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Abstract 

Queueing network models have been widely adopted in the field of complex systems 

involving service. In this thesis, we study a queueing network model which consists 

of servers and classes wit h incoming customers. Customers are served by servers at 

classes, where a class of a customer is used to indicate the stage of processing. All 

the servers are flexible to switch their service between classes. Our objective is to 

choose an efficient assignment of servers to classes that maximizes the capacity of t he 

given queueing network. By int roducing limited flexibility, we restrict the maximum 

number of servers which can simultaneously work at a particular class and present 

a problem called the Total Discrete Capacity Constrained Problem (TDCCP ). We 

also extend TDCCP to TDCCP with costs, where a cost is incurred when a server is 

working at a class. 

We prove that both TDCCP and TDCCP with costs are NP-complete problems. 

However, for a special case where all servers are ident ical, we show that TDCCP and 

TDCCP with costs can be solved in polynomial time. Then we present approxima­

t ion algorithms for another special case where all classes are identical. We also give 

approximation algori thms for solving the general case of TDCCP and TDCCP with 

costs. 

Finally, we implement the approximation algorithms for solving TDCCP and TD­

CCP with costs. Numerical results on several experiments are reported. We compare 

and analyze the performance of the different algorithms. Several suggestions will be 

also given for choosing our algorithms and improving the results. 
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Chapter 1 

Introduction 

1.1 Motivation 

Queueing network models have many applications in the areas such as manufacturing, 

business, computer networks, and etc. First of all , take the example of a TV set 

factory. Various kinds of TV parts made in different workshops need to be assembled 

by workers; hence, the factory may set up a workstation for assembling. TV parts 

produced by other workshops may be sent to the assembling workstation with different 

arrival speeds. Workers in the workstation can work only on one assembly task at any 

time. When an assembly task is finished at the workstation, the assembled parts will 

be either sent to another workstation or sent out upon the completion of a whole TV 

set. There might exist a limit on the number of workers who can work at the same 

workstation due to specific regulations of the factory. Workers with different working 

experience may have different speeds of assembling. Therefore, if the manager of 

the factory wants to improve the daily production of TV sets, what strategy can he 

employ to make a more efficient assignment of workers? 

Another example can be the Canadian immigration offices. Nowadays, the immi­

gration department of Canada receives a flood of immigration applications; however, 

there is a limited number of immigrat ion officers. After the applications are received, 

they are distributed to different case processing offices. If one case processing office 

finishes reviewing an application, the application is sent to another case processing 

office or is returned to applicants, if all the reviewing processes have been completed. 

1 



2 1. Introduction 

EYery immigration officer can only process one application at a time. Officers can 

cooperate on the same application. But the number of officers working on the same 

applicat ion is limited because of the space of each immigration office. Similar to the 

last example, applications arriving in different offices may have different arrival rates 

and different officers may also havE. different case processing speeds due to t heir pro­

fessional experience. Hence, how do we assign the officers to different offices more 

efficiently such that as many applications as possible can be processed everyday? 

Furthermore, the above two examples can be extended to include the costs. In the 

first example, when workers are working in the factory, they are paid hourly. The cost 

of assembling a TV is the salaries paid to workers in the time of their work. The total 

incurred cost of assembling TVs in a day is the salaries paid to all the workers. The 

factory manager also has a budget that gives the maximum daily cost for assembly 

work. To improve the daily production of TVs, how can the manager make a more 

efficient assignment of workers while the daily cost of assembly does not exceed the 

given budget? Similar costs and budget can also be applied in the second example. 

When there is a budget for salaries of the immigration officers, how can we assign the 

officers to speed up processing applications while the given budget is still respected? 

Similar models have arisen in other areas . Squillante, Xia, Yao and Zhang [SXYZOl] 

present examples in the area of parallel computer systems. F. S. Hillier and K. C. 

So [HS96] also propose a production line design problem in the area of production 

scheduling. 

In this thesis, we study queueing network models which consists of servers and 

classes. A class of a customer is used to indicate the stage of processing. Customers 

will obtain service from servers at classes. When a customer has its service completed 

at a class, it can go to another class or leave the network. All the servers are flexible 

in our model, where we say that a server is flexible if it can switch its service between 

classes and the flexibility of a server is the number of classes which it can serve. We 

assume that each server can only work at one class at a time. However , several servers 

are capable of working at the same class. For a particular class, the maximum number 

of servers which can simultaneously work at this class is constrained. Let the service 

rate of a server be the mean number of customers it can serve in a unit of time and 

the customers arrival rate be the mean number of customers arriving at classes from 

outside the network in a unit of time. When the customers arrival rate at a class is 
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greater than the servers service rate at this class, network congestions will happen 

and customers at this class cannot be served in time. What can we do to maximize 

the customers arrival rate without any congestion in the network? Moreover, if the 

costs of servers working at classes and the budget of the maximum allowed total costs 

are defined , we will also consider the case for maximizing the customers arrival rate 

without any congestion and budget violation in the network. In the examples above, 

it is obvious that the workstations and immigration offices correspond to classes, the 

TV parts and applications correspond to customers, workers and immigration officers 

correspond to servers in our queueing network model. 

In fact , most problems of queueing networks do require using servers with limited 

flexibility. Queueing networks with inflexibility (a server is forced to work at one class 

instead of several classes) or full flexib ility (a server can work at any class) arc just 

special cases of queueing networks with limited flexibility. Thus the study of queueing 

networks with limited flexibility will give us a more general way to explore t he nature 

of queueing networks. In this thesis , we will build a mathematical model of queueing 

networks with limited flexibility and go through a thorough analysis of that model. 

1.2 Previous work 

In the area of operations research, earlier work on queueing networks studied work 

(resource) allocation problems and server (machine) allocation problems. Especially 

the work allocation problem has been studied extensively, e.g. knapsack problems 

and scheduling problems. However , the problem discussed in this thesis belongs to 

the server allocation problem. 

F . S. Hillier and K. C. So [HS96] presented a production line model with a group 

of servers and a fixed amount of work to be partitioned among working stations. The 

objective in this paper is to maximize the throughput (production rate) of the given 

production line. They give numerical results for the case of a single server per station 

and the case of multiple servers per station. Several important observations are 

given based on their computational results. Their model is asking for a simultaneous 

assignment of servers and work to stations in the production line. Moreover , once 

the work is finished at a station, it cannot be sent to any other stations. This model 

is different from ours, since our model has interconnected stations (classes). But in 
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their work, they deal with flexibility, that is, multiple servers can work at a st ation. 

M. S. Squillante , C. H. Xia, D. D. Yao and L. Zhang [SXYZOl] later proposed 

a parallel-server t:>yt>tem model consisting of servers and job classes . Each job class 

has a queue for storing jobs from outside. When the servers are busy, the jobs will 

stay in the queue and wait for a server 's execution. A threshold is assigned in each 

queue, and the threshold of a queue is the maximum number of jobs which can wait 

in this queue without processing by servers. When the number of jobs at a class is 

above the threshold of the queue, this queue is eligible to be processed by servers. 

Thus once a server is available for selecting the next job to process, it checks all the 

threshold values of queues and identifies qualified queues whose numbers of jobs are 

greater than their thresholds. A cost will be incurred when a job is waiting in the 

queue of a class. This paper develops threshold-based policies for allocating servers 

to those parallel queues such that the total incurred cost of this system is minimized. 

S. Andrad6ttir , H. Ayhan and D. G. Down [AADOl] studied a dynamic server as­

signment to classes in order to obtain optimal (or near-optimal) throughput of queue­

ing networks. Their model of queueing networks has common components (servers, 

classes and jobs) as the model of M. S. Squillante, C. H. Xia, D. D. Yao and L. 

Zhang [SXYZOl]. However , the classes in this model are assumed to be intercon­

nected , where jobs can move from one class to another class upon the completion of 

the service. Also, servers in this model can travel between stations in a negligible 

amount of time and more than one servers can work at a class . The result of this 

paper shows that keeping all servers busy is very important to the maximization of 

the throughput . 

Iu 2003 , S. Audrad6ttir , H. Ayha11 and D. G. Down [AAD03] showed a tight upper 

bound of the maximal capacity of queueing network models with flexible servers and 

constructed generalized round-robin policies for achieving a capacity arbitrarily close 

to the maximal capacity of a queueing network. 

W. J. Hopp and M. P. van Oyen [Hv004] use the term cross-training instead of 

flexibility. The definitions of workers and workforce are also used instead of customers 

and servers. They refer to the overall framework as Agile Workforce Evaluation. In 

this framework, they outline approaches for accessing and classifying manufacturing 

and service operations. An extensive survey of the literature for workers ' coordination 

and workforce's cross-training is also given. 
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J. G. Dai and \tV. Lin [DL05] proposed a family of policies called maximum pressure 

service policies for dynamically allocating service capacities in a stochastic network. 

Under some assumptions, they prove that both policies with flexible processors and 

policies with inflexible processors are throughput optimal. This paper also shows that 

those policies can be used in the queueing networks with interconnected stations. 

To our knowledge, none of the previous work studies limited flexibility in queueing 

networks. This is the first attempt to address this problem. Actually, like the example 

of the TV set factory or Canadian immigration offices mentioned before, studying 

queueing networks with limited flexibility will help us to solve more gc11cral aud 

practical problems in the area of queueing networks. 

1.3 Model description 

We consider a queueing network (henceforth we call it system) with servers and 

classes. A server will work at classes with given service rates. Customers with the 

arrival rates will enter the system from outside and be served at classes. Incoming 

customers will stay in the queues of classes to wait for service. The server assignment 

policy of queueing networks is the assignment of servers to classes. Our goal is to 

find an effi cient server assignment policy such that t he performance of the queueing 

network is maximized. 

Many researchers use the throughput as a performance measure of queueing net­

works , e.g. S. Andrad6ttir, H. Ayhan and D. G. Down [AADOl], J. G. Dai and 'N. 

Lin [0105], J. Ostalaza, J. McClain and J. Thomas [OMT90], L. Tassiulas and P. 

B. Bhattacharya [TBOO] . The throughput of the queueing network is the number of 

customers which can be processed by this system under a specific server assignment 

policy in a unit of time. Therefore, if a queueing network has a larger throughput , 

it has a better performance. The maximal throughput of the queueing network is 

achieved when the number of customers processed by this system in a unit of time is 

maximized. The queueing network is stable if the customers ' arrival rate is less than 

or equal to the maximal throughput of the system, which implies that all customers 

coming in a unit of time are processed by the system. Otherwise we say that this 

queueing network is unstable. Obviously, queue overflows will happen in an unstable 

queueing network with fin ite storage. In this thesis, we define the capacity of the 
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queueing uetwork to be the arrival rate to this system so that the queueing network 

can be stabilized. Clearly, we are interested in computing the maximal capacity of a 

given queueing network. The way to increase the capacity of the queueing network is 

to find the a more efficient server assignment policy that increases the throughput of 

the system. We shall call the problem of maximizing the throughput of the queueing 

network with limited flexibility as the Total Discrete Capacity Constrained Problem 

(TDCCP). Further, if costs are incurred to the assignment of servers to classes and 

the total cost of the queueing network cannot exceed a given maximum budget , we 

extend the Total Discrete Capacity Constrained Problem (TDCCP) to TDCCP with 

costs. For more details of TDCCP and TDCCP with costs, please refer to Chapter 

2. 

\i\Then we are computing the maximal capacity of queueing networks , two im­

portant conditions must be satisfied. First , the queueing network must maintain 

stability; second, the limited flexibility of the queueing network cannot be violated. 

Since the servers can switch their service among classes and several servers may 

work at a class in the same time, we define the total service rate of servers at a given 

class to be the number of customers that can be served at this class by servers in a 

unit of time. Similarly, the total arrival rate of customers at a given class is defined to 

be the number of customers arriving at this class from either outside of the network or 

from inside of the network in a unit of time. To maintain the stability of the queueing 

network , the total service rate of servers at each class must be greater than or equal 

to the total arrival rate of customers at this class. Thus, all customers coming to each 

class in a unit of time will be completely served by servers. 

Another condition is the upper bound of the number of servers at every class. 

In other words , the number of servers assigned to a class cannot exceed the given 

maximum number. 

The above conditions must be satisfied when we maximize the performance of 

queueing networks. More specifically, the objective of our problem is to find a server 

assignment policy without violating limited flexibility of queueing networks so that 

we can achieve the maximal capacity of the queueing network. 
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1.4 Our results 

The most significant contribution of this thesis is the extension of t he queueing net­

work models in [AAD03] to the version with limited flexibility. By showing t hat 

queueing networks have a variety of applications in the areas of manufacturing, gov­

ernment administration, etc. we find t hat it is necessary to introduce flexibility to 

queueing networks. More importantly, the queueing networks with limited flexibility 

reflect more general models to the existing ones. 

Our original queueing network model is a stochastic model. By Theorem 1 in 

[AAD03], we show that the stochastic optimization problem of the queueing network 

model can be converted into a deterministic optimization problem called the Total 

Discrete Capacity Constrained Problem (TDCCP). The solution of the deterministic 

problem TDCCP can be easily mapped to a solution of the original queueing network 

model. This result gives us a strong connection between maximizing capacity in a 

queueing network and the problem TDCCP. In TDCCP, the customers ' arrival rates 

at classes are all given and each server has a fixed service rate at each class. The 

total associated service rate at a class depends on the proportion of time that each 

server is working at this class. To maintain the network stability, the total associated 

service rate at each class must be at least the customers' arrival rate at this class. 

Furthermore, there also exists limited flexibility which is a constraint on the number 

of servers which can work at a class in a unit of t ime. The objective of TDCCP is 

to compute the proportion of time of servers to classes so that the maximal capacity 

(the maximal customers ' arrival rate to the system) is achieved and limited flexibility 

is respected. 

TDCCP will also be extended to TDCCP with costs. In this problem. we define 

the cost per unit of proportion of time when servers are working at classes . The cost 

of a server is the sum of incurred cost of its assignment at all classes. The total cost in 

the system cannot exceed a given budget, which is t he maximum allowed total cost in 

the system. By finding an optimal server assignment policy of the queueing network 

without violating the budget , the maximal capacity of the queueing network will be 

achieved and the throughput will be maximized. We give the detailed definitions of 

TDCCP and TDCCP with costs, as well as their mathematical models in the form 

of optimization problems. These mathematical models will bring us a useful and 
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quantitative way for further analyzing TDCCP and TDCCP with costs. 

Our objective is to compute the maximal capacity for a given queueing network 

with limited flcxiuility. However. a result of this thesis is that the general case of 

TDCCP (with costs) is an NP-Complete problem. Since it is unlikely to find exact 

polynomial t ime algorithms for solving it exactly (unless P=NP), we try to develop 

approximation algorithms for it. We evaluate an approximation algorithm by its 

approximation factor. If the approximate solution is at least p (p :::; 1) times the 

optimum solut ion, we say that this approximation algorithm is a p-approximation 

algorithm with approximation factor p. The approximation factor is also called the 

relative performance guarantee. This thesis will be dedicated to designing polynomial 

time approximation algorithms for TDCCP (with or without costs). 

Although the general case of TDCCP is NP-Complete, for the special case where 

service rates are independent of all servers (all servers are identical), we show that 

TDCCP can be solved in polynomial time. Moreover , we present a mathematical 

formula for directly computing the assignment of servers that achieves the maximal 

capacity of a given queueing network in this special case. 

Another important case of the general TDCCP is the special case where ser­

vice rates depend only on the servers (all classes are identical). We prove the NP­

Completeness for this special case. Thus seeking good approximation algorithms for 

this special case will be our key issue. 

To design approximation algorithms for the case of TDCCP where service rates 

depend only on servers, we first study a problem called the maximum concurrent 

multicommodity k-splittable flow problem which is generated from the maximum 

concurrent multicommodity flow problem in [SM90] and the k-splittable flow prob­

lem in [BKS02]. Given a network with capacitated edges, a source node and sink 

nodes, there are commodities that need to be sent from the source node to their sink 

node. The maximum concurrent multicommodity flow problem maximizes the factor 

by which we can multiply all demands and still achieve a feasible multicommodity 

flow without violating the given edge capacities. The k-splittable flow problem is the 

multicommodity flow problem in which the number of different paths for sending each 

commodity is bounded by a given number k. When k = 1, we call it the unsplittable 

flow (instead of 1-splittable flow) problem. We say that k is the splittability bound of 

each commodity. By a simple construction, we show that the case of TDCCP where 
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service rates depend only on the servers can be viewed as an instance of the maximum 

concurrent multicommodity k-splittable flow problem. Thus, by ut ilizing the ideas of 

algori thms in [BKS02], [DGG99] and [KS02], we present an approximation algorithm 

(Algori thm 1) based on solving the maximum concurrent multicommodity k-split table 

flow problem. Algorit hm 1 contains two approximation stages: During the fir st stage, 

instead of solving the maximum concurrent multicommodity k-splittable flow prob­

lem, we transform the TDCCP to the maximum concurrent mult icommodity uniform 

exactly-k-splittable flow problem, in which all commodit ies are sent through exact ly 

k paths and each path carries the same flow amount ; during t he second stage, we 

approximate the maximum concurrent multicommodity uniform exactly-k-splittable 

flow problem by solving the unsplittable flow problem (only one path allowed for 

sending each commodity) where we split each commodity into k sub-commodities 

and send each sub-commodity unsplittably. We prove that the approximation factor 

of t his two-stage algorithm is 1/ 10, which guarantees that we can achieve at least 

1/ 10 times the opt imum capacity for this case. 

For the second stage of Algorithm 1, we find another way to achieve its goaL To 

employ t his different method, we study the scheduling of unrelated machines prob­

lem, which can be stated as follows: We consider a system wi th parallel machines 

and independent jobs. The processing t ime of scheduling a job on a machine is given. 

We define the total processing t ime of a machine to be the sum of processing t imes 

of all jobs which are scheduled on this machine. The makespan of a schedule is the 

maximum total processing time of any machine in the system. The objective of the 

scheduling is to find a schedule that minimizes the makespan. If we t reat the sub­

commodities as the jobs, we prove that the maximum concurrent multicommodity 

uniform exactly-k-splittable flow problem can be transformed to the scheduling of 

unrelated machines problem. Then a different approximation algorithm (Algorithm 

2) based on an algorithm for solving (approximately) the scheduling of unrelated ma­

chines problem in [LST90] is proposed. Algorithm 2 has two stages, where the first 

stage is the same as Algorithm 1 for transforming TDCCP to the maximum con­

current multicommodity uniform exactly-k-splittable flow problem, and the second 

stage solves the maximum concurrent multicommodity uniform exactly-k-splittable 

flow problem by using the algorit hm for the scheduling of unrelated machines prob­

lem. Let the maximal capacity of t he fractional TDCCP be ,\ *, where the fractional 
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TDCCP means that we have the full server flexibility at all classes. We define the 

customers' arrival rate at class /,; to be ak and the server flexibility at class k to beck. 

Since in this case the service rates depend only on servers, we let the service rate of 

server j at all classes be /-l j . We show that Algorithm 2 can produce the throughput 

at least 1/ 2(1 + p) of the optimum, where p := maxj k ak >.·. 
' Ck /-LJ 

We analyze the problem TDCCP with costs in a way similar to the problem 

TDCCP. In this problem, we are given a budget and the cost per unit of assignment 

when servers are working at classes. The total cost of the queueing network is the sum 

of incurred cost of each server 's assignment at all classes. Compared with TDCCP, 

there is another constraint in the system that says the total cost of the queueing 

network cannot exceed the budget we have. Obviously, TDCCP without costs is just 

a special case of TDCCP with costs by setting the budget and given costs in the 

queueing network to be zero . Thus it is easy to draw the conclusion that the general 

case of TDCCP with costs is also an NP-Complete problem. 

'vVe show that the case of the general TDCCP with costs where service rates are 

independent of all servers (all servers are identical) is polynomially solvable. Further­

more, we find a mathematical formula for computing the maximal capacity of the 

queueing network in this special case. 

The case of the general TDCCP with costs where service rates depend only on 

the servers (all classes are identical) is also considered. Since this case contains the 

general TDCCP without costs where service rates depend only on the servers as a 

special case (by setting the budget and all the costs to zero) , we see that it is also 

an NP-Complete problem. Two different approximation algorithms are designed for 

solving this special case, which correspond to Algorithms 1 and 2 above. 

We present the constrained maximum concurrent multicommodity k-splittable 

flow problem, which is the cost version of the maximum concurrent multicommod­

ity k-splittable flow problem. Similar to the maximum concurrent multicommodity 

k-splittable flow problem, we have a network with capacitated edges, a source node 

and sink nodes. There are commodities that need to be sent from the source node to 

their sink node. We define the cost per unit of flow on each edge. When the com­

modities go through an edge, the incurred cost of this edge will be the flow amount 

multiplied by the given cost per unit of flow. Thus the total cost of the network is 

the sum of costs on all edges . A budget of network is also given, which is the maxi-
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mum allowed total cost in the network. Thus the constrained maximum concurrent 

multicommodity k-splittable flow problem is to find paths for sending all commodi­

ties concurrently without any edge capacity violation or splittability bound violation 

so that the maximum possible faction A of all commodity demands is achieved si­

multaneously and the total cost of the network respects the budget constraint. We 

transform the special case of TDCCP where service rates depend only on the servers 

to an instance of the constrained maximum concurrent multicommodity k-splittable 

ftow problem defined above. Therefore, the algorithms in [BKS02] and [Sku02] can 

be used to design an approximation algorithm (Algorithm 3) for solving this case of 

TDCCP with costs. Similar to Algorithm 1, Algorithm 3 is designed as follows : We 

first transform the TDCCP with costs to the constrained maximum concurrent multi­

commodity uniform k-splittable flow problem where all commodities are sent through 

exactly k paths with the same flow amount on each path; then we split each com­

modity into k sub-commodities and find the unsplittable flow for each sub-commodity 

without violating the given cost budget in the network. The approximation factor of 

Algorithm 3 is 1/ 12, which guarantees that at least 1/ 12 times the maximal capacity 

will be achieved for TDCCP with costs. 

We also show that the second stage in Algorithm 3 can be viewed as the schedul­

ing of unrelated machines problem with costs , which is a more general scheduling 

model compared with the model in [LST90]. In this problem, we are also given the 

cost per unit of assignment of servers to jobs and a budget of the maximum allowed 

total cost in the system. The total cost in this system is the sum of all the costs 

incurred in the servers' assignments. Again, the objective of the problem is to min­

imize the makespan while the total cost respects the given budget. We demonstrate 

a transformation from this case of TDCCP with costs where service rates depend 

only on the servers to the scheduling of unrelated machines problem with costs, and 

design an approximation algorithm (Algorithm 4) for solving TDCCP with costs. Al­

gorithm 4 also has two stages: The first stage is the same as Stage 1 in Algorithm 

3, where we solve the constrained maximum concurrent multicommodity uniform k­

splittable flow problem; in the second stage, we transform the constrained maximum 

concurrent multicommodity uniform k-splittable flow problem to the scheduling of 

unrelated machines problem with costs and find its integer solution approximately. 

Let the maximal capacity of the fractional TDCCP be>-* , the customers' arrival rate 
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at class k be ak , the server flexibility at class k be ck and t he service rate of server 

j at all classes be /-L j . Similar to Algorithm 2, we show that Algorithm 4 will also 

produce throughput of at least 1/ 2(1 + p) of the optimum, where p := maxj k a,,.>,· . 
' Ck /Jo j 

We also design approximation algorithms for solving the general case of TDCCP 

(with or without costs). For the general TDCCP without costs , the algorithm in­

cludes Algori thm 1 or Algorithm 2 as a subrout ine. For the general TDCCP with 

costs, the algorithm applies Algorithm 3 or Algori thm 4 as a subroutine. Thus, the 

theoretical approximat ion factor of the general approximation algorithm varies with 

the subrout ines we use. 

To test the efficiency of our algorithms, we implement in MATLAB the 4 algo­

rithms for solving the special case of TDCCP (with costs) where service rates depend 

only on the servers. Further, algori thms for solving the general cases of TDCCP 

(with costs) are also implemented. T he numerical results of several experiments 

demonstrate that in most cases, our algorithms can achieve very good approximate 

solutions compared with the optimum. However, in some general cases of TDCCP 

(with costs) , our algorithms might produce bad results. 

Finally, we mention that the algorithms in our thesis can be applied to solve 

other models in [AAD03], [AAD01], [HS96] and [DL05]. The model in [AAD03] and 

[AADOl ] is actually the queueing network model with full flexibility, where t here is 

110 limit 011 the number of servers at any class . For the model in [HS96], the fixed 

amount of work can be treated as the work amount in one period of t ime in their 

production line system. In the case that we have a work allocation to classes, their 

problem of maximi;;ing t hroughput is exactly the same as TDCCP wit h full flexibility. 

The models of stochastic processing networks in [DL05] have two different versions 

which are the preemptive server processing and the non-preemptive server processing. 

Their model of non-preemptive server processing is similar to our queueing network 

model. In this case, our algorithms can also be applied . 

1.5 Thesis structure 

This thesis is organized as follows. 

Chapter 2 presents the detailed definitions and mathematical models for the Total 

Discrete Capacity Constrained Problem. 
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Chapter 3 presents several important network flow and scheduling problems which 

are related to this thesis. 

Chapter 4 discusses the T DCCP without costs. We consider two special cases: 

T he first one is the case when all servers are ident ical and the second one is the case 

when all classes are ident ical. We show that the first case can be solved in polynomial 

time and present two approximation algorithms for solving the second case. We also 

present the approximation algorithms for solving the general T DCCP without costs. 

Finally, we prove the NP-Completeness of T DCCP without costs. 

Chapter 5 discusses the TDCCP with costs. We show that T DCCP with costs 

can be solved in polynomial t ime when all servers are ident ical. Two approximation 

algorithms are designed for solving TDCCP with costs when all classes are identical. 

We also present the approximation algori thms for solving the general TDCCP with 

costs. 

Chapter 6 reports the testing resul ts . We have tested 40 examples for each algo­

rithm in this thesis. The detailed computational results are given. We discuss and 

analyze the testing results . In the end of this thesis, we give the summary of our 

experiments . 



Chapter 2 

Total Discrete Capacity 

Constrained Problem 

In this chapter we present t he Total Discrete Capacity Constrained Problem (TD­

CCP ) for maximizing the capacity of the queueing network. Our queueing network 

model is derived from the model of S. Andradottir , H. Ayhan and D. G. Down 

[AAD03]. Thus, we will first study t heir model in its ent irety and int roduce t he 

limited flexibility. T heu, detailed defiui t ious and the mat hematical defini t ion of T D­

CCP will be given. Vve further establish the connection between the deterministic 

problem TDCCP and the original stochastic queueing network problem and show 

that the solut ion of TDCCP can be mapped to the solut ion of the queueing network 

model. Finally, we extend T DCCP to TDCCP with costs and give its mathematical 

definit ion. 

2.1 Overview of the network 

In our queueing network , the basic nodes are classes where servers provide service 

to customers. Servers can either work in parallel or work cooperatively at a class . 

Since the customers may be transferred from one class to another or be sent out upon 

completion of service, there are connections among classes, which denote the proba­

bilities of switching. Originally, all customers come from outside. For convenience, 

we can set up a source node for sending new customers and a sink node for receiving 

14 
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all customers that have been exited the network. 

2.2 N etwork topology 

Suppose there are J( classes in the network. The classes in the queueing network 

indicate the stages of customers' processing status. Customers are served by servers 

in parallel. We do not allow that servers can pool their efforts on one customer when 

they are working together at a particular class. Each class has a buffer of infinite size. 

Thus if all servers are currently busy, new customers that enter a class must stay in 

the buffer and wait for service. 

At any class k, customers enter k either from outside of the network or from some 

other class ·i. Let the probability that an arrival from outside of the network is routed 

to class k be Po ,k. We assume that each customer must be served before leaving the 

network , and this is equivalent to '2:~~ 1 Po ,k = 1. We assume that the arrival process 

of customers from outside of the network has independent and identically distributed 

(i.i.d) interarrival times {~(n)} , where ~(n) is the interarrival time of the (n - 1)th 

and nth customer arriving from outside of the network. By this assumption we know 

that the random variables {~(n)} are all mutually independent and the probability 

distributions of {~(n)} are identical. When customers complete service at class ·i , the 

probability of customers entering class k is Pi,k· Thus the customers exiting class i 

will have probability 1 - '2:~~1 Pi,k of leaving the network. We also assume that all 

the customers will leave the network eventually. Furthermore . by defining a matrix 

P to have (i, k) entry Pi,k fori , k = 1, ... , J( and I to be the J( x J( identity matrix , 

if (I- P') is invertible (non-singular) , then all the customers will leave the network 

eventually. 

Since the inter arrival times { ~ ( n)} have the same probability distribution, we will 

have the same expectation of each variable in { ~( n)}. This can be written as follows, 

E(~(1)) = E(~(2)) = E(~(3)) = ... = E(~(n)). 

Note that the expectation of the customers' interarrival time E(~(n)) is the mean 

interarrival time of two successively incoming customers. Thus we define the associ­

ated arrival rate of customers from outside to be A, where A. = 1/ E[~(1)]. Let the 

total arrival rate to class k be Ak· We know that the arrivals of customers at class 
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k are from either outside of the network or other classes. Given any class i, when 

customers at class i finish their service, they are going to enter class k with probabil­

ity Pi ,k· Therefore, the arrivals from class i to k have the rate Pi,kAi· Similarly, the 

rate of arrivals from outside of the network to class k is defined to be Po ,k>.. Suppose 

the network is stable with a given arrival rate -A . The total arrival rates at class k is 

Ak = Po ,kA + I:{:1 Pi,k Ai· Given Po,k and Pi,k for any k and i , we can solve those J( 

equations and get the unique solution Ak · Thus , the customers ' arrival rate at each 

class can be computed. 

For technical reasons, we assume that the interarrival times of customers are un­

bounded and spread out. This technical assumption is needed for describing the 

system as a Markov process with a reachable origin. The Markov process is a sto­

chastic process where the future of the process depends only upon the present state 

of it and this implies that the present state is a direct result of its history. For more 

details, see Appendix A in [AAD03]. 

2.3 Service mechanism 

In the queueing network , we also have M servers which provide service to customers 

at classes. All servers use the First Come, First Served order (FCFS). When server 

j finishes its service at class ·i and switches to class k for the nth time, it incurs a 

switching time (f,k(n) (possibly zero). We assume that the switching times {Cf,k(n )} 
are i.i .d. for every j = 1, ... , AI/ , k = 1, ... , K . Also, we assume that the server 

switch time exists only between two different classes, which means that { (fi ( n)} is 

identically zero for all i and j. Several servers may be simultaneously working at a 

class. vVe define T/j,k ( n) to be the service time of the nth customer served by server j 

at class k. Furthermore, if we assume that the service times {TJj,k(n )} are i.i .d. , then 

{TJj,k(n)} have the same probability distribution, therefore E(TJj ,k(1)) = E(TJj,k(2)) = 
... = E( T/j ,k ( n)). Thus, the associated service rate of server j working at class k is 

defined to be /-lj ,k = 1/ E[TJj,k(1)]. If server j cannot work at class k, we set J.l j,k = 0. 

If server j spends any time at class k, we say that server j is assigned to class 

k. We also define 6j,k to be the long run average proportion of t ime that server j is 

working at class k in a unit of time. We say that 6j,k is the server assignment policy 

for the queueing network. 
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We know that there are .M servers in the queueing network. The difference between 

the model in this thesis and the model in [AAD03] is that we have limited flexibility 

described by ck. where we define ck :::; I'vf to be the maximum number of servers that 

can be assigned to class k in a unit of time. 

T he following figure shows an example of our model with two servers and three 

classes. 

Exit of network 

Po, I 

Incoming customers 
PoJ 

Figure 2.1: A queueing network model with 2 servers and 3 classes 

2.4 Total Discrete Capacity Constrained Problem 

To maximize throughput of the original queueing network, we introduce a problem 

called the Total Discrete Capacity Constrained Problem (TDCCP) . The objective 

of TDCCP is to find a server policy to achieve the maximal capacity of the given 
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queueing network. Given the probabilities of customer arrivals (from either outside 

or inside network) , we have the following K equations, 

/{ 

.>..k = Po,k.>.. + L Pi ,k.>..i, k = 1, ... , K. 
i=l 

We ass ume that the network is stable with a given arrival rate .>... Then, solving these 

K equations will give us a unique solution of each .>..k for k = 1, .. . , K. Let .>..k = .>.. · ak 

be the solution, where ak is the solution of these equations with .>.. = 1. By this step, 

the customer arrival rate at class k can be expressed in terms of the arrival rate .>.. 

and the constant ak. Then, the input of TDCCP are the service rates f.-t] ,k, flexibility 

ck and ak while the output is the server assignment 6j,k and maximal capacity .>.. *. We 

formulate TDCCP as the following optimization problem with variables bj,k and .>..: 

max .>.. (MP) 
M 

s. t . L fL-J, k8j,k 2: /\ak , k = 1, ... , f{ (1) 
j = l 

J( 

'L 6j,k ::; 1, j = 1, ... , J\1 (2) 
k= l 

/If 

'L x{8j,k > o}::; ck, k = 1, .. . , K (3) 
j = l 

81,k 2: 0, k = 1, ... , K , j = 1, ... , J\1. (4) 

Constraint ( 1) says the sum of the associated service rate at class k is greater than or 

equal to the total customer arrival rate at class k, which will guarantee the stability of 

the original queueing network. Constraint (2) guarantees that the sum of proportions 

of time of server j working at all classes cannot exceed 1 so that no server in the 

system is overloaded. Constraint (3) is t he flexibility limit where we do not allow 

the number of servers working at class k to be more than ck. Constraint ( 4) says 

that a negative proportion 8j,k is not permitted in the network. Given a class k, x { ·} 

is the indicator function that indicates the membership of bj,k in the set { bj,k > 0}. 

Let the optimal solution of (MP) be .A* and {6j,k}. We will see that {bj,k } is the 
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set of proport ional assignments of servers to classes required to achieve the maximal 

capacity A*. Note that the solution { 6j,k} may not be unique. 

Let Q k ( t) be the number of customers at class k present at time t and Q ( t) be a 

vector with kth entry Qk(t). The following theorem gives us the connection between 

maximizing capacity in the queueing network and the problem (MP ) stated above. 

Theorem 2.1. (i) Any capacity less than A* may be achieved. Man: specifically , for· 

an arrival process with rate A < A*, ther·e exists a dynamic server assignment policy 

such that the distribution of the queue length process { Q ( t)} converges to a steady­

state distribution r.p as t -+ oo. 

(ii) A capacity larger than A* cannot be achieved. More specifically , f or an arrival 

process with rate A > A*, as t -+ oo, 

P(IQ(t) l -+ oo) = 1. 

Theorem 2.1 is a trivial extension of Theorem 1 in [AAD03]. It says that the 

difficult stochastic queueing network problem can be converted into the deterministic 

optimization problem (MP ). By solving the deterministic problem (MP ), we can map 

its solution back to the solution of the original stochastic queueing network problem. 

This can be done by the generalized round-robin policies in [AAD03] . Suppose the 

optimal solution of (MP) is A* and 6J,k· Taking A* and 6j,k as input , the generalized 

round-robin policies will output the servers ' service policies in terms of service time 

of servers at each class. We know that the optimal server policy c5j,k satisfies the 

flexibility constraint in (MP). According to the fact that the gcuerali:~;ed round-robin 

policies will not assign server j to class k if c5j,k = 0 (e.g. see the server assignment 

algorithm in [AAD03]) , it is easy to see that the flexibility of the original queueing 

network is still respected. In the remainder of this thesis , we will focus on solving the 

problem (MP). For the detailed proof of Theorem 2.1 and a discussion of generalized 

round-robin policies, refer to [AAD03]. 

There are two important special cases of (MP). We formulate the two cases as 
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mathematical programs (MP1) and (MP2) . 

max A 
j\ f 

s.t. L /-Lk6j,k 2:: A ak, k = 1, ... , f{ 
j = 1 

I< 

L 6j ,k :::; 1, j = 1, ... , M 
k = l 

M 

L x{ 6j ,k > O} :::; ck, k = 1, ... , K 
j = l 

6j ,k 2:: 0, k = 1, ... , K ,j = L ... , M. 

(111 P1) 

(1) 

(2) 

(3) 

(4) 

In this case, the service rates are independent of the server (all servers are identical), 

i. e., /-Lj ,k = I-Lk for all j in (MP 1). The constraints are the same as the constraints 

in (1tiP) except that we have fLk instead of fL j ,k in ( 1). In Chapter 4, we will show 

that the maximal capacity of the queueing network in this case can be computed in 

polynomial time. 

max A 
M 

s.t. L ~Lj6j,k 2:: Aa k, k = 1, ... , f{ 
j= l 

}( 

L6j ,k:::; 1, j = 1, ... ,NI 
k = l 

M 

L x{ 6j,k > 0} :::; c k , k = 1, ... , K 
.i = l 

6j ,k 2:: 0, k = 1, ... , K ,j = 1, ... , M. 

(AI P2) 

(1) 

(2) 

(3) 

(4) 

In this case, the service rate depends only on the server (all classes are identical) , i.e. , 

/-Lj ,k = ~tj for all k. Constraints (1), (2), (3) and ( 4) are the same as the correspond­

ing constraints in (MP). In Chapter 4, we will prove that this case of (TDCCP) is 
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NP-Complete. Two approximation algori thms will be designed for solving (MP2) ap­

proximately. Moreover , this case is important because the approximation algorithm 

for solving (MP) is actually based on the algorithms for solving (MP2). 

2.5 Total Discrete Capacity Constrained Problem 

with Costs 

In the original queueing network model, if we are given a cost per unit of server 

assignment and a budget of the queueing network, we call it the queueing network 

model with costs . The objective of this problem is to find a server assignment policy 

so that the maximal throughput of the queueing network is achieved and the total 

cost of the system respects the given budget . We define the cost per unit of server 

assignment to be r.i ,k when server j is working at class k and 5j ,k to be the proport ion 

of t ime that server j is working at class k. Then it is easy to see that the incurred 

cost of server j at class k is r j ,k6 j ,k and the total cost of the system can be written as 

L;:1 L~<=l r j ,k5 j ,k· We are also given a nonnegative budget C. Thus to respect the 

given budget C, we have the following additional constraint: 

M I< 

L L rj,k6j,k :S C. 
j= l k=l 

To decide the server assignment 5j ,k for maximizing the capacity >. , we are given the 

service rate Jl'],k when server j is working at class k, the number ak which is used to 

derive the customers' arrival rate at class k, and servers ' flexibility ck at class k. By 

adding the above cost constraint , we formulate TDCCP with costs as follows, 
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max A (MPC) 
M 

s.t. ~ /-Lj ,k5j,k 2: Aak , k = 1, ... , K (1) 
j = l 

I< 

~ clj ,k:::; 1, j = 1, ... , ]1,1 (2) 
k= l 
X III 

~ ~ 1'j.k5j,k :::; c (3) 
k= l j=l 

M 

~x{61, k > o} :::; ck. k = 1, ... , K (4) 
j=1 

5.i ,k 2: 0, k = 1, ... , K. j = 1, ... , !11!. (5) 

In (MPC) , constraints (1) , (2), (4) and (5) are exactly the same as the corresponding 

constraints in (MP). Constraint (3) says the total cost cannot exceed the budget C. 

Let the optimal solution of (MPC) be ).* and {5j,k}. Since the server assignment 

{ 6},k} is the optimal assignments of servers to classes, it is required to achieve the 

maximal capacity A*. However , the solution { Jj,d is not necessarily unique. 

Theorem 2.1 can also be applied to establish the connection between maximizing 

the throughput in the queueing network with costs and the solution to (MPC). Given 

the maximal capacity A* and server assignments { 6j,k} respecting the given budget 

C, the generalized round-robin policies in [AAD03] can be employed to get arbitrarily 

close to the server assignments { 6j,k}. Note that in their construction, the assignments 

of servers to classes do not increase, thus the budget in the queueing network will not 

be violated. Then by Theorem 2.1 , we know that the stochastic queueing network 

problem with costs can be converted into the deterministic optimization problem 

of TDCCP with costs. Also, the solution of TDCCP with costs can be directly 

mapped back to a solution of the original queueing network problem with costs using 

generalized round-robin policies. In the remainder of this thesis, we will also focus 

on solving the problem TDCCP with costs. 

We consider the mathematical model (MP) for TDCCP and (MPC) for TDCCP 
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with costs. It is easy to see that (MP) is just a special case of (MPC) by setting 

·r7,k = 0. Then constraint (3) becomes trivial for any nonnegative budget C. 

The difficulty in solving the problem (MP) and (:'v1PC) comes from the inte­

gral constraints. In these constraints, although the server assignments bj,k can be 

fractional , the corresponding counted flexibility will be either 0 or 1 (depending on 

whether bj,k is 0 or not). Without the integral constraint (4) , (MP) and (MPC) can 

be easily seen to be linear programming problems. However , in this thesis , we will 

show that even a special case of (MP) is NP-Complete, hence the problem TDCCP is 

NP-Complete. Since TDCCP is a special case of TDCCP with costs, we can conclude 

that TDCCP with costs is also an NP-Complete problem. In Chapter 4, we show 

two approximation algorithms for solving (MP), and in Chapter 5, we propose two 

different approximation algorithms for solving (MPC). Obviously, any algorithm for 

solving (MPC) can also be applied to solve the problem (MP), since (MP) is a special 

case of (MPC). 

Similar to TDCCP, we will study two important special cases of TDCCP with 

costs, which are formulated as follows: 

max ,\ 

M 

s .t. L J-Lkbj,k 2: .\ak, k = 1, ... , J( 

j=l 

f( 

I: 8j ,k ~ 1,j = 1, ... , Jvi 
k= l 

I< M 

I: I: rj ,k8j ,k ~ c 
k=l j = l 

M 

l:x{bj,k > o} ~ ck , k = 1, ... , I< 
j = l 

6j,k 2: 0, k = 1, .. . , K,j = 1, ... , M. 

(MP C1) 

(1) 

(2) 

(3) 

(4) 

(5) 

In this case, the service rates are independent of the server (all servers are identical) , 

i.e., /-Lj ,k = I-Lk for all j in (MPC1). Except for /-Lj ,k = I-Lk in constraint (1) , all 

other constraints in (MPC1) are actually the same as the constraints in (MPC). In 
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Chapter 5, we will show that the maximal capacity A* in (MPC1) can be computed 

in polynomial time. 

max A 
M 

s.t. L P,j6j,k 2: Aak , k = 1, ... , K 
j = l 

K 

2.::: 6j ,k :::; 1, j = 1, ... , 111 
k= l 

K M 

2.:::2.::: rj,k6j ,k s: c 
k=l j = l 

M 

I.: x{6j,k > o} ::; ck , k = l. ... . K 
j=l 

6j,k 2: 0, k = 1, ... , K , j = 1, ... , 111. 

(MP C2) 

(1) 

(2) 

(3) 

(4) 

(5) 

In (MPC2), the service rate depends only on the server (all classes are identical), i.e. , 

/J j,k = Pi for all /,; . The constraints in (MPC2) are the same as the corresponding 

constraints in (MPC). 'vVe will see that the problem (MPC2) is an NP-Complete 

problem since it contains (MP2) as a special case (by setting rj ,k = 0 for all j, k 

and C = 0). In Chapter 5, we will design two approximation algorithms for solving 

(MPC2) . The approximation algorithm for solving the general (MPC) will use one 

of the approximation algorithms for solving (MPC2). 



Chapter 3 

Network Flow and Scheduling 

Problems 

In previous chapters, we have shown that the original queueing network can be con­

verted to the deterministic problems of TDCCP and TDCCP with costs. The algo­

rithms for solving TDCCP and TDCCP with costs are based on the transformations 

of TDCCP and TDCCP with costs to network flow and scheduling problems. Before 

showing the detailed algori thms , we will study those important network fiovv and 

scheduling problems. 

3. 1 Multicommodity Flow Problem 

In the multicommodity flow problem, we are given a directed or undirected graph 

G = (V, E) where V is a set of nodes and E is a set of edges. Each edge e E E has 

capacity U e . There are n different commodit ies which co-exist in G and need to be 

sent from source nodes to terminal nodes. We define the source node to be si and 

the terminal node to be ti for sending and receiving the commodity 'i, 'i = 1, ... , n, 

respectively. Then, a multicommodity flow on G can be represented as a set of node 

pairs (s1 , t 1 ) , (s2 , t 2), ... , (sn , tn), where the pair (si, ti) denotes the commodity 'i from 

the source node si to the terminal node ti · Let f e denote the flow on the edge e, e E E. 

There are mainly two optimization problems on multicommodity flow relevant to our 

work. One is the maximum mult icommodity flow problem and the other one is the 

25 
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maximum concurrent multicommodity flow problem, 

First we study the maximum multicommodity flow problem. The objective of the 

maximum multicommodity flow problem is to send n commodities while respecting 

edge capacities so that the sum of all commodity flows is maximized. We define 

P s;,t, to be the set of paths for sending commodity 'i from source si to terminal t i, 

·i. = 1, ... , n. The maximum multicommodity flow problem can be formally written as 

follows , 

n 

max L f (s,t,) 

i = l 

s. t. L JP ::::; 'LLe, 'lie E E 
pEPe 

JP 2: 0, 'lip E P s;,t;' i = 1, ... , n 

where ! (si,t;) denotes the flow amount of commodity i from si to t i, P e denotes the set 

of paths going through the edge c and fv denotes the flow amount iu the path where 

p E P s;,t;. Obviously, 2:~1 ! (s;,t;) is the total multicommodity flows we send. 

Farhad Shahrokhi and D. W. Matula [SM90] proposed the maximum concurrent 

multicmmnoclity flow problem, which is another versiou of the multicommodity flow 

problem. Here, for each commodity i, we are given a demand di at the terminal node 

t i · The objective of the maximum concurrent multicommodity flow problem is to 

maximize the factor by which we can multiply all terminal node demands and still 

achieve a feasible multicommodity flow without violating the given edge capacities. 

More specifically, if we define a variable {3 and set all terminal node demands di ('i = 
1, ... , n) to be {Jdi, the maximum collCU1Te1lt multicomrnodity flow problem rnaximi',';CS 

the number {3 while respecting all edge capacities in G, so that all the demands {Jdi are 

satisfied simultaneously. We consider the fo llowing example of the multicommodity 

flow. 
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ll(> l, ,·ll= 2 ll(,l.t11= 2 

tl dl=l 

It' ~/ 
•'' ·~~ , . 

;:,.::> 

d2=1 

~,J It' 

- ~~ ::-~ 
/ v" 

ll(sJ.vJ1=3 ll(d.JJ )=2 

t3 d3=1 SJ 

Figure 3.1: An example of the multicommodity flow problem with 3 commodities 

In this example, the maximum possible fraction of routing all commodities simul­

taneously is 2 by sending 2 units of commodity 1 following the path ( s1 ---> v 1 ---> t 1 ) , 

1 unit of commodity 2 following the paths (s 2 ---> v1 ---> t2 ) and (s 2 ---> v2 ---> t2 ) and 2 

units of commodity 3 following the path (s3 ---> v3 ---> t3 ). 

Let Pe denotes the set of paths going through the edge e. Given a path p E Ps;,t; , 

/p denotes t he flow amount in the path. V.,Te can formulate the maximum concurrent 

multicommodity flow problem as follows, 

max {3 

s.t. L JP 2:: (Jd10 i = 1, .. . , n 
pEP.,;,t ; 

L /p :SUe, Ve E E 
pEP, 

JP 2:: 0, Vp E Ps;, t;, ·i = 1, ... , n. 

Obviously, the maximummulticommodity flow problem and the maximum concurrent 

multicommodity flow problem are linear programming problems, which can be solved 
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in polynomial t ime. Moreover, our approximation algorithms in Chapter 4 will st art 

by solving the maximum concurrent multicommodity flow problem. 

3.2 Single Source Unsplittable Flow Problem 

In the single source unsplittable flow problem, we are given a graph G = (V, E), where 

\1 is a set of nodes and E is a set of edges with capacities ·ue, c E E. There are several 

commodit ies to be sent from a source node ton terminal nodes. Each terminal node 

ti E V has a demand di , ·i = 1, ... , n . A commodity flow is called an unsplit table flow 

if the commodity is sent to the terminal by following one single path. In the single 

source unsplittable flow problem, we want to route all commodit ies unsplittably. The 

following figure is an example of the single source unsplittable flow problem. 

ll(u l .\ \)= 2 

dl=l 

1/ ..... S; 
,,'' '-;-.,J ,.. 

~__,~ ~,~ 

d2= 1 

~> 1/ ..... 

·~~ ::S:-
/ ~' 

Ll(<oJ.d >= ) 

d3= 1 

Figure 3.2: An example of the single source source unsplittable flow problem 
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In t his example, the unsplittable flows for sending commodit ies follow the bold 

paths (S ----> 'LL1 ----> v1 ----> t 1) , (S ----> tL2 ----> v2 ----> t 2 ) and (S ----> u 3 ----> V3 ----> t3), 
respectively. 

The single source unsplittable flow problem was first studied by J. M. Kleinberg 

[Kle96]. In this paper , several questions were presented. 

• Feasibility: can we find an unsplittable flow which satisfies all the demands and 

capacities for a given graph? 

• Congestion: what is the smallest number a such that if we multiply all the 

capacities by a, there exists an unsplit t able flow which satisfies all the demands? 

• Number of rounds: if we are allowed to partition the set of commodities into 

several subsets (rounds), what is the minimum number of those subsets so that we 

can find a feasible unsplittable flow for each of them? 

• Maximization: can we determine a subset of commodities so that we can route 

each commodity in this subset unsplittably and maximize L dn? 

Unfortunately, all of the above problems are NP-Complete. J. M. Kleinberg 

[Kle96] gives a 16-approximation for the congestion problem. He also shows that 

there is a !In(dmax/dmin )l ·l2ea*l-approximation algorithm for the number of rounds 

problem and a 2efln (dmax/dmin)l - 1-approximation algorithm for the maximization 

problem, where dmax is the maximum demand in the graph, dmin is the minimum de­

mand in the graph and a* is the minimum congestion of any fractional routing from 

source node to terminal nodes (see Lemma 4.1 and Lemma 5.3 in [Kle96] for more 

details) . We will consider the congestion problem in this thesis. The minimum con­

gestion problem for the multicommodity flow is actually equivalent to the maximum 

concurrent multicommodity flow problem. Suppose we have the optimal congestion 

a* for a multicommodity flow network. Instead of multiplying all edge capacities by 

a*, we can divide the flow on each edge and every commodity demand by t he fac­

tor a*, and obtain a feasible multicommodity flow without violating edge capacities. 

Clearly, a* is the smallest congestion, thus (J* : = 1/ a* will be the largest fraction 

by which we can multiply all demands and still obtain a feasible multicommodity 

flow. By the NP-Completeness of the minimum congestion problem for unsplittable 

flows , it is easy to see that the maximum concurrent multicommodity unsplittable 

flow problem is also NP-Complete. Y. Dinitz, N. Garg and M. Goemans [DGG99] 

show a 2-approximation algorithm for the congestion problem, a 5-approximation al-
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gorithm for the number of rounds problem and a 0.226-approximation algorithm for 

the maximization problem, when the maximum commodity demand is less than or 

equal to the minimum edge capacity in the network. We also refer to this condition 

as the balance condit ion . The algorithm for minimizing the congestion in [DGG99] 

will be used in this thesis. 

3.3 Single Source U nsplittable Min-cost Flow Prob­

lem 

The single source unsplittable min-cost flow problem is the cost version of the single 

source uusplitt ablc flow problem. Suppose we have a graph G = (V, E) . Let J(c) 

be the flow amount on edge e, e E E. We assume that there exists a cost function 

c : E __, R+, where R+ is the set of nonnegative reals and the total cost on edge e is 

c(c)f(c) , c E E. All commodities are required to be sent from a single source node 

ton terminal nodes with demand di , i = 1, ... , n. There also exists a budget B, where 

we do not allow the total incurred cost of the network to be more than the budget 

B . This additional constraint can be written as follows: 

L f( e)c(e) :S B . 
eE E 

The objective of t he single source unsplittable min-cost flow problem is asking for 

paths to send all commodities to terminal nodes unsplittably without violating the 

given budget B . 

For the single source unsplittable min-cost flow problem, M. Skutella [Sku02] 

studies the problems of congestion, number of rounds and maximization. For the 

congestion problem, if the balance condition is satisfied, a 3-approximation algorithm 

without violating the given budget was proposed. In the case of arbitrary demands, 

he also gave a (3 + 2.J2)-approximation algorithm while respecting the budget con­

straint. In this thesis, we only consider the problem of minimum congestion for the 

single source unsplittable min-cost flow problem, which is related to the concurrent 

multicommodity flow problem. 
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3.4 k-splittable Flow Problem (with Costs) 

The k-splittable flow problem was first studied by G. Baier , E. Kohler andl\I. Skutella 

in [BKS02]. We consider the graph G = (V, E), with capacity ·ue on each edge 

c E E and n terminal nodes. The k-split tablc flow problem is a multicommodity 

flow problem where the number of paths for sending each commodity from the source 

node to the terminal node is bounded by the number k. More precisely, for arbit rary 

source nodes s E V and terminal nodes t E V , let Ps,t denote the set of paths 

from source nodes to terminal nodes . The k-splittable flow is specified by k paths 

{ P1 , .. . , Pk} <:;;; Ps,t with flow amount f i , i = 1, .. . , k on each path. We do not require 

all paths to be distinct . For a given number k' ~ k , any k-split t ablc flow is also 

a k'-split t able flow. The k-splittable flow is called feasible if the flow through each 

edge respects the edge capacity. Note that when k = 1, this is the unsplittable flow 

(instead of 1-splittablc flow) problem. Thus, we sec that the k-split tablc flow problem 

is the general version of the unsplitt able flow problem. 

We generate the maximum concurrent multicommodity k-splittable flow problem 

by combining the k-splittable flow problem and the maximum concurrent multicom­

modity flow problem. The objective of the maximum concurrent multicommodity 

k-splittable flow problem is to send each commodity within k paths so that we maxi­

mize the factor by which we multiply each commodity demand and still get a feasible 

multicommodity flow instance respecting edge capacities. 

'V.le extend the maximum concurrent multicommodity k-splittable flow problem to 

the constrained maximum concurrent multicommodity k-splittable flow problem by 

introducing costs and a budget in the network. A cost function is given by c : E -t R+. 

Let f (e) be the flow on edge e. Vie define the cost on edge e to be c( e) f (e), e E E. 

We are also given a budget B , which is the maximum allowed cost of the network. 

Similar to the single source unsplittable min-cost flow problem, we have an additional 

cost constraint L eEE f(e)c(e) ::::; B. The objective of this problem asks for a feasible 

maximum concurrent multicommodity k-splittable flow that does not violate the cost 

constraint . 

Algorithms 1, 2, 3 ,4 in Chapters 4 and 5 will approximate the maximum concur­

rent multicommodity k-splittable flow problem by solving the maximum concurrent 

multicommodity uniform exactly-k-splittable flow problem. In the maximum concur-
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rent multicommodity uniform exactly-k-splittable flow problem, we require exactly k 

paths for sending each commodi ty and each path in the network carries the same (uni­

form) flow amount. Thus the objective of this problem is to send each commodity in 

exactly k paths and each path carries the uniform flow amount while respecting edge 

capacities, so as to maximize the factor by which we multiply all demands. G. Baier , 

E. Kohler and M. Skutella [BKS02] proved that the value of a maximum concurrent 

multicommodity uniform exactly-k-splittable flow problem can guarantee 1/2 of the 

optimal value of the corresponding maximum concurrent multicommodity k-splittable 

flow problem. Note that if we split each commodity by k sub-commodities, then send­

ing the original cornmodity in exactly k paths is actually equivalent to routing each 

sub-commodity unsplittably. 

3.5 Scheduling of Unrelated Machines Problem 

We will show a transformation of TDCCP (with costs) to the scheduling of unrelated 

machines problem (with costs) in Chapters 4 and 5. Therefore, in this section, we 

introduce the defini t ion and mathematical program of this problem. 

The scheduling of unrelated machines problem is an integer optimization problem 

which can be stated as follows: Suppose we have m parallel machines and n indepen­

dent jobs. Each job has to be processed by exactly one of m machines. We define 

Ti,j to be the required processing time when job j is scheduled on machine i . If job j 

is scheduled on machine i, variable Yi,j = 1, otherwise Yi, j = 0. The total processing 

t ime of machine i is the sum of the processing times of all jobs which are scheduled 

on machine i, which can be written as 2.:,7=1 Ti,] Yi,j · The makespan of a schedule is 

t he last finishing time of jobs in the given schedule. This problem asks for an optimal 

schedule to minimize the makespan. The following figure shows an example of this 

scheduling problem. 
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machine nodes job nodes 

Figure 3.3: An example of the scheduling of unrelated machines problem 

This is an example with two machines and three jobs. The bold lines in t he figure 

are t he optimal schedule with y1,1 = y2,2 = y2,3 := 1 and the remaining Yi ,j := 0. The 

total processing t ime on machine 1 is T1,1yl,l = 4 and the total processing t ime on 

machine 2 is r 2,2y2,2 + T2 ,3y2,3 = 3. Therefore the optimal makespan of this example 

is 4. 

The mathematical program of the scheduling of unrelated machines problem is 

formulated as follows: 

mm T 
m 

s.t. LYi,j = 1, j = 1, .. . , n 
i= l 

n 

LTi,jY i ,j ~ T , i = 1, ... , m 
j = l 

Y i ,j E {0, 1} , -i = 1, ... , m , j = 1, .. . , n 

(M1 ) 

(1) 

(2) 

(3) 

where Ti,j is the processing time of job j scheduled at machine 'i, T is the makespan 

we want to minimize and Y i,j is the integer variable with value 0 or 1, where Yi ,j = 1 

means that job j is scheduled on machine 'i and Yi,j = 0 means that job j is not 

scheduled on machine i. Constraint (1) says that the job cannot be over assigned. 
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Constraint (2) says that the total processing time of all jobs on any machine cannot 

exceed the makespan. Constraint (3) says that we only permit integer assignments. 

The scheduling of unrelated machines problem is NP-Complete (see [LST90]). 

But if we remove constraint (3) in (M1), the original scheduling problem is reduced 

to a linear programming problem, where the Yi,j can be fractional numbers. It is 

well-known that one of the most natural strategies for solving integer optimization 

problems like (M1) is to drop the integrali ty constraints, get t he solution of the linear 

relaxation problem and round its solution to an integer solution. J. K. Lenstra, 

D. B. Shmoys and E. Tardos [LST90] present a rounding scheme for computing an 

approximate solution of (M1). By a transformation from our problem (MP2) to the 

scheduling problem , their algorithm will be adopted in this thesis for solving the 

problem (MP2). For more details , refer to [LST90]. 

In the scheduling of unrelated machines problems with costs, the cost of job j on 

machine i is defined to be ci,jYi,j. A budget B is also given, which says the total cost 

on all machines cannot be more than B . We can write the additional constraint as 

follows: 
n m 

L LYi,jCi,j ::; B. 
j = l i = l 

The goal of this problem asks for an optimal schedule to minimize the makespan 

while the budget constraint is respected. Thus, the scheduling of unrelated machines 

problem with costs can be formulated as follows , 

mm T 
m 

s.t. LYi,j = 1, j = 1, ... ,n 
i = l 

n 

L Ti ,jYi ,j ::; T, i = 1, ... , m 
j = l 

n m 

LLYi,jCi,j::; B.i = l. ... , m , j = 1, ... ,n 
j = l i = l 

Yi ,j E {0, 1 } , i = 1, .. . , m, j = 1, ... , n 

( 1112) 

(1) 

(2) 

(3) 

(4) 

Note that (M1) is just a special case of (M2) if we set Ci,j := 0, Vi, j and B := 0. 
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Hence it is easy to see that the scheduling of unrelated machines problems with costs 

is also NP-Complete. D . B. Shmoys and E. Tardos [ST93] show an approximation 

algorithm for solving the scheduling of unrela ted machines problem with costs which 

has the same approximation factor as the approximation algorithm of solving the non­

cost scheduling of unrelated machines problem. For more details , refer to [ST93]. In 

Chapter 5 we will show a t ransformation of the problem (MPC2) to the scheduling of 

unrelated machines problem with costs, then the algorithm in [ST93] will be applied 

to solve (MPC2). 

3.6 Minimum Cost Bipartite Matching Problem 

In Algorithm 4 (refer to Chapter 5) , the integer solution for TDCCP with costs is 

obtained by solving a minimum cost bipartite matching problem. In this problem , we 

are given a bipartite graph G = (V1 , V2 , E), where V1 , V2 are two sets of disjoint nodes 

and all edges in E go between V1 and V2 . A matching is a subset of edges NI ~ E 

such that for all nodes v E 1/1 U 112 , a t most one edge in Af is incident on v. We say 

that a node v is matched if an edge in M is incident on v ; otherwise, we say that 

v is unmatched. Let IV11 = m and jV2 j = n. Without loss of generali ty, we assume 

m ~ n. We define Yi ,j = 1 if node j E V2 is matched by edge ( i , j) , i E Vi. We are 

also given a cost of the matching ci ,j , Vi E V1 , j E V2 . The minimum cost bipartite 

matching asks for a matching which matches all the nodes in V2 and minimizes the 

total cost of the matching. This problem can be formulated as follows, 

n~ n 

mm L L ci,jYi,j 
i = l j=l 

n 

s.t. L Yi,j:::; 1, ·i = 1, .. . , m 
j=l 

m 

LYi,j = 1,j = 1, ... ,n 
i = l 

Yi ,j E {0, 1} , ·i = 1, .. . , m , j = 1, ... ,n 

(!viCM) 

(1) 

(2) 

(4) 
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Vlhen m = n, this problem is called the assignment problem, which can be formulated 

as follows , 
n n 

i = l .i = l 

n 

s.t . LYi,j = 1, i = 1, ... , n 
j = l 

n 

L Yi,j = 1' j = 1. ... ' n 
i = I 

Yi ,j E {0, 1} ,i = 1, ... ,n,j = 1, ... ,n 

(AP) 

(1) 

(2) 

(4) 

The assignment problem (AP) can be solved by the Hungarian method with com­

plexity at most O(n4
). For details about the Hungarian method, see [Mur95] and 

[Lov86]. 

The assignment problem is just a special case of the minimum cost bipartite 

matching problem. We give an example of the assignment problem in the following 

figure. 

Figure 3.4: An example of the assignment problem 

This is an example with IV11 = IV21 = 3. The bold lines in the figure denote the 

matching. It is easy to calculate the total cost of this bipartite graph is c1,1yl,l + 
c2,2y2,2 + c3 ,3Y3 ,3 = 3, which is the minimum cost we can achieve. 
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When rn > n, we can add (rn- n) new nodes v' in V2 such that the cardinalities 

of Vi and V2 are same. Then for a new additional node v', we define the cost on all 

edges (v, v'), v E Vi to be zero. Note that by this construction, we do not change 

the essence of the original problem. By solving this assignment problem , we can still 

find the minimum cost matching in G = (V1 , V2 , E). Therefore, any minimum cost 

bipartite matching problem can be converted into an equivalent assignment problem. 

This observation will be applied to design Algorithm 4. Note that the matching 

found in the bipartite graph for the given assignment problem will be called a perfect 

matching since each node in the graph is exactly matched by one node. In Algorithm 

4, we will transform the problem TDCCP with costs to an instance of the scheduling 

of unrelated machines problem. The perfect matching we found in a given bipartite 

graph will give us an integer schedule for the scheduling problem, by which we can 

obtain the original solution of TDCCP with costs. 



Chapter 4 

Total Discrete Capacity 

Constrained Problem without 

Costs 

In this chapter, we discuss the Total Discrete Capacity Constrained Problem (TD­

CCP ) without costs. First of all , we consider a special case of TDCCP where the 

service rates are independent of servers, and we show that the maximal capacity of 

TDCCP in this case can be computed in polynomial t ime. Secondly, we study another 

special case of TDCCP where the service rates are independent of classes, and design 

two approximation algorithms for solving this case. Then, we give an approximation 

algorithm for the general TDCCP. Finally, we prove the NP-Completeness of TDCCP 

by showing a polynomial time reduction to the Partition problem. 

4.1 Overview of solv ing TDCCP 

First we study two special cases of TDCCP. In the first case, the service rates are 

independent of all servers and /.L j,k = J.Lk · We show that this case can be solved 

in polynomial time. In the second case, the service rates depend only on servers 

and l'·j.k = /L j . We design two different approximation algorithms Algorithm 1 and 

Algorithm 2 for the second case. Given an M x 1 vector a and a K x 1 vector {3, 

if the service rates J.L = a · {JT, then we show that this case will fall into the case 

38 
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of J.l j,k = J.l j. Finally, we give the approximation algori thms for solving the general 

TDCCP by applying Algorithm 1 or Algorithm 2. Figure 4.1 ::;haws the framework 

of our algorithms for solving TDCCP. 

polynomially 
solvable 

Algorithm 1 or 2 Fall into Case 2 
Transform 

(approximately) 
to Case 2 

Algorithm I or 2 

Figure 4.1: The Framework of our algorithms for solving TDCCP 

4.2 Solving TDCCP in the case of fL .J, k = f.Lk 

In this case, for any class k, all servers have the same service rate. Thus we say the 

service rates are independent of all servers or all servers are ident ical. 
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In Chapter 2, we introduced the problem ( 1P1) for this case, which is as follows. 

max ,\ (!lfP1) 
M 

s. t . L /-lk6j,k 2: Aak, k = 1, .. . , K (1) 
j = l 

J( 

L 61,k::::; 1, j = 1, ... , M (2) 
k= l 
M 

L x { 61,k > 0} ::::; ck, k = 1, .. . , K (3) 
j = l 

61,k 2: 0, k = 1, ... , K , j = 1: .. . , Jvf. (4) 

Let the optimal solu tion for (MP1 ) be {6j,d and ,\* . We can prove the following 

theorem. 

Theorem 4.1. If /-l j,k = Pk for all j , the maximal capacity is 

Proof. Suppose the optimal solution of (MP1) is ,\* and 6},k· In constraint (3) , the 

. indicator function says that Vk if 6j,k > 0, then x { 6j,k > 0} = 1 otherwise x{ 6j,k > 
0} = 0. Because 6j,k ::::; 1, we have for all k, 

6j,k ::::; x{ 6j,k > o}. 

Furthermore we can get for all k , 

M M 

:L61,k ::::; :L x{61,k > o}::::; ck· ( 4.1) 
j = l j = l 

Then we derive that for all k , 
M 

L6j,k ::::; Ck· 
j=l 

When we achieve the optimal, one of the following conditions must be satisfied: 
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M 

(1) L bj,k < ck, fork = 1, .. . , K . 
j = l 

!vl 

(2) : There exists at least one class l such that L 6j,1 = c1. 
j = l 

If condit ion (1) is satisfied , constraints (1) ancl (2) in (MP1 ) must be t ight for all k 

and j , otherwise, ,\ * and bj,k can be trivially increased. According to constraint ( 1) 

in (MP1), we have 
M 

A* ( ak/ J-l k) = L 6j,k, \ik . 
j = l 

Then the sum of the above inequalities for all classes is: 

]{ ]{ !vl 

2..::>-*(ak/ J-lk ) = I:I: <S;,k. 
k = l k= l j = l 

If condit ion (2) is satisfied , by (4.1 ) we have the following: 

(4 .2) 

Let ko := argmin1 <k <J<(~;k ). We know that either ""~1 61*k = cko or L1tv~ 1 61* k < 
- - ak f-l k L..;J - , o - , o 

Ck0 • If LJ~1 bj,ko < Ck0 , we can increase 6j,ko and decrease bj,k for at least one j and 

k =1- ko until we have L~1 6J,ko = cko· Note that this transformation will not decrease 
I:A~l ,j• 

,\ *. Then we know that J- ],ko is the minimum value for all k. Since, 
ako I f-l ko 

'\'M 6* 
\ * . L..;J= l J,k 
"' = n11n1 <k<J< I , - - ak J-lk 

we have, 

( 4. 3) 
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By (4.2) and (4.3), the maximal capacity A* of (MP1) is 

0 

Corollary 4.2 . There is a polynomial time algorithm fo r solving (MP1) in the case 

of /-lj ,k = /-lk for all j. 

Proof. We can calculate the optimal solution A* according the above theorem. Obvi-

ously, this calculation can be done in polynomial time. 0 

4.3 Solving TDCCP in the case of f.-LJ ,k = f.-LJ 

When /-l j ,k = /-l j for any server j , we say that the service rates depend only on servers 

or a ll classes are identical. We design two different approximation algorithms for 

solving this case. 

4.3.1 Approximation Algorithm 1 

Design of Algorithm 1 

In Chapter 2, we introduced the problem (MP2) for this case, which is as follows. 

max A 
M 

s.t. L /-l j6j,k 2: Aak , k = 1, ... , K 
j = l 

] ( 

L 6j,k ~ 1, j = 1, ... , M 
k= l 

M 

L x{ c5j,k > o} ~ ck, k = 1, ... ,!< 
j = l 

6j ,k 2: 0, k = 1, .. . , K , j = 1, .. . , M . 

(Jvf P2) 

(1) 

(2) 

(3) 

(4) 
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Now we define a new variable Xj ,k = pjoj,k, and rewrite (MP2) as (MP2 '). 

max A (NI P2') 
tv! 

s.t. I: xj,k;::: Aak , k = 1, .. . , K (1) 
j = l 

J{ 

L Xj ,k :S pj,j = 1, ... , M (2) 
k= l 
M 

L x{x:j,k > 0} :S ck, k = 1. ... , K (3) 
j = l 

Xj ,k::::: 0, k = 1, ... , K , j = 1, .. . , 111. (4) 

Problem (MP2') can be viewed as an instance of the maximum concurrent multicom­

modity k-splittable flow problem with the following network topology. This network 

has a single source node {S} for sending K commodities , 2NI nodes {vi , ... , VM } , 

{u1 , .. . u 114 } for transferring commodities , and K terminal nodes {t1, ... , ti<} with de­

mand ak, k = 1, ... , K for receiving commodities. First we connect source node 

S with every node in the set {vi , ... , Vtvr } , and set infinite capacity on the edge 

(S,vj),j = 1, ... ,!11 . Then we connect nodes Vj with 'l.Lj , and set the capacity on 

the edge (vj , ·uj) to be /-Lj for j = 1, .. . , M. Finally we connect node ui , j = 1. .... fvf 

with every node in the set {t1, ... , tK} , and also set infinite capacity on the edge 

( 'l.Lj, tk) , j = 1, ... , fvf, k = 1, ... , K. The number of different paths allowed for each 

commodity k is bounded by ck (1 :S ck :S M), k = 1, ... , K. Then the problem (MP2 ') 

asks for the flow assignment { Xj,k} of sending K commodities to tk while respecting 

capacity ~Lj on edge (vj, 'LLj), j = 1, ... , NI and splittablity bound ck for each com­

modity k, k = 1, ... , K, so that the maximum possible fraction A of all commodity 

demands ak , k = 1, ... , K is simultaneously achieved. Please refer to Figure 4.2 for 

the network topology of (MP2'). 
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f.l l 

Figure 4. 2: The network structure for our special case (MP2') 

To obtain an approximate solut ion of (MP2'), Algorithm 1 does the following: 

1. In the first stage, we approximate (_r._ fP 2') by solving t he maximum concurrent 

mult icommodity uniform exactly-k-splittable flow problem. 

2. In the second stage, we approximate the maximum concurrent multicommodity 

uniform exactly-k-splittable flow problem by comput ing the minimum congest ion of 

an unsplit tablc flow problem. 

3. Finally, we compute the approximate solution of the problem (MP2) by the 

unsplittablc flow and congestion we found. 

Description of Algorithm 1 

In Algorithm 1, the stage for computing the minimum congestion of an unsplittable 

flow problem is based on the algorithms in [DGG99] and [KS02]. We first introduce 

some necessary defini t ions which will be used in our algorithm. 

• Regular terminal: a terminal node t k is regular if its demand ak is greater than 

the flow on every edge entering t k, otherwise it is an irregular terminal. 
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• Singular edge: an edge ('U , v) is called singular if all the vertices which are 

reachable from v have out-degree at most 1. 

The detailed description of Algorithm 1 is as follows. 

Stage 1: Initialization. Construct a network (see Figure 4. 1) with one source 

node { S} for sending f{ commodities, 2.M nodes {v1 , . . . , v M, 'U1 , . . :uM } for transferring 

commodities, and f{ terminal nodes {t1 , .. . , tg} with demand ak, k = 1, ... , K for 

receiving commodities. Set t he capacity on the edge (v1 , ·u1 ) to be J.l j for j = 1, ... , M . 

Stage 2: Transformation of initial problem to a maximum concurrent 

uniform exactly-k-splittable flow problem. We replicate each terminal node 

tk into ck identical sub-terminals t (k ,i), i = 1, ... , ck. Then each commodity k with 

demand a k is split into ck sub-commodities (k , i), i = 1, ... , ck, each with t he same 

demand a (k ,i) := ak/ck and with the same source. Further, for each edge connecting 

with terminal node t k, we connect it with all of the sub-terminals t (k ,i) · Now sending 

the new commodity (k, ·i) unsplittably is equivalent to sending the original commodity 

k exactly in ck paths with t he same flow amount on each path. 

Stage 3: Calculation of demand a (k,i) · We use the ellipsoid method (see 

[Sch86]) to solve the following relaxation of the maximum concurrent uniform exactly­

k-splittable flow problem. 

max A (M P 2") 
M 

s.t . L Xj,(k,i) 2: Aak/cb '1/( k , 'i) (1) 
j = l 

L Xj,(k,i) :::;: J.l j, '1/j (2) 
(k,i) 

Xj,(k,i) 2: 0, '1/j, (k , i) (3) 

Let A * and x;,( k, i) be the optimal fractional solution of (MP2"). Then we assign the 

flow amount x_f,(k ,i) on the edge (1lJ , t (k,i) ) and the flow amount L (k,i) x j ,(k ,i) on the 
edges (s, vJ) and (v1, ·u1) . For each sub-terminal in the network , let its demand be 

a(k ,i) := ~* ak/ck . Note that the flow x j ,(k,i ) computed in this stage is the fractional 
flow . 

Stage 4: Transformation of the fractional flow calculated in Stage 3 into 

an unsplittable flow. 
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Step 1: Let amin := min(k,i) {a(k,i) } and amax := max(k,i) {a(k,i) }. If arnax > 1, we 

scale all sub-terminal demands and edge capacities by the factor a rnax so that 

a (k ,i ) E (0, 1] and p1 E (0 , +oo). Let D := 1 / a min , we know that a ll demands fall 

wi thin the interval [1/ D , 1]. We parti t ion the interval [1/ D , 1] into sub-intervals 

as follows: 

Obviously there are llogD J + 1 sub-intervals. We number them as sub-interval 

1, 2, ... , llogD J from left to right. 

Step 2: For each sub-interval above (in the increasing order of interval i) , we find 

the commodities (k, i) whose demand a(k ,i ) falls within the i th sub-interval, 

i = 1, ... , l logD J. We assume there are rn such commodities . For convenience, 

we name them as commodities 1, 2, ... , rn and their corresponding sub-terminals 

are t1 , t 2 , . . . , tm· Let 1·1,t1 denote the flow on the edge (u1 , t1) , j = 1, ... , M , l = 
1, .. . , rn. VIe define a new variable Y],( k ,i) , which is used to record the unsplit­

taLle flow we find on edge (.j , (k, ·i )) for each commodity (k , ·i) . Once we finish 

computing Y ],( k ,i ) for all j and (k , i), by the network topology of (MP2"), we 

can easily determine the unsplit table flows for sending all ( k, 'i). Y] ,(k ,i) can be 

assigned as foll ows: 

(a) Check each edge in the network , if no commodity l , l = 1, .. . , rn goes through 

this edge, we remove this edge from the network. 

(b) Eliminate irregular sub- t erminals from the network (refer to Figure 4.1 for 

the network topology) . We check each sub-terminal t1 in the network , 

l = 1, ... , rn. If there is any sub-terminal t1 with only one incoming edge 

("u1. t1), we know t hat the flow amount x1,t1 on edge (·u1, tz) equals the 

demand a~1 of node t1. We assign the commodity l to edge (v1 , ·u1) and 

Y1,t
1 

:= a~1 • Now we know that the commodity l will be routed unsplittably 

by following the path 

Then we remove commodity l from the network, decrease the flow on the 

edge (S, v1) , (v1, u1) , (·u1, t1) by x1k Obviously, the flow on edge ('u1, t1) will 

be zero. After this step , there is no irregular sub-terminal in the network. 
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Thus, each of the remaining sub-terminals must have at least two incoming 

edges. 

(c) Find an alternating cycle for each of the rema.mmg commodities . The 

alternating cycle is constructed by alternatively going forward or backward 

on the edges of the network until we form a. cycle, which can be stated as 

follows. Starting from a. node Uj 1 E {'LLI , ... , u 1111 } and stopping at a. terminal 

node th E {t1 , ... , tm} , the forward path is constructed by selecting an edge 

(uj1 , t 11 ) with the positive flow Xj1 ,t
11 

on it. Since there are at least two 

incoming edges for each sub-terminal after step (b) , we can find at least one 

distinct path to follow back to a different node u12 . We call this path the 

backward path. \Vhenever we finish constructing a. backward path and stop 

at a. node Ujp, we check the edge ('u]p, th). If edge ('u]p, tit) is a singular edge, 

we continue constructing the backward path by adding edges (vi~>' 'Ll]p) , 

( s , Vjp) in the backward path aud then finish the alternating cycle by adding 

edges ( s , Vj1 ), ( Vj 1 , 'Uj1 ) as the forward path in the cycle. If edge ('ujp , th) is 

a non-singular edge, we can find one distinct edge ('u]p, t 12 ) leaving the node 

uip and this edge will be added into the forward path. Then we construct 

the backward path from the node t 12 again. We perform the above steps 

for constructing the forward path and backward path alternatively until a 

cycle 

is formed. Please also refer to Figure 2 in [DGG99] for an example of 

constructing the alternating cycle. 

(d) Augment the alternating cycle found in (c). We first check the edge capaci­

ties in the backward path of the alternating cycle. If there is any edge with 

capacity less than the commodity demand in the backward path, we ignore 

this cycle and continue to find another alternating cycle. Otherwise, we 

decrease flow along the forward path and increase flow along the backward 

path by the same amount E, where E = min{E1 , E2 } . Suppose there are q 

sub-terminals in the alternating cycle, we define E1 to be the minimum flow 

amount along any edge in the forward paths, and E2 to be the minimum 

value of at1 - Xj,t 1 along the edge (u1, t1) , l = 1, ... , q in the backward path. 
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After we decrease and increase flow respectively in the forward and back­

ward paths, we can get at least one edge with flow 0 or one edge ( uj , t1) 

with flow equal to a sub-terminal 's demand at node t1. Then go to step 

(a) . Clearly, by step (d) , we will never send any unsplittable flow through 

an edge with capacity less than the corresponding commodity demand. 

(e) We continuously repeat steps (a) to (d) until commodities l , l = 1, ... , m 

are all removed from the network. 

Stage 5: Calculation of the or iginal solution c5j ,k and the capacity A for 

(MP2). Y] ,(k ,i) is the final unsplittable flow for sending sub-commodity (k, i) . Note 

that if the original amax > 1 iu Step 1 of Stage 4, we need to restore the flow and 

capacities in the network by multiplying Y] ,(k,i) and /-L j with amax, for all j , (k , i). The 

total flow through edge ( ·vj , ·uj) is L (k,i) Y] ,(k ,i) · We define a := maxj~ (k·,i~~j , (k , i ) . If 

o > 1, we know that edge capacities in our network are violated. Then we scale down 

the calculated unsplittable flow Y] ,(k ,i) by the factor a so that the edge capacities in the 

network are respected. We know that the original commodity k is split into ck sub­

commodities, and the flow of commodity k through edge (vj , ·u j) is 2::~,: 1 Y],(k ,i) · Then 

we set the original assignments c5j ,k of servers to classes to be 6j,k := 2::~,: 1 Y] ,(k ,i )/ /-L j 

for all j, k. Finally, according to constraint (1) of (MP2) , the corresponding capacity 

A can be computed by the server assignment 6j ,k, i. e. A = mink ~~~~~; c5; , k 

Analysis of Algorithm 1 

To evaluate the performance guarantee of Algorithm 1, first we show the proof of 

Theorem 5 in [BKS02] . 

Theorem 4.3. Computing the maximum concurrent multicommodity uniform exactly­

k-splittable flow problem in Stage 2 of Algorithm 1 guarantees at least 1/2 of the 

optimal value for the maximum concurrent multicommodity k-splittable flow problem 

(MP2'). 

Proof. Suppose the optimal solution of a maximum concurrent multicommodity k­

splittable flow problem (MP2') is A* and x;,k . We show that there exists a feasi­

ble maximum concurrent multicommodity uniform exactly-k-splittable flow with flow 

valueD:= A*ak/(2ck ) on each path for sending sub-commodity (k , i) , V(k, i). 
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In the given optimal solution of the maxnnum concurrent multicommodity k­

split t able flow problem, we replace the edge (j, k) for sending commodity k with flow 

x;,k by l x;,k / D J copies, each carrying flow amount D. Let P be the set of edges 

with xj,k > 0. By t his construction, we can show that there are at least ck copies of 

edges that we can produce for sending commodity k and each copy of an edge carries 

flow amount D, using the fact that the number of paths for sending commodity k is 

bounded by ck 

P :x • > 0 
J ,k 

L (xj,k/ D - 1) 

~ ( L xj,k)/ D - ck 
P :xj,k>O 

)..*ak 
~ D -ck = ck. 

By the above inequality, we know that there are at least ck paths carrying the flow 

amount D for sending commodi ty k , k = 1, .. . , K . T hus t he maximum flow achieved 

for commodity k is a t least D · ck = )..*ak/2 and the maximum possible fraction for 

rout ing commodity k is at least >. * /2 for (MP2 '). D 

By treating each sub-commodity separately and routing each sub-commodity un­

splittably, we solve the maximum concurrent multicommodity unsplittable flow prob­

lem, instead of solving the maximum concurrent multicommodity uniform exactly­

k-splittable flow problem. According to Theorem 5.1 in [KS02], we can prove t he 

following theorem for bounding the minimum congestion in Stage 4 of Algorithm 1. 

Theorem 4.4. Stage 4 of Algorithm 1 routes each sub- commodity unsplittably such 

that the the total flo w through ( v1 , ·u1 ) exceeds its edge capacity /-l j by less than 5J-L1 , 

j = 1, .. . , 111. 

Proof. In our network, the capacitated edges are (v1, u1) , j = 1, ... , M and the other 

edges have infinite capacities. Hence in order to compute the minimum congestion, 

we only consider (v1, u1) , j = 1, ... , M . 

Let D := 1/ amin· We partition the interval [1/ D, 1] into sub-intervals 

[1/ D , 1j 2llogDJJ, ... , (1 / 2i+ l, 1/ 2t ... , (1 / 2, 1] . 
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For an arbi t rary sub-interval (1/ 2i+ l , 1/ 2i], by Step 1 in Stage 4, we know that we 

only consider commodity l with demand a1 which is located in this sub-interval and 

other commodit ies will be temporarily removed from the network. Let the init ial flow 

on edge (v7, ·uj) be / (vj ,u1) for sending the commodities (fractionally) with demands in 

this interval. Since the fractional flow ! (vJ,uJ) computed in Stage 3 respects the edge 

capacity of (vj, ·uj ) , we have 

! (Vj ,'U. j) ::; /-l j · 

In Step 2 of Stage 4, if there is any edge with capacity less than the commodity 

demand in the backward path of the alternating cycle, we will ignore this cycle. This 

step is crucial because it guarantees that any commodity in this interval is only sent 

through edges with capacities at least its demand. Since the minimum commodity 

demand in this interval is l /2i+ l, we have 

1 
II · > ­
!-") - 2i+ l . 

Also, when we augment the alternating cycle, if the flow on the edge (vj, ·uj) is equal 

to a commodity demand and exceeds its capacity, this edge will be removed from the 

network in this interval. Thus we know that the flow through edge (vj , u j ) exceeds its 

capacity by less than the maximal demand in this interval. Obviously, the maximal 

commodity demand in the interval (1/ 2i+l, l / 2i] is at most 1/2i . Since the edge 

(vj, 'Uj ) may also be used in other sub-intervals before (1 / 2i+l, l / 2i], the flow F on it 

is at most: 

LlogDJ 

F ::; f (v1 ,u1 ) + L 1/ 2j 
j=i 

2 1 
= f (vj ,uj) + 2i - 2 llogDJ 

4 1 
= f (vJ ,uJ) + 2i+ l - 2 llogDJ 

We know that / (vj,uj) ::; /-l j and 2;~ 1 ::; /-l j· Then, the total flow F on the edge (vj, ·uj ) 

is bounded by, 
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4 1 
F < ] ( ) + - - --;-:----:::-:-

- Vj,Uj 2 i+ l 2 llog0 j 

1 < 11 . + 4u · - --;-:---::-:­
- r-"] r-"] 2 llogDJ 

1 
= 5f-L j - 2 llogDJ ::; 5f-LJ · 

Now we can get the conclusion that for any edge (vJ, 'UJ) m the graph, the flow 

through it is at most 5 times its edge capacity. Therefore, we know that there ex­

ist s a 5-approximat ion algorithm for the minimum congestion of the unsplittable flow 

problem. So, we can achieve a 1/5-approximat ion algorithm for the maximum con­

current rnulticommodity unsplittable flow problem. 0 

Summarizing Theorems 4.3 and 4.4 we get the fo llowing theorem: 

Theorem 4 .5. Algorithm 1 is a 1/ 10-approximation algorithm for solving {MP 2 '). 

Proof Let the optimal solution of (MP2 ') be A*. According to Theorem 4.3, solving 

the maximum concurrent multicommodity uniform exactly-k-splittable flow problem 

will achieve at least 1/ 2 of the opt imal solution A*. By Theorem 4.4, Stage 4 in Algo­

rit hm 1 finds the miuirnum congestion for the uusplittable flow problem aud achieves 

at least 1/ 5 of the optimal solution for the maximum concurrent multicommodity 

uniform exactly-k-splittable flow problem. T hus we can at least achieve 1/ 10 of the 

optimal capacity A* in (MP2') . 0 

4.3.2 Approximation Algorithm 2 

D esign of Algorithm 2 

Approximation algorithm 2 is based on the algorithm in [LST90] for t he scheduling of 

unrelated parallel machines problem. The first stage of Algorithm 2 is t he same as Al­

gorithm 1, where we t ransform (MP2') to the maximum concurrent multicommodity 

exact ly-k-splittable flow problem and lose 1/ 2 of approximation factor. 

By analyzing the network st ructure of (MP2'), we find that the flow on the edges 

(S , vi) and (vi, ui), 'i = 1, ... , M depends only on the flow amount of the edges (ui, tk), 

k = 1, .. . ,K. It is easy to see that {u1,, ... , 'uM } and {t1, ... ,tJ<} can be viewed as two 
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disjoint node sets in a bipartite graph. According to this observation, the second 

stage of Algorithm 2 computes the fractional solut ion of the maximum concurrent 

mul t icommodity exactly-k-splittable flow problem and converts its solution into the 

solut ion of an instance of the scheduling of unrelated machines problem. 

In the third stage of Algorithm 2, we show how to round the fractional solution 

of the scheduling of unrelated machines problem to an integer solution by using the 

approximation algorithm studied in [LST90]. 

Finally, we map the integer solution of the scheduling problem back to the original 

solut ion 61,k and obtain the capacity A of original problem (MP2) . 

Transformation of (MP2') to the scheduling of unrelated machines problem 

When (MP 2') is transformed into the maximum concurrent multicommodity exactly­

k-split table flow problem, we have the following relaxation of the multicommodity 

concurrent unsplittable flow problem: 

max A 
M 

s.t. L x.i ,(k ,i) ;:::: Aak/ck,V( k ,i) 
j = l 

L Xj,(k,i) ~ /-L j, Vj 
(k,i ) 

Xj,(k ,i) ;:::: 0, Vj, (k, ·i) 

(!vi P2") 

(1) 

(2) 

(3) 

where LJ,(k,i) = p,16J,(k,i)· Let :.rj,(k,i) and A* be the optimal solution (fractional) for 

(MP2") . 
I:M • 

First . we define A(k i) ·- j=l ?'(k,iJ , Vk , i . By constraint (1) m (MP2" ), smce 
, , ak Ck 

"L~~ 1 x;,( k,i) ;:::: A*ak/ck , Vk , ·i, it is easy to see that 

X~ k i Ck a . . 
Then, we define y1· (k i) := ; ·( · l and p1· (k i) := ~' Vy , (k , 't). 

, , (k,i) a k , ' ck,.- j 
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Using the above definitions, we can prove the following equality. 

Also, we have 

= 1, V(k, i). 

"""" ak xj,(k,i) ck 
L Pi,(k,i)'Yj,(k,i) = L --_A;_:__--'--
(k,i) (k,i) Ck{Lj (k,i)ak 

x* = L j,(k,i) 

(k,i) P'JA(k,i) 

x* = """" j,(k,i) 
~ Ck/-Lj "i\'M * 
(k,i) a, Llj=l xj,(k,i) 

x* (k ·) 1 < """" _J_, _,_t < -' v .. 
- ~ .\* l - .\* J 

(k,i) t J 

Summarizing the above, if we let T = 1/.\ *, we have the following linear programming 

problem: 

M 

LYj,(k,i) = 1, V(k, i) 
j=l 

LPj,(k,i)'Yj,(k,i) :::; T Vj 
(k,i) 

Yi,(k,i) ~ 0, Vj, (k, i). 

(1) (51) 

(2) 

(3) 

This is exactly the relaxation version of the scheduling unrelated machines problem, 

where (k, i) can be viewed as jobs and j can be viewed as machines. The jobs in 
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(S1 ) correspond with sub-commodity nodes in (MP2" ) and the machines in (S1 ) 

correspond with edges (vj , ·u j), j = 1, .. . , M in (MP2" ). The processing time for job 

(k , i) scheduled on machine j is P],( k,i) · Note that scheduling job (k , ·i) on machine j is 

actually equivalent to rou t ing sub-commodity (k , 'i) on the edge (vi, ·u i) unsplittably. 

The fraction of job (k, i) scheduled on machine j is Y],(k,i)· Given x;,(k ,i) and ,.\ * in 

(MP2" ), we can find a feasible (fract ional) solution Y] ,(k ,i) and the makespan T = 1/ ,.\* 

for the linear programming problem (S1) . 

Let p := m axj,(k ,i) {P] ,(k ,i)/T}. We consider the following linear programming prob­

lem : 

M 

L Yj ,(k ,i) = 1, V(k , i) 
j = l 

L Pj ,(k .i) Yj ,(k ,i) ~ T , Vj 
(k ,i) 

Y] ,(k ,i) = 0 if Pj,(k.-i ) > p · T, Vj , (k , ·i ) 

Y] ,(k ,i) 2: 0, Vj , (k , i). 

(1) (S2) 

(2) 

(3) 

(4) 

The constraint (3) in (S2) docs not affect the value of Y] ,(k,i) , since 

P] ,(k,i) ~ m axj,(k ,i) {Pj,(k,i) } = fJ · T 

and we will not set any Y] ,(k ,i) to zero . Thus the solution Y],(k,i) and T = 1/ ,.\* in (S1) 

is still feasible in (S2). 

Now we show the procedure I nt_Sch edule for rounding the fractional solution 

Y] ,(k,i) to the integer solution i)]. (k,i) . This procedure is actually based on Theo­

rem 1 (rounding theorem ) in [LST90] . W hen we find an integer solution ih (k,i) 

for (S2) by I nLSch ed ·ul e, the integer solution Xj ,(k ,i) can be computed by setting 

Xj ,(k ,i) = [)j ,(k,i) A (k ,i) ak / ck. 

Procedure fnt_Sch edtde 

Input: the fract ional schedule Y] ,(k,i) and makespan T = 1/ ,.\* of (S2). 

Output: the integer schedule ih (k,i ). 

Step 1: Consider the corresponding bipartite graph of (S2) and assign each edge 
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(j, (k, i)) with weight Y],(k,i)· If Y],(k,i) = 0, we remove the edge (j, (k, i)) from 

the graph and set ih(k.i) := 0. 

Step 2: Check all fractional solutions Y],(k.i). If Y],(k,i) = 1, we adopt this integer 

solution, schedule job (k, i) on machine j, set ih(k,i) := 1, ih,(k,i) := 0, 'Vj1 #- j 

and remove this edge (j, (k, 'i)) and the job node (k, i) from the graph. 

Step 3: Scan the rest of the job nodes, if we cannot find a cycle starting from the 

node (k, i), we know there exists a tree rooted at the node (k. i). Then we 

randomly choose a machine node j which is connected with the job node (k, i), 

schedule the job (k, i) at machine j, and set ih(k,i) := 1, ihdk,i) := 0, 'Vj1 #- j. 

Finally we remove the job node (k, i) and all other edges connected with job 

(k, i). 

Step 4: \Vhen we find a cycle starting from the node (k, i), we delete the alternate 

edges in this cycle. Then we check again whether we can find any cycle starting 

from node (k, i). If there is no cycle, (k, i) must be the root of a tree, otherwise, 

we continue constructing a cycle and delete the alternate edges in the cycle until 

we cannot find any cycle starting at (k, i). Now considering the tree rooted at 

(k, i), we randomly choose a machine node j connected with (k, i) and schedule 

(k, i) on j by setting Y],(k,i) := 1, Yjlo(k,i) := 0, 'Vj1 #- j. Then we remove the job 

node (k, i) from the graph and any edge connected with (k, i). 

Step 5: Repeat Steps 3 and 4 until all job nodes (k, i) are scheduled on machines 

and Y],(k,i) is our final integer solution. 

Description of Algorithm 2 

The detailed description of Algorithm 2 is as follows. Note that Stages 1 and 2 in 

Algorithm 2 are the same as those in Algorithm 1. 

Stage 1: Initialization. Construct a network with one source node {S} for 

sending K commodities, 2M nodes {v1, ... ,vM,·ulo ... uM} for transferring commodi­

ties, and K terminal nodes {t1 , ... , tK} with demand ak, k = 1, ... , K for receiving 

commodities. Set the capacity of the edge (vj, nj) to be /-Lj for .i = 1, ... , M. 

Stage 2: Thansformation of initial problem to a maximum concurrent 
uniform exactly-k-splittable flow problem. We replicate each terminal node 
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tk into ck identical sub-terminals t (k,i) , 'i = 1, .. . , ck. Then each commodity k with 

demand ak is split into ck commodities (k , i) , i = 1, .. . , ck , each with the same demand 

a(k,i ) := ak/ ck and with t he same source. Further, for each edge connecting with 

terminal node tk , we connect it with all of the sub-terminals t (k,i)· Note the new 

commodit ies ( k, 'i) must be routed unsplit tably. 

Stage 3: Solving the fractional maximum concurrent uniform exactly­

k-splittable flow problem and transformation of its solution to a solution of 

the scheduling of unrelated machines problem. We consider the relaxed version 

of the maximum concurrent uniform exactly-k-splittable flow problem (MP2" ) and 

get the solution Xj,(k ,i)· and.\* by the ellipsoid method. Then we construct an instance 

of scheduling of unrelated machines problem, with job nodes (k , i) , Vk , i and machine 

nodes j, j = 1, .. . , M. The processing time for a job (k , ·i) scheduled on machine j is 

defined to be p1· (k i), where p1· (k i ) = ...E:.L . Let a feasible solution of this scheduling 
, , 1 ' Ck J..L j 

problem be Y] ,(k,i ) and the makespan T. Further we define y j (k i) = 7 <k,i ) c k and 
' ' (k ,i) a k 

T=1/ .\*. 

Stage 4: Calculation of the integer solution Y],(k,i) by the fractional so­

lution Yj ,(k ,i )· We use the procedure InLSch edule to round the fractional solution 

Y], (k,i ) to the integer solution Y] ,(k, i) . 

Stage 5: Calculation of the integer solution Xj,(k ,i ) of (MP2'). Let ij ,(k, i) := 

Y),(k ,i) >. < •~;ak. Then ij,(k ,i) is the solution for the reduced maximum concurrent mul­

t icommodity exactly-k-splittable flow problem. Similar to Stage 5 of Algorithm 1, 
we scale down t he flow on every edge by a factor a := maxj L: (k , i~~j,( k , i ) such that the 

edge capacities on (vj , ·uj ), Vj are respected. 

Stage 6: Calculation of the original solution 6j ,k and the capacity .\ in 

(MP2). The original 6j ,k in (MP2) can be computed by setting 6j ,k := L: ~~~J.L~j,( k , i) 
.· - 1 ~~ k- 1 ;v Th 't f (MP2) . ' ·- · L:j~ 1 J.Lj Oj , k ] - , ... , 11 , - , .. . , '\.. e capaC! y 0 IS 1\ . - mmk ak • 

Analysis of Algorithm 2 

Before evaluating the approximation factor of Algorithm 2, by Theorem 1 in [LST90J, 

we observe that the set {Yj ,(k ,i) } has the following property found in Proposition 2 of 

[AAD03]. 

Lemma 4.6. L et the total number K' of sub-termi nal nodes be K' = 'L~~ 1 ck . There 
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exists a solution of {Yj,(k,i)} in which at least !If· K' +1-M- K' elements ar-e zero. 

Proof. The optimal solution { ::rj,(k,i)} is a vertex of the polyhedron of (MP2"). (MP2") 

has M · K' + 1 variables and fvf + J{' constraints (excluding the constraint (3)). 

Therefore, there are M + K' basic variables in any basic solution. The remaining 

Af · K' + 1 - M- K' non-basic variables in { :r:* (k .) } are zero. Since Y] (k i) = x}-(k,i)ck, 
J, ,z , , (k,,.)ak 

we know that in {Yj,(k,i)}, at least M ·!{'+1-M- K' elements are zero. 

0 

Corollary 4. 7. The bipartite graph with edge weights Y],(k,i) in the scheduling problem 

has no more edges (with positive weights) than nodes. 

Proof. There are M + K' nodes in the bipartite graph. According to Lemma 4.6, the 

number of edges with positive weights is at most !If+ K'- 1, which is smaller than 

the number of nodes. 0 

Theorem 4.8. The procedure InLSchedule can round any feasible solution Y],(k,i) 

into an integer solution Y],(k,i) with makespan at most (1 + p)T. 

Proof. According to the procedure I nLSchedule, it is straightforward that Y].(k,i) E 

{0,1}and 

LYj,(k,i) = 1, j = 1, ... , fvf. 

(k,i) 

For any machine j in the bipartite graph, since YJ,(k,i) :S: YJ,(k,i) + 1 and PJ,(k,i) :S: p · T, 
we have 

L Pj,(k,i)Yj,(k,i) :s: L Pj,(k,i) (Yj,(k,i) + 1) 
(k,i) (k,i) 

= L PJ,(k,i)Yj,(k,i) + Pj,(k,i) 

(k,i) 

:s: LPJ,(k,i)Yj,(k,i) + p. T 
(k,i) 

:S: T + p · T. 

0 

Theorem 4.9. Algorithm 2 is a 2 (l~p) -approximation algorithm for solving (MP2'). 
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Proof. Let the opt imal solution of (MP2 ') be A*. We know that solving t he maximum 

concurrent multicommodi ty uniform exactly- k-splittable flow problem guarantees at 

least 1/ 2 of the optimal solution A*. According to Theorem 4.8, t he makespan is a t 

most (1 + p)T , t hus we can achieve a t least 1!P of the optimal capacity of the problem 

(MP2" ). Summarizing the above arguments, at least 2 ( l~p) of the optimal solution 

A* can be achieved. D 

4.4 The case J-L = a . {JT 

Given an Nf x 1 vector a and a K x 1 vector {3 , if the Jvf x K matrix f-L = a · {3r, we 

show that this case can be solved by Algorithm 1 or Algorithm 2. 

Since fJ· = a · {3r , the (j, k) entry /-L j,k of the matrix f-L will be ft j,k = a j(3k. V·.,Te 

defi ne Xj ,k := Cl'.jbj,k for all j , k and bk := ak/ {3k for a ll k. Now the problem (MP) can 

be wri tten as follows, 

max A 
M 

s .t. L Xj ,k 2: Abk , k = 1, .. . , K 
j = l 

/ ( 

L Xj ,k ~ Cl'.j , j = 1, ... , !11 
k= l 

M 

L x{6j,k > o} ~ ck, k = 1, .. . , K 
j = l 

:l' j,k 2: 0, k = 1, ... , K , j = 1, .. . , Af. 

(Jvf P') 

(1) 

(2) 

(3) 

(4) 

Obviously, (MP ') falls into the case of (MP2 '). Therefore, we can apply Algorithm 

1 or Algorithm 2 to calculate an approximate solution X j ,k and generate the final 

solution of TDCCP by setting bj,k := Xj,k/ Cl'. j for all j , k . 
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4.5 Solving the general case 

When the service rates /-Lj,k are arbitrary, we will have the general case of (MP). In 

this section, an approximation algorithm will be given for solving the general (MP). 

The idea of designing the approximation algorithm for (MP) is as follows: First, 

we transform (approximately) the general (MP) to an instance of (MP2'). Then, we 

solve the reduced case by Algorithm 1 or Algorithm 2. 

Let pjax be the maximal service rate of server j over all classes and tLtn be 

the minimum service rate of server j over all classes. We define w1 := ttjwx / ttjin 
and Wmax := max1{w1}. Note that if /Lj,k = 0 then server j cannot work at class k 

( c51,k = 0). In this thesis, we will assume that /1j,k > 0 for all j, k. Now we try to 

solve the following problem: 

max ,\ 

M 

s.t. L J.lj,kbj,k 2 ..\ak, k = 1, ... , K 
j=l 

K 

L /Lj,kc5j,k :::; tLjax, j = 1, ... , Jvf 
k=l 

M 

LX{bj,k > 0}:::; Ck, k = 1, ... , K 
j=l 

b1,k 2 O,k = 1, ... ,K,j = L ... ,M. 

(111 P3) 

(1) 

(2) 

(3) 

(4) 

Obviously, this problem is the same formulation as (MP2') in Section 4.2. Let the 

optimal solution of general (MP) be..\*, b* and the optimal solution of (MP3) be~*, 
8*. We can prove the following lemma. 

Lemma 4.10. For the optimal solution of {MP) and {MP3), we have~* 2 ..\*. 

Proof. It is clear that,\* and bj,k must satisfy all constraints in (MP). We show that 

,\* and bj,k is also a feasible solution of (MP3). 

Because constraints (1), (3) and (4) in (MP) are exactly the same as those cor­

responding constraints in (MP3), we only need to prove that ,\* and bj,k also satisfy 
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constraint (2) in (MP3). Since 

and according to constraint (2) in (MP), we have 

J( 

I:: 6;,k ::; 1, 
k = l 

therefore 
/( 

~ .\* < max L /-Lj,k Uj ,k - I-Lj . 

k= l 

Hence we know c5j,k and A* is also a feasible solution of (MP3). Thus we derive 

A*~ A*. 0 

Suppose the (approximate) solution of (MP3) is ; and ij,k· Vve define 

(4.4) 

We know that Wmax = maxj { Wj }. Then the following theorem can be proved by 

applying Algorithm 1 for (MP3): 

T heorem 4.11. Solution (4-4) is a f easible solution of (MP}, and achieves a A of 

value at least A* / 10wmax· 

Proof. Suppose the optimal solution of (MP3) is ; *. From Algorithm 1 and Theorem 

4.5 , we know 
- 1 /\ > - A- • 

- lOA* 
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By ( 4.4), we have 

= 1, 

which satisfies the constraint (2) of (MP). 

Furthermore, we observe that, 

M M _ "'\'M - , , 
"'""" £ "'"""x1,k 0j=l Xj,k "'ak "'*ak 
~ /Lj,kUj,k = ~ ~ 2: > -- > ---
j=l j=l J Wmax Wmax 10Wmax 

According to Lemma 4.10, we know 

M ,\* ,\* I: /Lj,kbj,k 2: > ---
1owmax - 10Wmax 

j=l 

Therefore, we get the result ,\ 2: ,\* /10Wmax· 0 

Similarly, by using Algorithm 2 and Theorem 4.9, we also have the following 

theorem: 

Theorem 4.12. Solution (4.4) is a feasible solution of (MP ), and achieves a ,\ of 

value at least ,\ * /2 ( 1 + p )wmax. 

4.6 NP-Completeness 

Given a set A of even cardinality n = lA I with n numbers { s 1 , s2 , ... , sn}, the PAR­

TITION problem is to decide whether we can partition the set A into two sets with 

cardinality n/2, where the sums of numbers in two sets are the same. More precisely, 

we can define the PARTITION problem as follows, 
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PARTITION={(A, I) I There is a subset I ~ {1 , ... , n} of cardinality n/2 such that 

L i E f 5 i = L i EA\1 si} . 

The PARTITION problem is one of the NP-complete problems in Karp's 21 NP­

Complete problems. For more details , refer to [Kar72] . 

We prove the NP-Completeness of TDCCP by reducing the PARTITION problem 

to the special case (MP2 '), (which is equivalent to (MP2) ). The decision version of 

problem (MP2') can be stated as follows: We are given an instance (MP2 ') of the 

problem TDCCP and a capacity .\ * E R Is the solution of (MP2 ') greater than or 

equal to.\*? :\Iore specifically, we define (l\IIP2 ') as follows, 

TDCCP={((MP2') , .\*)1 The solution of (MP2 ') is greater than or equal to .\*} . 

Now we can prove the following theorem and show a polynomial time reduction for 

the PARTITION problem. 

Theorem 4.13. PARTITION has a sol'Ution iff the sol'Ution .\ of (MP2 ') satisfies 

.\~.\*. 

Proof. We consider the PARTITION instance which has a set A= { s1 , s2 , .. . , sn } with 

even cardinality IAI = n. Let S := I:,7=1 Sj be the sum of all of the numbers. We 

construct an instance of (MP2 ') corresponding to the given PARTITION instance as 

follows: Let the number of classes K := 2, the number of servers M := n and set 

Jij := sj, .i = 1, .. . , lvf. Let c1 = c2 := n/2 and a1 = a2 := 1. Finally we define 

.\ * := S /2. Obviously, this construction is in polynomial time. 

First we show that if PARTITION has a solution which splits the set A into two 

sets I and A\ I , each with the sum of numbers S/2, then the solution of the above 

instance of (MP2') has the solution.\=.\*= S/2. By setting Xj ,l := J.l] and xj,2 := 0, 

Vj E I and Xj, I := 0 and Xj, 2 := J.l j , Vj E A \ I , we have, 

jEI j EA\f jE I jEA\f 

and the flexibility at each class is n/2. Thus, we find a feasible solution of the instance 

of (MP2') with .\ = .\ *. 

Now we show that if the solution of the instance of (MP2') achieves.\=.\*= S/2, 

then set A can be partitioned into two sets I and A\ I , each with the sum of numbers 
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S/2. Let x1,k, j = 1, ... , n, k = 1, 2 be the server assignment of server j to class k in 

the optimal solution A. Because of the optimality of A, we know that for any j, x1,1 

and x1,2 cannot be both zero, otherwise A is not the optimal solution. 

Then we show either x1,1 = 0 or x1,2 = 0. Given the solution x1,k, j = 1, ... , n, k = 
1, 2, we choose any two servers j and l which have x1,1x1,2 > 0 and x1,1x1,2 > 0. Now 

we set, 

Xj,l := Xj,l -min{ Xj,l, Xt,2} 

x1,2 := Xj,2 +min{ Xj,I, x1,2} 

xu := x1,1 +min{ Xj,I, Xt,2} 

X1,2 := X1,2 -min{ Xj,], Xt,2} 

By the above step, we know that either x1,1 = 0 or x1,2 = 0. Also, the feasibility and 

the optimal solution A will not be violated. We can continue this step until there is 

at most one server j with x1,1x1,2 > 0. 

Suppose there exists a server j with :-r1,1x1,2 > 0. Then according to the flexibility 

constraint, 
n 

Lx{xj,k > 0}:::; n/2,k = 1,2 
j=l 

we know that there are at most n - 1 servers that are used. Therefore there exists at 

least one on server l with x1,1x1,2 = 0. Since in the optimal solution, we know that 

As server l is not used, we have 

n 

L Xj,l ?: Aa1 = S/2, 
j=l 

n 

L Xj,2 ?: Aa2 = S/2. 
j=l 

n 2 

LLxj,k :S S- s1. 
j=l k=l 
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which gives us a contradiction. Hence we know in the optimal solution, a server j 

with Xj,JLj,2 > 0 does not exist and for any j , we have either Xj,l = 0 or x1,2 = 0. 

Since we have x1,1x1,2 = 0, we know that if Xj ,l = 0, then x1,2 = /.Lj (otherwise >. = 

S/2 cannot be achieved when x1,2 < f.LJ ) . Finally we define the set I := {Jix1,1 = 0}. 
Thus, the sums of numbers in two sets are 

L Sj = L Sj = S/2. 
jE i jEA\f 

0 

Theorem 4.14. (MP2 '} is NP-Complete. 

Proof. Clearly, the problem (MP2') is in NP. In Theorem 4.13, we have show a poly­

nomial reduction from the PARTITION problem to an instance of (MP2 '). Since the 

PARTITIO problem is NP-Complete, we know that (MP2') is also NP-Complete. 

0 

Corollary 4.15. The general TDCCP is NP-Complete. 



Chapter 5 

Total Discrete Capacity 

Constrained Problem with Costs 

In this chapter, we will discuss the Total Discrete Capacity Constrained Problem 

(TDCCP) with Costs. In this problem, a server incurs a cost when it is working 

at a class. The total cost of the system is the sum of costs of all servers. Given a 

budget, the objective of this problem is still to maximize the capacity of the queueing 

network while the total cost of the system respects the given budget. First, we will 

show if all the servers are identical, then we can compute the maximal capacity 

.\ * in polynomial time. Second, if all the classes are identical, we will design two 

approximation algorithms and give their approximation factors. Then, for the general 

case of TDCCP with cost, an approximation algorithm is also proposed. Since the 

NP-Complete problem of TDCCP without cost is a special case of TDCCP with cost 

(by setting all costs to be zero), we finally derive its NP-Complctcncss. 

5.1 Overview of solving TDCCP with costs 

Similar to the way of solving TDCCP, we first show a polynomial algorithm for solving 

TDCCP with costs when /-lj,k = J-lk· Then we design two approximation algorithms 

Algorithm 3 and Algorithm 4 for solving TDCCP with costs when Jlj,k = /Lj. For the 

case of f..L = a · {JT where a is a M x 1 vector and f3 is a K x 1 vector, we show that 

this case will fall into the case of /-lj,k = /-lj. Finally, we also give the approximation 

65 
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algorithms for solving the general TDCCP with costs by applying Algorithm 3 or 

Algorithm 4. Figure 5.1 shows the framework of our algorithms for solving TDCCP 

with costs. 

polynomially 
solvable 

Algorithm 3 or 4 Fall into Case 2 
Transform 

(approximately) 
to Case 2 

Algorithm 3 or 4 

Figure 5.1: The Framework of our algorithms for solving TDCCP with costs 

5.2 Solving TDCCP with costs in the case of /-Lj ,k = 

f.-Lk 

In this case, the service rates are independent of the servers. In other words, all the 

servers are identical. We also assume that the costs of servers only depend on classes 

in the queueing network. Then we have rj ,k = rk for all j. We rewrite the original 
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problem (MPC1) as follows. 

max ,\ 

M 

s.t. L J.Lk6J,k 2: A.ak, k = 1. ... , K 
j=l 

K 

L6j,k:::; 1,j = 1, ... ,Af 
k=l 

K M 

L L rk6J,k :::; C, 
k=l j=l 

M 

L x{ 6j.k > o} :::; ck, k = 1, ... , I< 
j=l 

6J,k 2: 0, k = 1, ... , K,j = 1, ... , 111. 

(A1PC1') 

(1) 

(2) 

(3) 

(4) 

(5) 
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Let the optimal solution for (MPC1') be Jj,k and A.*. Similarly to Theorem 4.1, we 

can prove the following theorem. 

Theorem 5.1. If 1-LJ,k = /-Lk for all j, the maximal capacity of (MPCJ ') is 

Proof. This theorem can be proved by a similar way to Theorem 4.1. When the 

optimal solution >.. * and 6j,k is achieved, we consider the following two conditions, 

which cover all possibilities and one of which must be satisfied: 

M 

(1) : 2:: 6j,k < ck, fork= 1, ... ,I<. 
j=l 

M 

( 2) : There exists at least one class l such that 2::: Jj,1 = Ct. 
j=l 

If condition (1) is satisfied, either constraints (1) and (2) in (MPC1') are tight, or 

constraints (1) and (3) in (MPC1') are tight. Otherwise, A.* and 6j,k can be trivially 
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increased. According to Theorem 4.1 , when constraints (1) and (2) in (MPC1 ') are 

tight , we know that 
* M ,\ = K . 

I:k = l (ak / Pk) 
(5 .1 ) 

Now suppose constraints (1) and (3) are tight , we have 

f( M 

L rk · L 5j,k =C. 
k = l j=l 

According to constraint (1), we know L~1 !Sj,k = ,\*~ . Then 

thus we have 
,\* = J< c . 

I:k=l akrk / Pk 
(5 .2) 

If condition (2) is satisfied, we have proved that 

(5.3) 

Therefore , by inequality (5.1), (5.2) and (5.3), the maximal capacity ,\* of (MPCl ') 

is , 

0 

Corollary 5.2. There is a polynomial time algorithm for solving (MPCl) in the case 

of J-lj ,k = Pk and rj,k = rk for all j. 
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5.3 Solving TDCCP with costs in the case of /Lj,k = 

/Lj 

5.3.1 Approximation Algorithm 3 

Design of Algorithm 3 

In Chapter 2, we introduced the problem (MPC2) for this case, which is as follows. 

max A (MPC2) 
M 

s.t. L /1jt5j,k 2:: Aak, k = 1, ... , K (1) 
j=l 

K 

L.:tSj,k::::; l,j = 1, ... ,1\1 (2) 
k=l 

K M 

L L Tj,kt5j,k ::::; c, (3) 
k=l j=l 

M 

L x{t5j,k > o}::::; ck, k = 1, ... , K (4) 
j=l 

6j,k 2:: 0, k = 1, ... , K, j = 1, ... , J\1. (5) 

Let Xj,k := JljDj,k and fj,k := Tj,k/Jtj, Vj, k,then we can rewrite (MPC2) as (MPC2'): 
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max .A (MPC2') 
ill/ 

s.t. L Xj ,k 2: .Aak , k = 1, ... , K (1) 
j = l 

/( 

L: rj ,k ::;: fLj , j = 1, ... , Jvf (2) 
k= l 
[( l\11 

L:L: rj,kxj,k::;: c , (3) 
k= l j = l 

l\11 

L x{xj,k > 0} ::;: Ck, k = 1, ... , K (4) 
j=l 

Xj ,k 2: O, k = 1, ... ,K,j = 1, ... ,M. (5) 

We can treat (MPC2') as an instance of the constrained maximum concurrent mul­

ticommodity k-splittable flow problem, with exactly the same network structure as 

(MP2') (refer to Figure 4.2). The only thing we add is the cost on each edge, which is 

given as follows: First, we define the cost on edge ( S. Vj) and the cost on edge ( Vj, Uj) , 

j = 1, ... , M to be zero. Then, we define the cost on edge (·uj , tk) to be ij ,k, Vj, k. 

Clearly, C is the maximum budget allowed in this network. 

Without the integer constraint (4), (MPC2') is a linear programming problem, 

which can be viewed as the fractional version of the constrained maximum concur­

rent multicommodity flow problem. Let the optimal solution of (MPC2') without con­

straint (4) be~* and the optimal solution of (MPC2') be .A* and x},k· We know that~* 
is an upper bound for .A*. We define the demand of node tk to be ~*ak , k E {1 , .. . , K} , 

and at most ck paths are allowed for sending commodity k. Similar to Algorithm 

1, by computing the minimum congestion, we can get the solution of the maximum 

concurrent multicommodity flow problem. 

The idea of designing Algorithm 3 is as follows: First , we transform (MPC2') into 

the constrained maximum concurrent multicommodity uniform exactly-k-splittable 

flow problem by split t ing each terminal node tk into ck sub-terminal nodes (k, ·i) 

i = 1, ... , ck, each with the sub-commodity demand ak /ck. The cost ij,(k,i) on the 

edge U (k, ·i)) is equal to the cost fj ,k · We solve the fractional version of this reduced 
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problem without constraint (4) in (MPC2'), which is as follows: 

max A (!vf PC2") 
M 

s.t. L Xj,(k,i) ~ Aak/ck, V(k, i) (1) 
j=l 

M 

L L fj,(k,i)Xj,(k,i) ::; C, (2) 
(k,i) j=l 

L Xj,(k,i) ::; /-lj· Vj (3) 
(k,i) 

Xj,(k,i) 2:: 0, Vj, (k, 'i) (4) 

Let the solution of (MPC2") be \ * and .ij,(k,i), V j, ( k, 'i). Clearly, the number A* 

is the maximum fraction we can achieve for routing all sub-commodities simultane­

ously. Then we set each sub-terminal with a new demand 5..*ak/ck and try to find 

an unsplittablc flow satisfying each sub-terminal demand without violating the cost 

budget. 

The congestion a and the flow Xj,(k,i) = ak/ck on edge (j, (k, ·i)) can be decided 

when we find the unsplittable flow for sending each sub-commodity (k. -i). If a > 
1, we know that the edge capacity on (v1 , ·u1 ) will be violated when we route sub­

commodities (k, i) unsplittably. Finally we scale down the flow on each edge by a 

factor a and obtain the original solution and capacity for the problem (MPC2'). 

Description of Algorithm 3 

Algorithm 3 applies the algorithm for minimizing congestion in the unsplittable min­

cost flow problem, which is studied in [Sku02]. First we give the following definitions. 

Definition 5.3. Given a, b E ]R+, b is a-'integral if and only if b E a · N. 

Definition 5.4. A flow is called a-integral flow if the flow amount fe on edge e is 

a-integral for all e E E. 

Then we give Theorem 1 from [Sku02]: 
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Theorem 5.5. Let G = (V, E) be a dir-ected gmph with capacities and costs on the 

edges. Mor-eover-, ther-e is a sour-ce ver-tex s E V and k sinks t 1 , ... , tk E V with 

demands a 1 , ... , ak. 

(a) The1·e exists a feasible (splittable) flow satisfying all demands if and only if, for 

any subset T S:: V \ { S}, the sum of capacities of edges in the directed cut 

(11 \ T, T) is at least L i:L;ET di. We refer to the condition that the sum of 

capacities of edges in the directed cut (V \ T, T) is at least Li:t;ET di as the cut 

condition. 

(b) If the cut condition is satisfied and all demands and capacities are a-integral 

for some a E ffi.+ , then there exists a f easible (splittable) flow satisfying all 

demands with minimum cost such that the flo w value on any edge is a-integral. 

Moreover, such a flow can be computed in polynomial time. 

Computing the a-integral flow without increasing the total cost can be easily 

performed. Suppose we are given a graph G = (V, E) with k commodities. We 

assume that all demands and capacities are a-integral in G. We also assume that 

each commodity is sent through edges with capacities greater than or equal to its 

demand (note that this assumption does not always hold in general). If the cut 

condition is satisfied and we have a feasible splittable flow f satisfying all demands , 

let fk( e ) denote the flow amount of commodity k on edge e, k = 1, ... , K and e E E. 

Now consider a subgraph of G in which each fk( e) is not a-integral. Since in this 

subgraph, all the demands are a-integral but the edges entering demand nodes do 

not carry an a-integral flow amount, the degree of each demand node is at least two. 

Therefore, we can determine an alternating cycle by using the same step we applied 

in Algorithm 1. Then we augment the flow in the forward path and decrease the flow 

in the backward path until t he flow on one edge becomes a-integral if the cost of 

flow is not increased after this augmentation. Otherwise, we augment the flow in the 

backward path and decrease the flow in the forward path until the flow on one edge 

becomes a-integral. We delete all edges with a-integral flow and continue iteratively 

until all edges are deleted from the subgraph. This process terminates after at most 

lEI iterations. Clearly, there are !VI nodes in G, thus, the running time is O(!VI· IE I). 
The key step of Algorithm 3 is the approximation algorithm for finding the unsplit­

table min-cost flow , which also applies the above method for finding the a-integral 
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flow (see, e.g., [Sku02]). Let amin :=mink{ ak} and amax := maxk{ ak}. We will round 

down each demand ak in our problem to 

a~ ·-a .. 2llog(akfamin)J 
k .- mm · 

Obviously, iik, k = 1, ... , K are amin-integral. By applying Algorithm 1 in [Sku02], we 

first introduce the following procedure M·incosLU S P. Taking a given feasible split­

table flow as the input, procedure MincosLU S P generates the unsplittable min-cost 

flow for the problem (MPC2'). We know that only (vj, ·uj), j = 1, ... ,Min (MPC2') 

are capacitated edges, and we will further prove that the flow value on edge ( Vj, 'LLj) 

is less than 2/(0 . ·) + amax, where f(0
. ·) is the initial flow 011 edge (vJ, 'Uj)· v1 ,u1 v1 ,u1 

Procedure lvhncost_U S P 

Input: The graph G = (V, E) corresponding to the problem (MPC2') with non­

negative cost fj,k on the edge (uj, tk), for all j and k, and a feasible splittable flow 

f~EE satisfying all demands and the budget C. 

Output: An unsplittable min-cost flow Xj.k, which is the flow amount on edge (uj, tk) 

and indicates the paths for sending commodity k from source nodeS to each terminal 

node tk, j = 1, ... , M, k = 1, ... , K. 

Step 1: Let amin := mink{ak} and amax := maxk{ak}. Round each demand to be 
iik = amin . 2ltog(akfamin)J, 1 ~ k ~ K. 

Step 2: Decrease the flow along the path S --+ Vj --+ 'ILj --+ tk with the most expensive 

cost fj,k until the flow entering tk has been decreased by ak - iik, k = 1, ... , K. 

After this step, the resulting flow f~EE will satisfy each rounded demand iik. 

Step 3: Set i := 0. 

Step 4: While iimin · 2i ~ iimax do 

(a): Set i := i + 1 and di := iimin · 2i-l. 

(b): For each edge (vj, ·uj) in G, set its capacity /1j to f(~~uJ) rounded up to the 

nearest multiple of di. 

(c): Compute a feasible di-integral flow J;EE satisfying all demands amin . 2i-l 

without increasing the total cost. 
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(d): Remove all edges e with f~E E = 0 from graph G. 

(e): Set 'i1 := 1. 

(f): While 'i1 :::; k and a.i1 =dido 

(i): Arbitrarily determine an edge (vJ , ·uJ) and assign commodity 'i 1 with 

flow amount ai1 on edge (vj, 'Uj)· Then we set :i:j,i1 := ai1 • 

(ii): Decrease flow along path s --7 'Uj --7 Uj --7 til by ail 0 

(iii): Remove all edges e with f~EE = 0 from graph G. 

(iv): i1 := i1 + 1. 

Step 5: Tj ,k is the rounded unsplittablc min-cost flow. Let the final unsplittablc 

min-cost flow Tj ,k := ak if Xj,k = ak , j = 1, ... , !11, k = 1, .. . , K. Return Xj,k, 

j = 1, ... , !If, k = 1, ... , K. 

Let f (0 
0 0) be the initial flow on edge (vJO' uJ) and ! (v o u o) be the final unsplittable v 1 ,u 1 1 ' 1 

flow through edge (vJ, ·uJ)· Obviously, f (v1 ,u1 ) = 'L~~ 1 Xj,k· Similar to Theorem 3 in 

[Sku02], we can prove the following theorem. 

Theorem 5.6. The procedure M'incosLUSP finds an unsplittable flow whose cost is 

bounded by the budget C and the flow value on edge (vJ, Uj) is less than or equal to 

2f(0 
0 0

) + amax , j = 1, ... , M. More precisely, the sum of all but one demand routed v1 ,u1 

across any edge (vJ, uj) is less than twice the initial flow value on ( Vj, uj). 

Proof. Let x~,k be the initial fractional flow on edge (uJ, tk), :i:~,k be the rounded 

fractional flow on edge (uJ, tk) , :i: J,k be the rounded unsplittable min-cost flow on edge 

('uj, tk), and Xj ,k be the final unsplittablc min-cost flow on edge (uj , tk), j = 1, .... M , 

k = 1, ... , K . According to the definition of our graph G, we know that the cost iJ ,k 

only exists on edge (uJ, tk), j = 1, .. . , M, k = 1, ... , K. In each loop of Step 4, the total 

cost in G never increases and the cost of the rounded unsplittablc min-cost flow Xj ,k 

is bounded by the cost of the initial fractional flow i~,k· Thus we have 

M I< M I< 

I: I>j.dj ,k :::; I: I: rj,kxJ.k· (5.4) 
j=l k=l j= l k=l 

After sending all rounded demand, by Step 2 we know that we still have llxJ,k = 

x 0 k- :i:0 k amount of flow remaining on the edge ( UJ, tk). Clearly, 'LJ~1 tlxJ0 k = ak- ak ], J, l 
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and the remaining flow must satisfy, 

M K M K M K 

:L I>~x~,kfj.k ~ :L :L x~.kfj,k - :L :L x~.kfj,k· (5.5) 
j=l k=l j=l k=l j=l k=l 

The remaining flow demand ak - ak will be routed on edge ('u1 , tk) where i 1,k > 0. 

Thus we know that if i.i,k > 0 

' ' Xj,k- Xj,k = ak- Xj,k· (5.6) 

By Step 2 of !11incost_USP, it is easy to see that b.xJ,k remains on the most expensive 

edges and the flow amount 'L~1 6xJ,k will be finally routed on edge (u1 , tk), whose 

cost is less than or equal to the cost of b.xJ,k. Therefore we have, 

M K M K 

L L(xj,k- ij,k)fj,k ~ L L b.xJ,kf.i,k· (5.7) 
j=l k=l j=l k=l 

By (5.5) and (5.7) we have, 

M K M K M K 

L L(xj,k- ij,k)fj,k ~ L L x~,kf.i,k- L L i~,kf],k· (5.8) 
j=l k=l j=l k=l j=l k=l 

Combining (5.4) and (5.8), 

M K M K 

LLx.i,kfj,k ~ LLx~,kf.i,k ~ C, (5.9) 
j=l k=l j=l k=l 

which tells us that the cost of the final unsplittable flow is still bounded by the cost 

of the initial fractional flow xJ,k and respects the given budget C. 

Now we show that the flow value on edge (v1, u1) is less than or equal to 2ffvj ,uj) + 
amax· Obviously, the flow on edge (v1, u1) will be !(vj,uj) = 'Lf=l Xj,k, j = 1, ... , lvf. 

In Step 4 of A1incosLUSP, the capacity JLj in the ith loop is computed by rounding 

the flow value f(i-I ·) up to the nearest multiple of di. We compute a di-integml 
vJ ,u1 

flow by increasing the flow on less expensive edges ('uj, tk) if the flow on ('u1, tk) is 

not di-integral. If the flows on all edges are di-integral, we choose an arbitrary path 

from S to tk for sending commodity k if ak = di. Then the flow on this path will be 

decreased by di. Note that when the flow on an edge is decreased to 0, we will delete 
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this edge from G. Thus the capacity /1j on edge (vi, 'l.Lj) is violated at most once. In 

other words, we know that the sum of all but one rounded demand ak routed across 

any edge (vi, 'LLj) is less than the initial flow f?vj ,uj) on edge (vi, 'LLj), j = 1, ... , AI. 

Consider edge (vi, ·uj) , let k0 be a commodity with the maximal rounded demand 

ako that is routed across (vi, ·uj)· Except commodity k0, the sum of other demands 

routed across (vi , 'Uj) is less than the initial flow on (vi, ·ui). Note that ak ::::; 2ak for 

all commodities k. Therefore we have, 

k:k is routed 
across ( Vj, Uj ) 

k:kolko and 
k is routed 

across ( Vj ,uj) 

k:kolko and 
k is routed 

across ( Vj ,uj) 

Now we give the detailed description of Algorithm 3. 

0 

Stage 1: Initialization. Construct a network with one source node { S} for 

sending f( commodities, 2M nodes {v1 , . . . , VM, ·u1 , . . :uM} for transferring commodi­

ties, and K terminal nodes {t 1 , ... , tJ<} with demand ak , k = 1, ... , K for receiving 

commodities. Set the capacity on the edge (vi, ·u j) to be /1j for j = 1, ... , !vi and the 

cost on the edge ('uj, tk) to be Pj ,k := Tj ,k/ /1 j for j = 1, ... , 111, k = 1, ... , K. 
Stage 2: Transformation of initial problem to a constrained maximum 

concurrent uniform exactly-k-splittable flow problem. We replicate each ter­

minal node t k into ck identical sub-terminals t (k ,i)• i = 1, ... , ck. Then each commodity 

k with demand ak is split into ck commodities (k, ·i) , i = 1, ... , ck. each with the same 

demand a(k ,i) := ak/ ck and with the same source. F\trther, for each edge connecting 

with terminal node tk , we connect it with all of the sub-terminals t(k ,i) and set the 

cost on edge (·ui, t (k ,i)) to be fj ,k, Vj, (k, i). Note that the new commodities (k, 'i) must 

be routed unsplittably. 

Stage 3: Calculation of demand a(k,i)· We use the ellipsoid method to solve 

(MPC2"), which is the relaxation of (MP2'). Let ~ * and i:j,(k ,i) be the optimal frac­

tional solution. Then we assign the flow amount i:j,(k,i) on the edge ( 'Uj , t (k,i) ) and 

the flow amount L(k,i) i:j,(k,i) on the edges (s, vi) and (vi, uj), j = 1, ... , 111. For each 

sub-terminal in the network, let its demand be a(k ,i) := ~*ak/ck. Note the flow i:j,(k ,i) 

computed in this stage is the fractional flow which satisfies the budget constraint and 

the new demand a(k,i). 
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Stage 4: Transformation of the fractional flow calculated in Stage 3 into 

an unsplittable min-cost flow. 

Step 1: Let amin := min(k,i) { a(k,i)} and amax := max(k,i){ a(k,i)}. If amax > 1, we scale 

down all sub-terminal demands, edge capacities, flows and the budget by the 

factor amax so that a(k,i) E (0, 1] and /-lj E (0, +oo). Let D := 1/amin, we know 

that all demands fall within the interval [1/ D, 1]. We partition the interval 

[1/ D, 1] into sub-intervals as follows: 

[1/ D, 1j2LlogDJJ, ... , (1/2i+l, 1/2t ... , (1/2, 1]. 

This step is the same as Step 1 of Stage 4 in Algorithm 3. There are LlogD J 
sub-intervals, which are numbered as sub-interval 1, 2, ... , llogD J from left to 

right. 

Step 2: Similar to the flow augmentation techniques in Stage 4 of Algorithm 3, 

we do a slight modification on the procedure M'incost_U S P by restricting to 

unsplittable min-cost flows where commodity (k, i) can be only sent on edges 

with capacity at least a(k,i)· Then, we use the procedure .Af,incost_USP to 

produce the unsplittable min-cost flow Xj,(k,i) for each commodity with demand 

in sub-interval i, i = 1, ... , llogD J. The total cost of the unsplittable flow will 

be bounded by the initial cost of the fractional flow :i:* (k .l. 
], ,'l. 

Stage 5: Calculation of the original solution bj,k and the capacity A for 

(MPC2). If the original a max > 1 in Step 1 of Stage 4, we first restore the flow 

and capacities in the network by multiplying Yi,(k,i) and /-lj with amax, for all j, (k, i). 
Then we scale down flow in every edge by a factor a := maxj L(k,i~~j,(k,iJ. The final 

solution xj,(k,i) tells us that each commodity (k, i) will be shipped through the edge 

( Vj, Uj) unsplittably. Thus the A that corresponds to this solution is the capacity that 
L'H we achieved. It is easy to see that A = min(k i) i=l xj,(k,•J. Since x

1
· k := tt1·61· k· finallv 

' a(k,i) ' ,... ' · ..... 

we set bj,k := Xj,k/1-li = L(k,i) Xj,(k,i)/1-tj· 

Analysis of Algorithm 3 

Similar to Theorem 4.3, first we show that Theorem 5 in [BKS02] can also be applied 

for the constrained maximum concurrent multicommodity k-splittable flow problem. 
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Theorem 5. 7. Computing the constrained maximum concurrent multicommodity uni­

form exactly-k-splittable fiow problem in Stage 2 of Algo1·ithm 3 guarantees at least 

1/2 of the optimal value for the constrained maximum concurrent multicommodity 

k-splittable fiow problem (MPC2 '). 

Proof. Suppose the optimal solution of a constrained maximum concurrent multicom­

modity k-splittable flow problem (MP2') is).* and x;,k. We use the same idea adopted 

in Theorem 4.3 so that there exists a feasible constrained maximum concurrent mul­

ticommodity uniform exactly-k-splittable flow with flow value D := >.*ak / (2ck) on 

each path for sending sub-commodity (k , i) , V(k, 'i). 

By the same construction in Theorem 4.3, we know that there are at least ck paths 

carrying the flow amount D for commodity k, k = 1, ... , K. Since our construction 

does not increase flow on any edge, the cost of the network will never be increased. 

Clearly, the maximum possible fraction for routing commodity k is at least ).* / 2 for 

(MPC2'). 0 

Using the same steps as in the proof of Theorem 4.4, we can prove the following 

theorem, which is similar to Theorem 6 in [Sku02]. Note that the sub-intervals in 

Stage 4 of Algorithm 3 are the same as the sub-intervals used in Algorithm 1. 

Theorem 5.8. Stage 4 of Algorithm 3 finds the unsplittable min-cost fiow for sending 

each sub-commodity without violating the budget C such that the total fiow through 

(v1, ·u1) e.xceeds its edge capacity /-tj by less than 6J-t1, j = 1, ... , M. 

Proof. Because the capacitated edges in G are (v1, ·u1), j = 1, ... , M , we only consider 

flow on those edges. Let the initial flow on edge (v1 , u1 ) be f( v j ,uj ) and the final 

unsplittable min-cost flow on edge (v1, u1) be f(v j,uj)· 

We choose an arbitrary sub-interval (1/2i+l, 1/2i] from 

[1/ D, 1j2LlogDJJ, ... , (1/2i+ 1
, 1/2i], ... , (1 / 2, 1] . 

In this interval , we only consider commodity l whose demand a1 is located in this 

sub-interval. By the modification in Step 2 of Stage 4, the unsplittable min-cost flows 

for sending commodity l go through edges with capacities greater than or equal to the 

demand of commodity l. In this interval, the minimum commodity demand is 1/2i+l, 

thus we have /-tj ~ 2t~ 1 • Considering edge ( v1 , u1 ) , by Theorem 5.6, the unsplittable 
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min-cost flow found in this interval is bounded by a1
m. ax+ 2/(i . ·)' where a~ax :S 1/2i 

• Vy ,U.J 

is the maximal demand in this interval and f(i . ·) is the initial fractional flow in this 
V1 ,u1 

interval. We know that edge (vj, uj) may also be used in other sub-intervals before 

(1/2i+l, 1/2i], the flow f('v· u.) on it is at most: 
J' J 

LlogD J 

j=i 

LlogDJ LlogDJ 

< 2::: (1/2j) + 2::: 2f(vj,U.j) 

j=i j=i 

LlogD J 
1 (2llogDj-i+l - 1) + "" 2fi 

2LlogDJ L......t (vj,U.j) 

1 1 
=4·-- + 2i+l 2llogDJ 

j=i 

LlogDJ 

L 2f(vj,u.j)" 
j=i 

Since 2;~ 1 :S f.Lj and L f(vi,u.i) :S !(vj,u.j) :S f.L], the total flow on the edge ( Vj, ·uj) is 
j=i 

bounded by, 

LlogDJ . 
1 

f(vj,Uj) :S 4 · 2i:l - 2llo~Dj + L 2 f(vj,uJ) :S 4 f.Lj - 2LlogDJ + 2f.Lj :S 6f.Lj· 
j=i 

It tells us that for any edge (vj, ·uj) in the graph, the sum of unsplittable flows through 

it is at most 6 times its edge capacity. According to Theorem 5.6, we know that the 

cost of unsplittable flow found in each interval is bounded by the cost of the initial 

flow. Thus the budget C is still respected. Therefore, there exists a 6-approximation 

algorithm for the minimum congestion of the min-cost unsplittable flow problem 

and we can achieve a 1/6-approximation algorithm for the constrained maximum 

concurrent multicommodity unsplittable flow problem. D 

Theorem 5.9. Algorithm 3 is a 1/12-approximation algorithm for solving the problem 

MPC2. 
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Proof Let the optimal solution of (MPC2 ') be >.*. According to Theorem 5.7, solving 

the constrained maximum concurrent multicommodity uniform exactly-k-spli tt able 

flow problem will achieve at least 1/ 2 of the optimal solution >. *. By Theorem 

5.8, Stage 4 of Algorithm 3 achieves at least 1/ 6 of the opt imal solution for the 

constrained maximum concurrent mult icommodity uniform exactly-k-split t able flow 

problem wit hout violating the budget C . Therefore we achieve at least 1/ 12 of the 

optimal capacity ,\* in (MPC2') while respecting the budget C. D 

5.3.2 Improvement of Algorithm 3 

Suppose we are given a number {3 > 1. Then we can slightly modify Algorithm 3 in 

t he following two steps: 

Step 1: In Step 1 of Stage 4, we partition the interval [1/ D , 1] into sub-intervals as 

follows: 

[1/ D, 1/ ,uLiogff J J . . .. . ( 1/ ,ui+ 1 , 1/ f:Jt ... , ( 1/ ,6, 1], 

Clearly, the number of sub-intervals is L logff J + 1. 

Step 2: In Step 1 of the procedure M 'incosLU SP , we round each demand to be 

a' I. = a . . P LlogJ a,.Jam;nJ 1 < k < T;( 
"' 1ntTL fJ , _ _ r . 

Since we have modified t he rounded demand in the procedure M 'incosLU S P for each 

commodity, we first prove a new version of T heorem 5.6. 

Theorem 5.10. The procedure Af-incosLUSP finds an unsplittable flow whose cost 

is bo'un ded by the budget C and the flow value on edge ( v1 , 'Uj) is less than or equal to 

,U f (0 . · ) + a rrwx. j = 1, ... , !11. More precisely, the sum of all but one demand routed v1 ,u1 

across any edge ( v1, u1) is less than {J times the initial flow value on ( v1, u1) . 

Proof. T he proof is the same as the proof of Theorem 5.6 , except that we have 

ak ::; {Jak for all commodit ies k. As a result , we have 

k:k is routed 
across (vj.Uj) 

k :k 'f' ko and 
k is routed 

across (vj,Uj) 

k: k 'f' ko and 
k is routed 

across (vj,uj) 

D 
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By applying the same approach as in Theorem 5.8 and together with Theorem 

5.10, we can prove the following theorem: 

Theorem 5.11. Stage 4 of Algorithm 3 finds the unsplittable min-cost flow for send­

ing each sub-commodity withov,t violating the budget C such that the total flow through 

(vj, ·uj) exceeds its edge capacity P,j by less than (3 + 2v'2)!J.j, j = 1, ... , .A1. 

Proof. Let the initial flow on edge (vj, uj) be f(vJ,uj) and the final unsplittable min­

cost flow on edge (vj, ·uj) be f('v u·)' First, we choose an arbitrary sub-interval 
J, J 

(1j;Ji+ 1 , 1/ pi] from 

We only consider commodity l whose demand a1 is located in this sub-interval. Similar 

to Theorem 5.8, we know that P,j 2: 8;~ 1 • By Theorem 5.10, the unsplittable min-cost 

flow found in this interval is at most a~ax+Pf(vj,uJ)' where a~ax :::; 1/ {3i is the maximal 

demand in this interval and J(i . ) is the initial fractional flow in this interval. Since 
Vj,UJ 

edge ( Vj, ·u1·) may also be used in other sub-intervals, the flow f(' . ·) on it is bounded v 1 ,u1 

by: 

j=i 

llogFJ llogFJ 

:S: :L (1/ {1j) + :L {1f(vj,Uj) 
j=i j=i 

llogF J 
We know that (3;~ 1 :::; P,j and 2.:.:: f(vj,uj) :::; !(vj,uj) :::; P,j· Thus the total flow on the 

j=i 

edge (vj, 1tj) is at most, 
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Now we know that the total flow through any edge ( Vj, 'ttj) is bounded by ( 2~~~/3) fl j , 

j = 1, ... , 1'11. Then we compute the minimum value of 2~~~/3. Since (J > 1, the solution 

is (i = 1 + V'i/ 2 and the value of 2~~~;3 is 3 + 2J2. Therefore, the sum of unsplittable 

flow through any edge is at most 3 + 2J2 times its edge capacity. In each sub-interval , 

the cost of unsplittable flow is bounded by the cost of the init ial flow. Thus the budget 

C is still respected. Finally, we conclude that there exists a 3 + 2J2-approximation 

algorithm for t he minimum congestion of the min-cost unsplittable flow problem and 

have a 1/ (3+2J2)-approximation algorithm for the constrained maximum concurrent 

multicmmnoclity unsplittablc flow problem. 0 

Corollary 5.12. There is a 1/ (6 + 4J2)-approximation algorithm for solving the 

problem M PC2. 

5.3.3 Approximation Algorithm 4 

Design of Algorithm 4 

Algorithm 4 is based on the the algorithm in [ST93] for solving the scheduling of 

unrelated machines problem with costs. The first stage of Algorithm 4 is the same as 

Algorithm 3, where we convert (MPC2 ') into the constrained maximum concurrent 

multicommodity exactly-k-splittable flow problem and will lose 1/2 of approximation 

factor . 

In the second stage, we solve the relaxation (MPC2" ) of the constrained maxi­

mum concurrent multicommodity exactly-k-split table flow problem and transform its 

solution to a feasible (fractional) solution of the scheduling of unrelated machines 

problem with costs. 

In the third stage, we round the feasible (fractional) solution of the scheduling 

of unrelated machines problem with costs to an integer solution while respecting the 

cost constraint. 

Finally, we map the integer solution back to the solution 6 j ,k and the capacity .A 

in the original problem (MPC2). 
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Transformation of (MPC2') to the scheduling of unrelated machines prob­

lem with costs 

When (MPC2') is transformed into the constrained maximum concurrent multicom­

modity exactly-k-splittable flow problem, we have the following relaxation (l\IPC2") 

of the constrained multicormnodity concurrent unsplittable flow problem as follows, 

max A (M PC2") 
M 

s.t. L Xj,(k,i) 2: Aak/ck, V(k, i) (1) 
j=l 

M 

L 2.:::>~. (k )X (k ) < c J, ,'l J, ,t - ' (2) 
(k,i) j=l 

L Xj,(k,i) :::; J.lj: Vj (3) 
(k,i) 

Xj,(k,i) 2: 0, Vj, (k, i) (4) 

Let the optimal solution of (MPC2") be xj,(k,i) and A*. vVe also define A(k,i), where 

A(k,i) = ~;~1 xJ,(k,i)/(ak/ck). It is easy to check that A(k,i) 2: A* for any (k, i). Also, 

d fi . - Ck * - ak d A/ - A )..(k,•)ak f 11 . we e nc Y](ki)- -,--x.(k')' PJ(ki)- -,an r.(k')- rj(ki) ·--,or a J, 
' ' A(k,i)ak ), ,t ' ' CkJ.lj ), ,t ' ' Ck 

(k, i). 

Obviously, we have the following equality 

M M 

L 'YJ,(k,i) =LA Ck a xj,(k,i) = 1, Vk, i, 
j=l j=l (k,i) k 

and the inequalities, 

""" """ a k ck * ~Pj,(k,i)Yj,(k,i) = ~ c 
11

_ • A . a xJ,(k,i) 
(k,i) (k,i) k,....J (k,t) k 

1 L X(k ') < - (k,i) 1' ,t < 1/A * V(k i) '* - , , J.lj A 
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and, 
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A4 Nf 
~~ ~~ , _ ~~ ~ A (k ,i)ak ck * 
L L 1 J,(k,i)YJ ,(k ,i) - L L 1 J,(k,i) · c · A . a xJ,(k ,i) 
j = l (k ,i) j = l (k,i) k (k ,!) k 

M 

= L L rj ,(k ,i)x;,(k,i) 

j=l (k,i) 

~ C, \:fj, (k, 'i). 

We define T = 1/ A *. Combining the above, we have the following linear programming 

problem: 

At 

LYJ,(k ,i) = 1, Y(k , ·i) 
j = l 

L PJ,(k, i) Yj ,k ~ T, \:fj 
(k ,i) 

M 

L L f~, (k ,i)YJ, (k,i) ~ c 
j = l (k ,i) 

YJ,(k ,i) 2: 0, \:fj , (k, ·i) . 

(1) (SC I ) 

(2) 

(3) 

(4) 

T hiti is exactly the relaxed version of the scheduling unrelated machines problem 

with costs, where the job nodes in (SCI ) correspond with the sub-commodity nodes 

t(k ,i ), Y(k , 'i) in (MPC2" ) and the machine nodes in (SCl ) correspond with the edges 

(v1, ·u1), \:fj in (MPC2") . The processing time for job (k, ·i) scheduled on machine j is 

defined to be PJ,(k,i) · We know that scheduling job (k , i) on machine j can be viewed 

as routing sub-commodity (k , 'i ) on the edge (vi, 'Ui) unsplittably. The fraction of job 

( k, i) scheduled on machine j is YJ,( k ,i). Given xj,(k,i) and A* in (MPC2"), we can 

find a feasible (fr actional) solution YJ,(k ,i) with the makespan T = 1/ A * for the linear 

programming problem (SCl). 

Similar to Algorithm 2, we define a variable p := maxJ,(k,i) {PJ,(k ,i)/T} and consider 
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the following linear programming problem (SC2). 

Since 

M 

LYJ,(k,i) = 1, V(k, i) 
j=l 

LPj.(k,i)Yj,(k,i) ::::; T, Vj 
(k,i) 

M 

""'""' f'- (k ·)Y. ('· .l < C L L ), ,t J, rt-,·1. -

j=l (k,i) 

Y],(k,i) = 0 if PJ,(k,i) > p · T, Vj, (k, i) 

Y),(k,i) ~ 0, Vj, (k, ·i). 

PJ,(k,i) ::::; maxJ,(k,i) {PJ,(k,i)} = p · T 

(1) (SC2) 

(2) 

(3) 

(4) 

(5) 
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We know that the constraint ( 4) in (SC2) will not set any Y],(k,i) to zero. Thus the 

solution YJ,(k,i) and T = 1/ ).* in (SC1) is still feasible in (SC2). 

Description of Algorithm 4 

D. B. Shmoys and E. Tardos [ST93] proposed an algorithm for rounding any fractional 

schedule Y],(k,i) to an integer schedule ih(k,i) which has makespan at most T + p · 

T. When we find the integer solution YJ,(k,i)for (SC2), we know that the integer 

solution xJ,(k,i) can be easily computed by setting Xj,(k,i) = YJ,(k,i)A(k,i)ak/ ck. Thus the 

approximate solution b1,k and A of (MPC2) will be derived. 

The idea of the rounding algorithm is that we split each machine j into several 

sub-machines and guarantee the number of sub-machines are greater than or equal 

to the number of jobs ( k, i) we have. Then we try to find a fractional matching in 

this bipartite graph with job (k, i) and the sub-machines. According to the fact that 

the min-cost integer matching can be computed in polynomial time, we finally get 

the integer matching and transform it to the solution of the scheduling of unrelated 

machines problem with costs. 

It is easy to see that we have K' := L.~=l ck jobs and M machines in (SC2). 

Let YJ,k (j = 1, ... , lvf, k = 1, ... , K') be the solution of (SC2). We will follow the 
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steps in [ST93] to construct a bipartite graph B(y) = (V, 1111, E) and a value y' (v, w) 

(originally, y' (v , w) = 0) for each edge (v , w) E E. This bipartite graph consists of 

the following two parts: 

job nodes: Til/= {wk: k = 1, ... , K'} . 

sub-machine nodes: V = {vj,s : j = 1, ... , !11, s = 1, ... , kj }, where kj := I:L~: 1 Y],k l 
and sub-machines { uj,s : s = 1, ... , kj } correspond to machine j. 

The cost of each edge (vj ,s· wk) equals the cost of machine j working on job k m 

(SC2) , which is f },k · 

We construct the graph fl(y) and the vector y' in the following way. 

Step 1: Vve sort the jobs in the order of nonincreasing processing t ime P),k such that 

P j, l ~ P.i.2 ~ ·· · ~ P]J<' , j = 1, ... , !II. 

Step 2: Choose a machine j and compute the value :L~:1 Y),k· If 2:~:1 Y),k ~ 1, we 

know that there is only one sub-machine Vj,l corresponding to machine j. Then , 

for each Y),k > 0, we set ·y'(vj, l , wk ) := Y],k· 

Step 3: If "2:~~ 1 Y],k 2 1, we know that there exists more than one sub-machine Vj,s· 

We find the minimum index k1 such that "LZ~ 1 '!/j ,k 2 1, and set y' (vj ,l , wk) := 

YJ,k, k = 1. ... , k1 -1. Then, we set y' (vJ,l,wk 1 ) := 1 - L~~~1 y'(vJ, 1 ,wk) · This 

guarantees that the sum of y' for edges incident to Vj, l is exactly 1. If :LZ~ 1 '!/j,k > 
1, we know that a fraction of the value YJ,k1 remains. Then we assign the 

remaining fraction on edge (vJ,2, wk1 ) and set y'(vJ,2, wkJ := (:L~~1 YJ,k) -1. 

Step 4: For each s = 2, ... , kj - 1, we find the minimum index k8 such that "2:~:, 1 2 s . 

We set y'(vj,s, wk) := Yj,k, k = ks- 1 + 1, .. . , ks - 1 for each '!/j,k > 0, and set 

y'(vJ,s, wkJ := 1- "2:~:,~~ - 1 + 1 y'(vj,s, wk)· Similarly, if "2: ~:, 1 Y],k > s , we also set 

y'(vj,s+ l • wk..) := (:L~:, 1 YJ,k) - s . 

We give a simple example to show this construction. Suppose we have 2 machines 

and 3 jobs. The matrix YJ ,k and PJ,k are given as follows : 

(
1/ 4 1 0) 

'!/j,k = 3/ 4 0 1 
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(2 1 1) 
Pj,k = 2 1 1 

Then B (y) is constructed as follows: The above steps can also be written as the 

sub-machines 

jobs 

For solid edges, y'(vj,s,wk) = 3/4. 
For dashed edges, y'(v],s• wk) = 1/4. 

Figure 5.2: An example of constructing B(y) 

following procedure. 

Procedure Frac_M atching 

Input: the bipartite graph B(y) and Y],k· 

Output: the fractional matching y'(vj,s, wk). 

Step 1: For each machine j, sort the jobs in the order of nonincreasing processing 

time P],k such that we have Pj,l 2: P],2 2: ... 2: PJ,K'· 

Step 2: For each machine j 

(a): If E:=l YJ,k :::; 1, we know that there is only one sub-machine Vj,l E V 

corresponding to machine j. Then, for each YJ,k > 0, include (v),l• wk) E E 

and set y'(v1,1, wk) := YJ,k· 

(b): If E:=l Y],k > 1, set ·index(O) := 1. 

For i = 1 to k1 - 1 
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(i): Let index ('i) be the minimum index such that L~:~x(i) Yj ,k 2:: i. 

(ii): Set y'(v7,q, wk) := Yj ,k, q = 1, ... , index('i) - 1. 

(iii ): Set y'(vj,index(i), wk) := 1 - L~:~~:~~{L 1 ) y'(vj,q, wk)· 

(. )· If"" index(i) , 1 l V . Dk=index(i - 1) Yj ,k > ) set 
, '(· , ) ._ ("" index(i) , ) 1 Y Uj,index(i)+ l> Windex(i) .- Dk=index(i- 1) Yj ,k - · 

D. 13 . Shmoys aucl E . Tardos preseut the definition of fractioual matching in [ST93] 

as follows : A non-negative vector z on the edges of a bipartite graph is a fractional 

matching if, for each node u , the sum of the components of z corresponding to the 

edges incident to ·u is at most 1. The fractional matching exactly matches a node ·u 

if the corresponding sum is exactly 1. A fractional matching z is a matching if each 

component of z is 0 or 1. 

Lemma 2.2 in [ST93] summarizes some simple properties of the bipartite graph 

B(y ) and the vector y' (vj ,s, wk), which is as follows: 

Lemma 5.13. The vector y'(vj,s , wk) is a fractional matching in B (y) of cost at most 

C. All job nodes 'Wk. k = 1, ... , [{' and sub-machine nodes Vj ,s, j = 1, ... , M , s = 
1, ... , kj - 1 are exactly matched. Moreover, let Pi:sax denote the maximum of the 

processing times Pj,k corresponding to edges ( Vj ,s, wk) E E and pJ:;n denote the min­

imum of the pmcessing times Pj,k corresponding to edges (vj,s, wk) E E. Finally we 

have Pj,~n 2:: P},~a';. 1 for each j = 1, ... , rn , s = 1, ... , kj - 1. 

According to the steps constructing the fractional matching y' in B (y) , we have 

Yj ,k = 2: y'(Yj,s, wk) and the cost on edge (vj,k, wk) E E is equal to rj,k in 
(vj,, ,wk,)EE 

(SC2). Therefore , the total cost of the fractional matching still respects the budget C 

in (SC2). By Theorem 7.3.3 in [Lov86], we know that there exists an integral solution 

of the optimal value for the minimum cost bipartite matching problem. Then we find 

a minimum cost (integer) matching M which matches all job nodes in B(y). It is 

clear that the cost of this integer matching M is less than or equal to the cost of the 

fractional matching y' and also respects budget C. Finally, for each edge (vj,s, wk) in 

M , we schedule job k on machine j in (SC2) , j = 1, ... , M, k = 1, ... , K'. 

The minimum cost integer matching problem can be solved by the Hungarian 

method for solving the assignment problem. (For more details about the Hungarian 

method, refer to [Mur95] and [Lov86] .) The assignment problem is a special case of 
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the min-cost integer matching problem where we have the same number of machines 

and jobs. By our construction of the bipartite graph B(y), we know that the number 

of sub-machine nodes Lf~1 kj is greater than or equal to the number of job nodes 

K'. Thus we construct a new bipartite graph B'(y) by adding (I":f~ 1 ki)- K' dummy 

job nodes w~, k = 1, ... , :Ef~ 1 kj - K'. The cost of each edge (vj,s, w~) is defined 

to be zero. By Lemma 5.13 we know that all job nodes wk and sub-machine nodes 

Vj,s, j = 1, ... , M, s = 1, ... , kj - 1 are exactly matched. Thus, the number of sub­

machine nodes :Ef~1 kj is greater than or equal to the number of job nodes K'. The 

sum of remaining fractional matching incident to sub-machine V],kJ, j = 1, ... , Af is 

(2":f~ 1 kj)- K'. Then we fractionally match sub-machines Vj,kJ' j = 1, ... , A1 with 

the dummy job nodes w~. By this construction, we can transform the minimum 

cost integer matching problem to an equivalent assignment problem with the initial 

fractional matching. This fractional matching we construct for B' (y) is also called 

the fractional assignment and will be the initial input of the Hungarian method. 

Obviously, the optimal integer assignment in B'(y) will give us the optimal integer 

matching in B(y). 

We use the Hungarian method to solve the reduced assignment problem and gen­

erate an integer assignment in B'(y) with minimum cost. For each assignment cor­

responding to edge (vj,s: wk), we schedule job k on machine j in (SC2), j = 1, ... , !vf, 

k = 1, ... , K'. Finally, the solution of (MPC2) can be generated by the integer schedule 

we find. 

Algorithm 4 applies the same first two stages as Algorithm 3. The following is the 

detailed description. 

Stage 1: Initialization. Construct a network with one source node { S} for 

sending K commodities, 2M nodes {v1 , ... ,v11-f,'U1 , ... 'UM} for transferring commodi-

ties, and K terminal nodes { t 1, ... , tK} with demand ak, k = 1, ... , K for receiving 

commodities. Set the capacity on edge (vj, 'Uj) to be J-Lj for j = L ... , M and the cost 

on edge ('Uj, tk) to be rj,k := rj,k/ J-Li for j = 1, ... , M, k = 1, ... , K. 

Stage 2: Transformation of initial problem to a constrained maximum 

concurrent uniform exactly-k-splittable flow problem. We replicate each ter­

minal node tk into ck identical sub-terminals t(k,i), 'i = 1, ... , ck. Then each commodity 

k with demand ak is split into ck commodities (k, i), 'i = 1, ... , ck, each with the same 

demand a(k,i) := ak/ck and with the same source. Further, for each edge connecting 
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with terminal node t k, we connect it with all of the sub-terminals t(k ,i) and set the 

cost on edge (uj , t(k ,i)) to be ij,k , 'r:/j , (k , i) . The new commodities (k , 'i) will be routed 

unsplittably. 

Stage 3: Solving the fractional constrained maximum concurrent uni­

form exactly- k-splittable flow problem and transformation of its solution 

to a solution of the scheduling of unrelated machines problem with costs. 

Vve consider the relaxed version of the constrained maximum concurrent uniform 

exactly-k-spli ttable flow problem (MPC2") and get the solution xj,(k ,i) and .\ * by the 

ellipsoid method. Then we construct the corresponding scheduling of unrelated ma­

chines problem, with job (k, 'i), 'r:/(k, ·i) and machine j, j = 1, ... , !vf. The processing 

time for a job (k, i) scheduled on machine j is defined to be P],(k ,i), where Pj,(k ,i) := c:~j. 

We assign the cost r; ,(k ,i) := fj ,(k ,i) · >. < k~:ak on edge (j, (k, 'i) ), 'r:/j, (k, i). Let a feasible 

solution of this scheduling problem be Yj ,(k,i) and the makespan T. Further we define 

Y . ( ') := x;,(k , i) Ck and T := 1/ .A*. 
J , k ,t >. ( k, i) a,, 

Stage 4: Computing a fract ional matching y'(v1,8 , wk) · Let K' := 2:~~ 1 ck. 

We define Y} ,k to be the fraction of job k on machine j , r1,k to be the cost of job 

k on machine j, and P},k to be the processing time of job k on machine j , where 

k = 1, ... , K' . Then we construct a bipartite graph B(y) = (V, vV E) and a value 

y'(v, w) and a cost c(v , w) for each edge (v , w) E E. One side of the bipartite graph 

consists of job nodes W = {wk> k = 1, ... , K'} and the other side consists of machine 

nodes V = {vj,s}, j = 1, ... , M , s = 1, ... , kj where kj := 12::=1 Y],k l We also set the 

cost of edge (vj ,s, wk) E E to be r-;,k in (SC2) . Then we call procedure Frac_M atch·ing 

to generate the fractional matching y'(v1,8 , 'Wk) in B(y). 

Stage 5: Finding a min-cost integer matching which exactly matches 

all job nodes in B(y). We construct a new bipartite graph B'(y) by adding k = 

1, ... , 2:;~ 1 k1 - K' dummy job nodes w~, k = 1, ... , 2:~1 k1 - K'. We set the cost 

on all edges ( Vj ,k> w~) to be zero and randomly match those dummy job nodes with 

unmatched sub-machine nodes in B'(y). Then we use the Hungarian method to find 

the min-cost integer matching y(v1,s, wk) in B'(y). 

Stage 6: Calculation of the integer solution Xj,(k,i) of (MPC2'). We check 

the integer matching y(vj,s· wk)· If y(v1,8 , wk) = 1, we find the node (k, ·i) correspond-
. . l d ' 1 h · ' · 0 Th l t ' ·- ' >. (k,i)ak mg w1t 1 Wk an set Y] ,(k,i) := ot erw1se Y1,(k,i) .= . en e Xj,(k ,i) .- Y],(k,i) - c-k -. 

Xj,(k ,i) is the solution for the reduced constrained maximum concurrent multicommod-
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ity exactly-k-splittable flow problem. Similar to Stage 5 of Algorithm 3, we scale down 

flow on every edge by a factor a := maxj I:(k,i~~J,(k,iJ such that the edge capacities on 

(vj, ·uj), Vj are respected. 

Stage 7: Calculation of the original solution 6j,k and the capacity .\. in 
(MPC2). The original6j,k in (MPC2) can be computed by setting 6j,k := L:(k.·~~J.(k,i), 

. - 1 111 k - 1 J{ Tl 't f (l\'1PC2) . tl ' - . L:j~ 1 ~-'151 ·k J - , ... , , - , ... , . 1e capac! y 0 n lS lat -" - mmk a~.- . 

Analysis of Algorithm 4 

By applying Theorem 2.1 from [ST93], we first prove the following theorem. 

Theorem 5.14. Stages 4 and 5 in Algorithm 4 round any feasible solution Y],(k,i) into 

an integer solution fh(k,i) with makespan at most (1 + p)T and total cost at most C. 

Proof. By Lemma 5.13, we know that the cost of the fractional matching y'('uj,s. wk) 
in the bipartite graph B(y) is at most C. In Stage 5 of Algorithm 3, we can find a 

integer matching of the minimum cost in B(y) by the Hungarian method. Clearly, 

the minimum cost in B(y) is less than or equal to C. Thus the budget Cis respected. 

Applying Theorem 2.1 in [ST93] directly, we know that the makespan is at most 

(1 + p)T. 0 

Then we can prove the following theorem: 

Theorem 5.15. Algorithm 4 is a 2 (l~p) -approximation algorithm for solving (MPC2'). 

Proof. Suppose the optimal solution of (MPC2') is ).. *. By Theorem 5. 7, solving the 

constrained maximum concurrent multicommodity uniform exactly-k-splittable flow 

problem guarantees at least 1/2 of the optimal solution ).. *. According to Theorem 

5.14, we know that the makespan is as most (1 + p)T, thus we can achieve at least 

1!P of the optimal capacity of the constrained maximum concurrent multicommodity 

uniform exactly-k-splittable flow problem (:\JPC2") without violating the budget C. 

Therefore, at least 2(l~p) of the optimal solution ).. * can be achieved and the budget 

C is still respected, which proves the theorem. 0 
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5.4 The case J-1 = a . (3T 

Given an M x 1 vector cr and a I< x 1 vector {3, when theM x I< matrix J.1 =a· {3T, 

we show that this case will fall into the case of Section 5.2. 

Since J.1 = CY • {F, we know that in matrix J-1 , the (j , k) entry J.l],k = O'jf3k· We 

define Xj.k := O'j Oj,k for all j , k and bk := ak/ f3k for all k. Moreover , we define the 

original cost fj ,k := rj,k/ crj for all j . Now the problem (MPC) can be written as, 

max ,\ (MPC' ) 
M 

s.t. L Xj ,k ~ ..\bk , k = 1, .. . , I< (1) 
j= l 

]( 

L: xj,k::; O'j , j = 1, ... , M (2) 
k= l 

I< M 

L I.:> j,kXj,k::; c, (3) 
k= l j = l 

M 

L: x {oj,k > o} ::; ck, k = 1, .. . , I< (4) 
j = l 

Xj ,k ~ 0, k = 1, .. . , I<, j = 1. .... M . (5) 

Obviously, (MP C') is exactly the same form as (MPC2'). Therefore, we can apply 

Algorithm 3 or Algorithm 4 to calculate an approximate solution Xj,k and generate 

the final solut ion of TDCCP with costs by setting oj,k := xj,k/ O'j for all j , k . 

5.5 Solving the general case 

When the servers or classes are not identical, we will have the general case of (MPC). 

In this sect ion, an approximat ion algorithm will be given for solving the general 

(MPC). 

The idea of this algorithm is similar to the algorithm for solving the general (MP ). 

First , we t ransform (approximately) the general (MPC) to an instance of (MPC2 '). 

Then, we solve the reduced case by Algorithm 3 or Algorithm 4. 
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We assume /1j,k > 0 for all j, k. Let ~tjax be the maximum service rate of server 

j over all classes, i.e. ILjax = maxk{pi,d· Let ltjin be the minimum service rate of 

server j over all classes, i.e. pjin = mink{pi,k}. 

We try to solve the following problem first. 

max .\ (MPC3) 
M 

s.t. L /1-j,kbj,k ;:::: >.ak. k = L ... , K (1) 
j=l 

/{ 

~J-lj,kbj,k S f-ljax,j = 1, ... , 111 (2) 
k=l 
/{ M 

L L rj,k6j,k S C, (3) 
k=l j=l 

M 

Lx{6J,k > o} s ck,k = L ... ,K (4) 
j=l 

oj,k;:::: o, k = 1, ... , K,j = 1, ... , 111. (5) 

Obviously, (MPC3) is the same formulation as (MPC2') in Section 5.2. Let the 

optimal solution of general (MPC) be >. *, 6* and the optimal solution of (MPC3) be 

),*, 6*. We have the following lemma similar to Lemma 4.10. 

Lemma 5.16. For the optimal solution of (MPC) and (MPC3}, we have~*;::::>.*. 

Suppose the (approximate) solution of (MPC3) is Xj,k and~. Let Wj = pjax I pjin 

and Wmax = maxi{wJ}. By defining 

(5.10) 

We can prove the following two theorems by choosing the different algorithms for 

(MPC3). The proof is similar to the proof of Theorem 4.11. 

Theorem 5.17. Solution (5.10} is a feasible solution of (MPC}, and achieves a), of 

value at least ), *I 12wmax. 

Theorem 5.18. Solution (5.10} is a feasible solution of (MPC}, and achieves a>. of 

value at least >.*12(1 + p)Wmax· 
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5.6 NP-Completeness 

\t'/e consider the special case (MPC2'). By setting the cost Tj ,k := 0, '1/j, k, the 

constraint (5) in (MPC2') will be trivial for any C 2: 0, then we know (MPC2 ') 

includes (MP2 ') as a special case. Therefore, we have the following theorem and 

corollary. 

Theorem 5.19. (MPC2') is NP-Complete. 

Corollary 5.20. The geneml TDCCP with costs is NP-Complete. 



Chapter 6 

Experiments 

In our experiments, we design some examples for testing each algorithm studied in 

Chapter 4 and Chapter 5. When the service rates are independent of classes (all 

classes are identical), the testing results tell us that in most of the time, Algorithm 1, 

2, 3 and 4 can produce very good approximate solutions for maximizing the through­

put in queueing networks. However, in the general case, the approximation algorithms 

based on Algorithm 1, 2, 3 and 4 may give poor solutions. All tests are running in 

MATLAB 7.0. We will compare and analyze the performance among different algo­

rithms. 

6.1 Experiments of TDCCP without costs 

6.1.1 TDCCP without costs when all classes are identical 

Design of Examples 

In our examples of TDCCP without costs and all classes identical, the input data are 

the service rates Pi,k (JLj), the numbers ak and the flexibility bounds ck. We define 

two integer M and K, where M is the number of servers and K is the number of 

classes. The values of M and K are integers in (0, 20]. Since all classes are identical 

and /Lj,k = J.Li in this case, we let /tj,k be a M x K matrix with the same value in 

each row (p1,1 = J.L1,2 =, ... , = /Lj,K, j = 1, ... , M). In general, we can choose arbitrary 

values for each entry in /Lj,k and ak. When the values of J.Li,k and ak are very large, 

95 
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we can always scale those values to a small range. Therefore, we set P),k and ak to be 

real numbers in (0, 100]. Each entry in ck must be less than or equal to the number 

NI (0 < Ck :::; !II). 
Since it is very difficult to get the optimal solutions of TDCCP (without costs), 

we solve the relaxations of TDCCP (without costs) by abandoning the integer con­

straints. Originally, Algorithms 1 and 2 apply the ellipsoid method to solve those 

relaxations. However, in our experiments, the simplex method will be used. This 

is because the simplex method is more efficient and competit ive than the ellipsoid 

method in practice, although it may have exponential running time in some artificial 

bad cases (e.g. see [Tod02]). MATLAB 7.0 provides us with a useful linear program­

ming function 'linprog', which applies the revised simplex method (e.g. see [Sim72] 

and [Sch86]) . Therefore, we will use the function 'linprog' to generate the relaxation 

results of our examples. We know that the optimal value of the relaxation is an upper 

bound for the optimal value of the original problem. Thus we will use the optimal 

values of the relaxed problems to evaluate the results of Algorithm 1 and Algorithm 2. 

Obviously, any solutions by our approximation algorithms cannot exceed the optimal 

of the relaxations. If Algorithm 1 or Algorithm 2 generates a throughput .A which is 

equal to the throughput of the relaxation problem, we can conclude that A must also 

be the optimal for the original problem. 

V•/e partition the testing examples into two groups, depending on the following 

conditions: 

Condition 1 : There exists a feasible fractional server assignment policy { c5j,k} sat­

isfying constraint (1) , (2) and (4) in (MP2), so that the throughput .A* is less 

than 1. 

Condition 2 : There exists a feasible fractional server assignment policy { bj,d sat­

isfying constraint (1) , (2) and (4) in (MP2) , so that the throughput .A* is greater 

than or equal to 1. 

Note that Condition 1 and Condition 2 can also be defined in a similar way for 

TDCCP with costs. 

The first test includes 20 examples that satisfy Condition 1 ( 0 < A* < 1) , and 

the second test includes 20 examples that satisfy Condition 2 (.A* 2 1). The numbers 

M and ]( are not fixed. Thus, we have different M x ]( matrices P ),k in different 
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examples, as well as different vectors ak and ck. The values of each entry in {lj,k and 

ak are real numbers randomly selected in (0, 100]. Different entries of /lj,k and ak may 

have different values. The vector ck includes K integers in [1, l\1). (Please refer to 

the Appendix B for more details of testing examples.) 

Finally, the examples will be tested by Algorithm 1, Algorithm 2 and 'linprog'. 

The testing environment is MATLAB 7.0. 

Testing examples when Condition 1 is satisfied 

We design 20 examples (see Appendix B.1) with different /lj,k, ak and ck. The output 

data are the server policy 6j,k and the thoughput A. First we run the relaxations of 

20 examples by 'linprog' and let A* and 6j,k be the corresponding optimal values. We 

know that 0 < A* < 1 for all the examples. Let A 1 , 6J.k be the solution of Algorithm 

1, and similarly, let A2 and 6J,k be the solution of Algorithm 2. We also define a 1 to 

be the relative difference from ,\1 versus ,\ * and a 2 to be the relative difference from 

A2 versus A*. The detailed computational results are shown in Table 6.1. Table 6.2 

and Figure 6.1 shows the relative differences (}1 and (}2 . Note that for simplicity, we 

only show the throughput ,\ generated by the algorithms. 
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,A.l ,\2 ,\* 

Example 1 0.1667 0.2500 0.2500 
Example 2 0.3000 0.3000 0.3750 
Example 3 0.0667 0.0667 0.0833 
Example 4 0.2857 0.2500 0.3000 
Example 5 0.5333 0.5714 0.6111 
Example 6 0.2000 0.2000 0.2000 
Example 7 0.1515 0.1515 0.2078 
Example 8 0.5000 0.5000 0.5625 
Example 9 0.2000 0.2000 0.7214 
Example 10 0.1500 0.1500 0.2000 
Example 11 0.3333 0.3333 0.4500 
Example 12 0.1333 0.1333 0.4167 
Example 13 0.1111 0.1111 0.1667 
Example 14 0.2143 0.2143 0.2857 
Example 15 0.3333 0.6667 0.8333 
Example 16 0.4082 0.3571 0.5215 
Example 17 0.0902 0.0789 0.1203 
Example 18 0.2222 0.2222 0.2500 
Example 19 0.5000 0.5000 0.8929 
Example 20 0.3333 0.6667 0.6667 

Table 6.1: Testing results of examples MP2 with 0 < ,\* < 1 
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0"1 0"2 

Example 1 0.6667 1.0000 
Example 2 0.8000 0.8000 
Example 3 0.8000 0.8000 
Example 4 0.9524 0.8333 
Example 5 0.8727 0.9351 
Example 6 1.0000 1.0000 
Example 7 0.7292 0.7292 
Example 8 0.8889 0.8889 
Example 9 0.2772 0.2772 
Example 10 0.7500 0.7500 
Example 11 0.7407 0.7407 
Example 12 0.3200 0.3200 
Example 13 0.6667 0.6667 
Example 14 0.7500 0. 7500 
Example 15 0.4000 0.8000 
Example 16 0.7826 0.6848 
Example 17 0.7500 0.6563 
Example 18 0.8889 0.8889 
Example 19 0.5600 0.5600 
Example 20 0.5000 1.0000 

Table 6.2: Relative differences from A 1 and A2 versus A* for examples MP2 with 
0 <A* < 1 



100 6. Experiments 

Rel<rtrve dHference from sc!ubons of ,AJgorithms 1 and 2 'ersu~ tl;e opumal value 
1.2,----------------,.----.---.---.---.----, 

D Soiuljon of Algorithm 1 versus the oplimal value ) 

X Solution of Algorithm 2 versus the oplimal value 
111-----__ ____j 

X ~ 

D X 
0.9 

D 
X rs IZI ~ 

I! ~ 

25 0 .7 

~ D 
"' "!! no o 6 

05 

0 4 

0.3 
r8l 

02 
0 4 6 8 10 

EKam ple 

X 0 
r8l r8l D 

X r8l X 

r6l 

( 

0 

12 14 16 18 20 

Figure 6.1: Relative differences from A 1 and A 2 versus A* for examples MP2 with 
0 < A* < 1 

When the service rates arc inclcpcudcnt of classes alld Condition 1 is satisfied, we 

find that both Algorithm 1 and Algorithm 2 can produce good solutions much better 

than the theoretical lower bounds. In example 6, their results are the same as the 

optimal of relaxation of TDCCP. Since the optimal of relaxation is the upper bound 

of the optimal of (MP2), obviously, the solutions of Algorithm 1 and 2 also achieve 

the optimal. In most examples, the solutions of Algorithm 1 and Algorithm 2 are very 

close. But in example 20, Algorithm 2 performs much better than Algorithm 1 and 

it even generates the optimal solution. By carefully analyzing the server assignment 

policies produced by Algorithm 1 and 2, we find the reason is that the proportion of 

time 6],k of a slow server j working at a class k is larger than 6},k· In other words , a 

slow server in the system has been assigned too much work. 
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Testing examples when Condition 2 is satisfied 

We design another 20 examples (see Appendix B.2) when Condition 2 is satisfied. 

The output data are bj,k and A. The optimal solutions of relaxations A* and bj,k 

are also generated by 'linprog'. A1 and 6},k are the solutions of Algorithm 1. A2 

and 6J,k are the solutions of Algorithm 2. We define a 1 to be the relative difference 

from A 1 versus A* and a 2 to be the relative difference from A 2 versus A*. We give 

the detailed computational results in Table 6.3. Table 6.4 and Figure 6.2 shows the 

relative differences a 1 and a 2 . 

Al A:.! A* 
Example 1 1.0000 0.6250 1.0667 
Example 2 2.0000 3.0000 3.3333 
Example 3 2.0000 2.2222 2.3333 
Example 4 1.3333 2.0000 2.4000 
Example 5 2.0000 2.0000 2.2222 
Example 6 10.0000 10.0000 10.0000 
Example 7 1.5152 1.5152 2.0779 
Example 8 4.0000 4.0000 4.5000 
Example 9 1.0000 1.0000 1.4286 
Example 10 3.0000 3.0000 4.0000 
Example 11 3.3333 3.3333 4.5000 
Example 12 1.3333 1.3333 4.1667 
Example 13 3.3333 3.0000 3.4706 
Example 14 3.0000 3.0000 4.0000 
Example 15 1.0000 4.0000 4.5000 
Example 16 4.4444 6.6667 8.3951 
Example 17 1.5238 1.3333 2.5079 
Example 18 5.0000 5.0000 5.6250 
Example 19 3.0000 3.0000 6.9286 
Example 20 1.4286 7.6923 8.6364 

Table 6.3: Testing results of examples MP2 with A* 2: 1 
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(71 (72 

Example 1 0.9375 0.5859 
Example 2 0.6000 0.9000 
Example 3 0.8571 0.9524 
Example 4 0.5556 0.8333 
Example 5 0.9000 0.9000 
Example 6 1.0000 1.0000 
Example 7 0.7292 0.7292 
Example 8 0.8889 0.8889 
Example 9 0.7000 0.7000 
Example 10 0.7500 0.7500 
Example 11 0.7407 0.7407 
Example 12 0.3200 0.3200 
Example 13 0.9605 0.8644 
Example 14 0.7500 0.7500 
Example 15 0.2222 0.8889 
Example 16 0.5294 0.7941 
Example 17 0.6076 0.5316 
Example 18 0.8889 0.8889 
Example 19 0.4330 0.4330 
Example 20 0.1654 0.8907 

Table 6.4: Relative differences from A 1 and A2 versus A* for examples MP2 with 
A* 2: 1 
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Figure 6.2: Relative differences from /V and ,\2 versus ,\* for examples MP2 with 
,\* :2: 1 

It is easy to see that both Algorithm 1 and Algorithm 2 produce good solutions 

in most examples. We also observe that in several examples (e.g. examples 5, 6, 

8, 9, 10, 11, 12, 14, 18 and 19), Algorithm 1 and Algorithm 2 produce the same 

throughput ,\1 = ,\2 . However, by analyzing the server assignment policies generated 

by Algorithm 1 and Algorithm 2 in those examples, we find that 8},k and 8J,k are 

not the same. In examples 2, 3, 15, 16 and 20, we see that the throughput estimate 

,\2 produced by Algorithm 2 is better than the throughput estimate ,\1 produced by 

Algorithm 1. We also notice that in examples 15 and 20, Algorithm 2 performs much 

better than Algorithm 1. 
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6.1.2 TDCCP without costs in the general case 

D esign of Examples 

In the general case of T DCCP without costs, the input dat a are also /.L j ,k, ak and ck. 

T he diffe rence is t hat the M x J( matrix /.L j,k is not required to have the same ent ry 

value in each row vector . Similar to the tests in Section 6. 1. 1, we define the values of 

!I![ and K to be integers in (0, 20] and ck to be integers in (0, 111]. Each entry in /.LJ,k 

and ak is defined to be a real number in (0, 100] . All the numbers of /.LJ,k, ak and ck 

are defined randomly. 

T here will be two diHerent tests. The first test includes 20 diHerent examples that 

satisfy Condit ion 1 ( 0 < .A* < 1), and the second test includes 20 diHerent examples 

that satisfy Condition 2 (.A* 2: 1). 

The algorithm for solving the general (MP2) will apply Algori thm 1 or Algori thm 

2 as a procedure. All of the examples will be tested by t he algorithm of apply­

ing Algori thm 1, the algorithm of applying Algorithm 2 and 'linprog '. The testing 

environment is also MATLAB 7.0. 

Testing examples when Condition 1 is satisfied 

We design 20 examples (see Appendix B.3) with diHerent /.L j,k, ak and ck . The output 

data are JJ,k and .A. Let the opt imal solut ions of the relaxations be .A* and Jj,k, the 

solutions by applying Algorithm 1 be .A 1' and c5J:k, the solutions by applying Algorithm 

2 be .A 2' and c5],'k. Vve define a 1 to be the relative diHerence from .A 1' versus .A* and 

a 2 to be the relative diHerence from .A 2' versus .A*. We will first solve t he relaxation 

of each example by the function 'linprog' and get the optimal solut ions .A*. Then, we 

compare .A* with the approximate solutions .A 1' and .A 2'. 
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The detailed computational results are shown in Table 6.5. Table 6.6 and Figure 

6.3 shows the relative differences 0' 1' and 0'2'. 

>.1 >.2 ..\* 
Example 1 0.1000 0.1000 0.3835 
Example 2 0.1415 0.0550 0.3203 
Example 3 0.1600 0.1455 0.6250 
Example 4 0.1667 0.1905 0.5400 
Example 5 0.3500 0.2381 0.5259 
Example 6 0.0408 0.0714 0.7895 
Example 7 0.1111 0.0741 0.2532 
Example 8 0.2560 0.4610 0.5590 
Example 9 0.0143 0.0286 0.4607 
Example 10 0.4646 0.4873 0.6324 
Example 11 0.0667 0.0667 0.2416 
Example 12 0.0730 0.0286 0.1388 
Example 13 0.1600 0.1333 0.6923 
Example 14 0.1000 0.0889 0.3319 
Example 15 0.3056 0.5500 0.6689 
Example 16 0.0375 0.0625 0.4802 
Example 17 0.0373 0.0533 0.2726 
Example 18 0.5051 0.7299 0.8710 
Example 19 0.0400 0.0217 0.2932 
Example 20 0.2226 0.1228 0.6426 

Table 6.5: Testing results of examples MP with 0 < ..\ * < 1 
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(Tl 0"2 

Example 1 0.2607 0.2607 
Example 2 0.4418 0.1717 
Example 3 0.2560 0.2327 
Example 4 0.3086 0.3527 
Example 5 0.6656 0.4528 
Example 6 0.0517 0.0905 
Example 7 0.4389 0.2926 
Example 8 0.4580 0.8246 
Example 9 0.0310 0.0620 
Example 10 0.7346 0.7707 
Example 11 0.2759 0.2759 
Example 12 0.5261 0.2059 
Example 13 0.2311 0.1926 
Example 14 0.3013 0.2678 
Example 15 0.4568 0.8222 
Example 16 0.0781 0.1302 
Example 17 0.1370 0.1957 
Example 18 0.5799 0.8381 
Example 19 0.1364 0.0742 
Example 20 0.3464 0.1910 

Table 6.6: Relative differences from )/ and .>? versus A* for examples MP with 
0 < A*< 1 
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Figure 6.3: Relative differences from ,V' and .\2' versus .\* for examples MP with 
0 < .\* < 1 

In the above examples with 0 < .\* < 1, we find that some solutions produced 

by our approximation algorithms are very bad (e.g. examples 6, 9, 16 and 19). 

Remember in the general case of TDCCP, we use the formula bj,k := (w~~;,k) to 

generate the server assignments and the throughput, where Wj := J.ljax j J.l..jin. We 

observe that in most of our examples, Wj is a large number. Obviously, this is the 

reason for those bad approximation results. We also notice that our results of the 

algorithms in examples 5, 8, 10, 15 and 18 are much better. By analyzing the input 

data /-Lj,k, we find that it is because Wj, j = 1, ... , M in those examples are close to 

1. In example 2, the throughput produced by applying Algorithm 1 is much better 

than applying Algorithm 2. By analyzing the server assignment 8j,k, we find two 

explanations. First, the server assignment in Algorithm 2 shows that slower servers 

are over assigned at a class; second, it shows that a fast server is working at a class 

with lower customer arrival rates. 



108 6. Experiments 

Testing examples when Condition 2 is satisfied 

We design another 20 examples (see Appendix B.4) when Condition 2 is satisfied. 

The output data are 61,k and A. The optimal solutions of relaxations ). * and 6],k are 

also generated by 'linprog' . ). 1
' and &J.'k are the solutions by applying Algorithm 1. 

).
2

' and &],'k are the solutions by applying Algorithm 2. We also define CT 1' to be the 

relative difference from /\ 1' versus ). * and CT
2

' to be the relative difference from ). 2' 

versus ). *. Table 6. 7 is the detailed computational results. Table 6.8 and Figure 6.4 

show the relative differences CT 1' and CT 2'. 

).1 ). 2 ).* 

Example 1 0.1000 0.1250 1.1289 
Example 2 0.0300 0.0300 1.4552 
Example 3 0.0513 0.1111 1.3302 
Example 4 2.5000 2.6471 3.3811 
Example 5 0.3636 0.4959 2.6012 
Example 6 0.7407 1.1111 1.9888 
Example 7 0.0075 0.0333 1.2673 
Example 8 0.5119 1.8750 2.1610 
Example 9 0.1074 0.1111 2.1195 
Example 10 0.0645 0.1400 1.5820 
Example 11 0.2000 0.2000 1.6796 
Example 12 0.0100 0.0800 2.1912 
Example 13 0.1000 0.1250 1.8703 
Example 14 0.0667 0.0952 2.3590 
Example 15 1.8000 1.6200 2.3315 
Example 16 0.1185 0.1619 2.2881 
Example 17 0.0944 0.0577 4.0462 
Example 18 3.5866 3.5866 4.8380 
Example 19 0.0969 0.0286 1.9708 
Example 20 0.3822 1.1483 2.6244 

Table 6.7: Testing results of examples MP with).* ~ 1 
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a-1 (}2 

Example 1 0.0886 0.1107 
Example 2 0.0206 0.0206 
Example 3 0.0386 0.0835 
Example 4 0.7394 0.7829 
Example 5 0.1398 0.1906 
Example 6 0.3725 0.5587 
Example 7 0.0059 0.0263 
Example 8 0.2369 0.8677 
Example 9 0.0507 0.0524 
Example 10 0.0408 0.0888 
Example 11 0.1191 0.1191 
Example 12 0.0046 0.0365 
Example 13 0.0535 0.0668 
Example 14 0.0283 0.0404 
Example 15 0.7720 0.6948 
Example 16 0.0518 0.0708 
Example 17 0.0233 0.0143 
Example 18 0.7413 0.7413 
Example 19 0.0492 0.0145 
Example 20 0.1456 0.4376 

Table 6.8: Relative differences from >. 1' and >. 2' versus).* for examples MP with).* 2: 1 
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In the above tests , the performances of our algorithms for solving the general 

TDCCP are very poor. As we discussed before, the reason is also because of the 

parameter w1. For those examples with w1 close to 1, we can still obtain good ap­

proximate results, e.g. examples 4, 6, 8, 15 and 18. In most examples, we observe 

that the throughput A 2' produced by applying Algorithm 2 is better than A 1'. In 

example 12, A2
' is much better. We also notice that the solutions in examples 7 and 

19 are extremely bad. The reason is that there exists a big 'gap' (i.e. Wmax >= 50) 

between the highest service rate and the lowest service that for a particular server 

j working at classes. It is also because the server assignments produced by the two 

algorithms use the servers with low service rates to work. 
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6.1.3 TDCCP with costs when all classes are identical 

Design of Examples 

In our examples of TDCCP with costs when all classes are identical, the input data are 

the service rates /Jj,k, the numbers akl the costs rj,k, the budget C and the flexibility 

bounds ck. We define two integers 111 and K, where !v1 is the number of servers and 

K is the number of classes. The values of M and K are integers in (0, 20]. Since 

all classes are identical, we let /Jj,k and Tj,k be the M x K matrices with the same 

value in each row vector. The values of each entry in /lj,k, rj,k and ak are randomly 

defined to be a real number in (0, 100]. Each entry in ck is an integer which satisfies 

0 < ck ::; 111. Let rjwx := maxjrj,k· The budget Cis a real number randomly selected 

in (0, 10 ~~~ 1 rjax], by which we guarantee that the number C cannot be arbitrarily 

large. We define this upper bound for C because when C is large enough, the cost 

constraint (5) in (MPC2) will be redundant. 

Similar to Section 6.1.1. there will be two different tests. The first test includes 

20 examples that satisfy Condition 1 (0 < ).* < 1), and the second test includes 

another 20 examples that satisfy Condition 2 ( >. * 2: 1). The examples will be tested 

by Algorithm 3, Algorithm 4 and 'linprog'. The testing environment is MATLAB 7.0. 

Testing examples when Condition 1 is satisfied 

There are 20 examples (see Appendix B.5) with different input data /Jj,k, ak, Tj,k, C 

and ck. The output data are the server policy r5j,k and the throughput >.. First we run 

the relaxations of 20 examples by 'linprog' and let >. * and 8j,k be the optimal values. 

We know that 0 < ).* < 1 for all of the examples. Let >.3 , 8],k be the solution of 

Algorithm 3, and similarly, let >.4 and 6j,k be the solution of Algorithm 4. Vve define 

a3 and a 4 to be the relative differences from >. 3 and ). 4 versus >. *. 
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Table 6.9 is the detailed computational results. Table 6.10 and Figure 6.5 show 

the relative differences cr3 and cr4
. 

,\j ,\4 ,\ * 

Example 1 0.1250 0.2222 0.2500 
Example 2 0.3000 0.3000 0.3281 
Example 3 0.6667 0.6667 0.8333 
Example 4 0.1500 0.2857 0.3000 
Example 5 0.4444 0.4444 0.5000 
Example 6 0.2000 0.2000 0.2000 
Example 7 0.1852 0.1852 0.2540 
Example 8 0.4167 0.4167 0.4556 
Example 9 0.6667 0.1333 0. 7667 
Example 10 0.4068 0.5854 0.6429 
Example 11 0.0625 0.1250 0.1384 
Example 12 0.2000 0.5161 0.5500 
Example 13 0.4444 0.4444 0.5556 
Example 14 0.4110 0.8333 0.9184 
Example 15 0.6250 0.6667 0.7432 
Example 16 0.2000 0.2581 0.2840 
Example 17 0.2000 0.5882 0.7368 
Example 18 0.5556 0.8654 0.8765 
Example 19 0.6364 0.8000 0.9412 
Example 20 0.3333 0.5000 0.5077 

Table 6.9: Testing results of examples MPC2 with 0 < ,\* < 1 
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(J";j <74 

Example 1 0.5000 0.8889 
Example 2 0.9143 0.9143 
Example 3 0.8000 0.8000 
Example 4 0.5000 0.9524 
Example 5 0.8889 0.8889 
Example 6 1.0000 1.0000 
Example 7 0.7292 0.7292 
Example 8 0.9146 0.9146 
Example 9 0.8696 0.1739 
Example 10 0.6328 0.9106 
Example 11 0.4516 0.9032 
Example 12 0.3636 0.9384 
Example 13 0.8000 0.8000 
Example 14 0.4475 0.9074 
Example 15 0.8409 0.8970 
Example 16 0.7043 0.9088 
Example 17 0.2714 0.7983 
Example 18 0.6338 0.9873 
Example 19 0.6761 0.8500 
Example 20 0.6556 0.9848 

Table 6.10: Relative differences from .\3 and .\4 versus .X.* for examples MPC2 with 
0 <.X.*< 1 
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Figure 6.5: Relative differences from A 3 and /\ 4 versus A* for examples MPC2 with 
0 < A* < 1 

According to the approximation results above, we observe that Algorithm 3 and 

Algorithm 4 perform very well in almost all of the 20 testing examples , especially in 

examples 2, 3, 6, 16 and 18. Comparing the results of Algorithm 3 and Algorithm 

4, it is easy to see that most of the time, A4 is better than A3 (examples 1, 4, 10, 

11 , 12, 14, 15, 16, 18, 19 and 20). However, in example 9, the throughput produced 

by Algorithm 3 is 5 times better than the throughput produced by Algorithm 4. By 

analy:,~,ing the solution of example 9, we find that in the server assignment <5J,k by 

Algorithm 3, the slowest server does not work at all, in other words, we say that 

this server is idle. However , in 6j,k, we find that the corresponding slowest server 

is assigned to a class by Algorithm 4, and as a result decreases the capacity of the 

queueing network. This is the reason why the solution of Algorithm 3 is better. 
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Testing examples when Condition 2 is satisfied 

We design another 20 examples (see Appendix B.6) when Condition 2 is satisfied 

in TDCCP with costs. The output data are <5j,k and A. The optimal solutions of 

relaxations A* and <5j,k are also generated by 'linprog'. A3 and <5],k are the solutions 

of Algorithm 3. A 4 and <5j,k are the solutions of Algorithm 4. We define a 3 and a4 

to be the relative differences from A3 and A4 versus A*. Table 6.11 is the detailed 

computational results. Table 6.12 and Figure 6.6 show the relative differences a 3 and 
a4. 

A3 A4 A* 
Example 1 1.4286 2.5000 3.0000 
Example 2 1.8462 3.0000 3.7500 
Example 3 1.5625 2.8571 3.1250 
Example 4 2.5000 4.4444 4.7368 
Example 5 1.3333 1.0000 1.5000 
Example 6 4.0000 4.0000 4.0000 
Example 7 2.3810 2.3810 3.2653 
Example 8 3.7500 3.7500 4.1000 
Example 9 8.0000 1.6000 9.2000 
Example 10 1.6667 4.2105 4.8649 
Example 11 0.6250 1.2500 1.2917 
Example 12 5.0000 6.0000 8.2500 
Example 13 1.6667 1.6667 2.0833 
Example 14 4.2857 6.6667 6.9231 
Example 15 4.7619 7.6923 9.1667 
Example 16 3.0000 3.8710 4.2593 
Example 17 4.4444 4.6154 5.1852 
Example 18 3.3333 3.3333 3.5500 
Example 19 1.7073 3.0000 3.9024 
Example 20 5.0000 5.7143 7.3333 

Table 6.11: Testing results of examples MPC2 with A* ;:::: 1 
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(/3 (/4 

Example 1 0.4762 0.8333 
Example 2 0.4923 0.8000 
Example 3 0.5000 0.9143 
Example 4 0.5278 0.9383 
Example 5 0.8889 0.6667 
Example 6 1.0000 1.0000 
Example 7 0.7292 0.7292 
Example 8 0.9146 0.9146 
Example 9 0.8696 0.1739 
Example 10 0.3426 0.8655 
Example 11 0.4839 0.9677 
Example 12 0.6061 0.7273 
Example 13 0.8000 0.8000 
Example 14 0.6190 0.9630 
Example 15 0.5195 0.8392 
Example 16 0.7043 0.9088 
Example 17 0.8571 0.8901 
Example 18 0.9390 0.9390 
Example 19 0.4375 0.7688 
Example 20 0.6818 0.7792 

Table 6.12: Relative differences from ,\3 and ,\4 versus,\* for examples MPC2 with 
,\* 2": 1 
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Figure 6.6: Relative differences from ,\ 3 and ,\ 4 versus ,\ * for examples MPC2 with 
,\ * ;:::: 1 

The results in the above examples by Algorithm 3 and Algorithm 4 are very good. 

In examples 6, 8 and 18, the throughputs produced by the two algorithms are close 

to ,\ *. We also observe that the solution of Algorithm 4 are better than the solution 

of Algorithm 3 in most examples (examples 1, 2, 3, 4, 10, 11, 12, 14, 15, 16, 17, 19 

and 20). In example 9, the results show that the throughput produced by Algorithm 

3 is much better than Algorithm 4. By analyzing the server assignments 8J,k and 8J,k, 
we find that the reason is the same as we discussed before: the slow servers are over 

assigned. 

6.1.4 TDCCP with costs in the general case 

Design of Examples 

In the general case of TDCCP with costs, the input data are JLJ,k, ak, rj,k, C and 

ck. But we do not require that the matrix /Lj,k has the same entry value in each row 
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vector. Similar to the tests in Section 6.1.3 , we define the values of J\1! and I< to be 

integers in (0, 20] and ck to be integers in (0 , 111]. The values of each entry in /-Lj ,k, Tj ,k 

and ak are random real numbers in (0 , 100]. Let r jwx := maxj rj ,k· We also define the 

budget C to be a real number randomly selected in (0, 10 '2:~1 rjax]. 
There will be two different tests. The first test includes 20 examples that satisfy 

Condition 1 (0 < ).* < 1) , and the second test includes 20 examples that satisfy 

Condition 2 ().* 2 1). 

The algorithm for solving the general (MPC2) will apply Algorithm 3 or Algorithm 

4. All of the examples will be tested by applying Algorithm 3, Algorithm 4 and 

'linprog' . The testing environment is also MATLAB 7.0. 

Testing examples when Condition 1 is satisfied 

We have 20 examples (see Appendix B.7) with different /-L j ,k, ak, r j ,k , C and ck· The 

output data are 5j ,k and ,\. First we run the relaxations of 20 examples by 'linprog' 

and let ). * and 6j ,k be the optimal. Vve know that 0 < ). * < 1 for all the examples . Let 

).3' and 6J.'k be the solutions by applying Algorithm 3. Let ).4
' and 6J:k be the solutions 

by applying Algorithm 4. Vve also define o-3' and a-4
' to be the relative differences 

from ). 3' and ). 4' versus ). *. 
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Table 6.13 is the detailed computational results. Table 6.14 and Figure 6. 7 show 

the relative differences a 3' and a 4'. 

,\3 ,\4 ,\* 

Example 1 0.0400 0.0286 0.2288 
Example 2 0.0333 0.0536 0.4200 
Example 3 0.0077 0.0183 0.0952 
Example 4 0.0313 0.0551 0.4712 
Example 5 0.1569 0.1600 0.5274 
Example 6 0.0708 0.1620 0.2085 
Example 7 0.0117 0.0332 0.3683 
Example 8 0.0671 0.0941 0.4601 
Example 9 0.0476 0.0804 0.4381 
Example 10 0.3563 0.6405 0.8378 
Example 11 0.0154 0.0190 0.1837 
Example 12 0.0192 0.0313 0.3115 
Example 13 0.0038 0.0087 0.1373 
Example 14 0.0357 0.1081 0.5485 
Example 15 0.2833 0.4435 0.5445 
Example 16 0.0091 0.0291 0.2230 
Example 17 0.0202 0.0624 0.4058 
Example 18 0.0851 0.1250 0.5409 
Example 19 0.0554 0.1080 0.5430 
Example 20 0.0185 0.0455 0.4272 

Table 6.13: Testing results of examples MPC with 0 < ,\ * < 1 



120 6. Experiments 

(/3 (/4 

Example 1 0.1748 0.1249 
Example 2 0.0794 0.1276 
Example 3 0.0808 0.1924 
Example 4 0.0663 0.1170 
Example 5 0.2974 0.3033 
Example 6 0.3398 0.7773 
Example 7 0.0318 0.0902 
Example 8 0.1459 0.2045 
Example 9 0.1087 0.1834 
Example 10 0.4252 0.7644 
Example 11 0.0838 0.1037 
Example 12 0.0617 0.1003 
Example 13 0.0280 0.0633 
Example 14 0.0651 0.1971 
Example 15 0.5203 0.8144 
Example 16 0.0408 0.1303 
Example 17 0.0498 0.1537 
Example 18 0.1573 0.2311 
Example 19 0.1019 0.1989 
Example 20 0.0433 0.1064 

Table 6.14: Relative differences from /\ 3' and ),4' versus .A * for examples MPC with 
0 < ).* < 1 
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Figure 6.7: Relative differences from ,\3
' and ,\4

' versus,\* for examples MPC with 
0 < ,\* < 1 

In those examples with 0 < ,\* < 1, we apply the same formula t5j,k := xj,k to 
(WjJ.Lj,k) 

generate the approximate solutions, where Wj := 11Tax / 11Tin. Thus it is reasonable 

that we may get the bad approximate solutions again. Also, when Wj is close to 1, the 

approximation result we get will be much better (examples 6, 10 and 15). It is easy 

to see that in all examples except example 1, applying Algorithm 4 is better than 

applying Algorithm 3. In example 16, ,\ 4' is much better than ,\ 3'. We analyze the 

server assignment policy produced by applying Algorithm 3 and find that the slower 

servers are assigned to classes with larger proportions of working time. 

Testing examples when Condition 2 is satisfied 

We design another 20 examples (see Appendix B.8) when Condition 2 is satisfied in 

the general TDCCP with costs. The optimal solutions of the relaxations ,\ * and 6j,k 
are generated by 'linprog'. ,\3' and 6fk are the solutions by applying Algorithm 3. ,\4' 
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and 6J,'k are the solutions by applying Algorithm 4. We also define 0"
3

' and 0"
4

' to be 

the relat ive differences from A3' and A 4' versus A*. The detailed computational results 

are shown in Table 6.15. Table 6. 16 and Figure 6.8 show the relative differences 0"
3

' 

and 0"4' . 

A3 A4 A* 
Example 1 0.5000 0.6667 3.0682 
Example 2 0.6000 0.5357 5.7143 
Example 3 2.0571 2.4000 3.9916 
Example 4 0.3571 0.5882 5.2632 
Example 5 1.8667 3.5000 4.9148 
Example 6 0.2143 0.4390 5.7852 
Example 7 0.5208 0.5870 6.7518 
Example 8 0.4878 0.7018 3.2648 
Example 9 0.3571 0.8333 4.5830 
Example 10 0.6400 0.9412 5.7398 
Example 11 0.4444 0.5714 5.7447 
Example 12 1.1250 3.2727 6.4060 
Example 13 0.0645 0.0789 2.5263 
Example 14 2.1538 4.4167 9.9785 
Example 15 0.5556 0.9524 7.1909 
Example 16 0.3226 0.9143 5.9669 
Example 17 0.1307 0.1449 2.3374 
Example 18 0.4000 0.9091 4.9437 
Example 19 0.5536 1.0652 5.5583 
Example 20 0.2083 0.4255 4.2722 

Table 6.15: Testing results of examples MPC with ). * ~ 1 
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(J3 (J4 

Example 1 0.1630 0.2173 
Example 2 0.1050 0.0938 
Example 3 0.5154 0.6013 
Example 4 0.0679 0.1118 
Example 5 0.3798 0.7121 
Example 6 0.0370 0.0759 
Example 7 0.0771 0.0869 
Example 8 0.1494 0.2149 
Example 9 0.0779 0.1818 
Example 10 0.1115 0.1640 
Example 11 0.0774 0.0995 
Example 12 0.1756 0.5109 
Example 13 0.0255 0.0313 
Example 14 0.2158 0.4426 
Example 15 0.0773 0.1324 
Example 16 0.0541 0.1532 
Example 17 0.0559 0.0620 
Example 18 0.0809 0.1839 
Example 19 0.0996 0.1916 
Example 20 0.0488 0.0996 

Table 6.16: Relative differences from ). 3' and ). 4' versus ). * for examples MPC with 
).* 2: 1 
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The above results show the poor performance of the algorithms for solving the 

general case of TDCCP with costs. It is also clear that in all examples except example 

2, applying Algorithm 4 generates a better solution. Only the throughputs produced 

in examples 3, 5, 12 and 14 are good, while in others, especially in example 13, both 

algorithms perform poorly. The reason is also because the number wj is too big. 

Therefore, we finally obtain the very small bj,k, which gives us the bad approximation 

results. 

6 .2 Summary of Experiments 

By the observations from our experiments, we can conclude that in the case when 

service rates are independent of classes (all classes are identical) , all algorithms can 

usually produce very good approximation results for both TDCCP and TDCCP with 



6. Experiments 125 

costs. Let Wmax := maxj{ Wj }. In the general case of TDCCP and TDCCP with costs, 

the approximation results will depend on the value Wmax· Our experiment results tell 

us that when Wmax ~ 1, we can still obtain good approximate solutions. However, if 

Wmax is very large, we will achieve bad approximate solutions. 

In the tests of TDCCP without costs, we find that in most examples, the approx­

imate solutions of Algorithm 2 are at least as good as the approximate solutions of 

Algorithm 1. Thus, Algorithm 2 is suggested for solving TDCCP without costs. In 

the tests of TDCCP with costs, we find that Algorithm 4 can beat Algorithm 3 in 

most examples. Therefore, Algorithm 4 is strongly recommended for solving TDCCP 

with costs. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

Vve have described an ent ire model of queueing networks with limited flexibility. By 

using some parameters of queueing networks, we presented the deterministic opti­

mization problem TDCCP. Since the solution of the problem TDCCP can be directly 

mapped back to a solution of the original queueing network problem, we established 

t he connections between both problems. Furthermore, we extended the problem TD­

CCP to the problem TDCCP with costs by introducing costs into the system and 

gave its mathematical definition. 

After obtaining the mathematical programs TDCCP and TDCCP with costs, we 

showed that when all servers are identical, both TDCCP and TDCCP with costs can 

be solved in polynomial time. However, when all classes are identical, we showed 

that both TDCCP and TDCCP with costs are NP-Complete. Thus we designed 

two approximation algorithms Algorithm 1, Algorithm 2 for solving TDCCP, and 

two approximation algorithms Algorithm 3, Algorithm 4 for solving TDCCP with 

costs. Then we proved that Algorithm 1 is a 1/ 10-approximation algorithm, Algo­

rithm 3 is a 1/ 12-approximation algorithm, Algorithm 2 and Algorithm 4 are 2 ( 1~P) ­

approximation algorithms, where p := maxj k ak>.·. By applying Algorithms 1, 2, 3 
' Ck/.Lj 

and 4 , we also gave approximation algorithms for solving the general case of TDCCP 

and TDCCP with costs . 

We implemented the approximation algorithms for solving TDCCP and TDCCP 

126 
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with costs. Detailed computational results on several experiments showed that Al­

gorithms 1, 2, 3 and 4 can both produce good approximate results in the case of 

PJ,k = /.1j· However, applying Algorithms 1, 2, 3 and 4 for solving the general cases of 

TDCCP and TDCCP with costs might incur bad approximate results (though they 

are still much better than theoretical lower bounds). 

7.2 Future works 

The numerical results show that our algorithms do not perform very well in the general 

cases of TDCCP and TDCCP with costs. Thus, designing a better approximation 

algorithm for solving the general cases of TDCCP and TDCCP with costs remains 

to be studied. 

Based on our experiments, we also observe three methods which may improve the 

throughput of the system. The first method is that we try to prevent idle servers, 

in other words, we should keep each server as busy as possible. The second method 

is that we can increase the proportion of server working time o1,k for faster servers 

and decrease o1,k for those slower servers. The third method is that we can allow 

preemption of activities, i.e. let faster servers have preemption to work and classes 

with larger customer arrival rates have preemption to be processed. Future work 

will also include enabling the above three methods applicable and designing better 

approximation algorithms in queueing networks with limited flexibility. 
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Appendix A 

Symbols and Acronyms 

Name 

AP 

MCM 

MP 

MP' 

MPC 

MPC' 

M1 

MP1 

MPC1 

MP2 

MPC2 

MP2' 

MP2" 

Definition 

Mathematical program of the assignment problem 

Mathematical program of the minimum cost bipartite 

matching problem 

Mathematical program of TDCCP 

Mathematical program of TDCCP when J-L = o: · ,fJT 

Mathematical program of TDCCP with costs 

Mathematical program of TDCCP with costs when 

J-L = 0:. {JT 

Mathematical program of the scheduling of unrelated 

machines problem 

Mathematical program of TDCCP when 

J-lj,k = J-lk 

Mathematical program of TDCCP with costs when 

J-lj,k = J-lk 

Mathematical program of TDCCP when J-Lj,k = J-l) 

Mathematical program of TDCCP with costs when 

J-lj,k = J-lj 

An Instance of the maximum concurrent multicommodity 

k-splittable flow problem 

Relaxation of MP2' 
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MPC2' 

MPC2" 

MP3 

MPC3 

SCl 

SC2 

Sl 

S2 

TDCCP 

A . Symbols and Acronyms 

An instance of the constrained maximum concurrent 

Mult icommodity k-splittable flow problem 

Relaxation of MPC2 ' 

An instance of t he maximum concurrent multicommodity 

k-splittable flow problem 

An instance of the constrained maximum concurrent 

multicommodity k-splittable flow problem 

Relaxation of an instance of the scheduling of unrelated 

machines problem with costs 

Relaxation of an instance of the scheduling of unrelated 

machines problem with costs 

Relaxation of an instance of the scheduling of unrelated 

machines problem 

Relaxation of an instance of the scheduling of unrelated 

machines problem 

Total discrete capacity constrained problem 
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Testing Examples 

B.l TDCCP without costs when all classes are 

identical and Condition 1 is satisfied 

Example 1: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
1 1 1 1 1 1 1 1 1 1 

{lj,k = 
1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

ak = ( 1 1 2 2 2 2 2 2 2 2 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
{lj,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

ak = ( 2 2 2 2 2 2 2 2 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 
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Example 3: 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
/-L j ,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

ak = ( 10 10 10 10 10 10 10 10 10 10 10 10) 
Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 4: 
2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

/-Lj ,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 

ak = ( 4 4 4 4 4 2 2 2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

~j ,k = ( ~ 
3 3 3 3 

}J 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 

ak = ( 1.5 1.5 1.5 1.5 1.5 1.5 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 6: 
7 7 7 7 7 7 7 7 7 

1 1 1 1 1 1 1 1 1 

/-L j ,k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

ak = ( 10 10 10 10 10 10 10 10 10) 
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Ck = ( 4 4 4 4 4 4 4 4 4 ) 

Example 7: 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

{lj,k = 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

ak = ( 1.1 1.1 1.1 1.1 1.1 1.1 1.1 ) 

Ck = ( 5 5 5 5 5 5 5 ) 

Example 8: 

~;k= c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

( 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
ak = 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 ) 

ck = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 

Example 9: 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 2 2 2 2 2 2 

{tj,k = 3 3 3 3 3 3 3 
4 4 4 4 4 4 4 

1 1 1 1 1 1 1 

ak = ( 2 2 2 2 2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 ) 

Example 10: 
1 1 1 1 1 

3 3 3 3 3 
{tj,k = 

4 4 4 4 4 

2 2 2 2 2 
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ak = ( 10 10 10 10 w) 
Ck = ( 3 3 3 3 3 ) 

Example 11: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
~lj,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

ak = ( 1 1 1 1 1 1 1 1 1 1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 ) 

Example 12: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Mj ,k = 

1 1 1 1 1 1 1 1 

8 8 8 8 8 8 8 8 

ak = ( 3 3 3 3 3 3 3 3 ) 

Ck = ( 2 2 2 2 2 2 2 2 ) 

Example 13: 

1 1 1 1 1 1 1 1 1 1 1 1 

9 9 9 9 9 9 9 9 9 9 9 9 
Mi,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

ak = ( 9 9 9 9 9 9 9 9 9 9 9 9 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 14: 
2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

Mi ,k = 9 9 9 9 9 9 9 9 9 9 

3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 
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ak = ( 7 7 7 7 7 7 7 7 7 7 ) 

Ck = ( 3 3 3 3 3 3 3 3 3 3 ) 

Example 15: 

M;,k = ( ! 3 3 3 3 

o!J 4 4 4 4 

0.5 0.5 0.5 0.5 0.5 

ak = ( 1.5 1.5 1.5 1.5 1.5 1.5 ) 

Ck = ( 1 1 1 1 1 1 ) 

Example 16: 

7 7 7 7 7 7 7 7 7 

9 9 9 9 9 9 9 9 9 
JLj,k = 

2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

ak = ( 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 ) 

Ck = ( 1 1 1 1 2 2 2 2 2 ) 

Example 17: 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
/Lj,k = 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 

ak = ( 1.9 1.9 1.9 1.9 1.9 1.9 1.9 ) 

Ck = ( 4 4 4 4 3 3 3 ) 

Example 18: 

M;,k = 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
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( 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 
ak = 

1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 ) 

Example 19: 
1 1 1 1 1 1 1 

9 9 9 9 9 9 9 

/-L j ,k = 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

7 7 7 7 7 7 7 

ak = ( 4 4 4 4 4 4 4 ) 

Ck = ( 2 2 2 2 1 1 1 ) 

Example 20: 

1 1 1 1 1 

3 3 3 3 3 
/-L j ,k = 

4 4 4 4 4 

2 2 2 2 2 

ak = ( 3 3 3 3 3 ) 

Ck = ( 1 1 1 2 2 ) 

B.2 TDCCP without costs when all classes are 

identical and Condition 2 is satisfied 

Example 1: 

5 5 5 5 5 5 5 5 5 5 

1 1 1 1 1 1 1 1 1 1 
/-Lj,k = 

1 1 1 1 1 1 1 1 1 1 

9 9 9 9 9 9 9 9 9 9 

ak = ( 1 1 1 1 1 2 2 2 2 2 ) 
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ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 

2 2 2 2 2 2 2 2 

8 8 8 8 8 8 8 8 
J-lj,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

ak = ( 1 1 0.5 0.5 0.5 0.25 0.25 0.5) 

Ck = ( 3 3 3 3 3 3 3 3 ) 

Example 3: 

10 10 10 10 10 10 10 10 10 10 10 10 

10 10 10 10 10 10 10 10 10 10 10 10 
J-lj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

ak = ( 1 1 1 1 1 1 1 1 1 1 1 1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 4: 

20 20 20 20 20 20 20 20 20 20 

1 1 1 1 1 1 1 1 1 1 

J-lj,k = 10 10 10 10 10 10 10 10 10 10 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 

ak = ( 1 1 1 1 1 2 2 2 2 2 ) 

ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

c3 3 3 3 3) 
J-lj,k = 2 2 2 2 2 2 

5 5 5 5 5 5 
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ak = ( 1 1 0.5 0.5 0.5 1 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 6: 

7 7 7 7 7 7 7 7 7 

1 1 1 1 1 1 1 1 1 

~lj , k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

ak = ( 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2) 

Ck = ( 4 4 4 4 4 4 4 4 4 ) 

Example 7: 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

2 2 2 2 2 2 2 
~j,k = 

3 3 3 3 3 3 3 

3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

ak = ( 1.1 1.1 1.1 1.1 1.1 1.1 1.1 ) 

Ck = ( 5 5 5 5 5 5 5 ) 

Example 8: 

P;,k = (: 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

( 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
ak = 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 
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Example 9: 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

/-Lj,k = 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

10 10 10 10 10 10 10 

ak = ( 2 2 2 2 2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 ) 

Example 10: 

1 1 1 1 1 

3 3 3 3 3 
/-Lj,k = 

4 4 4 4 4 

2 2 2 2 2 

ak = ( 0.5 0.5 0.5 0.5 0.5) 

ck = ( 3 3 3 3 3 ) 

Example 11: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
/-Lj,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

ak = ( 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 ) 

Example 12: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
/-Lj,k = 

1 1 1 1 1 1 1 1 

8 8 8 8 8 8 8 8 
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ak = ( 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ) 

Ck = ( 2 2 2 2 2 2 2 2 ) 

Example 13: 

10 10 10 10 10 10 10 10 10 10 10 10 
9 9 9 9 9 9 9 9 9 9 9 9 

J.l j ,k = 
30 30 30 30 30 30 30 30 30 30 30 30 
10 10 10 10 10 10 10 10 10 10 10 10 

ak = ( 1 1 1 1 1 2 2 2 2 2 1 1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 14: 
2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

J.lj ,k = 9 9 9 9 9 9 9 9 9 9 

3 3 3 3 3 3 3 3 3 3 
5 5 5 5 5 5 5 5 5 5 

ak = ( 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ) 

Ck = ( 3 3 3 3 3 3 3 3 3 3 ) 

Example 15: 

~j ,k ~ ( : 

9 9 9 9 

0~ ) 4 4 4 4 
0.5 0.5 0.5 0.5 0.5 

ak = ( 0.5 0.5 0.5 0.5 0.5 0.5 ) 

Ck = ( 1 1 1 1 1 1 ) 

Example 16: 
7 7 7 7 7 7 7 7 7 

9 9 9 9 9 9 9 9 9 
J.lj ,k = 

2 2 2 2 2 2 2 2 2 

50 50 50 50 50 50 50 50 50 
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ak = ( 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9) 

Ck = ( 1 1 1 1 2 2 2 2 2 ) 

Example 17: 

Example 18: 

M;,k = u 2 

4 

3 

( 0.08 
ak = 

0.08 

ck = ( 2 2 

Example 19: 

0.8 0.8 0.8 0.8 0.8 0.8 

2 2 2 2 2 2 

2 2 2 2 2 2 
JLj,k = 

3 3 3 3 3 3 

3 3 3 3 3 3 

5 5 5 5 5 5 

ak = ( 0.9 0.9 0.9 0.9 0.9 0.9 

Ck = ( 4 4 4 4 3 3 3 ) 

2 2 2 2 2 2 2 2 2 2 2 2 

4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 

0.08 0.08 0.08 0.08 0.08 0.08 

0.08 0.08 0.08 0.08 0.08 0.08 

2 2 2 2 2 2 2 1 1 1 1 1 

10 10 10 10 10 10 

9 9 9 9 9 9 

/Lj,k = 3 3 3 3 3 3 

5 5 5 5 5 5 

70 70 70 70 70 70 

ak = ( 2 2 2 2 2 2 2 ) 

Ck = ( 2 2 2 2 1 1 1 ) 

0.8 

2 

2 

3 

3 

5 

0.9) 

2 2 2 2 2 2) 
4 4 4 4 4 4 

3 3 3 3 3 3 

0.08 0.08 0.08 

0.08 0.08 0.08 ) 

1 1 1 1 1 1 ) 

10 

9 

3 

5 

70 

143 
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Example 20: 

10 10 10 10 10 

3 3 3 3 3 
/.Lj ,k = 

4 4 4 4 4 

2 2 2 2 2 

ak = ( 0.3 0.4 1 0.2 0.3 ) 

Ck = ( 1 1 1 2 2 ) 

B.3 TDCCP without costs in the general case when 

Condition 1 is satisfied 

Example 1: 

0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 

2 1 1 3 1 2 1 2 1 1 
/.Lj ,k = 

1 1 4 1 1 2 1 3 1 1 

2 5 2 3 1 2 2 2 2 2 

ak = ( 1 1 2 2 2 2 2 2 2 2 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 
0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.3 

1 0.8 0.8 0.8 0.8 1.2 0.8 0.8 
/.Lj ,k = 

1 1 1 0.2 1 1 0.2 1 

4 4 4 4 4 4 4 4 

ak = ( 3 3 3 3 2 2 2 2 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 

Example 3: 

~j,k ~ (: 

2 1 1 1 1 1 4 

~) 3 3 1 3 3 3 3 

5 5 5 5 5 5 1 
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ak = ( 2 1 1 2 3 3 2 1 1 ) 

Ck = ( 2 1 1 1 2 2 2 2 2 ) 

Example 4: 
2 2 2 2 2 2 2 2 2 2 

1 3 1 1 1 1 1 1 1 1 

/Lj,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 2 3 2 1 1 3 3 

2 2 2 2 2 2 2 2 2 2 

ak = ( 2 2 2 2 1 1 2 2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

~jk = ( 1
3
8 

3 2.8 3 3 

1
3
8) 1.8 2 1.9 1.8 

1.7 2 1.9 1 1.8 1.9 

ak = ( 3 1.8 2 1.8 3 1.5 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 6: 

7 7 7 7 1 7 7 7 7 

1 1 2 1 1 1 1 1 1 
/Lj,k = 

2 2 2 3 2 2 2 2 2 

5 5 5 4 5 5 4 5 5 

ak = ( 5 2 2 3 4 2 1 1 1 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 ) 

Example 7: 
0.1 0.1 0.1 0.2 0.1 0.1 0.1 

0.2 0.2 0.3 0.2 0.2 0.2 0.2 

/Lj,k = 0.2 0.1 0.2 0.2 0.1 0.3 0.2 

0.3 0.2 0.3 0.3 0.3 0.3 0.4 

0.5 0.3 0.5 0.3 0.5 0.5 0.5 
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Example 8: 

Example 9: 

Example 10: 

Example 11: 

/-L j,k = 

B. Testing Examples 

ak = ( 0.9 0.7 0.9 0.9 0.9 0.9 0.9 ) 

Ck = ( 1 1 2 2 3 3 3 ) 

cg 1.89 2 2 2 2 

D /-L j ,k = ~ 4 3.92 3.9 4 4 

3 3 3 2.9 2.95 

ak = ( 1.8 1.9 1.9 0.6 1.2 5.8 2.9 ) 

Ck = ( 2 2 2 1 1 1 1 ) 

0.1 0.1 0.2 0.1 0.1 0.1 0.1 

2 1 2 2 2 1 2 

/-L j,k = 3 3 3 4 3 3 3 

4 1 1 1 4 4 4 

7 2 1 2 3 3 1 

ak = ( 8 2 9 4 2 2 2 ) 

Ck = ( 1 1 1 2 2 2 2 ) 

1 1 1 1 1 

3 3 3 2.9 3.1 
flj ,k = 

2.5 2.6 2.6 2.6 2.7 

2 2 2 1.9 2 

ak = ( 2 4 3 2 2.7 ) 

Ck = ( 1 2 3 2 3 ) 

0.5 0.8 0.5 0.5 0.8 0.5 0.5 0.7 0.5 

2 1 1 3 1 4 1 1 1 

2 1 1 1 1 2 2 2 1 

2 4 2 3 3 2 2 2 2 

0.5 

1 

1 

2 
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ak = ( 3 3 3 3 3 3 3 3 3 3 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 ) 

Example 12: 

0.2 1 1 0.2 0.2 1 0.2 0.8 

0.6 0.8 0.8 0.8 0.8 0.3 0.8 0.8 
/.Lj,k = 

1 1 1 2 1 1 2 1 

4 4 4 6 4 4 4 4 

ak = ( 7 7 7 7 7 7 7 7) 

Ck = ( 3 3 3 3 3 3 3 3 ) 

Example 13: 

M;•= c 2 1 1 1 2 1 4 

D 3 3 5 3 3 3 3 

5 5 5 3 5 5 3 

ak = ( 2 1 2 2 2 2 2 1 1 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 ) 

Example 14: 

2 2 2 2 1 2 2 2 2 2 

1 3 1 1 1 1 2 1 1 1 

/.Lj,k = 1 1 1 5 1 1 1 1 1 1 

3 3 3 2 3 2 1 1 3 3 

2 2 4 2 2 2 7 2 2 2 

ak = ( 3 3 2 2 1 1 6 6 6 6 ) 

Ck = ( 2 2 2 2 1 1 1 4 4 4 ) 

Example 15: 

cg 5.8 5.7 5.6 6 55) 
/.Lj,k = 2.9 3 2.8 2.9 2.8 2.8 

4.8 4.9 5 4.9 4.9 4.8 
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ak = ( 6 1.5 2 8 1.5 1.5 ) 

ck = ( 1 1 1 1 1 1 ) 

Example 16: 

15 7 7 7 7 7 7 7 7 

1 1 2 1 1 1 3 1 1 
J..L j ,k = 

2 2 2 1 2 2 8 2 2 

5 1 5 5 5 5 5 1 5 

ak = ( 8 15 2 3 1 2 7 1 1 ) 

Ck = ( 1 2 1 1 1 1 1 1 2 ) 

Example 17: 
0.5 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 

J..Lj ,k = 0.2 0.2 0.2 0.2 0.2 1 0.2 

0.3 0.3 0.3 0.3 0.3 0.3 0.9 

0.5 0.5 0.7 0.5 0.5 0.5 0.5 

ak = ( 1.9 0.7 1.9 0.9 0.9 0.9 0.9 ) 

Ck = ( 1 1 2 2 3 3 3 ) 

Example 18: 

Mi,k = ( ~O 
10 10.5 11 11 10 10.5) 
8.5 8.7 8.9 8.8 8.7 8.8 

2.9 3 3 3 2.8 2.9 

ak = ( 1.8 9 11 0.9 0.9 0.9 0.9) 

Ck = ( 2 2 2 1 1 1 1 ) 

Example 19: 
0.8 0.1 0.2 0.1 0.1 0.1 0.1 

2 1 2 2 2 3 2 

J..ij ,k = 3 3 3 4 3 3 3 

4 1 1 1 4 4 4 

9 2 2 2 3 3 1 
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ak = ( 1 2 20 4 7 2 2 ) 

Ck = ( 1 2 1 2 2 2 2 ) 

Example 20: 

1 1 2 1 1 

3 3 3 2 3.5 
/.Lj,k = 

1 1 1 3 4.7 

2 2 4 5 2 

ak = ( 3.5 4.7 1.5 5 1 ) 

Ck = ( 1 3 3 1 3 ) 

B.4 TDCCP without costs in the general case when 

Condition 2 is satisfied 

Example 1: 

5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

20 10 9 3 9 2 9 2 1 1 
/.Lj,k = 

10 10 40 10 1 2 8 3 8 1 

20 5 20 3 10 2 20 20 20 2 

ak = ( 1 1 1 2 2 2 2 2 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 

2 0.2 0.1 0.2 0.2 0.2 0.2 0.3 

8 8 8 8 8 1.2 0.8 0.8 
/.Lj,k = 

1 8 8 2 10 8 0.2 8 

4 4 4 4 4 4 4 4 

ak = ( 1 1 3 3 1 2 2 2 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 
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Example 3: 

~j.k ~ c 2 1 10 1 1 1 4 

i ) 3 30 1 3 30 3 3 

5 5 5 5 5 5 1 

ak = ( 0.5 1 1 2 0.3 0.3 2 1 1 ) 

Ck = ( 2 1 1 1 2 2 2 2 2 ) 

Example 4: 

9.7 10 9 10 9.8 9.6 9.6 10 9.7 9.8 

4.5 4.7 5 4.8 5 4.9 5 4.5 4.5 4.5 

/-L j ,k = 4.7 4.8 5 4.7 5 4.8 4.5 5 4.9 4.9 

8.9 8.5 9 8.7 8.7 9 8.7 9 8.8 8.6 

19.7 20 19 19.5 19.6 19.3 19.9 19.4 19.8 19.5 

ak = ( 2 2 0.2 2 1 1 2 0.2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

~j.k = ( ~ 
30 3 30 3 

30 ) 
10 2 10 10 

0

1

5 0.5 2 5 1 0.5 

ak = ( 1 0.5 1.5 0.8 3 1.5 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 6: 

14 14.5 14 15 14.7 14.7 14.8 14.9 14.5 

8 9 8.8 8.6 8 9 8.7 8 8 
/-Lj ,k = 

4.6 5 4.7 4.9 5 5 4.7 5 4.6 

5 5 5 4.5 5 5 4.9 5 5 

ak = ( 1 2 2 3 4 2 1 1 1 ) 
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Ck = ( 1 1 1 1 1 1 1 1 1 ) 

Example 7: 

1 1 1 0.2 1 0.1 0.1 

0.2 0.2 0.3 0.2 0.2 0.2 0.2 

/-lj,k = 2 0.1 2 0.2 1 0.3 0.2 

0.3 0.2 0.3 3 10 0.3 0.4 

5 0.3 5 0.3 5 5 1 

ak = ( 0.9 0.7 0.9 0.9 0.9 0.9 0.9) 

Ck = ( 1 1 2 2 3 3 3 ) 

Example 8: 

co 10 9.5 9.6 9.7 9.9 
10 ) 

/-lj,k = 169 18 20 19 18 18.5 18.9 

5.5 5.7 5.7 5.6 5.8 5.9 

ak = ( 1.8 1.9 1.9 0.6 1.2 5.8 2.9) 

Ck = ( 2 2 2 1 1 1 1 ) 

Example 9: 

1 1 2 0.1 0.1 1 0.1 

2 1 2 2 2 1 2 

/-lj,k = 3 3 9 4 3 5 3 

4 9 9 1 4 4 4 

7 2 1 2 8 3 1 

ak = ( 1.8 2 1 0.4 1 2 2 ) 

Ck = ( 1 1 1 2 2 2 2 ) 

Example 10: 

10 10 10 1 1 

3 7 3 2 3.5 
/-lj,k = 

9 5 6 2 2.7 

2 5 2 0.2 2 
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ak = ( 2 0.4 1 2 2.7 ) 

Ck = ( 1 2 3 2 3 ) 

Example 11: 

5 0.8 5 0.5 8 0.5 5 7 0.5 0.5 

2 8 8 9 9 4 9 9 8 1 
/-Lj ,k = 

20 10 10 15 8 20 2 20 8 1 

2 40 20 30 30 20 20 20 20 2 

ak = ( 2 1 1 1 1 1 1 1 1 2 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 ) 

Example 12: 

0.2 1 1 0.2 0.2 1 0.2 0.8 

6 8 8 8 0.8 30 0.8 0.8 
/-Lj ,k = 

10 1 1 2 10 10 20 1 

4 40 4 60 4 40 40 4 

ak = ( 3 3 1 1 3 5 6 1 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 

Example 13: 

co 20 10 10 10 20 10 20 

D /-Lj,k = ~ 3 3 50 30 30 2 3 

5 5 50 30 5 4 15 

ak = ( 2 1 2 2 2 2 2 2 1 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 ) 

Example 14: 
2 2 8 2 10 2 8 8 2 2 

10 3 1 1 1 1 2 1 1 1 

/-Lj ,k = 1 1 1 5 1 1 1 1 1 1 

3 30 3 2 30 2 1 1 30 30 

2 2 4 2 2 2 5 2 2 2 
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ak = ( 3 3 2 2 1 1 1 1 3 2 ) 

Ck = ( 2 2 2 2 1 1 1 4 4 4 ) 

Example 15: cg 8.9 9 9 8.8 88) 
/1j,k = 8~6 8 7.8 7.9 8 7.9 

4.9 5 4.5 4.8 5 

ak = ( 1 1.5 2 2 1.5 1.5 ) 

Ck = ( 1 1 1 1 1 1 ) 

Example 16: 

15 10 15 7 17 7 17 7 7 

10 10 2 10 10 1 3 1 1 
/1j,k = 

2 8 2 1 8 2 8 2 2 

5 10 5 5 15 5 15 1 5 

ak = ( 0.8 1 2 3 1 2 3 1 1 ) 

Ck = ( 1 2 1 1 1 1 1 1 2 ) 

Example 17: 

5 1 0.1 1 1 0.1 0.1 

2 2 2 2 2 2 4 

/1j,k = 0.2 0.2 0.2 2 0.2 1 0.2 

0.3 3 0.3 3 3 0.3 0.9 

5 5 7 0.5 5 5 0.5 

ak = ( 0.9 0.7 1.1 0.3 0.3 0.4 0.9) 

Ck = ( 1 1 2 2 3 3 3 ) 

Example 18: 

~j,k ~ ( ~ 
19 20 19.5 20 20 199) 
8.8 8.9 8.6 8.5 8.7 8.6 

6.5 6.9 7 6.6 6.8 6.7 6.9 
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Example 19: 

Example 20: 

B. Testing Examples 

a k = ( 1.8 0.9 1.1 0.9 0.9 0.9 0.9) 

Ck = ( 2 2 2 1 1 1 1 ) 

8 0.1 2 0.1 1 10 0.1 

2 10 2 2 2 3 2 

/.Lj ,k = 3 3 3 4 3 3 3 

4 1 14 1 4 4 4 

9 3 2 2 3 3 1 

ak = ( 1 2 2 0.4 3 2 2 ) 

Ck = ( 1 2 1 2 2 2 2 ) 

10 10 20 10 10 

3 3 3 2 3.5 
f..L j ,k = 

10 10 10 3 4.7 

2 3 4 5 2 

ak = ( 3.5 4.7 0.5 1 1 ) 

Ck = ( 1 3 3 1 3 ) 

B.5 TDCCP with costs when all classes are iden­

tical and Condition 1 is satisfied 

Example 1: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
/.Lj ,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 
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0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
Tj,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

C=6 

ak = ( 1 1 2 2 2 2 2 2 2 2 ) 

ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
/.1j,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Tj,k = 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

C=4 

ak = ( 2 2 2 2 2 2 2 2 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 

Example 3: 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
/.1j,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 
Tj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 

c = 16 
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ak = ( 1 1 1 1 1 1 1 1 1 1 1 1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 4: 

2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

/.Lj ,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

rJ ,k = 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

c = 5 

a k = ( 4 4 4 4 4 2 2 2 2 2 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

MJ,k ~ ( ~ 
3 3 3 3 

o~J 1 1 1 1 

0.5 0.5 0.5 0.5 0.5 c 2 2 2 2 2) 
rj,k = 1 1 1 1 1 1 

4 4 4 4 4 4 

C= 9 

ak = ( 1.5 1.5 1.5 1.5 1.5 1.5 ) 

Ck = ( 2 2 2 2 2 2 ) 
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Example 6: 
7 7 7 7 7 7 7 7 7 

1 1 1 1 1 1 1 1 1 

/-Lj,k = 3 3 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 

rj,k = 3 3 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 2 

4 4 4 4 4 4 4 4 4 

c =32 

ak = ( 10 10 10 10 10 10 10 10 10) 

ck = ( 4 4 4 4 4 4 4 4 4 ) 

Example 7: 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

/-Lj,k = 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Tj,k = 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

C=2 

ak = ( 0.9 0.9 0.9 0.9 0.9 0.9 0.9) 

ck = ( 5 5 5 5 5 5 5 ) 



158 B. Testing Examples 

Example 8: 

P,,, ~ c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

rj ,k ~ (: 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

c = 10 

( 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
ak = 

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 

Example 9: 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2 2 2 2 2 2 

f.J,j ,k = 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

7 7 7 7 7 7 7 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

Tj ,k = 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

1 1 1 1 1 1 1 

C= 20 

ak = ( 3 3 3 3 3 3 3 ) 

Ck = ( 4 4 4 4 4 4 4 ) 

Example 10: 

1 1 1 1 1 

3 3 3 3 3 
f.J,j ,k = 

4 4 4 4 4 

2 2 2 2 2 
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2 2 2 2 2 

5 5 5 5 5 
rj,k = 

4 4 4 4 4 

1 1 1 1 1 

C=lO 

ak = ( 1.5 1.5 3.5 2.5 5 ) 

Ck = ( 3 3 3 3 3 ) 

Example 11: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
/Lj,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
rj,k = 

4 4 4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 2 2 

C=5 

ak = ( 4 4 2 2 2 2 2 2 4 4 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 12: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

8 8 8 8 8 8 8 8 
/Lj,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
rj,k = 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 
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c = 6 

ak = ( 3 3 3 3 3 3 3 3 ) 

ck = ( 2 2 2 3 3 3 3 3 ) 

Example 13: 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
~Lj , k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 
T j ,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 

c = 10 

ak = ( 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 14: 

2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

/-L j ,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

Tj, k = 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

C= 5 

ak = ( 2 1 1 2 2 1 0.2 0.2 0. 2 0.2 ) 
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Ck = ( 4 4 4 4 4 4 4 4 4 4) 

Example 15: 

~jk ~ ( ~ 3 3 3 3 

o~J 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 

c 2 2 2 2 2) 
rJ,k = 1 1 1 1 1 1 

4 4 4 4 4 4 

C=8 

ak = ( 1 1 1.2 1.3 1.4 1.5 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 16: 

7 7 7 7 7 7 7 7 7 

6 6 6 6 6 6 6 6 6 

/-lj,k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 

rJ,k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 

c = 10 

ak = ( 9 9 9 9 9 9 9 9 9 ) 

Ck = ( 3 3 3 3 4 4 4 4 4 ) 
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Example 17: 
0.7 0.7 0.7 0.7 0.7 0.7 0.7 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
f.-L j ,k = 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

rj,k = 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 

c =6 

a k = ( 0.6 0.6 0.6 0.8 0.8 0.2 0.2) 

Ck = ( 3 3 3 4 4 4 4 ) 

Example 18: 

~j,k = ( : 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

Tj ,k = 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

c = 10 

( 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 
ak = 

0.2 1 1 1 1 1 2 2 2 2 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) 
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Example 19: 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2 2 2 2 2 2 

/-Lj,k = 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

7 7 7 7 7 7 7 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

rj,k = 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

1 1 1 1 1 1 1 

C=ll 

ak = ( 3 3 3 2 2 2 2 ) 

Ck = ( 2 2 2 2 2 2 2 ) 

Example 20: 

1 1 1 1 1 

3 3 3 3 3 
/-Lj,k = 

4 4 4 4 4 

2 2 2 2 2 

2 2 2 2 2 

5 5 5 5 5 
rj,k = 

4 4 4 4 4 

1 1 1 1 1 

C=6 

ak = ( 2 2 3 3 3 ) 

ck = ( 1 1 3 3 3 ) 
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B.6 TDCCP with costs when all classes are iden-

tical and Condition 2 is satisfied 

Example 1: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
/1- j ,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
rj ,k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

c = 6 

a k = ( 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 ) 

Ck = ( 1 1 1 1 1 1 1 1 1 1 ) 

Example 2: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
/1- j ,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

0.1 0.1 0.1 0.1 0.1 0. 1 0. 1 0.1 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
r j ,k = 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

C =4 

ak= ( o.1 0. 1 0.3 0.5 0.1 0.1 0.1 0.1 ) 

Ck = ( 3 3 3 3 3 3 3 3 ) 
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Example 3: 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
/Lj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 
rj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 

c = 16 

ak = ( 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 4: 
2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

/Lj,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

rj,k = 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

C=5 

ak = ( 0.1 0.3 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.2) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 5: 

~j,k = ( ~ 3 3 3 3 

o~J 1 1 1 1 

0.5 0.5 0.5 0.5 0.5 



166 B. Testing Examples 

Tjk ~ 0 2 2 2 2 n 1 1 1 1 
4 4 4 4 

c = 9 

ak = ( 0.5 0.5 0.5 0.5 0.5 0.5 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 6: 

7 7 7 7 7 7 7 7 7 

1 1 1 1 1 1 1 1 1 

/-lj ,k = 3 3 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 

rj ,k = 3 3 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 2 
4 4 4 4 4 4 4 4 4 

c = 32 

ak = ( 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 ) 

Example 7: 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
/-lj ,k = 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
rj,k = 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 

C=2 

ak = ( 0.07 0.07 0.07 0.07 0.07 0.07 0.07) 

Ck = ( 5 5 5 5 5 5 5 ) 

Example 8: 

M;,k = (: 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

r;,k = C 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

c = 10 

( 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
ak = 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ) 

ck = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 

Example 9: 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2 2 2 2 2 2 

/-Lj,k = 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

7 7 7 7 7 7 7 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

rj,k = 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

1 1 1 1 1 1 1 
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c = 20 

ak = ( 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ) 

Ck = ( 4 4 4 4 4 4 4 ) 

Example 10: 

1 1 1 1 1 

3 3 3 3 3 
/-Lj ,k = 

4 4 4 4 4 

2 2 2 2 2 

2 2 2 2 2 

5 5 5 5 5 
rj ,k = 

4 4 4 4 4 

1 1 1 1 1 

c = 10 

ak = ( 0.5 0.5 0.2 0.5 0.15 ) 

Ck = ( 3 3 3 3 3 ) 

Example 11: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
/-L j, k = 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 1 1 1 1 1 1 1 1 1 
rj ,k = 

4 4 4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 2 2 

c = 5 

ak = ( 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5) 

Ck ~ ( 1 1 1 1 1 1 1 1 1 1 ) 
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Example 12: 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

8 8 8 8 8 8 8 8 
{Lj,k = 

1 1 1 1 1 1 1 1 

4 4 4 4 4 4 4 4 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
rj,k = 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 

C=6 

ak = ( 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 ) 

Ck = ( 2 2 2 3 3 3 3 3 ) 

Example 13: 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
/Lj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 5 5 5 5 5 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 
rj,k = 

3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 

c = 10 

ak = ( 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ) 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 14: 
2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 

/Lj,k = 1 1 1 1 1 1 1 1 1 1 

3 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 2 



170 B. Testing Examples 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

T'j ,k = 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

C=5 

ak = ( 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 ) 

Ck = ( 4 4 4 4 4 4 4 4 4 4 ) 

Example 15: 

/ lj,k ~ ( ~ 3 3 3 3 

o~J 2 2 2 2 

0.5 0.5 0.5 0.5 0.5 

c2 2 2 2 n T'j,k = ~ ~ 1 1 1 

4 4 4 

C= 8 

ak = ( 0.1 0.1 0.12 0.05 0.1 0.13 ) 

Ck = ( 2 2 2 2 2 2 ) 

Example 16: 
7 7 7 7 7 7 7 7 7 

6 6 6 6 6 6 6 6 6 

f.l,j ,k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

5 5 5 5 5 5 5 5 5 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 

T'j ,k = 3 3 3 3 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 
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c = 10 

ak = ( 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0~6 0.6 ) 

Ck = ( 3 3 3 3 4 4 4 4 4 ) 

Example 17: 
0.7 0.7 0.7 0.7 0.7 0.7 0.7 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

/-Lj,k = 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

rj,k = 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 

C=6 

ak = ( 0.06 0.06 0.06 0.09 0.09 0.09 0.09) 

Ck = ( 3 3 3 4 4 4 4 ) 

Example 18: 

~j,k ~ ( ~ 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

r;,k ~ ( : 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

c = 10 

( 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
ak = 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ) 



172 B. Test ing Examples 

Ck = ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) 

Example 19: 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2 2 2 2 2 2 

/-Lj ,k = 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

7 7 7 7 7 7 7 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

rJ ,k = 3 3 3 3 3 3 3 

5 5 5 5 5 5 5 

1 1 1 1 1 1 1 

C = ll 

ak = ( 1 1 0.1 0.5 0.5 0.5 0.5 ) 

Ck = ( 2 2 2 2 2 2 2 ) 

Example 20: 

1 1 1 1 1 

3 3 3 3 3 
/-Lj,k = 

4 4 4 4 4 

2 2 2 2 2 

2 2 2 2 2 

5 5 5 5 5 
Tj ,k = 

4 4 4 4 4 

1 1 1 1 1 

C=6 

ak = ( 0.1 0.05 0.15 0 .3 0.3 ) 

Ck = ( 1 1 3 3 3 ) 
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B.7 TDCCP with costs . the general when In case 

Condition 1 is satisfied 

Example 1: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
1 0.2 1 1 1 1 1 0.8 1 1 

/-Lj,k = 
0.8 1 1 1 0.8 1 1 1 1 1 
3 1 2 2 2 2 2 1.5 2 2 

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5 
1 2 1 2 1 1 1 1 0.5 1 

rj,k = 
1 3 1 1 1 1 1 1 1 1 
2 0.2 2 1 2 2 2 4 3 2 

C=8 

ak = ( 1 1 2 2 2 2 3 3 2 2 ) 

Ck = ( 1 1 2 1 1 1 2 1 1 1 ) 

Example 2: 
0.2 0.5 0.2 0.2 0.1 0.2 0.3 0.2 
0.8 0.8 0.8 0.8 0.2 0.8 0.3 0.8 

/-Lj,k = 
1 1 4 1 1 1 0.5 1 
4 4 2 1 1 4 4 4 

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 
0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4 

rj,k = 
2 2 3 2 2 1 2 1 
3 10 2 3 1 3 3 3 

C=lO 

ak = ( 1 1 2 2 2 2 3 3 ) 

Ck = ( 2 3 3 3 1 2 3 3 ) 
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Example 3: 

0.8 2 1 0.5 1 1 1 1 1 0.5 1 1 

0.2 1 1 1 1 1 0.8 1 1 1 0.9 1 
/-Lj ,k = 

3 3 3 3 3 3 2 3 3 3 4 3 

5 5 5 5 4 1 1 5 5 3 5 5 

1 2 1 1 1 1 1 1 1 2 1 1 

2 2 2 3 2 2 2 2 2 3 2 2 
'rj ,k = 

3 1 3 3 3 3 2 3 3 3 3 3 

4 1 4 5 4 4 1 4 4 4 5 4 

c =50 

ak = ( 10 1 10 9 10 8 10 10 10 10 10 w) 
Ck = ( 2 3 1 2 2 2 2 2 1 3 2 2 ) 

Example 4: 
2 2 2 2 1 1 2 2 2 2 

2 1 1 2 1 1 1 1 1 1 

/-L j ,k = 1 1 1 1 1 1 1 0.2 1 1 

4 3 3 3 3 3 3 3 2 3 

5 2 2 0.5 2 1 2 2 1 2 

1 1 1 3 1 1 2 1 1 1 

2 1 1 1 1 1 1 4 1 1 

'rj ,k = 1 1 3 1 1 1 1 2 1 1 

1 3 1 1 5 1 1 1 1 1 

1 3 1 1 6 1 1 1 2 1 

c = 20 

ak = ( 4 3 3 1 1 2 2 2 2 2 ) 

Ck = ( 4 5 4 5 4 3 4 2 1 4 ) 

Example 5: 

M;,k ~ (: 
1 2 2 3 

}J 2 1 1 1 

1 1 0.5 0.5 
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Tjk~ c 2 2 3 2 n 2 1 2 1 

3 4 1 4 

c = 10 

ak = ( 2 2 2 1.5 1.5 1.5 ) 

Ck = ( 2 1 2 1 2 2 ) 

Example 6: 

7 6.5 6.5 6.6 7 6.9 7 7 7 
1.9 1.8 1.7 1.8 1.9 2 1.8 1.9 1.7 

J.lj,k = 3.8 4 3.9 3.8 3.7 3.8 3.9 3.7 3.9 
2.9 2.8 2.7 2.8 2.9 3 2.7 2.8 2.9 
5 4.7 4.8 5 5 4.9 5 5 4.9 

3 2 2 2 1 2 4 2 2 
1 1 3 1 1 1 1 2 1 

Tj,k = 3 2 3 3 2 3 3 5 3 
1 2 3 2 7 2 2 6 2 

6 4 4 5 4 4 4 2 4 

c = 100 

ak = ( 8 10 10 14 10 10 16 12 10) 

Ck = ( 4 4 3 4 3 4 4 1 4 ) 

Example 7: 

0.1 0.05 0.1 0.1 1 0.2 0.1 
0.5 0.2 0.6 0.2 0.2 0.3 0.5 
0.2 0.1 0.2 0.2 0.1 0.2 0.2 

J.lj,k = 
0.3 0.2 0.3 0.9 0.2 0.1 0.3 
0.7 0.5 0.3 0.3 0.2 0.1 0.3 
0.6 0.3 0.2 0.5 0.5 0.3 0.1 
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1 0.1 0.2 0.1 0.4 0.1 0.1 

0.3 0.2 0.2 0.7 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
rj ,k = 

0.9 0.4 0.8 0.4 0.6 0.4 0.4 

0.5 0.5 0.3 0.7 0.5 0.5 0.5 

0.2 0.3 0.3 0.3 0.1 0.3 0.3 

C= 3 

ak = ( 0.9 0.8 0.9 0.9 1.2 0.9 1.8 ) 

Ck = ( 5 2 1 5 3 5 4 ) 

Example 8: 

~;k= u 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 1 1 1 

l) 5 4 4 4 3 4 4 4 3 4 4 4 1 4 4 4 4 4 

1 3 3 3 2 1 1 1 2 3 1 3 1 3 3 3 3 3 

r ; ,k = ( ~ 
3 5 3 5 3 5 7 9 5 5 5 5 5 9 5 1 1 3 :0) 4 2 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4 

3 3 3 2 3 3 3 2 2 3 3 3 2 3 3 2 3 3 

c = 12 

( 0.9 0.7 0.9 0.9 1.5 0.9 0.9 0.9 0.9 1.3 
ak = 

0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.8 ) 

Ck = ( 2 2 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 ) 

Example 9: 

0.2 0.1 0.1 0.1 0.2 0.2 0.1 

2 2 1 1 2 3 2 

/lj ,k = 1 1 2 3 3 2 3 

4 1 4 2 3 5 4 

7 6 1 4 5 4 7 

1 1 8 2 1 1 2 

2 2 3 2 3 2 2 

rj ,k = 3 4 3 3 4 5 3 

5 5 9 6 5 2 5 

1 2 2 1 3 1 1 
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C=6 

ak = ( 1 8 4 6 0.2 1 0.2 ) 

Ck = ( 3 3 2 2 1 4 4 ) 

Example 10: 

2 1.99 1.98 2 1.96 

3.9 3.8 4 3.9 3.8 
f.-Lj,k = 

5 4.9 5 4.9 4.8 

4 3.9 3.9 3.9 4 

1 2 1 4 2 

4 2 1 5 5 
Tj,k = 

2 3 10 4 4 

8 1 3 2 1 

C=4 

ak = ( 2 8 0.6 0.4 1 ) 

Ck = ( 3 3 1 2 2 ) 

Example 11: 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 0.2 1 1 1 1 1 2 1 1 
f.-Lj,k = 

0.8 1 1 1 0.8 1 1 1 1 1 

3 3 2 2 2 2 2 1.5 2 2 

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5 

1 2 3 2 1 1 1 1 0.5 1 
Tj,k = 

1 3 1 1 1 1 1 1 1 1 

2 0.2 2 1 2 2 2 4 3 2 

C=20 

ak = ( 3 3 3 3 2 2 3 3 3 3 ) 

Ck = ( 2 1 1 1 1 1 1 1 1 2 ) 
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Example 12: 
0.2 0.5 0.2 0.2 0.1 0.2 0.1 0.2 

0.8 2 0.8 0.8 1 0.8 1 0.8 
/-Lj ,k = 

1 1 4 1 1 1 3 1 

4 4 3 1 7 8 4 4 

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 

0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4 
r j, k = 

2 2 3 6 2 1 2 1 

3 10 2 7 1 3 3 3 

c = 15 

ak = ( 1 1 5 5 5 5 3 3 ) 

Ck = ( 1 2 3 3 1 2 1 3 ) 

Example 13: 

0.2 2 1 2 1 1 1 1 1 2 1 1 

1 1 1 1 1 1 2 1 1 1 2 1 
/-Lj ,k = 

3 3 3 3 3 3 2 3 3 3 4 3 

6 5 5 5 4 1 1 5 5 4 5 5 

1 2 1 1 1 1 1 1 1 2 1 1 

2 2 2 3 2 2 2 2 2 3 2 2 
rj ,k = 

3 1 3 6 3 7 2 3 3 3 3 3 

4 1 4 5 4 4 1 4 4 4 5 4 

c = 100 

ak = ( 10 1 10 9 8 8 10 10 7 1 2 10) 
Ck = ( 1 3 1 2 1 1 2 2 1 3 2 2 ) 

Example 14: 
2 2 2 2 1 2 2 1 2 2 

2 1 1 6 7 1 1 1 1 1 

/-Lj ,k = 1 1 1 1 1 1 1 2 1 1 

4 1 3 3 3 3 3 3 2 3 

5 2 2 4 5 1 2 2 1 2 
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1 1 1 3 1 1 2 1 1 1 

2 1 1 1 1 1 1 4 1 1 

r·j,k = 1 1 3 1 1 1 1 2 1 1 

1 3 1 1 5 1 1 1 1 1 

1 3 1 1 6 1 1 1 2 1 

C=5 

ak = ( 4 3 3 4 1 1 1 3 1 2 ) 

Ck = ( 4 2 4 1 4 3 4 2 1 4 ) 

Example 15: 

/<j,k ~ ( 2:8 
2.9 2.8 2.99 

3 3 ) 
2.9 3 2.7 2.8 2.9 

1.9 2 1.7 1.9 1.8 c 2 2 3 2 n rj,k = 1 2 1 2 1 

4 3 1 1 4 

c = 16 

ak = ( 1 3 3 3 3 1.5 ) 

Ck = ( 2 1 2 1 1 2 ) 

Example 16: 

7 6 5 1 7 3 7 7 7 

1 0.5 1 1 1 2 5 1 1 

/lj,k = 3 4 1 3 3 2 3 3 3 

1 2 1.5 2 2 3 2 2 1 

5 3 4 5 5 4 5 5 4 

3 2 2 2 1 2 4 2 2 

1 1 3 1 1 1 0.1 2 1 

Tj,k = 3 2 1 3 2 3 3 5 3 

1 2 3 2 7 2 2 6 2 

2 4 4 5 4 4 3 2 4 
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c = 70 

ak = ( 7 10 10 13 10 10 17 11 10) 
Ck = ( 4 4 3 4 3 4 4 1 4 ) 

Example 17: 
0.1 0.05 0.1 0.1 0.2 0.2 0.1 
0.5 0.2 0.6 0.2 0.2 0.3 0.1 
0.2 0.1 0.2 0.2 0.2 0.2 0.2 

/-L j ,k = 
0.3 0.2 0.3 0.9 0.2 0.1 0.3 
0.7 0.5 0.3 0.3 0.2 0.3 0.3 
0.6 0.4 0.2 0.5 0.5 0.3 0.1 

1 0.1 0.2 0.1 0.4 0.1 0.1 
0.3 0.2 0.2 0.7 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

rj ,k = 
0.9 0.4 0.8 0.4 0.6 0.4 0.4 
0.5 0.5 0.3 0.7 0.5 0.5 0.5 
0.2 0.3 0.3 0.3 0.1 0.3 0.3 

c = 6 

ak = ( 0.1 0.5 0.9 0.7 1.1 0.1 1.8 ) 

Ck = ( 1 2 1 3 3 5 4 ) 

Example 18: 

M;,k ~ c 1 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 1 1 n 5 4 4 4 1 4 4 4 3 4 4 4 2 4 4 4 4 4 

1 4 3 3 2 1 3 3 2 3 1 3 1 3 3 3 3 3 

r;,k = ( ~ 
3 5 3 5 3 5 7 9 5 5 5 2 5 3 5 1 1 3 :0 ) 4 0 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4 

3 3 3 2 3 3 3 2 1 3 3 3 2 3 3 2 3 3 

c = 30 

( 0.9 0.1 0.9 0.9 1.5 0.3 0.9 0.7 0.9 1.3 
ak = 

0.6 0.9 0.9 0.9 0.9 0.2 0.9 0.5 0.3 1.8 ) 
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ck = ( 1 2 1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 ) 

Example 19: 

0.7 0.1 0.1 0.1 0.2 0.6 0.1 

2 2 1 1 2 3 2 

/-Lj,k = 1 1 3 4 3 2 3 

4 1 4 3 3 5 4 

7 6 2 2 3 4 7 

1 1 8 2 1 1 1 

2 2 3 2 3 2 2 

rj,k = 3 4 9 3 4 3 3 

5 5 9 1 5 2 5 

1 2 1 1 3 1 1 

C=ll 

ak = ( 1 3 2 8 2 12 3 ) 

Ck = ( 3 3 2 2 1 4 4 ) 

Example 20: 

2 2 1 2 1 

1 3 3 2 3 
/Lj,k = 

6 2 1 5 1 

1 3 2 2 4 

1 2 3 4 2 

4 2 1 2 5 
rj,k = 

2 3 10 4 4 

8 7 3 2 1 

c = 15 

ak = ( 7 1 9 2 w) 
Ck = ( 3 3 1 2 2 ) 
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B.8 TDCCP with costs in the general case when 

Condition 2 is satisfied 

Example 1: 

Example 2: 

rj,k = 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 0.2 1 1 1 1 1 0.8 1 1 

0.8 1 1 1 0.8 1 1 1 1 1 

3 1 2 2 2 2 2 1.5 2 2 

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5 

1 2 1 

1 3 1 

2 1 1 

1 1 1 

1 1 0.5 1 

1 1 1 1 

2 0.2 2 1 2 2 2 4 3 2 

c = 8 

ak = ( 0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.2 0.2) 

Ck = ( 1 1 2 1 1 1 2 1 1 1 ) 

/-Lj ,k = 

0.2 0.5 0.2 0.2 0.1 0.2 0.3 0.2 

0.8 0.8 0.8 0.8 0.2 0.8 0.3 0.8 

1 1 4 1 1 1 0.5 1 

4 4 2 1 1 4 4 4 

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 

0.8 0.4 0.4 0.4 0. 7 0.4 0.4 0.4 

2 2 3 

3 10 2 
2 2 

3 1 

c = 10 

1 

3 

2 1 

3 3 

ak = ( 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 ) 

Ck = ( 2 3 3 3 1 2 3 3 ) 



B. Testing Examples 183 

Example 3: 

1.8 2 1.9 1.8 2 2 2 1.9 1.9 1.8 2 2 

0.9 1 1 1 1 1 0.9 1 1 1 0.9 1 
P,j,k = 

3.8 3.9 3.7 3.6 3.8 3.9 4 4 3.8 3.9 4 3.9 

5 5 5 5 4.8 4.9 4.9 5 5 5 5 5 

1 2 1 1 1 1 1 1 1 2 1 1 

2 2 2 3 2 2 2 2 2 3 2 2 
Tj,k = 

3 1 3 3 3 3 2 3 3 3 3 3 

4 1 4 5 4 4 1 4 4 4 5 4 

c =50 

ak = ( 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25) 

Ck = ( 2 3 1 2 2 2 2 2 1 3 2 2 ) 

Example 4: 
2 2 2 2 1 1 2 2 2 2 

2 1 1 2 1 1 1 1 1 1 

P,j,k = 1 1 1 1 1 1 1 0.2 1 1 

4 3 3 3 3 3 3 3 2 3 

5 2 2 0.5 2 1 2 2 1 2 

1 1 1 3 1 1 2 1 1 1 

2 1 1 1 1 1 1 4 1 1 

Tj,k = 1 1 3 1 1 1 1 2 1 1 

1 3 1 1 5 1 1 1 1 1 

1 3 1 1 6 1 1 1 2 1 

c = 20 

ak = ( 0.4 0.3 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.2 ) 

Ck = ( 4 5 4 5 4 3 4 2 1 4 ) 

Example 5: 

~jk = ( 1~9 
2.9 2.8 2.9 3 

o.L) 2 1.9 1.9 1.9 

1 1 0.97 0.99 
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Tjk = u 2 2 3 2 n 2 1 2 1 
3 4 1 4 

C=lO 

ak = ( 0.2 0.1 0.2 0.5 0.1 0.1 ) 

Ck = ( 2 1 2 1 2 2 ) 

Example 6: 

7 6.5 6.5 0.6 7 6.9 7 7 7 
1.9 1.8 1.7 1.8 1.9 2 1.8 1.9 1.7 

{lj,k = 3.8 4 3.9 3.8 3.7 3.8 3.9 3.7 3.9 
2.9 2.8 2.7 1 2.9 3 2.7 2.8 2.9 

5 1 1 5 5 1 5 5 4.9 

3 2 2 2 1 2 4 2 2 

1 1 3 1 1 1 1 2 1 

rj ,k = 3 2 3 3 2 3 3 5 3 
1 2 3 2 7 2 2 6 2 
6 4 4 5 4 4 4 2 4 

c = 100 

ak = ( 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ) 

ck = ( 4 4 3 4 3 4 4 1 4 ) 

Example 7: 
0.1 0.1 0.1 0.1 1 0.2 0.1 

0.5 0.2 0.6 0.2 0.2 0.3 0.5 

0.2 0.1 0.2 0.2 0.1 0.2 0.2 
{l j ,k = 

0.3 0.2 0.3 0.9 0.2 0.1 0.3 

0.7 0.5 0.3 0.3 0.2 0.1 0.3 

0.6 0.3 0.2 0.5 0.5 0.3 0.1 
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1 0.1 0.2 0.1 0.4 0.1 0.1 

0.3 0.2 0.2 0.7 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
rj,k = 

0.9 0.4 0.8 0.4 0.6 0.4 0.4 

0.5 0.5 0.3 0.7 0.5 0.5 0.5 

0.2 0.3 0.3 0.3 0.1 0.3 0.3 

C=3 

ak = ( 0.06 0.06 0.06 0.06 0.06 0.06 0.06) 

Ck = ( 5 2 1 5 3 5 4 ) 

Example 8: 

~jk~ (: 
1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 1 1 1 

D 5 4 4 4 3 4 4 4 3 4 4 4 1 4 4 4 4 4 

1 3 3 3 2 1 1 1 2 3 1 3 1 3 3 3 3 3 

r;,k ~ ( ~ 
3 5 3 5 3 5 7 9 5 5 5 5 5 9 5 1 1 3 !) 4 2 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4 

3 3 3 2 3 3 3 2 2 3 3 3 2 3 3 2 3 3 

c = 12 

( 0.05 0.05 0.05 0.1 0.2 0.2 0.2 0.2 0.2 0.1 
ak = 

0.1 0.05 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.3 ) 

Ck = ( 2 2 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 ) 

Example 9: 
0.2 0.1 0.1 0.1 0.2 0.2 0.1 

2 2 1 1 2 3 2 

f.-Lj,k = 1 1 2 3 3 2 3 

4 1 4 2 3 5 4 

7 6 1 4 5 4 7 

1 1 8 2 1 1 2 

2 2 3 2 3 2 2 

Tj,k = 3 4 3 3 4 5 3 

5 5 9 6 5 2 5 

1 2 2 1 3 1 1 
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c = 9 

ak = ( 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ) 

Ck = ( 3 3 2 2 1 4 4 ) 

Example 10: 
2 1 1.98 2 1.96 

3.9 0.8 4 3.9 3.8 
/-l j ,k = 

5 4.9 5 4.9 4.8 

4 3.9 3.9 3.9 4 

1 2 1 4 2 

4 2 1 5 5 
Tj ,k = 

2 3 10 4 4 

8 1 3 2 1 

C=4 

ak = ( 0.2 0.8 0.05 0.4 0.05 ) 

Ck = ( 3 3 1 2 2 ) 

Example 11 : 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

1 0.2 1 1 1 1 1 2 1 1 
/-lj ,k = 

0.8 1 1 1 0.8 1 1 1 1 1 

3 3 2 2 2 2 2 1.5 2 2 

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5 

1 2 3 2 1 1 1 1 0.5 1 
Tj ,k = 

1 3 1 1 1 1 1 1 1 1 

2 0.2 2 1 2 2 2 4 3 2 

c = 20 

ak=(o.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.1 0.1 ) 

Ck = ( 2 1 1 1 1 1 1 1 1 2 ) 
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Example 12: 

0.49 0.5 0.49 0.48 0.49 0.48 0.49 0.48 

1.8 2 1.8 1.8 1.9 1.8 1.95 1.8 
P,j,k = 

3.9 3.8 4 4 4 3.7 3.9 4 

7.8 7.8 8 7.9 7.9 8 8 7.8 

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 

0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4 
Tj,k = 

2 2 3 6 2 1 2 1 

3 10 2 7 1 3 3 3 

c = 15 

ak = ( 0.1 0.1 0.15 0.5 0.5 0.5 0.3 0.1 ) 

Ck = ( 1 2 3 3 1 2 1 3 ) 

Example 13: 

0.2 2 1 2 1 1 1 1 1 2 1 1 

1 1 1 1 1 1 2 1 1 1 2 1 
P,j,k = 

3 3 3 3 3 3 2 3 3 3 4 3 

6 5 5 5 4 1 1 5 5 4 5 5 

1 2 1 1 1 1 1 1 1 2 1 1 

2 2 2 3 2 2 2 2 2 3 2 2 
rj,k = 

3 1 3 6 3 7 2 3 3 3 3 3 

4 1 4 5 4 4 1 4 4 4 5 4 

c = 100 

ak = ( 1 0.1 1 0.15 0.8 0.1 0.1 0.05 0.7 0.1 0.1 0.2) 

Ck = ( 1 3 1 2 1 1 2 2 1 3 2 2 ) 

Example 14: 

2 2 2 2 1.9 2 2 1.9 2 2 

6.8 6.9 6.8 6.9 7 7 6.9 6.9 6.8 7 

P,j,k = 1.9 1.8 2 2 2 1.9 2 2 1.9 1.8 

4 4 3.7 3.8 3.95 3.92 3.75 3.8 4 4 

5 2 5 4.9 5 4.8 5 5 4.9 5 
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1 1 1 3 1 1 2 1 1 1 

2 1 1 1 1 1 1 4 1 1 

rj ,k = 1 1 3 1 1 1 1 2 1 1 

1 3 1 1 5 1 1 1 1 1 

1 3 1 1 6 1 1 1 2 1 

c = 5 

ak = ( 0. 4 0.3 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.2 ) 

Ck = ( 4 2 4 1 4 3 4 2 1 4 ) 

Example 15: 

Jl, ,k = ( 2:8 
1 2.8 2.99 3 

2
3
9) 2.9 3 0.5 2.8 

1.9 2 1.7 1.9 1.8 

r,,= u 2 2 3 2 n 2 1 2 1 

3 1 1 4 

c = 16 

ak = ( 0.1 0.25 0.25 0.3 0.1 0.1 ) 

Ck = ( 2 1 2 1 1 2 ) 

Example 16: 
7 6 5 1 7 3 7 7 7 

1 0.5 1 1 1 2 5 1 1 

/-lj ,k = 3 4 1 3 3 2 3 3 3 

1 2 1.5 2 2 3 2 2 1 

5 3 4 5 5 4 5 5 4 

3 2 2 2 1 2 4 2 2 

1 1 3 1 1 1 0.1 2 1 

r j ,k = 3 2 1 3 2 3 3 5 3 

1 2 3 2 7 2 2 6 2 

2 4 4 5 4 4 3 2 4 
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c = 70 

ak = ( 0.7 0.5 0.9 0.1 0.3 0.3 0.2 0.1 0.1 ) 

ck = ( 4 4 3 4 3 4 4 1 4 ) 

Example 17: 
0.1 0.05 0.1 0.1 0.2 0.2 0.1 

0.5 0.2 0.6 0.2 0.2 0.3 0.1 

0.2 0.1 0.2 0.2 0.2 0.2 0.2 
J.Lj,k = 

0.3 0.2 0.3 0.9 0.2 0.1 0.3 

0.7 0.5 0.3 0.3 0.2 0.3 0.3 

0.6 0.4 0.2 0.5 0.5 0.3 0.1 

1 0.1 0.2 0.1 0.4 0.1 0.1 

0.3 0.2 0.2 0.7 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Tj,k = 

0.9 0.4 0.8 0.4 0.6 0.4 0.4 

0.5 0.5 0.3 0.7 0.5 0.5 0.5 

0.2 0.3 0.3 0.3 0.1 0.3 0.3 

C=6 

ak = ( 0.01 0.05 0.09 0.07 0.5 0.01 0.1 ) 

Ck = ( 1 2 1 3 3 5 4 ) 

Example 18: 

MJ,k ~ 0 1 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 1 1 n 5 4 4 4 1 4 4 4 3 4 4 4 2 4 4 4 4 4 

1 4 3 3 2 1 3 3 2 3 1 3 1 3 3 3 3 3 

Tj,k ~ ( ~ 
3 5 3 5 3 5 7 9 5 5 5 2 5 3 5 1 1 3 :0) 4 0 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4 
3 3 3 2 3 3 3 2 1 3 3 3 2 3 3 2 3 3 

C= 30 

( 0.09 0.01 0.09 0.09 0.5 0.03 0.09 0.07 0.09 0.3 
ak = 

0.06 0.01 0.01 0.01 0.01 0.02 0.09 0.05 0.03 0.08 ) 
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ck = ( 1 2 

Example 19: 

Example 20: 

B. Testing Examples 

1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 ) 

0.7 0.1 0.1 0.1 0.2 0.6 0.1 

2 2 1 1 2 3 2 

f-Lj,k = 1 1 3 4 3 2 3 

4 1 4 3 3 5 4 

7 6 2 2 3 4 7 

1 1 8 2 1 1 1 

2 2 3 2 3 2 2 

rj ,k = 3 4 9 3 4 3 3 

5 5 9 1 5 2 5 

1 2 1 1 3 1 1 

C=ll 

ak = ( 0.1 0.3 0.3 0.8 0.2 0.9 0.3 ) 

Ck = ( 3 3 2 2 1 4 4 ) 

2 2 1 2 1 

1 3 3 2 3 
f-Lj ,k = 

6 2 1 5 1 

1 3 2 2 4 

1 2 3 4 2 

4 2 1 2 5 
rj ,k = 

2 3 10 4 4 

8 7 3 2 1 

c = 15 

ak = ( 0.7 0.1 0.8 0.2 1.1 ) 

Ck = ( 3 3 1 2 2 ) 

742 7 79 


	Kan_Liuxing_2006_09_master0001
	Kan_Liuxing_2006_09_master0002
	Kan_Liuxing_2006_09_master0003
	Kan_Liuxing_2006_09_master0004
	Kan_Liuxing_2006_09_master0005
	Kan_Liuxing_2006_09_master0006
	Kan_Liuxing_2006_09_master0007
	Kan_Liuxing_2006_09_master0008
	Kan_Liuxing_2006_09_master0009
	Kan_Liuxing_2006_09_master0010
	Kan_Liuxing_2006_09_master0011
	Kan_Liuxing_2006_09_master0012
	Kan_Liuxing_2006_09_master0013
	Kan_Liuxing_2006_09_master0014
	Kan_Liuxing_2006_09_master0015
	Kan_Liuxing_2006_09_master0016
	Kan_Liuxing_2006_09_master0017
	Kan_Liuxing_2006_09_master0018
	Kan_Liuxing_2006_09_master0019
	Kan_Liuxing_2006_09_master0020
	Kan_Liuxing_2006_09_master0021
	Kan_Liuxing_2006_09_master0022
	Kan_Liuxing_2006_09_master0023
	Kan_Liuxing_2006_09_master0024
	Kan_Liuxing_2006_09_master0025
	Kan_Liuxing_2006_09_master0026
	Kan_Liuxing_2006_09_master0027
	Kan_Liuxing_2006_09_master0028
	Kan_Liuxing_2006_09_master0029
	Kan_Liuxing_2006_09_master0030
	Kan_Liuxing_2006_09_master0031
	Kan_Liuxing_2006_09_master0032
	Kan_Liuxing_2006_09_master0033
	Kan_Liuxing_2006_09_master0034
	Kan_Liuxing_2006_09_master0035
	Kan_Liuxing_2006_09_master0036
	Kan_Liuxing_2006_09_master0037
	Kan_Liuxing_2006_09_master0038
	Kan_Liuxing_2006_09_master0039
	Kan_Liuxing_2006_09_master0040
	Kan_Liuxing_2006_09_master0041
	Kan_Liuxing_2006_09_master0042
	Kan_Liuxing_2006_09_master0043
	Kan_Liuxing_2006_09_master0044
	Kan_Liuxing_2006_09_master0045
	Kan_Liuxing_2006_09_master0046
	Kan_Liuxing_2006_09_master0047
	Kan_Liuxing_2006_09_master0048
	Kan_Liuxing_2006_09_master0049
	Kan_Liuxing_2006_09_master0050
	Kan_Liuxing_2006_09_master0051
	Kan_Liuxing_2006_09_master0052
	Kan_Liuxing_2006_09_master0053
	Kan_Liuxing_2006_09_master0054
	Kan_Liuxing_2006_09_master0055
	Kan_Liuxing_2006_09_master0056
	Kan_Liuxing_2006_09_master0057
	Kan_Liuxing_2006_09_master0058
	Kan_Liuxing_2006_09_master0059
	Kan_Liuxing_2006_09_master0060
	Kan_Liuxing_2006_09_master0061
	Kan_Liuxing_2006_09_master0062
	Kan_Liuxing_2006_09_master0063
	Kan_Liuxing_2006_09_master0064
	Kan_Liuxing_2006_09_master0065
	Kan_Liuxing_2006_09_master0066
	Kan_Liuxing_2006_09_master0067
	Kan_Liuxing_2006_09_master0068
	Kan_Liuxing_2006_09_master0069
	Kan_Liuxing_2006_09_master0070
	Kan_Liuxing_2006_09_master0071
	Kan_Liuxing_2006_09_master0072
	Kan_Liuxing_2006_09_master0073
	Kan_Liuxing_2006_09_master0074
	Kan_Liuxing_2006_09_master0075
	Kan_Liuxing_2006_09_master0076
	Kan_Liuxing_2006_09_master0077
	Kan_Liuxing_2006_09_master0078
	Kan_Liuxing_2006_09_master0079
	Kan_Liuxing_2006_09_master0080
	Kan_Liuxing_2006_09_master0081
	Kan_Liuxing_2006_09_master0082
	Kan_Liuxing_2006_09_master0083
	Kan_Liuxing_2006_09_master0084
	Kan_Liuxing_2006_09_master0085
	Kan_Liuxing_2006_09_master0086
	Kan_Liuxing_2006_09_master0087
	Kan_Liuxing_2006_09_master0088
	Kan_Liuxing_2006_09_master0089
	Kan_Liuxing_2006_09_master0090
	Kan_Liuxing_2006_09_master0091
	Kan_Liuxing_2006_09_master0092
	Kan_Liuxing_2006_09_master0093
	Kan_Liuxing_2006_09_master0094
	Kan_Liuxing_2006_09_master0095
	Kan_Liuxing_2006_09_master0096
	Kan_Liuxing_2006_09_master0097
	Kan_Liuxing_2006_09_master0098
	Kan_Liuxing_2006_09_master0099
	Kan_Liuxing_2006_09_master0100
	Kan_Liuxing_2006_09_master0101
	Kan_Liuxing_2006_09_master0102
	Kan_Liuxing_2006_09_master0103
	Kan_Liuxing_2006_09_master0104
	Kan_Liuxing_2006_09_master0105
	Kan_Liuxing_2006_09_master0106
	Kan_Liuxing_2006_09_master0107
	Kan_Liuxing_2006_09_master0108
	Kan_Liuxing_2006_09_master0109
	Kan_Liuxing_2006_09_master0110
	Kan_Liuxing_2006_09_master0111
	Kan_Liuxing_2006_09_master0112
	Kan_Liuxing_2006_09_master0113
	Kan_Liuxing_2006_09_master0114
	Kan_Liuxing_2006_09_master0115
	Kan_Liuxing_2006_09_master0116
	Kan_Liuxing_2006_09_master0117
	Kan_Liuxing_2006_09_master0118
	Kan_Liuxing_2006_09_master0119
	Kan_Liuxing_2006_09_master0120
	Kan_Liuxing_2006_09_master0121
	Kan_Liuxing_2006_09_master0122
	Kan_Liuxing_2006_09_master0123
	Kan_Liuxing_2006_09_master0124
	Kan_Liuxing_2006_09_master0125
	Kan_Liuxing_2006_09_master0126
	Kan_Liuxing_2006_09_master0127
	Kan_Liuxing_2006_09_master0128
	Kan_Liuxing_2006_09_master0129
	Kan_Liuxing_2006_09_master0130
	Kan_Liuxing_2006_09_master0131
	Kan_Liuxing_2006_09_master0132
	Kan_Liuxing_2006_09_master0133
	Kan_Liuxing_2006_09_master0134
	Kan_Liuxing_2006_09_master0135
	Kan_Liuxing_2006_09_master0136
	Kan_Liuxing_2006_09_master0137
	Kan_Liuxing_2006_09_master0138
	Kan_Liuxing_2006_09_master0139
	Kan_Liuxing_2006_09_master0140
	Kan_Liuxing_2006_09_master0141
	Kan_Liuxing_2006_09_master0142
	Kan_Liuxing_2006_09_master0143
	Kan_Liuxing_2006_09_master0144
	Kan_Liuxing_2006_09_master0145
	Kan_Liuxing_2006_09_master0146
	Kan_Liuxing_2006_09_master0147
	Kan_Liuxing_2006_09_master0148
	Kan_Liuxing_2006_09_master0149
	Kan_Liuxing_2006_09_master0150
	Kan_Liuxing_2006_09_master0151
	Kan_Liuxing_2006_09_master0152
	Kan_Liuxing_2006_09_master0153
	Kan_Liuxing_2006_09_master0154
	Kan_Liuxing_2006_09_master0155
	Kan_Liuxing_2006_09_master0156
	Kan_Liuxing_2006_09_master0157
	Kan_Liuxing_2006_09_master0158
	Kan_Liuxing_2006_09_master0159
	Kan_Liuxing_2006_09_master0160
	Kan_Liuxing_2006_09_master0161
	Kan_Liuxing_2006_09_master0162
	Kan_Liuxing_2006_09_master0163
	Kan_Liuxing_2006_09_master0164
	Kan_Liuxing_2006_09_master0165
	Kan_Liuxing_2006_09_master0166
	Kan_Liuxing_2006_09_master0167
	Kan_Liuxing_2006_09_master0168
	Kan_Liuxing_2006_09_master0169
	Kan_Liuxing_2006_09_master0170
	Kan_Liuxing_2006_09_master0171
	Kan_Liuxing_2006_09_master0172
	Kan_Liuxing_2006_09_master0173
	Kan_Liuxing_2006_09_master0174
	Kan_Liuxing_2006_09_master0175
	Kan_Liuxing_2006_09_master0176
	Kan_Liuxing_2006_09_master0177
	Kan_Liuxing_2006_09_master0178
	Kan_Liuxing_2006_09_master0179
	Kan_Liuxing_2006_09_master0180
	Kan_Liuxing_2006_09_master0181
	Kan_Liuxing_2006_09_master0182
	Kan_Liuxing_2006_09_master0183
	Kan_Liuxing_2006_09_master0184
	Kan_Liuxing_2006_09_master0185
	Kan_Liuxing_2006_09_master0186
	Kan_Liuxing_2006_09_master0187
	Kan_Liuxing_2006_09_master0188
	Kan_Liuxing_2006_09_master0189
	Kan_Liuxing_2006_09_master0190
	Kan_Liuxing_2006_09_master0191
	Kan_Liuxing_2006_09_master0192
	Kan_Liuxing_2006_09_master0193
	Kan_Liuxing_2006_09_master0194
	Kan_Liuxing_2006_09_master0195
	Kan_Liuxing_2006_09_master0196
	Kan_Liuxing_2006_09_master0197
	Kan_Liuxing_2006_09_master0198
	Kan_Liuxing_2006_09_master0199
	Kan_Liuxing_2006_09_master0200
	Kan_Liuxing_2006_09_master0201

