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Abstract 

Discretization is an important tool to transfer optimization problems 

that include differentiations and integrals into standard optimization prob­

lems with a finite number of variables and a finite number of constraints. 

Recently, Betts and Campbell proposed a heat-transfer optimization problem 

that includes the heat partial differential equation as one of its constraints, and 

the objective function includes integrals of the temperature function squared. 

Using discretization methods, this problem can be converted to a convex 

quadratic optimization problem, which can be solved by standard interior 

point method solvers in polynomial time. 

The discretized model of the one dimensional problem is further an­

alyzed, and some of its variants are studied. Extensive numerical testing is 

performed to demonstrate the power of the "discretize then optimize" . Then 

the heat transfer optimization problem is generalized to two dimensions, and 

the discretized model and computational comparisons for this variant are in­

cluded. 

Flexibility of discretization methods allow us to apply the same "dis­

eretize then optimize" methodology to solve optimization problems that in­

clude differential and integral functions as constraints or objectives. 
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Notation 
P: heated object 

P 0 : boundary region of P 

m: space dimension 

x: vector (x1 , x 2
, •• . , x 171f in m-dimensional space that illustrates the posi­

tion of the points in a heated object 

xk: kth component of the space vector x 

x: first component of the space vector x in 10 and 20 models 

y: second component of the space vector x in 20 model 

t: time variable 

'T: end of time period 

J(x, t): temperature at point x E P and timet 

g(x, t): lower-bound function for the temperature profile 

u(x, t): temperature at the boundary region, P 0 , at timet 

q0 : weight corresponding to the temperature of the boundary point u0 (t) in 

the lD problem 

qe: weight corresponding to the temperature of the boundary point Ut:(t) in 

the lD problem 

EP f / {Px: second order partial differential of J with respect to x 
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t.9 : ( s - 1)-th point in a discretized time interval 

u: vector of a.ll variables u(x, t)'s in a. discretized model 

f: vector of all variables J(x, t)'s in the discretized model 

h: k x k identity matrix 

ek: kth unit vector 
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Preface 
Optimization problems that include partial differential equations a.nd 

integrals a.rise in ma.ny area.s. Some of these problems, which include time 

variables can be solved using optimal control methods. Another approach 

to solve these problems is to approximate the involved functions and convert 

the problems to traditional optimization problems. Discretization methods 

can be used to approximate the differential and integral expressions. The re­

sulting optimization problems typically have a. large number of variables a.nd 

constraints. The coefficient matrices a.re usually large and sparse. Toda.y, ad­

vances in mathematical algorithms, software, and computer technology allows 

us to handle such large problems. 

An example of optimization problems that include integrals and par­

tial differential equations constraint is the hea.t transfer optimization problem, 

which is introduced by Betts and Campbell [3). To make optimal control meth­

ods applicable for this problem, they carefully chose the objective functions 

and the constraints. Their first step to solve the problem is to discretize the 

functions in space. Then Hamiltonian systems and adjoint variables [2] are 

used to derive explicitly the optimality conditions. The obtained problem was 

solved with §((llC§1 [4). This approach is called "optimize then discretize". As 

they observed, this method does not converge for even very small number of 

discretization points. They suggested in their paper that the "discretize then 

optimize" approach would work much better for this problem. 

The "discretized then optimize" methodology for the Betts-Campbell's 

heat transfer optimization problem is elaborated more in this thesis. This 

1Sparse Optimal Control Software (§I(])C§) is a sequential optimal control optimization 

package. 
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method allows us to convert the heat transfer optimization problem into a 

standard convex quadratic problem with linear constraints. The large size 

of the coefficient matrices motivated Biegler and Kameswaran to compactify 

the problem [7]. However, our computational results show that the compact 

model is actually numerically more difficult to solve than the original dis­

cretized model. Some of the assumptions and earlier work on this problem are 

also studied and evaluated in more details. The constraint qualification [10] 

that has been investigated for this problem is not necessary. The constraint 

qualification for interior point methods is not needed for linearly constrained 

convex quadratic problems. 

The heat transfer optimization problem can be generalized to two di­

mensions. In this work, the optimization model for the two-dimensional prob­

lem is introduced, and then the problem is converted to the model variant 

for which the best computational results are obtained in the one-dimensional 

case. The two-dimensional problem is also solvable with standard interior 

point solvers, but due to the increasing size of the coefficient matrices, the 

discretization can not be a..c;; fine as in the case of the one-dimensional problem. 

"Discretize then optimize" approach is a general powerful method, and 

can be applied to a large class of problems. Some possible variants and gen­

eralizations are introduced at the end of the thesis. These problems can be 

solved by the "discretize then optimize" strategy that is the subject of future 

research. 

XVI 



Chapter 1 

Heat Transfer Problem 
0 

1.1 Introduction 

Heat transfer is one of the important transient forms in many problems in me­

chanical and chemical engineering. In general, the internal transfer of energy 

by the flow of heat is called heat transfer [5]. Thermal energy is transported 

in three different modes: CQilduction, convection, and radiation. ® 

Heat conduction is the mechanism of internal energy exchange from one 

body to another, or from one part of a body to another. In this thesis, by heat 

transfer we mean heat conduction through a solid, smooth, isolated object. 

This transfer occurs because of temperature differences in different parts of 

the object. The temperature difference is due to heating or cooling of the 

boundaries. More specifically, the temperature at the boundaries is accessible 

to be changed, and this provides us a control for the temperature of the other 

parts of the body. We are seeking optimal changes in the boundaries, so that 

every part of the object remains as hot (or cool) as desired, and the energy 

needed to maintain that stays at minimum. 

1 
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1.2 Heat Equation 

Consider an m-dimensional object P. Let x = (x1 , · · • , xmf be a vector of 

the m-dimensional space. x E P indicates that the point positioned at x, 

belongs to this object: 

P = {x E IRm I x E "the object" }. 

Assume that this object is heat-isolated from its surroundings except for some 

specified parts of its boundaries P0
, where 

Although the object P could have any shape, to keep the problem as simple 

as possible and to prevent complication of different shapes and heat flows 

through the body, we assume that the object is just a solid bar, which is 

smooth on the outside, and the rate of heat flow is the same through its body. 

We are interested in observing the temperature of this bar through a. time 

period, say [0, T], while we want certain constraints to be satisfied. Denote 

the temperature at each point x of this bar and each time t by f(x, t). 

Since the bar is solid, heat transfer through this bar is by means of 

conduction. Heat conduction means that the heat equation 

is satisfied [5], where f is the temperature function, t is time, and "" is the 

thermal diffusivity, a material constant. Hence, we have to satisfy the heat 

equation constraint for the bar, 

of(x, t) = ~ fP f(x, t) 
Dt ~ [)2;ci ' 

~=1 

(1.1) 

2 
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pO f(x, t) 

Figure 1.1: A bar heated at its ends. 

for all x E P and t E [0 , T], where P is the observed object, and T is the 

final time when the observation is done. By []2 f / EP x we mean the second­

order partial differentiation off with respect to x. In the case when with this 

partial differential equation (PDE) we are given initial conditions and also 

boundary conditions , the problem is a classic heat transfer problem, which is 

well studied in the literature [6]. In one dimension, this PDE can be solved by 

separation of variables , which will provide us with an analytical solution, and 

hence the temperature function f(x , t) is known. 

Assume now that boundary conditions are not given. We consider the 

temperature on the boundaries to be the control variables. The boundary 

points of the bar are where the bar is connected to a heating/ cooling device. 

The rest of the bar has no connection to the heat source devices, and there 

is no heat transfer to the environment through any other parts of the bar. 

Now, according to the heat equation (1.1) and the given initial conditions, 

the temperature at each points of the bar is a function of time. To avoid 

unnecessary complications, we assume that the initial condition is zero for all 

3 
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of the points in the bar for the time t = 0, that is, J(x, 0) = 0. 

Moreover, we would like the temperature of the bar to be above (or 

below) some specific temperature function during the time interval. In other 

words, we require that the temperature at each points of the bar satisfy an 

inequality constraint, say 

f(x, t) ~ g(x, t), v x, v t, 

where g(x, t) is a given function in time and space. However, by setting only 

lower-bound condition, many answers might satisfy the constraints. For ex­

ample, we can heat up the bar to a very high temperature, and then we are 

sure that the lower bound is satisfied. Note that excessive heat might cause 

deformations in the bar, might change its physical properties, or even make 

the bar to melt down. In practice, it is reasonable to seek a temperature pro­

file that is not higher than what is necessary. This goal, usually arises from 

economical restrictions, as well as natural and engineering limitations. 

To satisfy these limitation and to prevent overheating, we should set an 

appropriate objective function that lowers the temperature, and then try to 

minimize this function. There are many candidates for the objective function. 

It can be the total consumed energy to heat or cool down the bar. Minimizing 

this function will minimize the total cost, while keeping the bar above the 

lower bound profile, and hence, the obtained temperature, is the lowest possi­

ble. Another choice for the objective function can be the sum of the absolute 

values of all the temperature overshooting in time and space. This will give 

us a measurement of the energy, that is transferring through the bar. By min­

imizing this objective, like minimizing the consumed energy, we minimize the 

total energy throughout the bar. Furthermore, the objective function can be 

4 
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chosen as the worst overshooting of the temperature profile of the bar com­

pared to the lower bound profile. In this case, we are trying to obtain the 

temperature of the bar as close to the lower bound profile as possible. The 

temperature of the bar is an approximation of the temperature profile, while 

satisfying the heat equation and also the initial conditions. 

In all the cases, what we are looking for are the values of the control 

variables, that is, the temperature values at the boundary. By knowing them, 

we know the heating/ cooling pattern at the boundary. 

1.3 The Optimization Model of the Problem 

First, as the objective function, we choose the sum of all the temperature 

values squared, over time and space. Since time and the space are continuous 

intervals, the objective is the integral of the temperature function over time 

and all spatial coordinates.l The objective is 

fT 1 J2 (x, t)dxdt + {T 1 u2 (x, t)dxdt, 
Jo xEP Jo xEP 

where n(x, t) is the temperature function at the boundary points of the object, 

and x E P 0 • The boundary points of P are the control points in this problem. 

The heat equation constraints, (1.1), is a second order partial differen­

tial equation in time and space. The initial setting for this partial differential 

equation for simplicity is assumed to be zero for all points at time 0: 

f(x,O) = 0, VxEP. 

Moreover, the temperature profile should satisfy a lower bound inequality. 

1 As it is shown later, this choice will lead to a convex quadratic optimization problem. 

5 
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Therefore we have 

f(x, t) ~ g(x, t), VxEP. 

Now, having all the constraints and the objective, we can formulate the 

optimization model of this problem 

min 
f(x,t),u(x,t) 

s.t. 

T T 
'lj!(X, t) = r r j 2(x, t)dxdt + r r u2 (x, t)dxdt 

Jo lxEP • Jo lxEP 

of(x, t) = ~ 82 f(x, t) 
8t ~ ()2xi ' 

~=1 

f(x, t) ~ g(x, t), VxEP 

f(x, 0) = 0, VxEP 

f(x, t) = u(x, t), Vx EP0 

V t E [O,Tj. 

The above model is a general model for this heat transfer problem, 

where the lower bound function g(x, t) can be any function. Further, there 

is no restriction on the dimension of the heated object, or the shape of it, 

although that surely affects the numerical results. There are variety of choices 

for the objective function and, to use the methodology studied in this work, 

even the partial differential equation does not have to be the heat equation. 

The boundary constraints and initial conditions can be different too, and yet, 

the same solving strategy is applicable for all of these models. 

6 



Chapter 2 

The One-Dimensional Case 

2.1 The One-Dimensional Model 

The optimization model that we specified in Section 1.3 is rather general. For 

detailed study and numerical experiments, we need to be more specific about 

the heated object and the constraints. First, to keep the model simple and to 

facilitate numerical experiments, we assume that the bar is one dimensional, 

n = 1. In other words, we assume a very thin, but long bar that can be 

considered as a one dimensional object. This is a bar with length fxl and 

almost no width or height, that is, P = [0, £x1]. 

This assumptions simplify the problem we are interested in, signifi­

cantly. The points in the bar have only one coordinate, x = ( x 1
). For sim­

plicity in notation, let us denote x := x1 and f := fxl in the one dimensional 

case. Therefore, the temperature function, f(x, t), depends only on two coor­

dinates, x and t. The boundary points of this bar are just the two endpoints of 

it, namely x = 0 and x = R. The temperature at these two points are the con­

trol variables at each given time point. Let us denote them by tt0 (t:) = f(O, t) 

7 
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·uo ( t) 
f (x, t) 

·ue( t) 

Figure 2.1: One-dimensional bar which is heated at both ends. 

and ue(t) = f(£, t) , respectively. 

The heat equation simplifies to two terms 

of(x , t) 82 f(x , t) 
8t 82x 

(2. 1) 

The initial conditions for t his partial differential equation are 

f(x , 0) = 0, '1/ X E 'P = [0, £] . 

The goal is to find u0 (t) and ue(t) so that the following objective function 

obtains its minimum: 

The first part of the objective is the integral of t he temperature squared over 

t ime and space for internal points of the bar. The integral of the temperature of 

the two boundary points , has been separately formulated in the second term, 

where the constants q0 and qe are two fixed weight numbers corresponding 

to the endpoints x = 0 and x = £, respectively. Thus, we have the one­

dimensional heat transfer optimization problem, where P = [0 , £] , is 

8 



M.Sc. Thesis - Kimia Ghobadi M eM aster - Mathematics and Statistics 

uo( t) 
f (x, t) 

u.e( t) 

Figure 2.2: The lD bar wit h the lower bound temperature profile. 

min 'lj;(x, t) = rOT roe j 2 (x , t)dxdt + rOT [qou6(t) + qeu~(t) ] dt 
uo(t),ue(t) Jo Jo Jo 

s.t. 
8f(x , t) 82 f(x , t) 

at 82x 

f( x, t) ~ g(x, t) , 

f( x, 0) = 0, 

f(x, t) = u(x, t), 

V x E [0 , £], V t E [0 , T] 

V x E [0 , £], V t E [0 , T] 

V x E [0 , £], V t E [0 , T] 

V x E P 0
, V t E [0, T ] 

The heat equation is a PDE that is well studied in the applied mathe­

matics literature [6]. An analytical solution can be obtained for this equation 

when the initial and the boundary conditions are given. However, in the cur­

rent case, we do not have the boundary conditions as given data. Moreover , 

there is a temperature lower bound constraint , which has to be satisfied for 

this problem. Therefore, there is no appropriate analytical method to solve 

9 
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this problem, and we need to solve this problem by numerical methods. How­

ever, the time and the spatial intervals are continuous, which contain infinite 

number of points. Hence, an approach to approximate the objective function 

and the functions in the constraint set is through discretization. After dis­

cretizing in space and time, we can obtain finite term approximations of the 

objective function and the constraints. 

First we apply discretization in space and afterwards discretization in 

time to obtain a fully discretized problem. In classical optimal control meth­

ods, which concern optimization problems with partial differential equation 

constraints, one can write the continuous optimality conditions first and then 

either discretize them or discretize a functional analytic method for solving 

the necessary conditions. However, the optimal control approach does not 

work for this problem. Betts and Campbell showed in their report [3] that the 

numerical results from optimal control are not satisfying. They have also cho­

sen a specific lower-bound function and objective function carefully, to ensure 

applicability of optimal control methods. On the eontrary to discretization 

methods, optimal control methods are highly sensitive to the choice of these 

functions. 

2.2 Spatial Discretization 

As a first step in discretization, we discretize the problem in space. The length 

of the bar is £. Without loss of generality, let the far left point of the bar be 

at position 0, and the right end of the bar be at position £. Although in 

general many discretization methods [12] can be applied here, for simplicity, 

we take na, to be the number of equally spaced spatial discretization points, 

10 
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while taking equal steps of size 8 = f/nx. Denote xi = i8, i = 0, 1, ... , nx, to 

be the ith discretization point. Therefore we have f(x0 , t) = f(O, t) = 'uo(t), 

and .f(xn,c' t) = .f(£, t) = ue(t). 

Now we should approximate the objective function and the constraints 

using these nx points. For the objective function, we use the trapezoidal 

method [1 J to approximate the space dependent integral: 

Assume that the weight numbers of the endpoints, q0 = qe, are equal to each 

other, and denote the common value by q. Now substituting the above ap­

proximation in the objective function and reordering the terms with u0 and ue 

gives us 

In the constraints, the partial differential equations (2.1) are of the 

second order in space and the first order in time. To approximate the spatial 

dependencies in the PDEs, among all possible approximation methods [1], we 

11 
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choose the second-order finite difference method. For the inner points we have 

aj(xi, t) f(:ci-1, t)- 2f(xi, t) + f(:ci+l, t) 
-at 

where i = 2, ... , nx - 2. The approximations that include the endpoints are 

aj(x1, t) uo- 2f(xl, t) + j(x2, t) 
-at 52 

aj(:tnx-1> t) f(xnx-2> t)- 2j(xnx-1> t) + Ue 
at 

Now we have a system of ordinary differential equations. 

In the lower-bound constraint, we only consider the value of the func­

tions at the discretized spatial points, x0 , ... , Xn,· Thus, we have 

0 :::; j(xi, t) - g(xi, t), 

0:::; u0(t)- g(O, t), 

i = 1, ... 'nx- 1 

0 ::; 'Ue(t) - g(f, t). 

Therefore, the spatially-discretized heat transfer optimization problem is 

mm 
uo(t),ut(t) 

s.t. 
aj(xl, t) ua(t)- 2j(xi, t) + j(x2, t) 

-at 82 

EJj(xi, l) f(xi-1, t)- 2f(xi, t) + f(xi+I, l) 
-at 82 

aj(xnx-1, t) f(xn.,-2, t)- 2f(xn,-l, t) + ue(t) 
-at 82 

f(xi, t) ?: g(x:i, t) 

uo(t) ?: g(O, t) 

ue(t) ?: g(f, t) 

12 
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f(xo, t) = uo(t) 

f(xn, t) = ·ue(t) 

.f(xi, 0) = 0 

for all t E [0, T]. 

2.3 Time Discretization 

i = 0, ... , nx, 

Now we can proceed to discretize this problem in time. Again, among all 

possible distribution of the discretization points, we take N equally distributed 

discretization points in the time interval [0, T]. Since we are taking steps with 

equal lengths, the step size is h = T / N. Denote the temperature function 

for these points by .f(xi,ts) = f(xi, (s- l)h), uo(ts) = u((s- l)h), and 

ue(ts) = ue( (s- l)h). 

To approximate the time-dependent integrals in the objective function, 

we use the rectangular rule [1]. (That is assuming the value of the function in 

an interval is the function value at the far left point of the interval). Therefore 

the objective function (2.3) is approximated as 

'l/'(x, t) ~ h8 t 'f /2 (xi, ts) + h ( ~ + q) t [u6(ts) + u~(ts)]. (2.4) 
s=l ~=1 s=l 

There are only quadratic terms in this function with positive coefficients, hence 

a convex quadratic function. 

!<or the ordinary differential equations, we use the first order finite 

13 
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difference method. The approximated heat equation in time and space is 

f(xl, ts+l)- f(xl, ts) 
h 

u(ts)- 2j(xl, ts) + j(x2, ts) 
J2 s = 1, ... ,N 

f(xi, ts+l)- f(xi, ts) f(xi-1 1 ts)- 2f(xi, ls) + f(xi+l, ts) 
J2 s=1, ... ,N 

h 
i = 2, ... ,nx -1 

f(xnxl ts+l)- f(xn,, ts) = f(xn,-2, t)- 2f(xn,-I, t) + uc(t) = 1 N 
h J2 's , ... , . 

So we obtain a rather large (nx + 1) x N system of linear equations. The lower 

bound functions and the initial condition functions are also approximated by 

taking the function value only at the discretized points. Therefore, the fully 

discretized optimization problem is 

min 
uo,ue 

s.t. 
j(x1, ts+l)- f(xl, ts) u(ts)- 2f(xl, ts) + j(x2, (.) 

-h J2 
f(xi, ts+l) - f(xi, ts) f(xi-1, ts) - 2f(xi, ts) + f(xi+l, ts) 

h 
i = 2, ... , nx- 1 

f(xn,, ts+l)- J(xnxl ts) f(xnx-2' t)- 2f(:rnx-b t) + uc(t) 
-h J2 

uo(ts)- g(O, ts) ~ 0 

Uf.(ts) - g(nx, ts) ~ 0 

f(xi, ts)- g(xi, ts) ~ 0 

f(xi, t1) = 0 

uo(ti) = 0 

uc(tl) = 0, 

14 
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for all s = 1, ... , N. 

Since we have a convex quadratic objective function here, and all of 

the constraints are linear, the resulting problem is a convex quadratic opti­

mization problem. This class of problems can be solved in polynomial time by 

using interior point methods [11]. Moreover, since the problem is convex, the 

achieved optimum is guaranteed to be the global minimum for this problem. 

2.4 A More Specific Example 

To obtain numerical results, we need to specify the functions that are involved 

in the optimization model. We consider this problem with a specified lower 

bound constraint, and time and space intervals, and analyze the results further. 

The specified functions and intervals that we use here have been introduced 

by Betts and Campbell [3]. They chose these functions to ensure that optimal 

control methods are applicable ac;; well. 

Assume that the length of the bar is 7f. We are observing the tempera­

ture of this one dimensional bar during the time period [0, 5]. We also require 

that the temperature satisfy the lower-bound constraint 

f(x,t) 2::g(x,t)=c[sin(x)sin(~t) -a] -b, (2.6) 

with a = 0.5, b = 0.2, and c = 1. Thus, we have 

g(x, t) = sin(x) si~ ( ~t) -0.7. 

By these assumptions, we have £ = rr, T = 5, 1t£(t) - u'Tr(t), and 

8 = 1r /nx. Thereby, the optimization problem is 

min 
uo(t),u"(t) 

15 
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s.t. 
aj(x, t) ()2 f(x, t) 

-at EJ2x 

f ( x, t) 2:: sin ( x) sin ( ~t) -0. 7 

f(:c, 0) = 0 

f(O, t) = uo(t) 

f ( 1f, t) = u1T ( t) 

\1 X E [0, 1rj, \1 t E [0, 5] 

\1 .1: E [0, 1rj, \1 t E [0, 5] 

\1 X E [0, 1rj, \1 t E [0, 5] 

\1 t E [0, 5] 

\1 t E [0, 5]. 

The solution strategy is exactly the same for this problem as outlined 

in Sections 2.2 and 2.3. After discretizing in space, we use the second-order 

difference method to approximate the partial differential equation. The inte­

gral in the objective function is approximated by the trapezoidal method. The 

rest of the functions are just discretized to their values at the selected points 

in space. 

After space discretization, Betts and Campbell introduced a new vari­

able T for time [3]. This new variable might have improved the results in 

optimal control methods, but it seems that it is merely scaling when using 

discretization method. Regardless, in the one dimensional case, we use this 

new variable too, to follow the Betts and Campbell's model. Denote T = tj 62 . 

The time interval and the derivatives in terms of T are 

0 ::; t ::; 5 -t 0 ::; T ::; 58-2 
-t T E [0, T'] = [0, 58-2

] 

at '* ar = fJ2 -t ar = 8-2at. 

By the above expression, the semi-discretized objective function (2.3) 

16 
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can be written in terms ofT as 

·1/J(x, t) = 6 {
5 I:1 

f 2 (xi, t)dt + (~ + q) {5 

[u6(t) + ·u;(t)] dt 
Jo ~=l Jo 

="'1"'-'}; f'(x;, r)dr + (.r~ + q) ['_, [u~(r) + u;(r)] dr. 

This change of variable allow us to eliminate the denominator of the equality 

constraints. The ordinary differential equations of the internal points of the 

bar in terms of T are as follows 

Df(xi, T) Df(xi, T) Dt 
-DT at DT 

0 f (Xi, T) ( ) ( ) ( ) ::::} [)T = f Xi-1, T - 2f Xi, T + f Xi+l' T . 

Noting that t = 6- 2
T, the lower bound function and the the rest of 

the constraints can be written in terms of T as well. Hence, the optimization 

problem has the form 

min 
uo(r),u,(r) 

53 
{

58
-

2 f j 2(Xi, T)dT + (~ + q) ro-2 

[u6(T) + u;(T)] dT 
lo ~= 1 lo 

s.t. 

f(xi, T) ;::: sin (i6) sin ( 7fb;27
) - 0.7 

uo(T) ;::: -0.7 

u1r(T) ;::: -0.7 

17 
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f(xo, T) = uo(T) 

f(::cn, T) = u1r(T) 

f(xi, 0) = 0 i = 0, ... , nx 

Before continuing to discretize the problem in time, let us simplify it 

further. Note that the bar and the temperature along the bar are symmetric 

[7]. Taking advantage of this symmetry, the problem can be simplified further. 

Biegler and Kameswaran simplified the model using this symmetry [7]. Thus, 

we can solve the problem only for one half of the bar, and then the temperature 

of the other half would be symmetric to the solution that we have obtained for 

the first half. Since both ends of the bar and every point with equal distance 

from the nearest endpoint have the same temperature, we have 

uo(T) = u1r(T) = u(T), 

f(xi, T) = f(:r;n-i, T). 

Assume that the number of space discretizing points, nx, is even. Then 

the number of points in space reduces to ~' where x~ denotes the middle 

point of the bar. The sum over the temperature of all points in the objective 

function reduces to 

i=l 

Also, the equality constraint for the (~ -1)-th point in space simplifies too, 

since f(x?!:f_ 1, t) = f(.T~+l, t). 
By this simplification, the number of the ordinary differential equation con­

straints, the boundary, and the initial conditions reduce to half. The opti­

mization model of the problem for the points in the first half of the bar is 

18 
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mm 
u(T) 

s.t. 

[z ~
1 

/
2

(.•;, T) + f2(x~, T)] dT 

+282 (~ + q) 158

-

2 

[u6(7) + u~(7)] dT 

fJj(x1, 7) 
07 

= uo(7)- 2j(:1;1, T) + j(x2, 7) 

fJj(xi, T) ( ) ( ) ( ) 
OT =! Xi-1,7 -2! X[,T +! Xi+1,7' 

fJj(x!!L, 7) f); = 2j(x~-1,7)- 2j(x~,7) 

1r0-2T 
f(xi, T) ;?: sin (iJ) sin (-

5 
-)- 0.7, 

uo( 7) ;?: -0.7 

.f(x0 , T) = 'U(7) 

f(xi, 0) = 0 

0:::; 7:::; 58-2. 

. nx 
z=2, ... , 2 -1 

. nx 
't=l, ... ,2 

. nx 
't=0, ... ,2 

Now we can discretize the simplified problem in time too. As described 

in the previous sections, let the time discretization number be N. Then the 

time step size is h = T' IN = M-2 IN, where T' = M-2 . To approximate the 

integrals in the objective function, we use the rectangular method, as in (2.5). 

The equality constraints are approximated by a first order finite difference 

method, as described in Section 2.3. The approximation of the rest of the 

constraints is straightforward. Note that the lower bound constraints are now 

bounding the value of the function at some points and therefore yield only lower 

bounds for some variables. Therefore, by substituting the new function in (2. 7) 

and considering the fact that the number of the spatial points are reduced to 

19 
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half, we have the fully discretized model of the heat transfer optimization 

problem as 

s.t. 

. . . (n<52(s- 1)h) f(xi, ts) :2: sm (z<5) sm 
5 

- 0.7 

'U(ts) :2: -0.7 

f(xo, ts) = 'U(ts), 

f(xi, 0) = 0 

where V s means s = 1, ... , N. 

. 1 nx V 
2= , ... ,2, s 

Vs 

Vs 

. rtx 
'/, = 0, ... '2' v s, 

This discrete problem is an approximation of the original continuous 

problem. An upper bound for the error that has been made by this approxima­

tion can be easily computed from the known errors of the trapezoidal method, 

rectangular method, and finite difference methods. Calculating the total error 

for this problem shows that the order of the error in space is 1/n;, and the 

order of the error in time is 1/ N. 

20 
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2.5 Matrix Form 

Now that we have the problem with finite number of constraints and variables, 

we write it in matrix form, so that we can apply standard optimization solvers 

to solve the problem numerically. For this purpose, we write all the variables in 

a vector form. To keep consistency with the previous notation, we introduce 

two vectors of variables at this point. They can be merged together easily 

when necessary. Let vectors u and f be 

and 

where 

UT = [u(tr), ... , u(tN )] 
lxN 

rr = [rr e 
1 ' 2 ' r~J , 

2 lxN!b1. 
2 

. nx 
z=l, ... , 2 . 

(2.7) 

(2.8) 

By having the vectors of the variables, we can derive the appropriate objective 

and constraints matrices. Denote IN to be the N x N identity matrix and 

consider the following diagonal matrices H and Q 

~Nx~N 

It is easy to see that the objective function can be written a.c;; 

21 
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This objective function is clearly in the form of a convex quadratic function, 

where the coefficient matrices are diagonal. Now consider the discretized heat 

equation constraints for 8 = 1, ... , N as 

j(~r:1, ts+l) + (2h- 1)/(xl, ts)- hu(t8 )- hj(x2, ts) = 0, V 8 

f(xi, ts+l) + (2h- 1)/(xi, t.9)- hf(xi-1> ts)- hf(xi+l> ts) = 0, V 8 

. nx 
't = 2, ... ,2 -1 

f(x!!f, ts+l) + (2h- 1)/(x!!f, ts)- 2hf(x!!f-1> ts) = 0, V s. 

These ~ x N set of equations can be written in matrix form as 

Lu + Gf1 + Lf2 = 0 

2Lf!!JL_1 + Gf!!JL = 0 
2 2 ' 

where the matrices L and G are defined as 

0 1 

-h 0 2h -1 · .. 
L= and G= (2.9) 

-h 0 2h -11 
NxN NxN 

The equality constraints in this problem are the constraints deducted from the 

heat equation and the initial condition constraints. We write them in a matrix 

22 
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form by using the matrices 

GL 
L 

L G L 
0 

A= and B= 

L G L 
0 

2LG !!,fNxN 

!!,fNx'*"N 

The first row of G has the only nonzero number in each block of [G L] or 

[£ G L] and represents the initial conditions of the bar. Hence, using these 

large, but very sparse and nicely structured matrices, the initial conditions 

and the heat equation constraints can be given as 

Af+Bu = 0. 

To write the inequality constraints, let us introduce the constant vectors 

di corresponding to each internal spatial point xi, defined as follows 

0.7- sin (io) sin ( 1r8;h x 0) 

0.7- sin (io) sin ( 1r8;h x 1) 

0.7- sin(io)sin ( 1r~:h x (N -1)) 
Now let us define vector d a..~ 

23 
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Moreover, suppose that the boundaries lower bound vector c is defined as 

cT = [o.7, ... , 0.7] . Then, the inequality constraints can be written as 
lxN 

f + d 2: 0, 

u + c 2: 0. 

Now the discretized optimization problem is in matrix form as 

min 
u,f 

s.t. Af+Bu= 0, 

f + d 2: 0, 

u + c 2: 0. 

This formulation shows clearly that the objective function is convex 

quadratic. Also, all the constraints are linear, and therefore the problem is a 

convex quadratic optimization problem. It guarantees that once an optimum 

solution is found, it is the global optimum for this problem. Moreover, we 

have shown how discretization can be used to transfer the original nonlinear 

problem into a convex quadratic problem with a very sparse matrix structure. 

This problem can be solved using quadratic or general nonlinear optimization 

packages in polynomial time using interior point methods [11 J. 

24 



Chapter 3 

Computational Experiments 

3.1 Sparse Model 

As it was shown in Chapter 2, the nonlinear, one-dimensional heat transfer 

problem can be converted to the following convex quadratic problem, when we 

use discretization in both space and time. The problem is now fully discretized 

with finite number of variables and constraints. 
0 

mm 
u,f 

s.t. Af+Bu=O, 

f + d 2 0, 

u+c 2 0. 

(3.1) 

Betts and Campbell noticed that, in the solution of this problem, the 

only spatial point at which the inequalities are active, is the middle point 

x '*, where nx is an even number [3]. Thus, we can eliminate the inequality 

constraints for the rest of the points and only keep 

f= +d= > 0. 
2 2 - ' 

25 
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in the constraint set. By f~ we mean the corresponding variables of the spatial 

point ~, , which is the (If)-th block of size ( N x 1) from the vector f, whereas 

there are N variables for each spatial point due to the N discretization points 

in time. Similarly, by d¥ we refer to the corresponding rows of the vector 

d, the lower bound function, which give us the appropriate inequalities for 

the (~" )-th point. Hence, the further simplified heat transfer problem for the 

given symmetric temperature profile function is 

min 
u,f 

1frQf 1 TH - +-u u 
2 2 

(3.2) 

s.t. Af+Bu=O, 

r~ +d~ > o. 
2 2 -

A good nonlinear or quadratic optimization package should be able to 

solve this problem [11]. We used the package MOSEK to solve this problem 

efficiently. Note that all the coefficient matrices in this problem are large 

in size, but also sparse and structured. In particular, the objective coefficient 

matrices II and Q are only diagonal matrices of size ( N x N) and (If N x If N), 

where nx is the number of discretization points in space, and N is the number 

of discretization points in time. Further, the constraint coefficient matrices A 

and B are structured, sparse matrices of size ( "~x N x If N) and (If N x N). 

The matrices A and B are almost diagonal with four nonzero diagonals in the 

matrix A, and one nonzero diagonal in the matrix B. Because of the sparsity 

of the coefficient matrices, we refer to model ( 3.1) as the "sparse full model" , 

and we call model (3.2), which has only the inequality constraints for one 

spatial point, as the "sparse model". 
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A 

r-1 

:Zh-1 1 
. . 
2h-l 1 

0 
-h () 

-h 0 

0 
-h 0 ·. ·. 

-h 0 
1 

Zh-1 1 

'2h-l 1 

0 
-h 

0 
-b 

McMaster- Mathematics and Statistics 

0 

-h 0 

•. 

1 0 
0 2h-l 1 -h 0 

•. 
-h 0 '2h-i 1. -h 0 

0 1 
-2h 0 2h-1 1 . ·. 

• :2.; o '211-i 1 
&!\T X &f\T 2 1\ 2 i.V 

Figure 3.1: The coefficient matrix of the equality constraints. 

3.2 Compact Model 

Although the matrices are sparse, their size grows rapidly as discretization in 

time or space becomes finer. To improve the problem formulation for large 

size matrices, Biegler and Kameswaran [7] suggested to convert the so called 

sparse model to a more compact model. In that model, the only variables are 

the control variable1 u, which are indeed the variables that we are looking for. 

In this case, the size of the problem does not depend on the number of the 

spatial discretization points, but only on the number of the time discretization 

points. To write the variables in terms of u, we utilize the equality constraints. 

First, note that A is an invertible matrix.2 Hence, we can write f in terms of 

1The vector of the time discretized temperature function u(t) at the boundary points. 
2See Appendix A in Biegler and Kameswaran's paper [7] 
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u as 

Let us denote the matrix A-lB by W, where 

The matrix W is of size ( !f N x N), and each Wk corresponds to each of the 

!f points in space, and has the size (N x N). Let us denote the objective 

coefficient matrices by R, where 

Now we can write a compactified heat transfer problem in terms of u as 

1 
min -uTRu 

u 2 

s.t. W!!:;n.u- C!!:;n. > 0. 
2 2 -

(3.3) 

Note that R, compared to Q and H, is a much smaller, but also a much 

denser matrix. The size of R is only related to the number of discretization 

points in time, that is, R is of size (N x N). For further reference, we call this 

model, "the compact model". 

As all the matrix computations for this problem are done in MATLAB, 

to obtain the matrix W = A-1 B, one can simply use MATLAB's linear system 

solving function, "\". However, this operator might be demanding in time 

and memory. Biegler and Kameswaran introduced an alternative approach to 

calculate W by backward calculation of its blocks. That is, first calculating 

W-"f, then W!'f-l and so on. This procedure can be found in Appendix A 

of their paper [7]. The label "compact model using the Biegler's procedure" 
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refers to the compact model, where the inverse matrix is calculated using the 

Biegler and Kameswaran's procedure, while the results obtained using MAT­

LAB functions are identified by "compact model using the MATLAB operator 

"\"". 

3.3 Computational Results 

All the numerical results in this thesis are produced on a Pentium 4 desktop 

computer, with 760MB memory and 3.06 GHz CPU. The optimization solver 

is the quadratic optimization package of MOSEK, version 4.0. The MATLAB 

interface for this solver is used, and all the matrix preparations have been done 

in MATLAB version 7.01. 

By "it." in the tables we mean the number of iterations that MOSEK 

takes to obtain a solution. The "CPU" label in the tables shows the CPU time 

returned by MOSEK, that is, excluded the time that MATLAB matrix setup 

needs. The word "total" is used to refer to the actual time needed to obtain 

the results, including both the preparation time in MATLAB and also the time 

that MOSEK needs to solve the problem. All the times reported in the tables 

are in seconds. 

Table 3.1 represents results for the sparse model (3.2). The number of 

spatial discretization points is fixed to n = 10 in this table, and the number of 

time discretization points, N, grows from 1000 to 64000. Actually, time dis­

cretization can get as fine as 130000, and still MOSEK can solve the problem 

without difficulty, on the same computer. MOSEK can handle sparse matri­

ces efficiently, and although the problem becomes quite large, the results are 

obtained rather quickly. Note that, for N = 32000, the size of the objective 
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N objective equality infeas. it. CPU total 

1000 4. 7368855723e-001 2.40e-014 16 2 2 

2000 4. 7419864510e-001 4.16e-015 19 3 3 

4000 4. 7 445343255e-00 1 1.21e-015 18 5 6 

8000 4. 7 458076680e-001 1.66e-015 24 13 14 

16000 4. 7 464441791e-001 5.63e-015 23 28 29 

32000 4. 7 467624130e-001 1.05e-014 20 43 45 

64000 4. 7 469215293e-001 2.02e-014 26 118 122 

Table 3.1: Computational results with the sparse model, nx = 10. 

coefficient matrix is 192000 x 192000, and the size of the constraints coeffi­

cient matrix is 160000 x 192000. The number of variables is 192000 and the 

number of constraints is 160000. The total solution time for this problem is 45 

seconds. The objective values reported in Table 3.1 suggest that the number 

of accurate digits are growing as the value of N grows, and for N = 64000 it 

seems that there is 4 digits accuracy. 

Table 3.2 presents numerical results for the compact model (3.3). To 

calculate the matrix A-lB, the "\" operator of MATLAB is used. The objec­

tive value in this model is similar to the objective value in the sparse model. 
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N objective equality infeas. it. CPU total 

500 4. 7266656430e-00 1 1.90e-013 43 12 18 

1000 4. 7368855809e-OO 1 5.25e-012 50 219 251 

1500 4. 7 402870633e-001 2.78e-011 52 419 517 

2000 4. 7 419865557e-001 1.02e-010 61 957 1178 

2500 N.A. 

N. A.: Results not available due to memory shortage. 

Table 3.2: Computational results with the compact model using the MATLAB 

operator "\", nx = 10. 

Moreover, the number of iterations that MasEK needs to solve the problem in 

this model is higher than with the simplified sparse model. Solving this model 

seems to be much more demanding in time and memory. The time needed 

is going quickly to the order of minutes. Finally, it is the growing memory 

demand which presents the problem from solving even for N = 2500 by re­

porting the "out of memory" message. The matrix setup in MATLAB, which 

is required for this model, takes almost the same amount of time as solving 

the problem by the MOSEK. 

Table 3.3 illustrates numerical results for the compact model. In this ta­

ble, to calculate the matrix A-1 B the procedure that Biegler and Kameswaran 

have sugge.sted in the Appendix of their paper [7] is used. However, the results 
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N objective equality infeas. it. CPU total 

500 4. 7266656835e-001 1.57e-013 42 12 26 

1000 4. 7368855821e-001 4.81e-012 50 228 325 

1500 4. 7 403435006e-00 1 2.84e-011 46 378 1027 

2000 N. A. 

N. A.: Results not available due to memory shortage. 

Table 3.3: Computational results with the compact model using the Biegler's 

procedure, nx = 10. 

obtained by this procedure are hardly better than using the MATLAB solving 

operator. The number of iterations remains the same, if not higher, and the 

time required to solve the problem is even more. The time needed for matrix 

setup is also higher, since the difference of the total time and solved CPU time 

is higher. Also, the computer reported the "out of memory" error message 

even sooner, already for N = 2000. 

The next three Tables 3.4, 3.5, and 3.6 show another set of results from 

the sparse model, the compact model using the solving operator "\", and the 

compact model using the Biegler procedure, respectively. In these tables, nx is 

fixed to be 20 and the number of time discretization points, N, is varied. The 

conclusions deducted from these tables remain the same, as the ones deducted 

from the last three tables. The number of iterations, although increasing, 
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N objective equality infeas. it. CPU total 

1000 4.6714762881e-001 1.35e-014 17 4 6 

2000 4.6765401066e-001 7.35e-015 17 5 7 

4000 4. 6790697824e-OO 1 4.06e-015 22 12 13 

8000 4.6803340715e-001 7.76e-015 20 21 23 

16000 4.6809660769e-001 1.60e-014 23 45 48 

32000 4.6812820490e-001 4.07e-014 29 141 147 

Table 3.4: Computational results with the sparse model, nx = 20. 

is not monotonically increasing. The infeasibility of the equality constraints 

decreases at the first experiments and then increases again. 

When using the MATLAB operator in the compact model for nx = 20 

as shown in Table 3.5, the results can be achieved up to N = 1500. Then 

the matrix preparation cause memory shortage. The results with the compact 

model compared to the sparse model also show that solving the compact model 

requires more time. The value of the infeasibility of the equality constraints 

are higher in compact model, which can imply that the solutions are not as 

accurate as in the sparse model. The same stays true for the compact model 

using the Biegler and Kameswaran's procedure. In this experiment, the results 

for this model are the weakest among the three. 

In Table 3.7, the result for the sparse model are shown. In this table, 
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N objective equality infeas. it. CPU total 

500 4.6613290563e-001 1.34e-014 32 9 18 

1000 4.6714762754e-001 1.62e-011 49 210 270 

1500 4.6748531767e-001 3.69e-010 51 408 595 

2000 N. A. 

N. A.: Results not available due to memory shortage. 

Table 3.5: Computational results with the compact model using the MATLAB 

operator "\"' nx = 20. 

N objective equality infeas. it. CPU total 

500 4.6613290561e-001 1.81e-014 32 g 34 

1000 4.6714762759e-001 1.27e-011 51 217 422 

1500 N. A. 

N. A.: Results not available due to memory shortage. 

Table 3.6: Computational results with the compact model using the Biegler's 

procedure, nx = 20. 
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nx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7368855 723e-00 1 2.40e-014 7.60e-014 16 1 2 

20 4.6714762881e-001 1.35e-014 3.31e-014 17 3 3 

30 4. 6592989688e-00 1 1.08e-014 9.02e-015 17 5 5 

40 4.6550888020e-001 8.74e-014 3.64e-012 14 5 6 

50 4.6532183955e-001 1.36e-014 9.77e-004 16 7 8 

60 4.6522725993e-001 1.15e-014 2.62e+005 16 9 10 

500 IN. 

IN: The problem to be reported as primal infeasible. 

Table 3.7: Computational results with the sparse model, N = 1000. 

the number of time discretization points N is fixed to be 1000, and the number 

of the spatial discretization points, nx, is changing. 

For nx ~ 50, the optimum solution obtained looks reliable since both 

the primal and dual infeasibility of the equality constraints, that MosEK re­

ports at the end, are in acceptable range. As soon as the number of spatial dis­

cretization points reaches 50, the dual infeasibility of the equality constraints 

makes a huge jump and keeps increasing rapidly afterwards. It seems numer­

ical difficulties arise for finer spatial discretization in the sparse model. As it 

is shown in Table 3.8, these numerical difficulties occur in the form of primal 
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nx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7368855437 e-00 1 2.86e-015 9.60e-015 18 2 2 

20 4.6714 762758e-001 5.04e-015 1.49e-014 19 3 3 

30 4.6592989652e-001 2.81e-015 9.79e-015 20 5 5 

40 4.6550887632e-001 5.33e-015 7.28e-012 20 6 7 

50 4.6532613567e-001 1.20e-014 9.77e-004 21 8 9 

54 IN. 

IN: The problem to be reported as primal infeasible. 

Table 3.8: Computational results with the sparse full model, N = 1000. 
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infeasibility in the sparse full model. This dual blow up might occur because 

of the discretization methods that has been applied on the objective function 

and the PDEs. The stability of the discretization methods depends on the 

number of discretization points in space and time, and the methods are not 

stable for every value of N and n. 

Table 3.9 shows the numerical results when the number of time dis­

cretization points is fixed to N = 5000, and n is changing, and the same high 

dual equality infeasibility is reported by MOSEK for this problem. Although 

the dual infeasibility for the equality constraints stays in acceptable range for 

nx ::; 80 in the sparse model. The numerical results for the sparse full model 

is shown in Table 3.10, and for this model MOSEK reports primal infeasibility 

for nx = 96. Table 3.11 and Table 3.12 show the results for sparse model and 

sparse full model when N is fixed to 10000. Note how the solution become 

inaccurate in Table 3.11, when n = 110. 

It seems that the feasibility of the problem depends on the ratio of the 

number of discretization points in space and time. Figure 3.2 illustrates the 

border line between the feasible and infeasible problems. A problem for which 

the number of time and spatial discretization points is below the borderline 

(solid curve) is reported to be infeasible while numerical results can be ob­

tained for a problem for which the number of time and spatial discretization 

points lies above the borderline. The curve of the borderline can be estimated 

polynomially by p(n) = 1.0585n2 
- 52.0142n + 622.9112. Hence, to obtain 

numerical results for a problem with 500 spatial points, at least 241000 points 

in time are needed. The dashed curve in Figure 3.2 shows the plot of the 

polynomial p' ( n) = n2 - 20n + 1000. This polynomial is an approximation 

for the values on the borderline in the feasible side. p'(n) can be used to es-
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nx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7 450437095e-001 1.65e-015 5.65e-015 22 6 7 

20 4.6795755398e-001 4.14e-015 4.40e-015 19 12 12 

30 4. 6673830621e-OO 1 1.04e-014 9.46e-015 20 25 26 

40 4.6631108973e-001 7.38e-014 2.08e-015 22 40 41 

50 4.6611326563e-001 3.54e-014 4.22e-015 23 52 54 

60 4.6600579261e-001 5.84e-014 1.12c-014 21 71 73 

70 4.6594099396e-001 1.80e-014 8.05e-016 21 107 110 

80 4.6589987601e-001 4.31e-014 1.12c-008 20 107 112 

90 4.6587261800e-001 4.72e-014 4.00e+000 20 132 137 

500 IN. 

IN: The problem to be reported as primal infeasible. 

Table 3.9: Computational results with the sparse model, N = 5000. 
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TLx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7 450437022e-001 4.52e-015 1.53e-014 25 6 7 

20 4.6795755360e-001 7.04e-015 8.78e-015 24 11 12 

30 4.6673830504e-001 7.59e-015 1.26e-014 24 23 25 

40 4.6631108780e-001 1.06e-014 1.11e-014 28 39 41 

50 4.6611326350e-001 1.65e-014 2.03e-015 30 53 55 

60 4.6600579077e-001 7.63e-014 3.79e-015 26 69 72 

70 4. 6594099398e-OO 1 1.04e-014 4.63e-015 31 115 119 

80 4.6589987941e-001 3.19e-014 1.49e-008 30 115 120 

96 IN. 

IN: The problem to be reported as primal infe&'lible. 

Table 3.10: Computational results with the sparse full model, N = 5000. 
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nx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7 4606227 40e-001 4.27e-015 1.53c-015 23 12 14 

20 4.6805868878e-001 1.09e-014 3.62e-015 21 24 26 

30 4.6683926236e-001 2.00e-014 3.55e-015 22 81 83 

40 4.6641196819c-001 3.73c-014 6.35e-016 23 92 96 

50 4.6621410404e-001 4.27e-014 4.81e-016 23 146 150 

60 4.6610659670e-001 6.61c-014 2.94e-016 25 268 276 

70 4.6604176617e-001 1.47e-013 7.97e-015 26 469 476 

80 4.659996881 Oe-00 1 6.33c-014 3.23e-015 27 363 373 

90 4.6597083909e-001 2.28c-013 1.36e-015 27 544 557 

100 4.6595021730c-001 9.11c-014 9.16e-016 24 664 678 

110 6.5818993914e-001 5.42e-007 7.81e-003 87 1468 1483 

5000 IN. 

IN: The problem to be reported as primal infeasible. 

Table 3.11: Computational results with the sparse model, N = 10000. 
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Figure 3.2: The plot of border line between the fea..<~ible and infeasible problems 

according to the number of time and spatial discretization points. 

timate a proper number of time discretization points, N, for a chosen spatial 

discretization points, n, to obtain a good numerical results. 

Table 3.13 shows numerical results for a set of problems in which the 

number of spatial discretization points and the number of time discretization 

points are obtained from the polynomial p'(n) in Figure 3.2 (the dashed curve). 

As it can be seen from this table when Nand n are both increasing, the number 

of accurate digits is also increasing more steadily, and the equality infeasibility 

for both primal and dual side stays in an acceptable range. This suggests that 

to obtain more stable results, changes should be applied on the pair ( n, N). 

Figures 3.3, 3.4, 3.5, 3.6, and 3. 7 illustrate the obtained level curves of 

the temperature profile, f(x, t), versus the lower bound constraint function, 

g(x, t), at a fixed time. In Figures 3.3 to 3.7, the temperature function is 
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nx objective P. eq. inf. D. eq. inf. it. CPU total 

10 4. 7 4606227 46e-001 1.20e-014 3.99e-014 22 10 12 

20 4.6805868731e-001 8.74e-015 1.06e-014 27 23 25 

30 4. 6683926048e-OO 1 2.50e-014 1.28e-014 28 79 82 

40 4.6641196894e-001 2.56e-014 8.67e-015 28 89 93 

50 4.6621410259e-001 3.45e-014 2.74e-015 30 150 155 

60 4. 661 0659722e-00 1 3.67e-014 1.14e-014 30 244 250 

70 4.6604176649e-001 1.41e-013 1.37e-014 33 460 467 

80 4.6599968737e-001 7.74e-014 3.13e-0:)..4 29 357 366 

90 4.6597083939e-001 8.66e-014 2.50e-014 27 539 550 

100 4.6595021647e-001 9.23e-014 1.54e-014 33 633 647 

122 IN. 

IN: The problem to be reported as primal infeasible. 

Table 3.12: Computational results with the sparse full model, N = 10000. 
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(nx, N) objective P. eq. inf. D. eq. inf. it. CPU total 

(10, 900) 4.7357870046e-001 3.39e-015 1.07e-014 17 2 3 

(20, 1000) 4.6715023817e-001 2.03e-014 4.97e-014 17 3 3 

(30, 1300) 4.6616516259e-001 3.94e-014 5.15e-014 19 5 7 

(40, 1800) 4. 6595364946e-OO 1 2.53e-014 1.65e-014 17 11 11 

(50, 2500) 4.6591256449e-001 1.28e-014 4.28e-015 17 19 20 

(60, 3400) 4. 6591180280e-OO 1 1.03e-014 3.80e-015 21 39 41 

(70, 4500) 4.6591937399e-001 3.33e-014 3.55e-015 20 65 69 

(80, 5800) 4.6592739732e-001 4.08e-014 1.14e-013 20 124 128 

(90, 7300) 4. 6593415336e-OO 1 1.25e-013 9.09e-013 22 262 271 

(100, 9000) 4. 6593950298e-OO 1 1.77e-013 1.46e-011 22 636 648 

(110, 10900) N.A. 

N. A.: Results not available due to memory shortage. 

Table 3.13: Computational results with the sparse full model for a set of 

selected points on p'(n). 
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Figure 3.3: The obtained temperature profile and the lower bound function 

for time t = 0.5 and t = 1. 

obtained for nx = 20 and N = 1000. The function plotted in dashed line is 

g(x, t), and the solid lined function is f(x, t). The level curves of the figures 

are plotted every half a second, starting from t = 0.5, and the last figure shows 

their status at t = 5. The time period in which the problem is solved is [0, 5]. 

From the figures it is seen that the equality constraints are active only in the 

midpoint, that is x = lOo for this problem since nx = 20. The solution profile 

is clearly symmetric at each given time. 

Figures 3.8 and 3.9 present the slack profile for the midpoint inequality 

constraint. For the first two figure, the setting is N = 1000 and nx = 10, and 

for the next as it is N = 1000 and nx = 20. As it can be seen from these 

figures, the inequality is potentially active during the time 1 :::; t :::; 4. The 

more close up figure illustrates that the inequality is not active for the whole 

interval. It periodically becomes active and inactive. 
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Figure 3.4: The obtained temperature profile and the lower bound function 

for time t = 1.5 and t = 2, the midpoint becomes aetive. 
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Figure 3.5: The obtained temperature profile and the lower bound function 

for time t = 2.5 and t = 3. 
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Figure 3.6: The obtained temperature profile and the lower bound function 

for time t = 3.5 and t = 4, none of the inequalities are active. 
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Figure 3. 7: The obtained temperature profile and the lower bound function for 

timet= 4.5 and t = 5. The profiles taking the same shape as at the beginning 

state. 
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Chapter 4 

The Two Dimensional Case 

4.1 The Two Dimensional Model 

In Chapter 2, the heat transfer problem that we considered was simplified to 

a one-dimensional bar. We may generalize this problem to higher dimensions. 

Let us first go only one dimension higher, and assume that the heated object P 

is a two dimensional bar. For convenience, we denote the coordinates of each 

point x by their corresponding axis, namely :r = x1 and y = :r2
. Accordingly, 

let the length of the bar in the x-axis be fx, and its length in they-axis be fy. 

Assume that the endpoints of the bar on the x-axis are positioned at x = 0 

and X = ex. Similarly the endpoints on the y-axis are at y = 0 and y = ey. 
Therefore, for each point (x, y) E P, we have x E [0, fx] andy E [0, fy]· 

Many sets of points of the bar can be assumed as boundary points. 

They can be the perimeter of this rectangular shaped bar, the lengths of it, 

the widths, or any other arbitrary set of points. However, to stay close to 

the chosen boundary points we used in case of the one dimensional bar, let us 

choose the boundary points, P 0
, to be the two endpoints of P on the x-axis, 
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Figure 4.1: The three dimensional bar. 

which are the two lines on either side of the bar , that is, 

(x , y)EP0 ~ x= Oor x = f.x, VyE [O ,f.y]· 

Therefore f(x , t) , the temperature function of the inner points of the bar, is 

a function of x, y , and t , while u0 (x, t) and uex (x, t), the temperature of the 

each side of the bar , are functions of y and t. The time interval is assumed to 

be [O ,T]. 

f(O , y , t) = uo(y, t) , V (x, y) E P 0
. (4.1) 

Since the heat flow occurs through conduction, the heat equation has 

to be satisfied. Hence, one of the constraints is the 2D heat equation 

8f(x, y, t ) 82 f( x, y , t) 82 f(x , y, t) 
__:_..:....,-...::....c......:.. = + ---=--=--

8t 8x2 f)y2 (4.2) 

Assume that the bar is smooth on its sides, and the rate of heat flow throughout 

the bar is the same. The heat equations should hold for all points of the bar 

at all times. Along with the heat PDE, we assume the initial conditions are 
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given too. For simplicity, let the initial condition be zero for all points, 

f(x,O) = 0, \1 x = (x,yf E P. 

The boundary conditions (4.1), are considered to be unknown at the time and 

they are the target of this problem. In finding these control variables our goal 

is to minimize energy usage, while the constraints are satisfied. 

The lower bound that we want the temperature to satisfy can be chosen 

to be almost any continuously differentiable functions of x, y, and t. However, 

to be consistent with the one dimensional model, we choose a similar inequality 

constraint 

g(x,y,t)=c1 [sin(x)sin(f;,t) -a1] +C:2 [sin(y)sin(~;,t) -a2] -b, 

with c1 = c2 = 1, a 1 = a 2 = 0.5, and b = 0.2. This lower bound function is a 

linear combination of the same function that is used in one dimension (2.6), 

so the lower bound function is 

g(x, y, t) = sin(x) sin ( f;t) + sin(y) sin ( f;t) - 1.2. 

Just as it was in the one-dimensional case, there are many choices for 

the objective function. We choose an objective function, that is similar to the 

objective function in the one dimensional case. Hence, we set the objective to 

be the sum of the temperatures squared at all points over time. Since time 

and space are both continuous, the objective is the integration of the squared 

of the temperature functions, f(x, y, t), over time, the x-axis, and the y-axis 

in space. Therefore, our two dimensional heat transfer optimization problem 

is 
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min 

s.t. 

{T {ey tx 
Jo Jo Jo J2(x, y, t)d;cdydt 

lT1ly 
+ [qou~(y, t) + qe"'ur.,(y, t)] dydt 

.o 0 

of(x, y, t) 82 f(x, y, t) ()2 f(x, y, t) 
at = 82x + [)2y 

.f(:c, y, t) ;:::: g(x, y, t) 

g(x,y,t) = sin(x)sin (e;,t) +sin(y)sin (:;t) -1.2 

f(x, y, 0) = 0 

/(0, y, t) = 'Uo(y, t) 

0 ~ t ~ T 

To avoid unnecessary complications, let us fix the boundary weight 

coefficients to be q = q0 = qex = 10-3 . The solution strategy for this problem 

is not different from the one dimensional case. We discretize in time and space, 

and then approximate the PDEs, the objective function and the rest of the 

constraints. 

4.2 Spatial Discretization 

To solve this problem, we discretize the above model in space first. Let nx 

and ny be the number of discretization points in x and y, respectively. To be 

able to benefit from the symmetry of the problem later, we assume that nx 

and ny are both even numbers. For simplicity and consistency with the one 

dimensional problem, we take uniform steps in both directions. Therefore, the 
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step sizes are 

Denote xi = iox and Yj =joy, for i = 0, ... , nx and j = 0, ... , ny. 

Now to approximate the integrals, we use the trapezoidal method [1] 

for space dependent integrals in the objective function. Here is the the ap­

proximation for the integration over x: 

lex. j 2 (x, y, t)dx ~ o; E (!2(xi, y, t) + j 2(xi+l· y, t)] 
0 i=O 

nx-1 OX 
=ox L f 2(.Ti, y, t) + "2 ('u~(y, t) + ut,(y, t)). 

i=l 

Using the above approximation in the objective function, we obtain 

Now let us apply the trapezoidal rule on the two integrals over y. The space­

discretized objective function is 

Ox [ [oy '};.; ~ /2(x;, Y;, t) + 
8J ~ [f2 (x;, Yo, t) + f 2 (x;, y,.,, t) J] dt 

+by ( q + ";) t [~ [ui(y;, t) + ul.(y;,t)] 

+ ~ [u~(Yo, t) + u~(Yny' t) + ut(Yo, t) + u~JYny' t)]] dt. 

After approximating the objective function, we can continue to approx­

imate the partial differential equation that we have as a constraint. We use 
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the second-order finite difference method once for x and once more for y, for 

the space dependencies. Applying the finite difference method twice we obtain 

8f(xi, Y.i, t) ~ f(xi-11 Y.i, t)- 2f(xi1 Y.i1 t) + f(xi+b Y.i1 t) + 
at 6x2 

f(x:i1 Y.i-1, t)- 2f(xi, Y.i, t) + f(:1;i1 YHb t) 
oy2 

i = 2, ... , nx - 2, 

8j(xnx-1' Y.i, t) "' f(xn,.-2, Y.i, t)- 2/(.'rn,.-1, Y.i, t) + Ue,.(yj, t) 
at "' ox2 + 

f(xn,.-1, Y.i-b t)- 2j(xn,.-1, Y.i, t) + f(xnx-11 YHb t) 
oy2 

j = 1, ... 1 ny- 1. 

Discretization for the rest of the constraints is fairly straightforward. 

The discretized inequality constraints are just a bound on the value of the 

function at the discretized points: 

0::;: 'uo(Y.i, t)- sin(jo) sin ( t~t) + 1.2, ~': = 0, ... , ny, 

0 :S f(xi,Y.i 1 t)- sin(i(5)sin (t;t)- sin(j5)sin (e~t) + 1.2, 

i = 1' ... ' nx - 1' j = 0' ... ' ny' 

0 ::;: ueJY.i, t) - sin(jo) sin ( e~t) + 1.2, j = 0, ... , ny. 

The initial condition is approximated by setting the initial state of each 

of the spatial points to be zero. Now the space discretized, two dimensional 
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heat transfer problem is 

( 
<5 ) T [ny-1 

+8y q + ; 1 f; [u6(Yj, t) + uiJYi, t)] 

+ ~ [u6(Yo, t) + 'l.t6(Yny' t) + uiJYo, t) + 'l.tiJYny' t)]] dt 

8j(x1, Yi, t) uo(Yi, t)- 2f(x1, Yi, t) + j(x2, yj, t) 
s.t. at = 8x2 + 

J(x1, Y]-b t)- 2f(;c1, yj, t) + j(x1, Yj+l, t) 
8y2 

8f(xi, Yj, t) f(xi-1, yj, t)- 2f(xi, Yj, t) + f(xi+l, yj, t) 
at = 8x2 + 

f(xi, Y]-1, t)- 2f(xi, Yj, t) + f(xi, YJ+l• t) 
<5y2 

8f(xn.,-1, yj, t) f(xnx-21 yj, t)- 2f(xnx-1l yj, t) + u1r(yj, t) 
at = ~ + 

f(xn,-1, Yj-1, t)- 2f(xn,-1, Yj, t) + f(xnx-1, YJ+b t) 
<5y2 

i = 2, ... , nx- 2, j = 1, ... , ny- 1, 

0::; uo(yj, t)- sin(j8) sin ( :;,t) + 1.2, 

0 :S f(xi, yj, t)- sin(i8) sin ( £~t) -sin(j<5) sin ( £~t) + 1.2, 

0 ::; Uf.., (yj, t) - sin(j<5) sin ( £~t) + 1.2, 

f(xi, Yi, 0) = 0, 

f(O, y, t) = uo(Y, t), 

0 ::; t ::; T. 

i = 1, ... l nx - 1, 

i = 1, ... , nx - 1, 

f(Rx, y, t) = 'Uc.,{y, t), 
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4.3 Time Discretization 

Now let us discretize the problem in time. Suppose that the number of the grid 

points in time is N, and we are taking equal steps in time a.s well. Hence, the 

step size is 8t = TjN, and let .f(x, t 8 ) = f(x, (s- 1)ot). To approximate the 

time integral in the objective function, let us use the left hand side rectangular 

rule [1], as we did in one dimension. This approximation gives us a. fully 

discretized objective function 

+0t8y (q + •;) [t, t,1 

[~(y;, t,) + ui,(y;, t,)] 

+ ~ t [ u~(yo, t,) +~(Yn,, t,) + ui. (yo, t,) + ui.(Y..,, t,) Jj 

To have the ordinary differential equations fully discretized, we use the 

first order finite difference approximation in time: 

J(x1, Yi, ts+1)- f(x1, yj, ts) uo(Yj, ts)- 2f(xl, Yj, ts) + j(x2, Yi, ts) 
ot ox2 

f(xl, Yj-1, ts)- 2f(x1, Yi, ts) + f(xi, Yi+I, ts) 
+ oy2 , 

j = 1, ... , ny- 1, s = 1, ... , N, 

J(xi, Yi, ts+I)- J(x1, Yj, ts) J(xi-1, Yj, ts)- 2f(xi, Yi, ts) + f(xi+l, Yi, ts) 
-

ot ox2 

+ f(xi, Yj-h ts) - 2j(xi, Yj,l.s) + f(xi, Yi+l,ts) 
oy2 , 

i = 2, ... , nx- 2, j = 1, ... , ny- 1, s = 1 ... , N, 
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/(xi, Yi, ts+I)- J(xl, Yi, ts) f(xn,-2, Yj, ts)- 2f(xnx-l' Yj, ts) + 'Uf.,(Yj, ts) 
6t 6x2 

+ f(xn.,-l, Yi-1, ts) - 2/(xi, Yi, ts) + f(xn.,-1, Yi+l' ts) 
6y2 , 

j = 1, ... , ny- 1, s = 1, ... , N. 

The approximation of the rest of the functions in the constraints is just the 

value of those functions in the discretization points in time. Hence, the fully 

discretized two dimensional heat transfer optimization problem becomes 

s.t 

f(xl, Yi> fs+l)- f(.TI, Yj, ts) _ f(xi-1, Y.i, fs)- 2/(xi, Yi, ts) + f(xi+l, Y.i, ts) 
8t 8x2 

+ .f(xi, Yi-b ts) - 2/(xi, Yi, fs) + .f(:r:i, Y.i+l, ts) 
8y2 ' 

i = 2, ... , nx- 2, j = 1, ... , ny- 1, s = 1 ... , N, 
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j(x1, YJ, ts+l)- j(x1, YJ, is) f(xn-2, YJ, is)- 2/(xn-1, YJ, is)+ uex(YJ, ts) 
8t 8x2 

+ f(xn-1, YJ-b i.s)- 2J(xi, YJ, t.s) + /(Xn-1, Yi+l> ts) 
8y2 , 

j = 1, ... , ny- 1, s = 1, ... , N, 

1t0(yj, is) 2:: sin(jo) sin ( f~s) - 1.2, j = 0, ... , ny s = 1, ... , N, 

!(xi, Yj, t.s) 2:: sin(iJ) sin ( f~s) + sin(j8) sin ( f~s) - 1.2, 

i = 1, ... , nx - 1, j=O, ... ,ny s=1, ... ,N, 

Uex(Yj, i 8 ) 2:: sin(jJ) sin ( f~s) - 1.2, j = 0, ... , ny s = 1, ... , N, 

f(xi, YJ, 0) = 0, i = 0, ... 'nx, j = 0, ... 'ny, 

/(0, YJ, is) = uo(Yj, ts), j=O, ... ,ny s=1, ... ,N, 

.i = 0, ... , ny s = 1, ... , N, 

As it can be seen from the above model, our heat transfer optimiza­

tion problem is converted to a convex quadratic optimization problem. The 

objective function is a convex quadratic function and all the constraints are 

linear. 

Now to simplify the problem and avoid too long formulas, let us assume 

that nx = ny = n and so 8x = 8y = 8. Also, denote 8t = h and then 

simplify the set of equality constraints further. After reordering the terms in 

the equality constraints we have 

82 (J(xl, YJ, ts+l)- f(xl, YJ, is)) = h('uo(Yj, is)- 4/(xl, Yj, ts) + j(x2, Yj, ts) 

+ f(xl, YJ-1, ts) + f(xt, Yi+l, ts)), 

j = 1, ... , n- 1, s = 1, ... , N- 1, 
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82 (J(xb Yi, ts+1)- j(x1, Yi, t.~)) = h(f(xi-1, Y.i' ts) - 4f(:ci, Yi, ts) 

+ f(xi+1, Yi, ts) + f(xi, Yi-1, ts) + f(xi, YHl, ts)), 

i = 2, ... , n- 2, j = 1, ... , n- 1, s = 1 ... , N- 1, 

82 (J(x1, yj, ts+l)- J(xl, Yi, ts)) = h( Xn-2, Yj, ts)- 4j(xn-b Yi, ts) 

+ue.,(Yj, ts) + f(xn-1, Yi-1, ts) + f(xn-1, YHl, ts)), 

j = 1, ... , n- 1, s = 1, ... , N- 1. 

4.4 Matrix Form 

Let us write the problem in a matrix form and then analyze the properties of 

its coefficients matrices further. First let us consider the variables in vector 

format. Let vector u be the vector of boundary variables, and let f be the 

vector of the temperature variables in space and time. Denote 

UT = [uT uT] 
O ' e 1 x2(n+l)N' 

u6 = [uoo, ... , Uon] , 
1x(n+1)N 

uf = [ueo, ... , Uen] , 
1x(n+1)N 

and 

T [T T T] f = f1 ' f2 ' ... ' fn-1 ' 
1x(n-l)(n+l)N 

where 

fT = [fi,0 1 • • • , fin] , 
' 1x(n+1)N 

"! i = 1, ... , n. 
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Now let h be the k x k identity matrix. Then the objective can be written as 

) 
1 T 1 T ?,b(u, f = 2f Qf + 2u Hu, 

where Q and Hare diagonal matrices of sizes ((n-1)(n+1)Nx (n-1)(n+1)N) 

and (2(n + 1)N x 2(n + 1)N), respectively, and we have 

l(n+l)N 0 

2(n+l)Nx2(n+l)N 

and 

J(n+l)N 
(n-l)(n+l)Nx(n-l)(n+l)N 

where 

~IN 
(n+l)Nx(n+l)N 
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To write the equality constraints in matrix form let us introduce the 

matrices Li and Gj as 

0 1 

h 0 J2- 4h - J2 

h 0 
NxN NxN 

Also introduce the matrices Land Gas 

L= 

(n-l)Nx (n+l)N 

and 

G= 

L· G· L· .1 J .1 
(n-l)Nx(n+l)N 
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Now the equality constraints are 

i = 2, ... , n- 2 

Lfn-2 + Gfn-1 + Lue = 0, 

or equivalently 

Af+Bu=O, 

where the matrices A and Bare of sizes ((n-l)(n-l)Nx (n-l)(n+l)N) and 

( (n- l)(n -l)N x 2(n + l)N), respectively. Further, they have the following 

structures 

G L L 0 

L G L 0 0 

A= B= 

L G L 0 0 

L G 0 L 
(n-l)(n-l)Nx(n-I)(n+l)N (n-l)(n-l)Nx2(n+l)N 

In all of the equations 0 denotes the zero matrix or vector of the appropriate 

size. Now let us introduce a set of the fixed vectors di to write the inequality 

constraints in vector form. Each di corresponds to the internal points xi, and 

is defined as follows 

dfn] 
' lx(n+l)N 

i=l, ... ,n-1, 
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where dij for j = 0, ... , n are defined as 

- sin(ib) sin (l"'7~ 0 )- sin(jb) sin Cy;o) + 1.2 

- sin(ib) sin C\~ 1 ) - sin(jb) sin CY; 1
) + 1.2 

. ('S:) . (l.,x(N-1)) . ( ·s:) · (lyx(N-1)) + 1 2 - sm ·w sm T - sm Ju sm T . 
Nx1 

Now let us define the fixed vector d as 

dT = [di, dr, ... , d~-1] . 
1 x (n-1)(n+1)N 

(4.3) 

For the inequalities on u let denote the fixed vector c as 

CT = [ci. cr, ... , c~J , 
1x(n+1)N 

where Cj is defined for each point in y-axis as follows 

- sin(jb) sin ( ey;o) + 1.2 

- sin(jb) sin C'u; 1
) + 1.2 

j = 0, ... , n. 

Nxl 

Now the inequality constraints can be written as 

f+d;::: 0 

u+c;::: 0. 
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As a result, the two dimensional discretized heat transfer optimization problem 

can be written in matrix form as 

rnm 
u,f 

s.t. 

1 1' 1 1' 
1j;(u, f)= 2r Qf + 2u Hu 

Af+Bu=O, 

f+d 2 0, 

u+c 2 0. 

This is the formulation for a convex quadratic problem with linear con­

straints. This problem now can be solved with standard interior point method 

solvers, and the global optimality for the found optimum of this problem is 

guaranteed. 
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Chapter 5 

Computational Experiments 

In our computational experiments, we take the intervals in such a way that 

they are similar to the ones in the one dimensional case. Let T = 5, and so the 

time period of the process is [0, 5]. We assume that the bar is a square of length 

1r, that is, fx = fy = 1r. Let us assume that the number of discretization points 

in the x-axis and the y-axis are equal, that is, ny = nx = n, and therefore 

fJ = fJx =by= 1rjn and h = bt = 5/N. Note that the two dimensional model 

that is solved here is comparable with the "sparse full model" iQ, the one 

dimensional case, as all the inequality constraints regardless of their activity 

are kept in the model, and the coefficient matrices of this problem are also 

large, sparse and structured. 

The computer on which the two dimensional problem is solved is the 

same computer that is used for the one dimensional problem as described on 

page 29. The optimization solver package is MaSEK 3.0 and the setup of the 

matrices is done in MATLAB, as it was in the one dimensional case, see page 

29 for details. 
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N objective P. eq. inf. D. eq. inf. it. CPU total 

500 9.1175743063 2.37e-014 1.82e-013 23 41 43 

1000 9.1326715839 l.lle-014 1.15e-013 24 85 86 

1500 9.1376967275 2.06e-014 2.09e-013 23 133 135 

2000 9.1402080785 1.83e-014 1.83e-013 25 222 227 

3000 9.1427186178 5.89e-014 5.84e-013 25 356 361 

4000 9.1439735405 3.57e-014 3.52e-013 27 542 552 

4500 N.A. 

N.A.: Results not available due to memory shortage. 

Table 5.1: Computational results for the 2D heat transfer problem, n = 10. 

5.1 Computational Results 

In Table 5.1, the number of the spatial discretization points is fixed to be 

n = 10, while the number of time discretization points, N is changing. Since 

in the two dimensional problem the size of the coefficient matrices is very large, 

the problem can not be solved for very fine discretization. The solver needs 

more memory to solve the two dimensional problem for N ~ 4000, and reports 

an error message for memory shortage. 

Table 5.2 presents a comparison between the numerical results obtained 
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2D Model 1D Model 

N size iter. time size iter. time 

500 4.9005 X 109 23 43 4.95 x Hf 15 1 

1000 1.9602 X 1010 24 86 1.98 X 108 18 3 

1500 4.4105 X 1010 23 135 4.455 X 108 20 6 

2000 7.8408 X 1010 25 227 7.92 X 108 22 6 

3000 1. 7642 X 1011 25 361 1.7820 X 109 23 7 

4000 3.1363 X 1011 27 552 3.1680 X 109 26 12 

Table 5.2: Comparison between the matrix size and number of iterations for 

the 1D and 2D models, n = 10. 

for the one dimensional problem and the two dimensional problem, when the 

number of discretization points in space is fixed to n = 10. The required time 

to solve the two dimensional problem is much higher, and the number of iter­

ations is higher too. As the number of discretization points in time, N, grows 

the size of the equality constraints coefficient matrices also grows linearly. 

Since no inequality constraint has been removed from the two dimensional 

optimization model, the corresponding data for the one dimensional problem 

is obtained from the sparse full model in which no inequality constraints has 

been removed. 
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n objective P. eq. inf. D. eq. inf. it. CPU total 

10 9.0720825339 5.35e-014 4. 77e-013 13 10 12 

16 9.3497558433 4.46e-014 5.43e-013 18 216 224 

20 9.3492693543 1.14e-014 1.27e-011 17 318 320 

24 N.A. 

N .A.: Results not available due to memory shortage. 

Table 5.3: Computational results for the 2D heat transfer problem, N = 300. 

In the Table 5.3 the number of discretization point in time is fixed to 

N = 300, and the discretization in space becomes finer. Note that the size of 

the coefficient matrices in the two dimensional problem depends quadratically 

on the number of space discretization points, as shown on page 62. Therefore, 

the solver can not handle more than 22 points in each direction of the space, 

and the "out of memory" error message appears. 

Table 5.4 compares the number of iterations, the solution time, and the 

size of the coefficient matrix for the equality constraints, in the one dimensional 

and the two dimensional problems. The data reported for both the problem 

classes are obtained from the sparse full model. 
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2D Model 1D Model 

n size iter. time size iter. time 

10 1.7642 X 109 13 12 1.782 X 107 15 1 

16 1.1705 X 1010 18 224 4.59 X 107 12 2 

20 2.8656 X 1010 17 320 7182 X 107 11 2 

Table 5.4: A comparison between the matrix size and iteration for the 1D and 

2D models, N = 300. 
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Chapter 6 

Problem Generalizations and 

Conclusion 

The one dimensional problem that was introduced in Chapter 1, can be mod­

ified in many different ways. Different variations of the objective function can 

be used as other measurements of energy, or any desired objective. The objec­

tive can be chosen in several ways so that the discretized objective function, 

and thus the problem becomes linear. 

The constraints can be modified too. The partial differential equation 

constraint can be replaced by other differential equations for other problems. 

As long as the discretization of the partial differential parts does not make 

bilinear or nonlinear equations when the problem is discretized, the solving 

strategy remain the same, as it has been described in the previous chapters. 

Moreover, additional requirements, such as the inequality constraint 

can be changed to some other functions and may include upper bounds, lower 

bounds, and equalities. More constraints can be added to the problem, which 

presumably might make the problem harder to solve. 
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Further, different discretization and approximation methods can be 

used on this problem to obtain more accurate solutions. The step sizes were 

assumed to be all equal for the problem solved in Chapter 3 and Chapter 5, 

which may not always be the best strategy. Various discretization schemes, 

mesh refinements may be applied [9]. 

In this chapter we discuss some modifications of the original problem. 

6.1 Variants of the Objective Function 

The objective function that we considered for the problem is the sum of tem­

perature squared over all applicable points, or in other words, it is the 2-norm 

of the temperature function. Alternatively, other norms can be used as the 

objective function, such as 1-norrn or the infinity-norm. 

As an example for the objective function, let us minimize the over­

shooting of the optimal temperature function from the lower bound function. 

To evaluate the overshooting of j(x, t) and g(x, t) any norm can be used. Here 

is the objective function when the overshooting is evaluated using the 1-norm: 

min 
uo( t) ,ue( t) ,J(x,t) 

1/;(x, t) = l1 [J(x, t) - g(x, t) J dxdt. 

Note that all the terms in this function are positive, because g(x, t) :=:; J(x, t). 

Also some weights can be applied to the endpoints of the bar, say q0 

and q£ for the point x = 0 and ;r = e, respectively. Thus we have 

l (.£ [f(x, t)- g(x, t)] dx + q0 [u0(t)- g(O, t)] + qf. [ue(t)- g(e, t)J) dt 

= l (1 f(x, t)dx + qouo(t) + qeue(t) - 1 g(x, t)dx) dt 

= l (1 f(x, t)dx + q0u0 (t) + qen£(t)) dt -l1 g(x, t)dxdt. 
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The integral of the lower bound function, g(x, t), is a given constant value, 

independent of the control variables and the resulting profile J(x, t), so this 

constant value can be removed from the objective function, resulting 

'!f;(x, t) l (1.t(x, t)dx + qo'uo(t) + qellue(t)) dt min 
uo (t ),ut(t),J(x,t) 

The discretization for this problem is quite similar what was done for 

the original problem. The approximation of the objective function is just the 

sum of the function values in the discretized points. Now, if we consider that 

the spatial number of discretization points in space is nx = n, and the number 

of time discretization points is N, the step sizes are h = T / N and 6 = f/n. 

Then the discretized objective is 

n-1 N N 

min 
f,u 

L L .f(xi, ts) + L [qouo(ts) + qeue(ts)]. 
i=l s=l s=l 

Let us utilize the vector of variables f as defined in (2.8), and define u as 

1'_[1' 1'] u - u 0 , ue , 
lx2N 

where 

and uf 

Thus the objective function can be written as 

where 

111111 
f,u 
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and ek is the (k x 1) vector, which all of its coordinates equal to one. 

The discretization of the constraints and is the same as described in 

Chapter 2. The objective function in this problem is linear, and since the 

discretized constraints are all linear1 , then the 1-norm overshooting problem 

is a linear optimization problem that can be solved by any linear optimization 

package, among those MaSEK's linear solver. 

6.2 Variants of the Inequality Constraints 

The inequality lower bound constraint can be modified in many ways. Also 

another constraint can be added to the problem. Assume that we add an 

upper-bound constraint 

f(x,t) ~ b(x,t) = 0.5 [sin(x)sin (~)] +0.1. (6.2) 

The two constraint are shown in Figure 6.1. The bounded heat transfer prob­

lem becomes 

min 
f(x,t),u(x,t) 

1See Section 2.3 

't/J(x, t) = 11 P(x, t)dxdl + 11 'u2 (x, t)dxdt 
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s.t. 
8f(x, t) 82 f(x, t) 

at 8x2 

f(x, t)::; -0.5 [sin(x) sin ( ~)] - 0.1, 

f(x,t) 2:: sin(x)sin (~)- 0.7, 

f(x,O) = 0, 

f(O, t) = uo(t), 

f(£, t) =vAt), 

\:1 X E [0, fj, \:1 t E [0, T]. 

The discretization of this problem is similar to what we did in Chapter 

2, and the obtained discretized problem is convex quadratic. Assume that the 

matrices and vectors are defined as in Section 2.5, and let r and p be the 

appropriate vectors for the upper bound function when it is discretized. Then 

the matrix form of the bounded heat transfer is 

·u 

1 1 
7/J = 2rrQf + 2ur Hu min 

s.t. Af+Bu= 0, 

d ::; f ::; p, 

c ::; u ::; r. 

6.3 Variants of the of Partial Differential Equa-

tion Constraints 

Many partial differential equation can be used instead of the heat equations (or 

be added) in an optimization problem to describe and optimize other physical 
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Figure 6.1: The upper bound constraint, solid, vs. the lower bound constraint, 

dashed 

problems. Besides the heat equation a fIat - a2 f I a2x = 0, many other basic 

PDEs can be used. Some examples of such PDEs are the linear transport 

equation, 

where b is a fixed vector, the Laplace's equation 

and the wave equation 

where appropriate constraints for these PDEs are added. problem to make sure 

of the controllability of these equations. 

If there is no multiplication in the different parts in the substituted 

partial differential equation, then by using the same discretization methods 

the obtained set of equations remain linear. Therefore the same technique lead 
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to analogous quadratic or linear optimization problems, when the objective 

function can be diseretized to a linear or quadratic function. 

6.4 Variants of the Discretization Methods 

We used equally distributed mesh discretization, while many other methods 

could have been applied. Adaptive mesh refinement [9] is a good method, es­

pecially when the functions are not so smooth and have sudden bumps. Other 

approximations and discretizations can be applied too. In the approximation 

of the PDEs finite element methods, and also more accurate methods such 

as spectral methods can be employed. To evaluate the integration, Simpson's 

rule, Boole's rule, Gaussian quadrature, and many other numerical integration 

methods can be used [1] depending on the functions and the desired accuracy. 

The error that is made in discretization methods highly affects the 

numerical results. When the discretization error is large, attempting to obtain 

higher accurate numerical results for the discrete :aroblem does not necessarily 

lead to a more accurate solution for the original problem. Using a better and 

more accurate discretization methods, and sonsistency between the accuracy 

of discretization methods and the numerical optimization methods can help to 

obtain better solution for the original problem. 

6.5 Conclusion 

Optimization problems with partial differential equations and inequalities in 

their set of constraints can be solved using discretization methods. The dis­

eretization approach is powerful enough to handle more various functions in 
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the constraints than optimal control methods. Various objective functions can 

be used, equality and inequality constraints can be added or modified in a 

problem, and still the same discretization method can result in optimization 

problems with analogous structure and characteristics. 

In the case that the PDEs do not include multiplication of different par­

tial differentiations and the functions in the inequality constraints are smooth, 

the described discretization method can simplify the constraints to a finite set 

of linear constraints. Whenever the objective function is discretized to a lin­

ear, quadratic, or nonlinear function, the problem becomes a linear, quadratic 

or nonlinear optimization problem, respectively. 

The discretization method converted the nonlinear optimization model 

for the one-dimensional heat-transfer problem to a convex quadratic optimiza­

tion problem for which the global optimality is guaranteed. Using the MOSEK 

solver this problem can be solved for fine discretization mesh points, while this 

problem can not be solved by optimal control methods properly [3]. When dis­

cretized, the problem has a large but sparse coefficient matrices. To improve 

the size of the matrices Biegler and Kameswaran [7] suggested to write all the 

temperature variables in terms of temperatures at the endpoints. Although 

this reduces the size of the problem significantly, the denser coefficient matrices 

and the predefined matrix operations affect the numerical results negatively. 

The results obtained for the compactified model are not as good as for the 

original large scale sparse model. 

The one-dimensional heat-transfer optimization problem can be sim­

plified further by removing the inactive inequalities from its constraint set [3]. 

The numerical results for both models show that some numerical difficulties 

occurs when solving the problem with finer spatial discretizations. The opti-
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mization packages tend to recognize the numerical difficulties in the original 

sparse model sooner than the more simplified model, by reporting primal infea­

sibility. However, some numerical issues can be detected in the dual solution 

of the more simplified model too. The instability occurs after reaching a cer­

tain number of discretization points in the space, when the number of time 

discretization points is fixed. This might be due to instability in the discretiza­

tion methods which are applied to the objective function and the PDEs. The 

stability of the methods seems to depend on both the number of discretization 

points in time and space, and for a specified fineness in time, the number of 

spatial discretization points should be less than a certain number to achieve 

stability. 

The problem can be generalized to the two dimensional heat transfer 

model. The strategy to solve the two dimensional problem stays the same as 

in the case of the one dimensional problem. However, the coefficient matrices 

are very large for the two dimensional case, and that causes numerical diffi­

culties. Using better methods in memory management and better computers 

and optimization solvers can improve the numerical results. 
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