
DESIGN OF AN ALTERNATE FUEL INJECTION CONTROLLER

DESIGN OF A CONFIGURABLE

ALTERNATE FUEL INJECTION

CONTROLLER

By

KEVIN DAGENAIS, B. ENG.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software

McMaster University

©Copyright by Kevin Dagenais, May 3, 2005

ii

MASTER OF APPLIED SCIENCE(2005)
(Software)

McMaster University
Hamilton, Ontario

TITLE: Design of a Configurable Alternate Fuel Injection Controller

AUTHOR: Kevin Dagenais, B. Eng.(McMaster University, Canada)

SUPERVISOR: Dr. M. v. Mohrenschildt

NUMBER OF PAGES: x, 149

Abstract

This thesis presents a strategy for documenting real-time control systems, and the

work products that result from its application to the development of an alternate

fuel injection controller. In doing so, this document contributes technically to the

areas of automotive control, and control systems documentation. The strategy was

not developed independently of the control system, but in a manner which reflects its

size and complexity.

The controller is used to generate and transmit appropriately timed and sized

pulses to an alternative fuel injector array, and switch auxiliary devices including a

fuel heater, and an injector lock-off. Such a controller, when used to inject natural

gas or propane into a gasoline burning engine, provides a reduction in both engine

operating costs and harmful engine emissions.

The controller stores a fuel map that relates the amount of energy released by the

combustion of petroleum to that released by the combustion of an alternate fuel, over

a range of varying environmental conditions. The fuel map is used to calculate the

length of alternate injection pulses. These maps have been designed by, and are the

property of Cosimo's Garage Ltd. and thus will not appear in this document.

At present, nearly all large engine car conversion technology is more rigid than the

solution provided here. Conversion costs are often prohibitive and problems requiring

professional service are frequent. Should the controller described here, help to curb

conversion costs and reduce the need for frequent service as is expected, the controller

will be a viable candidate for production and sale.

iii

Contents

Abstract

1 Introduction

1.1 Document Overview

1.2 Fuel Injection

1.3 Injection and Firing Diagrams

1.4 Conversion Motivation . .

iii

1

1

2

3

4

1.5 The Primary Control Task . . 4

2 Software Requirements and Design Documentation Strategy 6

2.1 lEE Guideline 6

2.1.1 Feasibility Study 7

2.1.2 User Requirements Specification . 7

2.1.3 Functional Specification . . . 7

2.1.4 Software System Specification 7

2.1.5 Test Documents 8

2.2 The Hoffman and Strooper Method 8

2.2.1 Requirements Specification . 9

2.2.2 Module Guide 9

2.2.3 Module Interface Specification 10

2.2.4 Module Internal Design . 10

2.3 Software Cost Reduction 11

2.3.1

2.3.2

SCR Requirements

The Four Variable Model .

2.4 Injection Controller Software Documentation Strategy .

IV

11

12

12

CONTENTS

2.4.1

2.4.2

2.4.3

2.4.4

Requirements Specification .

High Level Design

Implementation Description

Testing, Inspection and Verification

v

12

13

14

14

3 Alternate Fuel Injection Controller Requirements Specification 15

3.1 Overview. 15

3.2 State Space 16

3.2.1 Monitored Quantities . 16

3.2.2 Controlled Quantities . 17

3.2.3 State Variables . . 17

3.2.4 Mode Invariants . .

3.2.5 Event Description .

3.3 Requirements

3.3.1 Safety Requirements

Operating Environment 3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

3.3.9

Performance and Timing Requirements

Control Mode Switching Requirements

Injection Status Sub Modes

Trouble

Injector Grounding

Fuel Maps

Granularity and Numerical Representation

3.3.10 Driver Interface .

3.3.11 Serial Connection

3.3.12 OBC diagnostics

4 Alternate Fuel Injection Controller PC

Specification

4.1 Overview

4.2 Requirements

4.2.1 Display Requirements

4.2.2

4.2.3

Logging Requirements

Fuel Map Requirements

Application Requirements

18

19

19

19

20
20
21

21

22
22

24

26

27

27

28

29

29

30

30

30

31

vi CONTENTS

4.2.4
4.2.5
4.2.6

4.2.7

Safety Requirements . .

Performance and timing

Platform

Communication

5 Hardware Description

5.1 Port and Pin Assignments

5. 2 Pin Diagram

5.3 Hardware Overview

5.3.1 Hardware Components in the Prototype

5.4 Hardware Circuit Diagrams

6 High Level Design

6.1 Overview

6.2 Flow Chart Conventions ..

6.3 General Program Structure.

6.4 Initialization Program Segment

6.5 Mode Update and Data Acquisition Main-Loop

6.5.1 External Variable Update and Transmission Sub-Chart

6.5.2 Enable/Disable Native Injectors Sub Chart .

6.6 Interrupt Service Request Handler.

6.6.1 TIMER 1 Overflow

6.6.2 Change on Port B .

6.6.3 Timer 2 Match ..

6.6.4 Interrupt Race Conditions

6. 7 Programming Program Segment

6.8 PC Programming Segment .

7 Implementation Description

7.1 Overview

7.2 PIC Configuration

7.2.1 Configuration Bits

7.2.2 Timers

7.3 Coding Conventions

31

32
32

32

34

35

36

36

39
40

43

43
43
45
46

48

50

51

51

52

54

55

55

56

56

60

60

61

61

62
64

CONTENTS vii

7.4 Requirement Variable PIC Representations . 65

7.5 Initialization 68

7.5.1 Assumptions . . . 68

7.5.2 Variables 68

7.5.3 Initialization Code 71

7.6 Interrupt Service Routine (ISR) 78

7.6.1 Assumptions . 78

7.6.2 Variables. 78

7.6.3 ISR Code .. 80

7.7 Main Loop 89

7.7.1 Assumptions . 89

7.7.2 Variables ... 89

7.7.3 Main Loop Code . 90

7.8 Programming Loop . 98

7.8.1 Assumptions . . . 98

7.8.2 Variables 98

7.8.3 Programming Loop Code 99

7.9 Serial Port 100

7.9.1 Assumptions . . . 100

7.9.2 Variables 101

7.9.3 Serial Port Code 101

7.10 A/D Conversion . . . 103

7.10.1 Assumptions . . . 103

7.10.2 Variables; 103

7.10.3 A/D Conversion Code 104

7.11 Flash ••• 0 106

7.11.1 Assumptions . 106

7.11.2 Variables .. 106

7.11.3 Flash Code 107

8 Testing, Inspection, and Verification 112

8.1 Overview 112

8.2 Laboratory Testing 0 • 0 0 • 0 •••• 112

viii

8.2.1 Laboratory Testing Tools.

8.2.2 Lab Tests and Results ..

8.3 Field Testing

8.3.1 Field Tests and Results - Modified Lab Tests .

8.3.2 Field Tests and Results- New Tests .

8.4 Inspection

8.4.1 Explicit Banking . .

8.4.2

8.4.3

8.4.4

8.4.5

Variable Addressing .

GOTO ISR Instructions

Call Stack Size

Flash Write Instruction Sequence

8.4.6 Variable Naming and Code Casing

8.5 Verification

8.5.1 Verification of Safety Requirements

8.5.2 Verification of Timing Requirements

9 Conclusion

9.1 Controller Evaluation .

9.2 Documentation Strategy Evaluation ..

9.2.1 The Requirements Specification

9.2.2 High Level Design Document .

9.2.3 Implementation Description ..

9.3 The Evolution of the Development Process

9.4 Reuse

9.5 Future Work

CONTENTS

112

115

127

128

131

133

133

133

134

134

134

134

135

135

140

142
142

142

143

143

144

144

145

145

List of Figures

1.1 Native Injector Signals •••••••••• 0 0 ••• 3
1.2 Oscilloscope connected to Ford Police Interceptor 4

3.1 Pulse Waveform 24

3.2 Post Look-up Multiplication Regions 26

5.1 Controller Hardware Prototype 34
5.2 PIC Pin Diagram .. 37
5.3 Hardware Overview 38
5.4 Hardware Overview 40

5.5 NIRB- Native Injector Resistor Bank . 40

5.6 NDB- Native Diode Bank 41

5.7 NITB - Native Injector Transistor Bank 41

5.8 AITB - Alternate Injector Transistor Bank 42

6.1 Flow Chart Legend 44

6.2 Program Structure Flowchart 46

6.3 Initialization Flowchart 47

6.4 Main-Loop Flowchart 49

6.5 External Variable Update and Transmit 51

6.6 Enable/Disable Native Injectors . 52

6.7 Interrupt Flowchart 53
6.8 Compute Elongation - Sub-Chart 54
6.9 Programming Flowchart - PIC Side 57
6.10 Programming Flowchart - PC Side 58

lX

X

8.1 Picture of Lab Testing Environment .

8.2 OBC Simulator Waveforms

LIST OF FIGURES

113

114

Chapter 1

Introduction

Recent years have seen a dramatic decrease in the price of micro-controller technol­

ogy. So much so, that the successful design and implementation of embedded control

systems, once limited to large and specialized organizations, is now well within the

reach of small business. In keeping with the common technological trend, this de­

crease in price was accompanied by a tremendous increase in performance. This has

allowed general purpose micro-controllers to move into the real time arena, where

previously, timing constraints dictated that control be performed by faster, custom

hardware solutions. This combination of increased accessibility and utility has fueled

an increase in micro-controller software development. Unfortunately, while micro­

controller technology now enjoys widespread use, there are few available examples

of complete micro-controller software project documentation. It is among the goals

of this thesis to provide one such example. More specifically, it is the primary goal

of this thesis to provide complete software documentation, including implementation

code, for a configurable automotive alternate fuel injection controller.

1.1 Document Overview

The alternate fuel injection control system described in this document consists of

three components.

• Hardware - The electronics used to support the micro-controller.

1

2 1. Introduction

• Micro-controller Software - The software responsible for completing the control

tasks.

• Application Software - The Personal Computer application software used to

monitor and configure the controller.

This document is divided into chapters in a manner that reflects the division of

the software design process into largely independent stages and in some cases the di­

vision of the controller into these three components. Included are chapters pertaining

to controller requirements, PC application requirements, hardware design, controller

software design, controller software implementation and finally system testing, In­

spection and verification.

1.2 Fuel Injection

Port fuel injection, as described in [6], is the process by which fuel is forced under

pressure into the engine intake manifold. In the manifold, fuel mixes with air before

entering the cylinder to be compressed and finally ignited. The amount of fuel in the

air-fuel mixture is what determines the force exerted on the piston and the composi­

tion of the exhaust gases. There are two factors that determine how much fuel enters

the manifold during an engine cycle. The first of these is the amount of time that the

fuel injectors remain open, the second is the pressure in the fuel lines leading to the

injectors. The pressure however, generally remains constant, and injection timings

alone are used to control the amount of fuel being injected. It is important to note

that fuel injectors do not receive a 12 volt signal to cause them to open. Rather, when

the car is on, the injectors receive a constant 12 volt signal but not always a ground

to allow for the flow of current. The car computer, or the controller described in this

document, fires the injectors by providing them with a ground. Therefore, when the

signal from the controller to a fuel injector is 12 volts, the injector is closed. When

the signal is ground, the injector is open.

1. Introduction

2

3

4

5

6

7

8

I
I

~: ~
I I

~~--~--~--~--~--~:r-1~:~~
I I "ltf I

I
I

~

II ~

~--~----_.----~----~--~:~~--~----~--~----~
I
I

~~~~--~--~r-1~;--~~r.--~--~--~--~ 
I 
I 
I 
I I 

~--~--~--~--~--~--~~~:--~~r--~--~ 

I 

~~1~--~~--~~~~~~~ 

* Cylinder Spark 

jL Injector open 

Figure 1.1: Native Injector Signals 

1. 3 Injection and Firing Diagrams 

3 

Figure 1.1 illustrates the relative timing of fuel injection pulses and spark plug firings. 

The injection ordering is consistent with figure 1.2 which is a photo taken of an 

oscilloscope while it was connected to the native fuel injector lines of an 8 cylinder 

"Ford Police Interceptor" . 



4 

. ~ . I' t I l ·I l I l l t I t i I I I 1 f 1 

) · 

1. Introduction 

Curs·or 1 
52,00ms 

Figure 1.2: Oscilloscope connected to Ford Police Interceptor 

1.4 Conversion Motivation 

The motivation for converting a gasoline burning automobile to one that also burns 

an alternate fuel is usually cost reduction. The prices of fuels like propane and 

natural gas, the two most common alternatives, are significantly less than the price 

of petroleum. The other major advantage of powering an automobile with one of 

these fuels is a drastic reduction in the amount of harmful engine emissions. 

1.5 The Primary Control Task 

For an engine powered by one of the above mentioned alternate fuels to produce 

an output comparable to an otherwise identical gasoline burning engine, requires an 

increased mass of fuel per injection. Therefore, injection pulses must be lengthened 

if comparable engine output is desired. Thus, the job of an alternate fuel injection 



1. Introduction 5 

controller, is to open an alternate fuel injector at the time when the car computer is 

intending to open a native injector. Then, keep that alternate injector open for the 

precise amount of time after the native injector would have been closed to achieve 

equivalent engine output. 



Chapter 2 

Software Requirements and Design 

Documentation Strategy 

This chapter provides a literature review which summarizes software documentation 

guidelines and philosophies outlined by the institute of Electrical Engineers in [11], 

Daniel Hoffman and Paul Strooper in [4], and Constance Heitmeyer in [3]. These 

sources were selected for their applicability to real time systems documentation. This 

review is followed by a description and justification of the documentation strategy 

employed in this document. 

2.1 lEE Guideline 

This section reviews the real time software documentation standard proposed in [11]. 

Documents, or sets of documents proposed therein, are described in terms of their 

purpose and content. The guideline frequently refers to those in need of system 

development or selection as The User, and refers to those who's task it is to develop 

a system as The Supplier. The guideline has an intended primary readership of 

small to medium size companies and software providers but is also relevant for larger 

companies and academics. Reviewed documentation includes the feasibility study, 

user requirements specification, functional specification, software system specification, 

and test documentation. 

6 



2. Software Requirements and Design Documentation Strategy 7 

2.1.1 Feasibility Study 

The feasibility study is an evaluation of possible solutions to a particular problem. 

Solutions are evaluated based on criteria including operational and financial benefit, 

possible hazards, system lifetime, and operational safety. Among the most important 

results of the feasibility study is a recommendation endorsing the selection of a system 

already in existence, or the development of a new system. The onus of producing such 

a document falls upon the user. 

2.1.2 User Requirements Specification 

The user requirements specification defines the functionality of the system, and lists 

all associated constraints and factors. Requirements should be precise, complete, 

consistent and free from language that may prejudice the design. The document 

is written by the user in language that the supplier can understand and is often 

considered a contract between the two. 

2.1.3 Functional Specification 

The functional specification, written by the supplier, is used to augment contractual 

documentation and outlines how the supplier plans to satisfy the user requirements 

specification. The document should provide the user with a summary of what the 

system will do, how it will be operated, and how it will be maintained. It is common 

for this document to include a description of the proposed solution presented in the 

form of a block diagram expressing the relationships between functional components. 

The process of writing such a document is generally iterative, producing several ver­

sions as negotiations between the supplier and user advance. The supplier should 

notify the user of any aspect of the functional specification that is inconsistent with 

the user requirements specification. Also, the two documents should be similar in 

structure so that these inconsistencies are more easily uncovered. 

2.1.4 Software System Specification 

The software system specification is a supplier written document that describes the 

software in terms of content, structure, and function. The document begins as a 



8 2. Software Requirements and Design Documentation Strategy 

statement of design intent, and is developed in parallel with the software, eventually 

becoming a comprehensive description of the operational software system. The soft­

ware system specification is considered both a development and support document, 

as it facilitates software maintenance as well as design and implementation. When 

written properly, this document enables qualified developers, lacking prior knowledge 

of the system, to perform software maintenance tasks. 

2.1.5 Test Documents 

The lEE Guideline outlines a number of documents that should be produced be­

fore and during the testing process. The first of these is a document describing 

the supplier's test philosophy. Its purpose is to explain how the testing procedures 

demonstrate the correctness of the system. The test philosophy is also used to ex­

plain the principles that guide test case selection. The next document described in 

the guideline is the test plan. The test plan may restate the test philosophy, but is 

more concerned with test scheduling and procedure. This document is followed by 

the test specification. The test specification is a highly detailed description of all tests 

to be performed. Each test is described in terms of its objective, location, test condi­

tions, configuration, input and output, operational procedure, etc. Finally, test logs 

record the results of tests, and the test summary lists test failures and unexplained 

incidents. 

2.2 The Hoffman and Strooper Method 

This section reviews work products specified by Hoffman and Strooper in [4]. Work 

products are discussed in terms of their purpose, intended readership and content. 

Hoffman and Strooper refer to four classes of concerned parties, these being Users, 

Designers, Developers, and Verifiers. The people who fill these roles, however, differ 

between work products. The documents reviewed are the Requirements Specifica­

tion, the Module Guide, the Module Interface Specification, and the Module Internal 

Design. 



2. Software Requirements and Design Documentation Strategy 9 

2.2.1 Requirements Specification 

The Requirements Specification is the document in which the behaviour of a software 

system is explicitly defined. The requirements specification supports all four groups 

mentioned in the text. The users, in this case the end users, provide information 

to the designers who write the document. When completed, the requirements spec­

ification becomes a contract between these two parties. Developers work from the 

requirements specification rather than deciding on behalf of the users how the system 

should operate. Finally, verifiers, in this case primarily testers, use the requirements 

specification as a basis for their testing and verification. 

Listed and described below are a number of sections commonly found in require­

ments specifications. 

• Environment Variables - Defines how aspects of the system's environment 

are to be modeled by the software system as inputs and outputs. 

• State Machine - Provides possibly several Finite State Machines which de­

scribe the desired behavior of the system. 

• Functions - Defines constants, types, and functions used throughout the doc­

ument. 

• Expected Changes- Used to identify likely future changes in the requirements 

so that the design can be produced in such a way that makes these changes as 

simple and inexpensive as possible. 

2.2.2 Module Guide 

Software modularization is a process by which large and complex software systems 

are broken down into smaller more manageable components. These components, or 

modules, are essentially programming work assignments. The product of a good mod­

ular decomposition is a set of modules that are manageable in size and complexity, 

and are largely independent. Further to this, if the decomposition is driven by in­

formation hiding, each module should encapsulate a likely change. In this way, the 

details likely to change are kept secret to a single module, and if the change becomes 

necessary, effects are for the most part limited to that module. The module guide is 



10 2. Software Requirements and Design Documentation Strategy 

the work product used to present module decompositions. The two sections which 

make up a module guide are the Module Summary section and the Module Ser­

vice and Secret section. The module summary section lists the modules and groups 

them in terms of the type of secret they keep. The module service and secret section 

describes the modules in terms of the likely change they encapsulate and the service 

they provide. 

2.2.3 Module Interface Specification 

The module interface specification, or MIS, is the document where the assumptions 

about module behavior and use that comprise module interfaces are provided. With 

respect to the four groups previously mentioned, the designer writes an interface spec­

ification to reflect the desired observable behavior of a module. The developer creates 

an implementation to satisfy that specification. The verifier determines whether or 

not the implementation satisfies the specification. Lastly the user, generally a pro­

grammer, uses the interface specification to command the services provided by the 

module. When compared to source code, which is often used to specify interfaces, 

an MIS allows for more parallel development, reduces errors that arise from incorrect 

assumptions, and provides more guidance for test case development. 

The MIS for each module is divided into two sections, syntax and semantics. The 

syntax section deals with naming and typing of parameters and return values, as well 

as exceptions, constants and exported types. The semantics section lists assumptions, 

and describes how the state variables are modified by calls to the access routines. Also 

included are a state invariant, local functions, local constants and local types. 

2.2.4 Module Internal Design 

The abstract state variables of the MIS are chosen to be clear and expressive. It is 

therefore not uncommon for the types of those variables to be either unsupported or 

operationally /spatially inefficient in the implementation language. In these situations, 

the concrete state of the implementation often differs from the abstract state of the 

MIS. The Module Internal Design, or MID, is a document which provides a link 

between the abstract and concrete state spaces when such differences exist. The 

users of this document consist of the module designers and implementers. 



2. Software Requirements and Design Documentation Strategy 11 

The MID lists the concrete state variables, and describes how they are affected by 

calls to the access routines. The MID also provides a state invariant which restricts 

the legal state space of the concrete variables before and after access routine calls. 

Finally, the MID provides an abstraction function which associates each legal concrete 

state to a corresponding abstract state. 

2.3 Software Cost Reduction 

This section reviews software cost reduction (SCR) as described by Constance Heit­

meyer in [3). Unlike the previous sections that were primarily concerned with the 

content and structure of work products, the discussion of SCR is limited to its prin­

ciples and techniques. More specifically, this section describes the SCR approach to 

requirements and the four variable model. 

2.3.1 SCR Requirements 

This section outlines three fundamental aspects of the SCR requirements approach. 

These are: 

• A focus on outputs 

• Specifying outputs using a tabular notation 

• Requirements evaluation criteria 

The SCR approach to requirements is considered output focused in that the value 

of each output that the software system is required to produce is specified by a 

function of the environment's past and current states. These functions are generally 

presented in SCR tables. 

SCR tables, which include Mode Transition, Event, and Condition tables, facili­

tate the writing, comprehension, and verification of the functions which they encap­

sulate. Mode transition tables express functions from a mode and an event to a new 

mode, and only consider events which cause transitions. Event and condition tables 

express the values of controlled variables or terms. These values depend on events 

and conditions respectively as well as modes. 



12 2. Software Requirements and Design Documentation Strategy 

SCR requirements documents must satisfy a number of evaluation criteria. These 

include completeness, implementation independence, and the organizational con­

straint that they be reference documents. 

2.3.2 The Four Variable Model 

The four variable model expresses required software system behaviour using four vari­

able types and four relations. The four types of variables are monitored, controlled, 

input and output. Monitored and controlled variables are representations of quanti­

ties external to the system that the software must monitor and control. Input and 

output variables correspond to the interfaces of input and output devices to which 

the system has direct access. 

The four relations are NAT, REQ, IN, and OUT. Together, NAT and REQ express 

ideal system behavior by providing valid assumptions about the environment and 

defining the required relationships between monitored and controlled variables. IN 

and OUT define mappings from monitored to input variables and from output to 

controlled variables respectively, that reflect the properties of the hardware input 

and output devices. 

2.4 Injection Controller Software Documentation 

Strategy 

This section describes and justifies the software documentation strategy that guided 

the development of this document. Reasons are also provided for the omittance of 

documents, and the exclusion of particular design philosophies. 

2.4.1 Requirements Specification 

The requirements specification for the fuel injection controller was developed with the 

intent of completely specifying the behavior of the system and listing all constraints 

outlined by the end user. These goals are common to each of the literature sources 

examined in this review [11, 4, 3]. Contractually, this document would have served 

as an agreement between the system developers and Cosimo's Garage ltd. if in fact 



2. Software Requirements and Design Documentation Strategy 13 

the system were being developed for compensation. This is also consistent with the 

reviewed sources. 

In contrast to the lEE guideline [11], the requirements specification was not writ­

ten by the end user but by the system developer, and was not preceded by a formally 

documented feasibility study. The requirements document was authored by the sys­

tem developers as no person among the end users was sufficiently qualified to write a 

document that would meet the objectives listed above. The content of the document, 

however, was elicited from the end user by the author. Development of a feasibility 

study, according to the guideline, is the responsibility of the user and is therefore 

omitted. 

The requirements specification partially employs the SCR approach [3] by math­

ematically specifying outputs using functions presented in SCR tables. Also, the 

terms monitored and controlled variables are used to represent environmental quan­

tities. The benefits of this approach are outlined in the SCR section of this chapter. 

The organization of the specification, is such that requirements pertaining to a 

specific environmental quantity or control task may appear in more than one place. 

This is a direct result of a deliberate effort to first specify the necessary behavior 

and properties of the controller, before specifying the negation of all unacceptable 

behavior and properties. The structure of the resulting requirements specification is 

deemed helpful for the industrial partner as it closely resembles the way in which he 

verbally specified the requirements. 

2.4.2 High Level Design 

The high level design document serves to describe the decomposition and sequencing 

of the software system. The system decomposition identifies program segments that 

are manageable in size and complexity, while the program sequence ensures that time 

bounds can be successfully met. The design is presented using flowcharts as they 

constitute a minimal, well defined tool, for characterizing the system in terms of 

both of these properties. While state charts currently enjoy wide spread use, their 

semantics are not as easily defined, and they provide no advantage over flowcharts in 

expressing sequencing and decomposition information. 

The decomposition of the software system into program segments does provide 



14 2. Software Requirements and Design Documentation Strategy 

information hiding, however a one to one correspondence between secrets and modules 

is not present in all cases. To reflect this deviation from the Hoffman and Strooper 

method, the word module has not been used to describe the software units resulting 

from the decomposition. The benefits of such a modular decomposition are only fully 

realized when applied to multi-version, multi-person system development. Seeing as 

the development of the system described in this document was neither, the additional 

benefits would have been marginal. 

While the format of the high level design differs from the Software System Speci­

fication template provided in the lEE guideline, the two documents are quite similar 

in purpose and content. 

2.4.3 Implementation Description 

The implementation document provides code, a mapping from state space to concrete 

variables, and a listing of the variables that are read and changed by each program­

ming segment of the software system. The listings of changed and read variables 

effectively constitute an interface specification, while the mapping is used to show 

the relationship between the implementation variables, and the input, output, and 

state variables of the requirements document. This information is included in keeping 

with the rational for creating an MIS and MID outlined by Hoffman and Strooper in 

[4]. 

2.4.4 Testing, Inspection and Verification 

The last software document deals with the testing, inspection, and verification of the 

software system. The chapter includes discussions of testing tools, laboratory tests, 

field tests, inspection criteria and verifiable software properties. The sections that deal 

with testing convey the information normally found in test plans and specifications 

as described by the lEE guideline. The inspection and verification sections mirror 

the inspection and verification processes that were employed to increase confidence 

in the controller's software component. 



Chapter 3 

Alternate Fuel Injection Controller 

Requirements Specification 

This chapter is a requirements specification for a multi-fuel, multi-engine format, 

alternate fuel injection controller. 

3.1 Overview 

The controller specified in this chapter is responsible for generating and transmitting 

appropriately timed and sized pulses to an alternate fuel injector array. The lengths 

of these pulses are determined primarily by the lengths of pulses sent from the car 

computer and bound for the stock injectors, the intake air temperature, and the 

barometric pressure. Precise adjustments to these lengths are made depending on 

other engine parameters including but not limited to the fuel trim and the throttle 

position. The controller is responsible for switching peripheral hardware such as a 

fuel heater and an injector lock-off. Also, the device must provide a user interface to 

inform the operator of the status of fuel reserves and the presence of trouble while 

receiving user input used to determine which fuel to inject. Another interface will be 

used to export machine readable information and to update fuel maps. 

15 



16 3. Alternate Fuel Injection Controller Requirements Specification 

3.2 State Space 

This section provides a listing and description of quantities to be monitored, controlled 

and internally maintained by the system. Monitored or input variables are prefixed 

by L, controlled or output variables are prefixed by o_ , and maintained or state 

variables are prefixed by s_. 

3.2.1 Monitored Quantities 

Table 3.1 lists the environment variables that are monitored by the system. Each 

variable is characterized in terms of its unit of measure, and the range of values it 

may exhibit. In the cases where the unit is specified as an enumerated set, the value 

range includes every element of that set. A short description of each variable is also 

provided. 

Table 3.1: Monitored Quantities 

!Name !Type !Range I Description 

i_injectork,k=l···B {open, closed} Injection grounded 
i_fueiSelector {on, off} User fuel selection 
i_programingSwitch {up, down} Depress to program 
i_coolantTemp volts 0-5 Engine Coolant temperature 
Lo2Sensor volts 0-5 FUel trim sensor 
i_throttlePos volts 0- 5 Throttle position sensor 
i_baroPres volts 0-5 Barometric pressure 
i_airlnTemp volts 0-5 Air intake temperature 
i_altFuellevel volts 0-5 Alternate fuel reserve level 
i_rpm volts 0-5 Revolutions per minute 
i_o2Threshk,k=1···4 volts 0-5 02 region boundaries 
LtpThreshk,k=l···4 volts 0-5 TPS region boundaries 

Lo2M u ltk,k=1···4 real 0.5- 1.5 02 region multipliers 

LtpM ultk,k=1···4 real 1- 1.5 TPS region multipliers 



3. Alternate Fuel Injection Controller Requirements Specification 17 

3.2.2 Controlled Quantities 

Table 3.2 lists the environment variables that are controlled by the system. Each 

variable is characterized in terms of its unit of measure, and the range of values it 

may be assigned. In the cases where the unit is specified as an enumerated set, the 

value range includes every element of that set. A short description of each variable 

is also provided. 

Table 3.2: Controlled Quantities 

I Name I Type I Range I Description 

o_natlnjectork,k=I···B {open, closed} Injection grounded native 
o_altlnjectork,k=l···B {open, closed} Injection grounded alternate 
o_heaterRelay {active, inactive} Alternative fuel heater 
oJockOffRelay {active, inactive} Solenoid lock off 
o_a It Fuel LeveiD isp quarter tanks 0-4 Fuel reserve level indicator 
o_nativeLED {on, off} User interface mode indicator 
o_altLED {on, off} User interface mode indicator 
o_stbyLED {on, off} User interface mode indicator 

3.2.3 State Variables 

Table 3.3 lists the state variables that are internally maintained by the system. Each 

variable is characterized in terms of its unit of measure, which is specified as an 

enumerated set. A short description of each state variable is provided. 

Table 3.3: State Variables 

I Name I Type I Description 
s_control Mode {init, stbyNat, altFuel, native, program} System control mode 
s_i n jectionStatus {pulse, elongation, interpulse} Injector bank status 
s_trouble {on, off} System trouble state 



18 3. Alternate Fuel Injection Controller Requirements Specification 

3.2.4 Mode Invariants 

Provided here are lists of invariants associated with specific values of s_controiMode 

and s_trouble. 

Table 3.4, presents invariants for s_controiMode, but makes no mention of the value 

init since values of several environment variables are unknown at the time of system 

start-up. 

Table 3.4: s_controiMode Invariant Table 

!Mode !Invariant 

program Vk(o_natlnjectork = i_injectork) 
Vk(o_altlnjectork = closed) 
o_nativeLED = on 
o_altLED = on 
o_lockOffRelay = inactive 
o_heaterRelay = inactive 

native Vk( o_natlnjectork = i_injectork) 
Vk(o_altlnjectork = closed) 
o_nativeLED = on 
o_lockOffRelay = inactive 
o_heaterRelay = inactive 

stbyNat Vk(o_natlnjectork = i_injectork) 
Vk(o..altlnjectork = closed) 
o_nativeLED = off 
o_a It LED = off 
o..stbyLED = on 
o_lockOffRelay = active 
o_heaterRelay = active 

altFuel Vk(i_injectork = open--+ o_altlnjectork = open) 
Vk(o_natlnjectork = closed) 
o_nativeLED = off 
o_altLED = on 
o..stbyLED = off 
o_lockOffRelay = active 
o_heaterRelay = active 



3. Alternate Fuel Injection Controller Requirements Specification 19 

Table 3.5 provides an invariant for the situation when s_trouble has the value on. 

The invariant is presented in terms of a restriction on the value of s_controiMode. 

Table 3.5: s_trouble Invariant Table 

I Mode !Invariant 

I on ls_controiMode = native 

3.2.5 Event Description 

Table 3.6 introduces events that are used later in this chapter when defining mode 

transitions. 

Table 3.6: Event Table 

!Event Name I Description 

reset 
A cycling of power to the system, or a restarting of the soft-
ware for any reason 

non_term_pulse . 
The detection of an injection pulse with a duration greater 
than 26.2132 ms 

elong_over _pulse 
The detection of an overlapping native pulse and an alternate 
pulse elongation 

3.3 Requirements 

This section lists both functional and non-functional requirements that must be sat­

isfied by any successful controller design or implementation. 

3.3.1 Safety Requirements 

Requirements listed here are those that ensure the safety of the driver and the engine 

insofar as that safety depends on the controller. 



20 3. Alternate Fuel Injection Controller Requirements Specification 

1. Once the system is initialized, exactly one fuel injector shall fire for every in­

coming injection pulse. 

2. Fuel injectors fired must be associated with the same cylinders as incoming 

injection pulses. 

3. In all situations where s_trouble = on, fuel injection control shall default to the 

car computer. 

4. The lock off relay must remain inactive in the native and program modes. 

5. Pulse elongations must not overlap with subsequent native injection pulses. 

3.3.2 Operating Environment 

This section deals with the requirements of the controller after an installation that 

places it sufficiently far from all sources of heat, moisture and electromagnetic inter­

ference. 

1. The system must operate normally at all temperatures between -30°C and 

60°C. 

2. The system must sustain no damage when exposed to temperatures between 

-40°C and 70°C. 

3. The system must operate normally under all conditions generally realized at 

installation suitable areas of a running automobile's engine compartment. 

3.3.3 Performance and Timing Requirements 

This section deals with injection timings and acceptable delays as well as performance 

requirements determined by projected maximum workloads. 

1. The controller shall be capable of detecting and generating pulses to keep an 8 

cylinder engine running at up to 6500 RPM. 

2. The controller shall be capable of detecting and generating pulses to keep an 8 

cylinder engine running at as few as 500 RPM. 



3. Alternate Fuel Injection Controller Requirements Specification 21 

3. Every injection pulse generated by the car computer must arrive at the desti­

nation cylinder(s) within 5jjs. 

4. i_coolantTemp must be sampled at a frequency of at least 1 Hz 

5. i_o2Sensor must be sampled at a frequency of at least 10Hz 

6. i_baroPres must be sampled at a frequency of at least 1 Hz 

7. i_airlnTemp must be sampled at a frequency of at least 1 Hz 

8. i_throttlePos must be sampled at a frequency of at least 10Hz 

9. LaltFuellevel must be sampled at a frequency of at least 1 Hz 

10. UueiSelector must be sampled at a frequency of at least 10 Hz 

11. s_controiMode must be updated at a frequency of at least 10 Hz 

3.3.4 Control Mode Switching Requirements 

Table 3. 7 is a mode transition table that describes the behavior of s_controiMode. 

Initially, the value of s_controiMode is init. 

3.3.5 Injection Status Sub Modes 

Tables 3.8 and 3.9 present the transitions of the state variable s_injectionStatus. When 

the value of s_injectionStatus is interpulse, the input signals for all cylinders are at 12 

volts. When the value of s_injectionStatus is pulse, at least one of the input signals is 

at ground. Finally, a value of elongation indicates that the system is in a state where 

the signal to an alternate injector is ground but there is no grounded input injector 

signal. 

1. The state variable s_injectionStatus initially has the value interpulse. 

2. In the event that the state variable s_injectionStatus has the value elonga­

tion at the time that s_controiMode transitions away from the altfuel mode, 

@F(s_controiMode = altFuel), s_injectionStatus is assigned the value interpulse, 

s_injectionStatus := interpulse. 



22 3. Alternate Fuel Injection Controller Requirements Specification 

Table 3.7: Mode Transition Table of s_controiMode 

Mode Event INew Model 

@T( true) WHEN i_programmingSwitch = down program 
@T(true) WHEN i_programmingSwitch =up native 

reset in it 

native reset in it 
@T(UueiSelector = on/\ 

stbyNat 
s_trouble = off) 

stbyNat reset in it 
@T(LfueiSelector = ojJV 

native 
s_trouble =on) 

@T(i_coolantTemp > 2 volts 1\ 

i_altFuellevel > 0.6 volts 1\ 
a It Fuel 

i_rpm > 1 volt 1\ 

s_injectionStatus = interpulse) 

a It Fuel reset in it 
@T(UueiSelector = ojJV 

native 
s_trouble =on) 

@T(i_altFuellevel < 0.4 volts ) stbyNat 

3.3.6 Trouble 

Table 3.10 defines the transitions of the state variable s_trouble. s_trouble initially has 

the value off. 

3.3. 7 Injector Grounding 

This section describes how injection grounding durations are measured and calculated. 

As the controller is digital, injector signals are sampled and the amount of time that 

current flows through the native injectors is approximated. 

1. Leading and trailing edges of native injection pulses must be detected within 

240 ns of their arrival to the controller. 

2. The output to alternate injectors shall be updated with a frequency of at least 

200,000 Hz. This value is represented in Figure 3.1 as ~· 



3. Alternate Fuel Injection Controller Requirements Specification 23 

Table 3.8: State Transition Table of s_injectionStatus when (s_controiMode = init V 
s_controiMode =program V s_controiMode =native V s_controiMode = stbyNat) 

I Mode I Event Action jNew Model 

interpulse @T(3k.Linjectork = open) 
o_natlnjectork := Linjectork I 

k = 1·. ·8 
pulse I 

pulse @T( ·3k.i_injectork = open) o_natlnjectork := i_injectork 1· 1 I 
k = 1 ... 8 mterpu se 

Table 3.9: State Transition Table of s_injectionStatus when s_controiMode = altFuel 

I Mode I Event Action INew Model 

Reset clock; 
interpulse @T(3k.Linjectork = open) o_altlnjectork := i_injectork pulse 

k = 1·. ·8 

pulse @T(·3k.Linjectork =open) 
pulselength := clock; 

elongation 
Reset clock 

elongation @T(clock > ElLength()) 
o_altlnjectork := closed 

interpulse 
k = 1·. ·8 

3. Pulse length refers to the number of periods of length T that a signal is below 

6 volts. 

4. The width of an incoming pulse must be measured to within an accuracy of 

±T. 

The measured width of an incoming pulse jT is equal to 

jTI(j- 1)T ~ /j.t ~ (j + 1)T (3.1) 

Outgoing injection pulses must remain grounded for mT 

mTIImT- ideall ~ ~ 1\ •3nln > m 1\ lnT- ideall ~ ~ (3.2) 

where ideal is the sum of the incoming pulse length and the elongation calculated 

using the fuel maps, the incoming pulse length, the fuel trim and the throttle 

position, unless such a pulse would cause injector overlap. 



24 3. Alternate Fuel Injection Controller Requirements Specification 

Table 3.10: State Transition Table of s_trouble 

on 

Ground 

12 v 

T 

kT=mT-jT 

3.3.8 Fuel Maps 

Event !New Model 
non_ term_pulse on 
elong_ over _pulse on 

reset off 

r---------•~ mT~--------

r-------..-·-.-.-.-.-. 

Native Signal 

AHSignal 

Figure 3.1: Pulse Waveform 

Computing the amount of time to keep an alternate injector open, based on all rel­

evant engine operating parameters, would consume more time than can be spared 

by the controller. For this reason, the system will incorporate a fuel map used to 

relate ambient pressure and temperature, to an elongation factor. Besides reducing 

computational complexity at runtime, a fuel map is also useful to practitioners as 

it allows them to make small changes to very specific areas of the operating range 

without changing the continuous model of the system. The function FuelMap() takes 



3. Alternate Fuel Injection Controller Requirements Specification 25 

no parameters but has access to all state variables defined in this document. The 

variables that are used by the function are LairlnTemp and LbaroPres. The Output is 

a fixed point number between 0 and 0.5 that is used to compute the length of pulse 

elongations. The fuel map values shall be pre-computed using a PC and stored in the 

flash memory of the controller. 

The length of pulse elongation also depends on fuel trim and the amount that the 

gas pedal is depressed. The state variables i_o2Sensor and i_throttlePos are used to 

reason about these properties. The values from both of these sensors are compared 

against thresholds which divide their sensor ranges into 5 distinct regions. In both 

cases, one of the five regions represents optimal operation and therefor corresponds to 

a multiplier of 1. The other 4 regions are associated with possibly non-one multipliers 

which are used to adjust pulse lengths. Figures 3.2 illustrates how the ranges of 

i_o2Sensor and LthrottlePos are divided into regions and what multipliers they are 

associated with. 

Here the functions are described explicitly. The following can be assumed to be a 

property of the state variables: 

Lo2Thresh1 < i_o2Thresh2 < Lo2Thresh3 < Lo2Thresh4 and 

LtpThresh1 < i_tpThresh2 < LtpThresh3 < LtpThresh4. 

Lo2Mult1 if i_o2Sensor::; i_o2Thresh1 , 

Lo2Mult2 if i_o2Thresh1 < Lo2Sensor::; Lo2Thresh2 , 

02Factor() = 1 if Lo2Thresh2 < Lo2Sensor ::; i_o2Thresh3 , 

Lo2Mult3 if Lo2Thresh3 < Lo2Sensor ::; i_o2Thresh4, 

i_o2Mult4 if i_o2Sensor > Lo2Thresh4. 

1 if LthrottlePos ::; LtpThreshll 

LtpMult1 if LtpThresh1 < i_throttlePos :S LtpThresh2 , 

(3.3) 

TpFactor() = i_tpMult2 if i_tpThresh2 < i_throttlePos ::; i_tpThresh3 , (3.4) 

LtpMult3 if LtpThresh3 < LthrottlePos :S LtpThresh4, 

i_tpMult4 if LthrottlePos > i_tpThresh4. 



26 3. Alternate Fuel Injection Controller Requirements Specification 

Very Lean 
02Factor() = i_o2Mult4 

i_o2Thresh4 · · · · · · · ........••......... 
Lean 

02Factor() = i_o2MultJ 

i_ o2Threshl · · · · · · · · · · · · · · · · · · · · · · · • · • 

Trim 
02Factar() = 1 

i_o2Thresh2 · · · · · · · · · · · · · · · · · · · · · · · · · · 
Rich 

02Factor() = i_o2Mult2 

i_o2Threshl · · · · · · · · · · · · · · · · · · · · · · · · ·. 
Very Rich 

02Factor() = i_o2Mult1 

5volts 

i_o2Sensor 

0 volts 

i_tpThresh4 

i_ tp Threshl 

i_ tp Threshl 

i_tpThreshl 

Max Throttle 
TpFactor() = i_ tpMult4 

·························· 
High Throttle 

TpFactor() = i_tpMultJ .......................... 
Medium Throttle 

TpFactor() = i_ tpMult2 

Low Throttle 
TpFactor() = i_tpMultl 

Min Throttle 
TpFactor() = 1 

5volts 

i_ throttlePos 

Ovolts 

a) Oxygen Sensor Regions b) Throttle Position Regions 

Figure 3.2: Post Look-up Multiplication Regions 

Now that the types of the functions FuelMap(), 02Factor(), and TpFactor() have 

been specified, a formula for computing pulse elongations can be given as well. 

ElLength =incoming pulse length* FuelMap() * 02Factor() * TpFactor() (3.5) 

1. Pulses may not be contracted since pulse elongation calculations require the 

value of the duration of the native pulse. 

2. Fuel map elongation lengths shall be chosen with the intent of achieving a clean, 

efficient, and driver oriented combustion stroke. 

3.3.9 Granularity and Numerical Representation 

This section deals with the precision of data representation inside the controller. 

1. All analogue values being monitored shall be represented by no fewer than 8 

bits. 

2. Durations of inbound pulses shall be represented by no fewer than 16 bits. 

3. Durations of pulse elongations shall be represented by no fewer than 8 bits. 



3. Alternate Fuel Injection Controller Requirements Specification 27 

3.3.10 Driver Interface 

This section describes the heads up driver display. 

1. The alternate fuel reserve level shall be displayed to the driver on a 0 - 4 scale. 

2. An alternate fuel reserve level indicator value of 4 represents a tank between 

full and 7 -8ths full 

3. An alternate fuel reserve level indicator value of 3 represents a tank less than 

7 -8ths full and at least 5-8ths full. 

4. An alternate fuel reserve level indicator value of 2 represents a tank less than 

5/8th full and at least 3-8ths full. 

5. An alternate fuel reserve level indicator value of 1 represents a tank less than 

3/8th full and at least 1-8th full.£ 

6. An alternate fuel reserve level indicator value of 0 represents a tank less than 

1/8th full. 

7. The driver interface shall indicate when the system is in a state of trouble. 

8. The driver interface shall provide the driver a means of indicating the fuel 

desired for powering the car. 

3.3.11 Serial Connection 

This section describes the functionality provided by the serial connection. 

1. The Controller shall provide a serial connection to a personal computer. 

2. The serial connection shall adhere to the RS232C serial protocol. 

3. Serial communication shall employ 8 data bits, 1 stop bit, no parity and no 

handshake. 

4. The serial connection shall provide a means to transfer fuel maps from the 

Personal computer to the controller. 



28 3. Alternate Fuel Injection Controller Requirements Specification 

5. The serial connection shall export engine operating parameters from the con­

troller to the personal computer. 

3.3.12 OBC diagnostics 

The automobile's on-board computer performs several diagnostics to verify that the 

car is operating correctly. One of these checks that there is resistance on the lines 

leading to the fuel injectors. If this resistance is not present, the computer assumes 

that there is a short and lights the check engine signal on the dash. As the controller 

is intercepting this signal it must ensure that the OBC diagnostic does not come to 

the above conclusion. 

1. The controller must provide a resistance of no less than 100 and no more than 

15 Kn on each native injector input line. 



Chapter 4 

Alternate Fuel Injection Controller 

PC Application Requirements 

Specification 

This chapter contains requirements for the system used to configure and monitor the 

alternate fuel injection controller. 

4.1 Overview 

The computer application specified in this chapter is responsible for providing on-line 

communication with the fuel injection controller. This communication is bidirectional 

and serves two fundamental purposes. The first of these is providing the servicing 

technician with information pertaining to the operation of the controller. The second 

is providing the servicing technician a means to configure the controller by uploading 

fuel maps, threshold boundaries, and threshold multipliers. As will be discussed in 

more detail later in this chapter, communication will adhere to the RS232C serial 

protocol. It should be noted that this application is being specified to interface with 

a controller that has already been designed. This has resulted in a situation where 

several issues that would usually be considered during the software design phase have 

been dealt with in this document to ensure a compatible interface. 

29 



4. Alternate Fuel Injection Controller PC Application Requirements 
30 Specification 

4.2 Requirements 

This section lists both functional and non-functional requirements that must be sat­

isfied by any successful application design or implementation. 

4.2.1 Display Requirements 

Requirements listed here are those that describe what data must be displayed by the 

system and in what ways it must be displayed. 

1. The system shall display, both numerically and graphically, a subset of the data 

transmitted by the controller over the serial port. 

2. Membership in the displayed subset implies that a data element has or will be 

displayed for some amount of time by the application. 

3. The displayed subset shall include at least one data element from each uniquely 

defined value type received each second. 

4. When a value element is displayed it shall replace the previously displayed 

element of the same value type. 

5. Data shall be displayed in the order that it arrives. 

6. The system shall display a descriptive label for each value type. 

7. Descriptive labels shall be terms from the domain language. 

8. The system shall continue to display the most recently received data in the case 

that data reception ends. 

9. The system shall indicate to the user when the data being displayed is "Stale". 

Stale data is any data displayed for 2 or more seconds after being received. 

4.2.2 Logging Requirements 

Requirements listed here are those dealing with what data needs to be logged by the 

system, as well as how logged data needs to be organized. 



4. Alternate Fuel Injection Controller PC Application Requirements 
Specification 31 

1. The system shall log a subset of the data received on the serial port. 

2. The system shall log all data elements that are members of the displayed subset. 

3. Logged data shall be organized in a way that preserves the order of arrival. 

4. Logged data shall be organized in a way that is compatible with third party 

statistical, graphing, and archiving systems. 

5. The system shall not destroy logs previously produced by the system. 

4.2.3 Fuel Map Requirements 

Requirements listed here deal with the creation, retrieval, verification and transmis­

sion of fuel maps. 

1. The system shall provide a means to select a fuel map. 

2. The system shall verify that fuel maps satisfy safety requirements listed in this 

chapter. 

3. The system shall transfer fuel maps to the controller over the serial port. 

4. The system shall adhere to the transfer protocol presented in the controller high 

level design chapter. 

5. Fuel maps shall be editable by any standard ASCII text editor. 

4.2.4 Safety Requirements 

Requirements listed here are those that ensure the safety of the driver, passengers, 

and the engine insofar as that safety depends on the application. As the controller 

will always be burning native fuel when it is accepting input from this system, this 

discussion can be limited to fuel map validation and transmission verification. 

1. The application shall NOT transmit to the controller any fuel map with one or 

more values greater than 255, or less than 0. 

2. The application shall NOT transmit to the controller any fuel map with a 

number of entries not equal to 16,384. 



4. Alternate Fuel Injection Controller PC Application Requirements 
32 Specification 

4.2.5 Performance and timing 

Although this application is not considered a real-time system, it is important to 

consider certain timing issues. Among these issues are communication baud rates 

and sampling for display and data logging. As the platform for this application is 

not a real time operating system, it is important to realize that values listed here are 

guidelines, and occasional failure in meeting these requirements does not necessarily 

constitute a system failure. 

1. The system shall display data coming from the controller at a frequency of 1Hz. 

2. The system shall log data coming from the controller at a frequency of 3Hz. 

4.2.6 Platform 

This section contains requirements pertaining to the operating system and computer 

hardware that will support the application. These requirements come directly from 

the client and thus could not be left to the designers. 

1. The application shall operate under a version of the Microsoft Windows oper­

ating system with the .NET Framework installed. 

2. The application shall run on both lap-top and desktop computers. 

4.2. 7 Communication 

This section deals with the protocols and communication standards that must be 

employed by the application in order to successfully communicate with the controller. 

1. Communication with the controller shall be conducted over the serial port. 

2. Communication shall employ the RS232C serial protocol. 

3. The serial baud rate shall be 9600 bps. 

4. The serial data format will use 8 data bits. 

5. The serial data format will use 1 stop bit. 



4. Alternate Fuel Injection Controller PC Application Requirements 
Specification 33 

6. Parity shall not be used during serial communication. 

7. There shall be no handshake to initiate serial communication. 

8. The system shall transmit in pairs of bytes. 

9. The second byte shall have the value 0 in every instance that the first byte 

represents a fuel map value being transmitted for the first time. 

10. The second byte shall have the value 255 in every instance that the first byte 

represents a fuel map value being retransmitted. 

11. The system shall transmit a new fuel map value as the first byte of a commu­

nication block after each completely correct echo. 

12. The first byte of a block shall be retransmitted every time the controller fails 

to properly echo the first byte of the previous byte pair, but correctly echoes 

the second. 

13. The system will discontinue communication, and inform the user to restart the 

transmission in the event the controller fails to correctly echo the second byte 

of the previous byte pair. 

14. A completely correct echo is a two-byte block sent from the controller to the 

application that consists of the same information that was sent from the appli­

cation during its last transmission. 

15. The system shall consider an echo where the second byte differs by four or more 

bits from the first byte of the last transmission as a failure to echo the second 

byte. 

16. The system shall consider an echo where the first byte differs in any way from 

the first byte of the last transmission as a failure to echo the first byte. 



Chapter 5 

Hardware Description 

This chapter provides a general description of the controller hardware design proposed 

by Dr. M. v. Mohrenschildt . Included are a listing of port and pin assignments to 

state space variables, an overview of hardware components, and circuit diagrams of 

the input and output electronics. The computing platform employed by the controller 

is the PICMicro PIC18F452. This micro controller is ofter referred to as the "PIC" 

in the remainder of this document. 

Figure 5.1: Controller Hardware Prototype 

34 



5. Hardware Description 35 

5.1 Port and Pin Assignments 

This section provides the mapping of state space variables to ports and pins of the 

PIC. An "NA" in the first column indicates that the given row is not associated with 

a PIC port. In cases where a pin is not associated with a state space variable, the 

pin function is italicized. 

I Port Identifier I Pin Function I Pin Number I 
PORTA[O] LairlnTemp Pin 2 

PORTA[1] LbaroPres Pin 3 

PORTA[2] Lo2Sensor Pin 4 

PORTA[3] not used Pin 5 

PORTA[4] i_fueiSelector Pin 6 

PORTA[5] LcoolantTemp Pin 7 

PORTB [0] Linjector1 Pin 33 

PORTB[1] Linjector2 Pin 34 

PORTB [2] Linjector3 Pin 35 

PORTB[3] i_j njector 4 Pin 36 

PORTB[4] i_injectors Pin 37 

PORTB[5] i_injector6 Pin 38 

PORTB[6] Linjector7 Pin 39 

PORTB[7] i_injector8 Pin 40 

PORTC[O] o_nativeLED Pin 15 

PORTC[1] o_stbyLED Pin 16 

PORTC[2] o_altLED Pin 17 

PORTC[3] i_programmingSwitch Pin 18 

PORTC[4] o_heaterRelay Pin 23 

PORTC[5] o_lockOffRelay Pin 24 

PORTC[6] serial transmit Pin 25 

PORTC[7] serial Receive Pin 26 

PORTO [0] o_altlnjector1 Pin 19 

PORTD[1] o_altlnjector2 Pin 20 



36 5. Hardware Description 

PORTD[2] o_altlnjector3 Pin 21 

PORTD[3] o_altlnjector4 Pin 22 

PORTD[4] o_altlnjector5 Pin 27 

PORTD[5] o_altlnjector6 Pin 28 

PORTD[6] o_altlnjector7 Pin 29 

PORTD[7] o_altlnjector8 Pin 30 

PORTE[O] i_altFuellevel Pin 8 

PORTE[1] i_throttlePos Pin 9 

PORTE[2] native injectors ON/OFF Pin 10 

NA reset Pin 1 

NA power Pin 11 

NA ground Pin 12 

NA crystal Pin 13 

NA crystal Pin 14 

NA ground Pin 31 

NA power Pin 32 

5.2 Pin Diagram 

The pin diagram, figure 5.2, presents much of the information previously provided 

by the pin assignment table. This time, the information is presented graphically. 

This figure was necessary for designing a controller hardware layout and traces as it 

provides information relating to the geography of PIC. 

5.3 Hardware Overview 

This section provides a graphical representation, figure 5.3, of the controller hardware 

design. The figure consists of hardware components represented as blocks, wires 

represented as thin black arrows, and buses represented as slashed and numbered 



5. Hardware Description 37 

reset 1 i_injectorl 

i_airlnTemp 2 0 i_injector2 

i_baroPres 3 i_injector3 

i_o2Sensor 4 37 i_injector4 

not used 5 36 i_injectors 

i_fueiSelector 6 35 i_injector6 

i_coolantTemp 7 34 i_injector7 

i_altFuellevel 8 33 i_injectora 

i_throtdePos 9 32 power 

native injectors ON/OFF 10 PIC 31 ground 

power 11 30 o_altlnjectora 

ground 12 29 o_alt Injector? 

crystal 13 28 o _ altlnjector6 

crystal 14 27 o_altlnjectors 

o _ nativeLED 15 26 serial receive 

o_stbyLED 16 25 serial transmit 

o_altLED 17 24 o _lockOffRelay 

i_programmingSwitch 18 23 o _heaterRelay 

o_altlnjectorl 19 22 o _altlnjector4 

o_altlnjector2 20 21 o_altlnjector3 

Figure 5.2: PIC Pin Diagram 

arrows. The number that accompanies a bus correspond to the number of wires 

within that bus. Each hardware components is described below. 

ACLA - Analogue Converter Level Adjustment 

The PIC supports 12 bit analogue to digital conversion with predefined limits on 

voltage and amperage. It is the task of this hardware component to ensure the 

analogue signals are within these limits before arriving at the PIC. 



38 

Fuel Lev 

Lock·olf Relay Signal 

5. Hardware Description 

To Native 
Injectors 

0 Trouble 

Figure 5.3: Hardware Overview 

NIRB - Native Injector Resistor Bank 

This hardware component serves two purposes. The first of these it to protect the 

PIC from the high current and voltage of incoming fuel injection pulses. Its second 

task, is to create a resistance on the input injection lines that is necessary to prevent 

an error from being registered by most automotive On-Board Computers. 



5. Hardware Description 39 

NDB- Native Diode Bank 

The Native Diode bank ands all incoming injector signals producing the i_injector8 

signal. 

NITB- Native Injector Transistor Bank 

This hardware component is a switchable array of transistors that when enabled 

allows incoming injection pulses to arrive unaltered to the native fuel injectors. 

AITB- Alternate Injector Transistor Bank 

This hardware component is an array of individually controlled transistors that pro­

vides fuel injection pulses to the alternate fuel injectors. 

LC - Serial Level Converter 

This hardware component adjusts the input and output signals of the PIC serial port 

as to make them consistent with the RS232C serial protocol. 

PIC Support 

The PIC support hardware component represents all hardware required for PIC op­

eration. This includes access to 5 volt power, ground, and an oscillating crystal. 

Driver Interface 

The remaining hardware block is the driver interface. This hardware component 

consists of the fuel selection switch, the programming switch, and all LED's. 

5.3.1 Hardware Components in the Prototype 

Figure 5.4 is a modified version of the hardware prototype photo presented at the 

start of this chapter. Several hardware components discussed in this chapter have 

been labeled in the image to illustrate the correspondence between the the prototype 

and the overview. 



40 5. Hardware Description 

Figure 5.4: Hardware Overview 

5.4 Hardware Circuit Diagrams 

This section consists of four circuit diagrams. The first of these, figure 5.5, depicts 

one of the 8 elements of the native injector resistor bank (NIRB).1 Figure 5.6 depicts 

Input from 
OBC 

TO NOB TONITB 

12 v 

sv 

Figure 5.5: NIRB- Native Injector Resistor Bank 

1The transistors labeled 2N3904 are general purpose PNP transistors. There are 8 such transistors 
used in the controller. 



5. Hardware Description 41 

the native diode bank (NDB). The third, figure 5.7, depicts one of the 8 elements 

i_injecton 

i_injecton 

FROM NIRB 

FROM NIRB 

FROM NIRB 

i_injectora 

Figure 5.6: NDB- Native Diode Bank 

of the native injector transistor bank. It also shows the PIC switched connection to 

ground that all 8 of these elements have in common. 2 The last circuit diagram, 

Output to 
Native Injector 

TIP 102 

Native Injector 
Ground Bus 

PORTE[2] 

Figure 5.7: NITB- Native Injector Transistor Bank 

figure 5.8, depicts one element of the alternate injector transistor bank. 

2The transistors labeled TIP 102 are NPN Darlington Pair transistors capable of handling 100 
volts at 15 amps for short periods of time. There are 8 + 8 + 1 such transistors used in the controller. 



42 

o_altlnjector k 

Output to 
Alternate Injector 

5. Hardware Description 

Figure 5.8: AITB- Alternate Injector Transistor Bank 



Chapter 6 

High Level Design 

This chapter provides a structured software design for the alternate fuel injection 

controller. The design is presented using flowcharts. 

6.1 Overview 

The chapter begins with a description of the flow charting convention used, and 

continues with a series of flowcharts that comprise the design. Each flow chart is 

accompanied by a description and a list of results pertaining to safety, timing and 

functionality that can be inferred from it. The texts by Alan Shaw [1] and Frank Vahid 

and Tony Givargis [5] offered relavant discussions of real-time, embedded software 

design. 

6.2 Flow Chart Conventions 

The legend seen in Fig 6.1 lists the components and connectors that comprise a flow­

chart. This section describes each entity in Fig6.1 in more detail to facilitate easy 

reading of this chapter. 

• Interrupt Branch - The first item presented in Fig 6.1 is a connector labeled 

"Interrupt Branch" . This connector is used to express a change in the program 

counter from anywhere in the source program segment to the beginning of an 

interrupt service request handler. It can also represent the return from an 

43 



44 6. High Level Design 

. . . . . . • t>- Interrupt Branch 

t> Sequential Flow 

( ) Label 

I I 
Program 
Segment 

Figure 6.1: Flow Chart Legend 

interrupt service request handler to the point in a program segment where an 

interrupt caused a jump in execution. As a convention, the code segment used 

to service interrupts will be labeled with ISR, for "Interrupt Service Routine". 

Any interrupt branch connectors ending at that segment represent a branch to 

the interrupt service routine, and any interrupt branch connectors starting at 

that segment represent a branch to the code at the value of the program counter 

before the interrupt was serviced. 

• Sequential Flow - The sequential flow arrow is a connector used to express 

composition of program segments. When two items are joined by this connector 

it means that the item at the tail of the arrow is executed or evaluated immedi­

ately before the item at the head of the arrow (barring a jump to the interrupt 

service routine). When one of these connectors ends at another like connec­

tor, the expressed composition is between the source segment and the segment 

arrived at by following connectors in the direction of their arrow heads. 



6. High Level Design 45 

• Label - The label component is used at the beginning of all flow charts and 

at the end of any that describe a code segment with a returning execution 

path. They are used to indicate the starting and ending points of execution in 

the charts. The text inside these components are to be used as labels in the 

implementation assembly code. 

• Program Segment - This component represents a collection of program in­

structions. 

• Branch - This component is used to represent conditional branching in the 

program code. A is an expression that evaluates to an element of some type T. 

Each connector leaving the branch is labeled with a constant, or a collection of 

constants of the same type. For each possible value of A, C0 ... i of type T, there is 

exactly one branch labeled with either the value itself or a collection containing 

that value. This construct dictates that if at some point during runtime, the 

program reaches the branch, execution will continue along the connector whose 

label is consistent with the value of the expression A. 

6.3 General Program Structure 

This section describes the overall flow of the software. The flowchart in Fig 6.2, begins 

with the start label "System Boot". The software will start at this point when the 

system is first powered up or when it is recovering from a brown out, or software 

reset. The missing end label indicates that the software will loop indefinitely. Other 

important conclusions that can be drawn from the structure of the flowchart are listed 

below. 

• The program must completely execute the Initialization program segment before 

starting execution of the Main Loop, or Programming Loop program segments. 

• On any given execution of the program, only one of the Main Loop or 

Programming Loop will be executed. 

• Interrupts are disabled while the Programming Loop is being executed. 



46 

ISR 

Initialization 

<I . ... 

Main Loop 

6. High Level Design 

Programming 
Loop 

Figure 6.2: Program Structure Flowchart 

• The value of i_programmingSwitch is checked only once and immediately after 

initialization. This is in keeping with our hold-on-boot, hidden switch design. 

6.4 Initialization Program Segment 

This section describes the controller's initialization routine as it is presented in Fig 6.3. 

Initialization entails writing to a subset of the micro controller's special function 

registers. This is done in order to initialize the hardware to perform the functionality 

that the control task requires. A specific example of this, is setting the A/D control 

register so that the micro controller uses 5 volts as a reference voltage. Another is 



6. High Level Design 47 

in it ) 

* Setup 1/0 Ports 

Enable Native 
Injectors 

Setup AID Convertion 

Setup Timers 

Setup Serial Port 

Setup lnterupts 

Setup Flash R/W 

Read Pulse 
Multipliers From 

Flash 

Initialize Variables 

Boot Delay 

:-·-·-·~·-·-·-
I 
I 

Wait for 
interpulse 

I 

v 
Tum On lnterupts 

set s_controiMode to 
Native 

* 
end lnit ) 

Figure 6.3: Initialization Flowchart 



48 6. High Level Design 

writing to the baud rate generator special function register to set the serial port baud 

rate to be 9600 bps. All of these tasks will be described fully in the chapter relating to 

implementation. Conclusions that can be drawn from the structure of the flowchart 

are listed below. 

• The native injectors are enabled, and remain enabled during initialization. As 

a result the vehicle will be injecting the native fuel when it enters both the 

Main Loop and Programming Loop program segments. 

• Interrupts are only enabled after all other initialization tasks are completed. 

This guarantees that the system will never enter the ISR before the system is 

prepared to time and transmit injection pulses. 

• Since we have only one segment of the initialization code that branches, and we 

have a hard time bound for how long the program can remain in that segment 

(the maximum native injection length), we have a hard time bound for how 

long initialization will take. 

6.5 Mode Update and Data Acquisition Main­

Loop 

This section describes the structure of the main control loop as it is presented in 

Fig 6.4. The main loop is the program segment that deals with setting the control 

mode, as well as data acquisition and serial transmission. The loop begins by checking 

LprogrammingSwitch that is used to notify the system of which fuel is desired by the 

user for injection. If the native fuel is desired, the controller has nothing else to 

verify and proceeds to take the necessary action of setting s_controiMode to native, 

and enabling the native injectors. Next the user interface LED's are updated and 

o_heaterRelay and o_lockOffRelay are set to inactive. If the switch indicates that the 

alternate fuel is desired for injection, the controller branches depending on which fuel 

is being injected at that time. This is necessary as the requirements for switching to 

alternate injection are more stringent than those for continuing alternate injection. 

If the value of s_controLMode is native, the controller reassigns it with the value 

stbyNat, sets both o_heaterRelay and oJockOffRelay to active, updates the user in-



6. High Level Design 

s_controiMode to 
native 

Enable Native 
Injectors 

Update GUILEDs 

External Variable 
Update and 
transmission 

UpdateGUI 
LEOs 

o_lockOHRelay to 
active 

Wait for 
lnterpulse 

Disable Native 
Injectors 

s_controlMode to 
altFuel 

Updale GUI 
LEOs 

s_controiMode to 
stbyNat 
Wait lor 

lnterpulse 

Enable Native 
Injectors 

UpdateGUI 
LEOs 

Figure 6.4: Main-Loop Flowchart 

49 

terface, and then determines if the values of the monitored variables allow for the 

transition to alternate fuel. If they do, s_controiMode mode is set to altFuel and the 

native injectors are disabled. If the system was already injecting the alternate fuel, it 



50 6. High Level Design 

checks that the values of the monitored variables allow for that to continue, in which 

case no further action is taken. If, however, the values of the monitored variables are 

such that a return to native injection is required, s_controiMode is set to stbyNat, the 

native injectors are enabled and the GUI LED's are updated. In each of the above 

mentioned situations, the next step is the same, update and transmit the values of 

the state variables that represent the analogue inputs. The process then repeats. A 

list of conclusion that can be drawn from the structure of the main loop are listed 

below. 

• Every time the dueiSelector branch forces execution along the path labeled off, 

the values of s_controiMode, o_lockOffRelay, and o_heaterRelay are updated. 

• Lrpm is not a factor in determining if alternate injection should continue, but 

is a factor in determining if alternate injection should begin. 

• There are no sub-loops in this flowchart, which would seem to imply that there 

is a hard time bound for the execution of the main loop. However, Figure6.2 

dictates that interrupts can cause the program counter to jump from this pro­

gram segment, and figure 6.6 shows that the injector enable bit is only updated 

between incoming pulses. As such, timing results cannot be given without first 

analyzing the interrupt service routine and the behavior of the system at times 

of mode transitions. 

6.5.1 External Variable Update and Transmission Sub-Chart 

Figure 6.5 is used to give a detailed description of the "Variable Update and Trans­

mission" code segment that appears near the bottom of Fig 6.4. The "7X" found at 

the left of the flowchart describes how the entire block is performed seven times before 

execution leaves the code segment. The code does not loop but rather is repeated 

once for each analogue channel. The segment starts by performing A/D conversion. 

The digital result is then collected and stored in the appropriate register. Finally, the 

result is transmitted over the serial port. 



6. High Level Design 51 

~--·-·-·-·1·-·-·-·-·-

I Perfonn AID 

I conversion 

I Get Digital Data 

I 7X 
Update 

appropriate state 
variable 

Transmit Data on 
Serial Port 

l 
Figure 6.5: External Variable Update and Transmit 

6.5.2 Enable/Disable Native Injectors Sub Chart 

Figure 6.6 is used to give a detailed description of the "Enable Native Injectors" and 

"Disable Native Injectors" code segments. They illustrate how the state of the native 

injector enable bit is only updated when it is not consistent with the current mode, 

and how it is only updated when there are no incoming injection pulses. 

• All analogue values are collected, recorded and transmitted over the serial port 

each time through the Mainloop code segment. 

6.6 Interrupt Service Request Handler 

This section describes how interrupts are handled by the system and will refer to 

Fig 6. 7. In this design, there are three conditions that when detected, cause the 

program counter to jump to the interrupt service request handler. These conditions 

are •(Linjectork,k=l···B =Previous_ Value(Unjectork,k=l···B)), TIMER 1 overflow flag bit 
= 1, and TIMER 2 period match flag bit = 1. The first task in the ISR is determining 

which of the three conditions was detected. This is reflected in the flowchart by the 

first branch element. Each execution path leading from this branch will be discussed 

in its own sub-section. 



52 

lnterpulse 
Set Native 

Injector Enable 
Bit 

Wait for 
lnterpulse 

Clear Native 
Injector Enable 

Bit 

6. High Level Design 

Figure 6.6: Enable/Disable Native Injectors 

6.6.1 TIMER 1 Overflow 

TIMER 1 is used to measure the duration of incoming pulses. Each time a new pulse 

is detected by the controller, TIMER 1 is reset and st~rted. When the end of an 

incoming pulse is detected, the timer is stopped. TIMER 1 has been configured in 

such a way that the amount of time before a rollover, is greater than the longest 

possible incoming pulse length. An overflow of TIMER 1 indicates that a pulse has 

arrived at the controller that was longer than any intended to be handled by the 

controller. The detection of this condition implies that the event non_term_pulse has 

occurred and, therefore, the system must set s_trouble to on. In this situation, all 

alternate injectors are closed, native injectors are enabled, both o_heaterRelay and 

oJockOffRelay are assigned the value inactive, s_controiMode is assigned the value 

native and the user interface LEDs are updated. Once again, conclusions that can be 

drawn from this flowchart are as listed here. 

• After a TIMER 1 overflow, fuel injection is performed exclusively by the native 

injectors. 

• After a TIMER 1 overflow, oJockOffRelay and o_heaterRelay have the value 



6. High Level Design 

Close All Alternate 
Injectors 

Open Lock-Off Relay 

Open Heater Relay 

s_controiMode to 
native 

Enable Native 
Injectors 

o_trouble to on 

Update GUI LEOs 

Wait for Reset 

53 

Determine Look up 
Alternate Elongation Factor Close All 
Injector Alternate 

Compute Injectors 
Open Elongation 

Alternate SetTIMER2 StopTIMER2 
Injector Period Reg 

Reset TIMER 2 

StartTIMER2 

Figure 6.7: Interrupt Flowchart 



54 6. High Level Design 

inactive. 

• After a TIMER 1 overflow, s_trouble has the value on. 

6.6.2 Change on Port B 

Port B is connected to the native injection signal lines. The change on port B interrupt 

occurs whenever the controller detects the start or end of a native injection pulse. 

The detection of an incoming pulse before the completion of a previous pulse implies 

that the event elong_over_pulse has occurred. In this situation, execution continues in 

the code segment described in the TIMER 1 overflow sub-section. If a native injection 

pulse is detected, and there is no overlap, TIMER 1 is started in order to measure the 

duration of the pulse. Then, if s_controiMode has the value altFuel, the appropriate 

alternate injector is determined and opened. If the pulse is ending, the value in the 

TIMER 1 register is saved and TIMER 1 is stopped. If s_controiMode has the value 

altFuel, the length of time by which to elongate the native pulse is determined and 

the corresponding value is moved to the period register of TIMER 2. TIMER 2 is 

then reset and started. Change on Port B flowchart implications are listed here. 

-·-·-·-·-·1·-·-·-·-·-· 

Select Post Multiplier 

Multiply Elongation Factor 
by Post Multiplier 

Store Result as 
Elongation Factor 

Multiply Elongation 

I 
Factror by Pulse Length 

I Store Result as 
I Elongation 

I J I 

Figure 6.8: Compute Elongation - Sub-Chart 



6. High Level Design 55 

• After detecting overlapping pulses, fuel injection is performed exclusively by the 

native injectors. 

• After detecting overlapping pulses, oJockOffRelay and o_heaterRelay have the 

value inactive. 

• After detecting overlapping pulses, s_trouble has the value on. 

• If TIMER 1 is running, the value in the TIMER 1 register is equal to the 

amount of time that a native pulse has been present on Port B minus a delay 

proportional to the speed of the micro controller. 

• If TIMER 1 is stopped, its value is the length of the most recent injection pulse 

minus a delay proportional to the speed of the micro controller. 

• When s_controiMode has the value altFuel, the start of alternate injection pulses 

coincide with the detection of native injection pulses. 

• Regardless of the value of s_controiMode, the lengths of native injection pulses 

are measured. 

6.6.3 Timer 2 Match 

TIMER 2 is used to size pulse elongations. A TIMER 2 match interrupt occurs when 

the value of TIMER 2 is equal to the value stored in the TIMER 2 period register. 

This interrupt indicates that the elongation has reached its specified duration at which 

point all alternate injectors are closed, and TIMER 2 is stopped. 

6.6.4 Interrupt Race Conditions 

Provided that the event elong_over_pulse does not occur, this design will not lead to a 

situation where two interrupts can occur at once, or in the wrong order. A TIMER 1 

overflow means that there has been an uninterrupted pulse on Port B for an extended 

length of time. This obviously can not occur at the same time as a change on Port 

B. Also, if TIMER 2 is started, then TIMER 1 is stopped and cannot overflow. 



56 6. High Level Design 

6. 7 Programming Program Segment 

This section describes Fig6.9, which is a more detailed view of the code segment 

labeled Programming Loop on Fig6.2. The programming code segment has no exit 

path and cannot be interrupted. Execution will remain in the code segment until a 

reset occurs. The programming strategy is quite simple. Set the start address, and 

then continue to check the serial port for incoming data. Data is collected 2 bytes 

at a time. The first byte represents the value to be written to the flash ram, the 

second byte represents whether the data is being transmitted for the first time, or if 

it is being retransmitted as a result of an error on a previous attempt. If the value is 

new, the address into the flash ram is incremented by one before the data is written, 

otherwise, the data is written in place. In either case, the data is echoed before the 

serial port is checked again. 

6.8 PC Programming Segment 

This section describes a design for code that will reside on a personal computer and 

not on the controller. The flowchart being described is Fig6.10. The PC application 

transmits data to the controller in two byte blocks. The first of these is a value byte, 

and the second indicates if the value is being transmitted for the first time, or if 

it is being retransmitted. Once these 2 bytes have been transmitted, the program 

checks the data echoed by the controller to determine the result of the most recent 

communication. There are three possible communication results: 

• Success - This result indicates that the value byte was correctly echoed by 

the controller, and the echoed retransmit byte was dominated by l's, or O's, 

appropriately. In this case, the next value from the fuel map file will be the 

value byte of the next transmission, and the retransmit byte will have the value 

255 (decimal). 

• Recoverable - This result indicates that the controller's echo of the value byte 

was incorrect. However, the retransmit bye was dominated by the correct bit 

value. In this situation, the next transmission is composed of the same value 

byte and a retransmit byte of '0'. 



6. High Level Design 

Control mode to 
program 

Disable lnterupts 

Set Start Address 

Update GUI LEOs 

...-·--

Get2 Bytes 

Increment 
Address 

Write Data 

Echo Data 

Get Value Byte 

Check Serial Port 1<1-----, 

Figure 6.9: Programming Flowchart- PIC Side 

57 

• Unrecoverable- This result indicates a failure to correctly echo the retransmit 

byte with even 50% accuracy. Transmission ends, and the program informs the 

user that programming must be restarted. 



58 

Transm~ Fuel 
Map 

Set to False 

l-----1>1 Open Fuel Map File 

Stream Reader Set 
to Start of file 

Last_Echo_Correct 
Set to False 

Read Value From 
File 

Transmit Value 
Byte 

6. High Level Design 

last_Echo_Correct 
Set to True 

Figure 6.10: Programming Flowchart - PC Side 



6. High Level Design 59 

If no unrecoverable error is encountered, programming ends when the last value 

in the fuel map is successfully transmitted. 



Chapter 7 

Implementation Description 

7.1 Overview 

This chapter provides an implementation of the Fuel Injection Controller software 

component. The platform is the PIC 18F452 micro-controller. The chapter begins 

with a section on PIC configuration, which deals with the setting of PIC configuration 

bits as well as timing requirements and the implications they have on PIC setup. Next 

is a description of the coding conventions adhered to during code development. This 

is followed by a discussion of a mapping used to relate state variables in the design 

to approximations <?f the state variables in the runtime environment. The remaining 

sections provide unit specific information, including a list of assumptions, lists of 

variables, and the PIC micro assembly implementation code. Variables are presented 

in as many as three separate lists, one for variables that are global and are read 

but not changed, another for those that are global and are changed, and a third for 

those that are local to the software unit. These lists are omitted only when empty. 

Each variable name is accompanied by a short description and the letters "SF" or 

"GP". All variables accompanied by "SF", are special function registers of the PIC, 

while those accompanied by "GP" are general purpose registers with user defined 

identifiers. Code development was supported by each of [7, 8, 2, 10, 9]. 

60 



7. Implementation Description 61 

7.2 PIC Configuration 

This section provides the settings of the PIC configuration and timer setup bits. 

7.2.1 Configuration Bits 

The configuration bits are used to configure the system oscillator, the watchdog 

timer, brown out detection and other PIC facilities. These bits exist in program 

memory and are only accessible to PIC software via flash reads. Listed here are the 

configuration bit settings that are used in conjunction with the implementation code 

presented later in this chapter. Correct controller operation depends on proper PIC 

configuration. 

• Oscillator - HS - PLL- Enabled 

• Osc Switch Enable - Disabled 

• Power Up Timer - Enabled 

• Brown Out Detect - Enabled 

• Brown Out Voltage - 4.5 Volts 

• Watchdog Timer - Disabled, controlled by SWDTEN Bit 

• Watchdog Post Scaler- 1:128 

• CCP2 Mux - Rc1 
• Stack Overflow Reset - Enabled 

• Low Voltage Program- Disabled 

• Code Protect - Disabled 

• Table Write Protect - Disabled 

• Data EE Write Protect - Disabled 

• Table Write Protect Boot - Disabled 

• Config Write Protect - Disabled 

• Table Read Protect - Disabled 

• Table Read Protect Boot - Disabled 



62 7. Implementation Description 

7.2.2 Timers 

This section provides timing information needed to successfully implement the fuel 

injection controller using a PIC18F452 micro-controller. Timer configurations are 

chosen based on the upper and lower limits of engine RPM, maximum fuel injector 

duty cycles, and the frequency of oscillation (FOSC) of the micro-controller. Dis­

cussion will be limited to 8 cylinder engines as this is the engine format of the test 

vehicle. 

TIMER 1 

Timer 1 is a 16 bit timer with a frequency of (FOSC I 4) that can be pre-scaled by 

1, 2, 4 or 8. Timer one is used to measure the length of incoming injection pulses. 

More detail on TIMER 1 can be found in the PIC18Fxx2 data sheet [10]. 

TIMER 2 

Timer 2 is an 8 bit timer also with a frequency of (FOSC I 4) that can be both pre and 

post-scaled by 2, 4, 8 or 16. Timer 2 is used to determine when to terminate alternate 

pulse elongations. More detail on TIMER 2 can also be found in the PIC18Fxx2 data 

sheet [10]. 

Timing Results of RPM Requirements 

The following is a list of excerpts from the controller requirements specification that 

deal with values of RPM and have implications for timing and timer settings. 

• The controller shall be capable of detecting and generating pulses to keep an 8 

cylinder engine running at up to 6500 RPM. 

• The controller shall be capable of detecting and generating pulses to keep an 8 

cylinder engine running at as few as 500 RPM. 

Based on these numbers and a basic understanding of an engine revolution, the 

maximum possible length of a fuel injection pulse can be determined. In the engines 

we are concerned with, every cylinder has a single fuel injector, and each injector 



7. Implementation Description 63 

is opened once for every two revolutions of the engine. Therefore, in an 8 cylinder 

engine, there will be 4 injections/revolution. 

• 6500 is the maximum required RPM value. 

• At 6500 RPM, there are approximately 109 revolutions per second. 

• These correspond to approximately 434 injections per second, 

• Yielding a maximum injection window of 2.3 milliseconds at 6500 RPM 

At the lower RPM Limit, we have the following results. 

• 500 is the minimum required RPM value. 

• At 500 RPM there are approximately 8 revolutions per second. 

• These correspond to approximately 32 injections per second, 

• Yielding a maximum injection window of 31.2 milliseconds at 500 RPM. 

These values represent the maximum time fuel injectors would remain open based 

on a full duty cycle (the situation where one fuel injector is always open). However, 

the duty cycle may not be 100% or else there would not be sufficient time for pulse 

elongation. The maximum recommended duty cycle for most fuel injectors does not 

exceed 80%. This provides a more realistic timing of 

• 1.84 milliseconds per injection at 6500 RPM 

• 25 milliseconds per injection at 500 RPM 

TIMER 1 Configuration 

Based on these numbers and the 80% duty cycle assumption, TIMER 1 must resolve 

a range from zero to 25 milliseconds. The ideal configuration for TIMER 1 when the 

PIC is running at 40MHz is described below. 

• @40 Mhz (FOSC) 



64 7. Implementation Description 

• TIMER 1 maximum frequency is 10 Mhz or (FOSC I 4) 

• 1 tick per 100 ns 

• 65 536 ticks before rollover 

• 6.5536 milliseconds to rollover 

When prescaled by 4, at 40 MHz, this gives a time to rollover of 26.2132 millisec­

onds which is safely above our maximum pulse length of 25 milliseconds. If, however, 

the duty cycle of the injectors exceeds 80%, the operating range between 500 and 578 

RPM may be problematic. 

TIMER 2 Configuration 

The maximum length of a pulse elongation was not specified. For this reason, cal­

culations are provided which relate to longest possible pulse elongation that can be 

produced using timer 2 with a FOSC of 40 MHZ. 

• @40 Mhz (FOSC) 

• TIMER 2 maximum frequency is 10 Mhz or (FOSC I 4) 

• 1 tick per 10-7 seconds 

• 256 ticks before rollover 

• 2.56e-05 seconds to rollover 

Pre-scaling and post-scaling TIMER 2 by 16 at 40 Mhz gives a time to rollover of 

6.5536 milliseconds. At low RPM values, this elongation represents at least 25% of 

the incoming pulse length. This percentage increases along with RPM. 

7.3 Coding Conventions 

This section provides a list of conventions that have been followed during production 

of the implementation code. These include conventions to increase readability, and 

those that are necessary to ensure safety and correctness. 



7. Implementation Description 65 

• PIC Micro Assembly instructions are written in upper case letters. 

• Labels are written in lower case letters. 

• Variables are assigned addresses starting from OxOl and occupy a contiguous 

block of memory. 

• Variable identifiers consist only of letters, numbers, and underscore characters. 

• Identifiers of variables local to a software unit are written in lower case letters 

and start with that unit's 3 character prefix. 

• Global variables are written in only upper case letters. 

• Global variables identified as being input or output variables exclusive to a unit, 

are prefixed with that unit's 3 character prefix. 

• GOTO instructions, external to the interrupt service routine, must not cause 

execution to jump to a location inside the interrupt service routine. 

• The size of the call stack must not exceed 31 at any time during execution. 

• When the value of a register is set by directly moving in an 8-bit value, the 

result of the move is described with an in-line comment. 

• Explicit banking is not permitted. 

7.4 Requirement Variable PIC Representations 

This section describes how state space variables identified in the specification and 

design chapters are represented in the runtime environment. This is done using an 

function referred to as the L mapping, which relates values of the state space variables 

to values in the PIC micro controller. 

Using the L mapping, variables are associated with registers and bits in the PIC 

micro controller. Registers are referenced by their identifiers and not by their ad­

dresses. Square brackets enclosing a number between 0 and 7, or an expression eval­

uating to the same range are used to specify specific bits of a register. The following 



66 7. Implementation Description 

Table 7.1: L Mapping Definition 

jType I Abstraction Function L 

I {closed, open} I L( closed) = 0 
L(open) = 1 

'{off, on} IL(off) = 0 
L(on) = 1 

'{down, up} r(down) = 0 
L(up) = 1 

{inactive, active} L( inactive) = 0 
L( active) = 1 

{native, stbyNat, altFuel, in it, program} L(native) = 0 
L(stbyNat) = 1 
L(altFuel) = 2 
L(init) = 4 
L(program) = 8 

{interpulse, pulse, elongation} L(interpulse) = 0 
L(pulse) = 1 
L( elongation) = 2 

jvolts jL(x) = Round(51x) 

I real jL(x) = fixedpoint(x) 

table lists the mapping from state space variables in the requirements document to 

registers names in the PIC micro assembly code. The result of applying the L map­

ping to the state space variable in the first column, is stored in the register or bits 

listed in the second column. 

Variable Name Concrete Register Identifier or Value 

i_injectork, k = 1· · · 7 PORTB[k -1] 

i_fueiSelector PORTA[4] 

Lprogram i ngSwitch PORTC[3] 

LcoolantTemp COOLANT_TEMP 

Lo2Sensor OXYGEN 

LbaroPres BARD 



7. Implementation Description 67 

LairlnTemp AIR_IN_TEMP 

LaltFuellev ALT _FUELLEV 

Lrpm REVS 

LthrottlePos THROTLE_pos 

Lo2Thresh1 IR_02_THRESH.L 

Lo2Thresh2 IR_02_THRESH.LM 

Lo2Thresh3 IR_02_THRESH...HM 

Lo2Thresh4 IR_02_THRESH...H 

LtpThresh1 IR_TP _THRESH_!. 

Ltp Thresh2 IR_TP _THRESH.LM 

i_tpThresh3 IR_TP _THRESH...HM 

Ltp Thresh4 IR_TP _THRESH...H 

Lo2Mult1 IR_02_MULT.LL 

Lo2Mult2 IR_02_MULT .L 

Lo2Mult3 IR_02_MULT .LH 

i_o2Mult4 IR_02_MULT ...HH 

LtpMult1 IR_TP_MULT.LL 

LtpMult2 IR_TP _MULT_L 

LtpMult3 IR_TP _MULT...H 

LtpMult4 IR_TP _MUL T ...HH 

o_altinjectork, k = 1· · · 8 PORTD[k -1] 

o_heaterRelay PORTC[4] 

oJockOffRelay PORTC[5] 

s_trouble TROUBLE 

o_nativeLED PORTC[O] 

o...stbyLED PORTC[1] 

o..altLED PORTC[2] 

s_control Mode MODE 

In these tables, column headers include conditions which determine how state 

space variables are mapped to registers or values in the micro assembly code. If the 

condition atop a column is true, the value of the L mapping applied to the state space 

variable can be found in that column. 



68 7. Implementation Description 

Concrete Register Identifier or Value 

I Variable Name --,(PORTB = 128) IPORTB = 128 

I Linjector8 

Concrete Register Identifier or Value 

I Variable Name PORTE[2) = 0 I PORTE[2) = 1 

I o_natlnjectork, k = 1· · · 7 lo IPoRTB[k- 11 

Concrete Register Identifier or Value 

I Variable Name ·(PORTE[2] = 1/\ PORTB = 128) IPDRTE[2] = 1/\ PORTB = 128 

I o_natlnjector8 

Concrete Register Identifier or Value 

I Abstract Variable 
(TlCON[O) = 0) 1\ (TlCON[O) = 1) 1\ 

(T2CON[O) = 0) (T2CON[O) = 0) 
T2CON[O) = 1 

I s_injectionStatus 

7.5 Initialization 

7.5.1 Assumptions 

• Jumps to instructions inside the Initialization routine that do not originate from 

within the initialization routine will not occur. 

7.5.2 Variables 

This section lists the global and local variables that are changed during the execution 

of the initialization sub-routine. The 3 character prefix for the initialization sub-routine 
is IN_. 

Global Variables Changed - Initialization 

j Variable NamejType & Description 

I WREG I SF - Operations Register I 



7. Implementation Description 69 

STATUS SF - Operational Status Register 

ADCONO SF - A/D Control Register 0 

ADCON1 SF - A/D Control Register 1 

TRISA SF - Port A Data Direction Register 

TRISB SF - Port B Data Direction Register 

TRISC SF - Port C Data Direction Register 

TRISD SF - Port D Data Direction Register 

TRISE SF - Port E Data Direction Register 

PORTB SF- Port B 

PORTC SF- Port C 

PORTO SF- Port D 

PORTE SF- PortE 

T1CON SF - Timer 1 Control Register 

T2CON SF - Timer 2 Control Register 

TMR2 SF - Timer 2 Value 

PR2 SF - Timer 2 Period 

SPBRG SF - Serial Baud Rate Generator 

TXSTA SF - Serial Transit Setup Register 

RCSTA SF - Serial Receive Setup Register 

PIR1 SF- Peripheral Interrupt Register 

RCON SF - Reset Control Register 

INTCON SF - Interrupt Control Register 

INTCON2 SF - Interrupt Control Register 

PIE1 SF - Peripheral Interrupt Enable Register 

AIR_IN_TEMP GP- Stores Converted Value 

BARD GP- Stores Converted Value 

OXYGEN GP- Stores Converted Value 

REVS GP - Stores Converted Value 

COOLANT_TEMP GP- Stores Converted Value 

ALT ..FUEL..LEV GP- Stores Converted Value 

THROTTLE_FQS GP- Stores Converted Value 



70 7. Implementation Description 

DELAY GP - Counter Used to Wait for A/D Acquisition 

MODE GP- Stores Control Mode of System 

FL...HIGH....ADR GP- High Bits of Flash Address for Write 

FL.READ....ADDR...H GP- High bits of Flash Address for Read 

FLREAD....ADDR_L GP- Low bits of Flash Address for Read 

FLREAD_ VAL GP- Register for Storing Results of Flash Reads 

IR_02_THRESH_L GP- Low 02 Threshold Value 

IR_02_THRESH_LM GP- Low Mid 02 Threshold Value 

IR_02_TH.RESH...HM GP- High Mid 02 Threshold Value 

IR_02_THRESH...H GP- High 02 Threshold Value 

IR_TP _THRESH_L GP- Low TPS Threshold Value 

IR_TP _THRESH_LM GP- Low mid TPS Threshold Value 

IR_TP _THRESH...HM GP- High mid TPS Threshold Value 

IR_TP _THRESH...H GP- High TPS Threshold Value 

IR_02..MULT_LL GP - Low Low Range 02 Multiplier 

IR_02..MULT_L GP - Low Range 02 Multiplier 

IR_02..MULT ...H GP - High Range 02 Multiplier 

IR_02..MULT...HH GP - High High Range 02 Multiplier 

IR_TP_MULT_LL GP - Low Low Range TPS Multiplier 

IR_TP ..MULT_L GP - Low Range TPS Multiplier 

IR_TP..MULT...H GP- High Range TPS Multiplier 

IR_TP ..MULT...HH GP - High High Range TPS Multiplier 

TROUBLE GP- Stores Trouble State 

Local Variables - Initialization 

!variable Name !Type & Description 

I in_boot_delay I G P - Counter for timing boot delay 



7. Implementation Description 71 

7.5.3 Initialization Code 

1 ;******************** SETUP AND INITIALIZATION **********************; 
main 

init 

4 

8 

12 

16 

20 

24 

28 

eLRF MODE 

BSF MODE, 2 
eLRF ADeONO 

BSF ADeONO, 
BSF ADeONO, 

eLRF ADeONl 

MOVLW Ox7f 
MOVWF TRISA 

MOVLW Ox03 

MOVWF TRISE 

eLRF 

eLRF 

SETF 

TRISD 

PORTO 

TRISB 

MOVLW Ox88 

MOVWF TRISe 

BeF PORTe, 4 

BeF PORTe, 5 

ADeSl 

ADON 

Mode to init 
All analogue input code 

AD clock set to fosc/32 

AD unit on 

left justified-all analogue in-fosc/32 

low 5 pins input code for portA 

into the portA control register 

set portA pin 6 to be an output pin, 

Port E-pin 0 in, pin 1 in, pin 2 out 

into the PORTE control register 

This also sets port D to not act as a 

Parallel port 

All output code for port D 

Close all alternate injectors 

all input code into portB control reg 

All outputs but pin 7 and 3 

into port e control register 

pin 7-serial in, pin 3-prog switch 

Lock off the heater 

Lock off the lockoff 



72 

32 

36 

40 

44 

48 

52 

56 

60 

64 

7. Implementation Description 

*** SUMMARY *** 
ALL A/D pins enabled 

Port A all analogue input but pin 6, digital out 

Port B all digital input 

Port C pins 7 & 3 in rest for output 

Port D all digital output 

Port E out, in, in 

timer_prep 

CLRF TlCON 

BSF T1CON, T1CKPS1 

CLRF T2CON 

Setting up Timer 1 

prescale timer 1 by 4 

Set up timer 2, 

BSF T2CON, TOUTPS3 set the timer 2 postscaler to 16 

BSF T2CON, TOUTPS2 

BSF T2CON, TOUTPS1 

BSF T2CON, TOUTPSO 

BSF T2CON, T2CKPS1 set the timer 2 prescaler to 16 

CLRF TMR2 set the timer to 0 

MOVLW Ox5f initialize the period to something non-0 

MOVWF PR2 

Serial_prep 

MOVLW Ox40 This is the baud rate generator value 

MOVWF SPBRG corresponding to 9600 baud ~ 40 MHz 

MOVLW Ox20 Config serial transmit 

MOVWF TXSTA 

CLRF PIR1 Config serial 

MOVLW Ox90 



7. Implementation Description 

68 

72 

76 

80 

84 

88 

92 

96 

100 

MOVWF RCSTA 

Inter_prep 

BCF RCON, IPEN 

BCF PIR1, TMR1IF 

BCF PIR1, TMR2IF 

MOVLW Ox48 

MOVWF INTCON 

MOVLW Ox81 

MOVF INTCON2 

PIE1 CLRF 

BSF 

BSF 

PIE1, TMR1IE 

PIE1, TMR2IE 

mode_and_interface_prep 

BSF PORTC, 0 
BSF PORTC, 1 

BSF PORTC, 2 

BSF PORTE, 2 

flash_adr_prep 

MOVLW Ox40 

MOVWF FL_HIGH_ADR 

variable_prep 

CLRF AIR_IN_TEMP 

CLRF BARD 

CLRF OXYGEN 

CLRF REVS 

CLRF COOLANT_TEMP 

Config Serial Receive 

Disable Priority Levels 

Clear Timer 1 overflow flag 

Clear Timer 2 match flag 

73 

Hex for, disable global interrupts, 

enable peripheral interrupts and unmask 

portb change interrupt 

Move this into the interrupt control reg 

Port B set by TRISB, change on b hi-pri 

into incon2 

Enable the timer 1 interrupt 

Enable the timer 2 interrupt 

all lights on during boot 

enable native injectors 

address high bits start at 16384 

into flash address high register 

set analogue variables to 0 



74 

104 

108 

112 

116 

120 

124 

128 

132 

136 

CLRF 

CLRF 

ALT_FUEL_LEV 

THROTTLE_POS 

get_multipliers 

MOVLW Ox3f 
MOVWF FL_READ_ADDR_H 

MOVLW OxFO 

MOVWF FL_READ_ADDR_L 

CALL read_flash 

NOP 

MOVF FL_READ_VAL, W 

MOVWF IR_02_THRESH_L 

INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 
MOVF FL_READ_VAL, W 

MOVWF IR_02_THRESH_LM 

INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 
MOVF FL_READ_VAL, W 

MOVWF IR_02_THRESH_HM 

INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 

MOVF FL_READ_VAL, W 

MOVWF IR_02_THRESH_H 

INCF FL_READ_ADDR_L 

7. Implementation Description 

Address for low 02 threshold 

lookup value 

Put the value in the low 02 

threshold variable 

This pattern continues 
for all threshold and 

multiplier values 



7. Implementation Description 75 

CALL read_flash 

NOP 
MOVF FL_READ_VAL, W 

140 MOVWF IR_TP_THRESH_L 

INCF FL_READ_ADDR_L 

CALL read_flash 

144 NOP 

MOVF FL_READ_VAL, W 

MOVWF IR_TP_THRESH_LM 

148 INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 
MOVF FL_READ_VAL, W 

152 MOVWF IR_TP_THRESH_HM 

INCF FL_READ_ADDR_L 

CALL read_flash 

156 NOP 

MOVF FL_READ_vAL, W 

MOVWF IR_TP_THRESH_H 

160 INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 
MOVF FL_READ_VAL, W 

164 MOVWF IR_02_MULT_LL 

INCF FL_READ_ADDR_L 

CALL read_flash 

168 NOP 

MOVF FL_READ _vAL, W 

MOVWF IR_02_MULT_L 



76 7. Implementation Description 

172 INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 

MOVF FL_READ_vAL, W 

176 MOVWF IR_02_MULT_H 

INCF FL_READ_ADDR_L 

CALL read_flash 

180 NOP 
MOVF FL_READ_VAL, w 
MOVWF IR_02_MULT_HH 

184 INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 

MOVF FL_READ_VAL, w 
188 MOVWF IR_TP_MULT_LL 

INCF FL_READ_ADDR_L 

CALL read_flash 

192 NOP 

MOVF FL_READ_VAL, W 

MOVWF IR_TP_MULT_L 

196 INCF FL_READ_ADDR_L 

CALL read_flash 

NOP 

MOVF FL_READ_VAL, W 

200 MOVWF IR_TP_MULT_H 

INCF FL_READ_ADDR_L 

CALL read_flash 

204 NOP 

MOVF FL_READ_VAL, W 

MOVWF IR_TP_MULT_HH 



7. Implementation Description 

208 

CLRF DELAY 

CLRF in_boot_delay 

212 boot_delay_out 

DECFSZ DELAY,F 

GOTO boot_delay_in 

216 NOP 

GOTO boot_delay_done 

NOP 

220 boot_delay_in 

DECFSZ in_boot_delay,F 

GOTO boot_delay_in 

NOP 

224 GOTO boot_delay_out 

NOP 

boot_delay_done 

228 

BCF PORTC, 0 

BCF PORTC, 1 

BCF PORTC, 2 

232 
inter_start 

MOVF PORTB, 1 

CLRF WREG 

236 IORWF PORTB, 0 

BTFSS STATUS, Z 

GOTO inter_start 

NOP 

240 BSF INTCON,GIE 

nested loop to delay during boot 

Keeps the LEDs lit letting us 

know that a reset took place 

all lights off after the boot delay 

Clear mismatch condition 

make W all zero's to mask for portb 

inclusive or with port b 

if everything is 0 then we are ok 

if not lets go around again 

Turn on global interrupts 

77 



78 

244 

248 

252 

check_secret_switch 

CLRF 

CLRF 

BSF 

BTFSS 

GOTO 

NOP 

MODE 

TROUBLE 

PORTE, 2 

PORTC, 3 

check_ser_port 

7. Implementation Description 

put in native mode first to be safe 

Mode to Native 

Trouble is off 

Send pulses to the native injectors 

check programming switch 

code that is used to get new fuel map 

;**************** END SETUP AND INITIALIZATION ********************; 

7.6 Interrupt Service Routine (ISR) 

7.6.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 

of the ISR. 

• Values of OXYGEN, BARO, AIR_IN_TEMP, COOLANLTEMP, ALLFUELLEV, and 

THROTTLE_FOS are updated by another software unit at frequencies that sat­

isfy the requirements document. 

• Jumps to instructions inside the ISR that do not originate from within the ISR 

will not occur. 

7.6.2 Variables 

This section lists, in separate tables, the global variables that are read, the global 

variables that are changed, and local variables that are used during the execution of 

the interrupt service routine. The 3 character prefix for the ISR is IR_. 

Variables Read - ISR 



7. Implementation Description 79 

I Variable Name !Type & Description 

PORTE SF- Port B 

TMR1H SF - High Bits of Timer 1 

TMR1L SF - Low Bits of Timer 2 

PRODH SF - High Bits of Multiplication Product 

PRODL SF - Low Bits of Multiplication Product 

MODE G P - Stores Control Mode of System 

AIR_IN_TEMP GP- Stores Converted Value 

BARD GP- Stores Converted Value 

OXYGEN GP- Stores Converted Value 

THROTTLEYOS GP- Stores Converted Value 

FLREAD_VAL GP- Value Most Recently Read From Flash 

IR_Q2_THRESH...L GP- Low 02 Threshold Value 

IR_Q2_THRESH...LM GP- Low Mid 02 Threshold Value 

IR_Q2_THRESH...HM GP- High Mid 02 Threshold Value 

IR_Q2_THRESHJI GP- High 02 Threshold Value 

IR_TP _THRESH...L GP- Low TPS Threshold Value 

IR_TP _THRESH...LM GP- Low Mid TPS Threshold Value 

IR_TP _THRESH...HM GP- High Mid TPS Threshold Value 

IR_TP _THRESHJI GP- High TPS Threshold Value 

IR_02..MUL T ...LL GP - Low Low Range 02 Multiplier 

IR_02..MULT...L GP - Low Range 02 Multiplier 

IR_02..MUL T JI GP - High Range 02 Multiplier 

IR_02..MULTJIH GP - High High Range 02 Multiplier 

IR_TP ..MUL T ...LL GP- Low Low Range TPS Multiplier 

IR_TP ..MUL T ...L GP - Low Range TPS Multiplier 

IR_TP..MULTJI GP- High Range TPS Multiplier 

IR_TP ..MULTJIH GP - High High Range TPS Multiplier 

Variables Changed - ISR 



80 7. Implementation Description 

jvariable Name jType & Description 

WREG SF - Operations Register 

STATUS SF - Operational Status Register 

INTCON SF - Interrupt Control Register 

T1CON SF - Timer 1 Control Register 

T2CON SF - Timer 2 Control Register 

TMR2 SF - Timer 2 Value 

PR2 SF - Timer 2 Period 

PORTC SF- Port C 

PORTD SF- Port D 

PORTE SF- PortE 

PIR1 SF - Peripheral Interrupt Register 

IR_TIMHI GP - High Bits of Timer 1 

TROUBLE GP - Stores Trouble State 

IR_TIMLO GP- Low Bits of Timer 2 

FLREAD_ADDR_H GP- High Bits of Address for Flash Read 

FL..READ_ADDR_L GP- Low Bits of Address for Flash Read 

Local Variables- ISR 

jvariable Name jType & Description 

GP - Used for Building Look-up Addresses, and Per-
ir _working..reg 

forming Fixed Point Multiplication 

ir_02..mult GP - Multiplier for Post Lookup 02 Calculation 

ir_tps..mul t GP - Multiplier for Post Lookup TPS Calculation 

ir_trbLdelay GP- Counter for Flashing LEDs Indicating Trouble 

ir _trbLdelay2 GP- Counter for Flashing LEDs Indicating Trouble 

7.6.3 ISR Code 

256 ;************************* ISR HANDLER ******************************; 

ORG Ox008 ; high-pri interrupt vector location 



7. Implementation Description 81 

260 isr_handler 

BTFSC INTCON,RBIF Interrupt was change on B? 

CALL change_onb Call Change on B interrupt handler 

NOP 

264 

BTFSC PIR1, TMR2IF Interrupt was timer 2 period match? 

CALL timer_2 Call T2 period match interrupt handler 

NOP 
268 

BTFSC PIR1, TMR1IF Interrupt was timer 1 overflow? 

GOTO handle_ trouble Go to the trouble mode 

NOP 

272 

RETFIE 1 Return with interrupts back on 

fast context switching enabled 

276 ;*********************** END ISR HANDLER ****************************; 

;*********************** ISR SUB ROUTINES ***************************; 

280 change_onb 

MOVF PORTB, 1 Clear mismatch condition 

BCF INTCON,RBIF clear the port B interrupt flag 

BTFSC PORTB,7 Check if bit 7 went hi, 

284 GOTO new_pulse Code to handle detection of new pulse 

NOP 

pulse_ end 

288 BCF T1CON, TMR10N stop timer 1 

MOVF TMR1H, w Get high part of pulse Length 

MOVWF IR_TIMHI Save it to IR_TIMHI 

MOVF TMR1L, W Get low part of pulse Length 

292 MOVWF IR_TIMLO Save it to IR_TIMLO 



8~ 

BTFSS MODE, 1 

RETURN 

296 NOP 

300 

304 

find_o2_range 

MOVF OXYGEN, W 

SUBWF IR_02_THRESH_L, W 

BTFSC STATUS, C 

GOTO o2_lowlow 

NOP 

MOVF OXYGEN, W 

SUBWF IR_02_THRESH_LM, W 

BTFSC STATUS, C 

GOTO o2_low 

308 NOP 

312 

316 

320 

MOVF 

SUBWF 

BTFSC 

GOTO 

NOP 

MOVF 

SUBWF 

BTFSC 

OXYGEN, W 
IR_02_THRESH_HM, W 

STATUS, C 

o2_med 

OXYGEN, W 
IR_02_THRESH_H, W 

STATUS, C 

GOTO o2_high 

NOP 

GOTO 

load_o2_mult 

o2_lowlow 

o2_highhigh 

MOVF IR_02_MULT_LL, W 

324 MOVWF ir_02_mult 

GOTO find_tps_range 

NOP 
o2_low 

328 MOVF IR_02_MULT_L, W 

7. Implementation Description 

Check mode before computing elongation 

Mode[1] clear -> not alt so return 

o2 value into W 

subtract it from the low threshold 

carry bit is set -> correct range 

go to the o2 lowlow code 

Same as above, however with 

a different thresh value 

Same as above, however with 

a different thresh value 

Same as above, however with 

a different thresh value 

only remaining possibility 

move in the low low multiplier 

move in the low multiplier 



7. Implementation Description 83 

MOVWF ir_02_mult 

GOTO find_tps_range 

NOP 

332 o2_med 

MOVLW Ox80 , 1, - fixed point 

MOVWF ir_02_mult move it in 

GOTO find_tps_range 

336 NOP 

o2_high 

MOVF IR_02_MULT_H, W move in the high multiplier 

MOVWF ir_02_mult 

340 GOTO find_tps_range 

NOP 

o2_highhigh 

MOVF IR_02_MULT_HH, w move in the high high multiplier 

344 MOVWF ir_02_mult 

find_tps_range 

MOVF THROTTLE_POS, w tps value into W 

348 SUBWF IR_TP_THRESH_L, w subtract it from the low threshold 

BTFSC STATUS, C carry bit is set -> correct range 

GOTO tps_lowlow go to the low low code 

NOP 

352 MOVF THROTTLE_POS, W Same as above, however with 

SUBWF IR_TP_THRESH_LM, w a different thresh value 

BTFSC STATUS, C 

GOTO tps_low 

356 NOP 

MOVF THROTTLE_POS, w Same as above, however with 

SUBWF IR_TP_THRESH_HM, w a different thresh value 

BTFSC STATUS, C 

360 GOTO tps_med 

NOP 

MOVF THROTTLE_POS, w Same as above, however with 

SUBWF IR_TP_THRESH_H, W a different thresh value 



84 7. Implementation Description 

364 BTFSC STATUS, C 

GOTO tps_high 

NOP 

GOTO tps_highhigh 

368 
load_tps_mult 

tps_lowlow 

372 MOVLW Ox80 '1' - fixed point 

MOVWF ir_tps_mult Move it in 

GOTO tps_mult_done 

NOP 

376 tps_low 

MOVF IR_TP_MULT_LL, w move in the low low multiplier 

MOVWF ir_tps_mult 

GOTO tps_mult_done 

380 NOP 

tps_med 

MOVF IR_TP_MULT_L, W move in the low multiplier 

MOVWF ir_tps_mult 

384 GOTO tps_mult_done 

NOP 

tps_high 

MOVF IR_TP_MULT_H, w move in the high multiplier 

388 MOVWF ir_tps_mult 

GOTO tps_mult_done 

NOP 

tps_highhigh 

392 MOVF IR_TP_MULT_HH, w move in the high high multiplier 

MOVWF ir_tps_mult 

396 tps_mult_done now both multipliers are loaded 

MOVLW OxFC mask to keep the 6 MSBs 



7. Implementation Description 

400 

404 

408 

412 

416 

420 

ANDWF AIR_IN_TEMP, 0 

MOVWF ir_working_reg 

RRNCF ir_working_reg, 1 

RRNCF ir_working_reg, 1 

BSF ir_working_reg, 6 

MOVF 

MOVWF 

ir_working_reg, W 

FL_READ_ADDR_H 

MOVLW OxFE 

ANDWF BARD, 0 

MOVWF 

RRNCF 

BTFSC 

BSF 

MOVF 

MOVWF 

CALL 

NOP 

ir_working_reg, 

ir_working_reg, 1 

AIR_IN_TEMP, 1 

ir_working_reg, 7 

ir_working_reg, W 

FL_READ_ADDR_L 

read_flash 

424 post_multiply 

MOVF FL_READ_VAL, W 

MULWF IR_TIMHI 

428 MOVF PRODH, W 

MOVWF ir_working_reg 

RLNCF ir_working_reg, 1 

432 

BTFSC PRODL, 7 

6 MSBs of air in temp in w 

and now in the temp register 

85 

shift until they take up the 6 lsb's 

now set the 2nd MSB to address fmap 

put this computed value in W 

and into high reg for address lookup 

we still need 2nd LSB 

this is more easily done later 

Mask for 7 MSBs 

7 MSBs of BARD now in W 

now in the temp reg 

Shift until they take 7 LSBs 

if the 2nd LSB is set, set bit 7 

into wreg 

and into low reg for address lookup 

LOOKUP 

get the lookup result 

high bits timer1 * factor 

result in ProdH and Prodl 

high bits into temp 

shift once left, to account for 

fixed point, and timer1,2 configs 

we need MSB of low bits 



86 

436 

440 

BSF 

MOVF 

MULWF 

MOVF 

MOVWF 

ir_working_reg, 0 

ir_working_reg, W 

ir_02_mult 

PRODH, W 

ir_working_reg 

RLNCF ir_working_reg, 1 

BTFSC PRODL, 7 

444 

448 

452 

456 

460 

BSF 

MOVF 

MULWF 

MOVF 

MOVWF 

RLNCF 

BTFSC 

BSF 

MOVF 

CLRF 

MOVWF 

BSF 

RETURN 

NOP 

464 new_pulse 

BTFSS 

GOTO 

468 NOP 

ir_working_reg, 0 

ir_working_reg, W 

ir_tps_mult 

PRODH, W 
ir_working_reg 

ir_working_reg, 1 

PRODL, 7 

ir_working_reg, 0 

ir_working_reg, W 

TMR2 

PR2 

T2CON,TMR20N 

MODE, 1 

time_pulse 

7. Implementation Description 

the rest are fractional 

formatted product into w 

multiply by o2 factor 

result in ProdH and Prodl 

get high bits of product 
shift it once to the left. 

we need MSB of low bits 

rest are fractional 

formatted product into w 

multiply by tps factor 

result in ProdH and Prodl 

get high bits of product 

shift it once to the left 

we need MSB of low bits 

the rest are fractional 

formatted product into w 

Clear timer 2 

product is timer 2 period 

Turn on timer 2 

Check mode before sending alt pulse 

MODE[1] clear -> not alt 



7. Implementation Description 

472 

MOVF PORTB, W 

XORLW Ox80 

BTFSC STATUS, Z 
BSF PORTD,7 

IORWF PORTO, 1 

476 time_pulse 

480 

BTFSC T2CON, TMR20N 
GOTO handle_trouble 

NOP 

CLRF WREG 

MOVWF TMR1H 

MOVWF TMR1L 

BSF T1CON, TMR10N 

484 RETURN 

NOP 

Native bank to W 

Xor with b10000000 to lose pin 7 

Check if the xor killed all bits 

if so Set 7 pin high, 

Copy this to port D 

check for overlapped pulse/elongation 

if detected go to trouble 

Clear the timer one high bits 

Clear the timer two low bits 

; start timer 1 

87 

488 ;********************* TIMER 2 PERIOD MATCH ************************; 

492 

496 

500 

timer_2 

CLRF 

BCF 

BCF 

CLRF 

RETURN 

NOP 

PORTO 

PIR1, TMR2IF 

T2CON,TMR20N 

TMR2 

end alt pulse 

clear timer 2 flag 

; Turn off timer 2 

Clear timer 2 

;***************************** TROUBLE ******************************; 

handle_ trouble 

CLRF PORTO end any alternate pulses 

BCF PORTC, 4 Lock off the heater 

BCF PORTC, 5 Lock off the lockoff 

CLRF MODE mode to native 



88 

504 BSF PORTE, 2 

BSF TROUBLE, 0 

BSF PORTC, 0 

BCF PIR1, TMR1IF 

508 CLRF ir_trbl_delay 

CLRF ir_trbl_delay2 

toggle_leds 

512 MOVLW Ox18 

MOVWF DELAY 

BTFSC PORTC, 1 

GOTO leds_off 

516 NOP 

BSF PORTC, 1 

BSF PORTC, 2 

GOTO trbl_2out_loop 

520 NOP 

leds_off 

BCF PORTC, 1 

524 BCF PORTC, 2 

trbl_2out_loop 

DECFSZ DELAY,F 

528 GOTO trbl_out_loop 

NOP 

GOTO toggle_leds 

NOP 

532 
trbl_out_loop 

DECFSZ ir_trbl_delay 

GOTO trbl_in_loop 

536 NOP 

GOTO trbl_2out_loop 

NOP 

7. Implementation Description 

Send pulses to the native injectors 

Trouble on 

Red light on 

clear for reset 

initialize loop counters 

set outside loop counter 

Check if the leds are 

if so turn them off 

if not turn them on 

yellow on 

Green on 

loop to take up time 

yellow off 

Green off 

Outer Outer loop 

Outer Loop 

on 



7. Implementation Description 89 

540 trbl_in_loop 

544 

DECFSZ ir_trbl_delay2 

GDTD trbl_in_loop 

NOP 

GOTD 

NOP 

trbl_out_loop 

Inner Loop 

;********************** END ISR SUBROUTINES *************************; 

7. 7 Main Loop 

7. 7.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 

of the Main Loop. 

• The ISR will have control of the processor for less than 80% of time as to allow 

the Main Loop to meet its time bounds. 

• The alternate fuel tank has a thermostat that is used in conjunction with 

o_heaterRelay for controlling the alternate fuel reserve heater. 

7. 7.2 Variables 

This section lists, in separate tables, the global variables that are read, the global 

variables that are changed, and local variables that are used during the execution of 

the Main Loop. The 3 character prefix for the Main Loop is ML_. 

Variables Read- Main Loop 



90 7. Implementation Description 

!variable Name !Type & Description 

PORTA SF- Port A 

PORTB SF- Port B 

PR2 SF - Timer 2 Period 

AD _HI GP- Register for Storing A/D High Bits 

IR_TIMHI GP- Register for Storing High Bits of Timer 1 

IR_TIMLO GP- Register for Storing Low Bits of Timer 1 

FL_READ_ VAL GP- Register for Storing Results of Flash reads 

Variables Changed- Main Loop 

jvariable Name jType & Description 

WREG SF - Operations Register 

STATUS SF - Operational Status Register 

PORTC SF- Port C 

PORTE SF- PortE 

MODE G P - Stores Control Mode of System 

AIR_IN_TEMP GP- Stores Converted Value 

BARD GP- Stores Converted Value 

OXYGEN GP - Stores Converted Value 

REVS GP -Stores Converted Value 

COOLANT _TEMP GP - Stores Converted Value 

ALT _FUEL__LEV GP- Stores Converted Value 

THROTTLE _pas GP- Stores Converted Value 

AD_CHAN GP- Channel for A/D Conversion 

SP_VALOUT GP - Serial Value to Transmit 

SP _COD LOUT GP - Describes Nature of Serial Transmission 

7. 7.3 Main Loop Code 

548 ;************************* MAIN LOOP ********************************; 



7. Implementation Description 

main_ loop 

552 mode_update 

556 

560 

BTFSC PORTA, 4 

GOTO switch_on 

NOP 

BCF 

BCF 

CLRF 

PORTC, 5 

PORTC, 4 

MODE 

BTFSC PORTE, 2 

GOTO native_leds 

NOP 

564 enable_nat 

568 

CLRF WREG 

IORWF PORTB, 0 

BTFSS STATUS, Z 
GOTO enable_nat 

NOP 

BSF PORTE, 2 

572 native_leds 

BSF PORTC, 0 

576 

BCF 

BCF 

GOTO 

NOP 

PORTC, 1 

PORTC, 2 

ad_ block 

580 switch_on 

BTFSC MODE, 1 

GOTO alt_mode 

NOP 

584 BSF MODE, 0 

check the fuel selector switch 

lock off the lock off 

turn off heater relay 

Mode to native 

if already burning native, do nothing 

make W all zero's to mask for portb 

inclusive or with port b 

if everything is 0 then we are ok 

if not lets go around again 

Send pulses to the native injectors 

turn on the red light 

turn off the yellow 

turn off the green 

mode update done, 

mode is stby or alt fuel? 

Goto alt, or run through to stby 

Mode to stbynat 

91 



92 

588 

592 

596 

BTFSC 

GOTO 

NOP 

enable_stby 

CLRF 

IORWF 

BTFSS 

GOTO 

NOP 

BSF 

stby_leds 

BSF 

PORTE, 2 

stby_leds 

WREG 

PORTB, 0 

STATUS, Z 

enable_stby 

PORTE, 2 

7. Implementation Description 

if already burning native, skip enable 

make W all zero's to mask for portb 

inclusive or with port b 

if everything is 0 then we are ok 

if not lets go around again 

enable native injectors 

open the lock off 

600 BSF 

PORTC, 5 

PORTC, 4 

PORTC, 1 

PORTC, 2 

PORTC, 0 

turn on heater relay 

604 

608 

612 

616 

BSF 

BCF 

BCF 

MOVLW 

ADDWF 

BTFSC 

GOTO 

NOP 

MOVLW 

ADDWF 

BTFSS 

GOTO 

NOP 

OxC4 

IR_TIMHI, 0 

STATUS, C 

ad_ block 

OxCE 

COOLANT_TEMP, 0 

STATUS, C 

ad_ block 

turn on the yellow light 

turn off the green one one 

turn off the red one 

engine revving sufficiently hight? 

high rpm implies short pulse length 

carry bit was set -> timer 1 too high 

if not, continue 

check for sufficient coolant temp 

if the add creates a carry we are ok 

if not, got to ad section 

MOVLW OxCE check for sufficient fuel level 
ADDWF ALT_FUEL_LEV, 0 if the add creates a carry we are ok 

BTFSS STATUS, C if not, goto ad section 



7. Implementation Description 

620 

624 

628 

632 

636 

GOTO 

NOP 

disable_nat 

CLRF 

ad_ block 

WREG 

IORWF PORTB, 0 

BTFSS STATUS, Z 

GOTO disable_nat 

NOP 

BCF PORTE, 2 

BSF MODE, 1 

BCF 

alt_leds 

BSF 

BCF 

BCF 

MODE, 0 

PORTC, 2 

PORTC, 1 

PORTC, 0 

GOTO ad_block 

640 NOP 

alt_mode 

MOVLW 

644 ADDWF 
OxD8 
COOLANT_TEMP, 0 

STATUS, C 

648 

652 

BTFSS 

GOTO leave_alt 

NOP 

MOVLW 

ADDWF 

BTFSS 

GOTO 

NOP 

OxD8 
ALT_FUEL_LEV, 0 

STATUS, C 
leave_alt 

make W all zero's to mask for portb 

inclusive or with port b 

if everything is 0 then we are ok 

if not lets go around again 

Disable native injectors 

Mode is now altfuel 

turn on the green LED 

turn off yellow 

turn off red 

check for sufficient coolant temp 

if the add creates a carry we are ok 

if not, back to stby 

check for sufficient fuel level 

if the add creates a carry we are ok 

if not, back to stby 

93 



94 7. Implementation Description 

GOTO ad_ block 

656 NOP 

leave_alt 

BCF MODE, 1 

660 BSF MODE, 0 Mode is now standby 

enable_stby2 

664 CLRF WREG make W all zero's to mask for portb 

IORWF PORTB, 0 inclusive or with port b 

BTFSS STATUS, Z if everything is 0 then we are ok 

GOTO enable_stby2 if not lets go around again 

668 NOP 

BSF PORTE, 2 Enable native injectors 

BCF PORTC, 2 turn off the green LED 

672 BSF PORTC, 1 turn on yellow 

BCF PORTC, 0 turn off red 

ad_ block 

676 
get_intake_temp 

CLRF AD_CHAN Select channel 0 

CALL adcget 

680 NOP 

MOVF AD_HI, W move the converted value into w 

MOVWF AIR_IN_TEMP store it in the correct place 

684 MOVWF SP_vAL_OUT prepare for serial transmission 

MOVLW Ox81 move 129 into w, intake temp code 

MOVWF SP_CODE_OUT 

CALL serial_tx 

688 NOP 



7. Implementation Description 95 

get_baro_pres 

INCF AD_CHAN, 1 select channel 1 

692 CALL adcget 

NOP 

MOVF AD_HI, W move the converted value into w 

696 MOVWF BARD store it in the correct place 

MOVWF SP_VAL_OUT prepare for serial transmission 

MOVLW Ox82 move 130 into w, Baro code 

MOVWF SP_CODE_OUT 

700 CALL serial_tx 

NOP 

get_oxygen 

704 INCF AD_CHAN, 1 select channel 2 

CALL adcget 

NOP 

708 MOVF AD_HI, W move the converted value into w 

MOVWF OXYGEN store it in the correct place 

MOVWF SP_VAL_OUT prepare for serial transmission 

MOVLW Ox83 move 131 into w, 02 code 

712 MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

716 get_rpm 

INCF AD_CHAN, 1 select channel 3 

CALL adcget 

NOP 

720 
MOVF AD_HI, W move the converted value into w 

MOVWF REVS store it in the correct place 

MOVWF SP_vAL_OUT prepare for serial transmission 

724 MOVLW Ox84 move 132 into w, RPM code 



96 7. Implementation Description 

MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

728 

get_coolant_temp 

INCF AD_CHAN, 1 

CALL adcget 

732 NOP 

MOVF AD_HI, W 

MOVWF COOLANT_TEMP 

736 MOVWF SP_VAL_OUT 

MOVLW Ox85 

MOVWF SP_CODE_OUT 

CALL serial_tx 

740 NOP 

get_fuel_lev 

INCF AD_CHAN, 1 

744 CALL adcget 

NOP 

MOVF AD_HI, W 

748 MOVWF ALT_FUEL_LEV 

MOVWF SP_VAL_OUT 

MOVLW Ox86 

MOVWF SP_CODE_OUT 

752 CALL serial_tx 

NOP 

get_throttle_pos 

756 INCF AD_CHAN, 1 

CALL adcget 

NOP 

select channel 4 

move the converted value into w 

store it in the correct place 

prepare for serial transmission 

move 133 into w, coolant temp code 

select channel 5 

move the converted value into w 
store it in the correct place 

prepare for serial transmission 

move 134 into w, fuel level code 

select channel 6 



7. Implementation Description 97 

760 

764 

768 

772 

776 

780 

784 

788 

792 

MOVF AD_HI, W 

MOVWF THROTTLE_POS 

MOVWF SP_VAL_OUT 

MOVLW Ox87 

MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

send_plength 

MOVF IR_TIMHI, w 
MOVWF SP_VAL_OUT 

MOVLW Ox88 

MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

MOVF IR_TIMLO, W 

MOVWF SP_VAL_OUT 

MOVLW Ox89 

MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

send_ elongation 

MOVF PR2, w 
MOVWF SP_VAL_OUT 

MOVLW Ox8A 

MOVWF SP_CODE_OUT 

CALL serial_tx 

NOP 

GOTO main_ loop 

NOP 

move the converted value into w 

store it in the correct place 
prepare for serial transmission 

move 135 into w, TPS code 

move the most sig 8 bits of the 
16 bit timer into w 

move the least sig 8 bits of the 

16 bit timer into w 

;*********************** END MAIN LOOP ******************************; 



98 7. Implementation Description 

7.8 Programming Loop 

7.8.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 
of the Programming Loop. 

• The serial port will only be connected to properly configured machines running 

the Car Communicator PC application. 

• Validity of fuel maps is determined by the Car Communicator PC application. 

• Communication is synchronized by resetting the controller before initiating fuel 

map transfer. 

7.8.2 Variables 

This section lists, in separate tables, the global variables that are read, and the global 

variables that are changed during the execution of the Programming Loop. The 3 

character prefix for the programmingLoop is PL_. 

Variables Read - Programming Loop 

!variable Name jType & Description 

jPIR1 jsF- Peripheral Interrupt Register 

SP_VALIN GP- Incoming Serial Value 

sp_succ_rN GP- Incoming Serial Code 

Variables Changed- Programming Loop 



7. Implementation Description 99 

!variable Name !Type & Description 

WREG SF - Operations Register 

INTCON SF - Interrupt Control Register 

PORTE SF- PortE 

TBLPTRU SF- Table Pointer Upper Bits 

TBLPTRH SF - Table Pointer High Bits 

TBLPTRL SF - Table Pointer Low Bits 

MODE GP- Stores Control Mode of System 

FL_WRITE_VAL GP - Value to be Written to Flash 

FLLAST_RES GP - Result of Last Communication with PC 

7.8.3 Programming Loop Code 

;*********************** PROGRAM FUEL MAP ***************************; 
796 prog_f _map 

800 

804 

808 

812 

the controller is set to burn native fuel and 

; only transmit serial info relating to the serial 

; programing 

CLRF 

BSF 
BCF 

BSF 

CLRF 

MOVLW 

MOVWF 

MOVLW 

MOVWF 

CALL 

NOP 

MODE 

MODE, 3 

INTCON,GIE 

PORTE, 2 

TBLPTRU 

Ox3f 

TBLPTRH 

OxFO 

TBLPTRL 

erase_flash 

fuel_map_loop 

Program Mode On 

Turn off global interrupt switch 

Ensure car is burning native 

clear table pointer upper bits 

set table pointer high bits 

set table pointer low bits 



100 7. Implementation Description 

816 BTFSS PIRl, RCIF check for new data 

GOTO 

NOP 

fuel_map_loop loop until there is data waiting 

820 data_waiting 

824 

828 

832 

CALL 

NOP 

MOVF 

MOVWF 

MOVF 

MOVWF 

GOTO 

NOP 

GOTO 

serial_rc get the data from the serial Port 

SP_SUCC_IN, W data into the correct for write 
FL_LAST_RES 

SP_vAL_IN, W data into the correct for write 
FL_WRITE_VAL 

write_flash write the flash 

fuel_map_loop 

;******************** END PROGRAM FUEL MAP **************************; 

7.9 Serial Port 

7.9.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 

of any routine in the Serial Port software unit. 

• Before a call to seriaLtx the value to be transmitted is stored in the 

SP _ VALOUT register, and the code to be transmitted is stored in the SP _CODE_OUT 

register. 

• After a call to seriaL.rc the 2 bytes most recently received are stored in the 

SP _VALIN and SP _succ_IN registers. 

• All serial port parameters have been configured by the Initialization routine to 

be consistent with those of the Car Communicator PC application. 



7. Implementation Description 101 

7.9.2 Variables 

This section lists, in separate tables, the global variables that are read, and the global 

variables that are changed during the execution of routines in the Serial Port software 

unit. The 3 character prefix for the Serial Port unit is SP -· 

Variables Read - Serial Port 

jvariable Name !Type & Description 

PIR1 SF - Peripheral Interrupt Register 

RCREG SF - Register for Outbound Serial Data 

SP _CODE_QUT GP- Describes Nature of Serial Transmission 

SP_VALOUT GP- Serial Value to Transmit 

Variables Changed- Serial Port 

jvariable Name !Type & Description 

WREG SF - Operations Register 

PORTC SF- Port C 

TXREG SF - Register for Inbound Serial Data 

SP_8UCC_IN G P - Incoming Serial Code 

SP_VAL_IN GP- Incoming Serial Value 

7.9.3 Serial Port Code 

836 ;************************* SERIAL RECEIVE CODE **********************; 
serial_rc 

840 

check_for_ser_data 

BTFSC PIRl, RCIF 
GOTO get_ser_data 

RETURN 

check for new data 



102 

844 

848 

852 

856 

860 

get_ser_data 

MOVF RCREG, w 
MOVWF SP_VAL_IN 

second_half 

BTFSS PIR1, RCIF 

GOTO no_sync 

NOP 

BCF PORTC, 1 

MOVF RCREG, w 
MOVWF SP_SUCC_IN 

RETURN 

NOP 

no_sync 

BSF PORTC, 1 

GOTO second_half 

NOP 

7. Implementation Description 

get the data and put it into 

the serial val register 

check for new data 

data into the register used to verify 

flashes the yellow led between bytes 

864 ;*********************** END SERIAL RECEIVE CODE ********************; 

;************************ SERIAL TRANSMIT CODE **********************; 

868 serial_tx 

send_ code 

BTFSS PIR1,TXIF wait for transmit buffer to empty 

GOTO send_ code 

872 NOP 

MOVF SP_CODE_OUT, w 
MOVWF TXREG send to serial Pin 

NOP 

876 NOP 



7. Implementation Description 103 

send_ val 

BTFSS PIRl,TXIF 
880 GOTO send_ val 

NOP 
MOVF SP_VAL_OUT, w 

MOVWF TXREG 
884 NOP 

NOP 
RETURN 
NOP 

888 

;********************** END SERIAL TRANSMIT CODE ********************; 

7.10 A/D Conversion 

7.10.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 

of the adcget routine. 

• Before a call to adcget the number of the channel which is to have its value 

converted is stored in the AD_CHAN register. 

• After a call to adcget the high bits of the conversion result are stored in AD ...HI 

and the low bits are stored in AD_LO. 

7.10.2 Variables 

This section lists, in separate tables, the global variables that are read, the global 

variables that are changed and the local variables that are used during the execution 

of the A/D Conversion routine. The 3 character prefix for the A/D sub-routine is 

AD_. 

Variables Read- A/D Conversion 



104 7. Implementation Description 

!variable Name jType & Description 

ADRESH 
SF- Register Where High Bits of Converted A/D Values 

are Stored 

ADRESL SF- Register storing Low Bits of Converted A/D Value 

jAD_CHAN I GP - Channel for A/D Conversion 

Variables Changed - A/D Conversion 

!variable Name jType & Description 

WREG SF - Operations Register 

STATUS SF - Operational Status Register 

ADCONO SF - A/D Control Register 0 

PIR1 SF - Peripheral Interrupt Register 

ADJII GP- Register for Storing A/D High Bits 

AD_LO GP- Register for Storing A/D Low Bits 

DELAY GP - Counter Used to Wait for A/D Acquisition 

Local Variables- A/D Conversion 

I Variable Name !Type & Description 

jad_store jGP- Used to Prepare Byte for ADCONO 

7.10.3 A/D Conversion Code 

;************************* AID COMVERSION CODE **********************; 
892 

adcget 

BCF STATUS, C clear carry flag 

MOVF AD_CHAN, W get channel number 

896 MOVWF ad_store temporarily store 

RLNCF ad_store, F shift left thrice 

RLNCF ad_store, F so it is in the correct bits 

RLNCF ad_store, F suited to ADCONO 



7. Implementation Description 105 

900 MOVLW Ox81 set clock FOSC/32 with A/D on 

IORWF ad_store, 0 or this with the modified chan number 

MOVWF ADCONO move new val into into adconO 

CLRF DELAY set delay counter to 0 

904 
acq_wait 

DECFSZ DELAY,F wait for A/D capacitor to charge 

GOTO acq_wait to channel voltage 

908 NOP 

sample 

BCF PIR1, ADIF 

912 BSF ADCONO, GO start A/D conversion 

conv_wait 

DECFSZ DELAY,F wait for A/D conversion 

916 GOTO conv_wait 

val_wait 

BTFSC ADCONO, GO Wait for value to be in registers 

920 GOTO val_wait 

get val 

924 MOVF ADRESH, w get high word 

MOVWF AD_HI put it in ad_hi 

MOVF ADRESL, w get low word 

MOVWF AD_LO put it in ad_lo 

928 RETURN 
NOP 

;*********************** END A/D CONVERSION CODE ********************; 



106 7. Implementation Description 

7.11 Flash 

7 .11.1 Assumptions 

• Execution of the Initialization routine is always completed before the execution 

of any routine in the Flash software unit. 

• Before a call to wri te_flash the value to be written is stored in the 

FLWRITLVAL register, and the result of the last transmission is stored in the 

FLJ.AST _RES register. 

• Before a call to read_flash the high bits of the address of the byte to be read 

are stored in the FL__R.EAD_ADDR..R register, the low bits of the address are stored 

in the FL__R.EAD_ADDRJ. register. 

• The car communicator PC application strictly adheres to the communication 

protocol defined in the high level design document. 

• Mandatory flash erases and long writes are handled automatically by the 

wri te_flash sub-routine. 

7.11.2 Variables 

This section lists, in separate tables, the global variables that are read and changed, 

and the local variables that are used during the execution of sub-routines in the Flash 

software unit. The 3 character prefix for the Flash software unit is FL. 

Variables Read- Flash 

!variable Name jType & Description 

FL__R.EAD_ADDR..R GP- High Bits of Address for Flash Read 

FLREAD_ADDR_L GP- Low Bits of Address for Flash Read 

FLWRITE_ VAL GP- Value to be Written to Flash 

FLJ.AST _RES GP- Result of Last Communication with PC 

SP_VALIN GP - Incoming Serial Value 



7. Implementation Description 

Variables Changed- Flash 

!variable Name !Type & Description 

WREG SF - Operations Register 

STATUS SF - Operational Status Register 

TBLPTRU SF- Table Pointer Upper bits 

TBLPTRH SF - Table Point High Bits 

TBLPTRL SF - Table Pointer Low bits 

TABLAT SF - Table value 

EECON1 SF- EEPROM Control Register 1 

EECON2 SF- EEPROM Control Register 2 

INTCON SF- Interrupt Control Register 

FL....READ_VAL GP- Register Storing Results of Flash Reads 

SP _COD LOUT GP- Describes Nature of Serial Transmission 

SP_VALOUT GP- Serial value to transmit 

Local Variables- Flash 

!variable Name IType & Description 

GP - Used to Count the Number of High Bits m 
fLcount_bi ts 

fLJ.ast_res 

7 .11.3 Flash Code 

107 

932 ;************************** READ FLASH ******************************; 

read_flash 

CLRF TBLPTRU 
936 MOVF FL_READ_ADDR_H, w high flash address into, 

MOVWF TBLPTRH table address reg 

MOVF FL_READ_ADDR_L, w low flash address into 

MOVWF TBLPTRL table address reg 

940 
TBLRD * initiate a table read 



108 

944 

MOVF TABLAT, W 
MOVWF FL_READ_VAL 

RETURN 

NOP 

7. Implementation Description 

result into val register 

948 ;*********************** END READ FLASH *****************************; 

;************************* ERASE FLASH ******************************; 

952 erase_flash 

erase_row 

956 BSF EECON1, EEPGD point to flash not eep 

BCF EECON1, CFGS access flash prog memory 
BSF EECON1, WREN enable writes to memory 
BSF EECON1, FREE enable row erase operation 

960 
MOVLW Ox 55 

MOVWF EECON2 write 55 hex as part of safety 

MOVLW OxAA 

964 MOVWF EECON2 write AA as part of safety 

BSF EECON1, WR start erase 
BCF EECONl, FREE disable row erase 

968 
RETURN 

NOP 

972 ;************************ END ERASE FLASH ***************************; 

976 

;*************************** WRITE FLASH ****************************; 
write_flash 



7. Implementation Description 

980 

984 

988 

CLRF fl_count_bits 

BTFSC FL_LAST_RES, 0 

INCF fl_count_bits 

BTFSC FL_LAST_RES, 1 

INCF fl_count_bits 

BTFSC FL_LAST_RES, 2 

INCF 
BTFSC 

INCF 

BTFSC 

INCF 

BTFSC 

fl_count_bits 

FL_LAST_RES, 3 

fl_count_bits 

FL_LAST _RES, 4 

fl_count_bits 

FL_LAST_RES, 5 

INCF fl_count_bits 

BTFSC FL_LAST_RES, 5 

INCF fl_count_bits 

992 BTFSC FL_LAST_RES, 6 

996 

1000 

INCF 

BTFSC 

INCF 

fl_count_bits 

FL_LAST_RES, 7 

fl_count_bits 

MOVLW OxFB 
ADDWF fl_count_bits, 0 

BTFSS STATUS, C 

GOTO 

NOP 

last_result_wrong 

last_result_right 

1004 MOVF TBLPTRL, W 

ANDLW Ox07 

1008 

XORLW Ox07 

BTFSC STATUS, Z 

CALL 

NOP 

long_write_flash 

check_for_erase 

109 

this block of code counts the high 

bits to determine if the byte should 

be written in place or incremented 

number of bits set greater than 4? 

if yes carry bit is set 

check carry bit 

if not then the last com failed 

last com ok, 

check if a long write is needed 

if so, do a long write 



110 

1012 

1016 

1020 

1024 

1028 

1032 

1036 

1040 

MOVF TBLPTRL, w 
ANDLW Ox3f 

BTFSS STATUS, z 
GOTO short_write_inc 

NOP 

CALL erase_flash 

NOP 

short_write_inc 

MOVF FL_WRITE_vAL, TN 

MOVWF TABLAT 
TBLWT +* 

GOTO verify 

last_result_wrong 

short_ write 

MOVF FL_WRITE_VAL, w 

MOVWF TABLAT 

TBLWT * 

GOTO verify 

7. Implementation Description 

check if an erase is needed 

if not, do a short write 

if yes, perform an erase 

load value 

perform short write 

increment after write 

verify the last com 

load value 

perform short write 

do not increment 

verify the last com 

;************************* END WRITE FLASH **************************; 

;************************* LONG WRITE FLASH *************************; 
;************** DO NOT ALTER, MANUFACTURER SPECIFIED ****************; 

1044 long_write_flash 

BSF EECON1, EEPGD 

BCF EECON1, CFGS 

point to flash not eep 

access flash progie memory 



7. Implementation Description 111 

BSF 

1048 BCF 

MOVLW 

MOVWF 

1052 MOVLW 

MOVWF 

BSF 

1056 

RETURN 

NOP 

EECON1, WREN 

INTCON, GIE 

Ox 55 
EECON2 

OxAA 

EECON2 

EECON1, WR 

enable writes to memory 

disable interrupts 

write 55 hex as part of safety 

write AA as part of safety 

start long write 

1060 ;************************ END LONG WRITE FLASH **********************; 

;******************************* VERIFY *****************************; 

1064 verify 

MOVF SP_VAL_IN, W load the transmit registers 

MOVWF SP_CODE_OUT 

MOVF FL_LAST_RES, w 
1068 MOVWF SP_VAL_OUT 

CALL serial_tx perform a serial transmit 

NOP 

GOTO fuel_map_loop go around again 

1072 NOP 

;****************************** END VERIFY **************************; 



Chapter 8 

Testing, Inspection, and 

Verification 

8.1 Overview 

This chapter describes the tools and techniques used to verify the hardware and 

software components of the alternate fuel injection controller. The process was divided 

into laboratory testing, field testing, inspection, and verification. This chapter is 

divided along these lines as well. 

8.2 Laboratory Testing 

Laboratory testing, as it pertains to this system, refers to all activities performed 

without the use of an automobile, where the observable properties and behavior of 

the fuel injection controller are evaluated for conformance to the requirements specifi­

cation and design chapters. This section describes the tools that were used to simulate 

inputs to the controller and to measure its responses. It also describes the tests that 

have been run and their results. 

8.2.1 Laboratory Testing Tools 

Provided here is a description of the tools employed during laboratory testing. 

112 



8 . Testing, Inspection, and Verification 113 

Figure 8.1: Picture of Lab Testing Environment 

OnBoard Computer (OBC) hardware simulator 

In the absence of an automotive OBC, it was necessary to devise a means of producing 

and delivering fuel injection type pulses to the controller. This was accomplished with 

the development of an OBC simulator that relies on a function generator for input 

and supplies 8 simulated injector signals. A square wave signal from the function 

generator is used as an input to a cascading CMOS chip. The chip has 8 output pins 

exactly one of which is always high. The high pin ordering is predetermined and the 

output is updated upon the detection of a rising edge on the input. Each output pin 

is anded with the signal from the function generator and then inverted. The resulting 

circuit delivers 8 signals closely resembling those sent from an automotive OBC to 

gasoline fuel injectors. The signals consist of pulses of equal length to those of the 

input square wave, but with ~th the frequency. 

Potentiometers 

To fully test the controller required analogue signals that approximated those pro­

duced by sensors in the car. These signals were produced using potentiometers which 

were connected to the analogue inputs of the controller. 



114 

Oscilloscope 

8. Testing, Inspection, and Verification 

Input Square Wave 
12V 

GNO 

Cascading Outputs (2 of 8 shown) 
12V 

GNO 

12V n GNO 1.....-----~' 
Cascading Outputs Anded With Input (2 of 8 shown) 

12V 

GNO 

12V n GNO 
...____ ___ _____,, 

OBC Simulator Outputs (2 of 8 shown) 
12V I I 

GNO u 
12V u L GNO 

Figure 8.2: OBC Simulator Waveforms 

An oscilloscope was used during testing to measure several properties of injector 

waveforms, analogue inputs, and serial communication signals. It was the most valu­

able tool for verifying the correctness of the controller's hardware components and 

provided measurements necessary to reason about conformance to timing and safety 

requirements. A multi-meter was used to a lesser extent for measuring voltage and 

current. 

"Car Communicator" PC Application 

The "Car Communicator" computer application is used to monitor and configure the 

alternate fuel injection controller. It is a valuable tool for both laboratory and field 



8. Testing, Inspection, and Verification 115 

testing. In the lab, the application was used to test the controller's serial communi­

cation functionality, fuel map programming, flash transactions, and A/D conversion. 

In the field it is used for data logging and monitoring the operating conditions of the 

automobile. 

MPLAB® IDE and the PICSTART Plus 

The MPLAB® Integrated development environment and the PICSTART Plus are 

used primarily for writing and delivering PIC micro assembly programs. They are 

also useful for testing flash read and write operations as together they provide a means 

of reliably reading the complete program memory of PIC micro-controllers. 

8.2.2 Lab Tests and Results 

Provided here are a list of lab test that were performed along with their results. Test 

are described in terms of tools employed, testing procedure and expected results. 

Power Up Test 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope and the "Car 

Communicator" PC application. 

Procedure 

• With the OBC simulator delivering no pulses, the "Car Communicator" appli­

cation monitoring the serial port and the i_fueiSelector switch set to off, supply 

power to the controller. 

• Once two or more seconds have passed, activate the OBC simulator. 

• Verify that pulses are being delivered on the correct outputs and that they are 

of appropriate timing and length. 

• Repeat the test, this time with the OBC simulator active before the controller 

receives power. 



116 8. Testing, Inspection, and Verification 

• Repeat both of these tests again this time with the LfueiSelector switch set to 

on. 

Expected Results 

In each case, the controller should first light o_nativeLED, o..stbyLED, and o_altLED. 

After a short period of time, (less than half of one second) only one of these LED's 

should remain lit. In the case that the i_fueiSelector switch was set to off, the LED 

that remains lit should be the o_nativeLED. In the case that the UueiSelector switch 

was set to on, the LED that remains lit should be one of o..stbyLED or o_altLED. 

The "Car Communicator" program should be updating correctly and injection pulses 

should be consistent with the input and mode of the controller. 

Power Cycling Test 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope and the "Car 

Communicator" PC application. 

Procedure 

• With the OBC simulator delivering no pulses, the "Car Communicator" appli­

cation monitoring the serial port and the LfueiSelector switch set to off, supply 

power to the controller. 

• Once two or more seconds have passed, activate the OBC simulator. 

• Quickly cycle the power. 

• Perform the test again with the controller in stbyNat mode, and a third time 

with the controller in altFuel mode. 

• Repeat the tests cycling the power several times in rapid succession. 



8. Testing, Inspection, and Verification 117 

Expected Results 

The results to expect are exactly those listed under the Expected Results heading of 

the Power Up Test. 

Brown Out Test 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope and the "Car 

Communicator" PC application. 

Procedure 

• With the OBC simulator delivering no pulses, the "Car Communicator" appli­

cation monitoring the serial port, and the LfueiSelector switch set to off, supply 

power to the controller. 

• Once two or more seconds have passed, activate the OBC simulator. 

• Lower the voltage being delivered to the power supply of the controller to below 

4.5 volts. 

• Observe the behavior of the controller while "Browned Out". 

• Bring the voltage back up to 12 volts. 

Expected Results 

When the system is being underpowered, output pulses to the fuel injectors should 

stop along with serial communication. The LED's should not be lit. Once the correct 

voltage is restored, the controller should behave as described under the expected 

results heading of the Power Up Test. 



118 8. Testing, Inspection, and Verification 

Mode Switching Test - init to program 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope and the "Car 

Communicator" PC application. 

Procedure 

• With the i_programmingSwitch in the down position, supply power to the con­

troller. 

• Hold the i_programmingSwitch in the down position for at least half of one sec­

ond. 

• Activate the OBC simulator and begin monitoring the serial port with the PC 

application. 

• Toggle the LfueiSelector switch. 

Expected Results 

Upon supplying power to the controller, the o_nativeLED, o_altLED, and the o...stbyLED 

should light for a period of time less than one half second. Once this time has passed, 

only the o_nativeLED and o_altLED should remain lit. The PC application should not 

be receiving data from the controller. Outbound injection pulses should be consistent 

with those expected in the native mode, regardless of the state of the LfueiSelector 

and all other measured quantities. If power is supplied to the controller while the 

i_programmingSwitch is in the up position, and remains that way for at least one half 

second, the i_programmingSwitch should have no effect if later depressed. 

Mode Switching Test - native to stbyNat 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope, and poten­

tiometers. 



8. Testing, Inspection, and Verification 119 

Procedure 

• Begin with the controller operating in the native mode and with the OBC Sim­

ulator delivering pulses. 

• By adjusting the output frequency of the function generator, and the poten­

tiometers, produce each general set of conditions that does not permit the con­

troller to switch from the stbyNat mode to the altFuel mode. (not including 

the value of s_injectionStatus) These conditions can be determined by examin­

ing the stbyNat row of the Mode transition table of s_controiMode, found in the 

requirements specification chapter. 

• Switch the LfueiSelector to the on position. 

Expected Results 

At the beginning of the test, only the o_nativeLED should be lit and both o_heaterRelay 

and oJockOffRelay should be inactive. Once the duel Selector is in the on position, 

the o_nativeLED should turn off and o..stbyLED should light. Both the relays should 

become active. Outgoing pulses should not be effected by this mode transition. 

Mode Switching Test - stbyNat to native 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope, and poten­

tiometers. 

Procedure 

• Begin with the controller in the stbyNat mode and with the OBC Simulator 

delivering pulses. 

• Switch the LfueiSelector to the off position. 



120 8. Testing, Inspection, and Verification 

Expected Results 

At the beginning of the test only the o__stbyLED should be lit, and both o_heaterRelay 

and oJockOffRelay should be active. Once the value of LfueiSelector is changed, 

the o....stbyLED should turn off and the o_nativeLED should light. Both relays should 

become inactive. Outgoing pulses should not be effected by this mode transition. 

Mode Switching Test - stbyNat to altFuel 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope, and poten­

tiometers. 

Procedure 

• Begin with the controller in the stbyNat mode and with the OBC Simulator 

delivering pulses. 

• By adjusting the output frequency of the function generator, and the poten­

tiometers, produce a set of conditions that causes the system to transition from 

the stbyNat mode to the atFuel mode. These conditions can be determined by 

examining the stbyNat row of the Mode transition table of s_controiMode, found 

in the requirements specification chapter. 

Expected Results 

At the beginning of the test, outgoing pulses should be consistent with the stbyNat 

mode, and only the o....stbyLED should be lit. Once operating parameters have been 

appropriately adjusted, the o....stbyLED should turn off and the o_altLED should light. 

Also, at this time pulses should be consistent with the altFuel mode. 

Mode Switching Test - altFuel to native 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope, and poten­

tiometers. 



8. Testing, Inspection, and Verification 121 

Procedure 

• Begin with the controller in the altFuel mode and with the OBC Simulator 

delivering pulses. 

• Switch the UueiSelector to the off position. 

Expected Results 

At the beginning of the test, only the o..altLED should be lit, both o..heaterRelay 

and oJockOffRelay should be active, and pulses should be consistent with the altFuel 

mode. After the UueiSelector is moved to the off position, the o_altLED should turn 

off, and the o_nativeLED should light. Both relays should become inactive, and pulses 

should be consistent with the native mode. 

Mode Switching Test - altFuel to stbyNat 

Tools 

Tools needed for this test include the OBC Simulator, the Oscilloscope, and poten­

tiometers. 

Procedure 

• Begin with the controller in the altFuel mode and with the OBC Simulator 

delivering pulses. 

• Adjust the voltage of the signal connected to the i..altFuellevel input line so that 

the signal approximates one sent from a sensor on an empty tank. 

Expected Results 

At the beginning of the test, only the o_altLED should be lit, and pulses should be 

consistent with the altFuel mode. After the voltage adjustment, the o_altLED should 

turn off, and the o...stbyLED should light. Pulses should be consistent with the stbyNat 

mode. 



122 8. Testing, Inspection, and Verification 

Program Mode Test 

Tools 

Tools need for this test include the "Car Communicator" PC application, the 

MPLAB® IDE, and the PICSTART Plus. 

Procedure 

• Supply power to the controller with the i_programmingSwitch in the down posi­

tion. 

• Hold the i_programmingSwitch in the down position for another half second. 

• Using the PC application, transfer a fuel map to the controller. 

• Wait for the completion of the transfer which is indicated by the PC application. 

• Remove the PIC from the controller and place it into the PICSTART Plus. 

• Read the flash memory of the PIC using the MPLAB® IDE. 

• Compare the flash memory starting at location Ox3E70, with the fuel map. 

Expected Results 

The values displayed in the MPLAB® IDE should exactly match those in the fuel 

map. 

A/D and Serial Data Test 

Tools 

Tools needed for this test include the "Car Communicator" PC application, poten­

tiometers, the oscilloscope, and a multi-meter. 

Procedure 

• Begin the test with the controller in the native mode. 



8. Testing, Inspection, and Verification 123 

• Using the multi-meter and the potentiometers, deliver specific known voltages 

to the analogue inputs of the controller (i_coolantTemp, Lo2Sensor, LthrottlePos, 

LbaroPres, LairlnTemp, LaltFuellev). 

• Start monitoring the controller with the PC application. 

• Check the values being displayed for each analogue input. 

• Adjust the voltages being supplied to the analogue inputs. 

• Monitor the changes of the values displayed by the PC application. 

• Repeat the test in the stbyNat mode. 

• Repeat the test in the altFuel mode, this time measuring pulse elongations with 

the oscilloscope, and monitoring the displayed pulse elongation value. 

Expected Results 

Using the abstraction function £, defined in the Implementation Description Doc­

ument, verify that the values being displayed by the controller match the voltages 

being delivered on the analogue inputs. Also, ensure that changes in the voltage to 

any input are tracked by the PC application. In the final part of the test, concerned 

with the altFuel mode, verify that the displayed pulse elongation values are consistent 

with measured elongation lengths. 

native and stbyNat Mode Injection Pulse Test 

Tools 

Tools needed for this test include the OBC Simulator and the oscilloscope. 

Procedure 

• Begin this test with the controller in the native mode. 

• Activate the OBC simulator. 

• With the oscilloscope, observe each o..altlnjector signal. 



124 8. Testing, Inspection, and Verification 

• With the oscilloscope, observe each i_injector signal and the corresponding 

o_natlnjector signal, where i_injectork corresponds to o_natlnjectork k = 1· · · 8 .. 

• Repeat the test in the stbyNat mode. 

Expected Results 

The signal on each o_altlnjector should hold at 12 volts, corresponding to a value of 

closed. While noise on these signals is acceptable, the voltage should never drop 

below 7 volts. The o_natlnjector signals should be the same as their corresponding 

Linjector signals but may be delayed by as much as 5 J-LS. It is not necessary for the 

o_natlnjector signals to track noise present in the Linjector signals. 

altFuel Mode Injection Pulse Test 

Tools 

Tools needed for this test include the OBC Simulator, the oscilloscope, and the "Car 

Communicator" PC application. 

Procedure 

• Begin this test with the controller in the altFuel mode. 

• Activate the OBC simulator. 

• Begin monitoring the controller with the PC application. 

• With the oscilloscope, observe each o_natlnjector signal. 

• With the oscilloscope, observe each i_injector signal and the corresponding 

o_altlnjector signal, where i_injectork corresponds to o_altlnjectork k = 1· · · 8. 

• Compare the observed elongation length with the elongation value displayed in 

the PC application. 



8. Testing, Inspection, and Verification 125 

Expected Results 

The signal on each o_natlnjector should hold at 12 volts, corresponding to a value of 

closed. While noise on these signals is acceptable, the voltage should never drop below 

7 volts. The o_altlnjector signals should ground within 5 J-LS of their corresponding 

Linjector signals. o_altlnjection signals should return to 12 volts once an amount 

of time, equal to within 5 J-LS of the displayed pulse elongation, has passed since 

the corresponding i_injector signal returned to 12 volts. It is not necessary for the 

o_altlnjector signals to track noise present in the i_injector signals. 

altFuel Elongation value Test 

Tools 

Tools needed to perform this test include the "Car Communicator" PC application 

and potentiometers. 

Procedure 

• Using the values of i_o2Thresh and the i_tpThresh, choose specific regions of 

the controllers operating range. Since every combination of regions should be 

tested, at least 25 points in the operating range must be chosen. 

• Compute the expected pulse elongation length. 

• Begin monitoring the controller with the PC application. 

• With the controller operating in the altFuel mode, use the potentiometers to 

simulate each chosen point in the operating range. 

• For each point, compare the displayed and computed values of pulse elongation 

length. 

Expected Results 

The displayed and computed values should match exactly, provided that the points in 

the operating range can be simulated exactly. If this poses a problem, select a nearby 

point in the operating range that can be simulated exactly and repeat the test. 



126 8. Testing, Inspection, and Verification 

Fuel Level Test 

Tools 

Tools needed to perform this test include the "Car Communicator" PC application 

and potentiometers. 

Procedure 

• Using a potentiometer, vary the input voltage to i_altFuellev. 

• Compare the value displayed on the PC application with the value of 

o_altFuel Level Disp. 

Expected Results 

The value of o_altFuelleveiDisp should be consistent with the value displayed for 

i_altFuellev in the PC application. 

Non-terminating Pulse Test 

Tools 

The oscilloscope is needed to perform this test. 

Procedure 

• Begin with the controller in the altFuel mode. 

• Ground one of the Unjection inputs for a period of at least one half second. 

Expected Results 

The controller should switch to the native mode, which is demonstrated by output 

injector signals being sent on the o_natlnjector output lines only and by o_nativeLED 

having the value on. The controller should not switch modes again until a reset 

occurs. o_stbyLED and o_altLED should flash until the controller has been reset. 



8. Testing, Inspection, and Verification 127 

Overlapping Pulse Test 

Tools 

Tools needed to perform this test are the oscilloscope, potentiometers, and the OBC 

simulator. 

Procedure 

• Begin with the controller in the altFuel mode. 

• Set the duty cycle and frequency of the function generator, and the poten­

tiometers in such a way that there is not sufficient time for pulse elongations to 

complete before the arrival of a subsequent pulse. 

Expected Results 

The results to expect are exactly those listed in in the Non Terminating Pulse Test. 

8.3 Field Testing 

Field testing, as it pertains to this project, refers to all activities performed using an 

automobile, fully equipped with the alternate fuel system, where the observable prop­

erties and behavior of the automobile and the controller are evaluated for conformance 

to the requirements specification and design chapters. It is important to note that 

in many cases the results of field tests will rely not only on the software design and 

implementation but also on the fuel map, and the values of the Lo2Thresh, i_o2Mult, 

i_tpThresh, and LtpMult vectors. Seeing as the development of fuel maps, and the 

choosing of thresholds and multipliers falls outside the scope of this project, a field 

test failure is not necessarily indicative of a software design or implementation flaw. 

It is for this reason, that so much time and effort was spent on laboratory testing. 

This section lists the laboratory tests that can be slightly modified and performed 

as field tests. In addition to this, new tests specifically designed for the field are 

presented. In each case, tests are evaluated for their ability to be used as acceptance 

criteria for the design and implementation of the controller. 



128 8. Testing, Inspection, and Verification 

8.3.1 Field Tests and Results- Modified Lab Tests 

The tests listed below have all been described in detail in the laboratory testing 

section of this chapter. This section describes changes to lab test procedures that will 

make them applicable field tests, along with their expected results. These tests were 

chosen based on their ability to be run in the field and their likelihood of rendering 

results inconsistent with lab tests. 

Power Up Test 

Changes to Procedure 

When performing this test, supplying power to the controller is equivalent to turning 

the ignition key to the auxiliary, on, or start positions. A field test similar to the 

Power Up Test run in the lab is described below. 

• Turn the key to the on position. 

• Wait for at least half of one second. 

• Attempt to start the automobile. 

• Perform the test again, this time turning the key immediately to the Start 

position. 

Expected Results 

The expected results are exactly those listed for the in-lab version of this test. 

Mode Switching Test - init to program 

Changes to Procedure 

This test can be performed as it was described for laboratory testing, where supplying 

power to the controller is done by turning the key to the on position, and turning the 

key to the start position initiates the transmission of injection pulses from the OBC. 

Expected Results 

The expected results are exactly those listed for the in-lab version of this test. 



8. Testing, Inspection, and Verification 129 

Mode Switching Test - native to stbyNat 

Changes to Procedure 

An equivalent mode switching field test procedure is presented here. 

• Start the engine of the automobile. 

• Switch the LfueiSelector switch to the on position while the engine idles. 

Expected Results 

The expected results are exactly those listed for the in-lab version of this test. 

Mode Switching Test - stbyNat to native 

Changes to Procedure 

Performing this test in the field involves idling the car in the stbyNat mode, and then 

switching the LfueiSelector to the off position. 

Changes in Results 

The expected results are exactly those listed for the in-lab version of this test. 

Mode Switching Test - stbyNat to altFuel 

Changes to Procedure 

An equivalent mode switching field test procedure is presented here. 

• Start the test with the car idling and the controller in the stbyNat mode. The 

alternate fuel reserves should be near full. 

• Allow the car to idle until such a time that the coolant temperature is greater 

than THRESH _COOL_ TEMP degrees Celsius. 

• Rev the engine to at least 1500 RPM. 



130 8. Testing, Inspection, and Verification 

Expected Results 

The expected results include those listed for the in-lab version of this test. In addition 

to these, it is expected that the engine will continue to run smoothly on the alternate 

fuel. This expectation, however, can not be defined as an acceptance criterion as the 

performance of the engine depends highly on fuel maps, thresholds, and multipliers. 

Mode Switching Test - altFuel to native 

Changes to Procedure 

Performing this test in the field involves idling the car in the altFuel mode, and then 

switching the dueiSelector to the off position. 

Expected Results 

The expected results are exactly those listed for the in-lab version of this test. To 

successfully perform this test, the automobile must be capable of smoothly idling 

while burning the alternate fuel. If the test can be performed, the results can be 

used as acceptance criteria since the operation of the car after the last step of the 

testing procedure has been performed does not depend on fuel maps, thresholds or 

multipliers. 

Mode Switching Test - altFuel to stbyNat 

Changes to Procedure 

Performing this test in the field involves idling the car in the altFuel mode, and then 

waiting for the alternate fuel reserves to be mostly depleted. 

Expected Results 

The expected results are exactly those listed for the in-lab version of this test. To 

successfully perform this test, the automobile must be capable of smoothly idling 

while burning the alternate fuel. If the test can be performed, the results can be 

used as acceptance criteria since the operation of the car after the last step of the 

testing procedure has been performed does not depend on fuel maps, thresholds or 

multipliers. 



8. Testing, Inspection, and Verification 131 

A/D and Serial Data Test 

Changes to Procedure 

This test requires a tool that has not yet been mentioned. Automotive scan tools 

interface directly with an automobile's on-board computer and are capable of dis­

playing values for nearly every engine operating parameter. When performing the 

A/D and Serial Data Test in the field, the only difference is that an automotive scan 

tool is used to provide a basis for comparison rather than a multi-meter. 

Expected Results 

The values displayed by the PC application should match those displayed by the 

automotive scan tool. 

8.3.2 Field Tests and Results- New Tests 

The tests described in this section have been designed to evaluate the performance 

of an automobile equipped with the alternate fuel system. These tests should only 

be performed once all lab tests, and their field counterparts have been successfully 

completed. The results of these test rely heavily on the quality of fuel maps and post 

multipliers, therefore, they will not be considered as acceptance tests. 

Idle Test 

Procedure 

Idle the car in the altFuel mode. 

Expected Results 

The engine should idle with a steady RPM value approximately equal to the gaso­

line RPM idle value. The i_o2Sensor reading should oscillate around the value that 

indicates trim operation. There should be no bias toward rich or lean combustion. 



132 8. Testing, Inspection, and Verification 

Acceleration Test 

Procedure 

With the car idling in the altFuel mode, apply throttle steadily until the car reaches 

a speed of 20 km/h. Repeat the test for several different cruising speeds. 

Expected Results 

In each case, the car should accelerate without hesitation and smoothly maintain its 

cruising speed. 

Full Throttle Test 

Procedure 

With the car idling in the altFuel mode, quickly apply full throttle. Keep the throttle 

in the full open position until the car reaches a cruising speed of 100 km/h. Back off 

the throttle and maintain speed. 

Expected Results 

The car should accelerate without hesitation and smoothly maintain its cruising 

speed. 

Extreme Temperature Test 

Procedure 

Perform the idle, acceleration, and full throttle field tests with ambient temperatures 

as close to -30°C as possible, and again with ambient temperatures as close to 40°C 

as possible. 

Expected Results 

Test results should not change with temperature. 



8. Testing, Inspection, and Verification 133 

8.4 Inspection 

The inspection process involved a thorough manual examination of the controller 

implementation code, performed in an effort to increase confidence in the software, 

and to unearth any remaining defects that had not been detected through testing. 

The code was also examined to ensure conformance to the coding conventions outlined 

in the implementation description chapter. This section describes the criteria that 

drove the inspection process. 

8.4.1 Explicit Banking 

No implementation instruction may have the explicit bank switch set. 

The register space of the PIC18FXX2 series of micro-controllers, consists of 16 

banks of 256 registers. Since registers are addressed in the code with only 8 bits, it is 

left to the developer to ensure that the bank select bits are appropriately set before 

any operation is performed that reads from or writes to a register. However, explicit 

banking can be avoided through use of the "access bank" . This is a virtual bank 

that consists of the lower 128 bytes of bank 0, and the upper 128 bytes of bank 15. 

This is useful since the lower bytes of bank 0 are the most commonly used registers 

for storing user defined variables, and the upper bytes of bank 15 store the special 

function registers. As the access bank is used for the controller implementation, it 

is necessary to inspect the code to ensure that no instructions are written with the 

explicit bank switch set. Exclusive use of the access bank has the disadvantage of 

limiting the number of usable general purpose registers to 128. Fortunately, the limit 

did not pose a problem for this implementation. 

8.4.2 Variable Addressing 

All user defined variables must be declared with addresses in the first 128 

bytes of register bank 0. 

For a user defined variable to be addressable in the access bank, it must have an 

address in the first 128 bytes of bank 0. As the access bank is being used to address 

registers, it is necessary to inspect variable declarations to ensure that all variable 

address are within this range. 



134 8. Testing, Inspection, and Verification 

8.4.3 GOTO ISR Instructions 

No GOTO instruction outside the interrupt service routine may cause 

execution to jump to any instruction inside the interrupt service routine. 

The interrupt service routine is the code that is responsible for the most important 

control action performed by the system, the opening and closing of fuel injectors. 

This code has been designed with the assumption that it would only be executed in 

response to an interrupt. It is, therefore, necessary to inspect the code to ensure that 

no situations exists where a GOTO from outside the ISR causes execution to continue 

inside the ISR. 

8.4.4 Call Stack Size 

The size of the call stack must never exceed 31. 

The PIC18FXX2 series of micro-controller has a call stack with a maximum size of 

31. In the event that the call stack has a size of 31 and a call is made or an interrupt 

occurs, the call stack overflows and the device is reset. Inspection is necessary to 

ensure that no execution path exists that makes this situation a possibility. 

8.4.5 Flash Write Instruction Sequence 

The flash write "required sequence" provided in the PIC18FXX2 data 

sheet[lO] must appear unaltered in the implementation code. 

To perform a flash program memory write requires the execution of 4 consecu­

tive specific instructions. As flash program memory writing is necessary, the code 

was inspected to ensure that the sequence appeared unaltered in the flash program 

segment. 

8.4.6 Variable Naming and Code Casing 

All variable naming and code casing conventions outlined in the imple­

mentation description chapter of this document must be adhered to in the 

implementation code. 
In the interest of code readability and maintainability it is important to follow 



8. Testing, Inspection, and Verification 135 

these simple code conventions. For this reason, the implementation code was in­

spected for proper variable naming and code casing. 

8.5 Verification 

The software development process which produced the injection controller software 

did not involve mathematically rigorous verification. However, it was deemed nec­

essary to verify that the controller implementation and design do satisfy certain im­

portant requirements. This section will reason about the correctness of the software 

with respect to the requirements chosen for informal verification. Design verification 

is based on the flowcharts presented in the high level design chapter, while implemen­

tation verification is based on the code found in the implementation chapter. Since 

the design did not deal with timing constrains, verification of timing requirements 

will only be discussed with respect to implementation. 

8.5.1 Verification of Safety Requirements 

Once the system is initialized, exactly one fuel injector shall fire for every 

incoming injection pulse. 

Design Verification 

The diagrams that are relevant to the design verification of this requirement are 

figures 6.3, 6.4, 6.7, and 6.9. In figure 6.3 the design dictates that when initialization 

is completed, the mode of the system is native, both interrupts and native injectors 

are enabled, and each member of the o..altlnjector array has the value closed. From 

here, execution will continue in either the Programming loop or in the Main loop. 

The programming flow chart, figure 6.9, dictates that immediately following a mode 

transition to program, interrupts are disabled and remain so until the system is reset. 

Therefore, once the system is in the program mode, there is no execution path to either 

the initialization routine or the interrupt service routine. Since each alternate injector 

has the value closed when entering this mode, and these values are only changed in the 

interrupt service routine and during initialization, it can be stated that no incoming 

injection pulses received while the system is in the program mode, will arrive at an 



136 8. Testing, Inspection, and Verification 

alternate injector. Since native injectors are enabled when entering the program mode, 

and are never disable therein, it can be safely stated that any injection pulse received 

while the system is in the program mode will arrive at a native injector. Therefore, 

the software design satisfies this requirement while the system resides in the program 

mode. In figures 6.4 and 6.7 the design dictates that as soon as the mode of the 

system becomes native or stbyNat, and all o_natlnjector and o_altlnjector signals have 

the value closed, the native injectors are enabled. Therefore, any injection pulse that 

arrives, while the controller is in either of these modes, will reach a native injector. 

The design also dictates that native injectors are disabled immediately before the 

mode of the system transitions to altFuel. Since native injectors are not enabled 

by any other subsequent program segment, it can be stated that a pulse received 

while the controller is in the altFuel mode will not arrive at a native injector. It now 

remains to be shown that any incoming injection pulse received while the mode of the 

system is not a It Fuel will not arrive at an alternate injector, and that any incoming 

injection pulse received while the mode of the system is altFuel will arrive at an 

alternate injector. These properties can both be verified by examining figure 6.7. In 

this figure, the code that opens the alternate injectors is guarded by the condition 

that the mode of the system is altFuel. It can therefore be stated that the design does 

satisfy this requirement.1 

Implementation Verification 

Implementation verification of this requirement involved checking for correspondence 

between the design and the implementation with respect to the following criteria. 

• Immediately after the initialization routine is complete, the system mode is na­

tive, both native injectors and interrupts are enabled, and all alternate injectors 

are closed.(Lines 22, 69-82, 240, 246, 248) 

• Alternate injector values are not set outside of the interrupts service and ini­

tialization routines.(Lines 548-1072) 

1 It should be noted that a race condition exists that can result in a single injection being missed, 
or an injection pulse arriving at both native and alternate injectors, immediately following a mode 
transition. It has been determined that this is an acceptable deviation from the requirements. 



8. Testing, Inspection, and Verification 137 

• Interrupts become and remain disabled immediately after the system enters the 

program mode. (Line 802) 

• Native injectors remain enabled while the system resides m the program 

mode.(Lines 803-888, 932-1072) 

• Native injectors are enabled when the system enters the native or stbyNat 

modes.(Lines 248, 504, 564-570, 591-596, 664-669) 

• Native injectors are disabled when the system enters the altFuel mode.(Lines 

624-629) 

• In the interrupt service routine, alternate injectors are opened when, and only 

when, the system resides in the altFuel mode. (Lines 466-467) 

Fuel injectors fired must be associated with the same cylinders as incoming 

injection pulses. 

Design Verification 

The association between input injection signals and native fuel injectors is managed 

in hardware. The correct association between incoming injector signals and outgoing 

alternate injector signals is assumed by the software design and is verified below. 

Implementation Verification 

Verification of this requirement, relies on the assumption that the controller is wired 

in such a way that for all k, the alternate fuel injector associated with PORTD[k] 

operates on the same cylinder as the native fuel injector associated with PORTB[k]. 

Also, since not all pins of PORTB generate interrupts on change, it was necessary to 

send the conjunction of all incoming injection signals to one of the pins that does. 

The pin chosen for this task was PORTB[7]. This means that while the arrival of an 

incoming injection pulse to PORTB[k], k = 0 · · · 6, is indicative of a pulse bound for 

a fuel injector associated with PORTB[k] , the same cannot be said for PORTB[7]. 

The arrival of an injection pulse to PORTB[7] is only indicative of a pulse bound for 

an injector associated with PORTB[7] when all other bits of PORTB have the value 



138 8. Testing, Inspection, and Verification 

0. Therefore, verification of this requirement involved checking for the following 

properties in the code. 

• When a change on PORTB interrupt occurs, and PORTB has the value 

100000002 , PORTD is assigned the value 10000002.2 

• When a change on PORTB interrupt occurs, and PORTB has 2 high pins, 

PORTD is assigned the value (PORTB & 011111112).3 

In all situations where s_trouble = on, fuel injection control shall default to 

the car computer. 

Design Verification 

The only flow chart necessary for design verification of this requirement is figure 6.7. 

This is the only segment of the design where s_trouble becomes on. It can be seen 

from this flow chart that when s_trouble is set, the native injectors are enabled, and 

all alternate injectors are closed. Furthermore, since the design dictates that the 

controller waits for a reset, there is no possibility of these conditions changing. 

Implementation Verification 

Implementation verification of this requirement involves a very small section of the 

code. The value of s_trouble is only set to on in one place, inside the interrupt service 

routine (Line 505). Immediately before this happens, the native injectors are enabled, 

and all alternate injectors are closed (Lines 500, 504). Shortly thereafter, the code 

loops indefinitely, never disabling the native injectors, and never opening an alternate 

injector (Lines 508, 544). It can therefore be stated that the implementation satisfies 

this requirement. 

2 The 7th bit of a port is the MSB of the binary representation. 
3 '&' is the bitwise and operator. 



8. Testing, Inspection, and Verification 139 

The lock off relay must remain open in the native and program modes 

Design Verification 

For design verification of this requirement, it is assumed that the initialized value of 

oJockOffRelay is inactive. It can then be determined, that when the control mode 

of the system is program, oJockOffRelay is never written, and thus remains inactive 

until the controller is reset(see figure 6.9). There are three situations in the design 

where the mode of the system becomes native. These situations are depicted in figures 

6.3, 6. 7 and 6.4. In each case, the value of oJockOffRelay is inactive before the mode 

transition, and remains that way until the mode becomes stbyNat or altFuel. It can 

therefore be stated that the design satisfies this requirement. 

Implementation Verification 

Implementation verification of this requirement involved checking for correspondence 

between the design and the implementation with respect to the following criteria. 

• During variable initialization, the value of oJockOffRelay is set to inactive.(Line 

31) 

• The value of oJockOffRelay is inactive immediately before any mode transition 

to native.(Line 556) 

• oJockOffRelay is never written when the control mode of the system is program 

or native.(Lines 503-544, 560-561, 572-577, 675-791, 803-888, 932-1072) 

Pulse elongations must not overlap with subsequent native injection pulses. 

Design Verification 

The detection of an overlapping pulse causes the system to close all alternate injectors 

and enable native injectors as is seen in figure 6.7. Unfortunately, one pulse elongation 

must violate this requirement before action can be taken. This has been identified as 

an acceptable deviation from the requirements. 



140 8. Testing, Inspection, and Verification 

Implementation Verification 

Implementation verification of this requirement involved checking for correspondence 

between the design and the implementation with respect to the following criterion. 

• If a change on B interrupt occurs as a result of an arriving pulse, and TIMER2 

is running, then the system must transition to the native mode. (Lines 477-478, 

503) 

8.5.2 Verification of Timing Requirements 

The controller shall be capable of detecting and generating pulses to keep 

an 8 cylinder engine at up to 6500 RPM. 

Implementation verification of this requirement was performed by ensuring that 

the controller timers were initialized as discussed in the implementation chapter. 

(Lines 41-55) 

The controller shall be capable of detecting and generating pulses to keep 

an 8 cylinder engine at as few as 500 RPM. 

Implementation verification of this requirement was performed by ensuring that 

the controller timers were initialized as discussed in the implementation chapter. 

(Lines 41-55) 

Every injection pulse generated by the car computer must arrive at the 

destination cylinder within 5f..LS. 

Assuming that signal propagation time is negligible, verification of this require­

ment is only necessary for alternate injection pulses. This is a direct result of native 

injection pulses being managed in hardware. Verification for alternate pulses depends 

on each of the following issues: 

• Frequency of oscillation 

• Interrupt generation speed 

• The maximum number of instructions needed to deliver an injection pulse 



8. Testing, Inspection, and Verification 141 

The PIC micro-controller is being run at a frequency of 40 MHz, and therefore com­

pletes single cycle instructions at a rate of lOMHz. Jumps to the Interrupt service 

routine occur within two cycles of the event which causes them. This means that as 

much as .2J-ts may pass before the program jumps to the ISR. This leaves 4.8J-ts or the 

time it takes to execute 48 single cycle instructions before the appropriate alternate 

injector must be opened. The maximum number of instruction cycles, counting from 

the start of the ISR, needed to open an alternate injector is 17 and well within the 48 

cycle limit. 



Chapter 9 

Conclusion 

This chapter presents conclusions pertaining to the success of the controller and the 

documentation strategy. Also provided are discussions of possible future work and 

proposed changes to the development process. 

9.1 Controller Evaluation 

When evaluating the controller, it was important to consider not only the results 

of the testing, inspection, and verification, but also the sentiments of the industry 

contact from Cosimo's Garage Ltd. Fortunately, these measures of success agreed 

in their endorsement of the controller as an acceptable final product. While some 

field testing, relying on final versions of fuel maps remains to be completed, lab tests 

and verification suggest that the controller satisfies the requirements specification 

presented in chapter 3. 

9.2 Documentation Strategy Evaluation 

Evaluation of the documentation strategy is more difficult than that of the controller 

itself. This section provides a description of how documents in the strategy provided, 

or failed to provide benefits to those involved in the development process. 

142 



9. Conclusion 143 

9.2.1 The Requirements Specification 

When deciding on the organization and representation of the requirements that would 

eventually constitute the specification, there were two main considerations. These 

were client readability and comprehension, and the ability of the document to support 

the remainder of the development process. 

In an effort to support understanding by the industrial partner, the requirements 

were organized in a style similar to the one in which they were delivered. The or­

ganization grouped the requirements specifying the necessary behavior of the system 

separately from those specifying the negation of unacceptable behavior. It is my 

opinion that this organization facilitated client comprehension and did so without 

hindering the design or verification of the controller software. 

In regards to development support, it is my opinion that the specification which 

aimed to be output focused, tabular, complete, and consistent proved very successful. 

As the specification was output focused, it directly supported testing and verification 

which was performed in part by comparing observable system outputs to specified 

outputs. The tabular nature of the specification not only increased readability but 

also supported development by helping to identify incompleteness and inconsistency 

during requirements elicitation. Finally, the benefit of completeness and consistency 

in the specification was most clearly demonstrated during the first field test which was 

highly successful, and also by a minimal need for communication with the industrial 

partner following the completion of requirements elicitation. 

9.2.2 High Level Design Document 

Flow charts were selected for use in the software design for their ability to express 

timing and sequencing information, their support of abstraction, and the fact that 

their semantics can be easily expressed. Upon completion of the development process 

it has been determined that flowcharts did provide the expected benefits. Timing 

requirements were among the most important to the success of the project. Since all 

cycles in the design are visualized in flowcharts, time bound analysis was quickly di­

rected to the most timing sensitive areas. The ability of flowcharts to express program 

segment sequencing, reduced the amount of effort required to bring the project from 

design to implementation. It also eased to task of design/implementation verification 



144 9. Conclusion 

since these two work products exhibited similar structure. Flowchart abstraction, or 

the representation of a single program segment component as a separate flowchart, 

increased readability and facilitated fast design navigation. 

9.2.3 Implementation Description 

The implementation description, illustrates the connections between the state space 

variables and their implementation counterparts, and provides interfaces in terms 

of global variables for each software unit. In addition to this, the chapter provides 

the implementation code. Evaluation of the implementation, which was performed 

through testing, inspection, and verification of the controller software, has been com­

pleted and is well documented. Evaluation of the implementation chapter is a separate 

issue. For the content and structure of this chapter to be considered a success, it must 

be able to support others whose role it is to maintain the software. Since no one has 

of yet begun this task, the evaluation of this chapter remains incomplete. 

9.3 The Evolution of the Development Process 

Upon completion of a software development project, such as the one described in 

this document, it is important to consider how certain problems could have been 

avoided by changes to the development process or documentation style. While the 

development of the fuel injection controller did proceed very smoothly, there were 

certain aspects that could have been improved. The most notable of these were 

the need for late changes to the requirements specification, and evaluation criteria 

which depended on fuel maps that have not yet been completed. Both of these 

problems could have derailed the project had development been driven by monetary 

compensation rather than completion of degree requirements. For this reason, any 

future development would include the specification of a date, after which, no changes 

to the requirements could be made without the agreement of the developers and the 

client. Also, all acceptance criteria would be based on factors which do not depend 

on untested systems or documents produces by others. 



9. Conclusion 145 

9.4 Reuse 

In developing the fuel injection controller, it was necessary to specify, design and 

develop sub routines to provide services relating to serial communication, flash reading 

and writing, analogue to digital conversion, and interrupt handling. Seeing as the 

interfaces to these routines are well defined and their implementation code is self 

contained, there is great potential for reuse in future PIC applications. Also, since 

the development platform chosen, the PIC18F series, is the latest generation of PIC 

micro controllers, it is very likely that the platform will be available for some time to 

come. 

9.5 Future Work 

Through discussions with the industry contact, a list of future work has been com­

piled, that if completed would ease the task of installers and fuel map developers. 

The list is presented here. 

• Real time visualization of the operational data transmitted by the controller. 

• Offline fuel map optimization based on logged data. 

• Improved fuel map development tools. 

• USB communication support. 

THE END 



Index 

L mapping, 65 

A/D Conversion, 103 

assumptions, 103 

code, 104 

variables, 103 

access bank, 133 

alternate injector transistor bank, 39 

analogue converter level adjustment, 37 

branch, 45 

Car Communicator, 114 

circuit diagrams, 40 

coding conventions, 60, 64, 133 

components, 43 

connectors, 43 

controlled quantities, 17 

documentation strategy, 12, 142 

decomposition, 13 

high level design, 13 

implementation, 14 

interface specification, 14 

requirements specification, 12 

organization, 13 

verification, 14 

driver interface, 39 

duty cycle, 62 

elongation factor, 24 

events, 19 

explicit banking, 133 

Flash, 106 

assumptions, 106 

code, 107 

variables, 106 

flowchart, 13 

Flowcharts, 43 

enable/disable native injectors, 51 

general program structure, 45 

initialization program segment, 46 

interrupt service request handler, 51 

mode update and data acquisition 

main-loop, 48 

PC programming segment, 56 

programming program segment, 56 

TIMER 1 Overflow, 52 

flowcharts, 143 

frequency of oscillation, 62 

fuel injection, 2 

fuel map, 24 

future work, 144 

general purpose registers, 60 

GOTO, 134 

hardware design, 34 

146 



INDEX 

Hoffman and Strooper Method, 8 

Module Guide, 9 

Module Interface Specification, 10 

Module Internal Design, 10 

Requirements Specification, 9 

lEE Guideline, 6 

Feasibility Study, 7 

Functional Specification, 7 

Software System Specification, 7 

Test Documents, 8 

User Requirements Specification, 7 

implementation, 60 

information hiding, 14 

Initialization, 68 

assumptions, 68 

code, 71 

variables, 68 

injection window, 63 

inspection, 133 

interrupt branch, 43 

invariants, 18 

ISR, 78 

assumptions, 78 

code, 80 

variables, 78 

label, 45 

Main Loop, 89 

assumptions, 89 

code, 90 

variables, 89 

mapping, 60 

monitored quantities, 16 

MPLABIDE,115 

multipliers, 25 

native diode bank, 39 

native injector resistor bank, 38 

native injector transistor bank, 39 

natural gas, 4 

OBC simulator, 113 

oscillator, 61 

oscilloscope, 114 

petroleum, 4 

PIC 18F452 micro-controller, 60 

PIC configuration, 61 

configuration bits, 61 

timers, 62 

TIMER 1, 62, 63 

TIMER 2, 62, 64 

PIC support, 39 

PICSTART Plus, 115 

pin assignments, 35 

pin diagram, 36 

post-scaling, 64 

pre-scaling, 64 

program segment, 45 

Programming Loop, 98 

assumptions, 98 

code, 99 

variables, 98 

propane, 4 

prototype, 39 

race condition, 136 

147 



148 

recoverable, 56 

Requirements 

communication, 32 

display, 30 

driver interface, 27 

Fuel Map, 31 

injector grounding, 22 

logging, 30 

mode switching, 21 

numerical representation, 26 

OBC diagnostics, 28 

operating environment, 20 

platform, 32 

Safety, 31 

safety, 19 

serial connection, 27 

timing, 20, 32 

requirements, 15 

reuse, 144 

sequential flow, 44 

serial level converter, 39 

Serial Port, 100 

assumptions, 100 

code, 101 

variables, 101 

Software Cost Reduction, 11 

Four Variable Model, 12 

IN, 12 

NAT, 12 

OUT, 12 

REQ, 12 

Requirements, 11 

tabular notation, 11 

special function registers, 60 

state charts, 13 

state space variables, 65 

state variables, 17 

success, 56 

Testing 

field testing, 127 

laboratory testing, 112 

laboratory testing tools, 112 

thresholds, 25 

trouble, 22 

unrecoverable, 57 

Verification, 135 

safety requirements, 135 

timing requirements, 140 

watchdog timer, 61 

INDEX 



Bibliography 

[1] Alan C. Shaw, Real-Time Systems and Software. John Wiley and Sons, Inc., 

2001. 

[2] Brett Duane, Migrating Designs from PIC16C74A/74B to PIC18C442. Mi­

crochip Technology Inc., 1999. Preliminary. 

[3] Constance L. Heitmeyer, "Software cost reduction," Encyclopedia of Software 

Engineering, Jan. 2002. 

[4] Daniel Hoffman and Paul Strooper, Software Design, Automated Testing, and 

Maintenance. International Thomson Computer Press, 1995. 

[5] Frank Vahid and Tony Givargis, Embedded Systems Design, A Unified Hard­

ware/Software Introduction. John Wiley and Sons, Inc., 2002. 

[6] James E. Duffy, Modern Automotive Technology. Goodheart-Willcox, 1994. 

[7] John Becker, "Pic16f87x mini tutorial," Everyday Practical ElectronicsjETI, 

pp. 742-748, Oct. 1999. 

[8] Microchip Technology Inc., P!Cmicro Mid-Range MCU Family Reference Man­

ual, ds33023a ed., 1997. 

[9] Microchip Technology Inc., PIC16F87X Data Sheet, 28/40-Pin 8-Bit CMOS 

FLASH Microcontrollers, ds30292c ed., 2001. 

[10] Microchip Technology Inc., PIC18FXX2 Data Sheet, High Performance En­

hanced FLASH Microcontrollers with 10-Bit A/D, ds39564b ed., 2002. 

149 



150 BIBLIOGRAPHY 

[11] The Institution of Electrical Engineers, "Guidelines for the documentation of 

computer software for real time and interactive systems," tech. rep., The Insti­

tution of Electrical Engineers, 1990. 

30:) 24 




