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Abstract 
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Doctor of Philosophy 
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2011 

What information is used by the visual system to detect patterns? A standard model 

hypothesizes that both spatial frequency and orientation information are processed by 

independent channels, meaning there is no summation among channels. Despite consen

sus among researchers on how the visual system sums spatial frequency and orientation 

information there are data in the literature (Kersten, 1987) that ostensibly contradict the 

standard model. To resolve this conflict, we measured the efficiency of spatial frequency 

and orientation of filtered noise. To learn what information the visual system uses when 

detecting filtered noise, we applied a technique that can determine the information used 

to detect and discriminate filtered visual noise. In Chapter 2 the detection of spatial 

frequency filtered noise is not only efficient but remains so with stimulus uncertainty and 

extremely brief (lOms) stimulus duration. When the spatial frequency channel used was 

measured, we found a fixed bandwidth channel as the spatial frequency of the pattern 

was increased. To test the standard model, we implemented simulations of the standard 

model and contrary to the interpretation, the standard model could predict detection of 

spatial frequency filtered noise. Chapter 3 used spatial frequency filtered noise to relate 

the detection and discrimination of filtered visual noise. A simple rule relates what infor

mation observers use to detect and discriminate spatial frequency filtered noise. Chapter 

4 extends the work of Chapter 2 to orientation information and found that orientation 

filtered noise is detected efficiently. We again measured what information observers used 

and found that, unlike SF filtered noise, observers use orientation in a flexible or ad

justable manner. 
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Chapter 1 

Introduction 

Background 

Beginning in the 1950s and 1960s vision researchers turned to techniques adapted 

from engineering and communication theory [4, 22] to investigate the visual system [23, 

24, 39, 41, 45]. The first attempts at characterizing the visual system tended to use 

models that characterized the visual system as a single channel. 1 Barlow [5] provides an 

excellent summary of the transformative effect that information/ communication theory 

has had on psychology, both behavioral and physiological. 

Schade [41] measured contrast sensitivity functions (CSFs) by asking observers to 

detect gratings that varied in contrast. Schade interpreted his results as support for 

the idea that the visual system is well-described by a single channel that passes visual 

information to later stages of the visual system. Measurements of the CSF however, are 

not definitive evidence that the operation of the visual system is best described by a 

single-channel model [48], but merely that the hypothesis is reasonable. 

An alternative to the single-channel model hypothesis is that visual stimuli are en

coded by an array of multiple independent channels [9, 20]. A key development in the 

1The channel concept originated in information/communication theory [43]. When a sender and 
receiver attempt to communicate there must be a medium to transmit the signal. A channel may be 
(but is not limited to being) a band of radio frequencies, a beam of light, the synapse, or a set neurons 
wired together. Attneave [2] introduced several important theoretical concepts, including channels, from 
information/ communication theory into Psychology. 

1 



2 INTRODUCTION 

investigation into the multiple channel hypothesis was the application of Fourier Anal

ysis to the ability of human observers to detect and discriminate sinusoidal gratings 

[9]. Debate surrounded the development of the details of multiple-channel models [29]. 

However, the standard model is one in which the model channels are tuned to relatively 

narrow ranges of spatial frequency and orientation [14, 17, 48, 50, 51, 52]. The impor

tant distinction between single-channel and multiple-channel models is not that the two 

models contain a different number of channels, but that the channels in the multiple

channel model are, at least in some circumstances, approximately independent. In a 

multiple-channel model with strict channel independence the activation of one channel 

does not influence the activation in any of the other channels in the ensemble. When 

viewed through the lens of channel independence, the difference between single- and 

multiple-channel models becomes a continuum rather than a categorical distinction. A 

strict single-channel model is equivalent to a multiple-channel model where the channels 

completely lack independence; the channels act together and are indistinguishable. 

Evidence supporting the idea of channel independence has been obtained from adap

tation [7, 35, 42], masking [8, 30, 38, 53], detection/discrimination double-judgement 

[28, 49], and summation experiments [18, 19, 20, 40]. Of the four lines of evidence, the 

experiments on spatial frequency and orientation summation form an important back

ground and experimental motivation for the work described in this thesis. Therefore, a 

brief description of two types of summation experiments will be provided in the remainder 

of this section. 

In a typical spatial frequency summation experiment, contrast detection thresholds 

are measured for two component sinusoidal gratings of frequency F and nF (n ~ 0) 

and a compound waveform consisting of the sum of the two sine wave gratings (F + 
nF). Summation is said to occur if the detection threshold for the compound is lower 

than threshold for either component. One form of summation, probability summation, 

has been defined by [20] as the expected improvement in detection threshold that results 

from the system having two independent detectors that each have an opportunity to 

detect the compound. When the spatial frequency of two gratings exceeds a difference of 

1-2 octaves, as those shown in the example stimuli of Figure 1.1, probability summation 

is found. Summation exceeding what would be expected on the basis of probability 

summation has been found only when the spatial frequencies contained in the compound 

grating do not differ by more than 1-2 octaves [18, 19, 20, 40]. Consequently, the results 

of summation experiments are consistent with the idea that spatial frequencies that differ 

by 1-2 octaves are detected by independent mechanisms. 
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Figure 1.1: Three example stimuli for a spatial frequency summation experiment. Two 
stimuli are component gratings, one of frequency f and its· third harmonic. The bottom 
stimulus the compound of the two components f + 3f. 



4 INTRODUCTION 

Analogous experiments have been. conducted to support the idea that the visual sy&

tem contains multiple, independent orientation channels [30, 46]. Sinusoidal gratings, 

such as those shown in Figure 1.1, have been used in orientation summation experiments 

[10]. In an orientation summation experiment, the frequency of the stimulus is kept con

stant and the orientation of the gratings is manipulated. The logic of the experiment is 

the same: contrast detection thresholds are measured for two component gratings of ori

entations () and () ± 8. The variable 8 represents the difference in orientation between the 

two gratings. If 8 = 0 the gratings have the same orientation and if 8 = 90 the gratings 

are orthogonal. A compound grating that is the sum of the two stimulus components is 

created and the threshold for the compound grating is measured. Typically, significant 

summation has been found only when the orientations of the two components are within 

15-20° [20], suggesting that orientations separated by more than 15-20° are detected by 

independent mechanisms. 

Context within Vision Research 

The standard multiple-channel model of detection and discrimination does not exist 

in a vacuum within vision research. Multiple-channel models provide ~he foundation for 

experiments and models in areas of vision outside the sub-field of spatial vision. Issues in 

areas as diverse as letter recognition/reading [31, 36, 44], face recognition [12, 15, 16] and 

attention [3, 11, 13, 32, 47] have been addressed via standard multiple-channel models. 

The many applications of the standard model of spatial vision highlights the importance 

of ensuring the details of the standard model are correct. For example, if the application 

of the standard model to an attention task fails, researchers want to be certain that the 

model fails because it fails to capture an aspect of attentional processing and not because 

a detail of the standard model is incorrect. 

Challenges to the Standard Model of Summation 

Multiple channel models have provided satisfactory explanations of a wide range of 

psychophysical [20, 29, 48] and physiological [14] data. Nevertheless, several challenges 

have been posed to the standard multiple independent channel model. In particular, the 

assumption that channels are independent has been challenged by results from double

judgement [33, 34], masking [37], and adaptation experiments that used grating mixtures 

[26, 27]. These experiments (unlike summation experiments) all used supra-threshold 

patterns, and therefore they do not rule out the possibility that the independence as-
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sumption is valid in detection experiments that use stimuli that (by definition) are barely 

visible. However, there is one detection experiment reported by Kersten [25] that also 

poses a challenge to the standard model. Prior to the work contained in this thesis, the 

challenge posed by Kersten's results had not been addressed in the spatial vision litera

ture. Kersten's experiment provides a key motivation for the experiments conducted in 

this work, therefore, a detailed explanation of how the results from Kersten's experiment 

conflict with the data and interpretation of summation experiments is provided in the 

following section. 

Absolute Efficiency of Noise Detection 

Kersten [25] measured detection thresholds for a stimulus that was presented in a 

background of white noise. The stimulus was itself visual noise that was filtered in a 

manner in which the number of spatial frequency components contained within the noise . . 

could be varied and examples of this stimulus are shown in Figure 1.3. This method, 

unlike previous summation experiments, allowed the number of spatial frequency compo

~ents in the stimulus to be altered via a single par~meter, spatial frequency bandwidth, 

over a large range. 

Kersten then measured human observers' contrast detection thresholds as a function 

of the spatial frequency bandwidth of the stimulus. Figure 1.2 shows the threshold versus 

bandwidth (Tv B) function for one of Kersten's observers. Detection threshold, expressed 

as root mean squared2 (RMS) contrast, increased with increasing stimulus bandwidth. 

The dashed grey line in Figure 1.2 is Equation 1.1: 

1 
CRMS ex: (BW)4 (1.1) 

which says that RMS detection threshold is proportional to the quarter-root of the spatial 

frequency bandwidth. Equation 1.1, which provides a good fit to the TvB function at all 

but the narrowest bandwidth, corresponds to the pattern of data that would be produced 

by an ideal observer in this task (21, 25]. 

Equation 1.2 and Figure 1.4 show mathematically and schematically how the ideal 

observer for a noise detection task operates. The ideal detector sums the power at each 

2The use of RMS contrast is common in visual psychophysics, particularly when expressing the 
contrast of complex stimuli, and has been found to be the best index of detectability of complex patterns 
such as natural images [ 6]. 
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10~,.--_____ ..,o~.s"--_sw_c .... o_ct_a ... ve ... s_) -:r--5 -----...... 

BW (cy/deq) 

Figure 1.2: Data re~plotted from [25]. · The squares are a human observer's contrast 
detection thresholds. The dashed grey line is a power function with a quarter~root slope 
that was fit to the data. 
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Figure 1.3: Filter noise stimuli similar to those used by [25]. 

frequency (/2
) in the signal bandwidth (BWzow to BWhigh) resulting in the decision 

variable, P8 . The ideal observer is illustrated schematically in Figure 1.4. The ideal 

observer represents the visual stimulus by summing the squared-amplitude, or power, at 

each spatial frequency within the range of frequencies in the target stimulus: 

B Whig h 

Ps = L !2 (1.2) 
BWlow 

The frequency summation portion of the ideal observer, depicted in box A in· Figure 1.4, 

can be described as a single-channel that has a bandwidth that is adjusted to match 

the signal bandwidth. In a two-interval forced choice task, the ideal observer applies the 

summation operation to the stimuli in both intervals , and then selects the interval with 

the greater Ps or signal power (Figure 1.4, box B). The match .between the slope of the 

ideal TvB function and the human TvB data leads to a striking interpretation; human 

observers sum information optimally across spatial frequencies. 

Thus, the ideal observer becomes crucial for interpreting the data in the context of 

previous summation experiments. The difference between the multiple-channel models 

used to explain the data from summation experiments and the ideal detector used to 

explain Kersten's [25] results could not be greater. The multiple-channel model uses sev

eral fixed bandwidth independent channels to explain summation experiments, whereas 

the ideal observer is at the other end of the continuum of summation as it uses a single, 

adjustable channel to sum spatial frequency. 

One final aspect of the TvB functions of human observers lends support to the inter-
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Figure 1.4: A schematic diagram of the ideal observer for a noise detection task. 

pretation that human observers may be summing spatial frequency in a manner similar 

to the ideal detector: absolute efficiency for noise detection is constant for bandwidths 

greater than one octave and surprisingly high compared to many other visual tasks (e.g., 

letter and face recognition [16]). Absolute efficiency is defined as: 

( )

2 
Cideal 

'fJ = Cobserver 
(1.3) 

where Cideal and Cobserver are the thresholds for ideal and real observers in RMS contrast. 

In Kersten's task, the slopes of the TvB curves estimated for real and ideal observers 

were equal. Therefore, absolute efficiency was constant across a wide range of stimulus 

bandwidths. Furthermore, Kersten found that absolute efficiency was quite high (i.e., 

nearly 50% in some conditions). In other words, Kersten's results suggest that human 

observers integrate information across a wide range of spatial frequencies in a manner 

that loses very little information. 

The high efficiency found in this task causes the interpretation of the match between 

ideal TvB function slope and human TvB data to become even more of a problem for 

the standard multiple-channel model. Recall that the standard model assumes channel 

independence when spatial frequencies are widely separated. Stating that two spatial 

frequencies are completely independent is equivalent to stating that efficiency ought to 

be zero; information in the two channels is not summed at all. A strict single channel 

model would predict high efficiency as information is summed across spatial frequency. 

Chapter 2 of this work addresses the challenge just described directly by: replicating 

and extending Kersten's results, varying stimulus uncertainty/ duration and using the 

classification image technique to measure the frequency information used by observers 
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when detecting visual noise [1]. Chapter 3 addresses a curious result of Chapter 2 and 

the channel independence of visual noise centered at 5 and 15 cy / deg using double

judgement procedures (28, 49] and measuring classification images for both detection 

and identification. Chapter 4 extends noise detection methods to orientation summation 

by measuring TvB functions and classification images for orientation filtered noise. 
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Chapter 2 

Spatial frequency summation in 

visual noise 

Abstract 

Kersten (Vision Res, 1987, 27(6), 1029-40) reported that absolute efficiency 

for the detection of static, one-dimensional band-pass noise was high and 

approximately constant for stimulus bandwidths ranging from 1 to 6 octaves. 

This result implies that human observers integrated information efficiently 

across a wide range of spatial frequency. One interpretation of this result -

and similar results obtained with auditory stimuli (Green, DM, J Acoust Soc 

Am, 1960, 32(1), 121-131) - is that human observers, like ideal observers, 

can detect stimuli using an internal filter that has an adjustable bandwidth. 

The current experiments replicate Kersten's findings; extend them to the 

case where observers are uncertain about stimulus bandwidth; and use the 

classification image technique to estimate the filter used to detect noise stimuli 

that differ in bandwidth. Our results suggest that observers do not adjust 

channel bandwidth to match the stimulus, and that detection thresholds are 

consistent with the predictions of a multiple-channel model. 

Introduction 

Models of the initial stages of visual processing typically include a stage in which 

stimuli are encoded by an array of multiple independent filters, or channels, that are 
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tuned to relatively narrow ranges of spatial frequency and orientation [9, 25, 27, 28, 29]. 

Support for multiple-channel models comes (in part) from· spatial frequency summation 

studies. In a typical summation experiment, contrast detection thresholds are measured 

. for two sinusoidal gratings of frequency F and nF, where n is an integer, and a compound 

waveform consisting of the sum of the two sine wave gratings ( F + nF). Summation 

is said to occur if the detection threshold for the compound is lower than threshold for 

either component. Typically, summation exceeding what would be expected on the basis 

of probability summation has been found only when the spatial frequencies contained in 

the compound grating do not differ by more than 1-2 octaves [13, 14, 15]. 

Another approach to investigating spatial frequency summation was described by Ker

sten [20], who measured detection thresholds for static, one-dimensional bandpass noise 

stimuli presented in a background of white noise. The bandwidth of the noise was varied 

across conditions. For bandwidths ranging from approximately 0.5 to 6 octaves, Kersten 

found that detection thresholds, when expressed as root-mean squared (RMS) contrast, 

were proportional to the quarter-root of the stimulus bandwidth. Kersten also calculated 

the performance of an ideal detector that summed contrast power optimally across all 

spatial frequency components in the stimulus. Surprisingly, the ideal detector's thresh

old (expressed as RMS contrast) was only 0.5 units lower than human thresholds and 

was proportional to the quarter-root of stimulus bandwidth. Hence, absolute efficiency, 

defined as 

( )

2 
Cideal 

'17 = Cobserver 
(2.1) 

where Cideal and Cobserver are the ideal and human observer's RMS contrast thresholds, 

was high (~50%) and nearly constant across stimulus bandwidths ranging from 0.5 to 

6 octaves. To explain this result, Kersten [20] speculated that human observers used an 

internal channel, or filter, whose bandwidth could be adjusted to match the bandwidth of 

the noise signal. (A similar model was proposed by Green [17, 18] to account of similar 

findings in experiments with. filtered auditory noise.) An adjustable channel can be 

thought of as a template in the spatial frequency domain which could be constructed by 

combining the outputs of narrow-band channels centered on different spatial frequencies. 

The fact that efficiency was nearly constant across a wide range of bandwidths suggests 

that the process of combining responses across channels is efficient, a conclusion that 

appears to be inconsistent with the results of spatial frequency summation studies using 

sine wave grating stimuli. 

The goal of this paper is to address the apparent inconsistency between the results of 
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summation studies using grating and noise stimuli. Four experiments are described. The 

first replicates and extends the findings of Kersten [20]. The second examines spatial 

frequency summation for very briefly flashed stimuli in conditions where observers are 

uncertain about stimulus bandwidth. The third experiment demonstrates that varying 

the center frequency of visual noise does not affect optimal summation. Finally, the 

fourth experiment uses the response classification technique [3, 10] to estimate the tuning 

characteristics of the internal filters used in this noise detection task. 

2.1 Experiment 1 

2.1.1 Methods 

2 .1.1.1 0 bservers 

The observers were students at McMaster University (21-26 years old). All observers 

were nai:ve with respect to the experimental hypotheses, had normal or corrected-to

normal Snellen acuity, and had previous experience in visual psychophysical tasks. Ob

servers were paid for participating in this experiment. 

2.1.1.2 Apparatus 

A Macintosh G4 running MATLAB and the Psychophysics toolbox [7, 22] was used to 

generate and present the stimuli and collect responses. The stimuli were presented with 

a n Vidia GeForce2 MX card on a Sony GDM-F520 monitor set to a resolution of 1920 

by 1440 pixels. The entire display subtended a visual angle of 10.8 by 8.3 degrees at the 

viewing distance of 2m. The frame rate of the display was 85 Hz and the mean luminance 

45 cd / m2
• The luminance of the display was calibrated using a PhotoResearch PR-650 

photometer. A bit stealing method (24] was used to increase the contrast resolution. 

Head position was stabilized with a chin-forehead rest. 

2.1.1.3 Stimuli 

The stimuli were filtered, one-dimensional Gaussian white noise that varied in spatial 

frequency bandwidth. The center-frequency of the patterns was fixed at 5 cyjdeg on a 

logarithmic scale. In this experiment, the seven spatial frequency bandwidths were 0.5, 1, 

1.25, 1.5, 2, 3, 4 octaves, which corresponded to a two-sided bandwidth of approximately 

2.5, 10, 11.25, 15, 20, 30 and 40 cy /deg. Stimulus contrast was modulated with a 
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Figure 2.1: The left pattern is an example of a narrow (0.5 octaves) bandwidth stimulus 
and the right pattern is an example of a wide ( 4 octaves) bandwidth stimulus. 

circularly-symmetric Gaussian envelope with a standard deviation of 1.08 degrees of 

visual angle. Fig 2.1 shows two high contrast examples of the stimuli. Stimuli were 

presented for 200 ms. Stimuli were presented in a background of white masking noise 

that had a variance of 0.04, 0.08, 0.16 or 0.32. The white masking noise was static and 

presented only during the stimulus intervals and not during the inter-stimulus interval. 

2.1.1.4 Procedures 

Observers viewed the stimuli binocularly through natural pupils and responses were 

recorded with a computer keyboard. A 3 x 3 degree frame of maximum contrast sur

rounded the stimuli to reduce spatial uncertainty. To reduce adaptation, the frame had 

a 50% probability of being black or white on each trial. The frame had a width of two 

pixels and was on the screen for the entire duration of each trial, from the presentation 

of the fixation point until the observer's response. A two-interval forced-choice (2-IFC) 

procedure was used. The observer was instructed to fixate a high-contrast dot located 

in the center of the display. The observer initiated each trial by pressing the spacebar 

on the keyboard. After a delay of 50 ms, the fixation point was removed, then after 

another 50 ms delay the first stimulus interval appeared. The first stimulus interval was 

200 ms in duration and was followed by a 300 ms blank inter-stimulus interval. _After 

the inter-stimulus interval a second 200 ms stimulus interval appeared. The stimulus 

intervals were marked by a clearly-audible tones. Observers were asked to select, via a 

button press, which of the two intervals contained the target. Auditory feedback, in the 
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form of low- and high-pitched. tones, indicated the accuracy of the response after each 

trial. Stimulus contrast variance was varied across trials using four interleaved staircases, 

two converging on the 71% correct point of the psychometric function and two on the 

84% correct point [26]. The staircases were stopped when the observer had completed 75 

trials in each staircase. The number of trials run in each session was 2100. Thresholds 

were estimated by fitting a cumulative normal to the combined data of all four staircases. 

The level of masking noise varied randomly across test session but was held constant 

within a test session. The order of stimulus bandwidth was block randomized in each 

test session, meaning that the bandwidths were presented in separate blocks of trials and 

the order of blocks/bandwidths was randomized. Each observer completed all bandwidth 

conditions during a single session. The masking noise variance was selected randomly for 

each session. Four sessions were run at each of the four levels of masking noise. 

2.1.2 Results 

Figure 2.2 shows threshold versus bandwidth (TvB) functions for one typical ob

server (AMC). Each symbol type (circles, inverted and upright triangles) represents the 

thresholds measured with stimuli embedded in different levels of external noise. Not 

surprisingly, detection thresholds increased with increasing levels of external noise. The 

dashed lines in the figure have a slope of 0.25 and have been shifted vertically to fit 

the data. It can been seen that they pr?vide good fits to the data when the stimulus 

bandwidth was greater than ~ 1 octave, but that thresholds at narrower bandwidths 

tended to be nearly constant. We therefore computed best-fitting power functions for 

thresholds obtained with stimulus bandwidths ~ 1 octave: the slopes for the estimated 

TvB functions are shown in Table 2.1. Except for observer AMC in the condition using 

the highest level of external noise, all of the estimated slopes were very close to 0.25. 

Table 2.1: Threshold vs. bandwidth slopes for three observers in Experiment 2.1. 

I Noise o-2 I AMC I AM I AG I 
0.04 0.26 0.27 0.26 
0.08 0.25 0.25 0.26 
0.16 0.27 0.23 0.25 
0.32 0.20 0.25 0.25 

Figure 2.3 plots absolute efficiency (Eq 2.1) as a function of stimulus bandwidth at 
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Figure 2.2: Noise detection threshold versus stimulus bandwidth for observer AMC in 
Experiment 2.1. The different symbols represent thresholds obtained with different levels 
of masking noise. The variance of the masking noise is indicated in the legend. The dotted 
lines have a slope of 0.25 and have been shifted vertically to fit the data. 



20 CHAPTER 2. FREQUENCY SUMMATION 

three levels of external noise. Efficiency was high (i.e., greater than 0.4) at all levels of 

external noise and approximately constant across spatial frequency bandwidth. Similar 

results were obtained from two other observers (see Figures 2.4 and 2.5). 

....... 32e-2 

...... 16e-2 

Octaves 

AMC ..,._ae-2 
-e-4e-2 

10-~--------------~--------------~ 1~ 1~ 1i 
BW (cycles/degree) 

Figure 2.3: A plot of absolute efficiency (Eq 1.) versus stimulus bandwidth plot for 
observer AMC from Experiment 2.1. The different symbols represent efficiency obtained 
with different levels of masking noise. The variance of the masking noise is indicated in 
the legend. 

2.1.3 Discussion 

The results of Experiment 2.1 replicate the key findings reported by Kersten[20] and 

extend them to a greater range of external noise levels. Experiment 2.1 found that 

the TvB functions measured in three observers had slopes (in log-log coordinates) of 

approximately 0.25, which is the same slope exhibited by an ideal observer [20]. Moreover, 

absolute efficiency was high, averaging 40% across all observers and conditions. Finally, 

the results did not vary systematically with the level of masking noise. These findings are 
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Figure 2.4: A plot of absolute efficiency versus bandwidth plot for observer JMT from 
Experiment 2.1. The different symbols represent efficiency obtained with different levels 
of masking noise. The variance of the masking noise is indicated in the legend. 



22 

_,.. 32e-2 
..... 18&-2 

CHAPTER 2. FREQUENCY SUMMATION 

Octaves 

AG .... ae-2 
4 ... 4e-2 10 ... .__ .. ___________ ...,_ _____ lillillllillili_llillll 

. 10° 101 1(/ 
BW(cycles/degree) 

Figure 2.5: A plot of absolute efficiency versus bandwidth plot for observer AG from 
Experiment 2.1. The different symbols represent efficiency obtained with different levels 
of masking noise. The variance of the masking noise is indicated in the legend. 
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consistent with the idea that noise patterns are detected by an internal filter that has an 

adjustable frequency bandwidth [16, 20] with a minimum bandwidth of approximately 

one octave. The next three experiments explore the idea than an adjustable bandwidth 

channel is involved in the detection of visual noise. 

2.2 Experiment 2 

In Experiment 2.1 and previous experiments [16, 20], stimulus bandwidth was varied 

across blocks of trials but held constant within blocks. Hence, subjects could have used 

knowledge about stimulus bandwidth to adjust the bandwidth of an internal channel 

used to detect the target. If the bandwidth adjustment depends on prior knowledge 

of the stimulus bandwidth, then randomizing stimulus bandwidth should disrupt this 

mechanism and result in less efficient frequency summation (f.e., increase the slope of 

the TvB function). Experiment 2.2 tested this idea by randomizing stimulus bandwidth 

across trials. 

2.2.1 Methods 

2.2.1.1 Observers 

The two observers who participated in this experiment were both 28 years old, were 

students at McMaster University, and were paid for their participation. Both observers 

were nai."ve with respect to the experimental hypotheses, had either normal or corrected

to-normal Snellen acuity, and had extensive practice in psychophysical tasks 

2.2.1.2 Apparatus 

The apparatus used to run this experiment was identical to that used in Experiment 

2.1. 

2.2.1.3 Stimuli 

As in Experiment 2.1, all stimuli were one-dimensional filtered Gaussian white noise 

that varied in spatial frequency bandwidth. In this experiment, the stimuli were presented 

at one of two temporal durations, 200 ms or 12 ms. Unlike Experiment 2.1, the stimuli 

were not presented in masking noise. 
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2.2.1.4 Procedures 

The procedures were identical to those used in Experiment 2.1 save that stimulus 

bandwidth was blocked or randomized within each testing session. In the blocked con

dition, stimulus bandwidth was fixed within a block of 150 trials, and the order of the 

seven stimulus bandwidths was randomized across blocks. In the randomized condi

tion, stimulus bandwidth was randomly selected on each trial, with the constraint that 

each bandwidth was presented on 150 trials. Observers alternated between blocked and 

randomized presentation across days; one observer started the experiment with the ran

domized presentation and the other observer started with the blocked presentation. 

Thresholds at each bandwidth for each session were estimated by fitting a cumulative 

normal to the data. Three sessions were run for each of the presentation types and 

temporal durations. The mean threshold from the three sessions in each condition was 

calculated and plotted in a threshold versus bandwidth (TvB) function. 

2.2.2 Results 

Figures 2.6 and 2. 7 show TvB functions for each observer in each of the blocked 

and randomized bandwidth conditions at both the short and long temporal durations. 

Shortening the temporal duration of the stimulus from 200 ms to 12 ms increased thresh

olds by approximately 0.2 log units in all conditions, but did not alter the slope of the 

TvB function. Randomizing stimulus bandwidth across trials had virtually no effect on 

thresholds and also did not alter the slopes of the TvB function. The dotted lines in 

each figure have a slope of 0.25 - the slope of the TvB curve for an ideal detector -

and provide a good fit to the data obtained with stimulus bandwidths greater than or 

equal to one octave. To confirm this observation, the method of least squares was used 

to compute the best-fitting line for log-transformed thresholds measured with stimulus 

bandwidths 2:: 1 octave. The slopes of best-fitting lines are shown in Table 2.2, along 

with 95% confidence intervals estimated using a bootstrap procedure [11]. The slopes 

of the lines did not differ significantly from 0.25, and were similar in the blocked and 

randomized bandwidth· presentations. 

2.2.3 Discussion 

The slopes of the TvB curves measured in the current experiment, which did not 

embed the targets in external noise, did not differ from those measured in Experiment 2.1, 
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Figure 2.6: Detection thresholds for observer JMT in Experiment 2.2 in the randomized
bandwidth (unfilled symbols) and blocked-bandwidth (filled symbols) conditions. Error 
bars ( ± one standard error) are plotted but are smaller than the symbols. The dashed 
lines have a slope of 0.25 and have been shifted vertically to fit the thresholds obtained 
in the randomized condition. 
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Figure 2. 7: Detection thresholds for observer SST in Experiment 2.2. Plotting conven
tions are the same as 'in Figure 2.6. 



27 

which did use external noise. Hence, the current findings support the idea that the slope 

of the Tv B curve is not sensitive to the level of external noise. The current experiment also 

found that the slope of the TvB curve was not affected by significant changes in stimulus 

duration or by the introduction of uncertainty about stimulus bandwidth. Previous 

experiments using sinusoidal gratings have reported that uncertainty about a target's 

spatial frequency increases detection thresholds (8, 19]. The explanation for this effect is 

that uncertainty increases the number of noisy frequency-selective channels that must be 

monitored to detect the target, and therefore lowers the signal-to-noise ratio. Within this 

multiple channels framework, the failure to find an effect of uncertainty in the current 

experiment suggests that increasing the uncertainty about stimulus bandwidth did not 

alter the number of channels observers monitored to detect the noise target. 

One explanation for the optimal frequency summation found in Experiment 2.1 (and 

by Kersten (20]) is that observers use prior knowledge of stimulus bandwidth to adjust 

. the bandwidth of an internal channel. The finding that randomizing stimulus bandwidth 

had no effect on the slope of the TvB function is inconsistent with this hypothesis. If the 

adjustable bandwidth hypothesis is to be maintained, then it must be assumed that some 

process extracts information about stimulus bandwidth on a trial-by-trial basis using 

information from the stimulus itself. The data from the two temporal duration conditions 

place limits on this process. If one considers only the data from the · 200 ms temporal 

presentation condition, one could argue that observers adjusted their channel bandwidths 

during the presentation of the stimulus via feedback connections from higher cortical areas 

to V1 [21]. The data from the 12 ms condition, however, show that optimal summation 

occurs with very brief stimulus presentations. Therefore, it seems that feedback - if it is 

operating in this task - must adjust channel bandwidth based on information contained 

in a very brief stimulus. 

Table 2.2: Slopes of threshold vs. bandwidth functions from Experiment 2.2. 

Bandwidth duration SST JMT 
Blocked 12 ms 0.22 ± 0.15 0.22 ± 0.12 

Randomized 12 ms 0.25 ± 0.11 0.25 ± 0.10 
Blocked 200 ms 0.27± 0.078 0.23 ± 0.21 

Randomized 200 ms 0.21 ± 0.08 0.25 ± 0.09 
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2.3 Experiment 3 

Kersten[20] used stimuli that had a center frequency of 2 cy I deg. In our first two 

experiments, we used a slightly higher center-frequency of 5 cy I deg. In all cases the 

center frequencies were close to the peak of the contrast sensitivity function [9]. In 

Experiment 2.3 we examined whether evidence of optimal summation could be found 

with high spatial frequency stimuli. If a high center spatial frequency is used, one would 

expect that contrast thresholds for the detection of the noise signal would increase because 

of the reduced sensitivity to high spatial frequencies. However, the finding of optimal 

summation does not depend on the absolute efficiency of noise detection, but rather 

the slope of the TvB function. Because optimal summation depends not on absolute 

efficiency but how efficiency changes with bandwidth, it is possible to find evidence of 

optimal summation even if the overall absolute efficiency is lower than the efficiency we 

found in Experiment 2.1. In this experiment we examine whether noise signals can still 

be detected optimally if the stimulus center frequency is increased to 15 cy 1 deg. 

2.3.1 Methods 

2.3.1.1 Observers 

The observers in this experiment were the author (CPT) and two individuals recruited 

from the McMaster community who were paid for their participation. The observers were 

25-29 years of age and had normal or corrected-to-normal Snellen acuity. 

2.3.1.2 Apparatus 

The apparatus was the same as in Experiment 2.1, except for one change: contrast 

resolution was increased by using a Bits++ device (Cambridge Research Systems) in 

Mono++ mode. The Bits++ setup enabled us to achieve 14-bit resolution of contrast. 

2.3.1.3 Stimuli 

The stimuli were one-dimensional filtered Gaussian white noise that varied in spatial 

frequency bandwidth. The center-frequency of the patterns was fixed at 15 cyldeg on a 

logarithmic scale. The seven spatial frequency bandwidths used in this experiment were 

the same, when expressed in octaves, as Experiment 2.1 (0.5, 1, 1.25, 1.5, 2, 3, 4 octaves 

wide). A Gaussian envelope with a standard deviation of 1.5 degrees of visual angle to 

reduce edge artifacts. Stimuli were presented for 200 ms. Stimuli were presented in a 



29 

Gaussian white noise mask that had a contrast variance of 0.08. 

2.3.1.4 Procedure 

This experiment used a procedure that was identical to that of Experiment 2.1. 

2.3.2 Results 

Figure 2.8 shows the contrast thresholds for three observers in the noise detection 

task. As was done for Experiment 2.1, linear fits to the data were computed for all the 

points greater than one octave. For all observers, the 95% confidence interval (computed 

via a bootstrap simulation) of the slope of the best fitting line contained the value 0.25, 

which is again consistent with the predictions of optimal summation. 

As was done for Experiment 2.1, the thresholds for an ideal observer were estimated 

and then used to calculate absolute efficiency (see Figure 2.9). Absolute efficiency was 

approximately 0.2 in observers MB and CPT and slightly lower (on average) in observer 

AL. These efficiencies are lower than the values (i.e., 0.3-0.5) obtained in Experiment 

2.1 with 5 cy / deg stimuli. As discussed above, this decrease was expected because opti

cal factors reduce retinal contrast, and therefore efficiency, much more at higher spatial 

frequencies [4]. As was found in Experiment 2.1, efficiency was constant as a function 

of stimulus bandwidth for two observers (MB and CPT). In observer AL, however, effi

ciency fell by approximately 50% as stimulus bandwidth increased from 0.5 to 4 octaves. 

Interestingly, for this observer efficiency was nearly constant (::::::l 0.2) when stimulus band

width was ::; 1.5 octaves, and then fell to approximately 0.1 for bandwidths greater than 

1.5 octaves. 

2.3.3 Discussion 

The results of Experiment 2.3 extend the finding of optimal summation to patterns 

with a high center spatial frequency. This result demonstrates that the efficient combi

nation of spatial frequency information is not limited to frequencies at or near the peak 

of the contrast sensitivity function. 
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Figure 2.8: Threshold versus bandwidth functions for the three observers in Experiment 
2.3. The dashed lines are provided as a reference and illustrate the expected slope (0.25) 
if the summation of spatial frequency information was optimal. 
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Figure 2.9: Absolute efficiency versus pattern bandwidth for three observers detecting 
15 cyjdeg center-frequency patterns. 
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2.4 Experiment 4 

The results of the first three experiments show that spatial frequency information 

can be summed optimally across a wide range of spatial frequency, and that optimal 

summation does not depend critically on prior knowledge of stimulus bandwidth, the 

level of external noise, stimulus duration, or center frequency. However, it is still an 

open question as to what stimulus information observers use to detect visual noise. The 

current experiment uses the classification image technique to examine this issue. 

Recently the classification image technique [3] has been applied to wide variety of 

visual tasks such as vernier acuity [6], grouping [12], face recognition [23] and attention 

[10]. This wide range of results has shown that the classification image technique can 

reveal what aspects of the stimulus are used by observers to perform perceptual tasks. 

Here we apply the classification technique to examine the template used when a noise 

detection task is performed. 

2.4.1 Methods 

2.4.1.1 Observers 

One observer from Experiment 2.1 and two additional observers participated in this 

experiment. All observers were na:ive with respect to the experimental hypotheses and 

had practice in this and other psychophysical tasks. Observers were 25-29 years of age 

and all had normal Snellen acuity. 

2.4.1.2 Apparatus 

The apparatus was identical to that used in Experiment 2.1. 

2.4.1.3 Stimuli 

As in Experiment 2.1, all stimuli were one-dimensional filtered Gaussian white noise 

that varied in spatial frequency bandwidth. The center-frequency of the patterns was 

fixed during a session at either 5 or 15 cy / deg. Spatial frequency bandwidth was 1, 

2, 4 or 6 octaves. Stimulus contrast was windowed with a two-dimensional Gaussian 

envelope with a standard deviation of 1.5 degrees of visual angle. Stimuli were presented 

for 200 ms in a Gaussian white noise mask that had a contrast variance of 0.32. 
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2.4.1.4 Procedures 

This experiment used a 2-IFC procedure that was identical to the procedure used in 

Experiment 2.1. Stimulus bandwidth. was blocked within each testing session, but the 

order was randomized across testing sessions. Each session began with 50 trials during 

which stimulus rms contrast was adjusted with a 2-down/1-up staircase procedure [26] 

to find the observer's 71% correct detection threshold. Stimulus contrast was then fixed 

for the remaining 400 trials of the block. Each observer completed 3200 trials in each of 

eight conditions (i.e., two center-frequencies and four bandwidths). 

2.4.1.5 Analysis 

We used the 2-IFC variant of the response classification image task which has been 

described in detail previously[!, 2]. The major difference between the classification im

ages measured in previous work and the classification images presented here is that our 

classification images were calculated using the power spectra of the noise masks, rather 

than the noise masks themselves. On each trial, the Fourier transform of the noise mask 

in each interval was computed. Next, the difference between the pair of power spectra 

was calculated at each spatial frequency, and the difference spectra was placed into one 

of four bins based on which interval contained the signal (1 or 2) and the observer's re

sponse (correct or incorrect). The power spectra within each bin were averaged: the two 

average spectra computed from correct responses were summed, as were the two average 

spectra computed from incorrect trials. Finally, the difference between the correct and 

incorrect averaged spectra was computed and the resulting classification image was nor

malized to have a peak value of 1. Classification images calculated using this procedure 

are proportional to the linear template applied to the power spectra [1, 2]. 

2.4.2 Results 

The dotted lines in Figures 2.10 and 2.11 show the classification images obtained from 

one representative observer with stimulus center frequencies of 5 and 15 cy / deg, respec

tively. In both figures, the y-axis can be thought of as representing the relative strength of 

the linear association between the power at a given frequency and the observer's response. 

The plots in Figure 2.10 show that this observer was influenced most by power at 

5 cy/deg, which corresponds to the center frequency of the stimulus. Surprisingly, the 

plots in Figure 2.11 show that behaviour was most influenced by power at 5 cy / deg even 
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Figure 2.10: Classification images for one observer (AL) in the 5 cy/deg center-frequency 
conditions. Each panel shows the classification image obtained with a different stimulus 
bandwidth. 
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when the center frequency of the target was 15 cy I deg. A comparison of Figures 2.10 

and 2.11 shows that the bandwidths of the classification images obtained with 5 and 

15 cy I deg stimuli also were very similar, although it appears that the bandwidth was 

slightly greater with the high spatial frequency stimulus. These qualitative impressions 

were investigated quantitatively by fitting the classification images with a log-normal 

equation: 
1 -(!og(z)-;)2 

Power(xiJL, u) = . e 21og(.,.) 

log ( u) v'21f 
(2.2) 

Prior to fitting the log-normal function to the data, the classification images were 

smoothed by averaging values at adjacent frequencies and then re-normalizing the smoothed 

images to have a peak of one. The best-fitting log-normal functions are indicated by the 

smoothed lines in Figures 2.10 and 2.11. Goodness of fit was evaluated using three 

statistics: the Mean Absolute Deviation (MAD), Hotelling T 2 statistic, and R2 • In all 

cases the MAD for the residuals of our fitted normalized templates was less 0.04 units of 

normalized power for all observers in all conditions. Hotelling's T2 statistic was used to 

evaluate the deviations between the classification images and the best-fitting log-normal 

functions [1]: For each observer in each condition, the Hotelling T2 statistic was very 

small ( T 2 < 1) which indicated that there were no significant differences between the 

fitted functions and our calculated templates. R2 was also calculated for each observer in 

each condition for the fitting function and the classification images and it always exceeded 

a value of 0.92. Each of the three statistics computed indicates that the log-normal chan

nels fitted to the data provided a very good description of the shape of the template for 

noise detection. 

Confidence intervals for the estimates of the center-frequency and bandwidth of the 

classification images were estimated using a parametric bootstrap procedure on the resid

uals of the best.:.fitting log-normal function for each observer in each condition [11]. On 

each run of the simulation, a zero mean Gaussian random variable with a variance equal 

to the observed residual variance was added to the fitted log-normal function to create 

synthetic data. A log-normal was then fit to the synthetic data, and the resulting esti

mates of center-frequency and bandwidth were recorded. This procedure repeated 10,000 

times, and the bootstrapped distributions of center-frequency and bandwidth were used 

to estimate the 95% confidence intervals that are shown in Tables 2.3 and 2.4 . 

For all observers, the center-frequency of the template was between 3-5 cyldeg, which 

is near the peak of the contrast sensitivity function [9], and did not differ systematically 



36 CHAPTER 2. FREQUENCY SUMMATION 

10 20 30 40 50 60 

0.~~.1¥~ .. .;..-;. :I 
10 20 30 40 50 60 

Frequency (cycles/degree) 

Figure 2.11: Classification images for one observer (AL) in the 15 cy /deg center-frequency 
condition, shown in each of the four noise bandwidth conditions. The order of the panels 
is the same as in the previous figure, from 1 octave to 4 octaves. 

Table 2.3: Center-frequencies and 95% confidence intervals for three observers. 

sf octaves AL MB VA 
5 1 3.71 ± 0.11 3.96 ± 0.21 5.65 ± 0.61 

2 3.62 ± 0.11 3.58 ± 0.34 4.92 ± 0.81 
3 3.51 ± 0.22 3.55 ± 0.66 5.82 ± 0.57 
4 3.49 ± 0.89 3.41 ± 1.08 5.32 ± 0.57 

15 1 3.45 ± 0.24 4.41 ± 0.28 4.56 ± 0.81 
2 3.45 ± 0.25 4.71 ± 0.32 5.35 ± 0.71 
3 3.60 ± 0.77 5.93 ± 0.45 5.37 ± 0.50 
4 3.54 ± 0.38 3.94 ± 0.80 5.34 ± 0.22 
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across conditions. The bandwidths of the classification images did not vary systematically 

with stimulus bandwidths, but was on average lower in the 5 cy/deg condition (mean= 

1.1 octaves) than in the 15 cy/deg condition (mean= 1.4 octaves). 

Table 2.4: Octave bandwidths and 95% confidence intervals for three observers. 

sf octaves AL MB VA 
5 1 1.07 ± 0.04 1.02 ± 0.09 1.30 ± 0.15 

2 1.18 ± 0.04 1.01 ± 0.09 1.24 ± 0.24 
3 1.09 ± 0.03 1.07 ± 0.06 1.24 ± 0.13 
4 1.03 ± 0.02 0.99 ± 0.08 1.39 ± 0.15 

15 1 1.37 ± 0.05 1.58 ± 0.08 1.45 ± 0.11 
2 1.48 ± 0.03 1.48 ± 0.08 1.34 ± 0.12 
3 1.36 ± 0.04 1.46 ± 0.03 1.41 ± 0.16 
4 1.33 ± 0.02 1.58 ± 0.07 1.49± 0.13 

2.4.3 Non-linear contributions to the classification image? 

The classification images shown in Figures 2.10 and 2.11 are estimates of the weight 

of the observer's linear template applied to the contrast power at each frequency. What 

these templates do not show, however, are the non-linear operations on the power spec

trum that could have influenced observers' responses. To examine the possible influence 

of such mechanisms on observers' responses, we computed separate classification images 

from the signal-absent and signal-present noise fields. The classification images derived 

from the signal-absent noise fields are shown for one observer with the 5 cy / deg center 

frequency stimuli in Figure 2.12. Templates from other observers in other conditions 

were very similar. 

Under a linear observer model, the shape of the templates derived from signal-present 

and signal-absent noise fields should be the same except for a change in sign [1). If, 

however, non-linear operations significantly influenced behaviour in our task, then the 

templates generally will differ. A quantitative statistical test based on Hotelling T 2 [1] 

failed to find a significant difference between the shapes of the classification images ob

tained from signal-absent and signal-present noise fields. Hence, we did not find evidence 

that non-linearities contributed significantly to the decisions made by observers in our 

task. 

It is important to be cautious when interpreting the results of the test for non-
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linearities described above. If one observes similar templates in both the signal-present 

and signal-absent conditions, the result does not support the linear model but instead 

should be interpreted as providing no support that response non-linearities that can be 

revealed by this test are present. This test has been shown to reveal both spatial and 

phase uncertainty [5, 6] when classification images are computed in the spatial domain. 

However, here we are computing classification images in the power spectrum and not the 

spatial domain. In the power spectrum, the non-linearity that is analogous to spatial 

uncertainty would be spatial-frequency uncertainty. The current analysis is sensitive to 

spatial-frequency uncertainty, [1, 2] and therefore the failure to find an effect of non

linearities suggests that spatial-frequency uncertainty is not influencing performance in 

our task. However, we cannot rule out the possibility that other kinds of non-linearities 

are involved in the detection of visual noise. 

2.4.4 Discussion 

Experiment 2.4 yielded two unexpected findings. First, the classification images sug

gest that observers were most influenced by power at 3-5 cy I deg when detecting noise 

stimuli centered at 5 and 15 cy I de g. Second, although the bandwidth of the classification 

image was slightly higher in the high spatial frequency condition, it was independent of 

stimulus bandwidth. In other words, the classification images suggest that observers did 

not adjust the bandwidth of an internal filter to match the stimulus bandwidth. Overall, 

the results of Experiment 2.4 suggest that the spatial frequencies that were linked to 

observers' behaviour were remarkably constant across conditions. 

The results of Experiment 2.4 present us with a conundrum. On the one hand, the 

slopes of the TvB functions measured in previous experiments suggest that observers sum 

information optimally across a wide range of spatial frequency, perhaps by adjusting the 

bandwidth of an internal channel. On the other hand, the classification images provide 

no evidence for an adjustable channel. This failure to find evidence of an adjustable 

channel raises the question of whether bandwidth adjustment is necessary to produce 

TvB functions with slopes of 0.25. To address this question, we used a multiple-channel 

model described by Wilson and Gelb (28], which has been used to account for a wide 

variety of exjlerimental results. 

The Wilson-Gelb model includes six fixed spatial frequency channels. A fixed-variance 

is added to the output of each channel, and the responses are then combined using non

linear (Minkowski) summation. To apply this model to our noise detection data, we first 
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Figure 2.12: Classification images for one observer (AL) generated from the signal-absent 
noise fields. 
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Figure 2.13: The filled circles represent the TvB function for one observer. The solid line 
is the TvB produced by the Wilson-Gelb model which has no free parameters and is not 
shifted to fit the data. The dashed lines represent a slope of 0.25. 
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measured the CSF for two observers using narrow-band (0.5 octaves) noise at a range of 

center-frequencies. The CSF was used to set the sensitivities of the six spatial-frequency 

channels in the model: this adjustment allowed the model to produce a CSF that had 

the same shape as the human observer. Next, we adjusted the variance of the noise so 

that peak sensitivity of the model's CSF matched that of the human observer. Finally, 

we tested the effects of varying the Minkowski summation exponent across a range of 

values: similar results were obtained with exponents in the range of 2-5, but we settled 

on a value of 2 because it had been used with success previously to capture a variety of 

other results .[28]. The parameters of the model were then fixed, and simulations were 

performed in MATLAB to estimate the model's thresholds for our noise stimuli. 

For one observer, the model slightly under-predicted thresholds in all conditions, al

though the error was quite small for the broadest bandwidth conditions (Figure 2.13). 

For the other observer, the model accurately accounted for thresholds obtained with 

narrow bandwidth stimuli, but slightly under-predicted thresholds when stimulus band

width was greater than one octave (Figure 2.14). However, in bo~h cases, for stimulus 

bandwidths greater than one octave, the slopes of the TvB functions generated by the 

model and obtained from the human observer were very similar to each other and to the 

ideal· value of 0.25. Figure 2.15 shows classification images for the model: as was found 

with human observers (Figure 2.10), the classification images are remarkably constant 

across conditions both in terms of peak power ( ~ 5cy I deg) and bandwidth. 

2.5 Conclusion 

Experiment 2.1 replicated the findings of Kersten [20]: absolute efficiency for noise 

detection was high and nearly constant across a wide range of stimulus bandwidths. Ex

periments 2 and 3 obtained similar results when subjects were uncertain about stimulus 

bandwidth, when stimulus duration was reduced from 200 ms to 12 ms, and when the 

center frequency of the stimulus was increased from 5 to 15 cy I de g. These results are 

surprising because they indicate that human observers can sum spatial frequency infor

mation across bandwidths that exceed the bandwidths of individual channels typically 

used in multiple-channel models of pattern detection [15]. 

One explanation for these results is that noise is detected with an internal filter that 

has a bandwidth that is adjusted to match the stimulus [18, 20]. Based on the results of 

Experiment 2.2, adjustment of the internal filter could be based on a bottom-up process 

that uses information available in a brief presentation of the stimulus. The results of 
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Figure 2.14: The filled circles represent theTVB function for one observer. The solid line 
is the TvB produced by the model which has no free parameters and is not shifted to fit 
the data. The dashed lines represent a slope of 0.25. 
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Figure 2.15: Classification images for the Wilson-Gelb model applied to the noise detec-
tion task. · 
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Experiment 2.4, however, are inconsistent with a adjustable-bandwidth model: the clas

sification images measured in that experiment did not vary significantly or systematically 

with stimulus bandwidth. Indeed, the results of Experiment 2.4 are consistent with the 

hypothesis that used a single, fixed channel - or a single, fixed algorithm for combin

ing the responses of multiple channels - to detect noise stimuli of various bandwidths. 

Simulations based on the Wilson-Gelb multiple-channel model [28] were consistent with 

this idea. Once the model parameters were adjusted to account for the contrast sensitiv

ity functions of our observers, the Wilson-Gelb model was able to account for the main 

findings of our experiments. Specifically, the model had a high absolute efficiency for 

noise detection that was nearly constant for stimulus bandwidths greater than or equal 

to one octave, and the peak frequencies and bandwidths of the classification images de

rived from the model responses were approximately constant across a four-fold range of 

stimulus bandwidths. 

The Wilson-Gelb model does not have variable-bandwidth channels, nor does it com

bine the outputs of different channels in an optimal matter. Nevertheless, that model 

produces TvB curve'frthat have nearly the same slope as the curve produced by an 

ideal detector. We conclude, therefore, that standard multiple-channel detection models 

can account for ideal frequency summation for visual (and, presumably, auditory) noise 

[18, 20]. 
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Chapter 3 

Detection and discrimination of 

visual noise 

Abstract 

In Chapter 2, · our classification image experiments found that the peak

sensitivity of the channel used for noise detection did not vary with the center 

frequency ( CF) of the stimulus. For both 5 and 15 cy I deg stimuli, the clas

sification image peaked at approximately 5 cy I deg. This result leads to the 

counter-intuitive hypothesis that observers ought to be unable to discriminate 

filtered noise with CFs of 5 and 15 cyldeg when the contrast of the patterns 

are at detection threshold. This hypothesis was investigated in tl;lis chapter. 

In Experiment 3.1, we used the methods of double-judgment psychophysics 

(Klein, SA, J Opt Soc Am A, 1985, 2(9), 1560-1585) to examine the relation 

between detection and discrimination thresholds for stimuli with CFs of 5 and 

15 cy I deg. The results of Experiment 3.1 showed that the discriminability 

of the two patterns can be predicted from the detection data (Watson, AB, 
\ 

Vision Res, 1981, 21(7) 1115-1122). In Experiment 3.2, we used the classifi-

cation image technique to measure the channel used for both detection and 

discrimination of visual noise stimuli that differed in CF. We found that the 

difference in bandwidth between the two templates for stimulus detection was 

a good match to the channel estimated for stimulus discrimination. 

47 
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Introduction 

In Chapter 2 we found the puzzling result: classification images for the detection 

of 5 and 15 cy I deg patterns did not differ in their center frequency and, differed only 

slightly in their bandwidth. The goal of this chapter is to investigate this result using the 

methods of double-judgement psychophysics and the classification image technique. To 

put the experiments in context, what follows is a brief description of the methods that 

lead to our surprising results. 

In our previous experiments, observers performed a one-dimensional noise detection 

task [12] in a background of Gaussian white noise. We used the classification image 

technique [2] to measure which spatial frequencies were used to do the detection task. 

The results of our classification images analysis revealed that observers used a template 

that had a center frequency of 3-5 cyldeg when the signal had a center-frequency of 5 

or 15 cy I deg. As mentioned previously, the two classification images did not differ in 

center frequency and differed only slightly in their bandwidth. This difference was less 

pronounced than expected, because an ideal observer would use channels that centered 

on the stimulus center frequency that matched the bandwidth of the stimulus exactly. 

As we found only small differences in the bandwidth of the channels in our classification 

images for the detection of visual noise, we wondered whether the classification images 

could capture visual discrimination performance. The relationship between detection 

and discrimination has been well described by signal detection. theory [11, 14] and if 

our observers are using the channels we measured for detection, then both observers' 

thresholds and classification images ought to predict discrimination thresholds. 

The methods of double-judgement psychophysics relate detection and discrimination. 

The results of Chapter 2 lead to the hypothesis that observers ought to be unable to 

discriminate filtered noise with CFs of 5 and 15 cy I deg when the contrast of the pat

terns are at detection threshold, which one would not predict from previous work [7, 10]. 

Relating qetection and discrimination addresses this hypothesis because if, as the. classi

fication images suggest, there is little difference between the channel used for detecting 

filtered noise with CFs of 5 and 15 cy I deg then at detection threshold, discrimination 

ought to be difficult for human observers. The next section explains the double~judgment 

psychophysics in more detail. 
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Relating detection and discrimination 

The work that has addressed the relationship between detection and discrimina

tion has been called double-judgement psychophysics [13]. In double-judgement psy

chophysics, detection and discrimination are measured together to relate the two mea

surements. Often, the double-judgement procedure uses a variant of the two interval 

forced-choice (2-IFC) procedure. In a double-judgement task, observers provide two re

sponses, a detection response that indicates the interval that the target appeared. Then 

a discrimination response that indicates which of two target stimuli were presented. A 

classic example of this technique is presented in a paper by Nachmias and Weber [16] 

in which a double-judgment procedure was used to show that 3 and 9 cy/deg sinusoidal 

gratings are discriminated as soon as they are detected. 

To make inferences about the relation between detection and discrimination, a model 

of visual processing processing must be as:;mmed. The assumptions that go into the model, 

however, are common and are incorporated into the standard, back-pocket, multiple 

channel model of pattern vision [6]. The key aspects of the back-pocket model that are 

relevant to double-judgement task are that visual stimuli are encoded by multiple, labeled, 

noisy, spatial frequency channels. The output of the channels in the model are then passed 

through a decision stage that often uses non-linear summation to transform the responses 

from multiple channels into a single decision variable. The back-pocket model performs a 

detection task by using a criterion to determine whether the signal is reliably present or 

absent. When the observer makes a discrimination response, the observer uses a decision 

rule that determines which of the two stimuli that was presented. Models of this sort 

have been used to account for a great variety of detection and discrimination data [24]. 

Figure 3.1 ~epresents how responses of a multiple channel can be used to detect and 

discriminate two stimuli, 81 and 82. The figure illustrates a decision space that is formed 

by two dimensions, A and B. These dimensions are not totally abstract - they represent 

the responses of two channels, A and B. 81 and 82 represent the mean activity produced 

on trials that contained either stimulus 1 or stimulus 2, whereas N represents the mean 

activity produced on noise, or no-stimulus trials. The decision space model is general: the 

two stimuli could vary on any number of stimulus dimensions (e.g., motion, color, spatial 

frequency, orientation, etc.). Likewise, the selectivity of the two channels represented by 

A and B could vary on a variety of dimensions. The left panel of Figure 3.1 illustrates the 

case in which the responses of the two channels are orthogonal and independent, whereas 

the right panel illustrates the case where the responses are not orthogonal. 
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Figure 3.1: A schematic diagram of the sensory decision space underlying detection 
and discrimination judgments in the 'back-pocket' model [6]. A and B correspond to 
two sensory dimensions that are independent/orthogonal (panel [1]) and non-orthogonal 
(panel [2]). See the text for details. 

In this model, the sensory distance between Nand 81 can be estimated by measuring 

detection d' (where a smaller /larger d' corresponds to a smaller /larger sensory distance) 

for a stimulus that excites only dimension B. The sensory distance between N and 82 

can be determined by the same method. Once d' for the two detection tasks has been 

measured, predictions can be made about the sensory distance between 81 and 82 (i.e., 

the dashed line in Figure 3.1) as measured by a discrimination task with the two stim

uli 81 and 82. If the sensory distances between N and 81 and between N and 82 are 

both d', then the orthogonal-channel model depicted in the left panel of Figure 3.1 pre

dicts that the discrimination sensitivity between 81 and 82 is J'id'. If the underlying 

sensory dimensions A and B are not orthogonal/independent, then the model predicts 

discrimination sensitivity will be less than J'id'. It is these predictions that we set out to 

investigate in Experiment 3.1, where a double-judgement procedure was used to measure 

the detection and discrimination of visual noise simultaneously. 

Experimental Motivation 

The center-frequency of the classification images in Chapter 2 were very similar in 

both the 5 and 15 cy/deg center-frequency conditions, they were not identical however, 

as differences were found in the channel bandwidths. This result seems to run contrary to 

the idea that widely separated spatial frequencies are processed by independent channels 
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tuned to the stimulus center frequency [10]. If it is the case that the classification images 

that we measured in Section 2.4 are evidence against independence among channels, then 

a double-judgment task ought to reveal that observers' sensitivity in a detection can not 

predict their ability to discriminate patterns. This idea was tested in Experiment 3.1. 

Experiment 3.2, uses the classification image technique to measure both detection 

and discrimination. The technique is able to address if the templates used for detection 

channel are related to those for discrimination, as would be predicted from previous work. 

Prior to the work in Experiment 3.2, the classification image technique had not been used 

to relate templates in the two tasks using the same stimuli. 

3.1 Experiment 3.1 

To investigate the relationship between detection and discrimination, this experiment 

measured sensitivity in both tasks simultaneously using a double-judgement procedure. 

3.1.1 Methods 

3.1.1.1 Observers 

The two observers in this experiment were members of the McMaster University 

community and were paid for their participation. Both observers were unaware of the 

experimental hypotheses, had normal or corrected-to-normal visual acuity, and had ex

tensive practice with this and other visual psychophysical tasks. The two observers were 

each 28 years of age. 

3.1.1.2 Apparatus 

A Macintosh G4 running MATLAB and the Psychophysics and Video toolboxes [5, 17] 

was used to generate the stimuli. The stimuli were presented with a Sony GDM-F520 

monitor set to a resolution of 1024 x 768 pixels. The entire display subtended a visual 

angle of 10.8 x 8.3 deg at the viewing distance of 2 m. The frame rate of the display was 

75Hz and the mean luminance 45 cd/m2
• The luminance of the display was calibrated 

using a PhotoResearch PR-650 photometer before each session. A Cambridge Research 

System Bits++ device was used to achieve fine grained (i.e., 14-bit) control of contrast. 

A chin/forehead rest was used to stabilize viewing position. 
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3.1.1.3 Stimuli 

The stimuli were one-dimensional (horizontal) Gaussian white noise patterns that 

were spatially filtered with an ideal frequency filter that was centered on 5 or 15 cy / deg 

and that had a full bandwidth of two octaves. Stimulus contrast was modulated with 

a circularly-symmetric Gaussian envelope with a standard deviation of 1.08 degrees of 

visual angle. Examples of patterns similar to those shown in the experiment are shown 

in Figure 3.2. Stimuli were presented in a background of white noise with a contrast 

variance of 0.32. A new sample of signal noise was generated on each interval of every 

trial. Stimulus duration was 200 ms. The monitor provided the only illumination in the 

testing room. Stimuli were viewed binocularly through natural pupils. 

Figure 3.2: Two examples of the patterns of the type presented in this experiment. The 
pattern on the right has a center frequency three times that of the pattern on the left. 
Both patterns are filtered with to have a full bandwidth of two octaves. 

3.1.1.4 Procedures 

Observers were instructed to fixate a high-contrast dot located in the center of the 

display. The observer started each trial by pressing the spacebar on the keyboard. After 

a delay of 50 ms, the fixation point was removed and then, after another 50 ms delay, was 

followed by two 200 ms stimulus intervals separated by a blank, 300 ms inter-stimulus 

interval. Each stimulus interval was marked by a clearly-audible tone. To reduce spatial 

uncertainty, a 3 x 3 deg frame, drawn with a two-pixel wide line that was set to maximum 

contrast, was centered on the fixation point and was visible continuously during the entire 

duration of each trial. To reduce adaptation, the frame had a 50% probability of being 
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black or white on each trial. 

Observers performed a double-judgment task [16] that consisted of detection and 

discrimination responses. For the detection task, a two-interval forced-choice (2-IFC) 

procedure was used: Observers reported whether they observed a noise signal in either 

the first or second interval. After the detection response, observers then reported whether 

the 5 or 15 cy I deg stimuli was presented. 

Stimulus contrast variance was varied across trials using four interleaved staircases, 

two for each ofthe 5 and 15 cyldeg stimuli. For each pair of staircases, a 2-downl1-

up staircase converged on the 71% correct point of the psychometric function and a 

4-downl1-up staircase converged on the 84% correct point [22]. The detection responses 

were used to control the direction of the staircases. For example, two consecutive correct 

detection responses would cause the 2-downl1-up staircase to reduce stimulus contrast, 

irrespective of the correctness of the discrimination responses. The initial value of the 

staircase was set by thresholds measured for each observer in two practice sessions that 

were completed before the main experiment. Excluding practice, each observer completed 

ten sessions of 1200 trials, for a total of 12000 trials. 

In the main experiment, the staircases could set 'stimulus contrast to one of only 4 

values distributed around the detection thresholds measured in the practice sessions. By 

restricting the number of possible contrasts, we ensured that detection and discrimination 

d' at each contrast level was measured with a large number of trials. For each observer, 

d' was computed for the detection and discrimination tasks using standard formulae 

described by Macmillan and Creelman [14]. 

3.1.2 Results 

Figures 3.3 and 3.4 show the results for two observers. Each observer's sensitivity 

in both the detection and discrimination tasks increased as stimulus contrast increased. 

Also, sensitivity in the discrimination task exceeds sensitivity in the detection task at 

all levels of stimulus contrast. The dashed lines in both graphs are the least squares fits 

to the detection data. The solid line in each figure indicates a fit to the discrimination 

thresholds that were predicted (the predictions are plotted with grey X symbols) from 

the detection data using signal detection theory (11, 14] assuming that the 5 and· 15 

cy I deg stimuli were detected by orthogonal channels. According to this model, d' for 

discrimination follows the equation: 
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Figure 3.3: d' plotted as a function of contrast variance for observer AP in the double
judgement task. The error-bars represent 95% confidence intervals. The squares are 
thresholds for the 5 cy / deg detection condition, the filled circles thresholds for the 15 
cyjdeg detection condition, the open circles the observer's discrimination data, and the X 
symbols are the predictions from Equation 3.1. The dashed lines are fits to the detection 
data and the solid line a fit to the predictions. 
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Figure 3.4: d' plotted as a function of contrast variance for observer MB in the double
judgement task. The error-bars represent 95% confidence intervals. The squares are 
thresholds for the 5 cy I deg detection condition, the filled circles thresholds for the 15 
cy I deg detection condition, the open circles the observer's discrimination data, and the X 
symbols are the predictions from Equation 3.1. The dashed lines are fits to the detection 
data and the solid line a fit to the predictions. 
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(3.1) 

where da and db are the detection d' for the two signals and d~d the predicted discrim

ination d'. The predicted discrimination thresholds were generated from the fits to the 

detection data. The detection and discrimination data were well fit by the Equation 3.1. 

Table 3.1 shows R2 measures for the goodness of fit for the detection task as well as R2 

for the predictions generated by the signal detection model. The measures of goodness of 

fit measures show that a large portion of the variability in each observers' performance 

is captured by the signal detection model. 

Table 3.1: R2 for the fits to the detection data and the discrimination model. 

I. Observer I 5 cy I deg I 15 cy I deg I Discrimination I 
I AP I 0.891 0.961 0.941 

MB 0.98 0.94 0.98 

3.1.3 Discussion 

Recall that the results of classification image experiment discussed in Section 2.4, 

suggested that discrimination ought to be difficult because of the similarity of the classi

fication images for the detection. The results of this experiment show that observers can 

not only discriminate 5 and 15 cy I deg patterns at or near detection threshold but they do 

so in a manner consistent with the labeled-line model proposed by Watson and Robson 

[21]. The model proposes that widely separated channels are labeled-lines -that once 

a stimulus is detected the channel also represents the spatial frequency of the stimulus, 

allowing discrimination to be predicted from detection. 

3.1.3.1 The Wilson-Gelb Model 

In Chapter 2 we used the Wilson and Gelb [23] model to successfully capture the 

results of both our threshold versus bandwidth (TvB) data and classification images. 

This subsection will describe the Wilson and Gelb model and its application to the 

Experiment 3.1 for both detection and discrimination. 

The first model step applies a set of six weighted spatial frequency channels to the 

stimulus presented in each interval of the 2-IFC task. Figure 3.5 shows each of the six in

dividual spatial-frequency channels and relative weights assigned to channel. The weights 
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were used for the modeling in this chapter were identical to one set of weights used in 

Chapter 2. The channel weights are based on the CSF measured for one observer (AMC) 

with a narrow-band (0.5 octaves wide) noise at a range of center spatial frequencies. The. 

model then computes the response of the ensemble of channels. The channel responses 

are then summed via Minkowski summation. The decision rule for detecting both the 

5 and 15 cy / deg patterns used by the model was to select the interval with the larger 

response after the Minkowski summation. The Wilson and Gelb detection model used 

here differs from that used in Chapter 2 because it includes a non-linear contrast gain 

control for each channel. The non-linearity adjusts the channel output such that the 

responses of the channels are adJusted to give the same output at detection threshold. 

Adding this model step was necessary as it was found that the model without the non

linearity added failed to capture observers' behavior at the higher contrast levels used in 

the current experiment. It should be noted, however, that adding the non-linearity has 

no significant effect on the model's responses in the conditions used in Chapter 2. 
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Figure 3.5: Relative channel weights for the Wilson and Gelb model measured as de
scribed in Chapter 2. The weights are from the CSF of observer AMC. 

Implementing the Wilson and Gelb model for discrimination requires that the detec

tion model be modified so that decisions can be based on the distribution of responses 
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Figure 3.6: Channel variances for the six channels of the Wilson and Gelb model measured 
in a filtered noise detection task. The filtered noise was centered at 5 cy / deg with a one 
octave bandwidth set at a contrast equal to the contrast human observer MB required 
to obtain ad' of one. The points on the blue line represent the relative variance of each 
channel when responding to a filtered stimulus plus white noise. The points on the red 
line represents the variance of the response to the noise alone. After removing the mean 
response of each channel, the variance of the channels response were normalized by the 
maximum variance to determine their relative variance. 
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Figure 3.7: Channel variances for the six channels of the Wilson and Gelb model in for 
the detection of filtered noise in white noise. The stimulus was centered at 15 cy / deg 
with a bandwidth of one octave set at a contrast equal to the contrast human observer 
MB required to obtain a. d! of one. Red and blue points represent conditions as in Figure 
3.5 
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across channels, rather than a single decision variable formed by pooling responses across 

channels. In other words, the discrimination model must have access to the information 

carried by each channel and a rule that specifies how the set of responses should be 

used to determine a response. One possible discrimination rule is to use the output of 

the channel with a center-frequency nearest the center-frequency of the target stimulus. 

However, this rule is not optimal because it ignores information conveyed by the other 

channels. The stimuli used in this experiment stimulate multiple channels, and on some 

trials a channel other than the channel centered on the stimulus may contain informa

tion for discriminating the. 5 from the 15 cy I deg patterns; That the channels differ in 

their sensitivities compounds the problem, as off-center channels carry information. For 

example, an off-center channel may respond much better than a less-sensitive channel 

closer to the center-frequency of the stimulus and carry more information to perform the 

discrimination. To address this problem, we applied a method that combines information 

across channels. 

To determine each channel's response variability and consequently how to best com

bine information across channels, the individual channel detection responses were recorded. 

Figure 3.6 shows the relative variance-of each of the six channel responses when the model 

detected a 5 cyldeg filtered noise. In both the signal-plus-noise interval (blue symbols) 

and the noise-alone interval (red symbols), the response variance of the channel with 

highest center spatial-frequency (16 cyldeg) was substantially greater than when the 

same channel was responding to noise alone. For the detection of both 5 and 15 cy I deg 

center frequency noise, relative variance increased as the channel center frequency in

creased. Comparing Figures 3.6 and 3.7 shows that the normalized variance in the 15 

cy I deg condition is slightly higher overall than in the 5 cy I deg condition. The relative 

response variance is highest for the 16 cyldeg channel, which has the largest linear spatial 

frequency bandwidth. 

Knowing the relative variances for each channel's output, a method for combining 

the information across the set of channels can be developed and a rule for discrimination 

implemented. Our model assumed that discrimination judgements were based on stim

ulus information contained in the signal present interval (i.e., the stimulus interval that 

was selected in the detection task). The set of channel responses in the signal present 

interval were used to calculate two quantities: 
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(3.2) 

(3.3) 

The variable ri represents the response of channel i in the signal present interval. T5i 

and T15i represent the expected (i.e., average) response of channel i if the 5 or 15 cyldeg 

pattern was presented, and a[ represent the variances of each channel computed from the 

blue curves in Figures ::1.6 and 3.7. D5 and D15 are the normalized Euclidean distances 

between the average and observed responses elicited by the 5 and 15 cy I deg stimuli, 

respectively. The discrimination response corresponded to the pattern that yielded the 

smaller distance. 

Figure 3.8 depicts the sensitivity, in d', for both the detection and discrimination 

models. The filled circles and squares represent d' for the detection 5 and 15 cy I deg 

detection task and the open circles d' for the discrimination task. The data were analyzed 

in the same way that the human observers' data were analyzed. A least-squares fit to the 

the detection data was computed for both the 5 and 15 cy I deg detection data (dashed 

lines). The solid line is the prediction for the discrimination data computed using the 

values from the least-square fits to the detection data as input to Equation 3.1. The 

prediction made by Equation 3.1 provides a good fit to the d' values of the discrimination 

model. That the model's discrimination data follow the prediction of Equation 3.1 means 

the model is consistent with the labeled-line hypothesis of Watson and Robson [21]. In 

summary, when the model can detect the signal, discrimination can be predicted from 

the model's detection performance for the two patterns. 

Overall, for both the detection 'and discrimination tasks, the model requires less stim

ulus contrast variance to match the sensitivity (d') of the human observers. Figure 3.9 

shows how much less contrast variance is required, by plotting the model efficiency for the 

two observers. Model efficiency was calculated by determining the contrast each of the 

observers required to obtain ad'= 1. Human observers were not as good as the model 

observer and ranged from one-quarter to one-half the model's performance. Consistent 

with the data presented in Chapter 2, observers performed best when the stimulus had 

a center-frequency of 5 cy ldeg. That the model outperforms the human observers is ex-



62 

• detect 5 cyldeg 
• detect 15 cyldeg 
0 discrimiMlte 

-prediction 
a • • •fit 

CHAPTER 3. DETECTION & DISCRIMINATION 

10""' 

Figure 3.8: d' plotted as a function of contrast variance for the Wilson and Gelb model 
for the double-judgement task. Dashed lines are fits to the data in both detection tasks 
(filled squares and circles), the model was also made to produce discrimination data 
(open circles) the solid line is the prediction from Eq. 3.1. 
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Figure 3.9: Model efficiency for observers MB and AP. Model efficiency was calculated 
as the ratio of contrast thresholds at d' = 1 for the model and human observers. 
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pected, as the model does not include any information losses, such as internal noise, that 

would be present in human observers. A second factor that could be contributing to the 

inability of the model to capture observers' behavior is that the weights used to set the 

sensitivity of the channels in the model were not set based on the individual observers' 

contrast sensitivity functions. The weights used were from a CSF collected in Chapter 2, 

perhaps some of the difference between model and human observer performance could be 

explained by the weights used in the model over-estimating each observers' sensitivity. 

This experiment demonstrates that human observers can discriminate noise centered 

at 5 and 15 cy / deg, contrary to the suggestion of the classification images in Chapter 2. 

However, the question remains given the channel overlap in the 5 and 15 cy/deg detection 

conditions, what information are observers using to perform the discrimination. In the 

next experiment, we use the classification image technique to determine what information 

observers use to perform the discrimination task. 

3.2 Experiment 3.2 

Chapter 2 shows that measuring classification image data can substantially alter the 

interpretation of the results of an experiment that only measures observers' contrast 

thresholds. Thus, given the results of Experiment 3.1, we used the classification image 

technique [2] to measure observers' templates in detection and discrimination tasks. The 

classification image technique has been used to explore the visual templates that observers 

use to detect and discriminate a variety of stimuli in a wide range of tasks [2, 4, 8, 9]. 

3.2.1 Methods 

3.2.1.1 Observers 

The two observers who participate4 in Experiment 3.2 were the same observers who 

participated in Experiment 3.1. 

3.2.1.2 Apparatus 

The apparatus was identical to that used in Experiment 3~ 1. 
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3.2.1.3 Stimuli 

As in Experiment 3.1, the stimuli in Experiment 3.2 were filtered, one-dimensional 

Gaussian white noise that varied in center spatial frequency. The center-frequency of the 

patterns was either 5 or 15 cy I deg and was blocked randomized for the detection tasks. 

The spatial frequency bandwidth, the Gaussian envelope, temporal duration, and the 

background noise were identical to Experiment 3.1. 

3.2.1.4 Procedures 

The algorithm use~ to calculate a classification image depends on the psychophysical 

procedure used [1] and the proper method for computing classification images in double

judgment tasks has not yet been determined. Therefore, in the current experiment, 

detection and discrimination judgments were performed in separate blocks during a single 

session. During a single session, observers performed two blocks of 2-IFC detection tasks. 

In one block they detected patterns with a center-frequency of 5 cyldeg and 15 cyldeg 

in the other. The block order was randomized. After the two detection blocks, observers 

discriminated 5 and 15 cyldeg stimuli. The task was 2-IFC procedure where a 5 and 15 

cy I deg patterns were presented in random order on each trial and observers were required 

to select the interval that contained the 5 cy I deg pattern. 

For each detection block the contrasts of the the 5 and 15 cy I deg patterns were set 

by a QUEST procedure [20]. This determined the level of contrast that each observer 

required on that day to obtain 71% correct which corresponds to ad' of approximately 

one. The QUEST procedure was used for the first 150 trials of each detection block, on 
' 

the 151st trial, the contrast of the stimulus was fixed at the observer's contrast threshold 

for the remaining 500 trials in that block. For the discrimination block, the two stimuli 

were each set at the observer's detection threshold and a ±5% randomization factor was 

added to the contrast of each pattern independently on each trial to: i) allow for error 

in the estimate of contrast threshold; and ii) to make it difficult for observers to base 

discrimination on the perceived contrast of the stimuli. A session consisted of 1800 trials 

in total which took approximately 1.5 h to complete. Ten sessions were completed over 

approximately two weeks. 
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Figure 3.10: Classification images for observer AP for the detection of 5 cy/deg center
frequency noises (blue), 15 cy/deg noises (red) and discrimination (black). The points are 
the computed classification images. The solid curves represent the simultaneous fitting 
of three functions to the data (see text for details). 



-0. 

10 

• •• 

20 30 
cy/deg 

• • ...... 
•• 

MB 

40 

67 

50 

Figure 3.11: Classification images for observer MB for the detection (blue: 5 cy/deg 
condition; red: 15 cyjdeg condition) and discrimination (black) tasks. The points are 
the computed classification images. The solid curves represent the simultaneous fitting 
of three functions to the data (see text for details). 
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3.2.2 Results 

Fits to the classification images for the detection task were computed using the log-

normal function: 
1 -(log(x)-1')2 

Power(xiJ.t, a) = e 2log(u)2 

log (a) v'21f (3.4) 

where J.t is the center-frequency of the channel and a the bandwidth. Classification 

images from the discrimination task were fit with a function that was the difference of 

the two lognormal functions fit to the detection data. It is important to note that the 

fitting procedures for the two detection tasks and discrimination task were not performed 

separately. Instead, the fits were calculated for all three channels simultaneously by 

adjusting the two center-frequencies of the detection channels (J.tscyfdeg and J.llScy/deg) and 

their two bandwidth parameters (ascy/deg and al5cy/deg)· 

Table 3.2 shows the best fitting center frequencies and octave bandwidths for the log 

normals fit to the classification images measured in the detection task. The values re

ported here replicate those we have reported previously (see Tables 2.3 and 2.4). Again, 

one key feature of the data stands out: the best fitting center-frequencies of the clas

sification images in 5 and 15 cy I deg are the same (approximately 4 cy I de g), while the 

bandwidths of the classification images in the two conditions differ by ~ 0.1 log units. 

Unlike the data from the detection task, the discrimination data were not fit with 

Equation 3.4 but, instead, were described by the difference between the two curves fit 

to the detection data. The motivation for using a difference was as follows: if the two 

templates measured in the detection task are also being used for the discrimination task, 

then the spatial frequencies where the two detection templates differ maximally ought to 

be the frequencies where the most information is available to the observer to complete 

the detection discrimination task. 

Table 3.2: Center-frequency, bandwidth and 95% confidence intervals, in cyldeg, for two 
observers in the detection tasks. 

stimulus (cyldeg) AP MB 
center frequency 5 4.25 ± 1.02 3.91 ± 01.22 
center frequency 15 4.15 ± 0.67 4.27 ± 1.06 

bandwidth 5 13.5 ± 1.1 13.8 ± 1.7 
bandwidth 15 28.8 ± 1.32 27.5 ± 1.4 
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The Median Absolute Deviation (MAD) provides a descriptive statistic that is robust to 

outliers for deviation of the observed classification images from the fitted classification 

image. For the detection tasks, the MAD for the residuals of our fitted normalized· 

templates was less than 0.04 units of normalized power for both observers with both 

stimuli. For the discrimination task, MAD increased to 0.12 units for observer AP and 

0.11 units for observer MB. To evaluate the fits, Hotelling's T2 was calculated. This 

method was developed for the classification image technique by Abbey and Eckstein 

[1], the statistic tests whether the differences between the observed and predicted a 

classification images are significant. We used the fitted lognormal function for each 

observer, in each of three tasks, as the known profile. For both observers, in all tasks, 

Hotelling's T2 statistic failed to find significant differences between the classification 

image and the lognormal profile: for the 5 cyldeg detection task T2 = 0.397(p = 0.527), 

for 15 cy ldeg T2 = 0.288(p = 0.591) and T2 = 1.06(p = 0.303). 

Table 3.3: Observer R2 for two observers in the detection (5 and 15 cyldeg) and discrim
ination tasks. 

5 cyldeg 15 cyldeg Discrimination 
AP 0.757 0.750 0.647 
MB 0.825 0.816 0.615 

R2 was also calculated for the two observers in the two tasks, and the values are 

shown in Table 3.3. ln all cases, significant correlations (p < 0.0001) were observed. 

Each of the three statistics computed indicates that the lognormal channels fitted to the 

data provided a very good description of the shape of the template for noise detection 

and discrimination. While the fits are good, there are clear differences between the fit 

to the discrimination classification images and those produced by human observers. For 

example, the fit when the template weights are positive seems too broad. Also, for 

observer AP, the fit to the negative weights seems to be consistently under-predicted. 

3.2.3 Discussion 

The detection classification images obtained in the current experiment replicated 

those measured in Experiment 2.4. As before, the classification images had peaks that, 

surprisingly, were centered at :::::: 4 cy I deg when observers detected patterns centered at 5 

and 15 cy I deg. We also replicated the difference in bandwidth between the classification 

images measured for the two classes of patterns. From these data we created a model that 
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used the difference between the two detection classification to compute a template that 

provided a reasonably good fit to the classification image measured in the discrimination 

condition. 

Surprisingly, the difference in the bandwidths of the classification images in the 5 

and 15 cy I deg conditions are enough to explain the discrimination of the two classes of 

patterns. This point can be seen in the classification images in Figures 3.10 and 3.11. 

The reason this is surprising is that the fits of the two detection tasks were computed 

separately for each observer. After fitting, the difference between the detection channels 

was then computed to produce a third curve for discrimination that was then correlated 

with the actual discrimination classification. The analysis is computed in a manner in 

which no additional free parameters, other than the fits to the detection data, are used 

to explain the results of the discrimination classification images. 

The classification images for discrimination that we measured are inconsistent with a 

model that assumes that the discrimination of 5 and 15 cy I deg patterns are discriminated 

by two channels that differ in their center-frequency at 5 and 15 cy I deg. The ideal model 

would predict that the templates measured for detection ought to be centered on 5 and 

15 cyldeg and have a bandwidth of one octave. The ideal model would also use the 

difference of the output of the two channels but the predicted channel from the detection 

channels would be very different. 

The approach to modeling the discrimination data is a simple one and it could be 

argued that it is too simple to capture the difference between detection and discrimina

tion. The goal was not to find the best fitting model, but to explore how much of the 

variance in the discrimination classification image could be captured by a very simple 

model. This does not rule out that a more complex discrimination rule is being used, 

however it does explain a surprising degree of the variance in the discrimination classi

fication image. A natural question to ask at this point is if the difference between the 

two classification images for detection at 5 and 15 cyldeg center-frequencies can predict 

observers d' in the tasks used in Experiments 3.1 and 3.2. The following subsection de

scribes two simulations that explore whether a differencing model can predict observers' 

d'. 
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3.2.3.1 Do the classification images predict the d' of human observers? 

To address whether the templates measured in the detection and discrimination task 

could predict each observers' d', we performed simulations to determine whether d' could 

be predicted from the classification images shown in Figures 3.10 and 3.11. 

Table 3.4: Observer and model d' for the 5 and 15 cy I deg detection and discrimination. 
Also included is the diserimination d' from Equation 3.1 

Detect E· cy I deg Detect 15 cy I deg Discrimination SDT Prediction 
Model AP 0.130 0.46 1.6 0.91 
Human AP 0.138 1.01 1.3 1.22 
Model MB 0.5 0.55 1.7 0.75 
Human MB 0.7 1.2 1.18 1.34 

The procedures used to evaluate the classification image model d' were identical to 

that used with the human observers in this experiment. To generate a response in the 

detection task, the correlation of the classification images for the appropriate condition 

(5 or 15 cyldeg) and each interval in the 2-IFC task. The interval that produced the 

larger correlation was selected as the interval within which the signal appeared. In the 

discrimination task, the model used the observers' discrimination classification image to 

predict d'. 

This model is important for the two following reasons. Firstly, the task was changed 

from Experiments 3.1 to 3.2 to simplify the collection of classification images, therefore 

·a comparison of sensitivity between the blocked procedure used in this experiment and 

the double-judgement procedure used in the first experiment. Secondly, the fits of the 

discrimination classification image were relatively poor compared to those measured in 

the two detection tasks. The poor fits could indicate that the fitting procedure is not 

capturing important features of the classification image, specifically those features at 

high spatial frequencies or non-linear influences [15]. 

The d' for the template model and two human observers are shown in Table 3.4. 

The template model succeeds and fails in two important ways, the model captures d' for 

human observers for the detection of 5 cy I deg patterns and the discrimination of 5 from 

i5 cyldeg patterns, however, the model fails to predict d' for the detection of 15 cy/deg 

patterns. The failure of the model to capture the performance of human observers means 

that observers are using the information in a manner that is not represented in their 
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classification images. Murray, Bennett, and Sekuler [15] developed a method that could 

predict observer performance from their classification images, they found that classifi

cation consistently over-predicted observer performance, after investigating a number of 

non-linearities they concluded only phase-uncertainty explained the under-prediction of 

the classification images. The under-prediction in the classification images in this experi

ment is consistent with a number of studies that used grating and Gaussian blob stimuli. 

These studies found that classification images were often absent, despite observers being 

able to perform the task, when operating under the effects of uncertainty [3, 18, 19]. 

Perhaps, the under performance of the template model in our task for 15 cy I deg stimuli 

is the result of the effect of uncertainty at medium to high spatial frequencies. 

3.2.4 The Wilson-Gelb Model and Classification Images 
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Figure 3.12: Classification images for the Wilson-Gelb model for the detection of 5 cy I deg 
center-frequency noises (blue), 15 cyldeg noises (red) and discrimination (black). The 
points are the computed classification images. The solid curves represent the fits of three 
functions to the data (see text for details). 

In Chapter 2 the Wilson and Gelb (23] model was used to produce classification 

images. The Wilson and Gelb can produce classification images for both the 5 and 
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15 cy / deg detection conditions and the discrimination task. The model used in this 

experiment is described in Section 3.1.3.1. 

Figure 3.12 shows the classification images produced by the Wilson and Gelb model. 

Figures 3.11 and 3.10 to Figure 3.12 show that the model produces qualitatively similar 

classification images to human observers. However there are differences: i) the detection 

classification images produced by the model have narrower bandwidths; ii) the peak fre

quencies in the 5 and 15 cy/deg conditions differ more than.human observers and; iii) 

the negative weights in the model's discrimination classification image are approximately 

double the values obtained from human observers. It is possible that adjusting the pa

rameters of the model eould reduce these differences. However, the goal of applying the 

Wilson and Gelb model was not to fit human data precisely, but to see whether a simple 

model, with few free parameters could capture the major features of the classification im

ages. In this context, the similarities between between the classification images obtained 

from the model and human observers are, perhaps, more important than the differences. 

This model directly addresses the puzzling result that motivated the work presented 

in this chapter - that the similarities in the detection classification images imply that 

discrimination of noise with center-frequencies of 5 and 15 cy/deg ought to be difficult to 

discriminate. The model produces detection classification images that are peaked around 

5 cy / deg with bandwidth of approximately one and a a half octaves which reproduces 

the puzzling result. However, the model also discriminates 5 and 15 cy/deg patterns and 

uses a template that is similar to that used by human observers. 

3.3 Summary 

Experiment 3.1 obtained results in a double-judgment task that are consistent with 

a labeled-line model of detection/discrimination [21]. The Wilson and Gelb model was 

applied to Experiment 3.1 and provided a good account of human observers' d' in both 

the detection and discrimination portions of the double-judgment task. 

Experiment 3.2 measured classification images for the detection of 5 and 15 cy/deg 

stimuli. As see~ in Chapter 2, the channels for the detection of 5 and 15 cy / deg pat

terns overlap considerably- the result that motivated the experiments in this chapter. 

The classification images for discrimination show that using the channels that we found 

in Chapter 2 could be fit with the difference of the classification images measured for 

detection. 



74 CHAPTER 3. DETECTION & DISCRIMINATION 

Two models were applied to the data from Experiment 3.2. The first model, used 

observers' templates to attempt to predict d' in the detection and discrimination tasks. 

Human o bserve.rs d' in the 5 cy / deg detection and discrimination conditions was explained 

by the template model, but the model failed on the 15 cyfdeg task indicating that the 

templates fail to entirely capture how observers are using information in the 15 cy/deg 

detection task. The second model, the Wilson and Gelb model was used to produce 

classification images for detection and discrimination. The templates of the Wilson and 

Gelb model were qualitatively similar to those of human observers for both detection 

and discrimination, indicating that this simple model can capture the pattern of results 

shown in human templates. 

3.4 Conclusion 

The experiments in this chapter addressed the puzzling result from Chapter 2, that 

the classification images measured for noise filtered to have a center frequency of 5 and 

15 cy/deg seem quite similar. The result was puzzling because spatial frequencies of 5 

and 15 cy/deg are very discriminable. In this chapter we tested whether the thresholds 

and classification images we measured for detection could be related to discrimination. 

Surprisingly, we found that the small differences between 5 and 15 cy/deg classification 

images were enough to predict discrimination classification images. 
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Chapter 4 

Orientation summation in visual 
• noise 

Abstract 

The results of th~ two previous chapters imply that human observers inte

grate a wide range of spatial frequencies efficiently but do so in a manner 

consistent with a standard model of pattern vision [33]. In this chapter, 

we investigate whether the results found for the summation of spatial fre

quency can be extended to the summation of information across orientations. 

Detection thresholds were measured in a background of white noise for two

dimensional filtered noise of increasing orientation bandwidth at two spatial 

frequency bandwildths. Detection thresholds increased with the quarter-root 

of stimulus bandwidth as predicted by the ideal detector. The classification 

image technique was applied in a manner similar to that of Chapter 2. Unlike 

what was found in the spatial frequency summation experiments, the classi

fication images suggest that observers adjust the orientation bandwidth of 

internal channels to the orientation bandwidth of the stimulus. 

Introduction 

Standard models of the initial stages of visual processing include a stage in which 

stimuli are encoded by an array of multiple independent filters, or channels, that are 

tuned to relatively narrow ranges of spatial frequency and orientation [9, 30, 32, 33, 

77 
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34]. Support for multiple channel models comes (in part) from spatial frequency and 

orientation summation studies [16]. In a typical orientation summation experiment, 

contrast detection thresholds are measured for two oriented component gratings of spatial 

frequency F and orientations () and () ± 8 where 8 represents the difference in orientation 

between the two stimuli. A compound grating comprising the two stimulus components 

is created, and the contrast threshold for the compound grating is measured. Summation 

is observed, if the detection threshold for the compound stimulus is lower than thresholds 

for either of the component gratings alone. Significant summation has been found only 

when the orientations of the two compound grating do not differ by more than 15-20° 

[16], suggesting that only orientations within relatively narrow range can be summed. 

In this chapter, we applied an approach to orientation summation that was first 

used by Green to study auditory frequency summation [18, 19] and extended to spa

tial frequency summation by Kersten (20]. Kersten measured detection thresholds for 

static, one-dimensional bandpass noise stimuli presented in a background of white noise. 

The bandwidth of the noise was varied across conditions. Kersten found that detection 

thresholds, when expressed as root-mean squared (RMS) contrast, were proportional to 

the quarter-root of the stimulus bandwidth. Kersten also calculated the performance 

of an ideal detector that summed contrast power optimally across all spatial frequency 

components in the stimulus. Unexpectedly, the ideal detector's threshold (expressed as 

RMS contrast) was only 0.5 units lower than human thresholds and was proportional to 

the quarter-root of stimulus bandwidth. Hence, absolute efficiency, defined as 

( )

2 
Cideal 

'TJ = Cobserver 
(4.1) 

where Cideal and Cobserver are the ideal and human observer's RMS contrast thresholds, 

was high (~ 50%) and nearly constant across stimulus bandwidth. To explain this 

result, Kersten (20] speculated that human observers used an internal channel, or filter, 

whose bandwidth could he adjusted to match the spatial frequency bandwidth of the 

noise signal. The finding that spatial frequency summation was highly efficient and 

nearly constant across a wide range of bandwidths suggests that the process of combining 

responses across channels appeared to be inconsistent with the results of spatial frequency 

summation studies using sine wave grating stimuli. Chapter 2 and 3 reconcile the findings 

of Kersten with standard models of spatial frequency summation [16]. 

Chapter 2 found the results of the experiments described above to be robust and 

replicable. However, using the conclusion that they support a model in which the vi-
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sual system uses adjustable channels to sum spatial frequency proved to be premature. 

We measured classifica·Gion images which clearly showed that adjustable channels are 

not necessary to produce efficient detection that is constant across stimulus bandwidth. 

Observers used information from a single template that did not exhibit any adjustment 

of bandwidth. Moreover, we showed that the detection and classification image results 

could be explained using a standard multiple channel model [33]. In short, the results of 

this chapter· bring the work of Kersten in line with standard models of spatial frequency 

summation [16]. 

Spatial frequency and orientation are modeled simi~arly but to date measuring ori

entation summation with a visual noise stimulus using the methods [20] has not been 

done, nor has a classifi.Gation image analysis been applied to orientation summation to 

determine what information is used when detecting orientation filtered noise. The ideal 

detector for orientation filtered noise is the, same as that for spatial frequency when the 

stimulus is expressed as the number of Fourier components in the stimulus. Thus, we 

can use the same approach as we used previously [28] to determine whether orientation 

summation exhibits optimal summation and the shape of the template for the detection 

of orientation filtered noise. The goal ,was to determine whether the standard model can 

encompasses the detection of orientation filtered noise signals as well as the narrow-band 

grating stimuli used to develop it. 

Two experiments are described in this chapter. The first extends the findings of [20] 

to patterns that are band-limited in spatial frequency (two spatial frequency bandwidths, 

one- and two- octaves) but vary in their orientation bandwidth over a wide range. The 

second experiment uses the response classification technique [3, 11, 14, 26] to estimate 

the tuning characteristics of the internal filters used in this noise detection task. 

4.1 Experiment 4.1 

In this experiment we perform an experiment analogous to the one presented in Ex

periment 2.1, however, instead of only varying the spatial frequency bandwidth, the 

bandwidth of the stimuli varied in both their spatial frequency and orientation band

widths. 
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4.1.1 Methods 

4.1.1.1 Observers 

The three observers in this experiment were members of the McMaster University 

community and were paid for their participation. Observers were na!ve with respect to the 

experimental hypotheses, had normal or corrected-to-normal Snellen acuity, Pelli-Robson 

contrast sensitivity, and had extensive practice with this and other visual psychophysical 

tasks. Both observers were 27 years of age. 

4.1.1.2 Apparatus 

A Macintosh G4 running MATLAB and the Psychophysics and Video toolboxes [5, 23] 

was used to generate the stimuli. The stimuli were presented with an ATI Radeon video 

card on a Sony GDM-F520 monitor set to a resolution of 1024 by 768 pixels. The entire 

display subtended a visual angle of 10.8 by 8.3 degrees at the viewing distance of 2m. The 

frame rate of the display was 75Hz and the mean luminance 45 cdjm2
• The luminance 

of the display was calibrated using a PhotoResearch PR-650 photometer before each 

session. A Cambridge Research System Bits++ device was used to achieve fine grained 

(i.e., 14-bit) control of contrast. Responses were recorded with a button box. 

4.1.1.3 Stimuli 

The stimuli were two-dimensional Gaussian white noise patterns that were spatially 

filtered with ideal spatial frequency and orientation filters. The spatial frequency filter 

was centered on 5 cycles per degree ( cy /de g) with a bandwidth of either one or two 

octaves. The ideal filter applied to orientation and was centered on the horizontal orien

tation. In the one octave spatial frequency bandwidth condition, two-sided orientation 

bandwidths were 2°, 16°, 32°, 64°, 96°, 128°, and 154°. In the two octave spatial frequency 

bandwidth condition, the two-sided orientation bandwidths were 2°, 16°, 32°, 64 o, 96°, 

128°, and 154°. Bandwidth will also be expressed as the number of components in the 

stimulus in this chapter because while the measure of bandwidth is more intuitive, the 

. ideal observer generates a quarter-root relationship with RMS contrast and the number 

of components. 

Stimulus contrast was modulated with a circularly-symmetric Gaussian envelope with 

a standard deviation of 1.08 degrees of visual angle. Stimuli were presented in a back

ground of white masking noise that had a variance of 0.32. A new sample of signal noise 
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and background noise were generated on each interval on every trial. Stimulus duration 

was 200 ms. The monitor provided the only illumination in the testing room. 

4.1.1.4 Procedure 

Observers viewed the stimuli binocularly through natural pupils. A 3 x 3 degree out

line of a square of maximum contrast surrounded the stimuli to reduce spatial uncertainty. 

To reduce adaptation, the square had a 50% probability of being black or white on each 

trial. The square had a width of two pixels and was on the screen for the entire duration 

of each trial, from the presentation of the fixation point until the observer's response. 

A two-interval forced-choice (2-IFC) procedure was used. The observer was instructed 

to fixate a high-contrast dot located in the center of the display. The observer initiated 

each trial by pressing the spacebar on the keyboard. After a delay of 50 ms, the fixation 

point was removed, then after another 50 ms delay the first stimulus interval appeared. 

The first stimulus interval was 200 ms in duration and was followed by a 300 ms blank 

inter-stimulus interval. After the inter-stimulus interval a second 200 ms stimulus interval 

appeared. The stimulus intervals were marked by clearly-audible tones. The observer's 

task was to determine which of the two intervals contained the target. Auditory feed

back, in the form of low- and high-pitched tones, indicated the accuracy of the response 

after each trial. Stimulus contrast variance was varied across trials using four interleaved 

staircases, two converging on the 71% correct point of the psychometric function and two 

on the 84% correct point [31]. The staircases were stopped when the observer had com

pleted 75 trials in each staircase. The total number of trials run in each session was 2100, 

300 trials per stimulus bandwidth, and seven stimulus bandwidths/session. Thresholds 

were estimated by fitting a cumulative normal to the combined data of all four staircases. 

Two spatial frequency bandwidth conditions, of one- and two- octaves wide filtered 

noise, were run in separate sessions in reverse order for the two observers. The order of 

stimulus bandwidth was block randomized in each test session; the bandwidths were pre

sented in separate blocks of trials and the order of blocks/bandwidths were randomized. 

Each observer completed all bandwidth conditions during a single session. Four sessions 

were run for each observer at each spatial frequency bandwidth. 

4.1.2 White Noise Thresholds 

In addition to the conditions listed, we collected contrast detection thresholds for 

a white noise stimulus after all the data were collected in the conditions previously 



82 CHAPTER 4. ORIENTATION SUMMATION 

mentioned. The procedure for collecting white noise thresholds was the same as those for 

the filtered noise stimuli, with the one difference, the number of trials completed. The 

two observers completed four white noise detection sessions containing 300 trials. The 

thresholds from this portion of this experiment were run at the end of experiment 4.1, 

after all other conditions were completed. 

4.1.3 Results 

Figures 4.1 and 4.2 shows threshold versus bandwidth (TvB) functions for three 

observers in two spatial frequency conditions. Each symbol type (squares, circles, and 

triangles) represents the thresholds for a different observer. The filled symbols are the 

data from the one octave spatial frequency filtered stimuli and open for the two octave 

stimuli. Both Figure 4.1 and 4.2 show that as the orientation bandwidth of the stimulus 

increases, the RMS contrast threshold for each observer increases. There are no statistical 

differences between the thresholds in the one and two octave spatial frequency bandwidth 

conditions. The dashed lines in both Figure 4.1 and 4.2 have a slope of 0.25 and have 

been shifted vertically for visual comparison to the data. For all observers in both spatial 

frequency conditions, the slope of the TvB function appears to follow the prediction of 

the quarter-root-law. For more precision we computed best-fitting power functions for 

to each TvB function. 

Although the sampling of the data points in this experiment does. not make it readily 

apparent, TvB functions tend to be flat and then rise as the bandwidth of the stimulus 

is increased (see 2.1). The fittjng routines therefore excluded the narrowest data point 

(2°). The slopes for the estimated TvB functions are shown in Table 4.1. 

Table 4.1: Threshold vs. bandwidth slopes for three observers in Experiment 4.1 for the 
one and two octave conditions. 

I Noise a 2 I AP I MB I NS I 
1 
2 

I 0.24l 0.24l 0.26l 
0.26 0.24 0.25 

Figures 4.3 and 4.4 show absolute efficiency (Eq. 4.1) as a function of orientation 

bandwidth for the two spatial frequency conditions. The absolute efficiencies found 

in this experiment are comparable to those found for spatial frequency summation in 

Chapter 2. Absolute efficiency for the three observers is approximately constant for 
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Figure 4.1: Noise detection thresholds versus stimulus bandwidth (top axis) and number 
of spatial frequency components (bottom axis) for three observers in Experiment 4.1 in 
the one octave spatial frequency condition. The different symbols represent thresholds 
for three separate observers. The dashed lines have a slope of 0.25 and are provided as 
a guide; they have been shifted vertically for clarity. 
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Figure 4.2: Noise detection threshold versus stimulus bandwidth (top axis) and number 
of spatial frequency components (bottom axis) for three observers in Experiment 4.1 in 
the two octave spatial frequency condition. The different symbols represent thresholds 
for three separate observers. The dashed lines have a slope of 0.25 and provided as guide 
and have been shifted vertically for clarity. 
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Figure 4.3: Absolute efficiency for three observers in the one octave spatial frequency 
bandwidth condition. 
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Figure 4.4: Absolute efficiency for three observers in the two octave spatial frequency 
bandwidth condition. 
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both the one and two octave spatial frequency conditions. The absolute efficiencies 

found in this experiment are lower than for spatial frequency summation. For spatial 

frequency summation efficiencies as high as 50% have been found, absolute efficiency for 

our observers in this experiment are also relatively high, ranging from 20% to 40%. The 

efficiency data exhibit another pattern, the absolute efficiencies found are not significantly 

different for the one- and two-octave spatial frequency conditions. This result indicates 

that the human visual system can optimally sum a wide band of orientations for spatial 

frequency bandwidths of both one- and two-octaves . 
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Figure 4.5: Threshold versus bandwidth data re-plotted from Figures 4.2 and 4.3. The 
grey square represents the observers' threshold for detecting white noise. The dashed 
line is the best fitting power function to the data excluding the threshold measured with 
white noise. 

'Figure 4.5 is a summary figure of the data of Figures 4.1 and 4:2. The filled squares 

represent the mean RMS contrast thresholds from the three observers in the one octave 

spatial.frequency condition and the open squares the means for the two octave spatial 
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frequency condition. The data from each of the spatial frequency conditions is plotted 

as RMS contrast threshold versus the number of Fourier components in the stimulus 

(bottom axis) and stimulus bandwidth (top axis). The dashed line was fit to the data 

and has slope of 0.25. 

The grey square represents the mean white noise threshold, expressed in RMS con

trast, for the three observers. The white noise threshold data point was not used when 

the combined data were fit with a power function. Including this data point provides 

an instructive test as it demonstrates that the quarter-root law breaks down when the 

stimulus includes all frequencies and orientations. Although the quarter-root law breaks 

down for white noise, the number of components required to observe a breakdown of the 

quarter-root law has yet to be determined. 

4.1.4 Discussion 

The results of Experiment 4.1 echo the results for spatial frequency summation found 

in both Experiment 2.1 and [20] as well as the summation found auditory frequency [17]. 

The important similarity between the results of this chapter and previous work is that 

observer's TvB functions exhibit a slope of 0.25 in log-log coordinates. Recall that in 

Chapter 2, the result of a TvB function slope of 0.25 important as it is the slope produced 

by an ideal observer. This result, along with the high absolute efficiencies we observed are 

consistent with the idea that orientation information is summed optimally. In addition 

to the results suggesting optimal summation, the results are consistent with the idea 

that noise patterns are detected by an internal filter that has an adjustable orientation 

bandwidth. This interpretation of the data is consistent with that provided by Kersten 

and in Chapter 2. 

4.2 Experiment 4.2 

The observation of a TvB function that follows the quarter-root law has led to the 

interpretation that a human observer could be using a strategy for detecting filtered noise 

patterns that resembles the adjustable template used by the ideal observer [17, 20]. In our 

previous work, TvB functions exhibited optimal summation, but we found the puzzling 

result that the classification images for the detection of visual noise did not change 

in a manner consistent with the ideal observer as the bandwidth of the stimulus was 

increased (see Chapter 2). This inconsistency leads to the conclusion that without data 

from classification images it is premature to conclude that TvB functions are an index of 
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optimal summation. In short, TvB functions with quarter-root slopes are not sufficient 

evidence to conclude that observers are summing information optimally or applying an 

adjustable template in a noise detection task. 

4.2.1 Methods 

4.2.1.1 Observers 

The two observers who participated in this experiment were both 28 years old, were 

students at McMaster University, and paid for their participation. Both observers were 

naive with respect to the experimental hypotheses, had normal Snellen acuity, and had 

extensive practice in psychophysical tasks. Both observers ran in the first experiment of 

this chapter. 

4.2.1.2 Apparatus 

The apparatus used to run this experiment was identical to that used in Experiment 

4.1. 

4.2.1.3 Stimuli 

The stimuli were the same as those used in the one octave spatial frequency band

width conditions in Experiment 4.1. The level of external noise also was the same as in 

Experiment 4.1. 

4.2.1.4 Procedures 

The procedures were identical to those used in Experiment 4.1. Observers were highly 

practiced and ran 2500 trials per classification image. 

4.2.2 Results 

We used the 2-IFC variant of the response classification image task which has been 

described in detail previously[!, 2]. The major difference between the classification im

ages measured in previous work and the classification images presented here is that our 

classification images were calculated using the power spectra of the noise masks, rather 

than t4e noise masks themselves. On each trial, the Fourier transform of the noise mask 

in each interval was computed. Next, the difference between the pair of power spectra 
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Figure 4.6: Classification images for the ideal observer and two human observers. The 
top row of images are classification images for the ideal observer and the second two 
rows are for two observers, MB and AP. The images in each column are from different 
bandwidth conditions, half-bandwidths of 2° , 48° and 90°. The images are rotate power 
spectra, spatial frequency increases the distance from the center of the image. Horizontal 
orientations are represented in the center row of the image and vertical orientations by 
the center column, intermediate orientations are represented as diagonals through the 
image between the two cardinal orientations. All images were collected with the same 
number of trials. 
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Figure 4. 7: Smoothed classification images for the same conditions and observers pre
sented in 4.6. The top row of images are classification images for the ideal observer and 
the second two rows are for two observers, MB and AP. The images in each column are 
from different bandwidth conditions, half-bandwidths of 2°, 48° and 90°. White regions 
represented where power in the stimulus is correlated with a correct detection response, 
whereas the dark or black regions indicate regions where incorrect responses are cor
related with the stimulus. An important comparison to note is the difference between 
human and ideal observers at off-frequency and orientations in the stimulus. See the text 
for more detail. 
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was calculated at each spatial frequency, and the difference spectra was placed into one 

of four bins based on which interval contained the signal (1 or 2) and the observer's re

sponse (correct or incorrect). The ~ower spectra within each bin were averaged: the two 

average spectra computed from correct responses were summed, as were the two average 

spectra computed from incorrect trials. Finally, the difference between the correct and 

incorrect averaged spectra was computed and the resulting classification image was nor

malized to have a peak value of 1. Classification images calculated using this procedure 

are proportional to the linear template applied to the power spectra [1, 2]. 

Figure 4.6 shows the raw classification images for the ideal observer and two human 

observers. Each classification image was computed using the same number of trials for 

both the human and ideal observers. The images represent spatial frequency as the 

distance from the center of the image. Orientation information is represented by sets of 

pixels in a line that begins in the center of the image and are extends to the edge of the 

image. In the center row horizontal orientations are represented, vertical orientations by 

the center column, and intermediate orientations are represented as diagonals or different 

angles through the image between the two cardinal orientations. The images displayed 

are of the Fourier the power spectrum of classification image, but rotated to display 

horizontal frequencies along the horizontal axis of the image. For the remainder of this 

chapter, images of this sort will be referred to as power spectra. 

The color of a pixel in the power spectra represents how information is weighted by 

the observer when performing the task. If the pixel is lighter than median grey, then 

noise power at that frequency and orientation is positively correlated with a detection 

response. The lighter the pixel, the more positively correlated with the detection of the 

signal. Conversely, for pixels darker than median grey, power at that frequency and 

orientation is negatively correlated with detection. 

The power spectra shown are a subset of the full 512 x 512 power spectra for each 

condition. The images sample the 64 x 64 region of each power spectra classification 

image. The sampled regions include the all the spatial frequencies presented in the stimu

lus. This region corresponds to spatial frequencies from DC to approximately 20 cy / deg. 

Figure 4. 7 shows classification images that are smoothed to reduce spurious noise in the 

template that results from a limited number of trials. The convolution kernel used was a 

5 x 5 two-dimensional triangle function whose value at each point in the function were 

set such that the area under the triangle function was one. Convolution with the triangle 

function had the effect of smoothing the template weights at the frequencies/ orientations 
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in a 5 x 5 region covered by the triangle function. 

Figures 4.6 and 4. 7 exhibit important details of the templates measured in this ex

periment. First, the templates bear a resemblance to the ideal templates: the templates 

exhibit quite a narrow bandwidth with the smallest stimulus bandwidth and get larger 

with increasing stimulus. It is apparent from these images that the templates adjust their 

bandwidth as the stimulus bandwidth is increased from a half-bandwidth 2° to 48°190°. 

However, it is not obvious that the templates for the 48°190° stimulus bandwidth differ 

for humans, although they do quite clearly for the ideal observer. Whether these two 

bandwidth conditions differ for humans will be addressed in the next section. 

Additionally, there are two curious findings that can be observed in the templates. In 

the narrowest bandwidth condition, human observers tend to use off-stimulus orientations 

and spatial frequencies in a manner that negatively correlates with the presentation of 

the signal- the dark or black regions in Figure 4.7. The ideal observer does not make 

use of off-stimulus information (orientation and· spatial frequency) but instead only uses 

information contained within the stimulus. 

There are ·two clear examples of off-stimulus information, AP shows off-orientation 

information use and MB shows off-frequency information use. AP uses off-orientation 

information, unlike the ideal observer. This is shown in the figure in that the observer's 

classification image contains dark black regions at orientations other than the orientations 

contained in the stimulus. MB shows of off-frequency information use. MB uses spatial 

frequency information lower than that used by the idea observer, frequencies that are 

not contained in the stimulus. The interpretation of these findings will be addressed in 

the discussion. 

4.2.3 Analysis 

To relate the classification images to orientation channels found in orientation masking 

experiments e.g., [15], the two-dimensional classification images collected in this exper

iment were collapsed into one-dimensional classification images -as a function of orien

tation. To collapse the classification images to one-dimension, they were summed in 1 o 

steps across a band spatial frequencies (filter center-frequency 5 cy I deg and bandwidth 

of approximately 20 cy I deg) over a 180° range of orientations. The resulting functions, 

scaled to have a maximum value of 1, are shown in Figure 4.8. One feature of the data 

that is apparent is that orientations around 0° or horizontal had the strongest influence 



94 CHAPTER 4. ORIENTATION SUMMATION 

AP MB 
BW 

-90 -60 -30 0 30 60 90 :.l!Q -60 -30 0 30 60 90 

..... 
..t: 
0') 

·m o.s 

~ 
48° Q) 0 .... 

Cd • 

~-0.5: 
Q) 

1-
:.~o -60 -30 0 30 60 90 -ao -30 0 30 60 90 

:.l!Q -00 -30 0 30 60 90 ~ -60 -30 0 '30 60 90 

Orientation (degrees) 

Figure 4.8: The black dotted lines show the one-dimensional circularly summed classifica
tion images for two observers in three conditions. The grey lines show the best difference 
of Gaussian fits to the empirical data. The x-axis in each sub-figure is orientation, the 
y-axis the weight of the template when scale to have a maximum of 1. See text for more 
detail. 
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Figure 4.g: Ideal observer templates for the 2°, 48°, and goo bandwidth conditions. The 
2° bandwidth condition is shown in grey, 48° in green, and goo in blue. The ideal observer 
weights all orientatiom: positively and sums them equally. 
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on observers' decisions. Vertical orientations or other orientations far away from zero 

also had an influence, but in an opposite manner to that of horizontal frequencies. This 

can be contrasted with the classification images of the ideal observer which are shown 

in Figure 4.9. The ideal observer uses only the orientations contained within the stimu

lus and only positively weights the information which is quite different from the human 

observer data shown in Figure 4.7. 

Table 4.2: Template half-width at half-height for two observers in three bandwidth con
ditions in degrees. 

I BW I API MB I 
2 17 15 

48 18.5 22.5 
90 27.5 27.5 

Table 4.3: Equivalent Width as defined in Bracewell [4], for two observers in the three 
conditions measured in degrees. 

I BW I API MB I 
2 29.6 32.1 

48 45.7 36.7 
90 48.7 41.6 

Tables 4.2 and 4.3 show descriptive statistics of the one-dimensional templates in Fig

ure 4.8. Both the measures of half-width at half-heigh and equivalent width support the 

idea that observers adjusted the orientation bandwidth of the templates in response to 

changes in the orientation bandwidth of the stimulus. However, the increase in template 

bandwidth is noticeably smaller than one would expect if observers were using an ad

justable template, like the ideal observer that matched the width of the stimulus exactly. 

The extent of the adjustment of the ideal observers template can seen in Figure 4.8. 

The adjustment of the ideal observer template is much larger than the adjustment of the 

weighting of the human observers. The remainder of this section uses curve fitting to 

explore how this discrepancy could be explained. 

To further analyze the results of our classification images, we fit a difference of Gaus

sians function which contains a positive gaussian component and a negative gaussian 
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component. In addition to providing better fits than a model. that uses a single Gaussian 

to fit the data, another justification for using a DoG function is that it has been used 

previously to model orientation channels. [7, 9, 24, 27]. Typically, a DoG function has 

four free parameters: one for the center/mean and another for the bandwidth/standard 

deviation for each of the positive and negative Gaussians that comprise the function. In 

the DoG function fit to our data the number of parameters was limited to three by con

straining the fitting routine to equate the centers of both Gaussian functions. A second 

constraint, namely that the bandwidth of the positive gaussian be narrower than the 

bandwidth of the negative Gaussian, was also applied. The constraints included in this 

model are consistent with previous models of orientation channels [6, 7, 24, 27]. 

Table 4.4: DoG center orientation parameters expressed as u in degrees and 95% confi
dence intervals for two observers. 

IBWI API MBI 
2 0.64 ± 1.99 -0.01 ± 1.21 

48 -5.1 ± 7.31 7 ± 5.33 
90 5 ±4.55 9 ± 6.41 

Table 4.5: DoG orientation bandwidth parameters, for both the positive and negative 
Gaussians in the DoG function, expressed as u in degrees and 95% confidence intervals 
for two observers. 

r DoG parameter I API MBI 
2 positive 20.1 ± 1.99 21.0 ± 1.21 
2 negative 59.9 ± 0.11 60.8 ± 2.03 
48 positive 25.3 ± 4.86 24.9 ± 5.33 
48 negative 74.7 ± 0.11 75.8 ± 5.14 
90 positive 30.1 ± 2.55 29.9 ± 2.41 
90 negative 90.1 ± 0.11 89.8 ± 7.09. 

Tables 4.4 and 4.5 show the best-fitting (least-squares) parameters and confidence 

intervals computed via a bootstrap procedure [13]. The DoG fits provide a good descrip

tion of the classification images. The fits of the bandwidth parameters shown in Table 

4.5 are separated into the two components of the fitted DoG function; the positive Gaus

sian and the negative Gaussian. The fits of the positive Gaussian show an increase in 

bandwidth as the stimulus bandwidth was increased. This increase in the fitted parame-
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ters is consistent with the data for the measures half-width at half-height and equivalent 

width from the classification images. The width of the positive Gaussian increases as the 

bandwidth of the stimulus is increased. 

The fits of the negative Gaussian of the DoG function also show an increase in band

width as the stimulus bandwidth is increased. The best fitting parameters of the negative 

Gaussian have a much larger bandwidth than the positive Gaussian. If the negative Gaus

sian is interpreted as an inhibitory effect, this result is consistent with previous research 

on psychophysical inhibitory effects for orientation [21, 24, 29, 34, 35]. The bandwidth 

of the negative Gaussian increases as the bandwidth of the stimulus increases. The in

crease in the bandwidth parameter for the negative Gaussian is larger than that observed 

for the positive Gaussian as it increases from approximately 60° to 90° as the stimulus 

bandwidth increases. 

4.2.4 Discussion 

The classification images lead to hypotheses about how observers used stimulus in

formation to perform this detection task. While the templates measured by classification 

image technique adjust with increasing stimulus bandwidth, Figure 4. 7 they do not match 

the templates used by the ideal observer. One hypothesis to explain this difference is 

that observers are performing implicit comparisons to perform the detection task. In 

other words, not only are observers using information within the stimulus orientation 

and frequency bandwidth of the signal, they are comparing the information content of 

the signal region to the non-signal region of this stimulus. Using this comparison, if 

the observer finds that there is a large amount power outside of the stimulus band, the 

interval with the power outside of the stimulus band will be rejected. Why observers 

would adopt this sub-optimal strategy remains to be explained. 

4.2.5 The Cigars and Donuts Model 

Olzak and Thomas [22] proposed a model of summation that could account for the 

classification images observed in this chapter - the Cigars and Donuts model. The 

first stage of the model consists of an array of channels that process a narrow band of 

information. For example, a first-stage detector could process a one-octave band of spatial 

frequency around 2 cyjdeg and orientations 30° either side of vertical. While Olzak and 

Thomas have focused on spatial frequency and orientation, the model is general enough 

to describe early vision along any number of other dimensions (e.g., color, motion). To 
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Figure 4.10: A schematic figure of the model, figure adapted from Olzak and Thomas 
(22]. The figure was originally adapted from the single cell recording work of (10]. In 
the figure, each Gabor represents a single unit tuned to spatial fr.equency, orientation 
and phase. The area within each of the regions bounded within black and white lines is 
summed by a single mechanism that sums over spatial frequency or orientation. See text 
for details. 
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add biological plausibility to their model, a second stage of the model contains two steps, 

· within-channel response non-linearity and a pooled gain control. The next stage of the 

model sums information across a specified dimension and will be describe in detail as it 

is the model step that is most relevant to the work in this thesis. 

Figure 4.10 shows a schematic of the Cigar and Donut model. The Gabor elements in 

the figure represent detectors tuned to spatial frequency and orientation. The summation 

mechanisms of the model are represented by the regions bounded lines. Information. 

within a given region is summed to produce a response that is produced by combining 

information across the first stage mechanisms. For example, the region outlined in black 

in Figure 4.10 - a Cigar -sums signals at a small set of similar oblique orientations across 

a wide range of spatial frequencies. Another Cigar mechanism, represented by the dashed 

black line in Figure 4.10, sums signals across a wide range of spatial frequencies centered 

around horizontal orientations. A Donut mechanism sums signals across orientation at a 

narrow range of spatial frequencies. Two Donut mechanisms are represented by the solid 

and dashed white lines in Figure 4.10. Donut mechanisms sum across all orientations at 

low and medium spatial frequenci,es. The final stages of the Cigar and Donuts model are 

decision stages, first difference between the two summed dimensions is computed and the 

final response scaled to observer sensitivity as measured by d'. 

The connection between the Cigars and Donuts model and the experiments presented 

in this chapter can be seen by comparing the schematic of the model shown in Figure 4.10 

and the classification images in Figure 4. 7. The space-' represented in the classification 

images represents how observers use information at a given spatial frequency and ori

entation. Continuous regions suggest that observers are combining information across 

spatial frequency or orientation. Thus, it is possible that the classification images are 

measuring the summation mechanisms proposed by Olzak and Thomas [22]. Specifically, 

the circular white regions in Figure 4. 7 in the 48° and goo bandwidth conditions could 

be the result of Donut summing mechanisms. 

One limitation of the classification image technique, is that the images are the result 

of observer responses over a large number of trial, and, as such, do not give a direct 

measure of what information an observer is using on any given trial. This raises the 

possibility that observers may not be summing information across a broad range of ori

entations, as the 48° and goo bandwidth conditions in Figure 4. 7 show, but instead using 

horizontal/oblique/vertical information on a sub-set of the trials. However, there is rea

son to think that this hypothesis is unlikely, as any inconsistent use of information will 
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make the classification images more difficult to measure as observers' responses will not 

correlate well with the information at a given orientation/frequency in the image. The 

classification images shown in Experiment 4.2 were measured with 2500 trials, which 

is, in general a relatively small number of trial compared to other classification image 

experiments [1, 12, 14, 26]. 

Lastly, one other puzzling feature of the classification images might be explained by 

the Olzak and Thomas [22] Cigars and Donuts model: there are regions in the classi

fication image that are negatively correlated with observers' responses, the dark/black 

regions in Figure 4. 7. In other words, information in these regions, drives the observer 

to respond that respond that a signal was not presented in a given interval of the 2IFC 

task. That human observers should respond in this fashion is puzzling, as Figure 4. 7 

shows that the ideal observer does not produce classification images with negatively cor

related regions. The dark/black regions in the classification images might be explained 

by the fact that the final decision stage of the Olzak and Thomas [22] model contains 

a differencing mechanism that subtracts the responses of two summation mechanisms to 

model human observers' discrimination performance. This leads to the hypothesis that 

observers could be using a detection strategy that is related to one that would be useful 

for a discrimination task. 

4.2.6 Inhibition/Response Suppression in the Classification Image? 

The templates measured in this experiment are consistent with a previous experiment 

that used sinusoidal gratings and employed a sub-space reverse correlation technique [24]. 

In the orientation sub-space variant of the classification image technique, stimuli are pre

sented successively in time at a range of orientations and observers were instructed to 

press a button when they detected a stimulus at the target orientation (e.g., vertical). 

Ringach found, once the baseline level of responding was corrected for, that observers 

responded more frequently than baseline to the target orientation, at baseline for or

thogonal orientations, but oblique orientations were responded to less frequently than 

baseline. When Ringach plotted response rate is plotted as a function of orientation, the 

resulting tuning curves are very similar to those presented in the first row of Figure 4.8. 

The analysis in the results section processed the two-dimensional classification images 

and summarized them as the one-dimensional orientation tuning curves presented in 

Figure 4.8. The negative template weights in Figure 4.8 are the result of the presence 

of the black/dark regions presented in the classification images shown in Figure 4.7. 
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Ringach's finding that observers respond less frequently than the baseline level of response 

to oblique orientations and the result, shown in Figure 4.8, that the template weights take 

on negative val':les at oblique orientations can be interpreted that observers are actively 

suppressing information at oblique orientations. The results from the two tasks raise the 

question whether the two techniques are tapping into inhibitory or response suppression 

mechanisms. Ringach, Shapley, and Hawken [25] measured single-cell firing in primary 

visual cortex (V1) in anesthetized macaques and found a tuning curve via the sub

space reverse correlation technique. Ringach et al. found a wide diversity of orientation 

tuning in V1 including cells that responded below baseline outside of their orientation 

tuning. Perhaps, both the data of Ringach and the data presented in Figure 4.8 provide 

psychophysical measures of inhibitory/ suppression mechanisms. 

The data in Table 4.5 show that the bandwidth of the positive Gaussian or excitatory 

component ranges from approximately 20 to 30 degrees as the stimulus bandwidth is 

increased, the negative Gaussian or inhibitory mechanism, increases in bandwidth from 

approximately 60 to 90 degrees. If it is true that the classification images presented here 

are tapping excitatory and inhibitory response mechanisms and if those mechanisms 

correspond to the positive and negative components of the DoG function then it raises 

the hypothesis that inhibitory mechanisms are more flexible/adjustable in their responses 

than excitatory mechanisms. 

4.3 Conclusion 

The goal of this chapter was to determine if the results we found in Chapter 2 extended 

to orientation. Unlike the work on spatial frequency channels in Chapter 2, this chapter 

provides evidence that is inconsistent with standard models of orientation summation 

[8, 16, 32, 34, 35]. Not only do the threshold versus bandwidth data exhibit a quarter

root law, but observers' templates exhibit flexibility that is consistent with the idea 

that the visual system could be using adjustable channels to detect and sum orientation 

information in a white noise background. 

References 

[1] C.K. Abbey and M.P. Eckstein. Classification image analysis: estimation and sta

tistical inference for two-alternativ~ forced-choice experiments. Journal of Vision, 2 

(1):66-78, Jan 2002. 



103 

(2] C.K. Abbey, M.P. Eckstein, and F.O. Bochud. Estimation of human-observer tem

plates in two-alternative forced-choice experiments. Proceedings of SPIE, 3663: 

284-295, Jan 199£!. 

(3] A. Ahumada and J. Lovell. Stimulus features in signal detection. Journal of the 

Acoustical Society of America, 49:1751-1756, Jan 1971. 

(4] R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, 2000. 

(5] D. Brainard. The psychophysics toolbox. Spatial Vision, 10:443-446, Jan 1997. 

(6] D. Burr, M.C. Morrone, and L. Maffei. Intra-cortical inhibition prevents simple cells 

from responding to textured visual patterns. Experimental Brain Research, 43(3): 

455-458, 1981. 

(7] M. Carandini and D.L. Ringach. Predictions of a recurrent model of orientation 

selectivity. Vision Research, 37(21):3061-3071, 1997. 

[8] C. Chubb and M.S. Landy. Orthogonal distribution analysis: A new approach 

to the study of texture perception. In M.S. Landy and J .A. Movshon, editors, 

Computational Models of Visual Processing, pages 291-301, Cambridge, MA, 1991. 

MIT Press. 

(9] R.L. DeValois and K.K. DeValois. Spatial Vision. Oxford University Press, New 

York, 1988. 

(10] R.L. DeValois, D.G. Albrecht, and L.G. Thorell. Spatial frequency selectivity of 

cells in macaque visual cortex. Vision Research, 22(5):545-59, Jan 1982. 

· (11] M.P. Eckstein, S.S. Shimozaki, and C.K. Abbey. The footprints of visual attention 

in the Posner cueing paradigm revealed by classification images. Journal of Vision, 

2(1):25-45, 2002. 

(12] M.P. Eckstein, S.S. Shimozaki, and C.K. Abbey. The footprints of visual attention 

in the Posner cueing paradigm revealed by classification images. Journal of Vision, 

2(1):25-45, 2002. 

(13] B. Efron and B.J. Tibshirani. Introduction to the Bootstrap. Chapman & Hall, 

1994. 



104 CHAPTER 4. ORIENTATION SUMMATION 

[14] J.M. Gold, R.F. Murray, P.J. Bennett, and A.B. Sekuler. Deriving behavioural 

receptive fields for visually completed contours. Current Biology, 10(11):663-6, Jun 

2000. 

[15] S.W. Govenlock, C.P. Taylor, A.B. Sekuler, and P.J. Bennett. The effect of aging 

on the orientational selectivity of the human visual system. Vision Research, 49(1): 

164-172, 2009. 

[16] N.V.S. Graham. Visual Pattern Analyzers. Oxford University Press, New York, 

1989. 

[17] D.M. Green. Auditory detection of a noise signal. In J.A. Swets, editor, Signal 

detection and recognition by human observers, pages 523-547, New York, 1960. 

Wiley. 

[18] D.M. Green. Auditory detection of a noise signal. Journal of the Acoustical Society 

of America, 32(1):121-131, Jan 1960. 

[19] D.M. Green. Auditory detection of a noise signal. In .J.A. Swets, editor, Signal 

detection and recognition by human observers, pages 523-547, New York, 1960. 

Wiley. 

[20] D. Kersten. Statistical efficiency for the detection of visual noise. Vision Research, 

27(6):1029-1040, Jan 1987. 

[21] T.S. Meese and D.J. Holmes. Spatial and temporal dependencies of cross-orientation 

suppression in human vision. Proceedings of the Royal Society B, 274(1606):127, 

2007. 

[22] L.A. Olzak and J.P. Thomas. Neural recoding in human pattern vision: model and 

mechanisms. Vision Research, 39(2):231-256, 1999. 

[23] D.G. Pelli. The videotoolbox software for visual psychophysics: transforming num

bers into movies. Spatial Vision, 10(4):437-442, Jan 1997. 

[24] D.L. Ringach. Tuning of orientation detectors in human vision. Vision Research, 38 

(7):963-972, 1998. 

[25] D.L. Ringach, R.M. Shapley, and M.J. Hawken. Orientation selectivity in macaque 

V1: diversity and laminar dependence. Journal of Neuroscience, 22(13):5639, 2002. 



105 

[26] A.B. Sekuler, C.M. Gaspar, J.M. Gold, and P.J. Bennett. Inversion leads to quanti

tative, not qualitative, changes in face processing. Current Biology, 14(5):391-396, 

2004. 

[27] M.N. Shirazi. Emergence of orientation-selective inhibition in the primary visual 

cortex: a Bayes-Markov computational model. Biological Cybernetics, 91(2):115-

130, 2004. 

[28] C.P. Taylor, P.J. Bennett, and A.B. Sekuler. Spatial frequency summation in visual 

noise. Journal of the Optical Society of America A, 26(11):B84-93, Nov 2009. 

[29] P.O. Teo and D.J. Heeger. Perceptual image distortion. In SID International 

Symposium Digest of Technical Papers, volume 25, pages 209-209. Citeseer, 1994. 

[30] B.A. Wandell. Foundations of Vision. Wiley, New York, 1995. 

[31] G.H. Wetherill and H. Levitt. Sequential estimation of points on a psychometric 

function. British Journal of Mathematical & Statistical Psychology, 18:1-10, Jan 

1965. 

[32] H.R. Wilson and J.R. Bergen. A four mechanism model for threshold spatial vision. 

Vision Research, 19(1):19-32, Jan 1979. 

[33] H.R. Wilson and D.J. Gelb. Modified line-element theory for spatial-frequency and 

width discrimination. Journal of the Optical Society of America A, 1(1):124-131, 

1984. 

[34] H.R. Wilson and F. Wilkinson. Evolving concepts of spatial channels in vision: From 

independence to nonlinear interactions. Perception, 26:939-960, Jan 1997. 

[35] H.R. Wilson, D.K. McFarlane, and G.C. Phillips. Spatial frequency tuning of orien

tation selective units estimated by oblique masking. Vision Research, 23(9):873-82, 

1983. 



Chapter 5 

Conclusion 

This chapter has three goals, to briefly summarize the key results of the three preceding 

chapters, to discuss possible future directions that are related to the work in this thesis, 

and how the results of this thesis fit within the broader context of vision science. 

Results Summary 

Chapter 2: Spatial frequency summation in visual noise 

Chapter 2 began by examining previous results that suggested human observers com

bine information across a wide range of auditory and spatial frequencies with high effi

ciency. Green [15, 16] found that noise was summed optimally in audition and Kersten 

[19] discovered that the visual system also appears to sum visual noise of increasing 

bandwidth optimally. Chapter 2 found this result to be replicable and robust to changes 

in external noise level, randomization, and temporal duration. Despite the robustness 

and replicability of the results in Chapter 2, the chapter provides an object lesson on the 

importance of using multiple methods to gather lines of converging evidence. The clas

sification images in Chapter 2 illustrate this lesson, as without measuring classification 

images, the data from Experiments 2.1, 2.2, and 2.3 ostensibly support a model in which 

the visual system uses adjustable channels to sum spatial frequency in a noise detection 

task. The classification images collected in Experiment 2.4 clearly show that adjustable 

channels are not necessary to produce efficient detection that is constant across stimulus 

bandwidth. Moreover, the modeling contained within Chapter 2 demonstrates that a 
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standard multiple channel model [61] is enough to explain both the detection and clas

sification image resultE. In short, the results of this chapter bring the work of Kersten 

[19], in line with standard models of spatial frequency summation [13]. 

Chapter 3: Detection and discrimination of visual noise 

The experiments of Chapter 3 were motivated by a curious finding in Experiment 2.4. 

When classification images were measured in Experiment 2.4 at center frequencies ( CF) 

of 5 and 15 cy I deg, the templates measured were centered on 5 cy I deg in both conditions. 

The visual system can easily discriminate 5 and 15 cyldeg; in experiment 2.4, however, 

observers were asked merely to detect a stimulus not to discriminate stimuli centered on 

those frequencies. To determine if the classification images would differ in a discrimina

tion task, Experiment :3.1 used a double-judgement procedure to simultaneously explore 

noise detection and discrimination. Experiment 3.1 found that, as in the interpretation 

of results from Chapter 2 one-octave wide noise patterns each with a CF of 5 and 15 

cy I deg are discriminated in a manner consistent with the idea of independent channels 

or labelled-lines [59]. The classificatio~ images for detection replicated the classification 

images found in Experiment 2.4. Surprisingly, the subtle differences between classifica

tion images for detection of 5 and 15 cy I deg patterns could explain the classification 

images measured for discrimination and could be modeled with the standard model of 

spatial frequency detection and discrimination [61]. 

Chapter 4: Orientation summation in visual noise 

Chapters 2 and 3 explored the summation of spatial frequency in visual noise. Stan

dard models of the visual detection and discrimination use multiple channel models to 

encode both spatial frequency and orientation [13, 55, 60, 61, 62]. With this similarity in 

mind, Chapter 4 examined the summation of orientation information with the methods 

used in Chapter 2. Detection thresholds for visual noise increased with increasing orien

tation bandwidth: specifically, detection threshold was proportional to the quarter-root 

of the number of spatial frequency components in the stimulus. Consequently, absolute 

efficiency was approximately constant as a function of orientation bandwidth. However, 

as Chapter 2 showed, TvB detection data consistent with a quarter-root law are not 

enough evidence to conclude that observers are summing information in a flexible or ad

justable manner. Experiment 4.2 measured classification images to reveal the template 

that observers were using to detect orientation filtered noise. For orientation filtered 
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noise, unlike spatial frequency filtered noise, we found that the orientation bandwidth of 

observers' templates adjusted to orientation bandwidth of the stimulus. 

Optimal summation is a key idea presented throughout this thesis. The motiva

tion behind this work stems from work by Kersten [19] on the efficiency of detecting 

one-dimensional spatial frequency filtered noise. As mentioned previously, the results 

of Kersten may be interpreted as evidence for optimal summation of spatial frequency 

information across a wide bandwidth, quite unlike the probability summation ideas that 

are incorporated into standard models [13]. Similar to the approach taken in this thesis, 

investigating the summation of orientation as well as spatial frequency information in 

complex identification would address the question of how efficiently the visual system 

uses information and what information is used when detecting, discriminating, and iden

tifying patterns. However, not only is it important to test a range of stimuli, for example, 

the comparison made between gratings and one-dimension noise in the Introduction, but 

a variety of methods are required as well. To be specific, if in Chapters 2 and 4, we had 

measured only thresholds, instead of also measuring the classification images, we would 

have missed important important data that speak to the adjustable channels hypothesis 

and difference between the processing of spatial frequency and orientation. 

Context Within Vision Research and Possible Future Directions 

Levi, Klein and Chen (2005) 

Levi et al. [25] measured classification images for noise detection in a background of 

white noise. In their experiment· they varied the range of the highest and lowest spatial 

frequency in their noise. However, their stimuli differs from the noise used in this thesis; 

the experiments in this thesis used filtered one- or two-dimensional white noise, whereas 

Levi et al. summed 11 sinusoidal gratings of random contrast. To manipulate the center 

frequency and bandwidth of their noise they varied both the spatial frequency and step

size among the frequencies of the sinusoidal gratings. Consequently, unlike the stimuli 

used iri Experiments 2.4 a~d 3.2, the stimuli used by Levi et al. [25] had center frequencies 

that increased as stimulus bandwidth increased (Figure 5.1). 

Figure 5.2 shows the mean classification im~ge from four observers collected by Levi 

et al.. If the results gf Levi et al. were described using the terminology used in this thesis, 

their experiments could be summarized as showing that the template center frequency 

may be adjusted when the stimulus changes in both center frequency and bandwidth and 
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the stimulus is composed of a small limited number frequency components. The data 

in Figure 5.2 show a shift in center frequency of the classification image as the range of 

the stimulus was increased from 0.5-5 to 2-22. Also, Green showed in derivation of the 

ideal detector that at least 30 Gaussian distributed random variables are required to be 

summed such that the noise is better described by a normal distribution, rather than 

a chi-squared distribution. On the surface, these results differ from the data found in 

Experiments 2.4 and 3.2 of this thesis where we found adjustment of the classification 

image bandwidth but no adjustment of template center frequency, but because of the 

substantial differences in the stimuli, it is difficult to interpret the differences between 

these two results. 

To test whether the classification image would change if observers were uncertain 

about both the stimulus center frequency and bandwidth, the methods used in Exper

iment 2.2 could be combined with the classification image technique. Experiment 2.2 

manipulated observer uncertainty by randomizing the stimulus bandwidth on each trial. 

Randomizing stimulus center frequency and bandwidth while simultaneous measuring 

classification images m,ing stimulus centered on a given spatial frequency on log-axes 

would answer the question of whether the classification image would show adjustment of 

center frequency or bandwidth. 

7 Amplitude Spectra 

Chapter 2 measured detection thresholds for signals that varied in their spatial 

frequency bandwidth to investigate spatial frequency summation. The patterns used 

throughout this thesis had amplitude spectra that were, on average, fiat across frequency. 

Research has ·shown that the amplitude spectra of natural images is 7 on average [8]. 

The 7 amplitude spectra of natural images has lead researchers to hypothesize that the 

human visual system may be optimized for natural 7 amplitude spectra [2, 9, 46, 53, 54]. 

The difference in amplitude spectra in our stimuli and those of natural images, leads to 

the hypothesis that the difference between the amplitude spectra of natural stimuli and 

the filtered visual noise stimuli used in this thesis could alter our detection results. For 

example, using filtered noise stimuli with 7 amplitude spectra could alter the results and 

interpretation of the curious result found in Experiment 2.4, where classification images 

for noise stimuli with a center frequency of 15 cy I deg were detected using a template 

centered at 5 cy 1 deg, especially if the visual syste~ is utilizing the information contained 

at low spatial frequencies differently than higher spatial frequencies. 
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Using 7 would not be a fishing expedition as in least one case the use of 1 has produced 

results apparently inconsistent with a textbook psychophysical effect, the oblique effect 

[1]. The oblique effect refers to the finding that horizontally and vertically oriented 

gratings are perceived better than gratings with an oblique orientation. The oblique 

effect has been observed with a large variety of experimental methodologies (masking, 

adaptation, discrimination and detection) and is a classic result in visual psychophysics. 

However, a recent study by Essock, DeFord, Hansen, and Sinai [7] has shown that when 

an orientation filtered noise with a 1 amplitude spectrum was used as a stimulus observers 

discriminate oblique orientation better. Computational models of the oblique effect [26] 

have yet to be applied to 1 orientation filtered noise patterns and perhaps might be unable 

to explain this effect. This raises the question of what inform~tion are observers using 

when performing the task of Essock et al., the classification image methods presented in 

this thesis could answer this question by determining if observers use different aspects 

of the stimulus when performing tasks to measure the oblique effect with gratings and 

filtered noise. 

One-dimensional Noise and Edges 

Edge detection has been an important and long standing problem in vision research 

[30, 32, 40, 44, 49, 52]. Efficiency and classification images have been measured for edge 

detection [5, 6, 31]. Edge detection efficiency, depends on the spatial parameters (length 

and width) of the stimulus, but the maximum efficiency observed was approximately equal 

to the efficiencies found in Experiment 2.1 with spatial parameters that were similar to 

those used in this thesis [ 6]. 

To explain edge detection, energy models have been proposed [28, 29, 32, 56]. In 

general, an energy model encodes the stimulus as contrast values, applies a filtering 

mechanism such as template, and then pools information using Minkowski summation 

with an exponent equal to two. Such a model is equivalent to the the Wilson and Gelb 

[61] model used in Chapters 2 and 3. The modeling of edge detection, along with the 

efficiency and classification image data, also suggests a link between the two tasks. 

One-dimensional visual noise and edges are related stimuli. The components in an 

edge stimulus have a 1 amplitude spectrum and the zero crossings of the the Fourier 

components contained.in the stimulus are aligned. If, instead of being aligned, the zero 

crossings of the components are randomized, the image will appear to be one-dimensional 

visual noise with a 1 amplitude spectrum. Thus, one parameter, the alignment of the 
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phase in the signal can be used to vary a signal from an edge to a one-dimensional 

noise signal. Edge detection and noise detection lie at the extremes of a continuum of 

phase alignment. If the same mechanisms are used to detect edges and visual noise, 

the prediction follows that efficiency ought to be constant as the phase alignment of the 

signal is varied. Also, the template for edge and noise detection ought to be constant as 

the phase alignment of the signal is varied as well. 

Two Possible Applications of Double-judgment Psychophysics 

The work presented Chapter 3 shows that the small differences in the spatial frequency 

bandwidth of two classification images measured in a detection task are enough to sup

port discrimination a model a labelled line or optimal model of detection/discrimination. 

The methods of Chapter 3 varied the center frequency of the stimuli used but kept the 

bandwidth of the stimulus constant. Another approach could be to vary the bandwidth 

and measure a double-judgement task (20, 33] where stimuli with the same center fre

quency but different bandwidths could be detected and discriminated. 

Two possible results could be obtained from a double-judgement task where noise of 

two different bandwidths (e.g;, one and six octaves) are detected and discriminated. First, 

if the data do not follow the predictions of Equation 3.1, then this result would indicate 

that the patterns of different bandwidths are not detected independently. Second, if 

the data do follow the predictions of Equation 3.1, this supports the assumption of 

independence. If the first result were found, it would support the idea that one and six 

octave patterns are not detected/ discriminated by independent mechanisms. In either 

case, the results from this experiment would provide another route for 'testing the idea of 

spatial frequency channel independence. It is not unreasonable to believe that if observers 

are required to do two tasks simultaneously, as in a double-judgement task, they could 

use different mechanisms from those in summation experiments such as those described 

by Graham (13]. 

In addition to adding to the results presented on spatial frequency summation, ap

plying double-judgement methods and the classification image technique could extend 

the findings of Chapter 4 on the summation of orientation information. In Chapter 3 a 

simple model based upon human observers' classification images for detection provided 

a good fit to discrimination data. A combining the classification image technique with 

double-judgement techniques could investigate the independence of orientation channels. 

If the orientation information is summed in a way that is suggested by the classification 
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images presented in Chapter 4, then it makes sense to predict, depending on the stimulus 

parameters, that Equation 3.1 ~hich relates d' for detection and discrimination would 

fail. 

If Equation 3.1 fails to predict the results of a double-judgement with an orientation 

filtered noise stimulus then it is possible that summation mechamsms, such as the Cigars 

and Donuts proposed by Olzak and Thomas [37, 38], and described in Section 4.2.5 of 

this thesis are being tapped by the task. This would provide another line of evidence 

that orientation information is not processed independently at detection threshold, which 

would be inconsistent with other experiments examining orientation summation[3, 12, 13]. 

ModelFest 

The standard model of vision has been an important area in vision research for half a 

century [18, 47, 48]. Recently, many researchers from several labs have participated in an 

exercise known as ModelFest and have attempted to develop a standard model of vision 

using a standard set of calibrated visual stimuli [4, 56, 57]. The goal of ModelFest was 

to develop a standard observer that could be applied to a wide variety of tasks such as 

predicting outcomes of corrective laser eye surgery, evaluating display quality, the fidelity 

of compressed video, and the legibility of text [57, 58]. 

ModelFest is impressive in that identical experiments were conducted by several labs 

and detection thresholds measured for a variety of stimuli, from sinusoidal gratings to 

natural images. One of the series of ModelFest papers, a paper by Watson [56] evaluated 

the ability of a set of models to predict human observer thresholds. Three models are 

relevant to the work presented in this thesis, the contrast energy model, the generalized 

energy model, and the Gabor channels model. The three models will be described briefly 

and then links to the work presented here will be described. 

The contrast energy model, encodes the stimulus as contrast values, then performs 

spatial filtering, and then pools the information in the stimulus by squaring and sum

ming the contrast information. The squaring and summing operation is a Minkowski 

summation with an exponent equal to two, a value that was used in previous chapters to 

model the behavior of human observers. The contrast ene~gy model is the ideal observer 

used in this thesis is Chapters 2 and 4 but with the addition of internal noise that limits 

detection thresholds. The contrast energy model fails in that human observer detection 

thresholds are much greater than the contrast energy model predicts. Specifically, the 
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contrast energy model under-predicts human observer thresholds by:::::: ~-!for checker

board patterns, natural images, and white noise. The failure of the contrast energy model 

· to predict white noise thresholds is the most relevant of the model failures, recall that 

in Experiment 4.1 white noise detection thresholds were under-predicted by the optimal 

summation. The model failure found by Watson is thus consistent with the work in this 

thesis. 

The generalized energy model, is a minor modification of the contrast energy model 

that allows the exponent of the Minkowski summation to vary as a free parameter. The 

standard interpretation of Minkowski exponents greater than two is that they capture 

the effects of probability summation [45]. Watson varied the Minkowski exponent from 

:::::: 2 - 3 in the generalized energy model to incorporate probability summation. Allowing 

the exponent to vary, reduced prediction errors for a variety of stimuli, however under

prediction error for natural images and white noise was unchanged. In the modeling work 

described in Chapter 2 the Minkowski exponent was varied. Values of two to five were 

used and the result was that the model fits were unchanged. The findings of Watson and 

the findings of Chapter 2 are consistent in that both models found that over a range of 

exponents, the Minkowski exponent does little to improve model fits for targets whose 

spatial frequency bandwidth exceeds that of Gabors and grating stimuli. 

The Gabor channels model described by Watson is closest to the Wilson and Gelb 

model used in Chapters 2 and 3. Unlike Wilson and Gelb model the channels in The 

Gabor channels model has more free parameters. The model contains eleven spatial 

frequency channels, four orientation channels and a parameter to set the spatial phase of 

each Gabor. Watson notes the Gabor channels model does the .best, of any of the models 

tested, in predicting thresholds for white noise stimulus, however the model predicts 

human observer thresholds of :::::: ! to l of their actual values. 

None of the models discussed by Watson incorporate adjustable channels [17, 25, 50] 

or the failures of channel independence [37, 38]. ModelFest was a unique exercise and 

the researchers involved understandably sampled only a restricted space of stimuli and 

focused on detection tasks. It could be argued that the level of detail required to capture 

the results that challenge the standard models of detection used by ModelFest might 

not be necessary for the applications for which the standard spatial. observer designed 

[57, 58]. On the other hand, for basic vision research, there is no reason not to progress 

toward a more detailed and complete understanding of pattern vision and such effects 

may become even more important as vision researchers understanding of primary visual 
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cortex moves forward in the future[35, 36]. 

Optimal Summation with Naturalistic Stimuli 

Many psychophysical techniques have been used to study both letter identification 

and word recognition (e.g., [21, 22, 23, 24, 27, 39, 41, 42, 43, 51]). The techniques used 

and the conclusions drawn from experiments that investigate letters and words assume 

that the standard model applies to the perception of these complex patterns. That the 

standard ·model can explain results in letter/word recognition and identification, speaks 

to the usefulness of the standard model, that it can be used to solve problems that seem 

so different from those for which it was developed (e.g., the detection of Gabors and 

sinusoidal gratings). One recent result in the field of letter identification has found that 

spatially frequency information is summed optimally [34]. Given that the idea of optimal 

summation of information has been key throughout this thesis, it is worth describing 

this study in detail. Recently, efficient summation of spatial frequency information has 

been found in a 26-AFC letter identification task using filtered and composite stimuli 

in both the fovea and the periphery. The remainder of this subsection will discuss their 

experiment and foveal results and relate their work to that presented in this thesis. 

Nandy and Tjan [34] used 26lower-case filtered letters that were filtered to have a one

octave wide full width at half-height stimulus bandwidth at a range of center frequencies: 

fcenter=l.25, 1.77, 2.5, 3.54, 5 and 7.07 cycles per letter. In their first experiment, Nandy 

and Tjan asked observers to identify a filtered letter of different center frequencies. From 

this task, they were able to determine a letter tuning function (LTF) by measuring 

contrast sensitivity for each of the filtered letters. The interpretation of the LTF is 

straight forward, it represents the spatial frequency tuning of letter identification and the 

tuning properties of the LTF can be described by two parameters, peak center frequency 

and bandwidth. 

Once the LTF was measured Nandy and Tjan generated three filtered alphabets. Two 

alphabets were letters filtered with a low /high center frequency filter of one-half/twice 

the peak center frequency of LTF. The third alphabet was created by combining the 

two letter sets. Two aspects of this compound stimulus are important: the compound 

letters contained non-overlapping spatial frequencies and the contrast ratio of the two 

components patterns was set to be equal to what it would be in the unfiltered letter in the 

alphabet. This experiment is analogous to the one conducted by Graham and Nachmias 

[12] discussed in the Introduction. Nandy and Tjan quantify the amount of summation 
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using a measure summation they called the integration index, which equals: 

C S'fow_hioh 
S= 2 2 c slow + c slow (5.1) 

where C S2 for each of the conditions equals one over the contrast threshold (contrast 

sensitivity) squared. Depending on the value of S for a given observer, three interpreta

tions are possible given the assumptions that the visual system behaves as if it were an 

ideal observer, limited by two factors, the match of a template to the signal, and a fixed 

additive internal Gaussian noise. The three interpretations are as follows: if S is less than 

1, the information provided by the two component stimuli is not combined optimally. If 

Sis equal to 1, then the information from the component stimuli is combined optimally. 

If theSis greater than 1, then this is evidence that the mechanisms used to encode the 

stimuli are non-independent. Specifically, given the two assumptions mentioned, a value 

of S greater than 1 could be the result of templates that do not closely match the width 

of the signal, but instead have a much broader bandwidth that overlaps in spatial fre

quency. A second possibility to explain a value of S greater than 1 is that the observers' 

behavior could be dominated by a noise in a model that is added after the computation 

for each of the two templates. The possibilities of a value of S greater than or less than 1 

will not be discussed further as N andy and Tjan found that the value of S was equal to 

1, indicating efficient or optimal summation of spatial frequency information in a letter 

identification task. 

The evidence from the experiments by Nandy and Tjan also provide evidence for 

optimal summation. However, as was the case with the results of Kersten the question of 

what information observers are using in the compound letter identification task remains. 

While the modeling work of Nandy and Tjan demonstrates that given a set of assump

tions, an observer with two-octave wide templates that are summed optimally explains 

their summation results, a measure of the templates via the classification image technique 

could alter the interpretation of their results substantially as we found in Chapter 2. As 

yet, the question of whether orientation information in letter stimuli is summed and if 

so, whether the summation is efficient remains unanswered. 

Another question about the results of Nandy and Tjan crops up when considered in 

light of work done by Gold et al. [11]. Gold et al. found that the efficiency ofletter iden

tification, unlike face identification, was approximately flat as function of stimulus center 

frequency for stimuli with both one- and two-octave wide spatial frequency bandwidths. 

While the results of Nandy and Tjan can be interpreted as evidence for optimal sum-
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mation of spatial frequency information for letter stimuli, it remains to be determined 

whether this result generalizes to other patterns, such as faces. 

A recent paper by Goffaux and Dakin [10] has found evidence that orientation in

formation is summed optimally for face stimuli. In their work, they filtered faces with 

horizontal and vertical filters to produce two component stimuli. They also measured 

observers' sensitivity to the compound stimulus. The logic of this experiment is identical 

to the summation experiments described in the introduction. Goffaux and Dakin found 

that for these stimuli sensitivity to the compound stimulus was predicted by a detector 

that sums the horizontal and vertical component stimuli, and sums them optimally. 

Optimal summation is a key idea presented throughout this thesis. As this section 

describes, researchers are currently following up on the idea of optimal summation and 

the flexible use of channels and the work presented contributes to this current tend in 

vision research. 
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