SYMBOLIC INTERPRETATION OF LEGACY ASSEMBLY LANGUAGE

SYMBOLIC INTERPRETATION OF
LEGACY ASSEMBLY LANGUAGE

By
PuLAk KuMAR CHOWDHURY, BSc. ENGG.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements for the Degree of

Master of Applied Science
Department of Computing and Software
McMaster University

© Copyright by Pulak Kumar Chowdhury, August 18, 2005

ii

MASTER OF APPLIED SCIENCE(2005) McMaster University

(Computing and Software) Hamilton, Ontario
TITLE: Symbolic Interpretation of Legacy Assembly Language
AUTHOR: Pulak Kumar Chowdhury, BSc. Engg.(BUET)
SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xi, 228

Abstract

Many industries have legacy software systems which are definitely important to them
but are however, difficult to maintain due to a lack of understanding of those systems.
This occurs as a result of inadequate or inconsistent documentation. Although the
costs of redesigning the system may be large, some organizations still plan to reverse
engineer the software specification documents from the code to alleviate a large burden
from such endeavour. This thesis provides an incremental and modular approach to
create a process and tools to extract the semantics of legacy assembly code.

Our techniques consist of static analysis and symbolic interpretation in order to
reverse engineer the semantics of legacy software. We examine the case of IBM-
1800 programs in detail. From the abstract model of the operational semantics of
IBM-1800, we simultaneously obtain an emulator and a symbolic analysis process.
Augmented with control flow information, we can use the symbolic analysis to provide
complete semantics for the code sequences of interest. We can also generate Data
Flow Graphs to depict the flow of data in those code segments. The whole process
of extracting semantic information from the assembler codes is fully automated with
only a little human intervention at the initial step.

We use Haskell as our implementation language and its important features help
us to create modular and well structured software. The literate programming docu-
mentation style in this thesis increases the readability and consistency of the imple-
mentation’s documentation.

The process and the associated tools created in this thesis are used in a large re-
verse engineering project, which has a goal to extract requirements specification from
legacy assembly code. This project is funded jointly by Ontario Power Generation
(OPG) and CITO (Communications and Information Technology Ontario).

iii

Acknowledgements

This thesis would not have been possible without the support of many people. Many
thanks to my supervisor, Jacques Carette, who guided me through the whole research
and read my numerous revisions to correct them. Also thanks to my committee
members, Wolfram Kahl and Alan Wassyng who always offered guidance and support.
Thanks to my group members whose valuable suggestions helped me a lot. A special
thank you goes to my fellow student Olivier Dragon for proof reading and correcting
important parts of my thesis. And finally, thanks to my parents and numerous friends
who endured this long process with me, always offering support and love.

iv

Contents

Abstract
Acknowledgements
Contents

List of Figures

1 Introduction

2 Problem Definition

21 Background e
211 Legacy Systems
2.1.2 Ontario Power Generation

2.2 Reverse Engineering Project
221 Overview e
222 Tool Hierarchy

23 SemanticAnalysis. o L.
2.3.1 IBM-1800 Assembly Language :

3 Tools and Techniques

31 Graphs. e
3.1.1 Control Flow Graph
312 DataFlowGraph

S

o~ o O

vi CONTENTS
3.2 Semantic Analysis. 19
3.3 Program Transformation 20
3.4 Implementation Tools. 21

341 HASKELL. 21
342 GXL . .. e e e 24

4 Process Overview 25

4.1 Major Stepsin OQur Process 25
4.1.1 Control Flow Graph Generator 27
412 Emulator 28
4.1.3 One Step Symbolic Emulator 29
4.1.4 MultiStep Symbolic Emulator 29
4.1.5 Generating Data Flow Graphs 30
4.1.6 Solving Data Flow Equations 31

4.2 Software Engineering Principles 32
4.2.1 Rigorand Formality 32
4.2.2 Separation of Concerns 32
423 Modularity o 33
424 Abstraction 34
4.2.5 Anticipationof Change 34
426 Generality 35
42.7 Incrementality 36

5 Operational Semantics of Assembler 37

51 IBM-1800 System v it 37
5.1.1 Stored Program Concept 38
5.1.2 Machine Language 39
51.3 DataFormat 40
5.14 Instruction Format 40

5.2 Semantics from Manual oL o oL oL 42
5.2.1 Imstruction Set 42
5.2.2 Imstruction Example 45

5.3 Model of Operational Semantics 46
5.3.1 LOAD/DOUBLE LOAD(LD/LDD) 47

CONTENTS vii
5.3.2 MODIFY INDEX AND SKIP (MDX) 48

6 Emulator 49
6.1 Imtroduction 49
6.2 IBM-1800 Emulator 50
6.21 Model 51

6.3 Memory 51
64 CPUEmulator 53
6.4.1 Instruction. 54

642 State 58

6.4.3 Emuating Instruction Execution 58

6.5 Output Example 60

7 One Step Symbolic Interpretation 62
7.1 From Operational Semantics 62
7.2 Symbolic Interpretation 64
7.2.1 Datatype for Instructions 68

7.2.2 Datatype for Conditions 71

73 CodeExample. 0., 73
74 Output Example 74

8 Multi Step Symbolic Interpretation 75
8.1 Introduction 75
82 Control Flow Graph 76
8.2.1 Internal Data Structure of CFG 76

8.3 Marked-up Control Flow Graph 82
84 DataFlow Equations 86
8.4.1 Datatype Definition L. 86

8.5 Modeling Control Flow 93
8.5.1 Finding Paths in the Control Flow Graph 94

8.5.2 Finding Data Flow Equations 97

86 Examples 109
86.1 SCExample 109

86.2 GSCExample 110

viii CONTENTS

863 LCExample. 0....... 113

9 Generating Data Flow Graphs 117
91 DataFlowGraph 117
9.2 DFG Generation Process 117
9.3 Internal Data Structure of DFG 118
94 DFG Generation 123
9.5 GarbageCollection, 135
96 DFGExamples 140
9.6.1 SC Example (Before Garbage Collection) 140

9.6.2 SC Example (After Garbage Collection) 141

963 GSCExample 141

10 Solving Data Flow Equations 146
10.1 Imtroduction L 146
10.2 Finding System of Equations 147
10.2.1 Solving Data Flow Equations 147

10.2.2 Finding Inputs and Qutputs 157

10.2.3 Finding System of Equations. 158

103 Example oL e e e 160
10.3.1 Straight-line Code 160

10.3.2 Generalized Straight-Line Code (GSC): 163

11 Discussion and Future Work 166
11.1 Contribution e 166
11.2 Limitations P 168
11.3 Future Works o oo 169
11.3.1 Graph Transformer 170

11.3.2 Finding Preconditions 170

A Semantic Model of Instructions 172
A.1 Semanticsof Instructions oo 172
A.1.1 LOAD/DOUBLE LOAD(LD/LDD) 174

A.12 STORE/DOUBLE STORE(STO/STD) 174

CONTENTS ix

A.1.3 LOAD INDEX/STORE INDEX (LDX/STX) 175

A14 ADD/DOUBLE ADD(A/AD) 175

A.1.5 SUBTRACT/DOUBLE SUBTRACT(S/SD) 175

A16 MULTIPLY/DIVIDEM/D) 175

A17 LOGICAL AND/OR(AND/OR) 176

A18 LOGICALXOR(XOR) 176

A19 SHIFT (SLA/SLT/SRA/SRT) 177

A.1.10 BRANCH AND SKIP/ BRANCH AND STORE(BSC/BSI) . 177

A.1.11 MODIFY INDEX AND SKIP (MDX) 178

A.1.12 COMPARE (CMP)/ DOUBLE COMPARE (DCM) 178

B Common Codes 179
B.1 IBM-1800 e e 179
B2 Stack 189

C Emulator 191
C.1 Lst2String e 191
C.2 Emulate e e 193
C.3 OtherModules 198

D One Step Symbolic Emulator 199
D1 OmneStep i e 199
D.2 Other Modules, 207

E Marked-up Control Flow Graph Generator 208
E.l GxI2MyGraph e e e 208
E.2 OtherModulest 209

F Data Flow Equations Generator 210
F1 Graph2Expr e 210
F.2 FindJoin e 212
F.3 OtherModules 215

G Data Flow Graph Generator 216

G.1 DFDGxl e 216

x CONTENTS

G.2 Dfe2DfgCommon 217
G.3 Other Modules 221
H DFE Solver 222
H.1 FindPathAnt e 222
H.2 Other Modules 224

Bibliography 225

List of Figures

2.1 Tool Suite Architecture of the Reverse Engineering Project 12
3.1 Control Flow Graph 18
32 DataFlowGraph, 19
4.1 The Steps of Symbolic Interpretation Process 26
8.1 Pictorial Representation of Code Categories 99
82 Shapeof GSC e 104
8.3 Shapeof Looping Codes 108
8.4 Control Flow Graph of the Segment 0x35C4-0x35DF 112
8.5 Control Flow Graph of the Segment 0x35C9-0x35D3 114
9.1 DFG Generation Process 118
9.2 Data Flow Graph of the Segment 0x35B6-0x35BD (Before Garbage
Collection) 143
9.3 Data Flow Graph of the Segment 0x35B6-0x35BD (After Garbage Col-
lection) 144
9.4 Data Flow Graph of the Segment 0x35C4-0x35DF 145
11.1 Finding Preconditions 171

xil

LIST OF FIGURES

Chapter 1

Introduction

1.1 Overview

Business organizations spend a large part of their efforts and budget maintaining
existing software, enhancing with new features and adapting it to newer environments.
Studies show that the maintenance of existing software can cost often more than 60
percent of all the development efforts. Maintenance in the life cycle of software
is inevitable for reasons like removal of errors, new requirements for the software
or introduction of new platforms etc. Maintenance can be defined as the set of
activities that occur after the software has been deployed [CGO03]. Development of new
software from scratch when new requirements arise is grossly impractical as companies
make large investments in developing existing software, creating infrastructure and
organizational practices around the software, and in training users. Thus, existing
software applications are assets to these organizations and as such are needed to be
well maintained before being abandoned.

Nevertheless, since these systems were developed decades ago, they are usually
written in older languages and use older software engineering methodologies. Legacy
software is, henceforth difficult to modify and maintain. Still, the need for change
is obvious as these legacy systems are consuming too much maintenance budget and
efforts. Moreover these systems are becoming less efficient compared to the systems
developed on more sophisticated technology as available today. Most of the software
engineering approaches focus mainly on forward engineering— that is, on the software

1

2 1. Introduction

development process where we move from initial requirements to logical design and
design to physical implementation of the system. In this thesis, we instead try to
take the legacy software perspective, by developing some tools to aid re-engineering

the legacy software.

Re-engineering is a process through which “an existing system undergoes an alter-
ation, to be reconstituted in a new form.” [CGO03]. Generally, the process is comprised
of two distinct phases. In the first phase, the software personnel moves backwards,
from the existing system to the requirements specification. This helps him to un-
derstand the structure of the system and discover ways to modify it. This phase is
often called Reverse Engineering. During the next phase, the software engineer pro-
ceeds forward and actually designs and implements suitable changes. The main task
of reverse engineering is program comprehension, where the software engineer tries
to understand the program structure, working algorithms, data structures. It is to
figure out the main components of the software that are needed to be reimplemented.
As such, the software engineer needs to identify the main system components, their
relationship and an abstract representation of the system to properly realize how the
system functions. Complete documentation of the software which is consistent with
the implementation very helpful to complete those tasks. Unfortunately, in most
cases, complete documentation is not available. In fact, the software engineer will
often need to proceed through the tiresome process of recovering the design from the
code and rebuild the requirements specification from low level code implementation.

Lack of documentation and poor software engineering techniques during the for-
ward engineering process of developing software are the main factors affecting the
cost and effort of reverse engineering [CG03]. Most organizations that have legacy
software and who intend to re-engineer their software, suffer this problem of lack
of documentation. These software systems were developed at a time when software
engineering technology was still in infancy. To make matters worse, in some cases
documents were not properly updated during maintenance of the software; leaving
them in an inconsistent state with the implementation.

Ontario Power Generation (OPG) is such an organization which has legacy soft-
ware systems written in platform specific legacy assembly and is having difficulty
maintaining those systems. The systems lack proper documentation or have incon-
sistent documentation, making the maintenance more precarious. These days, OPG

1. Introduction 3

intends to re-engineer their systems into newer ones which will be running on mod-
ern platforms. In this respect, they have started a re-engineering project and in the
first phase, are trying to extract the original requirements specification of their sys-
tems. This reverse engineering process is being hindered by poor and inadequate
documentation. During the maintenance, they have tried to improve the consistency
between the code and the documentation. However unforeseen causes (one being
introduction of new features) have made the documentation rather convoluted. The
reverse engineering project at McMaster is intended to help OPG with developing a
new tool suite architecture and creating a complete process to reverse engineer the
requirements specification of their systems.

The project, named Reverse Engineering of High-level Requirements from Assem-
bly Code, aims to create a complete process with necessary methods and tools to help
software engineers in reverse engineering legacy software system to high level abstract
description of the system with as minimal human interaction as possible [CKK*04].
Finding abstract specifications of a system from low level assembler code includes a
set of different activities. Existing tool support is enough for some cases while for
the others new methods and tools have to be developed. That is why in the reverse
engineering project, a tool hierarchy to extract the requirements description of the
legacy software is being developed. We, as a part of the project, intend to create
an automated process and associated tools to find the semantical description of the
assembler code. Our main goal is to understand the meaning of the low level codes
by translating them into mathematical equations. We use different techniques of
symbolic analysis coupled with various compiler technology to extract the symbolic
meaning of the code. The work presented in this thesis depicts a process to find the
semantics of the legacy assembler codes by symbolic analysis.

Symbolic analysis of a program is a static analysis technique [FS03] that executes
the instructions of a program with some of the values (of registers, input channels or
memory location) as unknown symbols. This generates an ordered sequence of data
flow equations which, if solved, gives a precise mathematical representation of the
computations done in that program. Existing symbolic analysis tools do not always
give accurate representations of the meaning of the program because they tend to
introduce approximations to the semantics very early in the processing. By working
with systems of symbolic, conditional data flow equations instead of sets of solutions,

4 1. Introduction

we can be more accurate.

While various static analyses, including abstract and symbolic interpretation, have
been successfully used for high-level programming languages, the problem becomes
considerably more difficult for assembly language programs, and even more so for
legacy software. In particular, while the control structures in most modern high-
level languages (sequencing, if-then-else, while, etc) have very well understood
semantics and effect the control flow in a predictable fashion, assembly programs
liberally use gotos. Branching code is written in such a way that it can not be
easily translated to a sequence of high-level structures, at least not without code
duplication. Other complications (to be detailed later) include lack of data/code
separation, frequent computed gotos, and even some (relatively mild) instances of
self-modifying code.

What we are attempting to achieve here is, via symbolic interpretation, control
flow analysis, and condition propagation, to represent a program’s semantics by a
system of conditional symbolic data flow equations. If this system of equations can
then be solved in a space of semantically meaningful expressions, we can obtain an
understandable representation of the underlying semantics. To a certain extent, we
are free to choose our solution space; this allows us to choose spaces with very rich se-
mantics. In particular, instead of choosing a high-level programming language (which
would only “move” our understanding problem up some levels instead of resolving
it), we choose a variety of specification languages and mathematical languages. Ex-
plicitly, we are looking at producing output that can be read natively by both PVS
[OSRSCO01] and Maple [MGH*01].

1.2 Thesis Organization

In the beginning we present the overview of the problem dealt with in the thesis.
The backgrounds of the reverse engineering project and the legacy systems are also
included. We then show different techniques which proved useful in the semantic
analysis process; followed by discussion on various implementation tools.

Succeeding this, we describe the whole symbolic interpretation process in brief.
We also describe different tools and their interaction inside the process. Later, we
include various software engineering principles which are followed during the process

1. Introduction 5

development.

The following chapter contains the operational semantics of the IBM-1800 as-
sembler with brief description of IBM-1800 Data Acquisition and Control System.
Examples from the abstract model of the operational semantics of assembler instruc-
tions are shown. The rest of the model is included in Appendix A.

We then include the implementation techniques of the emulator which are devel-
oped on the abstract model of the assembler instructions with sample outputs from
the emulator. We also present one-step symbolic emulation tool, which is the first
step toward symbolic interpretation process, accompanied with its design and imple-
mentation strategies. The presentation style is in literate programming [Knu84]. In
this step, we follow the same model of abstract semantics from Appendix A.

Once the one-step symbolic representation is shown, we explain its use in gener-
ation of marked control flow graph with a detail documentation of the internal data
structure of the graph. We furthermore discuss the tool which is used to generate
the Data Flow Equations by multi step symbolic interpretation. The representation
of these tools are also given as literate programs.

After the generation of Data Flow Equations (DFE) of the assembler codes, we
focus on generating Data Flow Graphs (DFG) from the DFEs. We discuss the detailed
process of producing DFG from the DFEs and the tool associated with it (in literate
Haskell programs). Some DFG diagrams are also included as examples.

To conclude, we describe the tool to solve the DFEs in their closed forms. We
also add several examples of the solved DFEs for different code patterns. Addition-
ally, we present all the Haskell modules which were not discussed in the chapters as
appendices.

Chapter 2

Problem Definition

In this chapter, an overview of the problem that we deal with in the thesis is given.
First, we provide the background of the problem with the context of legacy systems
and a specific instance of legacy systems in Ontario Power Generation (OPG). Next,
we include a brief introduction of the reverse engineering project (of which this thesis
is a part) and the hierarchical structure of the project components. Later, we present
a brief description of the subject matter of this thesis.

2.1 Background

For the last 20 years, computer technologies are booming like never before. New
technologies are being introduced very frequently. Often, software system developed
in one technology may find itself inefficient within a short span of time due to intro-
duction of newer efficient technologies. Constant technological advance often weakens
the business value of the systems which have been developed over the years through
huge investments. Another important thing to note is that advancement in hardware
technologies is much more faster than that of software. For this reason, many soft-
ware systems can not take the benefits of newer hardware as they are implemented to
take full advantage of the hardware architecture they are written for. Although more
cost-effective technologies are available, it is estimated that most of the IT systems
are running on legacy platforms. Maintaining and upgrading those systems are some
of the most difficult challenges today. It is worthy to change those systems into newer

6

2. Problem Definition v

technologies for gaining most efficient performance while keeping their functionalities
intact. But study has indicated that most of these transformation projects took lots
_of investments and hard work. Still the need of change is obvious as the operation and
maintenance budget for those systems range around 85-90% of their total life cost.
We can define the systems which are running in older platforms as legacy systems.

2.1.1 Legacy Systems

The Free On-Line Dictionary Of Computing (FOLDOC) defines legacy system as, “A
computer system or application program which continues to be used because of the
prohibitive cost of replacing or redesigning it and despite its poor competitiveness
and compatibility with modern equivalents. The implication is that the system is
large, monolithic and difficult to modify.” [How05]). Bennett also gives some more
detailed characteristics [K.H95] of legacy system:

e it may be written in assembly or an early version of a third generation language.

probably developed using state-of-the-art software engineering (programming
pre 1968) techniques.

many perform crucial work for the organization.

generally large.

generally hard to understand hence hard to maintain.

Many information technology related companies have this kind of systems which
were developed around 30 years ago. As said in the definition of legacy system, those
software are developed in a time when sophisticated software engineering techniques
were not available and people who implemented those systems were not aware of
modern design or coding style. In many of the cases, these systems might be running
safety critical systems and were written in a variety of assembly languages. Moreover,
these software were developed taking efficiency as the main goal and lack the clarity
needed for large software systems. During that time, the computation power of the
computer was expensive and thus they were implemented to take all the advantages

8 2. Problem Definition

of the legacy hardware architecture. As such, they are not easily portable into newer
systems and ended up in some convoluted code.

Over the years, the coding style and the documentation procedures have changed
in the area of software engineering. The styles that were followed in legacy systems
became obsolete and convey almost no meaning now-a-days. In the lifetime of the
legacy software, as the software was augmented with new features, changed or im-
proved for better performance, the documentations were not adjusted properly in
many of the cases. To make the situation worse, for non safety critical part of the
software, the later adjustment documents of the software might be missing or are
changed in a way which does not make any sense in relevance of the whole system.
People who developed and implemented the software may be unavailable (shifted
somewhere else, retired) to get help for proper understanding of the code. Conse-
quently, these companies find themselves in a situation where they are depending
on legacy software; for which they no longer have original requirements and proper
documentation to change or adjust the codes in near future.

A temporary solution of those kind of software might be emulating the legacy
hardware underneath and then validating the emulator instead of determining the
requirements of the software. This fix is temporarily sufficient, however, the lifetime
maintenance and changes are still required which can be expensive and hazardous for

the lack of documentation.

Legacy systems have worked fine for many years without proper documentation —
they may do well for some future years. But as hardware technologies are now getting
better than those of legacy software, so the companies depending on them might be
planning to transfer the systems into newer hardware to get better performance.
Also they might want to develop the systems using modern software engineering
technologies so that they will be reliable and serve them for another 30 years. This
may be very expensive but still the organizations find themselves in a difficult position
depending on the legacy systems which are hard to maintain and change for poor
documentation. So, they would plan to re-engineer their legacy systems to develop
modern systems and first step toward it will be extracting the requirements of the

legacy software system in a reverse engineering process.

2. Problem Definition 9

2.1.2 Ontario Power Generation

As indicated in Chapter 1, Ontario Power Generation (OPG) is such an industry
which has legacy software systems developed 30 years ago. They are still using those
software while the developers of those systems left the industry long ago. Many of
its original developers were not software related people and also proper software de-
velopment strategies were not available during those days. As a big organization,
OPG must have tried to use state-of-the-art software engineering methodologies to
create those software. Still the systems developed by them lack modern documenta-
tion style needed for future maintenance. Moreover, the non safety critical part of the
code is either not rigorously documented during implementation or its documenta-
tion is difficult to locate. Again, as the developers of these software are from different
engineering background, their main goal was to develop an efficient software consider-
ing the constraints of the legacy hardware architecture and thus they produced codes
which are not easily portable into different platforms.

During the lifetime of those software, different patches of codes were implemented
to augment different features and to deal with the change of the power plant structure.
Some of those patches have to deal with extreme resource constraints and thus were
developed in a convoluted manner creating a layered code. All those patches have
to be properly comprehended before gaining the understanding of the changes in the
software. Although extreme care is taken during the previous adaptive maintenance
of the system, in the long run, maintenance of the software became dangerous and

more expensive.

That is why, OPG has launched a four year long reverse engineering project to
cope up with the situation and is trying to determine the original requirements of the
software by rigorously examining every module of those software. They are aiming to
re-implement the software based on the extracted requirements with the modern soft-
ware engineering methodologies applied to produce correct, robust and maintainable
software which may serve them without failure for another 30 years. In the course
of the project, they are providing funds (jointly with CITO- Communications and
Information Technology Ontario) in a project of reverse engineering of requirements
from legacy assembly code at McMaster University. The work in this thesis is a part
of that reverse engineering project.

10 2. Problem Definition

Next, we give a brief snapshot of the hardware and software technologies used
in OPG and which are related with our reverse engineering project. Currently, two
main hardware machine types in OPG are examined in this project: the IBM-1800
and the Varian V75. The reverse engineering group at McMaster initially got the
Boiler Pressure Control (BPC) code, which is a module of the larger piece of software
based on IBM-1800 hardware architecture. Most of the code segments presented as
examples in this thesis are parts of this BPC code. Later, we are provided with
the assembly listings which are supposed to be the whole piece of software for two
machines (DCC 1 and DCC 2) with four subunits (UNITS 1-4) and each of the
subunits runs a slightly different image than the rest. But still there remain issues
in determining which source files are used to generate which image. An attempt was
made to generate the complete image of the source code for one machine (DCC 1) and
more information were needed to complete that task. The image can be extracted by
comparing the slight differences among different images of the machines and subunits.

OPG no longer uses IBM-1800 machines and replaced them with the emulators for
those machines. This temporary measure gave them chances to avoid issues related
with maintaining legacy computer hardwares while giving away the cost of validating
the emulator to represent the true machine behaviour of IBM-1800. Still they have to
deal with all the software maintenance issues and hopefully this re-engineering effort
will provide them with recovered original requirements. In that way, they can proceed
to re-implement their systems in modern hardware platforms and getting rid of the
constraints of IBM-1800 and Varian V75 systems. '

2.2 Reverse Engineering Project

This section gives a brief overview of the project goal and hierarchical structure of
the tool suite developed in the project to satisfy the goal. The work presented in this
thesis is a part of the tool suite architecture of the reverse engineering project. A
brief overview of our work is also provided in the next section.

2. Problem Definition 11

2.2.1 Overview

As we stated earlier, industries in Ontario also have safety or mission critical sys-
tems that are dependent upon legacy software and hardware systems. Like most of
the legacy systems, the documentations of these systems are often convoluted, not
updated properly or in some cases missing entirely. Many of these systems are also
developed in very old assembly languages. As the demand for migrating those legacy
software in newer platforms is increasing in the industries, in order to be able to
transfer those assembly language applications to a new, more robust platform, or for
easy maintenance and update, companies need to properly extract and document the
software’s original requirements [CKK*04].

Most of the previous efforts in this area of reverse engineering mainly aim to
transfer these “low level” languages into some high level languages like C which
are supposed to be equivalent to the “low level” programs. In this project, we are
specially concerned with the legacy assembly languages which do not have modern
programming style and also the systems implemented in those languages feature arbi-
trary design decisions resulting from the legacy platform constraints. So transforming
those codes into high level ones may produce codes which are convoluted and difficult
to read. By this kind of transformation, its not easy to determine which require-
ments are parts of the problem domain and which ones are due to legacy architecture
[CKK*04]. In the reverse engineering project, we instead generate a tool hierarchy
to aid obtaining high level requirements of those assembly language applications.

The goal of the CITO project at McMaster named Reverse Engineering of High-
level Requirements from Assembly Code is “to create methods and tools to assist a
developer in reverse engineering a legacy assembly program to a high level require-
ments specification that is independent of arbitrary design decisions (but still captures
the rationales of those decisions in terms of non-functional requirements).” [CKK*04]
So the main theme of the project is to take existing legacy assembly language software
from the industry and using as minimal human interaction as possible, generate a set
of requirements documents for the software which can later be used to re-implement
the software in modern platforms satisfying the original requirements (extracted in
the reverse engineering process).

12 2. Problem Definition

2.2.2 Tool Hierarchy

Extracting high-level requirements from assembler code comprises of different activi-
ties. We can use existing tool support for some of those while for others we have to
create new tools. Thus our reverse engineering project will be generating a tool suite
to support different activities by different tools and also a procedure which will be
followed to generate the requirements documents. Figure 2.1 (taken from [CKK*04])
gives a presentation of the tool hierarchy and interaction among the tools where

arrows denote “used by” relations.

1

A

Requirements Repository

1
Requirement V&V Tools J—
(Scenario Analysis, Testing etc.)

A i

Timing Analysis Tool

4

A

Semantic Analysis Tools o Graph Analy1s_is ITLzLSUb
= e raph Generation Tools ra

/’

Assembly Representation
Library & Emulation

Figure 2.1: Tool Suite Architecture of the Reverse Engineering Project

The work represented in this thesis is the description of the tools that can be fit
in the highlighted boxes at the bottom left corner of Figure 2.1 which are “Semantic
Analysis Tools” , “Semantic Analysis Library” and “Functionality Analysis Tool”.

2. Problem Definition 13

The output of those tools will be used by Design Recovery Tools and Timing Analysis
Tools towards generating the requirements document. In the following section, we

give a brief overview of the Semantic Analysis process which is presented in the thesis.

2.3 Semantic Analysis

The semantic analysis tools capture the semantics of the assembly code as an aid
to understanding the system’s requirements. By combining flow graphs, semantic
information and abstract definition, we try to find semantic interpretation of different
control structures (for and while loops, if statements etc) in the assembler code. We
expect that control structures have to be used along with its semantic model to
properly capture the exact semantics of the underlying code although we restrict
ourselves to classical structures only.

In the semantic analysis process, our main concern can be described by the fol-
lowing line: “we try to understand what the assembler program does”. Given an
IBM -1800 assembler program, we represent the meaning of the program by some
mathematical equations. Those mathematical equations can be solved to find the
computation done by the program or can be pictorially presented to understand the
program in a better way. As the assembler codes (we are dealing with) are mainly
used for computation in a control circuitry, their meanings can be better represented
by a set of mathematical equations. We will be using symbolic interpretation, control
and data flow analysis (these terminologies are defined in Chapter 3) techniques to
present the meaning of the IBM-1800 assembler programs.

For this work, we shall take for granted that a formal specification of the opera-
tional semantics of the assembler is a definite step forward in “understanding” what
a program does. This specification should be written in a specification language with
consistent semantics. In later steps, the specification will be used to find the meaning
of each instructions. Ultimately, for the functions in the assembler codes, we are
aiming to (automatically) extract nice closed-form formulas and their graphical rep-
resentations that express the actual (or idealized) semantics of those functions and
thus of the assembler program. In the following subsection, we give a brief overview
of the IBM-1800 assembler programs and their pros and cons related to semantic
analysis process. ‘

14 2. Problem Definition

2.3.1 IBM-1800 Assembly Language

The codes written in IBM-1800 legacy assembly language have complex control flow,
no data/code separation etc. We have an extremely complete and detailed descrip-
tion of the operational semantics of the machine language [IBM70] which is partly
described in Chapter 5. Assembler programs can be assembled into either as a binary
image (which can be directly loaded into memory for execution) or as an assembly
listing (.1st) file. The .1st file is almost similar to the original source code, with
some extra information like: the relative address of the instruction, the opcode (hex-
adecimal representation either 16 or 32 bit object), line number in the source code and
also a symbol (REL) to indicate which 16-bit words use relative or absolute address
during memory loading. To make the discussion more precise, here we present a small
code segment of IBM-1800 assembler code (adapted from the .1st files provided by
OPG):

OADDR REL OBJ. S.NO. LABEL OPCD FT OPRNDS
3586 0 C129 0677 TRBFB LD 1 41

35B7 0 A12A 0678 M 1 42
35B8 0 1082 0679 SLT 2
35B9 0 912B 0680 S 1 43
35BA 0 A12C 0681 M 1 44
35BB 0 108F 0682 SLT 15
35BC 0 A92D 0683 D 1 45
358D 0 DI2E 0684 ST0 1 46

The .1st source code of the assembler program contains the following information:
e op codes and corresponding data (symbolic or immediate, as appropriate),
o relative addresses of the instructions,
e names for code blocks,
e names for “data” memory locations (in comments).
A human reading of those programs and operational specifications finds that
e there is no separation between code and data,;

e there are many indirect (computed) jumps;

2. Problem Definition 15

e there is no “subroutine” concept used, although IBM-1800 supports subroutines
within a program;

o there is self modifying code, which however only modifies the content of ad-
dresses or registers, in other words operands of the instructions;

e although IBM-1800 assembly language has condition checking for exceptions
(carry, overflow etc.), there is no exception handling in the code segments of
OPG. At least we could not find any in the code examined;

o there is no stack, only memory;
e there is fixed, known data size (16 bits, 32 bits).

The first 4 items are definite complications for program understanding. The last
3 items are certainly a definite impediment to writing programs, but turn out to be
quite useful in program understanding! They provide hard, definite constraints that
must hold true for the program to be meaningful. For example, as there is no carry
or overflow check in the code examined, then it must be the case that all arithmetic
operations must not cause either carries or overflows; this implies that some side
predicates must always be true for the program to be meaningful.

One important aspect of those source programs is that they are heavily com-
mented; this is extremely helpful for the larger reverse engineering effort. Unfortu-
nately, little automated use can be made of these comments, as:

e when the programs were maintained, the corresponding comments were not

always updated,

e block comments are not always in meaningful locations, so that they cannot be
used to identify meaningful blocks of code (i.e. functions),

¢ line comments do not always correspond to the corresponding instruction.

Needless to say, with the notable exception of “data” memory locations, the comments
do not exhibit enough structure to be reliably used in an automated process.

Chapter 3
Tools and Techniques

There has been increasing interest in the application of sophisticated program analysis
techniques to software development and maintenance tools. Such tools include those
which are used for program understanding, verification, testing, debugging, reverse
engineering etc. In this chapter, we present and describe some analysis tools and
techniques which are relevant to our symbolic interpretation process.

3.1 Graphs

Graphs are appropriate models for many problems that arise in computer science and
its applications. Specially in software engineering, Control Flow Graph (CFG), Data
Flow Graph (DFG), Component Graph (CG) etc. give a better analytical approach
to understand and characterize software architecture, static and dynamic structure
and meaning of the programs [CG03]. From a pictorial sketch (by graphs) of internal
structure of the code, it is always more comfortable to recognize the issues related
to software engineering analysis. That is why, graphs are always preferred by the
software engineers and researchers to understand, re-engineer and analyze codes.

A variety of graph analysis techniques are available for software engineering ap-
plications. Control Flow Analysis, Data Flow Analysis, Analysis using Component
Graph are some of them. In Control Flow Analysis, Control Flow Graph (CFG)
is used to Analyse and understand how the control of the program is transferred
from one program point to another. Similarly, Data Flow Analysis uses Data Flow

16

3. Tools and Techniques 17

Graph (DFG) to show and Analyse the data dependencies among the instructions
of the program. Component Graph identifies the components of a program ; shows
the use relations among those components and is very useful in software architecture
identification and recovery.

In our symbolic analysis process, we use Control Flow Graph and Data Flow Graph
for assembler program comprehension. In the following subsections, we discuss those
two graph structures in detail.

3.1.1 Control Flow Graph

A control flow graph (CFG) [ASU86] of a program is defined by a directed flow graph
G = (N,E,z,y) with a set of nodes N and a set of edges E C N x N. A node
u € N represents a program instruction (statement), an edge u — v € F indicates
transfer of control between instructions u,v € N. Node z € N and node y € N are
the unique start and end node of G, respectively. Consider the control flow graph in
Figure 3.1. We have a set of nodes N = {z,1,...7,y} and a set of edges. The start
node is denoted by z and the end node by y.

A CFG may not be connected, that is, some nodes may not be reachable from
the start node z. Therefore, whenever we refer to a CFG we mean the subgraph of a
CFG such that all nodes in the subgraph are reachable from the start node z and all
the nodes can reach the end node y, i.e. every node is assumed to reside on a path
from z to y.

3.1.2 Data Flow Graph

A data flow graph (DFG) of a program can be defined the same way as the control
flow graph. It is a directed flow graph G = (N, E) with a set of nodes N, a set of
edges F (ordered set of node pairs) such that E C N x N and a distinct end node
y € N. The start node may be one or two depending on the starting instruction of
the program.

The nodes and edges are divided into two groups which are different from CFG.
Nodes can be of type: Operator Node and Operand Node depending on the content
of the node. A node u € N is an Operator Node if it represents an operation in the
program and similarly a node v € N is an Operand Node if it is an operand of the

18 ‘ 3. Tools and Techniques

o%o
o&o

Figure 3.1: Control Flow Graph

program. Shapes of the nodes distinguish among the nodes; box shaped nodes are
Operator Nodes and elliptical shape nodes are Operand Nodes. Edges can also be
of two types: In Edge and Out Edge. An edge u — v € E indicates an In Edge if
u,v € N, u is an operand node and v is an operator node. Again, anedgev — u € FE
is an Out Edge if v,u € N, v is an operator node and u is an operand node. Let us
consider the data flow graph in Figure 3.2. We have a set of nodes N = {1, ...6, z,y, 2}
and a set of edges with the end node 6. Nodes {1,...6} € N are Operand Nodes and
nodes {z,y,2} € N are Operator Nodes. Edges like 4 — 2 are called In Edge and
edges like 2 — 6 are called Out Edge. A DFG may not be connected as there may
not be data dependency among all the instructions of a program.

3. Tools and Techniques 19

Figure 3.2: Data Flow Graph

3.2 Semantic Analysis

There are two main aspects of a computer language - its syntax and its semantics
[NN99]. The syntax defines the correct form for legal programs and the semantics
determine what they compute. The syntax is concerned with the grammatical struc-
ture of the program while the semantics give the meaning of grammatically correct
programs. While the syntax of a language is always formally specified, the more
important part of defining its semantics is mostly left to natural language, which is
ambiguous and leaves many questions open. Hence methods are developed to describe
the semantics of computer languages. Here we shall consider only three approaches.
Very roughly, the ideas are as follows [NN99]:

20 3. Tools and Techniques

Operational Semantics: The meaning of a construct is specified by the com-
putation it induces when it is executed on a machine. In particular, it is of interest
how the effect of a computation is produced.

Denotational Semantics: Meanings are modeled by mathematical objects that
represent the effect of executing the constructs. Thus only the effect is of interest,
not how it is obtained.

Axiomatic Semantics: Specific properties of the effect of executing the con-
structs are expressed as assertions. Thus there may be aspects of the execution that
are ignored.

In our symbolic interpretation steps, we are mainly concerned about the opera-
tional and denotational semantics. An operational explanation of the meaning of a
construct tells how to execute it. From the IBM 1800 manual, we use the operational
description of all the instructions to develop a semantic model of them. Later this
model is used to interpret the symbolic meaning of the assembler code.

Denotational semantics [NN99] is a methodology to define the precise meaning
of a computer language. In denotational semantics, a computer language is given
by a valuation function that maps programs into mathematical objects considered as
their denotation, i.e. meaning. Thus the valuation function of a computer program
reveals the meaning of computer programs . At the end of our symbolic interpretation
process, we will define the meaning of the assembler code by some mathematical
equations i.e. our symbolic interpretation process gives the denotational meaning of
the assembler codes without considering the syntactical premises of the program.

3.3 Program Transformation

Program transformation techniques are helpful in the areas of software engineering like
program synthesis, reverse engineering, documentation generation etc [Pro05]. Lots
of theories, tools and applications on program transformation have been developed
for these areas.

What program transformation does is to change one program into another. The
language in which the program is written and the resulting program after the trans-
formation are called the source and target languages, respectively. In a program
translation scheme, a program is transformed from a source language into a program

3. Tools and Techniques 21

in a different target language [Pro05]. Although transformations aim at preserving
the exact semantics of a program, it is usually not possible to retain all information
across a translation.

In the area of Reverse Engineering, the purpose of program transformation is to
extract from a low-level program a high-level program or specification, or at least
some higher-level aspects. Reverse engineering raises the level of abstraction and is
the dual of program synthesis [Pro05]. Examples of reverse engineering are decompi-
lation in which an object program is translated into a high-level program, architecture
extraction in which the design of a program is derived, documentation generation, and
software visualization in which some aspect of a program is depicted in an abstract

way.

3.4 Implementation Tools

The tool suite architecture of the reverse engineering project is hierarchical and will
become more complex as it grows. That is why, it is more important to structure it
well. As we know, well-structured software is easy to write and debug. Moreover,
it provides a organized collection of modules that can be re-used in course of time
to reduce future programming costs. Hughes [Hug90] argued that modularity is the
key to efficient and successful programming. Efficient programming languages must
support modular programming as well. But modularity means more than modules-
the success of decomposing a problem into parts depends directly on the ability to
glue solutions together. To assist modular programming, a language must be featured
with good glue for modules. In this regard, we look for a programming language
genre which provides us with efficient modularity features to generate well organized
software.

3.4.1 HASKELL

Hughes [Hug90] showed that conventional languages are more constrained with modu-
larization while functional languages push those limits back. Functional programming
is a genre of programming which mainly depends on the evaluation of expressions,
rather than execution of commands. Expressions of these languages are formed by

22 3. Tools and Techniques

combining functions. In our implementation, we will be using a functional program-
ming language called Haskell to extract and manipulate information from IBM-1800
assembler codes.

Haskell is a pure functional programming language with open source compilers for
almost all modern computer and operating systems. In this project, we use Glasgow
Haskell Compiler (GHC) [Has| which either generates C code as an intermediate step
or on some platforms generates native code. In the following paragraphs, we discuss
some important features of Haskell which made useful Haskell as our implementation
language.

One of the most important and powerful feature of Haskell (as it is a pure func-
tional language) is functional composition[Has|. Haskell programs can be written
as the composition of functions. Operations on a set of data can be represented as
functions and functions can be glued together to create complex functions which can
describe complex operations on data. Functions can also be passed as parameters to
other functions as objects and thus they allow us to create generic functions. These
techniques lead to natural modularization of the program. In Haskell, each func-
tion is created as a composition of other functions, and thus a hierarchy of functions
always exists. Instead of creating large monolithic functions, we can create several
small functions and glue them together to create the larger functions. In this way, it
presents the software developers a sophisticated technique to create layered and well
structured software. Verification of the software for correctness is also more easier as
verifying the hierarchical functions for totality can easily assert the correctness of the
program.

Haskell offers new ways to encapsulate abstractions [Has]. An abstraction allows
us to define an object with the internal logic implementation hidden from outside.
Abstraction plays a key role in building modular and maintainable programs. One
important abstraction mechanism available in Haskell is the higher-order function. As
we mentioned earlier, in Haskell, functions can freely be passed to or returned from
other functions, stored as objects in data structures and so on. This can substantially
improve the structure and modularity of many programs.

Functional languages like Haskell use lazy evaluation: they only evaluate as much
of the program as required to get the answer. This allows us to use infinite types in
the programs. For example, functions using varying length lists can share an infinite

3. Tools and Techniques 23

list and each function will only evaluate the list necessary for its own execution. This
demand-driven evaluation provides powerful ”"glue” to compose existing programs to-
gether. Thus it is possible to re-use programs, or pieces of programs, more frequently
than can be done in an imperative style of programming (like C); allowing us to write
modular programs easily.

Pattern matching is another important technique for function definition in Haskell.
Proper use of pattern matching can produce clear representation of different possible
inputs of the function. Although, over use of pattern matching can lead to verbose
and convoluted codes.

Like some imperative languages, Haskell also has strong typing system [Has]. This
provides facilities to detect and solve typing related errors before compilation and
thus reduces the chance of errors like type mismatching or null pointer assignment
etc. during runtime. However, in some cases, Haskell’s type system is much less
restrictive than imperative languages as it provides polymorphism. Polymorphism
enhances re-usability of codes as generic functions can be defined to solve similar
kinds of problems for different types.

Literate Programming (introduced by Knuth [Knu84]) is a programming method-
ology where the code and the documentation of the code can be interspersed together
in a single file. In that way, a document can describe a program as well as con-
taining it. Haskell provides support for literate programming by combining Haskell
programs with LATEX. Thus a single document in Haskell can be compiled into an
executable program or typeset directly into a format for publication. This helps the
programmer to keep the code documentation up-to-date and in conformance with the

implementation.

Haskell relieves the program developer of the storage management [Has]. Storage
allocation, initialization and garbage collection are done implicitly. But problems
like stack overflow may occur while manipulating large amount of data in a Haskell
program. Efficient implementation of the Haskell functions may help the programmer
to overcome this disadvantage.

24 3. Tools and Techniques

3.4.2 GXL

GXL [Win01] stands for Graph eXchange Language. It is designed to be a standard
exchange format for graphs. GXL is an XML sublanguage and the syntax is given by
a XML DTD (Document Type Definition). This exchange format offers an adaptable
and flexible mean to support interoperability between graph-based tools.

In particular, GXL was developed to enable interoperability between software re-
engineering tools and components, such as code extractors (parsers), analyzers and
visualizers. In our reverse engineering project, we choose GXL as a graph exchange
format for various reasons. Among variety of available graph exchange formats, we
require a format which would allow us to represent the semantics of the graph in a
formal way and also we can verify the transformation of graphs in a rigorous manner.
Ms. Wu and Dr. Kahl [Wu04] have already done some work on the formalization of
GXL. In addition, GXL is represented in human readable XML format which might
be very advantageous later on.

The most important benefit of GXL for this project is that there exists some
re-engineering tools which utilize GXL as exchange formats. At the beginning of
the project, it is predicted that some of these tools might be proved useful in the
project. Consequently, GXL produced by the tool suite in the project may be veri-
fied and tested with the variety of other GXL based tools. Also, the output of these
tools can be used by the standardized tools to produce different aspects of extracted
information. GXL is also very much flexible to generate various types of graph rep-
resentation. Wu [Wu04] showed that it is possible to represent Control Flow Graph
and Data Flow Graph using different views of the graphs in GXL. In this thesis, We
use GXL to output Control and Data Flow Graphs for exchange purposes.

Chapter 4
Process Overview

In this chapter, we present a brief overview of the whole symbolic interpretation
process. We also discuss all the tools and their interactions in short. Later, we
discuss different software engineering principles and their application throughout our
software development process.

4.1 Major Steps in Our Process

As we discussed in Section 2.3, the whole symbolic interpretation process is automatic
without any human intervention. In this section, we decribe briefly major steps that
are being followed during the symbolic interpretation of IBM-1800 assembly language
codes. For each consecutive step, output of one step will be the input of the next
step.

Figure 4.1 gives the steps of our overall symbolic interpretation process. More
specifically, these are:

o Use the complete operational semantics of IBM-1800 to derive (human assisted)

— an emulator, as an explicit state transformer. This emulator will take a
.1st code file as input, a starting state, and finds the final state of the
machine after the execution of that code file.

— a one-step symbolic emulator. This finds the complete symbolic interpre-
tation of any instructions, given as the state transformer induced by the

25

4. Process QOverview

26

Control Flow
Graph (CFG)

Path Finder
Graph
Generator Set of Data Flow Graph Data Flow Graph
Data Flow Generator (GXL Format)
Graph Equatons
Watker (DFE)
Operational
Semantics v Solve DFES Closed Form
DFEs
1 Step Symbolic > 3 Makedup Path Walker
Emulator NL/ 7 CFG
N
Emulator
LEGENDS:
Instruction ——p Automated Step
.o reesemseeip P Human Assisted Step
Emulated Output
of Ist ﬂl:'p . , ==—==P>> Approximated Step
Process Process
Combinator

Figure 4.1: The Steps of Symbolic Interpretation Process

4. Process Overview 27

operational semantics. The derivation of the one-step symbolic emulator is
human assisted in our process. However, It can be automated by creating
proper formal representation of the operational semantics. For this reason
we show the step as automated in Figure 4.1.

Use the .1st code file to derive an approximated Control Flow Graph (CFG).

Combine the CFG and one-step symbolic emulator to derive a marked-up CFG.
In this derived graph, each edge of the CFG will contain the complete one-step
symbolic interpretation of the instruction contained in the source node of the
corresponding edge.

Find execution paths in the CFG.

Combine the marked-up CFG and the execution paths to find the dataflow
equations (DFE) for the assembler program. In this combination process, we
find all the splits and joins in the paths to find the high level control structure
of the code.

Solve those simplified DFEs to find the closed form representations.

Generating Data Flow Graphs from the DFEs.

A more detailed description and specifications of the inputs and outputs for the

important steps are given in the following subsections:

4.1.1 Control Flow Graph Generator

The first phase of this step is being done by Kevin Everets [Eve04] and in this step

the approximate control flow graph of the assembly language code is being found. In

Kevin’s tool, the output is being represented in GXL (Graph Exchange Language)

format for easy and standard graph interchange between the tools. It takes a .1st

code file of the legacy assembly code as input and produces the GXL format CFG

(Control Flow Graph) of the assembler code.

As GXL format is an exchange format and is not easy to handle, in the second

phase we generate an internal data structure of the control flow graph that contains

28 4. Process Overview

only the necessary information for symbolic interpretation of the corresponding pro-
gram.

Input: Control flow graph in GXL format.

Output: A graph data structure that contains two finite maps: one is between
the nodes and their corresponding instruction opcodes and the other is between nodes
and next possible edges from the corresponding node.

Type Signature: The implementation is described in Section 8.2.1 with the
following type signature:

gx1ToMyGraph :: Gx1.Gx1 -> Int -> MyGraph

4.1.2 Emulator

By using a complete translation of the operational semantics of the IBM-1800, we
can create a complete emulator. As mentioned earlier, this emulator can be seen
as a state transformer which finds the final machine state (that is different machine
components with their final values) after execution of a set of instructions. We “load
up” a complete state via reading in a .1st file of the code given and also create a
representation of the state with all the state components having some initial values.
The whole memory is given an initial value by loading the .1st file in an array with
216 entries. Then the emulator erulates the execution of the set of instructions given
on this initial machine state to find the final state after the execution. Here we assume
that the set of instructions (i.e. assembler code) given is always terminating otherwise
the emulator will produce some aberrant output without indication.

This step is mainly used to find the correctness of the model of the assembler se-
mantics that we used to develop the next symbolic analysis steps. We have compared
the output of this step with standard independently written emulator of IBM-1800
and obtained the same results.

Input: Source code of an IBM-1800 assembler program with initial machine state.

Output: Final machine state after the execution of the program.

Type Signature: The implementation is included in Appendix C with the fol-

lowing type signature:

emulate :: Int -> State -> State

4. Process Overview 29

4.1.3 One Step Symbolic Emulator

The one-step symbolic emulator produces the symbolic representation of the state
transformer for an instruction. For each instruction given as input, it produces a
symbolic interpretation of the state after execution of that instruction. Instead of
concrete values, this representation contains symbolic expressions for the values of
the state components that are being changed by the execution of that instruction,
and also a symbolic path condition that reflects possible condition induced by the
instruction.

As we see in Figure 4.1, One Step Symbolic Emulator is used to interpret symbol-
ically the instruction opcode of nodes in the control flow graph and to annotate the
following edges from that node by the corresponding symbolic interpretation. So the
combination of the CFG walker function and One Step Symbolic Emulator produce
the following input and output.

Input: Control Flow Graph of the assembler code.

Output: A marked-up CFG with the edges labelled by the symbolic interpreta-
tion of the instruction associated with their source nodes.

Type Signature: We describe the implementation of One Step Symbolic Emu-
lator in Appendix D with the following type signature:

sSemantics_ :: Op -> Instruction -> [(CondFunc, [Func])]

The function to create marked-up CFG is discussed in Section 8.2.1 with type signa-
ture:

doAnnotation :: MyGraph -> MyGraph

4.1.4 MultiStep Symbolic Emulator

Basically, this step is a functional combination of the Path Finder and Path Walker
functions on the marked-up CFG. This step finds the symbolic interpretation of an
assembler code (a set of instructions). Our symbolic interpretation will not find
any high level equivalent of the assembler code, instead it finds a set of Data Flow
Equations (DFE) which defines the computation done by that code. Definition of
DFEs is given in the corresponding chapter.

30 4. Process Overview

As the control flow in the assembly language is arbitrary, a major challenge in
symbolic analysis of assembly language programs is to model the control flow. We
model this arbitrary control flow by a set of execution paths in the program. Every
program has a starting point and we can define a program path as a sequence of in-
structions that can possibly be executed during some run of the program. All program
paths begin from the starting point of the program. We try to find some predefined
structures (like branching structures, sequential codes, loops) in the program paths
to find the symbolic constructs of the program.

Path Finder functions find the program paths in the Control Flow Graph. Using
those paths, Path Walker functions find the control structures in the code and gather
all the annotations (interpretation of the instructions) of the edges in the paths to
find the semantic context of the code.

Input: Marked-up control flow graph of the assembler code.

Output: Data Flow Equations (DFE) which show the high level representation
of the code.

Type Signature: This implementation includes two modules: Path Finder and
Path Walker. Path Finder module is described in Section 8.5.1 with type signature:

nodesFromStart :: MyGraph -> MyNode -> [FinalPath]
The function for finding DFEs is discussed in Section 8.5.2 with type signature:

findAnnt0fGraph :: MyGraph -> MyNode -> [[([ConditionStmt], [Stmt])]]

4.1.5 Generating Data Flow Graphs

DFEs show the flow of the data in symbols but we can get better pictorial presentation
of the data flow in the Data Flow Graphs (DFG). From the DFEs generated in Multi
Step Symbolic Emulator, we produce Data Flow Graph (DFG) which gives better
understanding of the data flow in the given chunk of assembler code. In generating
the DFG, we first produce a DFG which contains redundant entries. When we create
the nodes corresponding to one instruction, we don’t know which part of the output
value will be used later. So we create some redundant entries (whenever possible)
for the output values of the instructions. Some of them may be used in the next

4. Process Overview 31

instructions of the code. Consequently, we remove the unused entries (in the garbage
collection phase) to give the final representation of the DFG.

Input: Data Flow Equations (DFE) generated by Multi Step Symbolic Emulator.
Output: Data Flow Graph (DFG) of the given code.

Type Signature: We include the implementation in Section 9.4 with the follow-
ing type signature:

dfdGraphToGx1Graph :: Gx1Graph -> String ->
[[([ConditionStmt], [Stmt])]] -> Gx1lGraph

4.1.6 Solving Data Flow Equations

By solving we mean to find a symbolic expression for each variable in the right hand
side of DFE which can be calculated (symbolically) from the previous DFEs. Our
Data Flow Equations (DFE) give a sequential set of statements which represents the
computation done in the code. We follow two steps to find the solved flow equations
for each DFE. First, we evaluate the variables on the right hand side of the statement
i.e. we find a symbolic expression for each variable. Then, we substitute the variables
with the expression while keeping the operators in place.

At the end, after solving each of the DFEs, we find the inputs and outputs of the
code and also the system of equations which defines the relationship of the inputs
and outputs. Input means the values which are being read in by the code and the
outputs are the final values which are being written to.

Input: Data Flow Equations (DFE) of the assembler code.

Output: Inputs, outputs and system of equatios representing the computation
of the code.

Type Signature: We discuss the implementation in Section 10.2 with the type
signature:

solveAnnt0fGraph :: [[([ConditionStmt], [Stmt])]]
-> (ConditionStmt, [Recur_Stmt] ,EvalHistory)

32 4. Process Overview

4.2 Software Engineering Principles

In this section, we discuss some important software engineering principles which are
central to successful software development [CGO03] and their role and impact in the
development of our reverse engineering process. Although these principles appear to
be strongly related, we prefer to describe them separately and in general terms.

4.2.1 Rigor and Formality

Rigor [CGO3] stands for precision and exactness- which is an intuitive quality and
can’t be defined in a rigorous way in software development. Various degrees of rigor
can be achieved; the highest among them is called formality where the whole software
development process is driven and evaluated by the mathematical laws. We don’t have
to be always formal during the design phase of the software but we must be able to
identify the level of rigor and formality that should be achieved.

In our process where we try to analyze mathematically the IBM-1800 assem-
bler codes, the instructions of IBM-1800 should be modeled as formal mathematical
equations. For this reason, we model the natural language description of the IBM-
1800 instructions (See Appendix A) in a formal way as a combination of logical and
mathematical formulas during the design process. Each instruction is modeled as a.
state transformer equation with some operations on the state components. During
programming (a traditional formal approach in the software development process),
we directly translate the formal model of instructions into the programming objects
which are automatically checked and verified for correctness by the compilers.

Rigor and formality also apply to whole software process. Rigorous documenta-
tion helps the programmers to reuse the codes. Using literate programming style in
Haskell, we try to be as formal as possible during the development process which
might later be useful in code reuse.

4.2.2 Separation of Concerns

Separation of concerns helps us to deal with different aspects of the problem while
concentrating on each independently at a time. Different types of separation of con-
cerns are in practice in software process [CGO03]. Most of them are dealt with the

4. Process Overview 33

higher level design of the reverse engineering tool suite architecture; where our sym-
bolic interpretation process is a part. One important type of separation of concerns
is to work with different parts of the problem separately. Using modular development
strategy, we have divided the whole software in the symbolic analysis process into
several steps. At each step, we are not concerned with the next steps and necessary
adjustment in both the design and the previous steps are made depending on the
current step of development. In this way, we can easily concentrate on the current
step. While working on generating Data Flow Equations of the assembler codes, we
are least concerned with generating Data Flow Graphs; thus cutting the problem into
smaller managable subproblems.

4.2.3 Modularity

A system that is composed of modules is called modular. Modularity is essential
to build a well structured, layered and maintainable software. As we saw in Figure
4.1, we divide our whole process into modules where each module is taking care of
a different part of the process; thus implying the principle of separation of concerns.
First, the whole process is decomposed into modules with an initial model of the
instructions of IBM-1800. Then, we concentrate on individual module design to
manipulate the model; following a top down design process.

As all other functional programming languages, Haskell provides us with impor-
tant features to modularize the programs (See Section 3.4.1). Each major module
in our process uses the output of only a few previous modules; thus inducing low
coupling. However, each internal function inside the modules are related strongly
to give high cohesion. We keep all the common codes of different modules in sepa-
rate modules to reduce coupling and also to eliminate repetition of codes from the
program.

Interaction of Modules

The success of modular software also depends on proper and faster interaction of
modules. We develop explicit import and export list of the functions inside the mod-
ules to make the interaction of the modules faster. A pure functional programming
language like Haskell helps to create interfaces among the modules in a better way to

34 4. Process Overview

aid software engineering.

As there are several re-engineering tools available, we provide all the output of
graphs (either control flow or data flow) in GXL (Graph eXchange Language) format
(described in section 3.4.2). In the tool suite architecture of the reverse engineering
process, all the graph information exchange are in GXL. GXL is an exchange format
and is not easy to handle. So we create our own internal data structure of the
input graphs to share information needed and to decrease interaction time among the

internal modules.

4.2.4 Abstraction

Abstraction is a basic technique for understanding and analyzing complex problems
[CGO03]. By abstraction, we can ignore the complex details of an object and con-
centrate on the facts that we think relevant. We use Haskell as our implementation
language which has a better abstraction mechanism. Using abstract data types in
Haskell, we place an abstract layer on each of the module details. This provides us
with better program understading and easily maintainable software.

4.2.5 Anticipation of Change

Software may undergo changes contantly. These changes may be due to elimination
of errors or future adaptation in different platforms. Basically, incorporating antici-
pation of change in the design strategy means to isolate the likely changes in specific
portions of the software so that future changes will be restricted to those portions
only [CGO3].

We have translated the model of the instructions for the IBM-1800 in separate
Haskell modules in both the emulator and symbolic emulator. We can just replace
those modules by different models of different assemblers to use the process or the
software in different platforms.

Reusability

Reusability is a software quality which is strongly effected by the anticipation of
change. Reusability of Data Flow Equation (DFE) and Data Flow Graph (DFG)

4. Process Overview 35

generation tools in different assemblers was a primary concern of the reverse engi-
neering process. As we said earlier, we can just replace the model of the assembler by
a different one to create different DFE or DFG generation tools for that assembler.
The use of Haskell as the implementation language in generating the representa-
tion of IBM-1800 assembler facilitates our tools to use the code from the assembler
representation and Control Flow Graph generation tools by Kevin Everets [Eve04].
As examples, the code to read the .1st file and to create the control flow graph is
used by the emulator and symbolic emulator, and the code to read and write GXL
representations [Eve04] is used by our tools to produce GXL presentations.

4.2.6 Generality

The principle of generality may be stated as follows: “Every time you are asked to
solve a problem, try to focus on the discovery of a more general problem that may be
hidden behind the problem at hand” [CG03]. While generating the semantic analysis
tools, a prime concern was to develop the tools in a way so that different architectures
can be represented and with minimal changes in the tools, we can perform semantic
analysis of those architectures. The architecture might have different instruction sets,
registers, memory size and timing mechanisms. This increases the portability of the
tools on different architectures.

Portability on Different Architectures

We can reuse the same code for the semantic analysis tools of IBM-1800 in different
architectures like Varian V75, MIPS and other most commonly used architectures.
Haskell provides us with abstraction and modularization mechanism to attain this
goal. Using abstraction, we isolate and localize the anticipated change in the internal
data structures. Functions operating on those structures and their helping functions
will continue to work without much change although the modules cotaining the model
of IBM-1800 have to change significantly to incorporate different architectures.

We hope that this independence of architecture will work to support differnt as-
semblers. In case of changes have to be made across more modules to incorporate
different architecture, a provision is left to re-factor the code to fully isolate the

platform specific codes.

36 4. Process Overview

4.2.7 Incrementality

Incrementality applies to a process that proceeds in a incremental way [CG03]. We
can add differnt features of a process in increments. A good software design must
incorporte provision to add new features easily. In our semantic analysis process, our
first goal was to find the Data Flow Equations of the assembler codes. Our model is
designed in a way that later we added different features like generating Data Flow
Graphs, solving Data Flow Equations with slight adjustment in the same design. In
future, it is possible to add new features like generating pre and post conditons for
the assembler codes using this design.

Chapter 5

Operational Semantics of

Assembler

This chapter contains the operational semantics of the IBM-1800 Assembly Language
and also a brief overview of IBM-1800 Data Acquisition and Control System. This
part is mostly taken from IBM-1800 Operating Manual [IBM70]. Later we include
an abstract model of the operational semantics which will be used for the symbolic

interpretation process.

5.1 IBM-1800 System

The IBM-1800 Data Acquisition and Control System [IBM70] is developed to handle
a wide variety of real time applications such as process control and high speed data
acquisition. It has the following main physical units-

e 1801 or 1802 Processor-Controller

1803 Core Storage

e 1826 Data Adapter Unit

1828 Enclosure for Rack Mounting of Analog Input/Output

1810 Disk Storage

37

38

5. Operational Semantics of Assembler

Customer Signal Cable for screwing down terminals at the rear of the unit.

DP 1/0 equipment

The 1801 and 1802 Processor-Controllers [I[BM70] named as stored program com-
puters, consists of a central processing unit (CPU),core storage and I/O channel

control circuits. Standard features of the processor-controller include:

Three index registers
Twelve levels of interrupt
Three data channels
Three interval timers

An operations monitor

A programmer’s console which may be used to input program manually using
console switches.

5.1.1 Stored Program Concept

1801

and 1802 processor controllers are called stored program computers for their

following characteristics [IBM70]-

The stored program contains all the words addressed by the instruction register
from the core storage.

Instructions are normally stored and executed sequentially, beginning with ad-
dress 0000.

Sequential execution of a program can be altered by changing the contents of
the instruction register.

Program instructions can be modified by conditions set forth in the program.

Program is loaded initially from a designated card or paper-tape input unit, or

manually from console switches.

5. Operational Semantics of Assembler 39

Additional instructions can be entered into core storage during the course of a
program.

There can be any number of degree of subroutines within a program.

The registers of 1801 processor controller that are used to execute instructions are
as follows[IBM70]:

Accumulator (A): It stores one factor of an arithmetic operation; the D reg-
ister contains the other factor. It contains the result of an arithmetic operation
and can be shifted right or left.

Accumulator Extension Register (Q): An extension of the low order end of
the accumulator; 16 bits. It stores the 16 least significant bits of a multiplication
operation and the remainder of a division operation.

Instruction Address Register (I): It is a 16 bit register, connected as a
counter to maintain the address of the next instruction.

Index Registers (XR): Three Index Registers (XR1, XR2, XR3) are mainly
used for address modification.

The other registers are Arithmetic Factor Register (D), Storage Buffer Register
(B), Storage Address Register (M), Temporary Accumulator Register (U) and
Shift Counter (SC).

The magnetic core storage (1803) works as memory unit for the 1801 processor

controller and is self contained on a single SLT board. Core storage arrays are avail-
able in two sizes, 4096 (4K) words and 8192 (8K) words. Each word consists of 18
bits [IBM70]. In the core storage (1803), bit 16 and 17 (last two bits of a word) are
used for hardware operation. The part of a word where data can be stored is 16 bit

in size. That is why, the logical word size in IBM-1800 is considered as 16 bit.

5.1.2 Machine Language

The IBM-1800 machine language has the following important features:

Data and instructions are handled in binary form in 16 bit words.

40 5. Operational Semantics of Assembler

e Hexadecimal notation is used to represent the machine language.
e Two word format allows data and instruction words of 32 bits.

e Negative numbers are handled and stored in two’s complement form.

5.1.3 Data Format

In the 1800 system, [IBM70] the standard, or single-precision data word is 16 bits
in length. Bit positions 0 through 15 represent decimal values of 2!% through 2°
respectively.

Positive numbers are represented in true binary form, whereas negative numbers
are in two’s complement form. The sign bit (position 0) is always 0 for positive
numbers and 1 for negative numbers.

The largest single-precision positive number that can be represented is 2!° — 1 or
32,767 and the largest negative number is —2° or -32768. A double precision number
of 32 bits can be used to give a number range from +2,147,483,647 to -2,147,483,648
(23! — 1 to —231).

5.1.4 Instruction Format

The instruction defines the basic operation to be performed and contains the factors
necessary for developing a core storage address. This core storage address is called
the effective address (EA).

Two basic instruction formats are used: a single-word instruction and a two-word
instruction [IBM70].

Short:

s e S T B S 1
I 0P IDIFI T | DISP |
s e T e e S s T I G S

Long:
B e e R At e L o e e e e e e

! OP |[DIF| T |IIB] COND |

5. Operational Semantics of Assembler 41

T o s aat U S S ST
I ADDRESS I
s T O R T s Bt o 3

OP = OpCode of the instruction

D = 5th Bit

F = Format (0 = One-Word, i = Two-Word)

T = Tag Value

I = Indirect Addressing (0 = Direct, 1 = Indirect)

B = Branch Out (0 = BSC, 1 = BOSC)

COND = Condition flags interrogated on a BSC or
BSI instruction

DISP = 8 bit displacement address

ADDRESS = Address of the core storage location

The two-word instruction contains the full core storage address in the 16 bits of
the low order word. The single-word instruction is used when its not necessary to
furnish the full core storage address, but only to modify(displace) a base address
already existing in a designated 16-bit register. The displacement bits, 8 through 15,
can be used to address a range of core storage locations from 127 addresses above the
base address to 128 below the base address.

The address portion of a two-word instruction can also be modified by adding to
the contents of a designated 16-bit index register.

The bits within the instructions are used in the following manner[IBM70]:

e Op Code: The operation to be performed by the instruction in defined by
these five bits. There are 26 valid op codes.

e Format(F): This bit selects the instruction format. A ”0” indicates a single
word instruction and a ”1” indicates a two-word instruction.

o Tag(T): These are index tag bits used to select a register for address modifi-

cation.

¢ Displacement: These eight bits define the displacement value and added to
the register specified by the tag bits to develop the effective address(EA). Dis-

42 5. Operational Semantics of Assembler

placement may be in either positive and negative direction as determined by
the sign of the displacement value. A negative displacement value will be in
two’s complement form with a bit in position 8.

¢ Indirect Address(IA): This is the indirect address bit in the two-word in-
struction format except in the modify-index-and-skip instruction with a tag 00
specified. If ”0”, addressing is direct. If ”1”, addressing is indirect.

e Branch Out(BO): This bit is used to specify that the branch-or-skip-on-
condition instruction is to be interpreted as ”branch-out-of-interrupt routine”.

e Conditions: These six bits specify the indicators to be tested on a branch-or-
skip-on-condition instruction.

e Address: These 16 bits usually specify a core storage address in a two word
instruction. The address can be modified by the contents of an index register
or used as an indirect address if the IA bit is on.

5.2 Semantics from Manual

In this section, we include all the instructions of IBM-1800 assembler with their
mnemonics. It also contains the hexadecimal representation of the instructions and
the meaning of different bits in the instruction code. Later the operational semantics

of one instruction is represented with an example.

5.2.1 Instruction Set

The IBM-1800 instruction set is shown in the Figure 5.2.1. An invalid code (0000)
enables the programmer to detect an inadvertent branch to a blank area, of core stor-
age. Each instruction falls into one of five classes [IBM70]. Note that the instructions
which may be used with indirect addressing are indicated in the Indirect Addressing
column.

Some instructions perform multiple uses, as specified by their control bits. A more

complete breakdown of instructions, including hexadecimal representations, is found

5. Operational Semantics of Assembler

43

Class Instruction Indirect Addressing|Mnemonic
Load Accumulator Yes LD
Double Load Yes LDD
Load Store Accumulator Yes STO
and Double Store Yes STD
Store Load Index ok LDX
Store Index Yes STX
Load Status No LDS
Store Status Yes STS
Add Yes A
Double Add Yes AD
Subtract Yes S
Double Subtract Yes SD
Arithmetic |Multiply Yes M
Divide Yes D
And Yes AND
Or Yes OR
Exclusive Or Yes EOR
Shift Left Instructions
Shift Left Logical (A)* NO SLA
Shift Left Logical (AQ)* NO SLT
Shift Left and Count (AQ)* NO SLC
Shift Shift Left and Count (A)* NO SLCA
Shift Right Instructions
Shift Right Logical (A)* NO SRA
Shift Right Arithmetically (AQ)*|NO SRT
Rotate Right (AQ)* NO RTE
Branch and Store 1 Yes BSI
Branch or Skip on Condition Yes BSC(BOSC)
Branch Modify Index and Skip ** MDX
Wait NO WAIT
Compare Yes CMP
Double Compare Yes DCM
1/0 Execute I/O Yes XIO

* Letters in parentheses indicate registers involved in shift operations.
** refer to the [IBM70] for the individual instruction (MDX and LDX).

Table 5.1: Instruction Set

44 5. Operational Semantics of Assembler

in the description of each instruction at [IBM70]. In the following subsection, we will
show only one instruction with its complete bit representation as example.

Instruction Format Symbology

Symbols are used to describe the instruction format and objectives. The symbols and
their meanings are:

Symbol Meaning

A Accumulator

Q Accumulator Extension Register

Address or Addr|Contents of the address portion of a two word instruction
C(XX) Contents of core storage at the location specified by XX.
DISP Contents of the Displacement portion of a one word instruction.
EA Effective Address

EA+1 Next higher address from the Effective Address.

I Contents of the Instruction Register.

XR1 Contents of Index Register 1.

XR2 Contents of Index Register 2.

XR3 Contents of Index Register 3.

X Hexadecimal value can be 0-F.

Hexadecimal Representation

The hexadecimal number is derived by dividing each word into groups of four bits
each and assigning a hexadecimal value corresponding to the decimal (BCD) value of
each group. The following illustration shows a hexadecimal value for each group of
four binary bits.
OP FT Disp
IllllollﬁlOIOIOIOlllOIOIOIIIOIII
D 0 4 5
OP F T InBg Cond Address
[11020]t]12] 0] 0 [0,000,00[0,0,0000011,000,11 11
D 7 0 0 0 1 8 F

5. Operational Semantics of Assembler 45

5.2.2 Instruction Example

LOAD ACCUMULATOR (LD):

Load operations normally transfers data from core storage to the machine register

specified in the instruction.
OP FT Disp

1100|O|0| IIIIII l

C 03 X X
OP FTIyBg Cond

Address

(110010|1ll| lOIOlOlOIOIOlOlIIIIII Ll lll

C 47 QOor8 0

X X X X

e Transfers the contents of the core storage location specified by the effective
address(EA) into the accumulator.

e The contents of the core storage location are unchanged.

e modifier bit 9 = 1 selects auxiliary storage of addressed core storage details.

One Word Instruction:

e Load C(EA) into A.

Hexadecimal Representation|Effective Address
CoXX I + Disp

C1XX XR1 + Disp
C2XX XR2 + Disp
C3XX XR3 + Disp

Two-Word Instruction, Direct Address:

e Load C(EA) into A.

Hexadecimal Representation|Effective Address
C400XXXX Addr
C500XXXX Addr + XR1
C600XXXX Addr + XR2
C700XXXX Addr + XR3

46 5. Operational Semantics of Assembler

Two-Word Instruction, Indirect Address:

e Load C(EA) into A.

Hexadecimal Representation|Effective Address
C480XXXX C(Addr)
C580XXXX C(Addr + XR1)
C680XXXX C(Addr + XR2)
C780XXXX C(Addr + XR3)

5.3 Model of Operational Semantics

It is clear that every single instruction (for this and most other processors) has a
complete operational description. By complete, we mean that every instruction has a
premise-free description. Furthermore this operational description straightforwardly
induces a denotational semantics, as a pure state transformer, where our state includes
the whole memory as well as all registers. Lastly both of these semantics are (by
definition) compositional.

More precisely, we want to model the effect of executing an instruction as a total
function on states [] to be a total function on states:

[Instruction] : (State — State)

Here, we will be presenting model of only two instructions as example. The full
abstract model of the operational semantics of the IBM-1800 assembler instructions
is included in Appendix A.

The followings are only a part of the notations used to describe the operational
semantics of the instructions of IBM-1800 assembly language [IBM70] at the abstract
model in Appendix A. These notations may be used to understand the model of the

two instructions presented as example.

5. Operational Semantics of Assembler 47

Inst(I)

DB

FB

displ
addr
Os-5(i,s)

X
loc(X)
locBS(1)

Contents of core storage at the location specified by I (Instruction
Register). Later we use i as its short notation.

D (5th) bit of the instruction opcode.

Format bit of the instruction opcode.

Displacement associated to the instruction.

Address defined in the instruction.

Checks bits 6-8 of the opcode, then according to bits 7&8, returns
the contents of I, XR1, XR2, XR3 if bit 6 is 0, otherwise returns
value of 0,XR1,XR2,XR3.

Os-s(i,8)

If i is indirect then *(X + addr) else X + addr.

If i is indirect then “addr else addr.

cmdx(mn, mp) Compares two values of one state component (specially index regis-

ters) before (mp) and after (mn) modification and returns 1 if the
modified word changes sign or reaches zero while being modified
and 0 otherwise. Used mainly in MDX instructions.

where DB, FB, and displ are implicitly functions of ¢ and 0 denotes an abstract

location with constant value 0. All of these notations have state s and Inst(I) or i

as implicit arguements unless explicitly defined.

A

Y Contents of state component y.

0y(f)(z) Short for y « f(*y,z).
S(z,y) Short for z « y.
where f ranges over a few built-in operations (arithmetic and logical) and y can be

any of the components of the domain of State.

5.3.1 LOAD/DOUBLE LOAD(LD/LDD)

¢ Load operations normally transfer data from core storage to the machine register

specified in the instruction.

e LOAD transfers the contents of the core storage location specified by the ef-
fective address (EA) into the accumulator (A) whereas DOUBLE LOAD loads
the contents of core storage specified by the EA and the content of next higher

core storage location into the accumulator and its extension (Q) respectively.

48 5. Operational Semantics of Assembler

e The operational semantics of LOAD and DOUBLE LOAD described in IBM-
1800 manual [IBM70] can be modeled as:

If OpCode(i) € {LD, LDD},

[i]s =é:(+)(1 + FB)®
S(A,(FB=07? X +displ) : "oc(X))
O©MDMB=17?S5(Q,(FB=07?
MX +displ +1) : MLoc(X)+1))) : I)

5.3.2 MODIFY INDEX AND SKIP (MDX)

e Modifies the Instruction Register (I), a specified Index Register (XR), or a core
storage word.

e The modifying factor can be Displacement, the Address word, or a specified
core storage word.

e It can be modeled as:

If OpCode(i) € {MDX},

[i]s=(FB=17?
(tag = 00 ? (6;(+)(2 + cmdx(("addr + displ),
Aaddr)), S("addr, (*addr + displ)))
: (67(+)(2 + cmdx((X + 1ocBS(i)), X)), S(X, (X + 1locBS(i)))))
: (tag =00 ? (6;(+)(displ))
¢ (6r(+)(1 + cmdx((X + displ), X)), S(X, (X + displ)))))

Chapter 6

Emulator

This Chapter contains an overview of the IBM-1800 emulator components and the
implementation techniques of them. Later we include an output example of the
emulator in section 6.5.

6.1 Introduction

Generally, an emulator duplicates/emulates the functions or behaviour of a system
with a different system in a way that the second system appears to act like the first
system [Wic05]. Unlike in a simulator, it does not try to exactly reproduce the state
of the machine being emulated; instead it attempts to generate the exact behaviour.

Theoretically, the Church-Turing thesis [Tur37] concludes that any computing en-
vironment can be emulated by another. Although practically, it can be quite difficult,
particularly when the exact behaviour of the system is not documented well or missing
and has to be extracted from the system to be emulated through reverse engineering.
Timing constraints can be another issue in emulating hardware. If the emulator does
not compute as fast as the original one, the software to be emulated can perform
much worse than it would have on practical hardware.

Most common form of emulators is used to emulate hardware architecture. Hard-
ware emulator is a piece of computer software that emulates the desired behaviour of
hardware. Computer programs which are supposed to use that hardware architecture
as underlying machine can then run on the corresponding emulator software as if they

49

50 6. Emulator

were running on original machine. In this way, hardware emulator gives the abstrac-
tion of machine computation to the upper layered software. It does so by “emulating”
or reproducing the behaviour of the corresponding hardware by accepting the same
data, executing the same algorithm in computation and achieving the same results
[Wic05).

Ontario Power Generation (OPG) is also using emulators for their legacy IBM-
1800 hardware as those hardware are difficult to maintain and it is almost impossible
to replace their failed components. They are using those emulators as a stop-gap
measure for the time being before transporting their whole system into newer hard-
ware.

As mentioned earlier, the work presented in this thesis is a part of the reverse
engineering project, particularly dealing with the IBM-1800 assembler codes of OPG.
The first step in our symbolic interpretation process of IBM-1800 assembler programs
is to develop a model of the operational semantics (section 5.3) of almost all IBM-
1800 assembler instructions. To validate the correctness of the model, we create an
emulator of IBM-1800 hardware using that model as an explicit state transformer.
As validation of the model is the main issue, we are not deeply concerned with the

timing constraints and I/O behaviour of the hardware.

6.2 IBM-1800 Emulator

Typically, an emulator may be divided into modules that correspond roughly to the
emulated computer’s subsystems . Most often, an emulator contains the following
modules [Wic05):

e a CPU emulator
e a memory subsystem

e various I/O devices emulators

Emulation of I/O devices is often treated as a special case and we are more
concerned with the validation of the model of the IBM-1800 operational semantics.
That is why, our IBM-1800 emulator is mainly composed of a CPU emulator and a

6. Emulator 51

memory subsystem with the inputs given as initial state values and produces output
as final machine state.

6.2.1 Model

The model developed in Section 5.3 shows the effect of execution of an instruction on
the machine components (mainly CPU registers and memory). Precisely, the model
works as a state transformer in which execution of each instruction produces next
state of the machine. A state is composed of the full Memory, the Instruction Reg-
ister (I), Accumulator (A), Accumulator Extension Register (Q), all Index Registers
(XR1, XR2,XR3) and the Overflow and Carry bits. During the emulation of IBM-
1800 assembler program, we start from an initial machine state and after executing
all the instructions in the assembler program, the final state is given as output of the
emulator.

In the following sections, we discuss how the memory and the CPU emulator
modules are implemented in a functional programming language (HASKELL). The
whole code of the emulator is given in appendix B.

6.3 Memory

For the memory subsystem emulation, it is possible to implement the memory simply
as an array of elements each sized like an emulated word. However, this model
breaks soon as any location in the computer’s logical memory does not match physical
memory.

Cleary, this happens whenever the emulated hardware allows for advanced memory
management (MMU). Even if the emulated computer does not feature an MMU, there
are usually other factors that break the equivalence between logical and physical
memory (one such feature may be memory mapped I/0). Discussing all those factors
is beyond the scope of the thesis. One important advantage in implementing IBM-
1800 emulator is that its memory does not have any advance memory management
and features like memory mapped I/O. It is also smaller in size (4K or 8K) making
it easier to handle with an array.

Our emulator implements memory as a simple array of 2'¢ entries with two simple

52

6. Emulator

functions for writing to and reading from logical memory. Each entry is 16 bit long

which makes the total memory array sized equal to 8K.

This module implements memory as an simple array.

module Mem
(Mem, initMem,
getMem, writeMem)
where

import Data.Word
import Data.Array

type Mem = Array Wordl6 Wordlé

initMem :: Mem
initMem = listArray (0,2°16-1) []

These functions are used to read and write memory contents at the effective ad-

dress.

getMem :: Mem -+ Wordl6 - Wordi6
getMem m 1 = m!l

writeMem :: Mem -+ Wordl6 - Wordl6 -+ Mem
writeMem m 1 ¢ = m// [(1, ¢)]

At the starting point of emulation, the memory is initialized with the source

assembler code.

This module initializes memory.

module MemInit
(fillMem
, updateMem

) wvhere

6. Emulator 53

import Instruction
import Lst
import Mem
import Data.Array
import Bits

Initially, the memory is loaded with the assembler program via reading in a .1st
file of the source assembler program. fillMem fills all of memory (an array of 2'¢
entries) with the initial values.

fillMem :: Mem - Lst =+ Mem
fillMem = foldl updateMem

updateMem :: Mem - LstLine -+ Mem
updateMem m 1 = if (-~-isLong - instr) 1 then
m // [(add 1, fromIntegral (bin 1))]
else
m // [(1+add 1, fromIntegral (bin 1)),
~ (add 1, upper (bin 1))]
vhere upper = fromIntegral - (flip shiftR 16)

6.4 CPU Emulator

Emulation of CPU is often the most complicated part of an emulator. The simplest
form of a CPU emulator is an interpreter, which follows the execution flow of the
emulated program code. It interprets every machine code instruction encountered in
the program control flow and executes operations of that instruction in the emulated
software processor that are semantically equivalent to the original instruction’s. This
can be done by assigning a variable for each register, flag and memory entries of the
CPU to be emulated. The logic of the CPU can then almost be directly translated
into software algorithms, creating a software re-implementation that basically mirrors
the original hardware logic.

In our IBM-1800 emulator, the very direct translation of the model of its op-
erational semantics gives us the interpreter type implementation of the CPU. Each

54 6. Emulator

instruction is modeled by its abstract semantics and the execution of instruction is
modeled by state transformer. This “State” contains variables for each register, flag
and memory in IBM-1800 machine. Each time an instruction is encountered in the
program flow, the values of the variables in the state are changed by the operations
(implemented in the software) induced by that instruction; resulting in a next state.
After execution of all the instructions, we reach the final machine state with all the
variables (symbols for machine components) assigned some final values.

In the following subsections, we show the implementation of the model of the
instructions and datatypes used to represent the instructions and state.

6.4.1 Instruction

This subsection is fully taken from the Master’s Thesis of Kevin Everets [Eve04].
Here we give a brief representation of the instruction architecture of the IBM-1800
assembler to make the later discussions more clear. For better understanding of
parsing of the source .1st file, translating and manipulating of those instructions,
please refer to [Eve04].

An instruction for the IBM1800 can have one of two formats: Short (a 16-bit
instruction that contains the Operation, Tag, and Displacement), and Long (a
32-bit instruction that additionally contains the ability to do indirect addressing,
conditions, and information about branching out during an interrupt).

As the instruction has two main formats (a short or a long instruction), a new data
structure is made called Instruction which can be either a Short or a Long, with
record fields to contain the different information available in each type of instruction.

For the Long format of the instruction, the field disp is redundant, since it is
just a different representation of the last 8 bits of the first instruction word, i.e., the
indAdd, brOut and cond fields. This disp field of the Long alternative is used only
as displacement in the case of MDX instructions.

data Instruction = Short { op :: Op
, dbit :: Bit
, tag :: Tag

, disp :: Disp
}

6. Emulator

55

| Long { op :: Op
, dbit :: Bit
, tag :: Tag
, indAdd :: IndAdd
, brQut :: BrOut
, cond :: Cond
, disp :: Disp
, address :: Address
}

Now, we break down each piece of the Instruction, and give its type and mean-

ing. First is the Op code, which tells us what type of instruction it is. The Op code
is normally five bits but the fifth bit (dbit) is often used to select between two very
similar operations (e.g., a single load vs a double load, or a “branch and skip” vs a

“branch and store instruction”). Because of this, we can combine these operations

into categories.

data Op = LD
| ST
| LSX
| SLS
| ADD
| SUB
| MD
| AR
| EOR
| SFT

-- Ld = Load Accum, Ldd = Double Load

-- STO = Store Accumulator, Std = Double Store
-- Ldx = Load Index, Stx = Store Index

-- Sts = Store Status, LSs = Load Status

- A = Add, Ad = Double Add

-- S = Subtract, Sd = Double Subtract

-- M = Multiply, D = Divide

-- And = Logical And, Or = Logical Or

-- Logical Exclusive Or

-- Sla = Shift Left Logical A,

-- Slt = Shift Left Logical A and Q,

-- Slca = Shift Left and Count A,

-~ Slc = Shift Left and Count A and Q,

-- Sra = Shift Right Logical A,

-- Srt = Shift Right Logical A and Q

-- Rte = Rotate Right A and Qsearch bar google

| BRANCH -- Bsc = Branch or Skip on Condition,

56 6. Emulator

-- Bosc = Branch out of Interrupts (similar to Bsc)
-- Bsi = Branch and Store Instruction Register

| MDX -- Modify Index and Skip

| WAIT -- Wait

| cMP -- Cmp = Compare, Dcm = Double Compare
| XI0 -- Execute I/O

| BAD -- An invalid Op code

deriving (Show, Eq, Ord)

Next is the Tag, for which we create a new data type to specify which of the four
possible index registers (1,2,3 or none) are used in the instruction.

data Tag= I | XRO | XR1 | XR2 | XR3
deriving (Show,0rd,Eq)

Here we define the Bit type that is used to define some of the bit fields of the
instruction which is used instead of Boolean values as it is sometimes inconvenient
to think of Bits in terms of Booleans.

data Bit = Zero | One deriving Eq

There are a couple of different flags used. In the instruction itself, there is one for
indirect addressing (indAdd and one for interpreting a BSC instruction as a ”branch
out” (BOSC) while in an interrupt routine. All of these are interpreted as True if they
have a bit value of 1 and False if they have a bit value of 0.

type IndAdd = Bit
type BrOut = Bit

The Displacement is an 8 bit signed 2’s-complement integer. It usually only exists
in the short instruction (though it can also be used by the long version of the MDX
instruction), and is most often added to the current program counter (I) to determine
branch vectors or loading offsets.

type Disp = Int8

6. Emulator 57

The condition bits are present in the Long instruction, and are most often used to
modify branches. They, along with the IndAdd and BrOut flags, are also sometimes
used by the MDX instruction as an additional Disp field. This would be added to the
Address also present in the long instruction. The Address is a 16 bit word. The
object representing the full instruction is a 32 bit word.

type Cond = Word8
type Address = Wordl6
type Object = Word32

A mapping is now created from the upper four bits of the opcode to the instruc-
tions. The Op code values are taken from the “IBM 1800 Functional Characteristics”
manual. Using the upper four bits allowed for easier grouping of the function of the
Op codes.

opCodeInstruction :: [(Word16, Op)]
opCodeInstruction = [(0xC000, LD)
, (0xD000, ST)
, (0x6000, LSX)
, (0x2000, SLS)
, (0x8000, ADD)
, (0x9000, SUB)
, (0xA000, MD)
, (0xE000, AR)
, (0xF000, EOR)
, (0x1000, SFT)
, (0x4000, BRANCH)
, (0x7000, MDX)
, (0x3000, WAIT)
, (0xB0O00O, CMP)
, (0x0000, XIO)
, (0x5000, BAD)
]

58 6. Emulator

6.4.2 State

The IBM 1800 current state includes the state of the memory (mem), the Instruction
Register (ir), the Accumulator Register (acc), the Accumulator Extension Register
(q), the Index Registers (xrl-3), and the Overflow and Carry Flags (overflow and
carry).

type State = GenState Mem Wordl6 Wordi6 Bit

data GenState mem addr val bit = State

{ mem :: mem
, ir :: addr
, acc :: val
» g :: val
, Xrl :: addr
, Xr2 :: addr
, Xr3 :: addr

, overflow :: bit
, carry :: bit
} deriving Show

6.4.3 Emuating Instruction Execution

Our emulator works as an interpreter and executes one instruction in each step. At
the beginning, it takes a number of steps (no. of instructions in the program to be
executed), a initial State (State) as input and returns a final State after execution
of all the instructions in the assembler program.

emulate is the main recursive function in the emulator which emulates the steps
(instructions) of the assembler program. In each iteration of emulate, step takes the
current State and after executing the current instruction returns the next State. It
interprets every assembler instruction encountered by the semantic definition of that
instruction.

step fetches the instruction from the memory indicated by current value of the
instruction register and determines the valid opcode of that instruction. With the

6. Emulator 59

opcode (Op) and current state (State), semantics interprets the current instruction
by its semantic definition (defined by semantics_) and execute operations of that
instruction in the emulator i.e. assigns values to various variables/components of the
state to generate the next state (State).

emulate :: Int - State -+ State

emulate 0 s

]

emulate n s = emulate (n-1) (step s)
step :: State + State
step s = semantics inst s
vhere inst = getOp (getMem (mem s) (ir s))

semantics :: Op -+ State -+ State
semantics o s = semantics_ o inst s
where
inst = wordsToInstruction (getMem (mem s) (ir s))
(getMem (mem s) ((ir s)+1))

semantics_ defines the semantic interpretation of each instruction in the IBM-
1800 assembler. This is a very direct translation of the abstract model of the op-
erational semantics of IBM-1800 instructions defined at Appendix A. Here we only
show two instruction semantics translated in HASKELL. The rest of the semantic
definition of the instructions are given in Appendix C. Of the two instructions cited,
LOAD/ DOUBLE LOAD (LD) is a little bit simpler while MODIFY INDEX AND
SKIP (MDX) is more complex to interpret.

semantics_ :: Op -+ Instruction + State -+ State
semantics_ LD inst s =
dIR (1+fb) $ dA (getContentOfMemRefA inst s) s
$ if dbit inst = Zero
then s
else d (getContentOfMemRef(inst s) s
vhere fb = fBit $ isLong inst

60 6. Emulator

semantics_ MDX inst s =
if isLong inst
then if tag inst = XRO
then dIR (2+conAdd) $ s {mem = (writeMem (mem s)
(address inst) cMemNew)}
else dIR (2+condAdd) $ dXR (tag inst) cLocNew s
I
then s {ir = (fromIntegral $ (ir s) +
(fromIntegral $ dispL::Word16) + 1)}
else dIR (1+conDisp) $ dXR (tag inst) cDispNew s
vhere dispL = fromIntegral $ disp inst::Int16
locL = fromIntegral $ (locBS inst s)::Int16
cMem0ld = (fromIntegral $ getMem (mem s) $ address inst::Inti16)
cMemNew = fromIntegral $ cMemOld + dispL::Word16
conAdd = retDispAdd (cMemOld+dispL) cMem0Old
-- Specifically for F=1Tag=001IA =X
cXR01ld = fromIntegral $ (regl inst s):: Int16
cDispNew = fromIntegral $ cXR0ld + dispL::Word16

else if tag inst

cLocNew = fromIntegral $ cXROld +locL::Word16
conDisp = retDispAdd (cXROld+dispL) cXROld -- For F = 0 Tag /= 00
condAdd = retDispAdd (cXROld+locL) cXRO1ld -- For F = 1 Tag /= 00

6.5 Output Example

For the code segment (taken as an example from the OPG code) cited at Section 2.3.1,

the output of the emulator (the initial state of the emulator is specified at Appendix
C) will be:

IR = 0x35be
A = 0x0
Q = 0x0

XR1 = 0x3808

6. Emulator 61

XR2 = 0x3808

XR3 = 0x0

Memory Content QIR = Oxd

Memory Content @(Address 0x3815) = 0x3815
Memory Content Q@(Address 0x3816) = 0x3835

The whole memory is implemented as an array of 2¢ entries. In the output, we

only show three entries (manually selected) to make it more precise.

Chapter 7

One Step Symbolic Interpretation

As the control flow of assembler programs is arbitrary, our first step to symbolic
analysis is to find the symbolic interpretation of each instruction in a program. This
chapter contains the abstract definition of the data structure used to represent each
instruction in symbolic form along with the methods created for interpreting the

instructions.

7.1 From Operational Semantics

Symbolic analysis [FS03] is a static and global program analysis that examines each
expression of the input program only once and try to derive a precise and complete
mathematical characterization of the computations.

In this case, we are dealing with the symbolic interpretation of IBM-1800 assem-
bly language instructions. Unlike high level languages, assembly languages do not
have predefined control structures in the program syntax. For this reason, we must
find different control structures from the sequential instructions and then find some
conditional expressions to represent different program variables in the given input
code.

So we start the symbolic analysis of IBM-1800 assembly language programs by
designing a one-step symbolic emulator. For all statements of the program, our one-
step symbolic analysis uses exactly the same description of the semantics as in the
Emulator with the components of the state being symbolic. The abstract model of the

62

7. One Step Symbolic Interpretation 63

semantics of IBM-1800 assembler instructions in Appendix A is used to implement
the one step symbolic emulator. Emulator was the testing phase of this model and
we finish this successfully as the emulator is working fine. Later, in Section 7.3 we
present a segment of the implementation of one step symbolic emulator which shows
the implementation as a direct translation of the model.

This one step symbolic emulator interprets each instruction in a program execution
path and finds the symbolic representation of each instruction. This means, instead of
returning a value, this step produces a representation (as an abstract data-structure)
of the state-transformer which corresponds to the current instruction. In effect, each
instruction will change some of the state component values (symbolic) to generate the
next state. After executing each instruction, the one step symbolic emulator outputs
a state transformer representation that contains expressions of the variables that are
being changed by the execution of this instruction, and a symbolic path condition
representation that reflects possible branching behaviour of the instruction.
which includes the program

»

The results of this analysis is a ”program contex
semantics for an arbitrary program point. For one step symbolic emulation, the
program point is only the current instruction. The program context [FS03] is a sym-
bolic representation of variable values or behaviours arising at run time. Therefore,
symbolic analysis can be seen as a compiler that translates a program into a differ-
ent language. As the target language we employ symbolic expressions and symbolic
recurrences.

A program context is defined by (p, s) that includes a path condition p and a state

e Path Condition p : The path condition p describes the condition under which
control flow reaches a given program statement. For sequential instructions a
path condition is always TRUE and for branch instructions it is specified by a
logical formula that comprises the conditional expressions of branches taken to
reach the program statement.

e State s : The state s is described by a set of variable/value pairs
v = ey,, Uy = € where v; is a program variable and e; a symbolic expres-
sion describing the value for 1 < i < k. For each program variable v; there

exists exactly one pair v; = ¢; in s.

64 7. One Step Symbolic Interpretation

For all statements of the program our symbolic analysis finds the program contexts
that describes the variable values (they may be conditional or unconditional) and the
conditions under which the program point is reached. In order to find the symbolic
representation of each of the instructions we have implemented a local abstract in-
terpretation that gives us a data structure containing every piece of information of
the instruction executed. In the following section, we give the representation of the
symbolic interpretation (i.e. how it is implemented).

7.2 Symbolic Interpretation

This module defines the data types for symbolic analysis.

module Symbolic

(StateComp(..), Operator(..), TypeCast(..), CondOpSm(..)
, MemRef(..), Val(..), Func(..), CondFunc(..), retCondOpSm
)

vhere

import OpCode

import IBM1800

import Data.Word (Word8,Word16)
import Data.Int (Int8,Int16)
import Data.Bits

We start with different datatype declaration needed for one-step symbolic analysis.

e State Components: The following is the datatype definition for the State
Components though the name may be misleading. Although a state contains
other values (like index registers, instruction register, memory etc.), we use
the Tag and MemRef data types to avoid multiple declarations. For 32 bit
operations, both Accumulator (Acc) and Accumulator Extension Register (Q)
are considered as a 32-bit value. So we declare AccQ as a State Component
that symbolizes the Accumulator and Q) as a 32-bit value.

7. One Step Symbolic Interpretation 65

data StateComp = Acc | § | Acef
deriving (Eq,0rd,Show)

e Operators: Operators symbolize the operation done by different instructions in
IBM-1800 assembler. We use two different types of operators for the purpose of
instructions- (1) Binary Operator and (2) Unary Operator. Operator datatype
declares the binary operators needed for update operations in symbolic analysis
whereas TypeCast declares the unary operators. In TypeCast, Upper16 and
Lower16 are used to get the upper and lower 16 bits of a 32-bit values. Id means
no operation and Sign gives the sign bit of any value. The name TypeCast was
chosen first as the Upper16 and Lower16 unary operations typecasts a 32-bit
value to 16-bit values.

data Operator = Add | Sub | Mul | Div | Mod | And | Or | Xor
| Shl | Shr deriving (Eq,0rd)

instance Show Uperator where

show A4dd = "+"
show Sub = "-"
show Mul = "x"

show Mod = ")"
show Div = »/"
show And = "&"
show Or = "|"
show Xor = """
show Shl = "<<"
show Shr = ">>"

data TypeCast = Upperi6 | Loweri6 | Id | Sign
deriving (Eq, Ord, Show)

¢ Conditional Operator: Conditional operators are used to interpret conditions
in the branch instructions. Those branching condition can be found in IBM 1800
assembly language manual [IBM70] (See BSC/BSI).

66

7. One Step Symbolic Interpretation

data CondOpSm = Eq0 | Lto | GrO | LEO | GEO | NEO |
Oe | Om | Op | En | En | Ep | Phntl
| Phnte deriving (Eq)

instance Show CondUpSm where

show Eq0 = " == 0"

show Lt0 =" < O"

show Grg0 =" > O"

show LEO = " <= Q"

show GEO = " >= 0O"

show NEO = " /= O"

show Oe = " (0dd)"

show Om = " (0dd and Minus)"
show Op = " (0dd and Plus)"
show En = " (Even)"

show Em = " (Even and Minus)"
show Ep = " (Even and Plus)"
show Phntl = " " '

show Phnte = " "

e Memory Components: MemRef defines another important part of the state

component which is the Memory Reference. Memory references can be different
depending on the type of memory access in the instructions. Const is used to
define the value in the displacement part of the instruction for direct displace-
ment or address assignment for LDX/STX whereas CConst defines the content
of that address for other instructions. BrConst is specifically used for branch
instructions and defines the address composed with index registers and address
content of the instruction. Direct defines the address that is the content of
the address composed with the index registers and address content of instruc-
tion. BrDirect is a special memory reference only used in conjunction with
BSI and defines the memory reference composed by the value of the content
of index registers plus address content of instruction and then added with the
offset in the BSI instruction. Dispmnt is also a special memory reference in

7. One Step Symbolic Interpretation 67

STX where memory is referenced by the content of instruction register plus the
displacement of the instruction (as integer value). Indirect is used for indirect
memory references. We could reduce the number of memory reference types
by unifying them in similar types. On the other hand we want to store more

information at this stage for future uses.

data MemRef =
Const {valC :: Int16} -- for direct displacement
-- /address assignment(for LDX/STX).
| CConst {valCC :: Word16} -- for content of displacement
-- /address assignment.

| BrConst {reg :: Tag -- This is specially for the
,addrBr:: Word16 -- Branch instructions.
}

| BrDirect {reg :: Tag -- For BSI instruction, this one
,addr :: Wordl6 -- is specially used for Indirect
,offBD :: Word16 -- addressing.
}

| Dispmnt {reg :: Tag -- for displacement
,addrC :: Int8
}

| Direct {reg :: Tag -- for direct address. In Branch
,addr :: Wordl16 - instructions, this one is specially
} -- used as Direct address.

| Indirect {reg :: Tag -- for indirect address.
,addr :: Wordl6

} deriving (Egq,0Ord)
For Memref we define an instance to show it more clearly.

instance Show MemRef where
show (Const a) = if (testBit a 15)
then "(" ++ show a ++ ")" else show a

show (CConst a) = "C("++ show a ++ ")"

68 7. One Step Symbolic Interpretation

show (BrConst r a) = show r ++ "+"++show a
show (BrDirect r a o) = "C("++ show r ++ " + "

++ show a ++ ")" ++ "+"++show o
“C("++ show r ++ " + " 4+ show a ++ ")"
show (Direct r a) "C("++ show r ++ " + " ++ show a ++ ")"
show (Indirect r a) = "C(C("++ show r ++ " + "

++ show a ++ "))"

show (Dispmnt r a)

e Value: Val defines the symbolic value of the expression which is composed of
StateComp and MemRef which can be assigned to any state components. For 16
and 32 bit operations, two different types of Val are used.

data Val = Val16 {vall6l :: StateComp
,vall62 :: MemRef
}
| Val32 {val321 :: StateComp
,val322 :: MemRef
}
deriving (Eq,Show)

7.2.1 Datatype for Instructions

The IBM-1800 assembly language instructions can be divided into two major class of

operations:

o Assignment Instructions e.g. LOAD, DOUBLE LOAD, STORE, DOUBLE
STORE etc.

- o Update Instructions e.g. ADD, SUB, MUL, DIV, MDX, BSC, BSI etc. Branch
instructions like MDX, BSC, BSI etc. are update instructions as they modify

instruction register and in some cases one of the index registers as well.

From those two broad classes we then define the grammar that can describe all
the IBM-1800 instructions. Assignment and update instructions respectively assign
or update values to either state components or memory components. First we define

7. One Step Symbolic Interpretation 69

some auxiliary data structures that are used to define data types for assignment and
update instructions. We declare the datatype for the assignments and updates of 16
and 32-bit operations of different state components (Ace, Q or memory components
etc). The name of the operation defines the operation to be done. For example
AssignSC16 assigns some value (symbolic) to the 16 bit state components like Acc
or Q. The following table gives a brief description of all the data structures:

Name of Data Structure|{Description
AssignSC16 Assigns a 16 bit value to a 16 bit State Component.
UpdateSC16 Updates a 16 bit State Component.
AssignMem16 Assigns a 16 bit value to a memory address.
UpdateSC32 Updates 32 bit State Component(AccQ).
AssignX Assigns a 16 bit value to one of the Index Registers.
AssignMemX Assigns Index/Instruction Register values to a memory
address.
UpdateX Updates one of the Index Registers.
UpdatedS Updates Accumulator during Shift operation.
UpdateAQs Updates Accumulator and Q during Shift operation.
CondDisp Used mainly in MDX instructions to update memory
components.

The following data structures are not used for the reasons specified.

Name of Data Structure{Reason

UpdateMem16 No instructions updates memory directly.

AssignMem32 |Assign 32 bit word to memory is not allowed. For 32
bit assignments its actually assigning two different 16-
bit blocks at two consecutive locations in memory; we
can handle it with AssignMem16.

UpdateMem32 No instructions updates memory directly.
AssignSC32 No instructions assigns 32-bit values to AccQ.
UpdatelR We will be using control flow graphs to find the next

instruction to be executed and so we did not use any

data structures to update Instruction Register (IR).

data Func = AssignSC16 {scA16 :: StateComp

70

7. One Step Symbolic Interpretation

UpdateSC16

AssignMemi6

AssignMemX

UpdateSC32

AssignX

UpdateX

UpdatedAS

UpdatedAQS

CondDisp

,valAS16 ::

}
{scU16
,opl6

}
{valAi6 ::
,locAl16 ::
}
{ valAX ::
,locAX ::
}

{scU32
,0p32
,valUs32::
}
{conX
,valX
}
{conUX
,valUX
}

{opS16
,valS16
}
{ops32
,valS32
}
{valD1
,valD2

MemRef

:: StateComp
: Operator
,valUsié ::

Val

StateComp
MemRef

Tag

MemRef

:: StateComp
: Operator

Val

Tag

: MemRef

Tag

:: MemRef

: Operator

11 Word8

: Operator
:: Words

: MemRef
:: MemRef

} deriving (Eq)

7. One Step Symbolic Interpretation 71

Instead of deriving Show, we create an instance, to make printing more elegant.

instance
show

show

show
show
show
show
show

show
show
show

Show Func where

(AssignSC16 s v) = show s ++ " := " ++ show v
(UpdateSC16 s o v) = show s ++ " := " ++ show (vali6l v)
++ show o ++show (vall62 v)

(AssignMeml6 s c) = show c ++ " := " ++ show s

(AssignMemX t c) = show ¢ ++ " := " ++ show t

(AssignX t v) = show t ++ " := " ++ show v

(UpdateX t v) = show t ++ " += " ++ show Vv

(UpdateSC32 s o v) = show s ++ " =" ++ show (val321 v)
++ show o ++show (val322 v)

(UpdatedS o v) = "Acc " ++ show o ++ "= "++ show v

(UpdateAdQS o v) = "AccQ " ++ show o ++ "= "++ show v

(CondDisp c v) = show ¢ ++ "+=" ++ show Vv

7.2.2 Datatype for Conditions

CondFunc declares the datatype for the conditional expressions in the branching in-

structions.

In a conditional expression, the left hand side is compared with the right

hand side by a conditional operator. Here we give a brief description of the data

structures that are used to define different conditions used in the instructions:

Condition defines the conditional expression for BSC/BSI instructions.

For MDX, CondDispAddT defines the expression for index registers whereas

CondDispAddM declares the expression for memory references. UpdateComp describes

the conditions of Compare instructions.Tru is for no condition in case of sequential

instructions.
data CondFunc = Condition {scC :: StateComp
,opC :: Cond0OpSm
,stat :: Bool
}
| CondDispAddT {scCT :: Tag

,valCT :: MemRef

72 7. One Step Symbolic Interpretation

,sgT :: Bool
}
| CondDispAddM {locCM :: MemRef
,valCM :: MemRef
,sgM :: Bool
}
| UpdateComp {scCm :: StateComp
;,opCm :: Cond0OpSm
,valCm :: MemRef

}
| Tru deriving (Eg)

instance Show CondFunc where

show (Condition s o b) = show s ++"("++show o ++")"++"=="++ show b
show (CondDispAddT s v o) = show s ++ "+"++ show Vv

++ "(RZCS==" ++ show o ++ ")"
show (CondDispAddM c v o) = show c ++ "+"++ show v

++ "(RZCS==" ++ show o ++ ")"

show (UpdateComp s o v) = show s ++ show o ++ show v
show Tru = "True"

retCondOpSm :: BrTag -+ CondOpSm

retCondOpSm bt = case bt of
Al -+ Phntl
Pl =+ GroO
Npl = LEO
Mn - LtO
Nmn =+ GEO
Zr = Eq0
Nzr + NEO
0d - Oe
Odm - Om
Odp -+ Op
Ev -+ En

7. One Step Symbolic Interpretation 73

Evp =+ Ep
Eum <+ Em
Ne - Phnte

7.3 Code Example

Here is a slice of code that implements the LOAD and DOUBLE LOAD instructions to
perform symbolic interpretation of those instructions. The whole one step symbolic

emulation code is given in Appendix D.

sSemantics_ :: Op -+ Instruction = [(CondFunc, [Funcl)]
sSemantics_ LD inst =
[(Tru , (dAssignSC16 Acc memRefA)
if (dbit inst = Zero)
then [] -- LOAD
else [dAssignSC16 @ memRefQ])] -- DOUBLE LOAD
vhere memRefA = dMemRefA inst
memRefQ = dMemRefQ inst

It is worthwhile to note that this is a very direct translation of the semantic model
of the LOAD and DOUBLE LOAD instructions in Appendix A.
Next, we present implementation of another complex instruction called MDX.

sSemantics_ MDX inst =
if isLong inst -- MDX
then if tag inst = XRO
then ((dCondDispAddM (CConst {valCC = address inst})

(Const{valC = fromIntegral $ disp inst}) True)
, [dCondDisp (CConst {valCC = address inst})
(Const{valC = fromIntegral $ disp inst})])
: [((dCondDispAddM (CConst {valCC = address inst})
(Const{valC = fromIntegral $ disp inst}) False)
, [dCondDisp (CConst {valCC = address inst })
(Const{valC = fromIntegral $ disp inst})])]

74 7. One Step Symbolic Interpretation

else ((dCondDispAddT (tag inst) dXMem True)
, [dUpdateX (tag inst) dXMem])
: [((dCondDispAddT (tag inst) dXMem False)
, [dUpdateX (tag inst) dXMem])]

else if tag inst = I

then [(Tru,[])]

else ((dCondDispAddT (tag inst) dXMem True)
, [dUpdateX (tag inst)
(Const{valC = fromIntegral $ disp inst::Int16})])
: [((dCondDispAddT (tag inst) dXMem False)
, [dUpdateX (tag inst)
(Const{valC = fromIntegral $ disp inst::Int16})])]

vhere dXMem = mdxMemRef inst

7.4 Output Example

As an example, take the instruction LD 1 41 (Opcode : 0xC129) , the output of the

one step symbolic interpreter will be:
(True, [A := C(XR1+41)])

As well the MDX instructions (Opcode : 0x7500 000D) will produce the following
output:

(XR1+13(RZCS) == True, [IR += 3, XR1 += 13])
(XR1+13(RZCS) == False, [IR += 2, XR1 += 13])

Here RZCS stands for Reaches Zero or Changes Sign.

Chapter 8
Multi Step Symbolic Interpretation

This chapter details the method used for generating Data Flow Equations (DFE)
for an assembler program. The functions for interpreting the assembler codes into
symbolic DFEs are discussed. Later, examples of DFEs for different types of program
segments are provided.

8.1 Introduction

An assembler program is written as a sequence of instructions. The ordering of
the instructions as written defines a default sequence of execution [WF03]. Branch

- instructions may however interrupt the flow and cause control to be transferred else-
where. This differs from high level languages where all non-linear control flow is
encapsulated in the semantics of compound instructions like for or while loops. In
assembler programs control flow can be arbitrary.

Consequently, a major challenge to symbolic analysis of assembly language pro-
grams is how to handle control flow. Fortunately for us the control flow graph for
the list of assembly language instruction to be analyzed is already provided. This
control flow graph gives us some perception about how to find the control structures
in the list of assembly instructions. Some tools created by a fellow student [Eve04]
produces the control flow graph of the codes given and we use that control flow graph
to determine the control flow of the instructions.

The approach taken here to model our control flow is to model a program by its set

75

76 8. Multi Step Symbolic Interpretation

of execution paths. A program has a distinguished starting point and its execution
path is a sequence of instructions that can possibly be executed during some run
of the program. Execution always begins at the starting point. Paths are always
maximal that is a path is only completed when the program terminates.

In the following sections, we describe the structure of the control flow graph and
also how we used that control flow graph for symbolic interpretation of a chunk of

assembly language instructions.

8.2 Control Flow Graph

The tools to generate approximated control flow graph (CFG) produce a CFG for a list
of assembly language instructions. This program proceeds by only looking at updates
to Instruction Register and selected memory locations (as used by branching in-
structions) to approximate the control flow. In general, this approximation is very
good, but in a few cases where the code is self-modifying, however, this automated
step fails. This is not necessarily a problem since we can also provide hand-written
or hand-corrected CFGs as input to the next step.

For each instruction to be executed it creates a node in the graph. Then by
traversing the list of instructions, it finds all the possible next addresses from each
instruction and creates edges to those nodes from the node of the current instruction.
A node contains various information such as its address, the stored opcode, any avail-
able textual labels, and the path-condition (to be defined later) of the corresponding
instruction. See [Eve04] for more details. Output of the resulting control flow graph
is done via GXL (Graph eXchange Language) [Win01], so that standard tools may
be re-used to manipulate and display these graphs.

8.2.1 Internal Data Structure of CFG

The GXL is an exchange format and contains more information than we need. Some-
times handling all those information is more difficult than it should be. In order to
remedy this problem, we create our own internal graph data structure for the control
flow graph from the GXL format that contains only the necessary information for

symbolic interpretation of the code.

8. Multi Step Symbolic Interpretation 77

This module defines the internal data structure for the CFG and also implements
important functions to convert GXL represented CFGs into the internal data struc-

ture.

module MyGraph

(NER, MyNode, AnnotationChoice(..), MyEdge(..), MyGraph
» gx1ToMyGraph, doAnnotation, gxlAttrToString

, gx1AttrToBool, isNode, isEdge

)

vhere

import Instruction

import Symbolic (CondFunc(Tru), Func())

import OneStep (sSemantics_)

import MyPrelude (readHex’)

import qualified Gzl

import Text.XML.HaXml.OneOfN

import Data.List (nub)

import Data.FiniteMap (FiniteMap, emptyFM, fmToList, addListToFM,
mapFM, lookupFM)

import Data.Maybe (fromJust)

NER below is a given type name for standard GXL Node, Edge, Relation type.
type NER = OneOf3 Gzl.Node Gzl.Edge Gxl.Rel

As the name suggests the internal data structure of the control flow graph will
contain the nodes and the edges. Below are the data type declarations of the nodes
and edges of the graph.

A node in MyGraph is given by a string: the node name. Each instruction in the
code will have a node and the branch that can be created by the opcode of that
instruction will be represented by an edge from that node. An Edge is a structure
which is comprised of the starting node, ending node of that edge and some other
pre-defined attributes. We describe the pre-defined attributes below.

78 8. Multi Step Symbolic Interpretation

If the address of the starting node is greater than that of the ending node for
an edge then the edge is considered as back edge and marked using the backEdge
attribute of the edge structure. This attribute will be useful later for loop structure
recognition.

As we mentioned earlier, each edge from one node will be generated depending on
some conditions like True, False etc. AnnotationChoice defines that condition on
which the edge is generated.

The opcode of the instruction in each node is symbolically interpreted using the
one step symbolic emulator. This one step symbolic emulator gives us the meaning of
what the instruction does in terms of some symbols. We then combine the interpre-
tations of all the instructions in a code segment to understand what the code does.
To understand the meaning of the code, the use of Control Flow Graph is required.
So we annotate the edges of the CFG with the symbolic interpretation of instructions
in each node. annotation field in each edge structure contains the interpretation of
the instruction in the node from where the edge is generated. annotChoice helps us
to annotate the edges with proper interpretation.

type MyNode = String

data AnnotationChoice = ATrue | AFalse | ALess | AEqual | AGreater
| AVoid deriving (Egq)

instance Show AnnotationChoice where
show ATrue = "True"
show AFalse = "False"
show ALess = "Less"
show AEqual = "Eq"
show AGreater = "Gt"
show AVoid = "vVd"

data MyEdge = MyEdge { edgeFrom :: MyNode
,annotation:: [(CondFunc, [Func))]
,annotChoice:: AnnotationChoice

8. Multi Step Symbolic Interpretation 79

,backEdge:: Bool
,edgeTo :: MyNode
} deriving (Eg)

The show instances defined for the edge structure, MyGraph etc. are only for
pretty printing. The purpose is to be able to to view the data structure in a nicer
fashion. It is not intended to generate XML or some other data format. The output
of this pretty printing is not used in other tools.

instance Show MyEdge where
show (MyEdge ef a ac be et)

= "<EdgeFrom =" ++ show ef ++",Annotation:"
++show a++",AnnotChoice:"++ show ac++",backedge:"
++ show be++",EdgeTo = " ++ show et ++">\n"

Node and Edge types for the internal Data Structure of the CFG are defined. We
can now create the data structure of the graph. MyGraph is a data type that contains
two finitemaps. One maps each node with the opcode (either 16 or 32-bit) of the
corresponding instruction and the other is a mapping from a node to list of possible
edges generated from that node.

We use two finitemaps as we want to distinguish between two mappings without
combining Object and [MyEdge] in a single uhmeaningful structure . We could
possibly add a pair (Object, [MyEdgel) and could use a mapping from MyNode to
(Object, [MyEdge]l) but the Haskell declaration of finitemap does not allow us to
do so.

data MyGraph = MyGraph (FiniteMap MyNode Object)
(FiniteMap MyNode [MyEdgel)

instance Show MyGraph where
show (MyGraph fmo fme) = concat $§ foo fmo $ fmToList fme
vhere
foo fmo 1 = map (A (key,edg)
-+ "\n<nodeID ="

80 8. Multi Step Symbolic Interpretation

++ show key

++ ",0pCode = "

++ show (fromJust $ lookupFM fmo key)
++n>\nn

++ (concat $ map show edg)) 1

Generating Internal Data Structure of the CFG:

These are the main functions where we take a GXL data structure and convert
it into MyGraph. From the GXL input we get the nodes and the possible edges
in the CFG and add them to the MyGraph data structure. nodesToMyNodes and
edgeListFromNodes are two important functions used in gx1GraphToMyGraph to
get the nodes and edges in the CFG.

One interesting point to note is that we use a Int argument named sv in these
functions. In the GXL input of the graph, the node names are structured like
filename ++ "-"++address. Here filename is the name of the input .st file of
the code from which the GXL graph is generated and address is the relative address
of the instruction in the .st file. So for a code file name test.lst, one instruction
with relative address 35b6 will have a node named test-35b6 in the GXL file. In
our data structure we want the nodes named only by the addresses. So we get rid
of the filename part using this sv field which is calculated from the input filename

earlier.

gx1ToMyGraph :: Gzl.Gzxl - Int + MyGraph
gx1ToMyGraph (Gzl.Gxl _ (g:gs)) sv = gxlGraphToMyGraph g sv

gx1GraphToMyGraph :: Gzl.Graph = Int -+ MyGraph
gx1GraphToMyGraph (Gzl.Graph _ _ _ ners) sv
= MyGraph nodesFM edgesFM
vhere myNodes = nodesToMyNodes (mersToNodes ners) sv
nodesFM = addListToFM emptyFM myNodes
myEdges = filter (Ax + snd x # [])
$ edgeListFromNodes ners sv $ map fst myNodes
addListToFM emptyFM myEdges

edgesFM

8. Multi Step Symbolic Interpretation 81

To get information about the nodes, we need to to find all of them in the GXL
graph. nersToNodes is an iterative function which finds all the GXL nodes using the
Node,Edge,Relation data from the GXL graph.

nodesTOMyNodes makes a list of pairs of MyNode and Object (opcode of the corre-
sponding instruction in MyNode) from a list of GXL nodes. It uses the nodeToMyNode
function to extract all information needed from one GXL node. nodeToMyNode gets
node name (minus the filename part of the GXL node name) of a node and the
opcode of the instruction of that node.

nersToNodes :: [NER] =+ [Gzl.Nodel

nersToNodes [1 = []

nersToNodes ((OneOf3 n):ners) = n:nersToNodes ners
nersToNodes ((TwoOf3 _):ners) = nersToNodes ners
nersToNodes ((ThreeOf3 _):ners) = nersToNodes ners

nodeToMyNode :: Int + Gzl.Node -+ (MyNode,Object)
nodeToMyNode sv n@(Gzl.Node nas _ ndAtt _) = (auID, opc)
where nID = drop sv (Gzl.nodeId nas)

opc = fromIntegral $
readHex’ (gx1AttrToString "binary" ndAtt)::0Object

nodesToMyNodes :: [Gzl.Node]l -+ Int -+ [(MyNode,Object)]
nodesToMyNodes nodes sv = map (nodeToMyNode sv) nodes

In this part, we convert the Gxl edges into MyEdges. The strategy is to take a list
of nodes in the graph and then find all the possible edges from those nodes. All the
edge attributes (except the annotation) are then added to the possible edges.

edgeListFromNodes finds a list of pairs of MyNode and possible edge list from that
node for the list of nodes in the graph using NER of the GXL graph. This list of pairs
can be added directly in the node to edge list finitemap of MyGraph. edgesFromNode
is an helping function of edgeListFromNodes to find all the edges from one node.
edgesFromNode uses gxlEdgeToMyGraphEdge to add all the attributes (except the
annotation) of those edges. gx1EdgeToMyGraphEdge finds all the needed attribute of

82 8. Multi Step Symbolic Interpretation

MyEdge using the [Gzl.Attr] of the GXL edge. The annotChoice attribute added
by this function will be used later to do the annotation of the edges.

gx1EdgeToMyGraphEdge :: [Gzl.Attr]- MyNode + MyNode - MyEdge

gxlEdgeToMyGraphEdge attr ef et = MyEdge {edgeFrom = ef,
annotation = [J,
annotChoice = annotate,
backEdge = be,
edgeTo = et}

vhere annotate = findAnnotate $ gxlAttrToString "condition" attr
be = gxlAttrToBool "backedge" attr

edgesFromNode :: [NER] -+ Int -+ MyNode -+ [MyEdge]
edgesFromNode ners sv start = nub [edgeToMyEdge e | e € ners,
isEdge e, edgeFromN start e]
vhere edgeFromN start (TwoOf3 (Gzl.Edge eas _ _ _))
= ((drop sv $ Gzl.edgeFrom eas) = start)
edgeToMyEdge (Two0f3 (Grl.Edge eas _ att _))
= gxl1EdgeToMyGraphEdge att start
(drop sv $ Gzl.edgeTo eas)

edgeListFromNodes :: [NER] -+ Int -+ [MyNodel -+ [(MyNode, [MyEdgel)]
edgeListFromNodes ners sv = map (Amn + (mn,edgesFromNode ners sv mn))

8.3 Marked-up Control Flow Graph

Given a control flow graph we want to use the results of the one-step symbolic in-
terpreter to mark-up the edges of the graph with the symbolic representation of the
state-transformer corresponding to that edge. The main difficulty is that while the
complete interpretation of an instruction can be done symbolically, this cannot be
done for even medium sized programs because the resulting output would be so large
as to be deprived of use.

Another aspect to consider is that we are only really interested in the semantics

8. Multi Step Symbolic Interpretation 83

of larger chunks of programs which hopefully correspond to natural functions. These
larger chunks invariably contain conditionals and thus it makes no sense to interpret
the meaning of one branch of the conditional in a context which does not include the
reason why this particular branch was chosen. That is the truth-value of the boolean
condition that caused the program to choose that particular branch.

These two aspects have a common remedy. Inspired by [FS03] where similar tech-
niques are used for (very) high-level programs, we define a program context (Section
7.1) to be [p, s] where p is a path condition and s is a state.

The path condition p describes the condition under which control flow reaches a
given program statement from a given starting point. Every instruction induces a
condition under which each outgoing edge in the control flow graph is followed.

For sequential instructions, this condition is just TRUE, and for branch instruc-
tions this condition is a logical formula that encodes the condition expressed by the
operational semantics. The path condition at a particular node is the disjunction of
all the path conditions of the ingoing edges of that node. The path condition along
an outgoing edge is the conjunction of the path condition at the source node and the
path condition given by the one-step symbolic emulator.

We use a combinator which weaves a Graph Walker (in our case a depth-first graph
traversal) with the one-step symbolic emulator to produce a new function which, given
a CFG, will return a marked-up CFG with the edges labeled by a program context.

doAnnotation is a Graph Walker function which visits all the edges of the graph
and annotates each edge with the proper symbolic interpretation of the instruction re-
lated with its starting node. It uses appAnnotation to find the appropriate symbolic
meaning of the instruction for that edge. In appAnnotation, we use the function
from One Step Symbolic Emulator (sSemantics_) to find the symbolic interpreta-
tion of the instruction opcode and then findPropAnnotate determines the proper
annotation choice.

doAnnotation :: MyGraph + MyGraph
doAnnotation (MyGraph fmo fme) = MyGraph fmo fmee
vhere fmee = mapFM (findAnt) fme
findAnt mn = map (appAnnotation (fromJust $ lookupFM fmo mn))

appAnnotation :: Object + MyEdge + MyEdge

84 8. Multi Step Symbolic Interpretation

appAnnotation obj me = me {annotation = ant}
vhere inst = binaryTolInstruction obj
opc = op inst
ant = findPropAnnotate (sSemantics_ opc inst)
(annotChoice me)

As mentioned earlier each edge will be annotated depending on the condition of
the corresponding edge. This function determines which symbolic interpretation is to
be added as the annotation of the edge depending on the opcode and the condition,
that is annotChoice of the edge. The one-step symbolic emulator produces the
list of pairs of conditions and symbolic interpretation of the instruction in a defined
manner. So we can easily use the take and drop Haskell functions to find the proper
annotation for each possible condition. Looking up the corresponding condFunc is
not needed for the predefined ordering of the list.

findPropAnnotate :: [(CondFunc, [Funcl)] - AnnotationChoice
-+ [(CondFunc, [Func])]

take 1 funcs

drop 1 funcs

findPropAnnotate funcs ATrue
findPropAnnotate funcs AFalse
findPropAnnotate funcs AEqual = take 1 funcs
findPropAnnotate funcs ALess take 1 (drop 1 funcs)
findPropAnnotate funcs AGreater = drop 2 funcs
findPropAnnotate funcs AVoid = [(Tru,[1)]

Below are functions which prove useful in the conversion.

We have to use some helper function to interpret the GXL format data in Haskell
format (String, Bool etc.) gx1AttrToString and gx1AttrToBool are two such kind
of functions which find the value of an attribute and convert it into Haskell format.

gxlAttrToString :: String =+ [Gxl.Attr] - String
gxlAttrToString at [] = ""
gxlAttrToString at ((Gzl.Atir attrattr _ _ value):attrs)
= if (Gzl.attrName attrattr = at)
then (toString value)

8. Multi Step Symbolic Interpretation 85

else gxlAttrToString at attrs
vhere toString (FiveOf10 (Gzl.GxlString s)) = s
toString _ = ""
gxlAttrToBool :: String = [Gzl.Attr] = Bool
gx1lAttrToBool at [] = False
gxlAttrToBool at ((Gzl.Atir attrattr _
= if (Gzl.attrName attrattr = at)
then (toBool value)
olse gxlAttrToBool at attrs
vhere toBool (Two0f10 (Gzl.Bool s)) =
if (s = "True") them True

4

_ value):attrs)

else False
toBool _ = False

findAnnotate is a small helper function that is used to determine the condition
of the edge. In other words, it finds annotChoice depending on the condition
attribute of the GXL edges. This will later be needed to annotate the edges using
the one step symbolic emulator.

findAnnotate :: String - AnnotationChoice
findAnnotate "True" = ATrue
findAnnotate "False" = AFalse

findAnnotate "==" = AEqual
findAnnotate "<" = AlLess
findAnnotate ">" = AGreater
findAnnotate _ = AVoid

Functions to determine the identity of GXL nodes or edges.

isNode, isEdge :: NER = Bool
isNode (One0f3 _) = True
isNode _ = False

86 8. Multi Step Symbolic Interpretation

isEdge (TwoOf3 _) = True
isEdge _ = False

8.4 Data Flow Equations

In a modern high level language non-sequential control flow is encapsulated in a
small number of statements that implement variations on the control flow patterns
of iteration and alternation. In an assembler program there are no restrictions on
the control flow patterns that may be used by the programmer. We therefore need a
more general mechanism to describe control flow. As was shown in the earlier section
we use set of execution paths to model the control flow of the program.

Representation of Data Flow Equations (DFE) does not need so much of infor-
mation that is contained in the data structures from one-step symbolic emulator. So
we unify all the instruction data structures from the one-step symbolic emulator in
some simplified data structures. Here we define the datatype that describes all the
instructions in a unified format.

8.4.1 Datatype Definition

This module defines all the important data structures to find the expression for an
instruction in IBM-1800 assembler and to evaluate the expressions in a statement. A
statement is used to represent a function of an instruction in the assembler code.

module Exp

(StateRef(..), BasticEzp(..), Ezpr, Ezpression, bToE
, eToE, Stmt, Recur_Stmt, Cond(..), BrType(..)

, ConditionEzp(..), ConditionStmt

)

vhere

import Symbolic (StateComp, MemRef, TypeCast(..), Operator,
CondOpSm)

import OpCode (Tag)

import Data.Word (Word8)

8. Multi Step Symbolic Interpretation 87

All the instructions in IBM-1800 assembly language perform a similar action.
They assign some values to some variables. we can therefore consider all the state-
ments in this assembly language as assignment operations. That is why we define a
statement as a pair of State Reference and Expression. A statement represents one

operation of an instruction.

e State Reference: A state reference is a variable to which we can assign val-
ues as expressions. For this assembly language state reference may be either
State Components (Accumulator, Q register, Index registers) or Memory Com-
ponents. Here we define a datatype for State References in the instructions.
StateComp can be of type Acc, @ and Accf. Tag is used to represent Index
Registers and MemRef is for memory references which are defined earlier.

data StateRef = SC StateComp | SCX Tag | Mem MemRef
deriving (Eq, Ord)

instance Show StateRef where
show (SC sc) = show sc
show (SCX s) = show s
show (Mem mr) = show mr

By using SC StateComp in the declaration, we raise the following questions:
How do you handle the ambiguity between (SC Ace, SC §) and SC Aceq? Why
is SC Acef) used at all?

In some cases, we need distinct values of Acc or @ after they are modified by
an operation on whole 4Accf. Each time Acc@ is changed by one instruction, we
create two more redundant entries of Acc and §on purpose for future instruction
references. Those redundant entries will be removed by some kind of garbage
collection operation.

We could have reconstructed Acce@ from Ace and @ values. However due to the
semantics of IBM-1800 assembler language, the operations on the Acc@ consider
it as a 32 bit number. To stay closer to the semantics of those instructions we
have created a state component named SC Accq.

88

8. Multi Step Symbolic Interpretation

e Expression: An expression is what can be assigned to a State Reference.

The datatype for Expression (Ezp) is defined in the following way:

data Exp = Constant Word8
MemoryConstant MemRef
Variable StateComp
VariableX Tag

BinaryOperation (Exp,Operator,Exp)
ConditionalValue ((CondFunc,Exp),(CondFunc,Exp))
deriving (Eq)

|
I
l
| UnaryOperation (TypeCast,Exp)
I
I

But as new tools were developed for solving Data Flow Equation (DFE)s (See
Chapter 10) and generating Data Flow Graph (DFG)s (See Chapter 9) and
trying to unify all the data types to share the same base Ezp datatype, we
quickly realized this would not be suitable. Then, we change the definition of
Ezp in the following way: the Expression datatype which has both recursive and
non-recursive version and also has a base type called BasicEzp which can be
used for basic operation symbols. The non-recursive datatype of Expression is
used in findind DFEs. BasicEzp is used in generating DFGs and the recursive
datatype for Expression is used in solving DFEs.

Below is shown the datatypes for the Expression which are recursive and non-

recursive.

The BasicEzp data structure defines all the unit expressions in the instruc-
tions of IBM-1800 assembly language. The Constant alternative is used to
represent the constant values that are always defined as part of an instruction,
also known as displacement. The maximal size of a constant is 256 (8- bit).
MemoryConstant defines a memory reference that is to be read or written by
an instruction. The name symbolizes that a value is always to be read or writ-
ten in memory. Variable is used to define the expressions which contain state
components and VariableX is used for instruction and index registers. SignBit
is a special Constructor in BasicEzp only used for MDX instructions to get the
sign bit of index registers.

8. Multi Step Symbolic Interpretation 89

data BasicEzp = Constant Word8
| MemoryConstant MemRef
| Variable StateComp
| VariableX Tag
| SignBit Tag deriving (Eq, Ord)

instance Show BasicEzp where
show (Constant a) = show a
show (MemoryConstant a) = show a
show (Variable a) = show a
show (VariableX a) = show a
show (SignBit a) = "Sign"

The UnaryOperation and BinaryOperation data structure define all the
unary and binary operations that are being executed by the instructions.
The ConditionalEzp defines the data structure for the conditional values.
For conditional values we assume that there can be only two types of ex-
pressions (one for True and the other for False). The ConditionStmts in
ConditionalEzp have an invariant (condition). Later this code can be refac-
tored as ConditionalExp (ConditionSimt, a, b) where a is the expression
for True and b for False condition.

data Ezp2 a b = UnaryOperation (TypeCast,b)
| BinaryOperation (b,0Operator,b)
| ConditionalExzp ((ConditionStmt,b),
(ConditionStmt,b))
| Atomic a
deriving (Egq)

Special show instances of the non recursive expression data structure is declared

for better printing purposes.

type Show’ a = a =+ String

90

8. Multi Step Symbolic Interpretation

showExp2 :: Show’ a -+ Show’ b + Show’ (Exp2 b a)

showExp2 showA showB (BinaryOperation (exl,op,ex2)) =
"("++showA exl ++")"++ show op ++ showA ex2

showExp2 showA showB (UnaryOperation (op,exl)) =
if op = Id then showA exi
else show op ++ "("++ showA exl ++ ")*

showExp2 showA showB (ConditionalEzp ((cfl,ex1),(cf2,ex2))) =
showA exl ++ "(" ++ show cfl ++ "):"
++ showA ex2 ++ "(" ++ show cf2 ++ ")"

showExp2 showA showB (Atomic exl) = showB exl
instance (Show b, Show a) => Show (Ezp2 b a) where
show = showExp2 show show
This one is a non-recursive version of expression data structure. We use it to

generate the expression part of the statements (in other words DFEs) of the
IBM-1800 assembler code.

type Expr = Ezp2 BasicErp BasicEzp

There is no recursion here. Its only a wrapper around an ezisting type.

The following recursive version of the expression data structure will be used to

solve the expressions in statements.

data Ezpression = Ezpression (Ezp2 BasicExp Expression)
deriving (Eq)

showExpression (Ezpresston e) = showExp2 showExpression show e

instance Show Ezpression where

show = showExpression

8. Multi Step Symbolic Interpretation 91

Special Functor instances to convert Ezpr into Ezpression.

instance Functor (Ezp2 a) where
fmap f (UnaryOperation (t,b)) = UnaryOperation (t, (£ b))
fmap f (BinaryOperation (bl,op,b2))
= BinaryOperation ((f bl),op,(f b2))
fmap £ (ConditionalEzp ((cdl,bl),(cd2,b2)))
= ConditionalEzp ((cdl, (f b1)),(cd2, (£ b2)))
fmap £ (Atomic b) = Atomic b

bToE :: BasicEzp -+ Ezpression

bToE = Ezpresstion- Atomic
eToE :: Expr - Expression
eToE = Expression: fmap bToE

The Stmt datatype is used for each instruction of the assembler program. Left
hand side of the Stmt is a State Reference StateRef and the right hand side is an
Expression (Ezpr).

data Stmt)
= Assign (StateRef,Expr) deriving (Egq)

instance Show Stmt where
show (4ssign (s,ex)) = show s ++ " = " ++ show ex

This one is a recursive version of statement which will be used in solving the data

flow equations.

data Recur_Stmt
= Assignt (StateRef, Ezpression) deriving (Egq)

instance Show Recur_Stmt vhere
show (A4ssignt (s, exr)) = show s ++ " = " ++ show exr

92 8. Multi Step Symbolic Interpretation

We also unify the conditions in the same data structure using BastcExp and Expr.
Since there are no conditions in the sequential instructions, the condition for them is
represented as having no condition and the condition for the branches is represented
as a branch condition.

ConditionStmt declares the conditional statement associated with the instruc-
tions. It contains two parts - ConditionEzp and Cond. ConditionEzp defines the
condition to be checked. It is an expression which represents the condition of different
state components. NoCondition in ConditionEzp is used for sequential instructions
whereas BrCondition is used for branching instructions. In BrCondition, Expr de-
termines left-hand side of a conditional expression, BasicEzp defines the right-hand
side and CondOpSm is used to represent the operator used to compare those two ex-
pressions. BrType distinguishes among different types of branches in the assembler
language.

Cond defines different values of a conditional expression (defined by
ConditionEzp). As it happens in conditions of an instruction, in ConditionStmt,
we check symbolically the ConditionEzp with its value i.e. Cond.

data Cond = Eql | Ltn | Gir | Tr | Fl | NC deriving (Eg)

instance Show Cond where

show Egl = "=="
show Lin = "<"
show Gtr = ">"

show Tr = "True"
show Fl "False"
show NC wn

data BrType = BR | MDX | CMP deriving (Eg)

data ConditionEzp = BrCondition Expr CondUpSm BasicExp BrType
| NoCondition deriving (Eq)

instance Show ConditionEzp where
show (BrCondition e op be bt) =

8. Multi Step Symbolic Interpretation 93

case bt of
BR + show e ++ show op
MDX + "Signl <> Sign2 || "++ show be
++ show op
CMP -+ show e ++" CMP " ++ show be

un

show NoCondition

data ConditionStmt = Check (ConditionEzp,Cond) deriving (Eq)
instance Show ConditionSimt where
show (Check (cde@(BrCondition e op be bt), cd)) =
" ("++show cde++") " ++"=="++ show cd
show (Check (cdeQ(NoCondition), cd)) = "True"

8.5 Modeling Control Flow

Our strategy for the semantic modeling of assembler program is as follows. From
the internal data structure of the control flow graph we find the set of possible paths
from the starting point in that program. For each path we get all the instructions
and convert them into statement data structure as defined in the previous section.
Then we evaluate sequentially all the expressions from the starting point using
the stack and find the symbolic inputs, outputs and system of equations (relation
between inputs and outputs) on that path. The semantics of a program is then the
disjunction of semantics of all possible paths through the program.

If the given program is sequential, then only one path of execution can be found
and we just compose all execution of instructions to find the program semantics. The
modeling of non-sequential control flow is more complex. We therefore divide the
modeling of IBM-1800 assembly language programs into two parts:

e Finding paths in the control flow graph.

¢ Finding data flow equations for those paths.

94 8. Multi Step Symbolic Interpretation

8.5.1 Finding Paths in the Control Flow Graph

In this Module we write some functions to find all the possible paths of a graph. We
can consider the graph to be cyclic.

module FindPath

(PathType(..), Path, FinalPath, nodesFromStart, edgesOfGraph
, findEdgeAnnt, annotationOfPaths, findLoop, nodesFromHere

, nodesFromEdges, makePair

)

vhere

import MyGraph (MyGraph(..), MyNode, MyEdge, edgeTo, edgeFrom
, annotation)

import Symbolic (Func, CondFunc)

import Data.List (partition)

import Data.FiniteMap (eltsFM, lookupFM)

import Observe

After finding all the paths the PathType field associated with the FinalPath gives
us the type of the path. A path can be terminating or cyclic. PathType defines paths
as either terminating (Term) or looping (Loop).

A path is a list of nodes where two consecutive nodes have an edge in the path.
Instead of list of edges, we use list of nodes to represent a path. This is helpful in
finding execution paths of a control flow graph using general searching techinques like
BFS (Breadth First Search). Also from the list of nodes, we can easily form the list
of edges (if needed) in the path.

data PathType = Term | Loop deriving (Eq, Show)
type Path = [MyNode]

type FinalPath = (PathType,Path)

8. Multi Step Symbolic Interpretation 95

The strategy to find all the possible paths in the control flow graph is to start
from a node (that is designated as a start node), and expand the paths forward from
that node in the directed graph. In nodesFromStart we take a node as a start node
and find all the possible paths from that node. It is like a breadth first expanding of
the graph from the start node.

nodesFromStart :: MyGraph + MyNode + [FinalPath]
nodesFromStart g n = fst $ extendPath g n

extendPath is the main function to find all the possible paths in the graph. It
takes a (complete paths, paths to continue) pair and extends the paths to continue
by one node, whenever possible. By complete paths we mean those paths that either
have a dead end (from the last node of those paths there are no outgoing edges) or
for which the last node in the path is the repetition of one of its previous nodes; this
happens in looping paths. In each iteration of extendPath1, we increase all the paths
to continue by one node if possible. If one path hits a dead end then it is transferred to
the complete paths list with the attribute Term signaling it as a terminating path. It
is otherwise added to the paths-to-continue list for the next iteration of extendPathi.
After this addition to the same iteration, we again check the paths to continue to find
whether the last node in a path is the same as one of its previous node. If any path
of that kind is found, we transfer it to the comp]epe path list with the attribute Loop
denoting it as a looping path. When the paths—t&continue list is empty this iterative
path-finding function ends.

extendPath :: MyGraph -+ MyNode -+ ([FinalPath], [Path])
extendPath g n = extendPathl g ([], [[n]])

extendPathl :: MyGraph -+ ([FinalPathl, [Pathl) -+ ([FinalPath], [Path])
extendPathl _ (a,[1) = (a,[])
extendPathl g (done, todo) = extendPathl g (newdonelist ++ done,
extended)
wvhere edgesOut = map (Aln + (nodesFromHere g $ head 1lm, 1ln)) todo
(almostdone, tocomplete) = partition (An -+ fst n = Nothing)
edgesOut

96 8. Multi Step Symbolic Interpretation

ndlist = map reverse $ map snd almostdone

ndlistl = map zipT ndlist

expand (Just edgl, nodl) = map (An -+ n:nodl) edgl

expand (Nothing, nodl) = error "should not happen, ever!"
extdl = concat $ map expand tocomplete

extd2 = partition (Ax + fst x = Loop) (map findLoop extdl)
extended = map snd (snd extd2)

loops = map zipL $ map reverse $ map snd $ fst extd2
newdonelist = ndlistl ++ loops

zipT nds = (Term, nds)

zipL nds = (Loop, nds)

To find the interpretation of the instructions in a path we obtain all the anno-
tations of the edges in that path. Then we evaluate all the annotations from the
starting node sequentially to determine the meaning of the instructions of the code
in that path.

annotationOfPaths finds a list of all the edge annotations from the starting node
in a path. It uses findEdgeAnnt to find the annotation of one edge and edges0fGraph
to find all the edges in a graph. All the nodes of a path are organized in a list of
(starting node, ending node) pairs of the edges.

edgesOfGraph :: MyGraph -+ [MyEdge]
edgesOfGraph (MyGraph mgo mgs) = concat $ eltsFM mgs

findEdgeAnnt :: (MyNode, MyNode) -+ [MyEdge] -+ [(CondFunc, [Funcl)]
findEdgeAnnt (x,y) mes = concat [annotation me |me € mes,
isEdgeFrom me x ,

isEdgeTo me y]

vhere isEdgeFrom e st = (edgeFrom e = st)

en)

isEdgeTo e en = (edgeTo e

annotationOfPaths: : MyGraph =+ [(MyNode,MyNode)] - [(CondFunc, [Func])]
annotationOfPaths mg els = concat $ map findAnntOfEdge els

8. Multi Step Symbolic Interpretation 97

vhere edgs = edgesOfGraph mg
findAnnt0fEdge el = findEdgeAnnt el edgs

This function is used to find the path attribute whether it is looping or terminat-
ing.

findLoop:: Path -+ (PathType,Path)
findLoop mnds = if (head mnds) ‘elem‘ (tail mnds) them (Loop, mnds)
else (Term, mnds)

As we saw in extendPath1, we have to find all the next possible nodes from a node
in MyGraph. By next possible nodes we mean all the end nodes of the edges generated
from the current node. In nodesFromHere, a simple lookup in the finitemap from the
node to edgelist of the MyGraph data structure will work to find the all possible next
nodes from the current node.

nodesFromHere :: MyGraph -+ MyNode -+ Maybe Path
nodesFromHere (MyGraph no ne) = nodesFromEdges - lookupFM ne

nodesFromEdges :: Maybe [MyEdgel -+ Maybe Path
nodesFromEdges = fmap (map edgeTo)

Finding all the paths in the CFG is done in the previous functions. Now we
introduce some other functions to find the symbolic interpretation of the instructions

in the paths of the CFG.
This function can be used to organize a node list into pairs so that the first node
is the starting node and the last one is the ending node of one edge.

makePair:: Path + [(MyNode,MyNode)]
makePair ilList = zip ilList (tail iList)

8.5.2 Finding Data Flow Equations

There can be many different types of control flow in assembler code. Given a (con-
nected) subgraph S of a complete CFG C, we say that

98 8. Multi Step Symbolic Interpretation

e S is single-entry if all edges from C'\ S to S go to a single node of S; this node
is called the entry point of S. It is also required that all nodes of S be reachable
from the entry point.

o S is single-exit if all edges from S to C'\ S go from a single node of S, and this
node is called the erit point of S. We also require that the dual of a single-exit
graph be a single-entry graph.

e FE is an execution path of S if F is a single-entry, single-exit connected subgraph
of S where all nodes besides the entry point have in-degree 1 and all nodes
besides the exit point have out-degree 1.

e a loop L is a single-entry, single-exit connected subgraph of C where all nodes
have in-degree 1 and out-degree 1 except for one node which has out-degree 2.
Note that we include the “exit point” in the loop.

As was described in the earlier section, we use here the set of execution paths to model
the control flow of a program. For the purposes of this thesis, we only treat single-
entry single-exit subgraphs. Given this restriction, we divide control flow graphs into
three broad categories (see Figure 8.1 for a pictorial representation):

e Straight-Line Code (SC): In other words, an execution path.

e Generalized Straight-Line Code (GSC): May contain a branch or jump,
but that branch or jump will have all the outgoing édges to different nodes inside
that code segment. In other words, globally this code is single-entry single-exit,
but may contain multiple execution paths.

¢ Looping code (LC): An execution path which ends in a loop; the exit point
of the loop may be extended by a (possibly empty) execution path.

Control flow patterns of assembler programs can exhibit many different structures.
For simplicity, we choose these three structures as they represent the most common
control flow structures in programming. Other control flow patterns can also be
explored in future using the same techniques implemented here.

For each type of control flow graph noted above, we use a different strategy to find
the corresponding data flow equations. The following sections will show the strategies
to find the DFEs for each type of CFG cited before.

8. Multi Step Symbolic Interpretation 99

El

Path
y' Condition = True

Path Condition
== FALSE

Path Condition

= Qo
Path
Condition = True
Loop Body @
Control Flow Graph of SC Control Flow Graph of GSC Control Flow Graph of LC

Figure 8.1: Pictorial Representation of Code Categories

In this Module, from a list of symbolic interpretations of some instructions, we find
statements equivalent to those symbolic functions. A statement contains a StateRef
(left-hand side of statement) and an Ezpr (value to be assigned in the StateRef) in
the symbolic form.

module FindExpr

(transformToStmts, transformToConds, findAnnt0fGraph, dividePathAnt
, mergePathCond, listCond, loopPathAnt, mergeLoopCond , convToStmt
)

where

import Symbolic (Func(..), CondFunc(..), TypeCast(..), Val(..),
StateComp(..), Operator(..), CondOpSm(..))

import MyGraph (MyGraph, MyNode, doAnnotation)

import Ezp

import FindPath (PathType(..), annotationOfPaths, nodesFromStart,
makePair)

import FindJoin (findSplitJoin, getCommonDiv, getLoopParts)

import Data.Maybe (fromJust)

As was stated earlier, each instruction in IBM-1800 assembly language as-
signs some values to either (parts of) the State Components and/or the Memory.

100 8. Multi Step Symbolic Interpretation

transformToStmts makes this effective by translating every low-level assignment to
a higher-level representation (in terms of assignment statements), where the left-hand-
side is a StateRef and the right-hand-side is an arbitrary expression Ezp. There are
many different types of Func for various types of low level assignments in the in-
structions of the IBM-1800 assembler, so it is non-trivial to use Func to determine
the values of the state components in the instructions. Stmt has a more unified and
simple representative data structure for each of those Funcs and that is why it can
be used more efficiently to find the expressions in the statements.

transformToStmt:: Func -+ Stmt
transformToStmt st = case st of
AssignSC16 s v = Assign (SC s, UnaryOperation
(Id, (MemoryConstant v)))
UpdateSC16 s o v + Assign (SC s, BinaryOperation
((Variable (vall6l v)),
o, (MemoryConstant (vall62 v))))
AssignMem16 v 1 -+ Assign (Mem 1, UnaryOperation
(Id, (Variadble v)))
AssignMemX v 1 -+ Assign (Mem 1, UnaryOperation
(Id, (VariableX v)))
UpdateSC32 s o v + Assign (SC s,BinaryOperation
((Variable (val321 v)),
o, (MemoryConstant (val322 v))))

AssignX s v + Assign (SCX s, UnaryOperation
(Id, (MemoryConstant v)))
UpdateX s v ~+ Assign (SCX s, BinaryOperation

((VariableX s),

Add, (MemoryConstant v)))
UpdatedS o v -+ Assign (SC Acc, BinaryOperation

((Variable Acc),

o, Constant v))
UpdateAQS o v -+ Assign (SC AccQ, BinaryOperation

((Variable Acef),

o, Constant v))

8. Multi Step Symbolic Interpretation 101

CondDisp c v -+ Assign (Mem c, BinaryOperation
((MemoryConstant c),
Add, (MemoryConstant v)))

transformToStmts:: [Func] -+ [Stmt]
transformToStmts = map transformToStmt

We also need to convert all different conditions in the symbolic interpretation in
a unified data structure called ConditionStmt.

transformToCond:: CondFunc -+ ConditionSimt
transformToCond cf =
case cf of
Condition s o b + Check ((BrCondition (Adtomic (Variable s))
o (Constant 0) BR), trbl b)
CondDispAddT s v b + Check ((BrCondition (BinaryOperation
((VariableX s), Add,
MemoryConstant v)) EqO
(VariableX s) MDX), trbl b)
CondDispAddM 1 v b + Check ((BrCondition (BinaryOperation
((MemoryConstant 1), Add,
(MemoryConstant v))) EqO
(MemoryConstant 1) MDX), trbl b)
UpdateComp s o v = Check ((BrCondition (Atomic (Variable s))
o (MemoryConstant v) CMP),
trcm o)
otherwise -+ Check (NoCondition, NC)
vhere trbl b = if b = True then Tr
else Fl
trcm ¢cm = case cm of
Eq0 -+ Eql
Lto -+ Litn
Gro -+ Gtr

102 8. Multi Step Symbolic Interpretation

transformToConds:: [CondFunc] -+ [ConditionStmt]
transformToConds = map transformToCond

We can now find all the annotation of paths in a Graph. We assume that the
graph given is a single entry and single exit graph.

Given a start node and a graph, findAnntOfGraph finds path conditions and
symbolic interpretations of all the instructions in all paths of the graph. First it
annotates all the edges in the Graph using the doAnnotation function of the MyGraph
module. Then it finds all the paths in the graph. If only one path is found then it
is a Straight-line Code (SC). If two or more paths are found then it is a Generalized
Straight-line Code (GSC) structure, and obviously, if there is any looping path then
it is a Looping code (LC) structure.

findAnnt0fGraph :: MyGraph -+ MyNode -+ [[([ConditionStmt], [Stmt])]]
findAnnt0fGraph mg start
= if length pl = 1 them cslist
else if any (Mx -+ fst x = Loop) pl
then cLList
else cflist
wvhere mgl = doAnnotation mg
pl = nodesFromStart mgl start

csList = [[([Check (NoCondition, NC)],
((transformToStmts-snd-listCond)
$ annotationOfPaths mgl
(makePair $ concat $ map snd pl)))]]
cfList = mergePathCond $ dividePathAnt mgl start
cLList = mergeLoopCond $ loopPathAnt mgl start

Straight-Line Code (SC): We gather all the annotations of the edges of the
single execution path. We use sequential composition E1; E2 to represent this.

Modeling the control flow and finding the semantic context of straight-line code
is simple. In particular, there are no new path conditions that are imposed. We just
need to find the state transformer corresponding to each statement and using a stack
to keep track of the current environment, we sequentially compose all the expressions

8. Multi Step Symbolic Interpretation 103

representing these state transformers. Since each state transformer obtained from the
previous stage is always of the form V' = f(S) where V" is a single state component,
and S is a finite set of state components, we obtain a set of the simplest kind of data
flow equations.

For SC, f£indAnntOfGraph gets the edge annotation list using
annotationOfPaths and transforms them to statements by transformToStmts.

Generalized Straight-Line Code (GSC): For GSC (refer to middle graph in
Figure 8.1), we proceed as follows:

e find the nodes in the code that correspond to a split (a branch instruction) and
a join (the meeting point of two different paths which started at a split). This
divides the CFG as several SCs, which we label Ey, Eoq , Egp, , Es.

o for each of the SCs, we generate a system of data flow equations. We use E; to
also denote the resulting system (confusion is easily cleared from context).

e Write the system of data flow equations for the whole code as Ej;(g: —
Es.|~gi — Ex); E3 where g; denotes the guard which corresponds to the choice
for branch ¢ and | denotes parallel composition.

The node where the paths in the CFG split is called the "split” node and the
node where paths join again is called the ”join” node. Since the graph is considered
as single-entry and single-exit, so we must have at least one "split” and a ”join” node
if there are more than one paths in the CFG.

GSC (or branching codes) can be considered as one if-then-else structure. We
divide the paths in the GSC into different segments using the ”split” and ”join”
nodes and find symbolic interpretation of all the segments differently.

For an ideal GSC structure, in two of its paths, nodes before the split node and
nodes after the join node are similar. In between split and join, the path segment
for each path is different from one another. So we can divide the two paths of the
GSC into four different path segments. They may be named as First Common (fc),
Different Path 1 (pdl), Different Path 2 (pd2) and Second Common (sc) [See Figure
8.2].

dividePathAnt finds a list of (path condition, list of interpreted instructions)
pair for all the segments of the paths. It first finds “split” and “join” nodes (if any)

104 8. Multi Step Symbolic Interpretation

Legends:

Code Block

Flow of Control

Figure 8.2: Shape of GSC

between the paths and divide the paths into segments using those nodes. Then it
finds the paths conditions and function list of the instructions for those segments.

dividePathAnt :: MyGraph + MyNode -+ [[(CondFunc, [Func])]]
dividePathAnt mg st = map (annotationOfPaths mg) $ map makePair lst
vhere paths = nodesFromStart mg st
(splt, jnt) = findSplitJoin paths
(fc, pdl, pd2, sc) = if (splt = Nothing) VvV (jnt = Nothing)
then error "no intersection"
else getCommonDiv
((snd-head) paths)
((snd-last) paths)
((fromJust splt),
(fromJust jnt))
1st = if length fc = 1
then [pdl, pd2, sc]
else if length sc =1

8. Multi Step Symbolic Interpretation 105

then [fc, pdl, pd2]
else [fc, pdl, pd2, sc]

mergePathCond transforms the functions into statements and combines all the
conditions of the instructions into one path condition for each segment of the paths.
It then transforms these conditions into ConditionStmt. For fc and sc, the path
conditions are "True” as they are Straight-line Code (SC). for pdl and pd2, the path
condition depends on the condition of the instruction in the “split” node.

listCond combines all the conditions of instructions in one list from a list of
(condition, function list) pairs for one segment of path.

After dividing the paths into segments, we must reorganize the statement list for
each segment. As mentioned earlier, the symbolic interpretation of the instruction
in a node appears as the annotation of its outgoing edges. In the branching struc-
ture code, after the “split” node each first edge of two different paths contains the
same statement as annotation as they are generated from the same node although
their conditions are different. So we will be removing this common statement in the
common segment (fc) before the split for more precise interpretation.

trSnd transformToStmts - snd

trFst

transformToCond- head-fst
trFsts = transformToConds-fst
nc = Check (NoCondition, NO)

mergePathCond :: [[(CondFunc, [Func])]] -+
[[([ConditionStmt], [Stmtl)]1]
mergePathCond cfss =
if length cfss = 3
then if (head $ fst f1) # Tru
then if head instl = head inst2
then [[([nc], [head inst1]),
([txrFst f1], tail instl),
([trFst £2], tail inst2),
([ncl], trSnd £3)]]
else [[([trFst f1], inst1l),

106 8. Multi Step Symbolic Interpretation
([trFst £2], inst2),
([ncl, trSnd £3)]1]
else if head inst2 = head inst3
then [[([nc],
(trSnd f1)++[(head inst2)]),
([trFst £2], tail inst2),
([trFst £3], tail inst3)]]
else [[([nc], trSnd f1),
([trFst £2], inst2),
([trFst £3], inst3)]]
else if head inst2 = head inst3
then [[(([nc],
(trSnd f1)++[(head inst2)]),
([trFst £2], tail inst2),
([trFst £3], tail inst3),
([ncl, trSnd £4)]]
else [[([nc], trSnd f1),
([trFst £2], inst2),
([txrFst £3], inst3),
([nc], trsSnd £4)]1]
vhere condfn = map listCond cfss
f1 = head condifn
instl = trSnd f1
f2 = head (drop 1 condfn)
inst2 = trSnd £2
£3 = head (drop 2 condfn)
inst3 = trSnd £3
f4 = last condfn
listCond :: [(CondFunc, [Func]l)] = ([CondFuncl, [Funcl)
listCond cfs = ((map fst cfs), (concat $ map snd cfs))

Looping Code (LC):

8. Multi Step Symbolic Interpretation 107

One significant challenge in modeling any program, symbolically or otherwise, is
to correctly model loops. For loops, we will use (symbolic) recurrence equations as
a model [FS03]. If we are lucky, these recurrences will be solvable in closed form.
Nevertheless we can continue with this implicit representation even if they are not.
Frequently, properties of the solution of recurrence equations can be derived from the

recurrence itself without needing the closed-form solution.
To make the discussion more concrete, we will use the following sample code as
example:

OADDR REL OBJ. ST.N. LABEL OPCD FT OPRNDS

35CE 0 1001 0708 SLA 1
356CF O T72FF 0709 MDX 2 -1
35D0 O T7OFD 0710 MDX *-3

In this simple loop, the accumulator A value is shifted left by one and XR2 is
decreased by one at each loop execution. We can express this change in terms of
recurrences: An4; = 2% A, and XR2,,;; = XR2,, — 1, which expresses that the value of
the accumulator and XR2 at time n + 1 are a function of their values at time n, where
n > 0. Since upon loop entry both A and XR2 have a value, we know the necessary
initial conditions for this first-order recurrence. We use A and XR2 to denote these
initial values. We can thus represent the symbolic meaning of the loop using these
recurrence equations and the initial conditions.

To determine the value of A after the loop terminates, we need to know if and
when the loop will stop. We define a stopping criterion ¢ : State — B which
will symbolically determine the number of iterations for the loop. This stopping
criterion naturally corresponds with the loop condition — which for our simple loop
is ¢ = XR2 > 0. The recurrence equation, initial condition and stopping criterion are
sufficient to completely describe all the loop information symbolically.

For each component of the state v, which is modified in a loop, we represent
the corresponding information as a function (v, s, c), from the variable, state and
a program context ¢ (See Section 7.1). The stopping criteria is given by the path
condition of the program context ¢, and the initial condition is determined from s.
The result of u is a representation of the recurrence equation for that state component.

As in GSC, the starting nodes for LC before the “split” node in the paths and
ending nodes after the “join” node are common. In between them there are different
path segments for each path which are shown in the Figure 8.3.

108 8. Multi Step Symbolic Interpretation

v

cp
cz
W L1 Legends:
Code Block
___>
Flow of Control

Figure 8.3: Shape of Looping Codes

We can divide two paths of the LC in five different path segments. They may be
named as Common P (cp), Terminating T (tt), Looping X (Ix), Looping Y (ly) and
Common Z (cz). cp, tt, ly and cz must be straight line codes (SC) however Ix can be
either SC or GSC depending on the number of paths in Ix.

LoopPathAnt finds a list of (path condition, list of interpreted instructions) pairs
for all the segments of the paths in a LC. As in dividePathAnt, it first finds “split”
and “join” nodes among the paths and divides the paths into segments using those
nodes. Then it determines the path conditions and function list of the instructions

for those segments.

loopPathAnt :: MyGraph -+ MyNode -+ [[[(CondFunc, [Func])]]]
loopPathAnt mg st = [[acp, att, aly, acz], alx]
vhere paths = nodesFromStart mg st
(sp, jn) = findSplitJoin paths
(cp,tt,1lx,1ly,cz) = if (sp = Nothing) V (jn = Nothing)
then error "no intersection"
else getLoopParts paths

8. Multi Step Symbolic Interpretation

109

((fromJust sp), (fromJust jn))

[acp, att, aly, acz] = map (annotationOfPaths mg)

$ map makePair [cp,tt,ly,cz]

alx = map (annotationOfPaths mg) $ map makePair 1x

mergeLoopCond works as mergePathCond, that is it transforms the functions into
statements and combines all the condition of the instructions into one path condition
for each segment of the paths, and then transforms this condition into ConditionStmt

for LC.

mergeLoopCond :: [[[(CondFunc,[Func])]]] -+
[[([ConditionStmt], [Stmt])]]
mergeLoopCond cfst = [[([nc],trSnd cacp)],
[cTT], cLX, [cLY],
[([nc],trSnd cacz)]]
vhere [cacp, catt, caly, cacz] = map listCond (head cfst)
cLY = convToStmt caly
cTT = convToStmt catt
loopc = map listCond (last cfst)

cLX = map convToStmt loopc

convToStmt :: ([CondFuncl, [Funcl) = ([ConditionStmt], [Stmt])’

convToStmt cfs = (cds, (trSnd cfs))
where cds = filter (Ax + x # nc) (trFsts cfs)

8.6 Examples

The code segments used to generate the following examples are taken from the BPC

(Boiler Pressure Control) code of OPG.

8.6.1 SC Example

We present the same code segment in Section 2.3.1:

110 8. Multi Step Symbolic Interpretation

OADDR REL 0OBJ. S.NO. LABEL OPCD FT OPRNDS

35B6 0 Ci129 0677 TRBFB LD 1 41
35B7 0 A12A 0678 M 1 42
35B8 0 1082 0679 SLT 2
35B9 0 912B 0680 S 1 43
35BA O A12C 0681 M 1 44
35BB 0 108F 0682 SLT 15
35BC 0 A92D 0683 D 1 45
35BD 0 DI12E 0684 ST0O 1 46

The Data Flow Equations (DFE) for this code segment are:
PathCondition: True
Instruction Execution:

A := C(XR1 + 41)

AQ := A * C(XR1 + 42)
AQ <<= 2

A -= C(XR1 + 43)

AQ := A * C(XR1 + 44)
AQ <<= 15

A := AQ / C(XR1 + 45)
Q := AQ % C(XR1 + 45)
C(XR1 + 46) := A

8.6.2 GSC Example

This chunk of code is a also a part of the the BPC (Boiler Pressure Control) code of
OPG.

35C4 0 73FF 0695 MDX 3 -1
35C5 0 700F 0696 MDX TRBFE
0697

8. Multi Step Symbolic Interpretation

111

35C6 0 1010 0698 TRBFD SLA
35C7 0 D12F 0699 STO
35C8 0 7012 0700 MDX

0701

0702
35C9 0 0000 0703 DI2F3 DC
35CA 0 6203 0704 LDX
35CB 0 6300 0705 LDX
35CC 0 4810 0706 BSC
35CD 0 7301 0707 MDX
35CE 0 1001 0708 SLA
35CF 0 72FF 0709 MDX
35D0 0 70FB 0710 MDX
35D1 00 66002099 0711 LDX
35D3 00 4C8035C9 0712 BSC

0713

0714

0715
35D5 O C209 0716 TRBFE LD
35D6 0 911B 0717 S
35D7 O A130 0718 M
35D8 0 1005 0719 SLA
35Dg O D12F 0720 STO
35DA 0 7000 0721 MDX

0722

0723

0724

0725
35DB 0 C12E 0726 TROUT LD
35DC 0 812F 0727 A
35DD O A132 0728 M
35DE 0 1089 0729 SLT
35DF 0 D123 0730 STO

L2

16
47 O
TROUT

o W o

SN

*=5
BPCD
DI2F3

27
48

47
TROUT

46

147

50

35

112 8. Multi Step Symbolic Interpretation

To understand the execution sequence of this GSC segment, Here we give a graph-
ical control flow pattern (Figure 8.4) of the segment.

pdl:

Addresses :
0x35C5,

Ox35D5-0x35D:

Addresses:
Ox35D8-0x35D!

Figure 8.4: Control Flow Graph of the Segment 0x35C4-0x35DF

The following are the DFE presentation for different segments of the GSC segment.

Segment: fc
PathCondition: True

Instruction Execution:
XR3 += (-1)

Sign(XR3)
Sign(XR3+(-1))

Signi :

Sign2 :
Segment: pdi

PathCondition:

(Sign1l <> Sign2 || XR3 == 0) == False
Instruction Execution:

A := C(XR2 + 9)

8. Multi Step Symbolic Interpretation

113

A -= (XR1 + 27)

AQ = A * C(XR1 + 48)
A «=5

C(XR1 + 47) := A

Segment: pd2

PathCondition:

(Signl <> Sign2 || XR3 == 0) == False

Instruction Execution:

A <<= 16
C(XR1 + 47) := A

Segment: sc
PathCondition: True
Instruction Execution:
A := C(XR1 + 46)

A += C(XR1 + 47)

AQ := A * C(XR1 + 50)

AQ <<= 9
C(XR1 + 35) := A

8.6.3 LC Example

Another BPC code segment to present the LC structure is adapted here.

35C9 0 0000
35CA 0 6203 0704

0703 DI2F3 DC

LDX

0
23

114 8. Multi Step Symbolic Interpretation
35CB 0 6300 0705 LDX 30

35CC 0 4810 0706 BSC -

35CD 0 7301 0707 MDX 31

35CE 0 1001 0708 SLA 1

35CF 0 T2FF 0709 MDX 2 -1

35D0 0 70FB 0710 MDX *-5

35D1 00 66002099 0711 LDX L2 BPCD

35D3 00 4C8035C9 0712 BSC I DI2F3

To understand the execution sequence of this LC segment, Here we give a graphical

control flow pattern (Figure 8.5) of the segment.

op:
Addresses:
0x35C9-0x35CC

b
Addresses :
0x35CD-0x35CH

Figure 8.5: Control Flow Graph of the Segment 0x35C9-0x35D3

Segment: cp

PathCondition:

True

Instruction Execution:

XR2 :

1]
o

8. Multi Step Symbolic Interpretation 115

Segment: tt

PathCondition:

Instruction Execution:

Segment: 1lx

PathCondition:

(A < 0) ==False, (Signl <> Sign2 || XR3 == 0) ==False
Instruction Execution:

XR3 += 1

Signi :

Sign2 :
A <=1

Sign(XR3)
Sign(XR3+1)

it

PathCondition:

(A < 0) ==True

Instruction Execution:

A<=1

PathCondition:

(A < 0) ==False, (Signl <> Sign2 || XR3 == 0) ==True

Instruction Execution:

116 8. Multi Step Symbolic Interpretation

XR3 += 1

Segment: ly

PathCondition:

(8ignl <> Sign2 || XR2 == Q) ==False

Instruction Execution:

XR2 += (-1)
Signl := Sign(XR2)
Sign2 := Sign(XR2+(-1))

Segment: cz

PathCondition: True

Instruction Execution:

XR2 := 8345

The data flow equations (DFE) in all the three previous examples give us a high
level representation of the computation done in the assembly code. Still more work

can be done on these DFEs to understand the meaning of the code better.
following chapters show us different ways to interpret these DFEs.

The

Chapter 9
Generating Data Flow Graphs

Contained in this chapter is the tool used to generate Data Flow Graph (DFG) from
the assembler code. In different subsections, the internal data structure of the Data
Flow Graph, functions to create the DFG from the Data Flow Equations (DFE), and
the garbage collection step of the DFG are discussed. Later, we also provide some
examples DFGs which are generated using this tool.

9.1 Data Flow Graph

A data-flow graph (DFG) is a graph which represents data dependencies among a
number of operations in a program. Definition and structure of DFG are given earlier
in Section 3.1.2. DFGs are very important in data flow analysis at runtime.

9.2 DFG Generation Process

In this section we give a brief overview of the data flow graph generation process.
Figure 9.1 shows different internal steps of DFG generation. We start the DFG gen-
eration process by taking the Data Flow Equations of the corresponding code segment
as input. We then produce a Data Flow Graph with redundant entries. These redun-
dant entries can be added in the DFG for various reasons. For example, when any
value is assigned to 4cc@ (Combined Accumulator and its extension register) in the
next instructions, we may need the value of either 4cc (Accumulator) or its extension

117

118 9. Generating Data Flow Graphs

register (§). So we add two more entries of Acc and @ in the DFG. The entries that
are not used by the later instructions are removed in the Garbage Collection phase.
Not all of the unused entries are removed. The rules for removing unused nodes in
the DFG are discussed in detail in Section 9.5.

DFG with Garbage @
@ DFG generator Redundant Entries Collector

Legends:
Flow of gata

Figure 9.1: DFG Generation Process

In the following sections, we provide three different modules in DFG generation
process. Section 9.3 shows the internal data structure implementation of the DFG.
Following that, we include the module for generating a DFG. The DFG produced in
that module contains redundant nodes. To remedy that the Garbage Collection is

given in Section 9.5.

9.3 Internal Data Structure of DFG

In this module, we define all the data types needed by the Data Flow Graph generation

tool.

module Dfg

(OperatorNode(..), OperandNode, OEdge(..), InEdges
, OutEdges, DfdGraph, UseType, UsedNode, NodeMap

)

where

import Ezp (BasicEzp, ConditionExp, Cond)
import Stack

9. Generating Data Flow Graphs 119

import Observe

Like other graph structures, a Data Flow Graph (DFG) contains nodes and edges.
Edges in a DFG represents the flow of data from one operation to the other. Nodes
in a DFG are of two types: Operand or Operator. Operand nodes represent the data
and operator nodes the operation carried on the data in the instructions. Thus in our
DFG data structure the nodes are divided into operand and operator nodes.

The OperandNode data type declares the node for the operands (data) of the
operations. It contains BasicEzp expression type which defines the basic expression
for the data. OperatorNode defines the type for different types of operations. In
IBM-1800, operations inside instructions can be Unary, Binary or Conditional. We
declare a special OperatorNode called Join to define the join of same data value
from different branches.

We use one important integer fields (ci) to declare OperatorNode and
OperandNodes. ci distinguishes between different nodes with the same label com-
ing from different instructions. In most cases, this integer field gives the no. of the
instruction from which the node is generated.

Instead of deriving Ord, we create our own ordering for the OperatorNodes. The
derived Ord was not working as it was ordering depending only on the operator in
the node. But we may have different OperatorNodes with same label (operator). As
such, we were getting aberrant edges among the nodes while using derived Ord. To
solve the problem, we clearly distinguish among the OperatorNodes by a predefined
sequence.

In our DFG data structure, we assume that there will only be edges from the
operator node to operand node and vice versa. There must not be any edges be-
tween two nodes of the same kind. InEdges defines the edges from the OperandNode
to OperatorNode whereas OutEdges defines the edges from the OperatorNode to
OperandNode. In the definition of OutEdges, we use another data type: OEdge.
From an OperatorNode, depending on the type of that node, we can have edges
to different OperandNodes where each edge may contain conditions like True, False,
Equal etc. OEdge defines different types of edges with the conditions associated with
them. For OneEdge in OEdge, there is no condition associated with the edge. This

120 9. Generating Data Flow Graphs

is used for unconditional data flow. From the semantical understanding of the as-
sembler we can determine that there can be at most three outgoing edges from one
OperatorNode. That is why we created a data type from the outgoing edges for one
OperatorNode which contains three options: OneEdge (for unconditional operators),
TwoEdge (for branching operators) and ThreeEdge (for CMP operators). This gives
us the strong typographical setting for the data type and can be used to avoid errors
during runtime. For InEdges we use a simple list of OperatorNode as the successor
of the OperandNode since we are not sure how many times a OperandNode will be
referenced later in other instructions.

So our DFG structure DfdGraph contains two finitemaps: One for the InEdges
and the other for OutEdges; one finitemap from the OperandNode to OperatorNode
and one from the OperatorNode to OEdge.

data OperatorNode =
Unary TypeCast Int
| Binary Operator Int
| ConditionVal ConditionEzp Int
| Join Int Int deriving (Eq)

instance Show OperatorNode where
show (Unary tc ci) = show tc
show (Binary op ci) = show op
show (ConditionVal cf ci) = show cf
show (Join cil ci2) = "Join"

instance Ord OperatorNode where
compare (Unary t n) (Unary s m)

| t=s = compare n m

Il t<s = LT

| otherwise = GT
compare (Unary t n) (Binary s m) = LT
compare (Binary t n) (Unary s m) = GT
compare (ConditionVal t n) (Unary s m) = LT
compare (Unary t n) (ConditionVal s m) = GT

9. Generating Data Flow Graphs 121

compare (ConditionVal t n) (Binary s m) = LT
GT

compare (Binary t n) (ConditionVal s m)
compare (Binary t n) (Binary s m)
| t=s
lt<s =1LT
| otherwise = GT

compare n m

compare (ConditionVal t n) (ConditionVal s m)
= compare n m

LT
GT
compare (ConditionVal n m) (Join t s)

compare (Unary n m) (Join t s)

compare (Join t s) (Unary n m)

LT
compare (Join t s) (ConditionVal n m) = GT
compare (Join t s) (Binary n m) = GT
compare (Binary n m) (Join t s) = LT
compare (Join t s) (Join n m)

Il t=n = compare S m

|t <n = LT

| otherwise = GT

data OperandNode = ExpressionNode BasicErp Int deriving (Eq)

instance Show OUperandNode where
show (EzpressionNode e ci) = show e

instance Ord OperandNode where
compare (EzpressionNode el cil) (ExpressionNode e2 ci2)

| el = e2 = compare cil ci2
| el £ e2 = LT
| otherwise = GT

data OEdge = OneEdge OperandNode
| TwoEdge (Cond,OperandNode) (Cond,OperandNode)

122 9. Generating Data Flow Graphs

| ThreeEdge (Cond,OperandNode) (Cond,OperandNode)
(Cond, OperandNode) deriving (Eq)

instance Show OEdge where
show (OneEdge on) = show on
show (TwoEdge (cnl,oni) (cn2,on2)) = show oni
++ ","++ show on2
show (ThreeEdge (cnl,on1) (cn2,on2) (cn3,0n3)) = show onl
++ "," ++ show on2

++ ","++show on3

type InEdges = (OperandNode, [OperatorNode])
type OutEdges = (OperatorNode, OFEdge)

data DfdGraph = DfdGraph (FiniteMap OperandNode [OperatorNode])
(FiniteMap OperatorNode OEdge)

This data type is used for garbage collection and indicates whether a node is used
by the next nodes.

UsedNode contains two finitemaps: one for OperandNode and the other for
OperatorNode. In the finitemaps, each node (operand or operator) is mapped to
UseType that can be either Used or Unused. Depending on the UseType of the
nodes, we will get rid of the unused nodes during garbage collection phase of DFG

generation.

data UseType = Used | Unused deriving (Egq)
instance Show UseType vwhere

show Used = "used"

show Unused = "unused"

data UsedNode = UsedNode (FiniteMap OperandNode UseType)
(FiniteMap OperatorNode UseType)

Below is the same environment that is declared in Stack.lhs. A type class is
defined there for these type of environments. This instance associates BasicEzp with

9. Generating Data Flow Graphs 123

OperandNode and is used for same node lookup.

type NodeMap = BasicEzp -+ OperandNode

instance Stack BasicEzp UOperandNode where
createStack e = ExpressionNode e 0O
addEntry s (k,v) = Ad < if k=d then v else s d
addEntries = foldl addEntry
lookupEntry s k = s k

9.4 DFG Generation

In this module we convert the Data Flow Equations (DFE) generated from a code
segment into a Data Flow Graph (DFG). The DFEs of the code segment show the
data flow from one instruction to the next by representing the data as symbolic values
and the instructions represented as statement using those data symbols. However,
DFG gives us the pictorial presentation of the data flow from one operation to the
next. DFG gives a clear understanding of data dependency among the operations in
the code.

module Dfe2Dfg (dfdGraphToGxlGraph)
where

import MyPrelude (fst3, thrd3)

import GrlGraph (GzlGraph, addEdges, addNodes,)

import Symbolic (StateComp(..), TypeCast(..))

import Stack

import Ezp

import Dfg

import Dfe2DfgCommon

import GarbageCollect (markNodes, garbageCollectOfDfdGraph)

import Data.FiniteMap (emptyFM, fmToList, keysFM, addListToFM,
addListToFM_C, addToFM,
addToFM_C, lookupFM)

124 9. Generating Data Flow Graphs

import Data.Maybe (fromJust)
import Data.List (find, delete, deleteBy)

import Observe

dfdGraphToGx1Graph is the main function used to generate the Data Flow Graph
(DFG)s from the Data Flow Equation (DFE)s. As seen in the Figure 9.1 that shows
the steps to produce DFGs, we first generate the internal data structure of the
DFG, DfdGraph, that contains the redundant entries of data nodes which are un-
used. dfeNodesEdgesToGraph and dfeNodesEdgesToGraphBr are used to generate
DfdGraph for SC and GSC respectively. After generating the DFG, we garbage collect
the DfdGraph by marking the nodes with their UseType and removing the unused
nodes from the graph using the garbageCollect0fDfdGraph function. Finally, for
exchange and display purposes, we convert the DFG into GXL format, that is we
create a new DFG in GXL by converting the InEdge, OutEdge into GXL edges and
OperandNode and OperatorNode into GXL nodes.

dfdGraphToGx1Graph :: GzlGraph -+ Siring -
[[([ConditionStmt], [Stmtl)]1] =+ GzlGraph
dfdGraphToGx1Graph ggraphs name cstmts = addEdges (inEdges++outEdges)
$ addNodes (opndNodes++optrNodes) ggraphs
vhere (i, dfdGraphBGC, nMap)
= if (length $ concat cstmts) = 1
then dfeNodesEdgesToGraph
(DfdGraph emptyFM emptyFM) 1
createStack (concat $ map snd
$ concat cstmts)
else dfeNodesEdgesToGraphBr
(DfdGraph emptyFM emptyFM) 1
createStack (concat cstmts)
usedNodel = markNodes dfdGraphBGC (i-1)
(UsedNode emptyFM emptyFM) nMap
(DfdGraph fmopn fmope) = garbageCollect0fDfdGraph
dfdGraphBGC usedNodel

9. Generating Data Flow Graphs 125

inEdges = pairsToGxlEdges $ inEdgeToIds name
(fmToList fmopn)

outEdges = reverse $ outEdgeToGx1lEdges name
(fmToList fmope) []

opndNodes = map idToGxlNode $ map (opnodeToId name)

(keysFM fmopn)

optrNodes = map idToGxlNode $ map (optnodeToId name)

(keysFM fmope)

We now discuss how to create the internal data structure (DfdGraph) of the DFG
from the DFEs.

dfeNodesEdgesToGraph is used to create the DFG for the SC type codes. This
function adds all the nodes and edges in the graph iteratively. In one iteration, it
finds all the nodes that have to be added in the DFG for one instruction. For the
input nodes, it decides which nodes have links to the data nodes from the previous
instructions. It separates those OpearndNodes from the other input nodes and does
not add them in the DFG as they can be replaced by the previous occurrence of them
(findAppNodes). The rest of the input nodes are added to the DFG directly. Using
this information, it finds all the feasible edges from the edge list of that instruction
and adds them in the DFG (addAppEdges). As the output data nodes are yet to
be referenced by the next instructions, we add those nodes in the DFG with their
successor list as empty (makeBlankPairs). ,.

findAppNodes uses NodeMap which maps the data symbol (BasicEzp) to the
NodeId to check whether the previous data nodes have been referenced by the new
input nodes. NodeMap contains all the data symbols and their corresponding NodelIds
in the DfdGraph. In each iteration, all the new input (feasible) and output nodes are
added to the NodeMap for future reference. Int is used to give all nodes a unique ID
in each iteration.

dfeNodesEdgesToGraph :: DfdGraph + Int + NodeMap
+ [Stmt] -+ (Int,DfdGraph,NodeMap)
dfeNodesEdgesToGraph dgrphs i nMap [] = (i,dgrphs,nMap)
dfeNodesEdgesToGraph dgrphs@(DfdGraph fmopn fmope) i nMap (fn:fns)
= dfeNodesEdgesToGraph dfgl (i+1) newNMap fns

126 9. Generating Data Flow Graphs

dfeToNodes fn i

inodes = findAppNodes nMap (fst3 nodels) ([],[])

newNMap = addToNodeMap nMap ((fst inodes)
++(thrd3 nodels))

edgePairs = dfeToEdgePairs fn i

where nodels

newFmope = addListToFM fmope (snd edgePairs)
dfg0 = makeBlankPairs (thrd3 nodels)
(DfdGraph fmopn newFmope)
dfgl = addAppEdges (fst edgePairs)
dfg0 (snd inodes)

dfeNodesEdgesToGraphBr generates the DFG for branching structure codes. As
we saw in Figure 8.2, for the GSC, there can be four different segments of code:
First Common (fc), Different Path 1 (pd1), Different Path 2 (pd2) and Second Com-
mon (sc). All of these four segments can be considered as sc type. So we can use
dfeNodesEdgesToGraph to create a DFG for these segments. In finding the DFEs,
depending on the structure, we can find that in a single entry single exit subgraph,
there are always some instructions in the fc segment but there may not be any sc
segment. The first implementation of dfeNodesEdgesToGraphBr is for that type of
structure of GSC where there are no sc whereas the second one is for an ideal GSC
with four segments of code.

Both of the implementations have everyting in common except for creating the
DFG of the last segment. We start with generating the DFG for fc and then we add
the condition node in the DFG that produces two different segments. Condition node
is a special type of OperatorNode. conditionToiNodeEdges creates the condition
node and adds the input edges to that node from the fc segment nodes. After that, we
generate the nodes and edges in the DFG for both pd1 and pd2 segment respectively.
conditionTooNodeEdges adds the output edges from the condition node to two
different segment nodes. After generating the nodes and edges for pdl and pd2, we
find the leaf nodes (with no outgoing edges) for both of those segments which may be
used as data in the next sc segment. For each pair of leaf nodes which are common
in the two segments, we create a join node (another special type of OperatorNode)
using zippOperandNodes and addJoinNodes. This join node acts as an Or operation
for both of those common nodes. The first implementation ends here as we do not

9. Generating Data Flow Graphs 127

have an sc segment. In the second implementation, we add the nodes and edges for
the sc segment and thus finish generating the DFG.

dfeNodesEdgesToGraphBr :: DfdGraph -+ Int -+ NodeMap
<+ [([ConditionStmt], [Stmt])] -+ (Int,DfdGraph, NodeMap)
dfeNodesEdgesToGraphBr dgrphs i nMap [cstl,cst2, cst3]
(i4,dfdgd,nm4)
dfeNodesEdgesToGraph dgrphs i
nMap (snd cstl)

vhere (il,dfdgl,nmi1)

stmtl = (last-snd) cstil
dfd2 = conditionToiNodeEdges dfdgl (i1+1)
(head $ fst cst2) stmtl
dfeNodesEdgesToGraph dfd2
(i1+2) nml1 (snd cst2)
dfeNodesEdgesToGraph dfdg2
(i2+1) nm1 (snd cst3)
stmt2 = (head-snd) cst2
stmt3 = (head-snd) cst3
dfd3 = conditionTooNodeEdges dfdg3 (i1+2) (i2+1)
(head $ fst cst2) stmt2 stmt3
(DfdGraph fmo2 fme2) = dfdg2
(DfdGraph fmo3 fme3) = dfdg3
leafs2 = findLeafs dfdg2 (i1+2) i2
(keysFM fmo2) []
leafs3 = findLeafs dfdg3 (i2+1) i3
(keysFM fmo3) []
zippedNodes = zipOperandNodes leafs2
leafs3 nmi []
(i4,dfdg4, nm4) = addJoinNodes dfd3 (i3+1)
createStack zippedNodes
dfeNodesEdgesToGraphBr dgrphs i nMap [cstl, cst2, cst3, cst4]
= (i5,dfdg5,nm5)
vhere (il1,dfdgl,nml) = dfeNodesEdgesToGraph dgrphs i
nMap (snd cstl)

(i2,dfdg2,nm2)

(i3,dfdg3,nm3)

128 9. Generating Data Flow Graphs

stmtl = (last-snd) csti
dfd2 = conditionToiNodeEdges dfdgi (ii+1)
(head $ fst cst2) stmtl
stmt2 = (head-snd) cst2
(i2,dfdg2,nm2) = dfeNodesEdgesToGraph dfd2
(i1+2) nml (snd cst2)
(i3,dfdg3,nm3) = dfeNodesEdgesToGraph dfdg2
(i2+1) nml (snd cst3)
stmt3 = (head-snd) cst3
dfd3 = conditionTooNodeEdges dfdg3 (ii+2) (i2+1)
(head $ fst cst2) stmt2 stmt3
(DfdGraph fmo2 fme2) = dfdg2
(DfdGraph fmo3 fme3) = dfdg3
leafs2 = findLeafs dfdg2 (i1+2) i2
(keysFM fmo2) []
leafs3 = findLeafs dfdg3 (i2+1) i3
(keysFM fmo3) []
zippedNodes = zipOperandNodes leafs2
leafs3 nm1 (]
addJoinNodes dfd3 (i3+1)
createStack zippedNodes
dfeNodesEdgesToGraph dfdg4 i4
nm4 (snd cst4)

(i4,dfdg4, nm4)

(i5,dfdg5, nm5)

As we saw in dfeNodesEdgesToGraph, the probable list of nodes for one instruc-
tion is generated in one iteration. dfeToNodes converts all the operands and operators
of an instruction to nodes either as OperandNodes or OperatorNodes. It divides the
nodes as input, operator and output nodes. The input nodes are divided so that they
can be checked for the edges that may come from the previous nodes. For output
nodes, no such verification is necessary and they can be added in the DFG directly.
If the output data is AccQ, we create two more output nodes of Acc and § as they
may be referenced in the future instructions.

The input and operator nodes created in one iteration will have the same Int and
the output nodes will have Int+1 as as a part of their IDs. Output nodes get Int+1

9. Generating Data Flow Graphs 129

as they may be the input nodes of the next instruction.

dfeToNodes:: Stmt + Int -+ ([OperandNode],
(OperatorNode]l, [OperandNodel)
dfeToNodes (4ssign (sr, UnaryOperation (tc,ex))) i =
([(ExzpressionNode ex i)], [(Unary tc i)], [srnd])
vhere srnd = conv2Expr sr (i+1)
dfeToNodes (4ssign (sr, BinaryOperation (exl, op, ex2))) i =
if (sr = SC Accf})) then
([(EzpressionNode exl i), (ExpressionNode ex2 i)],
[(Binary op i), (Unary Upperl6 i), (Unary Lowerl6 i)],
[srnd , (ExpressionNode (Variable Acc) (i+1)),
(EzpressionNode (Variable Q) (i+1))])
else
([(EzpressionNode exl i), (ExpressionNode ex2 i)],
[(Binary op 1)1, [srnd])
vhere srnd = conv2Expr sr (i+1)

Like the probable nodes for one instruction, we also create the probable edge
list for that instruction. dfeToEdgePairs creates all the probable edge pairs of an
instruction in the DFD. Later we will remove the redundant edges from these lists by

checking the previous references of the input nodes.

dfeToEdgePairs:: Stmt -+ Int + ([InEdges], [OutEdges])
dfeToEdgePairs (4ssign (sr, UnaryOperation (tc,ex))) i=
([(EzpressionNode ex i, [(Unary tc 1)1)],
[(Unary tc i, OneEdge srnd)])
vhere srnd = conv2Expr sr (i+1)
dfeToEdgePairs (Assign (sr, BinaryOperation (exl, op, ex2))) i =
if (sr = SC Accf) then
([(EzpressionNode ex1l i, [(Binary op i)]),
(EzpressionNode ex2 i, [(Binary op i)]),
(srnd, [(Unary Upper16 i), (Unary Loweri6 i)])],
[(Binary op i, OneEdge srnd), (Unary Upperl6 i,

130 9. Generating Data Flow Graphs

OneEdge (ExpressionNode (Variable Acc) (i+1))),
(Unary Lowerl6 i, OneEdge (EzxpresstionNode
(Variable Q) (i+1)))1)

else ([(EzpressionNode exl i, [(Binary op i)1),
(ExpressionNode ex2 i, [(Binary op i)1)],
[(Binary op i, OneEdge srnd)])

vhere srnd = conv2Expr sr (i+1)

Some input nodes from one instruction can’t be added as they are the reference
of the previous nodes. From a list of input nodes, findAppNodes divides the input
nodes into two groups: one contains nodes which do not have previous occurrences

and the other contains nodes paired with their previous node occurrence.

findAppNodes:: NodeMap + [OperandNode] -
([OperandNode] , [(OperandNode, OperandNode)]) -
([OperandNodel , [(OperandNode, OperandNode)])
findAppNodes nMap [] (opndss, ndopnds) = (opndss, ndopnds)
findAppNodes nMap (opnd@(EzpressionNode e ci):opnds)
(opndss, ndopnds) = findAppNodes nMap opnds rest
vhere rest = if prevNode # testNode then
(opndss, [(prevNode, opnd)]++ndopnds)
else (opndss++[opnd], ndopnds)
prevNode = lookupEntry nMap e

testNode = EzpressionNode e 0

Here we find the appropriate InEdges that have to be added in the DFG. For
each instruction, there mayvbe some of the input nodes which are references of the
previous nodes (we have found them in findAppNodes). So we have to remove some
of the probable input edges to the OperatorNode and add new input edges to the
OperatorNode fromthe previous references of those OperandNodes.

addAppEdges:: [InEdges] -+ DfdGraph -+
[(OperandNode, OperandNode)] - DfdGraph
addAppEdges ines (DfdGraph fmo fme) [] = (DfdGraph nfmo fme)

9. Generating Data Flow Graphs 131

vhere nfmo = addListToFM fmo ines
addAppEdges iess (DfdGraph fmo fme) ((nd, opnd):ndopnds) =
addAppEdges newndLst (DfdGraph nfmo fme) ndopnds
vhere ndst = find (Ax -+ fst x = opnd) iess
newndLst = if ndst # Nothing
then deleteBy (Ax y- y = x)
(fromJust ndst) iess
else iess
nfmo = addToFM_C (Ax y = x++y) fmo
nd (snd $ fromJust ndst)

conditionToiNodeEdges creates the ”Condition” node in the branching struc-
ture code and adds the incoming edges to that node. The incoming edges to the
”Condition” node comes from the output nodes of the last instruction of a First
Common (fc) segment. It gets the last instruction of the fc segment and adds edges
to the ”Condition” node from the output nodes of that instruction. In case of the
MDX instruction (one special branching instruction), it also adds the ”Sign” nodes
which are used as input nodes to the ”Condition” node (addSignNodes).

ciNodeToDfdGraph acts as a helping function of conditionToiNodeEdges and
adds all the edges to the ”Condition” node in the DFG.

conditionToiNodeEdges :: DfdGraph + Int -
ConditionStmt -+ Stmt -+ DfdGraph
conditionToiNodeEdges dfg ci cf stm = dfgl :
wvhere cnd = condToNodes cf ci

nodes = dfeToNodes stm (ci-2)

outnodes = thrd3 nodes

outnode@(EzpresstonNode bel oi) = head outnodes

innode = fromJust $ find (AxQ(EzpressionNode be i)

-+ be = bel) (fst3 nodes)
addSignNodes dfg cnd innode outnode
ciNodeToDfdGraph dfg0 cnd outnodes

dfg0
dfgl

ciNodeToDfdGraph :: DfdGraph -+ OperatorNode -

132 9. Generating Data Flow Graphs

[OperandNode] -+ DfdGraph
ciNodeToDfdGraph dfg cnd [] = dfg
ciNodeToDfdGraph dfgQ@(DfdGraph fmo fme) optr (opnd:opnds) =
ciNodeToDfdGraph (DfdGraph nfmo fme) optr opnds
vhere nfmo = addToFM_C (Ax y -+ x++y) fmo opnd [optr]

addSignNodes creates two special ”Sign” nodes for the MDX branching instruc-
tion which contains the sign of two values (before and after MDX instruction) of the
specified index register and also the OperatorNodes for those ”Sign” nodes. It also
adds those nodes and edges from them to the ”Condition” Node in the DFG. In case
of other branching instructions, it does nothing.

addSignNodes:: DfdGraph -+ OperatorNode -+ UOperandNode
-+ OperandNode -+ DfdGraph
addSignNodes dfg@(DfdGraph fmo fme) cnd@(ConditionVal
ceQ(BrCondition e cop be bt) i)
opnd1@(EzpressionNode bel@(VariableX t1) il)
opnd2Q(EzpressionNode be20(VariableX t2) i2) =
if bt = MDX then (DfdGraph nfmo nfme)

else dfg
where signN1 = Unary Sign (i1+2)
signN2 = Unary Sign (i2+2)
opndll = EzpressionNode (SignBit t1) 1
opnd12 = EzpressionNode (SignBit t2) 2

nfmo = addListToFM_C (Ax y =+ x++y) fmo
[(opnd1, [signN1]), (opnd2, [signN2]),
(opndi1, [end]), (opnd12, [cnd])]
nfme = addListToFM fme ((signN1, OneEdge opndil),
(signN2, OneEdge opndi2)]

conditionTooNodeEdges adds all the edges from the ”Condition” node to the
branches in the DFG. It also adds different edge labels depending on the branch
condition of that branch. coNodeToDfdGraph is used to add those edges.

conditionTooNodeEdges :: DfdGraph -+ Int -+ Int -

9. Generating Data Flow Graphs

133

ConditionStmt + Stmt -+ Stmt -+ DfdGraph

conditionTooNodeEdges dfgQ@(DfdGraph fmo fme) dil di2

coNodeToDfdGraph ::

vhere

cf@(Check (cde,cd)) stml stm2 = dfg2

cnd = condToNodes cf (dii-1)

innodel = head-fst3 $ dfeToNodes stml dil

innode2 = head-fst3 $ dfeToNodes stm2 di2

oed = TwoEdge (cd,innodel) ((if cd = Tr
then Fl else I7),innode2)

dfg2 = coNodeToDfdGraph dfg cnd oed

DfdGraph -+ OperatorNode
-+ OEdge -+ DfdGraph

coNodeToDfdGraph dfgl@(DfdGraph fmo fme) optr ies

= DfdGraph fmo (addToFM fme optr ies)

findLeafs finds all the leaf nodes in one segment of DFG. By leaf nodes, we mean

those nodes which do not have any outgoing edges.

findLeafs uses isLeaf to find whether a node is a leaf or not. isLeaf checks
the Int field of the OperandNode with the segment Int boundaries to find whether it
is a node of that segment. The nodes of the final instruction of the segment labeled

as StateComp (i.e. Ace, §, Acc) which do not have any outgoing edges will be leaf
nodes. All other nodes of that segment (except the StateComp labeled nodes) with

no outgoing edges will also be leaf nodes.

findLeafs

:: DfdGraph - Int » Int + [OperandNode]

-+ [OperandNode] -+ [OperandNodel

findLeafs dfgl si fi [] lopnds = lopnds
findLeafs dfgl si fi (opnd:opnds) lopnds
= findLeafs dfgl si fi opnds

isLeaf

$ if (isLeaf opnd dfgl si fi)
then (lopnds++[opnd])
else lopnds

:: OperandNode + DfdGraph -+ Int -+ Int -+ Bool

134 9. Generating Data Flow Graphs

isLeaf opndQ(EzpressionNode e ci) (DfdGraph fmo fme) si fi
if (ci < si) v (ci > £i)
then False
else case ¢ of
(Variable _) -+ (ci = fi) A
((fromJust $ lookupFM fmo opnd)
otherwise + ((fromJust $ lookupFM fmo opnd) = [])

1

After finding the leaf nodes for each code segments, zipOperandNodes makes a
list of pairs among those nodes where a pair contains similar nodes from two different
segments. By similar OperandNodes, we mean those nodes which have a similar data
label associated with them. For one OperandNode, if it can not find any similar node
in the other branch then it looks up the NodeMap to find another node entry of that
label. That node will be from the fc (First Common) segment as this NodeMap will
only contain the NodeIds from the fc segment.

zipOperandNodes :: [OperandNode] -+ [OperandNode]
-+ NodeMap - [(OperandNode, OperandNode)]
-+ [(OperandNode, OperandNode)]
zipOperandNodes [] [] nMap opndpairs = opndpairs
zipOperandNodes (opnd1@(ExpressionNode el cil):opnds1)
opnds2 nMap opndpairs '
= zipCperandNodes opndsl newopnds2
nMap $ if opnd2 # Nothing
then opndpairs ++ [(opndl, fromJust $ opnd2)]
else opndpairs ++ [(opndl, elseopnd2)]
vhere opnd2 = find (A(EzpressionNode e2 ci2)
+ el = e2) opnds2

newopnds2 = if opnd2 # Nothing
then delete (fromJust $ opnd2)
opnds2
else opnds2
elseopnd2 = lookupEntry nMap el

zipOperandNodes [] (opnd2@(EzpressionNode e2 ci2):opnds2)

9. Generating Data Flow Graphs 135

nMap opndpairs =
zipOperandNodes [] opnds2 nMap
(opndpairs ++ [(newopndil, opnd2)])
vhere newopndl = lookupEntry nMap e2

addJoinNodes is a special function to add "Join” nodes between the similar
OperandNodes in the two branches. For each pair of OperandNodes, it creates a
" Join” node that includes the two Int field in the OperandNodes. In this way, we can
distinguish among different ” Join” nodes. It also creates edges from the OperandNode
pair to the ”Join” node and a new data node which has an incoming edge from the

” Join” node.

addJoinNodes :: DfdGraph =+ Int -+ NodeMap -+ [(OperandNode,OperandNode)]
-+ (Int,DfdGraph, NodeMap)
addJoinNodes dfgl i nMapsc [] = (i, dfgl, nMapsc)
addJoinNodes dfgl@(DfdGraph fmo fme) i nMapsc
((opndi1@(ExpressionNode el cil),
opnd2@(EzpressionNode e2 ci2)):opndpairs)
= addJoinNodes (DfdGraph nfmo nfme) (i+1)
newnMapsc opndpairs
vhere newlJoin = Join cil ci2
nfmo = addListToFM fmo [(opndl, [newJoin]),
(opnd2, [newJoin])]
newopndl = ExpressionNode el i ‘
nfme = addToFM fme newJoin (OneEdge newopndl)
newnMapsc = addEntry nMapsc (el, newopndl)

9.5 Garbage Collection

Garbage means unwanted or useless material. By garbage collection we mean to
remove those unused materials from the final output. When generating Data Flow
Graph (DFG), for many instructions we have to generate some data and operator
nodes that might be used by other nodes of the following instructions. However after
the DFG is generated some of them might not be used at all. We may hence have

136 9. Generating Data Flow Graphs

some nodes that are not used in the code by other operations. Not all of the unused
data nodes are garbage. The output data nodes of the last instruction are not used
in the current code segment but they may still be useful in the next one. That is
why we can declare a node Garbage as the node which is not the latest of its kind
(i.e. after this node there is at least one occurrence of this data as output of other
instructions).

In this module we garbage collect all the nodes from a DFG which might have
redundant (garbage) data nodes.

module GarbageCollect
(markNodes, garbageCollect0fDfdGraph)

vhere

import Dfg

import Exp (BasicEzp (..))

import Stack

import Data.FiniteMap (keysFM, addListToFM, addToFM, delFromFM,

lookupFM)
import Data.Maybe (fromJust)

The strategy to clean the DFG is as follows: We use UsedNode data structure
with two finitemaps (one for operand nodes and the other for operator nodes) to
determine whether a node is used or. not. First we mark all the operand nodes as
used or unused by taking a look at its successor list. We then use the finitemap for
the operand nodes in the UsedNode to mark the unused operators. After marking all
the nodes, we just remove them from the DFG data structure if they are unused and
also not the latest of their type.

markNodes marks all the nodes in the DFG with their UseType. As we mentioned
earlier, it first marks the OperandNodes using the markOpnds function and then the
OperatorNodes with the markOptrs function.

When marking an OperandNode as Unused, we have to check three conditions:
(1) Whether its successor list is empty (2) It is not a part of the last instruction and
(3) It is not the latest value of its kind. retUseType verifies those conditions and
returns the UseType for each OperandNode. By looking at the integer value in the

9. Generating Data Flow Graphs ' 137

OperandNode and its successor list from the finitemap of DfdGraph, we can determine
the first two conditions. NodeMap in the retUseType is a mapping of a data value
to its most recent NodeId. By searching the NodeMap, we can determine the last
condition and then mark the OperandNode with its UseType.

markNodes:: DfdGraph - Int -+ UsedNode + NodeMap -+ UsedNode
markNodes dfgl@(DfdGraph fmon fmoe) i (UsedNode fmoun fmoue) nMap =
(UsedNode fmNun fmNue)
where opnds

keysFM fmon

optrs = keysFM fmoe

fmNun = addListToFM fmoun $ markOpnds
dfgl i nMap opnds []

fmNue = addListToFM fmoue $ markOptrs

dfgl (UsedNode fmNun fmoue) optrs []

markOpnds :: DfdGraph -+ Int -+ NodeMap -+ [OperandNode]
-+ [(OperandNode, UseType)] - [(OperandNode, UseType)]
markOpnds dfgl i nMap [] opus = opus
markOpnds dfgl i nMap (opnd:opnds) opus =
markOpnds dfgl i nMap opnds
(opus++[(opnd,uType)])
vhere uType = retUseType opnd i nMap dfgl

retUseType :: OperandNode - Int -+ NodeMap
-+ DfdGraph + UseType

retUseType opnd@(EzpressionNode e ci) i nMap

(DfdGraph fmon fmoe)
= case ¢ of
(Variable) + if (ci # i) A
((fromJust $ lookupFM fmon opnd) = [])
then if boolUse then Used
else Unused
else Used

138 9. Generating Data Flow Graphs

otherwise -+ Used
vhere boolUse = (lookupEntry nMap e = opnd)

After marking the OperandNodes, we start marking the OperatorNode with
markOptrs. Without loss of generality, we can safely assume that all the
OperatorNodes (except the Unary node) are used in the DFG. So we only check
the Unary OperatorNodes to determine their UseType. One advantage of the Unary
nodes are that the OEdge from them will always be OneEdge (i.e. only one edge comes
out from those nodes). So we check the UseType of the successor OperandNode. If
its used then the UseType of the OperatorNode is Used otherwise opposite.

markOptrs :: DfdGraph - UsedNode + [OperatorNodel
-+ [(OperatorNode, UseType)] -+ [(OperatorNode, UseType)]
markOptrs dfgl usedl [] optus = optus
markOptrs dfgl@(DfdGraph fmon fmoe)
used1@(UsedNode fmoun fmoue)
(optr@(Unary tc i):optrs) optus =
markOptrs dfgl usedl optrs (optus++[(optr,uType)])
vhere opnd = if (lookupFM fmoe optr = Nothing)
then error "should not happen"
else fromJust $ lookupFM fmoe optr
on = case opnd of
(OneEdge onl) - onl
_ -+ EzpressionNode (Constant 0) O
uType = if on # (ExzpressionNode (Constant 0) 0)
A ((fromJust $ lookupFM fmoun on) = Unused)
then Unused '
else Used
markOptrs dfgl usedl (optr:optrs) optus =
markOptrs dfgl usedl optrs (optus++[(optr,Used)])

After marking all the nodes with their UseType in UsedNode, we garbage collect
the nodes in the DfdGraph.

garbageCollect0fDfdGraph is the main function to remove the garbage
nodes from the DFG. First it removes the garbage OperandNodes with

9. Generating Data Flow Graphs 139

garbageCollect0fOpnds and then removes the garbage OperatorNodes with
garbageCollect0f0ptrs to give the final garbage collected Data Flow Graph.

garbageCollect0fDfdGraph :: DfdGraph -+ UsedNode -+ DfdGraph
garbageCollect0fDfdGraph dfd1Q(DfdGraph fmo fme)
used1@(UsedNode fmuo fmue)
= (DfdGraph fmNn fmNe)
vhere opnds = keysFM fmuo
optrs = keysFM fmue
(DfdGraph fmNn fme)

garbageCollect0fOpnds dfdi
usedl opnds
garbageCollectOf0Optrs dfdi
usedl optrs

(DfdGraph fmo fmNe)

In garbageCollect0£f0pnds, it first finds the UseType of each OperandNode. If it
is Unused then it removes the OperandNode from the finitemap otherwise it updates
the successor OperatorNode list by garbageCollectOfLst.

garbageCollect0f0Opnds :: DfdGraph + UsedNode -+ [OperandNode]l - DfdGraph
garbageCollect0fOpnds (DfdGraph fmo fme) usedil [] = (DfdGraph fmo fme)
garbageCollect0fOpnds (DfdGraph fmo fme)
used1@(UsedNode fmuo fmue) (opnd:opnds)
= garbageCollect0fOpnds (DfdGraph fmNo2 fme)
(UsedNode fmuo fmue) opnds
vhere optrLst = fromJust $ lookupFM fmo opnd
updatedLst = garbageCollectOfLst optrLst usedl []

fmNoO = delFromFM fmo opnd
fmNol = addToFM fmNoO opnd updatedLst
fmNo2 = if ((fromJust $ lookupFM fmuo opnd) = Unused)

then delFromFM fmo opnd
else fmNol

garbageCollectOfLst:: [OperatorNode] - UsedNode

140 9. Generating Data Flow Graphs

-+ [OperatorNode] -+ [OperatorNode]
garbageCollectOfLst [] usedl optrss = optrss
garbageCollectOfLst (optr:optrs) used1@(UsedNode fmuo fmue) optrss =
garbageCollectOfLst optrs usedl
$ if (fromJust $ lookupFM fmue optr) = Unused
then optrss
else optrss++[optr]

In garbageCollect0f0ptrs, it just removes the OperatorNodes with Unused
UseType.

garbageCollect0f0ptrs :: DfdGraph -+ UsedNode -+ [OperatorNode]
+ DfdGraph
garbageCollect0fOptrs dfdl uNode [] = dfdi
garbageCollect0fOptrs (DfdGraph fmo fme) (UsedNode fmoe fmue)
(optr:optrs)
= garbageCollect0fOptrs (DfdGraph fmo fmNe)
(UsedNode fmoe fmue)
optrs
vhere fmNe = if ((fromJust $ lookupFM fmue optr) = Unused)
then delFromFM fme optr
else fme

9.6 DFG Examples

The examples cited here are for the segments taken from the Boiler Pressure Control
(BPC) code of OPG.

9.6.1 SC Example (Before Garbage Collection)

This SC segment is adapted from Section 2.3.1:

OADDR REL 0BJ. S.NO. LABEL OPCD FT OPRNDS
35B6 0 C129 0677 TRBFB LD 1 41

9. Generating Data Flow Graphs

141

35B7
35B8
35B9
35BA
35BB
35BC
35BD

The Data Flow Graph (DFG) before garbage collection is in Figure 9.2:

9.6.2 SC Example (After Garbage Collection)

O O O O O O O

A12A
1082
912B
A12C
108F
A92D
D12E

0678
0679
0680
0681
0682
0683
0684

SLT
S
M
SLT
D
STO

1
1

42

2
43
44
15
45
46

During garbage collection, we remove all the redundant entries from the DFG. In

Figure 9.3, we present the same DFG in the Subsection 9.6.1 after garbage collection.

The DFG gives us a clear indication of data dependency inside the function which is

not easily visible in the DFEs.

9.6.3 GSC Example

This following is the GSC segment from Section 8.6.2:

35C4
35C5

35C6
35C7

35C8 0

35C9
35CA
35CB
35CC
35CD

o O O O O

73FF
700F

1010
D12F
7012

0000
6203
6300
4810
7301

0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707

TRBFD

DI2F3

MDX
MDX

SLA
STO
MDX

DC

LDX
LDX
BSC
MDX

3

-1

TRBFE

16
47

TROUT

O W o

142 9. Generating Data Flow Graphs
35CE 0 1001 0708 SLA 1
35CF 0 72FF 0709 MDX 2 -1
35D0 O 70FB 0710 MDX *=5
35D1 00 66002099 0711 LDX L2 BPCD
35D3 00 4C8035C9 0712 BSC I DI2F3

0713

0714

0715
35D5 0 C209 0716 TRBFE LD 29
35D6 0 911B 0717 S 127
35D7 0 A130 0718 M 148
35D8 0 1005 0719 SLA 5
35D9 O D12F 0720 ST0O 1 47
35DA 0 7000 0721 MDX TROUT

0722

0723

0724

0725
35DB O C12E 0726 TROUT LD 1 46
35DC 0 812F 0727 A 147
35DD 0 A132 0728 M 1 60
35DE 0 1089 0729 SLT 9
35DF 0 D123 0730 ST0O 1 35

Figure 9.4 shows the DFG for this GSC segment. Data dependencies among the
segments in the GSC can be identified from this DFG.

9. Generating Data Flow Graphs 143

Figure 9.2: Data Flow Graph of the Segment 0x35B6-0x35BD (Before Garbage Col-
lection)

144 9. Generating Data Flow Graphs

Figure 9.3: Data Flow Graph of the Segment 0x35B6-0x35BD (After Garbage Col-
lection)

9. Generating Data Flow Graphs 145

Figure 9.4: Data Flow Graph of the Segment 0x35C4-0x35DF

Chapter 10

Solving Data Flow Equations

In this chapter, we present the method for solving the Data Flow Equations (DFE)
which are generated by the symbolic interpretation of assembler programs. Later, we
include some examples of solved DFEs for different patterns of program segments.

10.1 Introduction

In general, to solve an equation for a given variable, we need to ”undo” whatever has
been done to the variable [Wic05]. In our Data Flow Equations (DFEs) generated
from the assembler code, we get a sequential set of statements which represents the
computation done in the given code. As we mentioned earlier, a statement assigns
a symbolic value (represented as an expression of symbolic variables) to a variable.
Each statement is a DFE which is comprised of some variables and an operator. It
shows the flow of data to and from the operator that is which variables are taken
as input in that operator and which variable is given as output. In solving DFEs
symbolically, we follow two steps to find the solved flow equations for each DFE:

e Evaluate the variables on the right hand side (expression part) of the statement.
By evaluation of variables, we mean to find a symbolic value (if any) represented
as an expression which has been assigned to that variable by the previous DFEs.

e Substitute that symbolic value in place of the variable with the operator of the

statement in place.

146

10. Solving Data Flow Equations 147

We can make this discussion more precise by citing a simple example. Let us
consider the ordered equations A = F(X,Y); B = G(A, X, Z). The first equation has
the variable on the right hand side which does not have any previous values assigned.
So first equation is automatically solved. The second equation has A, X, Z as input,
but since A is already assigned a value by the previous equation, it can be substituted.
So the second equation becomes B = G(F(X,Y), X, Z). Consequently the solved set
of equations will be A = F(X,Y); B=G(F(X,Y), X, Z).

Thus we will find a solved expression for the output variable of a statement with
all its input variables evaluated and replaced by the symbolic value.

After solving each of the DFEs, we start to find the system of equations that
summarizes the computation done in the code. The system of equations shows the
input and output relationship of the assembler code. So at this stage, we determine
the inputs and outputs of the code and find those solved equations where the outputs
are represented as the function of inputs.

We can again consider the previous example to show how to find the inputs and
outputs of a set of equations. Initially, the empty code sequence has neither input nor
output. By proceeding inductively, the first equation tells us that X, Y are part of the
“input”, and A the output. The second equation has A, X, Z as input, but since A is
already known to be an output of the system, it can be eliminated. More precisely,
the inputs of equation n are the free variables of the right-hand side of equation n,
minus the outputs from stage n — 1, union the inputs from stage n — 1. The output
variables at stage n is the output of stage n — 1 union the variable on the left-hand
side of stage n. Working this through, the above has X,Y, Z as inputs and A4, B as
outputs.

10.2 Finding System of Equations

10.2.1 Solving Data Flow Equations

In this Module, from a list of symbolic interpretations of some instructions, we find
functional expressions of them. By function expression, we mean to represent the
outputs of the code as functions of the inputs symbolically. The functions in this
module are used to evaluate the expressions, find inputs and outputs in a code segment

148 10. Solving Data Flow Equations

and give the input output relationship (Data Flow Equations in functional expression
form) of the code segment.

module SolveEzpr (Input, Output, dividePathCondSym)

vhere

import MyPrelude (fst3, snd3, thrd3)

import MyGraph (MyGraph, MyNode)

import Symbolic (StateComp (..), Operator (..), TypeCast (..))
import OpCode (Tag(..))

import Stack

import FindEzpr (findAnnt0fGraph)

import Ezp
import Data.List (nub, delete)

Next we define some useful types for the functions in this module.

We want to create a way to look up the definition of the current value of a
StateRef. It depends on the path of evaluation taken from the start of the CFG.
We keep the history of that path in a Stack. The result is a pair consisting of a
ConditionStmt that expresses the path condition and an actual Exp.

type ConditionalValue = (ConditionStmt, Ezpression)

instance Stack StateRef ConditionalValue where

createStack (SC a) = (Check (NoCondition,NC),

Ezpression $ Atomic $ Variable a)
createStack (SCX a) = (Check (NoCondition,NC),

Ezpression $ Atomic $ VariableX a)
createStack (Mem a) = (Check (NoCondition,NC),

Expression $ Atomic $ MemoryConstant a)
addEntry s (k,v) = Ad - if k=d then v else s d
addEntries s 1 = foldl addEntry s 1
lookupEntry s k = s k

10. Solving Data Flow Equations 149

CondAndStmts gives a name to the pair of conditions and the list of statements
in one path of the control flow graph of an assembler code.

The second type EvalHistory is an evaluation environment which contains the
evaluation of the statements with the conditions to reach that statement in a path of
statements . This evaluation depends on the previous statements in the path of the

control flow graph.

type CondAndStmts = ([ConditionStmt], [Stmt])
type EvalHistory = StateRef + ConditionalValue

The types for inputs and outputs are also declared as a list of state references.

type Input = [StateRef]
type Output = [StateRef]

Now, we can find all the annotations of the execution paths in a Graph. We use
some other functions from modules like £indExpr and Stack to evaluate the annota-
tions of paths and find the symbolic interpretation and condition (on which the path
will be executed) of all the paths in the graph to find the functional representation
of the code. k

Given a start node and a graph, solveAnntOfGraph finds path conditions and
symbolic interpretations of the instructions of all the paths in the graph. First it an-
notates all the edges in the Graph using doAnnotation function of MyGraph module.
Then it finds all the paths in the graph. As we said earlier, according to number
of paths and their structures, we can divide the codes into Straight-line Code (SC),
Generalized Straight-line Code (GSC) and looping code (LC).

Straight line codes mean those codes that have a straight line control flow. Model-
ing the control flow and finding the semantic context of straight line codes are easier.
As there are no branch or jump in these codes, so the path condition is always TRUE.

If we go through the control flow graph then we can find one execution path
only. For that path, we take each instruction from the starting node and find the
statement data structure for it using the abstract data type defined in Chapter 8.
Then we evaluate each statement sequentially using a stack environment and find the

appropriate expression for each state reference

150 10. Solving Data Flow Equations

For SC, solveAnntOfGraph gets the list of edge annotations using
annotationOfPaths and transforms them to statements by transformToStmts.
Then it evaluates them by evalofStmts.

GSC (or branching codes) can be considered as a split and join structure. The
node where the two paths of GSC splits is called the “split” node and the node (if
there is any) where two paths again join is called the “join” node. We divide the two
paths into different segments using the “split” and “join” nodes and evaluate them
separately to find the functional representation of the whole code.

For GSC, the evaluation process is a little bit different. solveAnnt0fGraph uses
other functions like dividePathAnt, mergePathCond and evalOfPaths for the eval-
uation. We leave the solving of looping code DFEs for future work.

getStmts and getLastStack are two small helping functions to split the state-
ment list and the final evaluation environment from the output of evaluation process.

solveAnnt0fGraph :: [[([ConditionStimt], [Simt])]]
=+ (ConditionStmt, [Recur_Stmt] ,EvalHistory)
solveAnntOfGraph cstmts
= if (length $ concat cstmts) = 1
then (Check(NoCondition,NC),(init-showStmts) csList,
snd $ head csList)
else (fst cfList, getStmts cfList, getLastStack cfList)
vhere csList = (evalOfStmts createStack)
([Check(NoCondition,NC)],(concat $ map snd
$ concat cstmts))
cfList = evalOfPaths $ concat cstmts

getStmts :: (ConditionStmt,[[(Recur_Stmt,EvalHistory)]l])
-+ [Recur_Stmt]
getStmts cstmts = concatMap (init - showStmts) $ snd cstmts

getLastStack :: (ConditionStmt, [[(Recur_Stmt,EvalHistory)]])
+ EvalHistory
getLastStack cstmts = snd $§ head-head $ snd cstmts

10. Solving Data Flow Equations 151

evalOfPaths evaluates all the segments (fc, pdl, pd2, sc) in two paths of the
GSC and finds the conditions of the paths with evaluated statements in those paths.
It completely depends on the ordering of the segments generated in dividePathAnt
and evaluates the segments according to the ordering. For example, if there is any
Second Common (sc) segment between those two paths, then the evaluation of the
statements in sc will depend on the conditional values generated from pd1l and pd2.
Similarly the evaluation of statements in pdl and pd2 depends on the values from fc

(First Common) segment.

evalOfPaths :: [([ConditionSimt], [Stmt])]
-+ (ConditionStmt, [[(Recur_Stmt,EvalHistory)1])
evalOfPaths [([Check(NoCondition, NC)],stl),cst2,cst3]
= (head (fst cst3), [sst3,sst2,sst1])
wvhere sd = snd-head

sstl = evalOfStmts createStack
([Check(NoCondition,NC)] ,stl)

sst2 = evalOfStmts (sd sstl) cst2

sst3 = evalOfStmts (sd sstl) cst3

evalOfPaths [cst4,cst5, ([Check(NoCondition, NC)],st6)]
= (Check (NoCondition, NC),[sst6,sst5,sst4])
vhere sd = snd-head

sst4 = evalOfStmts createStack cstd
sstb = evalOfStmts createStack cstb
sst6 = evalOfStmtsl (sd sstd4) (sd sstb)

([Check(NoCondition,NC)],st6)
evalOfPaths [cst7,cst8,cst9,csti0]
= (head (fst cst10), [sst10,sst9,sst8,sst7])
vhere sd = snd-head

sst7 = evalOfStmts createStack cst7
sst8 = eval0fStmts (sd sst7) cst8
sst9 = evalOfStmts (sd sst7) cst9

sst10 = eval0fStmtsi (sd sst8) (sd sst9) cstlo

152 10. Solving Data Flow Equations

After performing the transformation of all the low level functions in the instruc-
tions of the code into statements, our main task is to evaluate them to find the
functional expression of the outputs that is to represent the outputs as equations of
the inputs of that code.

evalOfStmts evaluates a list of statements of a Straight-line Code (SC) segment.
It takes an environment and CondAndStmts and gives us the evaluated statement and
the EvalHistory after the evaluation of each statement in the list.

evalOfStmts1 also does the same thing but it works specially for the straight line
code after the “join” in the Generalized Straight-line Code (GSC). It also takes two
evaluation environments as arguments from the two different paths in the GSC code.

At the starting, Stmt is initialized as a fictitious value XRO = 0 which works as
the bottom of the evaluation environment. This is done intentionally so that we can
determine the bottom easily as no other instructions can generate XR0 = 0.

evalOfStmts :: EvalHistory -+ CondAndStmis
-+ [(Recur_Stmt,EvalHistory)]
evalOfStmts stk (cf, stmts)
= foldl (interpret (head cf)) [((4ssignt (SCX XRO,
eToE $ Atomic $ Constant 0)),stk)] stmts

evalOfStmtsl :: EwvalHistory -+ EvalHistory -+ CondAndStmis
+ [(Recur_Stmt,EvalHistory)]
evalOfStmtsl stkl stk2 (cf,stmts)
= foldl (interpretl stkl stk2
(head cf)) [((4ssignt (SCX XRO, eToE $ Atomic
$ Constant 0)), createStack)] stmts

This simple helper function separates the evaluated statements for output purpose.

showStmts :: [(Recur_Stmt,EvalHistory)] =+ [Recur_Stmt]
showStmts = map fst

The following functions are used to evaluate the expression and interpret the
statements in symbolic form. As defined earlier, each statement represents one func-
tion of an instruction and right-hand side of a statement is an expression. We use

10. Solving Data Flow Equations 153

EvalHistory (a lookup environment which contains all the previously evaluated ex-
pressions) to find the proper expression.

eval takes an Ezpr for evaluation and looks up in the evaluation environment to
find any previous evaluated entries for that Ezpr and returns that evaluated expres-
sion. We use this function to evaluate expressions for SC segments.

eval :: Ezpr -+ EvalHistory -+ Ezpression
eval exp stk =
case exp of
Atomic (Variable st) -+ snd $ lookupEntry stk (SC st)
Atomic (VariableX st) - snd $ lookupEntry stk (SCX st)
Atomic (MemoryConstant st) -+ snd $ lookupEntry stk (Mem st)
(UnaryOperation (op,ex1)) =
let a = eval (Atomic exl) stk
in Ezpression $ UnaryOperation (op,a)
BinaryOperation (exl,op,ex2) -
let a = eval (Atomic exl) stk
b = eval (Atomic ex2) stk
in Ezpression $ BinaryOperation (a,op,b)

otherwise + (eToE exp)

evall also takes an Ezpr and condition as afgument and returns the evaluated
expression. This is a special function for evaluation and works only for the straight
line code segment after the “join” in the GSC. It takes three evaluation environments
(two for previous two paths in the GSC and one for current code segment after the
join) and returns the evaluated expression using three environments. It also returns
the new evaluation environment with the evaluated Ezpr included in it.

evall :: Egpr + ConditionSimt - EvalHistory -+ EvalHistory
-+ EvalHistory -+ (Ezpression,EvalHistory)
evall exp cf stkl stk2 stk =
case exp of
Atomic (Variable st) - getPropExpr (Atomic $ Variable st)
(SC st) cf stk stkl stk2

154 10. Solving Data Flow Equations

Atomic (VariableX st) - getPropExpr (Atomic $ VariableX st)
(SCX st) cf stk stkl stk2
Atomic (MemoryConstant st) -+ getPropExpr (Atomic
$ MemoryConstant st)
(Mem st) cf stk stkl stk2
UnaryOperation (op,exl) -+
let (a,b) = evall (Atomic exl) cf stkl stk2 stk
in (Ezpression (UnaryOperation (op,a)), b)
BinaryOperation (exl,op,ex2) -
let ex = evall (Atomic exl) cf stkl stk2 stk
a = fst ex
b = evall (Atomic ex2) cf stkl stk2 (snd ex)
in (Ezpression (BinaryOperation (a,op,(fst b))), (snd b))
ConditionalEzp ((cfl,ex1),(cf2,ex2)) -
let ex = evall (Atomic exl) cf stkl stk2 stk
a = fst ex
b = evall (Atomic ex2) cf stkl stk2 (snd ex)
in (Ezpression (ConditionalExp ((cfl,a),(cf2,(fst b)))),
snd b)

otherwise + (eToE exp, stk)

To find the proper expressions for the terms of the statements after the ” join” in
the GSC code is a little bit complex. Each time we get an expression to be evaluated,
we have to look up the current evaluation environment to find an entry for it. If
we can’t find any, we take a look at two previous environments for the different
paths. A conditional expression is formed for the corresponding expression using
the expressions found in those two environments and is also added in the current
evaluation environment.

getPropExpr does this for evall and looks up all the three evaluation environ-
ments to return the proper evaluated form (either conditional or unconditional) of
the expressions and a new evaluation environment with the new Ezpr in it.

getPropExpr :: Expr + StateRef + ConditionStmi -+ EvalHistory -
EvalHistory + EvalHistory - (Exzpression,EvalHistory)

10. Solving Data Flow Equations

155

getPropExpr exp asb cf stk stkl stk2 =
if condCheck (snd $ lookupEntry stk asb)
then (let cft1@(cfi, tf1l) = lookupEntry stkl asb
cft20(cf2, tf2) = lookupEntry stk2 asb
exl = Ezpression $ ConditionalExp (cftl,cft2)
in (if (condCheck tf1) A (condCheck tf2)
then (snd $ lookupEntry stk asb, stk)
else (exl, addEntry stk (asb,(cf,ex1)))))
else (snd $ lookupEntry stk asb, stk)
vhere condCheck e = e = (eToE exp)

So far we have introduced functions to find the evaluation of expressions. Now,

we define functions to interpret the whole statement which may contain several ex-

pressions in it.

interpret interprets each statement in the Stmt list using the eval to evalu-

ate each expression in the statement and returns the new interpreted statement. It

also outputs a new evaluation environment which will be used to interpret the next

statements in the Stmt list. This function is for SC segments.

interpret :: ConditionStmt -+ [(Recur_Stmt,EvalHistory)]
+ Stmt -+ [(Recur_Stmt,EvalHistory)]
interpret cf prev@((_,stck) : _) (4ssign (name,e)) =
let v = eval e stck
in addProperEntry name v cf stck prev

interpret1 does the same as interpret but it works for the straight line segment

after the “join” in the GSC. It takes the evaluation environment for previous two paths

and uses evall to evaluate the expressions.

interpretl :: EwvalHistory -+ EvalHistory -+ ConditionStmt
-+ [(Recur_Stmt,EvalHistory)] -+ Stmt
-+ [(Recur_Stmt,EvalHistory)]
interpretl stkl stk2 cf prev (4ssign(name,e)) =
let stck = snd $ head prev

156 10. Solving Data Flow Equations

v = evall e cf stkl stk2 stck
in addProperEntry name (fst v) cf (snd v) prev

addProperEntry is a helping function for interpret and interpretl. It is only
used to divide the combined Accf) value expression to insert two entries for Acc and §
in both of the evaluation environment and evaluated Stmt list. When the StateRef
to be assigned in the statement is Acc@, we may need distinct Acc and @ from the
combined Acc@ value in the upcoming statements for evaluation. That is why, we
update the evaluation environment and the Stmt list by two new statements of Acc
and @ each time we face Acc@ in the left-hand side of the Stmt.

addProperEntry:: StateRef -+ Expression -+ ConditionSimt
~+ EvalHistory - [(Recur_Stmt,EvalHistory)]
-+ [(Recur_Stmt,EvalHistory)]
addProperEntry name e cf stk prev = case name of
(SC Acc@) -+ (Assignt (name,e),(addEntries stk [(name,
(cf,propExprAQ)), ((SC Acc), (cf,Ezpression
$ UnaryOperation (Upperi6, propExprAQ))),
((sC @, (cf,Expression $ UnaryOperation
(Lower16, propExprAQ)))]1)): prev
-+ (Assignt (name,e), (addEntry stk (name,
(cf, e)))): prev ’
vhere propExprAQ = findProperExpr e stk

In binary operations where the value is to be stored in 4ceg, we face two different
situations. For Shift operations, we normally shift the whole 4ce@ (first argument) by
the amount given in the second argument. But for the operations like multiply etc.
the first argument is always Acc and we store the value in the Accf. findProperExpr
finds the proper expression for the Acce@ in those cases.

findProperExpr :: Expression - EvalHistory -+ Expression
findProperExpr (Ezpression (BinaryOperation(exl,op,ex2))) stck

= Ezpression $ BinaryOperation(exx,op,ex2)
where ex3 = snd $ lookupEntry stck (SC Accq)

10. Solving Data Flow Equations 157

ex4 = snd $ lookupEntry stck (SC Acc)
exx = if op ‘elem‘ [Shl,Shr] then ex3 else ex4
findProperExpr e _ = e

10.2.2 Finding Inputs and Outputs

Next, we define some functions to find the set of inputs and outputs of a list of
statements. Each basic expression (except the constants) on the right-hand side of
interpreted statements can be considered as inputs and all the state references on
the left-hand side of statements as outputs (some exceptions remain for Acc and Q),
given that all duplications are removed.

One important thing to remember is that the statement list from where we find
the inputs and outputs is in the reverse order that is the first statement we face in
the list corresponds to the last instruction of the code.

inputSet uses a recursive function called findInput to find all the inputs from a
list of Stmt and then to remove the duplicates. In each expression of the right-hand
side of the Stmt, findInput recursively finds all the basic expressions (except the
constants) as inputs.

inputSet :: [Recur_Stmt] -+ Input + Input
inputSet [] iset = iset
inputSet ((4ssignt (name,exp)):stmts) iseét

= inputSet stmts ((findInput exp) ++ iset)

findInput :: Ezpression -+ Input
findInput exp = case exp of
Ezpression (Atomic (Constant a)) -+ []
Ezpression (Atomic (MemoryConstant a)) -+ [Mem al
Expression (Atomic (Variable a)) -+ [SC a]
Ezpression (Atomic (VariableX a)) ~+ [SCX a]
Ezpression (UnaryOperation (_,ex1)) -+ findInput ex1
Ezpression (BinaryOperation (exl,_,ex2))
-+ (findInput ex1)
++ (findInput ex2)

158 10. Solving Data Flow Equations

Ezpression (ConditionalExp ((_,ex1),(_,ex2)))
-+ (findInput ex1)
++ (findInput ex2)

The right-hand side of each Stmt will be an output with some exceptions for 4cc,
@ and Accef). One exception is like the following: if the next state reference to be
included in the output list is Acc@ and Acc is already in the output list then we
remove the previous entry of Acc from the output list and include Ace@ and two new
entries of Ace and @ in the list.

appOutPut determines which ones of Acec, § and AceQ should stay in the output
list.

outputSet :: [Recur_Stmt] -+ Output -+ Output
outputSet [] oSet = oSet
outputSet ((4ssignt (name,e)):stmts) oSet = outputSet stmts $
if (appOutput name oSet) then
if name = (SC Accl) A (SC Acc) ‘elem‘ o0Set then
(name: (SC Acc): (SC @) : (delete (SC Acc) oSet))
else (name:oSet)

else oSet

appOutput :: StateRef -+ Output -+ Bool

appOutput name os = case name of
SC Ace) + SC Acc ‘notElem® os vV SC § ‘notElem‘ os
SC Acc = SC Accf] ‘notElem‘ os
SC @ =+ SC AccQ ‘notElem‘ os

<+ True

10.2.3 Finding System of Equations

These functions are used to return the input output relationship from a list of state-
ments and a list of inputs that is they return the Data Flow Equation (DFE)s. By
Data Flow Equation, we mean the representation of outputs in terms of input data

flow.

10. Solving Data Flow Equations 159

For each input that is StateRef, findFstStmt finds the first evaluated expression
of that StateRef from the evaluation environment and returns the interpreted Stmt.

listOfEqns :: [Recur_Simt] -+ EvalHistory -+ Output
- [Recur_Stmt] -+ [Recur_Stmt]
listOfEqns stmts stk [] stmteq = reverse stmteq
listOfEqns stmts stk (os:olist) stmteq
= 1istO0fEqns stmts stk oList
((findFstStmt os stk stmts):stmteq)

findFstStmt :: StateRef -+ EvalHistory + [Recur_Stmt]
-+ Recur_Stmt |
findFstStmt asb stk (st@(4ssignt (name,e)):stmts)
= if (expOfStateRef asb = (snd $ lookupEntry stk asb))
then if asb = name then st
else findFstStmt asb stk stmts
else Assignt (asb, snd $ lookupEntry stk asb)

expO0fStateRef :: StateRef -+ Ezpression

expOfStateRef (SC a) = Expression $ Atomic $ Variadble a
expOfStateRef (SCX a) = Ezpression $ Atomic $ VariableX a
expOfStateRef (Mem a) = Expression $ Atomic $ MemoryConstant a

This function is mainly used to divide the output of findAnntofGraph in the
conditions, execution sequence, inputs, outputs and system of equations (input output
relationship) of the code segment for the graph.

dividePathCondSym :: MyGraph =+ MyNode
-+ (ConditionStmt, [Recur_Stmt] , Input,Output, [Recur_Stmt])
dividePathCondSym mg start = ((fst3 cfStmt),scfStmt,input,
output,sysList)
vhere cfStmt = solveAnntOfGraph $ findAnntOfGraph mg start
scfStmt = reverse $ snd3 cfStmt
stk = thrd3 cfStmt

160 10. Solving Data Flow Equations

output = nub (outputSet scfStmt [])
input = nub (inputSet scfStmt [])
sysList = listOfEqns scfStmt stk output []

10.3 Example

10.3.1 Straight-line Code

The following code segment is a straight-line code already cited in section 2.3.1.

OADDR REL 0OBJ. S.NO. LABEL OPCD FT OPRNDS

35B6 0 C129 0677 TRBFB LD 1 41
35B7 0 A12A 0678 M 1 42
35B8 0 1082 0679 SLT 2
35B9 0 912B 0680 S 1 43
35BA 0 A12C 0681 M 1 44
35BB 0 108F 0682 SLT 15
35BC 0 A92D 0683 D 1 45
35BD 0 D12E 0684 STO 1 46

The symbolic interpretation for this code segment is given below. As this is a
sequential code segment, so the path condition is always TRUE.

PathCondition: True

Instruction Execution:

A = C(XR1 + 41),

AQ = C(XR1 + 41)*C(XR1 + 42),

e give an example of a straight line code and

AQ = ((C(XR1 + 41))*C(XR1 + 42))<<2,

A = (Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43),

10. Solving Data Flow Equations 161

AQ = ((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44),

AQ = (((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15,

A = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))

*C(XR1 + 44))<<15)/C(XR1 + 45),

o
1}

((((Upper16 (((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15)%C(XR1 + 45),

C(XR1 + 46) = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))
-C(XR1 + 43))*C(XR1 + 44))<<15)/C(XR1 + 45)

Different inputs, outputs and system of equations (relation among the inputs and
outputs) of this chunk of code is shown below:

Input: C(XR1 + 41),C(XR1 + 42),C(XR1 + 43),C(XR1 + 44),C(XR1 + 45)
Output: C(XR1 + 46),AQ,A,Q
System of Equations:

C(XR1 + 46) = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))
-C(XR1 + 43))*C(XR1 + 44))<<15)/C(XR1 + 45),

AQ = (((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15,

A = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15)/C(XR1 + 45),

162 10. Solving Data Flow Equations

Q = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15)%C(XR1 + 45)

If we can give symbolic names of the inputs and outputs then the system of
equations will be more clear and easier to understand. Using symbolic names for the

input and output variables, the previous system of equations will be:

Input: C(XR1 + 41) : ERR
C(XR1 + 42) : 1.067
C(XR1 + 43) : PREV_ERR
C(XR1 + 44) : K
C(XR1 + 45) : 5861

OQutput: C(XR1 + 46) : DELX

System of Equations:
DELX = (((Upper16((ERR*1.067)<<2)- PREV_ERR)#*K)<<15) /5861
AQ = (((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)

(((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)%5861

=]
"

-
]

(((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)/5861

These equations definitely identifies the computation done by the code. The block
comments of the functions inside the assembler program which describe the code show
similar equations. These equations can also be used to generate tabular specification
of the functions. In this way, we can proceed to find the specification documents of

the assembly code.

10. Solving Data Flow Equations

163

10.3.2 Generalized Straight-Line Code (GSC):

The modeling of non-sequential branch structure is more complex than sequential

codes. It involves finding that kind of structure from the execution paths of a program

and then finding data flow equations for that structure. While solving these data

flow equations, we have to realize the data dependency in all the segments. This code

segment is the same as in Section 8.6.2.

35C4 0 73FF 0695

35C5

35C6
35C7
35C8

35C9
35CA
35CB
356CC
35CD
35CE
35CF
35D0
35D1
35D3

35D5
35D6
35D7
35D8
35D9

0 700F

0 1010
0 D12F
0 7012

0 0000
0 6203
0 6300
0 4810
0 7301
0 1001
0 72FF
0 70FB

0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710

MDX

TRBFD

DI2F3

00 66002099 0711
00 4C8035C9 0712

0 C209
0 911B
0 A130
0 1005
0 D12F

0713
0714
0715
0716
0717
0718
0719
0720

TRBFE

MDX

SLA
STO
MDX

DC

LDX
LDX
BSC
MDX
SLA
MDX
MDX
LDX
BSC

ZUJE

SLA
STO

3 -

L2

1
TRBFE

16
47 O
TROUT

o w o

(SN

*-5
BPCD
DI2F3

127

48

47

164 10. Solving Data Flow Equations

35DA 0 7000 0721 MDX TROUT

0722

0723

0724

0725
35DB 0 C12E 0726 TROUT LD 1 46
35DC 0 812F 0727 A 1 47
35DD O A132 0728 M 150
35DE 0 1089 0729 SLT 9
35DF 0 D123 0730 ST0 1 35

Inputs, Outputs, Path Condition and Solved system of equations of this segment
of code are shown below. This system of equations seems a little bit complex since
it uses big symbolic names of the variables. If we can use discrete values or small
representative symbolic names of the variables, these equations will be more easier to
understand. Again, these equations can be used to find tabular specification of the
functions which may lead us to find the final specification documents of the assembler

program.

PathCondition: True
Instruction Execution:

Input: 0, C(XR1 + 46),C(XR2 + 9),C(XR1 + 27),
C(XR1 + 48),A,C(XR1 + 50) ,XR3,(-1)

Output: XR3,A,Q,AQ,C(XR1 + 47),C(XR1 + 35)
System of Equations:
XR3 = 0,

A = Upper16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))
*C(XR1 + 48)))<<5((Signl <> Sign2 || XR3 == 0) ==False)

10. Solving Data Flow Equations 165

:(Acc)<<16((Signl <> Sign2 || XR3 == 0) ==True))*C(XR1 + 50))<<9),

Q = Lower16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))
*C(XR1 + 48)))<<5((Signl <> Sign2 || XR3 == 0) ==False)
: (Acc)<<16((Signl <> Sign2 || XR3 == 0) ==True))*C(XR1 + 50))<<9),

AQ = (((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))*C(XR1 + 48)))<<5
((Sign1 <> Sign2 || XR3 == 0) ==False)
: (Acc)<<16((Sign1 <> Sign2 || XR3 == 0) ==True))
*C(XR1 + 50))<<9,

C(XR1 + 47) = (Upperi6(((C(XR2 + 9))-C(XR1 + 27))*C(XR1 + 48)))<<5
((8ignl <> Sign2 || XR3 == 0) ==False)
:(Acc)<<16((Sign1l <> Sign2 || XR3 == 0) ==True),

C(XR1 + 35) = Upper16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))
*C(XR1 + 48)))<<5((Signl <> Sign2 || XR3 == 0) ==False)
:(Acc)<<16((Signl <> Sign2 || XR3 == 0) ==True))
*C(XR1 + 50))<<9)

Chapter 11

Discussion and Future Work

In this chapter, we discuss the contributions we made in the thesis, limitations faced
during the research process and future works that may be done depending on the
works presented in the thesis.

11.1 Contribution

Reverse engineering can be seen as an opposite process of compilation. In compila-
tion, we create lower level representation of the program from higher level. In reverse
engineering, we follow the other way: from the lower level code to high level specifica-
tions. That is why, we try to follow the process of reverse compilation by generating
flow graphs and incorporating symbolic computation techniques in the process to get
different views of the code. We see our main contribution as adapting the tools from
symbolic computation, compiler construction (data flow and control flow graphs) and
denotational semantics to the situation of understanding and reverse-engineering the
semantics of legacy assembler programs. An important contribution of our approach
is that we have made only a few simplifying assumptions, and yet managed to de-
rive mathematical descriptions of subprograms. One of the important simplifying
assumptions is to ignore carry and overflow conditions during instruction execution.
In legacy assemblers, the control flow of the codes is a little bit awkward. Still we can
find a way to represent the control flow using mathematical equations; not by high

level procedural constructs.

166

11. Discussion and Future Work 167

Morris and Filman [MF96], Feldman and Friedman [FF95], Ward [War00] etc.
developed systems to translate assembler codes into a high-level language. In our
process, instead of finishing up at high-level programming language (which may only
“move” our realization up some levels instead of resolving it), we prefer mathemat-
ical languages i.e. producing output suitable for both PVS [OSRSCO01] and Maple
[MGH*01]. As we said earlier, in our process we have integrated compiler techniques
with symbolic analysis; highly influenced by Watson and Fidge [WF03] and Fahringer
and Scholz[FS03]. Watson and Fidge [WF03] have described a technique for assem-
bler semantics that is based on advanced compiler theory and technology, as well
as programming language semantics. Their work is close to ours, except that while
they are describing a theoretical framework, we have a working reverse-engineering
tool. As we do, they used execution paths to find the semantics of assembly language
programs. Fahringer and Scholz[FS03] developed an approach to find the symbolic
interpretation of imperative programs written in a high-level language. We applied
some of their constructs (path conditions, recurrence equations) in our approach to
interpret assembler programs. As assembler programs do not have any predefined
control structures, we used an explicit control flow graph to find execution paths,
and used them to guide our symbolic interpretation. In this way, we create a newer
blend of compiler technologies with symbolic interpretation techniques in our seman-
tic analysis process.

The whole process shown in Figure 4.1 is fully automated. Interaction among
modules are without any human intervention making the process more robust and
easily verifiable. Still we can get intermediate representation of outputs at different
steps to get the inner look of the process. Control Flow Graph generation from the
assembler codes, symbolic analysis with Data Flow Graphs — all of these processes
are automated. This may inspire the researchers working in the upper layers of the
tool suite architecture in the reverse engineering project to make a fully automated
stream from the assembler code to high level specifications.

In this thesis, we only deal with three special control flow patterns of assembler
programs. More control flow structures can be incorporated in the process using the
same techniques followed. As we use execution paths to model control flow of the
program, other control flow patterns can also be detected with less effort. As such,
we believe that incorporating more control flow patterns will not effect the efficiency

168 11. Discussion and Future Work

of the tools.

The tools developed in this thesis are ”proof of concept”. These tools exhibit a
concept of symbolic analysis which may be implemented in a larger scale. They are not
designed as software products which need rigorous software engineering methodologies
to be practiced. We still try to follow important software engineering principles to
make those tools efficient.

Effective use of pure functional programming language like Haskell results in a set
of tools and modules which are precise, compact and interact well with each other.
Special modularization features (Section 3.4.1) of Haskell help us to create hierar-
chical software architecture. Haskell provides us with good abstraction mechanism
and proper use of these abstraction techniques results in smaller, precise and easy
reading codes. The tools also interact well with the outside tools and are flexible
enough to incorporate new features in them. The codes included in the thesis are
easily comprehensible and we hope that any fellow student will be able to translate
them into different architecture within a limited time. The documentation style of
literate programming also increases the understandability of the code. In brief, we are
convinced that Haskell is a good programming language to produce well structured
software abiding by all software engineering principles.

Making some successful contribution in the tool suite architecture of the reverse
engineering process was not our only goal. We try to publish the outcome of the
research done in this thesis as some scholarly publications. In this regard, one of
our paper “Symbolic Interpretation of Legacy Assembly Language” is accepted and
will be published in the 12th Working Conference on Reverse Engineering (WCRE),
Pittsburgh PA(Carnegie Mellon),USA, November 8 to 11.

11.2 Limitations

When I was first introduced in the project, Dr. Jacques Carette told me to use
Haskell as an implementation language. He has described all the important features
of Haskell for good programming practice and inspired me to use Haskell. Haskell was
the first functional programming language that I have ever used. My programming
style was more of imperative genre and it was difficult for me to adapt the style of
functional programming. Although I always try to overcome this shortcoming, one

11. Discussion and Future Work 169

might find some imperative style of coding in some parts of my Haskell codes.

I always try to explain the terse functions where some convoluted and obtuse codes
appear in sufficient prose with literate Haskell programming style. Still the clarity of
the code might be improved by using the extended abstraction mechanisms of Haskell.
More refactoring can be done to make the code more clear and understandable and
redundant code can also be eliminated.

Since our goal is an automated process, less amount of work is done on producing
better displays for the outputs of intermediate steps. We always try to make the
intermediate step outputs more human readable. Still some further works can be
done to create better presentation of those outputs.

At the beginning of the project, we aimed to (automatically) identify functions in
a program, extract nice closed-form formulas and pre/post-conditions that express the
actual (or idealized) semantics of those functions. Automatically identifying functions
and finding pre/post-conditions are not covered in this thesis. The time limit of the
completion of Masters’ degree is an obstacle in this process. Though I hope that
some future works will be done on this symbolic interpretation process to attain the

ultimate goal.

11.3 Future Works

The solution presented in this thesis is still preliminary. As indicated earlier, only
some special kinds of control flow are currently analyzed. Work can be doné on
analyzing more complex control flow — quite a bit of weird control flow can be recast
in our settings by a simple duplication of some of the code. As said in Section 11.2,
automatically identifying functions in an assembler program is another area where
further effort can be given.

Moreover, we have shown ways to generate the DFEs for all three kinds of control
flow graphs. We have produced the Data Flow Graphs (DFG) and solved the DFEs
for SC and GSC structures. These works can be given a final touch by implementing
the functions for producing DFG and solving DFEs for the looping codes. Duplication
of the codes implemented with some adjustment would work for looping codes.

As well, future work can be done on simplifying the output expressions. During
simplification, duplicate constructs can be eliminated in the DFEs and also we can

170 11. Discussion and Future Work

build new constructs for common parts in the DFEs and make reference to those
common parts to generate new DFEs which are clear and easily readable. New tools
can also be developed to push boolean conditions through systems of (more complex)
data flow equations.

Redundant descriptions of the semantics can also be explored; for example a left-
shift instruction can be described either as a left-shift or as a multiplication by 2. The
“best” description usually depends on how that value is used in other contexts. If it
is used in a context of arithmetic operations, then multiplication by 2 is likely more
descriptive, whereas if used in a context of bit operations, a shift is likely better. The
work of [KACO04] is relevant here.

11.3.1 Graph Transformer

As the legacy assembly language codes were written long time ago, the control flow
structures are not in procedural constructs and not easy to interpret. A new step can
be included in the semantic analysis process to find the bad control flow structures
in the code and replace them by good control flow patterns. We have done some
work on this step and tried to find bad control flow patterns to replace them with
pre-defined good flow patterns.

Another important aspect is that any time we can find some paths as infeasible,
they may be eliminated. This simplifies the analysis tremendously. So our current
analysis should be seen as one step in a fixed-point analysis, where each analysis pass
provides a better approximation to the complete semantics.

Right now, the control flow graph we are dealing with is an approximation of the
precise control flow graph. Some run time emulation of the codes can be done and
we can find the actual addresses for the indirect addressing. This can be helpful for
modifying the control flow graph by actual edges between nodes to get the accurate

control flow graph.

11.3.2 Finding Preconditions

Often we are interested about the partial correctness of programs. A program can be
defined as partially correct, with respect to a given precondition and a postcondition,
if the initial state satisfies the precondition and if the program terminates, the final

11. Discussion and Future Work 171

state satisfies the postconditions. Now if we are given postconditions for the program,
we can try to use the data flow equations to “push backwards” (as in backwards state
transformers) these predicates for obtaining preconditions.

Additionally, as no exceptions (in other words carry, overflow etc.) are handled
by the programs we reviewed, we can add these as post-conditions as well, and also
propagate them backwards through the data flow equations. Let us consider the
control flow graph in Figure 11.1. Suppose that a, b, c are all state variables in this
context. At node Q, the initial state is I = {a > ag,b — bp,c — ¢}, and at node
P, assume that we have ¢ = a + b. As we know that ¢ must be a valid value (< 26
on the IBM-1800), we can conclude that a + b < 2% is true at P. We can push this
backwards to (potentially) derive additional necessary conditions at Q, as well as
pushing it forward to (potentially) find a more precise description of the state at R,
by potentially removing some infeasible paths.

R

Figure 11.1: Finding Preconditions

Appendix A

Semantic Model of Instructions

This appendix defines the semantic model of the operational semantics of IBM-1800
assembler instructions. We use this abstract model in the whole symbolic interpreta-

tion process.

A.1 Semantics of Instructions

We define our model as a state transformer where the effect of executing an instruction
is stated as a total function on states i.e. after execution of each instruction, the state
changes to one form to another. It can be defined as:

[Instruction] : (State — State)

A State (s) symbolizes a machine state where all the machine components are
represented as variable. We define the State to be the (partial) function which con-
tains the full Memory, the Instruction Register (I), Accumulator (4), Accumulator
Extension Register (Q), all Index Registers (XR1, XR2,XR3) and the Overflow and
Carry bits in its domain, and the range is either a 16-bit value (most cases) or a
one-bit value (for Overflow and Carry).

We need to use some notations to represent the operational semantics of the

instructions of IBM-1800 assembly language:

172

A. Semantic Model of Instructions

Inst(I)

DB
FB
displ
addr
tag
cond

brtype

06—8(11 S)

X
loc(X)
locBS(i)
Os—9

Contents of core storage at the location specified by I (In-
struction Register). Later we use i as its short notation.

D (5th) bit of the instruction.

Format bit of the instruction.

Displacement associated to the instruction.

Address defined in the instruction.

Tag value associated with the instruction.

Condition defined in the instruction.

Branching instruction type such as BSC Short (BSCS), BSC
Long (BSCL) or BSI (BSI).

Checks bits 6-8 of the opcode, then according to bits 7&8,
returns the contents of I, XR1, XR2, XR3 if bit 6 is 0, oth-
erwise returns value of 0,XR1,XR2,XR3.

Og-s(i,8)

If i is indirect then *(X + addr) else X + addr.

If i is indirect then “addr else addr.

returns different shift instruction operations according to bits
8-9 of the instruction.

defCond(cd, bt) With the two arguments, it decides the value by which the

cmdx(mn, mp)

where DB, FB, and displ are implicitly functions of 7 and 0 denotes an abstract
location with constant value 0. All of these notations have state s and Inst(I) or i

instruction register (I) will be incremented in a branching in-
struction. cd defines the types of cond in the instruction and
bt indicates the branching instruction type (brtype).

Compares two values of one state component (specially in-
dex registers) before (mp) and after (mn) modification and
returns 1 if the modified word changes sign or reaches zero
while being modified and 0 otherwise. Used mainly in MDX

instructions.

as implicit arguements unless explicitly defined.

173

174 A. Semantic Model of Instructions

Ay Content of state component y.

8y(f)(z) Short for y — f(*y,z).

o.(f)(z,y) Short for z — f(z,y).

S(z,y) Short for z « y.

comp(z,y) Compares the contents of x with the contents of y and returns
instruction register modification value.

p:q A 32 bit value with p representing higher 16 bits and ¢ as

lower 16 bits.
where f ranges over a few built-in operations (arithmetic and logical), y can be any

of the components of the domain of State.

Almost all the instructions are implemented in the abstract model except
LOAD/STORE STATUS (LDS/STS), WAIT, EXECUTE I/O (XIO) as they are
not used in the IBM-1800 assembler code of OPG.

A.1.1 LOAD/DOUBLE LOAD(LD/LDD)

If OpCode(i) € {LD,LDD},

[Inst]s =61(+)(1+ FB)®
(S(A, (FB=0? (X +displ) : "loc(X)))
©DOB=17?(5(Q,(FB=07
MX +displ+1) : Mloc(X)+1)))) : I)

A.1.2 STORE/DOUBLE STORE(STO/STD)

If OpCode(i) € {STO,STD},

[Inst]s =61(+)(1 + FB)®
S((FB =0 ? "(X +displ) : *loc(X)), A)
OMDMB=17(S((FB=07?
MX +displ +1) : Mloc(X)+1)),Q)) : I)

A. Semantic Model of Instructions

175

A.1.3 LOAD INDEX/STORE INDEX (LDX/STX)

If OpCode(i) € {LDX, STX},

[Inst]s =6;(+)(1 + FB)®
(B=17?(S((FB=07?
MI +displ) : “(locBS(i))), X))
: (S(X,(FB=0?displ : locBS(i)))))

A.1.4 ADD/DOUBLE ADD(A/AD)

If OpCode(i) € {A, AD},

[Inst}s =6:(+)(1 + FB)®
(DB=17? (Jaq(+)(FB=07?
(M(X +displ) : (X +displ + 1))
: (Mloc(X) : M(Loc(X) + 1))))
: (6a(+)(FB=07? (X +displ) : “loc(X))))

A.1.5 SUBTRACT/DOUBLE SUBTRACT(S/SD)

If OpCode(i) € {S,SD},

[Inst]s =6:(+)(1 + FB)®
(DB=17? (640(—)(FB=107?
(M X + displ) : (X +displ + 1))
: (Moc(X) : “(1oc(X) +1))))
: (6a(-)(FB=07? "(X +displ) : "“loc(X))))

A.1.6 MULTIPLY/DIVIDE(M/D)

If OpCode(i) € {M,D},

176 A. Semantic Model of Instructions

[Inst]s =61(+)(1 + FB)®
(DB=0? (0ag(*)(A,(FB=07?
("(X +displ) : (“loc(X))))))
: (04(DIV)(AQ,(FB=07?
("(X +displ) : (“loc(X))))),
0(MOD)(AQ, (FB =0 ?
("(X +displ) : (“loc(X)))))))

[here DIV stands for quotient operation and MOD stands for remainder operation.]

A.1.7 LOGICAL AND/OR(AND/OR)

If OpCode(i) € {AND, OR},

[Inst]s =0;(+)(1 + FB)®
(DB =17 (64(OR)(FB =0 ?
MX +displ) : “oc(X)))
. (64(AND)(FB =0 ?
AMX +displ) : Moc(X))))

A.1.8 LOGICAL XOR (XOR)

If OpCode(i) € {XOR},

[Inst]s =6;(+)(1 + FB)®
(DB =0 ? (§4(XOR)(FB = 0 ?
MX +displ) : “loc(X))) : D)

A. Semantic Model of Instructions 177

A.1.9 SHIFT (SLA/SLT/SRA/SRT)

Shift instructions can be divided into two major classes: Shift Left and Shift Right.
These two major classes are defined by the operation code of the instruction. Each
of these major classes are divided into subclasses. We use Og_g function to find the
different subclasses of the shift instructions. Although each class can be divided into
four classes, some of them are not used in the assembler code we examine. That is
why, in this model we only implement those shift operations which are practically
used in OPG code. Shift Left Logical A (SLA), Shift Left Logical A & Q (SLT) [from
Shift Left operations] , Shift Right Logical A (SRA), Shift Right A & Q (SRT) [from
Shift Right Operations] are implemented in the following model. Shift Left and Count
A (SLCA), Shift Left and Count A & Q (SLC) and Rotate Right A & Q (RTE) are
not implemented. Detection of correct shift instructions type by Og g is a part of
implementation details and will not be discussed here. For simplicity, here we can
only assume that Og_g only returns 0,1 for A and AQ operations respectively.
If OpCode(i) € {SLA, SLT, SRA, SRT},

[Inst)s =6;(+)(1)®
(DB=07? (Os—9 =0 ? (§a0(<<)(displ))
: (6a(<<)(displ)))
: (Os-9 =07 (6aq(>>)(displ)) : (64(>>)(displ))))

A.1.10 BRANCH AND SKIP/ BRANCH AND
STORE(BSC/BSI)

If OpCode(i) € {BSC,BSI},

[Inst]js =(DB=1? (6:(+)
(defcond(cond, (FB =0 7 BSCS : BSCL))))
: (FB=07 (S("((X +displ),I)),S(I,(1 + X + displ)))
: (07(+)(defcond(cond, BSI)))))

178 A. Semantic Model of Instructions

A.1.11 MODIFY INDEX AND SKIP (MDX)

If OpCode(i) € {MDX},

[Inst]s =(FB=17?
(tag =00 ? (6;(+)(2 + cmdx(("addr + displ),
Maddr)), S(*addr, (“addr + displ)))
¢ (6r(+)(2 + emdx((X + locBS(i)), X)), S(X, (X + locBS(1)))))
: (tag =00 ? (6;(+)(displ))
¢ (6r(+)(1 + emdx((X + displ), X)), S(X, (X + displ)))))

A.1.12 COMPARE (CMP)/ DOUBLE COMPARE (DCM)

If OpCode(i) € {CMP, DCM},

[Inst]s =6;(+) DB=107?
(comp(A, (FB=0 ? (X +displ) : "loc(X))))
: (comp(AQ,(FB=07 ("(X +displ) : (X +displ +1))
: ("loc(X) : “(loc(X) +1))))))

Appendix B

Common Codes

This appendix includes all the common codes needed for different module implemen-

tation.

B.1 IBM-1800

Here we define some of the auxiliary functions needed to carry out the semantic

operations of the IBM 1800 instructions.

module IBM1800

(

b
s

3

BrTag(..), SftTag(..), State, o6to8
regST,loadX, dXR, o8to9, sCount, addDisp
loc, locBS, getMemRefA, getMemRef(Q
getContentOfMemRefA, getContentOfMemRefQ
dA, dQ, dAQ, d4IR, delIR, retDispAdd
mergeAQ, returnA, return, bool2Word
retCondLong, retCondShort, changeIRInBr
compA, compAQ, repeatShiftl6, repeatShift32

) where

import Mem
import OpCode

import Instruction

179

180 B. Common Codes

import Data.Word
import Data.Int
import Data.Bits

We start by defining some of the Tags required to represent the Branching, Com-
pare and Shift conditions.

data BrTag = Al | Ne -- Always, Never
| PL | Npl -- Plus, Not Plus
| Mo | Nmmn -- Minus, Not Minus
| Zr | Nzr -- Zero, Not Zero
| Ev | Evp | Eum -- Even, Even or Plus, Even or Minus
| 0d | O0dm | Odp -- Odd, Odd and Minus, Odd and Plus

deriving Shouw
data SftTag = Sa | Saq | Sca | Scaq deriving Show -- Shift Tag

IBM-1800 current state includes the state of the memory (mem), the Instruction
Register (ir), the Accumulator Register (acc), the Accumulator Extension Register
(q), the Index Registers (xr1-3), and the Overflow and Carry Flags (overflow and

carry).

type State = GenState Mem Wordl6 Wordil6 Bit

data GenState mem addr val bit = State

{ menm :: mem

, ir :: addr
, acc :: val

, Q :: val

, xrl :: addr
, Xr2 :: addr
, Xr3 :: addr
, overflow :: bit

, carry :: bit

}

deriving Show

B. Common Codes 181

The following function checks bits 6-8 of the instruction and if bit 6 (Format Bit)
is 0 then returns the value of ir, xrl, xr2, xr3 or if bit 6 is 1 then returns the value of
0, xrl, xr2, xr3 according to tag bits. Here bit 6 is tested previously and according
to that bit tag is set to either I or XR0 (which is always Zero).

regl :: Instruction + (State - Wordl6)
regl inst = case tag inst of

I -~ ir

XRO -+ comst 0x0

XR1 -+ xrl

XR2 -+ xx2

XR3 -+ xr3

06to8 :: Instruction - State <+ Wordlé
o6to8 = regil

A special function for the LOAD and STORE index instruction.

regST :: Instruction -+ (State - Word16)
regST inst = case tag inst of

XR1 -+ xril

XR2 -+ xr2

XR3 -+ xr3

=+ ir

If necessary, the following should be generalized to accept functions with monadic
result.

tagRegUpdate :: Tag + (addr - addr)
-+ GenState mem addr val bit
-+ GenState mem addr val bit
tagRegUpdate I f st = st {ir =f § ir st}
tagRegUpdate XRO f st = st

tagRegUpdate XR1 f st = st {xr1 = f $ xr1 st}
tagRegUpdate XR2 f st = st {xr2 = £ § xr2 st}
tagRegUpdate XR3 f st = st {xr3 = £ § xr3 st}

182 B. Common Codes

loadX :: Tag -+ addr -+ GenState mem addr val bit
+ GenState mem addr val bit
loadX t cx = tagRegUpdate t (const cx)

dXR :: (Num addr) => Tag -+ addr
+ GenState mem addr val bit
-+ GenState mem addr val bit
dXR t cx = tagRegUpdate t (cx +)

08t09 is used to return the Shift Tags to determine the kind of shift operation to
be executed depending on the 8th and 9th bit of the instruction.

o8to9 :: Instruction » SftTag
08to9 inst = case fromIntegral $ shiftR ((fromIntegral
$ disp inst::Word8) .&. 0xCO) 6 of
0x0 » Sa
0x1 = Sca
0x2 -+ Sag
0x3 + Scagq

We use sCount to return the no. of shift count as in Fig.3-13 of the IBM-1800
manual [IBM70]. The shift count should be the lower order 6 bits of either displace-
ment or XR1/XR2/XR3 depending on the tag bits.

sCount :: (Num b) => Instruction + GenState mem Wordl6 val bit =+ b
sCount inst s = fromIntegral $ x .&. OxO03F
vhere x = case tag inst of
I -+ fromIntegral $ (disp inst)::Wordi6
XR1 + (xrl s)
XR2 + (xr2 s)
XR3 + (xx3 s)

The following functions are used to calculate the effective addresses of memory.

B. Common Codes 183

addDisp adds the displacement of the instruction to the defined index register
value to return the effective address. loc returns the effective address of memory for
long instructions. The effective address is calculated either by adding the address with
the corresponding index register value or the content of the address added with the
index register value of the instruction depending on the indirect bit of the instruction.

locBS function returns the effective address for the LOAD and STORE INDEX
instructions.

getMemRef and getContentOfMemRef are used to get the memory reference and
the content of the memory reference respectively. Both of them have two versions
for the current effective address (getMemRefA, getMemRefQ, getContentOfMemRefA,
getContent0fMemRefQ).

addDisp :: Instruction + State -+ Wordl6
addDisp inst s = fromIntegral § (x +
(fromIntegral $ disp inst :: Int16))::Wordl6
vhere x = fromIntegral $ o6to8 inst s::Inti16

loc :: Instruction - State -+ Wordl6
loc inst s = if indAdd inst = One then getMem (mem s) x’ else x’
where
x = fromIntegral § (o6to8 inst s)
x’ = fromIntegral § x + address inst

locBS :: Instruction =+ Bool -+ State - Wordl6
locBS inst 1s s =
if isLong inst
then if indAdd inst = One
then getMem (mem s) (address inst)

else address inst

else if ls
then (ir s) + (fromIntegral $ disp inst::Wordi6)
else fromIntegral $ disp inst::Word16

getMemContent :: State -+ Wordi6 -+ Wordi6

184 B. Common Codes

getMemContent s effadd = getMem (mem s) effadd

getContentOfMemRef:: Int -+ Instruction + State -+ Wordl6
getContentOfMemRef ofs inst s =
getMemContent s $§ if isLong inst
then fromIntegral $ (loc inst s)+ofs
else fromIntegral $ (addDisp inst s)+ofs

getMemRef:: Int + Instruction -+ State = Wordl6

getMemRef ofs inst s = if isLong inst
then fromIntegral $ (loc inst s) + ofs
else fromIntegral $ (addDisp inst s) + ofs

getMemRefA, getMemRef(,

getContentOfMemRefA,

getContentOfMemRef(:: Instruction - State + Wordl6
getMemRefA = getMemRef O

getMemRefQ = getMemRef 1

getContentOfMemRefA = getContentOfMemRef O
getContentOfMemRef = getContentOfMemRef 1

-Now we have to define functions to update the state components: Accumulator,
Q Register, Index Registers, Accumulator:Q Registers etc.

dA :: Wordi6 -+ State + State
dA a s = s {acc = a}

dQ :: Wordl6 -+ State -+ State
dQ q s = s {q = q}

dAQ :: (Wordi6,Wordl6) - State - State
dAQ (a,q) s = s {acc = a, q = q}

dIR :: Wordi6 -+ State - State

B. Common Codes 185

dIR a s = s {ir = irNew}

wvhere irNew = (ir s) + a

dellR :: Wordl6 -+ State - State
delIR a s = s {ir = a}

This function returns True(1) if the modified factor changes sign or reaches zero
while being modified and False(0) otherwise.

retDispAdd :: Int16 - Int16 - Wordl6
retDispAdd cN cP = if (cN =0) v ((cP > 0) A (cN < 0))
V ((cP < 0) A (cN > 0)) then 1 else 0

These functions are used for 32 bit operations.

mergeAQ :: State » Int32 -- merges the A and Q register.
mergeAQ s = fromIntegral $§ (shiftL (fromIntegral $ q s :: Int32) 16)
.1. (fromIntegral $ acc s ::Int32)

mergeMem :: State -+ Word16 -+ Int32 -- merges the contents of the memory
-- addresses.
mergeMem s add = fromIntegral $ (shiftL (fromIntegral $
getMem (mem s) (add+1) :: Int32) 16)
.|l. (fromIntegral $ getMem (mem s) add ::Int32)

returnA :: Int32 - Word1l6 -- gets the Accumulator register value
-- from the AQ register.
returnA aq = fromIntegral $ aq .&. OxOO0OOFFFF

returnQ :: Int32 -+ Wordl6 -- gets the Accumulator Extension Register
-- value from the AQ register.
return aq = fromIntegral $ shiftR (aq .&. OxFFFF0000) 16

bool2Word converts the boolean value to word16 value.

186 B. Common Codes

bool2Word:: bool =+ Wordlé
bool2Word True = 1
bool2Word False = 0

These functions are used to return the Condition Tags of the instructions.

retCondLong :: Instruction = Brlag
retCondLong inst = case cond inst of
0x01 -+ 0d
0x02 -+ Apl
0x03 -+ Odm
0x04 - Nmn
0x05 -+ Odp
0x06 -+ Zr
0x08 -+ Nzr
0xO0A -+ Mn
0x0C -+ Pl
0xOE -+ Ne
otherwise -+ Al

retCondShort :: Instruction -+ Brlag
retCondShort inst = case fromIntegral
$ shiftR ((disp inst) .&. 0x3C) 2 of

0x01 -+ Ev
0x02 -+ Pl
0x03 =+ Ewp
0x04 =+ Mn
0x05 -+ Evm
0x06 -+ Nzr
0x08 + Zr
0x0A -+ Nmn
0x0C -+ Npl
0xOE -+ Al
otherwise -+ Ne

B. Common Cod

es

187

changeIRInBr changes the instruction register value depending on the branch

conditions.

changeIRInBr::
changeIRInBr bt
case bt of
Al =

Npl -
M -
Nmn -
Zr =
Nzr -
Ev -+
Evp =

Evm =

gd -
Odm -+

Odp -

Ne -

vhere addL = get

deltalR s inst c

BrTag + State + State

s =

if dbit inst = Zero
then delIR (addL+1)

s {mem = (writeMem (mem s) locL $ 2+ir s)}

else if isLong inst
then dellR addL s

else dIR 2 s
deltalR s inst (> 0)
deltalR s inst (£ 0)
deltalR s inst (< 0)
deltalR s inst (2 0)
deltalR s inst (= 0)
deltalR s inst (# 0)
deltaIRl s inst $§ ((acc s) .&. 0x0001)

deltaIRl s inst $ ((acc s) .&. 0x0001)
v((acc s) .&. 0x8000) = O
deltaIRl s inst $ ((acc s) .&. 0x0001)
v((acc s) .&. 0x8000) # O
deltalR1l s inst $§ ((acc s) .&. 0x0001)
deltaIRl s inst $ ((acc s) .&. 0x0001)
A ((acc s) .&. 0x8000) # O
deltaIRl s inst $§ ((acc s) .&. 0x0001)

++

#

0

A ((acc 8) .&. 0x8000) =0 A (acc 8) # 0

if isLong inst
then dIR 2 s
else dIR 1 s

MemRefA inst s

ond = if dbit inst = Zero

188

B. Common Codes

wvhere deltalRShort s cond

deltalR1 s inst cond

wvhere deltaIRShortl s cond

then deltalRBsi s cond
else if islong inst
then deltalRLong s cond
else deltaIRShort s cond
if (cond $ acc s)

then dIR 2 s

else dIR 1 s
it (cond $ acc s)

then delIR locL s

else dIR 2 s

deltalRLong s cond

deltalRBsi s cond
= if (cond $ acc s)
then delIR (locL+1)
s {mem = (writeMem (mem s) locL $ 2+ir s)}
else dIR 2 s

if dbit inst = Zero
then deltalRBsil s cond
else if islong inst
then deltalRLongl s cond
else deltaIRShortl s cond
if cond

then dIR 2 s

else dIR 1 s
deltaIRLongl ‘s cond = if cond
then delIR locL s
else dIR 2 s

deltaIRBsil s cond
= if cond
then delIR (locL+1)
s {mem = (writeMem (mem s) locL $ 2+ir s)}
else dIR 2 s

B. Common Codes

189

compA and compAQ are used to compare two values in the Compare and Double

Compare instructions.

compA:: Int16 - Int16 -+ Wordl6
compA a b = case compare a b of
EQ -+ 3
LT + 2
GT = 1

compAQ:: Int32 + Int32 + Wordl6
compAQ a b = case compare a b of
EQ -+ 3
LT + 2
GT =+ 1

Here are some auxiliary functions to emulate Shift Instructions.

repeatShift16 a x f = repeatShift16’ (f a x) (x~1) £

repeatShift32 a x f = repeatShift32’ (f a x) (x-1) £

repeatShift16’ a x £
[x = (a,x)

| ((a .&. 0x8000) = 0) = repeatShifti6’ (f a 1) (x-1) f

| otherwise = (a,x)

repeatShift32’ a x £

| x = (a,x)

| ((a .&. 0x80000000) = 0) = repeatShift32’ (f a 1) (x-1) £

| otherwise = (a,x)

B.2 Stack

This module just defines a Stack class.

190 B. Common Codes

module Stack where

The following defines a Stack class, with stack of type a + b, and keys of type a,
values of type b.

class Stack a b where
createStack :: a =+ b
addEntry :: (a =+ b) =+ (a,b) =+ (a = b)
addEntries :: (a-b) -+ [(a,b)] =+ (a =+ b)
lookupEntry :: (a +b) +a-+b

Appendix C

Emulator

This appendix presents the implementation of the emulator. This is a very direct
translation of abstract model of the instructions in Appendix A.

C.1 Lst2String

Tool to convert a .1st file to a String — mostly an intermediate program to decouple
Lst2Gzl.

module Main where
impoxrt IBM1800

import Instruction
import Lst

import System (getArgs)
import Numeric (showHex)
import Mem

import MemInit

import GHC.Show

import Data.Array
import Emulate

import Bits

main :: I0 ()

191

192 C. Emulator

main = do [infile] € getArgs
myLst € readFile infile
putStrLn ((showState - emulate 8 - initState) myLst)
putStr "Done."

These are the initialization of the state and the State representation.

initState:: String <+ State
initState 1 = State {mem = fillMem initMem $ parseLst 1,

ir = 0x35B6,
acc = 0x07,
q =0,

xrl = 0x3808,
xr2 = 0x3808,
xr3 = 0,

overflow = Zero,
carry = Zero
}
showState :: State = String
showState s =
"IR = 0x" ++ sh (ir s) ++ "\n"
++ "A = 0x" ++ sh (acc s) ++ "\n"
++ "Q = 0x" ++ sh (q s) ++ "\n"
++ "XR1 = Ox" ++ sh (xrl s) ++ "\n"
++ "XR2 = 0x" ++ sh (xr2 sg) ++ "\n"
++ "XR3 = 0x" ++ sh (xr3 s) ++ "\n"
++ "memory content QIR = Ox" ++ sh ((mem s)!(ir s)) ++ "\n"
++ "memory content @(Address 0x3815) = Ox"
++ sh ((mem s)!(0x3815)) ++ "\n"
++ "memory content @(Address 0x3816) = Ox"
++ sh ((mem s)!(0x3816))

wvhere sh x = showHex x ""

C. Emulator

193

C.2

This is a bare bones emulator.

module
vhere

import
import
import
import
import
import
import

Our emulator takes a number of steps, a State and returns a State.

emulate ::

emulate
emulate

step ::
step s

vhere op = getOp (getMem (mem s) (ir s))
inst = wordsToInstruction (getMem (mem s)
(ir s)) (getMem (mem s) ((ir s)+1))

Emulate

Emulate (emulate)

OpCode
Instruction
IBM1800
Mem
Data.Word
Data.Int
Data.Bits

0s=s

n s = emulate (n-1) (step s)

State + State

= semantics_ op inst s

Int + State = State

The followings are the implementation of the semantic definitions of all the in-

structions.

semantics_ ::

semantics_ LD inst s =

then s

else d} (getContentOfMemRefQ inst s) s
vhere fb = bool2Word $ isLong inst

Op -+ Instruction -+ State - State

-- LOAD/DOUBLE LOAD
dIR (1+fb) $ dA (getContentOfMemRefA inst s) s

$ if dbit inst = Zero

194

C. Emulator

semantics_ ST inst s
dIR (1+fb) $ s{ mem

-- STORE/DOUBLE STORE
(writeMem (mem s)
(getMemRefA inst s) $ acc s)}
$ if dbit inst = Zero
then s

else s {mem = (writeMem (mem s)
(getMemRefQ inst s) $ q s)}

vhere fb = bool2Word $ isLong inst

semantics_ LSX inst s =
dIR(1+fb) $ if dbit inst = Zero

then loadX (tag inst)
(locBS inst False s) s - LOAD INDEX
else s {mem = (writeMem (mem s)
(locBS inst True s) cX)} -- STORE INDEX

vhere fb = bool2Word $ isLong inst

cX

= regST inst s

semantics_ 4DD inst s =
dIR (i1+fb) $ if dbit inst = Zero

vhere fbh
aq

then dA (fromIntegral $ addNewlL::Wordi6) s
else dAQ ((returnA addMemCont), (return] addMemCont)) s

bool2Word $ isLong inst
mergelAQ s

addNewL = (fromIntegral $ acc s::Int16) +

(fromIntegral $ getContentOfMemRefA inst s::Int16)

addMemCont = aq + (mergeMem s $ getMemRefA inst s)

semantics_ SUB inst s =
dIR (1+fb) $ if dbit inst = Zero

then dA (fromIntegral $ subNewL::Word16) s
else dAQ ((returnA subMemCont), (returnQ subMemCont)) s

C. Emulator 195

vhere fb
aq
subNewL = (fromIntegral $ acc s::Int16) -
(fromIntegral $ getContentOfMemRefA inst s::Int16)
subMemCont = aq - (mergeMem s $ getMemRefA inst s)

bool2Word $ isLong inst

mergeAQ s

semantics_ MD inst s =
dIR (1+fb) $ if dbit inst = Zero
then dAQ ((returnA mulNewl), (returnQ mulNewlL)) s
-- MULTIPLICATION
else dAQ (divD,modD) s -- DIVISION
vhere fb = bool2Word $ isLong inst
aq = mergeAQ s
addL = fromIntegral $ getContentOfMemRefA inst s:: Int32
mulNewlL = fromIntegral $ (fromIntegral $ acc s::Inti16)
* addL::Int32
divD = fromIntegral $ aq ‘div‘ addL::Word16
modD = fromIntegral $ aq ‘mod‘ addL::Wordi6

semantics_ AR inst s =
dIR (1+fb) $ if dbit inst = Zero
then dAcc andNewD s -- AND
else dAcc orNewD s -- OR
vhere fb = bool2Word $ isLong inst
addAR = getContentOfMemRefA inst s
andNewD = acc s .&. addAR
orNewD = acc s .|. addAR

semantics_ EOR inst s =
dIR (1+fb) $ if dbit inst = Zero
then dAcc xorNewD s -- XOR
else s
vhere fb = bool2Word $ isLong inst
addAR = getContentOfMemRefA inst s
xorNewD = acc s ‘xor‘ addAR

196 C. Emulator

semantics_ SFT inst s =
dIR 1 $ case dbit inst of
Zero + case 08to9 inst of -- SHIFT LEFT
sltNewA, carry = cfLA}
Sag -+ s {acc = (returnA sltNewAQ),
q = (returnQ sltNewAQ),
carry = cfLAQ}

Sca -+ s {acc = newA,

Sa -+ s {acc

carry = if newX # O then One
else Zero}

(returnA newAl),

(returnQ newAl),

Scaq + s {acc

q
carry = if newXl # O then One

else Zero}
One -+ case 08to9 inst of -- SHIFT RIGHT
Sa -+ s {acc

srtNewA, carry = cfRA}
(returnA srtNewAQ),

q = (returnQ srtNewAQ),
carry = cfRAQ}

Sag - s {acc

Sca —+ s

(returnA newA2),
(returnQ newA?2),

Scagq + s {acc

q
carry = if newX2 # O then Une

else Zero}

vhere x sCount inst s

aq = mergeAQ s

sltNewA = shiftL (acc s) x

srtNewA = shiftR (acc s) x

sltNewAQ = shiftL aq x

srtNewAQ = shiftR aq x

(nevwA,newX) = repeatShift16 (acc 8) x shiftL-- shift left Sca
(newAl,newX1) = repeatShift32 aq x rotateL-- shift left Scaq

(newA2,newX2) = repeatShift32 aq x rotateR-- rotate right Scaq

C. Emulator

197

cfLA = if (testBit (acc s) (16-x)) then One else Zero
cfRA = if (testBit (acc s) (x-1)) them One else Zero
cfLAQ = if (testBit aq (16-x)) then One else Zero
cfRAQ = if (testBit aq (x~1)) then One else Zero

semantics_ BRANCH inst s =
if dbit inst = Zero -- BSI
then if isLong inst
then changeIRInBr (retCondLong inst) s
else delIR (addL+2) $ s {mem = writeMem (mem s)
(dispL+1) $ 1+ir s}
else if isLong inst -- BRANCH/SKIP
' then changeIRInBr (retCondLong inst) s
else changeIRInBr (retCondShort inst) s
vhere addL = getMemRefA inst s

semantics_ MDX inst s =
if isLong inst -- MDX
then if tag inst = XRO

then dIR (2+conAdd) $ s {mem = (writeMem (mem s)
(address inst) cMemNew)}

else dIR (2+condAdd) $ dXR (tag inst) cXRNew s
else if tag inst = T
then s {ir = (fromIntegral $ (ir s) +
(fromIntegral $ addL::Word16) + 1)}
else dIR (1+condAdd) $ dXR (tag inst) cXRNew s
vhere addL = fromIntegral $ locBS inst False s:: Intl16
cMem0ld = (fromIntegral $ getMem (mem s)
$ address inst::Inti16)
cMemNew = fromIntegral $ cMemOld + addL::Word16
conAdd = retDispAdd (cMemOld+addL) cMemOld

-- This one is specifically for F =1 Tag =00 IA =X

cXR0O1d
cXRNew

fromIntegral $ (regl inst s):: Int16
fromIntegral $ cXR0ld + addL::Wordi6

198 C. Emulator

condAdd = retDispAdd (cXROld+addL) cXROld
-- This one is for F = 0/1 Tag /= 00

semantics_ CMP inst s =
dIR (if dbit inst = Zero
then compA (fromIntegral $ acc s :: Inti6)
addCompC -- COMPARE
else compAQ aq (mergeMem s addComp)) s
-- DOUBLE COMPARE

vhere addComp = getMemRefA inst s
addCompC = fromIntegral $ getContentOfMemRefA inst s:: Inti16

aq = mergeAQ s

semantics_ _ _ s = 8

C.3 Other Modules

The other modules of the emulator, Mem.1hs and MemInit.1lhs (See Section 6.3), are
already included in the thesis.

Appendix D

One Step Symbolic Emulator

Here we include the implementation of one step symbolic emulator. This is a direct
translation of the abstract model of instructions in Appendix A.

D.1 OneStep

Here we implement semantic definition of all the instructions. All the implementations
of instructions use the same model used in the Emulator part.

module OneStep (sSemantics.)

vhere

import OpCode (0Op(..), Tag(..), Address)
import Instruction (dbit, tag, Bit(..),
isLong, address, indAdd, disp, Instruction)
import IBM1800 (SftTag(..), 08to09, retCondLong, retCondShort)
import Symbolic
import Data.Word (Word8,Wordl16)
import Data.Int (Int16)
import Data.Bits ((.&.))

sSemantics_ takes an opcode and an instruction as input and finds the symbolic
interpretation of the functions of that instruction as Func and the condition associated
with that instruction as CondFunc.

199

200 D. One Step Symbolic Emulator

The model of the operational semantics of instructions is described in Appendix

A.

sSemantics_ :: Op » Instruction -+ [(CondFunc,[Func])]

sSemantics_ LD inst =
[(Tru, (dAssignSC16 Acc memRefA)
if dbit inst = Zero
then [] -- LOAD
else [dAssignSCi6 @ memRefQ])] -- DOUBLE LOAD
where memRefA = dMemRefA inst
memRefQ = dMemRefQ inst

sSemantics_ ST inst =
[(Tru, (dAssignMem16 memRefA Acc)
if dbit inst = Zero
then [] - STORE
else [dAssignMem16 memRefQ §1)] - DOUBLE STORE
where memRefA = dMemRefA inst
memRefQ = dMemRef() inst

sSemantics_ LSX inst =
[(Tru,
if (dbit inst = Zero)
then [dAssignX (regX inst) (addX inst)] -- LOAD INDEX
else [dAssignMemX (regX inst) (stX inst)])] -- STORE INDEX

sSemantics_ ADD inst =
[(Tru,
if (dbit inst = Zero)

then [dUpdateSC16 Acc Add

Val16{vall61l = Acc, val162 = memRefA}]-- ADD
else [dUpdateSC32 Accf Add
Val32{val321 = Acc), val322 = memRefA}])]-- DOUBLE ADD

vhere memRefA = dMemRefA inst

D. One Step Symbolic Emulator 201

sSemantics_ SUB inst =
[(Tru,
if (dbit inst = Zero)

then [dUpdateSC16 Acc Subd

Vali6{vali6l = Acc, vall62 = memRefA}] -- SUBTRACT
else [dUpdateSC32 Acc{ Sub
Val32{val321 = Accf, val322 = memRefA}])]-- DOUBLE SUBTRACT

where memRefA = dMemRefA inst

In Multiplication, although the operands are word16 but for the update operation,
we have to use dUpdateSC32 as we have to update ACCQ. So for consistency, we use
Val32 instead of Vall6.

Same thing happens for the division operation, although the first operand in the
division operation is word32 but the value to be updated is word16. So we used
dUpdateSC16 and Vall6 is used instead of Val32.

sSemantics_ MD inst =
[(Tru,
if (dbit inst = Zero)
then [dUpdateSC32 AccqQ Mul
Val32{val321 = Acc, val322 = memRefA}] -- MULTIPLICATION
else [(dUpdateSC16 Acc Div
Vali16{vall61l = Acc@,vall62 = memRefA}) -- DIVISION
, (dUpdateSC16 @ Mod Vali6{vali6l = Accq,
vall62 = memRefA})])]
where memRefA = dMemRefA inst

sSemantics_ AR inst =
[(Tru,
if (dbit inst = Zero)
then [dUpdateSCi6 Acc And
Vali6{vall6l = Acc,vall62
else [dUpdateSC16 Acc Or
Val16{vall6l = Acc,vali62
vhere memRefA = dMemRefA inst

memRefA}] -- AND

memRefA}])]-—- OR

202 D. One Step Symbolic Emulator

sSemantics_ EOR inst =
[((Tru,
if (dbit inst = Zero)
then [dUpdateSC16 Acc Xor
Vali16{vall61 = Adcc,vall62 = memRefA}]-- XOR
else [1)] -- TODO
wvhere memRefA = dMemRefA inst

sSemantics_ SFT inst =
[(Tru,
if (dbit inst = Zero)
then case 08to9 inst of -- SHIFT LEFT
Sa -+ [dUpdateAS Shl x]
Saq - [dUpdateAQS Shl x]
Sca - []
Scaq » []
else case o8to9 inst of -- SHIFT RIGHT
Sa [dUpdateAS Shr x]
Saq [dUpdateAQS Shr x]
Sca - []
Scag » [D]
vhere x = fromIntegral $ (fromIntegral
$ (disp inst)::Word8) .&. Ox3F

4

4

sSemantics_ BRANCH inst =
it (dbit inst = One)
then deltaIRS $ retCondOpSm
$ if isLong inst -- SKIP/BSC/BOSC
then retCondlLong inst
else retCondShort inst
else if isLong inst -- BSI
then deltaIRBsi $ retCondOpSm $ retCondLong inst
else [(Tru,(dAssignMemX I memRefA):[])]
vhere memRefA = dMemRefA inst

D. One Step Symbolic Emulator 203

deltaIRS condt =
if condt ‘elem‘ [Phntl, Phntel
then [(Tru,[1)]
else ((dUpdateCond Acc condt True),[]):
[((dUpdateCond Acc condt False),[1)]
deltalRBsi condt =
if condt = Phntl
then [(Tru,(dAssignMemX I memRefA) :[])]
else if condt = Phnte
then [(Tru,[]1)]
else ((dUpdateCond Acc condt True),
(dAssignMemX I memRefA):[]):
[((dUpdateCond Acc condt False),[])]

sSemantics_ MDX inst =
it isLong inst -- MDX
then if tag inst = XRO

then ((dCondDispAddM (CConst {valCC = address inst})
(Const{valC = fromIntegral $ disp inst}) True)
, [dCondDisp (CConst {valCC = address inst})
(Const{valC = fromIntegral $ disp inst})])
: [((dCondDispAddM (CConst {valCC = address instl})
(Const{valC = fromIntegral $ disp inst}) False)
, [dCondDisp (CConst {valCC = address inst })
(Const{valC = fromIntegral $ disp inst})])]

else ((dCondDispAddT (tag inst) dXMem True)
, [dUpdateX (tag inst) dXMem])
: [((dCondDispAddT (tag inst) dXMem False)
, [dUpdateX (tag inst) dXMem])]

else if tag inst = T

then [(Tru,[1)]

else ((dCondDispAddT (tag inst) dXMem True)
, [dUpdateX (tag inst)

(Const{valC = fromIntegral $ disp inst::Int16})])

204 D. One Step Symbolic Emulator

: [((dCondDispAddT (tag inst) dXMem False)

, [dUpdateX (tag inst)

(Const{valC = fromIntegral $ disp inst::Int16})])]
wvhere dXMem = mdxMemRef inst

sSemantics_ CMP inst =

if (dbit inst = Zero) -- COMPARE
then (UpdateComp Acc EqO memRefd, [])

(UpdateComp Acc LtO memRefA, [])

[(UpdateComp Acc GrO memRefA, [])]
else (UpdateComp Accll] Eq0 memRefA, [])

: (UpdateComp Accl LtO memRefA, [])

[(UpdateComp AccQ GrO memRefA, [1)] -- DOUBLE COMPARE

vhere memRefA = dMemRefA inst

These are different helping functions used to assign values (symbolic) to different
data types declared for the functions of the IBM-1800 instructions.

dAssignSC16 :: StateComp -+ MemRef -+ Func
dAssignSC16 sc v = AssignSC16 {scA16 = sc,
valASié = v}

dUpdateSC16 :: StateComp -+ Operator -+ Val =+ Func
dUpdateSC16 sc op v = UpdateSC16 {scU16 = sc,
opl6 = op, valUSi6 = v }

dAssignMem16 :: MemRef - StateComp -+ Func
dAssignMem16 v sc = AssignMem16 {locA16 = v, valAl6é = sc}

dUpdateSC32 :: StateComp -+ Operator -+ Val =+ Func
dUpdateSC32 sc op v = UpdateSC32 {scU32 = sc,
op32 = op, valUsS32 = v }

dAssignX :: Tag -+ MemRef -+ Func

D. One Step Symbolic Emulator 205

dAssignX t v = AssignX {conX = t, valX = v}

dUpdateX :: Tag -+ MemRef - Func
dUpdateX t v = UpdateX {conUX = t, valUX = v}

dAssignMemX :: Tag - MemRef -+ Func
dAssignMemX t v = AssignMemX {valAX = t, locAX = v}

dUpdateAS :: Operator = Word8 -+ Func
dUpdateAS op t = UpdateAS {opS16 = op, valSi6 = t}

dUpdateAQS :: Operator -+ Word8 - Func
dUpdateAQS op t = UpdatedQS {opS32 = op, valS32 = t}

dUpdateCond :: StateComp -+ CondOpSm - Bool -+ CondFunc
dUpdateCond s op st = Condition {scC = s,
opC = op, stat = st}

These are used to assign values to different CondFunc structures.

dCondDispAddT :: Tag -+ MemRef - Bool -+ CondFunc
dCondDispAddT t v b = CondDispAddT {scCT = t,
valCT = v, sgT = b}

dCondDispAddM :: MemRef + MemRef <+ Bool -+ CondFunc
dCondDispAddM ¢ v b = CondDispAddM {locCM = c,
valCM = v, sgM = b}

dCondDisp :: MemRef - MemRef -+ Func
dCondDisp ¢ v = CondDisp {valDi = ¢, valD2 = v}

Small helper functions to assign values to different types of memory references
depending on the instruction fields.

qa :: Bit <+ Tag - Instruction - Address -+ MemRef

206 D. One Step Symbolic Emulator

address i + o }
address i + o }

s, addr
s, addr

qa One s i o = Indirect { reg

qa Zero s i o = Direct { reg

gbr :: Bit -+ Tag + Instruction -+ Wordl6 -+ MemRef
s, addr = address i, offBD = o}
s, addrBr = address i +

fromIntegral o}

gbr One s i o = BrDirect{reg
gbr Zero s i o = BrConst {reg

Here we assign values to memory references depending on the instruction.

dMemRef :: Int -+ Instruction + MemRef
dMemRef offset inst = if islong inst
then qa (indAdd inst) (tag inst) inst (fromIntegral offset)
else Dispmnt { reg = tag inst,
addrC = disp inst + fromIntegral offset}

brMemRef :: Int <+ Instruction -+ MemRef
brMemRef offset inst = if isLong inst
then gbr (indAdd inst) (tag inst) inst (fromIntegral offset)
else BrConst{reg = tag inst,
addrBr = (fromIntegral $ disp inst::Word16)
+ fromIntegral offseti

mdxMemRef :: Instruction -+ MemRef
mdxMemRef inst = if isLong inst
then if indAdd inst = One
then CConst{valCC = address inst}
else Const{valC =
fromIntegral $ address inst:: Int16}
else Const{valC = fromIntegral
$ disp inst::Int16}

dMemRefA, dMemRef(), brMemRefA, brMemRefQ :: Instruction - MemRef
dMemRefA = dMemRef O

D. One Step Symbolic Emulator 207

dMemRefQ = dMemRef 1
brMemRefA = brMemRef 0
brMemRef] = brMemRef 1

Special functions for the LOAD and STORE index instructions. The purpose of
those functions are illustrated in the reference Manual page 2/70 3-10, 3-11 [IBM70].

regX :: Instruction -+ Tag
regX inst = if tag inst = XRO then I
else tag inst

addX :: Instruction -+ MemRef -- Reference Manual page 2/70 3-10
addX inst = if isLong inst
then if indAdd inst = One
then CConst {valCC = address inst}
else Const {valC = fromIntegral
$ address inst::Int16}
else Const {valC = (fromIntegral
$ disp inst::Int16)}

stX :: Instruction -+ MemRef -- Reference Manual page 2/70 3-11
- stX inst = if isLong inst
then if indAdd inst = One
then Indirect {reg = XRO,
addr = address inst}
else CConst {valCC = address inst}
else Dispmnt{reg = I , addrC = disp inst}

D.2 Other Modules

The only other module to generate one step symbolic interpretation of the instructions
is Symbolic.1lhs (See Section 7.2) which is already included in the thesis.

Appendix E

Marked-up Control Flow Graph

(GGenerator

This appendix includes all the modules to generate the Marked-up Control Flow
Graph.

E.1 GxI2MyGraph

This is the main module to generate the internal data structure of Control Flow
Graph with all of its edges annotated.

This module takes a GXL graph and makes an internal data structure represen-
tation of that GXL graph. This GXL graph is the control flow graph of an IBM-1800
assembler code segment. In the internal data structure of the graph we maintain only
those information needed to generate the symbolic interpretation of the code segment
related to the GXL graph.

module Main where

import qualified Gzl

import Texzt.XML.HaXml.Xml2Haskell
import System (getArgs)

import MyGraph

import Data.List

208

E. Marked-up Control Flow Graph Generator 209

import Control.Monad.Error

import I0

The main function of the program takes (possibly) two arguments: There are
one GXL file that is the Control Flow subgraph, and by reading it we make the our

internal representation of the subgraph.

main = (do
[infile, outfile] € getArgs
putStrLn ("Reading from “"++infile)
value € fReadXml infile :: IO Gzl.Gzl
putStrLn ("Writing to "++outfile)
let sval = length $ takeWhile (# ’.’) infile
putStrLn (show sval)
if (outfile = "-")
then putStr $ show $§ doAnnotation
$ gx1ToMyGraph value (sval+l)
else do writeFile outfile $ show
$ doAnnotation $ gxlToMyGraph value (sval+1)
putStrLn "Done."
) ‘catchError‘ usage

usage :: IOError =+ IO ()

usage e = do
putStrLn "Usage: Gx12MyGraph [input.gxl] [output]"”

E.2 Other Modules

The other modules to produce the marked-up CFG, MyGraph.1lhs (See Section 8.2.1),
OneStep.lhs (See Appendix D), are added previously in the thesis.

Appendix F

Data Flow Equations Generator

Here we include the implementation of Data Flow Equations (DFE) generator.

F.1

Graph2Expr

This tool is used to find the symbolic interpretation of a given code segment i.e. for
each instruction in the code it produces one or more equivalent symbolic statements

which represent the semantics of the program.

module

import
import
import
import
import
import
import
import

Main where

qualified Gzl
Text.XML.HaXml.Xml2Haskell
System (getArgs)

MyGraph (gx1ToMyGraph)

Ezp (Stmt, ConditionStmt)
FindEzpr (findAnntOfGraph)
Control.Monad.Error

I0

The main function of the program takes three arguments: They are one GXL file
that is the Control Flow subgraph (of the code segment), start node, and the output
file to be generated. By reading the GXL file, we make the our internal representation

210

F. Data Flow Equations Generator 211

of the subgraph and then find the symbolic interpretation of the code in the output
file.

main = (do
[infile, st, outfile] € getArgs
putStrLn ("Reading from "++infile)
value € fReadXml infile :: IO Gzl.Gzl
putStrLn ("Writing to "++outfile)
let sv = length $ takeWhile (# ’.’) infile
putStrLn (show sv)
if (outfile = "-")
then putStr $ show $ exprTuplePrint
$ findAnntOfGraph (gxlToMyGraph value (sv+1)) st
else do writeFile outfile $ show
$ exprTuplePrint $ findAnntOfGraph
(gx1ToMyGraph value (sv+1)) st
putStrLn "Done."

) ‘catchError‘ usage

usage :: IOError » I0 ()
usage e = do “
putStrLn "Usage: Graph2Expr [input.gxl] start [output]"
These functions are used for pretty printing. They just separate different outputs

and print them in a nice manner.

exprTuplePrint :: [[([ConditionStmt],[Stmt])]] =+ [String]
exprTuplePrint = map tuplePrintl

tuplePrintl :: [([ConditionStmt]l, [Stmt]l)] - Siring
tuplePrintl = (concat-(map tuplePrint0))

tuplePrint0 (pCond,exec) =
" PathCondition: " ++ show pCond ++
" Instruction Execution: " ++ show exec

212 F. Data Flow Equations Generator

F.2 FindJoin

Although the name suggests only to find “join”, this module has some functions to
find the “split” and “join” node of the two paths of branching structure. The meaning
of “split” and “join” node are defined in FindEzpr module.

module FindJoin

(findSplitJoin, getCommonDiv
, findLoopPart

)

wvhere

import MyGraph (MyGraph, MyNode)

import FindPath (PathType(..), FinalPath, Path, nodesFromStart)
import Data.List (partition, n, (\\))

import Data.Maybe (fromJust, Maybe)

Without loss of generality, we can assume that the nodes of the paths before
the “split” node and the nodes after the “join” node (if any) are the same. So the
strategy to find the “split” is to compare the nodes of the paths from the starting
node of those paths and when different nodes are found in the paths, the node just
before the different nodes is the “split” node.

Similarly to find “join” node, we start with the rest of the paths after the “split”
node and compare the nodes of the paths to find one common node which will be the
“join” of the paths.

findSplitJoin finds the “split” and “join” of the two paths. It uses £indSplit
to find the “split” node. Then it uses findJoin with the rest of the paths after the
“split” (we can get it from £indSplit). In findJoin, it just compares the nodes in
one path with the node elements of other paths to find one common node, which will

be the “join” node of the paths.

findSplitJoin :: [FinalPath] - (Maybe MyNode, Maybe MyNode)
findSplitJoin fps = (splt, join)
vhere (ptll,splt) = findSplit fps Nothing

‘F. Data Flow Equations Generator 213

join = findJoin ptll (head ptll)

findSplit :: [FinalPath] -+ Maybe MyNode -+ ([FinalPath], Maybe MyNode)
findSplit fps nds = if cond = True them findSplit fpsl ndsi
else (fps, nds)
vhere fsnd = (head-snd)

ndc = fsnd $ head fps

cond = and $ map (Aln -+ fsnd 1n = ndc) fps
map (Ax -+ (fst x, (tail-snd) x)) fps
Just ndc

fpsi
ndsi

findJoin :: [FinalPath] -+ FinalPath -+ Maybe MyNode
findJoin fps (_,[]) = Nothing
findJoin fps fstp = if cond = True
then Just ndc
else findJoin fps (fst fstp, (tail-snd) fstp)
wvhere ndc = (head-snd) fstp
cond = and $ map (Aln + ndc ‘elem‘ (snd 1n)) fps

As we mentioned in FindEzpr module, we have to divide the paths in the branch-
ing structure into four different segments to find the symbolic expression of the code.
getCommonDiv is a helping function to divide the paths in segments using “split” and
“join” node with simple list functions like takeWhile and dropWhile and is used to
divide the paths in GSC structure.

FindLoopPart also finds different segments of the paths in the Looping Code (LC)
structure and uses getLoopParts to find those segments.

type Split = MyNode
type Join = MyNode
type FirstComm = Path
type SecondComm = Path
type PtDiff = Path

type ComP = Path

214 F. Data Flow Equations Generator

type TermT = Path
type LoopX = [Path]
type LoopY = Path
type ComZ = Path

getCommonDiv :: [MyNodel + [MyNodel - (Split, Join)
<+ (FirstComm, PtDiff, PtDiff, SecondComm)
getCommonDiv ptl pt2 (st, jn) = (fc, pdl, pd2, sc)
vhere fc = takeWhile (# st) ptl ++ [st]
pdl = dropWhile (# st) ((takeWhile (# jn) pt1l) ++ [jnl)
pd2 = dropWhile (# st) ((takeWhile (# jn) pt2) ++ [jn])
sc = dropWhile (# jn) pti

getLoopParts :: [FinalPath] =+ (Split, Join)
-+ (ComP, TermT, LoopX, LoopY, ComZ)

getLoopParts fps (st, jn) = (cp+t+[st],tt, 1x,ly,cz)
vhere cp = takeWhile (# st) $ (snd-head) fps

ppairs = partition (Ax =+ fst x = Term) fps

findTL = (dropWhile (#st))-snd

fpsT = map findTL (fst ppairs)

fpsL = map findTL (snd ppairs)

findLastC = (dropWhile (#jn))-head

cz = findLastC fpsT

findDiv = takeWhile (# jn)

£fdT = map (++(jn]) ¢ map findDiv fpsT

fdP = map (++[jn]) $ map findDiv fpsL

1x = n £dT £dP
tt = concat $ 1x \\ £dT
ly = findLastC fpsL

findLoopPart :: MyGraph -+ MyNode -+ (ComP, TermT, LoopX, LoopY, ComZ)

F. Data Flow Equations Generator 215

findLoopPart mg st =
it (sp # Nothing v jn # Nothing)
then getLoopParts paths (fromJust sp, fromJust jn)
else error "no join split”
vhere paths = nodesFromStart mg st
(sp,jn) = findSplitJoin paths

F.3 Other Modules

The other modules to generate data flow equations are Exzp.lhs (See Section 8.4.1),
FindPath.lhs (See Section 8.5.1) and FindEzpr.lhs (See Section 8.5.2) which are
already included in the thesis.

Appendix G

Data Flow Graph (Generator

Here we include the implementation of Data Flow Graph generator.

G.1

DFDGxI

The main module is called DFDGxI.

This tool converts Data Flow Equations for an assembler code to a GXL file of
Data Flow Graph (DFG). Before creating the GXL representation of the DFG, we
create our own internal DFG which is converted to GXL file for exchanging with next
standard tools like gx12dot and dot.

module
import
import
import
import
import
import
import
import
import

main =

Main where

qualified Gzl

GzlGraph (makeGxl, makeGraph, addOrdAttr, GzlGel, GzlGraph)
MyGraph (gx1ToMyGraph)

FindEzpr (findAnntOfGraph)

Ezp (Stmt, ConditionStmt)

Dfe2Dfg (dfdGraphToGxlGraph)

Text.XML.HaXml.Xml2Haskell (fReadXml, fWriteXml)

System (getArgs)

Observe

do [infile, start, outfile] € getArgs

216

G. Data Flow Graph Generator 217

value € fReadXml infile :: IO Gzl.Gzl

let name = takeWhile (’.’ #) infile

let gxl = dfeToGxl name $ findAnnt0fGraph
(gx1ToMyGraph value ((length name)+1)) start

fWriteXml outfile gxl

putStrLn "Done."

Here we convert the graph file into the GXL graph.

dfeToGxl :: String + [[([ConditionStmt], [Stmt])]1] - GzlGzl
dfeToGx1l name cstmts = makeGxl $ dfeToGraph name cstmts

Converting Data Flow Equations to a graph file involves making a graph
which has default edgeid and hypergraph attributes and edges are directed.
dfdGraphToGx1Graph generates the GXL file from the DFG internal data structure
and then adds a graph attribute (in) to keep the original order of the operand nodes
i.e. order of expressions in the instructions.

dfeToGraph:: String » [[([ConditionStmt], [Stmtl)]1] -+ GzlGraph
dfeToGraph name cstmts = addOrdAttr "in" $ dfdGraphToGxlGraph
(makeGraph name) name cstmts

G.2 Dfe2DfgCommon

This module contains some helper functions which are straight forward. It also in-
cludes all the functions to convert the DFG into GXL format.

module Dfe2DfgCommon

(makeId, opnodeTold, optnodeTold, inEdgeTolds, pairsToGxlEdges
, makeOpnOptPairs, outEdgeToGxlEdges, idToGxlEdge, idToGxlNode
, stringToNodeAttrs, condToNodes, makeBlankPairs, addToNodeMap
, conv2Expr

)

wvhere

218 G. Data Flow Graph Generator

import MyPrelude (snd3)
import GzlGraph (GxlNode, GzlEdge, Nodeld, makeNode,
makeEdge, makeNodeld,
makeStringAttr, addNodeAttrib, addEdgeAttrib)
import Data.FiniteMap (addToFM)
import Stack
import Ezp
import Dfg

Helper functions for removing redundant codes.

labelAndNode name e ci opnd s = (e, makeId (name ++ ci) opnd, s)
makeIld name x = makeNodeId name $ show x

snd3 $ optnodeTold name optn
snd3 $ opnodeToId name opdn

optTold name optn

opdTold name opdn
opnodeToId creates the label, NodeId and the shape for each OperandNode.

opnodeTold :: String + OperandNode + (String, Nodeld, String)
opnodeToId name (opnd@(EzpressionNode e@(SignBit t) ci)) =
labelAndNode name (show e++show ci) (show ci) opnd "ellipse"
opnodeToId name (opnd@(EzpressionNode e ci)) =
labelAndNode name (show e) (show ci) opnd "ellipse"

optnodeTold creates the label, NodeId and the shape for each OperatorNode.

optnodeTold :: String -+ OperatorNode + (String, Nodeld, String)
optnodeToIld name (optr@(Unary tc i))

= labelAndNode name (show tc) (show i) optr "box"
optnodeToId name (optr@(Binary op i))

= labelAndNode name (show op) (show i) optr "box"
optnodeTold name (optr@(ConditionVal cf i))

= labelAndNode name (show cf) (show i) optr "diamond"

G. Data Flow Graph Generator 219

optnodeToId name (optr@(Join cil ci2))
= labelAndNode name "Join" (show cil ++ show ci2)

optr "doublecircle"
inEdgeTolds creates a list of NodelId pairs for the InEdges.

inEdgeTolds :: String =+ [InEdges] -+ [(Nodeld, NodeId)]
inEdgeTolds name ines = concat $ map (makeOpnOptPairs name []) ines

pairsToGx1Edges creates GXL edges from pairs of NodelIds as source and desti-
nation node.

pairsToGx1Edges :: [(NodeId, NodeId)] -+ [GxlEdge]
pairsToGx1Edges = map (uncurry makeEdge)

makeOpnoptPairs makes pairs of an OperandNode and its successor list of
OperatorNodes.

makeOpnOptPairs :: String - [(NodeId, NodeId)]

-+ InEdges = [(NodeId, NodeId)]
makeOpnOptPairs name opnds (opnd,[]) = opnds
makeOpnOptPairs name opnds (opnd, (optr:optrs))

= makeOpnOptPairs name (opnds++[(sn,fn)]) (opnd,optrs)
wvhere sn = opdTold name opnd '
fn = optTold name optr

OutEdgeToGrlEdges creates the GzlEdges for the OutEdges and uses
idToGx1Edge to make the GzlEdges.

outEdgeToGx1Edges :: String - [OutEdges] - [GzlEdge] -+ [GzlEdge]
outEdgeToGx1Edges name [] ndnds = ndnds
outEdgeToGx1Edges name ((ns,(OneEdge on)): ines) ndnds =
outEdgeToGx1Edges name ines (ndnds++[idToGxlEdge (sn, NC, fn)])
vhere sn = optTold name ns
fn = opdTold name on
outEdgeToGx1Edges name ((ns, (TwoEdge (nc1,oni)

220 G. Data Flow Graph Generator

(nc2,0n2))): ines) ndnds =
outEdgeToGx1Edges name ines (ndnds++ (map idToGx1lEdge
[(sn,nc1,fnl),(sn,nc2,fn2)]))
vhere sn = optTold name ns
fnl = opdTold name onl
fn2 = opdToId name on2
outEdgeToGx1Edges name ((ns,(ThreeEdge (ncl,onl)
(nc2,0n2) (nc3,o0n3))): ines) ndnds =
outEdgeToGx1Edges name ines (ndnds++(map idToGx1lEdge
{((sn, nc1l, fn1),(sn, nc2, fn2),(sn, nc3, fn3)]1))
wvhere sn = optTold name ns
fnl = opdTold name onl
fn2
fn3

opdTold name on2

opdToId name on3

idToGx1Edge creates GXL edge from triples of source and destination NodeIds
and Cond which are created from OutEdges.

idToGx1Edge :: (NodeId, Cond, Nodeld) - GzlEdge
idToGx1Edge (nd1, cd, nd2) = addEdgeAttrib eattr (makeEdge ndl nd2)
vhere eattr = makeStringAttr "label" (show cd)

This function makes a GXL node and also add its name and shape attributes.

idToGx1lNode :: (String, NodelId, String) -+ GzlNode
idToGx1lNode (name, nodeName, shape)
= stringToNodeAttrs "shape" shape node
where node = stringToNodeAttrs "label" name
$ makeNode nodeName

This Function adds the name attribute of the node.

stringToNodeAttrs :: String -+ Siring -+ GrlNode -+ GzlNode
stringToNodeAttrs nm v = addNodeAttrib (makeStringAttr nm v)

condToNodes is used to create the condition nodes.

G. Data Flow Graph Generator 221

condToNodes :: ConditionSimt -+ Int <+ OperatorNode
condToNodes (Check (brc,cd)) i = ConditionVal brc i

makeBlankPairs adds the output OperandNodes of one instruction in the
DfdGraph with their successor list empty.

makeBlankPairs :: [OperandNode]l -+ DfdGraph -+ DfdGraph
makeBlankPairs [] dfgi = dfgl '
makeBlankPairs (opnd:opnds) dfglQ(DfdGraph fmo fme)
= makeBlankPairs opnds (DfdGraph nfmo fme)
where nfmo = addToFM fmo opnd []

addToNodeMap adds a list of OperandNodes in the NodeMap.

addToNodeMap :: NodeMap -+ [OperandNodel -+ NodeMap

addToNodeMap nMap [] = nMap

addToNodeMap nMap (opnd@(EzpressionNode e ci): opnds) =
addToNodeMap (addEntry nMap (e,opnd)) opnds

conv2Expr does an important conversion from StateRef to OperandNode. When
we are adding output entries to the NodeMap, all of the output entries in the state-
ments are StateRefs. Whereas when we are looking up for entries in the NodeMap,
OperandNode entries are being looked up. This function converts StateRef to
OperandNode which contains BasicEzp entries so that they can be added in the .
NodeMap for lookup.

conv2Expr :: StateRef -+ Int -+ OperandNode

conv2Expr (SC sc) i = ExzpressionNode (Variable sc) i
conv2Expr (SCX scx) i = EzpressionNode (VariableX scx) i
conv2Expr (Mem mr) i = EzpressionNode (MemoryConstant mr) i

.3 Other Modules

The other modules to generate data flow equations are Dfg.1hs (See Section 9.3),
Dfe2Dfg.1hs (See Section 9.4) and GarbageCollect.lhs (See Section 9.5) which
are already included in the thesis.

Appendix H

DFE Solver

Here we include the implementation of Data Flow Equation solver.

H.1

FindPathAnt

The main module is called FindPathAnt.
This tool is used to find the symbolic interpretation of a given code segment i.e.

the solution of the functional expressions of inputs and outputs. It also finds the

execution sequence and system of equations of the given code segment. We take the
Control Flow Graph of that code as input. '

module

import
import
import
import
import
import
import
import
import

Main where

qualified Gzl

Text.XML.HaXml.Xml2Haskell

System (getArgs)

MyGraph

SolveEzpr (Input, Output, dividePathCondSym)
Ezp

Data.List (intersperse)

Control.Monad.Error

I0

222

H. DFE Solver 223

The main function of the program takes three arguments: They are one GXL file
that is the Control Flow subgraph (of the code segment), start node, and the output
file to be generated. By reading the GXL file, we make the our internal representation
of the subgraph and then find the symbolic interpretation of the code in the output
file.

main = (de
[infile, start, outfile] € getArgs
putStrLln ("Reading from "++infile)
value € fReadXml infile :: IO Gzxl.Gzl
putStrLn ("Writing to "++outfile)
let sval = length $ takeWhile (# ’.’) infile
putStrLn (show sval)
if (outfile = "-")
then putStr $ show $ prtyPrint value start sval
else do writeFile outfile $ show
$ prtyPrint value start sval
putStrLn "Done."

) ‘catchError‘ usage

usage :: IOError = I0 ()
usage e = do
putStrLn "Usage: FindPathAnt [input.gxl] start [output]"

These functions are used for pretty printing. They just separate different outputs

and print them in a nice manner.

prtyPrint :: Gzl.Gzl - String + Int + [String]
prtyPrint value st sv = tuplePrint tupleList
vhere tupleList = dividePathCondSym (gx1ToMyGraph value (sv+1)) st

tuplePrint :: (ConditionStmt, [Recur_Stmt],Input,Output, [Recur_Stmt])
- [String]
tuplePrint (pCond,exec,input,output,systEq) =

224 H. DFE Solver

intersperse " " (

"PathCondition:" : show pCond :
"Instruction Execution:" : show exec :
"Input:" : show input :

"Output:" : show output :

"System Of Equations:" :show systEq :[])

H.2 Other Modules

The only other module to solve data flow equations is SolveEzpr.lhs (See Section
10.2) which is already included in the thesis.

Bibliography

[ASUS6)

[CCss]

[CGO03]

[CKK*04]

[DMW05]

[Eve04]

[FF95)

Alfred V. Aho, Ravi Sheti, and Jeffery D. Ullman. Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

D. L. Clutterbuck and B. A. Carre. The verification of low-level code.
Software Engineering Journal, 3(3):97-111, May 1988.

Dino Mandrioli Carlo Ghezzi, Mehedi Jazayeri. Fundamentals of Software
Engineering. Prentice Hall, 2nd edition, 2003.

J. Carette, W. Kahl, R. Khedri, M. Lawford, K. Sartipi, and A. Wassyng.
Procedure for reverse engineering of high-level requirements from assem-
bly code. Technical Report Revision-0, Reverse Engineering Project,
Dept. of CAS, McMaster University, July 2004.

Ivo Diintsch, Wendy MacCaull, and Michael Winter, editors. 8th Interna-
tional Conference on Relational Methods in Computer Science (RelMiCS
8) and 8rd International Workshop on Applications of Kleene Algebra,
St. Catherines, Ontario, Canada, Feb. 22-26 2005, 2005. (participants’
proceedings, to appear).

Kevin Everets. Assembly language representation and graph generation
in a pure functional programming language. Master’s thesis, Dept. of
Computing and Software, McMaster University, December 2004.

Y.A. Feldman and D. A. Friedman. Portability by automatic transla-
tion; a large scale case study. In Proc. 10th Knowledge-Based Software
Engineering Conference, 1995.

225

226

BIBLIOGRAPHY

[FS03]

[Has]

[How05]

[Hug90]

[IBM70]

[KACO4]

[K.H95)

[Knu84]

[LBY6]

[MF96]

Thomas Fahringer and Bernhard Scholz. Advanced Symbolic Analysis
for Compilers: New Techniques and Algorithms for Symbolic Program
Analysis and Optimization, volume 2628 of Lecture Notes in Computer
Science. Springer, 2003. DBLP, http://dblp.uni-trier.de.

The Haskell Home Page. Electronically available at
http://www.haskell.org/.

D. Howe, editor. The Free On-line Dictionary of Computing. June 2005.
Electronically available at http://wombat.doc.ic.ac.uk/.

John Hughes. Why Functional Programming Matters, In D. Turner,
Editor, Research Topics in Functional Programming. Addison Wesley,
1990.

IBM Field Engineering Theory of Operation, 1800 Data Acquisition and
Control System, Processor-Controller. IBM Systems Development Divi-
sion, Product Publications, Department G24, San Jose, California 95114,
1970.

Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette. Choices
in data flow for declarative assembly. In Diintsch et al. [DMWO05]. (par-
ticipants’ proceedings, to appear).

K.H.Bennett. Legacy systems: Coping with success. In IEEE Software,
volume 12, No. 1, pages 19-23, January 1995.

Donald E. Knuth. Literate Programming, volume 27(2), pages 97-111.
The Computer Journal, 1984.

Tom Lake and Tim Blanchard. Reverse engineering of assembler pro-
grams: A model-based approach and its logical basis. In Proceedings of
the 8rd Working Conference on Reverse Engineering (WCRE’96). IEEE
Computer Society, 1996.

P. Morris and R. Filman. Mandrake: A tool for reverse-engineering ibm
assembly code. In Proceedings of the 3rd Working Conference on Reverse
Engineering (WCRE’96), pages 5865, November 1996.

BIBLIOGRAPHY 227

[MGH*01]

[NN99)

[OCF+88]

[OSRSCO01]

[Pro05]

[RPK96]

[Tur37]

[War00]

[WFO03]

Michael B. Monagan, Keith O. Geddes, K. Michael Heal, George Labahn,
Stefan M. Vorkoetter, James McCarron, and Paul DeMarco. Maple 7
Programming Guide. Waterloo Maple Inc., 2001.

Hanne Riis Nielson and Flemming Nielson. Semantics With Applications:
A Formal Introduction. John Wiley and Sons, July 1999.

I. M. O’Neill, D. L. Clutterbuck, P. F. Farrow, P. G. Summers, and
W. C. Dolman. The formal verification of safety-critical assembly code.
In W. D. Ehrenberger, editor, Safety of Computer Control Systems 1988,
pages 115-120. International Federation of Automatic Control, Pergamon
Press, November 1988.

S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS
System Guide, Language Reference and Prover Guide. Computer Science
Laboratory, SRI International, Menlo Park, CA, November 2001.

Program-Transformation.Org. June 2005. Electronically available at
http://www.program-transformation.org.

S. N. Roberts, R. L. Piazza, and D. G. Katz. A portable assembler re-
verse engineering environment (PARE). In Proceedings of the 8rd Work-
ing Conference on Reverse Engineering (WCRE’96). IEEE Computer
Society, 1996.

AM. Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proceedings of the London Mathematical Soci-
ety, volume Series 2, 42, pages 230265, (1936-37). Electronically avail-
able at http://www.abelard.org/turpap2/tp2-ie.asp.

Martin Ward. Reverse engineering from assembler to formal specifications
via program transformations. In Proceedings of the Seventh Working
Conference on Reverse Engineering (WCRE’00), NOV 2000.

Geoffrey Watson and Colin Fidge. Modelling assembler programs with
an application to compilation. Technical Report 03-GW-1, Software Ver-
ification Research Centre, The University of Queensland, July 2003.

228

BIBLIOGRAPHY

[Wic05)

[Win01]

[Wu04]

Wikipedia, The Free Encyclopedia. June 2005. Electronically available at
http://en.wikipedia.org.

Andreas Winter. Exchanging graphs with GXL. Technical Report 9-2001,
Universitét Koblenz-Landau, Institut fiir Informatik, Rheinau 1,Koblenz,
2001. D-56075.

Jun Wu. Formalization of GXL in Z notation. Master’s thesis, Dept. of
Computing and Software, McMaster University, 2004.

