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Abstract 

Scientific Computing (SC) software has had considerable success in achieving 

improvements in the quality factors of accuracy, precision and efficiency. How­

ever other software quality factors, such as reusability, maintainability, reliabil­

ity and usability are often neglected. This thesis proposes a new methodology, 

Family Approach for developing Scientific Computing Software (FASCS), to 

improve the overall quality of SC software. In particular, the aim is to benefit 

the development of professional end user developed SC programs. 

FASCS is the first methodology to apply a family approach to develop 

SC software, where all stages in both the domain engineering phase and the 

application engineering phase are included. In addition, the challenges for SC 

software and the characteristics of professional end user developers are also 

considered. A proof of concept program family, FFEMP, which can solve elas­

ticity problems in solid mechanics using the Finite Element Method (FEM), 

is developed to illustrate how the proposed methodology can be used. 

Part of FASCS is a new methodology for systematically eliciting, an­

alyzing and documenting common and variable requirements for a program 

family. The methodology is termed Goal Oriented Commonality Analysis 

(GOCA). GOCA proposes two layers of modeling, including the theoretical 

model and the computational model, to resolve the conflict between the con­

tinuous mathematical models that represent the underlying theories of SC 

problems and the discrete nature of a computer. In addition, the theoretical 

model and computational model are developed to be abstract and documented 
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separately to improve reusability. Explicitly defined and documented termi­

nology for models and requirements are included in GOCA, which helps avoid 

ambiguity, which is a potential source of reduced reliability. The traceability 

of current and future changes is used to potentially improve reusability and 

maintainability. 

FASCS includes a Family Member Development Environment (FMDE) 

for the automatic generation of family members. FMDE is apparently the first 

complete environment that facilitates automatically generating variable code 

and test cases for SC program families. The variable code for a specific member 

of the program family can be automatically generated from a list of variabilities 

written in a Domain Specific Language (DSL), which is considerably easier 

than manually writing code for the family member. Some benchmark test 

cases for the program family can also be automatically generated. 

Since both family members and test cases can be automatically gener­

ated, testing the program family can be performed on the same computational 

domain with different computational variabilities. This provides partially in­

dependent implementations for which test results can be compared to detect 

potential flaws. This capability partly addresses the unknown solution chal­

lenge for SC software. 

Documentation is also an important part of FASCS. Five new tem­

plates for documenting requirements and design are proposed. Traceability 

matrices, which provide relations between artifacts (and documents) in the 

different stages of the process, can facilitate understanding of the programs. 

The matrices can also improve reusability and maintainability by helping trace 
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changes. 

Nonfunctional requirements, especially nonfunctional variable require­

ments, are rarely considered in the development of program families. To the 

knowledge of the author, nonfunctional variable requirements have never been 

considered in the development of SC program families. Since some nonfunc­

tional requirements are important for SC software, FASCS proposes using 

some decision making techniques, such as the Analytic Hierarchy Process, to 

rank nonfunctional variable requirements and select appropriate components 

to fulfill the requirements. 
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Chapter 1 

Introduction 

Scientific Computing (SC) programs use models to simulate phenomena. These 

models are usually sets of continuous mathematical equations and solving these 

equations often requires large amounts of calculation. Since calculation is a 

key characteristic of this type of SC software, considerable time and effort 

have been invested in improving the quality factors that relate to calculation, 

such as accuracy, precision and efficiency. However, other quality factors, such 

as reusability, reliability, usability and maintainability, have not seen as much 

attention and still show room for improvement. 

A proposed family driven methodology, FASCS, which is an acronym 

for Family Approach for developing Scientific Computing Software, is aimed 

at improving the overall quality of SC software. A program family is a set of 

programs that have some common features, called commonalities. Instead of 

developing a single program, a family of programs is developed. A program 

of interest is a member of the family. Each family member is differentiated 
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from the others by one or more variabilities. The major contribution of the 

proposed methodology, FASCS, is the adaption of the family approach to the 

development of SC software. 

Since the quality of SC software is the motivation of the proposed 

methodology, the first section of this chapter is devoted to the definition of 

software quality (Section 1.1). The proposed methodology uses a family ap­

proach. Hence, the overall process of general program family development is 

given in Section 1.2. Finally, the organization of the thesis is summarized in 

Section 1.3. 

1.1 Definitions of Software Quality 

There is no standard definition of software quality. In this research, quality 

factors (Yu, 2007) are used to measure software quality. These factors are 

originally proposed by McCall et al. (1997). The quality factors in this research 

refer to the quality factors for a program. Henceforth, to avoid confusion, 

the word "program" refers to a general program, which may be a member 

of a program family that is developed using a family approach, or may be a 

program that is developed without using a family approach. Otherwise, the 

phrase "member of a program family" refers to a member of a program family 

that is developed using a family approach and the phrase "single program" 

refers to a program that is developed without using a family approach. The 

word "program" refers to a program as a whole, which includes code and 

documentation. 

2 



PhD Thesis - Wen Yu - McMaster - Computing and Software 

Eleven quality factors are defined in Yu (2007). However, only the 

definitions that relate to the current research are highlighted in this section. 

Reusability: Extent to which a program can be used in other applications. 

A member of a program family can be reused by other members of the 

same program family, by a member of other program families, or by a single 

program. The first case occurs most frequently, since members in the same 

program family solve similar problems. 

Usability: Effort required for learning, operating, preparing input, and inter­

preting output of a program. 

The assessment of the usability for a member of a program family is 

the same as that for a single program. For SC programs, preparing input and 

interpreting output usually requires more effort than actually operating the 

program. 

Sometimes, reusability and usability are difficult to distinguish. If a 

program family is easy to migrate from one member to another member, one 

may say that the program family is easy to use and that the usability is 

improved. However, as mentioned, the definitions of quality factors in this 

research refer to a program, which can be a member of a family or a single 

program. If a program family is easy to migrate from one member to another, 

then a portion of one family member is easily reused by another family member. 

Hence, according to the above definitions, the reusability of a family member 

is improved. 
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A rule to identify whether a problem belongs to reusability or usability 

is to identify the subject of the problem. If the problem occurs for a developer 

of a program, then the problem belongs to reusability. On the other hand, 

if the problem occurs for a user of a program, then the problem belongs to 

usability. 

Reliability: Extent to which a program can be expected to perform its in­

tended function with the required accuracy and precision. 

Reliability is important for an SO program. However, sometimes, relia­

bility is difficult to judge. Some expected results for SO programs are unknown 

a priori, especially for programs that simulate phenomena that is "too com­

plex, too large, too small, too dangerous, or too expensive to explore in the 

real world" (Segal and Morris, 2008). This is the unknown solution challenge 

for SO programs, which is also termed the oracle problem. The unknown solu­

tion challenge was discussed in Yu (2007). This challenge, together with other 

challenges for SO software, will be discussed in Section 2.2.1. 

Improved reusability may increase reliability. Reliability problems may 

be due to errors in the program. When a program is reused, it is very likely that 

errors can be detected and fixed. Hence, reliability is improved. On the other 

hand, improved reliability may reduce reusability, since improving reliability 

may require adding more constraints to the program. These constraints may 

reduce the scope of the program and prevent other programs from reusing it. 

Maintainability: Effort required for modifying an operational program. 
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The purpose for the modification includes to correct discovered prob­

lems, to keep the program usable in a changed or changing environment and to 

improve performance or other quality factors (Lientz et al., 1978). Expanding 

the scope of the program is also included in maintenance. 

Maintainability strongly relates to reusability. The necessary condition 

for high reusability and maintainability is that the program be easy to change. 

To modify a program, the developer of a program must be able to easily locate 

the portions to be modified. This involves the understandability of a program. 

The easier a program is to understand, the easier the program is to modify. 

Hence, understandability can improve both of reusability and maintainability. 

1.2 Overview of Program Families 

Since the proposed methodology uses a family approach, this section will give 

a general introduction on program family and the process of using a family 

approach to develop software. A program family is a set of programs that share 

a common, managed set of features and that are developed from a common 

set of core assets in a prescribed way (Pohl et al., 2005). A program family 

approach is sometimes called Software Product Line Engineering (SPLE). 

The family approach for developing software was conceived in 1970's 

(Parnas, 1976). The idea was inspired by the success of developing families of 

industrial products, such as cars. However, the program family approach did 

not get much attention from software developers until a decade ago (Clements 

and Northrop, 2002; SEI, Retrieved June 2010; Pohl et al., 2005; Weiss and 
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Lai, 1999). 

The primary motivation for developing programs as a family is to pro­

duce customized products at reasonable costs (Pohl et al., 2005). The benefits 

of using a program family approach also include reducing the development 

cost and the time to market, and improving quality and productivity. 

The basic assumptions that need to hold to make program family de­

velopment worthwhile are (Weiss and Lai, 1999): 

• The redevelopment hypothesis: Programs that can be developed as a 

family have some functions in common. 

• The oracle hypothesis: The changes to the programs are predictable. 

• The organizational hypothesis: The modification for one predicted change 

does not have a strong dependence on the modification of other predicted 

changes. 

The program family approach introduced in this section provides back­

ground on the general approach. The specific methodology developed for this 

research is discussed in Chapter 3. The general program family approach 

discussed in this chapter is based on Clements and Northrop (2002), SEI (Re­

trieved June 2010), Pohl et al. (2005) and Weiss and Lai (1999). The approach 

presented here has been used by many program family practitioners (Czarnecki 

and Eisenecker, 2000; van der Linden et al., 2007; Voelter and Groher, 2007). 

The program family approach has two basic phases: Domain Engineer­

ing and Application Engineering. Most researchers (Clements and Northrop, 

2002; SEI, Retrieved June 2010; Pohl et al., 2005) explicitly divide each phase 
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into several stages , as shown in Figure 1.1. This same division is implicit in 

Figure 1.1: Overview of the Program Family Approach (Pohl et al., 2005) 

Weiss and Lai (1999), where artifacts from the different domain engineering 

stages are combined into a development environment. The environment pro-

vides facilities for application engineers to develop family members. The use 

of the environment is adapted by the proposed methodology FASCS, and will 

be introduced in Chapter 3 when FASCS is specifically discussed. 

The Domain Engineering phase includes five stages: Product Man-

agement , Domain Requirements Engineering, Domain Design, Domain Imple-

mentation and Domain Testing. Weiss and Lai (1999) separate the product 
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management stage from the domain engineering phase. However, the prod­

uct management stage is included in the domain engineering phase by most 

researchers, because the product management stage also works on the "Do­

main," although it mainly deals with economic consideration for the domain. 

Application Engineering includes four stages: Application Requirements En­

gineering, Application Design, Application Implementation and Application 

Testing. Pohl et al. (2005) names the Domain Implementation and Application 

Implementation stages as Domain Realisation and Application Realisation, re­

spectively. However, the name "Domain Implementation" and "Application 

Implementation" have wider acceptance in the software product line literature. 

Therefore, the terms Domain Implementation and Application Implementation 

are used in this thesis. 

The later stages in the domain engineering phase use the artifacts (prod­

ucts) that are produced by the former stages. On the other hand, the later 

stages in the application engineering phase use both the artifacts that are 

produced by the former stages in the application engineering phase and the 

artifacts that are produced by corresponding stages in the domain engineering 

phase. For example, the application design stage uses the Requirements pro­

duced by application requirements engineering and the Reference Architecture 

produced by the domain design. As for developing a single program, the pro­

cesses of both domain engineering and application engineering are iterative. 

The later stages provide feedbacks for former stages in both the domain engi­

neering phase and the application engineering phase. In addition, the stages in 

the application engineering phase also provide feedback for the corresponding 
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stages in the domain engineering phase. The process for developing program 

family is outlined in the rest of this section. 

1.2.1 Domain Engineering 

During the domain engineering phase, the economics of the program family 

are analyzed, the common and variable requirements of the program family 

are defined and the commonalities are designed, implemented and tested. The 

product of domain engineering is the "platform," on which all family members 

are based. 

1.2.1.1 Product Management 

Product management is the first stage of the whole process. During this stage, 

the economics of the program family are analyzed and the scope of the program 

family is determined. The output of this stage is the major common and 

variable features of the program family and the schedule for development. 

1.2.1.2 Domain Requirements Engineering 

Domain requirements engineering is sometimes called commonality analysis. It 

is a very important stage for the development of a program family because all 

common and variable requirements are developed in this stage. These common 

and variable requirements are the basis for the later development. The output 

of the commonality analysis stage is the common and variable requirements 

for the program family. 

No one software requirements eliciting process is the best for all types 
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of software, nor is there a single best format for documenting software re­

quirements. Similarly, the process for developing the common and variable 

requirements and the way that these requirements are documented can be 

different for different domain areas. For example, the process used for the 

commonality analysis of a Floating Weather Station, which is an example in 

Weiss and Lai (1999), and for Home Automation, which is an example in Pohl 

et al. (2005), are different. Moreover, the formats for documenting common 

and variable requirements for the two examples are also different. The common 

and variable requirements for the former example are documented textually 

and those for the later example are documented graphically. 

1.2.1.3 Domain Design 

During the domain design stage, a reference architecture for the program fam­

ily and a model that specifies differences for some family members is devel­

oped. A variety of names for the model are used in the literature. However, 

the essence is the same. The name Domain Model is used in this section. 

A reference architecture provides the structure for all members of the 

program family. Hence, it should be flexible enough to accommodate all vari­

able requirements. At the same time, it should also contain enough infor­

mation for application engineers to develop individual family members. The 

reference architecture can be designed using module decomposition (Parnas, 

1972). However, this approach is not mandatory. 

A language that specifies variable requirements, which is usually a Do­

main Specific Language (DSL), is the key part of the domain model. Since 
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family members are distinguished by variable requirements, a family member 

can be specified by a program written in this language. 

To improve the usability of the program family, automatic generation 

of program family members has become prevalent. As discussed in Section 

1.1, improved usability of the program family can improve the reusability of 

the family members. There are two aspects that can be automated: auto­

matic generation of code (Carette, 2006) and automatic assembling of code 

(Czarnecki and Eisenecker, 2000). Both the automatic code generator and the 

automatic assembler are designed in this stage, if the automatic approaches 

are to be used. 

Another way to improve the usability of the program family is to reuse 

existing components. These components can be pieces of code or binaries. 

Component-Based Software Engineering (Bachmann et al., 2000; Heineman 

and Councill, 2001) focuses on how to make the components exchangeable so 

that they can be reused. 

1.2.1.4 Domain Implementation and Testing 

In the domain implementation stage, code that is common to all family mem­

bers is developed. Developing common code may include reusing existing 

components. If code is automatically generated, the code generator, which 

is designed in the domain design stage, is implemented and common code 

is generated. If the automatic configuration approach is used, a component 

assembler, which is also designed in the domain design stage, is implemented. 

The domain testing stage deals with testing code that is common to 
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all family members and testing the code generator, if the code is to be gen­

erated automatically. The configuration mechanism is tested if the automatic 

configuration approach is used to generate family members. 

1.2.2 Application Engineering 

The members of a program family are developed in the application engineering 

phase. The process for developing family members is much simpler than the 

process for developing single programs, since artifacts produced in the domain 

engineering phase can be reused. The application engineering phase cannot 

start until the domain engineering phase starts. However, it is not necessary 

that the application engineering phase waits for the domain engineering phase 

to finish. The activities for domain engineering and for application engineer­

ing can work in parallel. The stages in the application engineering phase can 

start after the corresponding stages in the domain engineering phase finish. In 

fact, it is often the case that one or more members of the program family are 

developed in parallel with the development of the program family. A benefit 

of parallel development is the reduction of the time to market of family mem­

bers. In addition, the activities in the application stages provide the benefits 

that they give feedback to the corresponding stages in domain engineering for 

refinement of the domain engineering artifacts. This improves the quality of 

the program family. 

The application engineering starts with the application requirements 

engineering stage. The output of this stage is the application requirements 

specification. The common requirements are already specified in the com-
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monality analysis stage and can be reused. The variable requirements for the 

specific family member are now determined. 

The application design stage uses the artifacts from domain design 

stage and application requirements engineering stage. Depending on the values 

of variable requirements for the family member, the reference architecture is 

configured to the family member to be developed. The output of this stage is 

the architecture for the specific family member. 

In the application implementation stage, only variable code is devel­

oped. Common code that was developed in the domain implementation stage 

is reused. The variable code is developed using a traditional approach or an 

automatic code generation approach. The common code and variable code are 

also configured, manually or automatically, in this stage 

During the application testing stage, tests of the specific family mem­

ber are performed. These tests include the unit test for variable code. The 

integration test and system test are the same as for testing a single program. 

1.3 Outline of Thesis 

This chapter (Chapter 1) gives background information on software quality 

and program families. Chapter 2 specifies the quality concerns for SC soft­

ware, which are the motivations of the proposed methodology. The proposed 

methodology, FASCS, is introduced in Chapter 3, followed by the detailed 

discussions on the methodology. Chapter 4 presents GOCA, a new method­

ology of commonality analysis for FASCS. Chapter 5 specifies another high-
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light for the proposed methodology, the Family Member Development Envi­

ronment. Chapter 6 specifies how implementation and testing are performed 

using FASCS, where a new test technique called Computational Variable Test 

is proposed. Chapter 7 summarizes the documents for developing SC program 

families using FASCS, where five new templates for documenting the develop­

ment of SC program families are proposed. The discussion of the documents 

(Chapter 7) is separated from the development stages (Chapters 3- 6) to em­

phasize the importance of the documentation and not to disrupt the flow of 

the presentation for the stages. Finally, the conclusion and future works are 

provided in Chapter 8. 
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Chapter 2 

Quality Concerns for Scientific 

Computing Software 

The previous chapter (Chapter 1) gave the background information on software 

quality and the program family concept for general software. This chapter will 

focus the discussion on Scientific Computing (SC) software. First, some quality 

problems for SC software are introduced. Then, causes for unsatisfactory SC 

software quality are discussed, followed by a summary of previous endeavors 

of researchers to overcome these quality problems. Finally, an example SC 

program family, FFEMP, is introduced. 
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2.1 Quality Problems for Scientific Comput­

ing Software 

SC software has been successfully used in a variety of applications. For in­

stance, it is used to increase the productivity of manufacturing processes, to 

improve the effectiveness of health care treatments and to raise the level of 

safety obtained by new building and vehicle designs (Yu and Smith, 2009). 

SC software can be commercial or noncommercial. This research fo­

cuses on noncommercial SC software, in particular, on noncommercial SC 

software that is developed by professional end user developers (Segal and Mor­

ris, 2008), such as scientists or engineers. SC software that is developed 'by 

professional end users is quite prevalent in research institutes and universities. 

Many of the end user developed SC programs have very similar func­

tionalities. The proliferation of programs with similar functionality can be 

seen by considering the long lists of similar SC programs available on the In­

ternet. An example is the list of FEM programs on Young and MacPhedran 

(Retrieved January 2011), which has over 120 public domain finite element 

programs. The proliferation of similar programs suggests that reusability is a 

quality factor of SC software that can be improved. 

Reliability is also a concern for SC software. Some failures of appli­

cations are caused by inaccurate computations from embedded SC software. 

The failure of an American Patriot Missile battery in Dharan, Saudi Arabia, 

to intercept an incoming Iraqi Scud missile in 1991 (Cirincione, 1992) is one 

of many examples. Failures also occur in SC programs used to check theo-
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ries developed by scientists. For example, the failure of the analysis program 

used by Geoffrey Chang to discover the structure of a protein called MsbA 

resulted in the retractions of five of his papers (Miller, 2006). These examples 

demonstrate that there is room for improvement in reliability for SC software. 

Many end user developed SO programs are used by professors in univer­

sities for checking their scientific theories and the developers of these programs 

are usually their graduate students. This fits with the findings that the lifetime 

of SO programs used in universities is usually less than 5 years (Tang, 2008), 

since this is the duration of a typical PhD program. On the other hand, devel­

oping a scientific theory often requires scientists working for many years. This 

means that the lifetime of the program is shorter than the time for developing 

a theory, which indicates that the use of the program is discontinued. One 

potential reason for the short lifetime of some end user SO programs is the 

usability challenge. That is, the programs are difficult to use, so researchers 

cannot use the programs written by other researchers. Another potential rea­

son is the maintainability challenge. Scientific theories under development may 

constantly evolve. Hence, programs for testing the theories also need to evolve. 

However, using current development approaches, the evolution may be more 

difficult to maintain than developing a new program. Therefore, researchers 

usually develop new programs instead of spending time on modifying existing 

ones. 

The above quality problems are considered by the proposed method­

ology, FASOS. FASCS uses a program family approach, which can improve 

reusability, usability, reliability and maintainability, as discussed in Section 
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1.2. In addition to the process, FASCS also uses many techniques to fur­

ther improve quality. Some techniques to improve SC software quality and the 

adoption of these techniques by FASCS will be introduced later in this chapter 

(Section 2.3.4). 

2.2 Potential Reasons for Quality Problems in 

Scientific Computing Software 

The potential reasons for the quality problems mentioned in Section 2.1 fall 

into two categories: characteristics of SC problems, and the ways that SC 

software is developed. 

2.2.1 Characteristics of Scientific Computing Software 

Some characteristics of SC software can cause challenges for its development. 

Some of these challenges, such as the approximation challenge and the un­

known solution challenge, are unique to SC software. Others are not unique, 

but these challenges occur very frequently in the development of SC software. 

The challenges for developing SC software are listed below. How the pro­

posed methodology, FASCS, address these challenges will be presented when 

the details of F ASCS are discussed in the rest of this thesis. 

Approximation Challenge Most real numbers are approximated by float­

ing point numbers on a computer. This approximation is one of the 

causes for reliability issues. The failure of an American Patriot Missile, 
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mentioned in Section 2.1, was caused by the round off errors of floating 

point numbers. In addition, truncation of continuous or infinite numer­

ical algorithms to discrete and finite approximations is also a source of 

errors, called truncation errors. More discussions on analysis of round 

off errors and truncation errors can be found in Heath (2003). 

Unknown Solution Challenge The unknown solution challenge (Smith and 

Yu, 2009) is another characteristic that impacts reliability. Many SC 

programs are used to solve problems whose true solutions are unknown. 

That is, there are limited test cases with known solution for the pro­

grams, which means an incomplete test oracle (Sanders and Kelly, 2008). 

Hence, it is difficult to assure the reliability of the programs because the 

accuracy and precision are difficult to judge without a proper test oracle. 

This difficulty is different than other types of software, such as embedded 

and real-time systems, whose true solutions are known although these 

solutions are difficult to obtain. 

Technique Selection Challenge Real world problems that interest scien­

tists and engineers are modeled before they can be solved. These models 

are usually represented by continuous mathematical equations. However, 

these continuous equations cannot be directly solved by a computer due 

to the discrete nature of a computer. Some techniques (algorithms) are 

available to numerically solve continuous equations. For example, there 

are many techniques, such as the Finite Element Method, for solving Par­

tial Differential Equations, which model many physical problems. These 
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techniques are usually different from one another by some quality factor, 

such as reusability and reliability. That is, the selection of the appro­

priate technique depends on the nonfunctional requirements of the SC 

software. However, nonfunctional requirements are difficult to specify 

and assess. How to select the appropriate technique for solving these 

continuous equations is a challenge that is typically left as a decision for 

the domain expert, but ideally there would be a systematic means to 

make the decision related to nonfunctional requirements. 

Input Output Challenge The equations that model the problems of inter­

est usually require considerable amounts of input data and produce large 

volumes of output. It is not uncommon to have output files with sizes 

measured in megabytes, or even gigabytes. The interpretation of this 

vast amount of data for the input and output is often complicated. 

As Dubois (2002) mentioned, people often "reinvent the wheels" even 

though library routines for solving their problems exist because of the 

difficulty of preparing input data and interpreting the output results. 

The characteristic of complicated input data and output results creates 

challenges for the usability of SC software. 

Modification Challenge SC software that is used by some scientists needs 

to be flexible to accommodate potential changes in their research. The 

change of requirements also occurs in other types of software. However, 

the frequency of the change is sometimes very high for SC software. This 

is one of the reasons that some scientists do not usc commercial software, 
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since it is usually difficult or expensive to quickly modify existing com­

mercial software according to the users' requirements. Unfortunately, the 

noncommercial programs are often not as flexible to change as would be 

expected, as the developers do not usually develop their programs for 

reuse (Segal, 2008). 

2.2.2 Patterns of Scientific Computing Software Devel­

opment 

In addition to the characteristics of SC software, the development patterns of 

SC software can also cause quality concerns. Software engineering method­

ologies have not been widely used for developing SC software, especially the 

SC software that is developed by professional end users (Segal, 2008; Wilson, 

2006). One of the reasons is that the professional end user developers, scien­

tists and engineers, have extensive domain knowledge, but little background 

in software engineering. Only 13% of SC software developers in recent survey 

identified themselves as having some software engineering education in their 

background (Tang, 2008). 

In fact, many end user SC programs consist of nothing other than code. 

A common development model is to start a new project by copying the code 

from a similar project and modifying it for the new use (Yu and Smith, 2009). 

The copy and modify development approach results in significant maintenance 

headaches because of the challenge of propagating future improvements back 

to the ancestors of a given program. Reusability also suffers because, although 

much of the code is reused, the reuse occurs in an ad hoc manner, with success 
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depending on the programmer having intimate knowledge of the implementa­

tion details of their code. 

In addition, the frequent lack of systematic testing causes challenges for 

reliability. Testing is usually not thorough for professional end user developed 

software. The lack of testing data, which is mentioned in Section 2.2.1, is one 

of the reasons for this. Another reason is that end user developers usually 

do not have a clear idea of how to test software. Most SC programs are 

only tested using test cases with analytical solutions for the equations that 

model the problems. An example of incomplete and redundant test cases is 

the prototype software system used to estimate radiation doses from cosmic 

sources in the Department of Chemistry and Chemical Engineering at the 

Royal Military College of Canada (Kelly et al., 2010). 

The unprofessional development of SC software brings an understand­

ability problem, which brings associated reusability problems. Although the 

programs developed by end users are often open source, these programs are 

usually not well documented and their understandability is a challenge. Hence, 

reuse does not occur as often as would be desirable. 

In addition, there is a trust issue in the development of SC software. 

The end user developers do not often consider the reuse of programs, except in 

the case of some libraries. The reason is that they do not "trust" the existing 

programs. They usually want to understand the code before they can reuse 

it. This is part of the reason why they refuse to use some commercial software 

because they cannot obtain and investigate the source code. 

The above SC software development patterns are used by end user de-
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velopers for years and have their own benefits, such as short development time. 

It is not feasible for these end users to thoroughly learn Software Engineering 

(SE) knowledge before they develop software. A methodology for developing 

SC software should not require an extensive SE background and should be 

easy to follow. 

The proposed methodology, FASCS, is easy to follow. It uses the family 

approach introduced in Section 1.2. If it is completely followed, end user devel­

opers, who act as application engineers, will not have to write any code, except 

a very simple Domain Specific Language (DSL) program. This addresses the 

problems caused by the development methodologies mentioned above and has 

the benefit of short development time for the end user developers. 

To judge the quality of FASCS, the systematic approach proposed by 

Carver et al. (2007) for studying SC software could be pursued. The advan­

tages of using FASCS can be shown by adapting FASCS to a real SC project 

and comparing the interesting quality factors of a program developed using 

FASCS with the same quality factors of a program developed using the exist­

ing method. The feedback from the development of the project is also valuable 

for improving FASCS. 

2.3 Methodologies for Improving the Quality 

of Scientific Computing Software 

SC is one of the primary motivations for inventing computers. However, im­

provement to the development of SC software have not seen much attention. 
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Although some of the problems have been reported (Carver et al., 2007; Kelly, 

2007; Segal and Morris, 2008), not many methodologies have been specifically 

developed for SC software to address these problems. The methodologies that 

have been adopted to address SC quality concerns are summarized in this 

section. 

2.3.1 Object-Orientation 

Object-Orientation (00) (Meyer, 1988) is a software development approach 

that has been successfully applied to developing programs, such as business 

applications, to improve their quality. The 00 approach improves software 

quality through encapsulation, inheritance and polymorphism. However, there 

is an understandability challenge brought by these three 00 features, although 

the advantages of the 00 approach are generally considered to outweigh this 

challenge. 

By using encapsulation, information that is unnecessary for other classes 

is hidden inside one class. This is the basic software design principle, in­

formation hiding (Parnas, 1972), that has been widely accepted by software 

engineering community. Many SC programs are also developed using this 

principle. 

Inheritance may bring problems for developing SC software. The reason 

for the success of applying the 00 approach to some domains is that the 

Object is the key to the application and inheritance naturally exists among 

the objects. For example, an object, Account, is one of the most important 

aspects for an automatic banking machine (ATM) system. A bank account 
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may be a Savings Account or a Chequing Account. However, both Savings 

Accounts and Chequing Accounts have many features in common. Hence, one 

can create an Account class as a parent class and make Savings Account and 

Chequing Account inherit the Account class and become its child classes. 

Unlike the above example, the central part of many SC problems is 

algorithms (Berti, 2000), not objects, and algorithms are "flat" (Di Felice, 

1993). That is, inheritance does not naturally exist. For example, it is difficult 

to find the inherited relationship between Gaussian Elimination and Gauss 

Seidel, which are two algorithms to solve linear systems of equations. Although 

these two algorithms can be designed as child classes of an algorithm class, 

there is little in common since these classes usually do not have any class field. 

That is, inheritance would be an unnatural or forced concept that would make 

the programs more difficult to understand compared with a program that does 

not use inheritance. 

It is possible to declare the above algorithm class as an abstract class 

and let Gaussian Elimination and Gauss Seidel be its subclasses. Then, the 

algorithm to be used is dynamically bound at runtime. This polymorphism can 

improve reusability. However, the dynamic binding may potentially delay the 

time of discovering errors, since the type checking cannot be done at compile 

time. Since the algorithm for solving a specific problem using SC software 

is usually determined when the program is implemented, the binding time 

can be moved to compile time. That is, instead of a general program that 

can solve a problem using different algorithms, a family of programs using 

different algorithms is developed. This is what a program family approach 
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suggests. The program family approach will be further discussed in Section 

2.3.3. 

Moreover, the objects in SC software are data. Although some re­

searchers try to separate data structures from algorithms (Berti, 2000; ElSheikh 

et al., 2004), most data structures in SC software relate to algorithms. The 

data structure may be different depending on algorithms to achieve optimal 

accuracy, precision or efficiency. Accommodating these differences into one 

parent class may make the data structure difficult to understand. For exam­

ple, the understandability challenge exists in many Finite Element Method 

(FEM) programs that are developed using 00 approach, such as FEMOOP 

(Martha, 2002), OOFEM (Patzak, 2000; Patzak and Bittnar, 2001a) and 

OFELI (Touzani, 2002). To understand a class that is meaningful to a FEM 

model, such as a 2D beam element, in one of above FEM programs, OOFEM, 

one must understand its 7 ancestor classes. On the other hand, a 2D beam ele­

ment in a program without inheritance, such as the program in Stolle (2008), is 

represented by a list of nodes, which are represented by their coordinates. It is 

clear that the program in Stolle (2008) is easier to understand than OOFEM. 

Nevertheless, the encapsulation of 00 is still an excellent way to hide 

information. 00 design and 00 programming can be used for developing SC 

software, but with careful use of inheritance. 

2.3.2 Agile Methods 

Another software development approach, agile methods, has become more 

and more prevalent in the software engineering community. This method-
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ology copes well with software with unpredictably changing requirements. It 

has been successfully applied to some SC software projects (Easterbrook and 

Johns, 2009; Kane et al., 2006; Wood and Kleb, 2003). However, there are limi­

tations for applying agile methods. For example, agile methods do not benefit 

projects having "relatively well-defined and stable requirements" (Crabtree 

et al., 2009). There is also not much benefit for using agile methods if the re­

quirements change predictably. Programs with predictably changing require­

ments, which are common in SC, can be developed as a program family, which 

will be discussed in the next section (Section 2.3.3). 

2.3.3 Program Family Approach 

In contrast with agile methods, a program family approach is a traditional 

"plan-driven" approach, meaning that it is suitable for projects with relatively 

stable or predictably changing requirements. 

The program family approach improves reusability because, under this 

approach, "reuse is planned, enabled, and enforced" (Clements and Northrop, 

2002). Since the common portion of the program family is reused and retested, 

defects are more likely to be discovered than if the program is tested only 

once. Hence, reliability is improved. Each member of the program family is 

not a general purpose program. It solves a small set of specific problems. A 

general purpose program is usually more difficult to use than a specific one 

because some conditions have to be set to "tell" the general purpose program 

the features of the problem to be solved. For example, if a general purpose 

program for multiplying matrices is used to multiply two sparse matrices, 
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we must "tell" the program about the sparseness so that a more efficient 

algorithm can be used. When the problem to be solved becomes complicated, 

the setting of these kinds of conditions can also be complicated. Therefore, a 

specific program family member has better usability than a general purpose 

program. Maintainability is also improved because, unlike the copy and modify 

development approach mentioned in Section 2.2.2, the core assets for all family 

members are managed together. 

The success of the program family approach in developing software 

promotes adopting this methodology to SC software development (Smith and 

Chen, 2004; Carette, 2006; Bastarrica and Hitschfeld-Kahler, 2006; Yu and 

Smith, 2009; Smith et al., 2010; Carette et al., 2011). However, these previous 

attempts only focus on some aspects of the program family approach. Smith 

and Chen {2004), Smith et al. (2010) and Yu and Smith (2009) emphasize 

commonality analysis. On the other hand, Bastarrica and Hitschfeld-Kahler 

{2006) focus on design and implementation and do not mention a commonality 

analysis. Carette (2006) and Carette et al. {2011) focus on automatic code 

generation. All stages of the SC program family development need to be 

explored to achieve completeness of the methodology, which is the primary 

purpose of this thesis. 

Developing software as a family is a general approach. The success of 

applying it to a specific domain depends on it being tailored for that domain. 

The reason that SC programs can be developed as families is that many SC 

programs meet the three development hypotheses mentioned in Section 1.2. 

• The redevelopment hypothesis: An SC program uses a model to sim-
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ulate a phenomenon. There must be some assumptions that are true 

for the model to represent the phenomenon. It is very likely that the 

model with one or more modified assumptions can be used to represent a 

slightly different phenomenon. In this case, the program with some mod­

ification can be reused. For example, many programs using the Finite 

Element Method to solve elasticity problem in solid mechanics have the 

functionality of solving displacements. This indicates that there exists 

some SC programs that have some functions in common. That is, the 

redevelopment hypothesis for many SC programs holds. 

• The oracle hypothesis: Many SC programs, especially professional end 

user developed SC programs, are used to solve equations that model 

the scientific theories that have been developed for many years, such as 

the governing equations for the elasticity problem in solid mechanics as 

Equation 2.1 will show in Section 2.4. Since the underlying theories are 

stable, the changes of this kind of programs are predictable. For an SC 

program that models a developing scientific theory, changes related to 

the computational decision, such as the potential range of the number 

of straight line segments to use to approximate a curve, are generally 

known in advance. In addition, other changes can usually be estimated 

by the scientists developing the theories. That is, the oracle hypothesis 

for many SC programs holds. 

• The organizational hypothesis: As mentioned above, the change of as­

sumptions for the model is the major source of modifications for SC pro-
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grams. Since the changes of assumptions for the models are usually not 

strongly dependent, the modifications are usually not strongly depen­

dent. A challenge related to organization hypothesis for SC programs, 

the connection between data structures and algorithms, was observed 

(Chen, 2003). However, some techniques have been proposed to sepa­

rate the connection (Berti, 2000; ElSheikh et al., 2004). If it is necessary, 

the separation of data structures and algorithms can be achieved. The 

above discussion indicates that the organizational hypothesis for many 

SC programs holds. 

The proposed methodology, FASCS, focuses on the breadth of the fam­

ily approach to developing SC program families. This is the first time in the 

SC software development community, where all stages in both the domain 

engineering phase and the application engineering phase are included. In ad­

dition, FASCS also deeply explores some stages of the process, such as the 

commonality analysis. Unlike Carette (2006), which automatically generates 

all common and variable code, FASCS suggests automatically generating vari­

able code and developing common code using a traditional approach. This 

combination of automatic and traditional approaches allows end user devel­

opers without knowledge of automatic code generation to modify the whole 

program family. 
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2.3.4 Some Techniques for Improving SC Software Qual­

ity 

There are many techniques to improve software quality that can be used when 

developing SC software. The techniques discussed in this section do not con­

tribute to an entire software development process. For example, none of these 

technique include a process for eliciting software requirements. However, these 

techniques can be used in the software development processes mentioned pre­

viously. For example, libraries can be used when the 00 approach is used for 

software development. Many of these techniques are also adopted to FASCS. 

The adoptions are discussed when the techniques themselves are introduced. 

2.3.4.1 Libraries 

Using libraries is one of the traditional methods to improve reusability. Some 

of the libraries, such as GSL (GSL, Retrieved December 2010), BLAS (BLAS, 

Retrieved December 2010), LAPACK (Anderson et al., 22 Aug 1999) and NAG 

(NAG, Retrieved December 2010), have been used for many years. However, 

the effectiveness of using these libraries heavily depends on the experiences of 

the users of the libraries. As argued in Dubois (2002), "their market penetra­

tion is far below what it could be." The major reason is that users find "the 

large number and variety of arguments to be too intimidating" and users are 

confused when they need to set values for some of the arguments. 

Libraries play an important role in SC software. Libraries can also 

be used in FASCS. The problem of setting arguments can be solved when 

using FASCS, because the end user developers act as application engineers. 

31 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

They only need to write a program using a Domain Specific Language (DSL) 

to specify the member of a family they desired, which should be relatively 

simple. More details on the development of a DSL for SC program family will 

be presented in Chapter 5. 

2.3.4.2 Component-Based Development 

Component-Based Development (CBD) (Heineman and Councill, 2001) shares 

the same idea as libraries in the sense that they all focus on reusing units of 

a program. One of the differences is that a "component" is not restricted 

to a subroutine, as for a library. It can be a module, a package or even a 

binary. For a large distributed multiple business domain, the components 

are further abstracted into services, which can be passed through a web-based 

communication environment. This is an extension of CBD and is called service­

oriented development (Papazoglou and Heuvel, 2007). 

Another difference is that CBD is more thorough than the library ap­

proach because it also suggests some techniques for developing reusable compo­

nents. One of the techniques is generic programming, which will be discussed 

next in Section 2.3.4.4. Moreover, CBD includes a process for configuring the 

components. 

CBD has been used in SC software development, such as MPQC and 

NWChem, which arc two quantum chemistry simulation packages (Alexeev 

et al., 2005). CBD can be seen as a portion of a program family approach, 

such as FASCS. In particular, developing components is included in the domain 

implementation stage and configuration is included in the domain design stage. 
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2.3.4.3 Aspect-Oriented Programming 

Similar to the 00 approach introduced in Section 2.3.1, aspect-oriented pro­

gramming (AOP) (Kiczales et al., 1997) also focuses on the separation of 

concerns. However, AOP aims on aspects that cross-cut the system's basic 

functionality. It complements the 00 approach by providing another way of 

thinking about program structure. The key unit of modularity in 00 is the 

class, whereas in AOP the unit of modularity is the aspect. Aspects enable 

the modularization of concerns that cut across multiple types and objects. 

AOP has been used in the development of SC software. Irwin et al. 

(1997) developed sparse matrix code using AOP. Harbulot and Gurd (2004) 

demonstrated the possibility of using aspects for decoupling the implementa­

tion of parallelization from the implementation of the numerical models. 

AOP isolates secondary or supporting functions from the main pro­

gram's business logic. In this way, it is similar to the family approach (Section 

2.3.3), which isolates variabilities from commonalities. 

2.3.4.4 Generic Programming 

Generic Programming is a programming paradigm for developing efficient, 

reusable software. The Standard Template Library (Plauger et al., 2000), 

which became part of the ANSI/ISO C++ standard, was the first major suc­

cess of applying this paradigm. Generic Programming achieves reusability by 

finding commonality among similar implementations of the same algorithm, 

then providing suitable abstractions so that a single, generic algorithm can 

cover many concrete implementations (Indiana University, 2010). 
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Generic programming has been applied to develop SC software. Ex­

amples of using generic programming to develop SC software include a library 

supporting mesh-level geometry components (Berti, 2006), high-performance 

parallel code for solving two archetypal PDEs (Lee and Lumsdaine, 2002) and 

a high-performance vector mathematics library, Blitz++ (Blitz, Retrieved De­

cember 2001). Generic programming can be used in FASCS. As mentioned 

when CBD was discussed in Section 2.3.4.2, generic programming can be used 

to write reusable components. More details on how the generic programming 

fits within FASCS will be discussed in Chapter 5. 

2.3.4.5 Generative Programming 

Generative Programming (GP) is "a software engineering paradigm based on 

modeling software system families such that, given a particular requirements 

specification, a highly customized and optimized intermediate or end-product 

can be automatically manufactured on demand from elementary, reusable im­

plementation components by means of configuration knowledge" (Czarnecki 

and Eisenecker, 2000). Compared to CBD discussed in Section 2.3.4.2, GP 

emphasizes the configuration so that the products can be automatically man­

ufactured. 

An example of using GP to develop SC software is the Generative 

Matrix Computation Library, given in Gr.arnecki and Eisenecker (2000). Arora 

et al. (2009) also discusses applying GP to developing SC software and gives a 

case study of developing a Poisson Solver, which is used for solving separable 

Partial Differential Equations. Carette et al. (2011) use a generative approach 
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to develop a program family of geometric kernels for mesh generation. As 

mentioned in Section 1.2.1.3, GP can be used in developing program families 

and FASCS uses a generative approach. Further detail on this topic will be 

given in Chapter 5. 

2.3.4.6 Problem Solving Environment 

A Problem Solving Environment (PSE) is a computer system that provides all 

the computational facilities needed to solve a target class of problems (Gal­

lopoulos et al., 1994). APSE provides advanced solution methods, automatic 

or semi-automatic selection of solution methods, and ways to easily incorpo­

rate novel solution methods. The use of libraries (Section 2.3.4.1) and PSEs 

can be linked together, so that the difficulties of using libraries can be solved 

(Rice and Boisvert, 1996). 

Developing SC software is the major application of PSEs. Matlab 

(Mathwork, Last Access 2010) and Maple (Maplesoft, Retrieved 2010) are 

two successful PSEs developed to solve SC problems. The connection between 

SC and PSEs is summarized in Houstis et al. (1997). The idea of a PSE is used 

in the program family approach. In fact, the environment, which is an artifact 

of domain engineering, as introduced in Section 1.2.1, is aPSE. PSEs are also 

used in the proposed methodology, FASCS. The Family Member Development 

Environment (FMDE), which is an important part of FASCS, is a PSE. More 

details on FMDE can be found in Chapter 5. 
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2.3.4. 7 Design Patterns 

A design pattern is a general reusable solution to a commonly occurring prob­

lem in software design. It "describes a problem which occurs over and over 

again in our environment" (Alexander et al., 1977). A design pattern is a 

description or template for how to solve a problem that can be used in many 

different situations. Design patterns gained popularity after the book "Design 

Patterns: Elements of Reusable Object-Oriented Software" (Gamma et al., 

1995) was published. Hence, design patterns are mainly used in 00 design. 

Design patterns are used in the development of SC software when the 

00 approach is applied. For example, Decyk and Gardner (2008) discusses the 

concept, application, and usefulness of software design patterns in Fortran95 

based scientific programming. Blilie (2002) explores the application of patterns 

to dynamic-systems simulation, such as molecular dynamics, and identifies four 

design patterns that emerge in modeling such systems. Design patterns can 

be used for developing program families. One of the examples is the Facade 

design pattern. The interfaces for the variable portion of a program family is 

unified, although the internal designs are different. 

2.4 An Example Scientific Computing Program 

Family: FFEMP 

An example SC program family, FFEMP, is used to illustrate how to use the 

proposed methodology, FASCS, to develop an SC program family when FASCS 

is discussed in the rest of this thesis. This example program family is briefly 
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introduced in this section. 

FFEMP stands for Family of Finite Element Method Programs. It is 

a proof of concept program family and can solve elasticity problems in solid 

mechanics. Any member of the FFEMP can solve for the displacements of 

nodes and the displacements of any point in the computational domain. Some 

members can solve for and output the stress and/ or strain. The displacement, 

together with the stress and strain, are computed by solving the following set 

of Partial Differential Equations (PDEs): 

'\JU 0 (2.1a) 

(J' - De (2.1b) 

E Lu (2.1c) 

t<n) - ton Sr (2.1d) 

u non Su (2.1e) 

SrnSu - 0 (2.1f) 

Figure 2.1 shows an example problem that can be solved by a member 

of FFEMP. The computational domain for the example is rectangular. 

In Equation 2.1, u represents stress, e represents strain and u represents 

displacement. Equation 2.1a is called the Equilibrium Equation. It shows 

that the sum of all forces and moments is zero. Equation 2.1 b is called the 

Constitutive Equation. It shows the relation between the stress and the strain, 

where D is the Constitutive Matrix. Equation 2.1c is called the Kinematic 
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t 

Figure 2.1: An Example Elasticity Problem in Solid Mechanics 

Equation. It shows the relation between the strain and the displacement, 

where L is a Linear Differential Operator. Equation 2.1d gives boundary 

conditions on traction, where Sr represents the boundary for the tractions. 

In the example, it is the right side of the rectangle. The tractions on the 

right side is t and they are equally distributed. Equation 2.1e gives boundary 

conditions on prescribed displacement, where Su represents the boundary for 

the prescribed displacement. In the example, it is the left and lower side of 

the rectangle. The prescribed displacement u on the left side arc zeros in 

the horizontal direction and on the lower side is zero in the vertical direction. 

More details on the equation, such as the assumptions, input and output and 

the formal definitions of the symbols, can be found in the Theoretical Model 

Specification (Yu, 20 lOb). This equation will also be discussed in Chapter 4. 
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FFEMP solves for a typical SC problem, which can be modeled as 

a continuous mathematical equation, as described in the beginning of this 

chapter. The model that FFEMP solves is Equation 2.1, which is a set of 

PDEs. When the domain of interest becomes complicated, the input data 

becomes very large and the amount of calculation for solving problems becomes 

significant. In these cases, it is difficult, sometimes even impossible, to solve 

the problems without the help of a computer. 

As for typical SC software, FFEMP solve the problems approximately. 

It uses the Finite Element Method (FEM), which is a numerical technique to 

solve PDEs. To use FEM, the computational domain must be decomposed into 

a set of small and simple shapes called elements. One possible decomposition 

of the computational domain shown in Figure 2.1 is given in Figure 2.2. The 

Figure 2.2: An Example Mesh 

shapes of the elements in the example mesh are triangular. An example of 
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a single element is shown in Figure 2.3. In this example, each element has 3 

Figure 2.3: An Example Triangular Element 

nodes. Each node has 2 degrees of freedom for the displacements: ui and vi, 

where i = 1, 2, 3. By using FEM, Equation 2.1 becomes: 

F=Ka (2.2) 

where F is termed the consistent load vector, K is the stiffness matrix and a 

is the vector of the displacements of the nodes. Equation 2. 2 is the ultimate 

equation that FFEMP solves. Details on this equation and how it is derived 

can be found in the Computational Model Specification (Yu, 2010c). This 

equation will also be discussed in Chapter 4. 

~0 



Chapter 3 

An Overview of FASCS 

This chapter outlines the proposed methodology: FASCS, which is an acronym 

for Family Approach for developing Scientific Computing Software. FASCS 

suggests developing scientific computing programs as a program family. As dis­

cussed in Section 2.3.3, a program family approach can improve the reusability, 

reliability, usability and maintainability of SC software. This approach also 

addresses the modification challenge that is introduced in Section 2.2.1, as 

Section 3.1.2.2 will discuss. 

FASCS is intended to be used for developing SC program families with 

the following characteristics: i) The programs are developed by end users; 

ii) The programs solve problems modeled by continuous mathematical equa­

tions; iii) The solutions to the equations are usually approximated and cannot 

be obtained without the help of a computer; iv) When it exists, there is a 

unique true solution. Although the focus is on families with the above charac­

teristics, with some changes, FASCS can be used to develop programs that do 
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not have all of the above characteristics. For instance, a mesh generation pro­

gram family, which does not use continuous mathematical equations to model 

the problem and does not have a unique true solution, can also be developed 

as a program family by slightly changing the Commonality Analysis stage of 

the methodology (Yu, 2007). Similarly, for a commercial SC program, as op­

posed to an end user developed program, FASCS can be extended by adding 

an economic analysis, which is absent for FASCS, into the methodology. More 

details on further exploration of the scope of FASCS are listed in the future 

works section of this thesis (Chapter 8). 

FFEMP, as introduced in Section 2.4, is used to illustrate how FASCS 

can be used to develop an SC program family and how FASCS can improve 

the quality of SC software. 

FASCS includes processes, methods and techniques for developing SC 

program families. It uses generic and generative approaches and provides a 

problem solving environment for developing SC program families. An overview 

of FASCS is illustrated in Figure 3.1. Similar to the general program family ap­

proach that was described in Section 1.2 (Figure 1.1), the process ofFASCS has 

two phases: Domain Engineering and Application Engineering. Each phase 

has four stages. Each stage, except the Application Testing stage, provide ar­

tifacts to some other stages and each stage, except the Domain Requirement 

Engineering stage, provides some feedback to other stages. The major differ­

ence is that FASCS does not have a product management stage, which deals 

with the economics and the scope of the program family. The reason is that 

FASCS is intended for end user developed software and the economics of the 
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Figure 3.1: An Overview of FASCS 
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project are often not emphasized. The scope is identified during the domain 

requirements engineering stage. If it is necessary, the economic analysis can 

be added either as a separate stage in the domain engineering phase, or as a 

part of the domain requirements engineering stage. The method for analyz­

ing the economics of the program family depends on the characteristics of the 

application domain and will not be further explored in the current work. 

The FASCS process is iterative. The development of each stage is iter­

ated according to the feedback from later stages. This feedback is denoted by 

dashed arrows in Figure 3.1. The sequence of the stages in the picture, which 

is indicated by solid arrows, gives the artifacts needed for the development of 

each stage. The sequence can also provide a rational order that users of the 

document will follow when reading the documentation. The process of FASCS 

is discussed in the rest of this chapter. 

3.1 Domain Engineering 

Artifacts that are common to all family members are developed in this phase. 

There are four stages: Domain Requirements Engineering, Domain Design, 

Domain Implementation and Domain Testing, as shown in Figure 3.1. 

3.1.1 Domain Requirements Engineering 

Domain requirements engineering, which is also called commonality analysis, 

provides all common and variable requirements. A new methodology, called 

Goal-Oriented Commonality Analysis (GOCA), is proposed for the common-
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ality analysis stage in FASCS. GOCA will be described in Chapter 4. The 

ultimate artifacts of this phase is documentation of common and variable re­

quirements. However, goals, theoretical models and computational models 

are also documented for potential reuse in the future. The definitions of the 

goals and models mentioned above will be given in Chapter 4. The documents 

for GOCA, including the Common and Variable Requirement Specification 

( CVRS), Theoretical Model Specification (TMS) and Computational Model 

Specification (CMS), are specified in Chapter 7. 

3.1.2 Domain Design 

The domain design in FASCS provides a reference architecture for the pro­

gram family and the design of a Family Member Development Environment 

(FMDE). 

3.1.2.1 Reference Architechture 

In FASCS, the reference architecture is obtained by decomposing the program 

family into modules using the information hiding principle (Parnas, 1972). The 

modular design can improve understandability, which in turn can improve 

reusability and maintainability. For a program family, there are two types 

of potential change. One type, which is called an anticipated change, does 

not occur in the present, but it may happen in the future. This type of 

change is associated with the evolution of the program family. Another type 

is the variable requirements that differentiate family members. In FASCS, the 

module decomposition should minimize the number of related modules to be 
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modified for both types of change. 

The module decomposition is the same for all members of the program 

family. It is documented in a Reference Module Guide (RMG). The module 

hierarchy for FFEMP is shown in Table 3.1. Detailed information on the 

module decomposition of FFEMP can be found in the RMG for FFEMP (Yu, 

2010d). 

Levell Level 2 Level 3 Level4 

Hardware-
File Module 

Hiding 
Device Keyboard Input Module 
Interface 

Module 
Module 

Screen Display Module 

Behavior-
Input Module 

Hiding 
Output Module 
Control Mod-

Module 
ule 

Constant Module 

Data Module 
Vector Module 

Numerical Data Module Matrix Module 
Sparse Matrix 
Module 

Software General Point Module 
Node Module 

Decision 
Integration 

Module 
Local Module Point Module 

Element Module 
Boundary Element Module 
Mesh Module 

Global Module FEM 
Linear Solver Module 

Table 3.1: Module Hierarchy for FFEMP 

The reference interfaces of the modules should also be included in the 

reference architecture. The major part of the interface of a module is the 

interfaces, including the syntax and semantics, of its access routines. The ref-
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erence interfaces are documented in a Reference Module Interface Specification 

(RMIS). The RMIS for FFEMP can be found in Yu (2010e). Both documents 

(RMG and RMIS) for the reference architecture of a program family will be 

further discussed in Chapter 7. 

The interfaces of the modules without the influence of variabilities are 

the same for all family members. On the other hand, the interfaces of the 

modules with the influence of variabilities may or may not be the same for 

some family members. For example, an access routine in the Element Module 

(M_Elm) for FFEMP, calStress, which calculates the stress, may not exist for 

some family members, since whether or not stress is calculated is a variability 

of FFEMP. Moreover, the interfaces with the same syntax may have different 

semantics. For instance, the access routine calConst in the above M_Elm 

module, which calculate the constitutive matrix for the element, has the same 

syntax for all family members. However, it has different semantics depending 

on the stress state and strain state, which are two variabilities of FFEMP. 

These two variabilities and the access routine calConst will be discussed later 

in this chapter (Section 3.2.2) and in Chapter 7. Details on the variabilities 

that impact the interfaces of modules for FFEMP can be found in Yu (2010e). 

In FASCS, modules should be designed to maximize the number of mod­

ules that have the same interface for all family members to improve reusability. 

In addition, modules that have different interfaces for some family members 

should provide information for developing the interfaces for a specific family 

member. For the above example access routine calConst, the MIS for FFEMP 

(Yu, 2010e) not only gives the general property that the constitutive matrix 
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D possesses, which is u =De (Equation 2.1b), as mentioned in Section 2.4, 

it also provide the formula of D for a general 3D domain and instructions 

for simplifying the general formula according to the values of the variabilities 

stress state and strain state. More details on the formulas and instructions 

can be found in Section 3.2.2 and Section 7.2.2. 

3.1.2.2 Family Member Development Environment 

A Family Member Development Environment (FMDE) provides a facility for 

application engineers to quickly develop a specific member of a program family. 

It contains: 

• a Domain Model (DM) that defines a language to describe a specific 

family member, 

• a Family Member Generation Process (FMGP) that gives instructions 

on how to generate a specific family member using the environment, 

• a Variable Code Generator (VCG) that generates variable code, 

• a Test Case Generator (TCG) that generates the variable part of some 

benchmark test cases, and 

• a Family Member Assembler (FMA) that assembles code and test cases 

for a specific family member. 

The application engineers follow the instructions given in FMGP. They write a 

program in the language defined in the DM to specify the member of a program 

family they desire and they use FMA. The FMA calls the VCG and TCG to 
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generate appropriate variable code and the variable part of the benchmark 

test cases and then the FMA assembles the variable code with common code 

and the variable part with the common part of the test cases. The common 

code and the common part of the test cases are developed in the domain 

engineering stage. The use of an FMDE addresses the modification challenge 

introduced in Section 2.2.1 since developing a new member of a program family 

by using FMDE is easier than developing a new single program or modifying 

an existing single program. It can also improve reusability and reliability, as 

will be discussed in Chapter 5. 

The idea of using an environment to help application engineers gener­

ate family members is presented by Weiss and Lai (1999). However, unlike 

FASCS, there is only one environment in Weiss and Lai (1999). Dividing the 

environment into sub-environments can make the environment easier to use. 

Another difference between the environment in FASCS and that in Weiss and 

Lai (1999) is the Tes·~ Case Generator (TCG), which is not included in Weiss 

and Lai (1999). Including TCG can improve the reusability and reliability, as 

Chapter 5 will discuss. Moreover, Weiss and Lai (1999) did not give a specific 

name to their environment. More details on FMDE are given in Chapter 5. 

3.1.3 Domain Implementation 

During the domain implementation stage, code that is common for all family 

members is developed. The VCG, which was designed in the domain design 

stage, is implemented. The part of the FMA that relates to code is imple­

mented. More details on Domain Implementation can be found in Section 6.1. 
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FASCS suggests using tools, such as version control, to help with the 

implementation. For example, FFEMP used subversion to maintain current 

and historical versions of code. The subversion was also used for developing 

the documents for FFEMP. 

3.1.4 Domain Testing 

The TCG that was designed during the domain design stage is implemented 

during the domain testing stage. The remaining part of the FMA, which 

relates to the test cases, is implemented at this stage. 

The test cases in FASCS include: 

• benchmark test cases for testing common code in variable routines, 

• benchmark test cases for testing nonfunctional requirements for a specific 

family member, 

• test cases for testing common routines, and 

• test cases for testing variable routines. 

Except for test cases for testing common routines, each set of the above test 

cases includes common and variable parts. The test cases for testing common 

routines and common parts of other test cases are developed in the domain 

testing stage using a traditional approach. The variable part for benchmark 

test cases for testing common code in variable routines are automatically gener­

ated using TCG and tests for common code in variable routines are performed. 
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Tests of the routines are also performed. More details on testing can be found 

in Section 6.2. 

When possible, unit testing tools, such as CppUnit (CppUnit, Retrieved 

2010) for testing C++ code and JUnit (Beck, Retrieved 2010) for testing Java 

code, should be used for helping developers perform the testing. Since FFEMP 

is developed using C++, CppUnit is used for its testing. 

3.1.5 Traceability Matrix 

Traceability matrices should be developed during the domain engineering phase. 

These traceability matrices include the artifacts for all stages in the domain en­

gineering stage. The details are given in Chapter 7, where the documentation 

of FASCS is presented. 

3.2 Application Engineering 

Since artifacts developed in the domain engineering stage can be reused, de­

veloping a member of a program family in the application engineering stage is 

simpler than developing a single program. The application engineering phase 

includes four stages: Application Requirements Engineering, Application De­

sign, Application Implementation and Application Testing, as shown in Figure 

3.1. 
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3.2.1 Application Requirements Engineering 

During the application requirements engineering stage, the value for each vari­

able requirement is determined. The requirements for a specific family member 

consist of the common requirements that are developed in the domain require­

ment engineering stage and the determined variable requirements. 

The determined variable requirements are documented in the Specific 

Variable Requirement Specification (SVRS). It is a very simple document and 

only contains a list of determined variable requirements. SVRS, together with 

Common and Variable Requirement Specification (CVRS) that was developed 

in the domain requirement engineering stage, are all the documents needed 

to document the requirements for a given family member. An example of the 

determined variable requirements for a member of FFEM is shown in Figure 

3.2. 

FVR_ElmShape = TRI 
FVR_NumNode = 3 
FVR.J:ntMethod = GAUSSQ 
FVR_Numlpts = 4 
FVR_StressS = (F, F, T, F, T, T) 
FVR_StrainS = (F, F, F, F, F, F) 
FVR_NumBNode = 2 
FVR_BlntMethod = GAUSSQ 
FVR_N umBipts = 2 
FVR_Stress = F 
FVR_Strain = F 

Figure 3.2: Determined Variabilities for a Member of FFEMP 

The family member shown in Figure 3.2 can solve for plane stress prob-

lems, which is determined by the stress state (FVR_StrcssS = (F, F, T, F, T, T)) 
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and the strain state (FVR_8trainS = (F, F, F, F, F, F)). The domain is decom­

posed into triangular elements ( FVR.ElmShape = TRI). Each element has 3 

nodes (FVR_NumNode = 3) and each boundary has 2 nodes (FVR_NumBNode 

= 2). Both the stiffness matrix and the consistent load vector are calculated 

using Gauss Quadrature (FVR.JntMethod = GAUSSQ and FVR.BintMethod 

= GAUSSQ). The number of integration points is 4 for calculating the stiff­

ness matrix (FVR_Numlpts = 4) and the number of integration points is 2 

for calculating the consistent load vector (FVR_NumBipts = 2). This partic­

ular family member does not calculate and output the stress and strain value 

(FVR_8tress = F and FVR_8train = F). 

The above variable requirements for FFEMP are easy to understand 

except for FVR_StressS and FVR_8trainS. However, to understand the mean­

ing and format of these two variable requirements, one requires to under­

stand the definitions of stress and strain, which are two concepts in mechan­

ics. These definitions are complicated and giving the definitions in this stage 

would disrupt the flow of the presentation. Hence, more detailed information 

on FVR_8tressS and FVR_8trainS is not given in this section. It can be found 

in Chapter 4 and 7 and in Yu (2010e). 

3.2.2 Application Design 

Since the architectures for all members of a program family are the same, 

the Reference Module Guide (RMG), which was developed in the domain de­

sign stage, can be reused to specify a specific family member. The Reference 

Module Interface Specification (RMIS), which was also developed in the do-
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main design stage, can also be reused, since it documents the common part 

of the interfaces. Interfaces that are different for some family members are 

developed in the application design stage. The variable interfaces are doc­

umented in the Specific Module Interface Specification (SMIS). Because the 

RMIS provides information on how to develop the specific module interface, 

as discussed in Section 3.1.2, the development of variable module interfaces 

is relatively straightforward. Documentation for the architecture of a specific 

family members contains the RMG, RMIS and SMIS. 

As an example, one can take the development of the semantics for the 

access routine calConst in the M_Elm module of FFEMP, which was mentioned 

in Section 3.1.2. The generic expression for the linear elastic constitutive 

matrix for a general 3D problem cr = De is used in the Reference Module 

Interface Specification (RMIS). The detailed expression for D is shown in 

Equation 3.1 withE as the elastic modulus and vas the Poisson's ratio. 

D 
E(1- v) 

- * (1 + v)(1- 2v) 
v v 

0 0 0 1 
1-v 1-v 

1/ 1/ 

1-v 
1 

1-v 
0 0 0 

v v 
0 1 0 0 

1-v 1-v 
(3.1) 1- 2v 

0 0 0 
2(1- v) 

0 0 

0 0 0 0 
1- 2v 

2(1- v) 
0 

0 0 0 0 0 
1- 2v 

2(1- v) 
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In the SMIS for the family member in Figure 3.2, the semantics of 

calConst is refined, according to the information specified in the RMIS, to a 

3 x 3 matrix as shown in Equation 3.2. 

1 v 0 
E 

D=-- v 1 0 1- v2 
(3.2) 

0 0 
1-v --

2 

Details on how Equation 3.1 is simplified to Equation 3.2 can be found in 

Chapter 7 and Yu (2010e). 

3.2.3 Application Implementation 

The deliverable code for a family member is an assemblage of common and 

variable code. The common code was developed in the domain implementa­

tion stage and the variable code is developed in the application implementation 

stage. The common and variable code are assembled in the application imple-

mentation stage. 

Since the Family Member Development Environment (FMDE) was de­

veloped in the domain engineering phase, the variable code can be generated 

using the Variable Code Generator (VCG) and the common and variable code 

can be assembled using the Family Member Assembler (FMA). The guidance 

of using VCG and FMA can be found in the Family Member Generation Pro­

cess (FMGP). As mentioned, details of FMDE are presented in Chapter 5 

and the details of the implementation of a program family are discussed in 

Section 6.1. 
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3.2.4 Application Testing 

Variable parts of test cases for testing the specific family member are devel­

oped and the tests for the specific family members are performed during the 

application testing stage. The common parts of these test cases were developed 

in the domain testing stage, as Section 3.1.4 mentioned. The variable parts 

include the variable part of benchmark test cases for testing nonfunctional 

requirements and variable part of test cases for testing variable routines. The 

variable part of benchmark test cases for testing nonfunctional requirements 

is automatically generated using the Test Case Generator that was developed 

in the domain engineering stage. The variable part of test cases for testing 

variable routines may or may not be generated automatically depending on 

how complicated the test cases are. Complete test cases are assembled using 

the Family Member Assembler that was developed in the domain engineering 

stage. More details of the test of a program family are discussed in Section 6.2. 
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Chapter 4 

Goal Oriented Commonality 

Analysis 

Goal Oriented Commonality Analysis (GOCA) is a process and methodology 

to elicit, analyze and document common and variable requirements for SC pro­

gram families. Members of these program families can solve problems that are 

modeled as continuous mathematical equations. The motivation of proposing 

GOCA is to improve SC software quality factors, such as reusability and reli­

ability, and to address the technique selection challenge introduced in Section 

2.2.1. 

An overview of GOCA is illustrated in Figure 4.1. In this figure, a 

rectangle represents artifacts including Functional Goals (FG), Nonfunctional 

Goals (NG), the Theoretical Model (TM), the Computational Model (CM), 

Common Requirements (CR) and Variable Requirements (VR). The explosion 

shape represents the Terminology Definitions (TD). TD includes Theoretical 
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FG: Functional Goal 
NG: Nonfunctional Goal 
TM: Theoretical Model 
CM: Computational Model 
CR: Common Requirement 
VR: Variable Requirement 
CTA: Common Theoretical Assumption 
CCA: Common Computational Assumption 

Figure 4.1: Goal Oriented Commonality Analysis 
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Terminology Definitions (TTD) and Computational Terminology Definitions 

(CTD). An oval represents assumptions, such as Common Theoretical As­

sumptions (CTA) and Common Computational Assumptions (CCA). There 

may also be Variable Assumptions (VTA) to refine the theoretical and com­

putational terminology. All of the above GOCA terminology will be defined 

when the process is explained in detail later in this chapter. 

Solid arrows represent refinement relations. For example, theoretical 

models refine functional goals. A solid line with a dot at one end represents a 

derivation relation. For example, some common requirements are derived from 

computational models. The derivation associates with requirements, while the 

refinement does not. The dashed arrows represent applying constraints to 

a refinement. For example, both common computational assumptions and 

nonfunctional goals are applied when theoretical models are refined to com­

putational models. 

GOCA is based on the fact that most scientific problems can be mod­

eled as theoretical models, which are composed of mathematical equations. 

These equations are often continuous. If the problems are complicated, solv­

ing these equations becomes difficult without the help of a computer. However, 

a computer usually cannot directly solve continuous equations due to its dis­

crete nature. Other sets of equations that approximate theoretical models, 

which can be solved discretely by a computer, are required and these sets of 

equations form the computational models. 

The purpose of the commonality analysis is to obtain common and vari­

able requirements, which are the basis for building a program family. The de-
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tails of the process are specified in the remainder of this chapter. The program 

family FFEMP, which was introduced in Section 2.4, is used as an example 

to illustrate how GOCA can be used to develop artifacts in the commonality 

analysis stage. 

The documentation of the commonality analysis using GOCA is pro­

vided in three documents, namely Common and Variable Requirement Speci­

fication (CVRS), Theoretical Model Specification (TMS) and Computational 

Model Specification ( CMS). The purpose of the separation is to improve reusabil­

ity. Since two of the documents, TMS and CMS, are abstract, they are highly, 

sometimes completely, reusable. 

The details on documentation for the commonality analysis using GOCA 

are presented in a separate chapter (Chapter 7). GOCA and the documen­

tation of GOCA are presented in separate chapters because the abstraction 

that facilitates separating TMS and CMS leads to the interleaving of some 

artifacts according to the sequence of the presentation in this chapter. For ex­

ample, the Theoretical Terminology Definitions (TTD) should be documented 

together with the Theoretical Model (TM) since the definitions are mainly 

used for this model. These definitions should be abstract in TMS to make 

the specification reusable. However, some of these definitions are used in the 

computational model and requirements. The abstract definitions should be re­

fined for the specific computational model and requirements. The refinement 

should be documented in the corresponding CMS and CVRS. If these com­

plicated relations and how to document the different level of the definitions 

were introduced together in this chapter, the flow of the presentation would 
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be interrupted. 

Another reason for separating the documents is to emphasize the im­

portance of the documentation for FASCS. Moreover, introducing all docu­

ments for the domain engineering phase together give the user an idea of what 

documents are included in the domain engineering phase. 

The process of GOCA starts from identifying goals (Section 4.1). There 

are two types of goals: functional goals and nonfunctional goals. Functional 

goals are refined to:;, theoretical model (Section 4.3) and the theoretical model 

is refined to a computational model (Section 4.4). Common and variable re­

quirements (Section 4.5) are derived from the computational model, as well 

as the nonfunctional goals. During the refinements, assumptions are applied. 

Since they are strongly related to the theoretical model and computational 

model, these assumptions, which include theoretical assumptions and compu­

tational assumptions, are defined when corresponding models are discussed. 

Terminology Definitions (Section 4.2) are given explicitly to avoid ambiguity. 

A summary of the common and variable requirements for the example pro­

gram family, FFEMP, and a discussion on the scope of GOCA are given at 

the end of this chap·oer (Section 4.6). 

4.1 Goals 

A goal is the starting point of the GOCA process. A goal represents a real 

world problem to be solved by the program family. It is defined as follows: 

Goal A goal is an abstract objective that the system under consideration 
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should achieve. 

Goals have been used in requirement engineering for a long time. A 

goal is defined in van Lamsweerde (2001) as "capturing, at different levels 

of abstraction, the various objectives the system under consideration should 

achieve." In van Lamsweerde (2001), high level goals are refined to subgoals 

to help with eliciting requirements. However, SC software often has a well de­

fined target or objective and the process described by van Lamsweerde (2001) 

would complicate most SC software development. Experience shows that goals 

usually do not have to be refined in SC software (Smith and Lai, 2005; Smith, 

2006). In GOCA, a goal is the highest level of abstraction and is not refined 

to subgoals. 

For some SC problems, goals, which are the most abstract objectives, 

may not be as abstract as those for other non SC programs. These objectives 

may be classified as pre-requirements for these non SC programs. However, 

these objectives are classified as goals in this research because the author 

would like to reserve the term Requirement to be as formal as possible. As it 

will discuss later, mathematical equations are used in the documents for SC 

programs. These equations are easily misinterpreted. The formalization can 

avoid any unnecessary ambiguity, which can improve reliability. 

A goal can be functional or non-functional. The definitions of functional 

goals and nonfunctional goals are given below: 

Functional Goal (FG): Functional goals specify services the program fam­

ily provides. 
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Nonfunctional Goal (NG): Non-functional goals specify the quality of the 

services the program family provides. 

An example functional goal and an example nonfunctional goal for FFEMP 

are given below. 

FGl (FG_Displacement): Given the computational domain, the material 

properties and the boundary conditions, FFEMP can solve for the dis­

placement of any point in the domain. 

NGl {NG_Accuracy): The members of FFEMP should have a certain level 

of accuracy. 

As the examples illustrate, goals are expressed in natural languages for 

improving understandability. However, natural language is ambiguous. The 

ambiguity for goals is allowed because goals will ultimately be refined to com­

mon and variable requirements. As long as the requirements are unambiguous, 

quality factors for a program family, such as accuracy and testability, will not 

be decreased. Theoretically, all quality factors of software should be included 

in the the list of nonfunctional goals. However, emphasis should be given to the 

quality factors that are particularly important to the family being developed. 

4. 2 Terminology Definitions 

As mentioned in Section 4.1, goals may be ambiguous, but the ultimate re­

quirements must be unambiguous. Hence, unambiguous terminology is needed 

to describe the models and the requirements. However, some of the terminol­

ogy does not have standard definitions and notations. Different people may use 
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different names and different notations. For example, stress is represented by 

a in Bauld (1986), but it is represented by x in Southwell (1941). Furthermore, 

the symbol a has many other meanings besides stress, such as the standard 

deviation. Explicitly defined terminology and notations can avoid ambiguity, 

which implies that the accuracy of the software, the usability of the document 

and the understandability of the whole system can be improved. 

There are two types of terminology, namely theoretical terminology and 

computational terminology. Theoretical terminology is used to express the 

theory underneath the model that describe the problem to be solved. Compu­

tational terminology, such as the stiffness matrix in FFEMP, is used to specify 

computational models and related issues. However, some theoretical termi­

nology can be refined to computational terminology. For example, stress and 

strain are general theoretical concept in FFEMP, but they are refined based 

on the decisions related to computational issues. The theoretical terminology 

stress is defined as stress anywhere in the computational domain. However, 

the computational terminology stress is defined as stress for the nodes. The 

definitions of both theoretical terminology and computational terminology are 

necessary for unambiguous requirements. 

Terminology definitions may be refined by introducing assumptions. 

However, the essential part of the definition, including the units and the symbol 

to denote the definition, remains the same; that is, part of the definition is 

common to all family members. For example, stress is defined as the force 

per unit area associated with different directions at a point within a body. 

A detailed definition can be found in the Theoretical Model Specification for 
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FFEMP (Yu, 2010b). The symbol to represent stress is u and the units are 

L-1 Mr1 , where units are given in terms ofthe mass (M), length (L) and time 

( t). The stress can be represented by a tensor as in Equation 4.1: 

0"= (4.1) 

However, this representation for stress is not well suited for efficient 

computation. After introducing common theoretical assumptions for FFEMP, 

such as using a rectangular Cartesian coordinate system and no distributed 

moments or couples stresses, some components in the tensor can be eliminated. 

Instead of a tensor, a vector is used to represent the stress, because it removes 

redundant information and a vector is a commonly accepted representation 

for stress in the computational mechanics community. The use of a commonly 

accepted representation can improve the understandability, and hence improve 

reusability. The refined representation is shown in Equation 4.2: 

Uxx 

Uyy 

Uzz 
(4.2) 0"= 

Txy 

Tyz 

Tzx 

Equation 4.2 can be refined to Equation 4.3 when the assumption of 
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two dimensional domain is applied. 

Uxx 

U= (4.3) 

Equation 4.2 is a general 3D format of stress and can be reused in many 

solid mechanics problems. On the other hand, Equation 4.3 is less general and 

can only represent stress in a 2D domain. 

4.3 Theoretical Model 

A theoretical model represents a real world problem (goals). It is defined as: 

Theoretical Model (TM): A theoretical model, with respect to the goals, 

is a set of mathematical equations that refines the goals. 

The theoretical model for FFEMP was shown in Equation 2.1 when FFEMP 

was introduced in Section 2.4. 

The theoretical model can refine the goals because of theoretical as­

sumptions that are applied so that the underlying theories hold. Below is the 

definition of theoretical assumptions. 

Theoretical Assumption (TA) Theoretical assumptions, with respect to 

goals and a theoretical model, are a set of hypotheses such that when 

these hypotheses hold, the theoretical model can correctly refine the 

goals. 
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Theoretical model for many SC problems have been developed for years 

and basic theories underlying the models rarely change. Hence, GOCA defines 

common and variable assumptions to improve reusability. The definition of 

common theoretical assumption is given below. 

Common Theoretical Assumption (CTA) Common theoretical assump­

tions with respect to goals and a theoretical model are a minimal set 

of theoretical assumptions, such that when these common theoretical 

assumptions hold, the theoretical model captures the goals. 

Since the set is minimal, this definition eliminates any assumptions that are 

unnecessary for a theoretical model to represent goals. In fact, the theoretical 

model, itself, is general and can be reused. For instance, the theoretical model 

for FFEMP (Equation 2.1) can be used for solving elasticity problems in solid 

mechanics in any dimension. The scope of the theoretical model is restricted 

by the definitions of the terminology that are used by the model. As discussed 

in Section 4.2, the definition for stress is Equation 4.2 for a general 3D domain. 

However, it can be refined to Equation 4.3 when the assumption of a 2D domain 

holds. The scope of the theoretical model (Equation 2.1) is larger when the 

stress is defined by Equation 4.2 than when the stress is defined by Equation 

4.3. 

The common theoretical assumptions can be reused as well. For exam­

ple, one of the common theoretical assumptions for FFEMP is that dynamic 

effects are excluded. This assumption holds for any static problem. In addi­

tion, the theoretical terminology definitions with respect to common theoreti­

cal assumptions are g1meral, as the example of the definition for stress shows. 
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Hence, these definitions can be reused. 

Some program families may not have the same scope as the largest scope 

for the theoretical model. Additional assumptions need to be introduced to 

restrict the scope. These assumptions are variable assumptions and are defined 

as follows: 

Variable Assumption {VA) Variable assumptions with respect to goals and 

a theoretical model are a set of variable properties that the problems to 

be solved possess. Each property in the set has certain possible values. 

Once the possible values are determined or partially determined, the 

scope of the theoretical model is determined. 

For example, VTA_SelfWeight is one of the variable assumptions for FFEMP. 

There are two possible values, T (true) and F (false). If VTA_SelfWeight = T, 

then the self weight is included in the calculation; otherwise, ifVTA_SelfWeight 

= F, then the self weight is not included in the calculation. 

Variable assumptions do not directly impact the theoretical model. 

However, they may impact the refinements of some terminology definitions. 

For example, if the dimension of the computational domain were an assump­

tion for FFEMP, it would be a variable assumption because it does not di­

rectly impact the computational model for FFEMP (Equation 2.1 ). How­

ever, it would impact some terminology definitions. If the assumption is that 

the computational domain is 2D, the definition of the theoretical terminology 

stress would be refined from Equation 4.2 to Equation 4.3. 

Although the representation of the theoretical model, and the repre­

sentation of the computational model that will be discussed in Section 4.4, are 
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the same, the scopes of the models are changed by introducing variable as­

sumptions because the definitions of some terminology used in the models are 

changed. The representations of the theoretical model and the computational 

model depend on common assumptions. 

A variable assumption may or may not be determined. It also can be 

completely or partially determined. If it is not determined completely, it is 

still a variability that can either be set later, so that it becomes a common re­

quirement of the program family, or it can remain a variability and becomes a 

variable requirement of the program family. For example, the variable assump­

tion VTAJ3elfWeight = F for FFEMP is completely determined. On the other 

hand, VTA_StressS and VTAJ3trainS are not determined and become the vari­

abilities FVRJ3tressS and FVRBtressS. VTA..StressS and VTA..StrainS repre­

sent stress state and strain state, respectively. The possible values for the two 

variable assumptions are a sequence of 6 booleans. If an entry in VTA_StressS 

is equal to T, this means that the corresponding entry in the stress vector 

(Equation 4.2) is equal to zero. The relation between VTA_StrainS and the 

strain vector is similar. 

The sources of variabilities can be traced by explicitly specifying the 

variable assumptions. The reusability of the whole system is improved be­

cause the artifacts can be reused when the values of variable assumptions are 

changed. For instance, if a program family for lD computational domain is 

required, then all of the stress components except one are equal to false and 

all of the strain components are equal to false. Therefore, one can change 

VTA_StressS and VTA_StrainS to be VTA_StressS = (F, T, T, T, T, T) and 
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VTA_StrainS = (F, F, F, F, F, F). The rest of the artifacts, including the the­

oretical model, terminology definitions and assumptions, remain the same and 

can be reused. 

Variable assumptions only relate to theoretical issues. Any assumption 

relating to computational issues should not be decided in this stage, to keep 

the theoretical model and the computational model abstract. The abstrac­

tion can improve the reusability of the document. These computation related 

assumptions should be determined later as a common or variable requirement. 

4.4 Computational Model 

A computational model refines a theoretical model. This refinement is re­

stricted by both common computational assumptions and nonfunctional goals. 

4.4.1 Definitions 

The definition of computational model is given below. 

Computational Model ( CM): A computational model, with respect to a 

theoretical model, is a set of mathematical equations that approximate 

the theoretical model in a form that can be solved by a computer. 

The relative error between the solutions of the computational model and the 

theoretical model should be within a certain range. The specific range is 

determined by the nonfunctional goals related to accuracy and precision. An 

example computational model, which approximates the computational model 

for FFEMP (Equation 2.1), is expressed as Equation 2.2 in Section 2.4. 
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Assumptions are required for the refinement from a theoretical model 

to a computational model. These assumptions are called computational as­

sumptions and are defined below. 

Computational Assumption (CASS) Computational assumptions, with 

respect to a theoretical model and a computational model, are a set 

of hypotheses, such that when these hypotheses hold, the theoretical 

model can be refined to the computational model. 

Similar to common theoretical assumptions, common computational 

assumptions are defined as: 

Common Computational Assumption ( CCA) Common computational 

assumptions, with respect to a theoretical model and a computational 

model, are a minimal set of hypotheses, such that when these hypotheses 

hold, the theoretical model can be refined to the computational model. 

As for a theoretical model, a computational model is abstract and can 

be reused due to the use of common computational assumptions. For exam­

ple, the computational model for FFEMP (Equation 2.2) can be reused by 

any FEM program. However, some computational terminology needs to be 

redefined to change the scope of the computational model. 

Although the reuse of common computational assumptions does not 

occur as frequently as the reuse of a computational model, the common com­

putational assumption still can be reused by another program. For example, 

the common computational assumptions for FFEMP can be reused by pro­

grams that solve elasticity problems in solid mechanics using FEM. 
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The primary common computational assumption for a theoretical model 

is the technique for solving the theoretical model, which is represented by a 

set of equations. There may be more than one technique available and the 

selection of the technique may be affected by quality factors. As mentioned in 

Section 2.2.1, the systematic selection of the appropriate technique is the tech­

nique selection challenge for SC software. GOCA addresses this challenge and 

adopts a decision making technique for selecting the appropriate technique. 

This technique is based on the ranking of nonfunctional goals for the program 

family and will be discussed next. 

4.4.2 Ranking Nonfunctional Goals 

GOCA uses the Analysis Hierarchy Process (Saaty, 1980, 2008) to rank non­

functional goals to choose the most appropriate technique to solve the theo­

retical model. This technique can also be used for other decisions related to 

nonfunctional goals or nonfunctional requirements, such as the selection of al­

gorithms for solving system of equations, based on nonfunctional requirements, 

when the program family is implemented. 

AHP provides a comprehensive and rational framework for evaluating 

alternative solutions. It has been used by software engineers in requirement 

analysis (Kott et al., 1996) and testing (McCaffrey, 2005). AHP is also used 

in the development of SC software for ranking the relative priority of the 

nonfunctional requirements (Smith, 2006). 

The decision making process adopted by GOCA is presented below. 

Applying this process requires some knowledge of AHP. Fortunately, tools, 
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such as Init (Retrieved December 2010), are available. FASCS suggests using 

these tools to do the calculation. The advantage is that the domain engineers 

can use the process without dealing with detailed calculations. 

The steps for selecting the appropriate technique to solve the theoretical 

model for a program family according to the related nonfunctional goals are 

given below. 

1. List techniques considered by the program family to solve the theoretical 

model. 

2. List nonfunctional goals related to the selection of the technique. 

3. Construct a pairwise comparison matrix between nonfunctional goals to 

obtain the priorities from the matrix. 

4. Construct a set of comparison matrices between techniques with respect 

to nonfunctional goals and obtain the priority of each technique with 

respect to each nonfunctional goal from the matrices. 

5. Calculate the overall priorities of the techniques from the priorities of 

nonfunctional goals that are calculated from the Step 3 and the priorities 

of techniques with respect to nonfunctional goals that are calculated from 

Step 4. 

An illustration of how the process is used to select the technique to 

solve the theoretical model (Equation 2.1) for FFEMP is presented below. The 

priorities calculated for the example use lnit (Retrieved December 2010). More 
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details on the example can be found in the Computational Model Specification 

of FFEMP (Yu, 20 lOc). 

1. The list of available techniques that are considered for FFEMP are: 

(a) Direct Method (DM) 

(b) Finite Difference Method (FDM) 

(c) Finite Element Method (FEM) 

where, DM means using the closed form solution. 

2. The list of related nonfunctional goals are: 

(a) NG_Accuracy 

(b) N G _Precision 

(c) NG_Efficiency 

(d) NG_Reusability 

3. The pairwise comparison matrix between nonfunctional goals is: 

Quality Preference Accuracy Precision Efficiency Reusability 

Accuracy 1 1 1 1/5 

Precison 1 1 1 1/5 

Efficiency 1 1 1 1/5 

Reusability 5 5 5 1 

According to Saaty (1980), this table gives the importance of one non­

functional goal over another for FFEMP. For example, 5 in the (Reusabil­

ity, Accuracy) entry (last row second column) means that Reusability is 
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strongly (5 times) more important compared to Accuracy for FFEMP. 

The numbers in this matrix, such as 5, are determined by the domain 

engineers. 

4. The technique comparison matrix with respect to reusability is: 

Reusability DM FDM FEM 

DM 1 1/7 1/9 

FDM 7 1 1/2 

FEM 9 2 1 

The other three matrices are similar. These matrices give how well one 

technique compares to another one to solve Equation 2.1 with respect 

to the corresponding nonfunctional goals. For example, 9 in the (FEM, 

DM) entry means that FEM is extremely (9 times) more reusable com­

paring to DM. The numbers, such as 9, in the matrices are obtained 

by consulting domain experts on solving Partial Differential Equations. 

FEM is the most reusable because it is superior at solving problems over 

an irregular computational domain. DM is the least reusable since only 

a few problems have closed form solutions. The numbers are heuristic 

and subjective. The major contribution is that this example shows the 

possibility of quantifying nonfunctional goals. 

5. The calculated overall priorities of the techniques are: 
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DM 0.2347 

FDM 0.3042 

FEM 0.4611 

From the above result, FEM has the highest priority. Hence, FEM is 

select to solve Equation 2.1. However, if the importance of nonfunctional goals 

changes, the most appropriate technique for solving Equation 2.1 may change. 

For example, if the pairwise comparison matrix in Step 3 emphasizes accuracy 

to become: 

Quality Preference Accuracy Precision 

Accuracy 1 9 

Precison 1/9 1 

Efficiency 1/9 1 

Reusability 1/9 5 

then the overall priorities change to 

DM 0.6934 

FDM 0.1637 

FEM 0.1428 

Efficiency Reusability 

9 9 

1 1 

1 1 

5 1 

The DM become the most appropriate technique. The other part of the process 

would stay the same. 

4.5 Common and Variable Requirements 

Common and variable requirements for the program family are derived from 

computational models and nonfunctional goals. Both common and variable 
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requirements can be functional or nonfunctional. 

The source of nonfunctional requirements, including Nonfunctional Com­

mon Requirements (NCRs) and Nonfunctional Variable Requirements (NVRs), 

is the nonfunctional goals. The major source of functional requirements, in­

cluding Functional Common Requirements (FCRs) and Functional Variable 

Requirements (FVRs), is the computational model. However, some nonfunc­

tional goals may also need to be fulfilled by functional requirements. For 

example, the nonfunctional goal NG-Reusability is a nonfunctional goal stat­

ing that all member of FFEMP should have a certain level of reusability. This 

nonfunctional goal is fulfilled by using FEM to solve the theoretical model 

represented by Equation 2.1, which is a functional requirement for FFEMP. 

Any terminology in the functional requirements, including FCRs and FVRs, 

should be defined in the corresponding terminology definition sections. 

4.5.1 Common Requirements 

Functional common requirements specify what all members of the program 

family should or should not do. They are similar to functional requirements 

for a single program. An example functional common requirement is shown in 

Table 4.1. This requirement specifies that any member of FFEMP can solve 

the displacement using Equation 4.4. This equation has been shown in Section 

2.4. It is redisplayed in this example for ease of reference. More details on 

each field of this table and other tables in this section (Section 4.5) are given in 

Section 7.1.1 when the documentation of common and variable requirements 

is discussed. 
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l Number 
Label 

I FCRl 
FCR_Displce 

Related Items TTD _Elasticity, TTD_Young, 
CTD_Mesh, CTD _Displace, 
CTD_8tiff, CTD_ TractionB, 
CTD..DisplaceB, CTD__Load, CM 

Description FFEMP can solve for displacement 
on each node of the meshed compu-
tational domain, using the Finite 
Element Method, given the mate-
rial properties (E, v), the mesh 
M, including boundary conditions. 
The formula is as in Equation 4.4. 

F=Ka (4.4) 

History Created - Oct., 2009 

Table 4.1: An Example Functional Common Requirement for FFEMP 
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Nonfunctional goals require all members of the program family to meet 

the minimum requirements for the corresponding quality factors. These min­

imum quality requirements form nonfunctional common requirements. An 

example nonfunctional common requirement is shown in Table 4.2. 

I Number 
Label 

INCR3 
NCR_Reliability 

Related I terns NG-Reliability 
Description All members of FFEMP should at 

least have the same level of relia-
bility as 00 FEM (Patzak and Bit-
tnar, 2001b). 

History Created - July 2010 

Table 4.2: An Example Nonfunctional Common Requirement for FFEMP 

Nonfunctional requirements are difficult to specify because they are 

difficult to quantify. Instead of arbitrarily choosing a value, GOCA suggests 

comparing nonfunctional common requirements with some existing programs 

that solve the same problem. For example, reliability for FFEMP can be 

specified as having all members of FFEMP be at the same level of reliabil­

ity as that of OOFEM (Patzak and Bittnar, 2001b), as shown in Table 4.2. 

This requirement is still not validatable. However, it is enough at the Do­

main Requirement Engineering stage, since validatable benchmark test cases 

will be given for testing these nonfunctional requirements in the Application 

Engineering phase. The idea for testing nonfunctional requirements by com­

paring benchmark test cases with existing programs was successfully used in 

Yu (2007) and Smith and Yu (2009) for developing a Parallel Mesh Generation 

Toolbox (PMGT). 
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4.5.2 Variable Requirements 

Functional Variable Requirements 

Functional variable requirements specify what some members of the program 

family should or should not do. A functional variable requirement is specified 

as a variability and its possible values, called variants. Once the values of 

the variants for a functional variable requirement are determined for a family 

member, it becomes a functional requirement for the member. An example 

functional variable requirement is shown in Table 4.3. 

I Number 
Label 

I FVR4 
FVR__Numlpts 

Type N 
Related Items CM, FVR-ElmShape, FVRJntMethod 
Description The number of integration points if GAUSSQ is 

selected for FVRJntMethod 
Dependency Optional 
Constraints GC_ni, RC...mi 
Variants [3 .. MIP], where MIP is a constant represent-

ing the maximum number of integration points 
History Created- October, 2009 

Table 4.3: An Example Functional Variable Requirement for FFEMP 

Inspired by Kang et al. (1990) and Pohl et al. (2005), GOCA classifies 

a functional variable requirement into mandatory or optional. A mandatory 

functional variable requirement turns into a requirement for all family mem­

bers. However, an optional functional variable requirement can only turn 

into a requirement for some family member when some conditions hold. For 

example, the functional variable requirement FVR_Numlpts (the number of 

integration points) shown in Table 4.3 is optional for FFEMP. It becomes a 
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requirement for a member of FFEMP if and only if the functional variable 

requirement FVRJntMethod (integration method) is "GAUSSQ." 

Classifying a functional variable requirement into mandatory or op­

tional can improve the reliability. For example, if a specific member for 

FFEMP uses the direct method to calculate the integrations in the calcu­

lation of the stiffness matrices (FVRlntMethod = DIR), then it may confuse 

the application engineers who design or implement a specific family mem­

ber of FFEMP to have the variability of integration points (FVR_Numlpts). 

Having both functional variable requirements can also increase the possibility 

for application engineers to make mistakes. Having FVRJntPts may mislead 

them to think that the integration method is GAUSSQ because the variability 

FVR_Numlpts is only meaningful when FVRlntMethod = GAUSSQ. 

There are constraints between functional variable requirements. Con­

straints in Kang et al. (1990) and Pohl et al. (2005) are more complicated 

than what is needed by an SC program. Hence, GOCA defines only two types 

of external constraints between functional variable requirements. One type 

of constraint is called a Requiring Constraint. It determines if an optional 

requirement is required for a particular program family. Hence, at least one of 

the functional variable requirements in the constraint is optional. One of the 

constraints for FVR_Numlpts shown in Table 4.3, RC_mi, is: 

FVR_Numlpts E V {::::::} FVRlntMethod = GaussQ ( 4.5) 

where V represents a set of variable requirements for the family member. 
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Another type of constraint is called a General Constraint. It is a con­

straint between functional variable requirements, which can be mandatory or 

optional. For example, in FFEMP, a constraint between the functional vari­

able requirement FVRElmShape and FVR_NumNode, which is the constraint 

GC_ni in Table 4.3, is: 

(FVR-ElmShape - TRIA FVR_NumNode 2: 3) V 

(FVRElmShape - QUAD A FVR_NumNode 2: 4) 

meaning that the number of nodes for a triangular element is greater than or 

equal to 3 and the number of nodes for a quadrilateral element is greater than 

or equal to 4. 

Nonfunctional Variable Requirements 

In addition to the minimum quality requirements for all family members, some 

members of the program family may have higher requirements on some quality 

factors. These quality factors are nonfunctional variable requirements. Non­

functional variable requirements for FFEMP are NVR.Accuracy and 

NVREfficiency, which specify different requirements on accuracy and effi­

ciency for some family members. 

In FASCS, the nonfunctional variable requirements are quantified by 

their priorities that are obtained by using AHP (Saaty, 1980, 2008) to rank 

them. For example, the variants of the nonfunctional variable requirements 

NVR.Accuracy and NVR_Efficiency for a member of FFEMP can be spec­

ified by pairwise comparison matrix as shown in Table 4.4. For FFEMP, 
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NVRs NVRAccuracy NV~ffi.ciency 

NVR_Accuracy 1 5 
NVR..Effi.ciency 1/5 1 

Table 4.4: An Example Pairwise Comparison between Nonfunctional Variable 
Requirements 

NVR_Accuracy is strongly more important than NV~ffi.ciency. The priori-

ties are: 

NVRAccuracy = 0.8333 

NVR_Effi.ciency = 0.1667 

The nonfunctional variable requirements specified in this stage are dif­

ferent than nonfunctional goals, which are specified in Section 4.4.2, although 

they both deal with quality aspects. Nonfunctional goals specify the differ­

ences between quality factors for program families and nonfunctional variable 

requirements specify the differences between quality factors for members of a 

program family. 

These nonfunctional variable requirements are used to make decisions 

when a specific family member is developed. When the specific decisions, such 

as selecting an appropriate package for the linear solver, need to be made, 

the process described in Section 4.4.2 is adapted. The nonfunctional goals are 

replaced by nonfunctional variable requirements and the available techniques 

are replaced by available choices to the specific decisions, such as available 

packages for the linear solver. 
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4.6 Summary 

This section lists the names of all the common and variable requirements for 

FFEMP and discusses the scope of GOCA. 

4.6.1 Common and Variable Requirements for FFEMP 

All Common Requirements (CR) for FFEMP are listed in Figure 4.2 and 

all Variable Requirements (VR) for FFEMP are listed in Figure 4.3. Only 

the names of the requirements are given. The detailed description for each 

requirements can be found in Common and Variable Requirement Specification 

for FFEMP (Yu, 2010a). 

Functional CR Nonfunctional CR 
FCR.Displace N CR_Reliability 
FCR_SameElmShape NCR_Usability 
FCR_BameNodeNum NCILReusability 
FCRJ3ameBElmShape N CR_Maintainability 
FCR_BameBNodeNum 
FCR.Filelnpu t 
FCR.FileOutput 

Figure 4.2: Common Requirements for FFEMP 

4.6.2 Scope of GOCA 

GOCA is a part of FASCS, which is a methodology for developing SC program 

families. However, GOCA can also be used in the Domain Engineering stage 
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Functional VR Nonfunctional VR 
FVR_ElmShape NVR_Accuracy 
FVR.NumNode NVR_precision 
FVRJntMethod 
FVR.Numlpts 
FVR_StressS 
FVR_StrainS 
FVRNumBNode 
FVRBintMethod 
FVR.NumBipts 
FVR_Stress 
FVR..Strain 

Figure 4.3: Variable Requirements for FFEMP 

of other methodologies for developing program family, as long as the problems 

to be solved can be modeled by continuous mathematical equations. 

As discussed in the beginning of Chapter 3, it is believed that with 

some modification, GOCA can be used for developing program families to 

solve other types of problems, such as mesh generation problems, which are not 

modeled as continuous equations. A goal oriented approach has been used to 

develop software requirements for a mesh generation program, PMGT (Smith 

and Yu, 2009; Yu, 2007). The idea for eliciting, analyzing and documenting 

requirements for PMGT is similar to GOCA. One difference is that there is no 

common and variable related issues for PMGT since PMGT is not a program 

family. Another difference is that for PMGT, there is only one kind of models, 

which refines goals. Requirements are derived from these models. If only one 

kind of the models is kept, it is very likely that GOCA can be adapted to elicit, 

analyze and document domain requirements for the mesh generation program 

family. 
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Chapter 5 

Family Member Development 

Environment 

The idea of an environment for generating family members is presented by 

Weiss and Lai (1999). The use of the environment can significantly improve 

reusability, since it provides convenient facilities for application engineers to 

develop a family member. The process proposed by Weiss and Lai (1999) is 

general and they do not give a clear description of how to develop the environ­

ment. The proposed methodology, FASCS, is specific for SC software; there­

fore, more detail can be provided. This chapter is dedicated to the techniques 

used for developing a Family Member Development Environment (FMDE) for 

FASCS. 

An FMDE is a set of tools that are developed in the domain engineering 

phase and are used by application engineers in the application engineering 

phase. As introduced in Section 3.1.2.2, a FMDE includes: 
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• a Domain Model (DM) 

• a Variable Code Generator (VCG) 

• a Test Case Generator (TCG) 

• a Family Member Assembler (FMA) 

• a Family Member Generation Process (FMGP) 

The relationship between the tools in an FMDE and the stages of the program 

family development is shown in Figure 5.1. 

r ·- -· -··- ·- ·-· 

Domain G ORE 
Engineering 1 

Application 1 

Engineering 1 

I 

-·-·-·-·-·-··---- ·- -·-··-··-··-··-·-·-·-··-··-··-··-·-·-··-·-··-·-·-·--·-·-' 

------l> Using ORE: Domain Requirements Engineering 
DD: Domain Design OM: Domain Model ---------:1> Developing Dl: Domain Implementation FMGP: Family Member 

Stage/Tools 
DT: Domain Testing Generation Process 
ARE: Application Requirements VCG: Variable Code Generator 

Engineering 
FMA: Family Member Assembler 

I Phase AD: Application Design TCG Test Case Generator 
AI: Application Implementation ,------, 

FMDE AT: Application Testing I I 
L-----J 

Figure 5.1: Relationship between Tools in FMDE and Stages of FFEMP 
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The development of an FMDE commences in the domain design stage. 

The DM and FMGP are developed in the domain design stage and the VCG, 

FMA and TCG are designed in the domain design stage. The VCG is im­

plemented in the domain implementation stage and the TCG is implemented 

in the domain testing stage. The FMA needs to be implemented in the both 

domain implementation and domain testing stages. 

When application engineers use the FMDE to generate family members, 

they use the VCG to automatically generate variable code and they use the 

TCG to automatically generate the variable part of some benchmark test cases. 

However, the use of both generators is implicit. Application engineers directly 

work with the FMA, which uses the VCG and TCG. The details on the use of 

the environment is specified in the FMGP. A specific family member is specified 

by the DM, which defines a language to describe the family members. 

As described above, FASCS suggests using the automatic approaches 

to generating variable code and test cases and to assembling components for 

a specific family member. However, the FMDE can also be used for manually 

generating variable code or test cases or manually assembling components. In 

the former case, the VCG or the TCG is not included in FMDE and in the 

latter case, the FMA is not included. For example, the FMDE in the program 

family shown in Yu and Smith (2009), which was developed in the draft version 

of FASCS, included a VCG, but it did not include a TCG and an FMA. 

The above components (tools) of the FMDE are discussed in the rest of 

this chapter. The example program family FFEMP, which was introduced in 

Section 2.4, is used for illustration purposes when the environment is specified. 
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5.1 Domain Model 

A Domain Model (DM) can describe all possible members of the program 

family by specifying the variabilities of the members. The domain model for 

FASCS is similar to that for a general program family development process, as 

introduced in Section 1.2.1.3. A language, usually a Domain Specific Language 

(DSL), that specifies variabilities of the family is the key to a DM. 

For some SC program families the type of possible values for the vari-

abilities are simple, so a declarative language that is composed of a set of 

assignment statements is enough for specifying variabilities of most SC pro-

gram families. The language defined by the DM for FFEMP, which uses BNF 

notations, is shown in Figure 5.2. An example family member of FFEMP, 

statement::='ElmShape = 'shapei'NumNode ='number! 
'IntMethod = 'imethodi'Numipts ='number! 
'StressS = 'statei'StrainS ='statal 
'NumBNode = 'numberl 'BintMethod = 'imethodl 
'NumBipts = 'numberi'Stress = 'booll 
'Strain = 'bool 

shape::= 'LINE' I 'TRI' I 'QUAD' I 'TET' I 'HEX' 
number::=['i'-'9']+['0'-'9']* 
imethod::= 'GAUSSQ'I'DIR' 
state::= '<'bool','bool','bool','bool','bool','bool'>' 
bool : : = 'T' I 'F' 

Figure 5.2: The Definition of the Language for the Domain Model in FFEMP 

whose variabilities were shown in Figure 3.2, is specified in Figure 5.3 by using 

the DSL that is defined in Figure 5.2. 

Unlike those in Figure 5.2, variabilities for some SC program family are 

complicated. For example, the types of variabilities for the program family 
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ElmShape = TRI 
NumNode = 3 
IntMethod = GAUSSQ 
Numlpts = 4 
NumBNode = 2 
Blntmethod = GAUSSQ 
NumBipts = 2 
StressS = [F,F,T,F,T,T] 
StrainS = [F ,F ,F ,F, T, T] 
Stress= F 
Strain= F 

Figure 5.3: The DSL Definition for the Family Member with Variabilities in 
Figure 3.2 

described by McCuchan (2007) are mathematical equations, with types that 

represent functions, such as JR6 x lR ----+ JR. The languages for the domain 

models representing this kind of variability are more complicated. For example, 

the modeling language for McCuchan (2007) is a subset of Maple (Maplesoft, 

Retrieved 2010). 

5.2 Variable Code Generator 

A Variable Code Generator (VCG) can automatically generate variable code. 

The VCG for FASCS is similar to what is implicit in Weiss and Lai (1999). For 

most of the SC application domains, automatically generating variable code 

has more benefits than using a traditional approach, because the generation 

of variable code for SC program families usually requires large amounts of 

calculation, even though the generated variable code may be small. The auto­

matic approach improves reusability and addresses the modification challenge 
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introduced in Section 2.2.1, since it can help application engineers quickly 

developing specific family members. As discussed in Section 2.2.2, these ap­

plication engineers are usually professional end users who develop and use the 

specific family members. The FASCS process does not assume that they have 

a background in software engineering. The use of VCG can significantly save 

them time and effort. 

VCG can automatically generate family members that might not be 

produced using the traditional approach. For example, VCG can generate a 

member of FFEMP that solves very complication boundary conditions, such 

as tractions represented by polynomials of degree 5. Since this family member 

is not usually used for solving practical problems and the generation of this 

member needs a large amount of calculation, this member is usually not imple­

mented without VCG. However, this kind of member can be used by scientists 

to thoroughly test their theories and gain more confidence for the correctness 

of their theories, as Section 2.1 discussed. Moreover, this kind of member can 

also be used to validate the design of the program family since the generation 

is easy. Thus, the reliability of the family is improved. 

Among the technologies for building generators, a simple stand-alone 

program is used for VCG since the computation is a major concern for SC 

program families. Other technologies, such as using built-in metaprogramming 

capabilities and a generator infrastructure, will not be discussed further in this 

thesis. Details on these technologies can be found in Czarnecki and Eisenecker 

(2000). 

Since macros are used for implementing the common code for FFEMP, 
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the generated variable code can be stored in a header file. An example gener­

ated file using the VCG of FFEMP for the family member defined in Figure 

5.3 is partially shown in Figure 5.4. The first several lines define constants 

that are directly copied from the variabilities. The constants NUM.B, NV and 

NNE are simple constants that are calculated from variabilities. NUM.B indi­

cates the size of constitutive matrix. NV represents the number of vertices for 

an element. NNE is the number of nodes in an edge. The constant SHAPEF 

defines the shape function of the element, which is {s, t, 1-s-t} for a three 

node triangular element. The constant DNDSF defines the derivative of the 

shape function with respect to s, which is {1, 0, -1 }. Both expressions are 

simplified in this thesis, for display purpose, by removing unnecessary zeros. 

How the complicated constants, such as SHAPEF, are calculated can be found 

in Appendix A. Since the generated code is lengthy, not all of it is displayed. 

The programming language used to implement VCG depends on the 

characteristics of the program family. FFEMP use Matlab (Mathwork, Last 

Access 2010) to implement VCG because variable code for FFEMP needs to 

compute derivatives and integrations of mathematical equations. Matlab has a 

symbolic toolbox that can symbolically compute the derivatives and integrals. 

The use of VCG does not conflict with the reuse of existing programs 

or components of the programs. In fact, FASCS strongly recommends reuse 

of existing programs or components. The Family Member Assembler that will 

be discussed in Section 5.3 is designed to automatically assemble the various 

components of a family member. 
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#define DIM 2 
#define DOF 2 
#define SHAPE TRI 
#define NUM_NODE 3 
#define INT_METHOD GAUSSQ 
#define NUM_INT_PTS 4 
#define NUM_B_NODE 2 
#define B_INT_METHOD GAUSSQ 
#define NUM_B_IPS 2 
#define STRESS_S [F,F,T,F,T,T] 
#define STRAIN_S [F,F,F,F,T,T] 
#define STRESS 0 
#define STRAIN_S 0 

#define NUM_S 3 
#define NV 3 
#define NNE 2 

#define SHAPEF {(O.O)*pow(s,O)*pow(t,O)+\ 
(1.0)*pow(s,1)*pow(t,O)+(O.O)*pow(s,O)*pow(t,1),\ 
(O.O)*pow(s,O)*pow(t,O)+(O.O)*pow(s,1)*pow(t,O)+\ 
(1.0)*pow(s,O)*pow(t,1),(1.0)*pow(s,O)*pow(t,O)+\ 
(-1.0)*pow(s,1)*pow(t,0)+(-1.0)*pow(s,O)*pow(t,1)} 

#define DNDSF {(1.0)*pow(s,O)*pow(t,O)+\ 
(O.O)*pow(s,1)*pow(t,O)+(O.O)*pow(s,O)*pow(t,1),\ 
(O.O)*pow(s,O)*pow(t,O)+(O.O)*pow(s,1)*pow(t,O)+\ 
(O.O)*pow(s,O)*pow(t,1), (-1.0)*pow(s,O)*pow(t,O)+\ 
(O.O)*pow(s,1)*pow(t,O)+(O.O)*pow(s,O)*pow(t,1)} 

Figure 5.4: Generated Constants for a Family Member Defined by Figure 5.3 
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5.3 Test Case Generator 

A Test Case Generator (TCG) allows application engineers to generate some 

benchmark test cases by giving the values of the variabilities of the family 

member and some additional information, which depends on the characteris­

tics of the program family. Since the amount of test data for SC software is 

usually very large, automatic generation of test cases is suggested for FASCS 

to improve reusability and address the input and output challenge that defined 

in Section 2.2.1. More discussions for automatically generating test cases for 

SC program families can be found in Chapter 6. 

The Test Case Generator (TCG) can automatically generate the vari­

able portions of the benchmark test cases. The common portion can be devel­

oped using a traditional approach. Techniques for VCG, which are discussed 

in Section 5.2, can be used for developing TCG, since the development ofTCG 

should be easier than VCG. The output of TCG is testing data, which should 

be simpler than the mathematical expressions that are output from VCG. 

The common part of test cases for FFEMP is developed using macros, 

which is the same technique used for developing common code. By using TCG 

for FFEMP, the generated header file for testing the family member given in 

Figure 2.1 is partially displayed in Figure 5.5. There are 9 nodes and 8 el­

ements. The prescribe displacement u =Om and the traction t = 1 Njm2 • 

Only the test data for the testing mesh is given, to keep the presentation con­

cise. If the computational domain and boundary conditions get complicated, 

the testing code can simply be changed to reading test data from files, instead 

of being given in a header file. In this case, the efficiency of performing the 
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II -----testing mesh -----
11 coordinates 

#define TMESHCOORD {{0.0,0.0},{5.0,0.0},{10.0,0.0},\ 
{0.0,5.0},{5.0,5.0},{10.0,5.0},\ 
{0.0,10.0},{5.0,10.0},{10.0,10.0}} 

II total number of nodes and elements 
#define TMESHTNODE 9 
#define TMESHTELM 8 

II nodal connectivity for elements 
#define TMESHNC {{0,1,4},{0,4,3},{1,2,5},\ 
{1,5,4},{3,4,7},{3,7,6},{4,5,8},{4,8,7}} 

II total number of boundary elements 
#define TMESHTTBC 2 
#define TMESHTDBC 4 

II traction nodal connectivity, related element, 
II constraints and values 

#define TMESHTBC {{2,5},{5,8}} 
#define TMESHTBEE {2,6} 
#define TMESHTBCON {{{1,0},{1,0}},{{1,0},{1,0}}} 
#define TMESHTBCV {{{1,0},{1,0}},{{1,0},{1,0}}} 

II displacement nodal connectivity, related element, 
II constraints and values 

#define TMESHDBC {{0,1},{1,2},{0,3},{3,6}} 
#define TMESHDBEE {0,2,1,5} 
#define TMESHDBCON {{{1,1},{0,1}},{{0,1},{0,1}},\ 
{{1,1},{1,0}},{{1,0},{1,0}}} 
#define TMESHDBCV {{{0,0},{0,0}},{{0,0},{0,0}},\ 
{{0,0},{0,0}},{{0,0},{0,0}}} 

Figure 5.5: Generated Constants for Testing a Member as Shown in Figure 
2.1 
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tests would be decreased. 

5.4 Family Member Assembler 

Similar to what is implicit in Weiss and Lai (1999), the Family Member As­

sembler (FMA) can automatically assemble different components for a specific 

family member. The components include the common and variable compo­

nents. The common components can be code developed by domain engineers 

and the variable components can be code generated by VCG. Both common 

and variable components can also be existing ones that were developed by 

others. The components may be a piece of code, libraries, or binaries. The 

FMA should have the ability to choose appropriate components and configure 

and assemble them together. As for using a VCG, using FMA can improve 

reusability since generating a family member becomes easier. 

The development of FMA relates to the VCG. Sometimes, they are not 

separate and are developed together for programs that automatically generate 

both common and variable code (Carette, 2006; Elsheikh, 2010). However, end 

user developed SC software often needs to be modified. Sometimes, evolving 

the whole program family cannot be avoided. If FMA and VCG are developed 

as a whole, it has to be changed when the program family needs to evolve. 

Modifying a code generator may be nontrivial, especially for professional end 

users, who have little software engineering background. If FMA and VCG 

are developed separately, only common code needs to be modified when the 

program family needs to evolve. Hence, separating VCG and FMA can improve 
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the reusability of a program family. 

Different than Weiss and Lai (1999), the FMA in FASCS also has the 

ability to assemble common and variable portions of some benchmark test 

cases. The approach of assembling test code is similar to assembling code for 

the family member. 

For FFEMP, the major job of FMA, which is a Matlab program, is 

validating the family member specified in the language that is defined in Sec­

tion 5.1 using constraints given in the Common and Variable Requirement 

Specification (Yu, 2010a). The FMA also calls the VCG to generate proper 

header files that define the variable code as constants in the directory of source 

files. If the test cases are required, the FMA calls the TCG to generate proper 

header files that define the test cases for the family member in the directory 

of testing files. 

5.5 Family Member Generation Process 

The Family Member Generation Process (FMGP) specifies how to use the 

DM, VCG, TCG and FMA to generate a specific family member. For exam­

ple, the steps of generating family member for FFEMP are shown below. In 

this example, there is no external component for the common and variable 

components of the program family and the automatic approach is used for 

generating variable code and test cases and for assembling the components. 

1. Determine the values of variable requirements for the family member. 

2. Design the interfaces that are not completely specified in the domain 
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engineering phase. 

3. Describe the family member by specifying variabilities using the Domain 

Specific Language shown in Table 5.2. 

4. Specify the benchmark test cases by giving the computational domain, 

the way that the domain is meshed, the material properties and the 

boundary conditions. 

5. Use the FMA to assemble the common code that is developed in the 

Domain Engineering phase and variable code that is automatically gen­

erated using VCG. 

6. Use the FMA to assemble the common and variable part of testing code. 

The common part is developed in the Domain Engineering phase and 

the variable part is automatically generated using TCG. 
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Chapter 6 

Implementation and Testing 

This chapter discusses the implementation and testing of an SC program family 

using FASCS. In addition, a new testing technique to target the unknown 

solution challenge of SC software is proposed. 

6.1 Implementation 

When using FASCS to implement a program family, common code is developed 

in the domain implementation stage and variable code is developed in the 

application implementation stage. 

There are a variety of techniques to develop reusable code (Czarnecki 

and Eisenecker, 2000). Generic programming is recommended, since the struc­

ture of SC programs is usually simple and the interactions between end users 

and the programs are limited. The only interaction for most SC programs is 

that the end users call the program and then receive the calculated results. 

If it is necessary, components-based programming (Heineman and Councill, 
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2001), which is more complicated than generic programming, can be used for 

more involved program family structure. 

Another technique that is used by many program family developers is 

code generation. Code generation can be considered to avoid the performance 

penalty of generic programming, but this approach is more complicated. Pro­

fessional end user developed SC programs, often required frequent changes. 

Modifying a code generator is nontrivial especially for end user developers 

who usually lack of software engineering background. 

In addition, Aspect-Oriented Programming (AOP), which was discussed 

in Section 2.3.4.3, is also mentioned in Czarnecki and Eisenecker (2000) as tech­

nique for developing reusable code. However, AOP has limitations for FASCS 

because there are not many cross-cutting aspects in SC programs. 

Since a Family Member Development Environment (FMDE) is used, 

the implementation of the variable part of the program family is simple. The 

variable code can automatically be generated using the Variable Code Gener­

ator (VCG), which is a component of FMDE. What the application engineers 

need to do is provide a program that contains variabilities for the specific fam­

ily member. This program is written in a Domain Specific Language (DSL) 

that was developed in the Domain Design stage as a part of FMDE. The 

code for the family member consists of the common and variable code that 

are assembled together using the Family Member Assembler, which is also a 

component of the FMDE. 

FFEMP uses macros, which is one of the simplest forms for generic pro­

gramming to implement the program family. The variable code for FFEMP is 
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a set of mathematical expressions that are defined as constants. Since FFEMP 

uses C++, these constants can be defined in a header file. Therefore, the body 

for the code of the functions that may vary for some family members is the 

same. The differences are the values of constants. The reason for the simplicity 

of the implementation is that the family is designed such that the complicated 

computation is performed by the VCG. The generated variable code itself is 

relatively simple. The example of generated header file was shown in Section 

5.2. The computation of one of the generated constants, SHAPEF, for FFEMP 

is illustrated in Appendix A. 

The characteristics of the program family and the nonfunctional re­

quirements should be considered when selecting the programming language 

for the implementation. In addition, the programming languages that other 

similar programs use should be considered. Although the application engi­

neers do not need to write any code when using VCG and FMA, it is possible 

that the common code needs to be changed when the whole program fam­

ily evolves. The use of programming languages that are widely used in the 

community of the domain can improve reusability. For example, there is more 

than one programming language that could be used for FFEMP, but C++ was 

selected because many Finite Element Method (FEM) programs are developed 

using C++. Modification occurs frequently in the reuse of FEM software. Us­

ing C++ makes it possible for some end user developers of FEM software to 

consider investigating FFEMP. 

If it is possible, FASCS suggests reuse of existing code, libraries or 

components. However, there are pros and cons for the reuse, especially for 
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the reuse of libraries. The installation of required packages may decrease the 

usability because some libraries may not be well documented and users may 

not have knowledge about the architecture of their computer. For example, 

FFEMP needs to solve sparse linear system. There are many existing libraries, 

such as LAPACK (Anderson et al., 22 Aug 1999), that could fulfill this task. 

However, installing LAPACK is still not trivial for some users, although the 

documentation for LAPACK is well developed. Rather than having users 

struggle with libraries, an existing piece of code, CSparse (Davis, Last Access 

2010), is used. CSparse is "inserted" into FFEMP code; thus, the installation 

of a linear solver library is eliminated. 

6.2 Testing 

The purpose of the proposed methodology, FASCS, is to improve the quality 

of SC software. Testing is an important approach to measuring quality. In 

addition, testing can improve some quality factors, such as reliability. This 

section focuses on dynamic testing. 

As mentioned in Section 5.3, the automatic generation of test cases can 

improve reusability. However, test cases for members of SC program families 

are apparently never generated automatically, although the automatic genera­

tion of test cases has been applied in many applications (Perrouin et al., 2010; 

Uzuncaova et al., 2010). 

The test cases to be automated are the benchmark test cases men­

tioned in Section 3.1.4. These benchmark test cases arc designed manually. 
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For example, the shape of the computational domain and the type of bound­

ary conditions for the benchmark test cases of FFEMP are determined and 

cannot be changed. The magnitude of the domain and boundary conditions, 

the number of elements and all variabilities are the input to the Test Case 

Generator and can be changed. 

As for implementation described in Section 6.1, the generic program­

ming can also be used to develop test cases. The common part of test cases is 

developed in the domain testing stage. The variable part, which is assembled 

with the common part to form a set of complete test cases, is developed in the 

application testing stage. 

The testing for routines that are common for all family members is 

similar to testing routines in a single program. However, dynamically testing 

common code in the routines that vary for some family members is difficult 

because the variable part of the code is missing and the routine cannot be 

executed until the missing variable part of the routine is developed in the 

application implementation stage. The test cases for this kind of routine are 

often parameterized (McGregor, 2001). That is, the dynamic tests for common 

code in the variable routines cannot be performed in the domain testing stage, 

which may increase the cost of the development because the earlier the test is 

conducted, the less cost is required to fix the defect. 

This drawback can partially be overcome by using FASCS. Since vari­

able code can automatically be generated by using a Variable Code Generator, 

domain engineers can generate missed variable code for the routines that vary 

for some family members. Also, the Test Case Generator (TCG), which is a 
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part of the Family Member Development Environment (FMDE) that was dis­

cussed in Chapter 5, can generate variable part of some benchmark test cases 

for testing the common part of the variable routine. Since these test cases 

are designed for testing common code in variable routines, the test cases are 

usually not thorough for testing variable code. For example, it is not feasible 

for the TCG in FFEMP to generate all kinds of triangular elements to test 

their shape functions. In addition, another set of benchmark test cases used 

for testing nonfunctional requirements, such as accuracy and reliability, can 

also be generated by TCG. This approach can also be used for the integration 

testing in the domain testing stage. 

A challenge for the above approach is the large number of tests that 

need to be conducted when the number of variabilities that impact the vari­

able routine is increased. This is also a challenge for the integration testing 

that all program family testing faces. A program family has numerous pos­

sible members, even with only a few variabilities. For example, there are 11 

variabilities for FFEMP. The number of variants for each variability is listed 

in Table 6.1. Let n1 represent the total number of family members. Then n1 

can be calculate by 

n 1 = 5 * MN * 2 * MIP * 26 * 26 * MBN * 2 * MBIP * 2 * 2 

If the constants for the maximum values of variabilities are assigned 

as follows: MN = 28 (the max number of nodes), MIP = 16 (the max num­

ber of integration points), MBN = R (the max numh~r of boundary nodes) 
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Variability Number of Variants 
FVR-ElmShape 5 
FVR_NumNode MN 
FVRJntMethod 2 
FVR-N umlpts MIP 
FVR_StressS 26 

FVR-StrainS 26 

FVR_NumBNode MBN 
FVR_BintMethod 2 
FVR_N umBipts MBIP 
FVR-Stress 2 
FVR_Strain 2 

Table 6.1: The Number of Variants for Variabilities of FFEMP 

and MBIP = 5 (the max number of boundary integration points), then n1 = 

5, 872,025,600, which means that there are 5, 872,025,600 combinations. As­

sume that FVR-Stress = (F, F, T, F, T, T) and FVR_Strain = (F, F, F, F, F, F), 

which means that FFEMP can only solve for plane stress problem and the num­

ber of variants for FVR_StressS and FVRJ3trainS are 1. With some constraints 

between the variabilities applied, such as those that were shown in Section 

4.5.2, the number of possible family members can be reduced. For example, 

the constraint RC__mi in Equation 4.5 shows that the FVILNumlpts is are­

quirement for a member of FFEMP if and only if FVRJntMethod = GAUSSQ. 

This constraint can reduce the combination of the number of variants for 

FVRJntMethod and FVR_Numlpts from 2 * 16 = 32 to 1 + 16 = 17. However, 

there are still 63,648 possible family members by applying all constraints for 

FFEMP, which are given in the Yu (2010a). It is difficult, if not impossible, to 

develop all of the possible family members and to test all the combinations of 
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these variabilities. Hence some techniques have to be used to reduce the num­

ber of combinations. McGregor (2001) suggests two techniques to mitigate 

this problem: combinatorial test designs and incrementally integration test­

ing. These two techniques are options for designing and conducting integration 

tests using FASCS. These techniques are not discussed in this thesis and more 

details can be found in Burr and Young (1998) and McGregor (2001). 

Another challenge that is specific for SC software is the unknown solu­

tion challenge as discussed in Section 2.2.1. A new testing technique, named 

Computational Variability Test, is proposed to contribute to resolving this 

challenge. The details of this technique are given in the next section. 

6.3 Computational Variability Test 

Computational Variability Test (CVT) is a testing technique that is used to 

test common code in variable routines. More frequently, it is used to perform 

integration test for SC program families. No analytical solutions are necessary 

for using this technique. The prerequisite for using CVT is that the variable 

routines or the program family to be tested vary on at least one computational 

variability. 

A computational variability is a variability that only relates to the 

computation techniques used to solve the theoretical model of the program 

family. The computational variabilities do not impact the theoretical model. 

For example, among the 11 variabilities of FFEMP that arc listed in Table 4.3, 

7 of them (FVR_ElmShape, FVR_NmnNodc, FVR_IntMethod, FVR_Numlpts, 
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FVR_NumBNode, FVR.BintMethod and FVR__NumBipts) are related to FEM, 

which is the computational technique used to solve the theoretical model 

(Equation 2.1). Hence, they are computational variabilities. Another four 

variabilities (FVR_StressS, FVR_StrainS, FVR_Stree and FVR_Strain) are not. 

The steps of using CVT to test variable routines or a program family are 

listed below. It is assumed that at least one of variabilities is a computational 

variability. It is also assumed that the computational variabilities for the 

program family are identified and input of the routines or a program family 

that is not related to the computational variabilities are given . 

1. Select the appropriate possible values for each computational variability. 

2. For each possible value of each computational variability: 

(a) Specify the member of the program family with the corresponding 

variabilities using the Domain Specific Language developed for the 

program family. 

{b) Use the Variable Code Generator to generate variable code for the 

family member. 

(c) Use the Test Case Generator to generate test cases for the family 

member. 

(d) Use the Family Member Assembler to assemble the code for the 

family member and the test case to test the family member. 

(e) Execute the test case and record the test results. 

3. Compare the test results for the family members. 
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The test is considered to pass if the pairwise relative differences of the 

test results are within an acceptable range. This acceptable range depends 

on the possible values selected in Step 1 and the requirements of accuracy 

and precision of the program family. For the testing to be meaningful, the 

possible values selected in Step 1 should not be too extreme such that the 

difference between the solution to the theoretical model and the solution to the 

computational model is not too big. For example, if the computational domain 

for FFEMP had a curved boundary, selecting a mesh with a few elements or 

selecting a small number of nodes per element in Step 1 would not be proper. 

The test result for the example problem shown in Figure 2.1 is shown 

in Table 6.2. The length of the domain L = 9 m and the width W = 6 m. The 

Number of Node 
3 3 6 
6 10 10 

Relative Differences 1.1111 X 10 12 5.0927 X 10 12 4.8149 X 10 12 

Table 6.2: The Relative Difference for Test Case shown in Figure 2.1 

domain has unit thickness (H = 1m). The Young's modulus E = 1000 Njm2 

and the Poisson's ratio v = 0.3. The traction u = 1 N jm. The computational 

domain is meshed to Figure 2.2. The computational variability is the number 

of nodes per element. The maximum relative difference is 5.0927 x 10-12 , 

which is acceptable for FFEMP. Hence, this test passed. 

CVT can also be used to check the sensitivity of the theoretical models. 

If the calculated result is sensitive to the change of a specific computational 

variability, then the theory under development may be sensitive to the as-

smnptions related to the computational variability. 
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Although the closed form solutions are not necessary, the test to a 

problem with a closed form solution can also use CVT. The closed form so­

lutions for displacements u and v to the test case shown in Figure 2.1 can be 

calculated as: 

Fx u* W 2 
ax=-= = 1N/m· 

Ax W*H 

<7x / Ex = E = 1 1000 = 0.001 

du r 
Ex= dx ====? u = Jo Exdx = 0.001 * x 

Ey = -Ex * V = -0.0003 

dv r 
Ey = dy ====} V = lo Ey dy = -0.0003 * y 

The calculated displacements with different number of nodes per element can 

be obtained for meshing the computational domain as shown in Figure 2.2. 

The relative errors of the calculated results shown in Table 6.3. Since both 

Number of Node 3 6 10 
Relative Error 1.5462 X 10 13 4.8181 X 10 13 3.1664 X 10 12 

Table 6.3: The Relative Error for Test Case shown in Figure 2.1 

displacements are linear, using 3 nodes per clement can obtain exact solution. 

The more the number of nodes per element used, the more calculation needed. 

Hence, the bigger the relative error shown in Table 6.3. 

A crucial step to efficiently and effectively use CVT is the selection of 

the appropriate values for the computational variabilities. It is not possible 

to choose all possible values for all computational variabilities, as the previous 
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section discussed. On the other hand, the test results of too few values for some 

computational variabilities would not add much confidence on the accuracy 

and precision of the program family. 

Selecting a key computational variability is the solution to the above 

problem. A key computational variability is one that impacts the calculation 

much more than the other computational variabilities. For example, the num­

ber of nodes per element (FVR.NumNode) is a key computational variability 

for FFEMP. The selection of a key computational variability also depends on 

the purpose of testing. For example, if one did not feel confident in the code 

related to integration, the number of integration points (FVR.Numipts) might 

be selected as the key computational variability. 

To balance the efficiency and effectiveness of CVT, the number of values 

for these key computational variabilities can be selected more than other com­

putational variabilities, so that the number of detected defects is maximized 

without the need to generate too many family members. 

The reason for CVT being possible is the existence of the Variable Code 

Generator, Test Case Generator and Family Member Assembler, so that the 

generation of a family member and the test cases is easy. Otherwise, CVT 

is too inefficient for practical use. Moreover, if a manual approach is used 

it is very difficult to ensure that the assumed common code between family 

members is actually common. It is too easy to inadvertently modify the code 

in a subsequent family member. 

CVT is a valuable testing technique because it allows for the compar­

ison of quasi-independent solution algorithms. For programs with unknown 
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solution, one can build confidence by comparing different solutions that solve 

the same problem. If two independent solutions agree, this provides some 

verification for both programs. Even though two members of the same pro­

gram family is not independent, because much of the code is still common, 

modifications that do not change the solution are a positive sign. Changing 

computational variabilities can be used in a manner analogous to grid refine­

ment studies (Roache, 1998), as Section 8.2 will discuss. 
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Chapter 7 

Documentation 

Documentation is a very important part of a program family. A well doc­

umented program family should be easy to understand and thus easily used 

by application engineers to generate members of the program family. More­

over, documentation improves reliability and maintainability, as Yu (2007) and 

Smith and Yu (2009) discussed. 

This chapter presents documents for FASCS, which include documents 

for domain requirements engineering (Section 7.1) and domain design (Section 

7.2). The relationship between documents and stages of the program family 

development is shown in Figure 7.1. In addition, a traceability matrix between 

artifacts of the domain requirement engineering stage and that of the domain 

design stage are given in Section 7.3. Traceability matrices between artifacts 

within the domain requirement engineering stage are developed in Common 

and Variable Requirement Specification (Section 7.1.1) and traceability ma­

trices between artifacts within the domain design stages are developed in Ref-
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Figure 7.1: Documents 
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erence Module Guide (Section 7.2.1). Again, the proof of concept program 

family, FFEMP, is used as an example when the documents are discussed. It 

is assumed that the readers of this chapter have read the previous chapters 

and understand the overall process. 

Since some content in one document can be reused in other documents, 

tools should be used to keep the reusable portion consistent between docu­

ments, to improve the reusability and maintainability. For example, equa­

tions that represent theoretical models for FFEMP appear in the Common 

and Variable Requirements Specification, Theoretical Model Specification and 

Computational Specification. These equations are documented in a separate 

file. Since all documents for FFEMP are written in Latex (LaTeX, Retrieved 

July 2010), it is possible that these equations can be "input" to the locations 

where they are required. If these equations need to change, only the file that 

stores the equations are changed. The documents that embed the equations 

are updated automatically. 

There is a distinction between sections in this chapter and sections in 

the documents for a program family. Numbers of the sections are used when 

the sections of this chapter are referenced, such as Section 7.1.1.3. Names of 

the sections are used when the sections refer to the documents for a program 

family, such as the Common and Variable Requirements section. 

The template for each document is given in the beginning of the descrip­

tion. Theses templates are inspired by Chen (2003); Lai (2004); Yu (2007); Yu 

and Smith (2009). Modifications to previous templates are necessary because 

they do not entirely meet the current use. For instance, Chen (2003) only 
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gives the template for documenting requirements without much explanation 

or rationale for it. Lai (2004) and Yu (2007) use a goal-oriented approach. 

However, the templates they proposed are not for a program family. Yu and 

Smith (2009) do not separate the documents for the theoretical model and 

computational model. 

The process of developing documents is iterative. The order of docu­

ments for stages means that the development of the later stage requires the 

documents for previous stage in each iteration. The order also gives the direc­

tion of reading the final document. That is, readers can read the documents 

as if the documents are developed in the order that they appears. This is what 

Parnas and Clements (1986) proposed for their rational design process. 

In addition to the documents for all stages of the process, the portions in 

each document are also developed iteratively. The order inside each document 

provides the prerequisite of the portions for each iteration. Similarly, the 

documents for each stage can be read as if the documents were developed in 

the order that they appear. 

The specification for the requirements and design use formal mathe­

matical expressions to avoid ambiguity. The unambiguous requirements and 

design make the assessment of accuracy, precision and reliability possible. All 

mathematical expressions in FASCS follow the format given by Hoffman et al. 

(1995). 

When applicable, a prefix is used to number and label items, such as 

goals, requirements, models, etc. The prefixes and the corresponding repre­

sented items are listed in the Table 7.1. A convention that the prefix of the 

118 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

label is the prefix of the number followed by an underscore "-" is used in the 

documents for a program family. 

FG Functional Goal 
NG Nonfunctional Goal 
FCR Functional Common Requirement 
NCR Nonfunctional Common Requirement 
FVR Functional Variable Requirement 
NVR Nonfunctional Variable Requirement 
TTD Theoretical Terminology Definition 
CTA Common Theoretical Assumption 
TM Theoretical Model 
VTA Variable Assumption 
CTD Computational Terminology Definition 
CCA Common Computational Assumption 
CM Computational Model 
AC Anticipated Change 
uc Unlikely Change 
M Module 
GC General Constraint 
RC Requiring Constraint 

Table 7.1: The Prefixes for Numbers and Labels 

7.1 Domain Requirements Engineering 

The major document for the domain requirements engineering stage is the 

document for common and variable requirements. Since FASCS uses GOCA 

to perform commonality analysis, the theoretical model and the computational 

model can be reused. Hence, it is convenient to document the theoretical model 

and the computational model separately. 

Goals, including functional goals and nonfunctional goals, of the pro-

119 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

gram family are documented in the major document for GOCA: the Com­

mon and Variable Requirements Specification (CVRS). As its name suggests, 

the specification for common and variable requirements are the major part of 

CVRS. The theoretical model is documented in the Theoretical Model Specifi­

cation (TMS). The computational model is documented in the Computational 

Model Specification (CMS). 

To fully understand a program family, the TMS and CMS should be 

read before the CVRS, except for goals of the program family, which should 

be read first because they determine TMS and CMS. In addition, TMS should 

be read before CMS. Certainly, any of the documents is understandable if a 

reader already understands the essential part of the program family. 

7.1.1 Common and Variable Requirements Specifica­

tion 

Common and variable requirements are specified in CVRS. The template of 

CVRS is shown in Figure 7.2. The details for each section are given below. 

7 .1.1.1 Reference Material 

This section serves as a reference. It including symbols, abbreviations and 

acronyms, and auxiliary constants that are used in this document (CVRS) 

and the other two documents for the domain requirements engineering stage, 

TMS and CMS, since these three documents are strongly related. The purpose 

of the Reference Material section is to ease the use of the documents and to 

improve their understandability. 
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1 Reference Material 
2 Introduction 

2.1 Purpose of the Document 
2.2 Introduction to Program Family 
2.3 Introduction to Domain Area 
2.4 Organization of the Document 

3 Common and Variable Requirements 
3.1 Goals 
3.2 Determination of Variable Assumptions 
3.3 Theoretical Refmement 

3.3.1 Theoretical Model 
3.3.2 Refinement of Some Theoretical Tenninology 

3.4 Computational Requirement 
3.3.1 Computational Model 
3.3..2. Refinement of Some Computational Terminology 

3.5 Common Requirements 
3.6 Variable Requirements 

4 Other System Issues 
4.1 Open Issues 
4.2 Off-the-sell Solutions 
4.3 Waiting Rooms 

5 Traceability Matrices 

Figure 7.2: The Template for Commonality Analysis 
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7.1.1.2 Introduction 

This section gives an overview of CVRS. The purpose of the document and the 

intended audience of this document is provided. Since the program family ap­

proach is relatively new to SC software developers, the process of the program 

family approach is also briefly introduced. In addition, a reference to detailed 

discussion of the program family is included. The background information for 

the domain is given because the user of the document may not be an expert 

on the domain area. The organization of the document is summarized at the 

end of the introduction section. 

7.1.1.3 Common and Variable Requirements 

This section is the major portion of the commonality analysis report. All 

common and variable requirements are developed in this section. 

Goals 

Both functional and nonfunctional goals are documented in this section. Since 

goals are allowed some degree of ambiguity, plain text is used for specifying 

goals. However, names and numbers should be given for further reference 

and traceability. Functional goals can be used in multiple documents. Hence, 

they should be stored in a separate file, as discussed in the beginning of this 

chapter. Nonfunctional goals are simple; numbers and names are enough to 

understand their meanings. Therefore, nonfunctional goals do not need to be 

stored in separate files. Examples of functional goals and nonfunctional goals 

for FFEMP are given in Section 4.1. 
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Determination of Variable Assumptions 

The theoretical model is assumed to have been developed and documented in 

TMS (see Section 7.1.2), before the development of this section. This section 

determines and documents variable assumptions, which were not determined 

in the TMS. Some examples of variable assumption were given in Section 4.3. 

Theoretical Refinement 

First, the equations that represent the theoretical model, which has been de­

veloped and documented in TMS, is restated for quick reference. Second, 

some theoretical terminology is refined with respect to the determined vari­

able assumptions, which are documented in the Determination of Variable 

Assumption section. 

- Taking FFEMP as an example, if the variable assumptions were deter­

mined as VTA_StressS = (F, F, T, F, T, T) and VTA_StrainS = (F, F, F, F, F, F), 

which means that the computational domain is 2D, the theoretical terminol­

ogy Stress (TTD_Stress), which is defined in TMS as Equation 4.2 would be 

refined to Equation 4.3 in this section. Except for TTD_Stress and the other 

four theoretical terminology definitions: displacement (TTDJ)isplace), strain 

(TTD_Strain), Linear Differential Operator (TTD_LDOpt) and Constitutive 

Matrix (TTD_Constitutive), other parts of the documents for the Domain 

Requirement Engineering stage, which includes Common and Variable Re­

quirement Specification, Theoretical Model Specification and Computational 

Model Specification, remain the same. This indicates that the documents for 

FFEMP arc easy to reuse. 
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Computational Refinement 

It is assumed that the computational model has been developed and docu­

mented in CMS, which will be discussed in Section 7.1.3, before the develop­

ment of this section. The equations that represents the computational model 

are redisplayed first. Then, some computational terminology is refined with 

respect to the determined variable assumptions. However, for the FFEMP ex­

ample, this case does not arise because there are no computational terminology 

definitions that need to be changed when the variable assumptions change for 

FFEMP. 

Common Requirements 

Both functional common requirements and nonfunctional common require­

ments are documented in a table format. This format has been successfully 

used in Chen (2003), Lai (2004), Yu (2007) and Smith et al. (2009). The table 

format is also used for documenting other portions, such as functional variable 

requirements, of CVRS and other documents, such as TMS, for the program 

family. There are five fields, namely Number, Label, Related Items, Descrip­

tion and History, that are used to document the common requirements. These 

fields are also frequently used in other program family documents. 

Number: The number is used for purposes of cross-referencing and traceabil­

ity within the same documents. 

Label: The label is a short identifying phrase. This label provides a mnemonic 

that helps with quickly remembering which definition is being presented. 

Moreover, the label will be useful when an external document needs to 
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reference one of the definitions in this document. 

Related Items: A related item is a item that is used by the current item. For 

example, a model, a terminology definition, an assumption or another 

requirement that is used by the current requirement is a related item for 

the description of a requirement. Should the related items change, the 

current requirement will also need to be modified. 

Description: The actual specification is given here. In some cases where 

the description is lengthy, some of the details are moved to a section 

following the table. 

History: A history includes the creation date and any subsequent modifica­

tions. 

Example table format specifications of a functional common require­

ment and a nonfunctional common requirement for FFEMP were shown in 

Section 4.5.1 (Table 4.1 and Table 4.2). 

Variable Requirements 

Functional variable requirements are documented in a table format. In addi­

tion to Number, Label, Related Items, Description and History, which are the 

same for fields in the common requirement specification discussed above, the 

specification for a functional variable requirement has the following fields: 

Type: When applicable, the type of the specified item is given. The type 

may be real (JR), integer (N), boolean (llll), string (§), or set. The type 

information helps to clarify the meaning of the variable requirement. 
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Dependency: Dependency specifies a relation between the functional vari­

able requirement and a member of the program family. Dependency 

can be Mandatory or Optional, meaning that this functional variable re­

quirement is meaningful for all or some member of the program family, 

as discussed in Section 4.5.2. If the functional variable requirement is 

optional, the conditions that a member of the program family has this 

requirement should be specified in the "Constraints" field. 

Constraints: The name of any constraints between this functional variable 

requirement and other ones should be given. The constraints should be 

expressed as a boolean expression and the value of the expression should 

be true. The name of both the general and requiring constraints, whose 

prefixes are given in Table 7.1, are given in the table. The details of 

the constraints are given after of all functional variable requirements are 

specified. 

Variants This field is used for the variable item that the table specifies. It 

provides a set of possible values for the items. The set of possible values 

is a subset of the "Type." 

An example table format specification of a functional variable require­

ment for FFEMP is shown in Section 4.5.2 (Table 4.3). 

A graphical notation for functional variable requirements is suggested. 

The representation of symbols and notations used in the graph is illustrated 

in Figure 7.3. This notation is a simplified from Kang et al. (1990) and Pohl 

et al. (2005). Since SC software usually has simple structure, not all of the no-
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Figure 7.3: Symbols and Notations for the FVR Graph 

tations in Kang et al. (1990) and Pohl et al. (2005) are used in the documents. 

In addition, a new notation that represents One-Many "has a" relationship, 

which is shown in Figure 7.3 (d), is proposed. The new notation serves the 

same purpose as the One-One "has a" relationship , but without the need to 

explicitly list all of the possible values. The new notation is proposed because 

some functional variable requirements for SC program family have relatively 

large numbers of variants and these variants are sets of integers. Because the 

excessive input data can be represented properly, readability of the graph is 

improved. The input output challenge for SC software mentioned in Section 

2.2.1 is also addressed. It is also possible that the variants are set of real 

numbers, which is infinite. By slightly modification, the new notation can be 

used to denote this kind of variabilities, which cannot be represent graphically 

using the notations in Kang et al. (1990) and Pohl et al. (2005). 

The graphical notations can improve the understandability of the fam-

ily since it gives an overview of all functional variable requirements and their 

relations. These functional variable requirements can also help with under-

standing the scope of the program family. 
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An example of the functional variable requirements graphical notation 

for FFEM is shown in Figure 7.4. The figure clearly shows that there are 

eleven functional variable requirements. FVR_Numlpts and FVR_NumBitps 

are optional. Others are mandatory. The existence of FVR_Numlpts as are­

quirements for a member of FFEMP depends on the value of FVRJntMethod 

(RC_mi) as discussed in Section 4.5.2. Similarly, FVR_NumBipts is a require­

ment for a member of FFEMP if and only if FVR.J3IntMethod = GAUSSQ. 

In addition, there are four general constraints, such as the constraint between 

FVR_ElmShape and FVR_NumNode (GC_ni) that was discussed in Section 

4.5.2. The detailed specification on the general constraints can be found in 

the CVRS for FFEMP (Yu, 2010a). 

Graphical notation for a program family, such as Figure 7.4, does not 

give all of the information of the functional variable requirements, such as the 

Related Items. It cannot fully replace the textual specifications. The textual 

specification of the Common and Variable Requirements for FFEMP is given 

in (Yu, 2010a). 

Nonfunctional variable requirements are documented in a table format. 

This table contains Number, Label, Related Items, Variants and History. The 

type for all nonfunctional variable requirements is real number, as discussed in 

Section 4.5.2. In addition, all nonfunctional variable requirements are manda­

tory and constraints between nonfunctional variable constraints are difficult 

to specify quantitatively. Table 7.2 shows an example of the nonfunctional 

variable requirement for FFEl\JP. 

128 



,..... 
~ c.o 

'Tj 
c§" 
..... 
@ 
-:J ;.:. 
0 
'"1 
~ 
"d 
e-: 
""' z 
0 ..... 
~ 
5" 
::l 
0 ......., 

~ s 
("') ..... 
5" 
::l e. 
~ 
'"1. 

g: 
t=D 

~ 
.:::: ;:;· 
(') 

~ 
::l 
&f 
0' ., 
'Tj 
'Tj 
trj 

~ 

GC sn GC ni 
r-- •-- -r- ------
I 
I 
! 
I 

I 
I 

I 
I 

I • 
/RC_ml 

GC bni 
~------, 
I I 

GC ss r-----=----, 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ll GAU~ I 
I \ 
I \ 

1 \ RC bmi 
I \ -
I \ 
I \ 
I \ 

L-------

~ 
t::J 

~ 
~ 
~-

1 

~ 
;;::! 

~ 
I 

~ 
~ .,... 
~ 
""'! 
I 

~ 
~ .:: .,... 
~-

§ 
~ 

~ 

~ e; 
~ 

~ 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

I Number 
Label 

I NVRl 
NVR_Accuracy 

Related Items NG.Accuracy 
Variants {0.8333, 0.1667} 
History Created- January 2011 

Table 7.2: An Example Nonfunctional Variable Requirement for FFEMP 

7 .1.1.4 Other System Issues 

This section includes some other supporting information that might contribute 

to the success or failure of the system development. Open issues, off the shell 

solutions, and waiting room items are considered here. In particular, the 

waiting room items related to relaxing the common assumptions, including 

common theoretical assumptions and common computational assumptions, as 

discussed in Chapter 4. The change of variable assumptions is not included 

in the waiting room since the change only affect a small portion of changes 

for the program family, as Section 7.1.1.3 shows. An example of a potential 

relaxed assumption for FFEMP is that the thermal effects cannot be neglected, 

which is a change of common theoretical assumption CTA_ Thermal. If this 

assumption were changed, the theoretical model would change. The waiting 

room provides a blueprint of how the system will be extended, and hence it 

improves the reusability and maintainability of the program family. 

7.1.1.5 Traceability Matrix 

The traceability matrix presented in this section includes the relations be-

tween artifacts in different documents, including CVRS, TiviS and CMS. The 
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relations between most artifacts within CVRS, such as the relation between 

NG_Reliability and NCR..Reliability in FFEMP, are obvious. Hence only some 

relations that are not obvious are included in the matrix. The relations be-

tween artifacts within TMS and CMS are documented in the corresponding 

TMS and CMS. 

The traceability matrix between terminology definitions and functional 

requirements for FFEMP is shown in Table 7.3. The check mark in an entry, 

such as (FCR_Displace, CTAJ)isplace) in Table 7.3, indicates FCR_Displace 

depends on CTAJ)isplace. That is, if CTAJ)isplace changes, then FCRJ)isplace 

will change. 

~ "'0 
C) "0 0 ....... 

...cl ~ 
....... 0 Cl.l ~ """" ~ ...., 

~ 
...cl Cl.l 

0 bO ....... 
rt.l ~ s ~ ;:;g 

"""" rt.l ~ I§ ...cl - ~ ·~ ] :::g 0.. Cl) 
~ ~ .;!l ;::l rt.l ~ Cl.l rt.l 1-< 1-< ...... 

~ 0 ~ 
0 

~ 
....... 

"""" """" 
....... ...., 0 ...... 

0-.t 0 ~ "1 "1 ~ 00 ~ 01 I I I 'I 
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl ~ Cl 
E-t E-t E-t E-t E-t E-t E-t E-t E-t E-t > E-t 
E-t E-t E-t 0 0 0 0 0 0 0 ~ 0 

FCR_Displace ./ ./ ./ ./ ./ ./ 
FVR_N umlpts ./ 
FVR_StressS ./ 
FVRBtrainS ./ 
FVR_NumBipts ./ 
FVR_Stress ./ ./ ./ ./ 
FVR_Strain ./ ./ ./ 

Table 7.3: Traceability Matrix between Terminology Definitions and Func­
tional Requirements for FFEMP 
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7.1.2 Theoretical Model Specification 

Theoretical Model Specification (TMS) documents the theoretical model for a 

program family. The template of TMS is shown in Figure 7.5. The details on 

each section are presented below. It is assumed that the goals for the program 

family are identified before developing the TMS. 

1 Introduction 
2 Functional Goals 
3 Theoretical Tenninology Definitions 
4 Common Theoretical Assumptions 
5 Theoretical Model 
6 Variable Assumptions 

Figure 7.5: The Template for Theoretical Model Family Specification 

7.1.2.1 Introduction 

This section gives the purpose and the organization of the document. 

7.1.2.2 Functional Goals 

This section lists functional goals for quick reference, since the theoretical 

models are refined from functional goals. The restatement of functional goals 

makes the document relatively independent and easy to use. 

7.1.2.3 Theoretical Terminology Definitions 

This section explicitly defines theoretical terminology with respect to common 

theoretical assumptions, which arc documented the Common Theoretical As­

sumption section of this document. The theoretical terminology definitions, 
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together with the computational terminology definitions that will be discussed 

in Section 7.1.3, should be documented as formally as possible to avoid am­

biguity, since these definitions may be used for documenting common and 

variable requirements. 

Theoretical terminology definitions are documented in table form. In 

addition to Number, Label, Related Items, Description and History, which 

are the same for fields in the common requirement specification discussed in 

Section 7 .1.1, the specification for a theoretical terminology definition has the 

following fields: 

Symbol: This field shows the symbol that is used to represent variables re­

lated to this concept. Tensors, matrices and vectors are represented by 

bold faced symbols, such as u or u. 

Type: In addition to the type information given in Section 7.1.1, the type 

for a tensor, a matrix or a vector should also be specified. For a tensor, 

a matrix or a vector, the type specifies the type for each component. 

The type information helps to clarify the meaning of the symbol and the 

variables. 

Units: Where applicable the units associated with the symbol are given. The 

unit system adopted is the "MLtT" dimension system, where M is the 

dimension of mass, L is length, t is time and T is temperature. This 

system corresponds nicely with the SI (Systeme International d'Unites), 

or modern metric, system, which uses units of kilogram (kg), meter (m), 

second (s) and Kelvin (K) forM, L, t and T, respectively. By leaving the 
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units in this form any unit system can be adopted in the future, as long 

as the choice of specific units is consistent between different quantities. 

When units are for tensor or vector quantities, it is implicit that the unit 

measure applies to the individual components. 

Sources: This field lists references that can be consulted for additional infor-

mation on the concept in question. 

An example table format specification of a theoretical terminology def­

inition for FFEMP is shown in Table 7.4, which defines the displacement. The 

Number TTDl 
Label TTD_Displace 
Symbol: u 
Type: lR 
Units: L 
Related Items: CTA5 
Sources: Bauld (1986) 
Description: Displacement of a point is defined 

as the distance between the point 
before and after the deformation. 

History: Created- July, 2010 

Table 7.4: An Example Theoretical Terminology Definition for FFEMP 

detailed description following the table can be found in the TMS for FFEMP 

(Yu, 2010b). Displacement can be represented by a vector. The general 3D 

displacement vector is given helow, where u, v and w are in the x, y and z 
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directions, respectively. 

u 

U= V (7.1) 

w 

All theoretical terminology definitions for FFEMP are shown in Table 

7.5. 

Number Label Symbol 
TTDl TTD_j)isplace u 
TTD2 TTD.Btress cr 
TTD3 TTD_Strain € 

TTD4 TTD_LDOpt L 
TTD5 TTD_Poisson v 
TTD6 TTD__lsotropy -

TTD7 TTDJiomogeneity -

TTD8 TTD_Elasticity -

TTD9 TTD_Young E 
TTDlO TTD_Constitutive D 
TTDll TTD_BodyForce b 

Table 7.5: Theoretical Terminology Definitions for FFEMP 

7.1.2.4 Common Theoretical Assumptions 

This section presents common theoretical assumptions. Sometimes, it is dif-

ficult to distinguish between terminology definitions and assumptions. The 

following rule is proposed to distinguish between them. Assumptions, in­

cluding common assumptions and variable assumptions, which are discussed 

in the Variable Assumptions section, should not use any terminology that 

is not defined in the Theoretical Terminology Definitions section. By using 
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this rule, common theoretical assumptions become simpler. Only a few sen­

tences will be enough to specify them. For example, a common theoretical 

assumption for FFEMP is that all materials in the computational domain be­

haves entirely linear elastically (CTA_Elastic), where the terminology elasticity 

(TTD..Elasticity) is defined somewhere else. This rule is also applied to com­

putational terminology definitions and common computational assumptions 

when the computational model is documented (Section 7.1.3). 

7.1.2.5 Theoretical Model 

This section specifies the theoretical model. The mathematical symbols used 

in the equations, and the terminology the symbols represent, should be defined 

in the Theoretical Terminology Definitions section. The input and the output 

of the model are also given to improve understandability. 

The essential part of a theoretical model is the mathematical equations. 

The equations of the theoretical model for FFEMP were given in Section 2.4 as 

Equation 2.1 and discussed in Section 4.3. The theoretical model for FFEMP 

is shown in Figure 7.6. 

7.1.2.6 Variable Assumption 

This section lists all variable assumptions. A variable assumption is specified 

in terms of a feature and its possible values. The possible values are specified 

by a set, which can be expressed by enumerating all its elements for a small 

set or by giving its properties for a larger set. 

Variable assumptions are documented in tables. The fields in the ta-

136 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

TM: When the common theoretical assumptions hold, the the­
oretical model for FFEMP that refines the functional goals is 
a set of Partial Differential Equations as shown in Equation 
2.1. 
The input of the model is 

• the computational domain (0) 

• the body force (b) 

• the material properties ( E and v) 

• the applied load t(ii) on surface Sr 

• displacement constraints u = ii on surface Su 

The output of the model is 

• the displacement u 

• the strain e 

• the stress u 

Figure 7.6: The Theoretical Model for FFEMP 

137 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

ble include Number, Label, Related Items, Description, Variants and History, 

which are discussed in Section 7.1.1 and Type, which is discussed in Section 

7.1.2.3. 

An example of the table format for a variable assumption for FFEMP 

is shown in Table 7.6. A detailed description is lengthy and is not given here. 

I Number 
Label 

IVTA3 
VTA_StressState 

Type sequence [6] of Jill 
Related Items TTDJ3tress, VTAJ3trainState 
Variants VTA_StressState is an sequence of 

six boolean variables. Each vari-
able has two possible values, T or 
F. 

Description: This variable theoretical assump-
tion determines the state of stress 
for the body. 

History Created- July, 2009 

Table 7.6: An Example Variable Assumption for FFEMP 

This assumption specifies that the i-th entry of VTA_StressState is T if it is 

known that the i-th entry of the stress (Equation 4.2) is zero. For example, 

for 3 dimensional problem, VTA_StressState = (F, F, F, F, F, F). Another ex­

ample is the state of plane stress, where VTA_StressState = (F, F, T, F, T, T), 

since it is known that (Jzz = Tyz = Txz = 0. A uniaxial state of stress in 

the x direction would require VTA_StressState = (F, T, T, T, T, T), since it is 

known in this case that every entries except (]' xx is equal to zero. The con-

straint between VTA_StressState and VTA_StrainState and other details on 

VTA_StressState can be found in the TMS for FFEMP (Yu, 2010b). 

All variable assumptions for FFEMP arc shown in Table 7.7 
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Number Label Type 
VTAl VTA.BelfWeight ]ffi 

VTA2 VTA_MultiMaterial ]ffi 

VTA3 VTA.BtressState sequence [6] of 1ffi 
VTA4 VTA_StrainState sequence [6] of Iffi 

Table 7.7: Variable Assumptions for FFEMP 

7.1.2.7 Traceabilty Matrix 

This section presents the traceability matrix between the theoretical terminal-

ogy definitions and common theoretical assumptions. The matrix for FFEMP 

is shown in Table 7.8. The check mark in an entry, such as (TTD__Displace, 

CTA_Cartesian) indicates TTD_Displace depends on CTA_Cartesian. That is, 

if CTA_Cartesian changes, then TTD__Displace will change. 

139 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

·~ 
1-4 

~ 
4-> 
00 

:>.. 00 Q) 00 s 4-> s Q) 
'0) ~ 

1-4 1-4 

:>.. 0 4-> .8 Q) ~ @ ~ 00 
~ Q) 4-> Q) 

(.) ...... § ca b.() ,;:; ...... ...a Cl (.) ro 00 ~ 0 0 00 ...... ~ ........ . ..... - 4-> ...... Q) 
0.. 00 '@ 1-4 s ~ 

1-4 1-4 ca 4-> 
Q) 4-> ~ ~ 4-> Q) ~ 00 1-4 1-4 0 0 .;!:l s ...... 4-> 4-> - 0 ~ ~ C1 CI:J CI:J 

00 ::t1 ~ 0 0 C1 ...., 
I I 

...., CI:J 
Cl Cl Cl Cl Cl Cl 

ES ES ES ES ES ES E-t E-t E-t E-t E-t E-t 
E-t E-4 E-4 E-4 E-4 ~ 0 0 0 0 0 0 

TTD .J)isplace .( 

TTD_Stress .( .( .( .( 

TTD_Strain .( .( .( .( .( .( 

TTD_LDOpt .( .( 

TTD_Poisson .( 

TTD_Young .( .( .( 

TTD_Constitutive .( .( .( 

CTAJsotropic .( 

CTAJiomogeneous .( 

CTA_Elastic .( 

Table 7.8: Traceability Matrix between Theoretical Terminology Definitions 
and Common Theoretical Assumptions for FFEMP 
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7.1.3 Computational Model Specification 

The documentation for the computational model is called the Computational 

Model Specification (CMS). The template of CMS is shown in Figure 7.7. The 

details on each section are described below. It is assumed that the theoreti-

cal model for the program family is developed and documented in TMS and 

the variable assumptions that should be determined are determined before 

developing the CMS. 

1 Introduction 
2 Theoretical Model 
3 Computational Technique 
4 Computational Tenninology Definitions 
5 Common Computational Assumption 
6 Computational Model 

Figure 7. 7: The Template for Computational Model Family Specification 

7.1.3.1 Introduction 

This section gives the purpose and the organization of the document. 

7.1.3.2 Theoretical Model 

This section gives a simple description, which includes the equations of the the-

oretical model that the computational model refines for quick reference. The 

restatement of theoretical models makes the document relatively independent 

and easy to use. 
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7.1.3.3 Computational Technique 

This section documents the selection of the appropriate computational tech­

nique for solving the theoretical model. As discussed in Section 4.4.2, AHP 

(Saaty, 1980, 2008) is used to make the decision. This section includes 

• A list of techniques available to solve the theoretical model. 

• A list of nonfunctional goals related to the selection of the techniques. 

• A pairwise comparison matrix for the nonfunctional goals. 

• Pairwise comparison matrices for the techniques with respect to all non-

functional goals. 

The lists and matrices of selection for FFEMP have been shown in Section 

4.4.2. The resulting computational technique and an introduction to the tech­

nique are also included in this section. 

7.1.3.4 Computational Terminology Definitions 

This section defines computational terminology with respect to common com­

putational assumptions, which are documented in the Common Computational 

Assumption section. 

Computational terminology definitions are documented in a table for­

mat. The fields in the table include Number, Label, Related Items, Description 

and History, which are discussed in Section 7.1.1 and Type, Unit and Sources, 

which are discussed in Section 7.1.2.3. Since computational terminology re­

lates to a computational model, the computational details, which arc usually 

142 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

related to design or implementation in other types of software, may be re­

flected in the type of some computational terminology. For example, the use 

of the Finite Element Method in FFEMP implies that vectors and matrices 

are used as types in the computational terminology, since the terms F, K and 

a in the computational model {Equation 2.2) are either vectors or matrices. 

An example of a table format specification of a computational termi-

nology definition for FFEMP is shown in Table 7.9. This table defines the 

computational terminology displacement. 

Number CTD6 
Label CTD__Displace 
Symbol a 
Type Vector 
Units L 
Related Items TTD_Displace, CCA_Diff, 

CTD_Node 
Sources Smith and Griffiths (1998), Hughes 

(2000) 
Description The displacement defined here is 

general displacements of nodes. 
History Created- Sept., 2009 

Table 7.9: The Computational Terminology Definition for Displacement in 
FFEMP 

Another example computational terminology definition, shape function, 

is shown in Table 7.10. Assume that each node has 2 degrees of freedom. 

Let u' = [ :] represent the displacement of any point in an element and 
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I Number I CTD9 
~TD_Shape Label 

Symbol 
Type Matrix 
Units -

Related Items TTD .J)isplace, CCA.J)iff, 
CTD_Node, CTD_Element 

Sources Smith and Griffiths (1998), Hughes 
(2000) 

Description The shape function is a function of 
coordinates of a point inside an ele-
ment. It is the interpolation of dis-
placement anywhere in the element 
in terms of displacements of nodes. 
Details are given below. 

History Created- Sept., 2009 

Table 7.10: The Definition for the Computational Terminology Shape Function 
in FFEMP 

, where n is the number of nodes per element, represent the 

Vn 

displacement of nodes, then the shape function is N, such that ue = Nae. 

7.1.3.5 Common Computational Assumptions 

This section presents common computational assumptions for refining the the­

oretical models. The same rule of distinguishing theoretical terminology and 

theoretical assumptions are applied for distinguishing computational terminal-
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ogy and common computational assumptions. Hence, the common computa-

tional assumptions are short and simple. An example common computational 

assumptions for FFEMP is show in Figure 7.8, where N and a is introduced 

in Section 7.1.3.4 and u is introduced in Section 7.1.2.3. 

CCAl (CCAJ)iff): The displacement anywhere in an el­
ement can be interpolated in terms of displacements at the 
nodes of the element. That is u = N a, where the shape func­
tion N is differentiable. 

Figure 7.8: An Example Common Computational Assumption for FFEMP 

7.1.3.6 Computational Model 

This section specifies the computational model, which is usually represented 

by a set of equations. This model depends on the numerical technique, which is 

selected and documented in the Computational Technique section, for solving 

equations representing the theoretical model. 

The symbols used in the equations, and the terminology the symbols 

represent, should be defined in the Computational Terminology Definitions 

section or the Theoretical Terminology Definitions section in TMS. The input 

and the output of the model are also given to improve the understandability. 

The computational model for FFEMP is shown in Figure 7.9. 

7.1.3.7 Traceability Matrix 

This section presents the traceability matrix between the computational ter-

minology definitions and common computation assumptions. The matrix 
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CM: When the common computational assumptions hold, the 
computational model for FFEMP that refines the theoretical 
model is represented by Equation 2.2 
The input of the model is 

• the mesh (M) 

• the body force (b) 

• the material properties ( E and v) 

• the traction boundary 

• the prescribed displacement boundary 

The output of the model is 

• the displacement of nodes a 

Figure 7.9: The Computational Model for FFEMP 

for FFEMP is shown in Table 7.11. The check mark in an entry, such as 

(CTD-.Element, CTD_Node) indicates CTD_Element depends on CTD_Node. 

That is, if CTD_Node changes, then CTD_Element will change. 
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CTD_Element .( 

CTD__BoundElm .( .( 

CTD_Mesh .( .( 

CTD_Displace .( 

CTD_Stress .( 

CTD_Strain .( .( 

CTD_Kinematic .( 

CTDJ3tiff .( .( 

CTD.Load .( .( 

CCA_Diff .( .( .( .( 

CCA_DOF .( 

Table 7.11: Traceability Matrix between Computational Terminology Defini­
tions and Common Computational Assumptions for FFEMP 
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7.2 Domain Design 

The documents for domain design discussed in this section are used to specify 

the reference architecture for a program family in FASCS, which include the 

Reference Module Guide (RMG), which is discussed in Section 7.2.1 and Ref­

erence Module Interface Specification (RMIS), which is discussed in Section 

7.2.2. 

7.2.1 Reference Module Guide 

RMG gives module decomposition of the program family. Modules docu­

mented in RMG are abstract. Only secrets and services for each module are 

documented. The template of RMG is shown in Figure 7.10. The details for 

I Introduction 
2 Changes 

2.1 Anticipated Changes 
2.2 Unlikely Changes 

3 Module Hierarchy 
4 Module Decomposition 

4.1 Hardware-Hiding Module 
4.2 Behavior-Hiding Module 
4.3 Software Decision Module 

5 Use Relation 
6 'fraceability Matrices 

Figure 7.10: The Template for Reference Module Guide 

each section are given helow. 
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7.2.1.1 Introduction 

This section gives the purpose and the organization of the document. 

7.2.1.2 Changes 

Both Anticipated Changes (ACs) and Unlikely Changes (UCs) are documented 

as lists with numbers and names. The prefixes are shown in Figure 7.1. 

Examples of both changes for FFEMP are given below. ACl and AClO 

are anticipated changes related to evolving the whole program family. ACl is 

usually implemented by the operating system and the programming language 

for implementing the program family. Other changes are implemented by 

FFEMP. AC18 is an anticipated change related to different members of the 

program family. UCs are usually related to goals and assumptions developed 

in the domain requirement engineering stage, except for ones related to the 

hardware, such as l:Cl. The relationship is explicitly given in the parentheses 

that follow the UC's name so that the change can easily to identified. 

ACl (AC_File): The data structure and algorithms for implementing the 

interface between files and the operating system 

AClO (AC.-Node): The data structure of a node 

AC18 (AC.-NumNode): The number of nodes for an element 

UCl (UC_Input): The input devices are File and Keyboard. 

UC3 (UC_Displa,cement): Given the computational domain, the material 
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properties and the boundary conditions, FFEMP can solve for the dis­

placement of any point in the domain. (FG_Displacement) 

UC4 (UC_Newton): The physics for the problems are in the field of New­

ton's classical mechanics. (CTA_Newton) 

UC16 (UC__Diff): The displacement anywhere in an clement can be inter­

polated in terms of displacements at the nodes of the element. That is 

u = Na, where the shape function N is differentiable. (CCA.J)iff) 

Anticipated and unlikely changes can be reused. For example, AC1 

and the modules to hide AC1, which is a module that is not implemented by 

FFEMP, are likely the same for many programs. AC10 and the corresponding 

module to hide AClO are likely the same for many FEM programs. UC1 can 

be reused by many programs. UC3 can be reused by solid mechanics program. 

UC16 can be reused by FEM programs. 

7.2.1.3 Module Hierarchy 

This section provides an overview of the module design. Modules are in a 

hierarchy decomposed by secrets. The modules that are leaves in the hierarchy 

tree are the modules that will actually be implemented. The module hierarchy 

for FFEMP has been shown in Figure 3.1. 

The module decomposition is performed and documented according to 

Parnas et al. (1984). The highest level of abstraction of the decomposition in­

cludes three modules: Hardware-Hiding Module, Behavior-Hiding Module and 

Software Decision Module. The leaf modules for Hardware-Hiding I\Iodnle are 
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commonly used modules and are already implemented by the Operating Sys­

tem where the members of program family are executed and the programming 

language used to implement the program family. The remaining leaf modules 

are implemented by the program family. 

7.2.1.4 Module Decomposition 

Modules are decomposed according to the principle of "information hiding" 

(Parnas, 1972). A name is given for each leaf module. In addition, a label 

is assigned for each module for a short identifying phrase. There are three 

other fields for each module. The Secrets field in a module decomposition is 

a brief statement of the design decision hidden by the module. The Services 

field specifies what the module will do without documenting how to do it. 

For each module, a suggestion for the implementing software is given under 

the Implemented By title. If the entry is OS, this means that the module 

is provided by the operating system or by standard programming language 

libraries. Only leaf modules in the hierarchy have to be implemented. If a 

dash ( -) is shown, this means that the module is not a leaf and will not have 

to be implemented. Whether or not this module is implemented depends on 

the programming language selected. The "implementation" in this section 

means the implementation in the application implementation stage. 

An example module for FFEMP is shown below. This is a leaf module 

that hides AClO, as discussed in Section 7.2.1.2. It is implemented by FFEMP. 

Node Module (M_Node) 
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Secrets: The data structure of a node 

Services: Defining the data structures and providing the operations for nodes. 

Implemented By: FFEMP 

7.2.1.5 Use Relation 

The use relation for modules in a program family is presented in a graph. The 

use relation for FFEMP is shown in Figure 7.11. The use relation can improve 

the reusability and maintainability. When a module, say M_Node, needs to 

change, one can identifies that the modules M_Elm, M_BElm and M_FEM 

needs to change since they use the module M_Node. This change refers to the 

change of the secrets and services (interface) of the module, not to internal 

implementation decision. 

7.2.1.6 Traceability Matrix 

The traceability matrix between anticipated changes and modules is given in 

this section. The traceability matrix for FFEMP is partially shown in Table 

7.12. This table clearly shows that FFEMP is well designed since all mod­

ules have a one to one association with ACs except M_Const and M_FEM. 

M_Const provides constants associated with variable requirements. Although 

the calculation of the constants is complicated, the results are simple. Hence, 

it is maintainable to put these constant together. M_FEM not only provides 

algorithms associating with the global data structure mesh, it provides opera­

tions associating with both the global data structure and local data structure, 
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AC_Vector ./ 
AC.Matrix ./ 
AC_SMatrix ./ 
AC..Node ./ 
ACJntPoint ./ 
AC..Elm ./ 
AC.BElm ./ 
AC_Mesh ./ 
AGLSolver ./ 
AC..ElmShape ./ 
AC..NumNode ./ 
ACJntMethod ./ 
AC..Numipts ./ 
AC_StressS ./ 
AC.BtrainS ./ 
AC..NumBNode ./ 
AC.BintMethod ./ 
AC..NumBipts ./ 
AC_Stress ./ 
AC_Strain ./ 

Table 7.12: Traceability Matrix Between Changes and Modules 
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which includes elements and nodes, as well. The complication of relations with 

other modules deserves a separated module, even though there is no associ­

ated ACs. In addition, two anticipated changes, AC_Stress and AC_Strain, do 

not associate with any module since the changes do not impact the module 

decomposition. However, they will affect the interfaces of the module M_Elm, 

as shown in the Reference Module Interface Specification for FFEMP (Yu, 

2010e). 
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7.2.2 Reference Module Interface Specification 

The Reference Module Interface Specification (RMIS) gives the detailed design 

of the program family. The interface of a module includes the syntax and 

semantics of access programs in the module. The template for RMIS is shown 

in Figure 7.12. This temple is adopted from Yu (2007). One difference is the 

use of environment variables, which are used to specify the interaction between 

the developed system and the environment, such as input and output devices. 

Another difference is the variabilities, which are not applicable for a single 

program, that may impact the interface of the module. 

1 Introduction 
2 Module Hierarchy 
3 Module Interfaces 

3.1 Uses 
3.1.1 Imported Constants 
3.1.2 Imported Data Types 
3.1.3 ImportedAccess Programs 

3.2 Interface Syntax 
3.2.1 Exported Constants 
3.2.2 Exported Data Types 
3.2.3 Exported Access Programs 

3.3 Interface Semantics 
3.3.1 Environment Variables 
3.3.2 State Variables 
3.3.3 Assumptions 
3.3.4 Invariants 
3.3.5 Access Program Semantics 
3.3.6 Local Constants 
3.3. 7 Local Data Types 
3.3.8 Local Functions 
3.3.9 Considerations 

3.4 Variabilities 

Figure 7.12: The Template for Documenting RMIS 

156 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

7.2.2.1 Introduction 

This section gives the purpose and the organization of the document. 

7.2.2.2 Module Hierarchy 

Since RMIS is the detailed specification for the design documented in RMG, 

the module hierarchy, which is the key of the design, is redisplayed in this 

section. 

7.2.2.3 Module Interfaces 

Interfaces for all leaf modules are documented in this section. There are several 

subsections. When the interface of the module cannot be determined due to 

the nontermination of the variabilities, information on how to determine the 

interfaces of a specific family member should be given in the corresponding 

subsections. An example of how variabilities can impact the interfaces has 

been given in Section 3.1.2.1. 

Uses This sections lists constants, data types and access programs that are 

used to specify the interface of this module, but are defined outside of this 

module. The format of each imported item is specified as 

Uses (module name ) Imports ( resource) 

where the resource includes constants, data types and access programs. 

Interface Syntax This section defines the syntax of the module interface. 

The interface indicates the services that the module provides. Other modules 
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can only access this module through this interface. The other information 

inside the module is the secret that it hides from other modules. Changing 

this internal information will not affect the way that other modules use this 

module. The format of documenting the interface syntax and the interface 

semantic, which will be presented next, is inspired by Hoffman et al. (1995), 

Yu (2007) and Smith and Yu (2009). The Interface Syntax section includes 

the exported constants, exported data types, and exported access programs. 

Each access program has a name, input list, output list, and exceptions. 

The exported access programs are listed in a table. Some exported 

access programs in element module (M_Elm) for FFEMP is shown in Table 

7.13. 

Routine Name Input Output Exceptions 
get Node N NodeT OutOfBound 
setNode N, NodeT OutOfBound 

IdenticalN odes 
calConst MatrixT 
calStiff CoordT VectorT 
calKine CoordT MatrixT 
cal Stiff MatrixT 

calStress CoordT, VectorT VectorT 

Table 7.13: Some Exported Access Programs for M..Elm 

Interface Semantics This section gives the semantics associated with the 

syntax specified in the Interface Syntax section. There are several subsections. 

The Environment Variables give the environment variables that this module 

may change. Since the modules can be treated as a finite state machine (Hoff­

man et al., 1995), the state variables for the machine should be given in the 
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State Variables section. The Assumption section presents any assumptions 

that keep the state machine working properly. The Invariants section lists all 

predicates that should be held for the module. 

The Access Program Semantics gives the semantics for all access rou­

tines. The semantics should be specified as formally as possible to avoid any 

ambiguity. The semantics of each access routines is specified by the followings: 

• Description 

Describes the access routine in natural language. 

• Exception 

Gives exceptions raised by the access routine if applicable. 

• Output or Transition 

It is not recommended that an access routine returning an output and 

changing the state or environment variables at the same time. Hence, 

this two items do not appear in the semantics for the same module. 

Output gives the return value of the access routine, which is a function. 

Transition presents how state variables or environment variables change. 

• Related Variabilities 

Gives the variabilities that impact the semantics of the access program 

and the instruction on how to simplify the semantics, or how to make 

the the semantics concrete, according to the determined values of the 

variabili tics. 

The Local Constants, Local Data Types and Local Functions sections 

document any constants, data type and functions that are used to express 
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semantics of the access routines to simplify the presentation of the semantics. 

The Considerations section documents any other issues related to this module, 

but not applicable to other sections. 

The interface semantics for access program calKine in the module M_Elm 

for FFEMP is partially displayed in Figure 7.13, where shapemat and ldopt 

are two local functions. The function shapemat (CoordT ---+ MatrixT) re-

( outkine: MatrixT)calKine( inlcoord: CoordT) 

• Description 
Return the kinematics matrix, which is a derivative of 
the matrix format of the shape function. 

• Output 
outkine : = ( ldopt ( shapemat)) ( inlcoord) 

Figure 7.13: The Semantics of calKine in M_Elm Module 

turns a matrix format of the evaluated shape function and ldopt ( ( CoordT ---+ 

MatrixT) ---+ ( CoordT ---+ MatrixT)) is a linear differentiation operator that 

takes a function returning a matrix as input and returns a function returning 

a matrix. The semantics of the function ldopt is not determined due to the 

variabilities FVRBtressS and FVR_StrainS as Table 7.14 shows in the next 

section. The detailed semantics for both local functions can be found in the 

RMIS for FFEMP (Yu, 2010e). 

Another example interface semantics, which is for the access routine 

calConst, is below. 

( outconst: MatrixT)calConst() 
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• Description 

Return the constitutive matrix, which gives the relationship between 

stress u and the strain e. If the material is linearly elastic, then the 

constitutive matrix is a constant. 

• Output 

outconst, such that u = outconst.mulv(e) 

• Related Variabilities 

The semantics of this function depends on FVR.BtressS and FVR_StrainS. 

For a general 3D case: (E = mat.e 1\ v = mat.nu) 1\ 

( (FRV _StressS = (F, F, F, F, F, F) 1\ FRV __8trainS = (F, F, F, F, F, F)) 

===> outconst : = D 

where D is defined as Equation 3.2. 

The steps to simplify the outconst is given below, where u' and e' rep­

resent the stress and strain for a 3D domain. 

1. reduce the size of outconst to be the number of Ts in the values of 

FVR__8tressS and FVR-StrainS. 

2. simplify stress u' and strain e' by following: 

{Vi : N){O ~ i < 6)(FVR_StressS(i] =T===> o-'[i] = 0) 

{Vi: N)(O ~ i < 6)(FVR_StrainS(i] =T~ t:'(i] = 0) 

3. obtain stress u and strain e by removing corresponding entries of 

u'(i] and e'(i] if u'[i] = 0 or e'[i] = 0 
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4. obtain the constitutive matrix outconst, such that 

u = outconst.mulv(e) 

Variabilities The Variabilities section lists all variabilities that change the 

interface of the module. In addition, the access programs that each variability 

changes are also given. The Variabilities section in M_Elm module is shown 

in Figure 7.14. There are 7 variabilities impacting 6 exported routines and 1 

local function of M_Elm module. 
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FVR_ElmShape 
This variability changes the semantics of the exported routine 
getNLCoord. 

FVR_NumNode 
This variability changes the semantics of the exported routine 
getNLCoord. 

FVRJntMethod 
This variability changes the existence of the exported routine 
callpts. If FVRJntMethod = GAUSSQ, then callpts is 
included in the module. Otherwise, if FVRJntMethod 
DIR, then callpts is not included in the module. 

FVR_StressS 
This variability changes the detailed expression of the ex­
ported routine calConst. It also change the semantics of 
exported routine calShape and the local function ldopt. 

FVR_StrainS 
This variability changes the detailed expression of the ex­
ported routine calConst. It also change the semantics of 
exported routine calShape and the local function ldopt. 

FVR_Stress 
This variability changes the existence of the exported routine 
calStress. If FVR_Stress = T, then calStress is included in 
the module. Otherwise, if FVRBtress = F, then calStress is 
not included in the module. 

FVR_Strain 
This variability changes the existence of the exported routine 
calStrain. If FVR_Strain = T, then calStrain is included in 
the module. Otherwise, if FVR_Strain = F, then calStrain 
is not included in the module. 

Figure 7.14: The Variabilities for M_Elm Module 
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7.3 Traceability Matrix 

The traceability matrix between common and variable requirements and mod-

ules that are implemented by the program family should be given. As an 

example, the traceability matrix for FFEMP is illustrated in Table 7.14 and 

7.15. For displace purpose, the matrix is separated into two tables. In this 

1j - .es ~ i 0 1-< .es 1-< ..... 
+" 1-< +" 0 1i3 Cl.) 0 13 ,..t:l 0 ~ l§ 1-< ::;E :::! 1j t) 1i3 "0 p_, 13 00 0 

]; 0 0 
~ 

::;E 0 ~ ~ Cl) ~ r:J'J 
0 0 0 ~ Cf1 2J ...., li1 01 ~ ~ ~ I I I I 

::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E ::;E 

FCRJJisplace .{ .{ .{ .{ .{ .{ .{ .{ .{ .{ .{ .{ .{ .{ 

Table 7.14: Traceability Matrix Between Requirements and Modules (I) 

example, Only functional requirements are listed in the first column. Non­

functional requirements do not contribute to the design of FFEMP. The first 

row lists all modules that are implemented in FFEMP. 

A check mark in a cell means that the corresponding module of the 

column should change if the corresponding requirements of the row changes. 

Table 7.14 shows that if functional common requirement FCRJJisplace, which 

is the requirement to calculate the displacement using F = Ka, changes, then 

all modules may change. For example, if the technique for solving the theo­

retical module were changed from the Finite Element Method (FEM) to us­

ing closed formed solutions (DM), modules related to FEM, which include 

M__Node, MJntPoint, M_Elm, M_BElm, M_Mesh, M_FEM and M_LSolver 

would change. This means that FCR_Displace is the basis of other require­

ments. The change in this context refers to the change of the syntax of the 
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...... 

~ 
::I ...... ..@ 0.. 00 ...... § ..@ 0.. ::I ~ 
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~ ~ ~ ~ ~ 
FCRBameElmShape .{ 

FCR-SameNodeNum .{ 

FCR-SameBElmShape .{ 

FCRBameBNodeNum .{ 

FCR-Filelnput .{ 

FCR-FileOutput .{ 

FVR_Shape .{ 

FVR_NumNode .{ 

FVRJntMethod .{ .{ 

FVR_N umlpts .{ 

FVR-StressS .{ 

FVR_StrainS .{ 

FVR_N umBNode .{ 

FVR_BintMethod .{ ./ 
FVR_N umBipts .{ 

FVR.Stress .{ ./ 
FVR.Strain .{ ./ 

Table 7.15: Traceability Matrix Between Requirements and Modules (II) 
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module. 

On the other hand, Table 7.15 shows that except for FCR_Displace, 

each of functional variable requirements other than FCR_Displace only relates 

to one module. Table 7.15 also shows that the change of functional variable 

requirement, which occurs frequently, only relates to three modules, M_Const, 

M__Elm and M_BElm. In addition, the type of changes in M_Elm and M_BElm 

is the existence of some access routine. This means that FFEMP is well 

designed to hide changes, which include changes related to evolving the whole 

program family and changes related to variabilities. 
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Chapter 8 

Conclusions 

Accuracy, precision and efficiency are important for Scientific Computing (SC) 

software. Other software quality factors, such as reusability, maintainability, 

usability and reliability, which are discussed in Chapter 1, also contribute 

to software quality. However, these quality factors are often neglected by 

developers of SC software, including professional end user developers, who are 

scientists developing and using SC software to check their theories. 

Improved reusability and maintainability can reduce the end users' time 

to develop software, so that they can concentrate on their research. Usability 

not only can reduce their time for using a program, but it can also increase 

the chance for the end users to use the existing programs. Reliability is also 

important, especially for some theories that are represented by models that 

cannot be verified without the use of a computer. It is hard to prove the 

correctness of theories with an unreliable program. 

This work is dedicated to improve the above software quality factors for 
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SC software since there is room for improving these quality factors, as discussed 

in Chapter 1. How to adapt existing software engineering methodologies to 

address the characteristics of end user developers and the characteristics of 

scientific problems is illustrated. A proof of concept program family, FFEMP, 

which can solve elasticity problems in solid mechanics using the Finite Element 

Method (FEM), is developed to show how the proposed methodology can be 

used. 

In this final chapter of the thesis, the major contributions are first 

summarized in Section 8.1. This is followed by suggested future work in Section 

8.2. 

8.1 Contributions 

In this research, a new methodology, Family Approach for developing Scientific 

Computing Software (FASCS), is proposed. The family approach, which can 

improve the reusability, maintainability, usability and reliability, is not new 

for software development. However, it is the first time in the SC software de­

velopment community, where all stages in both domain engineering phase and 

application engineering phase are included. The completeness of the proposed 

methodology is important for end user developers since they often have little 

software engineering knowledge. 

In addition to the breath, the depth of the family approach for de­

veloping SC software is explored. Some new aspects are added to FASCS to 

distinguish it from other existing family approach methodologies as follows: 
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• FASCS uses a new methodology, Goal Oriented Commonality Analysis 

to elicit, analysis and document common and variable requirements. 

• An environment for developing members of a program family, named 

the Family Member Development Environment (FMDE), is systemat­

ically divided into sub-environments and proper names are assigned. 

An FMDE includes a Domain Model (DM), a Variable Code Genera­

tor (VCG), a Test Case Generator (TCG), a Family Member Assembler 

(FMA) and a Family Member Generation Process (FMGP). 

• A new test technique, named Computational Variability Test (CVT), is 

proposed. CVT is a technique to test the common portion of routines 

that may vary for some members of the program family. It can also be 

used for the integration test of a program family in the domain engineer­

ing phase. This test technique addresses the unknown solution challenge. 

T.Q.at is, knowledge of the true solutions is not required for using CVT. 

• Documentation is emphasized by FASCS. New templates of documents 

for the domaiu requirement engineering stage, including Common and 

Variable Requirement Specification, Theoretical Model Specification and 

Computational Model Specification, and for the domain design stage, in­

cluding Reference Module Guide and Reference Module Interface Speci­

fication, are pr,)posed. 

The details of the above major contributions on the improvement of 

software quality factors are summarized in the rest of this section. Other 

minor ones are mentioned in previous chapters when the FASCS is specified 
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and are not summarized in this chapter. The challenges mentioned in Section 

2.2.1 are also addressed. 

8.1.1 Goal Oriented Commonality Analysis 

Goal Oriented Commonality Analysis (GOCA) improves reusability, maintain­

ability and reliability. It also addresses the technique selection challenge and 

modification challenge. 

• GOCA proposes two layers of modeling, including the theoretical model 

and the computational model, to resolve the conflict between the con­

tinuous mathematical models that represent the underlying theories of 

SC problems and the discrete nature of a computer. This conflict, which 

occurs often in SC software, has apparently not been emphasized in 

other software development methodologies. The separation of theoreti­

cal model and computational model also improves reusability since the 

theoretical model can be completely reused by programs that solve the 

same problems, but use different numerical techniques. 

• Nonfunctional related artifacts, such as nonfunctional goal and non­

functional requirements, are difficult to quantify. A decision making 

technique, the Analytic Heuristic Process (AHP) (Saaty, 1980, 2008), 

is adapted to rank nonfunctional goals and select the appropriate tech­

nique to solve the theoretical model. AHP can also be used to rank 

nonfunctional requirements to select computation related algorithms or 

packages. This address the technique selection challenge. 
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• Assumptions applied to the refinement from goals to a theoretical model 

and the refinement from a theoretical model to a computational model 

are explicitly given by using GOCA. This can improve reusability and 

maintainability, since changes of models can be traced to the changes of 

the assumptions. These assumptions serve as the key to systematically 

managing the changes of models and requirements. Since the assump­

tions are the major source of the modification for programs used to 

check theories under development, explicitly specifying the assumptions 

addresses the modification challenge. 

• Models are usually represented by mathematical equations. Terminology 

to specify the models, as well as common and variable requirements, are 

defined and documented formally to avoid ambiguity that may reduce 

the reliability. 

• The different levels of abstractions for terminology, which is based on the 

classification Qj~ common and variable assumptions, defines different lev­

els of the theoretical model and computational model. The common as­

sumptions improve reusability, since the terminology and models that are 

defined under common assumptions are abstract and can be completely 

reused by a relatively large set of programs. The variable assumptions 

also improve reusability, since by choosing different values of a variable 

assumption, not only the terminology definitions and models can be com­

pletely reused, the whole program family, including the requirements, 

the design, the code and the test cases, can be reused with some mi-
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nor changes. For example,the variable assumption VTA_MultiMaterial 

(VTA4), which is listed in Table 7.7, gives developers freedom to choose 

whether the program family can handle the computational domain with 

multiple materials. If VTA4 changes, only the element module M__Elm, 

the constant module M_Const and the input module M_Input need to 

change. Other part of the program family stays the same. 

8.1.2 Family Member Development Environment 

This thesis gives explicit instructions on how to develop a Family Member De­

velopment Environment (FMDE) for SC program families. The use of FMDE 

improves reusability and reliability and addresses the modification challenge, 

input output challenge and unknown solution challenge. 

• FMDE can be used to automatically generate a specific member of a 

program family to improve reusability. The automation of the genera­

tion addresses the characteristic of end user developers of SC software 

who usually do not have much software engineering knowledge. It also 

addresses the characteristic of SC problems that the generation of vari­

able code requires a large amount of computation. In addition, the au­

tomation allows end user developers to quickly generate specific family 

members, which addresses the modification challenge. 

• ADM defines a Domain Specific Language (DSL) for the program family. 

Writing a program in the DSL, which is the input to VCG, TCG and 

FMA is much easier than writing the variable part of the code and the 
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test cases. Hence, the FMDE improves reusability. 

• Testing SC program families are rarely mentioned in developing SC pro­

gram family literature. Test cases for SC program families have ap­

parently never been automatically generated. Systematic testing can 

improve reliability. The new TCG can automatically generate the vari­

able part of some benchmark test cases. The automation addresses the 

input output challenge since complicated input data can be automati­

cally generated. The automation also make the use of the Computational 

Variability Test (CVT) to test a program family feasible. CVT addresses 

the unknown solution challenge since no true solutions are required for 

using CVT. 

8.1.3 Documentation 

Documentation is emphasized in FASCS, which can improve reusability, main­

tainability and usability. The input output challenge and the modification 

challenge are also addressed. Although documentation does not directly ad­

dress the approximation challenge, it provide facilities, such as formal defi­

nitions of terminolOf,'Y and explicit assumptions for models, to perform error 

analysis. 

• The theoretical model and computational model are documented sepa­

rately to improve reusability. 

• In addition to the assumptions, which may change and impact models 

and requiremer:ts as discussed above, changes that effect the modular 

173 



PhD Thesis- Wen Yu- McMaster- Computing and Software 

design of the program family are explicitly documented. The modular 

design can improve reusability and maintainability, since understand­

ability is improved. The ability to trace current and potential changes 

can also improve reusability and maintainability. 

• A graphic notation for functional variable requirements of the program 

family is included. This notation improves reusability and maintain­

ability since it improves the understandability. The idea of the graphic 

notation is not new for developing program families. However, a new no­

tation that addresses the input output challenge is added to the graph. 

The new notation makes the representation of excessive input data con­

cise. 

• The instruction on how to develop module interfaces that vary for some 

family members is explicitly given in the RMIS. This can help application 

engineers with quickly developing module interfaces for a specific family 

member, which in turn improves reusability. The modification challenge 

is thus addressed. 

• Traceability matrices can improve reusability and maintainability. The 

traceability matrices in FFEMP include: 

- traceability matrices for the domain requirement engineering stage, 

which include goals, terminology definitions, assumptions, models, 

and requirements 

- traceability matrices for the domain design stage, which include 

changes, variable requirements and modules. 
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- traceability matrices between requirements, modules, code and test 

cases 

8.2 Future Works 

The results of current work encourages further research in the field of using a 

family approach to develop SC software. The suggested investigations needed 

to evaluate the effectiveness of our work are as follows: 

• Improve FFEMP. 

- Although the requirements and design for the current version of 

FFEMP include 3D, the implementation and testing is only for 

2D. The ~:D implementation and testing can be conducted to make 

FFEMP more practical. 

- More variabilities can be added to facilitate solving a larger set of 

problems, such as solving plasticity problems. 

• Develop more program families in other domains, such as for financial 

applications, which may have different theoretical models and computa­

tional models, as case studies to provide more feedbacks for the further 

improvement of FASCS. 

• Establish a metj1odology for testing nonfunctional requirements and per­

form tests on reusability, maintainability, usability and reliability of ex­

ample program families developed using FASCS. Compare these tests 
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with tests for similar single programs and obtain the quantitative data 

on the improvement of using FASCS. 

• Extend GOCA so that the computational model does not depend on 

the theoretical model. Hence, the computational model is more abstract 

and more reusable. For example, instead of solving the theoretical model 

using Finite Element Method (FEM), the computational model can be 

design to solving general Partial Differential Equations using FEM. In 

this case, the computational model is more reusable. 

• Increase the use of tools to support the automation. For example, tools 

can be adopted to automatically generate documents for a specific family 

member. 

• Explore the use of Computational Variability Test (CVT). Changing 

computational variabilities can be used in a manner analogous to grid 

refinement studies. In grid refinement a series of increasing dense grids 

is compared to determine whether the solution is converging. In some 

cases a theoretical convergence rate is available that can be compared 

with the actual convergence rate as an additional check, as described 

in Roache (1998). Increasing the the order of interpolation of the finite 

elements can be used in the same way. 
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Appendix A 

Shape Function Computation 

This Appendix presents how a shape function and its derivatives for the pro­
gram family FFEMP are computed. Some notations are given before the 
presentation. 

Let n represent the number of node per element and m represent the 
number of DOFs. Lets be a local coordinate and N = [N1(s) N2(s) · · · Nn(s)] 
represent the shape function, where each entry in N is a function of s and 
s may have more than one component. For example, if the computational 
domain is 2D, then s is represented by ( se, s.,) and the directions of ~ and 

~ are orthogonal. Let d = [: ] represent the values of the some type 

of DOFs, such as the displacement in the x direction, for the nodes of an 
element. Let ds repr·3sent the type of DOF that is the same as d for the point 
with coordinate s. 

According to the definition in the Reference Module Interface Specifi­
cation (RMIS) (Yu, 2010e), the Equation A.l holds. 

ds=Nd (A.l) 

In practice, the shape function is often approximate by a function de­
fined in Equation A.2, where si represents the local coordinate for node i. 

N: {1, if i = j 
i(si) = 0, if i =J: j (A.2) 

Many types CJf functions, such as Lagrange functions, can be used. 
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Polynomials are used as an illustration. That is, each entry of the shape 
function is represent by a polynomial. The degree of polynomial depends on 
the number of nodes per element and the type of the element. For example, 
some polynomials for 2D shape functions can be represents by Pascal triangles 
(Hughes, 2000) as shown in Figure A.1, A.2 and A.3 and the corresponding 
types of elements are shown in Figure A.4, A.5 and A.6, respectively. 

1 
~ 'fJ 

~2 ~'fJ 'f/2 

e e'fJ ~'f/2 'f/3 

e'fJ e'f/2 ~'f/3 
~m e'f/2 e'f/3 rr 

em'fJ e'f/3 ~'f/m 
~m'f/2 e'f/m 

~m'f/3 e'f/m 

~m'f/m 

Figure A.1: Pascal Triangle for Lagrange Quadrilaterals (Hughes, 2000) 

1 

~ 'fJ 
e ~'fJ 'f/2 

e ~'f/2 'f/3 

e'fJ erJ3 

em 'f/m 
~m'fJ ~'f/m 

Figure A.2: Pascal Triangle for Serendipity Quadrilaterals (Hughes, 2000) 

For illustration purpose, take the computation of lD shape function as 
an example. For 1D, the degree of the polynomial is n- 1. Let Cii represent 
the the coefficient of si for the Ni, then 

Ni(s) = CiQ + Ci] * s + ... + Ci(n-1) * sn-l (A.3) 
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Figure A.3: Pascal 'Ifiangle for Lagrange 'Ifiangles (Hughes, 2000) 
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Figure A.4: Lagrange Quadrilateral 
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Figure A.5: Serendipity Quadrilateral 
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Figure A.6: Lagrange 'Ifiangle 
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Combining Equation A.3 and Equation A.2 we can get a system of n 
linear equations with n unknown coefficients, as shown in Equation A.4. 

CiQ + St *Cit+···+ (stt-l * Ci(n-t) = 0 (A.4a) 

(A.4b) 

Cio + Sn *Cit+···+ (sn)n-t * Ci(n-1) = 0 (A.4c) 

Written in matrix format, Equation A.4 becomes Equation A.5, where 

(si)n-t and ei is the i-th column of identity matrix. 

(A.5) 

The calculated coefficients for Ni ( s) are stored in the vector ci = 
[ 

Cio l Cit 

Ci(~-t) . 

To obtain the shape function N, we need to solve n such systems of 
equations. That is, we need to solve Equation A.6, where I is the identity 
matrix. 

SC=I (A.6) 

The matrix C = [c1 en] stores all coefficients of the shape function N. 
Since the Variable Code Generator (VCG) for FFEMP is implemented 

in Matlab (Mathwork, Last Access 2010), the derivatives can be computed 
by the symbolic computation tool box in Matlab. It also can be computed 
numerically by the Chain Rule, which will not be further discussed in this ap­
pendix. The VCG for FFEMP computes the derivatives numerically to check 
the possibility of numerically computing the derivatives of shape functions for 
simple type of clement. It could be changed to using symbolic computation. 
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