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Abstract 

In premixed turbulent combustion, the normal speed of propagation of the 

flame front is enhanced by the turbulent velocity field. This project will 

focus on the method of computing the normal speed of propagation of the 

flame front in the Majda-Souganidis model of turbulent combustion. Solving 

this problem involves computing the eigenvalue of a nonlinear cell problem. 

Discussed in this thesis is a new, simple and direct numerical method for 

approximating the eigenvalue, also called the effective Hamiltonian. 
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Introduction 

Front propagation in turbulent flow dynamics is a problem of significance 

in combustion science. Reaction-diffusion-advection equations provide the 

description of propagation of fronts with applications in physics phenomena 

such as combustion and biological sciences. It is easier to predict the front 

speed in the laminar case, where the advecting fluid velocity involves spatia­

temporal scales which are small when compared to the flame front thickness. 

However, the problem of predicting the front speed enhancement becomes 

more difficult when the advecting fluid flow field has two separated scales 

both larger than the front thickness. In this case, the two-scale velocity 

field is comprised of a large scale flow and an intermediate scale flow due 

to turbulence. An asymptotic model has been developed by Majda and 

Souganidis [34] in order to predict the front speed enhancement. Their model, 

used in this project, applies only to the case of premixed flame combustion, 

where turbulence does contribute to the location of the front by enhancement 

[35]. 

The mathematical theory of the Majda-Souganidis model introduces a 
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method for computing the speed enhancement by minimizing a function of 

an averaged (effective) Hamiltonian. The effective Hamiltonian (H(P)) is the 

eigenvalue of a nonlinear, stationary Hamilton-Jacobi equation, also called 

the cell problem. In this case explicit formulas for the front speed cannot be 

deduced anymore and the problem must be solved numerically. 

Some numerical methods for solving Hamilton-Jacobi equations with no 

eigenvalues [37] or by solving a system of Conservation Laws [26], are already 

known. In this project, we present a new, direct and simple numerical method 

for computing the normal speed of propagation of the flame front for the 

Majda-Souganidis model of turbulent premixed combustion. 

This project is organized as follows: in chapter 1 we discuss the theory 

behind the derivation of the formula for the normal speed of propagation of 

the front. In chapter 2 we analyze the solutions of the stationary nonlinear 

cell problem using the theory of viscosity solutions [3]. Also in this chapter 

we will introduce the relationship between the solutions of the cell problem 

and the solutions of an evolution problem. It will be made clear why we 

will solve the evolution problem in order to obtain the eigenvalue and eigen­

function of the cell problem. In chapter 3 we concentrate on the numerical 

schemes implemented, respectively, the first order monotone finite difference 

(FOMFD) scheme and the second order Essentially-Non-Oscillatory (ENO) 

scheme. We also present the numerical results and explain how they follow 

the theoretical aspects of chapters 1 and 2, as well as how they compare to 

the results obtained by a different method by Bourlioux and Khouider [9]. 
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Chapter 1 

Equations for the Propagation 

of the Front 

1.1 Introduction 

This chapter starts by introducing the reaction-diffusion-advection equation 

for the temperature field. Majda and Souganidis [34] derived their mathemat­

ical model of turbulent combustion for premixed flames from the reaction­

diffusion-advection equation. In this chapter, we will closely follow their work 

in order to describe how in the limit c ---t 0 the reaction-diffusion-advection 

equation is related to a variational inequality problem. We will also show 

how the solution of the variational problem is related to the cell problem and 

the effective Hamiltonian. At the end of the chapter a brief account of the 

derivation of the normal speed of propagation of the flame front will be given. 
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1.2 The General Front Equation 

In the physical process of turbulent combustion, the propagation of the flame 

front is governed by an advection-diffusion-reaction equation for temperature 

[16],[34]. This is an initial value problem of the form: 

(1.2.1) 

Te(x, 0) =To for x E JRN X {0}. 

Here we have a flame front thickness of order E « 1, a weak diffusion 

term of order E and also a fast reaction term of order c-1. The temperature 

T has been normalized such that 0 :S T0 :S 1, where T = 0 represents the 

unburnt temperature (in an unstable region ahead of the front), while T = 1 

is the temperature on the burnt side (in a region of equilibrium behind the 

front). The nonlinear reaction rate f(T) = -KT(1- T) is assumed to be of 

Kolmogorov-Petrovski-Piskunov (KPP) type: 

f(T) > 0 for T E lR \ (0, 1) and f(T) < 0 for T E (0, 1) 

(1.2.2) 

f'(O) = infr>o( !~)) < 0. 

In the general case, we assume that the advecting velocity field V(x, t, y, r) = 
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v(x, t) + )..v(y, T) is periodic in the unit cubes in JRN x lR for each fixed (x, t), 

and that it is a bounded, Lipschitz continuous function on JRN x JR+ x JRN x JR+. 

By [34] taking into consideration assumption (1.2.2) and the above mentioned 

restrictions on the velocity field, one can derive the effective equation for the 

propagation of the flame front. 

Before describing (see section 1.2.2) the asymptotic behaviour of the sys­

tem (1.2.1), we relate the variables T and Z by re: = exp(c1 ze:). After this 

change of variables, equation (1.2.1) reduces to: 

ze: =clog To in intO X {t = 0} 

ze:(x, t) ~ -00 as T ~ 0 and X E JRN \ n 
(1.2.3) 

where n = spt(To) is a compact set. 

1.2.1 The Homogenization Procedure 

Majda and Souganidis [34] developed a nonlinear averaging (homogeniza­

tion) theory in order to obtain the evolution of the effective flame front in 

equation (1.2.1) in the limit E ~ 0. In this section, we present the homog­

enization procedure and derive formally the cell problem and the effective 

front equation by assuming that all the functions involved are smooth. 
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Derivation of the Cell Problem 

The cell problem arises in the formal expansion of the averaging problem. 

The method involves finding the limit as E -+ 0 of an approximate cell prob-

lem. We introduce the homogenization problem by writing: 

and denote (c:,, c~) f--7 (y, r), where a E (0, 1). Then we can write: 

Z[ = Zt +w~ 

Dxzc = DxZ + Dywc 

D2 Zc = D2 Z +c-aD2wc 
X X y 

(1.2.4) 

(1.2.5) 

Substituting the above relations (1.2.5) into equation (1.2.3) we obtain: 

Zt + w~ + V · (DxZ + Dywc) - ck(D;z + E-a D~wc)­

kiDxZ + Dywcj2 + (Tc)-1 f(Tc) = 0 in JRN x (0, oo) 
(1.2.6) 

In this formal expansion we can identify the approximate cell problem: 
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(1.2. 7) 

w"' is periodic in [0, l]N x [0, 1]. 

We let P = DxZ and k = 1. It will be shown later that in the limit 

c --t 0 there exists a unique H"' ( P, e::x;,_ , e:~ ) --. H ( P, x, t) and a smooth function 

we --t w satisfying the cell problem: 

W 7 - IP + Dywl 2 + V · (P + Dyw) = -H(x, t, P). (1.2.8) 

In chapter 2, we will focus only on the case where the solution of the cell 

problem w is not be dependant on T = c~ and P is a constant vector in JRN. 

In this particular case, the cell problem reduces to: 

(1.2.9) 

and contains the effective Hamiltonian (H(P)). 

Derivation of the Effective Flame Front Equation 

Majda and Souganidis [34] have proven that in the limit c --t 0, the effective 

equation for the propagation of the flame front can be derived from equation 

(1.2.6). It is given by the following variational inequality: 
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max(Zt- H(x, t, DxZ) + j'(O), Z) = 0 in IRN x (0, oo) (1.2.10) 

{ 

0 X E f2 
Z(x,O) = 

-oo x E IRN\0 
(1.2.11) 

where the set ft = a{x E IRN : Z(x, t) < 0} describes the location of the 

flame front for t > 0. Majda and Souganidis [34] showed that there are ve­

locity fields V for which the effective flame front described by the variational 

inequality do not evolve according to Huygen's Principle. In our project we 

will confine ourselves to velocity fields V = v + >.v with constant mean ve-

locity v and incompressible periodic velocity field v with zero mean (i.e. div 

v = 0 and (v) = 0). In this case, the evolving effective front will be described 

by an evolution equation that is consistent with Huygen's Principle and the 

location of the effective front depends only on the initial location and the 

normal velocity to the front. More precisely, the variational inequality is 

equivalent to the following Hamilton-Jacobi equation [16], [34]: 

Ut- F(Du) = 0 (1.2.12) 

where u(x, t) = 0 is the zero level set and equation (1.2.12) is the level set 

equation, also called the geometric partial differential equation. Here, the 

speed function F(Du) = F(n) is the normal speed of propagation of the 

effective flame front. In section 1.3 it will be shown how an expression for 
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the normal speed of propagation was derived. 

The above arguments can be made rigorous by using the theory of vis­

cosity solutions. This is what we are planning to do in the next section. 

1.2.2 Main Theorem of the Effective Flame Front 

We start by introducing the main theorem for the flame front propagation. 

We focus on the general case, where the velocity field Vis dependent on (x, t). 

In this situation, the effective flame front is described by the variational 

inequality (1.2.10). We will sketch the proof of the theorem by using the 

rigorous proof provided by Majda and Souganidis [34], [35]. In the rest of the 

project, solutions will be interpreted in the viscosity sense. An introduction 

to the basic theory of viscosity solutions is given in section 2.2 and we will 

refer to it when necessary. 

Theorem 1.2.1 Let rc: be the solution of (1.2.1}. Then as c--> 0: rc:--> 0 

locally uniformly in {Z < 0} and rc: --> 1 locally uniformly in int{Z = 0}, 

where Z E C(JRN x [0, oo)) is the unique viscosity solution of the variational 

inequality problem: 

max(Zt- H(x, t, DxZ) + j'(O), Z) = 0 in JRN x (0, oo) (1.2.13) 

Z(x,O) = { 
0 

-oo 
(1.2.14) 
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Proof Theorem 1.2.1 

By the Maximum Principle 

the following definitions are given [34] for the half-relaxed limits: 

Definition 1.2.2 For each (x, t) E JRN x (0, oo), the upper semicontinuous 

envelope Z* and lower semicontinuous envelope Z* of zc: are: 

Z*(x,t) = liminf zc:(y,s), 
(y,s )-->(x,t),c:-->0 

Z*(x, t) = lim sup zc:(y, s) 
(y,s )-->(x,t),c:-->0 

Proposition 1.2.3 

max(Zt- H(x, t, DxZ*) + j'(O), Z*) ::; 0 in lRN x (0, oo) (1.2.15) 

Z*(x, 0) = { 
0 

-00 

(1.2.16) 

Proof 

1. Since rc: = exp(c-lzc:) and 0::; rc:::; 1 on JRN X (O,oo), we obtain: 

Z* ::; 0 for JRN x (0, oo). (1.2.17) 

We want to prove: 

Zt- H(x, t, DxZ*) + j'(O) ::; 0 in lRN x (0, oo) (1.2.18) 
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Therefore, we can fix a smooth test function ¢ and assume: 

Z*- ¢ has a local maximum at a point (x0 , t0 ) E JRN x (0, oo). (1.2.19) 

2. We introduce the approximate cell problem at (x0 , t 0): 

w;. + V · (Dx¢ + Dywc:)- ck(D;¢ + ca D;wc:)­

kiDx¢ + Dywc:l 2 = -Hc:(xo, to, Dx¢) 

we: is periodic in [0, l]N x [0, I] 

(1.2.20) 

where we: is chosen to be a solution of (1.2.20). Here the derivative of¢ is 

evaluated at (x0 , t0 ) and the derivative of w is evaluated at (~, ~ ). The ex­

istence of a unique 1f and some smooth we: satisfying (1.2.20) will be proven 

in section 2.3 for our case of interest. It can be shown as in [34], [35] that 

the solution is bounded: 

sup(lwc:l + IDywc:l) < oo in JRN x (0, oo) (1.2.21) 
E: 

and 

(1.2.22) 
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3. By definition of Z*, (1.2.3) and (1.2.21) we know that there exists a sub­

sequence En -t 0 and (X en, ten) such that: 

zen(xen' ten)-+ Z*(xo, to) 

(xen,ten) -t (xo,to) as n -t 00 

(1.2.23) 

Then we fix a smooth, perturbed test function: qfn(x, t, e~, e~) = ¢(x, t) + 

E:~wen and assume: 

(1.2.24) 

Applying the Maximum Principle and using (1.2.2), we obtain from (1.2.3): 

<Pt+w;n-E:k(D;¢+c;;0 D;wen)-kJDx¢+DywenJ 2+V·(Dx¢+Dywen)+ j'(O) ~ 0 

(1.2.25) 

In (1.2.25), the derivatives of¢ are evaluated at (xen' ten), the derivatives of 

ware evaluated at (c;; 1xen, c;;1ten)· Due to the boundedness of wen, property 

(1.2.22) and the assumed continuity of V, we obtain: 

<Pt(xo, to)- H(xo, to, Dx¢(xo, to))+ j'(O) ~ o(1). (1.2.26) 
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Letting n--. oo we obtain the inequality (1.2.15). 

4. To verify (1.2.16), we fix p, > 0 and choose p E C00 (JRN). We let p = 0 on 

n, p > 0 on JRN \ n with 0 :::; p :::; 1. We claim that: 

min(Zt- H(x, t, DZ*) + j'(O), Z* + p,p) :S 0 in JRN x {0}. (1.2.27) 

We choose a smooth test function ¢ and assume again that: 

Z* - ¢ has a local maximum at a point (x0 , t0 ) E IRN x {0} (1.2.28) 

then either: 

Z*(xo, 0) :S -p,p(x0 , 0) (1.2.29) 

or 

c/Jt(xo, 0)- H(xo, to, Dcp(xo, to)+ f'(O) :S 0. (1.2.30) 

If Xo E n then (1.2.29) is satisfied. Now if we assume Xo E IRN \ n and 

Z*(xo, 0) > -p,p(xo) > -oo. Since zcn(xo, 0) = -(X) for all X near Xo, the 

points (xcn' ten) are in JRN X (0, oo). We then repeat the arguments leading 
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to (1.2.26) and can show that (1.2.30) is satisfied. 

5. If Xo E n then ze(xo, 0) ---+ 0 as c---+ 0 and therefore Z* = 0 on n X {0}. 

To show that Z*(x, 0) = -oo on JRN \ n X {0}, we assume Xo E JRN \nand 

assume Z*(x0 , 0) > -oo. We can fix a> 0 and define: 

(1.2.31) 

Since Z* is upper semi-continuous, Z* - q/'' has a maximum at (xa, ta) E 

JRN x [0, oo). Then we have: 

-a-1 lxa:- xol 2 2:: Z*(xa, ta)- (a-1 lxa:- xol 2 + Ata) 2:: Z*(xo, 0) > -oo 

(1.2.32) 

If ta: > 0, we obtain: 

(1.2.33) 

Therefore: 

(1.2.34) 

But by (1.2.32) ,\ = -\(a) is large enough such that we obtain a contradic­

tion in (1.2.34). Therefore, ta: = 0. If Z*(x0 , 0) > -p,p(x0 ) then (1.2.32) 
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implies Z*(xc, 0) > -pp(xa) for p small enough. However, by (1.2.27), we 

obtain (1.2.34) and Z*(x0 , 0) :S -!Jp(x0 ). Since p > 0 and 11 > 0 is chosen 

arbitrarily, we can see that (1.2.34) is not true. Therefore Z*(x0 , 0) = -oo 

in JRN \ f2. 

Proposition 1.2.4 

(1.2.35) 

xED 
(1.2.36) 

Proof 

The proof of this inequality is analogous to the proof of Proposition 1.2.3 

and is explained in detail by Majda and Souganidis [34]. 

Consequences of Proposition 1.2.3 and Proposition 1.2.4 

By the coercivity assumption of H(P) and the above propositions we can 

show the following uniqueness result of the solution to the variational in-

equality (1.2.13) and (1.2.14): 

Z* = z* = z in JRN X (O,oo) (1.2.37) 

Uniqueness of the solution can be proven by standard viscosity solution the­

ory as will be shown in chapter 2. From Theorem 2.2.8 and the results of 

the propositions, we conclude that Z* is a viscosity supersolution and Z* is 
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a subsolution of (1.2.13) and (1.2.14) such that Z* s; Z* on 800 , where 0 0 

is a compact subset of JRN. Then we have: 

(1.2.38) 

By Corollary 2.2.4, equation (1.2.13) and (1.2.14) has at most one continuous 

viscosity solution Z = Z* = Z* in JRN x (0, oo). In view of Definition 1.2.2 

and the uniqueness of Z, we can conclude that ze -t Z on compact subsets of 

JRN x (0, oo). Using the change of variables relation, Te = exp(c:- 1(Z +o(1))), 

it was shown in detail by Majda and Souganidis [34] that as c: -t 0: 

Te -t 0 uniformly on compact subsets of {Z < 0} 

and 

Te -t 1 uniformly on compact subsets of int{Z < 0}. 

1.3 Normal Speed of Propagation of the Front 

As mentioned in section 1.2.1, we are interested in deriving the normal speed 

of propagation of the effective flame front which appears in the Hamilton­

Jacobi equation of the type: 

Ut = F(Du) in JRN x (0, oo) 

u(x, 0) = u0 on JRN 

where F : JRN -t lR is such that: 

F(>.P) = >.F(P) for ).. > 0. 

(1.3.1) 

(1.3.2) 
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In other words, we are interested in the dynamics of the front along a ray, 

the characteristic lines along which the gradient of the solution is constant. 

In our case F(Du) = F(n) represents the normal velocity to the effective 

front and was derived by Majda and Souganidis [34]. It is given by: 

' -n F(n) = _ max (n · q) = inf>.>o{Af (0) + ,\H( -d} 
H*(q)=f'(O) /\ 

(1.3.3) 

where n = (cos e' sin e) denotes the unit exterior normal to the flame front, 

· represents the inner product, ,\ = ~ > 0, f(T) = KT(l - T) is the KPP 

reaction rate function and K > 0 is the reaction rate constant. 

Lemma 1.3.1 Let H : JRN -+ lR be convex in P and assume H(P) -+ oo as 

IPI-+ oo. Then for all p E JRN and all a 2: infPE~NH*(P): 

-p 
-!Ilax (P · p) = inf>.>o{ a,\+ ,\H(-;-)} 
H (P)=a /\ 

(1.3.4) 

where H*(P) = sup{P · Q- H(Q)} is the convex conjugate of H. 

Proof 

By the definition of H* we obtain: 

a2:P·Q-H(Q). (1.3.5) 

Let Q = x: 
p - p 

a2:P·).-H().). (1.3.6) 

Then we have: 

-p 
-!Ilax (p · P) ::; inf {a,\ + ,\H ( -d}. 
H (P)=a >.>0 /\ 

(1.3. 7) 
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To prove the opposite inequality, we assume that H is smooth and A* > 0 is 

chosen such that: 

A* a + A* H ( ~ ) = inf {A a + AH ( ~)} 
/\* >.>0 /\ 

(1.3.8) 

Here we let a = H* ( D H (X)). By relations from convex analysis between H 

and H* we obtain: 

-p -P -P 
_max (p·P) 2: (p,DH(,)) = A*a+A*HCJ = inf{Aa+AH(-d}. (1.3.9) 
H(P)=a /\* /\ >.>0 /\ 



Chapter 2 

Solutions of the Cell Problem 

2.1 Introduction 

This chapter will summarize the basics of the theory of viscosity solutions [1], 

[3], [10], [11], [12], [14], [15] . In chapter 1 we discussed how the cell problem 

was derived by a homogenization procedure developed by [32], and referred 

to by many other authors [18], [19], [33]. Here we will discuss the existence 

and uniqueness of the effective Hamiltonian (H(P)) as well as the existence 

of viscosity solutions to the cell problem. We will study the asymptotic 

behaviour of the viscosity solution of the evolution problem (see 2.4.1 below) 

and show that this solution converges to the viscosity solution of (1.2.13) for 

large time [8]. We will conclude the chapter by proposing a new method of 

solving the cell problem by solving instead the Cauchy problem (see 2.5.8 

below), which will be solved numerically in chapter 3. 
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2.2 Theory of Viscosity Solutions 

This section introduces basic definitions and properties of viscosity solutions 

for the Hamilton-Jacobi Equation of the form: 

H(x, Du(x)) = 0 in JRN (2.2.1) 

The Hamiltonian H : JRN ~ lR is given. The unknown function is u : JRN ~ lR 

and Du = (gxu
1

, ••• , 8~~). 

We define the super-differential of a function u at the point x: 

D+u(x) = {p E JRN: lim sup u(y)- u(x)- p · (y- x) ~ O} 
y-+x,yEr! iY- xi 

and the sub-differential: 

D-u(x) = {p E JRN: lim sup u(y)- u(x)- p · (y- x) ;::: O} 
y-+x,yEr! iY- xi 

The super- and sub-differentials have the following properties: 

(i) D+u(x), D-u(x) are closed, convex, possibly empty subsets of JRN 

(ii) If u is differentiable at x, then D+u(x) = D-u(x) = Du(x) 

(2.2.2) 

(2.2.3) 

(iii) If for some x, both D+u(x) and D-u(x) are nonempty, then D+u(x) = 

D-u(x) = Du(x). 

Two equivalent definitions for viscosity solutions are introduced next. 

Definition 2.2.1 Given: 

H(x, Du(x)) = 0 in 0 (2.2.4) 
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where f2 is an open, bounded domain in JRN. 

(i) u E C(O) is a viscosity subsolution of (2.2.4) if: 

H(x,p) :S 0 (2.2.5) 

for all X E 0 and for all p E D+u(x) 

(ii) u E C(O) is a viscosity supersolution of (2.2.4) if: 

H(x,p) 2: 0 (2.2.6) 

for all X E 0 and for all p E D-u(x) 

(iii) u is a viscosity solution of (2.2.4) if it is a viscosity subsolution and 

supersolution of (2.2.4). 

Definition 2.2.2 A function u E C(O) is a viscosity subsolution of (2.2.4) 

if at any local maximum point x0 E 0 of u- ¢ and for every smooth function 

¢ E C1 (0): 

H(xo, Dcp(xo)) :S 0. (2.2.7) 

A function u E C(O) is a viscosity supersolution of (2.2.4) if at any local 

minimum point x0 E 0 of u- ¢ and for every smooth function¢ E C1(0) 

H(xo, Dcp(xo)) 2: 0. (2.2.8) 

Finally u is a viscosity solution of (2.2.4) if it is both a viscosity subsolution 

and supersolution of (2.2.4). 
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Theorem 2.2.3 Definitions (2.2.1} and (2.2.2} are equivalent. 

Proof 

For u E C ( 0), the proof would consist of the following facts: 

(i) p E n+u iff there exists¢ E C1(0) such that D¢(x) = p and xis a local 

maximum point of u - ¢. 

(ii) p E n+u iff there exists¢ E C1(0) such that D¢(x) = p and xis a local 

minimum point of u - ¢. 

Properties of Viscosity Solutions 

Proposition 2.2.4 Let u E C(O) be a viscosity solution of (2.2.4}. If u is 

differentiable, then u is also a classical solution of (2.2.4}. 

Proof 

Let X E 0. Since u is differentiable ' we have n+u(x) = n-u(x) = Du(x) 

and by Definition (2.2.1): 

0::; H(x, Du(x)) ::; 0. 

Therefore, 

H(x, Du(x)) = 0 in 0. 

Proposition 2.2.5 Let u E C(O) be a viscosity solution of (2.2.4}. If u is 

Lipschitz continuous in 0, then: 

H(x, Du(x)) = 0 almost everywhere in 0 



23 

Proof 

By the Rademacher theorem, a Lipschitz continuous function is differentiable 

almost everywhere. The result follows by the fact that at every point of dif­

ferentiability of u, the equation holds in the classical sense and (2.2.4) is 

satisfied. 

Next we introduce a proposition that proves the stability of viscosity 

solutions. 

Proposition 2.2.6 Let uc E C(D) be a viscosity solution of: 

If He ---+ H locally uniformly in JRN X n and uc ---+ u, then u is a viscosity 

solution of (2.2.4}. 

Proof 

The proof uses the following lemma [3], which we present here without proof. 

Lemma 2.2. 7 Let u E C(D) and let x 0 be a strict local maximum point of 

u in D(x0 , r) for some r > 0. Let uc E C(D) converge locally uniformly to u 

in n. Then there exists a sequence XC ---+ Xo such that 
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Theorem 2.2.8 Let H satisfy Assumption 2.3.1 (see section 2.3) and let 

u E C(D) be a viscosity subsolution of (2.2.4) and v E C(D) be a viscosity 

supersolution of (2.2.4) such that u::; v on 80. Then: 

u::; v in n. (2.2.9) 

Corollary 2.2.9 Equation (2.2.4) has at most one continuous viscosity so­

lution inn. 

2.3 The Eigenvalue and Eigenfunction of the 

Cell Problem 

In order to introduce the main theorem concerning the solutions of the cell 

problem, we make some assumptions on the Hamiltonian: H(x, Du) : JRN x 

JRN ---t R 

Assumption 2.3.1 There exists a continuous nondecreasing modulus func­

tion m: [O,oo)----+ [O,oo) such that m(o+) = 0 and for all x,y E JRN and 

p E JRN: 

IH(x,p)- H(y,p)l ::; mix- YI(I + lpl). 

Assumption 2.3.2 H(x,p)----+ oo as IPI----+ oo uniformly for x,p E JRN. 
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Assumption 2.3.3 H(x, P) is continuous in JRN x JRN for all x, p E JR?.N 

and zN -periodic, for L E 7/P such that: 

H(x + L,p) = H(x,p). 

For the periodic case, the following theorem applies: 

Theorem 2.3.4 Let H : JRN x JR?.N --> lR?. satisfy Assumption 2.3.1, 2.3.2, 

2.3.3. Then for each P E IR?.N there exists a unique constant H(P) and a 

periodic viscosity solution wE BUC(JR?.N) n C0,1(JR?.N) of the cell problem: 

H(x, P + Dw) = H(P) (2.3.1) 

where 

1P + Dwl 2
- V · (P + Dw) = H(x,P + Dw) in IR?.N. (2.3.2) 

Remark: By Definition 2.2.2, if we understand w to solve (2.3.2) in the 

viscosity sense, then there is a smooth function ¢ such that if w - ¢ has a 

local maximum/minimum at a point x0 E 0. Then we know: 

H(x0 , P + D¢(x0 )) ~ (?.)H(P). (2.3.3) 

Sketch of Proof 

Throughout this proof we will assume that V is bounded and Lipschitz con­

tinuous on JR?.N. Here we present only key arguments in the proof of the 

theorem, working closely with the properties of viscosity solutions summa­

rized in the previous section and the proofs presented in [33], [34]. 
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We consider for each 8 > 0 the approximating equation: 

(2.3.4) 

By Assumption 2.3.1, 2.3.2, 2.3.3, equation (2.3.2) has a unique, periodic 

solution w8 E BUC(JRN) n C0,1(JRN) such that: 

sup (ll8w8 Jioo + 11Dw8 Jioo) < oo. (2.3.5) 
O<c5<1 

Since w8's are bounded and periodic, by the stability property (Propo­

sition 2.2.6) of viscosity solutions we can pass the limit in equation (2.3.4). 

We see that w8 -+ w, where w is a bounded, Lipschitz continuous solution 

of (2.3.4). Moreover, 8w-+ -H(P) and we can write H(P) = lim8.....,0 H 8 = 

limc5->o( -8w8) uniformly on IRN. 

Since there exists at most one bounded viscosity solution of the cell prob­

lem (Proposition 2.2.6, Corollary 2.2.9), uniqueness of H(P) can be shown 

making use of arguments from the classical theory of viscosity solutions [3], 

[12]. 

2.4 The Evolution Equation 

Barles and Souganidis [8] examined the asymptotic behaviour of the viscosity 

solution of the first order Hamilton-Jacobi evolution equation: 

{ 

Ut + H(x,Du) = 0 

uo = g on 

in JRN x (0, oo) 

JRN X {0}. 
(2.4.1) 
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Throughout the proof they assumed that H(x, Du) and u0 are periodic in x 

for all x, p E JRN and z E 7l..N, meaning: 

H(x + z,p) = H(x,p) and uo(x + z) = u0 • (2.4.2) 

Existence of solutions to (2.4.1) can be proven by the method of Perron 

[3], [15] whose rigorous proofs we omit. 

Next, we will show how Assumption 2.3.1 can be modified to apply to 

the evolution equation appearing in (2.4.1). We follow the work presented 

by Earles [3] and denote: 

Ut + H(x, Du) = H(x, Du). (2.4.3) 

Suppose H is locally Lipschitz continuous and write: 

oii 
I ox I ~ C(1 + IDul). (2.4.4) 

Since H = 0, we have Ut = -H(x, Du) and 

oH 
I ox I ~ C(1 + IDul + IH(x, Du)l). (2.4.5) 

Rewriting 2.4.5 using the modulus function, we obtain the equivalent as-

sumption for the evolution equation (2.4.1): 

Assumption 2.4.1 

IH(x, Du)- H(y, Du)l ~ m((lx- Yl)(1 + IDul + Q(x, y, Du))). (2.4.6) 

where 

Q(x, y, Du) = max(IH(x, Du)l, IH(y, Du)l). 
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The following theorem concerns itself with uniqueness of viscosity solu-

tions of the initial value problem (2.4.1). 

Theorem 2.4.2 Under Assumption 2.4.1, there exists at most one viscosity 

solution u of (2.4.1} 

The proof of the above theorem uses standard uniqueness arguments from 

the theory of viscosity solutions [3], [17]. The formal proof will be omitted in 

this project. We are ready now to present an extension of Definition 2.2.2, 

that applies to equation (2.4.1): 

Definition 2.4.3 The function u E BUC("JRN x (O,oo)) is called a viscosity 

solution of the initial value problem (2.4.1) if: 

(i) u0 = g on JRN x t = 0 

(ii} For each¢ E C 00 (JRN X (0, oo)) 

{ If u-¢ 

and 

has a local maximum at a point (x0, t0 ) E JRN x (0, oo) 

then cPt(xo, to)- H(xo, D¢(xo, to) ::; 0 

{ 

If u-¢ has a local minimum at a point (x0, t0 ) E JRN x (0, oo) 

then cPt(xo, to) - H(xo, D¢(xo, to) ~ 0. 

One of the consequences of Theorem 2.4.2, is that it justifies the use of 

the relations presented in Definition 2.4.3(ii) as the basis for the theory of 

viscosity solutions of (2.4.1). 
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The existence of a constant H(P) depending only on H, such that u+Ht 

remains bounded as t -t oo, was presented in detail in [32]. This was done 

under the assumption that H(x, P) is coercive: 

H(x, P) -too when IPI -too uniformly in E JRN. (2.4.7) 

Earles and Souganidis [8] showed that as t -t oo: 

u(·, t) + H(P)t -t w(·) in C(JRN) (2.4.8) 

where w is a viscosity solution of the cell problem (2.3.2). For their proof, 

they assumed without loss of generality, that H(P) = 0. We introduce the 

formal theorem presented in their work: 

Theorem 2.4.4 If Assumptions 2.3.1, 2.3.2 hold and u E BUC(JRN x (0, oo)) 

is a 'llN -periodic in X solution of (2.4.1}, then there exists a 'llN -periodic 

w E BUC(JRN) such that: 

{ 

H(x,Dw) = 0 in 

u(x, t) -t w(x) uniformly in JRN 

Sketch of Proof 

(2.4.9) 
as t-too 

1. Since u(x, t) is compact in BUC(JRN) for all x E JRN and t > 0 and since 

the function u(x, t) is periodic in x for all t, we can consider a subsequence 

u(·, tn) with tn -t oo converging uniformly in JRN. Then by the Maximum 

Principle for viscosity solutions, we have for any n, q E N: 

llu(x, t + tn)- u(x, t + tq)lloo :S llu(x, tn- u(x, tq)lloo 
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By this inequality (u(x, t+tn))n is a Cauchy sequence and therefore converges 

uniformly to U 00 E BUC(IRN x (0, oo) as n---+ oo. 

2. Since u is uniformly continuous, it can be shown that for all 0 ~ t ~ T 

and for all x E JRN: 

U00 (X, t)- u00 (x, T) ~ 0 

3. We assume that u converges uniformly in x for x E n as t---+ oo. Therefore 

we can say that u00 is constant in time on n. 

5. The stability property of viscosity solutions applied to u(x, t + tn) yields 

that U 00 is a solution of: 

(uoo)t + H(x, Du00 ) = 0 in JRN X (0, oo) 

Since u00 is increasing linearly with respect to t for all x E JRN we obtain: 

H(x, Du00 ) ~ 0 in JRN for all t > 0 

Also by the stability property: 

6. By the uniform convergence of Un to u00 : 

-on(l) + U00 (X, t) ~ u(x, t + tn) ~ U00 (x, t) + On(l) 

Since u00 is increasing in t, we conclude that u00 (x, t) ---+ w(x) uniformly in 

x as t ---+ oo. Therefore taking the lim sup, lim inf of the above inequality as 

t ---+ oo: 

-on(l) + w(x) ~lim inf u(y, t) ~ lim sup u(y, t) ~ w(x) + on(l) 
y-tx y-tx 
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As n ---too: 

w = limsupu = liminfu in IRN, 

which proves that u(x, t) ---t w(x) uniformly as t ---too. 

7. By the stability property of viscosity solutions w is a viscosity solution of 

H(x, Dw) = 0 in JRN. 

2.5 Proposed Method of Solution of the Cell 

Problem 

In practice we assumed without loss of generality that the cell problem has 

a solution w which is biperiodic in the unit square domain: 0 = [0, 1] x [0.1]. 

We restate the stationary Hamilton-Jacobi equation: 

H((x, y), P + Dx,yw) = H(P) where (x, y) E 0, (2.5.1) 

which in our case is represented by the specific cell problem: 

!P + Dx,ywl 2
- V(x, y) · (P + Dx,yw) = H(P) for (x, y) E 0. (2.5.2) 

In the above equation P is a constant vector in IR2
, V is the velocity field 

periodic in both x andy with two separate scales, Dx,y = (%x' %Y) represents 

the spatial gradient, I · I is the standard Euclidean norm in IR2 and · is the 

Euclidean inner product in JR2. In (2.5.2) we want to find for a given P E JR2 

the pair (w, H(P)). 
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The velocity field V : n __. 1R2 depends on two separated scales, a constant 

large-scale velocity and a small-scale turbulent velocity field: 

v = v + AV =X( cosO, sin e)+ ,\('lly, -Wx) (2.5.3) 

where v E JR2 is the constant mean flow speed, X is the amplitude of the 

mean flow and 0 is its direction. The small scale velocity field v is assumed 

to be periodic, of zero mean (i.e. divv = 0) and unit amplitude. The other 

parameter describing the turbulent velocity field is -\, also called the turbulent 

intensity. In all of our experiments, the turbulent velocity field v is derived 

from the Childress-Soward stream periodic function: 

w(x,y) = sin(27rx) sin(21ry) + 8 cos(21rx) cos(21ry), (2.5.4) 

where the parameter 8 = 1 represents simple shear at 45 degrees, 8 = 0.5 

represents a combination of eddies and shear layers and 8 = 0 represents a 

periodic array of eddies. 

Solving (2.5.2) involves finding the viscosity solution of the equation cou­

pled with the unknown constant H(P). By theorem 2.3.4 we know that 

there exists a unique eigenvalue H(P) for any given P, and strictly convex 

Hamiltonians: 

~~) __. +oo as IPI --t +oo. (2.5.5) 

After computing the effective Hamiltonian we can use it in the computa­

tion of the enhancement in the normal speed of propagation (Fe ( n)) of the 

front due to turbulence. First we calculate F(n), the normal speed of prop­

agation due to turbulence by referring to (1.3.3). The expression simplifies 
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for practical purposes to: 

F(n) = min H(rn) + f'(O)' 
r>O r 

(2.5.6) 

where f'(O) = t has been chosen such that the laminar speed FL = 2(!'(0))! = 

1. The laminar speed can be easily deduced from the cell problem by setting 

the solution w = 0. One can see that when there is no turbulence, v = 0 the 

speed of the normal front speed is simply 1- ~n. Then Fe(n) is defined by: 

Fe(n) = F(n) + ~n- 1 (2.5.7) 

We avoid the difficulties of solving (2.5.2) and solve instead the following 

Cauchy problem: 

Ut + H((x, y), p + Dx,yu) = 0 for (x, y) En, (2.5.8) 

which in our case is of the form: 

Ut + !P + Dx,yuj 2
- V(x, y). (P + Dx,yu) = 0 for (x, y) En, (2.5.9) 

which after expanding, simplifies to: 

Ut + IPI2 + 2P · Dx,yU + 1Dx,yul2 
- V · P- V · Dx,yU = 0. (2.5.10) 

By the choice of a periodic velocity field, the solution u is necessarily 

periodic. It is also shown in [8] that u grows at most linearly in time. From 

section 2.4 we know that the periodic solution u of the Cauchy problem is 

related to the periodic solution w of the cell problem through the following 

asymptotic expression: 

u+ H(P)t-+ w as t-+ oo (2.5.11) 



Chapter 3 

Numerical Algorithms: The 

First Order and ENO Schemes 

3.1 Introduction 

In this chapter we solve the Cauchy problem (2.5.10) numerically. We use a 

First Order Monotone Finite Difference (FOMFD) scheme and a second order 

extension of this numerical approximation, the Essentially Non-Oscillatory 

(ENO) scheme, developed by Osher and Shu [37]. The FOMFD scheme, 

converges to the viscosity solution of problem (2.5.10) and therefore to the 

desired eigenvalue [7]. No proof of convergence is available for the ENO 

schemes. For both schemes, the numerical approximations of the eigenvalue 

were used in computing the normal speed of propagation F(n) and ultimately 

the enhancement due to turbulence of the normal speed Fe(n). 

34 
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3.2 Numerical Scheme Construction 

We start by approximating numerically all the parameters of the problem 

(2.5.10), which we restate here: 

(3.2.1) 

These approximations will be used in both the FOMFD scheme and in the 

ENO scheme. We set P = rn, where r > 0 is a real number and n = 

(cos e, sin 0) denotes the unit exterior normal to the front. For convenience 

we assume that e E [0, ~]. Each mesh point of our domain of interest is 

denoted by (if::.x, jf::.y, kf::.t), where i, j E {0, 1, 2 ... N}, f::.x = f::.y = 1J and 

k E { 0, 1, ... } . We let uf,j = u( if::.x, j f::.y, kf::.t) denote the approximation of u 

at that mesh point. 

Next, we are defining the velocity field V. The mean flow field is a 

constant vector represented by v =X( cos 7J, sin 7J). For the turbulent velocity 

field v we let vi,j = v( if::.x, j f::.y), where vl,i,j = v1 ( if::.x, j f::.y) and v2,i,j = 

v1 ( if::.x, j f::.y). 

We use well known definitions for the forward and backward finite differ-

ences of the partial derivatives of u: 

D+ k 
x ui,j 

D + k 
x ui,j 

k k 
ui+l,j - ui,j 

f::.x 
uf.J+1 - uL 

f::.y 

D - k 
x ui,j 

D - k 
x ui,j 

k k 
ui,j - ui-l,j 

t::.x 
k k 

ui,j - ui,j -1 
(3.2.2) 

f::.y 

Since our solution u is required to be biperiodic (periodic in both x and y), 

both the FOMFD and the ENO scheme have to satisfy the periodic boundary 
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conditions: 

(3.2.3) 

The main approximation of our problem, is the estimate for the effective 

Hamiltonian: 

H(rn) >=::i fork large (3.2.4) 

3. 3 Approximation of the Nonlinear Term 

We need to take a closer look at the approximation of the nonlinear quadratic 

term 1Dx,yul2 appearing in (2.5.10). This was derived previously by Rouy and 

Tourin [39] in a Shape-from-Shading problem. The numerical scheme was 

derived from the Dynamic Programming Principle (DPP). To summarize 

their findings [39], we can use the example of an Eikonal equation in JR2 with 

Dirichlet boundary conditions: 

IDu(x)l = 1 in n 
(3.3.1) 

u(x) = 0 on an 

Here x E JR2 and we assume that 0 is an open bounded domain in JR2
• The 

Eikonal equation can be rewritten as: 

sup{-a · Du(x) -1} = 0 in 0 
lo:l9 

(3.3.2) 

This equation corresponds to the optimal control problem in which the state 

variable X(t) E 0 evolves according to the following ordinary differential 



equation: 

{ 

~~ (t) = a(t) 

X(O) =X 
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(3.3.3) 

where a is a measurable control function with values in 0. The cost to be 

minimized, depends on the initial position x and the control a: 

rb.t 
J(x, a)= Jo Idx = ~t (3.3.4) 

where ~t = min{t ~ 0 : Xx,o:(t) E 80} is the first time at which the 

trajectory hits the boundary. We can restrict ourselves to a constant control 

a such that: 

Xx,o:(~t) =X- a~t. (3.3.5) 

For our application, we can choose the rectangular subset of JR2 , 0 = [0, If 

If the initial point x belongs to the interior of 0, we can choose fl.t sufficiently 

small in order to make the trajectory stay inside 0. Then the semi-discretized 

DPP is: 

u(x) = inf { {t.t Idt + u(Xx,o:(~t))} 
o:ES lo (3.3.6) 

where S = {a : JR+ --> JR2 measurable function s.t. JaJ ::; 1} is the set of 

admissable controls. After substituting (3.3.5) into (3.3.6), dividing by ~t 

and transferring the infimum to the left-hand side, we obtain: 

l
. u(x)- u(x- a~t) 

sup 1m = 1. 
/o:/:$1 b..t->0 ~t 

(3.3.7) 

We continue by fully discretizing DPP. We assume that the neighbours of the 

mesh point (xi, Y1), meaning (xi-1, Y1), (xi+l? Y1), (xi, Y1-d, (xi, Y1+1) belong 



38 

to the closure of n. Then, starting from a mesh point (xi, yj), we don't know 

in which of the triangles {(xi,Yj), (xi-1,yj), (xi,Yj+l)}, {(xi,Yj), (xi-1,Yj), 

(xi,Yj-d}, {(xi,Yj), (xi,Yj-1), (xi+l,yj)}, {(xi,yj), (xi+l,Yj), (xi,Yj+l)} the 

optimal control will lead the state. Each of these cases has an appropriate 

monotone approximation to Dx,yU· After performing a full discretization, we 

can solve explicitly the following optimal control problem: 

in order to determine the appropriate finite differences. The solution to 

this optimization problem, provides the following approximation for problem 

(3.3.1): 

(max((D+u. ·)- (D-u· ·)+)2 + (max((D+u. ·)- (D-u· ·)+)2 = 1 (3.3.8) 
X <,J l X <,J y <,J l y <,J 

where j+ =max(!, 0), f- =max(-J, 0). The scheme is monotone as it can 

be shown that the left hand side of (3.3.8) is nondecreasing with respect to 

ui,j, ui,j+l, Ui- 1,j, ui+l,j and ui,j-1. Finally we use this result to approximate 

the nonlinear spatial gradient term as: 

IDui,jl2 ~ max((D:ui,j)-, (D;;ui,j)+) 2 + (max((D:ui,j)-, (D;ui,j)+) 2
. 

(3.3.9) 
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3.4 Numerical Algorithm: First Order Monotone 

Finite Difference (FOMFD) Scheme 

The first numerical scheme implemented inside n is a first order monotone 

and explicit approximation. The scheme is explicit and therefore it is easy 

to compute at each time step k + 1, the value of (ui,j)~j1 from the value of 

the approximation at ( ui,j )~i as follows: 

k+l- k AtL(D+ k D- k D+ k D- k ) ui,j - ui,j + u x ui,j' x ui,j' y ui,j' y ui,j (3.4.1) 

where, 

L(D+ k D- k D+ k D- k ) - ID k 12 
x ui,j' x ui,j' y ui,j ' y ui,j - - ui,j 

The only term which requires a different numerical approximation is (v + 

>.v) · D(x,y)U. Therefore, we obtain four cases for (3.4.1) depending on the 

sign of v + v. 

Case 1: If (i,j) is such that 'X cosO+ >.v1,i,j 2: 0 and 'X sinO+ >.v2 ,i,j 2: 0 

u~j1 = u:,i + ~t{ -(max{ (D;u:,i)+, (D;u:,i)-} )2 

- (max{(D;u~i)+, (Dtu~i)-} )2 



Case 2: If ( i, j) is such that X cos e + >.vl,i,j < o and X sine+ >.v2,i,j < o 

u~j1 = u~j + ~t{ -(max{(D;u~j)+, (D:u~j)-} )2 

- (max{(D;u~j)+, (D;u~j)-} )2 

+ (v + >.vi,j) · (D;uL, D;u~i) + rn)- r 2
- 2rn · (D;u~i' D;u~i)} 

Case 3: If (i,j) is such that X cosO+ >.v1,i,j ~ 0 and X sinO+ >.v2,i,j < 0 

u7,r = u7,i + ~t{ -(max{ (D;u7,i)+, (D:u7,i)-} )2 

- (max{(D;u~)+, (D;u~,jt})2 
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+ (v + >.vi,j) · ((D:u~i' D;u7,i) + rn)- r 2
- 2rn · (D;u~i' D;u7,i)} 

Case 4: If ( i, j) is such that X cos e + >.v1,i,j < o and X sine+ >.v2,i,j ~ o 

u7,j1 = u7,j +~t{-(max{(D;utj)+,(D:utj)-})2 

-(max{ (D;u7,i)+, (D;u7,it} )2 

+ (v + >.vi,j) · (D;uti' D:utj) + rn)- r 2
- 2rn · (D;uti' D;utj)}. 

To ensure the monotonicity and stability of the scheme, we choose at 

every time step k, an adaptive time step ~tcFL calculated by differentiating 

the right side of (3.4.1) with respect to utj· The Courant-Friedrichs-Lewy 

( CFL) condition is as follows: 

where 

(3.4.2) 

A =2(max{(D;u~j)+, (D:u~j)-} + max{(D;utj)+, (D:utjt}) 

+ IX cos e + >.vl,i,j I + IX sine+ >.v2,i,j I + 2r( cos e +sin B). 
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The algorithm is summarized as follows: 

(i) Step k = 0: we choose u0 = u?,1, F = H~,j for all (i,j) E 0. 

(ii) Step k + 1: for each i, j from 1 to N, we calculate fltcFL and perform 

the iterative step 

and also 

k+l - k At L(D+ k D- k D+ k D- k ) 
ui,j - ui,j + Ll c F L x ui,j , x ui,j, y ui,j, y ui,j 

k+l k 
-k+l ui,j - ui,j H . . = - ----"'---:--= 

•,J flt 

Each iteration yields a collection of eigenvalues H(rn) indiced by (i,j). 

We stop when the L00 norm of the difference between two successive eigen-

values falls below a given threshold. The eigenvalue is then taken to be the 

average over all pairs (i,j). The algorithm is applied to a number of values 

of r and the minimization is then performed using a simple line search. 

3.4.1 Numerical Solutions: FOMFD 

To obtain results that can be compared to the ones obtained by Bourlioux 

and Khouider [9] we used the same parameters. We first choose a velocity 

field V with zero mean flow (X = 0, 7J = 0). We also assume that () = ~ 

which yields n = (:{j-, :{j-). The intermediate velocity field v was obtained 

as discussed previously in equations (2.5.3) and (2.5.4). We also successively 

set the turbulence intensity to .A = 0.4, 1.6 and 6.4. 



42 

Parameter 8 = 1 

In this case the normal to the flame front is aligned with the shearing direction 

described by the parameter 8. We want to check that the numerical solutions 

are consistent to the theoretical results presented in chapter 3 as well as 

the numerical results obtained through another method by Bourlioux and 

Khouider [9]. For the case 8 = 1, the velocity field vis given by: 

v(x,y) = ~(sin27r(x- y),sin27r(x- y)). (3.4.3) 

As shown by Earles and Souganidis [8], the solution u grows at most lin­

early in time. Therefore, this numerical method is stable if the approximated 

time derivative of the solution converges before u can reach large values. In 

all our experiments it was observed that u stays roughly of the same order 

of magnitude as the initial condition or about 10 times larger at most. 

To illustrate this convergence in time of the time derivative and therefore 

of the approximated effective Hamiltonian, we present in Figure 3.4.1 the 

approximation of the eigenvalue versus the number of iterations for N 

16, b.t = 0.005, .\ = 1.6 and r = 0.5. 
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Eigenvalue vs Number of iterations (First order scheme) 
0.75r---r---.---,----.----.---,----.----,--,------, 

80 100 120 140 160 180 200 
Number of Iterations 

Figure 3.4.1: Convergence of the time derivative to the eigenvalue H(P). 

As desired, the scheme shows fast convergence to the eigenvalue. With the 

time increment b..t at 200 iterations, the timet= 1 and the L 00 norm of the 

difference between two successive time derivatives was approximately 6.7e-8. 

To show the rate of convergence of the scheme to the desired eigenvalue, 

we show in Figure 3.4.2. the logarithm of the L 00 norm of the difference 

between two successive time derivatives for o = 1, .A = 1.6, N = 16. For 

this test, r was set successively tor= 0.1, 0.5 and 0.7. In this case, the time 

interval is between [0.2, 1.5]. One can check that at t = 1.5, the L 00 norm of 

the difference between two successive time derivatives is 1. 75e - 11. 



Plot in log scale of the test of convergence vs time 

-~L.2----0~4--~0~.6----0~.8----L----1~2----1~4~ 
Time 

Figure 3.4.2: Convergence rate of the algorithm to H(P). 
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To test some properties of the effective Hamiltonian, we plot H(rn) as a 

function of the parameter r when A= 1.6 and 8 = 1 for 3 different numbers 

of grid points, N = 16, 32 and 64. The result is presented in Figure 3.4.3 

and we can conclude that H(P) is convex and coercive. 
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Eigenvalue vs r 

Figure 3.4.3: Convexity and coercivity property of H(P). 

In Figure 3.4.4 we present the graph of the function G(r) to be minimized. 

The same set of parameters as in Figure 3.4.3. was used. 

( ) 
H(rn) + ~ 

Gr=-.:__-'---..::. 
r 

The result of this figure helps identify r for which the normal speed of prop­

agation F(n) should be computed. We observe that the minimum point of 

G(r) is located at r = 0.5. This result is consistent with the result obtained 

by the explicit calculations by Majda and Souganidis [34]. 
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Gvsr 

3.4 

3.2 

Figure 3.4.4: G(r) as a function of r. 

Parameters 8 = 0 and 8 = 0.5 

For 8 = 0.5, the normalized v is given by: 

v ( x, y) = .Jg (sin 21rx cos 27ry - ~ cos 21rx sin 21ry, 

~ sin 27rx cos 21ry - cos 21rx sin 21ry) 

(3.4.4) 

and for 8 = 0: 

v(x, y) = (sin 27rx cos 27ry,- cos 21rx sin 21ry). (3.4.5) 

In Figure 3.4.5 we show the level curves of the solution w of the cell 

problem computed here only for 8 = 0, when the flame front corresponds to 

an array of eddies. 
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Level curves of w, delta•O,Ia.mbda-..0 .4 

(a) (b) 

Level curves of w, delta .. o , lambda=6.4 

(c) 

Figure 3.4.5: (a) Level curves of w for 8=0 , A = 0.4, (b) Level curves of w 

for 8=0 , A= 1.6, (c) Level curves of w for 8=0, A= 6.4 

For each ( i, j) and for large k: 

k+l k+l -k ( ) 
W · ' = U · ' +H. '* k!::,.t ?.,J ?.,J ?.,J 
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The method of obtaining the level curves follows from the theory presented 

in chapter 3. The grid contains 64 x 64 points and ). = 0.4, 1.6 and 6.4. 

One can see that the front becomes wrinkled as the turbulent intensity ). is 

increased. 

Finally, we tested the behaviour of the eigenvalue in relation to angle e 
(seen= (cosO,sinO)) and displayed the result in Figure 3.4.6. The para­

meters used in this computation are N = 16, ). = 1.6, r = 0.5 and e was 

allowed to vary in the interval [0.015, 1.5]. 

Eigenvalue vs Theta 

0.7 

0.65 

0.4'-------'-------'--------' 
0 0.5 1.5 

Theta 

Figure 3.4.6: Relationship between H(P) and angle e (FOMFD) 
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3.5 Numerical Algorithm: The Essentially Non­

Oscillatory (EN 0) Scheme 

The solution to (2.5.10) may develop discontinuities in the gradient even 

if the initial condition is a smooth function. The ENO scheme is a more 

efficient finite difference method which is expected to yield more accurate 

results when compared to the first order schemes [37],[38]. Higher order 

schemes with second or higher rates of convergence are appealing because 

they would provide more accurate results in the regions where the solu­

tion is smooth. In general their convergence cannot be proven as they are 

not strictly monotone and a theory for ENO schemes is still unavailable. 

Here we construct an ENO scheme of order two in space and time, based 

on the first-order monotone approximation. The truncation error is of or­

der two and our approximations are expected to be second order accurate 

[37]. Here we assumed that the function u of interest is smooth in a re­

gion around ui,j· The ENO scheme uses a second order approximation to 

the first derivative with respect to x, y, t by Taylor expansion. Time accu­

racy is obtained by a Total-Variation-Diminishing (TVD) Runge-Kutta type 

time discretization [37], [38]. TVD Runge-Kutta type time discretization 

is used in order to maintain TVD condition TV(un+l) ::; TV(un), where 

TV ( u) = 2:1 lu1+l - u1 I, while achieving higher order accuracy in time with 

a different time step restriction !::J.t ::; CcFL!::J.t1. To deduce the CFL coeffi­

cient (CcFL), one starts from a general form for explicit r-order Runge-Kutta 
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method: 

m = 1, ... ,r 
(3.5.1) 

For l = 0, ... , m- 1, we introduce at each stage, O:m,l satisfying O:m,l 2: 0 and 

2:::~~ 1 O:m,l = 1. We can rewrite (3.5.1): 

u(m) = L::~~ 1 [o:m,lu(l) + f3m,zLltL(u(l))] m = 1, ... , r 

(3 = C - ~m-1 C 0: m,l m,l ws=l+1 s,l s,m· 

(3.5.2) 

By rewriting (3.5.2) as: 

u(m) = ~ O:m,l [u(l) + (3:,zLlt L(u(l))] m = 1, ... , r 
l=O m,l 

(3.5.3) 

it is easy to prove [23] that if f3m,l 2: 0, the Runge-Kutta method is TVD 

under the CFL condition: 

Llt So (min O:(Jm,l) ilt1 
m,l m,l 

(3.5.4) 

where CcFL = minm z af3m,t. For schemes up to third order, CcFL = 1 needs to 
' m,l 

be satisfied in order to obtain a TVD Runge-Kutta type time discretization 

[37]. The coefficients O:m,l and f3m,z, for l = 0, ... , m- 1 and m = 1, ... , r, are 

deduced from the Taylor expansion. 

In this project we deal with a second order scheme (r = 2). We obtain 

u7,j1 from uf,j by the following second order TVD Runge-Kutta procedure: 
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(1} - (0} /3 A L(D+ (0} - (0} + (0} - (0}) 
ui,j - a1,0ui,j + 1,out x ui,j, Dx ui,j, DY ui,j, DY ui,j 

/3 AtL(D+ (1) D- (1) D+ (1) D- (1)) + 2,1u x ui,j, x ui,j' y ui,j, y ui,j (3.5.5) 

(o) k u\2} = uk+1 
ui,j = ui,j' ~.J ~.J 

CcFL = 1. 

We can choose /31,0 and a 2,1 as free parameters. The other coefficients are 

then: 

a2,o = 1 - a2,1 
(3.5.6) 

!32,0 = 1 - 2f3~.o - a2,1/31,o 

/3 - 1 
2,1 - 2!31,0 

The positive coefficients a1,o = /31,0 = 1, a2,o = a2,1 = ~' !32,0 = 0 and 

/32,1 = ~ were deduced in [37], [38]. Then (3.5.5) is equivalent to the follow-

ing procedure: 

(1} _ (0} A ( + (0} - (0} + (0} - (0}) 
ui,j - ui,j + utL Dx ui,j, Dx ui,j, Dy ui,j, Dy ui,j 

(2} - (0} 1 A L(D+ (0} D- (0} D+ (0} D- (0}) 
ui,j - ui,j + 2 ut x ui,j ' x ui,j ' Y ui,j ' Y ui,j 

1 AtL(D+ (1) D- (1} D+ (1} D- (1}) 
+2u x ui,j' x ui,j' Y ui,j' Y ui,j (3.5.7) 

CcFL = 1. 
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Next we concern ourselves with the approximation of the gradient. Here 

the upwind and downwind spatial finite differences are of second order ap­

proximation. At each ( i, j) the possible approximations for the gradient are 

deduced by Taylor expansion along the x direction (fixing j): 

(3.5.8) 

Similarly we approximate the gradients along they direction to obtain D1;ui,j 

For stability (oscillation-free spatial gradients), we have used a min-mod 

limiter rather than a TVD limiter as for the stability of the time derivative 

approximations. For convenience only the x-dimensional differences will be 

used to outline this technique: 

0 d( k k 2 k k k 2 k ) mm-mo U·+l · + U· l ·- U· · U·+2 · + U· ·- U·+l · = t ,J t- ,J t,J , t ,J t,J t ,J 
(3.5.9) 
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and 

. d( k k 2 k k k 2 k ) mm-mo u.+1 . + u. 1 . - u . . u . . + u. 2 . - u. 1 · = 
t ,J t- ,J t,J' t,J t- ,J t- ,J 

(3.5.10) 

is zero if the sign of the arguments are different or if their product is equal 

to zero and different than zero otherwise. 

The algorithm is summarized as follows: 

(i) Step k = 0: we choose u
0 = u?,j, F = H'/,,j for all (ib..x,jb..y) E 0. 

(ii) Step k + 1: 

and 

* - k + AtL(D+ k n- k n+ k n- k ) uij - uij u x uij' x uij' y uij' y uij 

k+l _ k + 1 AtL(n+ k n- k n+ k n- k ) 
uij - uij 2u x uij' x uij' y uij' y uij 

k+l k 
-k+l ui,j - ui,j H. . = - _.:::. __ ~ 

t,J b..t 

The number of iterations performed is determined by a test of convergence 

performed for each ( i, j) by taking the L00 of the difference between two 

successive eigenvalues. 

The solution of w of the cell problem is semiconcave [18] and satsifies: 

w(x + h, y + k)- 2w(x, y) + w(x- h, y- k) :S C(h2 + k2
) 

for any (x, y) and h, k sufficiently small. Experimental results in [37] show 

that ENO schemes perform well when used for computing semiconcave func-

tions. The semiconcavity of w prevented the ENO scheme from undergoing 
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large oscillations. A single computation for a specific r, 32 x 32 grid and 

8 = 1 took less than a second. 

3.5.1 Numerical Solutions: ENO 

In most cases, the ENO algorithm converges as fast as the monotone scheme. 

This property of convergence of the algorithm is presented in Figure 3.5.1. 

As for the first order scheme, the parameters used for this convergence test 

are: N = 16, .A = 1.6, !::J.t = 0.005, r = 0.5, 8 = 0, 0.5 and 1. In some 

instances, the ENO scheme undergoes some small amplitude oscillations for 

a much longer time before converging to the eigenvalue. The stability of the 

algorithm does not seem affected. 

1.1 

0.9 

0.6 

0.5 

ro ~ ro ~ m m ~ ® w m 
NuntJeroflteratioos 

Figure 3.5.1: Convergence of the time derivative to H(P) (ENO) 
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In Figure 3.5.2 we present again the level set of the solution w to the cell 

problem using the same parameters as for FOMFD. The level sets are similar 

to the ones obtained for FOMFD. 

(a) (b) 

Figure 3.5.2: (a) Level curves of w for 6 = 0 and A= 1.6 

(b) Level curves of w for 6 = 0 and A = 6.4 

In Figure 3.5.3 we analyze the behaviour of the eigenvalue by varying 

angle e. We used parameters N = 16, A = 1.6, r = 0.5, t::.t = 0.005 and 

angle e between [0.015 , 1.5]. 
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Eigenvalue vs Theta 

Theta 

Figure 3.5.3: Relationship between H(P) and angle () (ENO) 

3.6 Summary of Results: The Speed Enhance-

ment 

The final goal of the project was the computation of the normal speed en­

hancement Fe(n) using the values of the effective Hamiltonian. For all of our 

experiments we assumed that()= ~ such that n = (~, ~). We compute 

Fe(n) for both the ENO and FOMFD schemes. We compare our results with 

the explicit solution Fe(n) = ). [9], [34], and compute the error. Referring 

to Table 3.6.1, we observe that for small values of >., the error is roughly 

of the same order as the truncation error. The FOMFD scheme is more 
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accurate for smaller values of A than for larger A = 6.4. For large A, the 

accuracy of the FOMFD scheme falls between VfS:X and D.x. The accuracy 

of the ENO scheme is slightly smaller, yet still of order two. When A is not 

too large, we obtain better rates than the ones predicted by the theory for 

Hamilton-Jacobi-Bellman equations [6]. 

Table 3.6.1: Numerical results for Fe(n) for 8 = 1 

A Reference Fe Grid Fe order 1 Error Fe order 2 Error 

1.6 1.6 16 X 16 0.94420 0.65580 1.57425 0.02575 

32 X 32 1.25746 0.34254 1.59755 0.00245 

64 X 64 1.42743 0.17257 1.59965 0.00035 

128 X 128 1.51434 0.08566 1.59995 0.00005 

0.4 0.4 16 X 16 0.21666 0.18334 0.39328 0.00672 

32 X 32 0.30561 0.09439 0.39936 0.00064 

64 X 64 0.35303 0.04697 0.39990 0.00010 

6.4 6.4 16 X 16 2.95339 3.44661 6.25465 0.14535 

32 X 32 4.47727 1.92273 6.38496 0.01504 

64 X 64 5.41928 0.98072 6.39778 0.00222 

We also collected some results for both 8 = 0 and 8 = 0.5 presented in 

Table 3.6.2 and 3.6.3. As there are no explicit theoretical speed enhancement 

bounds available (for 8 = 0 and 0.5), we estimated Fe(n) by extrapolation 
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based on the second-order results. For 8 = 0.5, we find Fe(n) = 1.50520 

for A = 1.6 and Fe(n) = 5.95802 for A = 6.4 whereas, for 8 = 0, we obtain 

Fe(n) = 1.06683 for A = 1.6 and Fe(n) = 3.75604 for A = 6.4. The errors 

were computed using these estimates. For A = 1.6, for both 8 = 0.5 and 

15 = 0, the computed Fe(n) are consistent with those obtained by Bourlioux 

and Khouider [9]. 

Table 3.6.2: Numerical results for Fe(n) for 15 = 0.5 

8 II A II Grid I Fe order 1 I Error I Fe order 2 I Error 

0.5 1.6 16 X 16 0.89277 0.61243 1.46740 0.03780 

32 X 32 1.18680 0.31840 1.49616 0.00904 

64 X 64 1.34530 0.15990 1.50335 0.00185 

128 X 128 1.42604 0.07916 1.50477 0.00083 

6.4 16 X 16 2.66041 3.29761 5.51902 0.43900 

32 X 32 4.10810 1.84992 5.88770 0.07032 

64 X 64 5.05144 0.90658 5.94322 0.01480 

128 X 128 5.51295 0.44607 5.95545 0.00357 
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Table 3.6.3: Numerical results for Fe(n) for 8 = 0 

1811 A II Grid I Fe order 1 I Error I Fe order 21 Error 

0 1.6 16 X 16 0.64681 0.42002 0.99433 0.07250 

32 X 32 0.85037 0.21646 1.04925 0.01758 

64 X 64 0.96046 0.10637 1.06232 0.00451 

128 X 128 1.01446 0.05237 1.06569 0.00114 

6.4 16 X 16 2.00674 1.74930 2.67844 1.07760 

32 X 32 2.72345 1.03259 3.59100 0.16504 

64 X 64 3.22917 0.52687 3.70981 0.05623 

128 X 128 3.50145 0.25459 3.74399 0.01205 

In Table 3.6.4 we report the results obtained in the presence of a non­

zero mean flow. In this case, the error was calculated using again a reference 

Fe(n) = 1.59751. 

Table 3.6.4: Numerical results for Fe(n) for 0 = ~ and "X= 0.1 

I 8 II A II Grid I Fe order 21 Error I 

1 1.6 16 X 16 1.57252 0.02499 

32 X 32 1.59513 0.00238 

64 X 64 1.59716 0.00035 



Summary 

In this project, we showed that the effective Hamiltonian arising in the 

Majda-Souganidis model of premixed turbulent combustion can be computed 

directly through a new method based on the theory of viscosity solutions and 

on the recent theoretical work about the long time asymptotic behaviour of 

the solutions of Hamilton-Jacobi [8]. We have successfully implemented two 

numerical schemes, the First Order Monotone Finite Difference (FOMFD) 

scheme and the Essentially Non-Oscillatory (ENO) scheme. We have com­

pared our numerical results for the enhancement in the normal speed of 

propagation of the flame front with those obtained by an alternate method 

[9] and showed that they are consistent with their results. The algorithms 

used in this thesis have been implemented in MATLAB on a single user 

workstation with Linux. The codes have not been optimized but showed rea­

sonable efficiency. The first order scheme showed a more stable convergence 

to the desired eigenvalue of the cell problem, when compared to the second 

order scheme. However, the accuracy of the monotone scheme (FOMFD) is 

decreasing as the turbulent intensity increases. Moreover, the error of our 

60 
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experimental results has decreased as the mesh was refined. Our algorithms 

provided a successful new and direct method for computing the averaged 

Hamiltonian by putting in practice the theory of viscosity solutions. 

In chapter 1 we introduced the equations describing the propagation of the 

front, as well as the cell problem and the effective Hamiltonian. The relation­

ship between the normal speed of propagation and the effective Hamiltonian 

was also introduced. 

In chapter 2 and 3 we presented the relationship between the solutions 

of a time-dependent Hamilton-Jacobi equation and the solutions to the cell 

problem in both a theoretical and practical way. The numerical results of 

chapter 3, were consistent with the theory and showed that the eigenvalue of 

the cell problem is indeed given by the time-derivative of a time-dependent 

evolution equation [8]. 



Appendix: Numerical Codes 

for Chapter 3 

MATLAB code used to generate the eigenvalue for the FOMFD scheme (8 = 

0.5, e = ~). Note that similar MATLAB scripts were used to compute the 

eigenvalue for 8 = 0, 1 and for an arbitrary e. 

%****************************************************************** 
% Mirela Cara 
% M.Sc. Project 
%File name: FOMFDdeltahalf.m 
% Boundary Conditions: biperiodic 
%****************************************************************** 
function [eigvaluem]=FOMFDdeltahalf(N,lambda,r) 
dx=1/N; 
newsol=zeros(N+1,N+1); 
oldsol=zeros(N+1,N+1); 
oldeigvalue=zeros(N+1,N+1); 
eigvalue=zeros(N+1,N+1); dt=1000; k=O; 
test=!.; 

for i=1:N+1 
for j=1:N+1 
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V2(i,j)=(1/2)*sin(2*pi*(i-1)*dx)*cos(2*pi*(j-1)*dx)- ... 
cos(2*pi*(i-1)*dx)*sin(2*pi*(j-1)*dx); 

end 
end 

c=max(max(V1.-2+V2.-2)); 
v1=1/sqrt(c)*V1; 
v2=1/sqrt(c)*V2; 

while k<1000 
oldeigvalue=eigvalue; 
k=k+1; 

%*************************************************************************** 
% CFL condition calculation 
%*************************************************************************** 

for i=1:N+1 
for j=1:N+1 

if v1(i,j)>=O & v2(i,j)>=O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 



forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 
end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 
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condition=dx/(2*(max(max(-forwx,O),max(backx,O)))+ ... 
2*(max(max(-forwy,O),max(backy,O)))+ ... 
lambda*v1(i,j)+lambda*v2(i,j)+2*sqrt(2)*r); 

end 

if vl(i,j)>=O & v2(i,j)<O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+l,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 



forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 
end 

condition=dx/(2*(max(max(-forwx,O),max(backx,O)))+ ... 
2*(max(max(-forwy,O),max(backy,O)))- ... 
lambda*v2(i,j)+lambda*v1(i,j)+2*sqrt(2)*r); 

end 

if vl(i,j)<O & v2(i,j)>=O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+l,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 

condition=dx/(2*(max(max(-forwx,O),max(backx,O)))+ ... 
2*(max(max(-forwy,O),max(backy,O)))+ ... 
lambda*v2(i,j)-lambda*v1(i,j)+2*sqrt(2)*r); 

65 



end 

if v1(i,j)<O & v2(i,j)<O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 

condition=dx/(2*(max(max(-forwx,O),max(backx,O)))+ ... 
2*(max(max(-forwy,O),max(backy,O)))- ... 
lambda*v2(i,j)-lambda*v1(i,j)+2*sqrt(2)*r); 

end 

if condition<dt 
dt=condition; 

end 
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end 
end 

%*************************************************************************** 
% Iteration 
%*************************************************************************** 

for i=1:N+1 
for j=1:N+1 

if v1(i,j)>=O & v2(i,j)>=O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 

newsol(i,j)=oldsol(i,j)+dt*(-(max(max(-forwx,O),max(backx,0)))-2- ... 
(max(max(-forwy,O),max(backy,0)))-2+lambda*v1(i,j)*forwx+ ... 
lambda*v2(i,j)*forwy-sqrt(2)*r*backx-sqrt(2)*r*backy+ ... 
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lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)- ... 
r-2); 

eigvalue(i,j)=-(newsol(i,j)-oldsol(i,j))/dt; 

end 

if v1(i,j)>=O & v2(i,j)<O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 

newsol(i,j)=oldsol(i,j)+dt*(-(max(max(-forwx,O),max(backx,0)))-2- ... 
(max(max(-forwy,O),max(backy,0)))-2+lambda*v1(i,j)*forwx+ ... 
lambda*v2(i,j)*backy-sqrt(2)*r*backx-sqrt(2)*r*backy+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)- ... 
r-2); 



eigvalue(i,j)=-(newsol(i,j)-oldsol(i,j))/dt; 

end 

if v1(i,j)<O & v2(i,j)>=O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 
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newsol(i,j)=oldsol(i,j)+dt*(-(max(max(-forwx,O),max(backx,0)))-2- ... 
(max(max(-forwy,O),max(backy,0)))-2+lambda*v1(i,j)*backx+ ... 
lambda*v2(i,j)*forwy-sqrt(2)*r*backx-sqrt(2)*r*backy+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)- ... 
r-2); 

eigvalue(i,j)=-(newsol(i,j)-oldsol(i,j))/dt; 



end 

if v1(i,j)<O & v2(i,j)<O 

if i>1 
backx=(oldsol(i,j)-oldsol(i-1,j))/dx; 

else 
backx=(oldsol(i,j)-oldsol(i-1+N,j))/dx; 

end 

if j>1 
backy=(oldsol(i,j)-oldsol(i,j-1))/dx; 

else 
backy=(oldsol(i,j)-oldsol(i,j-1+N))/dx; 

end 

if i<N+1 
forwx=(oldsol(i+1,j)-oldsol(i,j))/dx; 

else 
forwx=(oldsol(i+1-N,j)-oldsol(i,j))/dx; 

end 

if j<N+1 
forwy=(oldsol(i,j+1)-oldsol(i,j))/dx; 

else 
forwy=(oldsol(i,j+1-N)-oldsol(i,j))/dx; 

end 
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newsol(i,j)=oldsol(i,j)+dt*(-(max(max(-forwx,O),max(backx,0)))-2- ... 
(max(max(-forwy,O),max(backy,0)))-2+lambda*v1(i,j)*backx+ ... 
lambda*v2(i,j)*backy-sqrt(2)*r*backx-sqrt(2)*r*backy+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)- ... 
r-2); 

eigvalue(i,j)=-(newsol(i,j)-oldsol(i,j))/dt; 

end 



end 
end 

test=max(abs(eigvalue-oldeigvalue)); oldsol=newsol; 
eigvaluem(k)=mean(mean(eigvalue)); 
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end 

%*************************************************************************** 
% END 

%*************************************************************************** 

%*************************************************************************** 
% LEVEL CURVES 
% Figure 3.4.5 

%*************************************************************************** 
x=(O:N)*dx; 
y=(O:N)*dx; 
newsol=newsol-eigvaluem(k)*k*dt; 
contour(x,y,newsol,30) 



72 

MATLAB code used to generate the eigenvalue for the ENO scheme ( 8 = 0.5 

and e = ~). Note that similar MATLAB scripts were used to generate the 

eigenvalue for 8 = 0, 1 and for an arbitrary e. 

%****************************************************************** 
% Mirela Cara 
% M.Sc. Project 
%File name: ENOdeltahalf.m 
% Boundary Conditions: biperiodic 
%****************************************************************** 
function [eigvalue]=ENOdeltahalf(N,lambda,r,dt) 
dx=1/N; 
new=zeros(N+1,N+1); 
old=zeros(N+1,N+1); 
newh=zeros(N+1,N+1); 
eigvalue=zeros(N+1,N+1); 
oldeigvalue=zeros(N+1,N+1); 
k=O; 
test=!.; 

for i=1:N+1 

end 

for j=1:N+1 
v1(i,j)=sin(2*pi*(i-1)*dx)*cos(2*pi*(j-1)*dx)- ... 

0.5*cos(2*pi*(i-1)*dx)*sin(2*pi*(j-1)*dx); 
v2(i,j)=0.5*sin(2*pi*(i-1)*dx)*cos(2*pi*(j-1)*dx)- ... 

cos(2*pi*(i-1)*dx)*sin(2*pi*(j-1)*dx); 
end 

c=max(max(v1.-2+v2.-2)); 

for i=1:N+1 

end 

for j=1:N+1 
v1(i,j)=(1/sqrt(c))*v1(i,j); 
v2(i,j)=(1/sqrt(c))*v2(i,j); 

end 
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while k<100 
oldeigvalue=eigvalue; 
k=k+1; 

%******************************************************************* 
% first iteration 
%******************************************************************* 
for i=1:N+1 

for j=1:N+1 
if i>1 

downonex=old(i-1,j); 
else 

downonex=old(i-1+N,j); 
end 

if i>2 
downtwox=old(i-2,j); 

else 
downtwox=old(i-2+N,j); 

end 

if i<N+1 
uponex=old(i+1,j); 

else 
uponex=old(i+1-N,j); 

end 

if i<N 
uptwox=old(i+2,j); 

else 
uptwox=old(i+2-N,j); 

end 

h=(uponex+downonex-2*old(i,j))/dx; 
r1=(old(i,j)+downtwox-2*downonex)/dx; 

if (ri*h<=O) 



end 

r1=0; 
h=O; 

backx_1=(old(i,j)-downonex)/dx+0.5*h; 
backx_2=(old(i,j)-downonex)/dx+0.5*r1; 

a=(uponex+downonex-2*old(i,j))/dx; 
b=(uptwox+old(i,j)-2*uponex)/dx; 

if(a*b<=O) 
a=O; 
b=O; 

end 

forwx_1=(uponex-old(i,j))/dx-0.5*a; 
forwx_2=(uponex-old(i,j))/dx-0.5*b; 

if j>1 
downoney=old(i,j-1); 

else 
downoney=old(i,j-1+N); 

end 

if j>2 
downtwoy=old(i,j-2); 

else 
downtwoy=old(i,j-2+N); 

end 

if j<N+1 
uponey=old(i,j+1); 

else 
uponey=old(i,j+1-N); 

end 

if j<N 
uptwoy=old(i,j+2); 
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else 
uptwoy=old(i,j+2-N); 

end 

m=(uponey+downoney-2*old(i,j))/dx; 
o=(old(i,j)+downtwoy-2*downoney)/dx; 

if(m*o<=O) 
m=O; 
o=O; 

end 

backy_1=(old(i,j)-downoney)/dx+0.5*m; 
backy_2=(old(i,j)-downoney)/dx+0.5*o; 

d=(uponey+downoney-2*old(i,j))/dx; 
g=(uptwoy+old(i,j)-2*uponey)/dx; 

if(d*g<=O) 
d=O; 
g=O; 

end 

forwy_1=(uponey-old(i,j))/dx-0.5*d; 
forwy_2=(uponey-old(i,j))/dx-0.5*g; 

if abs(a)>=abs(b) 
up=forwx_2; 

else 
up=forwx_l; 

end 

if abs(d)>=abs(g) 
vp=forwy_2; 

else 
vp=forwy _1; 

end 

75 



if abs(h)>abs(r1) 
um=backx_2; 

else 
um=backx_1; 

end 

if abs(m)>=abs(o) 
vm=backy_2; 

else 
vm=backy_1; 

end 

if (v1(i,j)>=O) & (v2(i,j)>=O) 
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newh(i,j)=old(i,j)+dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*up+ ... 
lambda*v2(i,j)*vp-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

elseif (v1(i,j)>=O) & (v2(i,j)<O) 

newh(i,j)=old(i,j)+dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*up+ ... 
lambda*v2(i,j)*vm-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

elseif (v1(i,j)<O) & (v2(i,j)>=O) 

newh(i,j)=old(i,j)+dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*um+ ... 
lambda*v2(i,j)*vp-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

else 

newh(i,j)=old(i,j)+dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*um+ ... 
lambda*v2(i,j)*vm-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 



end 
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lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 
end 

end 
%*************************************************************************** 
% second iteration 
%*************************************************************************** 
for i=1:N+1 

for j=1:N+1 
if i>1 

downonex=newh(i-1,j); 
else 

downonex=newh(i-1+N,j); 
end 
if i>2 

downtwox=newh(i-2,j); 
else 

downtwox=newh(i-2+N,j); 
end 
if i<N+1 

uponex=newh(i+1,j); 
else 

uponex=newh(i+1-N,j); 
end 
if i<N 

uptwox=newh(i+2,j); 
else 

uptwox=newh(i+2-N,j); 
end 

h=(uponex+downonex-2*newh(i,j))/dx; 
r1=(newh(i,j)+downtwox-2*downonex)/dx; 

if(h*r1<=0) 
h=O; 
r1=0; 

end 



backx_1=(newh(i,j)-downonex)/dx+0.5*h; 
backx_2=(newh(i,j)-downonex)/dx+0.5*r1; 

a=(uponex+downonex-2*newh(i,j))/dx; 
b=(uptwox+newh(i,j)-2*uponex)/dx; 

if(a*b<=O) 
a=O; 
b=O; 

end 

forwx_1=(uponex-newh(i,j))/dx-0.5*a; 
forwx_2=(uponex-newh(i,j))/dx-0.5*b; 

if j>1 
downoney=newh(i,j-1); 

else 
downoney=newh(i,j-1+N); 

end 
if j>2 

downtwoy=newh(i,j-2); 
else 

downtwoy=newh(i,j-2+N); 
end 
if j<N+1 

uponey=newh(i,j+1); 
else 

uponey=newh(i,j+1-N); 
end 
if j<N 

uptwoy=newh(i,j+2); 
else 

uptwoy=newh(i,j+2-N); 
end 

m=(uponey+downoney-2*newh(i,j))/dx; 
o=(newh(i,j)+downtwoy-2*downoney)/dx; 
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if(r<0.5) 

end 

if (m*o<=O) 
m=O; 
o=O; 

end 

backy_1=(newh(i,j)-downoney)/dx+0.5*m; 
backy_2=(newh(i,j)-downoney)/dx+0.5*o; 

d=(uponey+downoney-2*newh(i,j))/dx; 
g=(uptwoy+newh(i,j)-2*uponey)/dx; 

if(r<0.5) 

end 

if (d*g<=O) 
d=O; 
g=O; 

end 

forwy_1=(uponey-newh(i,j))/dx-0.5*d; 
forwy_2=(uponey-newh(i,j))/dx-0.5*g; 

if abs(a)>=abs(b) 
up=forwx_2; 

else 
up=forwx_1; 

end 

if abs(d)>=abs(g) 
vp=forwy_2; 

else 
vp=f orwy _1; 

end 

if abs(h)>abs(r1) 
um=backx_2; 

else 
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um=backx_1; 
end 

if abs(m)>=abs(o) 
vm=backy_2; 

else 
vm=backy_1; 

end 

if (v1(i,j)>=O) & (v2(i,j)>=O) 

new(i,j)=0.5*old(i,j)+0.5*newh(i,j)+ ... 
0.5*dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*up+ ... 
lambda*v2(i,j)*vp-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

elseif (v1(i,j)>=O) & (v2(i,j)<O) 

new(i,j)=0.5*old(i,j)+0.5*newh(i,j)+ ... 
0.5*dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*up+ ... 
lambda*v2(i,j)*vm-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

elseif (v1(i,j)<O) & (v2(i,j)>=O) 

else 

new(i,j)=0.5*old(i,j)+0.5*newh(i,j)+ ... 
0.5*dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*um+ ... 
lambda*v2(i,j)*vp-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

new(i,j)=0.5*old(i,j)+0.5*newh(i,j)+ ... 
0.5*dt*(-(max(max(-up,O),max(um,0)))-2- ... 
(max(max(-vp,O),max(vm,0)))-2+lambda*v1(i,j)*um+ ... 
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lambda*v2(i,j)*vm-sqrt(2)*r*um-sqrt(2)*r*vm+ ... 
lambda*r*(sqrt(2)/2)*v1(i,j)+lambda*r*(sqrt(2)/2)*v2(i,j)-r-2); 

end 

end 
end 

eigvalue(i,j)=-(new(i,j)-old(i,j))/dt; 

test=max(max(abs(eigvalue-oldeigvalue))); 
old=new; 
eigvaluem(k)=mean(mean(eigvalue)); 

end 
%*************************************************************************** 
% END 
%*************************************************************************** 

%*************************************************************************** 
% LEVEL CURVES 
% Figure 3.5.2 
%*************************************************************************** 
x=(O:N)*dx; 
y=(O:N)*dx; 
new=new-eigvaluem(k)*k*dt; 
mesh(x,y,new) 
contour(x,y,new,20) 
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MATLAB codes used to generate Figures 3.4.1, 3.4.3, 3.4.4, 3.5.1 

%*************************************************************************** 
% Mirela Cara 
% M.Sc. Project 
%*************************************************************************** 

%*************************************************************************** 
% CONVERGENCE OF TIME DERIVATIVE TO THE EIGENVALUE: 
% EIGENVALUE VS NUMBER OF ITERATIONS 
%Figures 3.4.1, 3.5.1 
%Note: Example of MATLAB code presented is for the END scheme but is 
% similar to the MATLAB code for the FOMFD scheme 
%*************************************************************************** 
clear all [eigvaluem1]=EN0deltaone(32,1.6,0.5,0.002); 
[eigvaluem2]=EN0deltahalf(32,1.6,0.5,0.002); 
[eigvaluem3]=ENOdeltazero(32,1.6,0.5,0.002); 
% eigenvalue vs k (N=32, lambda=1.6, r=0.5, dt=0.002, delta=O, 0.5, 1) 
k=(1: 1000); 
plot(k,eigvaluem1, '-') 
hold on 
plot(k,eigvaluem2,'+') 
hold on 
plot(k,eigvaluem3,'*') 

%*************************************************************************** 
% CONVEXITY AND COERCIVITY OF THE EIGENVALUE 
% Figure 3.4.3 
% Note: Example of MATLAB code presented is for the FOMFD scheme 
%*************************************************************************** 
clear all 
r=(2:14)*0.05; 
for i=1: 13 
eig1(i)=mean(mean(FOMFDdeltaone(16,1.6,r(i)))'); 
eig2(i)=mean(mean(FOMFDdeltaone(32,1.6,r(i)))'); 
eig3(i)=mean(mean(FOMFDdeltaone(64,1.6,r(i)))'); 
% eigenvalue vs r (delta=1, lambda=1.6, N=16, 32, 64) 
plot(r,eig1,'*') 



hold on 
plot(r,eig2,'.') 
hold on plot(r,eig3,'-') 
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%*************************************************************************** 
% G(r) vs r 
% Figure 3.4.4 
% Note: Example of MATLAB code presented is for the FOMFD scheme 
%*************************************************************************** 
clear all 
r=(2:14)*0.05; 
for i=1:13 
eig1(i)=mean(mean(FOMFDdeltaone(16,1.6,r(i)))'); 
eig2(i)=mean(mean(FOMFDdeltaone(32,1.6,r(i)))'); 
eig3(i)=mean(mean(FOMFDdeltaone(64,1.6,r(i)))'); 
G1(i)=(eig1(i)+0.25)/r(i); 
G2(i)=(eig2(i)+0.25)/r(i); 
G3(i)=(eig3(i)+0.25)/r(i); 
% G(r) vs r (delta=1, lambda=1.6, N=16, 32, 64) 
plot(r,G1,'-') 
hold on 
plot(r,G2,'*') 
hold on 
plot(r,G3,'1 ') 
%*************************************************************************** 
% RELATIONSHIP BETWEEN EIGENVALUE AND THETA 
% Figures 3.4.6 and 3.5.3 
% Note: Example of MATLAB code is for the FOMFD scheme 
%*************************************************************************** 
clear all for i=1:100 teta(i)=0.015*i; 
[eig_1(i)]=mean(mean(FOMFDdeltaoneangle(16,1.6,0.5,teta(i)))'); 
[eig_2(i)]=mean(mean(FOMFDdeltahalfangle(16,1.6,0.5,teta(i)))'); 
[eig_3(i)]=mean(mean(FOMFDDdeltazeroangle(16,1.6,0.5,teta(i)))'); 
end plot(teta,eig_1,'-')hold on plot (teta,eig_2,'+') hold on 
plot(teta,eig_3,'*') 



Bibliography 

[1] M. Bardi, M.G. Crandall, L. C. Evans, H. M. Soner and P.E. Souganidis, 

Viscosity Solutions and Applications, Springer-Verlag, 1997. 

[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solu­

tions of Hamilton-Jacobi-Bellman Equations, Birkhauser, Boston, 1997. 

[3] G. Barles, Solutions de viscosite des equations de Hamilton-Jacobi, 

Mathematics and Applications, Springer-Verlag, 1994. 

[4] G. Barles, The convergence of approximation Schemes for Parabolic 

Equations Arising in Finance Theory, Cambridge University Press, 

1997. 

[5] G. Barles, C. Daher and M. Romano, Convergence of Approximation 

Schemes for Parabolic Equations Arising in Finance Theory, Math. 

Model. Numer. Anal., 5, (1995), 125-143. 

[6] G. Barles and E.R. Jakobsen, On the convergence for approximation 

schemes for the Hamilton-Jacobi-Bellman equation, Math. Model. Nu­

mer. Anal., 36, (2002), 33-54. 

84 



85 

[7] G. Barles and P. E. Souganidis, Convergence of Approximation Schemes 

for Fully Nonlinear Second Order Equations,Asymptot. Anal., 4, (1991), 

271-283. 

[8] G. Barles and P. E. Souganidis, On the large time behavior of solutions 

of Hamilton-Jacobi equations, Siam J. Math. Anal., 31, (2000), 925-939. 

[9] A. Bourlioux and B. Khouider, Computing the effective Hamiltonian 

in the M ajda-Souganidis model of turbulent premixed flames, Siam J. 

Numer. Anal., 40, (2002), 1330-1353. 

[10] I. Capuzzo-Dolcetta and P. -L. Lions, Hamilton-Jacobi Equations with 

State Constraints, Trans. Amer. Math. Soc., 318, (1990), 643-683. 

[11] I. Capuzzo Dolcetta and P. -L. Lions, Viscosity Solutions and Applica­

tions, Springer-Verlag, 1997. 

[12] M. G. Crandall, L. C. Evans and P. -L. Lions, Some Properties of 

Viscosity Solutions of Hamilton-Jacobi Equations, Trans. Amer. Math. 

Soc., 282, (1984), 487-502. 

[13] M. G. Crandall, H. Ishii and P. -L. Lions, User's Guide to Viscosity 

Solutions of Second Order Partial Differential Equations, Bull. Amer. 

Math. Soc., 27, (1992), 1-67. 

[14] M. G. Crandall and P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi 

Equations, Trans. Amer. Math. Soc., 277, (1983), 1-42. 



86 

[15] M. G. Crandall and P. L. Lions, Two Approximations of Solutions of 

Hamilton-Jacobi Equations, Math. Comp., 43, (1984), 1-19. 

[16] P. F. Embid, A. J. Majda and P. E. Souganidis, Comparison of Turbu­

lent Flame Speeds from Complete Averaging and the G-equation, Phys. 

Fluids, 7, #8, (1995), 2052-2060. 

[17] L. C. Evans, Partial Differential Equations: Graduate Studies in Math­

ematics v.19, American Mathematical Society, (1998). 

[18] L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for 

Hamiltonian dynamics I, Arch. Rational Mech. Anal., 157, (2001), 1-33. 

[19] L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for 

Hamiltonian dynamics II, Arch. Rational Mech. Anal., 161, (2002), 

271-305. 

[20] M. Falcone, P. Lanucara and A. Seghini, A splitting algorithm for 

Hamilton-Jacobi-Bellman equations, Appl. Numer. Math, 15, (1994), 

207-218. 

[21] W. H. Fleming and P. -L. Lions, Stochastic Differential Systems, Sto­

chastic Control Theory and Applications, Springer-Verlag, 1988. 

[22] D. A. Gomes and A. Oberman Computing the effective Hamiltonian: 

A variational approach to homogenization, Siam J. Control Optim., 43 

#3, (2004), 792-812. 



87 

[23] S. Gottlieb and C. -W. Shu, Total Variation Diminishing Runge-Kutta 

Schemes, Mathematics of Computation, 67 #221, (1998), 73-85. 

[24] E. R.Jakobsen, K. H. Karlsen and N. H. Risebro, On the conver­

gence rate of operator splitting for Hamilton-Jacobi equations with source 

terms, Siam J. Numer. Anal., 39, (2001), 499-518. 

[25] K. H. Karlsen and N. H. Risebro, An operator splitting method for non­

linear convection-diffusion equations, Numer. Math., 77, (1997), 365-

382. 

[26] B. Khouider, A. Bourlioux and A. J. Majda, Parametrizing the burning 

speed enhancement by small scale periodic flows I, Combust. Theory 

Model., 5, (2001), 295-318. 

[27] P. -L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pit­

man, Boston, 1982. 

[28] P. -L. Lions, Optimal Control of Diffusion Processes and Hamilton­

Jacobi-Bellman Equations I: The Dynamic Programming Principle and 

Applications,Comm. Partial Diff. Equations., 8, (1983), 1101-1174. 

[29] P. -L. Lions, Optimal Control of Diffusion Processes and Hamilton­

Jacobi-Bellman Equations II: Viscosity Solutions and Uniqueness, 

Comm. Partial Diff. Equations, 8, (1983), 1229-1276. 



88 

[30] P. -L. Lions, Optimal Control of Diffusion Processes and Hamilton­

Jacobi-Bellman Equations III: Regularity of the Optimal Cost Function, 

Nonlinear Partial Differential Equations and Their Applications, Pitman 

Advanced Publishing, Boston, 1983. 

[31] P. -L. Lions and B. Mercier, Splitting algorithms for the sum of two 

nonlinear operators, Siam J. Numer. Anal., 16, (1979), 964-979. 

[32] P. -1. Lions, G. Papanicolaou and S.R.S. Varadhan, Homogenization of 

Hamilton-Jacobi equations, Unpublished, 1988. 

[33] P.-L. Lions and P. Souganidis, Correctors for the Homogenization of 

Hamilton-Jacobi Equations in the Stationary Ergodic Setting, Commu­

nications on Pure and Applied Mathematics, LVI, (2003), 1501-1524. 

[34] A. J. Majda and P. E. Souganidis, Large scale front dynamics for tur­

bulent reaction diffusion equations with separated velocity scales, Non­

linearity, 7, (1994), 1-30. 

[35] A. J. Majda and P. E. Souganidis, The effect of Turbulence on Mixing 

in Prototype Reaction-Diffusion Systems Communications on Pure and 

Applied Mathematics, LIII, (2000), 1284-1304 

[36] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differ­

ential Equation, An Introduction, 1994, Cambridge University Press. 



89 

[37] S. Osher and C. -W. Shu, High-order essentially nonoscillatory schemes 

for Hamilton-Jacobi equations, Siam J. Numer. Anal., 28, (1991), 907-

922. 

[38] S. Osher and C. -W. Shu, Efficient Implementation of Essentially Non­

Oscillatory Shock Capturing Schemes, J. Comp. Physics, 77, (1988), 

439-471. 

[39] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from­

shading Siam J. Numer. Anal., 29, 3, (1992), 867-884. 

[40] H. M. Soner, Optimal Control with State-Space Constraint I. Siam J. 

Control Optim., 24, (1986), 552-561. 

[41] H. M. Soner, Optimal Control with State-Space Constraint II. Siam J. 

Control Optim., 24, (1986), 1110-1122. 

[42] P. E. Souganidis, Approximation schemes for viscosity solutions of 

Hamilton-Jacobi equations, J. Diff. Eq., 59, (1985), 1-43. 

[43] P. E. Souganidis, Max-min representations and product formulas for 

the viscosity solutions of Hamilton-Jacobi equations with applications to 

differential games, Nonlinear Anal., 9, (1985), 217-257. 

[44] M. Sun, Alternating directions algorithms for solving Hamilton-Jacobi­

Bellman equations, Applied Math. Optim., 34, (1996), 267-277. 




