the view most commonly 

recovered in the literature and large number of techniques and tools have been pro

posed to address this issue [26, 29, 20, 49 , 45, 55]. Dynamic analysis techniques, as 



CHAPTER 1. INTRODUCTION 4 

another category of techniques, have been widely used to recover the behavior view 

of the system which is based on the run-time properties of a software system. A 

variety of techniques and tools are also proposed for dynamic analysis approaches 

[14, 15, 8, 32, 53, 17]. Recently, the reverse engineering research community has paid 

more attention to amalgamation of static and dynamic aspects of software systems 

with the goal of taking advantage of dynamic analysis (e.g., profiling, or dynamic 

pattern recovery) to enhance the results of the static analysis [51, 6, 36, 35]. Never

theless, static analysis at low or high levels of abstraction (e.g., source code analysis, 

or architectural recovery) is still considered as the main focus of maintenance activ

ities. One of the main reasons for this is the completeness of the static information 

about the system with regard to any objective for analysis, as opposed to that of dy

namic analysis which is based on execution of a limited number of task scenarios. On 

the other hand, dynamic analysis provides a link between the software functionalities 

(i.e., software features) that are represented by task scenarios and the source code 

elements that implement those functionalities. This valuable information usually can 

not be obtained easily in a static analysis task. 

In addition to the aforementioned two views, the design view, as the third view, 

provides a high-level representation of software artifacts and their dependencies which 

allows for conceptual understanding of the software system. The design view, when 

integrated with structure and behavior views, provides a link between static and 

dynamic analyses and the high-level design representations of the system which are 

easily understandable by humans. 

Based on the above discussion, this thesis defines the multi-view software archi

tecture recovery problem as: 

devising the process, r·equired techniques, and supporting tool to tackle the limita

tion of the information extracted from single views of a software system and relating 



CHAPTER 1. INTRODUCTION 5 

the views through user interaction with the system. 

1.3 Proposed approach 

In this thesis, we propose a multi-view software architecture recovery approach that 

generates three views of a system: design, behavior, and structure. In this approach, 

a systematic generation of the task scenarios derived from the existing evidences 

followed by a schema-based scenario-to-design transformation process generates the 

design view of the software system. Furthermore, the analysis of the run-time execu

tion profiles that are the result of executing a set of specific scenarios on the system 

lead to behavior view recovery. Finally, the analysis of the data/ control dependen

cies can yield the structure view of the software system. This multiple view analysis 

provides deep insight into the design properties of the implemented software system, 

and serves as a means to enhance the system's architectural design. 

In this work, the multi-view framework is supported by the Alborz toolkit [38] 

built within the Eclipse plug-in environment. 

1.4 Contributions of this research 

The major contributions of this research are: i) proposing a multi-view framework 

that recovers three views of software system; deign, behavior, and structure, and 

combines these views with guidance of task scenarios; ii) proposing a novel scenario 

domain model to parse the text of scenarios and decompose them into design diagram 

ingredients; iii) enhancing the Alborz [37] static architecture recovery tool by combin

ing static and dynamic information of the system in order to recover less dynamically 

interactive components; and iv) providing a case study that demonstrates the results 



CHAPTER 1. INTRODUCTION 6 

of applying the proposed multi-view technique on a medium-sized software system, 

the Xfig drawing tool [3]. 

1. 5 Organization of the thesis 

The rest of this thesis is organized as follows: 

Chapter 2 provides a review on the related work for our approaches for design, 

behavior, and structure recovery along with related multi-view reverse engineering 

approaches. 

Chapter 3 presents formal representations of our multi-view technique. 

In Chapter 4 the proposed multi-view frame work is introduced. 

Chapter 5 presents our scenario-based design recovery approach. 

Our combined static and dynamic architecture recovery technique is presented in 

Chapter 6. 

Chapter 7 provides a case study applying our multi-view technique to the Xfig 

drawing tool. 

Finally, Chapter 8 presents some concluding remarks. 



Chapter 2 

Related work 

The proposed research in this thesis is related to the approaches in three views of the 

software architecture that are discussed separately in the remainder of this chapter. 

2.1 Structure view recovery 

The literature for structure recovery in this thesis refers to approaches for pattern

based software architecture recovery that try to recover architectural patterns in the 

software system and use an instance of the Constraint Satisfaction Problem (CSP) to 

evaluate the recovered solutions. A solution to the CSP is an assignment of values to 

varibales of the problem such that constraints are satisfied. One of such approaches 

is proposed by Woods [54], where he uses a search algorithm to find the solution. 

Similarly, in our approach we define architectural patterns to be recovered. However, 

we model the recovery process as an instance of the Valued Constraint Satisfaction 

Problem (VCSP), which is an extension to the CSP that allows for violation of con

straints with some cost. Similarly, in our approach we use a search algorithm to find 

a solution to the problem, which is an assignment with minimum cost. 

7 



CHAPTER 2. RELATED WORK 8 

In [43] an approach to software architecture recovery is proposed that models the 

recovery as an instance of VCSP where again each constraint violation has a cost. 

Similar to our approach in this thesis, the cost of a value assignment is calculated 

based on cost of edges between the entities of the source code which has an inverse 

relation with the similarity of the entities. However, in contrast to the approach in 

[43], we define architectural patterns that guide the structure recovery. 

Kazman and Bruth [25] propose an interactive architecture pattern recognition 

technique to recover user-defined patterns of system structure. They define the pat

tern as a graph of system elements and use the CSP to match the defined pattern 

with the system entities. The patterns in their approach describe the interaction be

tween individual elements of the system, as opposed to our approach that the pattern 

defines an overall set of constraint for the modelled component . 

2. 2 Scenario-based design view recovery 

The proposed scenario-based design generation approach relates to the literature for 

capturing and using task scenarios for design related activities. Hufnagel et al. [52] 

present a scenario-driven object oriented requirements analysis for documenting the 

design of a system. However, in contrast to our approach they do not define a sce

nario schema and their approach is methodology dependent. In [33] a method for 

modular representation of the scenarios is proposed that supports the reusability of 

the scenarios in different design contexts. This approach is similar to ours in the 

sense that it attempts to define a structure for the scenarios. In [23, 24] Kazman 

et al. define a software architecture analysis method (SAAM) where the important 

task scenarios in an application domain are mapped onto the architectural represen

tation of competitive software systems in that domain to evaluate and compare their 



CHAPTER 2. RELATED WORK 9 

architectural design qualifications. However, in SAAM the scenario to architecture 

mapping is subjective and the scenarios are not structured, whereas we define struc

tured scenarios that assist more accurate mapping of scenarios to design information. 

In [12] Potts defines a schema for semantic models of scenarios to help with require

ments refinement of a software system. In contrast, the scope of scenario schema in 

our approach is extended to cover the design aspects of a system. 

2. 3 Behavior view recovery 

The proposed approach for behavior recovery in this thesis relates to the approaches 

that use dynamic analysis to capture and analyze execution traces of a software system 

and extract some behavioral properties of the system. Eisenbarth et al. [14, 15] 

use concept lattice analysis on the execution traces of a system resulting from a 

set of scenarios, to locate computational units that implement certain features of the 

software system. Similarly, in our approach we use the relation between scenarios and 

computational units (i.e., functions) that are invoked during the scenario execution. 

Wilde et al. [53] propose a set difference approach to execution traces for locating 

software features where the set of functions in the related scenario executions are 

differentiated in order to localize the implementation of a specific feature. In our 

approach, we also use the notion of feature-specific scenarios, however, we extract 

frequencies of function-call execution as evidences of the feature implementation and 

structural modularity evaluation. 

In a different context, El-Ramly et al. [17] applied a sequential pattern mining 

technique to find interaction patterns between graphical user interface components. 

Also, in the work of Zaidman [58] a web-mining technique is applied on program 

dynamic call graphs that supports the program comprehension. Similar to our ap-



CHAPTER 2. RELATED WORK 10 

proach, the above approaches analyze the execution traces to extract a summarized 

behavior information; however, in our approach we aim for extracting frequencies of 

calls rather than mining patterns of execution. 

2.4 Multi-view recovery 

The proposed research in this thesis is also related to the approaches in software 

architecture view recovery that extract more than one views of the software system. 

Vasconcelos et al. [51] present a dynamic analysis-based reverse engineering ap

proach that extracts the process and scenario views (from 4+1 views) of Java appli

cations in the form of UML sequence diagram and use-case scenarios. The extracted 

views in their approach complement the static view through integration with a tool 

set already integrated into a reuse based software development environment, named 

Odyssey [6]. Similar to our approach, they use dynamic analysis to recover the be

havior view of the system along with complementary views. 

Riva et al. [36] propose a technique for architecture recovery using combined static 

and dynamic information. Their technique is based on choosing architectural con

cepts and applying abstraction techniques on source code to manipulate the concepts 

at the architectural level. Their technique allows for the creation of domain-related 

architectural views for the architecture description of the system. Similarly in our ap

proach, we use scenarios with design-derived features to guide the multi-view recovery 

process. In a similar context, Deursen et al. [50] propose a view-based software recon

struction framework that provides a common framework for reporting reconstruction 

experiences and comparing reconstruction approaches. 

Richner et al. [35] propose an approach to extract static and dynamic views from 

Java programs. The static view is generated from class files and visualized using the 



CHAPTER 2. RELATED WORK 11 

Rigi reverse engineering environment [2]. The dynamic view which is represented as 

scenario diagrams, are attached to the static Rigi graph. The overlapping information 

between two views forms a connection for information exchange between the views. 

Similarly, in our approach we use common information, such as scenarios, to relate 

the recovery of different views. 



Chapter 3 

Formal representations of different 

• views 

The proposed multi-view framework in this research extracts three views, namely 

design, behavior, and structure, of a software system by applying three different 

functions to the system. Other than extracting three views in our framework, these 

views are integrated through common information. Scenarios are the core means 

for generating the design and behavior views and integrating these two views. On 

the other hand, the frequencies that are found for source code function-calls in the 

behavior view recovery will be embedded in the source graph of the structure view 

and used in the pattern matching process. In this chapter, we define the overall 

process of the proposed multi-view framework by formal notations. 

If we name the group of system and its available documents , such as: executable 

code, source code, and requirements, as Sys then we can define three functions to 

recover the three views as follows: 

Design view = 1rdesignSys, 

Behavior view = 1rbehaviarSys, and 

12 



CHAPTER 3. FORMAL REPRESENTATIONS OF DIFFERENT VIEWS 13 

Structure view = 1f8 tructureSys 

where 1fx denotes a specific function for view x. 

In the rest of this chapter, we explain each of the functions mentioned above. 

3.1 Design view 

Scenarios are the major building blocks of the design view. In this research we use 

English text to present scenarios. In Chapter 5 we define a syntax for the structure 

of scenarios to control the structure of the English text. We say that each scenario 

that conforms with this structure has type Scenario. 

In t his research we generate three types of design diagrams that can be categorized 

into data, function, and network diagrams. A set of scenarios that are defined for the 

system determine the ingredients of the design diagrams. Data diagrams focus on 

the data items that are manipulated in fulfilling the set of scenarios along with the 

relationships between data items 1
. Function diagrams represent the sequence of 

actions that should be taken to perform the set of scenarios 2
. And finally, network 

diagrams depict the physical locations of the system that the scenarios are performed 

in 3 . 

Regarding the above discussion, the 1r design function that recovers the design view 

is defined below. Here we let IP' denote the power set operator. 

1f designSys : [IP'( Scenario) -----7 Data-diagram x Function-diagram x Network-diagram] 

Data-diagram : [IP' Data] x [IP' Data-dependency] x [IP'Constraint] 

Function-diagTam : [IP' Action] x [IP' Action-dependency] x [IP'ConstTa'int] 

1We use conventional diagrams, such as Entity-Relationship and class diagrams, as our data 
diagrams. 

2We use diagrams such as function diagram and activity diagram for this purpose. 
3We use a node and interconnection representation to illustrate network diagrams. 



CHAPTER 3. FORMAL REPRESENTATIONS OF DIFFERENT VIEWS 14 

Network-diagram : [IF' Action] x [IF' Action-dependency] x [IP'Constraint] 

where Data, Action, Data-dependency, Action-dependency, and Constraint types 

are classes of the scenario domain model that is discussed in detail in Chapter 5. 

IP'Scenario is the type of a set of structured scenarios A that can be generated for a 

system S of type S _type. 

3. 2 Behavior view 

Behavior view is the result of projecting out a number of runtime attributes of a 

software system. To run and study a system in a reasonable manner, a set of scenarios 

should be executed on the system. Since in this research we are interested in exploring 

a system (or a part of it) from different views, to unify the scope of our observations in 

design and behavior views we take the same scenario set A that was used in the design 

view generation as the reference to generate a new set of scenarios A I for behavior 

view recovery. The scenarios in this new set cover a set of features F, called the set 

of frequent features. More detailed definitions of features and frequent features are 

presented in Chapter 6. 

F = {!1, .. , fn} set of frequent features 

AI = {AI1 , .. , Aim} set of scenarios that cover features in F 

After executing the scenarios in A I on the instrumented (profiling-enabled) system, 

the generated execution profiles yield all the executed functions and function-calls for 

each scenario along with the number of their occurrence (count). A function-call is 

defined as an edge from a caller function to a called function. Therefore we define a 

set 0 and a set E for each of the executed scenarios Ax in AI as follows: 

Ox = {(o1, count1), .. , (on, countn)} set of executed functions along with their num

ber of executions 



CHAPTER 3. FORMAL REPRESENTATIONS OF DIFFERENT VIEWS 15 

Ex= {(e1, count1 ), .. , (em, countm)} set of invoked function-calls along with their 

number of invocations 

After obtaining the 0 and E sets for all the scenarios in At, a frequency fr eq can 

be derived for each function oi and function-call ej in the system based on the set of 

executed scenarios At as follows: 

freqo; = L counti where (oi, counti) E Ox 
A, EAt 

freqej = L countj where (ej , countJ) E Ex 
AxE At 

Therefore, if we show the frequencies using natural numbers (N), the behavior can 

be represented as follows: 

1fbehaviorSys : [IP'Scenario--> [Function--> N] x [Function-call --> N]] 

where Function and Function-call are types of a group of entities and relation-

ships in the source code respectively, which will be defined in Chapter 6. Simply, a 

Function-call can be considered as an edge between two Functions. Consequently, 

we can define two functions funcFreq and callFreq as representatives of behavior 

view as follows: 

funcFreq : IP'Scenario x Function--> integer 

callFreq : IP'Scenario x Function-call --> integer 

These functions return the frequencies of invocation of a specific function or 

function-call , given a set of scenarios as input . 

3 .3 Structure view 

In the structure view, to facilitate further analysis, the source code of the system 

is transformed into an attributed graph notation cs, called the source graph that is 

briefly defined as follows: 



CHAPTER 3. FORMAL REPRESENTATIONS OF DIFFERENT VIEWS 

cs = (Ns ' Rs), 

N 8 
: IP(Entity) , and 

R8 
: JP( Ent'ity X Entity) 

16 

where R8 ~ N 8 x N 8 and Entity can be of one of the types of Function, Var-iable, 

or Data-type (that refer to type of functions, variables, and data types in the source 

code respectively). 

As mentioned above, the nodes ni E N 8 represent files, functions, data types, 

and variables and the edges eJ E Rs represent relationships between nodes, such 

as function-call, vaTiable-use and so on. These nodes and edges have a number of 

attributes, such as name, id, and fr-equency. The list of attribute-value tuples can be 

accessed as a record using function Ill. 

In the presented approach, a conceptual architecture (architectural pattern) is 

specified by the user in the form of a query consisting of a set of conceptual compo

nents, and a set of corresponding main-seeds and constraints using a standard markup 

language, such as XML. After the pattern query is provided for the tool, the pattern 

matching algorithms tries to extract a concrete architecture from the system structure 

(source graph) that conforms with the given conceptual architecture and correspond

ing constraints. The recovered concrete architecture, after the pattern matching, is 

represented by a set of modules and imparl, exporl dependencies. 

Every module (component) is obtained from grouping a number of entities that 

have a high similar-ity with the set of main seeds specified for that module. More 

formally, we define a module M with a set of main seeds S as: 

S : JP Entity, and 

M = {(NM , RM) I NM ~ N 8 1\ RM ~ R8 1\ RM = R8 1(NM X NM) 1\ Vni E NM 

ni has a high similar-ity with main seed(s) S of M} 

where "I" denotes restriction. 



CHAPTER 3. FORMAL REPRESENTATIONS OF DIFFERENT VIEWS 17 

Every import relation represents a module using an entity that is out of its cor

responding entity set (NM), and every export relation represents a module providing 

an entity of an importer module. Hence the type of these two relations are as follows: 

import : import_type = M x Entity, and 

export : export_type = M x Entity 

The syntax of XML pattern queries is enforced by an XML Schema Definition 

(XSD) presented in Chapter 6. We call every pattern query that conforms with this 

schema of type Query. 

With above discussion, the function for structure view recovery, 'lrstructure, can be 

defined as follows: 

'lrstructureSys: [Gs X !P'Query--+ IP'M X IP'import_type X IP'export_type] 

As it was mentioned earlier, design and behavior views are integrated by sharing a 

common set of scenarios as their reference. On the other hand, behavior and structure 

views are connected to each other through the frequency attribute of the functions 

and function-calls in the source graph. Assuming that the behavior recovery is based 

on a set of scenarios named At, the integration of behavior and structure views can 

be formulated as follows: 

\f function : Function E N 8 1\ \f funcCall : Function-call E R 8 
: 

iJ!(Junction).frequency = funcFreq(At , function) 1\ 

iJ!(JuncCall) .fr equency = callFreq(At, funcCall) 

where funcFreq and callFreq functions were defined in Section 3.2. 



Chapter 4 

Proposed multi-view framework 

The proposed framework for multi-view architecture recovery is illustrated in Figure 

4.1. This framework presents the overall mechanism to extract three views of a 

software system. As shown in this figure, the whole mechanism can be divided into 

three major processes; design view recovery, behavior view recovery, and structure 

view recovery. In this chapter each of these processes is introduced and discussed 

briefly. The detailed discussion of each view is provided in separate chapters. 

4.1 D esign view recovery 

In the design recovery process, a set of task scenarios are generated using the evidences 

derived by the user's knowledge of the application domain, system-user interaction, 

available high-level system documents, and user manuals. The scenarios are parsed 

to generate a design view of the software system that is represented by two type of 

diagrams, entity-relationship diagram (E-R) and activity diagram that represent the 

implemented functionality and the major system data that are manipulated by the 

activities. Design view recovery is discussed in detail in Chapter 5. 

18 



CHAPTER 4. PROPOSED MULT I - VIEW FRAMEWORK 

-Domain 
-Document 
-System 

Sc enarios Design 
view 
recovery 

, , 
Data/ Activity 

diagrams 

Minimal 
Behavior Function call Structure 
view .. view 

~ 

Scenarios recovery Frequencies recovery 

~ 
,. 

~ 
,. 

Function/edge to 
frequency assignments 

Modules/dependencies 

19 

Figure 4.1: Proposed multi-view process to extract three views of a software system. 

4. 2 Behavior view recovery 

In the behavior view recovery process, the user investigates the scenarios in the design 

view to recognize the features covered in them and then selects a group of frequently 

used features. This leads to generation of a new set of scenarios that cover the frequent 

features. The execution of this new set of scenarios on the instrumented 1 software 

system generates execution profiles. The profiles are analyzed and as a result the 

source code functions and function-calls that were invoked in the execution of the 

scenarios along with their frequency of call is obtained. These frequencies are then 

embedded in the attributes of the source code artifacts to be used in the structure 

recovery stage. 

1 Instrumentation refers to the process of inserting particular pieces of code into the software 
system (source code or binary image) to generate a profile of the software execution. 



CHAPTER 4. PROPOSED MULTI-VIEW FRAMEWORK 20 

4 .3 Structure view recovery 

In the structure view recovery, a conceptual architecture is defined as a pattern and 

then the tool tries to find the specified pattern in the source code using a pattern 

matching technique. The whole process is modelled as a Valued Constraint Satisfac

tion Problem (VCSP). The behavior recovery and the structure recovery processes 

are discussed in detail in Chapter 6. 



Chapter 5 

Design view recovery 

5. 1 Introduction 

Scenarios-based requirement analysis has attracted significant attention within the 

requirement engineering field [46] . Scenarios are represented in a variety of formal 

and informal methods ranging from simple text and graphical media to relational 

algebra [13]. In this paper, we define a scenario as "a structured narrative text 

describing a system's requirements in terms of system-environment interactions at 

business rule level" . Scenarios are considered as easy-to-use and effective means in 

different phases of software engineering process, such as: requirement elicitation and 

analysis, design representation, code development , testing, and maintenance [31, 22, 

30, 47] . Two major issues in scenario-based requirement engineering, completeness 

and consistency checking of a set of scenarios, are considered to be challenging tasks. 

In this context , formalizing the representation of scenarios is so far considered as a 

solution to this problem [60, 13]. In addition to formal representation of scenarios, 

there is a wide range of research in requirement engineering domain investigating: 

the enhancement of scenario generation by using scenario schemas or pre-defined 

21 



CHAPTER 5. DESIGN VIEW RECOVERY 22 

structures [12, 59]; scenario analysis and knowledge extraction [11]; and design-related 

document generation [48, 52]. However, considering the complexity involved in the 

aforementioned approaches, it is desirable to devise a technique that allows one to 

enhance the structure of the text-based scenarios in order to assist design document 

generation. 

In this chapter, we introduce a novel technique to transform the information from 

scenarios into well-formed design diagrams. In this technique scenarios are generated 

using domain knowledge and in conformance with a regular expression syntax that 

imposes a structure to the scenario representation. Further, the generated structured 

scenarios are parsed using a novel scenario domain model to populate an object base of 

design related entities and dependencies. The proposed approach allows one to reuse 

the domain knowledge and business rules within the scenarios thorough a scenario 

template knowledge base. The populated objectbase serves both as a data source 

during the design diagram construction and as a valuable electronic asset of design 

knowledge to be analyzed, augmented, and used during the maintenance phase of the 

software system. 

At the end of this chapter, as an example application of our design view recovery 

technique, a case study of a fast-food restaurant system is presented. 

5.2 Proposed framework for design view recovery 

In this section, we discuss the steps for transformation of the knowledge embodied in 

the text of scenarios into design related information in three types of design diagrams 

(data, function, and network) using a framework that is illustrated in Figure 5.1. In 

a nutshell , the proposed approach generates a set of structured scenarios and uses 

a domain model to parse these scenarios into ingredients of the view-based design 



CHAPTER 5. DESIGN VIEW RECOVERY 

- Business rules 
Generate 
Scenario 

- Application domain .. 

Objectbase: 

Set of 
scenarios 

Mapo 
Scena 

nto 
rio 

1r Doma in model 

Actor, Information, Action 

Incremental ,, Design 
Construction 

ER Activity Scenario 
Diagram Chart Templates 

Figure 5.1: The proposed design construction framework from scenarios. 

representations. The proposed framework consists of three stages, as follows. 

23 

Stage 1 (scenario generation): This stage consists of structured scenario genera

tion and syntax conformance steps. To facilitate scenario generation and control the 

format and vocabulary of suggested scenarios, a pre-defined set of domain-specific 

templates can be used. Consequently, at the end of this stage, a set of qualified sce

narios that cover a part or the whole of the requirements of the system is achieved. 

This stage will be discussed in Section 5.3. 

Stage 2 (scenario decomposition): In this stage the qualified scenarios are mapped 

onto the proposed scenario domain model in Figure 5.3. This domain model is a means 

to parse the structured scenarios and generate instances of classes Goal, Actor, Work-

ing information, and Action, and their corresponding dependencies that are defined 

in the scenario domain model. The generated instances incrementally populate an 



CHAPTER 5. DESIGN VIEW RECOVERY 24 

objectbase of design information that is used to generate design-related diagrammatic 

representations. This stage is discussed in Section 5.4. 

Stage 3 (design diagram generation): This stage deals with generating design 

diagrams from the information stored in the objectbase resulted from Stage 2. To 

achieve this , we follow a set of view-specific guidelines to incrementally construct dif

ferent design diagrams, such as: entity-relationship (ER) and class diagrams for data; 

activity and function diagrams for function; and node and interconnection diagram 

for network. The incrementally constructed design diagrams allow for detecting po

tential inconsistencies between the pieces of design documents which can be tracked 

back to the requirements and the corresponding scenarios. This stage is discussed in 

Section 5.5. 

5.3 Scenario generation (stage 1) 

In this research, we adopt a structured text-based representation for scenarios that 

conform with a scenario structure syntax. These scenarios will be further used to 

populate a categorical knowledge-base (representing the knowledge domain) to reuse 

the captured business rules in a future similar case. 

Scenario structure 

We define a structure for the generated scenarios that is imposed by a regular expres

sion syntax as follows: 

Scenario : {Actor·+ { Constraint} 0··N}l..M + {Action+ { Constraint}0··N }l..M + 

{Working information+ { Constraint}0··N}l..M 

where "+" and "O .. N" represent composition and range, respectively. 

The semantics are defined by the application domain 's business rules. In this form, 



CHAPTER 5. DESIGN VIEW RECOVERY 25 

each scenario is composed of instances of the classes in a scenario domain model that 

define the types of entities and relationships in the corresponding application domain. 

In this scenario syntax the entities Actor, Action, and Workinglnformation are 

the entity-types and action-types that will be defined in Section 5.4. Each scenario 

consists of a sequence of one or more Actors, Actions, and Working Information, each 

of which can have zero or more Constraints. In this form we can generate syntactically 

correct scenarios which will be further decomposed to populate the objectbase in 

Section 5.4 and generate design diagrams in Section 5.5. 

Task scenario templates 

In order to facilitate reuse of the captured domain knowledge and business rules, the 

proposed framework populates a knowledge-base of scenario templates which are or

ganized to store the structured scenarios for a specific application domain. The idea 

is to allow a software engineer to assemble task scenarios for the subject software 

system from relevant application domains. Figure 5.2 illustrates a sample scenario 

template form for a fast-food restaurant system. This form consists of fields such 

as: Actor , Information, and Action, where each field possesses a vocabulary of cor

responding business terms. The generated scenario at the bottom of the form is a 

proper composition of the t erms selected from these fields. 

5.4 Scenario decomposition (stage 2) 

The class diagram representation of the proposed scenario domain model is presented 

in Figure 5.3. This domain model is intended to cover the potential information types 

(classes) in scenarios from different application areas. For example, we applied this 

model on three systems, including a software analysis tool "Alborz toolkit" [37], a 



CHAPTER 5. DESIGN VIEW RECOVERY 26 

Figure 5.2: Scenario generation template form for a fast-food restaurant system. 

fast-food restaurant system, and an Automatic Banking Machine (ABM) system. The 

texts of the structured scenarios are parsed using this domain model and the resulting 

instances of classes in the domain model are stored in the objectbase. The schema of 

the objectbase has an entry for each of the classes in the domain model as well as an 

index entry as its primary key. A scenario (as a record) in the populated objectbase 

contains: instances of the different classes resulting from parsing the scenario, and; a 

unique index representing the scenario. 

As shown is Figure 5.3, in our model every instance of the Scenario class is com

posed of one or more instances of Actor, Working information, and Action classes, 

and zero or more instances of Dependency class. Moreover, every Scenario instance 

is associated with one or more instances of Goal class. In the rest of this section the 

classes of the proposed scenario domain model are introduced along with examples 

from a restaurant system. 

Goal: A definition of goal is presented in [12]. In this paper we define goal as follows: 

A goal can be functional, that is, it corresponds to performing a task; or a goal 

can be objective, that is, it refers to achievement of a quality for the system. 



CHAPTER 5. DESIGN VIEW RECOVERY 

0.* 

Human I I System 

Is-part-of 

Input 
action 

27 

Is-parallel-with 

Figure 5.3: Scenario Domain Model to parse a scenario and populate an objectbase. 

In general, goals represent the reasons and the desired effects for which the 

subject system has been produced and used. Examples of goals in a fast-food 

restaurant system are as follows: handling payment (functional), preparing food 

(functional), and shortening order preparation time (objective). 

Actor: An actor is a "human" or a "system" or a "component of a system" that 

interacts with other actors during the execution of the scenarios. Examples 

of actors in a restaurant system include: order taker (human), raw material 

supplier (system), or food assembly station (component of a system). 



CHAPTER 5. DESIGN VIEW RECOVERY 28 

Action: An action is an activity that is performed by an actor during the execution 

of the scenarios. Generally, an action manipulates an instance of Working 

information - which will be explained shortly. Actions can be categorized into 

three different types, Input, Internal, and Output, based on the scope of their 

working information manipulation. Examples include: taking order (input), 

computing the price of an order (internal), and delivering food (output). 

Working information: Working information refers to the information that is rna-

nipulated (exchanged, transported, communicated, operated on, stored in the 

system, etc.) by the scenario's actor during the execution of the scenario. Ex-

amples are: customer's order, raw material, menu item, and item price. 

Dependency: A dependency refers to a binary relation between two instances of 

the classes Actor, Action, and Working information. During parsing of a see-

nario, dependencies are established both between the newly generated instances 

of domain model classes (corresponding to the current scenario), and also be-

tween these newly generated instances and the previously stored instances in 

the objectbase. 

In our domain model, a dependency can be of type Data dependency or Action 

dependency. Data dependency can be one of the following subtypes: Is, e.g., 

"order taker Is an employee"; Is-associated-with, e.g., "every menu item Is-

associated-with a recipe", or "every kitchen-table Is-associated-with many order-

items" ; Has, e.g., "every menu item Has a name"; Belong-to, that is the inverse1 

of Has, e.g., "an ID Belongs-to an employee"; Is-part-of, e.g., "a kitchen Is-part-

of a restaurant". The multiplicity of the participants in a dependency should 

1 For some dependencies, their inverse dependencies are also included in the domain model to 
facilitate back tracing of dependencies in generating design from objectbase. 



CHAPTER 5. D ESIGN VIEW RECOVERY 29 

be mentioned in the dependency instance. 

Action dependency can be one of the following subtypes: Pr-ecede, e.g., "order 

payment Pr-ecedes order delivery"; Follow, that is the inverse of Pr-ecede, e.g., 

"order preparation Follows order taking". Is-pamllel-with, e.g., "sending order 

to assembly station Is-pamllel-with sending order to preparation station". 

The proposed scenario domain model in Figure 5.3 includes a Constmint class with 

association relations with Data and Action classes. This class contains information 

about the possible constraints that may be associated with instances of each subclass 

of Data, Action, and Dependency. Examples of these constraints include: capacity, 

value mnge, or-dinal, timing, privilege, etc. As an example, a restaurant system may 

have "younger- than 1 0' as a constmint associated with an actor- of some scenario, in 

order to perform a specific action such as "offering kids deal". 

5.5 Design diagram generation(stage 3) 

In this section, we discuss the guidelines for generating the software system's design 

diagrams corresponding to data, function, and network aspects of the system using 

the information stored in the objectbase. In order to illustrate our approach we use 

some common design diagrams. 

• D ata diagram. Entity-relationship (ER) and class diagrams are appropriate 

models to represent the data aspect of a system. The following guidelines specify 

the generation of ER and class diagrams from the information in the object base. 

i) Instances of Actor- and Wor-king infor-mation are candidates for entities (in 

ER diagram) or classes (in class diagram) and their corresponding attributes. 



CHAPTER 5. DESIGN VIEW RECOVERY 30 

ii) Instances of Is class are used to find generalization and inheritance relation

ships in class diagrams, i.e., A Is B, means A is subclass of B, orB is superclass 

of A; where they imply relationships in ER diagrams. 

iii) Instances of Is-associated-with class are used to find association relationships. 

iv) Instances of Has and Belong-to classes are used to find the attributes of the 

entities or classes, i.e. , A Has B (or B Belongs-to A) means B is an attribute of 

entity (class) A. 

v) Instances of Is-part-of class imply decomposition relationships in class dia

grams, where they imply relationships in ER diagrams. 

• Function diagram. The function of a system is well represented by function 

diagram or activity diagram. The following guidelines specify the generation of 

these diagrams. 

i) Functions (in function diagram) and activities (in activity diagram) are in

stances of the subclasses of Action class in the scenario domain model. 

ii) The time-order of actions (functions or activities) are determined by instances 

of the Follow and Precede classes. 

iii) The participants of a Is-parallel-with dependency are performed concur

rently. 

iv) The conditions under which an action can be performed is determined by 

instances of the Constraint class in the related scenario. 

A detailed procedure for constructing the function view is presented using a 

case study in Section 5.6.3. 

• Network diagram. The network of a system is usually modelled by diagrams 

consisting of nodes and interconnections, where a node represents a system, a 



CHAPTER 5. D ESIGN VIEW RECOVERY 31 

component of the system, or a physical unit; and an interconnection represents 

a communication link between two nodes [56] . The following guidelines generate 

the network diagram from the objectbase. 

i) Instances of subclasses of Data in the domain model (typically the class Actor) 

that are in the form of system units are candidates for the network nodes. 

ii) Association relations between the nodes that imply a business connection 

represent the network interconnections between the nodes. 

The realization of the scenario to design transformation will be presented as a 

case study in the next section. 

5.6 Case study: Fast-food restaurant system 

In this section, we follow the defined steps within the proposed framework in order 

to generate, validate, and transform a set of scenarios into software design diagrams. 

To avoid the complexity of design construction for the whole system at once, we 

identify different groups of high-level system functionality as candidate components 

to be designed. In this context, we apply an incremental transformation process by 

constructing the design diagrams for individual system components. In the case of a 

typical restaurant system, the identified components include: order taking, assembly, 

preparation, inventory, and management. We focus on the order taking component 

of the restaurant system and in the rest of this section we discuss the three stages of 

the scenario to design transformation framework discussed in Section 5.2. 



CHAPTER 5. DESIGN VIEW RECOVERY 32 

5.6.1 Stage 1: Scenario generation 

We assume that the following scenario has been defined during the requirement elic-

itation phase: 

"Compute and report the total amount due for the order and sending the completed 

order for delivery to the assembly station. "2 

At this step, we apply the syntactical conformance test on the scenario and it 

turns out that the scenario can instantiate the subclasses of Goal, Action and Wor-k-

ing information classes in the domain model, however, the scenario lacks information 

about the Actor- class. Since the scenario failed the test we adjust the scenario and 

the new version would be: 

"Or-der- taking station (OT) computes and r-eports the total amount due for cus-

tomer- or-der-s and sends the paid or-ders to the assembly station. " 

However, this scenario corresponds to more than one business-rule action. It 

contains both computation of the amount due of an or-der- and sending the order- to 

the assembly station. Therefore, we break the above scenario into two finer scenarios 

each referring to a single business rule, as follows: 

• Scenario #1: "Order taking station computes and repor-ts the price of the or--

der-s. " 

• Scenario #2: "Or-der- taking station sends the paid or-der-s to assembly station." 

2To accelerate customer service, the paid orders are directly sent to the assembly station to be 
assembled. 



CHAPTER 5. DESIGN VIEW RECOVERY 33 

These two structured scenarios are then added to the set of qualified scenarios 

Other scenarios that are generated for this component are as follows: 

• Scenario #3: "Order taker logs into the OT station using ID and password.", 

• Scenario #4: "Order taker initiates orders.", 

• Scenario #5: "Order taker adds and removes (edit) menu items of an unpaid or

der.", 

• Scenario #6: "Order taker enters the amount of money received from the customer 

(cash- in) to 0 T station. " 

• Scenario #7: "Order taker defers the payment of order·s." 

• Scenario #8: "Order taker reviews the orders. " 

• Scenario #9: "Order taker calls-back unpaid orders." 

• Scenario #10: "Order taker returns the change (and receipt) for the order." 

• Scenario #11: "Order taker sends the cash exceeding cash limit to the cash safe." 

• Scenario #12: "Order taker logs out from his/her ID." 

Similarly, these scenarios are adjusted and added to the set of qualified scenarios. 

5.6.2 Stage 2: Scenario decomposition 

At this stage, each qualified scenario is mapped onto the domain model to instantiate 

different classes of the domain model and the resulting instances are stored in the 

objectbase. The mapping for the first two scenarios are as follows: 



J nd•r I Act.or is y8tem I Act~r IH uman I l'-Vorking 'in formation Actionllnput I AetioniinternCJl I Actionloutput I 
OT S1ati<m I I <><d..-,p<ic~ cowputepric.e ~npriu 

OT Sbtt<>ll, A'iM rtotioo I paldord!r i>!lld ~aid or:da lo ASM stati:lu. 

.,.-d:r taker,OT •tori<>ll ID~assnord !~to•)"'em 

4 I I ol:liertaker order iuitiU-!: O!def 

<:l:liertakEr =u imu,llllplidorde ullilt..,......, "'"'"" item 

6 I I erda< takerOT <tmoo cash-in .m..r· <ash-in 
------ ~-------------------------------------------------- ·····-·---- ·········-······--... ·-------·---- ---

ooiertallf!' Girdf!' defH paymall 

a I I crdenaker erd..- rt!'t'im~" 

9 I I ord..-takl!f 1Jll?.aid ort'!n c:ill-bodl 

!0 I crdertakl!f I <.hmg;o!re:Eip< rnum~ECl!ipt 
--~----------------- - ···--------·-----··---·-

n I ctshuf• I ~HUOI I ot>ll,c.tshlimil ~ ruoory to calb •aie 

12 I I orden'II<OI I ID ::Ogout 

l ll!ldex I Is-associated-\\~fh I Belong-to I Is-part-of I Follow I Precede ---~ 

(prk~,mw) (r€j!ottpri<e, COI>ljlute pri<o) (r<p<>rtprice,, ~~price) 

( l.,paidc.rtl@!, l,ordlol) {~lld paid ord.:r;o ASM ila!ioo, IipCIT pric.), -· 

3 (ID&famvord,ard..- rak.,.') ~to >ys<em, send j>lid arda: to ASM statim), -· 

4 (1 ,otd'!f t:>k«,n,rust>mer .ord.sr) (i.!lmm~ard!r, k>pn to '}"Sieu) (illi.!itte c-rde, ~OII'JP'U<> ptict) 

5 (II,Bll<l'l irem..J,order) (edit ord!r, il!iiW<Il!! o!ier), -· (•<lit Ordf:t; CM!!'ntepri.~), - · 

6 :c.asb-it,m.d..-) :mt~ra>h•lu,rtpott plio!),-·· t:<mm cub-in, !eDd pm order!<> A&\! statioo), ... 

7 [&fu pi)'ID!llt, ..Wt orn;.r;, ... 

s (rp,:flw ,)rd!fl', la~ !O tyttmt! 

9 (l~iork, L,onL=:) (c11lHlla llll?aili o~n,lo:jllto 5)'it51) (aL-l!adllllPIIidad.m, ~u-m-m), •• 

10 {chmgelre<epir,or<er) (renrc chan~.elre<$, .me cub-iti),-·· (Fe=. cluli;~jpt, ..,<d. poid ar&rro ASM ltarion) 

1l (1 ,<a<h,l ,OT slllri•"}, (ca!l><afe_,OT stlttiou) (c•'il> !imit.OT statiou) (...,.j >lODE}' t:> ellS!! 1l!fe, m!d psid <t-dH· 10 ASM <!arion) 

12 [k>g oo1JD)og:n to 5)'&~), ... 

Q 
:I: 
::> 
'"0 
>-3 
tiJ 
;:o 
C,)l 

tj 
tiJ 
r.n 
0 z 
< sa 
~ 
;:o 
tiJ 
0 
0 
< 
tiJ 

~ 

CN ..,. 



CHAPT E R 5. D ESIGN VIEW RECOVERY 

Scenario #1 decomposition: 

goal = taking oTder & handling payment 

actor/system =order taking station 

information= order, price 

action/Internal =compute price 

action/output =report price 

data dependency /Is associated with = 

( 1, OT station, n , order )3 

data dependency/ Belong to = 

(price , order) 

action dependency /Precede = 

(compute price, report price) 

Scenario #2 decomposition: 

goal = taking order & assembling order 

actor /system =order taking station 

actor/system =assembly station 

information/Internal= paid order 

action/output = send paid order to assembly station 

data dependen cy /Is part of = 

(paid order, order) 

act'ion dependen cy/Follow = 

(s end paid order to assmbly, compute price) 

35 

3The number preceding each item shows its multiplicity in the association, where "n" means 
"many" . These numbers may be determined directly from the scenario, or from domain knowledge. 
In case of no clue for multiplicity, it can be omitted. 



CHAPTER 5. DESIGN VIEW RECOVERY 36 

action dependencyiFallow = 

(send paid order to assmbly , report pr'ice) 

As it is shown, in decomposition of Scenarios #1 and #2, different classes of 

domain model have been instantiated according to the user's interpretation of the 

relations in the structured scenarios and comparison with the scenario domain model, 

in the light of domain knowledge. Since Scenario # 1 was the first scenario that 

was mapped onto the domain model and whose instance objects are stored in the 

objectbase, its instances of Data dependency and Action dependency classes are only 

between the instances of this scenario. However, in Scenario #2, dependencies are 

between both its own and also Scenario #1 's instances; e.g., the follow dependency 

between "send order to assembly" action (from Scenario #2) and "compute price" 

action (from Scenario #1). The same process is repeated for every generated scenario. 

Figure 5.4 presents a part of the objectbase that is populated with instances of 

Data and Action and five Dependency classes by Scenarios #1 to #12. 

5.6.3 Stage 3: Design diagram generation 

In this stage we follow the procedure presented in Section 5.5 to construct the data, 

function, and network diagrams. 

Data diagrams. According to the instances stored in different Data columns 

(i.e., Actorisystem, ActoriHuman, and Working information) of the objectbase, can

didate entities (ER diagram) or classes (class diagram) and attributes are: order 

taker, OT station, ASM station, order, menu item, unpaid order, paid order, price, 

cash, cash safe, change8receipt, cash-in, and ID8password. Similarly, the depen-



CHAPTER 5. DESIGN VIEW RECOVERY 37 

Figure 5.5: Generated Entity-Relationship diagram for the order taking component. 

dencies among these candidates are stored in the object base (under Is, Belong-to, 

... columns). Using this information, the constructed ER diagram for order taking 

component is shown in Figure 5.5. 

As an example, we explain how the "order taker" and "order" entities, their at

tributes, and the dependencies between them are extracted. ActoriHuman entry of 

Scenario #3 (row #3 in Table 1) is the first place that "order taker" is found. Since 

"order taker" does not appear on the left-hand side of a Belong-to dependency under 

the Belong-to column in the objectbase, we conclude that "order taker" is a candi

date "entity" and not an "attribute" . The same fact is true for the "order" entity 

where it is first found in Scenario #1 under the Working information column. To find 

the attributes of "order taker" we look for Belong-to dependencies (under Belong-to 

column) with "order taker" on the right-hand side. There is one such a dependency 

in Scenario #3 with "ID&password" on the left-hand side. Therefore , we consider 

"ID&password" as attributes of "order taker" entity. With the same approach we 

find "price", "cash-in", and "change/receipt" as attributes of "order" entity. Finally, 

a dependency between "order taker" and "order" entities is found in Scenario #4 

under the Is-associated-with column. We can annotate the associations with appro

priate names, such as "take" for this association. 



CHAPTER 5. DESIGN VIEW RECOVERY 38 

Order 

n -price 1 
n I Menultem J 

-cash- In l - price I -change 

r 
I I 

OrderTaker 

- 10 
- password 

! Cas h ! n 

1- balance ~,..-----'-'-1 1_ '---. 
.J ~ OTStatlon 

J CashSafe J 

1 
-cash limit 

f---~ 1 n h b 1 I PaidOrder I l unpaldOrder I 1- balance r -cas a ance 

Figure 5.6: Generated class diagram for order taking component. 

Function d iagrams. By taking the procedure presented for Function diagram 

in Section 5.5 we extract the following actions: Login to system; Log out the system; 

Review orders; Initiate new order; Call-back deferred orders; Add/remove menu items 

to/from orders; Compute total amount due; Report total amount due; Defer payment; 

Enter Cash-in; Return change-and-receipt; Send order to ASM station; Send cash to 

cash safe. The corresponding dependencies between these actions are stored in differ-

ent Action dependency columns of the object base. The resulting function diagram for 

the order taking component constructed from these actions and their corresponding 

dependencies is shown in Figure 5. 7. The process to achieve this diagram from the 

objectbase is explained below. 

For the sake of understandability, after extracting all the actions we may anno-

tate each action name by the related information in the corresponding row of the 

action in the objectbase. For example, the action "Login to system" in Scenario #3 

may be represented as "Login to system using ID&Password" by utilizing the infor-

mation under the column Working information. In order to simplify drawing the 

function flow diagram, we change every Precede dependency with Follow dependency 

and switch the place of corresponding actions in the dependency. In this setting, "ac-

tionl precedes action%!' is replaced by "action2 follows actionl". Table 2 presents 

the list of all actions and their "following" actions for the order taking component, 



CHAPTER 5. DESIGN VIEW RECOVERY 39 

Table 5.1: List of actions in order taking component and corresponding to Follow 

relation. 

I Index I Action Follows+ 

1 Login using ID & password -

2 Logout the system 1 

3 Review orders 1 

4 Initiate order 1 

5 Call-back unpaid orders 1 

6 Edit orders 1,5 

7 Compute price 1,5,6 

8 Report price 1,5,6,7 

9 Defer order payment 1,5,6,7,8 

10 Enter cash-in 1,4,5,6,7,8 

11 Return change & receipt 1,4,5,6,7,8,10 

12 Send order to assembly station 1,5,6,7,8,10,11 

13 Send excess cash to cash safe 1,4,5,6, 7,8,10,11,12 

where Follows+ denotes the transitive closure of the relation Follows. Therefore, if 

action2 Follows+ actionl then there must be a sequence of one or more arrows that 

connect action1 to action2. 

Figure 5.7 illustrates the function diagram for the order taking component that is 

constructed using Table 2 and according to the following guidelines: 

Step 1. Sort the actions based on the number of actions they follow in an ascend

ing order and then start drawing from the beginning of the sorted action list. Table 

2 illustrates such a sorting. 

Step 2 . When there are two or more actions (e.g., B, C, ... ) that immediately 



CHAPTER 5. DESIGN VIEW RECOVERY 40 

Figure 5. 7: Generated function diagram for order taking component. 

follow an action A (in Table 2), a choice situation has happened where one of the 

follow actions will be executed based on the result of choice. However if there exist 

a constraint, say between A and B, then selection of B is also conditioned to the 

satisfaction of the constraint between A and B. Finally, if there is a Is-parallel-with 

dependency between two actions, say B and C, the selection of B (or C) results in 

parallel execution of both actions B and C. The choice situation is represented by 

the OR bubble in function diagram and diamond in activity diagram; and constraints 

can be represented by guard attributes. Also, the parallel execution situation is 

represented by AND bubble in function diagram and fork in activity diagram. 

Step 3. When several actions immediately precede a single action a join situation 

has happened which is shown by proper notations in both diagrams. 

Network diagrams. To produce a node and interconnection diagram that covers 

the network view of the system we take the approach presented for N etwork diagram in 

Section 5.5. The extracted network nodes are order taking station, assembly station, 

and cash safe which are found in the Actorlsystem and ActoriHuman columns of the 

objectbase; and two extracted network links are between order taking station and 



CHAPTER 5. DESIGN VIEW RECOVERY 41 

Figure 5.8: Generated network diagram for fast-food restaurant system. 

assembly station (a link for order taking to send order to assembly), and between 

order taking and cash safe (a link to transport cash to cash safe from order taking). 

The resulting network diagram is shown in Figure 5.8. 

Figure 5.6 and Figure 5.9 illustrate the class diagram and activity diagram of the 

order taking station which are constructed using the procedure discussed earlier in this 

subsection. Also, Figure 5.10 illustrates the complete class diagram of the restaurant 

system that is achieved through incrementally constructing the class diagrams for 

each component and connecting them using the dependencies between their classes, 

i.e., inter-component dependencies. 



C HAPTER 5. D ESIGN VIEW RECOVERY 42 

Figure 5.9: Generated activity diagram for order taking component representing. 

I Station I Staff 

1- type ~ - 10 
-No. -password 

Lf I" -role 

9 
11 Order 

I Manager I ! Inventory Staff I I Preparer I I Assembler I I Order Taker 11 n -price 
I I I I I I I I r - cash-in 

J n ml n 
n -change 

m m 
11 ? nl L Material I Chute I 

.! Menu Item I I I 1 I Cash Safe Cash ~- name I ~ name 1 
-quantity -quantity - price 1-balance 1-balance I 

1 t I I 
I Paid Order I I Unpaid Order I n 

I Inventory I I Preparation I I Assembly I I Order Taking I 
I I I I I I ~ - cash limit I 

- cash balance 

Figure 5.10: Generated class diagram of the whole restaurant system. 



Chapter 6 

Behavior view and structure view 

recovery 

6.1 Introduction 

There is much similarity between the issues arising in architecture recovery of monolotic 

software systems into logical components and issues of designing distributed appli

cations. The target of such architecture recovery practice is to cluster groups of ob

jects into components in such a way that maximizes the cohesion of each component 

and minimizes the coupling between different components. Similarly, an objective of 

designing distributed applications is putting relevant components together to mini

mize unnecessary inter-component interaction. There exist a large amount of static 

analysis-based approaches for architecture recovery of systems into a group of compo

nents. For example, [41] presents a tool supported user-assisted static analysis based 

approach to recover the architecture of the software system into cluster of components 

using data mining techniques. The application of data mining techniques reveals as

sociations between elements of the software system. The recovery process identifies 

43 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 44 

a sub-optimal transformation from a user defined high-level view of the system using 

architecture query language, namely a conceptual architecture, into a collection of 

source code components, which is a concrete architecture. A successful match yields 

a restructured system that conforms with the given pattern architecture constraints. 

However, as mentioned earlier, static analysis approaches consider only the "ex

istence" of data/ controls dependencies among software components and ignores dy

namic information such as frequency of such dependencies being used in the runtime 

execution of the system. Therefore, providing least possible inter-component interac

tion, requires dynamic analysis of dependencies between software entities to capture 

their runtime behavior and finally reflecting the result of dynamic analysis in the 

component clustering practice. 

In this chapter, we present an interactive tool-supported environment for archi

tecture recovery of software systems using their both static and dynamic properties 

towards a component based architecture. In this regard we enhanced the Alborz 

[37] architecture recovery tool to accommodate dynamic information in combination 

with static information. In our approach, the software system is transformed from 

source code to an attributed relational graph representation. As the dynamic analy

sis step, execution profiles resulting from execution of a set of scenarios are studied 

to find frequencies of dependencies being used in the execution. These frequencies 

are weighted by a proper factor and used in combination with static analysis infor

mation to calculate association strength values between software entities in source 

graph. The recovery process is modelled as a Valued Constraint Satisfaction Prob

lem (VCSP) that matches a high-level conceptual architecture of the system with the 

source system. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 

Alborz static 
pre-processing 

Frequencies 
from behavior 
view recovel}' 

source 
graph Graph raglons 

& Similarity mattlx 

Module-
Interconnection 

pattern ,----.., I XML query I 
~System anily-sls 
} Domain & Document 

['"'''···~ --Q•,••ery ... ._, I 
:~ 

!~ 
~· 

Graph matching engine 
(search & evaluation} 

genaratlon 

Figure 6.1: Enhanced Alborz architecture recovery environment. 

6.2 Combined static-dynamic model 

45 

Figure 6.1 illustrates the interactive tool-supported environment for the proposed 

combined static-dynamic architecture recovery model. In a nutshell , this model com-

bines t he static and dynamic information of system to recover t he architecture of the 

system into a collection of distributed components using a pattern matching tech-

nique modelled as a Valued Constraint Satisfaction Problem. As shown in Figure 6.1, 

the architecture recovery occurs within three major stages as follows: 

Stage 1 (Static pre-processing) : In the first stage of this framework, the 

software system is parsed into abstract syntax tr-ee (AST) using a source-code parser 

and then transformed into a higher level of abstraction representation, called the 

sour-ce graph based on a pre-defined domain model. In our approach, we use the 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 46 

attributed relational graph notion defined in [18] for the source graph. In this graph 

notation, nodes represent software constructs, such as: functions and variables, and 

edges represent relationships between constructs, such as function-call and variable-

use. The nodes and edges comply with a specific domain model, namely an abstract 

domain model. In this approach, we use the domain model presented in [41]. Such a 

domain model provides programming language independence for the recovery process. 

Furthermore, common attributes that are inherited by every entity (or relation) are 

defined in the abstract domain model. Consequently, in the software representation 

stage, an association-based similarity matrix that contains the mutual similarity of 

all the entities of the system is generated. This stage will be further discussed in 

Section 6.3. 

Stage 2 (Dynamic pre-processing): In the dynamic pre-processing stage, first 

the software system is instrumented by a dynamic profiler tool, such as "gprof". 

Then, a set of task scenarios that may cover the whole or a part1 of the features of 

the system are executed on the system one at a time, and the resulting execution 

call graph profiles are captured by the dynamic profiler. By analyzing the execution 

profiles, the functions that were invoked as well as the number of times that each 

function-call is performed is found. The found functions that are invoked during the 

execution of set of scenario represent a core for the implementation of the features 

present in the scope of scenarios. On the other hand, the frequencies of travelled 

function-calls are used to infer a weight value for each function-call. This value is 

reflected in the source graph by embedding it as an attribute in its corresponding 

edge in the source graph. This attribute is used as the representor of the dynamic 

analysis in cost evaluations during the interactive pattern matching stage. Also, the 

1The scenarios set can cover a subset of system features, in which case the dynamic analysis 
would be focused on selected features. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE V W RECOVERY 47 

dynamic weight is used in the process of determining the domain for each node of the 
I 

graph. The dynamic pre-processing stage will be discrsed in more details in Section 

6.4. 

Stage 3 (Interactive pattern matching): In this stage, the user defines a 

conceptual architectural pattern of the system components (subsystems) and their 

interactions based on: domain knowledge, system documents, or tool-provided sys-

tern analysis information. In an iterative recovery process, the user constraints the 

architectural pattern and the tool provides a decompo~ition of the system entities into 

components that satisfy the constraints using valued constraint satisfaction problem 

techniques. In this approacl>, the architectural pattert is viewed a.s a collection of p<r 

tential components and interconnections, where each component represents a group 

of placeholders for the system entities (i.e., functions , types, variables) to be instan

tiated, and each bundle of interconnections (one relttionship) between two compo

nents represents data/ control dependencies between two groups of placeholders in 

two components. The minimum/maximum sizes and the types of both placehold-

ers and the interconnections are considered as free parameters to be decided by the 

user (respecting the allowed relation between two entities). This yet un-instantiated 

module-interconnection representation (can be referrer:I to as conceptual archi teet ure) 

is directly defined for the tool, using a standard markup language such as XML. 

The entire recovery process is modelled as a Valued d onstraint Satisfaction Problem 

(VCSP). Interactive pattern matching stage is and will be further discussed in Section 

6.5. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE v JEW RECOVERY 48 

6.3 Static pre-processing 

In this section we present a brief summary of the Jork presented in [39] regarding 

software system representation for architecture recovkry and further analysis. In the 

proposed techniques in this thesis, we use their pro~osed approach for representing 

the software system. However, their work is based on static analysis of system only, 

while we combine the static and dynamic analysis. As it is going to be discussed in 

later sections, we extract dynamic information from 1Jhe system by running a specific 

set of scenarios and then we embed the dynamic information in the structure of the 

system to enhance the architecture recovery process. To do so, we also make some 

enhancement to the representation model presented it the referenced approach, as it 

is going to be discussed later in this section. 

For the purpose of our software analysis technique, in the static pre-processing 

stage we transform the source-code representation ofi the system to a higher level of 

abstraction, such as an attributed graph representati~m. This transformation is done 

because the source-code is too detailed to perform a meaningful architecture recovery 

practice. However, even the graph representation of the whole of a medium-size 

system is too large to be tractable for the architecture recovery process. Therefore, the 

graph is also partitioned into some meaningful smaller subgraphs, that are analyzed 

in an incremental way. The static pre-processing stajge consist of different activities 

as follows: fact extraction, source graph generatiol , search space reduction, and 

association-based similarity matrix generation. In the following each of these activities 

are discussed. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 49 

6.3.1 Fact extraction 

In the fact extraction step, the software system is parsed to generate an abstract 

syntax tree (AST). AnAST, which can be represented as a set of entity-relationship 

tuples, contains all the constructs corresponding to the programming language of the 

software system, e.g., C. In this approach, we used the Refine parser [34] as our fact 

extractor. 

6.3.2 Source graph generation 

As was mentioned earlier, to pursue a tractable architecture recovery practice, the 

software system should be transformed from source-code (or AST) into a higher-

level abstract representation. In this regard, attributed-graph representation of a 

software system has been used in different software analysis approaches [40, 41, 28, 

19]. Similarly in this approach, we use a graph notation, called the source graph 

to represent the system under study. To do so, a domain model should be defined 

that specifies the types of nodes, edges, and attributes in the graph. In this work 

we use the same domain model namely abstract domain model defined in [41] that 

specifies architectural level entities for recovery of software modules, such as: file 

(File-abs), function (Function-abs), aggregate types (Type-abs) , and global variables 

(Variable-abs) 2 and their relationships, such as: file-containment, function-call, type-

use, and variable-use. This domain model supports both file-level and function-level 

architecture recovery. However, the focus of this work is on function-level analysis 

only. 

The attributed-graph representation of the source graph is defined as a six-tuple 

G8 = (N 8 Rs A 8 E 8 W 8 
•
1•8 ) as follows· 

' , ' ' ''f/ . 

2The focus of this work is on the function-level analysis. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 50 

• N 8 
: { n 1 , n2 , ... , nn} is the set of nodes defined in the domain model 

• Rs : { r 1 , r 2 , ... , r m} is the set of edges defined in the domain model 

• As : alphabet for node attributes and their values 

• Es : alphabet for edge attributes and their values 

• w 8 
: N 8 -+ (As x A 8 )P : a function that returns "node attribute, node attribute 

value" pairs, where p denotes the number of node attributes 

• 'l/J 8 
: Rs -+ (Es x Es)q : a function that returns "edge attribute, edge attribute 

value" pairs, where q denotes the number of edge attributes 

Since the proposed architecture recovery in this research is at the function level, 

the nodes of the source graph are of types: function, variable, and type; and the 

types of the edges are: function-call, variable-use, and type-use. Moreover, there are 

a number of attributes defined for nodes and edges in the abstract domain model in 

[41]. The most important attributes for nodes are: name, which refers to the name 

of the node in the source code; type, which is one of the node types mentioned above; 

and id, which is a unique identifier for the node. The most important attributes 

for the edges are as follows: from which indicates the source of the edge; to, which 

indicates the sink of the edge; id, a unique identifier; and type, which is one of the 

edge types mentioned earlier. Figure 6.2 illustrates an example of a very small source 

graph with 9 nodes and 16 edges. The following is an example of applying W
8 and 'lf; 8 

functions on a node and an edge of this graph: 

w 8 (n7 ) =((name, "./calculateAverage"), (type, function), (id, F7)), 

'l/J 8 
( r9 ) = ( (from, n7 ), (to, n6 ), (type, function-call)). 

In addition to the aforementioned attributes, we add a frequency (or freq in short) 

attribute to the edges of the source graph. This attribute serves as the representative 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 51 

n2 

e : Nodes of type: function, variable, and type 

n9 
- : Edges of type: function-call, variable-use, and type-use 

Figure 6.2: An example of a small source graph with 9 nodes and 16 edges. 

of the dynamic analysis step in the source graph. The frequency attribute of an edge 

(typically an edge of type function-call) reflects the number of times the edge has been 

traversed in a specific execution of the system. More details about this attribute will 

be presented in the discussion of the dynamic pre-processing stage. 

In the rest of this thesis, without the loss of generality, we refer to the source 

graph as a tuple of cs = (N 8
, E 8

). 

6.3.3 Similarity matrix generation 

In a further step, in the software representation stage, a similarity metric is defined 

between every pair of system entities based on maximal association. Maximal associ

ation refers to a maximal set of entities that all share a similar relation with another 

maximal set of entities. This property is a key to grouping entities into cohesive 

modules in terms of specific relations. Data mining techniques are widely used for 

extracting maximal association. The Apriori data mining algorithm [7] for example, 

is used in the Alborz tool [37] that supports our recovery process. The notations 

basket and item in the data mining domain, refer to "entity" (such as "function F2") 

and a pair of "relation and entity" (such as "Use-F function F2") in the reverse en-



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 52 

gineering domain, respectively. Data mining association rules (such as "25% of the 

baskets that contain item X, also contain item Y") can be extracted using frequent 

itemsets, where frequent item sets can be found using the Apriori algorithm. Gener

ally, a k-frequent itemset is a set of k items where all the items are contained in every 

basket of a group of baskets 3 . Consequently, the generated frequent itemsets are 

sorted decreasingly based on their cardinality and stored in a database. A similarity 

measure is defined between each two entity in a way that two entities that are alike 

posses a higher similarity value than two entities that are not alike. In this approach, 

association values between nodes of the source graph, are determined using the no

tion of associated group. An associated group of graph nodes forms when two or more 

source nodes (nodes that edges originate from them) share one or more sink nodes 

(nodes that edges point to them). By referring to the source nodes as basketset , and 

sink nodes as itemset, the entity-similarity association between two nodes ei and ej 

(shown as: entAssoc(ei, ej)) belonging to all associated groups 9x is defined as: 

entA ssoc(ei, ej) = max( litemset(gx)l + w x lbasketset(gx)l) (6 .1) 

where litemset(gx) I is the cardinality of shared entities, lbasketset(gx) I is the cardi

nality of sharing entities, and 0 < w < 1 is the weight of sharing entities. Since ei and 

ej may belong to more than one associated group 9x, as shown in Formula 6.1, the 

maximum value of their associations in all the associated groups is considered as their 

association value. The more the weight w is close to zero, the less the entity associ

ation is dependent on the number of sharing items. Based on some empirical result 

we use a value of w = 0.5. Figure 6.3 illustrates the calculation of entity similarity 

association in a sample source graph. 

3Frequent-itemset extraction is discussed in more detail in [39]. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 53 

nl n2 
Basketset 

entAssoc{nl,n2) = l{ml,m2,m3,m4} 1 + 0.5 * l{nl,n2} 1 = 5 

!temset 

ml m2 m3 m4 

Figure 6.3: An example of entity similarity association calculation with w = 0.5. 

6.3.4 Search space reduction 

Considering the number of entities in a medium size software system (usually more 

than 1000 entities), searching the whole search space (source graph) in the pattern 

matching stage is an intractable problem. Hence, we must restrict the search domain 

for each module to a group of eligible entities. To do so, we semantically decompose 

the source graph into smaller regions, called source regions where each source region 

consists of a number of entities that are associated with an entity in that region, 

namely a main-seed. More formally, a source region Gy = (NF, Ry) is a subgraph of 

the source graph, i.e., NF ~ Ns and Ry ~ Rs, that is related to a node nj such that 

each node ni =/=- nj in Gy satisfies the property entAssoc(nj, ni) > 0. The node nj is 

called the main-seed of cy. There are as many source regions as there are nodes in 

the source graph and they can be found using Apriori data mining algorithm. Using 

the notion of source region, we define domain Dnj of a node nj as the set of 3-tuples 

(nd , sd, !d) where: 

nd E NF , and 

sd = entAssoc(nj , nd), and 

fd = edgeFreq(nj , ni) is the frequency of the edge connecting nj and nd which is 

going to be discussed in next section. 

Consequently, using the domains we restrict the search space for each module to 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE V IEW RECOVERY 54 

the domains of its main-seeds. 

Moreover, since even in a medium-size software system the recovery of all the 

modules at once is intractable, due to the extremely large amount of generated data, 

to address the tractability of the matching process, the whole process is divided into 

k partial matching phases, where k is the number of modules (components) to be 

recovered. 

In the following section, the dynamic pre-processing step of the multi-view frame

work is discussed. 

6.4 Dynamic pre-processing 

The dynamic pre-processing stages extracts runtime information from execution pro

files resulting from execution of a set of scenarios on software system. The dynamic 

information that we extract from each system execution are as follows: i) the exe

cuted functions along with their frequencies; and ii) the function-calls performed by 

each function along with their frequencies. To capture this information the following 

three steps should be taken: 1- instrumentation of the software system; 2- execution 

of a set of scenarios on the instrumented system; and 3- analysis of the resulting 

execution profiles. In the rest of this section, each of these steps are discussed after 

some terminology definitions. 

Terminology 

• instrumentation: instrumentation refers to the process of inserting particular 

pieces of code into the software system (source code or binary image) to generate 

a profile of the software execution. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 55 

• feature: a feature is a realized functional requirement (the term feature is inten

tionally defined weakly because its exact meaning depends on the specific con

text). Generally, the term feature also subsumes non-functional requirements. 

However, in the context of this paper only functional features are relevant, i.e., 

we consider a feature an observable result of value to a user [16]. 

• frequent feature: a frequent feature is a feature that is used by users of the 

system more often than other features. 

• scenario: a scenario is a sequence of user inputs triggering actions of a system 

that yields an observable result to an actor [9]. A scenario is said to execute a 

feature if the observable result is executed by the scenario's actions. A scenario 

may execute multiple features. Scenarios resemble use cases but do not include 

options or choices, so a use case subsumes multiple scenarios [16]. In this paper , 

we consider scenarios as sequences of features. 

• subprogram: a subprogram is a function or procedure according to the program

ming language. Subprograms are the lowest level kind of components. 

• component: a component is a group of subprograms along with their related 

variables and data types that implement a computational unit of a system. 

Components have import and export relations with other components. The 

component that calls a function , or uses a variable or data-type of another 

component is called the exporter and the other component is called the importer 

component. 

• execution summary: an execution summary of a given program run lists all 

subprograms called during the run. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 56 

6.4.1 Software system instrumentation 

We use the GNU profiler , gprof [5], for the purpose of instrumenting the software 

system and capturing the execution profiles. In order to use this tool one has to 

compile the source code of the program using the gee compiler with profiling options 

enabled. This tool provides two types of output: fiat profile, and call graph. The flat 

profile shows the total amount of time your program spent executing each function. 

The call graph shows how much time was spent in each function and its children It 

also shows the number of times a function called its children and was called by its 

parents. In this paper, we use the call graph output of the profiler. 

6.4.2 Execution of scenarios 

A domain expert is a key actor in designing the scenarios. These scenarios must 

cover a set of frequent features that are of users interest. This is mainly because we 

are more interested to capture the most-frequent behavior of the system. Therefore, 

he identifies the frequent features using domain knowledge with guidance of design 

diagrams (specifically activity diagrams) and then based on the scenario set that was 

generated in the design view recovery step, he generates a new set of scenarios. The 

expert is also responsible for eliminating redundancy from the set of scenarios in terms 

of the covered features , so that the resulting profiles would not be relatively larger 

than what they should be. After scenario selection, the set of scenarios are executed 

on the instrumented system. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 57 

6 .4.3 Analysis o f execution profiles 

In this step we take a maximum-approximation approach to assign a frequency to 

each function and function call that is present in the resulting execution profiles. 

In this approach, we consider the greatest frequency found for each function and 

function call among the execution profile of all the scenario as the final frequency of 

that function or function call. Frequencies of function-calls are then embedded in the 

source graph as the frequency attributes on edges between functions. This attribute 

is then used in the cost calculations for the Valued Constraint Satisfaction Problem 

(VCSP) in the next stage. 

The default value for frequency attribute for edges in the source graph is 0. This 

value will be updated to freq?_ 0 after the dynamic analysis (pre-processing) stage, 

where freq=O means the absence of an edge in the runtime execution of system and 

freq> 0 is the frequency of appearance of that edge in the execution of the system. 

6 .5 P attern m atching 

In the pattern matching stage we perform a supervised valued constraint satisfac

tion pattern matching technique that incrementally generates software components 

as cohesive modules of entities, i.e., functions, variables, and data types, that are 

interconnected through function-call, varibale/type-use or generally imports and ex

port relations. Recovered modules conform with a set of architectural constraints 

specified by XML language. Each module consists of one or more main-seeds as the 

core functions of the module and a sub-optimal version of a branch and bound search 

algorithm is used to collect the group of functions, variables, and data types that are 

highly statically and dynamically associated to the main-seeds into the module. As 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 58 

it was mentioned in Section 6.3, the search space for a module is restricted to the 

entities in the search domain(s) of the corresponding main-seed(s). The presence or 

absence of a node in a module is determined by the set of constraints and the cost 

function of the VCSP framework that takes into account both static and dynamic 

information. 

In the rest of this section we discuss the different steps of the pattern matching 

stage. We start by briefly explaining the notion of the Valued Constraint Satisfaction 

Problem (VCSP). Then we discuss our modelling of the architecture recovery process 

based on VCSP. Finally, we explain the iterative pattern matching step using a branch 

and bound search algorithm [42]. 

6.5.1 Valued Constraint Satisfaction Problem 

The Valued Constraint Satisfaction Problem (VCSP) framework [44] is an extension 

of the conventional Constraint Satisfaction Problem framework (CSP) , that allows for 

dealing with over-constrainted problems [43]. In the VCSP framework, a valuation (or 

cost) is associated with each constraint. The task of assigning a value to variables in 

the problem is called an assignment. The valuation of an assignment is defined as the 

aggregation of the valuations of the constraints which are violated by this assignment. 

The goal of a VCSP is to find a complete assignment of minimum valuation. Typically, 

a search algorithm is used to find the optimal assignment. 

Formally, a VCSP framework is defined as a four-tuple P = (V, D, C, f) , where 

V is a set of variables, D a set of associated domains, C a set of constraints between 

the variables, and f a valuation (cost) function. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 59 

6.5.2 Modelling the recovery process 

As mentioned earlier, in our approach the recovery is modelled as a valued constraint 

satisfaction problem. The specifications of the problem is presented as an architec

tural pattern query using XML notation. The XML query (which is going to be 

discussed in detail in the next section) contains the conceptual components that are 

going to be recovered. Each conceptual component consists of a number of vari

ables (considered as variables of VCSP), a set of main-seeds assigned, and a a set 

of link constraints between itself and the concrete ones (i.e. the components that 

have been already recovered). The links between the components can be of differ

ent relation types, such as: function-call, variable-use, type-use. Such relations are 

generally called import/export relations. The nodes of the source graph, i.e., the 

functions, variables, and types are considered as the candidate values to be assigned 

to variables of the VCSP. The domain of each variable is the same as the search 

domain determined for each corresponding node in the static pre-processing stage of 

our framework. The valuation or cost function is defined based on the cost of ex

istence of an edge between two nodes. The existence of edges is determined by the 

values assigned to the placeholders (variables) of the component. The cost is cal

culated using both static and dynamic information of the system. In this approach 

we use the branch and bound search algorithm to find a minimum cost valuation of 

the assignment of the entities in the source model (domain of the variables) into the 

placeholders (variables) of the query. In our approach, the recovery is performed in 

an iterative process which recovers one component at a time. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 60 

6.5.3 Modelling constraints with XML 

Pattern-based architecture recovery techniques provide a high-level conceptual model 

for the architecture called the architectural pattern [26, 21]. As mentioned earlier 

in this section, we use XML markup language to model the conceptual architecture 

or the constraint query. The schema of the XML model we defined for constraint 

query and a sample query are illustrated in Figure 6.4 and Figure 6.5 respectively. 

The notation we used to define the schema of queries is the XML Schema language, 

or XML Schema Definition (XSD) , provided by W3Schools [1]. In the following the 

main elements of the schema are explained. 

< query> : this is a "complex" element and contains all the information necessary 

for the query within its child elements. Each < query> element contains one < name> 

and one-to-many <contains> elements. 

< name>: this element is of type "string" and is .an arbitrary name for the query 

used for later reference. 

< contains>: this element is of type "component" and declares a conceptual 

component that the query aims to recover. Each element of type "component" 

contains one <componentName>, one-to-many < mainSeed>, one < minSize>, one 

<maxSize>, and one-to-many < linkConstraint> elements. 

<componentName>: this element is of type "string" and declares a unique 

name for the new component that is going to be recovered. 

< mainSeed>: this element is of type "entity" and specifies a main-seed for the 

component to be recovered. There can be one or more of this element defined for 

each component. Each element of type "entity" contains <entityName> and < id> 

elements. 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 61 

<entityName>: this element is of type "string" and specifies the name of the 

main-seed in the source code. 

<id>: this element is of type "string" and specifies the assigned unique identifer 

of the main-seed entity in the recovery process. 

<minSize>: this element is of type "integer" and specifies the minimum size 

of the component to be recovered in terms of number of entities in the component, 

which is restricted to be equal or greater than one. 

<maxSize>: this element is of type "integer" and specifies the maximum size 

of the component to be recovered in terms of number of entities in the component, 

which is restricted to be equal or greater than one. 

<linkConstraint>: this element is "complex" and it specifies the link constraint 

between the component under recovery and the already recovered components. Each 

<linkConstraint> element contains one <linkCompName> and one <upperBound> 

elements. 

<linkCompName>: this element is of type "string" and specifies the name of 

an already existing component between which the component under recovery has a 

link constraint. 

<upper Bound> this element is a numeration of type "string" and specifies an 

upper bound for the link constraint between the component under recovery and the 

component mentioned in <linkCompName>. Possible values for this element are 

none, low, average, high, and unbounded that will be discussed later in this section. 

6.5.4 Iterative pattern matching 

After modelling the conceptual architecture as XML pattern queries, the tool searches 

for a solution (concrete components) for the pattern query (conceptual components) 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 62 

in an iterative pattern matching stage. As mentioned earlier, the pattern matching 

is modelled as a valued constraint satisfaction problem. In this regard, a solution is a 

complete value assignment to all the variables of the problem that has the minimum 

cost. In this section, we describe the matching of a simple pattern query q of two 

modules Ml and M2, and its associated VCSP model. Before we proceed, we define 

two notions of similarity (internal) constraint and link (external) constraint: 

i) similarity (internal) constraint: the static similarity between each pair of the 

assigned values in a module is determined by considering the shared features of those 

two values as mentioned earlier in this chapter. We assign a very high similarity 

value for satisfaction of a similarity constraint so that almost all such constraints are 

violated. This causes the valuation function to aggregate the static distance values 

(1 - similarity value) between the candidate value and the values of the already 

instantiated variables in that module, as a measure of ranking the module by the 

branch and bound algorithm Since searching the entire search tree is usually not 

practical for medium-size systems, an upper-bound is defined for the violation of the 

similarity constraint, so that if the aggregated cost of the violated constraints exceeds 

the upper-bound, the candidate value is discarded and the search tree for that value 

is pruned. If such a incidence is repeated for all domain values of a variable, a form 

of backtracking occurs. 

Other than the similarity mentioned above (static similarity), a dynamic similarity 

is defined between values (entities) of type function. Dynamic similarity between each 

pair of the assigned functions is determined by the dynamic frequency of the function

call edge connecting the pair. The dynamic similarity has an inverse relation with the 

valuation cost of selecting variables ( f;eq). Therefore combined with the valuation cost 

of static similarity the valuation function will aggregate to combined static-dynamic 

distance e-si~~j;:qvalue) between the candidate values and the values of the already 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 63 

instantiated variables in that module. 

iv) link (external) constraint: link constraint is defined on the edges between the 

candidates for the placeholders of the current component with the already recovered 

components. The constraint is defined by the user in the XML pattern query as 

an upper-bound for the average of accumulated link cost of the assigned edges that 

connect the two components. In this context, insertion of an edge e has a link cost 

edgeLinkCost(e) that is accumulated with the link cost of previously inserted edges 

for that component. The cost of inserting an edge e = (nl> n 2), is calculated as 

follows: 

edgeFreq( e) 
edgeLinkCost(e) = 1 + l 

tota Freq 

where edgeFreq( e) is the dynamic frequency of the edge e and totalFreq is the sum 

of all the dynamic frequencies of the edge in the system which is discovered in the 

dynamic pre-processing step. The above formula considers a cost of 1 for the existence 

of an edge (static) and a cost in range of zero to 1 for the relative frequency of the 

edge to the total frequency in the system. The total link cost of two components is 

defined as the average of the link cost of all of the assigned edges e that connect two 

components: 

lL
. kG "edgeLinkCost(e) 

tota zn ost = L......t 
n 

Ve 

where n is the number of the connecting edges e. 

The total link cost must not exceed an upper bound. Therefore , if insertion of 

an edge causes link constraint violation (i.e. exceed the upper bound), the edge is 

discarded. The upper bound can be one of the following: 

• none: which means that there should not be any edge between the two compo-

nents (totalLinkCost = 0) . 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 64 

• low: which means that the interaction of the two components can be up to 25% 

of the total interaction in the system (totalLinkCost- 1 < 25%) 4
. 

• average: which means that the interaction of the two components can be up to 

50% of the total interaction in the system ((totalLinkCost- 1 < 50%)). 

• high: which means that the interaction of the two components can be up to 

75% of the total interaction in the system (totalLinkCost - 1 < 75%) 

• unbounded: which means that the interaction of the two components can be up 

to 100% of the total interaction in the system (totalLinkCost -1 < 100%) (i.e., 

there is no limits for the interaction of the two components ). 

In the following the steps of the mapping are explained: 

• Mapping step 1: For every placeholder in the conceptual component, we 

assign a variable vi in the set of variables V of the VCSP. For each variable 

vi we assign a corresponding domain di in the set of domains D, where di = 

Dom( s), i.e., the domain of the main-seed s specified for the corresponding 

component in query q. 

• Mapping step 2: For every pair of variables in V that correspond to the same 

module (e.g. , M1), define a constraint of type similarity (internal) constraint in 

C. If module M2 exports/imports a matching placeholder link to module M1 

(e.g., a link to function F1), assign a constraint of type link constraint from 

every single variable in module M2 to Fl. 

We define the valuation function on the basis of our architectural recovery objectives 

as follows: i) the average similarity value between the group of entities in a module 

4The minus 1 is for deducting the accumulation of the ls that were added for the existence of 
each edge in the edgeLinkCost formula 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 65 

must exceed a threshold which is determined by the overall properties of the software 

system; ii) in equivalent static similarity situations, the nodes with higher dynamic 

weight on the edge connecting them have a higher priority to fill the placeholders; iii) 

all import/export link constraints should be met. In order to meet the above general 

requirements, we define the condition for satisfaction or violation of each type of 

constraints between a pair of variables in V we defined earlier. 

With the above valuation strategy, the steps for the branch and bound search 

algorithm for each defined pattern query are as follows: 

• Search step 1: the next variable is selected from the current module to be 

instantiated; 

• Search step 2: from the domain of this variable the next value (candidate 

value) is selected to be assigned to the variable; 

• Search step 3: all similarity constraints and link constraints between the 

assigned values are evaluated and checked for satisfaction/ violation; 

• Search step 4: the cost of the assignment is calculated. If the cost is very 

high (i.e., higher than the upper-bound), the candidate value is discarded, else, 

the evaluated cost is used as the ranking criterion for the current variable and 

the value is put in the proper place of the list of all partially assigned values for 

future assignment and ranking. 

• Search step 5: the value assignment with the best possible rank (least average 

similarity cost while not violating the link constraints) of all or the most possible 

of the variables is the solution for the valued constraint satisfaction problem. 

The solution is represented as a concrete component that has import/export 

relations with previously recovered components . The number of the entities in 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 66 

the component is less or equal to the number of variables that were defined for 

it in the pattern query. The case of "less" happens when there is no solution 

(i.e., constraints are not met) with the originally specified number of variables. 

The resulting assignment is considered as the solution to the conceptual architecture 

that was defined by the user in the XML query. After this, the user can define another 

query to recover another component of the system, or he/she can refine his/her query 

on the same component and run the pattern matching step again. 

In the next chapter, the results of applying our multi-view architecture recovery 

technique on a medium-sized software system is presented. 



CHAPTER 6 . BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 

<?xml version=" l.O"?> 

<xs:sch ema xmlns:xs= " http ://www. wJ.org/2001/XMLSchema" 

targe t N ames pace= "http: / fwww. w3schools.com 11 

xmlns= "http:/ fwww. w3schools.com" elementFormDefault= "qualified"> 

<xs:element name= "q uery"> 

<xs :complexType> 

<xs :sequence> 

<xs :elem ent name= "name" type= "xs:string 11 /> 

<xs:elem e nt name="contains" type="compone nt" minOccurs= " l " /> 

</xs:sequ en ce> 

</xs :complexType> 

</xs:element> 

<xs:complexTyp e name= "component"> 

<xs:sequ en ce> 

<xs :element n a m e="componentNam e" type="xs:strin g 11 /> 

<xs:elem e nt name="mainSeed" type="entity" minOcc urs=" l " /> 

<xs:eleme nt name= "minSize" > 

<xs:simpleType> 

<xs: rest r iction base="xs:integer" > 

<xs:minlncl usive value=" l " /> 

</xs:rest riction > 

</xs:simpleType> 

</xs:element> 

<xs :eleme nt n ame="ma.xSize" > 

<xs:simpleT ype> 

<xs:restri c tion base= "xs: integer" > 
< xs :minlncl us ive value=" l " /> 

< f xs: restriction > 

</xs:simpleType> 

</xs:element> 

<xs :element name= "li nkCo nstraint" > 
<xs:complexType > 

<xs:seq u ence> 

<xs:element name= "linkCompName" typ e= uxs:st ring" /> 
<xs:element name= "upper Bou n d " > 

<xs:simpleTyp e> 

<xs :rest riction base= "xs:string" > 
<xs:cnume ration value="none" /> 

<xs:enumer ation val u e="low" /> 

<xs :enumer ation value= "average" /> 
<xs:enume ration value= "high "/> 

<xs :enumeration value="unbounded" /> 

</xs: restriction > 

</xs:si mpleTy p e> 

< /xs:sequ e n ce> 

</xs :complexType> 

</xs:element> 

</xs:sequence > 

</xs:complexType> 

<xs:complcxType name= "entity"> 

<xs:sequence> 

<xs:ele m e nt n ame= "entity Nam e" type= "xs:string" /> 

<xs:element name= " id" type= "xs:string" /> 

</xs:sequence > 

</xs:complexType> 

</xs:schema> 

Figure 6.4: XML schema of the constraint query. 

67 



CHAPTER 6. BEHAVIOR VIEW AND STRUCTURE VIEW RECOVERY 

<?xrnl version= "1.0" ?> 

< query> 

< narne>sarnlpeQuery</narne> 

<contains> 

<cornponentN arne>newCornp< / cornponentN arne> 

<rnainSeed> 

<entityNarne> {fool}</ entityNarne> 

< id> Fl</id> 

</rnainSeed> 

< rnainSeed> 

<entityNarne> {foo2} </entityNarne> 

< id> F2</id> 

</rnainSeed> 

< rninSize> 5</rninSize> 

< rnaxSize> 30</rnaxSize> 

< linkConstraint> 

< linkCornpN arne>old Cornpl < / linkCornpN arne> 

< upperBound >average</upperBound> 

</linkConstraint> 

< linkConstraint> 

< linkCornpNarne>oldCornp2< / linkCornpNarne> 

< upperBound> high</upperBound> 

</linkConstraint> 

</contains> 

</query> 

Figure 6.5: An example of an XML representing aa constraint query. 

68 



Chapter 7 

Xfig case study 

In this chapter, we present the results of applying the proposed multi-view architec

ture recovery technique on a medium-size open source software system. We use the 

Alborz reverse engineering toolkit [38] in our experiments to study the architecture 

of Xfig drawing tool. Xfig 3.2.3d [3] is an open source, medium-size (80 KLOC), C 

language drawing tool under X Window system. Xfig is used to interactively draw 

and edit graphical objects (such as lines, circles, and rectangles) through operations 

such as copy, draw, move, delete, edit, scale, and rotate. In the following, each step 

of our experiment is described with respect to the multi-view framework in Chapter 

4 and the three views in Chapters 5 and 6. 

7.1 D esign view generation 

In this section we demonstrate the results of applying the three steps of design view 

generation described in Chapter 5, i.e., scenario generation, scenario decomposition, 

and design diagram generation. 

69 



CHAPTER 7. XFIG CASE STUDY 70 

7 .1.1 Scenario generation 

Figure 7.1 presents the set of scenarios that are generated using domain knowledge 

and user interface of the drawing part of Xfig tool. These scenarios conform with the 

scenario structure proposed in Section 5.3. As an example, Scenario #1 in Figure 7.1 

conforms with the scenario structure as follows: 

User is an Actor (N =1); draws is an Action (N =1); ellipse and radius are Working 

Information (N =2); and there is no Constraint related to any of them (M=O for all) . 

7.1.2 Scenario decomposition 

Each generated scenario in previous step is parsed according to the scenario domain 

model and the collection of the generated instances of the domain model classes are 

stored in the objectbase. As it is illustrated in Table 7.1 the actor of all scenarios 

is "user". This is because of the nature of the Xfig tool where scenarios are not 

performed based on heavy interaction between the actors, as opposed to the case of 

interactive systems such as a fast-food restaurant or an automated banking machine 

(ABM). 

As an example of scenario decomposition, the generated instances of scenario do

main model classes resulting from decomposition of Scenario #1 are presented below: 

Scenario #1 

actor= user 

information= ellipse 

information= radius 

action = draw 



CHAPTER 7. XFIG CASE STUDY 

# Scenario 

1 "User draws ellipse by radius." 

2 "User draws ellipse by diameter." 

1 "User draws circle by radius." 

2 "User draws circle by diameter." 

3 "User draws closed spline by control points." 

4 "User draws spline by control points." 

5 "User draws closed interpolated spline by control points." 

6 "User draws interpolated spline by control points." 

7 "User draws polygon." 

8 "User draws polyline. " 

9 "User draws rectangle." 

10 "User draws rounded corner rectangle." 

11 "User draws regular polygon." 

12 "User draws arc by three points." 

13 "User pictures object." 

14 "User inputs text." 

Figure 7.1: Generated scenarios for drawing part of Xfig. 

data dependencyiis associated with = (user, ellipse) 

data dependency lis associated with = (ellipse, radius) 

71 

The scenarios shown in Figure 7.1 correspond to "drawing" part of Xfig. Similarly, 

by generating relevant scenarios the same steps can be repeated to cover the "editing" 

part of the Xfig. 



CHAPTER 7. XFIG CASE STUDY 72 

Figure 7.2: Generated ER diagram for drawing part of Xfig. 

to Filing 

Figure 7.3: Generated activity diagram for drawing and editing parts of Xfig. 

7.1.3 Design diagram generation 

After populating the objectbase in scenario decomposition step, the information in 

the object base is transformed into design diagrams using the guidelines discussed in 

Section 5.5. Figure 7.2 illustrates parts of the generated ER diagram for "drawing" 

part, and Figure 7.3 illustrates the activity diagram for "drawing" and "editing" parts 

of Xfig tool. 



CHAPTER 7. XFIG CASE STUDY 73 

7.2 Combined static-dynamic architecture recov

ery 

In this section, we present the results of applying the proposed combined static and 

dynamic analyses architecture recovery on Xfig tool. To illustrate the difference 

between the results of static-only and combined static-dynamic recovery techniques, 

we compare the results of both techniques on an identical pattern query. In the 

following, applying the three steps of static pre-processing, dynamic pre-processing, 

and iterative pattern matching on Xfig is presented. 

7 .2 .1 Static pre-processing 

In this step, we use Refine C parser to parse the source code of Xfig and translate it to 

Abstract Syntax Tree (AST). Then we use Apriori data mining algorithm to transform 

the AST to source graph. Using the same data mining algorithm associated groups 

are found which leads to finding a similarity value between every two entities in the 

system. Pair-wise similarities between all the entities of the system are presented as 

a single similarity matrix. As mentioned in Section 6.3, for each entity in the system 

a search domain is generated based on its corresponding similarity values with other 

entities. To do so, for each entity we group all the entities that have a similarity greater 

than zero with that entity in its domain. Because of memory and time limitations, in 

some cases we have to cut very large domains, to reduce the complexity of the search 

algorithm in the pattern matching step. In order to keep the relatively more similar 

entities in one's domain, we sort the domains of the entities decreasingly based on 

the similarity value before any cutting be done. Table 7.1 illustrates a part of the 

domain and the corresponding similarities of "iniLdraw" function in Xfig system. 



CHAPTER 7. XFIG CASE STUDY 74 

Table 7.1: Part of the sorted domain and similarity values for "iniLdraw" function. 

I entity I domain/similarity 

iniLdraw iniLrotate iniUlip redisplay _objects redisplay _arcobjects redisplay ..line 

6.0 6.0 3.5 3.0 2.0 

7.2.2 Dynamic pre-processing 

For the dynamic analysis step, we use GNU gprof profiler to instrument the software 

code and capture the execution profiles. In this experiment we specify four features 

of the Xfig tool, namely "draw rectangle" , "move", "rotate", and "copy", as the set 

of our frequent features. In order to eliminate the probable effects of the order in the 

execution of the features, instead of generating a single scenario, we generate a set of 

scenarios that contain different possible permutation of the order of the features to be 

covered. Trivially, the "draw rectangle" feature should always be executed first; but 

the three other features can be executed interchangeably. Therefore, with guidance 

of the set of scenarios generated for "drawing" and "editing" 1 parts of Xfig and the 

generated activity diagram (Figure 7.3) in the design view recovery stage, we define 

the set of scenarios presented in Figure 7.4 to cover all the permutations of the afore-

mentioned features. We execute each of these scenarios and extract the frequencies 

for function-calls from their executions profiles. As a result , the final frequency as-

signed to each function-call would be the highest frequency of its appearance within 

all the profiles. 

Table 7.2 illustrates a part of the execution profile of the first scenario in Figure 

7.4 for two functions of Xfig system. The final frequencies of function-calls are then 

embedded into the source graph as the freq attribute of the corresponding edges. 

1T he scenarios specific for "editing" part of Xfig are not shown in this case study. 

... 

... 



CHAPTER 7. XFIG CASE STUDY 75 

# Scenario 

1 "Draw rectangle, move it, rotate it, and flip it." 

2 "Draw rectangle, move it, fl ip it, and rotate it." 

3 "Draw rectangle, rotate it, move it, and resize it." 

4 "Draw rectangle, rotate it, resize it, and move it." 

5 "Draw rectangle, resize it, move it, and rotate it." 

6 "Draw rectangle, resize it, rotate it, and move it. " 

Figure 7.4: Generated scenarios for a particular set of features of Xfig. 

Table 7.2: Part of the execution profile of the first scenario in Figure 7.4. 

caller I called/frequency 

init_fiip flipJine init_flipline redisplay Jine flip __search do_objecLsearch .. . 

5 2 1 1 1 .. . 

setup_panel seLrulermar k generate_pixmap check_action iniUilLpm iniUilLgc ... 

992 17 2 1 1 ... 

7.2.3 Iterative pattern matching 

In the pattern matching stage the Alborz tool provides a list of main-seed suggestions. 

Typically, t hese main-seeds are the entities that generated a higher average similarity 

with entities of their domain. However, main-seed selection can be totally random. 

From the suggested main-seeds we selected two of t hem, namely "iniLrotate" and 

"iniLupdate", that had also appeared in the execution profiles in the behavior view 

recovery. As mentioned in t he beginning of this chapter, to be able to compare the 

result of our proposed recovery technique, we recover the components once with use of 

static information only, and once with combined static-dynamic information. Figure 

7.5 illustrates the result of the architecture recovery of two components based on 



CHAPTER 7. XFIG CASE STUDY 76 

the two mentioned main-seeds and with size of 7 (left) and 11 (right). Figure 7.5.a 

shows the result of recovering the components with static information only. The 

main-seeds are shown as shaded nodes. As you see there are three links between 

the two components that do not have dynamic frequencies assigned to them in this 

case. Average similarities of each component which show the cohesiveness of the 

components are shown in the figure. Figure 7.5.b shows the same result as in Figure 

7.5.a, but it also shows the dynamic frequencies of the edges connecting these two 

components, and the relative dynamic frequency of interaction of the two components, 

which implies the degree of dynamic coupling of the two components. Figure 7.5.c 

shows the result of performing component recovery with the same pattern query used 

for Figure 7.5.a, but by using both static and dynamic information from system. As it 

is shown in this figure, a number of entities of each component have changed compared 

to Figure 7.5.a, but the most important difference is movement of "drawJine" function 

from the right component to the left component. This change is because of the 

relatively high dynamic frequency of the edge connection functions "rotate_search" 

and "draw Jine". The new similarity values and relative dynamic frequencies are 

once again shown in Figure 7.5.c. As you can see, the cohesion of each component 

has decreased by a factor of less than 10%. On the other hand, the dynamic coupling 

of the two components has decreased by a factor of greater than 170%. Therefore, 

the replacement of entities between components can be treated as a trade-off between 

higher intra-component cohesion and lower inter-component dynamic coupling, which 

can be decided of based on the objectives of a specific component recovery practice. 



CHAPTER 7. XFIG CASE STUDY 

a. 

b. 

c. 

Total frequency = 7,623 

Relative frequency = 0.052 

375 

Relative frequency = 0.003 

77 

Figure 7.5: a. Recovered components based on static information only. b. Recovered 

components based on static information only, and dynamic information being demon-

strated. c. Recovered components based on both static and dynamic information. 



Chapter 8 

Discussion and conclusion 

In this thesis, we presented a novel multi-view framework to recover three views of a 

software system (i.e., design, behavior, and structure) where task scenarios were core 

entities to connect the tree views together. The design view generation is based on 

a systematic approach to define a set of task scenarios that conform with a scenario 

structure. The scenarios are then mapped onto a scenario domain model and there

sulting instances are transformed into design diagrams using a number of guidelines. 

The behavior view is built on the analysis of the execution profiles that are the result 

of executing a set of scenarios that cover a set of frequent features of the system. 

The result of this analysis is a mapping between the function-calls of the system and 

an integer number that is the frequency of their call in the execution of the set of 

scenarios. The resulting frequencies are then embedded into the source graph repre

sentation of the system as an additional attribute that reflects the result of dynamic 

analysis in the architecture recovery process. Finally, in the structure view recovery, 

a set of conceptual components with corresponding constraints are defined for the 

tool as an architectural pattern query using XML notation. The recovery of these 

components is modelled as an instance of Valued Constraint Satisfaction Problem 

78 



CHAPTER 8. DISCUSSION AND CONCLUSION 79 

(VCSP). The solution to the problem would be a set of concrete components that 

satisfy the specified constraints and have a minimal cost. The multi-view environ

ment has been built in a toolkit called Alborz as a plug-in application for the Eclipse 

software development environment. 

The proposed multi-view recovery has challenging issues to be dealt with. In 

the design view recovery, dealing with the ambiguity of the natural language makes 

the scenario decomposition a highly user-oriented task. In the behavior recovery, 

the software instrumentation tools usually produce very large execution profiles that 

need to be pruned from noise and recursion-based frequencies. Finally, in structure 

view recovery, defining pattern queries that lead to a semantically meaningful set of 

concrete components requires a good knowledge of the software system domain. 



Bibliography 

[1] Introductory tutorial on w3c xml schema from w3schools. 

http:/ / www.w3schools .com/schema/default .asp. 

[2] Rigi. http: / / www.rigi.csc.uvic.ca/ rigi/ rigiindex.html. 

[3] Xfig version 3.2.3. http: / / www.xfig.orgj. 

[4] Sei software architecture definitions. http:/ /www.sei.cmu.edu/architecture/definitions.html. 

[5] Gnu gprof. http: / / www.gnu.org/ software/binutils/ manual/gprof-

2.9.1 /gprof.html. 

[6] Odyssey project . http:/ / reuse.cos.ufrj .br/site/. 

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ

ation rules. In Proceedings of the 20th International Conference on Very Large 

Databases, pages 487- 499, 1994. 

[8] Thomas Ball and James R. Larus. Efficient path profiling. In MICRO 29: Pro

ceedings of the 29th annual ACM/ IEEE international symposium on Microarchi

tecture, pages 46- 57, Washington, DC, USA, 1996. IEEE Computer Society. 

[9] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan

guage User Guide. Addison Wesley, 1999. 

80 



BIBLIOGRAPHY 81 

[10] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: 

A taxonomy. IEEE Software, 7(1):13- 17, January 1990. 

[11] Lawrence Chung and Kendra Cooper. A knowledge-based cots-aware require

ments engineering approach. In SEKE '02: Proceedings of the 14th international 

conference on Software engineering and knowledge engineering, pages 175- 182, 

New York, NY, USA, 2002. ACM Press. 

[12] C.Potts. Scenic: A strategy for inquiry-driven requirements determination. In 

Proc. RE'99: International Symposium on Requirements Engineering, Limerick, 

Ireland, June, 1999. 

[13] Jules Desharnais, Ridha Khedri, and Ali Mili. Representation, validation and 

integration of scenarios using tabular expressions. Journal of Formal Methods in 

Software Development. Special issue on tabular expressions, 2002. 

[14] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Derivation of feature 

component maps by means of concept analysis. Fifth European Conference on 

Software Maintenance and Reengineering, March 2001. 

[15] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in 

source code. IEEE Transactions on Software Engineering, 29:210 - 224, March 

2003. 

[16] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in 

source code. IEEE Transactions on Software Engineering, 29(3):210- 224, March 

2003. 

[1 7] Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Recovering software 

requirements from system-user interaction traces. In SEKE '02: Proceedings of 



BIBLIOGRAPHY 82 

the 14th international conference on Software engineering and knowledge engi

neering, pages 447- 454, New York, NY, USA, 2002. ACM Press. 

[18] M. A. Eshera and K. S. Fu. A similarity measure between attributed relational 

graphs for image analysis. In Seventh International Conference on Pattern Recog

nition, pages 75- 77, 1984. 

[19] M. A. Eshera and King-Sun Fu. A graph distance measure for image analy

sis. IEEE Transactions on Systems Man and Cybernetics, SMC-14(3):398- 408, 

May/ June 1984. 

[20] P.J. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, et al. The software 

bookshelf. IBM Systems Journal, 36(4):564- 593, November 1997. 

[21] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A cliche-based environment 

to support architectural reverse engineering. In IEEE International Conference 

on Software Maintenance (ICSM), pages 319- 328, 1996. 

[22] Haumer, P.K. Pohl, and K. Weidenhaupt. Requirements elicitation and valida

tion with real world scenes. In IEEE Transactions on Software Engineering 24, 

pages 1036- 1054, 1998. 

[23] Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements. Scenario-based 

analysis of software architecture. IEEE Softwar·e, pages 47- 55, November 1996. 

[24] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. Saam: A method 

for analyzing the properties of software architectures. In Proceedings of the 16th 

International Conference on Softwar·e Engineering, pages 81- 90, Sorrento, Italy, 

May 1994. 



BIBLIOGRAPHY 83 

[25] Rick Kazman and Marcus Burth. Assessing architectural complexity. In Pro

ceedings of the CSMR, pages 104- 112, 1998. 

[26] Rick Kazman and S. Jeromy Carriere. Playing detective: Reconstruction soft

ware architecture from available evidence. Journal of Automated Software Engi

neering, 6(2):107- 138., April1999. 

[27] Philippe B. Kruchten. The 4+ 1 view model of architecture. IEEE Software, 

12(6):42- 50, 1995. 

[28] Bruno T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph 

isomorphism detection. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 20(5) :493- 503, May 1998. 

[29] G. C. Murphy, D. Notkin, and K. Sullivan. Software refl.exion model: Bridging 

the gap between source and higher-level models. In In proceedings of the 3rd 

ACM SIGSOFT SFSE, pages 18- 28, 1995. 

[30] E. Nasr , L. McDermid, and G. Bernat . Eliciting and specifying requirements with 

use cases for embedded systems. In In Proceedings of the 7th International Work

shop on Object-Oriented Real-Time Dependable Systems (WORDS?2) , pages 

350- 357, J anuary 2002. 

[31] B. A. Nuseibeh and S. M. Easterbrook. Requirements engineering: A roadmap. 

In In A. C. W. Finkelstein (ed) "The Future of Software Engineering ". (Com

panion volume to the proceedings of the 22nd International Conference on Soft

ware Engineer·ing, ICSE 'OO) . IEEE Computer Society Press, 2000. 

[32] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Execut ion 

patterns in object-oriented visualization. In Pr·oceedings Conference on Object-



BIBLIOGRAPHY 84 

Oriented Technologies and Systems (COOTS '98}, pages 219- 234. USENIX, 

1998. 

[33] Jolita Ralyte. Reusing scenario based approaches in requirement engineering 

methods: Crews method base. In REP'99}, pages 305- 309, 1999. 

[34] Reasoning Inc., 700 E. El Camino Real, Mountain View, CA 94040, USA. Soft

ware Development Kit: RefinejC User 's Guide for Version 1.2, April 1998. 

[35] Tamar Richner and stephane Ducasse. Recovering high-level views of object

oriented applications from static and dynamic information. In ICSM '99: 

Proceedings of the IEEE International Conference on Software Maintenance, 

page 13, Washington, DC, USA, 1999. IEEE Computer Society. 

[36] Claudio Riva and J. V. Rodriguez. Combining static and dynamic views for 

architecture reconstruction. In Proceedings of the IEEE CSMR '02, pages 47- 55, 

2002. 

[37] K. Sartipi. Alborz: A query-based tool for software architecture recovery. In 

In Proceedings of the IEEE International Workshop on Program Compr·ehension 

(IWPC01}, pages 115- 116, Toronto, Canada, May 2001. 

[38] K. Sartipi, L. Ye, and H. Safyallah. Alborz: An interactive toolkit to extract 

static and dynamic views of a software system. In Proceedings of the ICPC'06, 

page to appear, June 2006. 

[39] Kamran Sartipi. Software Architecture Recovery based on Pattern Matching. 

PhD thesis, School of Computer Science, University of Waterloo, Waterloo, ON, 

Canada, 2003. 



BIBLIOGRAPHY 85 

[40] Kamran Sartipi and Kostas Kontogiannis. A graph pattern matching approach 

to software architecture recovery. In Proceedings of the IEEE International Con

ference on Software Maintenance (ICSM'01} , pages 408- 419, Florence, Italy, 

November 2001. 

[41] Kamran Sartipi and Kostas Kontogiannis. On modeling software architecture 

recovery as graph matching. In Proceedings of ICSM'03, pages 224- 234, 2003. 

[42] Kamran Sartipi, Kostas Kontogiannis, and Farhad Mavaddat. Architectural 

design recovery using data mining techniques. In Proceedings of IEEE CSMR 

2000, pages 129- 139, Zurich, Switzerland, Feb 29 - March 3 2000. 

[43] Kamran Sartipi, Kostas Kontogiannis, and Farhad Mavaddat. A pattern match

ing framework for software architecture recovery and restructuring. In Proceed

ings of the IEEE IWPC, pages 37- 47, Limerick, Ireland, June 2000. 

[44] Thomas Schiex, Helene Fargier, and Gerard Verfaillie. Valued constraint sat

isfaction problems: Hard and easy problems. In Proceedings of the IJCAI-95, 

pages 631- 637, 1995. 

[45] Michael Siff and Thomas W . Reps. Identifying modules via concept analysis. 

In ICBM '91: Proceedings of the International Conference on Software Mainte

nance, pages 170- 179, Washington, DC, USA, 1997. IEEE Computer Society. 

[46] A. Sutcliffe. Scenario-based requirements engineering. In Pr-oceedings, 11th IEEE 

International Requirements Engineering Conference (RE '03}, pages 320- 329, 

Monterey Bay, USA, 8-12th September 2003. IEEE Computer Society Press. 

[47] A. G. Sutcliffe. Scenario-based requirements analysis. Requirements Engineering 

Journal, 3(1), 1998. 



BIBLIOGRAPHY 86 

[48] Yiausyu Earl Tsai, Hewijin Christine Jiau, and Kuo-Feng Ssu. Scenario architec

ture- a methodology to build a global view of oo software system. In COMPSAC, 

pages 446- 451, 2003. 

[49] Vassilios Tzerpos and R. C. Holt. Acdc: An algorithm for comprehension-driven 

clustering. In Proceedings of the Seventh Working Conference on Reverse Engi

neering, pages 258- 267, 2000. 

[50] Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and 

Claudio Riva. Symphony: View-driven software architecture reconstruction. In 

WICSA '04: Proceedings of the Fourth Working IEEE/IFIP Conference on Soft

ware Architecture (WICSA '04}, pages 122- 132, 2004. 

[51] Aline Vasconcelos, Rafael Cepeda, and Cla'udia Werner. An approach to pro

gram comprehension through reverse engineering of complementary software 

views. In PCODA 2005: Program Comprehension through Dynamic Analysis, 

pages 58- 62, Pittsburgh, Pennsylvania, USA, 2005. IEEE Computer Society. 

[52] W. Wang, S. Hufnagel, P. Hsia, and S. M. Yang. Scenario driven requirements 

analysis method. In Proceedings of the Second International Conference on Sys

tems Integration, pages 446- 451, Morristown, NJ, June 15-18 1992. 

[53] Norman Wilde and Michael C. Scully. Software reconnaissance: mapping pro

gram features to code. Journal of Software Maintenance, 7(1):49- 62, 1995. 

[54] Steven G. Woods and Qiang Yang. Program understanding as constraint satis

faction. In Proceedings of Second Working Conference on Reverse Engineering, 

pages 314- 323, 1995. 



BIBLIOGRAPHY 87 

[55] J ingwei Wu and Margaret-Anne D. Storey. A multi-perspective software visu

alization environment. In Proceedings of the GASCON conference, pages 41- 50, 

2000. 

[56] J. A. Zachman. A framework for information systems architecture. IBM Systems 

Journal, page 26(3):276?92, 1987. 

[57] John. A. Zachman. A framework for information systems architecture. IBM 

Systems Journal, 26(3):276- 292, 1987. 

[58] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Applying 

webmining techniques to execution traces to support the program comprehen

sion process. In CSMR '05: Proceedings of the Ninth European Conference on 

Sojtwar·e Maintenance and Reengineering (CSMR '05), pages 134- 142, Washing

ton, DC, USA, 2005. IEEE Computer Society. 

[59] Hong Hui Zhang and Atsushi Ohnishi. A transformation method of scenarios 

from different viewpoints. In APSEC 2004, pages 492- 501, 2004. 

[60] H. Zhu and L. Jin. Automating scenario driven structured requirements engi

neering. In Proc. of COMPSAC'2000, pages 311- 318, Taipei, Taiwan, Oct. 2000. 

IEEE Computer Society Press. 


	Dezhkam_Nima_2006_master0001
	Dezhkam_Nima_2006_master0002
	Dezhkam_Nima_2006_master0003
	Dezhkam_Nima_2006_master0004
	Dezhkam_Nima_2006_master0005
	Dezhkam_Nima_2006_master0006
	Dezhkam_Nima_2006_master0007
	Dezhkam_Nima_2006_master0008
	Dezhkam_Nima_2006_master0009
	Dezhkam_Nima_2006_master0010
	Dezhkam_Nima_2006_master0011
	Dezhkam_Nima_2006_master0012
	Dezhkam_Nima_2006_master0013
	Dezhkam_Nima_2006_master0014
	Dezhkam_Nima_2006_master0015
	Dezhkam_Nima_2006_master0016
	Dezhkam_Nima_2006_master0017
	Dezhkam_Nima_2006_master0018
	Dezhkam_Nima_2006_master0019
	Dezhkam_Nima_2006_master0020
	Dezhkam_Nima_2006_master0021
	Dezhkam_Nima_2006_master0022
	Dezhkam_Nima_2006_master0023
	Dezhkam_Nima_2006_master0024
	Dezhkam_Nima_2006_master0025
	Dezhkam_Nima_2006_master0026
	Dezhkam_Nima_2006_master0027
	Dezhkam_Nima_2006_master0028
	Dezhkam_Nima_2006_master0029
	Dezhkam_Nima_2006_master0030
	Dezhkam_Nima_2006_master0031
	Dezhkam_Nima_2006_master0032
	Dezhkam_Nima_2006_master0033
	Dezhkam_Nima_2006_master0034
	Dezhkam_Nima_2006_master0035
	Dezhkam_Nima_2006_master0036
	Dezhkam_Nima_2006_master0037
	Dezhkam_Nima_2006_master0038
	Dezhkam_Nima_2006_master0039
	Dezhkam_Nima_2006_master0040
	Dezhkam_Nima_2006_master0041
	Dezhkam_Nima_2006_master0042
	Dezhkam_Nima_2006_master0043
	Dezhkam_Nima_2006_master0044
	Dezhkam_Nima_2006_master0045
	Dezhkam_Nima_2006_master0046
	Dezhkam_Nima_2006_master0047
	Dezhkam_Nima_2006_master0048
	Dezhkam_Nima_2006_master0049
	Dezhkam_Nima_2006_master0050
	Dezhkam_Nima_2006_master0051
	Dezhkam_Nima_2006_master0052
	Dezhkam_Nima_2006_master0053
	Dezhkam_Nima_2006_master0054
	Dezhkam_Nima_2006_master0055
	Dezhkam_Nima_2006_master0056
	Dezhkam_Nima_2006_master0057
	Dezhkam_Nima_2006_master0058
	Dezhkam_Nima_2006_master0059
	Dezhkam_Nima_2006_master0060
	Dezhkam_Nima_2006_master0061
	Dezhkam_Nima_2006_master0062
	Dezhkam_Nima_2006_master0063
	Dezhkam_Nima_2006_master0064
	Dezhkam_Nima_2006_master0065
	Dezhkam_Nima_2006_master0066
	Dezhkam_Nima_2006_master0067
	Dezhkam_Nima_2006_master0068
	Dezhkam_Nima_2006_master0069
	Dezhkam_Nima_2006_master0070
	Dezhkam_Nima_2006_master0071
	Dezhkam_Nima_2006_master0072
	Dezhkam_Nima_2006_master0073
	Dezhkam_Nima_2006_master0074
	Dezhkam_Nima_2006_master0075
	Dezhkam_Nima_2006_master0076
	Dezhkam_Nima_2006_master0077
	Dezhkam_Nima_2006_master0078
	Dezhkam_Nima_2006_master0079
	Dezhkam_Nima_2006_master0080
	Dezhkam_Nima_2006_master0081
	Dezhkam_Nima_2006_master0082
	Dezhkam_Nima_2006_master0083
	Dezhkam_Nima_2006_master0084
	Dezhkam_Nima_2006_master0085
	Dezhkam_Nima_2006_master0086
	Dezhkam_Nima_2006_master0087
	Dezhkam_Nima_2006_master0088
	Dezhkam_Nima_2006_master0089
	Dezhkam_Nima_2006_master0090
	Dezhkam_Nima_2006_master0091
	Dezhkam_Nima_2006_master0092
	Dezhkam_Nima_2006_master0093
	Dezhkam_Nima_2006_master0094
	Dezhkam_Nima_2006_master0095
	Dezhkam_Nima_2006_master0096
	Dezhkam_Nima_2006_master0097
	Dezhkam_Nima_2006_master0098
	Dezhkam_Nima_2006_master0099

