
QUEUEING NETWORKS WITH LIMITED

FLEXIBILITY

QUEUEING NETWORKS WITH LIMITED

FLEXIBILITY

By

LIUXING KAN , B.ENG .

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Science

McMaster University

© Copyright by Liuxing Kan , September 2006

MASTER OF SCIENCE (2006)

(Computing and Software)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Queueing Networks with Limited Flexibility

Liuxing Kan

B.Eng. (\Vuhan University)

Dr. George Karakostas

1, 190

ii

Abstract

Queueing network models have been widely adopted in the field of complex systems

involving service. In this thesis, we study a queueing network model which consists

of servers and classes wit h incoming customers. Customers are served by servers at

classes, where a class of a customer is used to indicate the stage of processing. All

the servers are flexible to switch their service between classes. Our objective is to

choose an efficient assignment of servers to classes that maximizes the capacity of t he

given queueing network. By int roducing limited flexibility, we restrict the maximum

number of servers which can simultaneously work at a particular class and present

a problem called the Total Discrete Capacity Constrained Problem (TDCCP). We

also extend TDCCP to TDCCP with costs, where a cost is incurred when a server is

working at a class.

We prove that both TDCCP and TDCCP with costs are NP-complete problems.

However, for a special case where all servers are ident ical, we show that TDCCP and

TDCCP with costs can be solved in polynomial time. Then we present approxima

t ion algorithms for another special case where all classes are identical. We also give

approximation algori thms for solving the general case of TDCCP and TDCCP with

costs.

Finally, we implement the approximation algorithms for solving TDCCP and TD

CCP with costs. Numerical results on several experiments are reported. We compare

and analyze the performance of the different algorithms. Several suggestions will be

also given for choosing our algorithms and improving the results.

111

Acknowledgements

First of all , I would like to express my deep and sincere gratitude to my supervisor

Dr. George Karakostas, for his constant support , insightful guidance and stimulating

encouragement in all the time of two years' graduate studies at McMaster University.

This thesis could not have been accomplished without his detailed comments, valuable

suggestions and careful corrections. Honestly, I have learned a lot from him in both

academic research and non-academic fields.

Thanks to Dr. Douglas Down and Dr. Spencer Smith, for their agreement to

be my committee members and review this thesis. Your valuable suggestions and

comments are highly acknowledged.

I thank all the professors and staffs in the Department of Computing and Software,

especially Dr. Michael Soltys, who gave me a great lecture of computability and

complexity.

I also thank Dr. Hu Zhang (Advanced Optimization Lab, McMaster University)

for hi~ helpful discussions on scheduling problems and all my colleagues in ITB-206

for the great working environment they made.

Finally, many thanks to my parents , who always supported me and encouraged

me. Your love is the strong power for me to go forward . Also thanks to my girlfriend

Emma, for the love and happiness you gave me.

lV

Contents

1 Introduction

1.1 Motivation .

1.2 Previous work .

1.3 Model description

1.4 Our results

1.5 Thesis structure .

2 Total Discret e C a pacity Constrained Problem

2.1 Overview of the network

2.2 Network topology

2. 3 Service mechanism . . .

2.4 Total Discrete Capacity Constrained Problem

2.5 Total Discrete Capacity Constrained Problem with Costs

3 N etwork Flow and Scheduling Problems

3.1 Multicommodity Flow Problem

3.2 Single Source Unsplittable Flow Problem

3.3 Single Source Unspli ttable Min-cost Flow Problem .

3.4 k-splittable Flow Problem (with Costs) . . .

3.5 Scheduling of Unrelated Machines Problem .

3.6 Minimum Cost Bipartite Matching Problem

1

1

3

5

7

12

14

14

15

16

17

21

25

25

28

30

31

32

35

4 Total Discrete Capacity Constrained Problem without Costs 38

4.1 Overview of solving TDCCP 38

4.2 Solving TDCCP in the case of /-L j ,k = I-Lk 39

v

VI

4.3 Solving TDCCP in the case of J..l] ,k = J..l j .

4.3.1 Approximation Algorithm 1

4.3.2 Approximation Algorithm 2

4.4 The case J.1 = a · {3T . . .

4.5 Solving the general case

4.6 NP-Completeness

5 Total Discrete Capacity Constrained Problem with Costs

5.1 Overview of solving TDCCP with costs

5.2 Solving TDCCP with costs in the case of J..lj ,k = J..lk

5.3 Solving TDCCP with costs in the case of J..l] ,k = J..lj .

5.3.1 Approximation Algorithm 3

5.3.2 Improvement of Algorithm 3

5.3.3 Approximation Algorithm 4

5.4 The case J.1 = a . (JT . . .

5.5 Solving the general case

5.6 NP-Completeness

6 Experiments

6.1 Experiments of TDCCP without costs

6.1.1 TDCCP without costs when all classes are identical

6.1.2

6.1.3

6.1.4

TDCCP without costs in the general case

TDCCP with costs when all classes are identical .

TDCCP with costs in the general case

6.2 Summary of Experiments . . .

7 Conclusions and Future Work

7.1 Conclusions .

7.2 Future works

Bibliography

A Symbols and Acronyms

CONTENTS

42

42

51

58

59

61

65

65

66

69

69

80

82

92

92

94

95

95

95

104

111

117

124

126

126

127

128

131

CONTENTS Vll

B Testing Examples 133

B.1 TDCCP without costs when all classes are identical and Condition 1

is satisfied . 133

B.2 T DCCP without costs when all classes are identical and Condition 2

is satisfied . 138

B.3 TDCCP without costs in t he general case when Condit ion 1 is satisfied 144

B.4 TDCCP without costs in the general case when Condition 2 is satisfied 149

B.5 TDCCP with costs when all classes are identical and Condit ion 1 is

satisfied . 154

B.6 TDCCP with costs when all classes are identical and Condition 2 is

satisfied . 164

B. 7 TDCCP with costs in the general case when Condition 1 is satisfied 173

B.S TDCCP with costs in the general case when Condition 2 is satisfied 182

List of Figures

2.1 A queueing network model with 2 servers and 3 classes 17

3.1 An example of the multicommodity flow problem with 3 commodities 27

3.2 An example of t he single source source unsplittable flow problem . 28

3.3 An example of the scheduling of unrelated machines problem 33

3.4 An example of the assignment problem 36

4.1 The Framework of our algorithms for solving TDCCP 39

4.2 The network structure for our special case (MP2 ') . . 44

5. 1 The Framework of our algorithms for solving TDCCP with costs 66

5. 2 An example of constructing B (y) . . . ·. 87

G.1 Relat ive cliffcrcuccs from A1 and A2 versus A* for examples MP2 with

0 < A* < 1 . 100

6.2 Relative differences from A1 and A2 versus A* for examples MP2 with

A* 2 1 . 103

6.3 Relative differences from A 1' and A2' versus A* for examples MP with

0 < /\ * < 1 . 107

6.4 Relat ive differences from A1
' and A2

' versus A* for examples MP with

A* 2 1 . 110

G.5 Relative clii-fcrcnccs from A3 and A4 versus A* for examples MPC2 with

0 < A* < 1 ' ' ' . . 114

6.6 Relative differences from A3 and A4 versus A* for examples MPC2 with

A*2 1 117

Vlll

LIST OF FIGURES IX

6.7 Relative differences from ..\3' and ..\4' versus ..* for examples MPC with

0 < ..\ * < 1 . 121

6.8 Relat ive differences from ..\3' and ..\4' versus ..* for examples MPC with

..* 2: 1 . 124

List of Tables

6. 1 Testing results of examples MP 2 with 0 < A* < 1 98

6.2 Relative differences from A1 and A2 versus A* for examples MP2 with

0 < A*< 1 . 99

6.3 Testing results of examples MP 2 with A* 2: 1 101

6.4 Relative diffe rences from A1 and A2 versus A* for examples MP 2 with

/\ * 2: 1

6.5 Testing results of examples MP with 0 < A* < 1

6.6 Relative differences from A1' and A2' versus A* fo r examples MP with

102

105

0 < /\ * < 1 106

6. 7 Testing results of examples MP with A* 2: 1 108

6.8 Relative differences from /\ 1' and A2' versus A* for examples MP with

A* 2: 1 . 109

6.9 Testing results of examples MP C2 with 0 < A* < 1 112

6.10 Relative differences from A3 and A4 versus A* for examples MPC2 with

0 < A* < 1 . 113

6. 11 Testing results of examples MP C2 with /\ * 2: 1 115

G.12 Relative cliffcrcllccs from A3 and A4 versus A* for examples MPC2 with

A* 2: 1 . 116

6. 13 Testing results of examples MP C with 0 < A* < 1 119

6.14 Relative differences from A3' and A4' versus A* for examples MPC with

0 < A* < 1 . 120

6.15 Testing results of examples MPC with A* 2: 1 122

6. 16 Relative differences from A3
' and A4

' versus A* for examples MP C with

A* 2: 1 . 123

X

Chapter 1

Introduction

1.1 Motivation

Queueing network models have many applications in the areas such as manufacturing,

business, computer networks, and etc. First of all , take the example of a TV set

factory. Various kinds of TV parts made in different workshops need to be assembled

by workers; hence, the factory may set up a workstation for assembling. TV parts

produced by other workshops may be sent to the assembling workstation with different

arrival speeds. Workers in the workstation can work only on one assembly task at any

time. When an assembly task is finished at the workstation, the assembled parts will

be either sent to another workstation or sent out upon the completion of a whole TV

set. There might exist a limit on the number of workers who can work at the same

workstation due to specific regulations of the factory. Workers with different working

experience may have different speeds of assembling. Therefore, if the manager of

the factory wants to improve the daily production of TV sets, what strategy can he

employ to make a more efficient assignment of workers?

Another example can be the Canadian immigration offices. Nowadays, the immi

gration department of Canada receives a flood of immigration applications; however,

there is a limited number of immigrat ion officers. After the applications are received,

they are distributed to different case processing offices. If one case processing office

finishes reviewing an application, the application is sent to another case processing

office or is returned to applicants, if all the reviewing processes have been completed.

1

2 1. Introduction

EYery immigration officer can only process one application at a time. Officers can

cooperate on the same application. But the number of officers working on the same

applicat ion is limited because of the space of each immigration office. Similar to the

last example, applications arriving in different offices may have different arrival rates

and different officers may also havE. different case processing speeds due to t heir pro

fessional experience. Hence, how do we assign the officers to different offices more

efficiently such that as many applications as possible can be processed everyday?

Furthermore, the above two examples can be extended to include the costs. In the

first example, when workers are working in the factory, they are paid hourly. The cost

of assembling a TV is the salaries paid to workers in the time of their work. The total

incurred cost of assembling TVs in a day is the salaries paid to all the workers. The

factory manager also has a budget that gives the maximum daily cost for assembly

work. To improve the daily production of TVs, how can the manager make a more

efficient assignment of workers while the daily cost of assembly does not exceed the

given budget? Similar costs and budget can also be applied in the second example.

When there is a budget for salaries of the immigration officers, how can we assign the

officers to speed up processing applications while the given budget is still respected?

Similar models have arisen in other areas . Squillante, Xia, Yao and Zhang [SXYZOl]

present examples in the area of parallel computer systems. F. S. Hillier and K. C.

So [HS96] also propose a production line design problem in the area of production

scheduling.

In this thesis, we study queueing network models which consists of servers and

classes. A class of a customer is used to indicate the stage of processing. Customers

will obtain service from servers at classes. When a customer has its service completed

at a class, it can go to another class or leave the network. All the servers are flexible

in our model, where we say that a server is flexible if it can switch its service between

classes and the flexibility of a server is the number of classes which it can serve. We

assume that each server can only work at one class at a time. However , several servers

are capable of working at the same class. For a particular class, the maximum number

of servers which can simultaneously work at this class is constrained. Let the service

rate of a server be the mean number of customers it can serve in a unit of time and

the customers arrival rate be the mean number of customers arriving at classes from

outside the network in a unit of time. When the customers arrival rate at a class is

1. Introduction 3

greater than the servers service rate at this class, network congestions will happen

and customers at this class cannot be served in time. What can we do to maximize

the customers arrival rate without any congestion in the network? Moreover, if the

costs of servers working at classes and the budget of the maximum allowed total costs

are defined , we will also consider the case for maximizing the customers arrival rate

without any congestion and budget violation in the network. In the examples above,

it is obvious that the workstations and immigration offices correspond to classes, the

TV parts and applications correspond to customers, workers and immigration officers

correspond to servers in our queueing network model.

In fact , most problems of queueing networks do require using servers with limited

flexibility. Queueing networks with inflexibility (a server is forced to work at one class

instead of several classes) or full flexib ility (a server can work at any class) arc just

special cases of queueing networks with limited flexibility. Thus the study of queueing

networks with limited flexibility will give us a more general way to explore t he nature

of queueing networks. In this thesis , we will build a mathematical model of queueing

networks with limited flexibility and go through a thorough analysis of that model.

1.2 Previous work

In the area of operations research, earlier work on queueing networks studied work

(resource) allocation problems and server (machine) allocation problems. Especially

the work allocation problem has been studied extensively, e.g. knapsack problems

and scheduling problems. However , the problem discussed in this thesis belongs to

the server allocation problem.

F . S. Hillier and K. C. So [HS96] presented a production line model with a group

of servers and a fixed amount of work to be partitioned among working stations. The

objective in this paper is to maximize the throughput (production rate) of the given

production line. They give numerical results for the case of a single server per station

and the case of multiple servers per station. Several important observations are

given based on their computational results. Their model is asking for a simultaneous

assignment of servers and work to stations in the production line. Moreover , once

the work is finished at a station, it cannot be sent to any other stations. This model

is different from ours, since our model has interconnected stations (classes). But in

4 1. Introduction

their work, they deal with flexibility, that is, multiple servers can work at a st ation.

M. S. Squillante , C. H. Xia, D. D. Yao and L. Zhang [SXYZOl] later proposed

a parallel-server t:>yt>tem model consisting of servers and job classes . Each job class

has a queue for storing jobs from outside. When the servers are busy, the jobs will

stay in the queue and wait for a server 's execution. A threshold is assigned in each

queue, and the threshold of a queue is the maximum number of jobs which can wait

in this queue without processing by servers. When the number of jobs at a class is

above the threshold of the queue, this queue is eligible to be processed by servers.

Thus once a server is available for selecting the next job to process, it checks all the

threshold values of queues and identifies qualified queues whose numbers of jobs are

greater than their thresholds. A cost will be incurred when a job is waiting in the

queue of a class. This paper develops threshold-based policies for allocating servers

to those parallel queues such that the total incurred cost of this system is minimized.

S. Andrad6ttir , H. Ayhan and D. G. Down [AADOl] studied a dynamic server as

signment to classes in order to obtain optimal (or near-optimal) throughput of queue

ing networks. Their model of queueing networks has common components (servers,

classes and jobs) as the model of M. S. Squillante, C. H. Xia, D. D. Yao and L.

Zhang [SXYZOl]. However , the classes in this model are assumed to be intercon

nected , where jobs can move from one class to another class upon the completion of

the service. Also, servers in this model can travel between stations in a negligible

amount of time and more than one servers can work at a class . The result of this

paper shows that keeping all servers busy is very important to the maximization of

the throughput .

Iu 2003 , S. Audrad6ttir , H. Ayha11 and D. G. Down [AAD03] showed a tight upper

bound of the maximal capacity of queueing network models with flexible servers and

constructed generalized round-robin policies for achieving a capacity arbitrarily close

to the maximal capacity of a queueing network.

W. J. Hopp and M. P. van Oyen [Hv004] use the term cross-training instead of

flexibility. The definitions of workers and workforce are also used instead of customers

and servers. They refer to the overall framework as Agile Workforce Evaluation. In

this framework, they outline approaches for accessing and classifying manufacturing

and service operations. An extensive survey of the literature for workers ' coordination

and workforce's cross-training is also given.

1. Introduction 5

J. G. Dai and \tV. Lin [DL05] proposed a family of policies called maximum pressure

service policies for dynamically allocating service capacities in a stochastic network.

Under some assumptions, they prove that both policies with flexible processors and

policies with inflexible processors are throughput optimal. This paper also shows that

those policies can be used in the queueing networks with interconnected stations.

To our knowledge, none of the previous work studies limited flexibility in queueing

networks. This is the first attempt to address this problem. Actually, like the example

of the TV set factory or Canadian immigration offices mentioned before, studying

queueing networks with limited flexibility will help us to solve more gc11cral aud

practical problems in the area of queueing networks.

1.3 Model description

We consider a queueing network (henceforth we call it system) with servers and

classes. A server will work at classes with given service rates. Customers with the

arrival rates will enter the system from outside and be served at classes. Incoming

customers will stay in the queues of classes to wait for service. The server assignment

policy of queueing networks is the assignment of servers to classes. Our goal is to

find an effi cient server assignment policy such that t he performance of the queueing

network is maximized.

Many researchers use the throughput as a performance measure of queueing net

works , e.g. S. Andrad6ttir, H. Ayhan and D. G. Down [AADOl], J. G. Dai and 'N.

Lin [0105], J. Ostalaza, J. McClain and J. Thomas [OMT90], L. Tassiulas and P.

B. Bhattacharya [TBOO] . The throughput of the queueing network is the number of

customers which can be processed by this system under a specific server assignment

policy in a unit of time. Therefore, if a queueing network has a larger throughput ,

it has a better performance. The maximal throughput of the queueing network is

achieved when the number of customers processed by this system in a unit of time is

maximized. The queueing network is stable if the customers ' arrival rate is less than

or equal to the maximal throughput of the system, which implies that all customers

coming in a unit of time are processed by the system. Otherwise we say that this

queueing network is unstable. Obviously, queue overflows will happen in an unstable

queueing network with fin ite storage. In this thesis, we define the capacity of the

6 1. Introduction

queueing uetwork to be the arrival rate to this system so that the queueing network

can be stabilized. Clearly, we are interested in computing the maximal capacity of a

given queueing network. The way to increase the capacity of the queueing network is

to find the a more efficient server assignment policy that increases the throughput of

the system. We shall call the problem of maximizing the throughput of the queueing

network with limited flexibility as the Total Discrete Capacity Constrained Problem

(TDCCP). Further, if costs are incurred to the assignment of servers to classes and

the total cost of the queueing network cannot exceed a given maximum budget , we

extend the Total Discrete Capacity Constrained Problem (TDCCP) to TDCCP with

costs. For more details of TDCCP and TDCCP with costs, please refer to Chapter

2.

\i\Then we are computing the maximal capacity of queueing networks , two im

portant conditions must be satisfied. First , the queueing network must maintain

stability; second, the limited flexibility of the queueing network cannot be violated.

Since the servers can switch their service among classes and several servers may

work at a class in the same time, we define the total service rate of servers at a given

class to be the number of customers that can be served at this class by servers in a

unit of time. Similarly, the total arrival rate of customers at a given class is defined to

be the number of customers arriving at this class from either outside of the network or

from inside of the network in a unit of time. To maintain the stability of the queueing

network , the total service rate of servers at each class must be greater than or equal

to the total arrival rate of customers at this class. Thus, all customers coming to each

class in a unit of time will be completely served by servers.

Another condition is the upper bound of the number of servers at every class.

In other words , the number of servers assigned to a class cannot exceed the given

maximum number.

The above conditions must be satisfied when we maximize the performance of

queueing networks. More specifically, the objective of our problem is to find a server

assignment policy without violating limited flexibility of queueing networks so that

we can achieve the maximal capacity of the queueing network.

1. Introduction 7

1.4 Our results

The most significant contribution of this thesis is the extension of t he queueing net

work models in [AAD03] to the version with limited flexibility. By showing t hat

queueing networks have a variety of applications in the areas of manufacturing, gov

ernment administration, etc. we find t hat it is necessary to introduce flexibility to

queueing networks. More importantly, the queueing networks with limited flexibility

reflect more general models to the existing ones.

Our original queueing network model is a stochastic model. By Theorem 1 in

[AAD03], we show that the stochastic optimization problem of the queueing network

model can be converted into a deterministic optimization problem called the Total

Discrete Capacity Constrained Problem (TDCCP). The solution of the deterministic

problem TDCCP can be easily mapped to a solution of the original queueing network

model. This result gives us a strong connection between maximizing capacity in a

queueing network and the problem TDCCP. In TDCCP, the customers ' arrival rates

at classes are all given and each server has a fixed service rate at each class. The

total associated service rate at a class depends on the proportion of time that each

server is working at this class. To maintain the network stability, the total associated

service rate at each class must be at least the customers' arrival rate at this class.

Furthermore, there also exists limited flexibility which is a constraint on the number

of servers which can work at a class in a unit of t ime. The objective of TDCCP is

to compute the proportion of time of servers to classes so that the maximal capacity

(the maximal customers ' arrival rate to the system) is achieved and limited flexibility

is respected.

TDCCP will also be extended to TDCCP with costs. In this problem. we define

the cost per unit of proportion of time when servers are working at classes . The cost

of a server is the sum of incurred cost of its assignment at all classes. The total cost in

the system cannot exceed a given budget, which is t he maximum allowed total cost in

the system. By finding an optimal server assignment policy of the queueing network

without violating the budget , the maximal capacity of the queueing network will be

achieved and the throughput will be maximized. We give the detailed definitions of

TDCCP and TDCCP with costs, as well as their mathematical models in the form

of optimization problems. These mathematical models will bring us a useful and

8 1. Introduction

quantitative way for further analyzing TDCCP and TDCCP with costs.

Our objective is to compute the maximal capacity for a given queueing network

with limited flcxiuility. However. a result of this thesis is that the general case of

TDCCP (with costs) is an NP-Complete problem. Since it is unlikely to find exact

polynomial t ime algorithms for solving it exactly (unless P=NP), we try to develop

approximation algorithms for it. We evaluate an approximation algorithm by its

approximation factor. If the approximate solution is at least p (p :::; 1) times the

optimum solut ion, we say that this approximation algorithm is a p-approximation

algorithm with approximation factor p. The approximation factor is also called the

relative performance guarantee. This thesis will be dedicated to designing polynomial

time approximation algorithms for TDCCP (with or without costs).

Although the general case of TDCCP is NP-Complete, for the special case where

service rates are independent of all servers (all servers are identical), we show that

TDCCP can be solved in polynomial time. Moreover , we present a mathematical

formula for directly computing the assignment of servers that achieves the maximal

capacity of a given queueing network in this special case.

Another important case of the general TDCCP is the special case where ser

vice rates depend only on the servers (all classes are identical). We prove the NP

Completeness for this special case. Thus seeking good approximation algorithms for

this special case will be our key issue.

To design approximation algorithms for the case of TDCCP where service rates

depend only on servers, we first study a problem called the maximum concurrent

multicommodity k-splittable flow problem which is generated from the maximum

concurrent multicommodity flow problem in [SM90] and the k-splittable flow prob

lem in [BKS02]. Given a network with capacitated edges, a source node and sink

nodes, there are commodities that need to be sent from the source node to their sink

node. The maximum concurrent multicommodity flow problem maximizes the factor

by which we can multiply all demands and still achieve a feasible multicommodity

flow without violating the given edge capacities. The k-splittable flow problem is the

multicommodity flow problem in which the number of different paths for sending each

commodity is bounded by a given number k. When k = 1, we call it the unsplittable

flow (instead of 1-splittable flow) problem. We say that k is the splittability bound of

each commodity. By a simple construction, we show that the case of TDCCP where

1. Introduction 9

service rates depend only on the servers can be viewed as an instance of the maximum

concurrent multicommodity k-splittable flow problem. Thus, by ut ilizing the ideas of

algori thms in [BKS02], [DGG99] and [KS02], we present an approximation algorithm

(Algori thm 1) based on solving the maximum concurrent multicommodity k-split table

flow problem. Algorit hm 1 contains two approximation stages: During the fir st stage,

instead of solving the maximum concurrent multicommodity k-splittable flow prob

lem, we transform the TDCCP to the maximum concurrent mult icommodity uniform

exactly-k-splittable flow problem, in which all commodit ies are sent through exact ly

k paths and each path carries the same flow amount ; during t he second stage, we

approximate the maximum concurrent multicommodity uniform exactly-k-splittable

flow problem by solving the unsplittable flow problem (only one path allowed for

sending each commodity) where we split each commodity into k sub-commodities

and send each sub-commodity unsplittably. We prove that the approximation factor

of t his two-stage algorithm is 1/ 10, which guarantees that we can achieve at least

1/ 10 times the opt imum capacity for this case.

For the second stage of Algorithm 1, we find another way to achieve its goaL To

employ t his different method, we study the scheduling of unrelated machines prob

lem, which can be stated as follows: We consider a system wi th parallel machines

and independent jobs. The processing t ime of scheduling a job on a machine is given.

We define the total processing t ime of a machine to be the sum of processing t imes

of all jobs which are scheduled on this machine. The makespan of a schedule is the

maximum total processing time of any machine in the system. The objective of the

scheduling is to find a schedule that minimizes the makespan. If we t reat the sub

commodities as the jobs, we prove that the maximum concurrent multicommodity

uniform exactly-k-splittable flow problem can be transformed to the scheduling of

unrelated machines problem. Then a different approximation algorithm (Algorithm

2) based on an algorithm for solving (approximately) the scheduling of unrelated ma

chines problem in [LST90] is proposed. Algorithm 2 has two stages, where the first

stage is the same as Algorithm 1 for transforming TDCCP to the maximum con

current multicommodity uniform exactly-k-splittable flow problem, and the second

stage solves the maximum concurrent multicommodity uniform exactly-k-splittable

flow problem by using the algorit hm for the scheduling of unrelated machines prob

lem. Let the maximal capacity of t he fractional TDCCP be ,\ *, where the fractional

10 1. Introduction

TDCCP means that we have the full server flexibility at all classes. We define the

customers' arrival rate at class /,; to be ak and the server flexibility at class k to beck.

Since in this case the service rates depend only on servers, we let the service rate of

server j at all classes be /-l j . We show that Algorithm 2 can produce the throughput

at least 1/ 2(1 + p) of the optimum, where p := maxj k ak >.·.
' Ck /-LJ

We analyze the problem TDCCP with costs in a way similar to the problem

TDCCP. In this problem, we are given a budget and the cost per unit of assignment

when servers are working at classes. The total cost of the queueing network is the sum

of incurred cost of each server 's assignment at all classes. Compared with TDCCP,

there is another constraint in the system that says the total cost of the queueing

network cannot exceed the budget we have. Obviously, TDCCP without costs is just

a special case of TDCCP with costs by setting the budget and given costs in the

queueing network to be zero . Thus it is easy to draw the conclusion that the general

case of TDCCP with costs is also an NP-Complete problem.

'vVe show that the case of the general TDCCP with costs where service rates are

independent of all servers (all servers are identical) is polynomially solvable. Further

more, we find a mathematical formula for computing the maximal capacity of the

queueing network in this special case.

The case of the general TDCCP with costs where service rates depend only on

the servers (all classes are identical) is also considered. Since this case contains the

general TDCCP without costs where service rates depend only on the servers as a

special case (by setting the budget and all the costs to zero) , we see that it is also

an NP-Complete problem. Two different approximation algorithms are designed for

solving this special case, which correspond to Algorithms 1 and 2 above.

We present the constrained maximum concurrent multicommodity k-splittable

flow problem, which is the cost version of the maximum concurrent multicommod

ity k-splittable flow problem. Similar to the maximum concurrent multicommodity

k-splittable flow problem, we have a network with capacitated edges, a source node

and sink nodes. There are commodities that need to be sent from the source node to

their sink node. We define the cost per unit of flow on each edge. When the com

modities go through an edge, the incurred cost of this edge will be the flow amount

multiplied by the given cost per unit of flow. Thus the total cost of the network is

the sum of costs on all edges . A budget of network is also given, which is the maxi-

1. Introduction 11

mum allowed total cost in the network. Thus the constrained maximum concurrent

multicommodity k-splittable flow problem is to find paths for sending all commodi

ties concurrently without any edge capacity violation or splittability bound violation

so that the maximum possible faction A of all commodity demands is achieved si

multaneously and the total cost of the network respects the budget constraint. We

transform the special case of TDCCP where service rates depend only on the servers

to an instance of the constrained maximum concurrent multicommodity k-splittable

ftow problem defined above. Therefore, the algorithms in [BKS02] and [Sku02] can

be used to design an approximation algorithm (Algorithm 3) for solving this case of

TDCCP with costs. Similar to Algorithm 1, Algorithm 3 is designed as follows : We

first transform the TDCCP with costs to the constrained maximum concurrent multi

commodity uniform k-splittable flow problem where all commodities are sent through

exactly k paths with the same flow amount on each path; then we split each com

modity into k sub-commodities and find the unsplittable flow for each sub-commodity

without violating the given cost budget in the network. The approximation factor of

Algorithm 3 is 1/ 12, which guarantees that at least 1/ 12 times the maximal capacity

will be achieved for TDCCP with costs.

We also show that the second stage in Algorithm 3 can be viewed as the schedul

ing of unrelated machines problem with costs , which is a more general scheduling

model compared with the model in [LST90]. In this problem, we are also given the

cost per unit of assignment of servers to jobs and a budget of the maximum allowed

total cost in the system. The total cost in this system is the sum of all the costs

incurred in the servers' assignments. Again, the objective of the problem is to min

imize the makespan while the total cost respects the given budget. We demonstrate

a transformation from this case of TDCCP with costs where service rates depend

only on the servers to the scheduling of unrelated machines problem with costs, and

design an approximation algorithm (Algorithm 4) for solving TDCCP with costs. Al

gorithm 4 also has two stages: The first stage is the same as Stage 1 in Algorithm

3, where we solve the constrained maximum concurrent multicommodity uniform k

splittable flow problem; in the second stage, we transform the constrained maximum

concurrent multicommodity uniform k-splittable flow problem to the scheduling of

unrelated machines problem with costs and find its integer solution approximately.

Let the maximal capacity of the fractional TDCCP be>-* , the customers' arrival rate

12 1. Introduction

at class k be ak , the server flexibility at class k be ck and t he service rate of server

j at all classes be /-L j . Similar to Algorithm 2, we show that Algorithm 4 will also

produce throughput of at least 1/ 2(1 + p) of the optimum, where p := maxj k a,,.>,· .
' Ck /Jo j

We also design approximation algorithms for solving the general case of TDCCP

(with or without costs). For the general TDCCP without costs , the algorithm in

cludes Algori thm 1 or Algorithm 2 as a subrout ine. For the general TDCCP with

costs, the algorithm applies Algorithm 3 or Algori thm 4 as a subroutine. Thus, the

theoretical approximat ion factor of the general approximation algorithm varies with

the subrout ines we use.

To test the efficiency of our algorithms, we implement in MATLAB the 4 algo

rithms for solving the special case of TDCCP (with costs) where service rates depend

only on the servers. Further, algori thms for solving the general cases of TDCCP

(with costs) are also implemented. T he numerical results of several experiments

demonstrate that in most cases, our algorithms can achieve very good approximate

solutions compared with the optimum. However, in some general cases of TDCCP

(with costs) , our algorithms might produce bad results.

Finally, we mention that the algorithms in our thesis can be applied to solve

other models in [AAD03], [AAD01], [HS96] and [DL05]. The model in [AAD03] and

[AADOl] is actually the queueing network model with full flexibility, where t here is

110 limit 011 the number of servers at any class . For the model in [HS96], the fixed

amount of work can be treated as the work amount in one period of t ime in their

production line system. In the case that we have a work allocation to classes, their

problem of maximi;;ing t hroughput is exactly the same as TDCCP wit h full flexibility.

The models of stochastic processing networks in [DL05] have two different versions

which are the preemptive server processing and the non-preemptive server processing.

Their model of non-preemptive server processing is similar to our queueing network

model. In this case, our algorithms can also be applied .

1.5 Thesis structure

This thesis is organized as follows.

Chapter 2 presents the detailed definitions and mathematical models for the Total

Discrete Capacity Constrained Problem.

1. Introduction 13

Chapter 3 presents several important network flow and scheduling problems which

are related to this thesis.

Chapter 4 discusses the T DCCP without costs. We consider two special cases:

T he first one is the case when all servers are ident ical and the second one is the case

when all classes are ident ical. We show that the first case can be solved in polynomial

time and present two approximation algorithms for solving the second case. We also

present the approximation algorithms for solving the general T DCCP without costs.

Finally, we prove the NP-Completeness of T DCCP without costs.

Chapter 5 discusses the TDCCP with costs. We show that T DCCP with costs

can be solved in polynomial t ime when all servers are ident ical. Two approximation

algorithms are designed for solving TDCCP with costs when all classes are identical.

We also present the approximation algori thms for solving the general TDCCP with

costs.

Chapter 6 reports the testing resul ts . We have tested 40 examples for each algo

rithm in this thesis. The detailed computational results are given. We discuss and

analyze the testing results . In the end of this thesis, we give the summary of our

experiments .

Chapter 2

Total Discrete Capacity

Constrained Problem

In this chapter we present t he Total Discrete Capacity Constrained Problem (TD

CCP) for maximizing the capacity of the queueing network. Our queueing network

model is derived from the model of S. Andradottir , H. Ayhan and D. G. Down

[AAD03]. Thus, we will first study t heir model in its ent irety and int roduce t he

limited flexibility. T heu, detailed defiui t ious and the mat hematical defini t ion of T D

CCP will be given. Vve further establish the connection between the deterministic

problem TDCCP and the original stochastic queueing network problem and show

that the solut ion of TDCCP can be mapped to the solut ion of the queueing network

model. Finally, we extend T DCCP to TDCCP with costs and give its mathematical

definit ion.

2.1 Overview of the network

In our queueing network , the basic nodes are classes where servers provide service

to customers. Servers can either work in parallel or work cooperatively at a class .

Since the customers may be transferred from one class to another or be sent out upon

completion of service, there are connections among classes, which denote the proba

bilities of switching. Originally, all customers come from outside. For convenience,

we can set up a source node for sending new customers and a sink node for receiving

14

2. Total Discrete Capacity Constrained Problem 15

all customers that have been exited the network.

2.2 N etwork topology

Suppose there are J(classes in the network. The classes in the queueing network

indicate the stages of customers' processing status. Customers are served by servers

in parallel. We do not allow that servers can pool their efforts on one customer when

they are working together at a particular class. Each class has a buffer of infinite size.

Thus if all servers are currently busy, new customers that enter a class must stay in

the buffer and wait for service.

At any class k, customers enter k either from outside of the network or from some

other class ·i. Let the probability that an arrival from outside of the network is routed

to class k be Po ,k. We assume that each customer must be served before leaving the

network , and this is equivalent to '2:~~ 1 Po ,k = 1. We assume that the arrival process

of customers from outside of the network has independent and identically distributed

(i.i.d) interarrival times {~(n)} , where ~(n) is the interarrival time of the (n - 1)th

and nth customer arriving from outside of the network. By this assumption we know

that the random variables {~(n)} are all mutually independent and the probability

distributions of {~(n)} are identical. When customers complete service at class ·i , the

probability of customers entering class k is Pi,k· Thus the customers exiting class i

will have probability 1 - '2:~~1 Pi,k of leaving the network. We also assume that all

the customers will leave the network eventually. Furthermore . by defining a matrix

P to have (i, k) entry Pi,k fori , k = 1, ... , J(and I to be the J(x J(identity matrix ,

if (I- P') is invertible (non-singular) , then all the customers will leave the network

eventually.

Since the inter arrival times { ~ (n)} have the same probability distribution, we will

have the same expectation of each variable in { ~(n)}. This can be written as follows,

E(~(1)) = E(~(2)) = E(~(3)) = ... = E(~(n)).

Note that the expectation of the customers' interarrival time E(~(n)) is the mean

interarrival time of two successively incoming customers. Thus we define the associ

ated arrival rate of customers from outside to be A, where A. = 1/ E[~(1)]. Let the

total arrival rate to class k be Ak· We know that the arrivals of customers at class

16 2. Total Discrete Capacity Constrained Problem

k are from either outside of the network or other classes. Given any class i, when

customers at class i finish their service, they are going to enter class k with probabil

ity Pi ,k· Therefore, the arrivals from class i to k have the rate Pi,kAi· Similarly, the

rate of arrivals from outside of the network to class k is defined to be Po ,k>.. Suppose

the network is stable with a given arrival rate -A . The total arrival rates at class k is

Ak = Po ,kA + I:{:1 Pi,k Ai· Given Po,k and Pi,k for any k and i , we can solve those J(

equations and get the unique solution Ak · Thus , the customers ' arrival rate at each

class can be computed.

For technical reasons, we assume that the interarrival times of customers are un

bounded and spread out. This technical assumption is needed for describing the

system as a Markov process with a reachable origin. The Markov process is a sto

chastic process where the future of the process depends only upon the present state

of it and this implies that the present state is a direct result of its history. For more

details, see Appendix A in [AAD03].

2.3 Service mechanism

In the queueing network , we also have M servers which provide service to customers

at classes. All servers use the First Come, First Served order (FCFS). When server

j finishes its service at class ·i and switches to class k for the nth time, it incurs a

switching time (f,k(n) (possibly zero). We assume that the switching times {Cf,k(n)}
are i.i .d. for every j = 1, ... , AI/ , k = 1, ... , K . Also, we assume that the server

switch time exists only between two different classes, which means that { (fi (n)} is

identically zero for all i and j. Several servers may be simultaneously working at a

class. vVe define T/j,k (n) to be the service time of the nth customer served by server j

at class k. Furthermore, if we assume that the service times {TJj,k(n)} are i.i .d. , then

{TJj,k(n)} have the same probability distribution, therefore E(TJj ,k(1)) = E(TJj,k(2)) =
... = E(T/j ,k (n)). Thus, the associated service rate of server j working at class k is

defined to be /-lj ,k = 1/ E[TJj,k(1)]. If server j cannot work at class k, we set J.l j,k = 0.

If server j spends any time at class k, we say that server j is assigned to class

k. We also define 6j,k to be the long run average proportion of t ime that server j is

working at class k in a unit of time. We say that 6j,k is the server assignment policy

for the queueing network.

2. Total Discrete Capacity Constrained Problem 17

We know that there are .M servers in the queueing network. The difference between

the model in this thesis and the model in [AAD03] is that we have limited flexibility

described by ck. where we define ck :::; I'vf to be the maximum number of servers that

can be assigned to class k in a unit of time.

T he following figure shows an example of our model with two servers and three

classes.

Exit of network

Po, I

Incoming customers
PoJ

Figure 2.1: A queueing network model with 2 servers and 3 classes

2.4 Total Discrete Capacity Constrained Problem

To maximize throughput of the original queueing network, we introduce a problem

called the Total Discrete Capacity Constrained Problem (TDCCP) . The objective

of TDCCP is to find a server policy to achieve the maximal capacity of the given

18 2. Total Discrete Capacity Constrained Problem

queueing network. Given the probabilities of customer arrivals (from either outside

or inside network) , we have the following K equations,

/{

.>..k = Po,k.>.. + L Pi ,k.>..i, k = 1, ... , K.
i=l

We ass ume that the network is stable with a given arrival rate .>... Then, solving these

K equations will give us a unique solution of each .>..k for k = 1, .. . , K. Let .>..k = .>.. · ak

be the solution, where ak is the solution of these equations with .>.. = 1. By this step,

the customer arrival rate at class k can be expressed in terms of the arrival rate .>..

and the constant ak. Then, the input of TDCCP are the service rates f.-t] ,k, flexibility

ck and ak while the output is the server assignment 6j,k and maximal capacity .>.. *. We

formulate TDCCP as the following optimization problem with variables bj,k and .>..:

max .>.. (MP)
M

s. t . L fL-J, k8j,k 2: /\ak , k = 1, ... , f{ (1)
j = l

J(

'L 6j,k ::; 1, j = 1, ... , J\1 (2)
k= l

/If

'L x{8j,k > o}::; ck, k = 1, .. . , K (3)
j = l

81,k 2: 0, k = 1, ... , K , j = 1, ... , J\1. (4)

Constraint (1) says the sum of the associated service rate at class k is greater than or

equal to the total customer arrival rate at class k, which will guarantee the stability of

the original queueing network. Constraint (2) guarantees that the sum of proportions

of time of server j working at all classes cannot exceed 1 so that no server in the

system is overloaded. Constraint (3) is t he flexibility limit where we do not allow

the number of servers working at class k to be more than ck. Constraint (4) says

that a negative proportion 8j,k is not permitted in the network. Given a class k, x { ·}

is the indicator function that indicates the membership of bj,k in the set { bj,k > 0}.

Let the optimal solution of (MP) be .A* and {6j,k}. We will see that {bj,k } is the

2. Total Discrete Capacity Constrained Problem 19

set of proport ional assignments of servers to classes required to achieve the maximal

capacity A*. Note that the solution { 6j,k} may not be unique.

Let Q k (t) be the number of customers at class k present at time t and Q (t) be a

vector with kth entry Qk(t). The following theorem gives us the connection between

maximizing capacity in the queueing network and the problem (MP) stated above.

Theorem 2.1. (i) Any capacity less than A* may be achieved. Man: specifically , for·

an arrival process with rate A < A*, ther·e exists a dynamic server assignment policy

such that the distribution of the queue length process { Q (t)} converges to a steady

state distribution r.p as t -+ oo.

(ii) A capacity larger than A* cannot be achieved. More specifically , f or an arrival

process with rate A > A*, as t -+ oo,

P(IQ(t) l -+ oo) = 1.

Theorem 2.1 is a trivial extension of Theorem 1 in [AAD03]. It says that the

difficult stochastic queueing network problem can be converted into the deterministic

optimization problem (MP). By solving the deterministic problem (MP), we can map

its solution back to the solution of the original stochastic queueing network problem.

This can be done by the generalized round-robin policies in [AAD03] . Suppose the

optimal solution of (MP) is A* and 6J,k· Taking A* and 6j,k as input , the generalized

round-robin policies will output the servers ' service policies in terms of service time

of servers at each class. We know that the optimal server policy c5j,k satisfies the

flexibility constraint in (MP). According to the fact that the gcuerali:~;ed round-robin

policies will not assign server j to class k if c5j,k = 0 (e.g. see the server assignment

algorithm in [AAD03]) , it is easy to see that the flexibility of the original queueing

network is still respected. In the remainder of this thesis , we will focus on solving the

problem (MP). For the detailed proof of Theorem 2.1 and a discussion of generalized

round-robin policies, refer to [AAD03].

There are two important special cases of (MP). We formulate the two cases as

20 2. Total Discrete Capacity Constrained Problem

mathematical programs (MP1) and (MP2) .

max A
j\ f

s.t. L /-Lk6j,k 2:: A ak, k = 1, ... , f{
j = 1

I<

L 6j ,k :::; 1, j = 1, ... , M
k = l

M

L x{ 6j ,k > O} :::; ck, k = 1, ... , K
j = l

6j ,k 2:: 0, k = 1, ... , K ,j = L ... , M.

(111 P1)

(1)

(2)

(3)

(4)

In this case, the service rates are independent of the server (all servers are identical),

i. e., /-Lj ,k = I-Lk for all j in (MP 1). The constraints are the same as the constraints

in (1tiP) except that we have fLk instead of fL j ,k in (1). In Chapter 4, we will show

that the maximal capacity of the queueing network in this case can be computed in

polynomial time.

max A
M

s.t. L ~Lj6j,k 2:: Aa k, k = 1, ... , f{
j= l

}(

L6j ,k:::; 1, j = 1, ... ,NI
k = l

M

L x{ 6j,k > 0} :::; c k , k = 1, ... , K
.i = l

6j ,k 2:: 0, k = 1, ... , K ,j = 1, ... , M.

(AI P2)

(1)

(2)

(3)

(4)

In this case, the service rate depends only on the server (all classes are identical) , i.e. ,

/-Lj ,k = ~tj for all k. Constraints (1), (2), (3) and (4) are the same as the correspond

ing constraints in (MP). In Chapter 4, we will prove that this case of (TDCCP) is

2. Total Discrete Capacity Constrained Problem 21

NP-Complete. Two approximation algori thms will be designed for solving (MP2) ap

proximately. Moreover , this case is important because the approximation algorithm

for solving (MP) is actually based on the algorithms for solving (MP2).

2.5 Total Discrete Capacity Constrained Problem

with Costs

In the original queueing network model, if we are given a cost per unit of server

assignment and a budget of the queueing network, we call it the queueing network

model with costs . The objective of this problem is to find a server assignment policy

so that the maximal throughput of the queueing network is achieved and the total

cost of the system respects the given budget . We define the cost per unit of server

assignment to be r.i ,k when server j is working at class k and 5j ,k to be the proport ion

of t ime that server j is working at class k. Then it is easy to see that the incurred

cost of server j at class k is r j ,k6 j ,k and the total cost of the system can be written as

L;:1 L~<=l r j ,k5 j ,k· We are also given a nonnegative budget C. Thus to respect the

given budget C, we have the following additional constraint:

M I<

L L rj,k6j,k :S C.
j= l k=l

To decide the server assignment 5j ,k for maximizing the capacity >. , we are given the

service rate Jl'],k when server j is working at class k, the number ak which is used to

derive the customers' arrival rate at class k, and servers ' flexibility ck at class k. By

adding the above cost constraint , we formulate TDCCP with costs as follows,

22 2. Total D iscrete Capacity Constrained Problem

max A (MPC)
M

s.t. ~ /-Lj ,k5j,k 2: Aak , k = 1, ... , K (1)
j = l

I<

~ clj ,k:::; 1, j = 1, ... ,]1,1 (2)
k= l
X III

~ ~ 1'j.k5j,k :::; c (3)
k= l j=l

M

~x{61, k > o} :::; ck. k = 1, ... , K (4)
j=1

5.i ,k 2: 0, k = 1, ... , K. j = 1, ... , !11!. (5)

In (MPC) , constraints (1) , (2), (4) and (5) are exactly the same as the corresponding

constraints in (MP). Constraint (3) says the total cost cannot exceed the budget C.

Let the optimal solution of (MPC) be).* and {5j,k}. Since the server assignment

{ 6},k} is the optimal assignments of servers to classes, it is required to achieve the

maximal capacity A*. However , the solution { Jj,d is not necessarily unique.

Theorem 2.1 can also be applied to establish the connection between maximizing

the throughput in the queueing network with costs and the solution to (MPC). Given

the maximal capacity A* and server assignments { 6j,k} respecting the given budget

C, the generalized round-robin policies in [AAD03] can be employed to get arbitrarily

close to the server assignments { 6j,k}. Note that in their construction, the assignments

of servers to classes do not increase, thus the budget in the queueing network will not

be violated. Then by Theorem 2.1 , we know that the stochastic queueing network

problem with costs can be converted into the deterministic optimization problem

of TDCCP with costs. Also, the solution of TDCCP with costs can be directly

mapped back to a solution of the original queueing network problem with costs using

generalized round-robin policies. In the remainder of this thesis, we will also focus

on solving the problem TDCCP with costs.

We consider the mathematical model (MP) for TDCCP and (MPC) for TDCCP

2. Total Discrete Capacity Constrained Problem 23

with costs. It is easy to see that (MP) is just a special case of (MPC) by setting

·r7,k = 0. Then constraint (3) becomes trivial for any nonnegative budget C.

The difficulty in solving the problem (MP) and (:'v1PC) comes from the inte

gral constraints. In these constraints, although the server assignments bj,k can be

fractional , the corresponding counted flexibility will be either 0 or 1 (depending on

whether bj,k is 0 or not). Without the integral constraint (4) , (MP) and (MPC) can

be easily seen to be linear programming problems. However , in this thesis , we will

show that even a special case of (MP) is NP-Complete, hence the problem TDCCP is

NP-Complete. Since TDCCP is a special case of TDCCP with costs, we can conclude

that TDCCP with costs is also an NP-Complete problem. In Chapter 4, we show

two approximation algorithms for solving (MP), and in Chapter 5, we propose two

different approximation algorithms for solving (MPC). Obviously, any algorithm for

solving (MPC) can also be applied to solve the problem (MP), since (MP) is a special

case of (MPC).

Similar to TDCCP, we will study two important special cases of TDCCP with

costs, which are formulated as follows:

max ,\

M

s .t. L J-Lkbj,k 2: .\ak, k = 1, ... , J(

j=l

f(

I: 8j ,k ~ 1,j = 1, ... , Jvi
k= l

I< M

I: I: rj ,k8j ,k ~ c
k=l j = l

M

l:x{bj,k > o} ~ ck , k = 1, ... , I<
j = l

6j,k 2: 0, k = 1, .. . , K,j = 1, ... , M.

(MP C1)

(1)

(2)

(3)

(4)

(5)

In this case, the service rates are independent of the server (all servers are identical) ,

i.e., /-Lj ,k = I-Lk for all j in (MPC1). Except for /-Lj ,k = I-Lk in constraint (1) , all

other constraints in (MPC1) are actually the same as the constraints in (MPC). In

24 2. Total Discrete Capacity Constrained Problem

Chapter 5, we will show that the maximal capacity A* in (MPC1) can be computed

in polynomial time.

max A
M

s.t. L P,j6j,k 2: Aak , k = 1, ... , K
j = l

K

2.::: 6j ,k :::; 1, j = 1, ... , 111
k= l

K M

2.:::2.::: rj,k6j ,k s: c
k=l j = l

M

I.: x{6j,k > o} ::; ck , k = l. K
j=l

6j,k 2: 0, k = 1, ... , K , j = 1, ... , 111.

(MP C2)

(1)

(2)

(3)

(4)

(5)

In (MPC2), the service rate depends only on the server (all classes are identical), i.e. ,

/J j,k = Pi for all /,; . The constraints in (MPC2) are the same as the corresponding

constraints in (MPC). 'vVe will see that the problem (MPC2) is an NP-Complete

problem since it contains (MP2) as a special case (by setting rj ,k = 0 for all j, k

and C = 0). In Chapter 5, we will design two approximation algorithms for solving

(MPC2) . The approximation algorithm for solving the general (MPC) will use one

of the approximation algorithms for solving (MPC2).

Chapter 3

Network Flow and Scheduling

Problems

In previous chapters, we have shown that the original queueing network can be con

verted to the deterministic problems of TDCCP and TDCCP with costs. The algo

rithms for solving TDCCP and TDCCP with costs are based on the transformations

of TDCCP and TDCCP with costs to network flow and scheduling problems. Before

showing the detailed algori thms , we will study those important network fiovv and

scheduling problems.

3. 1 Multicommodity Flow Problem

In the multicommodity flow problem, we are given a directed or undirected graph

G = (V, E) where V is a set of nodes and E is a set of edges. Each edge e E E has

capacity U e . There are n different commodit ies which co-exist in G and need to be

sent from source nodes to terminal nodes. We define the source node to be si and

the terminal node to be ti for sending and receiving the commodity 'i, 'i = 1, ... , n,

respectively. Then, a multicommodity flow on G can be represented as a set of node

pairs (s1 , t 1) , (s2 , t 2), ... , (sn , tn), where the pair (si, ti) denotes the commodity 'i from

the source node si to the terminal node ti · Let f e denote the flow on the edge e, e E E.

There are mainly two optimization problems on multicommodity flow relevant to our

work. One is the maximum mult icommodity flow problem and the other one is the

25

26 3. Network Flow and Scheduling Problems

maximum concurrent multicommodity flow problem,

First we study the maximum multicommodity flow problem. The objective of the

maximum multicommodity flow problem is to send n commodities while respecting

edge capacities so that the sum of all commodity flows is maximized. We define

P s;,t, to be the set of paths for sending commodity 'i from source si to terminal t i,

·i. = 1, ... , n. The maximum multicommodity flow problem can be formally written as

follows ,

n

max L f (s,t,)

i = l

s. t. L JP ::::; 'LLe, 'lie E E
pEPe

JP 2: 0, 'lip E P s;,t;' i = 1, ... , n

where ! (si,t;) denotes the flow amount of commodity i from si to t i, P e denotes the set

of paths going through the edge c and fv denotes the flow amount iu the path where

p E P s;,t;. Obviously, 2:~1 ! (s;,t;) is the total multicommodity flows we send.

Farhad Shahrokhi and D. W. Matula [SM90] proposed the maximum concurrent

multicmmnoclity flow problem, which is another versiou of the multicommodity flow

problem. Here, for each commodity i, we are given a demand di at the terminal node

t i · The objective of the maximum concurrent multicommodity flow problem is to

maximize the factor by which we can multiply all terminal node demands and still

achieve a feasible multicommodity flow without violating the given edge capacities.

More specifically, if we define a variable {3 and set all terminal node demands di ('i =
1, ... , n) to be {Jdi, the maximum collCU1Te1lt multicomrnodity flow problem rnaximi',';CS

the number {3 while respecting all edge capacities in G, so that all the demands {Jdi are

satisfied simultaneously. We consider the fo llowing example of the multicommodity

flow.

3. Network Flow and Scheduling Problems 27

ll(> l, ,·ll= 2 ll(,l.t11= 2

tl dl=l

It' ~/
•'' ·~~ , .

;:,.::>

d2=1

~,J It'

- ~~ ::-~
/ v"

ll(sJ.vJ1=3 ll(d.JJ)=2

t3 d3=1 SJ

Figure 3.1: An example of the multicommodity flow problem with 3 commodities

In this example, the maximum possible fraction of routing all commodities simul

taneously is 2 by sending 2 units of commodity 1 following the path (s1 ---> v 1 ---> t 1) ,

1 unit of commodity 2 following the paths (s 2 ---> v1 ---> t2) and (s 2 ---> v2 ---> t2) and 2

units of commodity 3 following the path (s3 ---> v3 ---> t3).

Let Pe denotes the set of paths going through the edge e. Given a path p E Ps;,t; ,

/p denotes t he flow amount in the path. V.,Te can formulate the maximum concurrent

multicommodity flow problem as follows,

max {3

s.t. L JP 2:: (Jd10 i = 1, .. . , n
pEP.,;,t ;

L /p :SUe, Ve E E
pEP,

JP 2:: 0, Vp E Ps;, t;, ·i = 1, ... , n.

Obviously, the maximummulticommodity flow problem and the maximum concurrent

multicommodity flow problem are linear programming problems, which can be solved

28 3 . N etwork Flow and Scheduling Problem s

in polynomial t ime. Moreover, our approximation algorithms in Chapter 4 will st art

by solving the maximum concurrent multicommodity flow problem.

3.2 Single Source Unsplittable Flow Problem

In the single source unsplittable flow problem, we are given a graph G = (V, E), where

\1 is a set of nodes and E is a set of edges with capacities ·ue, c E E. There are several

commodit ies to be sent from a source node ton terminal nodes. Each terminal node

ti E V has a demand di , ·i = 1, ... , n . A commodity flow is called an unsplit table flow

if the commodity is sent to the terminal by following one single path. In the single

source unsplittable flow problem, we want to route all commodit ies unsplittably. The

following figure is an example of the single source unsplittable flow problem.

ll(u l .\ \)= 2

dl=l

1/ S;
,,'' '-;-.,J ,..

~__,~ ~,~

d2= 1

~> 1/

·~~ ::S:-
/ ~'

Ll(<oJ.d >=)

d3= 1

Figure 3.2: An example of the single source source unsplittable flow problem

3. Network Flow and Scheduling Problems 29

In t his example, the unsplittable flows for sending commodit ies follow the bold

paths (S ----> 'LL1 ----> v1 ----> t 1) , (S ----> tL2 ----> v2 ----> t 2) and (S ----> u 3 ----> V3 ----> t3),
respectively.

The single source unsplittable flow problem was first studied by J. M. Kleinberg

[Kle96]. In this paper , several questions were presented.

• Feasibility: can we find an unsplittable flow which satisfies all the demands and

capacities for a given graph?

• Congestion: what is the smallest number a such that if we multiply all the

capacities by a, there exists an unsplit t able flow which satisfies all the demands?

• Number of rounds: if we are allowed to partition the set of commodities into

several subsets (rounds), what is the minimum number of those subsets so that we

can find a feasible unsplittable flow for each of them?

• Maximization: can we determine a subset of commodities so that we can route

each commodity in this subset unsplittably and maximize L dn?

Unfortunately, all of the above problems are NP-Complete. J. M. Kleinberg

[Kle96] gives a 16-approximation for the congestion problem. He also shows that

there is a !In(dmax/dmin)l ·l2ea*l-approximation algorithm for the number of rounds

problem and a 2efln (dmax/dmin)l - 1-approximation algorithm for the maximization

problem, where dmax is the maximum demand in the graph, dmin is the minimum de

mand in the graph and a* is the minimum congestion of any fractional routing from

source node to terminal nodes (see Lemma 4.1 and Lemma 5.3 in [Kle96] for more

details) . We will consider the congestion problem in this thesis. The minimum con

gestion problem for the multicommodity flow is actually equivalent to the maximum

concurrent multicommodity flow problem. Suppose we have the optimal congestion

a* for a multicommodity flow network. Instead of multiplying all edge capacities by

a*, we can divide the flow on each edge and every commodity demand by t he fac

tor a*, and obtain a feasible multicommodity flow without violating edge capacities.

Clearly, a* is the smallest congestion, thus (J* : = 1/ a* will be the largest fraction

by which we can multiply all demands and still obtain a feasible multicommodity

flow. By the NP-Completeness of the minimum congestion problem for unsplittable

flows , it is easy to see that the maximum concurrent multicommodity unsplittable

flow problem is also NP-Complete. Y. Dinitz, N. Garg and M. Goemans [DGG99]

show a 2-approximation algorithm for the congestion problem, a 5-approximation al-

30 3 . Network Flow and Scheduling Problems

gorithm for the number of rounds problem and a 0.226-approximation algorithm for

the maximization problem, when the maximum commodity demand is less than or

equal to the minimum edge capacity in the network. We also refer to this condition

as the balance condit ion . The algorithm for minimizing the congestion in [DGG99]

will be used in this thesis.

3.3 Single Source U nsplittable Min-cost Flow Prob

lem

The single source unsplittable min-cost flow problem is the cost version of the single

source uusplitt ablc flow problem. Suppose we have a graph G = (V, E) . Let J(c)

be the flow amount on edge e, e E E. We assume that there exists a cost function

c : E __, R+, where R+ is the set of nonnegative reals and the total cost on edge e is

c(c)f(c) , c E E. All commodities are required to be sent from a single source node

ton terminal nodes with demand di , i = 1, ... , n. There also exists a budget B, where

we do not allow the total incurred cost of the network to be more than the budget

B . This additional constraint can be written as follows:

L f(e)c(e) :S B .
eE E

The objective of t he single source unsplittable min-cost flow problem is asking for

paths to send all commodities to terminal nodes unsplittably without violating the

given budget B .

For the single source unsplittable min-cost flow problem, M. Skutella [Sku02]

studies the problems of congestion, number of rounds and maximization. For the

congestion problem, if the balance condition is satisfied, a 3-approximation algorithm

without violating the given budget was proposed. In the case of arbitrary demands,

he also gave a (3 + 2.J2)-approximation algorithm while respecting the budget con

straint. In this thesis, we only consider the problem of minimum congestion for the

single source unsplittable min-cost flow problem, which is related to the concurrent

multicommodity flow problem.

3. Network Flow and Scheduling Problems 31

3.4 k-splittable Flow Problem (with Costs)

The k-splittable flow problem was first studied by G. Baier , E. Kohler andl\I. Skutella

in [BKS02]. We consider the graph G = (V, E), with capacity ·ue on each edge

c E E and n terminal nodes. The k-split tablc flow problem is a multicommodity

flow problem where the number of paths for sending each commodity from the source

node to the terminal node is bounded by the number k. More precisely, for arbit rary

source nodes s E V and terminal nodes t E V , let Ps,t denote the set of paths

from source nodes to terminal nodes . The k-splittable flow is specified by k paths

{ P1 , .. . , Pk} <:;;; Ps,t with flow amount f i , i = 1, .. . , k on each path. We do not require

all paths to be distinct . For a given number k' ~ k , any k-split t ablc flow is also

a k'-split t able flow. The k-splittable flow is called feasible if the flow through each

edge respects the edge capacity. Note that when k = 1, this is the unsplittable flow

(instead of 1-splittablc flow) problem. Thus, we sec that the k-split tablc flow problem

is the general version of the unsplitt able flow problem.

We generate the maximum concurrent multicommodity k-splittable flow problem

by combining the k-splittable flow problem and the maximum concurrent multicom

modity flow problem. The objective of the maximum concurrent multicommodity

k-splittable flow problem is to send each commodity within k paths so that we maxi

mize the factor by which we multiply each commodity demand and still get a feasible

multicommodity flow instance respecting edge capacities.

'V.le extend the maximum concurrent multicommodity k-splittable flow problem to

the constrained maximum concurrent multicommodity k-splittable flow problem by

introducing costs and a budget in the network. A cost function is given by c : E -t R+.

Let f (e) be the flow on edge e. Vie define the cost on edge e to be c(e) f (e), e E E.

We are also given a budget B , which is the maximum allowed cost of the network.

Similar to the single source unsplittable min-cost flow problem, we have an additional

cost constraint L eEE f(e)c(e) ::::; B. The objective of this problem asks for a feasible

maximum concurrent multicommodity k-splittable flow that does not violate the cost

constraint .

Algorithms 1, 2, 3 ,4 in Chapters 4 and 5 will approximate the maximum concur

rent multicommodity k-splittable flow problem by solving the maximum concurrent

multicommodity uniform exactly-k-splittable flow problem. In the maximum concur-

32 3. N etwork Flow and Scheduling Problems

rent multicommodity uniform exactly-k-splittable flow problem, we require exactly k

paths for sending each commodi ty and each path in the network carries the same (uni

form) flow amount. Thus the objective of this problem is to send each commodity in

exactly k paths and each path carries the uniform flow amount while respecting edge

capacities, so as to maximize the factor by which we multiply all demands. G. Baier ,

E. Kohler and M. Skutella [BKS02] proved that the value of a maximum concurrent

multicommodity uniform exactly-k-splittable flow problem can guarantee 1/2 of the

optimal value of the corresponding maximum concurrent multicommodity k-splittable

flow problem. Note that if we split each commodity by k sub-commodities, then send

ing the original cornmodity in exactly k paths is actually equivalent to routing each

sub-commodity unsplittably.

3.5 Scheduling of Unrelated Machines Problem

We will show a transformation of TDCCP (with costs) to the scheduling of unrelated

machines problem (with costs) in Chapters 4 and 5. Therefore, in this section, we

introduce the defini t ion and mathematical program of this problem.

The scheduling of unrelated machines problem is an integer optimization problem

which can be stated as follows: Suppose we have m parallel machines and n indepen

dent jobs. Each job has to be processed by exactly one of m machines. We define

Ti,j to be the required processing time when job j is scheduled on machine i . If job j

is scheduled on machine i, variable Yi,j = 1, otherwise Yi, j = 0. The total processing

t ime of machine i is the sum of the processing times of all jobs which are scheduled

on machine i, which can be written as 2.:,7=1 Ti,] Yi,j · The makespan of a schedule is

t he last finishing time of jobs in the given schedule. This problem asks for an optimal

schedule to minimize the makespan. The following figure shows an example of this

scheduling problem.

3. Network Flow and Scheduling Problems 33

machine nodes job nodes

Figure 3.3: An example of the scheduling of unrelated machines problem

This is an example with two machines and three jobs. The bold lines in t he figure

are t he optimal schedule with y1,1 = y2,2 = y2,3 := 1 and the remaining Yi ,j := 0. The

total processing t ime on machine 1 is T1,1yl,l = 4 and the total processing t ime on

machine 2 is r 2,2y2,2 + T2 ,3y2,3 = 3. Therefore the optimal makespan of this example

is 4.

The mathematical program of the scheduling of unrelated machines problem is

formulated as follows:

mm T
m

s.t. LYi,j = 1, j = 1, .. . , n
i= l

n

LTi,jY i ,j ~ T , i = 1, ... , m
j = l

Y i ,j E {0, 1} , -i = 1, ... , m , j = 1, .. . , n

(M1)

(1)

(2)

(3)

where Ti,j is the processing time of job j scheduled at machine 'i, T is the makespan

we want to minimize and Y i,j is the integer variable with value 0 or 1, where Yi ,j = 1

means that job j is scheduled on machine 'i and Yi,j = 0 means that job j is not

scheduled on machine i. Constraint (1) says that the job cannot be over assigned.

34 3. Network Flow and Scheduling Problems

Constraint (2) says that the total processing time of all jobs on any machine cannot

exceed the makespan. Constraint (3) says that we only permit integer assignments.

The scheduling of unrelated machines problem is NP-Complete (see [LST90]).

But if we remove constraint (3) in (M1), the original scheduling problem is reduced

to a linear programming problem, where the Yi,j can be fractional numbers. It is

well-known that one of the most natural strategies for solving integer optimization

problems like (M1) is to drop the integrali ty constraints, get t he solution of the linear

relaxation problem and round its solution to an integer solution. J. K. Lenstra,

D. B. Shmoys and E. Tardos [LST90] present a rounding scheme for computing an

approximate solution of (M1). By a transformation from our problem (MP2) to the

scheduling problem , their algorithm will be adopted in this thesis for solving the

problem (MP2). For more details , refer to [LST90].

In the scheduling of unrelated machines problems with costs, the cost of job j on

machine i is defined to be ci,jYi,j. A budget B is also given, which says the total cost

on all machines cannot be more than B . We can write the additional constraint as

follows:
n m

L LYi,jCi,j ::; B.
j = l i = l

The goal of this problem asks for an optimal schedule to minimize the makespan

while the budget constraint is respected. Thus, the scheduling of unrelated machines

problem with costs can be formulated as follows ,

mm T
m

s.t. LYi,j = 1, j = 1, ... ,n
i = l

n

L Ti ,jYi ,j ::; T, i = 1, ... , m
j = l

n m

LLYi,jCi,j::; B.i = l. ... , m , j = 1, ... ,n
j = l i = l

Yi ,j E {0, 1 } , i = 1, .. . , m, j = 1, ... , n

(1112)

(1)

(2)

(3)

(4)

Note that (M1) is just a special case of (M2) if we set Ci,j := 0, Vi, j and B := 0.

3. Network Flow and Scheduling Problems 35

Hence it is easy to see that the scheduling of unrelated machines problems with costs

is also NP-Complete. D . B. Shmoys and E. Tardos [ST93] show an approximation

algorithm for solving the scheduling of unrela ted machines problem with costs which

has the same approximation factor as the approximation algorithm of solving the non

cost scheduling of unrelated machines problem. For more details , refer to [ST93]. In

Chapter 5 we will show a t ransformation of the problem (MPC2) to the scheduling of

unrelated machines problem with costs, then the algorithm in [ST93] will be applied

to solve (MPC2).

3.6 Minimum Cost Bipartite Matching Problem

In Algorithm 4 (refer to Chapter 5) , the integer solution for TDCCP with costs is

obtained by solving a minimum cost bipartite matching problem. In this problem , we

are given a bipartite graph G = (V1 , V2 , E), where V1 , V2 are two sets of disjoint nodes

and all edges in E go between V1 and V2 . A matching is a subset of edges NI ~ E

such that for all nodes v E 1/1 U 112 , a t most one edge in Af is incident on v. We say

that a node v is matched if an edge in M is incident on v ; otherwise, we say that

v is unmatched. Let IV11 = m and jV2 j = n. Without loss of generali ty, we assume

m ~ n. We define Yi ,j = 1 if node j E V2 is matched by edge (i , j) , i E Vi. We are

also given a cost of the matching ci ,j , Vi E V1 , j E V2 . The minimum cost bipartite

matching asks for a matching which matches all the nodes in V2 and minimizes the

total cost of the matching. This problem can be formulated as follows,

n~ n

mm L L ci,jYi,j
i = l j=l

n

s.t. L Yi,j:::; 1, ·i = 1, .. . , m
j=l

m

LYi,j = 1,j = 1, ... ,n
i = l

Yi ,j E {0, 1} , ·i = 1, .. . , m , j = 1, ... ,n

(!viCM)

(1)

(2)

(4)

36 3. Network Flow and Scheduling Problems

Vlhen m = n, this problem is called the assignment problem, which can be formulated

as follows ,
n n

i = l .i = l

n

s.t . LYi,j = 1, i = 1, ... , n
j = l

n

L Yi,j = 1' j = 1. ... ' n
i = I

Yi ,j E {0, 1} ,i = 1, ... ,n,j = 1, ... ,n

(AP)

(1)

(2)

(4)

The assignment problem (AP) can be solved by the Hungarian method with com

plexity at most O(n4
). For details about the Hungarian method, see [Mur95] and

[Lov86].

The assignment problem is just a special case of the minimum cost bipartite

matching problem. We give an example of the assignment problem in the following

figure.

Figure 3.4: An example of the assignment problem

This is an example with IV11 = IV21 = 3. The bold lines in the figure denote the

matching. It is easy to calculate the total cost of this bipartite graph is c1,1yl,l +
c2,2y2,2 + c3 ,3Y3 ,3 = 3, which is the minimum cost we can achieve.

3. Network Flow and Scheduling Problems 37

When rn > n, we can add (rn- n) new nodes v' in V2 such that the cardinalities

of Vi and V2 are same. Then for a new additional node v', we define the cost on all

edges (v, v'), v E Vi to be zero. Note that by this construction, we do not change

the essence of the original problem. By solving this assignment problem , we can still

find the minimum cost matching in G = (V1 , V2 , E). Therefore, any minimum cost

bipartite matching problem can be converted into an equivalent assignment problem.

This observation will be applied to design Algorithm 4. Note that the matching

found in the bipartite graph for the given assignment problem will be called a perfect

matching since each node in the graph is exactly matched by one node. In Algorithm

4, we will transform the problem TDCCP with costs to an instance of the scheduling

of unrelated machines problem. The perfect matching we found in a given bipartite

graph will give us an integer schedule for the scheduling problem, by which we can

obtain the original solution of TDCCP with costs.

Chapter 4

Total Discrete Capacity

Constrained Problem without

Costs

In this chapter, we discuss the Total Discrete Capacity Constrained Problem (TD

CCP) without costs. First of all , we consider a special case of TDCCP where the

service rates are independent of servers, and we show that the maximal capacity of

TDCCP in this case can be computed in polynomial t ime. Secondly, we study another

special case of TDCCP where the service rates are independent of classes, and design

two approximation algorithms for solving this case. Then, we give an approximation

algorithm for the general TDCCP. Finally, we prove the NP-Completeness of TDCCP

by showing a polynomial time reduction to the Partition problem.

4.1 Overview of solv ing TDCCP

First we study two special cases of TDCCP. In the first case, the service rates are

independent of all servers and /.L j,k = J.Lk · We show that this case can be solved

in polynomial time. In the second case, the service rates depend only on servers

and l'·j.k = /L j . We design two different approximation algorithms Algorithm 1 and

Algorithm 2 for the second case. Given an M x 1 vector a and a K x 1 vector {3,

if the service rates J.L = a · {JT, then we show that this case will fall into the case

38

4. Total Discrete Capacity Constrained Problem without Costs 39

of J.l j,k = J.l j. Finally, we give the approximation algori thms for solving the general

TDCCP by applying Algorithm 1 or Algorithm 2. Figure 4.1 ::;haws the framework

of our algorithms for solving TDCCP.

polynomially
solvable

Algorithm 1 or 2 Fall into Case 2
Transform

(approximately)
to Case 2

Algorithm I or 2

Figure 4.1: The Framework of our algorithms for solving TDCCP

4.2 Solving TDCCP in the case of fL .J, k = f.Lk

In this case, for any class k, all servers have the same service rate. Thus we say the

service rates are independent of all servers or all servers are ident ical.

40 4. Total Discrete Capacity Constrained Problem without Costs

In Chapter 2, we introduced the problem (1P1) for this case, which is as follows.

max ,\ (!lfP1)
M

s. t . L /-lk6j,k 2: Aak, k = 1, .. . , K (1)
j = l

J(

L 61,k::::; 1, j = 1, ... , M (2)
k= l
M

L x { 61,k > 0} ::::; ck, k = 1, .. . , K (3)
j = l

61,k 2: 0, k = 1, ... , K , j = 1: .. . , Jvf. (4)

Let the optimal solu tion for (MP1) be {6j,d and ,* . We can prove the following

theorem.

Theorem 4.1. If /-l j,k = Pk for all j , the maximal capacity is

Proof. Suppose the optimal solution of (MP1) is ,* and 6},k· In constraint (3) , the

. indicator function says that Vk if 6j,k > 0, then x { 6j,k > 0} = 1 otherwise x{ 6j,k >
0} = 0. Because 6j,k ::::; 1, we have for all k,

6j,k ::::; x{ 6j,k > o}.

Furthermore we can get for all k ,

M M

:L61,k ::::; :L x{61,k > o}::::; ck· (4.1)
j = l j = l

Then we derive that for all k ,
M

L6j,k ::::; Ck·
j=l

When we achieve the optimal, one of the following conditions must be satisfied:

4. Total Discrete Capacity Constrained Problem without Costs 41

M

(1) L bj,k < ck, fork = 1, .. . , K .
j = l

!vl

(2) : There exists at least one class l such that L 6j,1 = c1.
j = l

If condit ion (1) is satisfied , constraints (1) ancl (2) in (MP1) must be t ight for all k

and j , otherwise, ,\ * and bj,k can be trivially increased. According to constraint (1)

in (MP1), we have
M

A* (ak/ J-l k) = L 6j,k, \ik .
j = l

Then the sum of the above inequalities for all classes is:

]{]{ !vl

2..::>-*(ak/ J-lk) = I:I: <S;,k.
k = l k= l j = l

If condit ion (2) is satisfied , by (4.1) we have the following:

(4 .2)

Let ko := argmin1 <k <J<(~;k). We know that either ""~1 61*k = cko or L1tv~ 1 61* k <
- - ak f-l k L..;J - , o - , o

Ck0 • If LJ~1 bj,ko < Ck0 , we can increase 6j,ko and decrease bj,k for at least one j and

k =1- ko until we have L~1 6J,ko = cko· Note that this transformation will not decrease
I:A~l ,j•

,\ *. Then we know that J-],ko is the minimum value for all k. Since,
ako I f-l ko

'\'M 6*
\ * . L..;J= l J,k
"' = n11n1 <k<J< I , - - ak J-lk

we have,

(4. 3)

42 4. Total Discrete Capacity Constrained Problem without Costs

By (4.2) and (4.3), the maximal capacity A* of (MP1) is

0

Corollary 4.2 . There is a polynomial time algorithm fo r solving (MP1) in the case

of /-lj ,k = /-lk for all j.

Proof. We can calculate the optimal solution A* according the above theorem. Obvi-

ously, this calculation can be done in polynomial time. 0

4.3 Solving TDCCP in the case of f.-LJ ,k = f.-LJ

When /-l j ,k = /-l j for any server j , we say that the service rates depend only on servers

or a ll classes are identical. We design two different approximation algorithms for

solving this case.

4.3.1 Approximation Algorithm 1

Design of Algorithm 1

In Chapter 2, we introduced the problem (MP2) for this case, which is as follows.

max A
M

s.t. L /-l j6j,k 2: Aak , k = 1, ... , K
j = l

] (

L 6j,k ~ 1, j = 1, ... , M
k= l

M

L x{ c5j,k > o} ~ ck, k = 1, ... ,!<
j = l

6j ,k 2: 0, k = 1, .. . , K , j = 1, .. . , M .

(Jvf P2)

(1)

(2)

(3)

(4)

4. Total Discrete Capacity Constrained Problem without Costs 43

Now we define a new variable Xj ,k = pjoj,k, and rewrite (MP2) as (MP2 ').

max A (NI P2')
tv!

s.t. I: xj,k;::: Aak , k = 1, .. . , K (1)
j = l

J{

L Xj ,k :S pj,j = 1, ... , M (2)
k= l
M

L x{x:j,k > 0} :S ck, k = 1. ... , K (3)
j = l

Xj ,k::::: 0, k = 1, ... , K , j = 1, .. . , 111. (4)

Problem (MP2') can be viewed as an instance of the maximum concurrent multicom

modity k-splittable flow problem with the following network topology. This network

has a single source node {S} for sending K commodities , 2NI nodes {vi , ... , VM } ,

{u1 , .. . u 114 } for transferring commodities , and K terminal nodes {t1, ... , ti<} with de

mand ak, k = 1, ... , K for receiving commodities. First we connect source node

S with every node in the set {vi , ... , Vtvr } , and set infinite capacity on the edge

(S,vj),j = 1, ... ,!11 . Then we connect nodes Vj with 'l.Lj , and set the capacity on

the edge (vj , ·uj) to be /-Lj for j = 1, .. . , M. Finally we connect node ui , j = 1. fvf

with every node in the set {t1, ... , tK} , and also set infinite capacity on the edge

('l.Lj, tk) , j = 1, ... , fvf, k = 1, ... , K. The number of different paths allowed for each

commodity k is bounded by ck (1 :S ck :S M), k = 1, ... , K. Then the problem (MP2 ')

asks for the flow assignment { Xj,k} of sending K commodities to tk while respecting

capacity ~Lj on edge (vj, 'LLj), j = 1, ... , NI and splittablity bound ck for each com

modity k, k = 1, ... , K, so that the maximum possible fraction A of all commodity

demands ak , k = 1, ... , K is simultaneously achieved. Please refer to Figure 4.2 for

the network topology of (MP2').

44 4. Total Discrete Capacity Constrained Problem without Costs

f.l l

Figure 4. 2: The network structure for our special case (MP2')

To obtain an approximate solut ion of (MP2'), Algorithm 1 does the following:

1. In the first stage, we approximate (_r._ fP 2') by solving t he maximum concurrent

mult icommodity uniform exactly-k-splittable flow problem.

2. In the second stage, we approximate the maximum concurrent multicommodity

uniform exactly-k-splittable flow problem by comput ing the minimum congest ion of

an unsplit tablc flow problem.

3. Finally, we compute the approximate solution of the problem (MP2) by the

unsplittablc flow and congestion we found.

Description of Algorithm 1

In Algorithm 1, the stage for computing the minimum congestion of an unsplittable

flow problem is based on the algorithms in [DGG99] and [KS02]. We first introduce

some necessary defini t ions which will be used in our algorithm.

• Regular terminal: a terminal node t k is regular if its demand ak is greater than

the flow on every edge entering t k, otherwise it is an irregular terminal.

4. Total Discrete Capacity Constrained Problem without Costs 45

• Singular edge: an edge ('U , v) is called singular if all the vertices which are

reachable from v have out-degree at most 1.

The detailed description of Algorithm 1 is as follows.

Stage 1: Initialization. Construct a network (see Figure 4. 1) with one source

node { S} for sending f{ commodities, 2.M nodes {v1 , . . . , v M, 'U1 , . . :uM } for transferring

commodities, and f{ terminal nodes {t1 , .. . , tg} with demand ak, k = 1, ... , K for

receiving commodities. Set t he capacity on the edge (v1 , ·u1) to be J.l j for j = 1, ... , M .

Stage 2: Transformation of initial problem to a maximum concurrent

uniform exactly-k-splittable flow problem. We replicate each terminal node

tk into ck identical sub-terminals t (k ,i), i = 1, ... , ck. Then each commodity k with

demand a k is split into ck sub-commodities (k , i), i = 1, ... , ck, each with t he same

demand a (k ,i) := ak/ck and with the same source. Further, for each edge connecting

with terminal node t k, we connect it with all of the sub-terminals t (k ,i) · Now sending

the new commodity (k, ·i) unsplittably is equivalent to sending the original commodity

k exactly in ck paths with t he same flow amount on each path.

Stage 3: Calculation of demand a (k,i) · We use the ellipsoid method (see

[Sch86]) to solve the following relaxation of the maximum concurrent uniform exactly

k-splittable flow problem.

max A (M P 2")
M

s.t . L Xj,(k,i) 2: Aak/cb '1/(k , 'i) (1)
j = l

L Xj,(k,i) :::;: J.l j, '1/j (2)
(k,i)

Xj,(k,i) 2: 0, '1/j, (k , i) (3)

Let A * and x;,(k, i) be the optimal fractional solution of (MP2"). Then we assign the

flow amount x_f,(k ,i) on the edge (1lJ , t (k,i)) and the flow amount L (k,i) x j ,(k ,i) on the
edges (s, vJ) and (v1, ·u1) . For each sub-terminal in the network , let its demand be

a(k ,i) := ~* ak/ck . Note that the flow x j ,(k,i) computed in this stage is the fractional
flow .

Stage 4: Transformation of the fractional flow calculated in Stage 3 into

an unsplittable flow.

46 4. Total Discrete Capacity Constrained Problem without Costs

Step 1: Let amin := min(k,i) {a(k,i) } and amax := max(k,i) {a(k,i) }. If arnax > 1, we

scale all sub-terminal demands and edge capacities by the factor a rnax so that

a (k ,i) E (0, 1] and p1 E (0 , +oo). Let D := 1 / a min , we know that a ll demands fall

wi thin the interval [1/ D , 1]. We parti t ion the interval [1/ D , 1] into sub-intervals

as follows:

Obviously there are llogD J + 1 sub-intervals. We number them as sub-interval

1, 2, ... , llogD J from left to right.

Step 2: For each sub-interval above (in the increasing order of interval i) , we find

the commodities (k, i) whose demand a(k ,i) falls within the i th sub-interval,

i = 1, ... , l logD J. We assume there are rn such commodities . For convenience,

we name them as commodities 1, 2, ... , rn and their corresponding sub-terminals

are t1 , t 2 , . . . , tm· Let 1·1,t1 denote the flow on the edge (u1 , t1) , j = 1, ... , M , l =
1, .. . , rn. VIe define a new variable Y],(k ,i) , which is used to record the unsplit

taLle flow we find on edge (.j , (k, ·i)) for each commodity (k , ·i) . Once we finish

computing Y],(k ,i) for all j and (k , i), by the network topology of (MP2"), we

can easily determine the unsplit table flows for sending all (k, 'i). Y] ,(k ,i) can be

assigned as foll ows:

(a) Check each edge in the network , if no commodity l , l = 1, .. . , rn goes through

this edge, we remove this edge from the network.

(b) Eliminate irregular sub- t erminals from the network (refer to Figure 4.1 for

the network topology) . We check each sub-terminal t1 in the network ,

l = 1, ... , rn. If there is any sub-terminal t1 with only one incoming edge

("u1. t1), we know t hat the flow amount x1,t1 on edge (·u1, tz) equals the

demand a~1 of node t1. We assign the commodity l to edge (v1 , ·u1) and

Y1,t
1

:= a~1 • Now we know that the commodity l will be routed unsplittably

by following the path

Then we remove commodity l from the network, decrease the flow on the

edge (S, v1) , (v1, u1) , (·u1, t1) by x1k Obviously, the flow on edge ('u1, t1) will

be zero. After this step , there is no irregular sub-terminal in the network.

4. Total Discrete Capacity Constrained Problem without Costs 4 7

Thus, each of the remaining sub-terminals must have at least two incoming

edges.

(c) Find an alternating cycle for each of the rema.mmg commodities . The

alternating cycle is constructed by alternatively going forward or backward

on the edges of the network until we form a. cycle, which can be stated as

follows. Starting from a. node Uj 1 E {'LLI , ... , u 1111 } and stopping at a. terminal

node th E {t1 , ... , tm} , the forward path is constructed by selecting an edge

(uj1 , t 11) with the positive flow Xj1 ,t
11

on it. Since there are at least two

incoming edges for each sub-terminal after step (b) , we can find at least one

distinct path to follow back to a different node u12 . We call this path the

backward path. \Vhenever we finish constructing a. backward path and stop

at a. node Ujp, we check the edge ('u]p, th). If edge ('u]p, tit) is a singular edge,

we continue constructing the backward path by adding edges (vi~>' 'Ll]p) ,

(s , Vjp) in the backward path aud then finish the alternating cycle by adding

edges (s , Vj1), (Vj 1 , 'Uj1) as the forward path in the cycle. If edge ('ujp , th) is

a non-singular edge, we can find one distinct edge ('u]p, t 12) leaving the node

uip and this edge will be added into the forward path. Then we construct

the backward path from the node t 12 again. We perform the above steps

for constructing the forward path and backward path alternatively until a

cycle

is formed. Please also refer to Figure 2 in [DGG99] for an example of

constructing the alternating cycle.

(d) Augment the alternating cycle found in (c). We first check the edge capaci

ties in the backward path of the alternating cycle. If there is any edge with

capacity less than the commodity demand in the backward path, we ignore

this cycle and continue to find another alternating cycle. Otherwise, we

decrease flow along the forward path and increase flow along the backward

path by the same amount E, where E = min{E1 , E2 } . Suppose there are q

sub-terminals in the alternating cycle, we define E1 to be the minimum flow

amount along any edge in the forward paths, and E2 to be the minimum

value of at1 - Xj,t 1 along the edge (u1, t1) , l = 1, ... , q in the backward path.

48 4. Total Discrete Capacity Constrained Problem without Costs

After we decrease and increase flow respectively in the forward and back

ward paths, we can get at least one edge with flow 0 or one edge (uj , t1)

with flow equal to a sub-terminal 's demand at node t1. Then go to step

(a) . Clearly, by step (d) , we will never send any unsplittable flow through

an edge with capacity less than the corresponding commodity demand.

(e) We continuously repeat steps (a) to (d) until commodities l , l = 1, ... , m

are all removed from the network.

Stage 5: Calculation of the or iginal solution c5j ,k and the capacity A for

(MP2). Y] ,(k ,i) is the final unsplittable flow for sending sub-commodity (k, i) . Note

that if the original amax > 1 iu Step 1 of Stage 4, we need to restore the flow and

capacities in the network by multiplying Y] ,(k,i) and /-L j with amax, for all j , (k , i). The

total flow through edge (·vj , ·uj) is L (k,i) Y] ,(k ,i) · We define a := maxj~ (k·,i~~j , (k , i) . If

o > 1, we know that edge capacities in our network are violated. Then we scale down

the calculated unsplittable flow Y] ,(k ,i) by the factor a so that the edge capacities in the

network are respected. We know that the original commodity k is split into ck sub

commodities, and the flow of commodity k through edge (vj , ·u j) is 2::~,: 1 Y],(k ,i) · Then

we set the original assignments c5j ,k of servers to classes to be 6j,k := 2::~,: 1 Y] ,(k ,i)/ /-L j

for all j, k. Finally, according to constraint (1) of (MP2) , the corresponding capacity

A can be computed by the server assignment 6j ,k, i. e. A = mink ~~~~~; c5; , k

Analysis of Algorithm 1

To evaluate the performance guarantee of Algorithm 1, first we show the proof of

Theorem 5 in [BKS02] .

Theorem 4.3. Computing the maximum concurrent multicommodity uniform exactly

k-splittable flow problem in Stage 2 of Algorithm 1 guarantees at least 1/2 of the

optimal value for the maximum concurrent multicommodity k-splittable flow problem

(MP2').

Proof. Suppose the optimal solution of a maximum concurrent multicommodity k

splittable flow problem (MP2') is A* and x;,k . We show that there exists a feasi

ble maximum concurrent multicommodity uniform exactly-k-splittable flow with flow

valueD:= A*ak/(2ck) on each path for sending sub-commodity (k , i) , V(k, i).

4. Total Discrete Capacity Constrained Problem without Costs 49

In the given optimal solution of the maxnnum concurrent multicommodity k

split t able flow problem, we replace the edge (j, k) for sending commodity k with flow

x;,k by l x;,k / D J copies, each carrying flow amount D. Let P be the set of edges

with xj,k > 0. By t his construction, we can show that there are at least ck copies of

edges that we can produce for sending commodity k and each copy of an edge carries

flow amount D, using the fact that the number of paths for sending commodity k is

bounded by ck

P :x • > 0
J ,k

L (xj,k/ D - 1)

~ (L xj,k)/ D - ck
P :xj,k>O

)..*ak
~ D -ck = ck.

By the above inequality, we know that there are at least ck paths carrying the flow

amount D for sending commodi ty k , k = 1, .. . , K . T hus t he maximum flow achieved

for commodity k is a t least D · ck =)..*ak/2 and the maximum possible fraction for

rout ing commodity k is at least >. * /2 for (MP2 '). D

By treating each sub-commodity separately and routing each sub-commodity un

splittably, we solve the maximum concurrent multicommodity unsplittable flow prob

lem, instead of solving the maximum concurrent multicommodity uniform exactly

k-splittable flow problem. According to Theorem 5.1 in [KS02], we can prove t he

following theorem for bounding the minimum congestion in Stage 4 of Algorithm 1.

Theorem 4.4. Stage 4 of Algorithm 1 routes each sub- commodity unsplittably such

that the the total flo w through (v1 , ·u1) exceeds its edge capacity /-l j by less than 5J-L1 ,

j = 1, .. . , 111.

Proof. In our network, the capacitated edges are (v1, u1) , j = 1, ... , M and the other

edges have infinite capacities. Hence in order to compute the minimum congestion,

we only consider (v1, u1) , j = 1, ... , M .

Let D := 1/ amin· We partition the interval [1/ D, 1] into sub-intervals

[1/ D , 1j 2llogDJJ, ... , (1 / 2i+ l, 1/ 2t ... , (1 / 2, 1] .

50 4. Total Discrete Capacity Constrained Problem without Costs

For an arbi t rary sub-interval (1/ 2i+ l , 1/ 2i], by Step 1 in Stage 4, we know that we

only consider commodity l with demand a1 which is located in this sub-interval and

other commodit ies will be temporarily removed from the network. Let the init ial flow

on edge (v7, ·uj) be / (vj ,u1) for sending the commodities (fractionally) with demands in

this interval. Since the fractional flow ! (vJ,uJ) computed in Stage 3 respects the edge

capacity of (vj, ·uj) , we have

! (Vj ,'U. j) ::; /-l j ·

In Step 2 of Stage 4, if there is any edge with capacity less than the commodity

demand in the backward path of the alternating cycle, we will ignore this cycle. This

step is crucial because it guarantees that any commodity in this interval is only sent

through edges with capacities at least its demand. Since the minimum commodity

demand in this interval is l /2i+ l, we have

1
II · >
!-") - 2i+ l .

Also, when we augment the alternating cycle, if the flow on the edge (vj, ·uj) is equal

to a commodity demand and exceeds its capacity, this edge will be removed from the

network in this interval. Thus we know that the flow through edge (vj , u j) exceeds its

capacity by less than the maximal demand in this interval. Obviously, the maximal

commodity demand in the interval (1/ 2i+l, l / 2i] is at most 1/2i . Since the edge

(vj, 'Uj) may also be used in other sub-intervals before (1 / 2i+l, l / 2i], the flow F on it

is at most:

LlogDJ

F ::; f (v1 ,u1) + L 1/ 2j
j=i

2 1
= f (vj ,uj) + 2i - 2 llogDJ

4 1
= f (vJ ,uJ) + 2i+ l - 2 llogDJ

We know that / (vj,uj) ::; /-l j and 2;~ 1 ::; /-l j· Then, the total flow F on the edge (vj, ·uj)

is bounded by,

4. Total Discrete Capacity Constrained Problem without Costs 51

4 1
F <] () + - - --;-:----:::-:-

- Vj,Uj 2 i+ l 2 llog0 j

1 < 11 . + 4u · - --;-:---::-:
- r-"] r-"] 2 llogDJ

1
= 5f-L j - 2 llogDJ ::; 5f-LJ ·

Now we can get the conclusion that for any edge (vJ, 'UJ) m the graph, the flow

through it is at most 5 times its edge capacity. Therefore, we know that there ex

ist s a 5-approximat ion algorithm for the minimum congestion of the unsplittable flow

problem. So, we can achieve a 1/5-approximat ion algorithm for the maximum con

current rnulticommodity unsplittable flow problem. 0

Summarizing Theorems 4.3 and 4.4 we get the fo llowing theorem:

Theorem 4 .5. Algorithm 1 is a 1/ 10-approximation algorithm for solving {MP 2 ').

Proof Let the optimal solution of (MP2 ') be A*. According to Theorem 4.3, solving

the maximum concurrent multicommodity uniform exactly-k-splittable flow problem

will achieve at least 1/ 2 of the opt imal solution A*. By Theorem 4.4, Stage 4 in Algo

rit hm 1 finds the miuirnum congestion for the uusplittable flow problem aud achieves

at least 1/ 5 of the optimal solution for the maximum concurrent multicommodity

uniform exactly-k-splittable flow problem. T hus we can at least achieve 1/ 10 of the

optimal capacity A* in (MP2') . 0

4.3.2 Approximation Algorithm 2

D esign of Algorithm 2

Approximation algorithm 2 is based on the algorithm in [LST90] for t he scheduling of

unrelated parallel machines problem. The first stage of Algorithm 2 is t he same as Al

gorithm 1, where we t ransform (MP2') to the maximum concurrent multicommodity

exact ly-k-splittable flow problem and lose 1/ 2 of approximation factor.

By analyzing the network st ructure of (MP2'), we find that the flow on the edges

(S , vi) and (vi, ui), 'i = 1, ... , M depends only on the flow amount of the edges (ui, tk),

k = 1, .. . ,K. It is easy to see that {u1,, ... , 'uM } and {t1, ... ,tJ<} can be viewed as two

52 4. Total Discrete Capacity Constrained Problem without Costs

disjoint node sets in a bipartite graph. According to this observation, the second

stage of Algorithm 2 computes the fractional solut ion of the maximum concurrent

mul t icommodity exactly-k-splittable flow problem and converts its solution into the

solut ion of an instance of the scheduling of unrelated machines problem.

In the third stage of Algorithm 2, we show how to round the fractional solution

of the scheduling of unrelated machines problem to an integer solution by using the

approximation algorithm studied in [LST90].

Finally, we map the integer solution of the scheduling problem back to the original

solut ion 61,k and obtain the capacity A of original problem (MP2) .

Transformation of (MP2') to the scheduling of unrelated machines problem

When (MP 2') is transformed into the maximum concurrent multicommodity exactly

k-split table flow problem, we have the following relaxation of the multicommodity

concurrent unsplittable flow problem:

max A
M

s.t. L x.i ,(k ,i) ;:::: Aak/ck,V(k ,i)
j = l

L Xj,(k,i) ~ /-L j, Vj
(k,i)

Xj,(k ,i) ;:::: 0, Vj, (k, ·i)

(!vi P2")

(1)

(2)

(3)

where LJ,(k,i) = p,16J,(k,i)· Let :.rj,(k,i) and A* be the optimal solution (fractional) for

(MP2") .
I:M •

First . we define A(k i) ·- j=l ?'(k,iJ , Vk , i . By constraint (1) m (MP2"), smce
, , ak Ck

"L~~ 1 x;,(k,i) ;:::: A*ak/ck , Vk , ·i, it is easy to see that

X~ k i Ck a . .
Then, we define y1· (k i) := ; ·(· l and p1· (k i) := ~' Vy , (k , 't).

, , (k,i) a k , ' ck,.- j

4. Total Discrete Capacity Constrained Problem without Costs 53

Using the above definitions, we can prove the following equality.

Also, we have

= 1, V(k, i).

"""" ak xj,(k,i) ck
L Pi,(k,i)'Yj,(k,i) = L --_A;_:__--'--
(k,i) (k,i) Ck{Lj (k,i)ak

x* = L j,(k,i)

(k,i) P'JA(k,i)

x* = """" j,(k,i)
~ Ck/-Lj "i\'M *
(k,i) a, Llj=l xj,(k,i)

x* (k ·) 1 < """" _J_, _,_t < -' v ..
- ~ .* l - .* J

(k,i) t J

Summarizing the above, if we let T = 1/.\ *, we have the following linear programming

problem:

M

LYj,(k,i) = 1, V(k, i)
j=l

LPj,(k,i)'Yj,(k,i) :::; T Vj
(k,i)

Yi,(k,i) ~ 0, Vj, (k, i).

(1) (51)

(2)

(3)

This is exactly the relaxation version of the scheduling unrelated machines problem,

where (k, i) can be viewed as jobs and j can be viewed as machines. The jobs in

54 4. Total Discrete Capacity Constrained Problem without Costs

(S1) correspond with sub-commodity nodes in (MP2") and the machines in (S1)

correspond with edges (vj , ·u j), j = 1, .. . , M in (MP2"). The processing time for job

(k , i) scheduled on machine j is P],(k,i) · Note that scheduling job (k , ·i) on machine j is

actually equivalent to rou t ing sub-commodity (k , 'i) on the edge (vi, ·u i) unsplittably.

The fraction of job (k, i) scheduled on machine j is Y],(k,i)· Given x;,(k ,i) and ,.\ * in

(MP2"), we can find a feasible (fract ional) solution Y] ,(k ,i) and the makespan T = 1/ ,.*

for the linear programming problem (S1) .

Let p := m axj,(k ,i) {P] ,(k ,i)/T}. We consider the following linear programming prob

lem :

M

L Yj ,(k ,i) = 1, V(k , i)
j = l

L Pj ,(k .i) Yj ,(k ,i) ~ T , Vj
(k ,i)

Y] ,(k ,i) = 0 if Pj,(k.-i) > p · T, Vj , (k , ·i)

Y] ,(k ,i) 2: 0, Vj , (k , i).

(1) (S2)

(2)

(3)

(4)

The constraint (3) in (S2) docs not affect the value of Y] ,(k,i) , since

P] ,(k,i) ~ m axj,(k ,i) {Pj,(k,i) } = fJ · T

and we will not set any Y] ,(k ,i) to zero . Thus the solution Y],(k,i) and T = 1/ ,.* in (S1)

is still feasible in (S2).

Now we show the procedure I nt_Sch edule for rounding the fractional solution

Y] ,(k,i) to the integer solution i)]. (k,i) . This procedure is actually based on Theo

rem 1 (rounding theorem) in [LST90] . W hen we find an integer solution ih (k,i)

for (S2) by I nLSch ed ·ul e, the integer solution Xj ,(k ,i) can be computed by setting

Xj ,(k ,i) = [)j ,(k,i) A (k ,i) ak / ck.

Procedure fnt_Sch edtde

Input: the fract ional schedule Y] ,(k,i) and makespan T = 1/ ,.* of (S2).

Output: the integer schedule ih (k,i).

Step 1: Consider the corresponding bipartite graph of (S2) and assign each edge

4. Total Discrete Capacity Constrained Problem without Costs 55

(j, (k, i)) with weight Y],(k,i)· If Y],(k,i) = 0, we remove the edge (j, (k, i)) from

the graph and set ih(k.i) := 0.

Step 2: Check all fractional solutions Y],(k.i). If Y],(k,i) = 1, we adopt this integer

solution, schedule job (k, i) on machine j, set ih(k,i) := 1, ih,(k,i) := 0, 'Vj1 #- j

and remove this edge (j, (k, 'i)) and the job node (k, i) from the graph.

Step 3: Scan the rest of the job nodes, if we cannot find a cycle starting from the

node (k, i), we know there exists a tree rooted at the node (k. i). Then we

randomly choose a machine node j which is connected with the job node (k, i),

schedule the job (k, i) at machine j, and set ih(k,i) := 1, ihdk,i) := 0, 'Vj1 #- j.

Finally we remove the job node (k, i) and all other edges connected with job

(k, i).

Step 4: \Vhen we find a cycle starting from the node (k, i), we delete the alternate

edges in this cycle. Then we check again whether we can find any cycle starting

from node (k, i). If there is no cycle, (k, i) must be the root of a tree, otherwise,

we continue constructing a cycle and delete the alternate edges in the cycle until

we cannot find any cycle starting at (k, i). Now considering the tree rooted at

(k, i), we randomly choose a machine node j connected with (k, i) and schedule

(k, i) on j by setting Y],(k,i) := 1, Yjlo(k,i) := 0, 'Vj1 #- j. Then we remove the job

node (k, i) from the graph and any edge connected with (k, i).

Step 5: Repeat Steps 3 and 4 until all job nodes (k, i) are scheduled on machines

and Y],(k,i) is our final integer solution.

Description of Algorithm 2

The detailed description of Algorithm 2 is as follows. Note that Stages 1 and 2 in

Algorithm 2 are the same as those in Algorithm 1.

Stage 1: Initialization. Construct a network with one source node {S} for

sending K commodities, 2M nodes {v1, ... ,vM,·ulo ... uM} for transferring commodi

ties, and K terminal nodes {t1 , ... , tK} with demand ak, k = 1, ... , K for receiving

commodities. Set the capacity of the edge (vj, nj) to be /-Lj for .i = 1, ... , M.

Stage 2: Thansformation of initial problem to a maximum concurrent
uniform exactly-k-splittable flow problem. We replicate each terminal node

56 4. Total Discrete Capacity Constrained Problem without Costs

tk into ck identical sub-terminals t (k,i) , 'i = 1, .. . , ck. Then each commodity k with

demand ak is split into ck commodities (k , i) , i = 1, .. . , ck , each with the same demand

a(k,i) := ak/ ck and with t he same source. Further, for each edge connecting with

terminal node tk , we connect it with all of the sub-terminals t (k,i)· Note the new

commodit ies (k, 'i) must be routed unsplit tably.

Stage 3: Solving the fractional maximum concurrent uniform exactly

k-splittable flow problem and transformation of its solution to a solution of

the scheduling of unrelated machines problem. We consider the relaxed version

of the maximum concurrent uniform exactly-k-splittable flow problem (MP2") and

get the solution Xj,(k ,i)· and.* by the ellipsoid method. Then we construct an instance

of scheduling of unrelated machines problem, with job nodes (k , i) , Vk , i and machine

nodes j, j = 1, .. . , M. The processing time for a job (k , ·i) scheduled on machine j is

defined to be p1· (k i), where p1· (k i) = ...E:.L . Let a feasible solution of this scheduling
, , 1 ' Ck J..L j

problem be Y] ,(k,i) and the makespan T. Further we define y j (k i) = 7 <k,i) c k and
' ' (k ,i) a k

T=1/ .*.

Stage 4: Calculation of the integer solution Y],(k,i) by the fractional so

lution Yj ,(k ,i)· We use the procedure InLSch edule to round the fractional solution

Y], (k,i) to the integer solution Y] ,(k, i) .

Stage 5: Calculation of the integer solution Xj,(k ,i) of (MP2'). Let ij ,(k, i) :=

Y),(k ,i) >. < •~;ak. Then ij,(k ,i) is the solution for the reduced maximum concurrent mul

t icommodity exactly-k-splittable flow problem. Similar to Stage 5 of Algorithm 1,
we scale down t he flow on every edge by a factor a := maxj L: (k , i~~j,(k , i) such that the

edge capacities on (vj , ·uj), Vj are respected.

Stage 6: Calculation of the original solution 6j ,k and the capacity .\ in

(MP2). The original 6j ,k in (MP2) can be computed by setting 6j ,k := L: ~~~J.L~j,(k , i)
.· - 1 ~~ k- 1 ;v Th 't f (MP2) . ' ·- · L:j~ 1 J.Lj Oj , k] - , ... , 11 , - , .. . , '\.. e capaC! y 0 IS 1\ . - mmk ak •

Analysis of Algorithm 2

Before evaluating the approximation factor of Algorithm 2, by Theorem 1 in [LST90J,

we observe that the set {Yj ,(k ,i) } has the following property found in Proposition 2 of

[AAD03].

Lemma 4.6. L et the total number K' of sub-termi nal nodes be K' = 'L~~ 1 ck . There

4. Total Discrete Capacity Constrained Problem without Costs 57

exists a solution of {Yj,(k,i)} in which at least !If· K' +1-M- K' elements ar-e zero.

Proof. The optimal solution { ::rj,(k,i)} is a vertex of the polyhedron of (MP2"). (MP2")

has M · K' + 1 variables and fvf + J{' constraints (excluding the constraint (3)).

Therefore, there are M + K' basic variables in any basic solution. The remaining

Af · K' + 1 - M- K' non-basic variables in { :r:* (k .) } are zero. Since Y] (k i) = x}-(k,i)ck,
J, ,z , , (k,,.)ak

we know that in {Yj,(k,i)}, at least M ·!{'+1-M- K' elements are zero.

0

Corollary 4. 7. The bipartite graph with edge weights Y],(k,i) in the scheduling problem

has no more edges (with positive weights) than nodes.

Proof. There are M + K' nodes in the bipartite graph. According to Lemma 4.6, the

number of edges with positive weights is at most !If+ K'- 1, which is smaller than

the number of nodes. 0

Theorem 4.8. The procedure InLSchedule can round any feasible solution Y],(k,i)

into an integer solution Y],(k,i) with makespan at most (1 + p)T.

Proof. According to the procedure I nLSchedule, it is straightforward that Y].(k,i) E

{0,1}and

LYj,(k,i) = 1, j = 1, ... , fvf.

(k,i)

For any machine j in the bipartite graph, since YJ,(k,i) :S: YJ,(k,i) + 1 and PJ,(k,i) :S: p · T,
we have

L Pj,(k,i)Yj,(k,i) :s: L Pj,(k,i) (Yj,(k,i) + 1)
(k,i) (k,i)

= L PJ,(k,i)Yj,(k,i) + Pj,(k,i)

(k,i)

:s: LPJ,(k,i)Yj,(k,i) + p. T
(k,i)

:S: T + p · T.

0

Theorem 4.9. Algorithm 2 is a 2 (l~p) -approximation algorithm for solving (MP2').

58 4. Total Discrete Capacity Constrained Problem without Costs

Proof. Let the opt imal solution of (MP2 ') be A*. We know that solving t he maximum

concurrent multicommodi ty uniform exactly- k-splittable flow problem guarantees at

least 1/ 2 of the optimal solution A*. According to Theorem 4.8, t he makespan is a t

most (1 + p)T , t hus we can achieve a t least 1!P of the optimal capacity of the problem

(MP2"). Summarizing the above arguments, at least 2 (l~p) of the optimal solution

A* can be achieved. D

4.4 The case J-L = a . {JT

Given an Nf x 1 vector a and a K x 1 vector {3 , if the Jvf x K matrix f-L = a · {3r, we

show that this case can be solved by Algorithm 1 or Algorithm 2.

Since fJ· = a · {3r , the (j, k) entry /-L j,k of the matrix f-L will be ft j,k = a j(3k. V·.,Te

defi ne Xj ,k := Cl'.jbj,k for all j , k and bk := ak/ {3k for a ll k. Now the problem (MP) can

be wri tten as follows,

max A
M

s .t. L Xj ,k 2: Abk , k = 1, .. . , K
j = l

/ (

L Xj ,k ~ Cl'.j , j = 1, ... , !11
k= l

M

L x{6j,k > o} ~ ck, k = 1, .. . , K
j = l

:l' j,k 2: 0, k = 1, ... , K , j = 1, .. . , Af.

(Jvf P')

(1)

(2)

(3)

(4)

Obviously, (MP ') falls into the case of (MP2 '). Therefore, we can apply Algorithm

1 or Algorithm 2 to calculate an approximate solution X j ,k and generate the final

solution of TDCCP by setting bj,k := Xj,k/ Cl'. j for all j , k .

4. Total Discrete Capacity Constrained Problem without Costs 59

4.5 Solving the general case

When the service rates /-Lj,k are arbitrary, we will have the general case of (MP). In

this section, an approximation algorithm will be given for solving the general (MP).

The idea of designing the approximation algorithm for (MP) is as follows: First,

we transform (approximately) the general (MP) to an instance of (MP2'). Then, we

solve the reduced case by Algorithm 1 or Algorithm 2.

Let pjax be the maximal service rate of server j over all classes and tLtn be

the minimum service rate of server j over all classes. We define w1 := ttjwx / ttjin
and Wmax := max1{w1}. Note that if /Lj,k = 0 then server j cannot work at class k

(c51,k = 0). In this thesis, we will assume that /1j,k > 0 for all j, k. Now we try to

solve the following problem:

max ,\

M

s.t. L J.lj,kbj,k 2 ..\ak, k = 1, ... , K
j=l

K

L /Lj,kc5j,k :::; tLjax, j = 1, ... , Jvf
k=l

M

LX{bj,k > 0}:::; Ck, k = 1, ... , K
j=l

b1,k 2 O,k = 1, ... ,K,j = L ... ,M.

(111 P3)

(1)

(2)

(3)

(4)

Obviously, this problem is the same formulation as (MP2') in Section 4.2. Let the

optimal solution of general (MP) be..*, b* and the optimal solution of (MP3) be~*,
8*. We can prove the following lemma.

Lemma 4.10. For the optimal solution of {MP) and {MP3), we have~* 2 ..*.

Proof. It is clear that,* and bj,k must satisfy all constraints in (MP). We show that

,* and bj,k is also a feasible solution of (MP3).

Because constraints (1), (3) and (4) in (MP) are exactly the same as those cor

responding constraints in (MP3), we only need to prove that ,* and bj,k also satisfy

60 4. Total D iscrete Capacity Constra ined P r oblem wit hout Costs

constraint (2) in (MP3). Since

and according to constraint (2) in (MP), we have

J(

I:: 6;,k ::; 1,
k = l

therefore
/(

~ .* < max L /-Lj,k Uj ,k - I-Lj .

k= l

Hence we know c5j,k and A* is also a feasible solution of (MP3). Thus we derive

A*~ A*. 0

Suppose the (approximate) solution of (MP3) is ; and ij,k· Vve define

(4.4)

We know that Wmax = maxj { Wj }. Then the following theorem can be proved by

applying Algorithm 1 for (MP3):

T heorem 4.11. Solution (4-4) is a f easible solution of (MP}, and achieves a A of

value at least A* / 10wmax·

Proof. Suppose the optimal solution of (MP3) is ; *. From Algorithm 1 and Theorem

4.5 , we know
- 1 /\ > - A- •

- lOA*

4. Total Discrete Capacity Constrained Problem without Costs 61

By (4.4), we have

= 1,

which satisfies the constraint (2) of (MP).

Furthermore, we observe that,

M M _ "'\'M - , ,
"'""" £ "'"""x1,k 0j=l Xj,k "'ak "'*ak
~ /Lj,kUj,k = ~ ~ 2: > -- > ---
j=l j=l J Wmax Wmax 10Wmax

According to Lemma 4.10, we know

M ,* ,* I: /Lj,kbj,k 2: > ---
1owmax - 10Wmax

j=l

Therefore, we get the result ,\ 2: ,* /10Wmax· 0

Similarly, by using Algorithm 2 and Theorem 4.9, we also have the following

theorem:

Theorem 4.12. Solution (4.4) is a feasible solution of (MP), and achieves a ,\ of

value at least ,\ * /2 (1 + p)wmax.

4.6 NP-Completeness

Given a set A of even cardinality n = lA I with n numbers { s 1 , s2 , ... , sn}, the PAR

TITION problem is to decide whether we can partition the set A into two sets with

cardinality n/2, where the sums of numbers in two sets are the same. More precisely,

we can define the PARTITION problem as follows,

62 4. Total Discrete Capacity Constrained P rob lem wit hout Costs

PARTITION={(A, I) I There is a subset I ~ {1 , ... , n} of cardinality n/2 such that

L i E f 5 i = L i EA\1 si} .

The PARTITION problem is one of the NP-complete problems in Karp's 21 NP

Complete problems. For more details , refer to [Kar72] .

We prove the NP-Completeness of TDCCP by reducing the PARTITION problem

to the special case (MP2 '), (which is equivalent to (MP2)). The decision version of

problem (MP2') can be stated as follows: We are given an instance (MP2 ') of the

problem TDCCP and a capacity .\ * E R Is the solution of (MP2 ') greater than or

equal to.*? :\Iore specifically, we define (l\IIP2 ') as follows,

TDCCP={((MP2') , .*)1 The solution of (MP2 ') is greater than or equal to .*} .

Now we can prove the following theorem and show a polynomial time reduction for

the PARTITION problem.

Theorem 4.13. PARTITION has a sol'Ution iff the sol'Ution .\ of (MP2 ') satisfies

.\~.*.

Proof. We consider the PARTITION instance which has a set A= { s1 , s2 , .. . , sn } with

even cardinality IAI = n. Let S := I:,7=1 Sj be the sum of all of the numbers. We

construct an instance of (MP2 ') corresponding to the given PARTITION instance as

follows: Let the number of classes K := 2, the number of servers M := n and set

Jij := sj, .i = 1, .. . , lvf. Let c1 = c2 := n/2 and a1 = a2 := 1. Finally we define

.\ * := S /2. Obviously, this construction is in polynomial time.

First we show that if PARTITION has a solution which splits the set A into two

sets I and A\ I , each with the sum of numbers S/2, then the solution of the above

instance of (MP2') has the solution.\=.*= S/2. By setting Xj ,l := J.l] and xj,2 := 0,

Vj E I and Xj, I := 0 and Xj, 2 := J.l j , Vj E A \ I , we have,

jEI j EA\f jE I jEA\f

and the flexibility at each class is n/2. Thus, we find a feasible solution of the instance

of (MP2') with .\ = .\ *.

Now we show that if the solution of the instance of (MP2') achieves.\=.*= S/2,

then set A can be partitioned into two sets I and A\ I , each with the sum of numbers

4. Total Discrete Capacity Constrained Problem without Costs 63

S/2. Let x1,k, j = 1, ... , n, k = 1, 2 be the server assignment of server j to class k in

the optimal solution A. Because of the optimality of A, we know that for any j, x1,1

and x1,2 cannot be both zero, otherwise A is not the optimal solution.

Then we show either x1,1 = 0 or x1,2 = 0. Given the solution x1,k, j = 1, ... , n, k =
1, 2, we choose any two servers j and l which have x1,1x1,2 > 0 and x1,1x1,2 > 0. Now

we set,

Xj,l := Xj,l -min{ Xj,l, Xt,2}

x1,2 := Xj,2 +min{ Xj,I, x1,2}

xu := x1,1 +min{ Xj,I, Xt,2}

X1,2 := X1,2 -min{ Xj,], Xt,2}

By the above step, we know that either x1,1 = 0 or x1,2 = 0. Also, the feasibility and

the optimal solution A will not be violated. We can continue this step until there is

at most one server j with x1,1x1,2 > 0.

Suppose there exists a server j with :-r1,1x1,2 > 0. Then according to the flexibility

constraint,
n

Lx{xj,k > 0}:::; n/2,k = 1,2
j=l

we know that there are at most n - 1 servers that are used. Therefore there exists at

least one on server l with x1,1x1,2 = 0. Since in the optimal solution, we know that

As server l is not used, we have

n

L Xj,l ?: Aa1 = S/2,
j=l

n

L Xj,2 ?: Aa2 = S/2.
j=l

n 2

LLxj,k :S S- s1.
j=l k=l

64 4. Total Discret e Capacity Constrained Problem without Costs

which gives us a contradiction. Hence we know in the optimal solution, a server j

with Xj,JLj,2 > 0 does not exist and for any j , we have either Xj,l = 0 or x1,2 = 0.

Since we have x1,1x1,2 = 0, we know that if Xj ,l = 0, then x1,2 = /.Lj (otherwise >. =

S/2 cannot be achieved when x1,2 < f.LJ) . Finally we define the set I := {Jix1,1 = 0}.
Thus, the sums of numbers in two sets are

L Sj = L Sj = S/2.
jE i jEA\f

0

Theorem 4.14. (MP2 '} is NP-Complete.

Proof. Clearly, the problem (MP2') is in NP. In Theorem 4.13, we have show a poly

nomial reduction from the PARTITION problem to an instance of (MP2 '). Since the

PARTITIO problem is NP-Complete, we know that (MP2') is also NP-Complete.

0

Corollary 4.15. The general TDCCP is NP-Complete.

Chapter 5

Total Discrete Capacity

Constrained Problem with Costs

In this chapter, we will discuss the Total Discrete Capacity Constrained Problem

(TDCCP) with Costs. In this problem, a server incurs a cost when it is working

at a class. The total cost of the system is the sum of costs of all servers. Given a

budget, the objective of this problem is still to maximize the capacity of the queueing

network while the total cost of the system respects the given budget. First, we will

show if all the servers are identical, then we can compute the maximal capacity

.\ * in polynomial time. Second, if all the classes are identical, we will design two

approximation algorithms and give their approximation factors. Then, for the general

case of TDCCP with cost, an approximation algorithm is also proposed. Since the

NP-Complete problem of TDCCP without cost is a special case of TDCCP with cost

(by setting all costs to be zero), we finally derive its NP-Complctcncss.

5.1 Overview of solving TDCCP with costs

Similar to the way of solving TDCCP, we first show a polynomial algorithm for solving

TDCCP with costs when /-lj,k = J-lk· Then we design two approximation algorithms

Algorithm 3 and Algorithm 4 for solving TDCCP with costs when Jlj,k = /Lj. For the

case of f..L = a · {JT where a is a M x 1 vector and f3 is a K x 1 vector, we show that

this case will fall into the case of /-lj,k = /-lj. Finally, we also give the approximation

65

66 5. Total Discrete Capacity Constrained Problem with Costs

algorithms for solving the general TDCCP with costs by applying Algorithm 3 or

Algorithm 4. Figure 5.1 shows the framework of our algorithms for solving TDCCP

with costs.

polynomially
solvable

Algorithm 3 or 4 Fall into Case 2
Transform

(approximately)
to Case 2

Algorithm 3 or 4

Figure 5.1: The Framework of our algorithms for solving TDCCP with costs

5.2 Solving TDCCP with costs in the case of /-Lj ,k =

f.-Lk

In this case, the service rates are independent of the servers. In other words, all the

servers are identical. We also assume that the costs of servers only depend on classes

in the queueing network. Then we have rj ,k = rk for all j. We rewrite the original

5. Total Discrete Capacity Constrained Problem with Costs

problem (MPC1) as follows.

max ,\

M

s.t. L J.Lk6J,k 2: A.ak, k = 1. ... , K
j=l

K

L6j,k:::; 1,j = 1, ... ,Af
k=l

K M

L L rk6J,k :::; C,
k=l j=l

M

L x{ 6j.k > o} :::; ck, k = 1, ... , I<
j=l

6J,k 2: 0, k = 1, ... , K,j = 1, ... , 111.

(A1PC1')

(1)

(2)

(3)

(4)

(5)

67

Let the optimal solution for (MPC1') be Jj,k and A.*. Similarly to Theorem 4.1, we

can prove the following theorem.

Theorem 5.1. If 1-LJ,k = /-Lk for all j, the maximal capacity of (MPCJ ') is

Proof. This theorem can be proved by a similar way to Theorem 4.1. When the

optimal solution >.. * and 6j,k is achieved, we consider the following two conditions,

which cover all possibilities and one of which must be satisfied:

M

(1) : 2:: 6j,k < ck, fork= 1, ... ,I<.
j=l

M

(2) : There exists at least one class l such that 2::: Jj,1 = Ct.
j=l

If condition (1) is satisfied, either constraints (1) and (2) in (MPC1') are tight, or

constraints (1) and (3) in (MPC1') are tight. Otherwise, A.* and 6j,k can be trivially

68 5. Total Discrete Capacity Constrained Problem with Costs

increased. According to Theorem 4.1 , when constraints (1) and (2) in (MPC1 ') are

tight , we know that
* M ,\ = K .

I:k = l (ak / Pk)
(5 .1)

Now suppose constraints (1) and (3) are tight , we have

f(M

L rk · L 5j,k =C.
k = l j=l

According to constraint (1), we know L~1 !Sj,k = ,*~ . Then

thus we have
,* = J< c .

I:k=l akrk / Pk
(5 .2)

If condition (2) is satisfied, we have proved that

(5.3)

Therefore , by inequality (5.1), (5.2) and (5.3), the maximal capacity ,* of (MPCl ')

is ,

0

Corollary 5.2. There is a polynomial time algorithm for solving (MPCl) in the case

of J-lj ,k = Pk and rj,k = rk for all j.

5. Total Discrete Capacity Constrained Problem with Costs 69

5.3 Solving TDCCP with costs in the case of /Lj,k =

/Lj

5.3.1 Approximation Algorithm 3

Design of Algorithm 3

In Chapter 2, we introduced the problem (MPC2) for this case, which is as follows.

max A (MPC2)
M

s.t. L /1jt5j,k 2:: Aak, k = 1, ... , K (1)
j=l

K

L.:tSj,k::::; l,j = 1, ... ,1\1 (2)
k=l

K M

L L Tj,kt5j,k ::::; c, (3)
k=l j=l

M

L x{t5j,k > o}::::; ck, k = 1, ... , K (4)
j=l

6j,k 2:: 0, k = 1, ... , K, j = 1, ... , J\1. (5)

Let Xj,k := JljDj,k and fj,k := Tj,k/Jtj, Vj, k,then we can rewrite (MPC2) as (MPC2'):

70 5. Total Discrete Capacity Constrained Problem with Costs

max .A (MPC2')
ill/

s.t. L Xj ,k 2: .Aak , k = 1, ... , K (1)
j = l

/(

L: rj ,k ::;: fLj , j = 1, ... , Jvf (2)
k= l
[(l\11

L:L: rj,kxj,k::;: c , (3)
k= l j = l

l\11

L x{xj,k > 0} ::;: Ck, k = 1, ... , K (4)
j=l

Xj ,k 2: O, k = 1, ... ,K,j = 1, ... ,M. (5)

We can treat (MPC2') as an instance of the constrained maximum concurrent mul

ticommodity k-splittable flow problem, with exactly the same network structure as

(MP2') (refer to Figure 4.2). The only thing we add is the cost on each edge, which is

given as follows: First, we define the cost on edge (S. Vj) and the cost on edge (Vj, Uj) ,

j = 1, ... , M to be zero. Then, we define the cost on edge (·uj , tk) to be ij ,k, Vj, k.

Clearly, C is the maximum budget allowed in this network.

Without the integer constraint (4), (MPC2') is a linear programming problem,

which can be viewed as the fractional version of the constrained maximum concur

rent multicommodity flow problem. Let the optimal solution of (MPC2') without con

straint (4) be~* and the optimal solution of (MPC2') be .A* and x},k· We know that~*
is an upper bound for .A*. We define the demand of node tk to be ~*ak , k E {1 , .. . , K} ,

and at most ck paths are allowed for sending commodity k. Similar to Algorithm

1, by computing the minimum congestion, we can get the solution of the maximum

concurrent multicommodity flow problem.

The idea of designing Algorithm 3 is as follows: First , we transform (MPC2') into

the constrained maximum concurrent multicommodity uniform exactly-k-splittable

flow problem by split t ing each terminal node tk into ck sub-terminal nodes (k, ·i)

i = 1, ... , ck, each with the sub-commodity demand ak /ck. The cost ij,(k,i) on the

edge U (k, ·i)) is equal to the cost fj ,k · We solve the fractional version of this reduced

5. Total Discrete Capacity Constrained Problem with Costs 71

problem without constraint (4) in (MPC2'), which is as follows:

max A (!vf PC2")
M

s.t. L Xj,(k,i) ~ Aak/ck, V(k, i) (1)
j=l

M

L L fj,(k,i)Xj,(k,i) ::; C, (2)
(k,i) j=l

L Xj,(k,i) ::; /-lj· Vj (3)
(k,i)

Xj,(k,i) 2:: 0, Vj, (k, 'i) (4)

Let the solution of (MPC2") be \ * and .ij,(k,i), V j, (k, 'i). Clearly, the number A*

is the maximum fraction we can achieve for routing all sub-commodities simultane

ously. Then we set each sub-terminal with a new demand 5..*ak/ck and try to find

an unsplittablc flow satisfying each sub-terminal demand without violating the cost

budget.

The congestion a and the flow Xj,(k,i) = ak/ck on edge (j, (k, ·i)) can be decided

when we find the unsplittable flow for sending each sub-commodity (k. -i). If a >
1, we know that the edge capacity on (v1 , ·u1) will be violated when we route sub

commodities (k, i) unsplittably. Finally we scale down the flow on each edge by a

factor a and obtain the original solution and capacity for the problem (MPC2').

Description of Algorithm 3

Algorithm 3 applies the algorithm for minimizing congestion in the unsplittable min

cost flow problem, which is studied in [Sku02]. First we give the following definitions.

Definition 5.3. Given a, b E]R+, b is a-'integral if and only if b E a · N.

Definition 5.4. A flow is called a-integral flow if the flow amount fe on edge e is

a-integral for all e E E.

Then we give Theorem 1 from [Sku02]:

72 5. Total Discrete Capacity Constrained Problem with Costs

Theorem 5.5. Let G = (V, E) be a dir-ected gmph with capacities and costs on the

edges. Mor-eover-, ther-e is a sour-ce ver-tex s E V and k sinks t 1 , ... , tk E V with

demands a 1 , ... , ak.

(a) The1·e exists a feasible (splittable) flow satisfying all demands if and only if, for

any subset T S:: V \ { S}, the sum of capacities of edges in the directed cut

(11 \ T, T) is at least L i:L;ET di. We refer to the condition that the sum of

capacities of edges in the directed cut (V \ T, T) is at least Li:t;ET di as the cut

condition.

(b) If the cut condition is satisfied and all demands and capacities are a-integral

for some a E ffi.+ , then there exists a f easible (splittable) flow satisfying all

demands with minimum cost such that the flo w value on any edge is a-integral.

Moreover, such a flow can be computed in polynomial time.

Computing the a-integral flow without increasing the total cost can be easily

performed. Suppose we are given a graph G = (V, E) with k commodities. We

assume that all demands and capacities are a-integral in G. We also assume that

each commodity is sent through edges with capacities greater than or equal to its

demand (note that this assumption does not always hold in general). If the cut

condition is satisfied and we have a feasible splittable flow f satisfying all demands ,

let fk(e) denote the flow amount of commodity k on edge e, k = 1, ... , K and e E E.

Now consider a subgraph of G in which each fk(e) is not a-integral. Since in this

subgraph, all the demands are a-integral but the edges entering demand nodes do

not carry an a-integral flow amount, the degree of each demand node is at least two.

Therefore, we can determine an alternating cycle by using the same step we applied

in Algorithm 1. Then we augment the flow in the forward path and decrease the flow

in the backward path until t he flow on one edge becomes a-integral if the cost of

flow is not increased after this augmentation. Otherwise, we augment the flow in the

backward path and decrease the flow in the forward path until the flow on one edge

becomes a-integral. We delete all edges with a-integral flow and continue iteratively

until all edges are deleted from the subgraph. This process terminates after at most

lEI iterations. Clearly, there are !VI nodes in G, thus, the running time is O(!VI· IE I).
The key step of Algorithm 3 is the approximation algorithm for finding the unsplit

table min-cost flow , which also applies the above method for finding the a-integral

5. Total Discrete Capacity Constrained Problem with Costs 73

flow (see, e.g., [Sku02]). Let amin :=mink{ ak} and amax := maxk{ ak}. We will round

down each demand ak in our problem to

a~ ·-a .. 2llog(akfamin)J
k .- mm ·

Obviously, iik, k = 1, ... , K are amin-integral. By applying Algorithm 1 in [Sku02], we

first introduce the following procedure M·incosLU S P. Taking a given feasible split

table flow as the input, procedure MincosLU S P generates the unsplittable min-cost

flow for the problem (MPC2'). We know that only (vj, ·uj), j = 1, ... ,Min (MPC2')

are capacitated edges, and we will further prove that the flow value on edge (Vj, 'LLj)

is less than 2/(0 . ·) + amax, where f(0
. ·) is the initial flow 011 edge (vJ, 'Uj)· v1 ,u1 v1 ,u1

Procedure lvhncost_U S P

Input: The graph G = (V, E) corresponding to the problem (MPC2') with non

negative cost fj,k on the edge (uj, tk), for all j and k, and a feasible splittable flow

f~EE satisfying all demands and the budget C.

Output: An unsplittable min-cost flow Xj.k, which is the flow amount on edge (uj, tk)

and indicates the paths for sending commodity k from source nodeS to each terminal

node tk, j = 1, ... , M, k = 1, ... , K.

Step 1: Let amin := mink{ak} and amax := maxk{ak}. Round each demand to be
iik = amin . 2ltog(akfamin)J, 1 ~ k ~ K.

Step 2: Decrease the flow along the path S --+ Vj --+ 'ILj --+ tk with the most expensive

cost fj,k until the flow entering tk has been decreased by ak - iik, k = 1, ... , K.

After this step, the resulting flow f~EE will satisfy each rounded demand iik.

Step 3: Set i := 0.

Step 4: While iimin · 2i ~ iimax do

(a): Set i := i + 1 and di := iimin · 2i-l.

(b): For each edge (vj, ·uj) in G, set its capacity /1j to f(~~uJ) rounded up to the

nearest multiple of di.

(c): Compute a feasible di-integral flow J;EE satisfying all demands amin . 2i-l

without increasing the total cost.

74 5. Total Discrete Capacity Constrained Problem with Costs

(d): Remove all edges e with f~E E = 0 from graph G.

(e): Set 'i1 := 1.

(f): While 'i1 :::; k and a.i1 =dido

(i): Arbitrarily determine an edge (vJ , ·uJ) and assign commodity 'i 1 with

flow amount ai1 on edge (vj, 'Uj)· Then we set :i:j,i1 := ai1 •

(ii): Decrease flow along path s --7 'Uj --7 Uj --7 til by ail 0

(iii): Remove all edges e with f~EE = 0 from graph G.

(iv): i1 := i1 + 1.

Step 5: Tj ,k is the rounded unsplittablc min-cost flow. Let the final unsplittablc

min-cost flow Tj ,k := ak if Xj,k = ak , j = 1, ... , !11, k = 1, .. . , K. Return Xj,k,

j = 1, ... , !If, k = 1, ... , K.

Let f (0
0 0) be the initial flow on edge (vJO' uJ) and ! (v o u o) be the final unsplittable v 1 ,u 1 1 ' 1

flow through edge (vJ, ·uJ)· Obviously, f (v1 ,u1) = 'L~~ 1 Xj,k· Similar to Theorem 3 in

[Sku02], we can prove the following theorem.

Theorem 5.6. The procedure M'incosLUSP finds an unsplittable flow whose cost is

bounded by the budget C and the flow value on edge (vJ, Uj) is less than or equal to

2f(0
0 0

) + amax , j = 1, ... , M. More precisely, the sum of all but one demand routed v1 ,u1

across any edge (vJ, uj) is less than twice the initial flow value on (Vj, uj).

Proof. Let x~,k be the initial fractional flow on edge (uJ, tk), :i:~,k be the rounded

fractional flow on edge (uJ, tk) , :i: J,k be the rounded unsplittable min-cost flow on edge

('uj, tk), and Xj ,k be the final unsplittablc min-cost flow on edge (uj , tk), j = 1, M ,

k = 1, ... , K . According to the definition of our graph G, we know that the cost iJ ,k

only exists on edge (uJ, tk), j = 1, .. . , M, k = 1, ... , K. In each loop of Step 4, the total

cost in G never increases and the cost of the rounded unsplittablc min-cost flow Xj ,k

is bounded by the cost of the initial fractional flow i~,k· Thus we have

M I< M I<

I: I>j.dj ,k :::; I: I: rj,kxJ.k· (5.4)
j=l k=l j= l k=l

After sending all rounded demand, by Step 2 we know that we still have llxJ,k =

x 0 k- :i:0 k amount of flow remaining on the edge (UJ, tk). Clearly, 'LJ~1 tlxJ0 k = ak- ak], J, l

5. Total Discrete Capacity Constrained Problem with Costs 75

and the remaining flow must satisfy,

M K M K M K

:L I>~x~,kfj.k ~ :L :L x~.kfj,k - :L :L x~.kfj,k· (5.5)
j=l k=l j=l k=l j=l k=l

The remaining flow demand ak - ak will be routed on edge ('u1 , tk) where i 1,k > 0.

Thus we know that if i.i,k > 0

' ' Xj,k- Xj,k = ak- Xj,k· (5.6)

By Step 2 of !11incost_USP, it is easy to see that b.xJ,k remains on the most expensive

edges and the flow amount 'L~1 6xJ,k will be finally routed on edge (u1 , tk), whose

cost is less than or equal to the cost of b.xJ,k. Therefore we have,

M K M K

L L(xj,k- ij,k)fj,k ~ L L b.xJ,kf.i,k· (5.7)
j=l k=l j=l k=l

By (5.5) and (5.7) we have,

M K M K M K

L L(xj,k- ij,k)fj,k ~ L L x~,kf.i,k- L L i~,kf],k· (5.8)
j=l k=l j=l k=l j=l k=l

Combining (5.4) and (5.8),

M K M K

LLx.i,kfj,k ~ LLx~,kf.i,k ~ C, (5.9)
j=l k=l j=l k=l

which tells us that the cost of the final unsplittable flow is still bounded by the cost

of the initial fractional flow xJ,k and respects the given budget C.

Now we show that the flow value on edge (v1, u1) is less than or equal to 2ffvj ,uj) +
amax· Obviously, the flow on edge (v1, u1) will be !(vj,uj) = 'Lf=l Xj,k, j = 1, ... , lvf.

In Step 4 of A1incosLUSP, the capacity JLj in the ith loop is computed by rounding

the flow value f(i-I ·) up to the nearest multiple of di. We compute a di-integml
vJ ,u1

flow by increasing the flow on less expensive edges ('uj, tk) if the flow on ('u1, tk) is

not di-integral. If the flows on all edges are di-integral, we choose an arbitrary path

from S to tk for sending commodity k if ak = di. Then the flow on this path will be

decreased by di. Note that when the flow on an edge is decreased to 0, we will delete

76 5. Total Discrete Capacity Constrained Problem with Costs

this edge from G. Thus the capacity /1j on edge (vi, 'l.Lj) is violated at most once. In

other words, we know that the sum of all but one rounded demand ak routed across

any edge (vi, 'LLj) is less than the initial flow f?vj ,uj) on edge (vi, 'LLj), j = 1, ... , AI.

Consider edge (vi, ·uj) , let k0 be a commodity with the maximal rounded demand

ako that is routed across (vi, ·uj)· Except commodity k0, the sum of other demands

routed across (vi , 'Uj) is less than the initial flow on (vi, ·ui). Note that ak ::::; 2ak for

all commodities k. Therefore we have,

k:k is routed
across (Vj, Uj)

k:kolko and
k is routed

across (Vj ,uj)

k:kolko and
k is routed

across (Vj ,uj)

Now we give the detailed description of Algorithm 3.

0

Stage 1: Initialization. Construct a network with one source node { S} for

sending f(commodities, 2M nodes {v1 , . . . , VM, ·u1 , . . :uM} for transferring commodi

ties, and K terminal nodes {t 1 , ... , tJ<} with demand ak , k = 1, ... , K for receiving

commodities. Set the capacity on the edge (vi, ·u j) to be /1j for j = 1, ... , !vi and the

cost on the edge ('uj, tk) to be Pj ,k := Tj ,k/ /1 j for j = 1, ... , 111, k = 1, ... , K.
Stage 2: Transformation of initial problem to a constrained maximum

concurrent uniform exactly-k-splittable flow problem. We replicate each ter

minal node t k into ck identical sub-terminals t (k ,i)• i = 1, ... , ck. Then each commodity

k with demand ak is split into ck commodities (k, ·i) , i = 1, ... , ck. each with the same

demand a(k ,i) := ak/ ck and with the same source. F\trther, for each edge connecting

with terminal node tk , we connect it with all of the sub-terminals t(k ,i) and set the

cost on edge (·ui, t (k ,i)) to be fj ,k, Vj, (k, i). Note that the new commodities (k, 'i) must

be routed unsplittably.

Stage 3: Calculation of demand a(k,i)· We use the ellipsoid method to solve

(MPC2"), which is the relaxation of (MP2'). Let ~ * and i:j,(k ,i) be the optimal frac

tional solution. Then we assign the flow amount i:j,(k,i) on the edge ('Uj , t (k,i)) and

the flow amount L(k,i) i:j,(k,i) on the edges (s, vi) and (vi, uj), j = 1, ... , 111. For each

sub-terminal in the network, let its demand be a(k ,i) := ~*ak/ck. Note the flow i:j,(k ,i)

computed in this stage is the fractional flow which satisfies the budget constraint and

the new demand a(k,i).

5. Total Discrete Capacity Constrained Problem with Costs 77

Stage 4: Transformation of the fractional flow calculated in Stage 3 into

an unsplittable min-cost flow.

Step 1: Let amin := min(k,i) { a(k,i)} and amax := max(k,i){ a(k,i)}. If amax > 1, we scale

down all sub-terminal demands, edge capacities, flows and the budget by the

factor amax so that a(k,i) E (0, 1] and /-lj E (0, +oo). Let D := 1/amin, we know

that all demands fall within the interval [1/ D, 1]. We partition the interval

[1/ D, 1] into sub-intervals as follows:

[1/ D, 1j2LlogDJJ, ... , (1/2i+l, 1/2t ... , (1/2, 1].

This step is the same as Step 1 of Stage 4 in Algorithm 3. There are LlogD J
sub-intervals, which are numbered as sub-interval 1, 2, ... , llogD J from left to

right.

Step 2: Similar to the flow augmentation techniques in Stage 4 of Algorithm 3,

we do a slight modification on the procedure M'incost_U S P by restricting to

unsplittable min-cost flows where commodity (k, i) can be only sent on edges

with capacity at least a(k,i)· Then, we use the procedure .Af,incost_USP to

produce the unsplittable min-cost flow Xj,(k,i) for each commodity with demand

in sub-interval i, i = 1, ... , llogD J. The total cost of the unsplittable flow will

be bounded by the initial cost of the fractional flow :i:* (k .l.
], ,'l.

Stage 5: Calculation of the original solution bj,k and the capacity A for

(MPC2). If the original a max > 1 in Step 1 of Stage 4, we first restore the flow

and capacities in the network by multiplying Yi,(k,i) and /-lj with amax, for all j, (k, i).
Then we scale down flow in every edge by a factor a := maxj L(k,i~~j,(k,iJ. The final

solution xj,(k,i) tells us that each commodity (k, i) will be shipped through the edge

(Vj, Uj) unsplittably. Thus the A that corresponds to this solution is the capacity that
L'H we achieved. It is easy to see that A = min(k i) i=l xj,(k,•J. Since x

1
· k := tt1·61· k· finallv

' a(k,i) ' ,... ' ·

we set bj,k := Xj,k/1-li = L(k,i) Xj,(k,i)/1-tj·

Analysis of Algorithm 3

Similar to Theorem 4.3, first we show that Theorem 5 in [BKS02] can also be applied

for the constrained maximum concurrent multicommodity k-splittable flow problem.

78 5. Total Discrete Capacity Constrained Problem with Costs

Theorem 5. 7. Computing the constrained maximum concurrent multicommodity uni

form exactly-k-splittable fiow problem in Stage 2 of Algo1·ithm 3 guarantees at least

1/2 of the optimal value for the constrained maximum concurrent multicommodity

k-splittable fiow problem (MPC2 ').

Proof. Suppose the optimal solution of a constrained maximum concurrent multicom

modity k-splittable flow problem (MP2') is).* and x;,k. We use the same idea adopted

in Theorem 4.3 so that there exists a feasible constrained maximum concurrent mul

ticommodity uniform exactly-k-splittable flow with flow value D := >.*ak / (2ck) on

each path for sending sub-commodity (k , i) , V(k, 'i).

By the same construction in Theorem 4.3, we know that there are at least ck paths

carrying the flow amount D for commodity k, k = 1, ... , K. Since our construction

does not increase flow on any edge, the cost of the network will never be increased.

Clearly, the maximum possible fraction for routing commodity k is at least).* / 2 for

(MPC2'). 0

Using the same steps as in the proof of Theorem 4.4, we can prove the following

theorem, which is similar to Theorem 6 in [Sku02]. Note that the sub-intervals in

Stage 4 of Algorithm 3 are the same as the sub-intervals used in Algorithm 1.

Theorem 5.8. Stage 4 of Algorithm 3 finds the unsplittable min-cost fiow for sending

each sub-commodity without violating the budget C such that the total fiow through

(v1, ·u1) e.xceeds its edge capacity /-tj by less than 6J-t1, j = 1, ... , M.

Proof. Because the capacitated edges in G are (v1, ·u1), j = 1, ... , M , we only consider

flow on those edges. Let the initial flow on edge (v1 , u1) be f(v j ,uj) and the final

unsplittable min-cost flow on edge (v1, u1) be f(v j,uj)·

We choose an arbitrary sub-interval (1/2i+l, 1/2i] from

[1/ D, 1j2LlogDJJ, ... , (1/2i+ 1
, 1/2i], ... , (1 / 2, 1] .

In this interval , we only consider commodity l whose demand a1 is located in this

sub-interval. By the modification in Step 2 of Stage 4, the unsplittable min-cost flows

for sending commodity l go through edges with capacities greater than or equal to the

demand of commodity l. In this interval, the minimum commodity demand is 1/2i+l,

thus we have /-tj ~ 2t~ 1 • Considering edge (v1 , u1) , by Theorem 5.6, the unsplittable

5. Total Discrete Capacity Constrained Problem with Costs 79

min-cost flow found in this interval is bounded by a1
m. ax+ 2/(i . ·)' where a~ax :S 1/2i

• Vy ,U.J

is the maximal demand in this interval and f(i . ·) is the initial fractional flow in this
V1 ,u1

interval. We know that edge (vj, uj) may also be used in other sub-intervals before

(1/2i+l, 1/2i], the flow f('v· u.) on it is at most:
J' J

LlogD J

j=i

LlogDJ LlogDJ

< 2::: (1/2j) + 2::: 2f(vj,U.j)

j=i j=i

LlogD J
1 (2llogDj-i+l - 1) + "" 2fi

2LlogDJ L......t (vj,U.j)

1 1
=4·-- + 2i+l 2llogDJ

j=i

LlogDJ

L 2f(vj,u.j)"
j=i

Since 2;~ 1 :S f.Lj and L f(vi,u.i) :S !(vj,u.j) :S f.L], the total flow on the edge (Vj, ·uj) is
j=i

bounded by,

LlogDJ .
1

f(vj,Uj) :S 4 · 2i:l - 2llo~Dj + L 2 f(vj,uJ) :S 4 f.Lj - 2LlogDJ + 2f.Lj :S 6f.Lj·
j=i

It tells us that for any edge (vj, ·uj) in the graph, the sum of unsplittable flows through

it is at most 6 times its edge capacity. According to Theorem 5.6, we know that the

cost of unsplittable flow found in each interval is bounded by the cost of the initial

flow. Thus the budget C is still respected. Therefore, there exists a 6-approximation

algorithm for the minimum congestion of the min-cost unsplittable flow problem

and we can achieve a 1/6-approximation algorithm for the constrained maximum

concurrent multicommodity unsplittable flow problem. D

Theorem 5.9. Algorithm 3 is a 1/12-approximation algorithm for solving the problem

MPC2.

80 5. Total Discre t e Capacity Constrained Problem with Cost s

Proof Let the optimal solution of (MPC2 ') be >.*. According to Theorem 5.7, solving

the constrained maximum concurrent multicommodity uniform exactly-k-spli tt able

flow problem will achieve at least 1/ 2 of the optimal solution >. *. By Theorem

5.8, Stage 4 of Algorithm 3 achieves at least 1/ 6 of the opt imal solution for the

constrained maximum concurrent mult icommodity uniform exactly-k-split t able flow

problem wit hout violating the budget C . Therefore we achieve at least 1/ 12 of the

optimal capacity ,* in (MPC2') while respecting the budget C. D

5.3.2 Improvement of Algorithm 3

Suppose we are given a number {3 > 1. Then we can slightly modify Algorithm 3 in

t he following two steps:

Step 1: In Step 1 of Stage 4, we partition the interval [1/ D , 1] into sub-intervals as

follows:

[1/ D, 1/ ,uLiogff J J (1/ ,ui+ 1 , 1/ f:Jt ... , (1/ ,6, 1],

Clearly, the number of sub-intervals is L logff J + 1.

Step 2: In Step 1 of the procedure M 'incosLU SP , we round each demand to be

a' I. = a . . P LlogJ a,.Jam;nJ 1 < k < T;(
"' 1ntTL fJ , _ _ r .

Since we have modified t he rounded demand in the procedure M 'incosLU S P for each

commodity, we first prove a new version of T heorem 5.6.

Theorem 5.10. The procedure Af-incosLUSP finds an unsplittable flow whose cost

is bo'un ded by the budget C and the flow value on edge (v1 , 'Uj) is less than or equal to

,U f (0 . ·) + a rrwx. j = 1, ... , !11. More precisely, the sum of all but one demand routed v1 ,u1

across any edge (v1, u1) is less than {J times the initial flow value on (v1, u1) .

Proof. T he proof is the same as the proof of Theorem 5.6 , except that we have

ak ::; {Jak for all commodit ies k. As a result , we have

k:k is routed
across (vj.Uj)

k :k 'f' ko and
k is routed

across (vj,Uj)

k: k 'f' ko and
k is routed

across (vj,uj)

D

5. Total Discrete Capacity Constrained Problem with Costs 81

By applying the same approach as in Theorem 5.8 and together with Theorem

5.10, we can prove the following theorem:

Theorem 5.11. Stage 4 of Algorithm 3 finds the unsplittable min-cost flow for send

ing each sub-commodity withov,t violating the budget C such that the total flow through

(vj, ·uj) exceeds its edge capacity P,j by less than (3 + 2v'2)!J.j, j = 1, ... , .A1.

Proof. Let the initial flow on edge (vj, uj) be f(vJ,uj) and the final unsplittable min

cost flow on edge (vj, ·uj) be f('v u·)' First, we choose an arbitrary sub-interval
J, J

(1j;Ji+ 1 , 1/ pi] from

We only consider commodity l whose demand a1 is located in this sub-interval. Similar

to Theorem 5.8, we know that P,j 2: 8;~ 1 • By Theorem 5.10, the unsplittable min-cost

flow found in this interval is at most a~ax+Pf(vj,uJ)' where a~ax :::; 1/ {3i is the maximal

demand in this interval and J(i .) is the initial fractional flow in this interval. Since
Vj,UJ

edge (Vj, ·u1·) may also be used in other sub-intervals, the flow f(' . ·) on it is bounded v 1 ,u1

by:

j=i

llogFJ llogFJ

:S: :L (1/ {1j) + :L {1f(vj,Uj)
j=i j=i

llogF J
We know that (3;~ 1 :::; P,j and 2.:.:: f(vj,uj) :::; !(vj,uj) :::; P,j· Thus the total flow on the

j=i

edge (vj, 1tj) is at most,

82 5. Total Discrete Capacity Constrained Problem with Costs

Now we know that the total flow through any edge (Vj, 'ttj) is bounded by (2~~~/3) fl j ,

j = 1, ... , 1'11. Then we compute the minimum value of 2~~~/3. Since (J > 1, the solution

is (i = 1 + V'i/ 2 and the value of 2~~~;3 is 3 + 2J2. Therefore, the sum of unsplittable

flow through any edge is at most 3 + 2J2 times its edge capacity. In each sub-interval ,

the cost of unsplittable flow is bounded by the cost of the init ial flow. Thus the budget

C is still respected. Finally, we conclude that there exists a 3 + 2J2-approximation

algorithm for t he minimum congestion of the min-cost unsplittable flow problem and

have a 1/ (3+2J2)-approximation algorithm for the constrained maximum concurrent

multicmmnoclity unsplittablc flow problem. 0

Corollary 5.12. There is a 1/ (6 + 4J2)-approximation algorithm for solving the

problem M PC2.

5.3.3 Approximation Algorithm 4

Design of Algorithm 4

Algorithm 4 is based on the the algorithm in [ST93] for solving the scheduling of

unrelated machines problem with costs. The first stage of Algorithm 4 is the same as

Algorithm 3, where we convert (MPC2 ') into the constrained maximum concurrent

multicommodity exactly-k-splittable flow problem and will lose 1/2 of approximation

factor .

In the second stage, we solve the relaxation (MPC2") of the constrained maxi

mum concurrent multicommodity exactly-k-split table flow problem and transform its

solution to a feasible (fractional) solution of the scheduling of unrelated machines

problem with costs.

In the third stage, we round the feasible (fractional) solution of the scheduling

of unrelated machines problem with costs to an integer solution while respecting the

cost constraint.

Finally, we map the integer solution back to the solution 6 j ,k and the capacity .A

in the original problem (MPC2).

5. Total Discrete Capacity Constrained Problem with Costs 83

Transformation of (MPC2') to the scheduling of unrelated machines prob

lem with costs

When (MPC2') is transformed into the constrained maximum concurrent multicom

modity exactly-k-splittable flow problem, we have the following relaxation (l\IPC2")

of the constrained multicormnodity concurrent unsplittable flow problem as follows,

max A (M PC2")
M

s.t. L Xj,(k,i) 2: Aak/ck, V(k, i) (1)
j=l

M

L 2.:::>~. (k)X (k) < c J, ,'l J, ,t - ' (2)
(k,i) j=l

L Xj,(k,i) :::; J.lj: Vj (3)
(k,i)

Xj,(k,i) 2: 0, Vj, (k, i) (4)

Let the optimal solution of (MPC2") be xj,(k,i) and A*. vVe also define A(k,i), where

A(k,i) = ~;~1 xJ,(k,i)/(ak/ck). It is easy to check that A(k,i) 2: A* for any (k, i). Also,

d fi . - Ck * - ak d A/ - A)..(k,•)ak f 11 . we e nc Y](ki)- -,--x.(k')' PJ(ki)- -,an r.(k')- rj(ki) ·--,or a J,
' ' A(k,i)ak), ,t ' ' CkJ.lj), ,t ' ' Ck

(k, i).

Obviously, we have the following equality

M M

L 'YJ,(k,i) =LA Ck a xj,(k,i) = 1, Vk, i,
j=l j=l (k,i) k

and the inequalities,

""" """ a k ck * ~Pj,(k,i)Yj,(k,i) = ~ c
11

_ • A . a xJ,(k,i)
(k,i) (k,i) k,....J (k,t) k

1 L X(k ') < - (k,i) 1' ,t < 1/A * V(k i) '* - , , J.lj A

84

and,

5. Total Discrete Capacity Constrained Problem with Costs

A4 Nf
~~ ~~ , _ ~~ ~ A (k ,i)ak ck *
L L 1 J,(k,i)YJ ,(k ,i) - L L 1 J,(k,i) · c · A . a xJ,(k ,i)
j = l (k ,i) j = l (k,i) k (k ,!) k

M

= L L rj ,(k ,i)x;,(k,i)

j=l (k,i)

~ C, \:fj, (k, 'i).

We define T = 1/ A *. Combining the above, we have the following linear programming

problem:

At

LYJ,(k ,i) = 1, Y(k , ·i)
j = l

L PJ,(k, i) Yj ,k ~ T, \:fj
(k ,i)

M

L L f~, (k ,i)YJ, (k,i) ~ c
j = l (k ,i)

YJ,(k ,i) 2: 0, \:fj , (k, ·i) .

(1) (SC I)

(2)

(3)

(4)

T hiti is exactly the relaxed version of the scheduling unrelated machines problem

with costs, where the job nodes in (SCI) correspond with the sub-commodity nodes

t(k ,i), Y(k , 'i) in (MPC2") and the machine nodes in (SCl) correspond with the edges

(v1, ·u1), \:fj in (MPC2") . The processing time for job (k, ·i) scheduled on machine j is

defined to be PJ,(k,i) · We know that scheduling job (k , i) on machine j can be viewed

as routing sub-commodity (k , 'i) on the edge (vi, 'Ui) unsplittably. The fraction of job

(k, i) scheduled on machine j is YJ,(k ,i). Given xj,(k,i) and A* in (MPC2"), we can

find a feasible (fr actional) solution YJ,(k ,i) with the makespan T = 1/ A * for the linear

programming problem (SCl).

Similar to Algorithm 2, we define a variable p := maxJ,(k,i) {PJ,(k ,i)/T} and consider

5. Total Discrete Capacity Constrained Problem with Costs

the following linear programming problem (SC2).

Since

M

LYJ,(k,i) = 1, V(k, i)
j=l

LPj.(k,i)Yj,(k,i) ::::; T, Vj
(k,i)

M

""'""' f'- (k ·)Y. ('· .l < C L L), ,t J, rt-,·1. -

j=l (k,i)

Y],(k,i) = 0 if PJ,(k,i) > p · T, Vj, (k, i)

Y),(k,i) ~ 0, Vj, (k, ·i).

PJ,(k,i) ::::; maxJ,(k,i) {PJ,(k,i)} = p · T

(1) (SC2)

(2)

(3)

(4)

(5)

85

We know that the constraint (4) in (SC2) will not set any Y],(k,i) to zero. Thus the

solution YJ,(k,i) and T = 1/).* in (SC1) is still feasible in (SC2).

Description of Algorithm 4

D. B. Shmoys and E. Tardos [ST93] proposed an algorithm for rounding any fractional

schedule Y],(k,i) to an integer schedule ih(k,i) which has makespan at most T + p ·

T. When we find the integer solution YJ,(k,i)for (SC2), we know that the integer

solution xJ,(k,i) can be easily computed by setting Xj,(k,i) = YJ,(k,i)A(k,i)ak/ ck. Thus the

approximate solution b1,k and A of (MPC2) will be derived.

The idea of the rounding algorithm is that we split each machine j into several

sub-machines and guarantee the number of sub-machines are greater than or equal

to the number of jobs (k, i) we have. Then we try to find a fractional matching in

this bipartite graph with job (k, i) and the sub-machines. According to the fact that

the min-cost integer matching can be computed in polynomial time, we finally get

the integer matching and transform it to the solution of the scheduling of unrelated

machines problem with costs.

It is easy to see that we have K' := L.~=l ck jobs and M machines in (SC2).

Let YJ,k (j = 1, ... , lvf, k = 1, ... , K') be the solution of (SC2). We will follow the

86 5. Total Discrete Capacity Constrained Problem with Costs

steps in [ST93] to construct a bipartite graph B(y) = (V, 1111, E) and a value y' (v, w)

(originally, y' (v , w) = 0) for each edge (v , w) E E. This bipartite graph consists of

the following two parts:

job nodes: Til/= {wk: k = 1, ... , K'} .

sub-machine nodes: V = {vj,s : j = 1, ... , !11, s = 1, ... , kj }, where kj := I:L~: 1 Y],k l
and sub-machines { uj,s : s = 1, ... , kj } correspond to machine j.

The cost of each edge (vj ,s· wk) equals the cost of machine j working on job k m

(SC2) , which is f },k ·

We construct the graph fl(y) and the vector y' in the following way.

Step 1: Vve sort the jobs in the order of nonincreasing processing t ime P),k such that

P j, l ~ P.i.2 ~ ·· · ~ P]J<' , j = 1, ... , !II.

Step 2: Choose a machine j and compute the value :L~:1 Y),k· If 2:~:1 Y),k ~ 1, we

know that there is only one sub-machine Vj,l corresponding to machine j. Then ,

for each Y),k > 0, we set ·y'(vj, l , wk) := Y],k·

Step 3: If "2:~~ 1 Y],k 2 1, we know that there exists more than one sub-machine Vj,s·

We find the minimum index k1 such that "LZ~ 1 '!/j ,k 2 1, and set y' (vj ,l , wk) :=

YJ,k, k = 1. ... , k1 -1. Then, we set y' (vJ,l,wk 1) := 1 - L~~~1 y'(vJ, 1 ,wk) · This

guarantees that the sum of y' for edges incident to Vj, l is exactly 1. If :LZ~ 1 '!/j,k >
1, we know that a fraction of the value YJ,k1 remains. Then we assign the

remaining fraction on edge (vJ,2, wk1) and set y'(vJ,2, wkJ := (:L~~1 YJ,k) -1.

Step 4: For each s = 2, ... , kj - 1, we find the minimum index k8 such that "2:~:, 1 2 s .

We set y'(vj,s, wk) := Yj,k, k = ks- 1 + 1, .. . , ks - 1 for each '!/j,k > 0, and set

y'(vJ,s, wkJ := 1- "2:~:,~~ - 1 + 1 y'(vj,s, wk)· Similarly, if "2: ~:, 1 Y],k > s , we also set

y'(vj,s+ l • wk..) := (:L~:, 1 YJ,k) - s .

We give a simple example to show this construction. Suppose we have 2 machines

and 3 jobs. The matrix YJ ,k and PJ,k are given as follows :

(
1/ 4 1 0)

'!/j,k = 3/ 4 0 1

5. Total Discrete Capacity Constrained Problem with Costs 87

(2 1 1)
Pj,k = 2 1 1

Then B (y) is constructed as follows: The above steps can also be written as the

sub-machines

jobs

For solid edges, y'(vj,s,wk) = 3/4.
For dashed edges, y'(v],s• wk) = 1/4.

Figure 5.2: An example of constructing B(y)

following procedure.

Procedure Frac_M atching

Input: the bipartite graph B(y) and Y],k·

Output: the fractional matching y'(vj,s, wk).

Step 1: For each machine j, sort the jobs in the order of nonincreasing processing

time P],k such that we have Pj,l 2: P],2 2: ... 2: PJ,K'·

Step 2: For each machine j

(a): If E:=l YJ,k :::; 1, we know that there is only one sub-machine Vj,l E V

corresponding to machine j. Then, for each YJ,k > 0, include (v),l• wk) E E

and set y'(v1,1, wk) := YJ,k·

(b): If E:=l Y],k > 1, set ·index(O) := 1.

For i = 1 to k1 - 1

88 5. Total Discret e Cap acity Constrained Problem with Costs

(i): Let index ('i) be the minimum index such that L~:~x(i) Yj ,k 2:: i.

(ii): Set y'(v7,q, wk) := Yj ,k, q = 1, ... , index('i) - 1.

(iii): Set y'(vj,index(i), wk) := 1 - L~:~~:~~{L 1) y'(vj,q, wk)·

(.)· If"" index(i) , 1 l V . Dk=index(i - 1) Yj ,k >) set
, '(· ,) ._ ("" index(i) ,) 1 Y Uj,index(i)+ l> Windex(i) .- Dk=index(i- 1) Yj ,k - ·

D. 13 . Shmoys aucl E . Tardos preseut the definition of fractioual matching in [ST93]

as follows : A non-negative vector z on the edges of a bipartite graph is a fractional

matching if, for each node u , the sum of the components of z corresponding to the

edges incident to ·u is at most 1. The fractional matching exactly matches a node ·u

if the corresponding sum is exactly 1. A fractional matching z is a matching if each

component of z is 0 or 1.

Lemma 2.2 in [ST93] summarizes some simple properties of the bipartite graph

B(y) and the vector y' (vj ,s, wk), which is as follows:

Lemma 5.13. The vector y'(vj,s , wk) is a fractional matching in B (y) of cost at most

C. All job nodes 'Wk. k = 1, ... , [{' and sub-machine nodes Vj ,s, j = 1, ... , M , s =
1, ... , kj - 1 are exactly matched. Moreover, let Pi:sax denote the maximum of the

processing times Pj,k corresponding to edges (Vj ,s, wk) E E and pJ:;n denote the min

imum of the pmcessing times Pj,k corresponding to edges (vj,s, wk) E E. Finally we

have Pj,~n 2:: P},~a';. 1 for each j = 1, ... , rn , s = 1, ... , kj - 1.

According to the steps constructing the fractional matching y' in B (y) , we have

Yj ,k = 2: y'(Yj,s, wk) and the cost on edge (vj,k, wk) E E is equal to rj,k in
(vj,, ,wk,)EE

(SC2). Therefore , the total cost of the fractional matching still respects the budget C

in (SC2). By Theorem 7.3.3 in [Lov86], we know that there exists an integral solution

of the optimal value for the minimum cost bipartite matching problem. Then we find

a minimum cost (integer) matching M which matches all job nodes in B(y). It is

clear that the cost of this integer matching M is less than or equal to the cost of the

fractional matching y' and also respects budget C. Finally, for each edge (vj,s, wk) in

M , we schedule job k on machine j in (SC2) , j = 1, ... , M, k = 1, ... , K'.

The minimum cost integer matching problem can be solved by the Hungarian

method for solving the assignment problem. (For more details about the Hungarian

method, refer to [Mur95] and [Lov86] .) The assignment problem is a special case of

5. Total Discrete Capacity Constrained Problem with Costs 89

the min-cost integer matching problem where we have the same number of machines

and jobs. By our construction of the bipartite graph B(y), we know that the number

of sub-machine nodes Lf~1 kj is greater than or equal to the number of job nodes

K'. Thus we construct a new bipartite graph B'(y) by adding (I":f~ 1 ki)- K' dummy

job nodes w~, k = 1, ... , :Ef~ 1 kj - K'. The cost of each edge (vj,s, w~) is defined

to be zero. By Lemma 5.13 we know that all job nodes wk and sub-machine nodes

Vj,s, j = 1, ... , M, s = 1, ... , kj - 1 are exactly matched. Thus, the number of sub

machine nodes :Ef~1 kj is greater than or equal to the number of job nodes K'. The

sum of remaining fractional matching incident to sub-machine V],kJ, j = 1, ... , Af is

(2":f~ 1 kj)- K'. Then we fractionally match sub-machines Vj,kJ' j = 1, ... , A1 with

the dummy job nodes w~. By this construction, we can transform the minimum

cost integer matching problem to an equivalent assignment problem with the initial

fractional matching. This fractional matching we construct for B' (y) is also called

the fractional assignment and will be the initial input of the Hungarian method.

Obviously, the optimal integer assignment in B'(y) will give us the optimal integer

matching in B(y).

We use the Hungarian method to solve the reduced assignment problem and gen

erate an integer assignment in B'(y) with minimum cost. For each assignment cor

responding to edge (vj,s: wk), we schedule job k on machine j in (SC2), j = 1, ... , !vf,

k = 1, ... , K'. Finally, the solution of (MPC2) can be generated by the integer schedule

we find.

Algorithm 4 applies the same first two stages as Algorithm 3. The following is the

detailed description.

Stage 1: Initialization. Construct a network with one source node { S} for

sending K commodities, 2M nodes {v1 , ... ,v11-f,'U1 , ... 'UM} for transferring commodi-

ties, and K terminal nodes { t 1, ... , tK} with demand ak, k = 1, ... , K for receiving

commodities. Set the capacity on edge (vj, 'Uj) to be J-Lj for j = L ... , M and the cost

on edge ('Uj, tk) to be rj,k := rj,k/ J-Li for j = 1, ... , M, k = 1, ... , K.

Stage 2: Transformation of initial problem to a constrained maximum

concurrent uniform exactly-k-splittable flow problem. We replicate each ter

minal node tk into ck identical sub-terminals t(k,i), 'i = 1, ... , ck. Then each commodity

k with demand ak is split into ck commodities (k, i), 'i = 1, ... , ck, each with the same

demand a(k,i) := ak/ck and with the same source. Further, for each edge connecting

90 5. Total Discrete Capacity Constrained Problem with Costs

with terminal node t k, we connect it with all of the sub-terminals t(k ,i) and set the

cost on edge (uj , t(k ,i)) to be ij,k , 'r:/j , (k , i) . The new commodities (k , 'i) will be routed

unsplittably.

Stage 3: Solving the fractional constrained maximum concurrent uni

form exactly- k-splittable flow problem and transformation of its solution

to a solution of the scheduling of unrelated machines problem with costs.

Vve consider the relaxed version of the constrained maximum concurrent uniform

exactly-k-spli ttable flow problem (MPC2") and get the solution xj,(k ,i) and .\ * by the

ellipsoid method. Then we construct the corresponding scheduling of unrelated ma

chines problem, with job (k, 'i), 'r:/(k, ·i) and machine j, j = 1, ... , !vf. The processing

time for a job (k, i) scheduled on machine j is defined to be P],(k ,i), where Pj,(k ,i) := c:~j.

We assign the cost r; ,(k ,i) := fj ,(k ,i) · >. < k~:ak on edge (j, (k, 'i)), 'r:/j, (k, i). Let a feasible

solution of this scheduling problem be Yj ,(k,i) and the makespan T. Further we define

Y . (') := x;,(k , i) Ck and T := 1/ .A*.
J , k ,t >. (k, i) a,,

Stage 4: Computing a fract ional matching y'(v1,8 , wk) · Let K' := 2:~~ 1 ck.

We define Y} ,k to be the fraction of job k on machine j , r1,k to be the cost of job

k on machine j, and P},k to be the processing time of job k on machine j , where

k = 1, ... , K' . Then we construct a bipartite graph B(y) = (V, vV E) and a value

y'(v, w) and a cost c(v , w) for each edge (v , w) E E. One side of the bipartite graph

consists of job nodes W = {wk> k = 1, ... , K'} and the other side consists of machine

nodes V = {vj,s}, j = 1, ... , M , s = 1, ... , kj where kj := 12::=1 Y],k l We also set the

cost of edge (vj ,s, wk) E E to be r-;,k in (SC2) . Then we call procedure Frac_M atch·ing

to generate the fractional matching y'(v1,8 , 'Wk) in B(y).

Stage 5: Finding a min-cost integer matching which exactly matches

all job nodes in B(y). We construct a new bipartite graph B'(y) by adding k =

1, ... , 2:;~ 1 k1 - K' dummy job nodes w~, k = 1, ... , 2:~1 k1 - K'. We set the cost

on all edges (Vj ,k> w~) to be zero and randomly match those dummy job nodes with

unmatched sub-machine nodes in B'(y). Then we use the Hungarian method to find

the min-cost integer matching y(v1,s, wk) in B'(y).

Stage 6: Calculation of the integer solution Xj,(k,i) of (MPC2'). We check

the integer matching y(vj,s· wk)· If y(v1,8 , wk) = 1, we find the node (k, ·i) correspond-
. . l d ' 1 h · ' · 0 Th l t ' ·- ' >. (k,i)ak mg w1t 1 Wk an set Y] ,(k,i) := ot erw1se Y1,(k,i) .= . en e Xj,(k ,i) .- Y],(k,i) - c-k -.

Xj,(k ,i) is the solution for the reduced constrained maximum concurrent multicommod-

5. Total Discrete Capacity Constrained Problem with Costs 91

ity exactly-k-splittable flow problem. Similar to Stage 5 of Algorithm 3, we scale down

flow on every edge by a factor a := maxj I:(k,i~~J,(k,iJ such that the edge capacities on

(vj, ·uj), Vj are respected.

Stage 7: Calculation of the original solution 6j,k and the capacity .\. in
(MPC2). The original6j,k in (MPC2) can be computed by setting 6j,k := L:(k.·~~J.(k,i),

. - 1 111 k - 1 J{ Tl 't f (l\'1PC2) . tl ' - . L:j~ 1 ~-'151 ·k J - , ... , , - , ... , . 1e capac! y 0 n lS lat -" - mmk a~.- .

Analysis of Algorithm 4

By applying Theorem 2.1 from [ST93], we first prove the following theorem.

Theorem 5.14. Stages 4 and 5 in Algorithm 4 round any feasible solution Y],(k,i) into

an integer solution fh(k,i) with makespan at most (1 + p)T and total cost at most C.

Proof. By Lemma 5.13, we know that the cost of the fractional matching y'('uj,s. wk)
in the bipartite graph B(y) is at most C. In Stage 5 of Algorithm 3, we can find a

integer matching of the minimum cost in B(y) by the Hungarian method. Clearly,

the minimum cost in B(y) is less than or equal to C. Thus the budget Cis respected.

Applying Theorem 2.1 in [ST93] directly, we know that the makespan is at most

(1 + p)T. 0

Then we can prove the following theorem:

Theorem 5.15. Algorithm 4 is a 2 (l~p) -approximation algorithm for solving (MPC2').

Proof. Suppose the optimal solution of (MPC2') is).. *. By Theorem 5. 7, solving the

constrained maximum concurrent multicommodity uniform exactly-k-splittable flow

problem guarantees at least 1/2 of the optimal solution).. *. According to Theorem

5.14, we know that the makespan is as most (1 + p)T, thus we can achieve at least

1!P of the optimal capacity of the constrained maximum concurrent multicommodity

uniform exactly-k-splittable flow problem (:\JPC2") without violating the budget C.

Therefore, at least 2(l~p) of the optimal solution).. * can be achieved and the budget

C is still respected, which proves the theorem. 0

92 5. Total Discrete Capacity Constrained Problem with Cost s

5.4 The case J-1 = a . (3T

Given an M x 1 vector cr and a I< x 1 vector {3, when theM x I< matrix J.1 =a· {3T,

we show that this case will fall into the case of Section 5.2.

Since J.1 = CY • {F, we know that in matrix J-1 , the (j , k) entry J.l],k = O'jf3k· We

define Xj.k := O'j Oj,k for all j , k and bk := ak/ f3k for all k. Moreover , we define the

original cost fj ,k := rj,k/ crj for all j . Now the problem (MPC) can be written as,

max ,\ (MPC')
M

s.t. L Xj ,k ~ ..\bk , k = 1, .. . , I< (1)
j= l

](

L: xj,k::; O'j , j = 1, ... , M (2)
k= l

I< M

L I.:> j,kXj,k::; c, (3)
k= l j = l

M

L: x {oj,k > o} ::; ck, k = 1, .. . , I< (4)
j = l

Xj ,k ~ 0, k = 1, .. . , I<, j = 1. M . (5)

Obviously, (MP C') is exactly the same form as (MPC2'). Therefore, we can apply

Algorithm 3 or Algorithm 4 to calculate an approximate solution Xj,k and generate

the final solut ion of TDCCP with costs by setting oj,k := xj,k/ O'j for all j , k .

5.5 Solving the general case

When the servers or classes are not identical, we will have the general case of (MPC).

In this sect ion, an approximat ion algorithm will be given for solving the general

(MPC).

The idea of this algorithm is similar to the algorithm for solving the general (MP).

First , we t ransform (approximately) the general (MPC) to an instance of (MPC2 ').

Then, we solve the reduced case by Algorithm 3 or Algorithm 4.

5. Total Discrete Capacity Constrained Problem with Costs 93

We assume /1j,k > 0 for all j, k. Let ~tjax be the maximum service rate of server

j over all classes, i.e. ILjax = maxk{pi,d· Let ltjin be the minimum service rate of

server j over all classes, i.e. pjin = mink{pi,k}.

We try to solve the following problem first.

max .\ (MPC3)
M

s.t. L /1-j,kbj,k ;:::: >.ak. k = L ... , K (1)
j=l

/{

~J-lj,kbj,k S f-ljax,j = 1, ... , 111 (2)
k=l
/{ M

L L rj,k6j,k S C, (3)
k=l j=l

M

Lx{6J,k > o} s ck,k = L ... ,K (4)
j=l

oj,k;:::: o, k = 1, ... , K,j = 1, ... , 111. (5)

Obviously, (MPC3) is the same formulation as (MPC2') in Section 5.2. Let the

optimal solution of general (MPC) be >. *, 6* and the optimal solution of (MPC3) be

),*, 6*. We have the following lemma similar to Lemma 4.10.

Lemma 5.16. For the optimal solution of (MPC) and (MPC3}, we have~*;::::>.*.

Suppose the (approximate) solution of (MPC3) is Xj,k and~. Let Wj = pjax I pjin

and Wmax = maxi{wJ}. By defining

(5.10)

We can prove the following two theorems by choosing the different algorithms for

(MPC3). The proof is similar to the proof of Theorem 4.11.

Theorem 5.17. Solution (5.10} is a feasible solution of (MPC}, and achieves a), of

value at least), *I 12wmax.

Theorem 5.18. Solution (5.10} is a feasible solution of (MPC}, and achieves a>. of

value at least >.*12(1 + p)Wmax·

94 5. Total Discrete Capacity Constrained Problem wit h Cost s

5.6 NP-Completeness

\t'/e consider the special case (MPC2'). By setting the cost Tj ,k := 0, '1/j, k, the

constraint (5) in (MPC2') will be trivial for any C 2: 0, then we know (MPC2 ')

includes (MP2 ') as a special case. Therefore, we have the following theorem and

corollary.

Theorem 5.19. (MPC2') is NP-Complete.

Corollary 5.20. The geneml TDCCP with costs is NP-Complete.

Chapter 6

Experiments

In our experiments, we design some examples for testing each algorithm studied in

Chapter 4 and Chapter 5. When the service rates are independent of classes (all

classes are identical), the testing results tell us that in most of the time, Algorithm 1,

2, 3 and 4 can produce very good approximate solutions for maximizing the through

put in queueing networks. However, in the general case, the approximation algorithms

based on Algorithm 1, 2, 3 and 4 may give poor solutions. All tests are running in

MATLAB 7.0. We will compare and analyze the performance among different algo

rithms.

6.1 Experiments of TDCCP without costs

6.1.1 TDCCP without costs when all classes are identical

Design of Examples

In our examples of TDCCP without costs and all classes identical, the input data are

the service rates Pi,k (JLj), the numbers ak and the flexibility bounds ck. We define

two integer M and K, where M is the number of servers and K is the number of

classes. The values of M and K are integers in (0, 20]. Since all classes are identical

and /Lj,k = J.Li in this case, we let /tj,k be a M x K matrix with the same value in

each row (p1,1 = J.L1,2 =, ... , = /Lj,K, j = 1, ... , M). In general, we can choose arbitrary

values for each entry in /Lj,k and ak. When the values of J.Li,k and ak are very large,

95

96 6. Experiments

we can always scale those values to a small range. Therefore, we set P),k and ak to be

real numbers in (0, 100]. Each entry in ck must be less than or equal to the number

NI (0 < Ck :::; !II).
Since it is very difficult to get the optimal solutions of TDCCP (without costs),

we solve the relaxations of TDCCP (without costs) by abandoning the integer con

straints. Originally, Algorithms 1 and 2 apply the ellipsoid method to solve those

relaxations. However, in our experiments, the simplex method will be used. This

is because the simplex method is more efficient and competit ive than the ellipsoid

method in practice, although it may have exponential running time in some artificial

bad cases (e.g. see [Tod02]). MATLAB 7.0 provides us with a useful linear program

ming function 'linprog', which applies the revised simplex method (e.g. see [Sim72]

and [Sch86]) . Therefore, we will use the function 'linprog' to generate the relaxation

results of our examples. We know that the optimal value of the relaxation is an upper

bound for the optimal value of the original problem. Thus we will use the optimal

values of the relaxed problems to evaluate the results of Algorithm 1 and Algorithm 2.

Obviously, any solutions by our approximation algorithms cannot exceed the optimal

of the relaxations. If Algorithm 1 or Algorithm 2 generates a throughput .A which is

equal to the throughput of the relaxation problem, we can conclude that A must also

be the optimal for the original problem.

V•/e partition the testing examples into two groups, depending on the following

conditions:

Condition 1 : There exists a feasible fractional server assignment policy { c5j,k} sat

isfying constraint (1) , (2) and (4) in (MP2), so that the throughput .A* is less

than 1.

Condition 2 : There exists a feasible fractional server assignment policy { bj,d sat

isfying constraint (1) , (2) and (4) in (MP2) , so that the throughput .A* is greater

than or equal to 1.

Note that Condition 1 and Condition 2 can also be defined in a similar way for

TDCCP with costs.

The first test includes 20 examples that satisfy Condition 1 (0 < A* < 1) , and

the second test includes 20 examples that satisfy Condition 2 (.A* 2 1). The numbers

M and](are not fixed. Thus, we have different M x](matrices P),k in different

6. Experiments 97

examples, as well as different vectors ak and ck. The values of each entry in {lj,k and

ak are real numbers randomly selected in (0, 100]. Different entries of /lj,k and ak may

have different values. The vector ck includes K integers in [1, l\1). (Please refer to

the Appendix B for more details of testing examples.)

Finally, the examples will be tested by Algorithm 1, Algorithm 2 and 'linprog'.

The testing environment is MATLAB 7.0.

Testing examples when Condition 1 is satisfied

We design 20 examples (see Appendix B.1) with different /lj,k, ak and ck. The output

data are the server policy 6j,k and the thoughput A. First we run the relaxations of

20 examples by 'linprog' and let A* and 6j,k be the corresponding optimal values. We

know that 0 < A* < 1 for all the examples. Let A 1 , 6J.k be the solution of Algorithm

1, and similarly, let A2 and 6J,k be the solution of Algorithm 2. We also define a 1 to

be the relative difference from ,\1 versus ,\ * and a 2 to be the relative difference from

A2 versus A*. The detailed computational results are shown in Table 6.1. Table 6.2

and Figure 6.1 shows the relative differences (}1 and (}2 . Note that for simplicity, we

only show the throughput ,\ generated by the algorithms.

98 6. Experiments

,A.l ,\2 ,*

Example 1 0.1667 0.2500 0.2500
Example 2 0.3000 0.3000 0.3750
Example 3 0.0667 0.0667 0.0833
Example 4 0.2857 0.2500 0.3000
Example 5 0.5333 0.5714 0.6111
Example 6 0.2000 0.2000 0.2000
Example 7 0.1515 0.1515 0.2078
Example 8 0.5000 0.5000 0.5625
Example 9 0.2000 0.2000 0.7214
Example 10 0.1500 0.1500 0.2000
Example 11 0.3333 0.3333 0.4500
Example 12 0.1333 0.1333 0.4167
Example 13 0.1111 0.1111 0.1667
Example 14 0.2143 0.2143 0.2857
Example 15 0.3333 0.6667 0.8333
Example 16 0.4082 0.3571 0.5215
Example 17 0.0902 0.0789 0.1203
Example 18 0.2222 0.2222 0.2500
Example 19 0.5000 0.5000 0.8929
Example 20 0.3333 0.6667 0.6667

Table 6.1: Testing results of examples MP2 with 0 < ,* < 1

6. Experiments 99

0"1 0"2

Example 1 0.6667 1.0000
Example 2 0.8000 0.8000
Example 3 0.8000 0.8000
Example 4 0.9524 0.8333
Example 5 0.8727 0.9351
Example 6 1.0000 1.0000
Example 7 0.7292 0.7292
Example 8 0.8889 0.8889
Example 9 0.2772 0.2772
Example 10 0.7500 0.7500
Example 11 0.7407 0.7407
Example 12 0.3200 0.3200
Example 13 0.6667 0.6667
Example 14 0.7500 0. 7500
Example 15 0.4000 0.8000
Example 16 0.7826 0.6848
Example 17 0.7500 0.6563
Example 18 0.8889 0.8889
Example 19 0.5600 0.5600
Example 20 0.5000 1.0000

Table 6.2: Relative differences from A 1 and A2 versus A* for examples MP2 with
0 <A* < 1

100 6. Experiments

Rel<rtrve dHference from sc!ubons of ,AJgorithms 1 and 2 'ersu~ tl;e opumal value
1.2,----------------,.----.---.---.---.----,

D Soiuljon of Algorithm 1 versus the oplimal value)

X Solution of Algorithm 2 versus the oplimal value
111-----__ ____j

X ~

D X
0.9

D
X rs IZI ~

I! ~

25 0 .7

~ D
"' "!! no o 6

05

0 4

0.3
r8l

02
0 4 6 8 10

EKam ple

X 0
r8l r8l D

X r8l X

r6l

(

0

12 14 16 18 20

Figure 6.1: Relative differences from A 1 and A 2 versus A* for examples MP2 with
0 < A* < 1

When the service rates arc inclcpcudcnt of classes alld Condition 1 is satisfied, we

find that both Algorithm 1 and Algorithm 2 can produce good solutions much better

than the theoretical lower bounds. In example 6, their results are the same as the

optimal of relaxation of TDCCP. Since the optimal of relaxation is the upper bound

of the optimal of (MP2), obviously, the solutions of Algorithm 1 and 2 also achieve

the optimal. In most examples, the solutions of Algorithm 1 and Algorithm 2 are very

close. But in example 20, Algorithm 2 performs much better than Algorithm 1 and

it even generates the optimal solution. By carefully analyzing the server assignment

policies produced by Algorithm 1 and 2, we find the reason is that the proportion of

time 6],k of a slow server j working at a class k is larger than 6},k· In other words , a

slow server in the system has been assigned too much work.

6. Experiments 101

Testing examples when Condition 2 is satisfied

We design another 20 examples (see Appendix B.2) when Condition 2 is satisfied.

The output data are bj,k and A. The optimal solutions of relaxations A* and bj,k

are also generated by 'linprog'. A1 and 6},k are the solutions of Algorithm 1. A2

and 6J,k are the solutions of Algorithm 2. We define a 1 to be the relative difference

from A 1 versus A* and a 2 to be the relative difference from A 2 versus A*. We give

the detailed computational results in Table 6.3. Table 6.4 and Figure 6.2 shows the

relative differences a 1 and a 2 .

Al A:.! A*
Example 1 1.0000 0.6250 1.0667
Example 2 2.0000 3.0000 3.3333
Example 3 2.0000 2.2222 2.3333
Example 4 1.3333 2.0000 2.4000
Example 5 2.0000 2.0000 2.2222
Example 6 10.0000 10.0000 10.0000
Example 7 1.5152 1.5152 2.0779
Example 8 4.0000 4.0000 4.5000
Example 9 1.0000 1.0000 1.4286
Example 10 3.0000 3.0000 4.0000
Example 11 3.3333 3.3333 4.5000
Example 12 1.3333 1.3333 4.1667
Example 13 3.3333 3.0000 3.4706
Example 14 3.0000 3.0000 4.0000
Example 15 1.0000 4.0000 4.5000
Example 16 4.4444 6.6667 8.3951
Example 17 1.5238 1.3333 2.5079
Example 18 5.0000 5.0000 5.6250
Example 19 3.0000 3.0000 6.9286
Example 20 1.4286 7.6923 8.6364

Table 6.3: Testing results of examples MP2 with A* 2: 1

102 6. Experiments

(71 (72

Example 1 0.9375 0.5859
Example 2 0.6000 0.9000
Example 3 0.8571 0.9524
Example 4 0.5556 0.8333
Example 5 0.9000 0.9000
Example 6 1.0000 1.0000
Example 7 0.7292 0.7292
Example 8 0.8889 0.8889
Example 9 0.7000 0.7000
Example 10 0.7500 0.7500
Example 11 0.7407 0.7407
Example 12 0.3200 0.3200
Example 13 0.9605 0.8644
Example 14 0.7500 0.7500
Example 15 0.2222 0.8889
Example 16 0.5294 0.7941
Example 17 0.6076 0.5316
Example 18 0.8889 0.8889
Example 19 0.4330 0.4330
Example 20 0.1654 0.8907

Table 6.4: Relative differences from A 1 and A2 versus A* for examples MP2 with
A* 2: 1

6. Experiments 103

Figure 6.2: Relative differences from /V and ,\2 versus ,* for examples MP2 with
,* :2: 1

It is easy to see that both Algorithm 1 and Algorithm 2 produce good solutions

in most examples. We also observe that in several examples (e.g. examples 5, 6,

8, 9, 10, 11, 12, 14, 18 and 19), Algorithm 1 and Algorithm 2 produce the same

throughput ,\1 = ,\2 . However, by analyzing the server assignment policies generated

by Algorithm 1 and Algorithm 2 in those examples, we find that 8},k and 8J,k are

not the same. In examples 2, 3, 15, 16 and 20, we see that the throughput estimate

,\2 produced by Algorithm 2 is better than the throughput estimate ,\1 produced by

Algorithm 1. We also notice that in examples 15 and 20, Algorithm 2 performs much

better than Algorithm 1.

104 6. Experiments

6.1.2 TDCCP without costs in the general case

D esign of Examples

In the general case of T DCCP without costs, the input dat a are also /.L j ,k, ak and ck.

T he diffe rence is t hat the M x J(matrix /.L j,k is not required to have the same ent ry

value in each row vector . Similar to the tests in Section 6. 1. 1, we define the values of

!I![and K to be integers in (0, 20] and ck to be integers in (0, 111]. Each entry in /.LJ,k

and ak is defined to be a real number in (0, 100] . All the numbers of /.LJ,k, ak and ck

are defined randomly.

T here will be two diHerent tests. The first test includes 20 diHerent examples that

satisfy Condit ion 1 (0 < .A* < 1), and the second test includes 20 diHerent examples

that satisfy Condition 2 (.A* 2: 1).

The algorithm for solving the general (MP2) will apply Algori thm 1 or Algori thm

2 as a procedure. All of the examples will be tested by t he algorithm of apply

ing Algori thm 1, the algorithm of applying Algorithm 2 and 'linprog '. The testing

environment is also MATLAB 7.0.

Testing examples when Condition 1 is satisfied

We design 20 examples (see Appendix B.3) with diHerent /.L j,k, ak and ck . The output

data are JJ,k and .A. Let the opt imal solut ions of the relaxations be .A* and Jj,k, the

solutions by applying Algorithm 1 be .A 1' and c5J:k, the solutions by applying Algorithm

2 be .A 2' and c5],'k. Vve define a 1 to be the relative diHerence from .A 1' versus .A* and

a 2 to be the relative diHerence from .A 2' versus .A*. We will first solve t he relaxation

of each example by the function 'linprog' and get the optimal solut ions .A*. Then, we

compare .A* with the approximate solutions .A 1' and .A 2'.

6. Experiments 105

The detailed computational results are shown in Table 6.5. Table 6.6 and Figure

6.3 shows the relative differences 0' 1' and 0'2'.

>.1 >.2 ..*
Example 1 0.1000 0.1000 0.3835
Example 2 0.1415 0.0550 0.3203
Example 3 0.1600 0.1455 0.6250
Example 4 0.1667 0.1905 0.5400
Example 5 0.3500 0.2381 0.5259
Example 6 0.0408 0.0714 0.7895
Example 7 0.1111 0.0741 0.2532
Example 8 0.2560 0.4610 0.5590
Example 9 0.0143 0.0286 0.4607
Example 10 0.4646 0.4873 0.6324
Example 11 0.0667 0.0667 0.2416
Example 12 0.0730 0.0286 0.1388
Example 13 0.1600 0.1333 0.6923
Example 14 0.1000 0.0889 0.3319
Example 15 0.3056 0.5500 0.6689
Example 16 0.0375 0.0625 0.4802
Example 17 0.0373 0.0533 0.2726
Example 18 0.5051 0.7299 0.8710
Example 19 0.0400 0.0217 0.2932
Example 20 0.2226 0.1228 0.6426

Table 6.5: Testing results of examples MP with 0 < ..\ * < 1

106 6. Experiments

(Tl 0"2

Example 1 0.2607 0.2607
Example 2 0.4418 0.1717
Example 3 0.2560 0.2327
Example 4 0.3086 0.3527
Example 5 0.6656 0.4528
Example 6 0.0517 0.0905
Example 7 0.4389 0.2926
Example 8 0.4580 0.8246
Example 9 0.0310 0.0620
Example 10 0.7346 0.7707
Example 11 0.2759 0.2759
Example 12 0.5261 0.2059
Example 13 0.2311 0.1926
Example 14 0.3013 0.2678
Example 15 0.4568 0.8222
Example 16 0.0781 0.1302
Example 17 0.1370 0.1957
Example 18 0.5799 0.8381
Example 19 0.1364 0.0742
Example 20 0.3464 0.1910

Table 6.6: Relative differences from)/ and .>? versus A* for examples MP with
0 < A*< 1

6. Experiments 107

Relabve diflerern:e from oo4utl0ns of applying Alqooll\ms 1 ;and 2 versus 11\e optuno>l 'alue

0.9 0 So\utiOilS of aPPMng Algonthm 1 versus 11\e ophmal value I
X Solubons of aPPMng Algonthm 2 versus the optrnal value

X X
X

0~
X
0

0.7

0

06
0

~ 0
~ 05

/. 0 0 1 0 0
; 0.4
0:

X

0.3 0 X 0
~ ~

~ X
0

02 X X X
X

X 0 0
0.1 X 0 X

0 X
n

0 2 4 6 8 10 12 14 16 18 20
Example

Figure 6.3: Relative differences from ,V' and .\2' versus .* for examples MP with
0 < .* < 1

In the above examples with 0 < .* < 1, we find that some solutions produced

by our approximation algorithms are very bad (e.g. examples 6, 9, 16 and 19).

Remember in the general case of TDCCP, we use the formula bj,k := (w~~;,k) to

generate the server assignments and the throughput, where Wj := J.ljax j J.l..jin. We

observe that in most of our examples, Wj is a large number. Obviously, this is the

reason for those bad approximation results. We also notice that our results of the

algorithms in examples 5, 8, 10, 15 and 18 are much better. By analyzing the input

data /-Lj,k, we find that it is because Wj, j = 1, ... , M in those examples are close to

1. In example 2, the throughput produced by applying Algorithm 1 is much better

than applying Algorithm 2. By analyzing the server assignment 8j,k, we find two

explanations. First, the server assignment in Algorithm 2 shows that slower servers

are over assigned at a class; second, it shows that a fast server is working at a class

with lower customer arrival rates.

108 6. Experiments

Testing examples when Condition 2 is satisfied

We design another 20 examples (see Appendix B.4) when Condition 2 is satisfied.

The output data are 61,k and A. The optimal solutions of relaxations). * and 6],k are

also generated by 'linprog' .). 1
' and &J.'k are the solutions by applying Algorithm 1.

).
2

' and &],'k are the solutions by applying Algorithm 2. We also define CT 1' to be the

relative difference from /\ 1' versus). * and CT
2

' to be the relative difference from). 2'

versus). *. Table 6. 7 is the detailed computational results. Table 6.8 and Figure 6.4

show the relative differences CT 1' and CT 2'.

).1). 2).*

Example 1 0.1000 0.1250 1.1289
Example 2 0.0300 0.0300 1.4552
Example 3 0.0513 0.1111 1.3302
Example 4 2.5000 2.6471 3.3811
Example 5 0.3636 0.4959 2.6012
Example 6 0.7407 1.1111 1.9888
Example 7 0.0075 0.0333 1.2673
Example 8 0.5119 1.8750 2.1610
Example 9 0.1074 0.1111 2.1195
Example 10 0.0645 0.1400 1.5820
Example 11 0.2000 0.2000 1.6796
Example 12 0.0100 0.0800 2.1912
Example 13 0.1000 0.1250 1.8703
Example 14 0.0667 0.0952 2.3590
Example 15 1.8000 1.6200 2.3315
Example 16 0.1185 0.1619 2.2881
Example 17 0.0944 0.0577 4.0462
Example 18 3.5866 3.5866 4.8380
Example 19 0.0969 0.0286 1.9708
Example 20 0.3822 1.1483 2.6244

Table 6.7: Testing results of examples MP with).* ~ 1

6. Experiments 109

a-1 (}2

Example 1 0.0886 0.1107
Example 2 0.0206 0.0206
Example 3 0.0386 0.0835
Example 4 0.7394 0.7829
Example 5 0.1398 0.1906
Example 6 0.3725 0.5587
Example 7 0.0059 0.0263
Example 8 0.2369 0.8677
Example 9 0.0507 0.0524
Example 10 0.0408 0.0888
Example 11 0.1191 0.1191
Example 12 0.0046 0.0365
Example 13 0.0535 0.0668
Example 14 0.0283 0.0404
Example 15 0.7720 0.6948
Example 16 0.0518 0.0708
Example 17 0.0233 0.0143
Example 18 0.7413 0.7413
Example 19 0.0492 0.0145
Example 20 0.1456 0.4376

Table 6.8: Relative differences from >. 1' and >. 2' versus).* for examples MP with).* 2: 1

110

0.8

07

06

3
~ 05
t
0 .,
i 0 4

&
03

02

0 1

0

~

181

2

6. Experiments

Relative difference from solutions of applying Al9ori1hms f and 2 versus the optimal value

."<
0

X

0

4

X

0

X

D

~
5

X I OX Solutions of applying AlgO<ilhm 1 versus the optimal value

Solutions or applying AlgO<ilhm 2 versus the optimal value

0

X

D

181
X

t8l 0 X 0
~

ri 0
n ~ X

8 10 12 14 16 18 20
Example

Figure 6.4: Relative differences from)_I' and /\ 2
' versus A* for examples MP with

A* 2 1

In the above tests , the performances of our algorithms for solving the general

TDCCP are very poor. As we discussed before, the reason is also because of the

parameter w1. For those examples with w1 close to 1, we can still obtain good ap

proximate results, e.g. examples 4, 6, 8, 15 and 18. In most examples, we observe

that the throughput A 2' produced by applying Algorithm 2 is better than A 1'. In

example 12, A2
' is much better. We also notice that the solutions in examples 7 and

19 are extremely bad. The reason is that there exists a big 'gap' (i.e. Wmax >= 50)

between the highest service rate and the lowest service that for a particular server

j working at classes. It is also because the server assignments produced by the two

algorithms use the servers with low service rates to work.

6. Experiments 111

6.1.3 TDCCP with costs when all classes are identical

Design of Examples

In our examples of TDCCP with costs when all classes are identical, the input data are

the service rates /Jj,k, the numbers akl the costs rj,k, the budget C and the flexibility

bounds ck. We define two integers 111 and K, where !v1 is the number of servers and

K is the number of classes. The values of M and K are integers in (0, 20]. Since

all classes are identical, we let /Jj,k and Tj,k be the M x K matrices with the same

value in each row vector. The values of each entry in /lj,k, rj,k and ak are randomly

defined to be a real number in (0, 100]. Each entry in ck is an integer which satisfies

0 < ck ::; 111. Let rjwx := maxjrj,k· The budget Cis a real number randomly selected

in (0, 10 ~~~ 1 rjax], by which we guarantee that the number C cannot be arbitrarily

large. We define this upper bound for C because when C is large enough, the cost

constraint (5) in (MPC2) will be redundant.

Similar to Section 6.1.1. there will be two different tests. The first test includes

20 examples that satisfy Condition 1 (0 <).* < 1), and the second test includes

another 20 examples that satisfy Condition 2 (>. * 2: 1). The examples will be tested

by Algorithm 3, Algorithm 4 and 'linprog'. The testing environment is MATLAB 7.0.

Testing examples when Condition 1 is satisfied

There are 20 examples (see Appendix B.5) with different input data /Jj,k, ak, Tj,k, C

and ck. The output data are the server policy r5j,k and the throughput >.. First we run

the relaxations of 20 examples by 'linprog' and let >. * and 8j,k be the optimal values.

We know that 0 <).* < 1 for all of the examples. Let >.3 , 8],k be the solution of

Algorithm 3, and similarly, let >.4 and 6j,k be the solution of Algorithm 4. Vve define

a3 and a 4 to be the relative differences from >. 3 and). 4 versus >. *.

112 6. Ex p erime nts

Table 6.9 is the detailed computational results. Table 6.10 and Figure 6.5 show

the relative differences cr3 and cr4
.

,\j ,\4 ,\ *

Example 1 0.1250 0.2222 0.2500
Example 2 0.3000 0.3000 0.3281
Example 3 0.6667 0.6667 0.8333
Example 4 0.1500 0.2857 0.3000
Example 5 0.4444 0.4444 0.5000
Example 6 0.2000 0.2000 0.2000
Example 7 0.1852 0.1852 0.2540
Example 8 0.4167 0.4167 0.4556
Example 9 0.6667 0.1333 0. 7667
Example 10 0.4068 0.5854 0.6429
Example 11 0.0625 0.1250 0.1384
Example 12 0.2000 0.5161 0.5500
Example 13 0.4444 0.4444 0.5556
Example 14 0.4110 0.8333 0.9184
Example 15 0.6250 0.6667 0.7432
Example 16 0.2000 0.2581 0.2840
Example 17 0.2000 0.5882 0.7368
Example 18 0.5556 0.8654 0.8765
Example 19 0.6364 0.8000 0.9412
Example 20 0.3333 0.5000 0.5077

Table 6.9: Testing results of examples MPC2 with 0 < ,* < 1

6. Experiments 113

(J";j <74

Example 1 0.5000 0.8889
Example 2 0.9143 0.9143
Example 3 0.8000 0.8000
Example 4 0.5000 0.9524
Example 5 0.8889 0.8889
Example 6 1.0000 1.0000
Example 7 0.7292 0.7292
Example 8 0.9146 0.9146
Example 9 0.8696 0.1739
Example 10 0.6328 0.9106
Example 11 0.4516 0.9032
Example 12 0.3636 0.9384
Example 13 0.8000 0.8000
Example 14 0.4475 0.9074
Example 15 0.8409 0.8970
Example 16 0.7043 0.9088
Example 17 0.2714 0.7983
Example 18 0.6338 0.9873
Example 19 0.6761 0.8500
Example 20 0.6556 0.9848

Table 6.10: Relative differences from .\3 and .\4 versus .X.* for examples MPC2 with
0 <.X.*< 1

114 6. Experiments

Rela ·ve difference from solulions CJf Algorrthms 3 and 4 v"'sus tM opbmal Y31ue
11

D SolutiOn of Atoomhm3 versus the optimal value I
X Solunons of A19orithm4 ·1ersus IM 0\lbmal value

~ X
X X

0 9 llll
llll

1&1 X X X X X
X D

0 X
0.8 1&1 llll X

1l 0 .7 D
c: 0 [
~ 0 D "' 6 06

~
~

'& 0 5 0 0
0 0

0 4
D

03
0

0 2
X

0 .1
0 2 4 6 10 12 14 16 18 20

E~ample

Figure 6.5: Relative differences from A 3 and /\ 4 versus A* for examples MPC2 with
0 < A* < 1

According to the approximation results above, we observe that Algorithm 3 and

Algorithm 4 perform very well in almost all of the 20 testing examples , especially in

examples 2, 3, 6, 16 and 18. Comparing the results of Algorithm 3 and Algorithm

4, it is easy to see that most of the time, A4 is better than A3 (examples 1, 4, 10,

11 , 12, 14, 15, 16, 18, 19 and 20). However, in example 9, the throughput produced

by Algorithm 3 is 5 times better than the throughput produced by Algorithm 4. By

analy:,~,ing the solution of example 9, we find that in the server assignment <5J,k by

Algorithm 3, the slowest server does not work at all, in other words, we say that

this server is idle. However , in 6j,k, we find that the corresponding slowest server

is assigned to a class by Algorithm 4, and as a result decreases the capacity of the

queueing network. This is the reason why the solution of Algorithm 3 is better.

6. Experiments 115

Testing examples when Condition 2 is satisfied

We design another 20 examples (see Appendix B.6) when Condition 2 is satisfied

in TDCCP with costs. The output data are <5j,k and A. The optimal solutions of

relaxations A* and <5j,k are also generated by 'linprog'. A3 and <5],k are the solutions

of Algorithm 3. A 4 and <5j,k are the solutions of Algorithm 4. We define a 3 and a4

to be the relative differences from A3 and A4 versus A*. Table 6.11 is the detailed

computational results. Table 6.12 and Figure 6.6 show the relative differences a 3 and
a4.

A3 A4 A*
Example 1 1.4286 2.5000 3.0000
Example 2 1.8462 3.0000 3.7500
Example 3 1.5625 2.8571 3.1250
Example 4 2.5000 4.4444 4.7368
Example 5 1.3333 1.0000 1.5000
Example 6 4.0000 4.0000 4.0000
Example 7 2.3810 2.3810 3.2653
Example 8 3.7500 3.7500 4.1000
Example 9 8.0000 1.6000 9.2000
Example 10 1.6667 4.2105 4.8649
Example 11 0.6250 1.2500 1.2917
Example 12 5.0000 6.0000 8.2500
Example 13 1.6667 1.6667 2.0833
Example 14 4.2857 6.6667 6.9231
Example 15 4.7619 7.6923 9.1667
Example 16 3.0000 3.8710 4.2593
Example 17 4.4444 4.6154 5.1852
Example 18 3.3333 3.3333 3.5500
Example 19 1.7073 3.0000 3.9024
Example 20 5.0000 5.7143 7.3333

Table 6.11: Testing results of examples MPC2 with A* ;:::: 1

116 6. Experiments

(/3 (/4

Example 1 0.4762 0.8333
Example 2 0.4923 0.8000
Example 3 0.5000 0.9143
Example 4 0.5278 0.9383
Example 5 0.8889 0.6667
Example 6 1.0000 1.0000
Example 7 0.7292 0.7292
Example 8 0.9146 0.9146
Example 9 0.8696 0.1739
Example 10 0.3426 0.8655
Example 11 0.4839 0.9677
Example 12 0.6061 0.7273
Example 13 0.8000 0.8000
Example 14 0.6190 0.9630
Example 15 0.5195 0.8392
Example 16 0.7043 0.9088
Example 17 0.8571 0.8901
Example 18 0.9390 0.9390
Example 19 0.4375 0.7688
Example 20 0.6818 0.7792

Table 6.12: Relative differences from ,\3 and ,\4 versus,* for examples MPC2 with
,* 2": 1

6. Experiments 117

Relative dollerence from soMions or Alg<lfithms 3 and 4 versus tne op!lmat vaiU~
11

I 0 SoluttOO of AJ;jorrthm 3 versus the op!lmal value

X SO!utoo of Algorrthm 3 versus the OP!lfll al value
t8J

X X
X

[81
t8J

0.9 X X 0 X
0 X 0

X X
0.8 X t8J

X
X

0 r7 X
[

Ill
0 !15 06 0 ..

i D 0 &i 0.5 0 0
0 D

0
0.4

0
0.3

02
X

0.1
0 2 4 6 8 10 12 14 16 18 20

Example

Figure 6.6: Relative differences from ,\ 3 and ,\ 4 versus ,\ * for examples MPC2 with
,\ * ;:::: 1

The results in the above examples by Algorithm 3 and Algorithm 4 are very good.

In examples 6, 8 and 18, the throughputs produced by the two algorithms are close

to ,\ *. We also observe that the solution of Algorithm 4 are better than the solution

of Algorithm 3 in most examples (examples 1, 2, 3, 4, 10, 11, 12, 14, 15, 16, 17, 19

and 20). In example 9, the results show that the throughput produced by Algorithm

3 is much better than Algorithm 4. By analyzing the server assignments 8J,k and 8J,k,
we find that the reason is the same as we discussed before: the slow servers are over

assigned.

6.1.4 TDCCP with costs in the general case

Design of Examples

In the general case of TDCCP with costs, the input data are JLJ,k, ak, rj,k, C and

ck. But we do not require that the matrix /Lj,k has the same entry value in each row

118 6. Experiments

vector. Similar to the tests in Section 6.1.3 , we define the values of J\1! and I< to be

integers in (0, 20] and ck to be integers in (0 , 111]. The values of each entry in /-Lj ,k, Tj ,k

and ak are random real numbers in (0 , 100]. Let r jwx := maxj rj ,k· We also define the

budget C to be a real number randomly selected in (0, 10 '2:~1 rjax].
There will be two different tests. The first test includes 20 examples that satisfy

Condition 1 (0 <).* < 1) , and the second test includes 20 examples that satisfy

Condition 2 ().* 2 1).

The algorithm for solving the general (MPC2) will apply Algorithm 3 or Algorithm

4. All of the examples will be tested by applying Algorithm 3, Algorithm 4 and

'linprog' . The testing environment is also MATLAB 7.0.

Testing examples when Condition 1 is satisfied

We have 20 examples (see Appendix B.7) with different /-L j ,k, ak, r j ,k , C and ck· The

output data are 5j ,k and ,\. First we run the relaxations of 20 examples by 'linprog'

and let). * and 6j ,k be the optimal. Vve know that 0 <). * < 1 for all the examples . Let

).3' and 6J.'k be the solutions by applying Algorithm 3. Let).4
' and 6J:k be the solutions

by applying Algorithm 4. Vve also define o-3' and a-4
' to be the relative differences

from). 3' and). 4' versus). *.

6. Experiments 119

Table 6.13 is the detailed computational results. Table 6.14 and Figure 6. 7 show

the relative differences a 3' and a 4'.

,\3 ,\4 ,*

Example 1 0.0400 0.0286 0.2288
Example 2 0.0333 0.0536 0.4200
Example 3 0.0077 0.0183 0.0952
Example 4 0.0313 0.0551 0.4712
Example 5 0.1569 0.1600 0.5274
Example 6 0.0708 0.1620 0.2085
Example 7 0.0117 0.0332 0.3683
Example 8 0.0671 0.0941 0.4601
Example 9 0.0476 0.0804 0.4381
Example 10 0.3563 0.6405 0.8378
Example 11 0.0154 0.0190 0.1837
Example 12 0.0192 0.0313 0.3115
Example 13 0.0038 0.0087 0.1373
Example 14 0.0357 0.1081 0.5485
Example 15 0.2833 0.4435 0.5445
Example 16 0.0091 0.0291 0.2230
Example 17 0.0202 0.0624 0.4058
Example 18 0.0851 0.1250 0.5409
Example 19 0.0554 0.1080 0.5430
Example 20 0.0185 0.0455 0.4272

Table 6.13: Testing results of examples MPC with 0 < ,\ * < 1

120 6. Experiments

(/3 (/4

Example 1 0.1748 0.1249
Example 2 0.0794 0.1276
Example 3 0.0808 0.1924
Example 4 0.0663 0.1170
Example 5 0.2974 0.3033
Example 6 0.3398 0.7773
Example 7 0.0318 0.0902
Example 8 0.1459 0.2045
Example 9 0.1087 0.1834
Example 10 0.4252 0.7644
Example 11 0.0838 0.1037
Example 12 0.0617 0.1003
Example 13 0.0280 0.0633
Example 14 0.0651 0.1971
Example 15 0.5203 0.8144
Example 16 0.0408 0.1303
Example 17 0.0498 0.1537
Example 18 0.1573 0.2311
Example 19 0.1019 0.1989
Example 20 0.0433 0.1064

Table 6.14: Relative differences from /\ 3' and),4' versus .A * for examples MPC with
0 <).* < 1

6. Experiments

Relative <tlf!erem:e rrom solu1iom of a~·plying AlfJOOthms 3 and 4 versus the opbmJI value
09,-----------------------------.. ----.-----.----,----,

0 Solution of appl~'!llg Algofffllm 3 versus the optimal value I
X Solution of applying Algo!lthm 4 versus the optimal value

X 0.8
X X

121

Figure 6.7: Relative differences from ,\3
' and ,\4

' versus,* for examples MPC with
0 < ,* < 1

In those examples with 0 < ,* < 1, we apply the same formula t5j,k := xj,k to
(WjJ.Lj,k)

generate the approximate solutions, where Wj := 11Tax / 11Tin. Thus it is reasonable

that we may get the bad approximate solutions again. Also, when Wj is close to 1, the

approximation result we get will be much better (examples 6, 10 and 15). It is easy

to see that in all examples except example 1, applying Algorithm 4 is better than

applying Algorithm 3. In example 16, ,\ 4' is much better than ,\ 3'. We analyze the

server assignment policy produced by applying Algorithm 3 and find that the slower

servers are assigned to classes with larger proportions of working time.

Testing examples when Condition 2 is satisfied

We design another 20 examples (see Appendix B.8) when Condition 2 is satisfied in

the general TDCCP with costs. The optimal solutions of the relaxations ,\ * and 6j,k
are generated by 'linprog'. ,\3' and 6fk are the solutions by applying Algorithm 3. ,\4'

122 6. Experiments

and 6J,'k are the solutions by applying Algorithm 4. We also define 0"
3

' and 0"
4

' to be

the relat ive differences from A3' and A 4' versus A*. The detailed computational results

are shown in Table 6.15. Table 6. 16 and Figure 6.8 show the relative differences 0"
3

'

and 0"4' .

A3 A4 A*
Example 1 0.5000 0.6667 3.0682
Example 2 0.6000 0.5357 5.7143
Example 3 2.0571 2.4000 3.9916
Example 4 0.3571 0.5882 5.2632
Example 5 1.8667 3.5000 4.9148
Example 6 0.2143 0.4390 5.7852
Example 7 0.5208 0.5870 6.7518
Example 8 0.4878 0.7018 3.2648
Example 9 0.3571 0.8333 4.5830
Example 10 0.6400 0.9412 5.7398
Example 11 0.4444 0.5714 5.7447
Example 12 1.1250 3.2727 6.4060
Example 13 0.0645 0.0789 2.5263
Example 14 2.1538 4.4167 9.9785
Example 15 0.5556 0.9524 7.1909
Example 16 0.3226 0.9143 5.9669
Example 17 0.1307 0.1449 2.3374
Example 18 0.4000 0.9091 4.9437
Example 19 0.5536 1.0652 5.5583
Example 20 0.2083 0.4255 4.2722

Table 6.15: Testing results of examples MPC with). * ~ 1

6. Experiments 123

(J3 (J4

Example 1 0.1630 0.2173
Example 2 0.1050 0.0938
Example 3 0.5154 0.6013
Example 4 0.0679 0.1118
Example 5 0.3798 0.7121
Example 6 0.0370 0.0759
Example 7 0.0771 0.0869
Example 8 0.1494 0.2149
Example 9 0.0779 0.1818
Example 10 0.1115 0.1640
Example 11 0.0774 0.0995
Example 12 0.1756 0.5109
Example 13 0.0255 0.0313
Example 14 0.2158 0.4426
Example 15 0.0773 0.1324
Example 16 0.0541 0.1532
Example 17 0.0559 0.0620
Example 18 0.0809 0.1839
Example 19 0.0996 0.1916
Example 20 0.0488 0.0996

Table 6.16: Relative differences from). 3' and). 4' versus). * for examples MPC with
).* 2: 1

124

8 c
~
"'

6. Experiments

Relative oim:ren~ from solub.ons of appl;ing Algorithms 3 and 4 versus the optimal •aJue
0 8 .---------------------------~~----~----~--~-----o Solution of appr,ing Algonthm 1 versus the optimal value I

0 .7

X Solut100 of appMng Algorrthm 4 versus the opnmal value

X

05 X

0 .5 0 X

X

C) 0 4 .,
~ 0
~

&
0.3

0.2
X

0

X 0
X 0 X X

0 X X
X

0 1 R

0

X 0 X 0
0 X E3 0 0 0

~
0

? 0 0
~

0 4 s 10 12 14 16 18 20
Example

Figure 6.8: Relative differences from >.3' and >.4' versus).* for examples MPC with
)..* 2:: 1

The above results show the poor performance of the algorithms for solving the

general case of TDCCP with costs. It is also clear that in all examples except example

2, applying Algorithm 4 generates a better solution. Only the throughputs produced

in examples 3, 5, 12 and 14 are good, while in others, especially in example 13, both

algorithms perform poorly. The reason is also because the number wj is too big.

Therefore, we finally obtain the very small bj,k, which gives us the bad approximation

results.

6 .2 Summary of Experiments

By the observations from our experiments, we can conclude that in the case when

service rates are independent of classes (all classes are identical) , all algorithms can

usually produce very good approximation results for both TDCCP and TDCCP with

6. Experiments 125

costs. Let Wmax := maxj{ Wj }. In the general case of TDCCP and TDCCP with costs,

the approximation results will depend on the value Wmax· Our experiment results tell

us that when Wmax ~ 1, we can still obtain good approximate solutions. However, if

Wmax is very large, we will achieve bad approximate solutions.

In the tests of TDCCP without costs, we find that in most examples, the approx

imate solutions of Algorithm 2 are at least as good as the approximate solutions of

Algorithm 1. Thus, Algorithm 2 is suggested for solving TDCCP without costs. In

the tests of TDCCP with costs, we find that Algorithm 4 can beat Algorithm 3 in

most examples. Therefore, Algorithm 4 is strongly recommended for solving TDCCP

with costs.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Vve have described an ent ire model of queueing networks with limited flexibility. By

using some parameters of queueing networks, we presented the deterministic opti

mization problem TDCCP. Since the solution of the problem TDCCP can be directly

mapped back to a solution of the original queueing network problem, we established

t he connections between both problems. Furthermore, we extended the problem TD

CCP to the problem TDCCP with costs by introducing costs into the system and

gave its mathematical definition.

After obtaining the mathematical programs TDCCP and TDCCP with costs, we

showed that when all servers are identical, both TDCCP and TDCCP with costs can

be solved in polynomial time. However, when all classes are identical, we showed

that both TDCCP and TDCCP with costs are NP-Complete. Thus we designed

two approximation algorithms Algorithm 1, Algorithm 2 for solving TDCCP, and

two approximation algorithms Algorithm 3, Algorithm 4 for solving TDCCP with

costs. Then we proved that Algorithm 1 is a 1/ 10-approximation algorithm, Algo

rithm 3 is a 1/ 12-approximation algorithm, Algorithm 2 and Algorithm 4 are 2 (1~P)

approximation algorithms, where p := maxj k ak>.·. By applying Algorithms 1, 2, 3
' Ck/.Lj

and 4 , we also gave approximation algorithms for solving the general case of TDCCP

and TDCCP with costs .

We implemented the approximation algorithms for solving TDCCP and TDCCP

126

7. Conclusions and Future Work 127

with costs. Detailed computational results on several experiments showed that Al

gorithms 1, 2, 3 and 4 can both produce good approximate results in the case of

PJ,k = /.1j· However, applying Algorithms 1, 2, 3 and 4 for solving the general cases of

TDCCP and TDCCP with costs might incur bad approximate results (though they

are still much better than theoretical lower bounds).

7.2 Future works

The numerical results show that our algorithms do not perform very well in the general

cases of TDCCP and TDCCP with costs. Thus, designing a better approximation

algorithm for solving the general cases of TDCCP and TDCCP with costs remains

to be studied.

Based on our experiments, we also observe three methods which may improve the

throughput of the system. The first method is that we try to prevent idle servers,

in other words, we should keep each server as busy as possible. The second method

is that we can increase the proportion of server working time o1,k for faster servers

and decrease o1,k for those slower servers. The third method is that we can allow

preemption of activities, i.e. let faster servers have preemption to work and classes

with larger customer arrival rates have preemption to be processed. Future work

will also include enabling the above three methods applicable and designing better

approximation algorithms in queueing networks with limited flexibility.

Bibliography

[AADOl] S. Andrad6ttir , H. Ayhan. and D. G. Down. Server assignment policies

for maximizing the steady-state throughput of finite queueing systems.

Managem ent Science, 47:1421- 1439, 2001.

[AAD03] S. Andrad6ttir , H. Ayhan, and D. G. Down. Dynamic server allocation for

queueing networks with flexible servers. Operations Research, 51:952- 968 ,

2003.

[BKS02] G. Baier , E. Kohler , and M. Skutella. On the k-splittable flow problem.

Proceedings of ESA '02, 2002 .

[DGG99] Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable

flow problem. Combinatorica, 19:17- 41 , 1999.

[DL05]

[HS96]

J. G. Dai and 'N. Lin. Maximum pressure policies in stochastic processing

networks. Operations Research, 53:197- 218 , 2005.

F . S. Hillier and K. C. So. On the simultaneous optimization of server and

work allocations in production line systems with variable processing times.

Operations Research, 44:435- 443, 1996.

[Hv004] W . J. Hopp and M. P. van Oyen. Agile workforce evaluation: A frame

work for cross-training and coordination. !IE Transactions , 36(10):919-

940, 2004.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. Complexity of

Computer Computations, pages 85- 103, 1972. Plenum Press.

128

BIBLIOGRAPHY 129

[Kle96] J. M. Kleinberg. Single-source unsplittable flow. Proceedings 37th Annual

Symposium on Foundation of Computer Science (FOCS'96), pages 68-77,

1996.

[KS02] S. G. Kolliopoulos and C. Stein. Approximation algorithms for single

source unsplittable flow. SIAM J. Computing, 31:919-946, 2002.

[Lov86] Laszlo Lovasz. Matching theory. 1986.

[LST90] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms

for scheduling unrelated parallel machines. Mathematical Programming,

46(3):259-271, 1990.

[Mur95] Katta G. Murty. Operations Research Deterministic Optimization Models.

1995.

[OMT90] .J. Ostalaza, J. McClain, and .J. Thomas. The use of dynamic (state

dependent) assembly-line balancing to improve throughput. Journal of

Manufacturing and Operations Management, 3:105-133, 1990.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. 1986.

[Sim72] Donald M. Simmons. Linear Programming for Operations Research. 1972.

[Sku02] M. Skutella. Approximating the single source unsplittable min-cost flow

problem. Mathematical Programming B, 91:493-514, 2002.

[SM90] Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow

problem. Journal of the ACM, 37(2):318-334, 1990.

[ST93] D. B. Shmoys and E. Tardos. An approximation algorithm for the gener

alized assignment problem. Mathematical Programming A, 62(3):461-474,

1993.

[SXYZ01] M. S. Squillante, C. H. Xia, D. D. Yao, and L. Zhang. Threshold-based

priority policies for parallel-server systems with affinity scheduling. In

Proceedings of the 2001 American Control Conference, pages 2992-2999,

2001.

130 BIBLIOGRAPHY

[TBOO] L. Tassiulas and P. B. Bhattacharya. Allocation of independent resources

for maximal throughput . Stochastic Models, 16:27- 48, 2000.

[Tod02] lVIichael J. Todd. The many facets of linear programming. Mathematical

PTOgramming, 91(3):417- 436, 2002.

Appendix A

Symbols and Acronyms

Name

AP

MCM

MP

MP'

MPC

MPC'

M1

MP1

MPC1

MP2

MPC2

MP2'

MP2"

Definition

Mathematical program of the assignment problem

Mathematical program of the minimum cost bipartite

matching problem

Mathematical program of TDCCP

Mathematical program of TDCCP when J-L = o: · ,fJT

Mathematical program of TDCCP with costs

Mathematical program of TDCCP with costs when

J-L = 0:. {JT

Mathematical program of the scheduling of unrelated

machines problem

Mathematical program of TDCCP when

J-lj,k = J-lk

Mathematical program of TDCCP with costs when

J-lj,k = J-lk

Mathematical program of TDCCP when J-Lj,k = J-l)

Mathematical program of TDCCP with costs when

J-lj,k = J-lj

An Instance of the maximum concurrent multicommodity

k-splittable flow problem

Relaxation of MP2'

131

132

MPC2'

MPC2"

MP3

MPC3

SCl

SC2

Sl

S2

TDCCP

A . Symbols and Acronyms

An instance of the constrained maximum concurrent

Mult icommodity k-splittable flow problem

Relaxation of MPC2 '

An instance of t he maximum concurrent multicommodity

k-splittable flow problem

An instance of the constrained maximum concurrent

multicommodity k-splittable flow problem

Relaxation of an instance of the scheduling of unrelated

machines problem with costs

Relaxation of an instance of the scheduling of unrelated

machines problem with costs

Relaxation of an instance of the scheduling of unrelated

machines problem

Relaxation of an instance of the scheduling of unrelated

machines problem

Total discrete capacity constrained problem

Appendix B

Testing Examples

B.l TDCCP without costs when all classes are

identical and Condition 1 is satisfied

Example 1:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 1 1 1 1 1 1 1 1 1

{lj,k =
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

ak = (1 1 2 2 2 2 2 2 2 2)

Ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
{lj,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

ak = (2 2 2 2 2 2 2 2)

Ck = (3 3 3 3 3 3 3 3)

133

134 B . Testing Examples

Example 3:

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
/-L j ,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

ak = (10 10 10 10 10 10 10 10 10 10 10 10)
Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 4:
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

/-Lj ,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

ak = (4 4 4 4 4 2 2 2 2 2)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

~j ,k = (~
3 3 3 3

}J 2 2 2 2

0.5 0.5 0.5 0.5 0.5

ak = (1.5 1.5 1.5 1.5 1.5 1.5)

Ck = (2 2 2 2 2 2)

Example 6:
7 7 7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

/-L j ,k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

ak = (10 10 10 10 10 10 10 10 10)

B. Testing Examples 135

Ck = (4 4 4 4 4 4 4 4 4)

Example 7:
0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

{lj,k =
0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.5 0.5 0.5 0.5 0.5 0.5

ak = (1.1 1.1 1.1 1.1 1.1 1.1 1.1)

Ck = (5 5 5 5 5 5 5)

Example 8:

~;k= c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
ak =

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8)

ck = (1)

Example 9:
0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 2 2 2 2 2 2

{tj,k = 3 3 3 3 3 3 3
4 4 4 4 4 4 4

1 1 1 1 1 1 1

ak = (2 2 2 2 2 2 2)

Ck = (4 4 4 4 4 4 4)

Example 10:
1 1 1 1 1

3 3 3 3 3
{tj,k =

4 4 4 4 4

2 2 2 2 2

136 B. Testing Examples

ak = (10 10 10 10 w)
Ck = (3 3 3 3 3)

Example 11:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
~lj,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

ak = (1 1 1 1 1 1 1 1 1 1)

Ck = (2 2 2 2 2 2 2 2 2 2)

Example 12:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Mj ,k =

1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8

ak = (3 3 3 3 3 3 3 3)

Ck = (2 2 2 2 2 2 2 2)

Example 13:

1 1 1 1 1 1 1 1 1 1 1 1

9 9 9 9 9 9 9 9 9 9 9 9
Mi,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

ak = (9 9 9 9 9 9 9 9 9 9 9 9)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 14:
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

Mi ,k = 9 9 9 9 9 9 9 9 9 9

3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5

B. Testing Examples 137

ak = (7 7 7 7 7 7 7 7 7 7)

Ck = (3 3 3 3 3 3 3 3 3 3)

Example 15:

M;,k = (! 3 3 3 3

o!J 4 4 4 4

0.5 0.5 0.5 0.5 0.5

ak = (1.5 1.5 1.5 1.5 1.5 1.5)

Ck = (1 1 1 1 1 1)

Example 16:

7 7 7 7 7 7 7 7 7

9 9 9 9 9 9 9 9 9
JLj,k =

2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

ak = (4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9)

Ck = (1 1 1 1 2 2 2 2 2)

Example 17:
0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
/Lj,k =

0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.5 0.5 0.5 0.5 0.5 0.5 0.5

ak = (1.9 1.9 1.9 1.9 1.9 1.9 1.9)

Ck = (4 4 4 4 3 3 3)

Example 18:

M;,k = 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

138 B. Testing E xamples

(1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
ak =

1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8)

Ck = (2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1)

Example 19:
1 1 1 1 1 1 1

9 9 9 9 9 9 9

/-L j ,k = 3 3 3 3 3 3 3

5 5 5 5 5 5 5

7 7 7 7 7 7 7

ak = (4 4 4 4 4 4 4)

Ck = (2 2 2 2 1 1 1)

Example 20:

1 1 1 1 1

3 3 3 3 3
/-L j ,k =

4 4 4 4 4

2 2 2 2 2

ak = (3 3 3 3 3)

Ck = (1 1 1 2 2)

B.2 TDCCP without costs when all classes are

identical and Condition 2 is satisfied

Example 1:

5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1
/-Lj,k =

1 1 1 1 1 1 1 1 1 1

9 9 9 9 9 9 9 9 9 9

ak = (1 1 1 1 1 2 2 2 2 2)

B. Testing Examples 139

ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:

2 2 2 2 2 2 2 2

8 8 8 8 8 8 8 8
J-lj,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

ak = (1 1 0.5 0.5 0.5 0.25 0.25 0.5)

Ck = (3 3 3 3 3 3 3 3)

Example 3:

10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10
J-lj,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

ak = (1 1 1 1 1 1 1 1 1 1 1 1)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 4:

20 20 20 20 20 20 20 20 20 20

1 1 1 1 1 1 1 1 1 1

J-lj,k = 10 10 10 10 10 10 10 10 10 10

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

ak = (1 1 1 1 1 2 2 2 2 2)

ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

c3 3 3 3 3)
J-lj,k = 2 2 2 2 2 2

5 5 5 5 5 5

140 B. Testing Examples

ak = (1 1 0.5 0.5 0.5 1)

Ck = (2 2 2 2 2 2)

Example 6:

7 7 7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

~lj , k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

ak = (0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2)

Ck = (4 4 4 4 4 4 4 4 4)

Example 7:

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2
~j,k =

3 3 3 3 3 3 3

3 3 3 3 3 3 3

5 5 5 5 5 5 5

ak = (1.1 1.1 1.1 1.1 1.1 1.1 1.1)

Ck = (5 5 5 5 5 5 5)

Example 8:

P;,k = (:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ak =

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)

Ck = (1)

B. Testing Examples 141

Example 9:

1 1 1 1 1 1 1

2 2 2 2 2 2 2

/-Lj,k = 3 3 3 3 3 3 3

4 4 4 4 4 4 4

10 10 10 10 10 10 10

ak = (2 2 2 2 2 2 2)

Ck = (4 4 4 4 4 4 4)

Example 10:

1 1 1 1 1

3 3 3 3 3
/-Lj,k =

4 4 4 4 4

2 2 2 2 2

ak = (0.5 0.5 0.5 0.5 0.5)

ck = (3 3 3 3 3)

Example 11:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
/-Lj,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

ak = (0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)

Ck = (2 2 2 2 2 2 2 2 2 2)

Example 12:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
/-Lj,k =

1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8

142 B . Testing Examples

ak = (0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3)

Ck = (2 2 2 2 2 2 2 2)

Example 13:

10 10 10 10 10 10 10 10 10 10 10 10
9 9 9 9 9 9 9 9 9 9 9 9

J.l j ,k =
30 30 30 30 30 30 30 30 30 30 30 30
10 10 10 10 10 10 10 10 10 10 10 10

ak = (1 1 1 1 1 2 2 2 2 2 1 1)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 14:
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

J.lj ,k = 9 9 9 9 9 9 9 9 9 9

3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5

ak = (0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5)

Ck = (3 3 3 3 3 3 3 3 3 3)

Example 15:

~j ,k ~ (:

9 9 9 9

0~) 4 4 4 4
0.5 0.5 0.5 0.5 0.5

ak = (0.5 0.5 0.5 0.5 0.5 0.5)

Ck = (1 1 1 1 1 1)

Example 16:
7 7 7 7 7 7 7 7 7

9 9 9 9 9 9 9 9 9
J.lj ,k =

2 2 2 2 2 2 2 2 2

50 50 50 50 50 50 50 50 50

B. Testing Examples

ak = (0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9)

Ck = (1 1 1 1 2 2 2 2 2)

Example 17:

Example 18:

M;,k = u 2

4

3

(0.08
ak =

0.08

ck = (2 2

Example 19:

0.8 0.8 0.8 0.8 0.8 0.8

2 2 2 2 2 2

2 2 2 2 2 2
JLj,k =

3 3 3 3 3 3

3 3 3 3 3 3

5 5 5 5 5 5

ak = (0.9 0.9 0.9 0.9 0.9 0.9

Ck = (4 4 4 4 3 3 3)

2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3

0.08 0.08 0.08 0.08 0.08 0.08

0.08 0.08 0.08 0.08 0.08 0.08

2 2 2 2 2 2 2 1 1 1 1 1

10 10 10 10 10 10

9 9 9 9 9 9

/Lj,k = 3 3 3 3 3 3

5 5 5 5 5 5

70 70 70 70 70 70

ak = (2 2 2 2 2 2 2)

Ck = (2 2 2 2 1 1 1)

0.8

2

2

3

3

5

0.9)

2 2 2 2 2 2)
4 4 4 4 4 4

3 3 3 3 3 3

0.08 0.08 0.08

0.08 0.08 0.08)

1 1 1 1 1 1)

10

9

3

5

70

143

144 B . Testing Examples

Example 20:

10 10 10 10 10

3 3 3 3 3
/.Lj ,k =

4 4 4 4 4

2 2 2 2 2

ak = (0.3 0.4 1 0.2 0.3)

Ck = (1 1 1 2 2)

B.3 TDCCP without costs in the general case when

Condition 1 is satisfied

Example 1:

0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5

2 1 1 3 1 2 1 2 1 1
/.Lj ,k =

1 1 4 1 1 2 1 3 1 1

2 5 2 3 1 2 2 2 2 2

ak = (1 1 2 2 2 2 2 2 2 2)

Ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:
0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.3

1 0.8 0.8 0.8 0.8 1.2 0.8 0.8
/.Lj ,k =

1 1 1 0.2 1 1 0.2 1

4 4 4 4 4 4 4 4

ak = (3 3 3 3 2 2 2 2)

Ck = (3 3 3 3 3 3 3 3)

Example 3:

~j,k ~ (:

2 1 1 1 1 1 4

~) 3 3 1 3 3 3 3

5 5 5 5 5 5 1

B. Testing Examples 145

ak = (2 1 1 2 3 3 2 1 1)

Ck = (2 1 1 1 2 2 2 2 2)

Example 4:
2 2 2 2 2 2 2 2 2 2

1 3 1 1 1 1 1 1 1 1

/Lj,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 2 3 2 1 1 3 3

2 2 2 2 2 2 2 2 2 2

ak = (2 2 2 2 1 1 2 2 2 2)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

~jk = (1
3
8

3 2.8 3 3

1
3
8) 1.8 2 1.9 1.8

1.7 2 1.9 1 1.8 1.9

ak = (3 1.8 2 1.8 3 1.5)

Ck = (2 2 2 2 2 2)

Example 6:

7 7 7 7 1 7 7 7 7

1 1 2 1 1 1 1 1 1
/Lj,k =

2 2 2 3 2 2 2 2 2

5 5 5 4 5 5 4 5 5

ak = (5 2 2 3 4 2 1 1 1)

Ck = (1 1 1 1 1 1 1 1 1)

Example 7:
0.1 0.1 0.1 0.2 0.1 0.1 0.1

0.2 0.2 0.3 0.2 0.2 0.2 0.2

/Lj,k = 0.2 0.1 0.2 0.2 0.1 0.3 0.2

0.3 0.2 0.3 0.3 0.3 0.3 0.4

0.5 0.3 0.5 0.3 0.5 0.5 0.5

146

Example 8:

Example 9:

Example 10:

Example 11:

/-L j,k =

B. Testing Examples

ak = (0.9 0.7 0.9 0.9 0.9 0.9 0.9)

Ck = (1 1 2 2 3 3 3)

cg 1.89 2 2 2 2

D /-L j ,k = ~ 4 3.92 3.9 4 4

3 3 3 2.9 2.95

ak = (1.8 1.9 1.9 0.6 1.2 5.8 2.9)

Ck = (2 2 2 1 1 1 1)

0.1 0.1 0.2 0.1 0.1 0.1 0.1

2 1 2 2 2 1 2

/-L j,k = 3 3 3 4 3 3 3

4 1 1 1 4 4 4

7 2 1 2 3 3 1

ak = (8 2 9 4 2 2 2)

Ck = (1 1 1 2 2 2 2)

1 1 1 1 1

3 3 3 2.9 3.1
flj ,k =

2.5 2.6 2.6 2.6 2.7

2 2 2 1.9 2

ak = (2 4 3 2 2.7)

Ck = (1 2 3 2 3)

0.5 0.8 0.5 0.5 0.8 0.5 0.5 0.7 0.5

2 1 1 3 1 4 1 1 1

2 1 1 1 1 2 2 2 1

2 4 2 3 3 2 2 2 2

0.5

1

1

2

B. Testing Examples 147

ak = (3 3 3 3 3 3 3 3 3 3)

Ck = (2 2 2 2 2 2 2 2 2 2)

Example 12:

0.2 1 1 0.2 0.2 1 0.2 0.8

0.6 0.8 0.8 0.8 0.8 0.3 0.8 0.8
/.Lj,k =

1 1 1 2 1 1 2 1

4 4 4 6 4 4 4 4

ak = (7 7 7 7 7 7 7 7)

Ck = (3 3 3 3 3 3 3 3)

Example 13:

M;•= c 2 1 1 1 2 1 4

D 3 3 5 3 3 3 3

5 5 5 3 5 5 3

ak = (2 1 2 2 2 2 2 1 1)

Ck = (1 1 1 1 1 1 1 1 1)

Example 14:

2 2 2 2 1 2 2 2 2 2

1 3 1 1 1 1 2 1 1 1

/.Lj,k = 1 1 1 5 1 1 1 1 1 1

3 3 3 2 3 2 1 1 3 3

2 2 4 2 2 2 7 2 2 2

ak = (3 3 2 2 1 1 6 6 6 6)

Ck = (2 2 2 2 1 1 1 4 4 4)

Example 15:

cg 5.8 5.7 5.6 6 55)
/.Lj,k = 2.9 3 2.8 2.9 2.8 2.8

4.8 4.9 5 4.9 4.9 4.8

148 B. Testing Examples

ak = (6 1.5 2 8 1.5 1.5)

ck = (1 1 1 1 1 1)

Example 16:

15 7 7 7 7 7 7 7 7

1 1 2 1 1 1 3 1 1
J..L j ,k =

2 2 2 1 2 2 8 2 2

5 1 5 5 5 5 5 1 5

ak = (8 15 2 3 1 2 7 1 1)

Ck = (1 2 1 1 1 1 1 1 2)

Example 17:
0.5 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2

J..Lj ,k = 0.2 0.2 0.2 0.2 0.2 1 0.2

0.3 0.3 0.3 0.3 0.3 0.3 0.9

0.5 0.5 0.7 0.5 0.5 0.5 0.5

ak = (1.9 0.7 1.9 0.9 0.9 0.9 0.9)

Ck = (1 1 2 2 3 3 3)

Example 18:

Mi,k = (~O
10 10.5 11 11 10 10.5)
8.5 8.7 8.9 8.8 8.7 8.8

2.9 3 3 3 2.8 2.9

ak = (1.8 9 11 0.9 0.9 0.9 0.9)

Ck = (2 2 2 1 1 1 1)

Example 19:
0.8 0.1 0.2 0.1 0.1 0.1 0.1

2 1 2 2 2 3 2

J..ij ,k = 3 3 3 4 3 3 3

4 1 1 1 4 4 4

9 2 2 2 3 3 1

B. Testing Examples 149

ak = (1 2 20 4 7 2 2)

Ck = (1 2 1 2 2 2 2)

Example 20:

1 1 2 1 1

3 3 3 2 3.5
/.Lj,k =

1 1 1 3 4.7

2 2 4 5 2

ak = (3.5 4.7 1.5 5 1)

Ck = (1 3 3 1 3)

B.4 TDCCP without costs in the general case when

Condition 2 is satisfied

Example 1:

5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

20 10 9 3 9 2 9 2 1 1
/.Lj,k =

10 10 40 10 1 2 8 3 8 1

20 5 20 3 10 2 20 20 20 2

ak = (1 1 1 2 2 2 2 2)

Ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:

2 0.2 0.1 0.2 0.2 0.2 0.2 0.3

8 8 8 8 8 1.2 0.8 0.8
/.Lj,k =

1 8 8 2 10 8 0.2 8

4 4 4 4 4 4 4 4

ak = (1 1 3 3 1 2 2 2)

Ck = (3 3 3 3 3 3 3 3)

150 B. Testing Examples

Example 3:

~j.k ~ c 2 1 10 1 1 1 4

i) 3 30 1 3 30 3 3

5 5 5 5 5 5 1

ak = (0.5 1 1 2 0.3 0.3 2 1 1)

Ck = (2 1 1 1 2 2 2 2 2)

Example 4:

9.7 10 9 10 9.8 9.6 9.6 10 9.7 9.8

4.5 4.7 5 4.8 5 4.9 5 4.5 4.5 4.5

/-L j ,k = 4.7 4.8 5 4.7 5 4.8 4.5 5 4.9 4.9

8.9 8.5 9 8.7 8.7 9 8.7 9 8.8 8.6

19.7 20 19 19.5 19.6 19.3 19.9 19.4 19.8 19.5

ak = (2 2 0.2 2 1 1 2 0.2 2 2)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

~j.k = (~
30 3 30 3

30)
10 2 10 10

0

1

5 0.5 2 5 1 0.5

ak = (1 0.5 1.5 0.8 3 1.5)

Ck = (2 2 2 2 2 2)

Example 6:

14 14.5 14 15 14.7 14.7 14.8 14.9 14.5

8 9 8.8 8.6 8 9 8.7 8 8
/-Lj ,k =

4.6 5 4.7 4.9 5 5 4.7 5 4.6

5 5 5 4.5 5 5 4.9 5 5

ak = (1 2 2 3 4 2 1 1 1)

B. Testing Examples 151

Ck = (1 1 1 1 1 1 1 1 1)

Example 7:

1 1 1 0.2 1 0.1 0.1

0.2 0.2 0.3 0.2 0.2 0.2 0.2

/-lj,k = 2 0.1 2 0.2 1 0.3 0.2

0.3 0.2 0.3 3 10 0.3 0.4

5 0.3 5 0.3 5 5 1

ak = (0.9 0.7 0.9 0.9 0.9 0.9 0.9)

Ck = (1 1 2 2 3 3 3)

Example 8:

co 10 9.5 9.6 9.7 9.9
10)

/-lj,k = 169 18 20 19 18 18.5 18.9

5.5 5.7 5.7 5.6 5.8 5.9

ak = (1.8 1.9 1.9 0.6 1.2 5.8 2.9)

Ck = (2 2 2 1 1 1 1)

Example 9:

1 1 2 0.1 0.1 1 0.1

2 1 2 2 2 1 2

/-lj,k = 3 3 9 4 3 5 3

4 9 9 1 4 4 4

7 2 1 2 8 3 1

ak = (1.8 2 1 0.4 1 2 2)

Ck = (1 1 1 2 2 2 2)

Example 10:

10 10 10 1 1

3 7 3 2 3.5
/-lj,k =

9 5 6 2 2.7

2 5 2 0.2 2

152 B . Testing Examples

ak = (2 0.4 1 2 2.7)

Ck = (1 2 3 2 3)

Example 11:

5 0.8 5 0.5 8 0.5 5 7 0.5 0.5

2 8 8 9 9 4 9 9 8 1
/-Lj ,k =

20 10 10 15 8 20 2 20 8 1

2 40 20 30 30 20 20 20 20 2

ak = (2 1 1 1 1 1 1 1 1 2)

Ck = (2 2 2 2 2 2 2 2 2 2)

Example 12:

0.2 1 1 0.2 0.2 1 0.2 0.8

6 8 8 8 0.8 30 0.8 0.8
/-Lj ,k =

10 1 1 2 10 10 20 1

4 40 4 60 4 40 40 4

ak = (3 3 1 1 3 5 6 1)

Ck = (3 3 3 3 3 3 3 3)

Example 13:

co 20 10 10 10 20 10 20

D /-Lj,k = ~ 3 3 50 30 30 2 3

5 5 50 30 5 4 15

ak = (2 1 2 2 2 2 2 2 1)

Ck = (1 1 1 1 1 1 1 1 1)

Example 14:
2 2 8 2 10 2 8 8 2 2

10 3 1 1 1 1 2 1 1 1

/-Lj ,k = 1 1 1 5 1 1 1 1 1 1

3 30 3 2 30 2 1 1 30 30

2 2 4 2 2 2 5 2 2 2

B. Testing Examples 153

ak = (3 3 2 2 1 1 1 1 3 2)

Ck = (2 2 2 2 1 1 1 4 4 4)

Example 15: cg 8.9 9 9 8.8 88)
/1j,k = 8~6 8 7.8 7.9 8 7.9

4.9 5 4.5 4.8 5

ak = (1 1.5 2 2 1.5 1.5)

Ck = (1 1 1 1 1 1)

Example 16:

15 10 15 7 17 7 17 7 7

10 10 2 10 10 1 3 1 1
/1j,k =

2 8 2 1 8 2 8 2 2

5 10 5 5 15 5 15 1 5

ak = (0.8 1 2 3 1 2 3 1 1)

Ck = (1 2 1 1 1 1 1 1 2)

Example 17:

5 1 0.1 1 1 0.1 0.1

2 2 2 2 2 2 4

/1j,k = 0.2 0.2 0.2 2 0.2 1 0.2

0.3 3 0.3 3 3 0.3 0.9

5 5 7 0.5 5 5 0.5

ak = (0.9 0.7 1.1 0.3 0.3 0.4 0.9)

Ck = (1 1 2 2 3 3 3)

Example 18:

~j,k ~ (~
19 20 19.5 20 20 199)
8.8 8.9 8.6 8.5 8.7 8.6

6.5 6.9 7 6.6 6.8 6.7 6.9

154

Example 19:

Example 20:

B. Testing Examples

a k = (1.8 0.9 1.1 0.9 0.9 0.9 0.9)

Ck = (2 2 2 1 1 1 1)

8 0.1 2 0.1 1 10 0.1

2 10 2 2 2 3 2

/.Lj ,k = 3 3 3 4 3 3 3

4 1 14 1 4 4 4

9 3 2 2 3 3 1

ak = (1 2 2 0.4 3 2 2)

Ck = (1 2 1 2 2 2 2)

10 10 20 10 10

3 3 3 2 3.5
f..L j ,k =

10 10 10 3 4.7

2 3 4 5 2

ak = (3.5 4.7 0.5 1 1)

Ck = (1 3 3 1 3)

B.5 TDCCP with costs when all classes are iden

tical and Condition 1 is satisfied

Example 1:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
/.Lj ,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

B. Testing Examples 155

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
Tj,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

C=6

ak = (1 1 2 2 2 2 2 2 2 2)

ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
/.1j,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Tj,k =

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

C=4

ak = (2 2 2 2 2 2 2 2)

Ck = (3 3 3 3 3 3 3 3)

Example 3:

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
/.1j,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2
Tj,k =

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

c = 16

156 B . Testing Examples

ak = (1 1 1 1 1 1 1 1 1 1 1 1)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 4:

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

/.Lj ,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

rJ ,k = 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

c = 5

a k = (4 4 4 4 4 2 2 2 2 2)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

MJ,k ~ (~
3 3 3 3

o~J 1 1 1 1

0.5 0.5 0.5 0.5 0.5 c 2 2 2 2 2)
rj,k = 1 1 1 1 1 1

4 4 4 4 4 4

C= 9

ak = (1.5 1.5 1.5 1.5 1.5 1.5)

Ck = (2 2 2 2 2 2)

B. Testing Examples 157

Example 6:
7 7 7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

/-Lj,k = 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

rj,k = 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4

c =32

ak = (10 10 10 10 10 10 10 10 10)

ck = (4 4 4 4 4 4 4 4 4)

Example 7:
0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

/-Lj,k =
0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

Tj,k =
0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.3 0.3 0.3 0.3 0.3 0.3 0.3

C=2

ak = (0.9 0.9 0.9 0.9 0.9 0.9 0.9)

ck = (5 5 5 5 5 5 5)

158 B. Testing Examples

Example 8:

P,,, ~ c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

rj ,k ~ (:
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 10

(0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ak =

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9)

Ck = (1)

Example 9:

0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 2 2 2 2

f.J,j ,k = 3 3 3 3 3 3 3

4 4 4 4 4 4 4

7 7 7 7 7 7 7

1 1 1 1 1 1 1

2 2 2 2 2 2 2

Tj ,k = 3 3 3 3 3 3 3

5 5 5 5 5 5 5

1 1 1 1 1 1 1

C= 20

ak = (3 3 3 3 3 3 3)

Ck = (4 4 4 4 4 4 4)

Example 10:

1 1 1 1 1

3 3 3 3 3
f.J,j ,k =

4 4 4 4 4

2 2 2 2 2

B. Testing Examples 159

2 2 2 2 2

5 5 5 5 5
rj,k =

4 4 4 4 4

1 1 1 1 1

C=lO

ak = (1.5 1.5 3.5 2.5 5)

Ck = (3 3 3 3 3)

Example 11:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
/Lj,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
rj,k =

4 4 4 4 4 4 4 4 4 4

2 2 2 2 2 2 2 2 2 2

C=5

ak = (4 4 2 2 2 2 2 2 4 4)

Ck = (1 1 1 1 1 1 1 1 1 1)

Example 12:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

8 8 8 8 8 8 8 8
/Lj,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
rj,k =

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

160 B. Testing Examples

c = 6

ak = (3 3 3 3 3 3 3 3)

ck = (2 2 2 3 3 3 3 3)

Example 13:

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
~Lj , k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2
T j ,k =

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

c = 10

ak = (1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 14:

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

/-L j ,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Tj, k = 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

C= 5

ak = (2 1 1 2 2 1 0.2 0.2 0. 2 0.2)

B. Testing Examples 161

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 15:

~jk ~ (~ 3 3 3 3

o~J 2 2 2 2

0.5 0.5 0.5 0.5 0.5

c 2 2 2 2 2)
rJ,k = 1 1 1 1 1 1

4 4 4 4 4 4

C=8

ak = (1 1 1.2 1.3 1.4 1.5)

Ck = (2 2 2 2 2 2)

Example 16:

7 7 7 7 7 7 7 7 7

6 6 6 6 6 6 6 6 6

/-lj,k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

rJ,k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

c = 10

ak = (9 9 9 9 9 9 9 9 9)

Ck = (3 3 3 3 4 4 4 4 4)

162 B. Testing Examples

Example 17:
0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
f.-L j ,k =

0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

rj,k =
0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.3

c =6

a k = (0.6 0.6 0.6 0.8 0.8 0.2 0.2)

Ck = (3 3 3 4 4 4 4)

Example 18:

~j,k = (:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Tj ,k = 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 10

(0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2
ak =

0.2 1 1 1 1 1 2 2 2 2)

Ck = (2)

B. Testing Examples 163

Example 19:

0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 2 2 2 2

/-Lj,k = 3 3 3 3 3 3 3

4 4 4 4 4 4 4

7 7 7 7 7 7 7

1 1 1 1 1 1 1

2 2 2 2 2 2 2

rj,k = 3 3 3 3 3 3 3

5 5 5 5 5 5 5

1 1 1 1 1 1 1

C=ll

ak = (3 3 3 2 2 2 2)

Ck = (2 2 2 2 2 2 2)

Example 20:

1 1 1 1 1

3 3 3 3 3
/-Lj,k =

4 4 4 4 4

2 2 2 2 2

2 2 2 2 2

5 5 5 5 5
rj,k =

4 4 4 4 4

1 1 1 1 1

C=6

ak = (2 2 3 3 3)

ck = (1 1 3 3 3)

164 B. Testing E xamples

B.6 TDCCP with costs when all classes are iden-

tical and Condition 2 is satisfied

Example 1:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
/1- j ,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
rj ,k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

c = 6

a k = (0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2)

Ck = (1 1 1 1 1 1 1 1 1 1)

Example 2:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
/1- j ,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

0.1 0.1 0.1 0.1 0.1 0. 1 0. 1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
r j ,k =

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

C =4

ak= (o.1 0. 1 0.3 0.5 0.1 0.1 0.1 0.1)

Ck = (3 3 3 3 3 3 3 3)

B. Testing Examples 165

Example 3:

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
/Lj,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2
rj,k =

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

c = 16

ak = (0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 4:
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

/Lj,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

rj,k = 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

C=5

ak = (0.1 0.3 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.2)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 5:

~j,k = (~ 3 3 3 3

o~J 1 1 1 1

0.5 0.5 0.5 0.5 0.5

166 B. Testing Examples

Tjk ~ 0 2 2 2 2 n 1 1 1 1
4 4 4 4

c = 9

ak = (0.5 0.5 0.5 0.5 0.5 0.5)

Ck = (2 2 2 2 2 2)

Example 6:

7 7 7 7 7 7 7 7 7

1 1 1 1 1 1 1 1 1

/-lj ,k = 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

rj ,k = 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4

c = 32

ak = (0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5)

Ck = (4 4 4 4 4 4 4 4 4)

Example 7:

0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
/-lj ,k =

0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.5 0.5 0.5 0.5 0.5 0.5 0.5

B. Testing Examples 167

0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
rj,k =

0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.3 0.3 0.3 0.3 0.3 0.3 0.3

C=2

ak = (0.07 0.07 0.07 0.07 0.07 0.07 0.07)

Ck = (5 5 5 5 5 5 5)

Example 8:

M;,k = (:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

r;,k = C 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 10

(0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ak =

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)

ck = (1)

Example 9:
0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 2 2 2 2

/-Lj,k = 3 3 3 3 3 3 3

4 4 4 4 4 4 4

7 7 7 7 7 7 7

1 1 1 1 1 1 1

2 2 2 2 2 2 2

rj,k = 3 3 3 3 3 3 3

5 5 5 5 5 5 5

1 1 1 1 1 1 1

168 B. Testing Examples

c = 20

ak = (0.25 0.25 0.25 0.25 0.25 0.25 0.25)

Ck = (4 4 4 4 4 4 4)

Example 10:

1 1 1 1 1

3 3 3 3 3
/-Lj ,k =

4 4 4 4 4

2 2 2 2 2

2 2 2 2 2

5 5 5 5 5
rj ,k =

4 4 4 4 4

1 1 1 1 1

c = 10

ak = (0.5 0.5 0.2 0.5 0.15)

Ck = (3 3 3 3 3)

Example 11:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
/-L j, k =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1 1 1 1
rj ,k =

4 4 4 4 4 4 4 4 4 4

2 2 2 2 2 2 2 2 2 2

c = 5

ak = (0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5)

Ck ~ (1 1 1 1 1 1 1 1 1 1)

B. Testing Examples 169

Example 12:

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

8 8 8 8 8 8 8 8
{Lj,k =

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
rj,k =

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

C=6

ak = (0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1)

Ck = (2 2 2 3 3 3 3 3)

Example 13:

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
/Lj,k =

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2
rj,k =

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

c = 10

ak = (0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4)

Ck = (2 2 2 2 2 2 2 2 2 2 2 2)

Example 14:
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

/Lj,k = 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2

170 B. Testing Examples

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

T'j ,k = 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

C=5

ak = (0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1)

Ck = (4 4 4 4 4 4 4 4 4 4)

Example 15:

/ lj,k ~ (~ 3 3 3 3

o~J 2 2 2 2

0.5 0.5 0.5 0.5 0.5

c2 2 2 2 n T'j,k = ~ ~ 1 1 1

4 4 4

C= 8

ak = (0.1 0.1 0.12 0.05 0.1 0.13)

Ck = (2 2 2 2 2 2)

Example 16:
7 7 7 7 7 7 7 7 7

6 6 6 6 6 6 6 6 6

f.l,j ,k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

T'j ,k = 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

B. Testing Examples 171

c = 10

ak = (0.6 0.6 0.6 0.6 0.6 0.6 0.6 0~6 0.6)

Ck = (3 3 3 3 4 4 4 4 4)

Example 17:
0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

/-Lj,k =
0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

rj,k =
0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.3

C=6

ak = (0.06 0.06 0.06 0.09 0.09 0.09 0.09)

Ck = (3 3 3 4 4 4 4)

Example 18:

~j,k ~ (~
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

r;,k ~ (:

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 10

(0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ak =

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2)

172 B. Test ing Examples

Ck = (2)

Example 19:

0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 2 2 2 2

/-Lj ,k = 3 3 3 3 3 3 3

4 4 4 4 4 4 4

7 7 7 7 7 7 7

1 1 1 1 1 1 1

2 2 2 2 2 2 2

rJ ,k = 3 3 3 3 3 3 3

5 5 5 5 5 5 5

1 1 1 1 1 1 1

C = ll

ak = (1 1 0.1 0.5 0.5 0.5 0.5)

Ck = (2 2 2 2 2 2 2)

Example 20:

1 1 1 1 1

3 3 3 3 3
/-Lj,k =

4 4 4 4 4

2 2 2 2 2

2 2 2 2 2

5 5 5 5 5
Tj ,k =

4 4 4 4 4

1 1 1 1 1

C=6

ak = (0.1 0.05 0.15 0 .3 0.3)

Ck = (1 1 3 3 3)

B. Testing Examples 173

B.7 TDCCP with costs . the general when In case

Condition 1 is satisfied

Example 1:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 0.2 1 1 1 1 1 0.8 1 1

/-Lj,k =
0.8 1 1 1 0.8 1 1 1 1 1
3 1 2 2 2 2 2 1.5 2 2

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5
1 2 1 2 1 1 1 1 0.5 1

rj,k =
1 3 1 1 1 1 1 1 1 1
2 0.2 2 1 2 2 2 4 3 2

C=8

ak = (1 1 2 2 2 2 3 3 2 2)

Ck = (1 1 2 1 1 1 2 1 1 1)

Example 2:
0.2 0.5 0.2 0.2 0.1 0.2 0.3 0.2
0.8 0.8 0.8 0.8 0.2 0.8 0.3 0.8

/-Lj,k =
1 1 4 1 1 1 0.5 1
4 4 2 1 1 4 4 4

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1
0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4

rj,k =
2 2 3 2 2 1 2 1
3 10 2 3 1 3 3 3

C=lO

ak = (1 1 2 2 2 2 3 3)

Ck = (2 3 3 3 1 2 3 3)

174 B. Testing Examples

Example 3:

0.8 2 1 0.5 1 1 1 1 1 0.5 1 1

0.2 1 1 1 1 1 0.8 1 1 1 0.9 1
/-Lj ,k =

3 3 3 3 3 3 2 3 3 3 4 3

5 5 5 5 4 1 1 5 5 3 5 5

1 2 1 1 1 1 1 1 1 2 1 1

2 2 2 3 2 2 2 2 2 3 2 2
'rj ,k =

3 1 3 3 3 3 2 3 3 3 3 3

4 1 4 5 4 4 1 4 4 4 5 4

c =50

ak = (10 1 10 9 10 8 10 10 10 10 10 w)
Ck = (2 3 1 2 2 2 2 2 1 3 2 2)

Example 4:
2 2 2 2 1 1 2 2 2 2

2 1 1 2 1 1 1 1 1 1

/-L j ,k = 1 1 1 1 1 1 1 0.2 1 1

4 3 3 3 3 3 3 3 2 3

5 2 2 0.5 2 1 2 2 1 2

1 1 1 3 1 1 2 1 1 1

2 1 1 1 1 1 1 4 1 1

'rj ,k = 1 1 3 1 1 1 1 2 1 1

1 3 1 1 5 1 1 1 1 1

1 3 1 1 6 1 1 1 2 1

c = 20

ak = (4 3 3 1 1 2 2 2 2 2)

Ck = (4 5 4 5 4 3 4 2 1 4)

Example 5:

M;,k ~ (:
1 2 2 3

}J 2 1 1 1

1 1 0.5 0.5

B. Testing Examples 175

Tjk~ c 2 2 3 2 n 2 1 2 1

3 4 1 4

c = 10

ak = (2 2 2 1.5 1.5 1.5)

Ck = (2 1 2 1 2 2)

Example 6:

7 6.5 6.5 6.6 7 6.9 7 7 7
1.9 1.8 1.7 1.8 1.9 2 1.8 1.9 1.7

J.lj,k = 3.8 4 3.9 3.8 3.7 3.8 3.9 3.7 3.9
2.9 2.8 2.7 2.8 2.9 3 2.7 2.8 2.9
5 4.7 4.8 5 5 4.9 5 5 4.9

3 2 2 2 1 2 4 2 2
1 1 3 1 1 1 1 2 1

Tj,k = 3 2 3 3 2 3 3 5 3
1 2 3 2 7 2 2 6 2

6 4 4 5 4 4 4 2 4

c = 100

ak = (8 10 10 14 10 10 16 12 10)

Ck = (4 4 3 4 3 4 4 1 4)

Example 7:

0.1 0.05 0.1 0.1 1 0.2 0.1
0.5 0.2 0.6 0.2 0.2 0.3 0.5
0.2 0.1 0.2 0.2 0.1 0.2 0.2

J.lj,k =
0.3 0.2 0.3 0.9 0.2 0.1 0.3
0.7 0.5 0.3 0.3 0.2 0.1 0.3
0.6 0.3 0.2 0.5 0.5 0.3 0.1

176 B. Testing Examples

1 0.1 0.2 0.1 0.4 0.1 0.1

0.3 0.2 0.2 0.7 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
rj ,k =

0.9 0.4 0.8 0.4 0.6 0.4 0.4

0.5 0.5 0.3 0.7 0.5 0.5 0.5

0.2 0.3 0.3 0.3 0.1 0.3 0.3

C= 3

ak = (0.9 0.8 0.9 0.9 1.2 0.9 1.8)

Ck = (5 2 1 5 3 5 4)

Example 8:

~;k= u 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 1 1 1

l) 5 4 4 4 3 4 4 4 3 4 4 4 1 4 4 4 4 4

1 3 3 3 2 1 1 1 2 3 1 3 1 3 3 3 3 3

r ; ,k = (~
3 5 3 5 3 5 7 9 5 5 5 5 5 9 5 1 1 3 :0) 4 2 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4

3 3 3 2 3 3 3 2 2 3 3 3 2 3 3 2 3 3

c = 12

(0.9 0.7 0.9 0.9 1.5 0.9 0.9 0.9 0.9 1.3
ak =

0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.8)

Ck = (2 2 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1)

Example 9:

0.2 0.1 0.1 0.1 0.2 0.2 0.1

2 2 1 1 2 3 2

/lj ,k = 1 1 2 3 3 2 3

4 1 4 2 3 5 4

7 6 1 4 5 4 7

1 1 8 2 1 1 2

2 2 3 2 3 2 2

rj ,k = 3 4 3 3 4 5 3

5 5 9 6 5 2 5

1 2 2 1 3 1 1

B. Testing Examples 177

C=6

ak = (1 8 4 6 0.2 1 0.2)

Ck = (3 3 2 2 1 4 4)

Example 10:

2 1.99 1.98 2 1.96

3.9 3.8 4 3.9 3.8
f.-Lj,k =

5 4.9 5 4.9 4.8

4 3.9 3.9 3.9 4

1 2 1 4 2

4 2 1 5 5
Tj,k =

2 3 10 4 4

8 1 3 2 1

C=4

ak = (2 8 0.6 0.4 1)

Ck = (3 3 1 2 2)

Example 11:

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.2 1 1 1 1 1 2 1 1
f.-Lj,k =

0.8 1 1 1 0.8 1 1 1 1 1

3 3 2 2 2 2 2 1.5 2 2

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5

1 2 3 2 1 1 1 1 0.5 1
Tj,k =

1 3 1 1 1 1 1 1 1 1

2 0.2 2 1 2 2 2 4 3 2

C=20

ak = (3 3 3 3 2 2 3 3 3 3)

Ck = (2 1 1 1 1 1 1 1 1 2)

178 B. Testing Examples

Example 12:
0.2 0.5 0.2 0.2 0.1 0.2 0.1 0.2

0.8 2 0.8 0.8 1 0.8 1 0.8
/-Lj ,k =

1 1 4 1 1 1 3 1

4 4 3 1 7 8 4 4

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1

0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4
r j, k =

2 2 3 6 2 1 2 1

3 10 2 7 1 3 3 3

c = 15

ak = (1 1 5 5 5 5 3 3)

Ck = (1 2 3 3 1 2 1 3)

Example 13:

0.2 2 1 2 1 1 1 1 1 2 1 1

1 1 1 1 1 1 2 1 1 1 2 1
/-Lj ,k =

3 3 3 3 3 3 2 3 3 3 4 3

6 5 5 5 4 1 1 5 5 4 5 5

1 2 1 1 1 1 1 1 1 2 1 1

2 2 2 3 2 2 2 2 2 3 2 2
rj ,k =

3 1 3 6 3 7 2 3 3 3 3 3

4 1 4 5 4 4 1 4 4 4 5 4

c = 100

ak = (10 1 10 9 8 8 10 10 7 1 2 10)
Ck = (1 3 1 2 1 1 2 2 1 3 2 2)

Example 14:
2 2 2 2 1 2 2 1 2 2

2 1 1 6 7 1 1 1 1 1

/-Lj ,k = 1 1 1 1 1 1 1 2 1 1

4 1 3 3 3 3 3 3 2 3

5 2 2 4 5 1 2 2 1 2

B. Testing Examples 179

1 1 1 3 1 1 2 1 1 1

2 1 1 1 1 1 1 4 1 1

r·j,k = 1 1 3 1 1 1 1 2 1 1

1 3 1 1 5 1 1 1 1 1

1 3 1 1 6 1 1 1 2 1

C=5

ak = (4 3 3 4 1 1 1 3 1 2)

Ck = (4 2 4 1 4 3 4 2 1 4)

Example 15:

/<j,k ~ (2:8
2.9 2.8 2.99

3 3)
2.9 3 2.7 2.8 2.9

1.9 2 1.7 1.9 1.8 c 2 2 3 2 n rj,k = 1 2 1 2 1

4 3 1 1 4

c = 16

ak = (1 3 3 3 3 1.5)

Ck = (2 1 2 1 1 2)

Example 16:

7 6 5 1 7 3 7 7 7

1 0.5 1 1 1 2 5 1 1

/lj,k = 3 4 1 3 3 2 3 3 3

1 2 1.5 2 2 3 2 2 1

5 3 4 5 5 4 5 5 4

3 2 2 2 1 2 4 2 2

1 1 3 1 1 1 0.1 2 1

Tj,k = 3 2 1 3 2 3 3 5 3

1 2 3 2 7 2 2 6 2

2 4 4 5 4 4 3 2 4

180 B. Testing Examples

c = 70

ak = (7 10 10 13 10 10 17 11 10)
Ck = (4 4 3 4 3 4 4 1 4)

Example 17:
0.1 0.05 0.1 0.1 0.2 0.2 0.1
0.5 0.2 0.6 0.2 0.2 0.3 0.1
0.2 0.1 0.2 0.2 0.2 0.2 0.2

/-L j ,k =
0.3 0.2 0.3 0.9 0.2 0.1 0.3
0.7 0.5 0.3 0.3 0.2 0.3 0.3
0.6 0.4 0.2 0.5 0.5 0.3 0.1

1 0.1 0.2 0.1 0.4 0.1 0.1
0.3 0.2 0.2 0.7 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2

rj ,k =
0.9 0.4 0.8 0.4 0.6 0.4 0.4
0.5 0.5 0.3 0.7 0.5 0.5 0.5
0.2 0.3 0.3 0.3 0.1 0.3 0.3

c = 6

ak = (0.1 0.5 0.9 0.7 1.1 0.1 1.8)

Ck = (1 2 1 3 3 5 4)

Example 18:

M;,k ~ c 1 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 1 1 n 5 4 4 4 1 4 4 4 3 4 4 4 2 4 4 4 4 4

1 4 3 3 2 1 3 3 2 3 1 3 1 3 3 3 3 3

r;,k = (~
3 5 3 5 3 5 7 9 5 5 5 2 5 3 5 1 1 3 :0) 4 0 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4

3 3 3 2 3 3 3 2 1 3 3 3 2 3 3 2 3 3

c = 30

(0.9 0.1 0.9 0.9 1.5 0.3 0.9 0.7 0.9 1.3
ak =

0.6 0.9 0.9 0.9 0.9 0.2 0.9 0.5 0.3 1.8)

B. Testing Examples 181

ck = (1 2 1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1)

Example 19:

0.7 0.1 0.1 0.1 0.2 0.6 0.1

2 2 1 1 2 3 2

/-Lj,k = 1 1 3 4 3 2 3

4 1 4 3 3 5 4

7 6 2 2 3 4 7

1 1 8 2 1 1 1

2 2 3 2 3 2 2

rj,k = 3 4 9 3 4 3 3

5 5 9 1 5 2 5

1 2 1 1 3 1 1

C=ll

ak = (1 3 2 8 2 12 3)

Ck = (3 3 2 2 1 4 4)

Example 20:

2 2 1 2 1

1 3 3 2 3
/Lj,k =

6 2 1 5 1

1 3 2 2 4

1 2 3 4 2

4 2 1 2 5
rj,k =

2 3 10 4 4

8 7 3 2 1

c = 15

ak = (7 1 9 2 w)
Ck = (3 3 1 2 2)

182 B . Testing Examples

B.8 TDCCP with costs in the general case when

Condition 2 is satisfied

Example 1:

Example 2:

rj,k =

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.2 1 1 1 1 1 0.8 1 1

0.8 1 1 1 0.8 1 1 1 1 1

3 1 2 2 2 2 2 1.5 2 2

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5

1 2 1

1 3 1

2 1 1

1 1 1

1 1 0.5 1

1 1 1 1

2 0.2 2 1 2 2 2 4 3 2

c = 8

ak = (0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.2 0.2)

Ck = (1 1 2 1 1 1 2 1 1 1)

/-Lj ,k =

0.2 0.5 0.2 0.2 0.1 0.2 0.3 0.2

0.8 0.8 0.8 0.8 0.2 0.8 0.3 0.8

1 1 4 1 1 1 0.5 1

4 4 2 1 1 4 4 4

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1

0.8 0.4 0.4 0.4 0. 7 0.4 0.4 0.4

2 2 3

3 10 2
2 2

3 1

c = 10

1

3

2 1

3 3

ak = (0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2)

Ck = (2 3 3 3 1 2 3 3)

B. Testing Examples 183

Example 3:

1.8 2 1.9 1.8 2 2 2 1.9 1.9 1.8 2 2

0.9 1 1 1 1 1 0.9 1 1 1 0.9 1
P,j,k =

3.8 3.9 3.7 3.6 3.8 3.9 4 4 3.8 3.9 4 3.9

5 5 5 5 4.8 4.9 4.9 5 5 5 5 5

1 2 1 1 1 1 1 1 1 2 1 1

2 2 2 3 2 2 2 2 2 3 2 2
Tj,k =

3 1 3 3 3 3 2 3 3 3 3 3

4 1 4 5 4 4 1 4 4 4 5 4

c =50

ak = (0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25)

Ck = (2 3 1 2 2 2 2 2 1 3 2 2)

Example 4:
2 2 2 2 1 1 2 2 2 2

2 1 1 2 1 1 1 1 1 1

P,j,k = 1 1 1 1 1 1 1 0.2 1 1

4 3 3 3 3 3 3 3 2 3

5 2 2 0.5 2 1 2 2 1 2

1 1 1 3 1 1 2 1 1 1

2 1 1 1 1 1 1 4 1 1

Tj,k = 1 1 3 1 1 1 1 2 1 1

1 3 1 1 5 1 1 1 1 1

1 3 1 1 6 1 1 1 2 1

c = 20

ak = (0.4 0.3 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.2)

Ck = (4 5 4 5 4 3 4 2 1 4)

Example 5:

~jk = (1~9
2.9 2.8 2.9 3

o.L) 2 1.9 1.9 1.9

1 1 0.97 0.99

184 B. Testing Examples

Tjk = u 2 2 3 2 n 2 1 2 1
3 4 1 4

C=lO

ak = (0.2 0.1 0.2 0.5 0.1 0.1)

Ck = (2 1 2 1 2 2)

Example 6:

7 6.5 6.5 0.6 7 6.9 7 7 7
1.9 1.8 1.7 1.8 1.9 2 1.8 1.9 1.7

{lj,k = 3.8 4 3.9 3.8 3.7 3.8 3.9 3.7 3.9
2.9 2.8 2.7 1 2.9 3 2.7 2.8 2.9

5 1 1 5 5 1 5 5 4.9

3 2 2 2 1 2 4 2 2

1 1 3 1 1 1 1 2 1

rj ,k = 3 2 3 3 2 3 3 5 3
1 2 3 2 7 2 2 6 2
6 4 4 5 4 4 4 2 4

c = 100

ak = (0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4)

ck = (4 4 3 4 3 4 4 1 4)

Example 7:
0.1 0.1 0.1 0.1 1 0.2 0.1

0.5 0.2 0.6 0.2 0.2 0.3 0.5

0.2 0.1 0.2 0.2 0.1 0.2 0.2
{l j ,k =

0.3 0.2 0.3 0.9 0.2 0.1 0.3

0.7 0.5 0.3 0.3 0.2 0.1 0.3

0.6 0.3 0.2 0.5 0.5 0.3 0.1

B. Testing Examples 185

1 0.1 0.2 0.1 0.4 0.1 0.1

0.3 0.2 0.2 0.7 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
rj,k =

0.9 0.4 0.8 0.4 0.6 0.4 0.4

0.5 0.5 0.3 0.7 0.5 0.5 0.5

0.2 0.3 0.3 0.3 0.1 0.3 0.3

C=3

ak = (0.06 0.06 0.06 0.06 0.06 0.06 0.06)

Ck = (5 2 1 5 3 5 4)

Example 8:

~jk~ (:
1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 1 1 1

D 5 4 4 4 3 4 4 4 3 4 4 4 1 4 4 4 4 4

1 3 3 3 2 1 1 1 2 3 1 3 1 3 3 3 3 3

r;,k ~ (~
3 5 3 5 3 5 7 9 5 5 5 5 5 9 5 1 1 3 !) 4 2 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4

3 3 3 2 3 3 3 2 2 3 3 3 2 3 3 2 3 3

c = 12

(0.05 0.05 0.05 0.1 0.2 0.2 0.2 0.2 0.2 0.1
ak =

0.1 0.05 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.3)

Ck = (2 2 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1)

Example 9:
0.2 0.1 0.1 0.1 0.2 0.2 0.1

2 2 1 1 2 3 2

f.-Lj,k = 1 1 2 3 3 2 3

4 1 4 2 3 5 4

7 6 1 4 5 4 7

1 1 8 2 1 1 2

2 2 3 2 3 2 2

Tj,k = 3 4 3 3 4 5 3

5 5 9 6 5 2 5

1 2 2 1 3 1 1

186 B. Testing Examples

c = 9

ak = (0.4 0.4 0.4 0.4 0.4 0.4 0.4)

Ck = (3 3 2 2 1 4 4)

Example 10:
2 1 1.98 2 1.96

3.9 0.8 4 3.9 3.8
/-l j ,k =

5 4.9 5 4.9 4.8

4 3.9 3.9 3.9 4

1 2 1 4 2

4 2 1 5 5
Tj ,k =

2 3 10 4 4

8 1 3 2 1

C=4

ak = (0.2 0.8 0.05 0.4 0.05)

Ck = (3 3 1 2 2)

Example 11 :

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.2 1 1 1 1 1 2 1 1
/-lj ,k =

0.8 1 1 1 0.8 1 1 1 1 1

3 3 2 2 2 2 2 1.5 2 2

0.5 0.5 0.5 0.5 1 0.5 0.5 2 0.5 0.5

1 2 3 2 1 1 1 1 0.5 1
Tj ,k =

1 3 1 1 1 1 1 1 1 1

2 0.2 2 1 2 2 2 4 3 2

c = 20

ak=(o.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.1 0.1)

Ck = (2 1 1 1 1 1 1 1 1 2)

B. Testing Examples 187

Example 12:

0.49 0.5 0.49 0.48 0.49 0.48 0.49 0.48

1.8 2 1.8 1.8 1.9 1.8 1.95 1.8
P,j,k =

3.9 3.8 4 4 4 3.7 3.9 4

7.8 7.8 8 7.9 7.9 8 8 7.8

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1

0.8 0.4 0.4 0.4 0.7 0.4 0.4 0.4
Tj,k =

2 2 3 6 2 1 2 1

3 10 2 7 1 3 3 3

c = 15

ak = (0.1 0.1 0.15 0.5 0.5 0.5 0.3 0.1)

Ck = (1 2 3 3 1 2 1 3)

Example 13:

0.2 2 1 2 1 1 1 1 1 2 1 1

1 1 1 1 1 1 2 1 1 1 2 1
P,j,k =

3 3 3 3 3 3 2 3 3 3 4 3

6 5 5 5 4 1 1 5 5 4 5 5

1 2 1 1 1 1 1 1 1 2 1 1

2 2 2 3 2 2 2 2 2 3 2 2
rj,k =

3 1 3 6 3 7 2 3 3 3 3 3

4 1 4 5 4 4 1 4 4 4 5 4

c = 100

ak = (1 0.1 1 0.15 0.8 0.1 0.1 0.05 0.7 0.1 0.1 0.2)

Ck = (1 3 1 2 1 1 2 2 1 3 2 2)

Example 14:

2 2 2 2 1.9 2 2 1.9 2 2

6.8 6.9 6.8 6.9 7 7 6.9 6.9 6.8 7

P,j,k = 1.9 1.8 2 2 2 1.9 2 2 1.9 1.8

4 4 3.7 3.8 3.95 3.92 3.75 3.8 4 4

5 2 5 4.9 5 4.8 5 5 4.9 5

188 B. Testing Examples

1 1 1 3 1 1 2 1 1 1

2 1 1 1 1 1 1 4 1 1

rj ,k = 1 1 3 1 1 1 1 2 1 1

1 3 1 1 5 1 1 1 1 1

1 3 1 1 6 1 1 1 2 1

c = 5

ak = (0. 4 0.3 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.2)

Ck = (4 2 4 1 4 3 4 2 1 4)

Example 15:

Jl, ,k = (2:8
1 2.8 2.99 3

2
3
9) 2.9 3 0.5 2.8

1.9 2 1.7 1.9 1.8

r,,= u 2 2 3 2 n 2 1 2 1

3 1 1 4

c = 16

ak = (0.1 0.25 0.25 0.3 0.1 0.1)

Ck = (2 1 2 1 1 2)

Example 16:
7 6 5 1 7 3 7 7 7

1 0.5 1 1 1 2 5 1 1

/-lj ,k = 3 4 1 3 3 2 3 3 3

1 2 1.5 2 2 3 2 2 1

5 3 4 5 5 4 5 5 4

3 2 2 2 1 2 4 2 2

1 1 3 1 1 1 0.1 2 1

r j ,k = 3 2 1 3 2 3 3 5 3

1 2 3 2 7 2 2 6 2

2 4 4 5 4 4 3 2 4

B. Testing Examples 189

c = 70

ak = (0.7 0.5 0.9 0.1 0.3 0.3 0.2 0.1 0.1)

ck = (4 4 3 4 3 4 4 1 4)

Example 17:
0.1 0.05 0.1 0.1 0.2 0.2 0.1

0.5 0.2 0.6 0.2 0.2 0.3 0.1

0.2 0.1 0.2 0.2 0.2 0.2 0.2
J.Lj,k =

0.3 0.2 0.3 0.9 0.2 0.1 0.3

0.7 0.5 0.3 0.3 0.2 0.3 0.3

0.6 0.4 0.2 0.5 0.5 0.3 0.1

1 0.1 0.2 0.1 0.4 0.1 0.1

0.3 0.2 0.2 0.7 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2
Tj,k =

0.9 0.4 0.8 0.4 0.6 0.4 0.4

0.5 0.5 0.3 0.7 0.5 0.5 0.5

0.2 0.3 0.3 0.3 0.1 0.3 0.3

C=6

ak = (0.01 0.05 0.09 0.07 0.5 0.01 0.1)

Ck = (1 2 1 3 3 5 4)

Example 18:

MJ,k ~ 0 1 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 1 1 n 5 4 4 4 1 4 4 4 3 4 4 4 2 4 4 4 4 4

1 4 3 3 2 1 3 3 2 3 1 3 1 3 3 3 3 3

Tj,k ~ (~
3 5 3 5 3 5 7 9 5 5 5 2 5 3 5 1 1 3 :0) 4 0 4 3 4 3 4 4 1 1 1 4 4 2 4 3 4 4
3 3 3 2 3 3 3 2 1 3 3 3 2 3 3 2 3 3

C= 30

(0.09 0.01 0.09 0.09 0.5 0.03 0.09 0.07 0.09 0.3
ak =

0.06 0.01 0.01 0.01 0.01 0.02 0.09 0.05 0.03 0.08)

190

ck = (1 2

Example 19:

Example 20:

B. Testing Examples

1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1)

0.7 0.1 0.1 0.1 0.2 0.6 0.1

2 2 1 1 2 3 2

f-Lj,k = 1 1 3 4 3 2 3

4 1 4 3 3 5 4

7 6 2 2 3 4 7

1 1 8 2 1 1 1

2 2 3 2 3 2 2

rj ,k = 3 4 9 3 4 3 3

5 5 9 1 5 2 5

1 2 1 1 3 1 1

C=ll

ak = (0.1 0.3 0.3 0.8 0.2 0.9 0.3)

Ck = (3 3 2 2 1 4 4)

2 2 1 2 1

1 3 3 2 3
f-Lj ,k =

6 2 1 5 1

1 3 2 2 4

1 2 3 4 2

4 2 1 2 5
rj ,k =

2 3 10 4 4

8 7 3 2 1

c = 15

ak = (0.7 0.1 0.8 0.2 1.1)

Ck = (3 3 1 2 2)

742 7 79

	Kan_Liuxing_2006_09_master0001
	Kan_Liuxing_2006_09_master0002
	Kan_Liuxing_2006_09_master0003
	Kan_Liuxing_2006_09_master0004
	Kan_Liuxing_2006_09_master0005
	Kan_Liuxing_2006_09_master0006
	Kan_Liuxing_2006_09_master0007
	Kan_Liuxing_2006_09_master0008
	Kan_Liuxing_2006_09_master0009
	Kan_Liuxing_2006_09_master0010
	Kan_Liuxing_2006_09_master0011
	Kan_Liuxing_2006_09_master0012
	Kan_Liuxing_2006_09_master0013
	Kan_Liuxing_2006_09_master0014
	Kan_Liuxing_2006_09_master0015
	Kan_Liuxing_2006_09_master0016
	Kan_Liuxing_2006_09_master0017
	Kan_Liuxing_2006_09_master0018
	Kan_Liuxing_2006_09_master0019
	Kan_Liuxing_2006_09_master0020
	Kan_Liuxing_2006_09_master0021
	Kan_Liuxing_2006_09_master0022
	Kan_Liuxing_2006_09_master0023
	Kan_Liuxing_2006_09_master0024
	Kan_Liuxing_2006_09_master0025
	Kan_Liuxing_2006_09_master0026
	Kan_Liuxing_2006_09_master0027
	Kan_Liuxing_2006_09_master0028
	Kan_Liuxing_2006_09_master0029
	Kan_Liuxing_2006_09_master0030
	Kan_Liuxing_2006_09_master0031
	Kan_Liuxing_2006_09_master0032
	Kan_Liuxing_2006_09_master0033
	Kan_Liuxing_2006_09_master0034
	Kan_Liuxing_2006_09_master0035
	Kan_Liuxing_2006_09_master0036
	Kan_Liuxing_2006_09_master0037
	Kan_Liuxing_2006_09_master0038
	Kan_Liuxing_2006_09_master0039
	Kan_Liuxing_2006_09_master0040
	Kan_Liuxing_2006_09_master0041
	Kan_Liuxing_2006_09_master0042
	Kan_Liuxing_2006_09_master0043
	Kan_Liuxing_2006_09_master0044
	Kan_Liuxing_2006_09_master0045
	Kan_Liuxing_2006_09_master0046
	Kan_Liuxing_2006_09_master0047
	Kan_Liuxing_2006_09_master0048
	Kan_Liuxing_2006_09_master0049
	Kan_Liuxing_2006_09_master0050
	Kan_Liuxing_2006_09_master0051
	Kan_Liuxing_2006_09_master0052
	Kan_Liuxing_2006_09_master0053
	Kan_Liuxing_2006_09_master0054
	Kan_Liuxing_2006_09_master0055
	Kan_Liuxing_2006_09_master0056
	Kan_Liuxing_2006_09_master0057
	Kan_Liuxing_2006_09_master0058
	Kan_Liuxing_2006_09_master0059
	Kan_Liuxing_2006_09_master0060
	Kan_Liuxing_2006_09_master0061
	Kan_Liuxing_2006_09_master0062
	Kan_Liuxing_2006_09_master0063
	Kan_Liuxing_2006_09_master0064
	Kan_Liuxing_2006_09_master0065
	Kan_Liuxing_2006_09_master0066
	Kan_Liuxing_2006_09_master0067
	Kan_Liuxing_2006_09_master0068
	Kan_Liuxing_2006_09_master0069
	Kan_Liuxing_2006_09_master0070
	Kan_Liuxing_2006_09_master0071
	Kan_Liuxing_2006_09_master0072
	Kan_Liuxing_2006_09_master0073
	Kan_Liuxing_2006_09_master0074
	Kan_Liuxing_2006_09_master0075
	Kan_Liuxing_2006_09_master0076
	Kan_Liuxing_2006_09_master0077
	Kan_Liuxing_2006_09_master0078
	Kan_Liuxing_2006_09_master0079
	Kan_Liuxing_2006_09_master0080
	Kan_Liuxing_2006_09_master0081
	Kan_Liuxing_2006_09_master0082
	Kan_Liuxing_2006_09_master0083
	Kan_Liuxing_2006_09_master0084
	Kan_Liuxing_2006_09_master0085
	Kan_Liuxing_2006_09_master0086
	Kan_Liuxing_2006_09_master0087
	Kan_Liuxing_2006_09_master0088
	Kan_Liuxing_2006_09_master0089
	Kan_Liuxing_2006_09_master0090
	Kan_Liuxing_2006_09_master0091
	Kan_Liuxing_2006_09_master0092
	Kan_Liuxing_2006_09_master0093
	Kan_Liuxing_2006_09_master0094
	Kan_Liuxing_2006_09_master0095
	Kan_Liuxing_2006_09_master0096
	Kan_Liuxing_2006_09_master0097
	Kan_Liuxing_2006_09_master0098
	Kan_Liuxing_2006_09_master0099
	Kan_Liuxing_2006_09_master0100
	Kan_Liuxing_2006_09_master0101
	Kan_Liuxing_2006_09_master0102
	Kan_Liuxing_2006_09_master0103
	Kan_Liuxing_2006_09_master0104
	Kan_Liuxing_2006_09_master0105
	Kan_Liuxing_2006_09_master0106
	Kan_Liuxing_2006_09_master0107
	Kan_Liuxing_2006_09_master0108
	Kan_Liuxing_2006_09_master0109
	Kan_Liuxing_2006_09_master0110
	Kan_Liuxing_2006_09_master0111
	Kan_Liuxing_2006_09_master0112
	Kan_Liuxing_2006_09_master0113
	Kan_Liuxing_2006_09_master0114
	Kan_Liuxing_2006_09_master0115
	Kan_Liuxing_2006_09_master0116
	Kan_Liuxing_2006_09_master0117
	Kan_Liuxing_2006_09_master0118
	Kan_Liuxing_2006_09_master0119
	Kan_Liuxing_2006_09_master0120
	Kan_Liuxing_2006_09_master0121
	Kan_Liuxing_2006_09_master0122
	Kan_Liuxing_2006_09_master0123
	Kan_Liuxing_2006_09_master0124
	Kan_Liuxing_2006_09_master0125
	Kan_Liuxing_2006_09_master0126
	Kan_Liuxing_2006_09_master0127
	Kan_Liuxing_2006_09_master0128
	Kan_Liuxing_2006_09_master0129
	Kan_Liuxing_2006_09_master0130
	Kan_Liuxing_2006_09_master0131
	Kan_Liuxing_2006_09_master0132
	Kan_Liuxing_2006_09_master0133
	Kan_Liuxing_2006_09_master0134
	Kan_Liuxing_2006_09_master0135
	Kan_Liuxing_2006_09_master0136
	Kan_Liuxing_2006_09_master0137
	Kan_Liuxing_2006_09_master0138
	Kan_Liuxing_2006_09_master0139
	Kan_Liuxing_2006_09_master0140
	Kan_Liuxing_2006_09_master0141
	Kan_Liuxing_2006_09_master0142
	Kan_Liuxing_2006_09_master0143
	Kan_Liuxing_2006_09_master0144
	Kan_Liuxing_2006_09_master0145
	Kan_Liuxing_2006_09_master0146
	Kan_Liuxing_2006_09_master0147
	Kan_Liuxing_2006_09_master0148
	Kan_Liuxing_2006_09_master0149
	Kan_Liuxing_2006_09_master0150
	Kan_Liuxing_2006_09_master0151
	Kan_Liuxing_2006_09_master0152
	Kan_Liuxing_2006_09_master0153
	Kan_Liuxing_2006_09_master0154
	Kan_Liuxing_2006_09_master0155
	Kan_Liuxing_2006_09_master0156
	Kan_Liuxing_2006_09_master0157
	Kan_Liuxing_2006_09_master0158
	Kan_Liuxing_2006_09_master0159
	Kan_Liuxing_2006_09_master0160
	Kan_Liuxing_2006_09_master0161
	Kan_Liuxing_2006_09_master0162
	Kan_Liuxing_2006_09_master0163
	Kan_Liuxing_2006_09_master0164
	Kan_Liuxing_2006_09_master0165
	Kan_Liuxing_2006_09_master0166
	Kan_Liuxing_2006_09_master0167
	Kan_Liuxing_2006_09_master0168
	Kan_Liuxing_2006_09_master0169
	Kan_Liuxing_2006_09_master0170
	Kan_Liuxing_2006_09_master0171
	Kan_Liuxing_2006_09_master0172
	Kan_Liuxing_2006_09_master0173
	Kan_Liuxing_2006_09_master0174
	Kan_Liuxing_2006_09_master0175
	Kan_Liuxing_2006_09_master0176
	Kan_Liuxing_2006_09_master0177
	Kan_Liuxing_2006_09_master0178
	Kan_Liuxing_2006_09_master0179
	Kan_Liuxing_2006_09_master0180
	Kan_Liuxing_2006_09_master0181
	Kan_Liuxing_2006_09_master0182
	Kan_Liuxing_2006_09_master0183
	Kan_Liuxing_2006_09_master0184
	Kan_Liuxing_2006_09_master0185
	Kan_Liuxing_2006_09_master0186
	Kan_Liuxing_2006_09_master0187
	Kan_Liuxing_2006_09_master0188
	Kan_Liuxing_2006_09_master0189
	Kan_Liuxing_2006_09_master0190
	Kan_Liuxing_2006_09_master0191
	Kan_Liuxing_2006_09_master0192
	Kan_Liuxing_2006_09_master0193
	Kan_Liuxing_2006_09_master0194
	Kan_Liuxing_2006_09_master0195
	Kan_Liuxing_2006_09_master0196
	Kan_Liuxing_2006_09_master0197
	Kan_Liuxing_2006_09_master0198
	Kan_Liuxing_2006_09_master0199
	Kan_Liuxing_2006_09_master0200
	Kan_Liuxing_2006_09_master0201

