
SYMBOLIC INTERPRETATION OF LEGACY ASSEMBLY LANGUAGE

SYMBOLIC INTERPRETATION OF

LEGACY ASSEMBLY LANGUAGE

By

PULAK KUMAR CHOWDHURY, BSc. ENGG.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Applied Science
Department of Computing and Software

McMaster University

© Copyright by Pulak Kumar Chowdhury, August 18, 2005

ii

MASTER OF APPLIED SCIENCE(2005)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: Symbolic Interpretation of Legacy Assembly Language

AUTHOR: Pulak Kumar Chowdhury, BSc. Engg.(BUET)

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xi, 228

Abstract

Many industries have legacy software systems which are definitely important to them

but are however, difficult to maintain due to a lack of understanding of those systems.

This occurs as a result of inadequate or inconsistent documentation. Although the

costs of redesigning the system may be large, some organizations still plan to reverse

engineer the software specification documents from the code to alleviate a large burden

from such endeavour. This thesis provides an incremental and modular approach to

create a process and tools to extract the semantics of legacy assembly code.

Our techniques consist of static analysis and symbolic interpretation in order to

reverse engineer the semantics of legacy software. We examine the case of IBM-

1800 programs in detail. From the abstract model of the operational semantics of

IBM-1800, we simultaneously obtain an emulator and a symbolic analysis process.

Augmented with control flow information, we can use the symbolic analysis to provide

complete semantics for the code sequences of interest. We can also generate Data

Flow Graphs to depict the flow of data in those code segments. The whole process

of extracting semantic information from the assembler codes is fully automated with

only a little human intervention at the initial step.

We use Haskell as our implementation language and its important features help

us to create modular and well structured software. The literate programming docu

mentation style in this thesis increases the readability and consistency of the imple

mentation's documentation.

The process and the associated tools created in this thesis are used in a large re

verse engineering project, which has a goal to extract requirements specification from

legacy assembly code. This project is funded jointly by Ontario Power Generation

(OPG) and CITO (Communications and Information Technology Ontario).

iii

Acknowledgements

This thesis would not have been possible without the support of many people. Many

thanks to my supervisor, Jacques Carette, who guided me through the whole research

and read my numerous revisions to correct them. Also thanks to my committee

members, Wolfram Kahl and Alan Wassyng who always offered guidance and support.

Thanks to my group members whose valuable suggestions helped me a lot. A special

thank you goes to my fellow student Olivier Dragon for proof reading and correcting

important parts of my thesis. And finally, thanks to my parents and numerous friends

who endured this long process with me, always offering support and love.

iv

Contents

Abstract

Acknowledgements

Contents

List of Figures

1 Introduction

1.1 Overview

1.2 Thesis Organization.

2 Problem Definition

2.1 Background

2.1.1 Legacy Systems

2.1.2 Ontario Power Generation

2.2 Reverse Engineering Project

2.2.1 Overview ...

2.2.2 Tool Hierarchy

2.3 Semantic Analysis ...

2.3.1 IBM-1800 Assembly Language .

3 Tools and Techniques

3.1 Graphs

3.1.1 Control Flow Graph

3.1.2 Data Flow Graph ..

v

iii

iv

v

xi

1

1

4

6

6

7

9

10

11

12

13

14

16

16
17

17

vi

3.2 Semantic Analysis

3.3 Program Transformation

3.4 Implementation Tools .

3.4.1 HASKELL .

3.4.2 GXL ..

4 Process Overview

4.1 Major Steps in Our Process

4.1.1 Control Flow Graph Generator

4.1.2 Emulator

4.1.3 One Step Symbolic Emulator .

4.1.4 MultiStep Symbolic Emulator .

4.1.5 Generating Data Flow Graphs .

4.1.6 Solving Data Flow Equations

4.2 Software Engineering Principles

4.2.1 Rigor and Formality ..

4.2.2 Separation of Concerns .

4.2.3 Modularity

4.2.4 Abstraction

4.2.5 Anticipation of Change .

4.2.6 Generality ...

4.2. 7 Incrementality

5 Operational Semantics of Assembler

5.1 IBM-1800 System

5.1.1 Stored Program Concept

5.1.2 Machine Language

5.1.3 Data Format ...

5.1.4 Instruction Format

5.2 Semantics from Manual . .

5.2.1 Instruction Set ..

5.2.2 Instruction Example

5.3 Model of Operational Semantics

5.3.1 LOAD/DOUBLE LOAD(LD/LDD) .

CONTENTS

19

20

21

21

24

25

25

27

28

29
29
30

31

32

32

32

33

34

34

35

36

37

37
38

39
40

40

42

42

45

46

47

CONTENTS

5.3.2 MODIFY INDEX AND SKIP (MDX)

6 Emulator

6.1 Introduction .

6.2 IBM-1800 Emulator.

6.2.1 Model .

6.3 Memory

6.4 CPU Emulator . .

6.4.1 Instruction .

6.4.2 State

6.4.3 Emuating Instruction Execution .

6.5 Output Example

7 One Step Symbolic Interpretation

7.1 From Operational Semantics .. .

7.2 Symbolic Interpretation

7.2.1 Datatype for Instructions

7.2.2 Datatype for Conditions

7.3 Code Example ..

7.4 Output Example

8 Multi Step Symbolic Interpretation

8.1 Introduction

8.2 Control Flow Graph

8.2.1 Internal Data Structure of CFG

8.3 Marked-up Control Flow Graph

8.4 Data Flow Equations

8.4.1 Datatype Definition . . .

8.5 Modeling Control Flow

8.5.1 Finding Paths in the Control Flow Graph

8.5.2 Finding Data Flow Equations

8.6 Examples

8.6.1 SC Example . .

8.6.2 GSC Example .

vii

48

49

49
50

51

51

53

54

58

58

60

62

62

64
68

71

73

74

75

75

76

76

82

86

86

93

94
97

109

109

110

viii

8.6.3 LC Example

9 Generating Data Flow Graphs

9.1 Data Flow Graph

9.2 DFG Generation Process .. .

9.3 Internal Data Structure of DFG

9.4 DFG Generation .

9.5 Garbage Collection

9.6 DFG Examples

9.6.1 SC Example (Before Garbage Collection) .

9.6.2 SC Example (After Garbage Collection)

9.6.3 GSC Example

10 Solving Data Flow Equations

10.1 Introduction

10.2 Finding System of Equations

10.2.1 Solving Data Flow Equations

10.2.2 Finding Inputs and Outputs .

10.2.3 Finding System of Equations.

10.3 Example

10.3.1 Straight-line Code

10.3.2 Generalized Straight-Line Code (GSC): .

11 Discussion and Future Work

11.1 Contribution.

11.2 Limitations

11.3 Future Works

11.3.1 Graph Transformer .

11.3.2 Finding Preconditions

A Semantic Model of Instructions

A.1 Semantics of Instructions

A.1.1 LOAD/DOUBLE LOAD(LD/LDD) ...

A.1.2 STORE/DOUBLE STORE(STO/STD)

CONTENTS

113

117

117

117

118

123

135

140

140

141

141

146

146

147

147

157

158

160

160

163

166

166

168

169

170

170

172

172
174

174

CONTENTS ix

A.1.3 LOAD INDEX/STORE INDEX (LDX/STX) 175
A.1.4 ADD/DOUBLE ADD(A/AD) 175

A.l.5 SUBTRACT/DOUBLE SUBTRACT(S/SD) 175
A.l.6 MULTIPLY /DIVIDE(M/D) 175

A.1.7 LOGICAL AND/OR(AND/OR) 176

A.1.8 LOGICAL XOR (XOR) . 176

A.1.9 SHIFT (SLA/SLT/SRA/SRT) 177

A.l.10 BRANCH AND SKIP/ BRANCH AND STORE(BSC/BSI) . 177

A.l.ll MODIFY INDEX AND SKIP (MDX) 178

A.1.12 COMPARE (CMP)/ DOUBLE COMPARE (DCM) 178

B Common Codes 179
B.1 IBM-1800 . 179

B.2 Stack . 189

C Emulator 191

C.1 Lst2String . 191
C.2 Emulate . 193
C.3 Other Modules . 198

D One Step Symbolic Emulator 199

D.1 OneStep . 199

D.2 Other Modules . 207

E Marked-up Control Flow Graph Generator 208

E.1 Gxl2MyGraph . 208
E.2 Other Modules . 209

F Data Flow Equations Generator 210

F.1 Graph2Expr . 210
F.2 FindJoin . 212

F.3 Other Modules . 215

G Data Flow Graph Generator 216

G.1 DFDGxl . 216

X CONTENTS

G.2 Dfe2DfgCommon 217

G.3 Other Modules 221

H DFE Solver 222
H.1 FindPathAnt 222

H.2 Other Modules 224

Bibliography 225

List of Figures

2.1 Tool Suite Architecture of the Reverse Engineering Project 12

3.1 Control Flow Graph 18

3.2 Data Flow Graph . . 19

4.1 The Steps of Symbolic Interpretation Process 26

8.1 Pictorial Representation of Code Categories 99
8.2 Shape of GSC 104

8.3 Shape of Looping Codes 108

8.4 Control Flow Graph of the Segment Ox35C4-0x35DF 112

8.5 Control Flow Graph of the Segment Ox35C9-0x35D3 . 114

9.1 DFG Generation Process 118

9.2 Data Flow Graph of the Segment Ox35B6-0x35BD (Before Garbage

Collection) 143

9.3 Data Flow Graph of the Segment Ox35B6-0x35BD (After Garbage Col-

lection) 144

9.4 Data Flow Graph of the Segment Ox35C4-0x35DF . 145

11.1 Finding Preconditions • 0 • 0 •• 0 • 0 0 •••••• 171

xi

xii LIST OF FIGURES

Chapter 1

Introduction

1.1 Overview

Business organizations spend a large part of their efforts and budget maintaining

existing software, enhancing with new features and adapting it to newer environments.

Studies show that the maintenance of existing software can cost often more than 60

percent of all the development efforts. Maintenance in the life cycle of software

is inevitable for reasons like removal of errors, new requirements for the software

or introduction of new platforms etc. Maintenance can be defined as the set of

activities that occur after the software has been deployed [CG03]. Development of new

software from scratch when new requirements arise is grossly impractical as companies

make large investments in developing existing software, creating infrastructure and

organizational practices around the software, and in training users. Thus, existing

software applications are assets to these organizations and as such are needed to be

well maintained before being abandoned.

Nevertheless, since these systems were developed decades ago, they are usually

written in older languages and use older software engineering methodologies. Legacy

software is, henceforth difficult to modify and maintain. Still, the need for change

is obvious as these legacy systems are consuming too much maintenance budget and

efforts. Moreover these systems are becoming less efficient compared to the systems

developed on more sophisticated technology as available today. Most of the software

engineering approaches focus mainly on forward engineering- that is, on the software

1

2 1. Introduction

development process where we move from initial requirements to logical design and

design to physical implementation of the system. In this thesis, we instead try to

take the legacy software perspective, by developing some tools to aid re-engineering

the legacy software.

Re-engineering is a process through which "an existing system undergoes an alter

ation, to be reconstituted in a new form." [CG03]. Generally, the process is comprised

of two distinct phases. In the first phase, the software personnel moves backwards,

from the existing system to the requirements specification. This helps him to un

derstand the structure of the system and discover ways to modify it. This phase is

often called Reverse Engineering. During the next phase, the software engineer pro

ceeds forward and actually designs and implements suitable changes. The main task

of reverse engineering is program comprehension, where the software engineer tries

to understand the program structure, working algorithms, data structures. It is to

figure out the main components of the software that are needed to be reimplemented.

As such, the software engineer needs to identify the main system components, their

relationship and an abstract representation of the system to properly realize how the

system functions. Complete documentation of the software which is consistent with

the implementation very helpful to complete those tasks. Unfortunately, in most

cases, complete documentation is not available. In fact, the software engineer will

often need to proceed through the tiresome process of recovering the design from the

code and rebuild the requirements specification from low level code implementation.

Lack of documentation and poor software engineering techniques during the for

ward engineering process of developing software are the main factors affecting the

cost and effort of reverse engineering [CG03]. Most organizations that have legacy

software and who intend to re-engineer their software, suffer this problem of lack

of documentation. These software systems were developed at a time when software

engineering technology was still in infancy. To make matters worse, in some cases

documents were not properly updated during maintenance of the software; leaving

them in an inconsistent state with the implementation.

Ontario Power Generation (OPG) is such an organization which has legacy soft

ware systems written in platform specific legacy assembly and is having difficulty

maintaining those systems. The systems lack proper documentation or have incon

sistent documentation, making the maintenance more precarious. These days, OPG

1. Introduction 3

intends to re--engineer their systems into newer ones which will be running on mod

ern platforms. In this respect, they have started are--engineering project and in the

first phase, are trying to extract the original requirements specification of their sys

tems. This reverse engineering process is being hindered by poor and inadequate

documentation. During the maintenance, they have tried to improve the consistency

between the code and the documentation. However unforeseen causes (one being

introduction of new features) have made the documentation rather convoluted. The

reverse engineering project at McMaster is intended to help OPG with developing a

new tool suite architecture and creating a complete process to reverse engineer the

requirements specification of their systems.

The project, named Reverse Engineering of High-level Requirements from Assem

bly Code, aims to create a complete process with necessary methods and tools to help

software engineers in reverse engineering legacy software system to high level abstract

description of the system with as minimal human interaction as possible [CKK+04].

Finding abstract specifications of a system from low level assembler code includes a

set of different activities. Existing tool support is enough for some cases while for

the others new methods and tools have to be developed. That is why in the reverse

engineering project, a tool hierarchy to extract the requirements description of the

legacy software is being developed. We, as a part of the project, intend to create

an automated process and associated tools to find the semantical description of the

assembler code. Our main goal is to understand the meaning of the low level codes

by translating them into mathematical equations. We use different techniques of

symbolic analysis coupled with various compiler technology to extract the symbolic

meaning of the code. The work presented in this thesis depicts a process to find the

semantics of the legacy assembler codes by symbolic analysis.

Symbolic analysis of a program is a static analysis technique [FS03] that executes

the instructions of a program with some of the values (of registers, input channels or

memory location) as unknown symbols. This generates an ordered sequence of data

flow equations which, if solved, gives a precise mathematical representation of the

computations done in that program. Existing symbolic analysis tools do not always

give accurate representations of the meaning of the program because they tend to

introduce approximations to the semantics very early in the processing. By working

with systems of symbolic, conditional data flow equations instead of sets of solutions,

4 1. Introduction

we can be more accurate.

While various static analyses, including abstract and symbolic interpretation, have

been successfully used for high-level programming languages, the problem becomes

considerably more difficult for assembly language programs, and even more so for

legacy software. In particular, while the control structures in most modern high

level languages (sequencing, if-then-else, while, etc) have very well understood

semantics and effect the control flow in a predictable fashion, assembly programs

liberally use gotos. Branching code is written in such a way that it can not be

easily translated to a sequence of high-level structures, at least not without code

duplication. Other complications (to be detailed later) include lack of data/ code

separation, frequent computed gotos, and even some (relatively mild) instances of

self-modifying code.

What we are attempting to achieve here is, via symbolic interpretation, control

flow analysis, and condition propagation, to represent a program's semantics by a

system of conditional symbolic data flow equations. If this system of equations can

then be solved in a space of semantically meaningful expressions, we can obtain an

understandable representation of the underlying semantics. To a certain extent, we

are free to choose our solution space; this allows us to choose spaces with very rich se

mantics. In particular, instead of choosing a high-level programming language (which

would only "move" our understanding problem up some levels instead of resolving

it), we choose a variety of specification languages and mathematical languages. Ex

plicitly, we are looking at producing output that can be read natively by both PVS

[OSRSCOl] and Maple [MGH+Ol].

1.2 Thesis Organization

In the beginning we present the overview of the problem dealt with in the thesis.

The backgrounds of the reverse engineering project and the legacy systems are also

included. We then show different techniques which proved useful in the semantic

analysis process; followed by discussion on various implementation tools.

Succeeding this, we describe the whole symbolic interpretation process in brief.

We also describe different tools and their interaction inside the process. Later, we

include various software engineering principles which are followed during the process

1. Introduction 5

development.

The following chapter contains the operational semantics of the IBM-1800 as

sembler with brief description of IBM-1800 Data Acquisition and Control System.

Examples from the abstract model of the operational semantics of assembler instruc

tions are shown. The rest of the model is included in Appendix A.

We then include the implementation techniques of the emulator which are devel

oped on the abstract model of the assembler instructions with sample outputs from

the emulator. We also present one-step symbolic emulation tool, which is the first

step toward symbolic interpretation process, accompanied with its design and imple

mentation strategies. The presentation style is in literate programming [Knu84]. In

this step, we follow the same model of abstract semantics from Appendix A.

Once the one-step symbolic representation is shown, we explain its use in gener

ation of marked control flow graph with a detail documentation of the internal data

structure of the graph. We furthermore discuss the tool which is used to generate

the Data Flow Equations by multi step symbolic interpretation. The representation

of these tools are also given as literate programs.

After the generation of Data Flow Equations (DFE) of the assembler codes, we

focus on generating Data Flow Graphs (DFG) from the DFEs. We discuss the detailed

process of producing DFG from the DFEs and the tool associated with it (in literate

Haskell programs). Some DFG diagrams are also included as examples.

To conclude, we describe the tool to solve the DFEs in their closed forms. We

also add several examples of the solved DFEs for different code patterns. Addition

ally, we present all the Haskell modules which were not discussed in the chapters as

appendices.

Chapter 2

Problem Definition

In this chapter, an overview of the problem that we deal with in the thesis is given.

First, we provide the background of the problem with the context of legacy systems

and a specific instance of legacy systems in Ontario Power Generation (OPG). Next,

we include a brief introduction of the reverse engineering project (of which this thesis

is a part) and the hierarchical structure of the project components. Later, we present

a brief description of the subject matter of this thesis.

2.1 Background

For the last 20 years, computer technologies are booming like never before. New

technologies are being introduced very frequently. Often, software system developed

in one technology may find itself inefficient within a short span of time due to intro

duction of newer efficient technologies. Constant technological advance often weakens

the business value of the systems which have been developed over the years through

huge investments. Another important thing to note is that advancement in hardware

technologies is much more faster than that of software. For this reason, many soft

ware systems can not take the benefits of newer hardware as they are implemented to

take full advantage of the hardware architecture they are written for. Although more

cost-effective technologies are available, it is estimated that most of the IT systems

are running on legacy platforms. Maintaining and upgrading those systems are some

of the most difficult challenges today. It is worthy to change those systems into newer

6

2. Problem Definition 7

technologies for gaining most efficient performance while keeping their functionalities

intact. But study has indicated that most of these transformation projects took lots

. of investments and hard work. Still the need of change is obvious as the operation and

maintenance budget for those systems range around 85-90% of their total life cost.

We can define the systems which are running in older platforms as legacy systems.

2.1.1 Legacy Systems

The Free On-Line Dictionary Of Computing (FOLDOC) defines legacy system as, "A

computer system or application program which continues to be used because of the

prohibitive cost of replacing or redesigning it and despite its poor competitiveness

and compatibility with modern equivalents. The implication is that the system is

large, monolithic and difficult to modify." [How05]. Bennett also gives some more

detailed characteristics [K.H95] of legacy system:

• it may be written in assembly or an early version of a third generation language.

• probably developed using state-of-the-art software engineering (programming

pre 1968) techniques.

• many perform crucial work for the organization.

• generally large.

• generally hard to understand hence hard to maintain.

Many information technology related companies have this kind of systems which

were developed around 30 years ago. As said in the definition of legacy system, those

software are developed in a time when sophisticated software engineering techniques

were not available and people who implemented those systems were not aware of

modern design or coding style. In many of the cases, these systems might be running

safety critical systems and were written in a variety of assembly languages. Moreover,

these software were developed taking efficiency as the main goal and lack the clarity

needed for large software systems. During that time, the computation power of the

computer was expensive and thus they were implemented to take all the advantages

8 2. Problem Definition

of the legacy hardware architecture. As such, they are not easily portable into newer

systems and ended up in some convoluted code.

Over the years, the coding style and the documentation procedures have changed

in the area of software engineering. The styles that were followed in legacy systems

became obsolete and convey almost no meaning now-a-days. In the lifetime of the

legacy software, as the software was augmented with new features, changed or im

proved for better performance, the documentations were not adjusted properly in

many of the cases. To make the situation worse, for non safety critical part of the

software, the later adjustment documents of the software might be missing or are

changed in a way which does. not make any sense in relevance of the whole system.

People who developed and implemented the software may be unavailable (shifted

somewhere else, retired) to get help for proper understanding of the code. Conse

quently, these companies find themselves in a situation where they are depending

on legacy software; for which they no longer have original requirements and proper

documentation to change or adjust the codes in near future.

A temporary solution of those kind of software might be emulating the legacy

hardware underneath and then validating the emulator instead of determining the

requirements of the software. This fix is temporarily sufficient, however, the lifetime

maintenance and changes are still required which can be expensive and hazardous for

the lack of documentation.

Legacy systems have worked fine for many years without proper documentation -

they may do well for some future years. But as hardware technologies are now getting

better than those of legacy software, so the companies depending on them might be

planning to transfer the systems into newer hardware to get better performance.

Also they might want to develop the systems using modern software engineering

technologies so that they will be reliable and serve them for another 30 years. This

may be very expensive but still the organizations find themselves in a difficult position

depending on the legacy systems which are hard to maintain and change for poor

documentation. So, they would plan to re-engineer their legacy systems to develop

modern systems and first step toward it will be extracting the requirements of the

legacy software system in a reverse engineering process.

2. Problem Definition 9

2.1.2 Ontario Power Generation

As indicated in Chapter 1, Ontario Power Generation (OPG) is such an industry

which has legacy software systems developed 30 years ago. They are still using those

software while the developers of those systems left the industry long ago. Many of

its original developers were not software related people and also proper software de

velopment strategies were not available during those days. As a big organization,

OPG must have tried to use state-of-the-art software engineering methodologies to

create those software. Still the systems developed by them lack modern documenta

tion style needed for future maintenance. Moreover, the non safety critical part of the

code is either not rigorously documented during implementation or its documenta

tion is difficult to locate. Again, as the developers of these software are from different

engineering background, their main goal was to develop an efficient software consider

ing the constraints of the legacy hardware architecture and thus they produced codes

which are not easily portable into different platforms.

During the lifetime of those software, different patches of codes were implemented

to augment different features and to deal with the change of the power plant structure.

Some of those patches have to deal with extreme resource constraints and thus were

developed in a convoluted manner creating a layered code. All those patches have

to be properly comprehended before gaining the understanding of the changes in the

software. Although extreme care is taken during the previous adaptive maintenance

of the system, in the long run, maintenance of the software became dangerous and

more expensive.

That is why, OPG has launched a four year long reverse engineering project to

cope up with the situation and is trying to determine the original requirements of the

software by rigorously examining every module of those software. They are aiming to

re-implement the software based on the extracted requirements with the modern soft

ware engineering methodologies applied to produce correct, robust and maintainable

software which may serve them without failure for another 30 years. In the course

of the project, they are providing funds (jointly with CITO- Communications and

Information Technology Ontario) in a project of reverse engineering of requirements

from legacy assembly code at McMaster University. The work in this thesis is a part

of that reverse engineering project.

10 2. Problem Definition

Next, we give a brief snapshot of the hardware and software technologies used

in OPG and which are related with our reverse engineering project. Currently, two

main hardware machine types in OPG are examined in this project: the IBM-1800

and the Varian V75. The reverse engineering group at McMaster initially got the

Boiler Pressure Control (BPC) code, which is a module of the larger piece of software

based on IBM-1800 hardware architecture. Most of the code segments presented as

examples in this thesis are parts of this BPC code. Later, we are provided with

the assembly listings which are supposed to be the whole piece of software for two

machines (DCC 1 and DCC 2) with four subunits (UNITS 1-4) and each of the

subunits runs a slightly different image than the rest. But still there remain issues

in determining which source files are used to generate which image. An attempt was

made to generate the complete image of the source code for one machine (DCC 1) and

more information were needed to complete that task. The image can be extracted by

comparing the slight differences among different images of the machines and subunits.

OPG no longer uses IBM-1800 machines and replaced them with the emulators for

those machines. This temporary measure gave them chances to avoid issues related

with maintaining legacy computer hard wares while giving away the cost of validating

the emulator to represent the true machine behaviour of IBM-1800. Still they have to

deal with all the software maintenance issues and hopefully this re-engineering effort

will provide them with recovered original requirements. In that way, they can proceed

to re-implement their systems in modern hardware platforms and getting rid of the

constraints of IBM-1800 and Varian V75 systems.

2.2 Reverse Engineering Project

This section gives a brief overview of the project goal and hierarchical structure of

the tool suite developed in the project to satisfy the goal. The work presented in this

thesis is a part of the tool suite architecture of the reverse engineering project. A

brief overview of our work is also provided in the next section.

2. Problem Definition 11

2.2.1 Overview

As we stated earlier, industries in Ontario also have safety or mission critical sys

tems that are dependent upon legacy software and hardware systems. Like most of

the legacy systems, the documentations of these systems are often convoluted, not

updated properly or in some cases missing entirely. Many of these systems are also

developed in very old assembly languages. As the demand for migrating those legacy

software in newer platforms is increasing in the industries, in order to be able to

transfer those assembly language applications to a new, more robust platform, or for

easy maintenance and update, companies need to properly extract and document the

software's original requirements [CKK+04].

Most of the previous efforts in this area of reverse engineering mainly aim to

transfer these "low level" languages into some high level languages like C which

are supposed to be equivalent to the "low level" programs. In this project, we are

specially concerned with the legacy assembly languages which do not have modern

programming style and also the systems implemented in those languages feature arbi

trary design decisions resulting from the legacy platform constraints. So transforming

those codes into high level ones may produce codes which are convoluted and difficult

to read. By this kind of transformation, its not easy to determine which require

ments are parts of the problem domain and which ones are due to legacy architecture

[CKK+04]. In the reverse engineering project, we instead generate a tool hierarchy

to aid obtaining high level requirements of those assembly language applications.

The goal of the CITO project at McMaster named Reverse Engineering of High

level Requirements from Assembly Code is "to create methods and tools to assist a

developer in reverse engineering a legacy assembly program to a high level require

ments specification that is independent of arbitrary design decisions (but still captures

the rationales of those decisions in terms of non-functional requirements)." [CKK+04]

So the main theme of the project is to take existing legacy assembly language software

from the industry and using as minimal human interaction as possible, generate a set

of requirements documents for the software which can later be used tore-implement

the software in modern platforms satisfying the original requirements (extracted in

the reverse engineering process).

12 2. Problem Definition

2.2.2 Tool Hierarchy

Extracting high-level requirements from assembler code comprises of different activi

ties. We can use existing tool support for some of those while for others we have to

create new tools. Thus our reverse engineering project will be generating a tool suite

to support different activities by different tools and also a procedure which will be

followed to generate the requirements documents. Figure 2.1 (taken from [CKK+04])

gives a presentation of the tool hierarchy and interaction among the tools where

arrows denote "used by" relations.

Requirement V&V Tools
(Scenario Analysis, Testing etc.)

Figure 2.1: Tool Suite Architecture of the Reverse Engineering Project

The work represented in this thesis is the description of the tools that can be fit

in the highlighted boxes at the bottom left corner of Figure 2.1 which are "Semantic

Analysis Tools" , "Semantic Analysis Library" and "Functionality Analysis Tool".

2. Problem Definition 13

The output of those tools will be used by Design Recovery Tools and Timing Analysis

Tools towards generating the requirements document. In the following section, we

give a brief overview of the Semantic Analysis process which is presented in the thesis.

2.3 Semantic Analysis

The semantic analysis tools capture the semantics of the assembly code as an aid

to understanding the system's requirements. By combining flow graphs, semantic

information and abstract definition, we try to find semantic interpretation of different

control structures (for and while loops, if statements etc) in the assembler code. We

expect that control structures have to be used along with its semantic model to

properly capture the exact semantics of the underlying code although we restrict

ourselves to classical structures only.

In the semantic analysis process, our main concern can be described by the fol

lowing line: "we try to understand what the assembler program does". Given an

IBM -1800 assembler program, we represent the meaning of the program by some

mathematical equations. Those mathematical equations can be solved to find the

computation done by the program or can be pictorially presented to understand the

program in a better way. As the assembler codes (we are dealing with) are mainly

used for computation in a control circuitry, their meanings can be better represented

by a set of mathematical equations. We will be using symbolic interpretation, control

and data flow analysis (these terminologies are defined in Chapter 3) techniques to

present the meaning of the IBM-1800 assembler programs.

For this work, we shall take f?r granted that a formal specification of the opera

tional semantics of the assembler is a definite step forward in "understanding" what

a program does. This specification should be written in a specification language with

consistent semantics. In later steps, the specification will be used to find the meaning

of each instructions. Ultimately, for the functions in the assembler codes, we are

aiming to (automatically) extract nice closed-form formulas and their graphical rep

resentations that express the actual (or idealized) semantics of those functions and

thus of the assembler program. In the following subsection, we give a brief overview

of the IBM-1800 assembler programs and their pros and cons related to semantic

analysis process.

14 2. Problem Definition

2.3.1 IBM-1800 Assembly Language

The codes written in IBM-1800 legacy assembly language have complex control flow,

no data/code separation etc. We have an extremely complete and detailed descrip

tion of the operational semantics of the machine language [IBM70] which is partly

described in Chapter 5. Assembler programs can be assembled into either as a binary

image (which can be directly loaded into memory for execution) or as an assembly

listing (.1st) file. The .1st file is almost similar to the original source code, with

some extra information like: the relative address of the instruction, the opcode (hex

adecimal representation either 16 or 32 bit object), line number in the source code and

also a symbol (REL) to indicate which 16-bit words use relative or absolute address

during memory loading. To make the discussion more precise, here we present a small

code segment of IBM-1800 assembler code (adapted from the .1st files provided by

OPG):

OADDR REL 08J. S. NO. LABEL OPCD FT OPRNDS
3586 0 C129 0677 TRBFB LD 1 41

3587 0 A12A 0678 H 1 42
3588 0 1082 0679 SLT 2

3589 0 9128 0680 s 1 43

358A 0 A12C 0681 H 1 44

3588 0 108F 0682 SLT 15
35BC 0 A92D 0683 D 1 45

35BD 0 D12E 0684 STO 1 46

The .1st source code of the assembler program contains the following information:

• op codes and corresponding data (symbolic or immediate, as appropriate),

• relative addresses of the instructions,

• names for code blocks,

• names for "data" memory locations (in comments).

A human reading of those programs and operational specifications finds that

• there is no separation between code and data;

• there are many indirect (computed) jumps;

2. Problem Definition 15

• there is no "subroutine" concept used, although IBM-1800 supports subroutines

within a program;

• there is self modifying code, which however only modifies the content of ad

dresses or registers, in other words operands of the instructions;

• although IBM-1800 assembly language has condition checking for exceptions

(carry, overflow etc.), there is no exception handling in the code segments of

OPG. At least we could not find any in the code examined;

• there is no stack, only memory;

• there is fixed, known data size (16 bits, 32 bits).

The first 4 items are definite complications for program understanding. The last

3 items are certainly a definite impediment to writing programs, but turn out to be

quite useful in program understanding! They provide hard, definite constraints that

must hold true for the program to be meaningful. For example, as there is no carry

or overflow check in the code examined, then it must be the case that all arithmetic

operations must not cause either carries or overflows; this implies that some side

predicates must always be true for the program to be meaningful.

One important aspect of those source programs is that they are heavily com

mented; this is extremely helpful for the larger :.:everse engineering effort. Unfortu

nately, little automated use can be made of these comments, as:

• when the programs were maintained, the corresponding comments were not

always updated,

• block comments are not always in meaningful locations, so that they cannot be

used to identify meaningful blocks of code (i.e. functions),

• line comments do not always correspond to the corresponding instruction.

Needless to say, with the notable exception of "data" memory locations, the comments

do not exhibit enough structure to be reliably used in an automated process.

Chapter 3

Tools and Techniques

There has been increasing interest in the application of sophisticated program analysis

techniques to software development and maintenance tools. Such tools include those

which are used for program understanding, verification, testing, debugging, reverse

engineering etc. In this chapter, we present and describe some analysis tools and

techniques which are relevant to our symbolic interpretation process.

3.1 Graphs

Graphs are appropriate models for many problems that arise in computer science and

its applications. Specially in software engineering, Control Flow Graph (CFG), Data

Flow Graph (DFG), Component Graph (CG) etc. give a better analytical approach

to understand and characterize software architecture, static and dynamic structure

and meaning of the programs [CG03]. From a pictorial sketch (by graphs) of internal

structure of the code, it is always more comfortable to recognize the issues related

to software engineering analysis. That is why, graphs are always preferred by the

software engineers and researchers to understand, re-engineer and analyze codes.

A variety of graph analysis techniques are available for software engineering ap

plications. Control Flow Analysis, Data Flow Analysis, Analysis using Component

Graph are some of them. In Control Flow Analysis, Control Flow Graph (CFG)

is used to Analyse and understand how the control of the program is transferred

from one program point to another. Similarly, Data Flow Analysis uses Data Flow

16

3. Tools and Techniques 17

Graph (DFG) to show and Analyse the data dependencies among the instructions

of the program. Component Graph identifies the components of a program ; shows

the use relations among those components and is very useful in software architecture

identification and recovery.

In our symbolic analysis process, we use Control Flow Graph and Data Flow Graph

for assembler program comprehension. In the following subsections, we discuss those

two graph structures in detail.

3.1.1 Control Flow Graph

A control flow graph (CFG) [ASU86] of a program is defined by a directed flow graph

G = (N, E, x, y) with a set of nodes N and a set of edges E ~ N x N. A node

u E N represents a program instruction (statement), an edge u --+ v E E indicates

transfer of control between instructions u, v E N. Node x EN and node yEN are

the unique start and end node of G, respectively. Consider the control flow graph in

Figure 3.1. We have a set of nodes N = {x, 1, ... 7, y} and a set of edges. The start

node is denoted by x and the end node by y.

A CFG may not be connected, that is, some nodes may not be reachable from

the start node x. Therefore, whenever we refer to a CFG we mean the subgraph of a

CFG such that all nodes in the subgraph are reachable from the start node x and all

the nodes can reach the end node y, i.e. every node is assumed to reside on a path

from x toy.

3.1.2 Data Flow Graph

A data flow graph (DFG) of a program can be defined the same way as the control

flow graph. It is a directed flow graph G = (N, E) with a set of nodes N, a set of

edges E (ordered set of node pairs) such that E ~ N x N and a distinct end node

y E N. The start node may be one or two depending on the starting instruction of

the program.

The nodes and edges are divided into two groups which are different from CFG.

Nodes can be of type: Operator Node and Operand Node depending on the content

of the node. A node u E N is an Operator Node if it represents an operation in the

program and similarly a node v E N is an Operand Node if it is an operand of the

18 3. Tools and Techniques

Figure 3.1: Control Flow Graph

program. Shapes of the nodes distinguish among the nodes; box shaped nodes are

Operator Nodes and elliptical shape nodes are Operand Nodes. Edges can also be

of two types: In Edge and Out Edge. An edge u -+ v E E indicates an In Edge if

u, v E N, u is an operand node and v is an operator node. Again, an edge v -+ u E E

is an Out Edge if v, u EN, vis an operator node and u is an operand node. Let us

consider the data flow graph in Figure 3.2. We have a set of nodes N = {1, ... 6, x, y, z}

and a set of edges with the end node 6. Nodes {1, ... 6} EN are Operand Nodes and

nodes { x, y, z} E N are Operator Nodes. Edges like 4 -+ z are called In Edge and

edges like z-+ 6 are called Out Edge. A DFG may not be connected as there may

not be data dependency among all the instructions of a program.

3. Tools and Techniques 19

Figure 3.2: Data Flow Graph

3.2 Semantic Analysis

There are two main aspects of a computer language - its syntax and its semantics

[NN99]. The syntax defines the correct form for legal programs and the semantics

determine what they compute. The syntax is concerned with the grammatical struc

ture of the program while the semantics give the meaning of grammatically correct

programs. While the syntax of a language is always formally specified, the more

important part of defining its semantics is mostly left to natural language, which is

ambiguous and leaves many questions open. Hence methods are developed to describe

the semantics of computer languages. Here we shall consider only three approaches.

Very roughly, the ideas are as follows [NN99]:

20 3. Tools and Techniques

Operational Semantics: The meaning of a construct is specified by the com

putation it induces when it is executed on a machine. In particular, it is of interest

how the effect of a computation is produced.

Denotational Semantics: Meanings are modeled by mathematical objects that

represent the effect of executing the constructs. Thus only the effect is of interest,

not how it is obtained.

Axiomatic Semantics: Specific properties of the effect of executing the con

structs are expressed as assertions. Thus there may be aspects of the execution that

are ignored.

In our symbolic interpretation steps, we are mainly concerned about the opera

tional and denotational semantics. An operational explanation of the meaning of a

construct tells how to execute it. From the IBM 1800 manual, we use the operational

description of all the instructions to develop a semantic model of them. Later this

model is used to interpret the symbolic meaning of the assembler code.

Denotational semantics [NN99] is a methodology to define the precise meaning

of a computer language. In denotational semantics, a computer language is given

by a valuation function that maps programs into mathematical objects considered as

their denotation, i.e. meaning. Thus the valuation function of a computer program

reveals the meaning of computer programs . At the end of our symbolic interpretation

process, we will define the meaning of the assembler code by some mathematical

equations i.e. our symbolic interpretation process gives the denotational meaning of

the assembler codes without considering the synta-ctical premises of the program.

3.3 Program Thansformation

Program transformation techniques are helpful in the areas of software engineering like

program synthesis, reverse engineering, documentation generation etc [Pro05]. Lots

of theories, tools and applications on program transformation have been developed

for these areas.

What program transformation does is to change one program into another. The

language in which the program is written and the resulting program after the trans

formation are called the source and target languages, respectively. In a program

translation scheme, a program is transformed from a source language into a program

3. Tools and Techniques 21

in a different target language [Pro05]. Although transformations aim at preserving

the exact semantics of a program, it is usually not possible to retain all information

across a translation.

In the area of Reverse Engineering, the purpose of program transformation is to

extract from a low-level program a high-level program or specification, or at least

some higher-level aspects. Reverse engineering raises the level of abstraction and is

the dual of program synthesis [Pro05]. Examples of reverse engineering are decompi

lation in which an object program is translated into a high-level program, architecture

extraction in which the design of a program is derived, documentation generation, and

software visualization in which some aspect of a program is depicted in an abstract

way.

3.4 Implementation Tools

The tool suite architecture of the reverse engineering project is hierarchical and will

become more complex as it grows. That is why, it is more important to structure it

well. As we know, well-structured software is easy to write and debug. Moreover,

it provides a organized collection of modules that can be re-used in course of time

to reduce future programming costs. Hughes [Hug90] argued that modularity is the

key to efficient and successful programming. Efficient programming languages must

support modular programming as well. But modularity means more than modules

the success of decomposing a problem into parts depends directly on the ability to

glue solutions together. To assist modular programming, a language must be featured

with good glue for modules. In this regard, we look for a programming language

genre which provides us with efficient modularity features to generate well organized

software.

3.4.1 HASKELL

Hughes [Hug90] showed that conventional languages are more constrained with modu

larization while functional languages push those limits back. Functional programming

is a genre of programming which mainly depends on the evaluation of expressions,

rather than execution of commands. Expressions of these languages are formed by

22 3. Tools and Techniques

combining functions. In our implementation, we will be using a functional program

ming language called Haskell to extract and manipulate information from IBM-1800

assembler codes.

Haskell is a pure functional programming language with open source compilers for

almost all modern computer and operating systems. In this project, we use Glasgow

Haskell Compiler (GHC) [Has] which either generates C code as an intermediate step

or on some platforms generates native code. In the following paragraphs, we discuss

some important features of Haskell which made useful Haskell as our implementation

language.

One of the most important and powerful feature of Haskell (as it is a pure func

tional language) is functional composition[Has]. Haskell programs can be written

as the composition of functions. Operations on a set of data can be represented as

functions and functions can be glued together to create complex functions which can

describe complex operations on data. Functions can also be passed as parameters to

other functions as objects and thus they allow us to create generic functions. These

techniques lead to natural modularization of the program. In Haskell, each func

tion is created as a composition of other functions, and thus a hierarchy of functions

always exists. Instead of creating large monolithic functions, we can create several

small functions and glue them together to create the larger functions. In this way, it

presents the software developers a sophisticated technique to create layered and well

structured software. Verification of the software for correctness is also more easier as

verifying the hierarchical functions for totality can easily assert the correctness of the

program.

Haskell offers new ways to encapsulate abstractions [Has]. An abstraction allows

us to define an object with the internal logic implementation hidden from outside.

Abstraction plays a key role in building modular and maintainable programs. One

important abstraction mechanism available in Haskell is the higher-order function. As

we mentioned earlier, in Haskell, functions can freely be passed to or returned from

other functions, stored as objects in data structures and so on. This can substantially

improve the structure and modularity of many programs.

Functional languages like Haskell use lazy evaluation: they only evaluate as much

of the program as required to get the answer. This allows us to use infinite types in

the programs. For example, functions using varying length lists can share an infinite

3. Tools and Techniques 23

list and each function will only evaluate the list necessary for its own execution. This

demand-driven evaluation provides powerful "glue" to compose existing programs to

gether. Thus it is possible to re-use programs, or pieces of programs, more frequently

than can be done in an imperative style of programming (like C); allowing us to write

modular programs easily.

Pattern matching is another important technique for function definition in Haskell.

Proper use of pattern matching can produce clear representation of different possible

inputs of the function. Although, over use of pattern matching can lead to verbose

and convoluted codes.

Like some imperative languages, Haskell also has strong typing system [Has]. This

provides facilities to detect and solve typing related errors before compilation and

thus reduces the chance of errors like type mismatching or null pointer assignment

etc. during runtime. However, in some cases, Haskell's type system is much less

restrictive than imperative languages as it provides polymorphism. Polymorphism

enhances re-usability of codes as generic functions can be defined to solve similar

kinds of problems for different types.

Literate Programming (introduced by Knuth [Knu84]) is a programming method

ology where the code and the documentation of the code can be interspersed together

in a single file. In that way, a document can describe a program as well as con

taining it. Haskell provides support for literate programming by combining Haskell

programs with LATEX. Thus a single document in Haskell can be compiled into an

executable program or typeset directly into a format for publication. This helps the

programmer to keep the code documentation up-to-date and in conformance with the

implementation.

Haskell relieves the program developer of the storage management [Has]. Storage

allocation, initialization and garbage collection are done implicitly. But problems

like stack overflow may occur while manipulating large amount of data in a Haskell

program. Efficient implementation of the Haskell functions may help the programmer

to overcome this disadvantage.

24 3. Tools and Techniques

3.4.2 GXL

GXL [WinOl] stands for Graph eXchange Language. It is designed to be a standard

exchange format for graphs. GXL is an XML sublanguage and the syntax is given by

a XML DTD (Document Type Definition). This exchange format offers an adaptable

and flexible mean to support interoperability between graph-based tools.

In particular, GXL was developed to enable interoperability between software re

engineering tools and components, such as code extractors (parsers), analyzers and

visualizers. In our reverse engineering project, we choose GXL as a graph exchange

format for various reasons. Among variety of available graph exchange formats, we

require a format which would allow us to represent the semantics of the graph in a

formal way and also we can verify the transformation of graphs in a rigorous manner.

Ms. Wu and Dr. Kahl [Wu04] have already done some work on the formalization of

GXL. In addition, GXL is represented in human readable XML format which might

be very advantageous later on.

The most important benefit of GXL for this project is that there exists some

re-engineering tools which utilize GXL as exchange formats. At the beginning of

the project, it is predicted that some of these tools might be proved useful in the

project. Consequently, GXL produced by the tool suite in the project may be veri

fied and tested with the variety of other GXL based tools. Also, the output of these

tools can be used by the standardized tools to produce different aspects of extracted

information. GXL is also very much flexible to generate various types of graph rep

resentation. Wu [Wu04] showed that it is possible to represent Control Flow Graph

and Data Flow Graph using different views of the graphs in GXL. In this thesis, We

use GXL to output Control and Data Flow Graphs for exchange purposes.

Chapter 4

Process Overview

In this chapter, we present a brief overview of the whole symbolic interpretation

process. We also discuss all the tools and their interactions in short. Later, we

discuss different software engineering principles and their application throughout our

software development process.

4.1 Major Steps in Our Process

As we discussed in Section 2.3, the whole symbolic interpretation process is automatic

without any human intervention. In this section, we decribe briefly major steps that

are being followed during the symbolic interpretation of IBM-1800 assembly language

codes. For each consecutive step, output of one step will be the input of the next

step.

Figure 4.1 gives the steps of our overall symbolic interpretation process. More

specifically, these are:

• Use the complete operational semantics of IBM-1800 to derive (human assisted)

- an emulator, as an explicit state transformer. This emulator will take a

.1st code file as input, a starting state, and finds the final state of the

machine after the execution of that code file.

- a one-step symbolic emulator. This finds the complete symbolic interpre

tation of any instructions, given as the state transformer induced by the

25

LEGENDS:

~Process
Combinator

I Process I

----+ Automated Step
---1.,.,.,~ Human Assisted Step

--f>t> Approximated Step

Figure 4.1: The Steps of Symbolic Interpretation Process

4. Process Overview 27

operational semantics. The derivation of the one-step symbolic emulator is

human assisted in our process. However, It can be automated by creating

proper formal representation of the operational semantics. For this reason

we show the step as automated in Figure 4.1.

• Use the .1st code file to derive an approximated Control Flow Graph (CFG).

• Combine the CFG and one-step symbolic emulator to derive a marked-up CFG.

In this derived graph, each edge of the CFG will contain the complete one-step

symbolic interpretation of the instruction contained in the source node of the

corresponding edge.

• Find execution paths in the CFG.

• Combine the marked-up CFG and the execution paths to find the dataflow

equations (DFE) for the assembler program. In this combination process, we

find all the splits and joins in the paths to find the high level control structure

of the code.

• Solve those simplified DFEs to find the closed form representations.

• Generating Data Flow Graphs from the DFEs.

A more detailed description and specifications of the inputs and outputs for the

important steps are given in the following subsections:

4.1.1 Control Flow Graph Generator

The first phase of this step is being done by Kevin Everets [Eve04] and in this step

the approximate control flow graph of the assembly language code is being found. In

Kevin's tool, the output is being represented in GXL (Graph Exchange Language)

format for easy and standard graph interchange between the tools. It takes a .1st

code file of the legacy assembly code as input and produces the GXL format CFG

(Control Flow Graph) of the assembler code.

As GXL format is an exchange format and is not easy to handle, in the second

phase we generate an internal data structure of the control flow graph that contains

28 4. Process Overview

only the necessary information for symbolic interpretation of the corresponding pro

gram.

Input: Control flow graph in GXL format.

Output: A graph data structure that contains two finite maps: one is between

the nodes and their corresponding instruction opcodes and the other is between nodes

and next possible edges from the corresponding node.

Type Signature: The implementation is described in Section 8.2.1 with the

following type signature:

gxlToMyGraph :: Gxl.Gxl -> Int -> MyGraph

4.1.2 Emulator

By using a complete translation of the operational semantics of the IBM-1800, we

can create a complete emulator. As mentioned earlier, this emulator can be seen

as a state transformer which finds the final machine state (that is different machine

components with their final values) after execution of a set of instructions. We "load

up" a complete state via reading in a .1st file of the code given and also create a

representation of the state with all the state components having some initial values.

The whole memory is given an initial value by loading the .1st file in an array with

216 entries. Then the emulator erimlates the execution of the set of instructions given

on this initial machine state to find the final state after the execution. Here we assume

that the set of instructions (i.e. assembler code) given is always terminating otherwise

the emulator will produce some aberrant output without indication.

This step is mainly used to find the correctness of the model of the assembler se

mantics that we used to develop the next symbolic analysis steps. We have compared

the output of this step with standard independently written emulator of IBM-1800

and obtained the same results.

Input: Source code of an IBM-1800 assembler program with initial machine state.

Output: Final machine state after the execution of the program.

Type Signature: The implementation is included in Appendix C with the fol

lowing type signature:

emulate:: Int ->State-> State

4. Process Overview 29

4.1.3 One Step Symbolic Emulator

The one-step symbolic emulator produces the symbolic representation of the state

transformer for an instruction. For each instruction given as input, it produces a

symbolic interpretation of the state after execution of that instruction. Instead of

concrete values, this representation contains symbolic expressions for the values of

the state components that are being changed by the execution of that instruction,

and also a symbolic path condition that reflects possible condition induced by the

instruction.

As we see in Figure 4.1, One Step Symbolic Emulator is used to interpret symbol

ically the instruction opcode of nodes in the control flow graph and to annotate the

following edges from that node by the corresponding symbolic interpretation. So the

combination of the CFG walker function and One Step Symbolic Emulator produce

the following input and output.

Input: Control Flow Graph of the assembler code.

Output: A marked-up CFG with the edges labelled by the symbolic interpreta

tion of the instruction associated with their source nodes.

Type Signature: We describe the implementation of One Step Symbolic Emu

lator in Appendix D with the following type signature:

sSemantics_ :: Op ->Instruction-> [(CondFunc,[Func])]

The function to create marked-up CFG is discussed in Section 8.2.1 with type signa

ture:

doAnnotation MyGraph -> MyGraph

4.1.4 MultiStep Symbolic Emulator

Basically, this step is a functional combination of the Path Finder and Path Walker

functions on the marked-up CFG. This step finds the symbolic interpretation of an

assembler code (a set of instructions). Our symbolic interpretation will not find

any high level equivalent of the assembler code, instead it finds a set of Data Flow

Equations (DFE) which defines the computation done by that code. Definition of

DFEs is given in the corresponding chapter.

30 4. Process Overview

As the control flow in the assembly language is arbitrary, a major challenge in

symbolic analysis of assembly language programs is to model the control flow. We

model this arbitrary control flow by a set of execution paths in the program. Every

program has a starting point and we can define a program path as a sequence of in

structions that can possibly be executed during some run of the program. All program

paths begin from the starting point of the program. We try to find some predefined

structures (like branching structures, sequential codes, loops) in the program paths

to find the symbolic constructs of the program.

Path Finder functions find the program paths in the Control Flow Graph. Using

those paths, Path Walker functions find the control structures in the code and gather

all the annotations (interpretation of the instructions) of the edges in the paths to

find the semantic context of the code.

Input: Marked-up control flow graph of the assembler code.

Output: Data Flow Equations (DFE) which show the high level representation

of the code.

Type Signature: This implementation includes two modules: Path Finder and

Path Walker. Path Finder module is described in Section 8.5.1 with type signature:

nodesFromStart :: MyGraph -> MyNode -> [FinalPath]

The function for finding DFEs is discussed in Section 8.5.2 with type signature:

findAnntOfGraph :: MyGraph -> MyNode -> [[([ConditionStmt],[Stmt])]]

4.1.5 Generating Data Flow Graphs

DFEs show the flow of the data in symbols but we can get better pictorial presentation

of the data flow in the Data Flow Graphs (DFG). From the DFEs generated in Multi

Step Symbolic Emulator, we produce Data Flow Graph (DFG) which gives better

understanding of the data flow in the given chunk of assembler code. In generating

the DFG, we first produce a DFG which contains redundant entries. When we create

the nodes corresponding to one instruction, we don't know which part of the output

value will be used later. So we create some redundant entries (whenever possible)

for the output values of the instructions. Some of them may be used in the next

4. Process Overview 31

instructions of the code. Consequently, we remove the unused entries (in the garbage

collection phase) to give the final representation of the DFG.

Input: Data Flow Equations (DFE) generated by Multi Step Symbolic Emulator.

Output: Data Flow Graph (DFG) of the given code.

Type Signature: We include the implementation in Section 9.4 with the follow

ing type signature:

dfdGraphToGxlGraph :: GxlGraph ->String->
[[([ConditionStmt], [Stmt])]] -> GxlGraph

4.1.6 Solving Data Flow Equations

By solving we mean to find a symbolic expression for each variable in the right hand

side of DFE which can be calculated (symbolically) from the previous DFEs. Our

Data Flow Equations (DFE) give a sequential set of statements which represents the

computation done in the code. We follow two steps to find the solved flow equations

for each DFE. First, we evaluate the variables on the right hand side of the statement

i.e. we find a symbolic expression for each variable. Then, we substitute the variables

with the expression while keeping the operators in place.

At the end, after solving each of the DFEs, we find the inputs and outputs of the

code and also the system of equations which defines the relationship of the inputs

and outputs. Input means the values which are being read in by the code and the

outputs are the final values which are being written to.

Input: Data Flow Equations (DFE) of the assembler code.

Output: Inputs, outputs and system of equatios representing the computation

of the code.

Type Signature: We discuss the implementation in Section 10.2 with the type

signature:

solveAnntOfGraph [[([ConditionStmt], [Stmt])]]
-> (ConditionStmt,[Recur_Stmt],EvalHistory)

32 4. Process Overview

4.2 Software Engineering Principles

In this section, we discuss some important software engineering principles which are

central to successful software development [CG03) and their role and impact in the

development of our reverse engineering process. Although these principles appear to

be strongly related, we prefer to describe them separately and in general terms.

4.2.1 Rigor and Formality

Rigor [CG03) stands for precision and exactness- which is an intuitive quality and

can't be defined in a rigorous way in software development. Various degrees of rigor

can be achieved; the highest among them is called formality where the whole software

development process is driven and evaluated by the mathematical laws. We don't have

to be always formal during the design phase of the software but we must be able to

identify the level of rigor and formality that should be achieved.

In our process where we try to analyze mathematically the IBM-1800 assem

bler codes, the instructions of IBM-1800 should be modeled as formal mathematical

equations. For this reason, we model the natural language description of the IBM-

1800 instructions (See Appendix A) in a formal way as a combination of logical and

mathematical formulas during the design process. Each instruction is modeled as a

state transformer equation with some operations on the state components. During

programming (a traditional formal approach in the software development process),

we directly translate the formal model of instructions into the programming objects

which are automatically checked and verified for correctness by the compilers.

Rigor and formality also apply to whole software process. Rigorous documenta

tion helps the programmers to reuse the codes. Using literate programming style in

Haskell, we try to be as formal as possible during the development process which

might later be useful in code reuse.

4.2.2 Separation of Concerns

Separation of concerns helps us to deal with different aspects of the problem while

concentrating on each independently at a time. Different types of separation of con

cerns are in practice in software process [CG03]. Most of them are dealt with the

4. Process Overview 33

higher level design of the reverse engineering tool suite architecture; where our sym

bolic interpretation process is a part. One important type of separation of concerns

is to work with different parts of the problem separately. Using modular development

strategy, we have divided the whole software in the symbolic analysis process into

several steps. At each step, we are not concerned with the next steps and necessary

adjustment in both the design and the previous steps are made depending on the

current step of development. In this way, we can easily concentrate on the current

step. While working on generating Data Flow Equations of the assembler codes, we

are least concerned with generating Data Flow Graphs; thus cutting the problem into

smaller managable subproblems.

4.2.3 Modularity

A system that is composed of modules is called modular. Modularity is essential

to build a well structured, layered and maintainable software. As we .saw in Figure

4.1, we divide our whole process into modules where each module is taking care of

a different part of the process; thus implying the principle of separation of concerns.

First, the whole process is decomposed into modules with an initial model of the

instructions of IBM-1800. Then, we concentrate on individual module design to

manipulate the model; following a top down design process.

As all other functional programming languages, Haskell provides us with impor

tant features to modularize the programs (See Section 3.4.1). Each major module

in our process uses the output of only a few previous modules; thus inducing low

coupling. However, each internal function inside the modules are related strongly

to give high cohesion. We keep all the common codes of different modules in sepa

rate modules to reduce coupling and also to eliminate repetition of codes from the

program.

Interaction of Modules

The success of modular software also depends on proper and faster interaction of

modules. We develop explicit import and export list of the functions inside the mod

ules to make the interaction of the modules faster. A pure functional programming

language like Haskell helps to create interfaces among the modules in a better way to

34 4. Process Overview

aid software engineering.

As there are several re-engineering tools available, we provide all the output of

graphs (either control flow or data flow) in GXL (Graph eXchange Language) format

(described in section 3.4.2). In the tool suite architecture of the reverse engineering

process, all the graph information exchange are in GXL. GXL is an exchange format

and is not easy to handle. So we create our own internal data structure of the

input graphs to share information needed and to decrease interaction time among the

internal modules.

4.2.4 Abstraction

Abstraction is a basic technique for understanding and analyzing complex problems

[CG03]. By abstraction, we can ignore the complex details of an object and con

centrate on the facts that we think relevant. We use Haskell as our implementation

language which has a better abstraction mechanism. Using abstract data types in

Haskell, we place an abstract layer on each of the module details. This provides us

with better program understading and easily maintainable software.

4.2.5 Anticipation of Change

Software may undergo changes contantly. These changes may be due to elimination

of errors or future adaptation in different platforms. Basically, incorporating antici

pation of change in the design strategy means to isolate the likely changes in specific

portions of the software so that future changes will be restricted to those portions

only [CG03].

We have translated the model of the instructions for the IBM-1800 in separate

Haskell modules in both the emulator and symbolic emulator. We can just replace

those modules by different models of different assemblers to use the process or the

software in different platforms.

Reusability

Reusability is a software quality which is strongly effected by the anticipation of

change. Reusability of Data Flow Equation (DFE) and Data Flow Graph (DFG)

4. Process Overview 35

generation tools in different assemblers was a primary concern of the reverse engi

neering process. As we said earlier, we can just replace the model of the assembler by

a different one to create different DFE or DFG generation tools for that assembler.

The use of Haskell as the implementation language in generating the representa

tion of IBM-1800 assembler facilitates our tools to use the code from the assembler

representation and Control Flow Graph generation tools by Kevin Everets [Eve04].

As examples, the code to read the .1st file and to create the control flow graph is

used by the emulator and symbolic emulator, and the code to read and write GXL

representations [Eve04] is used by our tools to produce GXL presentations.

4.2.6 Generality

The principle of generality may be stated as follows: "Every time you are asked to

solve a problem, try to focus on the discovery of a more general problem that may be

hidden behind the problem at hand" [CG03]. While generating the semantic analysis

tools, a prime concern was to develop the tools in a way so that different architectures

can be represented and with minimal changes in the tools, we can perform semantic

analysis of those architectures. The architecture might have different instruction sets,

registers, memory size and timing mechanisms. This increases the portability of the

tools on different architectures.

Portability on Different Architectures

We can reuse the same code for the semantic analysis tools of IBM-1800 in different

architectures like Varian V75, MIPS and other most commonly used architectures.

Haskell provides us with abstraction and modularization mechanism to attain this

goal. Using abstraction, we isolate and localize the anticipated change in the internal

data structures. Functions operating on those structures and their helping functions

will continue to work without much change although the modules cotaining the model

of IBM-1800 have to change significantly to incorporate different architectures.

We hope that this independence of architecture will work to support differnt as

semblers. In case of changes have to be made across more modules to incorporate

different architecture, a provision is left to re-factor the code to fully isolate the

platform specific codes.

36 4. Process Overview

4.2. 7 Incrementality

Incrementality applies to a process that proceeds in a incremental way [CG03]. We

can add differnt features of a process in increments. A good software design must

incorporte provision to add new features easily. In our semantic analysis process, our

first goal was to find the Data Flow Equations of the assembler codes. Our model is

designed in a way that later we added different features like generating Data Flow

Graphs, solving Data Flow Equations with slight adjustment in the same design. In

future, it is possible to add new features like generating pre and post conditons for

the assembler codes using this design.

Chapter 5

Operational Semantics of

Assembler

This chapter contains the operational semantics of the IBM-1800 Assembly Language

and also a brief overview of IBM-1800 Data Acquisition and Control System. This

part is mostly taken from IBM-1800 Operating Manual [IBM70]. Later we include

an abstract model of the operational semantics which will be used for the symbolic

interpretation process.

5.1 IBM-1800 System

The IBM-1800 Data Acquisition and Control System [IBM70] is developed to handle

a wide variety of real time applications such as process control and high speed data

acquisition. It has the following main physical units-

• 1801 or 1802 Processor-Controller

• 1803 Core Storage

• 1826 Data Adapter Unit

• 1828 Enclosure for Rack Mounting of Analog Input/Output

• 1810 Disk Storage

37

38 5. Operational Semantics of Assembler

• Customer Signal Cable for screwing down terminals at the rear of the unit.

• DP I/0 equipment

The 1801 and 1802 Processor-Controllers [IBM70] named as stored program com

puters, consists of a central processing unit (CPU),core storage and I/0 channel

control circuits. Standard features of the processor-controller include:

• Three index registers

• Twelve levels of interrupt

• Three data channels

• Three interval timers

• An operations monitor

• A programmer's console which may be used to input program manually using

console switches.

5.1.1 Stored Program Concept

1801 and 1802 processor controllers are called stored program computers for their

following characteristics [IBM70]-

• The stored program contains all the words addressed by the instruction register

from the core storage.

• Instructions are normally stored and executed sequentially, beginning with ad

dress 0000.

• Sequential execution of a program can be altered by changing the contents of

the instruction register.

• Program instructions can be modified by conditions set forth in the program.

• Program is loaded initially from a designated card or paper-tape input unit, or

manually from console switches.

5. Operational Semantics of Assembler 39

• Additional instructions can be entered into core storage during the course of a

program.

• There can be any number of degree of subroutines within a program.

The registers of 1801 processor controller that are used to execute instructions are

as follows[IBM70]:

• Accumulator (A}: It stores one factor of an arithmetic operation; the Dreg

ister contains the other factor. It contains the result of an arithmetic operation

and can be shifted right or left.

• Accumulator Extension Register (Q): An extension of the low order end of

the accumulator; 16 bits. It stores the 16least significant bits of a multiplication

operation and the remainder of a division operation.

• Instruction Address Register (I): It is a 16 bit register, connected as a

counter to maintain the address of the next instruction.

• Index Registers (XR): Three Index Registers (XR1, XR2, XR3) are mainly

used for address modification.

• The other registers are Arithmetic Factor Register (D), Storage Buffer Register

(B), Storage Address Register (M), Temporary Accumulator Register (U) and

Shift Counter (SC).

The magnetic core storage (1803) works as memory unit for the 1801 processor

controller and is self contained on a single SLT board. Core storage arrays are avail

able in two sizes, 4096 (4K) words and 8192 (8K) words. Each word consists of 18

bits [IBM70]. In the core storage (1803), bit 16 and 17 (last two bits of a word) are

used for hardware operation. The part of a word where data can be stored is 16 bit

in size. That is why, the logical word size in IBM-1800 is considered as 16 bit.

5.1.2 Machine Language

The IBM-1800 machine language has the following important features:

• Data and instructions are handled in binary form in 16 bit words.

40 5. Operational Semantics of Assembler

• Hexadecimal notation is used to represent the machine language.

• Two word format allows data and instruction words of 32 bits.

• Negative numbers are handled and stored in two's complement form.

5.1.3 Data Format

In the 1800 system, [IBM70] the standard, or single-precision data word is 16 bits

in length. Bit positions 0 through 15 represent decimal values of 215 through 2°

respectively.

Positive numbers are represented in true binary form, whereas negative numbers

are in two's complement form. The sign bit (position 0) is always 0 for positive

numbers and 1 for negative numbers.

The largest single-precision positive number that can be represented is 215 - 1 or

32,767 and the largest negative number is -215 or -32768. A double precision number

of32 bits can be used to give a number range from +2,147,483,647 to -2,147,483,648

(231 - 1 to -231).

5.1.4 Instruction Format

The instruction defines the basic operation to be performed and contains the factors

necessary for developing a core storage address. This core storage address is called

the effective address (EA).

Two basic instruction formats are used: a single-word instruction and a two-word

instruction [IBM70].

Short:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OP IDIFI T I DISP
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Long:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OP IDIFI T IIIBI COND

5. Operational Semantics of Assembler

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ADDRESS

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OP = OpCode of the instruction

D = 5th Bit

F Format (0 = One-Word, 1 = Two-Word)

T Tag Value

I Indirect Addressing (0 = Direct, 1 = Indirect)

B = Branch Out (0 = BSC, 1 = BOSC)

COND = Condition flags interrogated on a BSC or

BSI instruction

DISP = 8 bit displacement address

ADDRESS = Address of the core storage location

41

The two-word instruction contains the full core storage address in the 16 bits of

the low order word. The single-word instruction is used when its not necessary to

furnish the full core storage address, but only to modify(displace) a base address

already existing in a designated 16-bit register. The displacement bits, 8 through 15,

can be used to address a range of core storage locations from 127 addresses above the

base address to 128 below the base address.

The address portion of a two-word instruction can also be modified by adding to

the contents of a designated 16-bit index register.

The bits within the instructions are used in the following manner[IBM70]:

• Op Code: The operation to be performed by the instruction in defined by

these five bits. There are 26 valid op codes.

• Format(F): This bit selects the instruction format. A "0" indicates a single

word instruction and a" 1" indicates a two-word instruction.

• Tag(T): These are index tag bits used to select a register for address modifi

cation.

• Displacement: These eight bits define the displacement value and added to

the register specified by the tag bits to develop the effective address(EA). Dis-

42 5. Operational Semantics of Assembler

placement may be in either positive and negative direction as determined by

the sign of the displacement value. A negative displacement value will be in

two's complement form with a bit in position 8.

• Indirect Address(IA): This is the indirect address bit in the two-word in

struction format except in the modify-index-and-skip instruction with a tag 00

specified. If "0", addressing is direct. If" 1", addressing is indirect.

• Branch Out(BO): This bit is used to specify that the branch-or-skip-on

condition instruction is to be interpreted as "branch-out-of-interrupt routine".

• Conditions: These six bits specify the indicators to be tested on a branch-or

skip-on-condition instruction.

• Address: These 16 bits usually specify a core storage address in a two word

instruction. The address can be modified by the contents of an index register

or used as an indirect address if the lA bit is on.

5.2 Semantics from Manual

In this section, we include all the instructions of IBM-1800 assembler with their

mnemonics. It also contains the hexadecimal representation of the instructions and

the meaning of different bits in the instruction code. Later the operational semantics

of one instruction is represented with an example.

5.2.1 Instruction Set

The IBM-1800 instruction set is shown in the Figure 5.2.1. An invalid code (0000)

enables the programmer to detect an inadvertent branch to a blank area of core stor

age. Each instruction falls into one of five classes [IBM70]. Note that the instructions

which may be used with indirect addressing are indicated in the Indirect Addressing

column.

Some instructions perform multiple uses, as specified by their control bits. A more

complete breakdown of instructions, including hexadecimal representations, is found

5. Operational Semantics of Assembler

Class Instruction Indirect Addressing Mnemonic
Load Accumulator Yes LD
Double Load Yes LDD

Load
Store Accumulator Yes STO
Double Store Yes STD

and
Load Index ** LDX

Store
Store Index Yes STX
Load Status No LDS
Store Status Yes STS
Add Yes A
Double Add Yes AD
Subtract Yes s
Double Subtract Yes SD

Arithmetic Multiply Yes M
Divide Yes D
And Yes AND
Or Yes OR
Exclusive Or Yes EOR
Shift Left Instructions
Shift Left Logical (A)* NO SLA
Shift Left Logical (AQ)* NO SLT
Shift Left and Count (AQ)* NO SLC

Shift Shift Left and Count (A)* NO SLCA
Shift Right Instructions
Shift Right Logical (A)* NO SRA
Shift Right Arithmetically (AQ)* NO SRT
Rotate Right (AQ)* NO RTE
Branch and Store I Yes BSI
Branch or Skip on Condition Yes BSC(BOSC)
Modify Index and Skip ** MDX

Branch
Wait NO WAIT
Compare Yes CMP
Double Compare Yes DCM

I/0 Execute I/0 Yes XIO
* Letters in parentheses indicate registers involved in shift operations.
** refer to the [IBM70] for the individual instruction (MDX and LDX).

Table 5.1: Instruction Set

43

44 5. Operational Semantics of Assembler

in the description of each instruction at [IBM70]. In the following subsection, we will

show only one instruction with its complete bit representation as example.

Instruction Format Symbology

Symbols are used to describe the instruction format and objectives. The symbols and

their meanings are:

Symbol Meaning

A Accumulator

Q Accumulator Extension Register

Address or Addr Contents of the address portion of a two word instruction

C(XX) Contents of core storage at the location specified by XX.

DISP Contents of the Displacement portion of a one word instruction.

EA Effective Address

EA+l Next higher address from the Effective Address.

I Contents of the Instruction Register.

XRl Contents of Index Register 1.

XR2 Contents of Index Register 2.

XR3 Contents of Index Register 3.

X Hexadecimal value can be 0-F.

Hexadecimal Representation

The hexadecimal number is derived by dividing each word into groups of four bits

each and assigning a hexadecimal value corresponding to the decimal (BCD) value of

each group. The following illustration shows a hexadecimal value for each group of

four binary bits.

OP F T Disp

j1
1
1

1
o

1
1

1
oj o jo,ojo

1
1

1
o

1
o

1
o

1
1

1
o

1
1j

D 0 4 5

OP F T IA BQ Cond Address

ji
1
1

1
0

1
I

1
ojiji

1
Ij o I o jo,o

1
o

1
o

1
o

1
ojo,o

1
o

1
o

1
o

1
o

1
o

1
I

1
I

1
o

1
o

1
o

1
I

1
1

1
1

1
II

D 7 0 0 0 1 8 F

5. Operational Semantics of Assembler

5.2.2 Instruction Example

LOAD ACCUMULATOR (LD):

45

Load operations normally transfers data from core storage to the machine register

specified in the instruction.
OP F T Disp

l1111o1ololol1 !111 1111 I
C 0-3 X X

OP F T IA BQ Cond Address

II11101010III 1 I I o lolololololol111111111111111 I
C 4-7 0 or 8 0 X X X X

• Transfers the contents of the core storage location specified by the effective

address(EA) into the accumulator.

• The contents of the core storage location are unchanged.

• modifier bit 9 = 1 selects auxiliary storage of addressed core storage details.

One Word Instruction:

• Load C(EA) into A.

Hexadecimal Representation Effective Address

coxx I+ Disp

ClXX XRl + Disp

C2XX XR2 + Disp

C3XX XR3 + Disp

Two-Word Instruction, Direct Address:

• Load C(EA) into A.

Hexadecimal Representation Effective Address

C400XXXX Addr

C500XXXX Addr + XRl

C600XXXX Addr + XR2

C700XXXX Addr + XR3

46 5. Operational Semantics of Assembler

Two-Word Instruction, Indirect Address:

• Load C(EA) into A.

Hexadecimal Representation Effective Address

C480XXXX C(Addr)

C580XXXX C(Addr + XR1)

C680XXXX C(Addr + XR2)

C780XXXX C(Addr + XR3)

5.3 Model of Operational Semantics

It is clear that every single instruction (for this and most other processors) has a

complete operational description. By complete, we mean that every instruction has a

premise-free description. Furthermore this operational description straightforwardly

induces a denotational semantics, as a pure state transformer, where our state includes

the whole memory as well as all registers. Lastly both of these semantics are (by

definition) compositional.

More precisely, we want to model the effect of executing an instruction as a total

function on states [] to be a total function on states:

[Instruction] : (State --t State)

Here, we will be presenting model of only two instructions as example. The full

abstract model of the operational semantics of the IBM-1800 assembler instructions

is included in Appendix A.

The followings are only a part of the notations used to describe the operational

semantics of the instructions of IBM-1800 assembly language [IBM70] at the abstract

model in Appendix A. These notations may be used to understand the model of the

two instructions presented as example.

5. Operational Semantics of Assembler 47

Inst(I)

DB
FB
displ

addr

06-s(i, s)

X

loc(X)

locBS(i)

Contents of core storage at the location specified by I (Instruction

Register). Later we use i as its short notation.

D (5th) bit of the instruction opcode.

Format bit of the instruction opcode.

Displacement associated to the instruction.

Address defined in the instruction.

Checks bits 6-8 of the opcode, then according to bits 7 &8, returns

the contents of I, XR1, XR2, XR3 if bit 6 is 0, otherwise returns

value of O,XR1,XR2,XR3.

06-s(i, s)
If i is indirect then " (X + addr) else X + addr.

If i is indirect then "addr else addr.

cmdx(mn, mp) Compares two values of one state component (specially index regis

ters) before (mp) and after (mn) modification and returns 1 if the

modified word changes sign or reaches zero while being modified

and 0 otherwise. Used mainly in MDX instructions.
where DB, FB, and displ are implicitly functions of i and 0 denotes an abstract

location with constant value 0. All of these notations have state s and Inst (I) or i

as implicit arguements unless explicitly defined.
"y Contents of state component y.

Oy(f)(x) Short for y ~ f("y, x).
S(x, y) Short for x ~ y.

where f ranges over a few built-in operations (arithmetic and logical) and y can be

any of the components of the domain of State.

5.3.1 LOAD/DOUBLE LOAD{LD/LDD)

• Load operations normally transfer data from core storage to the machine register

specified in the instruction.

• LOAD transfers the contents of the core storage location specified by the ef

fective address (EA) into the accumulator (A) whereas DOUBLE LOAD loads

the contents of core storage specified by the EA and the content of next higher

core storage location into the accumulator and its extension (Q) respectively.

48 5. Operational Semantics of Assembler

• The operational semantics of LOAD and DOUBLE LOAD described in IBM-

1800 manual [IBM70] can be modeled as:

If OpCode(i) E {LD, LDD},

[i]s =81 (+)(1 + FB)0

S(A, (FB = 0? A(X + displ) : Aloc(X))

0 (DB= 1 ? S(Q, (FB = 0?

A(X + displ + 1) : A(loc(X) + 1))) : I)

5.3.2 MODIFY INDEX AND SKIP (MDX)

• Modifies the Instruction Register (I), a specified Index Register (XR), or a core

storage word.

• The modifying factor can be Displacement, the Address word, or a specified

core storage word.

• It can be modeled as:

If OpCode(i) E {MDX},

[i]s =(FB = 1 ?

(tag= 00 ? (81 (+)(2 + cmdx((Aaddr + displ),

Aaddr)), S(Aaddr, (Aaddr + displ)))

(81(+)(2 + cmdx((X + locBS(i)), X)), S(X, (X+ locBS(i)))))

(tag= 00? (o1 (+)(displ))

(81 (+)(1 + cmdx((X + displ),X)), S(X, (X+ displ)))))

Chapter 6

Emulator

This Chapter contains an overview of the IBM-1800 emulator components and the

implementation techniques of them. Later we include an output example of the

emulator in section 6.5.

6.1 Introduction

Generally, an emulator duplicates/emulates the functions or behaviour of a system

with a different system in a way that the second system appears to act like the first

system [Wic05]. Unlike in a simulator, it does not try to exactly reproduce the state

of the machine being emulated; instead it attempts to generate the exact behaviour.

Theoretically, the Church-Thring thesis [Thr37] concludes that any computing en

vironment can be emulated by another. Although practically, it can be quite difficult,

particularly when the exact behaviour of the system is not documented well or missing

and has to be extracted from the system to be emulated through reverse engineering.

Timing constraints can be another issue in emulating hardware. If the emulator does

not compute as fast as the original one, the software to be emulated can perform

much worse than it would have on practical hardware.

Most common form of emulators is used to emulate hardware architecture. Hard

ware emulator is a piece of computer software that emulates the desired behaviour of

hardware. Computer programs which are supposed to use that hardware architecture

as underlying machine can then run on the corresponding emulator software as if they

49

50 6. Emulator

were running on original machine. In this way, hardware emulator gives the abstrac

tion of machine computation to the upper layered software. It does so by "emulating"

or reproducing the behaviour of the corresponding hardware by accepting the same

data, executing the same algorithm in computation and achieving the same results

[Wic05].

Ontario Power Generation (OPG) is also using emulators for their legacy IBM-

1800 hardware as those hardware are difficult to maintain and it is almost impossible

to replace their failed components. They are using those emulators as a stop-gap

measure for the time being before transporting their whole system into newer hard

ware.

As mentioned earlier, the work presented in this thesis is a part of the reverse

engineering project, particularly dealing with the IBM-1800 assembler codes of OPG.

The first step in our symbolic interpretation process of IBM-1800 assembler programs

is to develop a model of the operational semantics (section 5.3) of almost all IBM-

1800 assembler instructions. To validate the correctness of the model, we create an

emulator of IBM-1800 hardware using that model as an explicit state transformer.

As validation of the model is the main issue, we are not deeply concerned with the

timing constraints and I/0 behaviour of the hardware.

6.2 IBM-1800 Emulator

Typically, an emulator may be divided into modules that correspond roughly to the

emulated computer's subsystems . Most often, an emulator contains the following

modules [Wic05]:

• a CPU emulator

• a memory subsystem

• various I/0 devices emulators

Emulation of I/0 devices is often treated as a special case and we are more

concerned with the validation of the model of the IBM-1800 operational semantics.

That is why, our IBM-1800 emulator is mainly composed of a CPU emulator and a

6. Emulator 51

memory subsystem with the inputs given as initial state values and produces output

as final machine state.

6.2.1 Model

The model developed in Section 5.3 shows the effect of execution of an instruction on

the machine components (mainly CPU registers and memory). Precisely, the model

works as a state transformer in which execution of each instruction produces next

state of the machine. A state is composed of the full Memory, the Instruction Reg

ister (I), Accumulator (A), Accumulator Extension Register (Q), all Index Registers

(XR1, XR2, XR3) and the Overflow and Carry bits. During the emulation of IBM-

1800 assembler program, we start from an initial machine state and after executing

all the instructions in the assembler program, the final state is given as output of the

emulator.

In the following sections, we discuss how the memory and the CPU emulator

modules are implemented in a functional programming language (HASKELL). The

whole code of the emulator is given in appendix B.

6.3 Memory

For the memory subsystem emulation, it is possible to implement the memory simply

as an array of elements each sized like an emulated word. However, this model

breaks soon as any location in the computer's logical memory does not match physical

memory.

Cleary, this happens whenever the emulated hardware allows for advanced memory

management (MMU). Even if the emulated computer does not feature an MMU, there

are usually other factors that break the equivalence between logical and physical

memory (one such feature may be memory mapped I/0). Discussing all those factors

is beyond the scope of the thesis. One important advantage in implementing IBM-

1800 emulator is that its memory does not have any advance memory management

and features like memory mapped I/0. It is also smaller in size (4K or 8K) making

it easier to handle with an array.

Our emulator implements memory as a simple array of 216 entries with two simple

52 6. Emulator

functions for writing to and reading from logical memory. Each entry is 16 bit long

which makes the total memory array sized equal to 8K.

This module implements memory as an simple array.

module Mem

(Mem, initMem,

getMem, writeMem)

vhere

import Data.Wora

import Data.Array

type Mem = Array Wora16 Wora16

ini tMem : : Mem

initMem = 1istArray (0,2-16-1) []

These functions are used to read and write memory contents at the effective ad

dress.

getMem :: Mem -+ Wora16 -+ Wora16

getMem m 1 = m!1

writeMem :: Mem -+ Word16 -+ Wora16 -+ Mem

writeMem m 1 c = m// [(1, c)]

At the starting point of emulation, the memory is initialized with the source

assembler code.

This module initializes memory.

module Memini t

(fillMem

, updateMem
) vhere

6. Emulator

import Instruction

import Lst

import Mem

import Data.Array

import Bits

53

Initially, the memory is loaded with the assembler program via reading in a .1st

file of the source assembler program. fillMem fills all of memory (an array of 216

entries) with the initial values.

fil1Mem : : Mem -+ Lst -+ Mem

fi11Mem = fo1d1 updateMem

updateMem :: Mem -+ LstLine -+ Mem

updateMem m 1 = if (,·isLong · instr) 1 then

m // [(add 1, from!ntegra1 (bin 1))]

else

m // [(1+add 1, from!ntegra1 (bin 1)),

(add 1, upper (bin 1))]

where upper = from!ntegra1 · (flip shiftR 16)

6.4 CPU Emulator

Emulation of CPU is often the most complicated part of an emulator. The simplest

form of a CPU emulator is an interpreter, which follows the execution flow of the

emulated program code. It interprets every machine code instruction encountered in

the program control flow and executes operations of that instruction in the emulated

software processor that are semantically equivalent to the original instruction's. This

can be done by assigning a variable for each register, flag and memory entries of the

CPU to be emulated. The logic of the CPU can then almost be directly translated

into software algorithms, creating a software re-implementation that basically mirrors

the original hardware logic.

In our IBM-1800 emulator, the very direct translation of the model of its op

erational semantics gives us the interpreter type implementation of the CPU. Each

54 6. Emulator

instruction is modeled by its abstract semantics and the execution of instruction is

modeled by state transformer. This "State" contains variables for each register, flag

and memory in IBM-1800 machine. Each time an instruction is encountered in the

program flow, the values of the variables in the state are changed by the operations

(implemented in the software) induced by that instruction; resulting in a next state.

After execution of all the instructions, we reach the final machine state with all the

variables (symbols for machine components) assigned some final values.

In the following subsections, we show the implementation of the model of the

instructions and datatypes used to represent the instructions and state.

6.4.1 Instruction

This subsection is fully taken from the Master's Thesis of Kevin Everets [Eve04].

Here we give a brief representation of the instruction architecture of the IBM-1800

assembler to make the later discussions more clear. For better understanding of

parsing of the source .1st file, translating and manipulating of those instructions,

please refer to [Eve04].

An instruction for the IBM1800 can have one of two formats: Short (a 16-bit

instruction that contains the Operation, Tag, and Displacement), and Long (a

32-bit instruction that additionally contains the ability to do indirect addressing,

conditions, and information about branching out during an interrupt).

As the instruction has two main formats (a short or a long instruction), a new data

structure is made called Instruction which can be either a Short or a Long, with

record fields to contain the different information available in each type of instruction.

For the Long format of the instruction, the field disp is redundant, since it is

just a different representation of the last 8 bits of the first instruction word, i.e., the

indAdd, brOut and cond fields. This disp field of the Long alternative is used only

as displacement in the case of MDX instructions.

data Instruction = Short { op Op

dbit Bit

tag .. Tag

disp Disp
}

6. Emulator 55

I Long { op Op

dbit .. Bit

tag Tag

indAdd IndAdd

brOut BrOut

cond Cond

disp Disp

address Address

}

Now, we break down each piece of the Instruction, and give its type and mean

ing. First is the Op code, which tells us what type of instruction it is. The Op code

is normally five bits but the fifth bit (dbi t) is often used to select between two very

similar operations (e.g., a single load vs a double load, or a "branch and skip" vs a

"branch and store instruction"). Because of this, we can combine these operations

into categories.

data Op = LD

I ST

LSX

SLS

ADD

SUB

MD

AR

EOR
SFT

-- Ld = Load Accum, Ldd = Double Load

-- STO = Store Accumulator, Std = Double Store

-- Ldx = Load Index, Stx = Store Index

-- Sts = Store Status, LSs = Load Status

-- A = Add, Ad = Double Add

-- S = Subtract, Sd = Double Subtract

-- M = Multiply, D = Divide

-- And = Logical And, Or = Logical Or

-- Logical Exclusive Or

-- Sla = Shift Left Logical A,

-- Sit = Shift Left Logical A and Q,

-- Slca = Shift Left and Count A,

-- Slc =Shift Left and Count A and Q,

-- Sra = Shift Right Logical A,

-- Srt = Shift Right Logical A and Q

-- Rte = Rotate Right A and Qsearch bar google

BRANCH -- Bsc = Branch or Skip on Condition,

56 6. Emulator

-- Bose= Branch out of Interrupts (similar to Bsc)

-- Bsi = Branch and Store Instruction Register

MDX -- Modify Index and Skip

WAIT --Wait

CMP -- Cmp = Compare, Dcm = Double Compare

XIO -- Execute 1/0

BAD -- An invalid Op code

deriving (Show, Eq, Ora)

Next is the Tag, for which we create a new data type to specify which of the four

possible index registers (1,2,3 or none) are used in the instruction.

data Tag = I I XRO I XR1 I XR2 I XR3

deriving (Show,Ora,Eq)

Here we define the Bit type that is used to define some of the bit fields of the

instruction which is used instead of BooLean values as it is sometimes inconvenient

to think of Bits in terms of Boo Leans.

data Bit = Zero I One deriving Eq

There are a couple of different flags used. In the instruction itself, there is one for

indirect addressing (indAdd and one for interpreting a ESC instruction as a "branch

out" (BOSC) while in an interrupt routine. All of these are interpreted as True if they

have a bit value of 1 and FaLse if they have a bit value of 0.

type IndAaa = Bit

type BrOu t = Bit

The Displacement is an 8 bit signed 2's-complement integer. It usually only exists

in the short instruction (though it can also be used by the long version of the MDX

instruction), and is most often added to the current program counter (I) to determine

branch vectors or loading offsets.

type Disp = IntB

6. Emulator 57

The condition bits are present in the Long instruction, and are most often used to

modify branches. They, along with the IndAdd and BrOut flags, are also sometimes

used by the MDX instruction as an additional Disp field. This would be added to the

Address also present in the long instruction. The Address is a 16 bit word. The

object representing the full instruction is a 32 bit word.

type Cond = WordS

type Address = Word16

type Object = Word32

A mapping is now created from the upper four bits of the opcode to the instruc

tions. The Op code values are taken from the "IBM 1800 Functional Characteristics"

manual. Using the upper four bits allowed for easier grouping of the function of the

Op codes.

opCodeinstruction .. [(Word16, Op)]

opCodeinstruction [(OxCOOO, LD)

,(OxDOOO, sn
,(Ox6000, LSX)

,(Ox2000, SLS)

,(Ox8000, ADD)

,(Ox9000, SUB)

,(OxAOOO, MD)

,(OxEOOO, AR)

,(OxFOOO, EOR)

,(Ox1000, srn
,(Ox4000, BRANCJ!)

,(Ox7000, MDX>

,(Ox3000, WAIT)

,(OxBOOO, CMP)

,(OxOOOO, XIO)

,(Ox5000, BAD)

]

58 6. Emulator

6.4.2 State

The IBM 1800 current state includes the state of the memory (mem), the Instruction

Register (ir), the Accumulator Register (ace), the Accumulator Extension Register

(q), the Index Registers (xrl-3), and the Overflow and Carry Flags (overflow and

carry).

type State = GenState Mem Word16 Word16 Bit

data GenState mem addr

{ mem .. mem

ir addr

ace val

q val

xr1 addr

xr2 addr

xr3 .. addr

overflow . . bit

carry bit

} deriving Show

val bit = State

6.4.3 Emuating Instruction Execution

Our emulator works as an interpreter and executes one instruction in each step. At

the beginning, it takes a number of steps (no. of instructions in the program to be

executed), a initial State (State) as input and returns a final State after execution

of all the instructions in the assembler program.

emulate is the main recursive function in the emulator which emulates the steps

(instructions) of the assembler program. In each iteration of emulate, step takes the

current State and after executing the current instruction returns the next State. It

interprets every assembler instruction encountered by the semantic definition of that

instruction.

step fetches the instruction from the memory indicated by current value of the

instruction register and determines the valid opcode of that instruction. With the

6. Emulator 59

opcode (Op) and current state (State), semantics interprets the current instruction

by its semantic definition (defined by semantics_) and execute operations of that

instruction in the emulator i.e. assigns values to various variables/components of the

state to generate the next state (State).

emulate :: Int ~State~ State
emulate 0 s = s

emulate n s = emulate (n-1) (step s)

step:: State~ State
step s = semantics inst s

vhere inst = getOp (getMem (mem s) (ir s))

semantics :: Op ~State~ State
semantics o s = semantics_ o inst s

vhere
inst = wordsToinstruction (getMem (mem s) (ir s))

(getMem (mem s) ((ir s)+l))

semantics_ defines the semantic interpretation of each instruction in the IBM-

1800 assembler. This is a very direct translation of the abstract model of the op

erational semantics of IBM-1800 instructions defined at Appendix A. Here we only

show two instruction semantics translated in HASKELL. The rest of the semantic

definition of the instructions are given in Appendix C. Of the two instructions cited,

LOAD/ DOUBLE LOAD (LD) is a little bit simpler while MODIFY INDEX AND

SKIP (MDX) is more complex to interpret.

semantics_ :: Op ~Instruction~ State~ State
semantics_ LD inst s =

diR (l+fb) $ dA (getContentOfMemRefA inst s) s

$ if dbit inst = Zero
then s

else dQ (getContentOfMemRefQ inst s) s

vhere fb fBit $ isLong inst

60 6. Emulator

semantics_ MDX inst s =
if isLong inst

then if tag inst = XRO
then diR (2+conAdd) $ s {mem = (vriteMem (mem s)

(address inst) cMemNew)}

else diR (2+condAdd) $ dXR (tag inst) cLocNew s

else if tag inst = I
then s {ir = (from!ntegral $ (ir s) +

(from!ntegral $ dispL::Word16) + 1)}

else diR (l+conDisp) $ dXR (tag inst) cDispNew s

vhere dispL = from!ntegral $ disp inst::Int16

locL = from!ntegral $ (locBS inst s)::Int16
cMemOld = (from!ntegral $ getMem (mem s) $ address inst:: Int16)

cMemNew = from!ntegral $ cMemOld + dispL::Word16

conAdd = retDispAdd (cMemOld+dispL) cMemOld

-- Specifically for F = 1 Tag = 00 IA = X

cXROld = fromintegral $ (regl inst s):: Int16

cDispNew = from!ntegral $ cXROld + dispL::Word16

cLocNew = from!ntegral $ cXROld +locL::Word16
conDisp = retDispAdd (cXROld+dispL) cXROld --For F = 0 Tag/= 00

condAdd = retDispAdd (cXROld+locL) cXROld --For F = 1 Tag/= 00

6.5 Output Example

For the code segment (taken as an example from the OPG code) cited at Section 2.3.1,

the output of the emulator (the initial state of the emulator is specified at Appendix

C) will be:

IR = Ox35be

A = OxO

Q = OxO
XR1 = Ox3808

6. Emulator

XR2 = Ox3808

XR3 = OxO
Memory Content @IR = Oxd

Memory Content @(Address Ox3815)
Memory Content @(Address Ox3816)

Ox3815

Ox3835

61

The whole memory is implemented as an array of 216 entries. In the output, we

only show three entries (manually selected) to make it more precise.

Chapter 7

One Step Symbolic Interpretation

As the control flow of assembler programs is arbitrary, our first step to symbolic

analysis is to find the symbolic interpretation of each instruction in a program. This

chapter contains the abstract definition of the data structure used to represent each

instruction in symbolic form along with the methods created for interpreting the

instructions.

7.1 From Operational Semantics

Symbolic analysis [FS03] is a static and global program analysis that examines each

expression of the input program only once and try to derive a precise and complete

mathematical characterization of the computations.

In this case, we are dealing with the symbolic interpretation of IBM-1800 assem

bly language instructions. Unlike high level languages, assembly languages do not

have predefined control structures in the program syntax. For this reason, we must

find different control structures from the sequential instructions and then find some

conditional expressions to represent different program variables in the given input

code.

So we start the symbolic analysis of IBM-1800 assembly language programs by

designing a one-step symbolic emulator. For all statements of the program, our one

step symbolic analysis uses exactly the same description of the semantics as in the

Emulator with the components of the state being symbolic. The abstract model of the

62

7. One Step Symbolic Interpretation 63

semantics of IBM-1800 assembler instructions in Appendix A is used to implement

the one step symbolic emulator. Emulator was the testing phase of this model and

we finish this successfully as the emulator is working fine. Later, in Section 7.3 we

present a segment of the implementation of one step symbolic emulator which shows

the implementation as a direct translation of the model.

This one step symbolic emulator interprets each instruction in a program execution

path and finds the symbolic representation of each instruction. This means, instead of

returning a value, this step produces a representation (as an abstract data-structure)

of the state-transformer which corresponds to the current instruction. In effect, each

instruction will change some of the state component values (symbolic) to generate the

next state. After executing each instruction, the one step symbolic emulator outputs

a state transformer representation that contains expressions of the variables that are

being changed by the execution of this instruction, and a symbolic path condition

representation that reflects possible branching behaviour of the instruction.

The results of this analysis is a "program context" which includes the program

semantics for an arbitrary program point. For one step symbolic emulation, the

program point is only the current instruction. The program context [FS03] is a sym

bolic representation of variable values or behaviours arising at run time. Therefore,

symbolic analysis can be seen as a compiler that translates a program into a differ

ent language. As the target language we employ symbolic expressions and symbolic

recurrences.

s.
A program context is defined by (p, s) that includes a path condition p and a state

• Path Condition p : The path condition p describes the condition under which

control flow reaches a given program statement. For sequential instructions a

path condition is always TRUE and for branch instructions it is specified by a

logical formula that comprises the conditional expressions of branches taken to

reach the program statement.

• State s : The state s is described by a set of variable/value pairs

v1 = e~, , vk = ek where vi is a program variable and ei a symbolic expres

sion describing the value for 1 ~ i ~ k. For each program variable vi there

exists exactly one pair vi = ei in s.

64 7. One Step Symbolic Interpretation

For all statements of the program our symbolic analysis finds the program contexts

that describes the variable values (they may be conditional or unconditional) and the

conditions under which the program point is reached. In order to find the symbolic

representation of each of the instructions we have implemented a local abstract in

terpretation that gives us a data structure containing every piece of information of

the instruction executed. In the following section, we give the representation of the

symbolic interpretation (i.e. how it is implemented).

7.2 Symbolic Interpretation

This module defines the data types for symbolic analysis.

module Symbo Lie

(StateComp(..), Operator(..), TypeCast(..), CondOpSm(..)

, MemRef(..), Vat(..), Func(..), CondFunc(..), retCondOpSm
)

where

import OpCode

import IBM1800

import Data. Word (WordS, Word16)

import Data.Int (Int8,Int16)

import Data.Bits

We start with different datatype declaration needed for one-step symbolic analysis.

• State Components: The following is the datatype definition for the State

Components though the name may be misleading. Although a state contains

other values (like index registers, instruction register, memory etc.), we use

the Tag and MemRef data types to avoid multiple declarations. For 32 bit

operations, both Accumulator (Ace) and Accumulator Extension Register (Q)

are considered as a 32-bit value. So we declare AccQ as a State Component

that symbolizes the Accumulator and Q as a 32-bit value.

7. One Step Symbolic Interpretation

data StateComp = Ace I Q I AccQ
deriving (Eq,Ord,Show)

65

• Operators: Operators symbolize the operation done by different instructions in

IBM-1800 assembler. We use two different types of operators for the purpose of

instructions- (1) Binary Operator and (2) Unary Operator. Operator datatype

declares the binary operators needed for update operations in symbolic analysis

whereas TypeCast declares the unary operators. In TypeCast, Upper16 and

Lower16 are used to get the upper and lower 16 bits of a 32-bit values. Id means

no operation and Sign gives the sign bit of any value. The name TypeCast was

chosen first as the Upper16 and Lower16 unary operations typecasts a 32-bit

value to 16-bit values.

data Operator = Add Sub Mul I Div I Mod I And I Or I Xor
Shl Shr deriving (Eq,Ord)

instance Show Operator vhere

show Add= "+"
show Sub= .. _ ..
show Mul = 11*11

show Mod= n;.n

show Div = n;n
show And= "&"
show Or = .. , ..
show Xor = n-1"
show Shl = "<<"

show Shr = ">>"

data TypeCast = Upper16 I Lower16 I Id I Sign
deriving (Eq, Ora, Show)

• Conditional Operator: Conditional operators are used to interpret conditions

in the branch instructions. Those branching condition can be found in IBM 1800

assembly language manual [IBM70] (See BSC/BSI).

66 7. One Step Symbolic Interpretation

data CondDpSm = EqO I LtO I GrO I LEO I GEO I NEO I

De I Om I op I En I Em I Ep I Phntl

I Phnte deriving (Eq)

instance Show CondOpSm where
show EqO = " == 0"

show LtO = " < 0"

show GrO = " > 0"

show LEO= " <= 0"

show GEO = " >= 0"

show NEO = " I= 0"

show De= " (Odd)"

show Om = " (Odd and Minus)"
show Op = " (Odd and Plus)"
show En = " (Even)"

show Em=" (Even and Minus)"
show Ep =" (Even and Plus)"
show Phntl = " "
show Phnte = " "

• Memory Components: MemRef defines another important part of the state

component which is the Memory Reference. Memory references can be different

depending on the type of memory access in the instructions. Cons t is used to

define the value in the displacement part of the instruction for direct displace

mentor address assignment for LDX/STX whereas CConst defines the content

of that address for other instructions. BrConst is specifically used for branch

instructions and defines the address composed with index registers and address

content of the instruction. Direct defines the address that is the content of

the address composed with the index registers and address content of instruc

tion. BrDirect is a special memory reference only used in conjunction with

BSI and defines the memory reference composed by the value of the content

of index registers plus address content of instruction and then added with the

offset in the BSI instruction. Dispmnt is also a special memory reference in

7. One Step Symbolic Interpretation 67

STX where memory is referenced by the content of instruction register plus the

displacement of the instruction (as integer value). Indirect is used for indirect

memory references. We could reduce the number of memory reference types

by unifying them in similar types. On the other hand we want to store more

information at this stage for future uses.

data MemRef =
Const {vale

CConst {valCC

Int16} -- for direct displacement

-- /address assignment(for LDX/STX).

Word16} --for content of displacement

-- /address assignment.

I BrConst {reg Tag -- This is specially for the

I BrDirect

I Dispmnt

I Direct

I Indirect

, addrBr: : Word16 -- Branch instructions.
}

{reg Tag -- For BSI instruction, this one

,addr .. Word16 -- is specially used for Indirect

,offBD Word16 -- addressing.

}

{reg Tag -- for displacement

,addrC IntB
}

{reg Tag -- for direct address. In Branch

,addr Word16 -- instructions, this one is specially

} -- used as Direct address.

{reg .. Tag -- for indirect address.

,addr .. Word16

} deriving (Eq, Ord)

For Memref we define an instance to show it more clearly.

instanGe Show MemRef vhere

show (Const a) = if (testBit a 15)
then 11

(
11 ++ show a ++ 11

)
11 else show a

show (CConst a) = "C("++ show a++ ") 11

68 7. One Step Symbolic Interpretation

show (BrConst r a) = show r ++ "+"++show a

show (BrDirect r a o) = "C("++ show r ++ II + II

++ show a ++ ")It ++ "+"++show o

show (Dispmnt r a) = "C("++ show r ++ II + II ++ show a ++ II) II

show (Direct r a) = "C("++ show r ++ II + II ++ show a ++ II) II

show (Indirect r a) = "C(C("++ show r ++ II + II

++ show a ++ "))"

• Value: Va~ defines the symbolic value of the expression which is composed of

StateComp and MemRef which can be assigned to any state components. For 16

and 32 bit operations, two different types of Va~ are used.

data Va~ = VaU6 {val161 .. StateComp

,val162 HemRef

}

Va~3.2 {val321 StateComp

,val322 HemRef

}

deriving (Eq,Show)

7.2.1 Datatype for Instructions

The IBM-1800 assembly language instructions can be divided into two major class of

operations:

• Assignment Instructions e.g. LOAD, DOUBLE LOAD, STORE, DOUBLE

STORE etc .

. • Update Instructions e.g. ADD, SUB, MUL, DIV, MDX, BSC, BSI etc. Branch

instructions like MDX, BSC, BSI etc. are update instructions as they modify

instruction register and in some cases one of the index registers as well.

From those two broad classes we then define the grammar that can describe all

the IBM-1800 instructions. Assignment and update instructions respectively assign

or update values to either state components or memory components. First we define

7. One Step Symbolic Interpretation 69

some auxiliary data structures that are used to define data types for assignment and

update instructions. We declare the datatype for the assignments and updates of 16

and 32-bit operations of different state components (Ace, Q or memory components

etc). The name of the operation defines the operation to be done. For example

AssignSC16 assigns some value (symbolic) to the 16 bit state components like Ace

or Q. The following table gives a brief description of all the data structures:
Name of Data Structure Description

AssignSC16 Assigns a 16 bit value to a 16 bit State Component.

UpdateSC16 Updates a 16 bit State Component.

AssignMem16 Assigns a 16 bit value to a memory address.

UpdateSC32 Updates 32 bit State Component(AccQ).

AssignX Assigns a 16 bit value to one of the Index Registers.

AssignMemX Assigns Index/Instruction Register values to a memory

address.

UpdateX Updates one of the Index Registers.

UpdateAS Updates Accumulator during Shift operation.

UpdateAQS Updates Accumulator and Q during Shift operation.

Cond.Disp Used mainly in MDX instructions to update memory

components.
The followmg data structures are not used for the reasons specified.

Name of Data Structure Reason

UpdateMem16 No instructions updates memory directly.

AssignMem32 Assign 32 bit word to memory is not allowed. For 32

bit assignments its actually assigning two different 16-

bit blocks at two consecutive locations in memory; we

can handle it with AssignMem16.

UpdateMem32 No instructions updates memory directly.

AssignSC32 No instructions assigns 32-bit values to AccQ.

UpdateiR We will be using control flow graphs to find the next

instruction to be executed and so we did not use any

data structures to update Instruction Register (IR).

data Func = AssignSC16 {scA16 StateComp

70 7. One Step Symbolic Interpretation

, valAS16 : : MemRef
}

I Upd.ateSC16 {scU16 : : StateComp

,op16 :: operator

, valUS16 :: Va~

}

AssignMem16 {valA16

,locA16
}

StateComp

MemRef

I AssignHemX { valAX : : Tag

I Upd.ateSC32

I AssignX

I Upd.ateX

I Upd.ateAS

I Upd.ateAQS

Cond.Disp

, locAX : : MemRef

}

{scU32 StateComp

,op32 .. Operator

,valUS32:: Va~

}

{conX Tag

,valX MemRef
}

{conUX Tag

, valUX MemRef

}

{opS16 Operator

,valS16 Word.B

}

{opS32 Operator

,valS32 .. Word.B
}

{valD1 :: MemRef

,valD2 :: MemRef

} deriving (Eq)

7. One Step Symbolic Interpretation 71

Instead of deriving Show, we create an instance, to make printing more elegant.

instance Show Func vhere

show (AssignSC16 s v) = show s ++ " := 11 ++ show v

show (UpdateSC16 s o v) = show s ++ 11 := 11 ++ show (val161 v)

++ show o ++show (val162 v)

show (AssignMem16 s c) = show c ++ 11 := " ++ show s

show (AssignMemX t c) = show c ++ II := II ++ show t

show (AssignX t v) show t ++ II := II ++ show v

show (UpdateX t v) = show t ++ II += II ++ show v

show (UpdateSC32 s o v) = show s ++ II 11 ++ show (val321 v)

++ show o ++show (val322 v)

show (UpdateAS o v) = "Ace " ++ show o ++ "= "++ show v

show (UpdateAQS o v) = "AccQ " ++ show o ++ 11 = "++ show v

show (CondDisp c v) = show c ++ "+= 11 ++ show v

7.2.2 Datatype for Conditions

CondFunc declares the datatype for the conditional expressions in the branching in

structions. In a conditional expression, the left hand side is compared with the right

hand side by a conditional operator. Here we give a brief description of the data

structures that are used to define different conditions used in the instructions:

Condition defines the conditional expression for BSC/BSI instructions.

For MDX, CondDispAddT defines the expression for index registers whereas

CondDispAdd.M declares the expression for memory references. UpdateComp describes

the conditions of Compare instructions. Tru is for no condition in case of sequential

instructions.

data CondFunc Condition {seC
,ope

,stat

}

CondDispAddT {seCT

,valCT

StateComp

CondOpSm

BooL

Tag

MemRef

72 7. One Step Symbolic Interpretation

,sgT Boo~

}

Cond.DispAddM {locCM

, valCM

,sgM
}

I UpdateComp {seem
,opCm

,valCm

}

Tru deriving (Eq)

instance Show CondFunc vhere

MemRef
MemRef

.. Boo~

StateComp
CondDpSm

MemRef

show (Conditions o b) = show s ++"("++show o ++")"++"=="++ show b

show (Cond.DispAddT s v o) = show s ++ "+"++ show v
++ "(RZCS==" ++ show o ++ ")"

show (Cond.DispAddM c v o) show c ++ "+"++ show v

++ "(RZCS==" ++ show o ++ ")"

show (UpdateComp s o v) = show s ++ show o ++ show v

show Tru = "True"

retCondOpSm BrTag ~ CondDpSm

retCondOpSm bt = case bt of
A~ ~ PhnH
p~ ~ GrO

Np~ ~ LEO

Mn ~ LtO
Nmn ~ GEO

Zr ~ EqO
Nzr ~ NEO
Od ~ De
Ddm ~ Om
Ddp ~ Dp
Ev ~En

7. One Step Symbolic Interpretation

7.3 Code Example

Evp -+ Ep

Evm -+ Em

Ne -+ Phnte

73

Here is a slice of code that implements the LOAD and DOUBLE LOAD instructions to

perform symbolic interpretation of those instructions. The whole one step symbolic

emulation code is given in Appendix D.

sSemantics_ :: Op-+ Instruction-+ [(CondFunc,[Func])]
sSemantics_ LD inst =

[(Tru , (dAssignSC16 Ace memRefA)

if (dbit inst = Zero)

then [] --LOAD

else [dAssignSC16 Q memRefQ]) J -- DOUBLE LOAD

vhere memRefA = dMemRefA inst

memRefQ = dMemRefQ inst

It is worthwhile to note that this is a very direct translation of the semantic model

of the LOAD and DOUBLE LOAD instructions in Appendix A.

Next, we present implementation of another complex instruction called MDX.

sSemantics_ MDX inst =

if isLong inst

then if tag inst = XRO
--MDX

then ((dCondDispAddM (CConst {valCC = address inst})

(Const{valC = fromintegral $ disp inst}) True)

,[dCondDisp (CConst {valCC =address inst})

(Const{valC = fromintegral $ disp inst})])

:[((dCondDispAddM (CConst {valCC =address inst})

(Const{valC = fromintegral $ disp inst}) FaLse)

,[dCondDisp (CConst {valCC =address inst })

(Const{valC = fromintegral $ disp inst})])]

74 7. One Step Symbolic Interpretation

else ((dCondDispAddT (tag inst) dXMem True)

,[dUpdateX (tag inst) dXMem])

:[((dCondDispAddT (tag inst) dXMem FaLse)

,[dUpdateX (tag inst) dXMem])]

else if tag inst = I
then [(Tru, [])]

else ((dCondDispAddT (tag inst) dXMem True)

,[dUpdateX (tag inst)

(Const{valC = fromintegral $ disp inst::Int16})])

:[((dCondDispAddT (tag inst) dXMem FaLse)

,[dUpdateX (tag inst)

(Const{valC = fromintegral $ disp inst::Int16})])]

vhere dXMem = mdxMemRef inst

7.4 Output Example

As an example, take the instruction LD 1 41 (Opcode : OxC129) , the output of the

one step symbolic interpreter will be:

(True, [A := C(XR1+41)])

As well the MDX instructions (Opcode : Ox7500 OOOD) will produce the following

output:

(XR1+13(RZCS) ==True, [IR += 3, XR1 += 13])
(XR1+13(RZCS) ==False, [IR += 2, XR1 += 13])

Here RZCS stands for Reaches Zero or Changes Sign.

Chapter 8

Multi Step Symbolic Interpretation

This chapter details the method used for generating Data Flow Equations (DFE)

for an assembler program. The functions for interpreting the assembler codes into

symbolic D FEs are discussed. Later, examples of D FEs for different types of program

segments are provided.

8.1 Introduction

An assembler program is written as a sequence of instructions. The ordering of

the instructions as written defines a default sequence of execution [WF03]. Branch

instructions may however interrupt the flow and cause control to be transferred else

where. This differs from high level languages where all non-linear control flow is

encapsulated in the semantics of compound instructions like for or while loops. In

assembler programs control flow can be arbitrary.

Consequently, a major challenge to symbolic analysis of assembly language pro

grams is how to handle control flow. Fortunately for us the control flow graph for

the list of assembly language instruction to be analyzed is already provided. This

control flow graph gives us some perception about how to find the control structures

in the list of assembly instructions. Some tools created by a fellow student [Eve04]

produces the control flow graph of the codes given and we use that control flow graph

to determine the control flow of the instructions.

The approach taken here to model our control flow is to model a program by its set

75

76 8. Multi Step Symbolic Interpretation

of execution paths. A program has a distinguished starting point and its execution

path is a sequence of instructions that can possibly be executed during some run

of the program. Execution always begins at the starting point. Paths are always

maximal that is a path is only completed when the program terminates.

In the following sections, we describe the structure of the control flow graph and

also how we used that control flow graph for symbolic interpretation of a chunk of

assembly language instructions.

8.2 Control Flow Graph

The tools to generate approximated control flow graph (CFG) produce a CFG for a list

of assembly language instructions. This program proceeds by only looking at updates

to Instruction Register and selected memory locations (as used by branching in

structions) to approximate the control flow. In general, this approximation is very

good, but in a few cases where the code is self-modifying, however, this automated

step fails. This is not necessarily a problem since we can also provide hand-written

or hand-corrected CFGs as input to the next step.

For each instruction to be executed it creates a node in the graph. Then by

traversing the list of instructions, it finds all the possible next addresses from each

instruction and creates edges to those nodes from the node of the current instruction.

A node contains various information such as its address, the stored opcode, any avail

able textual labels, and the path-condition (to be defined later) of the corresponding

instruction. See [Eve04] for more details. Output of the resulting control flow graph

is done via GXL (Graph eXchange Language) [WinOl], so that standard tools may

be re-used to manipulate and display these graphs.

8.2.1 Internal Data Structure of CFG

The GXL is an exchange format and contains more information than we need. Some

times handling all those information is more difficult than it should be. In order to

remedy this problem, we create our own internal graph data structure for the control

flow graph from the GXL format that contains only the necessary information for

symbolic interpretation of the code.

8. Multi Step Symbolic Interpretation 77

This module defines the internal data structure for the CFG and also implements

important functions to convert GXL represented CFGs into the internal data struc

ture.

module MyGraph
(NER, MyNode, AnnotationChoice(..), MyEdge(..), MyGraph

, gxlToMyGraph, doAnnotation, gxlAttrToString

, gxlAttrToBool, isNode, isEdge
)

vhere

import Instruction
import SymboLic (CondFunc(Tru), Func())

import OneStep (sSemantics_)

import MyPreLude (readHex')

import qualified GxL

import Text.XML.HaXmLOneOfN
import Data.List (nub)
import Data.FiniteMap (FiniteMap, emptyFM, fmToList, addListToFM,

mapFM, lookupFM)

import Data.Maybe (fromJust)

NER below is a given type name for standard GXL Node, Edge, Relation type.

type NER = One0f3 GxL.Node GxL.Edge GxL.ReL

As the name suggests the internal data structure of the control flow graph will

contain the nodes and the edges. Below are the data type declarations of the nodes

and edges of the graph.

A node in MyGraph is given by a string: the node name. Each instruction in the

code will have a node and the branch that can be created by the opcode of that

instruction will be represented by an edge from that node. An Edge is a structure

which is comprised of the starting node, ending node of that edge and some other

pre-defined attributes. We describe the pre-defined attributes below.

78 8. Multi Step Symbolic Interpretation

If the address of the starting node is greater than that of the ending node for

an edge then the edge is considered as back edge and marked using the backEdge

attribute of the edge structure. This attribute will be useful later for loop structure

recognition.

As we mentioned earlier, each edge from one node will be generated depending on

some conditions like True, False etc. AnnotationChoice defines that condition on

which the edge is generated.

The opcode of the instruction in each node is symbolically interpreted using the

one step symbolic emulator. This one step symbolic emulator gives us the meaning of

what the instruction does in terms of some symbols. We then combine the interpre

tations of all the instructions in a code segment to understand what the code does.

To understand the meaning of the code, the use of Control Flow Graph is required.

So we annotate the edges of the CFG with the symbolic interpretation of instructions

in each node. annotation field in each edge structure contains the interpretation of

the instruction in the node from where the edge is generated. annotChoice helps us

to annotate the edges with proper interpretation.

type MyNode = String

data AnnotationChoice = ATrue I AFa~se I ALess I AEqua~ I AGreater
I AVoid deriving (Eq)

instance Show AnnotationChoice vhere
show ATrue = "True"

show AFa~se = "False"

show ALess = "Less"

show AEqua~ = "Eq"

show AGreater = "Gt"

show AVoid = "Vd"

data MyEdge = MyEdge { edgeFrom : : MyNode
,annotation:: [(CondFunc,[Func])]

,annotChoice:: AnnotationChoice

8. Multi Step Symbolic Interpretation

, backEdge: : Boo~

, edge To : : MyNode

} deriving (Eq)

79

The show instances defined for the edge structure, MyGraph etc. are only for

pretty printing. The purpose is to be able to to view the data structure in a nicer

fashion. It is not intended to generate XML or some other data format. The output

of this pretty printing is not used in other tools.

instance Show MyEdge vhere

show (MyEdge ef a ac be et)
"<EdgeFrom =" ++show ef ++",Annotation:"
++show a++" ,AnnotChoice: "++ show ac++", backedge:"

++show be++",EdgeTo ="++show et ++">\n"

Node and Edge types for the internal Data Structure of the CFG are defined. We

can now create the data structure of the graph. MyGraph is a data type that contains

two finitemaps. One maps each node with the opcode (either 16 or 32-bit) of the

corresponding instruction and the other is a mapping from a node to list of possible

edges generated from that node.

We use two finitemaps as we want to distinguish between two mappings without

combining Object and [MyEdge] in a single unmeaningful structure . We could

possibly add a pair (ObJ'ect, [MyEdge]) and could use a mapping from MyNode to

(ObJ'ect, [MyEdge]) but the Haskell declaration of finitemap does not allow us to

do so.

data MyGraph = MyGraph (Fini teMap MyNode Object)

(FiniteMap MyNode [MyEdge])

instance Show MyGraph vhere

show (MyGraph fmo fme) concat $ foo fmo $ fmToList fme

vhere

foo fmo 1 = map (A (key,edg)
-+ "\n<nodeiD ="

80 8. Multi Step Symbolic Interpretation

++ show key

++ ",OpCode = "

++ show (fromJust $ lookupFM fmo key)

++">\n"

++ (concat $ map show edg)) 1

Generating Internal Data Structure of the CFG:

These are the main functions where we take a GXL data structure and convert

it into MyGraph. From the GXL input we get the nodes and the possible edges

in the CFG and add them to the MyGraph data structure. nodesToMyNodes and

edgeListFromNodes are two important functions used in gxlGraphToMyGraph to

get the nodes and edges in the CFG.

One interesting point to note is that we use a Int argument named sv in these

functions. In the GXL input of the graph, the node names are structured like

filename ++ "-"++address. Here filename is the name of the input .1st file of

the code from which the GXL graph is generated and address is the relative address

of the instruction in the .1st file. So for a code file name test .1st, one instruction

with relative address 35b6 will have a node named test-35b6 in the GXL file. In

our data structure we want the nodes named only by the addresses. So we get rid

of the filename part using this sv field which is calculated from the input filename

earlier.

gxlToMyGraph : : G:tL G:z:~ -+ Int -+ MyGraph

gxlToMyGraph (G:z:~.G:z:~ _ (g:gs)) sv = gxlGraphToMyGraph g sv

gxlGraphToMyGraph :: G:l;~. Graph -+ Int -+ MyGraph

gxlGraphToMyGraph (G:t~.Graph ___ ners) sv

= MyGraph nodesFM edgesFM

where myNodes = nodesToMyNodes (nersToNodes ners) sv

nodesFM = addListToFM emptyFM myNodes

myEdges =filter (Ax-+ snd x + [])
$ edgeListFromNodes ners sv $ map fst myNodes

edgesFM = addListToFM emptyFM myEdges

8. Multi Step Symbolic Interpretation 81

To get information about the nodes, we need to to find all of them in the GXL

graph. nersToNodes is an iterative function which finds all the GXL nodes using the

Node,Edge,Relation data from the GXL graph.

nodesTOMyNodes makes a list of pairs of MyNod.e and Object (opcode of the corre

sponding instruction in MyNod.e) from a list of GXL nodes. It uses the nodeToMyNode

function to extract all information needed from one GXL node. nodeToMyNode gets

node name (minus the filename part of the GXL node name) of a node and the

opcode of the instruction of that node.

nersToNodes :: [NER] -+ [GxLNod.e]

nersToNodes [] = []
nersToNodes ((One0f3 n):ners) = n:nersToNodes ners

nersToNodes ((1Wo0f3 _):ners) = nersToNodes ners

nersToNodes ((Three0f3 _):ners) = nersToNodes ners

nodeToMyNode :: Int-+ GxL.Node-+ (MyNode,Object)

nodeToMyNode sv n~(GxL.Node nas _ ndAtt _) = (niD, ope)

vhere niD = drop sv (GxL.nodeid nas)

ope = fromintegral $

readHex'(gxlAttrToString "binary" ndAtt)::Dbject

nodesToMyNodes [GxLNod.e] -+ Int -+ [(MyNod.e,ObJ"ect)]

nodesToMyNodes nodes sv = map (nodeToMyNode sv) nodes

In this part, we convert the Gxl edges into MyEd.ges. The strategy is to take a list

of nodes in the graph and then find all the possible edges from those nodes. All the

edge attributes (except the annotation) are then added to the possible edges.

edgeListFromNodes finds a list of pairs of MyNod.e and possible edge list from that

node for the list of nodes in the graph using NER of the GXL graph. This list of pairs

can be added directly in the node to edge list finitemap of MyGraph. edgesFromNode

is an helping function of edgeListFromNodes to find all the edges from one node.

edgesFromNode uses gxlEdgeToMyGraphEdge to add all the attributes (except the

annotation) of those edges. gxlEdgeToMyGraphEdge finds all the needed attribute of

82 8. Multi Step Symbolic Interpretation

MyEdge using the [Gxl.Attr] of the GXL edge. The annotChoice attribute added

by this function will be used later to do the annotation of the edges.

gxlEdgeToMyGraphEdge :: [Gxl.Attr]-+ MyNode -+ MyNode -+ MyEdge
gxlEdgeToMyGraphEdge attr ef et = MyEdge {edgeFrom = ef,

annotation= [],

annotChoice = annotate,

backEdge = be,

edgeTo = et}

vhere annotate = findAnnotate $ gxlAttrToString "condition" attr

be = gxlAttrToBool "backedge" attr

edgesFromNode :: [NEn] -+ Int-+ MyNode-+ [MyEdge]
edgesFromNode ners sv start = nub [edgeToMyEdge e I e e ners,

isEdge e, edgeFromN start e]
where edgeFromN start (TWo0f3 (Gxl.Edge eas ___))

= ((drop sv $ Gxl.edgeFrom eas) = start)

edgeToMyEdge (TWo0f3 (Gxl.Edge eas _ att _))

= gxlEdgeToMyGraphEdge att start

(drop sv $ Gxl.edgeTo eas)

edgeListFromNodes :: [NEn] -+ Int-+ [MyNode] -+ [(MyNode,[MyEdge])]
edgeListFromNodes ners sv = map (Amil -+ (mn,edgesFromNode ners sv mn))

8.3 Marked-up Control Flow Graph

Given a control flow graph we want to use the results of the one-step symbolic in

terpreter to mark-up the edges of the graph with the symbolic representation of the

state-transformer corresponding to that edge. The main difficulty is that while the

complete interpretation of an instruction can be done symbolically, this cannot be

done for even medium sized programs because the resulting output would be so large

as to be deprived of use.

Another aspect to consider is that we are only really interested in the semantics

8. Multi Step Symbolic Interpretation 83

of larger chunks of programs which hopefully correspond to natural functions. These

larger chunks invariably contain conditionals and thus it makes no sense to interpret

the meaning of one branch of the conditional in a context which does not include the

reason why this particular branch was chosen. That is the truth-value of the boolean

condition that caused the program to choose that particular branch.

These two aspects have a common remedy. Inspired by [FS03] where similar tech

niques are used for (very) high-level programs, we define a program context (Section

7.1) to be [p, s] where pis a path condition and sis a state.

The path condition p describes the condition under which control flow reaches a

given program statement from a given starting point. Every instruction induces a

condition under which each outgoing edge in the control flow graph is followed.

For sequential instructions, this condition is just TRUE, and for branch instruc

tions this condition is a logical formula that encodes the condition expressed by the

operational semantics. The path condition at a particular node is the disjunction of

all the path conditions of the ingoing edges of that node. The path condition along

an outgoing edge is the conjunction of the path condition at the source node and the

path condition given by the one-step symbolic emulator.

We use a combinator which weaves a Graph Walker (in our case a depth-first graph

traversal) with the one-step symbolic emulator to produce a new function which, given

a CFG, will return a marked-up CFG with the edges labeled by a program context.

doAnnotation is a Graph Walker function which visits all the edges of the graph

and annotates each edge with the proper symbolic interpretation of the instruction re

lated with its starting node. It uses appAnnotation to find the appropriate symbolic

meaning of the instruction for that edge. In appAnnotation, we use the function

from One Step Symbolic Emulator (sSemantics_) to find the symbolic interpreta

tion of the instruction opcode and then findPropAnnotate determines the proper

annotation choice.

doAnnotation : : MyGraph -+ MyGraph

doAnnotation (MyGraph fmo fme) = MyGraph fmo fmee

vhere fmee = mapFM (findAnt) fme

findAnt mn = map (appAnnotation (fromJust $ lookupFM fmo mn))

appAnnotation Object -+ MyEdge -+ MyEdge

84 8. Multi Step Symbolic Interpretation

appAnnotation obj me = me {annotation = ant}

vhere inst = binaryToinstruetion obj

ope op inst

ant findPropAnnotate (sSemanties_ ope inst)

(annotChoiee me)

As mentioned earlier each edge will be annotated depending on the condition of

the corresponding edge. This function determines which symbolic interpretation is to

be added as the annotation of the edge depending on the opcode and the condition,

that is annotChoiee of the edge. The one-step symbolic emulator produces the

list of pairs of conditions and symbolic interpretation of the instruction in a defined

manner. So we can easily use the take and drop Haskell functions to find the proper

annotation for each possible condition. Looking up the corresponding eondFune is

not needed for the predefined ordering of the list.

findPropAnnotate .. [(CondFune,[Func])] ~ AnnotationChoice
~ [(CondFunc,[Func])]

findPropAnnotate funes ATrue = take 1 funes

findPropAnnotate funes AFalse = drop 1 funes

findPropAnnotate funes AEquaL = take 1 funes

findPropAnnotate funes ALess = take 1 (drop 1 funes)

findPropAnnotate funes AGreater = drop 2 funes

findPropAnnotate funes AVoid= [(Tru, [])]

Below are functions which prove useful in the conversion.

We have to use some helper function to interpret the GXL format data in Haskell

format (String, Bool etc.) gxlAttrToString and gxlAttrToBool are two such kind

of functions which find the value of an attribute and convert it into Haskell format.

gxlAttrToString String ~ [Gxl.Attr] ~ String

gxlAttrToString at [] = 1111

gxlAttrToString at ((Gxl.Attr attrattr __ value):attrs)

= if (GxL.attrName attrattr - at)

then (toString value)

8. Multi Step Symbolic Interpretation 85

else gxlAttrToString at attrs

vhere toString (Five0f10 (Gxt.GxtString s)) = s

toString _ = ""

gxlAttrToBool String -+ [GxLAttr] -+ Bool

gxlAttrToBool at [] = False

gxlAttrToBool at ((Gxl.Attr attrattr __ value):attrs)

= if (Gxl.attrName attrattr = at)

then (toBool value)

else gxlAttrToBool at attrs

vhere toBool (TWo0f10 (Gxt.Boot s))

if (s = "True") then True

else False
toBool _ = False

findAnnotate is a small helper function that is used to determine the condition

of the edge. In other words, it finds annotChoice depending on the condition

attribute of the GXL edges. This will later be needed to annotate the edges using

the one step symbolic emulator.

findAnnotate :: String-+ AnnotationChoice

findAnnotate "True" = ATrue

findAnnotate "False" = AFatse

findAnnotate 11==11 = AEquat

findAnnotate "<" = ALess

findAnnotate "> II = AGreater

findAnnotate _ = AVoid

Functions to determine the identity of GXL nodes or edges.

isNode, isEdge :: NER-+ Boot

isNode (One0f3 _) = True
isNode _ = False

86 8. Multi Step Symbolic Interpretation

isEdge (Two0f3 _) = True
isEdge _ = FaLse

8.4 Data Flow Equations

In a modern high level language non-sequential control flow is encapsulated in a

small number of statements that implement variations on the control flow patterns

of iteration and alternation. In an assembler program there are no restrictions on

the control flow patterns that may be used by the programmer. We therefore need a

more general mechanism to describe control flow. As was shown in the earlier section

we use set of execution paths to model the control flow of the program.

Representation of Data Flow Equations (DFE) does not need so much of infor

mation that is contained in the data structures from one-step symbolic emulator. So

we unify all the instruction data structures from the one-step symbolic emulator in

some simplified data structures. Here we define the datatype that describes all the

instructions in a unified format.

8.4.1 Datatype Definition

This module defines all the important data structures to find the expression for an

instruction in IBM-1800 assembler and to evaluate the expressions in a statement. A

statement is used to represent a function of an instruction in the assembler code.

module Exp
(StateRef(..), BasicExp(..), Expr, Expression, bToE

, eToE, Stmt, Recur_Stmt, Cond(..), BrType(..)
, ConditionExp(..), ConditionStmt
)

vhere

import SymboLic (StateComp, MemRef, TypeCast(..), operator,
CondDpSm)

import DpCode (Tag)
import Data. Word (WordS)

8. Multi Step Symbolic Interpretation 87

All the instructions in IBM-1800 assembly language perform a similar action.

They assign some values to some variables. we can therefore consider all the state

ments in this assembly language as assignment operations. That is why we define a

statement as a pair of State Reference and Expression. A statement represents one

operation of an instruction.

• State Reference: A state reference is a variable to which we can assign val

ues as expressions. For this assembly language state reference may be either

State Components (Accumulator, Q register, Index registers) or Memory Com

ponents. Here we define a datatype for State References in the instructions.

StateComp can be of type Ace, Q and AccQ. Tag is used to represent Index

Registers and MemRef is for memory references which are defined earlier.

data StateRef = SC StateComp I SCX Tag I Mem MemRef

deriving (Eq, Ord.)

instance Show StateRef vhere
show (SC sc) = show sc
show (SCX s) = show s
show (Mem mr) = show mr

By using SC StateComp in the declaration, we raise the following questions:

How do you handle the ambiguity between (SC Ace, SC Q) and SC Accfl? Why

is SC AccQ used at all?

In some cases, we need distinct values of Ace or Q after they are modified by

an operation on whole A ceQ. Each time A ceQ is changed by one instruction, we

create two more redundant entries of Ace and Qon purpose for future instruction

references. Those redundant entries will be removed by some kind of garbage

collection operation.

We could have reconstructed AccQ from Ace and Q values. However due to the

semantics of IBM-1800 assembler language, the operations on the A ceQ consider

it as a 32 bit number. To stay closer to the semantics of those instructions we

have created a state component named SC AccQ.

88 8. Multi Step Symbolic Interpretation

• Expression: An expression is what can be assigned to a State Reference.

The data type for Expression (Exp) is defined in the following way:

data Exp Constant Word8

MemoryConstant MemRef

Variable StateComp

VariableX Tag

UnaryOperation (TypeCast,Exp)

BinaryOperation (Exp,Operator,Exp)

ConditionalValue ((CondFunc,Exp),(CondFunc,Exp))
deriving (Eq)

But as new tools were developed for solving Data Flow Equation (DFE)s (See

Chapter 10) and generating Data Flow Graph (DFG)s (See Chapter 9) and

trying to unify all the data types to share the same base Exp datatype, we

quickly realized this would not be suitable. Then, we change the definition of

Exp in the following way: the Expression datatype which has both recursive and

non-recursive version and also has a base type called BasicE:z;p which can be

used for basic operation symbols. The non-recursive datatype of Expression is

used in findind DFEs. BasicE:z;p is used in generating DFGs and the recursive

datatype for Expression is used in solving DFEs.

Below is shown the datatypes for the Expression which are recursive and non

recursive.

The BasicExp data structure defines all the unit expressions in the instruc

tions of IBM-1800 assembly language. The Constant alternative is used to

represent the constant values that are always defined as part of an instruction,

also known as displacement. The maximal size of a constant is 256 (8- bit).

MemoryConstant defines a memory reference that is to be read or written by

an instruction. The name symbolizes that a value is always to be read or writ

ten in memory. Variable is used to define the expressions which contain state

components and VariableXis used for instruction and index registers. SignBit

is a special Constructor in BasicExp only used for MDX instructions to get the

sign bit of index registers.

8. Multi Step Symbolic Interpretation

data BasicE~p Constant WordS

MemoryConstant MemRef

Variab~e StateComp

Variab ~eX Tag

SignBit Tag deriving (Eq, Ord)

instance Show BasicE~p where

show (Constant a) = show a

show (MemoryConstant a) = show a

show (Variab~e a) = show a

show (Variab~eX a) = show a
show (SignBit a) = "Sign"

89

The UnaryOperation and BinaryOperation data structure define all the

unary and binary operations that are being executed by the instructions.

The Conditiona~E~p defines the data structure for the conditional values.

For conditional values we assume that there can be only two types of ex

pressions (one for True and the other for Fa~se). The ConditionStmts in

Conditiona~E~p have an invariant (condition). Later this code can be refac

tored as Conditiona~E~p (ConditionStmt, a, b) where a is the expression

for True and b for Fa~se condition.

data E~p2 a b UnaryOperation (TypeCast, b)

BinaryOperation (b,Operator,b)

Conditiona~E~p ((ConditionStmt,b),

(ConditionStmt,b))

Atomic a

deriving (Eq)

Special show instances of the non recursive expression data structure is declared

for better printing purposes.

type Show' a = a ~ String

90 8. Multi Step Symbolic Interpretation

showExp2 ::Show' a~ Show' b ~Show' (Exp2 b a)

showExp2 showA showB (Binaryoperation (ex1,op,ex2)) =
"("++showA ex1 ++")"++ show op ++ showA ex2

showExp2 showA showB (Unaryoperation (op,ex1)) =
if op = Id then showA ex1

else show op ++ "("++ showA ex1 ++ ")"

showExp2 showA showB (Conditiona~Exp ((cf1,ex1),(cf2,ex2)))
showA ex1 ++ "("++show cf1 ++ "):"
++ showA ex2 ++ "(" ++show cf2 ++ ")"

showExp2 showA showB (Atomic ex1) = showB ex1

instance (Show b, Show a) => Show (Exp2 b a) vhere

show = showExp2 show show

This one is a non-recursive version of expression data structure. We use it to

generate the expression part of the statements (in other words DFEs) of the

IBM-1800 assembler code.

type Expr = Exp2 BasicExp BasicExp

There is no recursion here. Its only a wrapper around an existing type.

The following recursive version of the expression data structure will be used to

solve the expressions in statements.

data Expression = Expression (Exp2 BasicExp Expression)

deriving (Eq)

showExpression (EXpression e) = showExp2 showExpression show e

instance Show Expression vhere

show = showExpression

8. Multi Step Symbolic Interpretation

Special Functor instances to convert Expr into Expression.

instance Functor (Exp2 a) vhere

fmap f (UnaryOperation (t,b)) = UnaryOperation (t, (f b))

fmap f (BinaryDperation (bl,op,b2))

= BinaryDperation ((f bl),op,(f b2))

fmap f (ConditionaLExp ((cdl,bl),(cd2,b2)))

= ConditionaLExp ((cdl, (f bl)),(cd2, (f b2)))

fmap f (Atomic b) = Atomic b

bToE BasicExp ~ Expression
bToE = Expression· Atomic

eToE : : Expr ~ Expression

eToE = Expression· fmap bToE

91

The Stmt datatype is used for each instruction of the assembler program. Left

hand side ofthe Stmt is a State Reference StateRef and the right hand side is an

Expression (Expr).

data Stmt

= Assign (StateRef,Expr) deriving (Eq)

instance Show Stmt vhere

show (Assign (s,ex)) = show s ++ 11 = 11 ++ show ex

This one is a recursive version of statement which will be used in solving the data

flow equations.

data Recur_Stmt

= Assignt (StateRef, Expression) deriving (Eq)

instance Show Recur _Stmt vhere

show (Assignt (s, exr)) = show s ++ 11 = 11 ++ show exr

92 8. Multi Step Symbolic Interpretation

We also unify the conditions in the same data structure using BasicExp and Expr.

Since there are no conditions in the sequential instructions, the condition for them is

represented as having no condition and the condition for the branches is represented

as a branch condition.

ConditionStmt declares the conditional statement associated with the instruc

tions. It contains two parts- ConditionExp and Cond. ConditionExp defines the

condition to be checked. It is an expression which represents the condition of different

state components. NoCondi tion in Condi tionExp is used for sequential instructions

whereas BrCondition is used for branching instructions. In BrCondition, Expr de

termines left-hand side of a conditional expression, BasicExp defines the right-hand

side and CondOpSm is used to represent the operator used to compare those two ex

pressions. BrType distinguishes among different types of branches in the assembler

language.

Cond defines different values of a conditional expression (defined by

ConditionExp). As it happens in conditions of an instruction, in ConditionStmt,

we check symbolically the ConditionExp with its value i.e. Cond.

data Cond = Eql I Ltn I Gtr I Tr I n I NC deriving (Eq)

instance Show Cond vhere

show Eql = "=="
show Ltn = "<"
show Gtr = ">"
show Tr = "True"

show Fl = "False"
show NC = lilt

data BrType = BR I MDX I CHP deriving (Eq)

data ConditionExp = BrCondition Expr CondOpSm BasicExp BrType

NoCondition deriving (Eq)

instance Show ConditionExp vhere

show (BrCondition e op be bt) =

8. Multi Step Symbolic Interpretation

show NoCondition

case bt of

It II

BR ~ show e ++ show op

MDX ~ "Signl <> Sign2 I I "++ show be

++ show op

CMP ~ show e ++" CMP " ++ show be

data ConditionStmt = Check (ConditionExp,Cond) deriving (Eq)

instance Show ConditionStmt vhere
show (Check (cde~(BrCondition e op be bt), cd)) =

" ("++show cde++") " ++"=="++ show cd

show (Check (cde~(NoCondition), cd)) "True"

8.5 Modeling Control Flow

93

Our strategy for the semantic modeling of assembler program is as follows. From

the internal data structure of the control flow graph we find the set of possible paths

from the starting point in that program. For each path we get all the instructions

and convert them into statement data structure as defined in the previous section.

Then we evaluate sequentially all the expressions from the starting point using

the stack and find the symbolic inputs, outputs and system of equations (relation

between inputs and outputs) on that path. The semantics of a program is then the

disjunction of semantics of all possible paths through the program.

If the given program is sequential, then only one path of execution can be found

and we just compose all execution of instructions to find the program semantics. The

modeling of non-sequential control flow is more complex. We therefore divide the

modeling of IBM-1800 assembly language programs into two parts:

• Finding paths in the control flow graph.

• Finding data flow equations for those paths.

94 8. Multi Step Symbolic Interpretation

8.5.1 Finding Paths in the Control Flow Graph

In this Module we write some functions to find all the possible paths of a graph. We

can consider the graph to be cyclic.

module FindPath

(PathType(..), Path, FinalPath, nodesFromStart, edgesOfGraph
, findEdgeAnnt, annotationOfPaths, findLoop, nodesFromHere

, nodesFromEdges, makePair
)

where

import MyGraph (MyGraph(..), MyNode, MyEdge, edgeTo, edgeFrom

, annotation)

import Symbolic (Func, CondFunc)
import Data.List (partition)

import Data.FiniteMap (eltsFM, lookupFM)

import Obserue

After finding all the paths the PathType field associated with the FinalPath gives

us the type of the path. A path can be terminating or cyclic. PathType defines paths

as either terminating (Term) or looping (Loop).

A path is a list of nodes where two consecutive nodes have an edge in the path.

Instead of list of edges, we use list of nodes to represent a path. This is helpful in

finding execution paths of a control flow graph using general searching techinques like

BFS (Breadth First Search). Also from the list of nodes, we can easily form the list

of edges (if needed) in the path.

data PathType = Term I Loop deriving (Eq, Show)

type Path = [MyNode]

type FinalPath = (PathType,Path)

8. Multi Step Symbolic Interpretation 95

The strategy to find all the possible paths in the control flow graph is to start

from a node (that is designated as a start node), and expand the paths forward from

that node in the directed graph. In nodesFromStart we take a node as a start node

and find all the possible paths from that node. It is like a breadth first expanding of

the graph from the start node.

nodesFromStart :: MyGra.ph -+ MyNode -+ [Fina.~Pa.th]

nodesFromStart g n = fst $ extendPath g n

extendPath is the main function to find all the possible paths in the graph. It

takes a (complete paths, paths to continue) pair and extends the paths to continue

by one node, whenever possible. By complete paths we mean those paths that either

have a dead end (from the last node of those paths there are no outgoing edges) or

for which the last node in the path is the repetition of one of its previous nodes; this

happens in looping paths. In each iteration of extendPath1, we increase all the paths

to continue by one node if possible. If one path hits a dead end then it is transferred to

the complete paths list with the attribute Term signaling it as a terminating path. It

is otherwise added to the paths-to-continue list for the next iteration of extendPath1.

After this addition to the same iteration, we again check the paths to continue to find

whether the last node in a path is the same as one of its previous node. If any path

of that kind is found, we transfer it to the complete path list with the attribute Loop

denoting it as a looping path. When the paths-to-continue list is empty this iterative

path-finding function ends.

extendPath :: MyGra.ph -+ MyNode -+ ([Fina.~Pa.th], [Pa.th])

extendPath g n = extendPath1 g ([], [[n]])

extendPath1 : : MyGra.ph -+ ([Fina.~Pa.th] , [Pa.th]) -+ ([Fina.~Pa.th] , [Pa.th])

extendPath1 _(a,[])= (a,[])

extendPath1 g (done, todo) = extendPath1 g (newdonelist ++ done,

extended)

where edgesOut ~map (Aln -+ (nodesFromHere g $ head ln, ln)) todo

(almostdone, tocomplete) = partition (An -+ fst n = Nothing)

edgesOut

96 8. Multi Step Symbolic Interpretation

ndlist = map reverse $ map snd almostdone
ndlistl = map zipT ndlist
expand (Just edgl, nodl) = map (An ~ n:nodl) edgl

expand (Nothing, nodl) = error "should not happen, ever!"

extdl = concat $ map expand tocomplete
extd2 = partition (Ax ~ fst x = Loop) (map findLoop extdl)

extended = map snd (snd extd2)

loops = map zipL $ map reverse $ map snd $ fst extd2
newdonelist = ndlistl ++ loops

zipT nds = (Term, nds)
zipL nds = (Loop, nds)

To find the interpretation of the instructions in a path we obtain all the anno

tations of the edges in that path. Then we evaluate all the annotations from the

starting node sequentially to determine the meaning of the instructions of the code
in that path.

annotationOfPaths finds a list of all the edge annotations from the starting node
in a path. It uses findEdgeAnnt to find the annotation of one edge and edgesOfGraph
to find all the edges in a graph. All the nodes of a path are organized in a list of

(starting node, ending node) pairs of the edges.

edgesOfGraph : : MyGraph ~ [MyEdge]

edgesOfGraph (MyGraph mgo mgs) = concat $ eltsFM mgs

findEdgeAnnt :: (MyNode, MyNode) ~ [MyEdge] ~ [(CondFunc,[Func])]

findEdgeAnnt (x,y) mes = concat [annotation me lme e mes,
isEdgeFrom me x ,
isEdgeTo me y]

where isEdgeFrom e st = (edgeFrom e = st)

isEdgeTo e en = (edgeTo e = en)

annotationOfPaths: :MyGraph ~ [(MyNode,MyNode)] ~ [(CondFunc, [Func])]

annotationOfPaths mg els = concat $ map findAnntOfEdge els

8. Multi Step Symbolic Interpretation 97

vhere edgs = edgesOfGraph mg

findAnntOfEdge el = findEdgeAnnt el edgs

This function is used to find the path attribute whether it is looping or terminat

ing.

findLoop:: Path~ (PathType,Path)

findLoop mnds = if (head mnds) 'elem' (tail mnds) then (Loop, mnds)

else (Term, mnds)

As we saw in extendPathl, we have to find all the next possible nodes from a node

in MyGraph. By next possible nodes we mean all the end nodes of the edges generated

from the current node. In nodesFromHere, a simple lookup in the finitemap from the

node to edgelist of the MyGraph data structure will work to find the all possible next

nodes from the current node.

nodesFromHere :: MyGraph ~ MyNode ~ Maybe Path

nodesFromHere (MyGraph no ne) = nodesFromEdges · lookupFM ne

nodesFromEdges ::Maybe [MyEdg~ ~Maybe Path

nodesFromEdges = fmap (map edgeTo)

Finding all the paths in the CFG is done in the previous functions. Now we

introduce some other functions to find the symbolic interpretation of the instructions

in the paths of the CFG.

This function can be used to organize a node list into pairs so that the first node

is the starting node and the last one is the ending node of one edge.

makePair:: Path ~ [(MyNod.e,MyNode)]

makePair iList = zip iList (tail iList)

8.5.2 Finding Data Flow Equations

There can be many different types of control flow in assembler code. Given a (con

nected) subgraph Sofa complete CFG C, we say that

98 8. Multi Step Symbolic Interpretation

• Sis single-entry if all edges from C \ S to S go to a single node of S; this node

is called the entry point of S. It is also required that all nodes of S be reachable

from the entry point.

• S is single-exit if all edges from S to C \ S go from a single node of S, and this

node is called the exit point of S. We also require that the dual of a single-exit

graph be a single-entry graph.

• E is an execution path of S if E is a single-entry, single-exit connected subgraph

of S where all nodes besides the entry point have In-degree 1 and all nodes

besides the exit point have out-degree 1.

• a loop L is a single-entry, single-exit connected subgraph of C where all nodes

have in-degree 1 and out-degree 1 except for one node which has out-degree 2.

Note that we include the "exit point" in the loop.

As was described in the earlier section, we use here the set of execution paths to model

the control flow of a program. For the purposes of this thesis, we only treat single

entry single-exit subgraphs. Given this restriction, we divide control flow graphs into

three broad categories (see Figure 8.1 for a pictorial representation):

• Straight-Line Code (SC): In other words, an execution path.

• Generalized Straight-Line Code (GSC): May contain a branch or jump,

but that branch or jump will have all the outgoing edges to different nodes inside

that code segment. In other words, globally this code is single-entry single-exit,

but may contain multiple execution paths.

• Looping code (LC): An execution path which ends in a loop; the exit point

of the loop may be extended by a (possibly empty) execution path.

Control flow patterns of assembler programs can exhibit many different structures.

For simplicity, we choose these three structures as they represent the most common

control flow structures in programming. Other control flow patterns can also be

explored in future using the same techniques implemented here.

For each type of control flow graph noted above, we use a different strategy to find

the corresponding data flow equations. The following sections will show the strategies

to find the DFEs for each type of CFG cited before.

8. Multi Step Symbolic Interpretation

Path

~tion=True

~
Control Row Graph of SC Control Flow Graph of GSC Control Flow Graph of LC

Figure 8.1: Pictorial Representation of Code Categories

99

In this Module, from a list of symbolic interpretations of some instructions, we find

statements equivalent to those symbolic functions. A statement contains a StateRef

(left-hand side of statement) and an Expr (value to be assigned in the StateRef) in

the symbolic form.

module Find.Expr

(transformToStmts, transformToConds, findAnntOfGraph, dividePathAnt

, mergePathCond, listCond, loopPathAnt, mergeLoopCond , convToStmt
)

vhere

import SymboLic (Func(..), CondFunc(..), TypeCast(..), VaL(..),

StateComp(..), Operator(..), CondOpSm(..))

import MyGraph (MyGraph, MyNode, doAnnotation)

import Exp
import FindPath (PathType(..), annotationOfPaths, nodesFromStart,

makePair)

import FindJoin (findSplitJoin, getCommonDiv, getLoopParts)

import Data.Maybe (fromJust)

As was stated earlier, each instruction in IBM-1800 assembly language as

signs some values to either (parts of) the State Components and/or the Memory.

100 8. Multi Step Symbolic Interpretation

transformToStmts makes this effective by translating every low-level assignment to

a higher-level representation {in terms of assignment statements), where the left-hand

side is a StateRef and the right-hand-side is an arbitrary expression Exp. There are

many different types of Func for various types of low level assignments in the in

structions of the IBM-1800 assembler, so it is non-trivial to use Func to determine

the values of the state components in the instructions. Stmt has a more unified and

simple representative data structure for each of those Funes and that is why it can

be used more efficiently to find the expressions in the statements.

transformToStmt:: Func ~ Stmt

transformToStmt st case st of

AssignSC16 s v ~ Assign (SC s, Unaryoperation

(Ia, (MemoryConstant v)))

UpdateSC16 s o v ~ Assign (SC s, BinaryDperation

((VariabLe (va1161 v)),

o, (MemoryConstant (va1162 v))))

AssignMem16 v 1 ~ Assign (Mem 1, Unaryoperation

(Id, (VariabLe v)))

AssignMemX v 1 ~ Assign (Mem 1, Unaryoperation

(Ia, (VariabLeX v)))

UpdateSC32 s o v ~ Assign (SC s,Binaryoperation

AssignX s v

UpdateX s v

UpdateAS o v

UpaateAQS o v

((VariabLe (va1321 v)),

o, (MemoryConstant (va1322 v))))

~ Assign (SCX s, URaryOperation

(Ia, (MemoryConstant v)))

~ Assign (SCX s, BinaryDperation

((VariabLeX s),

Add, (MemoryConstant v)))

~ Assign (SC Ace, BinaryOperation

((VariabLe Ace) ,

o, Constant v))

~ Assign (SC AccQ, Binaryoperation
((VariabLe AccQ),

o, Constant v))

8. Multi Step Symbolic Interpretation

Cond.Disp c v ~ Assign (Mem c, BinaryOperation

((MemoryConstant c),

transformToStmts:: [Func] ~ [Stmt]

transformToStmts = map transformToStmt

Add, (MemoryConstant v)))

101

We also need to convert all different conditions in the symbolic interpretation in

a unified data structure called ConditionStmt.

transformToCond:: CondFunc ~ ConditionStmt

transformToCond cf =
c::ase cf of

Condition s o b ~ Check ((BrCondition (Atomic (VariabLe s))

o (Constant 0) BR), trb1 b)

Cond.DispAddT s v b ~ Check ((BrCondition (BinaryOperation

((VariableX s), Add,

MemoryConstant v)) EqO

(Variab leX s) MDX) , trb1 b)

Cond.DispAddM 1 v b ~ Check ((BrCondition (BinaryOperation

((MemoryConstant 1), Add,

(MemoryConstant v))) EqO

(MemoryConstant 1) MDX), trb1 b)

UpdateComp s o v ~ Check ((BrCondition (Atomic (VariabLe s))

o (MemoryConstant v) CMP),

trcm o)

otherwise ~ Check (NoCondition, N~

where trb1 b = if b = True then Tr

else Fl

trcm em = c::ase em of

EqO ~ EqL

LtO ~ Ltn

GrO ~ Gtr

102 8. Multi Step Symbolic Interpretation

transformToConds:: [CondFunc] ~ [ConditionStmt]

transformToConds = map transformToCond

We can now find all the annotation of paths in a Graph. We assume that the

graph given is a single entry and single exit graph.

Given a start node and a graph, findAnntOfGraph finds path conditions and

symbolic interpretations of all the instructions in all paths of the graph. First it

annotates all the edges in the Graph using the doAnnotation function of the MyGraph

module. Then it finds all the paths in the graph. If only one path is found then it

is a Straight-line Code (SC). If two or more paths are found then it is a Generalized

Straight-line Code (GSC) structure, and obviously, if there is any looping path then

it is a Looping code (LC) structure.

findAnntOfGraph :: MyGraph ~ MyNode ~ [[([ConditionStmt],[Stmt])]]
findAnntOfGraph mg start

= if length pl = 1 then csList

else if any (Ax ~ fst x - Loop) pl

then cLList

else cfList

vhere mg1 = doAnnotation mg

pl = nodesFromStart mg1 start

csList =[[([Check (NoCondition, NC)],
((transformToStmts·snd·listCond)

$ annotationOfPaths mg1

(makePair $ concat $ map snd pl)))]]

cfList = mergePathCond $ dividePathAnt mg1 start

cLList = mergeLoopCond $ loopPathAnt mg1 start

Straight-Line Code (SC): We gather all the annotations of the edges of the

single execution path. We use sequential composition El; E2 to represent this.

Modeling the control flow and finding the semantic context of straight-line code

is simple. In particular, there are no new path conditions that are imposed. We just

need to find the state transformer corresponding to each statement and using a stack

to keep track of the current environment, we sequentially compose all the expressions

8. Multi Step Symbolic Interpretation 103

representing these state transformers. Since each state transformer obtained from the

previous stage is always of the form V' = f(S) where V' is a single state component,

and S is a finite set of state components, we obtain a set of the simplest kind of data

flow equations.

For SC, findAnntOfGraph gets the edge annotation list using

annotationOfPaths and transforms them to statements by transformToStmts.

Generalized Straight-Line Code (GSC): For GSC {refer to middle graph in

Figure 8.1), we proceed as follows:

• find the nodes in the code that correspond to a split (a branch instruction) and

a join {the meeting point of two different paths which started at a split). This

divides the CFG as several SCs, which we label E1, E2a , E2b , E3.

• for each of the SCs, we generate a system of data flow equations. We use E 1 to

also denote the resulting system (confusion is easily cleared from context).

• Write the system of data flow equations for the whole code as E1 ; (9t ---t

E2al•9t ---t E2b); E3 where 9t denotes the guard which corresponds to the choice

for branch t and I denotes parallel composition.

The node where the paths in the CFG split is called the "split" node and the

node where paths join again is called the "join" node. Since the graph is considered

as single-entry and single-exit, so we must have at least one "split" and a "join" node

if there are more than one paths in the CFG.

GSC (or branching codes) can be considered as one if-then-else structure. We

divide the paths in the GSC into different segments using the "split" and "join"

nodes and find symbolic interpretation of all the segments differently.

For an ideal GSC structure, in two of its paths, nodes before the split node and

nodes after the join node are similar. In between split and join, the path segment

for each path is different from one another. So we can divide the two paths of the

GSC into four different path segments. They may be named as First Common (fc),

Different Path 1 {pd1), Different Path 2 {pd2) and Second Common (sc) [See Figure

8.2].

di videPathAnt finds a list of (path condition, list of interpreted instructions)

pair for all the segments of the paths. It first finds "split" and "join" nodes {if any)

104 8. Multi Step Symbolic Interpretation

Legends:

Flow of Control

Figure 8.2: Shape of GSC

between the paths and divide the paths into segments using those nodes. Then it

finds the paths conditions and function list of the instructions for those segments.

di videPathAnt : : MyGraph -+ MyNod.e -+ [[(Cond.Func, [Func])]]

dividePathAnt mg st = map (annotationOfPaths mg) $ map makePair 1st

vhere paths = nodesFromStart mg st
(splt, jnt) = findSplitJoin paths

(fc, pd1, pd2, sc) = if (splt = Nothing) v (jnt = Nothing)

then error "no intersection"

else getCommonDiv
((snd·head) paths)

((snd·last) paths)

((fromJust splt),

(fromJust jnt))

1st = if length fc = 1
then [pd1, pd2, sc]

else if length sc = 1

8. Multi Step Symbolic Interpretation

then [fc, pdl, pd2]

else [fc, pdl, pd2, sc]

105

mergePathCond transforms the functions into statements and combines all the

conditions of the instructions into one path condition for each segment of the paths.

It then transforms these conditions into ConditionStmt. For fc and sc, the path

conditions are "True" as they are Straight-line Code (SC). for pdl and pd2, the path

condition depends on the condition of the instruction in the "split" node.

listCond combines all the conditions of instructions in one list from a list of

(condition, function list) pairs for one segment of path.

After dividing the paths into segments, we must reorganize the statement list for

each segment. As mentioned earlier, the symbolic interpretation of the instruction

in a node appears as the annotation of its outgoing edges. In the branching struc

ture code, after the "split" node each first edge of two different paths contains the

same statement as annotation as they are generated from the same node although

their conditions are different. So we will be removing this common statement in the

common segment (fc) before the split for more precise interpretation.

trSnd = transformToStmts · snd

trFst transformToCond· head·fst

trFsts = transformToConds·fst

nc = Check (NoCondition, NC)

mergePathCond :: [[(CondFunc, [Func])]] ~

mergePathCond cfss

if length cfss = 3

[[([Condi tionStmt] , [Stmt])]]

then if (head $ fst f1) + Tru
then if head inst1 = head inst2

then [[([nc],[head inst1]),

([trFst f1], tail inst1),

([trFst f2], tail inst2),

([nc], trSnd f3)]]

else [[([trFst f1], inst1),

106 8. Multi Step Symbolic Interpretation

([trFst f2], inst2),

([nc], trSnd f3)]]

else if head inst2 = head inst3

then [[([nc],

(trSnd f1)++[(head inst2)]),

([trFst f2], tail inst2),

([trFst f3], tail inst3)]]

else [[([nc], trSnd f1),
([trFst f2], inst2),

([trFst f3], inst3)]]

else if head inst2 = head inst3
then [[([nc],

(trSnd f1)++[(head inst2)]),

([trFst f2], tail inst2),

([trFst f3], tail inst3),

([nc], trSnd f4)]]
else [[([nc], trSnd f1),

([trFst f2], inst2),

([trFst f3], inst3),

([nc], trSnd f4)]]

vhere condfn = map listCond cfss

f1 = head condfn

inst1 = trSnd £1

f2 = head (drop 1 condfn)

inst2 = trSnd f2
f3 = head (drop 2 condfn)

inst3 = trSnd £3

£4 = last condfn

listCond :: [(CondFunc, [Func])] -+ ([CondFunc], [Func])

listCond cfs = ((map fst cfs), (concat $map snd cfs))

Looping Code (LC):

8. Multi Step Symbolic Interpretation 107

One significant challenge in modeling any program, symbolically or otherwise, is

to correctly model loops. For loops, we will use (symbolic) recurrence equations as

a model [FS03]. If we are lucky, these recurrences will be solvable in closed form.

Nevertheless we can continue with this implicit representation even if they are not.

Frequently, properties of the solution of recurrence equations can be derived from the

recurrence itself without needing the closed-form solution.
To make the discussion more concrete, we will use the following sample code as

example:

OADDR REL OBJ. ST. N. LABEL OPCD FT OPRNDS
35CE 0 1001 0708 SLA 1
35CF 0 72FF 0709 MDX 2 -1
35DO 0 70FD 0710

In this simple loop, the accumulator A value is shifted left by one and XR2 is

decreased by one at each loop execution. We can express this change in terms of

recurrences: An+l = 2 *An and XR2n+l = XR2n -1, which expresses that the value of

the accumulator and XR2 at time n + 1 are a function of their values at time n, where

n ~ 0. Since upon loop entry both A and XR2 have a value, we know the necessary

initial conditions for this first-order recurrence. We use A and XR2 to denote these

initial values. We can thus represent the symbolic meaning of the loop using these

recurrence equations and the initial conditions.

To determine the value of A after the loop terminates, we need to know if and

when the loop will stop. We define a stopping criterion <P : State --? lE which

will symbolically determine the number of iterations for the loop. This stopping

criterion naturally corresponds with the loop condition - which for our simple loop

is <P = XR2 > 0. The recurrence equation, initial condition and stopping criterion are

sufficient to completely describe all the loop information symbolically.

For each component of the state v, which is modified in a loop, we represent

the corresponding information as a function t-t(v, s, c), from the variable, state and

a program context c (See Section 7.1). The stopping criteria is given by the path

condition of the program context c, and the initial condition is determined from s.

The result of 1-L is a representation of the recurrence equation for that state component.

As in GSC, the starting nodes for LC before the "split" node in the paths and

ending nodes after the "join" node are common. In between them there are different

path segments for each path which are shown in the Figure 8.3.

108 8. Multi Step Symbolic Interpretation

Legends:

Flow of Control

Figure 8.3: Shape of Looping Codes

We can divide two paths of the LC in five different path segments. They may be

named as Common P (cp), Terminating T (tt), Looping X (Ix), Looping Y (Iy) and

Common Z (cz). cp, tt, ly and cz must be straight line codes (SC) however lx can be

either SC or GSC depending on the number of paths in lx.

LoopPathAnt finds a list of (path condition, list of interpreted instructions) pairs

for all the segments of the paths in a LC. AB in di videPathAnt, it first finds "split"

and "join" nodes among the paths and divides the paths into segments using those

nodes. Then it determines the path conditions and function list of the instructions

for those segments.

loopPathAnt :: MyGraph ~ MyNode ~ [[[(CondFunc,[Func])]]]

loopPathAnt mg st = [[acp, att, aly, acz] , alx]

vhere paths = nodesFromStart mg st

(sp, jn) = findSplitJoin paths

(cp,tt,lx,ly,cz) = if (sp = Nothing) V (jn = Nothing)
then error "no intersection"

else getLoopParts paths

8. Multi Step Symbolic Interpretation 109

((fromJust sp), (fromJust jn))
[acp, att, aly, acz] =map (annotationOfPaths mg)

$ map makePair [cp,tt,ly,cz]

alx = map (annotationOfPaths mg) $ map makePair lx

mergeLoopCond works as mergePathCond, that is it transforms the functions into

statements and combines all the condition of the instructions into one path condition

for each segment of the paths, and then transforms this condition into Condi tionStmt

for LC.

mergeLoopCond :: [[[(CondFunc,[Func])]]] ~

[[([ConditionStmt],[Stmt])]]

mergeLoopCond cfst = [[([nc],trSnd cacp)],

[cTT], cLX, [eLY],

[([nc],trSnd cacz)]]

vhere [cacp, catt, caly, cacz] =map listCond (head cfst)

eLY = convToStmt caly
cTT = convToStmt catt
loopc = map listCond (last cfst)

cLX = map convToStmt loopc

convToStmt :: ([CondFunc], [Func]) ~ ([ConditionStmt], [Stmt]) ·

convToStmt cfs = (cds, (trSnd cfs))

vhere cds = filter (Ax ~ x + nc) (trFsts cfs)

8.6 Examples

The code segments used to generate the following examples are taken from the BPC

(Boiler Pressure Control) code of OPG.

8.6.1 SC Example

We present the same code segment in Section 2.3.1:

110 8. Multi Step Symbolic Interpretation

OADDR REL OBJ. S.NO. LABEL OPCD FT OPRNDS

3586 0 C129 0677 TRBFB LD 1 41

3587 0 A12A 0678 M 1 42

3588 0 1082 0679 SLT 2

3589 0 9128 0680 s 1 43

35BA 0 A12C 0681 M 1 44

35BB 0 108F 0682 SLT 15

35BC 0 A92D 0683 D 1 45

35BD 0 D12E 0684 STO 1 46

The Data Flow Equations (DFE) for this code segment are:

PathCondition: True

Instruction Execution:

A := C(XR1 + 41)

AQ := A * C(XR1 + 42)

AQ «= 2

A -= C(XR1 + 43)

AQ := A * C(XR1 + 44)

AQ «= 15

A := AQ / C(XR1 + 45)

Q := AQ % C(XR1 + 45)

C(XR1 + 46) := A

8.6.2 GSC Example

This chunk of code is a also a part of the the BPC (Boiler Pressure Control) code of

OPG.

35C4 0 73FF 0695

35C5 0 700F 0696
0697

MDX 3 -1
MDX TRBFE

8. Multi Step Symbolic Interpretation Ill

35C6 0 1010 0698 TRBFD SLA 16

35C7 0 D12F 0699 STO 1 47 0

35C8 0 7012 0700 MDX TROUT

0701

0702

35C9 0 0000 0703 DI2F3 DC 0

35CA 0 6203 0704 LDX 2 3

35CB 0 6300 0705 LDX 3 0

35CC 0 4810 0706 BSC

35CD 0 7301 0707 MDX 3 1

35CE 0 1001 0708 SLA 1

35CF 0 72FF 0709 MDX 2 -1

3500 0 70FB 0710 MDX *-5

3501 00 66002099 0711 LDX L2 BPCD

3503 00 4C8035C9 0712 BSC I DI2F3

0713

0714

0715

3505 0 C209 0716 TRBFE LD 2 9

3506 0 911B 0717 s 1 27

3507 0 A130 0718 M 1 48

3508 0 1005 0719 SLA 5

3509 0 D12F 0720 STO 1 47

35DA 0 7000 0721 MDX TROUT

0722

0723

0724

0725

35DB 0 C12E 0726 TROUT LD 1 46

35DC 0 812F 0727 A 1 47

35DD 0 A132 0728 M 1 50

35DE 0 1089 0729 SLT 9

35DF 0 0123 0730 STO 1 35

112 8. Multi Step Symbolic Interpretation

To understand the execution sequence of this GSC segment, Here we give a graph

ical control flow pattern (Figure 8.4) of the segment.

Figure 8.4: Control Flow Graph of the Segment Ox35C4-0x35DF

The following are the DFE presentation for different segments of the GSC segment.

Segment: fc

PathCondition: True

Instruction Execution:
XR3 += (-1)

Sign! := Sign(XR3)
Sign2 Sign(XR3+(-1))

Segment: pd1

PathCondition:

(Sign!<> Sign2 II XR3 == 0) --False

Instruction Execution:

A := C(XR2 + 9)

8. Multi Step Symbolic Interpretation

A -= (XR1 + 27)

AQ = A * C(XR1 + 48)
A «= 5

C(XR1 + 47) := A

Segment: pd2

PathCondition:

(Sign1 <> Sign2 I I XR3 == 0) == False

Instruction Execution:

A «= 16

C(XR1 + 47) := A

Segment: sc

PathCondition: True

Instruction Execution:

A := C(XR1 + 46)
A += C(XR1 + 47)

AQ := A * C(XR1 + 50)

AQ «= 9

C(XR1 + 35) := A

8.6.3 LC Example

Another BPC code segment to present the LC structure is adapted here.

35C9 0 0000
35CA 0 6203

0703 DI2F3 DC 0
0704 LDX 2 3

113

114 8. Multi Step Symbolic Interpretation

35CB 0 6300 0705 LDX 3 0

35CC 0 4810 0706 BSC

35CO 0 7301 0707 MDX 3 1

35CE 0 1001 0708 SLA 1

35CF 0 72FF 0709 MDX 2 -1

3500 0 70FB 0710 MDX *-5

3501 00 66002099 0711 LDX L2 BPCO

3503 00 4C8035C9 0712 BSC I OI2F3

To understand the execution sequence of this LC segment, Here we give a graphical

control flow pattern (Figure 8.5) of the segment.

Figure 8.5: Control Flow Graph of the Segment Ox35C9-0x35D3

Segment: cp

PathCondition: True

Instruction Execution:

XR2 := 3

XR3 := 0

8. Multi Step Symbolic Interpretation

Segment: tt

PathCondition:

Instruction Execution:

Segment: lx

PathCondition:

(A < 0) ==False, (Sign! <> Sign2 I I XR3 == 0) ==False

Instruction Execution:

XR3 += 1
Sign! Sign(XR3)

Sign2 := Sign(XR3+1)

A «= 1

PathCondition:

(A < 0) ==True

Instruction Execution:

A «= 1

PathCondition:

(A< 0) ==False, (Sign!<> Sign2 II XR3 == 0) ==True

Instruction Execution:

115

116 8. Multi Step Symbolic Interpretation

XR3 += 1

Segment: ly

PathCondition:

(Sign1 <> Sign2 II XR2 -- 0) ==False

Instruction Execution:

XR2 += (-1)

Sign1 Sign(XR2)

Sign2 := Sign(XR2+(-1))

Segment: cz

PathCondition: True

Instruction Execution:

XR2 := 8345

The data flow equations (DFE) in all the three previous examples give us a high

level representation of the computation done in the assembly code. Still more work

can be done on these DFEs to understand the meaning of the code better. The

following chapters show us different ways to interpret these DFEs.

Chapter 9

Generating Data Flow Graphs

Contained in this chapter is the tool used to generate Data Flow Graph (DFG) from

the assembler code. In different subsections, the internal data structure of the Data

Flow Graph, functions to create the DFG from the Data Flow Equations (DFE), and

the garbage collection step of the DFG are discussed. Later, we also provide some

examples DFGs which are generated using this tool.

9.1 Data Flow Graph

A data-flow graph (DFG) is a graph which repr~ents data dependencies among a

number of operations in a program. Definition and structure of DFG are given earlier

in Section 3.1.2. DFGs are very important in data flow analysis at runtime.

9.2 DFG Generation Process

In this section we give a brief overview of the data flow graph generation process.

Figure 9.1 shows different internal steps of DFG generation. We start the DFG gen

eration process by taking the Data Flow Equations of the corresponding code segment

as input. We then produce a Data Flow Graph with redundant entries. These redun

dant entries can be added in the DFG for various reasons. For example, when any

value is assigned to AccQ (Combined Accumulator and its extension register) in the

next instructions, we may need the value of either Ace (Accumulator) or its extension

117

118 9. Generating Data Flow Graphs

register (Q). So we add two more entries of Ace and Q in the DFG. The entries that

are not used by the later instructions are removed in the Garbage Collection phase.

Not all of the unused entries are removed. The rules for removing unused nodes in

the DFG are discussed in detail in Section 9.5.

Legends:

Flowofitta

I Process I

Figure 9.1: DFG Generation Process

In the following sections, we provide three different modules in DFG generation

process. Section 9.3 shows the internal data structure implementation of the DFG.

Following that, we include the module for generating a DFG. The DFG produced in

that module contains redundant nodes. To remedy that the Garbage Collection is

given in Section 9.5.

9.3 Internal Data Structure of DFG

In this module, we define all the data types needed by the Data Flow Graph generation

tool.

module Dfg
(operatorNode(..), OperandNode, OEdge(..), InEdges

, OutEdges, Dfd.Graph, UseType, UsedNode, NodeMap
)

where

import Exp (BasicExp, ConditionExp, Cond)

import Stack

9. Generating Data Flow Graphs 119

import Observe

Like other graph structures, a Data Flow Graph (DFG) contains nodes and edges.

Edges in a DFG represents the flow of data from one operation to the other. Nodes

in a DFG are of two types: Operand or Operator. Operand nodes represent the data

and operator nodes the operation carried on the data in the instructions. Thus in our

DFG data structure the nodes are divided into operand and operator nodes.

The Operand.Node data type declares the node for the operands (data) of the

operations. It contains BasicExp expression type which defines the basic expression

for the data. OperatorNode defines the type for different types of operations. In

IBM-1800, operations inside instructions can be Unary, Binary or Conditional. We

declare a special OperatorNode called Join to define the join of same data value

from different branches.

We use one important integer fields (ci) to declare OperatorNode and

Operand.Nodes. ci distinguishes between different nodes with the same label com

ing from different instructions. In most cases, this integer field gives the no. of the

instruction from which the node is generated.

Instead of deriving Ord, we create our own ordering for the OperatorNod.es. The

derived Ord. was not working as it was ordering depending only on the operator in

the node. But we may have different OperatorNodes with same label (operator). As

such, we were getting aberrant edges among the nodes while using derived Ord. To

solve the problem, we clearly distinguish among the OperatorNodes by a predefined

sequence.

In our DFG data structure, we assume that there will only be edges from the

operator node to operand node and vice versa. There must not be any edges be

tween two nodes of the same kind. InEd.ges defines the edges from the Operand.Node

to OperatorNode whereas OutEdges defines the edges from the OperatorNode to

Operand.Node. In the definition of OutEdges, we use another data type: OEdge.

From an OperatorNode, depending on the type of that node, we can have edges

to different OperandNod.es where each edge may contain conditions like True, False,

Equal etc. OEdge defines different types of edges with the conditions associated with

them. For OneEdge in OEdge, there is no condition associated with the edge. This

120 9. Generating Data Flow Graphs

is used for unconditional data flow. From the semantical understanding of the as

sembler we can determine that there can be at most three outgoing edges from one

OperatorNod.e. That is why we created a data type from the outgoing edges for one

OperatorNod.e which contains three options: OneEd.ge (for unconditional operators),

TwoEd.ge (for branching operators) and ThreeEd.ge (for CMP operators). This gives

us the strong typographical setting for the data type and can be used to avoid errors

during runtime. For InEd.ges we use a simple list of OperatorNod.e as the successor

of the Operand.Nod.e since we are not sure how many times a Operand.Nod.e will be

referenced later in other instructions.

So our DFG structure Dfd.Graph contains two finitemaps: One for the InEd.ges
and the other for OutEd.ges; one finitemap from the Operand.Nod.e to OperatorNod.e
and one from the OperatorNod.e to OEd.ge.

data OperatorNod.e =
Unary TypeCast Int

Binary Operator Int

Cond.itionVal Cond.itionExp Int
Join Int Int deriving (Eq)

instance Show OperatorNod.e vhere

show (Unary tc ci) = show tc

show (Binary op ci) = show op

show (Cond.itionVal cf ci) = show cf

show (Join ci1 ci2) = "Join"

instance Ord. OperatorNod.e vhere

compare (Unary t n) (Unary s m)

I t = s = compare n m

t :S s = LT
otherwise = GT

compare (Unary t n) (Binary s m) = LT

compare (Binary t n) (Unary s m) = GT
compare (Cond.itionVal t n) (Unary s m) LT
compare (Unary t n) (Cond.itionVal s m) = GT

9. Generating Data Flow Graphs 121

compare (ConditionVaL t n) (Binary s m) = LT

compare (Binary t n) (ConditionVaL s m) GT

compare (Binary t n) (Binary s m)

t = s = compare n m
t ~ s = LT

otherwise = GT

compare (ConditionVal t n) (ConditionVal s m)

= compare n m
compare (Unary n m) (Join t s) = LT

compare (Join t s) (Unary n m) = GT

compare (ConditionVal n m) (Join t s) = LT

compare (Join t s) (ConditionVal n m) = GT

compare (Join t s) (Binary n m) = GT

compare (Binary n m) CJoin t s) = LT

compare (Join t s) (Join n m)

t = n = compare s m
t ~ n = LT

otherwise = GT

data DperandNode = ExpressionNode BasicE~p Int deriving (Eq)

instance Show DperandNode vhere

show (ExpressionNode e ci) = show e

instance Ord operandNode vhere

compare (ExpressionNode e1 ci1) (ExpressionNode e2 ci2)

e1 = e2 = compare ci1 ci2
e1 ~ e2 = LT

otherwise = GT

data OEdge = OneEdge operandNode

I TWoEdge (Cond,operandNode) (Cond,OperandNode)

122 9. Generating Data Flow Graphs

I ThreeEdge (Cond,DperandNode) (Cond,DperandNode)
(Cond,DperandNode) deriving (Eq)

instance Show OEdge where

show (OneEdge on) = show on

show (TwoEdge (cn1,on1) (cn2,on2)) = show onl

++ ", "++ show on2

show (ThreeEdge (cnl,onl) (cn2,on2) (cn3,on3)) = show onl

++ " , " ++ show on2
++ " , "++show on3

type InEdges = (DperandNode, [OperatorNode])

type OutEdges = (OperatorNode, OEdge)

data DfdGraph = DfdGraph (FiniteMap OperandNode [DperatorNode])

(FiniteMap operatorNode OEdge)

This data type is used for garbage collection and indicates whether a node is used

by the next nodes.

UsedNode contains two finitemaps: one for operandNode and the other for

operatorNode. In the finitemaps, each node (operand or operator) is mapped to

UseType that can be either Used or Unused. Depending on the UseType of the

nodes, we will get rid of the unused nodes during garbage collection phase of DFG

generation.

data UseType = Used I Unused deriving (Eq)

instance Show UseType where

show Used = "used"

show Unused = "unused"

data UsedNode UsedNode (FiniteMap operandNode UseType)

(FiniteMap OperatorNode UseType)

Below is the same environment that is declared in Stack.lhs. A type class is

defined there for these type of environments. This instance associates BasicExp with

9. Generating Data Flow Graphs

Operand.Node and is used for same node lookup.

type NodeMap = BasicExp ~ operandNode

instance Stack BasicExp Operand.Node where

createStack e = ExpressionNode e 0

addEntry s (k,v) = Ad~ if k=d then v else s d

addEntries = foldl addEntry

lookupEntry s k = s k

9.4 DFG Generation

123

In this module we convert the Data Flow Equations (DFE) generated from a code

segment into a Data Flow Graph (DFG). The DFEs of the code segment show the

data flow from one instruction to the next by representing the data as symbolic values

and the instructions represented as statement using those data symbols. However,

DFG gives us the pictorial presentation of the data flow from one operation to the

next. DFG gives a clear understanding of data dependency among the operations in

the code.

module Dfe2Dfg (dfdGraphToGxlGraph)

where

import MyPrelude (fst3, thrd3)

import GxlGraph (GxlGraph, addEdges, addNodes,)

import Symbo lie (StateComp(..), TypeCast(..))

import Stack

import Exp

import Dfg
import Dfe2DfgCommon
import GarbageCollect (markNodes, garbageCollectOfDfdGraph)

import Data.FiniteMap (emptyFM, fmToList, keysFM, addListToFM,
addListToFM_C, addToFM,

addToFM_C, lookupFM)

124 9. Generating Data Flow Graphs

import Data.Maybe (fromJust)

import Data.List (find, delete, deleteBy)

import Observe

dfdGraphToGxlGraph is the main function used to generate the Data Flow Graph

(DFG)s from the Data Flow Equation (DFE)s. As seen in the Figure 9.1 that shows

the steps to produce DFGs, we first generate the internal data structure of the

DFG, DfdGraph, that contains the redundant entries of data nodes which are un

used. dfeNodesEdgesToGraph and dfeNodesEdgesToGraphBr are used to generate

DfdGraph for SC and GSC respectively. After generating the DFG, we garbage collect

the DfdGraph by marking the nodes with their UseType and removing the unused

nodes from the graph using the garbageCollectOfDfdGraph function. Finally, for

exchange and display purposes, we convert the DFG into GXL format, that is we

create a new DFG in GXL by converting the InEdge, OutEdge into GXL edges and

OperandNode and OperatorNode into GXL nodes.

dfdGraphToGxlGraph :: GxlGraph ~String~

[[([ConditionStmt], [Stmt])]] ~ GxlGraph

dfdGraphToGxlGraph ggraphs name cstmts = addEdges (inEdges++outEdges)

$ addNodes (opndNodes++optrNodes) ggraphs

where (i, dfdGraphBGC, nMap)

= if (length $ concat cstmts) = 1

then dfeNodesEdgesToGraph

CDfdGraph emptyFM emptyFM) 1

createStack (concat $ map snd

$ concat cstmts)

else dfeNodesEdgesToGraphBr

(DfdGraph emptyFM emptyFM) 1

createStack (concat cstmts)

usedNode1 = markNodes dfdGraphBGC (i-1)

(UsedNode emptyFM emptyFM) nMap

(DfdGraph fmopn fmope) = garbageCollectOfDfdGraph

dfdGraphBGC usedNode1

9. Generating Data Flow Graphs

inEdges = pairsToGxlEdges $ inEdgeToids name

(fmToList fmopn)

outEdges = reverse $ outEdgeToGxlEdges name

(fmToList fmope) []

opndNodes = map idToGxlNode $map (opnodeToid name)

(keysFM fmopn)

optrNodes = map idToGxlNode $map (optnodeToid name)

(keysFM fmope)

125

We now discuss how to create the internal data structure (DfdGraph) of the DFG

from the DFEs.

dfeNodesEdgesToGraph is used to create the DFG for the SC type codes. This

function adds all the nodes and edges in the graph iteratively. In one iteration, it

finds all the nodes that have to be added in the DFG for one instruction. For the

input nodes, it decides which nodes have links to the data nodes from the previous

instructions. It separates those Opearnd.Nodes from the other input nodes and does

not add them in the DFG as they can be replaced by the previous occurrence of them

(findAppNodes). The rest of the input nodes are added to the DFG directly. Using

this information, it finds all the feasible edges from the edge list of that instruction

and adds them in the DFG (addAppEdges). As the output data nodes are yet to

be referenced by the next instructions, we add t~ose nodes in the DFG with their

successor list as empty (makeBlankPairs).

findAppNodes uses NodeMap which maps the data symbol (BasicE:r;p) to the

Nodeid to check whether the previous data nodes have been referenced by the new

input nodes. NodeMap contains all the data symbols and their corresponding Nodeids

in the DfdGraph. In each iteration, all the new input (feasible) and output nodes are

added to the NodeMap for future reference. Intis used to give all nodes a unique ID

in each iteration.

dfeNodesEdgesToGraph : : DfdGraph -+ Int -+ NodeMap

-+ [Stmt] -+ (Int,DjdGraph,NodeMap)

dfeNodesEdgesToGraph dgrphs i nMap [] = (i,dgrphs,nMap)

dfeNodesEdgesToGraph dgrphs~(DfdGraph fmopn fmope) i nMap (fn:fns)

= dfeNodesEdgesToGraph dfgl (i+l) newNMap fns

126 9. Generating Data Flow Graphs

where nodels = dfeToNodes fn i
inodes findAppNodes nMap (fst3 nodels) ([],[])

newNMap = addToNodeMap nMap ((fst inodes)
++(thrd3 nodels))

edgePairs = dfeToEdgePairs fn i

newFmope = addListToFM fmope (snd edgePairs)

dfgO = makeBlankPairs (thrd3 nodels)

(DfdGraph fmopn newFmope)

dfg1 = addAppEdges (fst edgePairs)

dfgO (snd inodes)

dfeNodesEdgesToGraphBr generates the DFG for branching structure codes. As

we saw in Figure 8.2, for the GSC, there can be four different segments of code:

First Common (fc), Different Path 1 (pd1), Different Path 2 (pd2) and Second Com

mon (sc). All of these four segments can be considered as sc type. So we can use

dfeNodesEdgesToGraph to create a DFG for these segments. In finding the DFEs,

depending on the structure, we can find that in a single entry single exit subgraph,

there are always some instructions in the fc segment but there may not be any sc

segment. The first implementation of dfeNodesEdgesToGraphBr is for that type of

structure of GSC where there are no sc whereas the second one is for an ideal GSC

with four segments of code.

Both of the implementations have everyting in common except for creating the

DFG of the last segment. We start with generating the DFG for fc and then we add

the condition node in the DFG that produces two different segments. Condition node

is a special type of OperatorNode. conditionToiNodeEdges creates the condition

node and adds the input edges to that node from the fc segment nodes. After that, we

generate the nodes and edges in the DFG for both pd1 and pd2 segment respectively.

condi tionTooNodeEdges adds the output edges from the condition node to two

different segment nodes. After generating the nodes and edges for pdl and pd2, we

find the leaf nodes (with no outgoing edges) for both of those segments which may be

used as data in the next sc segment. For each pair of leaf nodes which are common

in the two segments, we create a join node (another special type of OperatorNode)

using zippOperandNodes and addJoinNodes. This join node acts as an Or operation

for both of those common nodes. The first implementation ends here as we do not

9. Generating Data Flow Graphs 127

have an sc segment. In the second implementation, we add the nodes and edges for

the sc segment and thus finish generating the DFG.

dfeNodesEdgesToGraphBr : : DfdGraph -+ Int -+ Nod.eMap

-+ [([ConditionStmt],[Stmt])] -+ (Int,DjdGraph, Nod.eMap)
dfeNodesEdgesToGraphBr dgrphs i nMap [cstl,cst2, cst3]

= (i4,dfdg4,nm4)

vhere (il,dfdgl,nml) = dfeNodesEdgesToGraph dgrphs i
nMap (snd cstl)

stmtl = (last·snd) cstl

dfd2 = conditionToiNodeEdges dfdgl (il+l)

(head $ fst cst2) stmtl

(i2,dfdg2,nm2) = dfeNodesEdgesToGraph dfd2

(i1+2) nml (snd cst2)

(i3,dfdg3,nm3) = dfeNodesEdgesToGraph dfdg2

(i2+1) nml (snd cst3)

stmt2 = (head·snd) cst2
stmt3 = (head·snd) cst3

dfd3 = conditionTooNodeEdges dfdg3 (i1+2) (i2+1)

(head $ fst cst2) stmt2 stmt3

(DfdGraph fmo2 fme2) = dfdg2

(DfdGraph fmo3 fme3) = dfdg3

leafs2 = findLeafs dfdg2 (i1+2) i2

(keysFM fmo2) []

leafs3 = findLeafs dfdg3 (i2+1) i3
(keysFM fmo3) []

zippedNodes = zipOperandNodes leafs2
leafs3 nml []

(i4,dfdg4, nm4) = addJoinNodes dfd3 (i3+1)
createStack zippedNodes

dfeNodesEdgesToGraphBr dgrphs i nMap [cstl, cst2, cst3, cst4]

= (i5,dfdg5,nm5)

vhere (il,dfdgl,nml) = dfeNodesEdgesToGraph dgrphs i
nMap (snd cstl)

128 9. Generating Data Flow Graphs

stmt1 = (last·snd) cst1

dfd2 = conditionToiNodeEdges dfdg1 (i1+1)

(head $ fst cst2) stmt1

stmt2 = (head·snd) cst2

(i2,dfdg2,nm2) = dfeNodesEdgesToGraph dfd2

(i1+2) nm1 (snd cst2)

(i3,dfdg3,nm3) = dfeNodesEdgesToGraph dfdg2

(i2+1) nm1 (snd cst3)

stmt3 = (head·snd) cst3

dfd3 = conditionTooNodeEdges dfdg3 (i1+2) (i2+1)

(head $ fst cst2) stmt2 stmt3

(DfdGraph fmo2 fme2) = dfdg2

(DfdGraph fmo3 fme3) = dfdg3

leafs2 = findLeafs dfdg2 (i1+2) i2

(keysFM fmo2) []

leafs3 = findLeafs dfdg3 (i2+1) i3

(keysFM fmo3) []

zippedNodes = zipOperandNodes leafs2

leafs3 nm1 []

(i4,dfdg4, nm4) = addJoinNodes dfd3 (i3+1)

createStack zippedNodes

(i5,dfdg5, nm5) = dfeNodesEdgesToGraph dfdg4 i4

nm4 (snd cst4)

As we saw in dfeNodesEdgesToGraph, the probable list of nodes for one instruc

tion is generated in one iteration. dfeToNodes converts all the operands and operators

of an instruction to nodes either as OperandNodes or OperatorNodes. It divides the

nodes as input, operator and output nodes. The input nodes are divided so that they

can be checked for the edges that may come from the previous nodes. For output

nodes, no such verification is necessary and they can be added in the DFG directly.

If the output data is AccQ, we create two more output nodes of Ace and Q as they

may be referenced in the future instructions.

The input and operator nodes created in one iteration will have the same Int and

the output nodes will have Int+1 as as a part of their IDs. Output nodes get Int+l

9. Generating Data Flow Graphs

as they may be the input nodes of the next instruction.

dfeToNodes: : Stmt -+ In t -+ ([OperandNode] ,

[OperatorNode] , [OperandNode])

dfeToNodes (Assign (sr, UnaryOperation (tc,ex))) i =

([(ExpressionNode ex i)],[(Unary tc i)],[srnd])

vhere srnd = conv2Expr sr (i+1)

dfeToNodes (Assign (sr, BinaryOperation (ex1, op, ex2))) i

if (sr = SC AccQ) then

else

([(ExpressionNode ex1 i), (ExpressionNode ex2 i)],

[(Binary op i), (Unary Upper16 i), (Unary Lower16 i)],

[srnd , (ExpressionNode (Variable Ace) (i+1)),

(ExpressionNode (Variable Q) (i+1))])

([(ExpressionNode ex1 i), (ExpressionNode ex2 i)],

[(Binary op i)], [srnd])

vhere srnd = conv2Expr sr (i+1)

129

Like the probable nodes for one instruction, we also create the probable edge

list for that instruction. dfeToEdgePairs creates all the probable edge pairs of an

instruction in the DFD. Later we will remove the redundant edges from these lists by

checking the previous references of the input nodes.

dfeToEdgePairs:: Stmt-+ Int-+ ([InEdges], [OutEdges])

dfeToEdgePairs (Assign (sr, UnaryOperation (tc,ex))) i=

([(ExpressionNode ex i, [(Unary tc i)])],

[(Unary tc i, OneEdge srnd)])

vhere srnd = conv2Expr sr (i+1)

dfeToEdgePairs (Assign (sr, BinaryOperation (ex1, op, ex2))) i

if (sr = SC AccQ) then

([(ExpressionNode ex1 i, [(Binary op i)]),

(ExpressionNode ex2 i, [(Binary op i)]),

(srnd, [(Unary Upper16 i), (unary Lower16 i)])],

[(Binary op i, OneEdge srnd), (Unary Upper16 i,

130 9. Generating Data Flow Graphs

OneEdge (ExpressionNode (Variab~e Ace) (i+1))),

(Unary Lower16 i, OneEdge (ExpressionNode
(Variab~e Q) (i+l)))])

else ([(ExpressionNode ex1 i, [(Binary op i)]),

(ExpressionNode ex2 i, [(Binary op i)])],

[(Binary op i, OneEdge srnd)])

where srnd = conv2Expr sr (i+1)

Some input nodes from one instruction can't be added as they are the reference

of the previous nodes. From a list of input nodes, findAppNodes divides the input

nodes into two groups: one contains nodes which do not have previous occurrences

and the other contains nodes paired with their previous node occurrence.

findAppNodes:: NodeMap ~ [OperandNode] ~

([DperandNode],[(OperandNode, DperandNode)]) ~

([OperandNode],[(DperandNode, DperandNode)])

findAppNodes nMap [] (opndss, ndopnds) = (opndss, ndopnds)

findAppNodes nMap (opnd~(ExpressionNode e ci):opnds)

(opndss, ndopnds) = findAppNodes nMap opnds rest

where rest = if prevNode * testNode then

(opndss, [(prevNode, opnd)]++ndopnds)

else (opndss++[opnd], ndopnds)

prevNode = lookupEntry nMap e

testNode = ExpressionNode e 0

Here we find the appropriate InEdges that have to be added in the DFG. For

each instruction, there may be some of the input nodes which are references of the

previous nodes (we have found them in findAppNodes). So we have to remove some

of the probable input edges to the operatorNode and add new input edges to the

OperatorNode fromthe previous references of those OperandNodes.

addAppEdges:: [InEdges] ~ DfdGraph ~

[(DperandNode, OperandNode)] ~ DfdGraph

addAppEdges ines (DfdGraph fmo fme) [] = (DfdGraph nfmo fme)

9. Generating Data Flow Graphs

vhere nfmo = addListToFM fmo ines

addAppEdges iess (DfdGraph fmo fme) ((nd, opnd):ndopnds)

addAppEdges newndLst (DfdGraph nfmo fme) ndopnds

vhere ndst = find (Ax ~ fst x = opnd) iess

newndLst = if ndst + Nothing
then deleteBy (Ax y~ y = x)

(fromJust ndst) iess

else iess

nfmo addToFM_C (Ax y ~ x++y) fmo

nd (snd $ fromJust ndst)

131

eondi tionToiNodeEdges creates the "Condition" node in the branching struc

ture code and adds the incoming edges to that node. The incoming edges to the

"Condition" node comes from the output nodes of the last instruction of a First

Common (fe) segment. It gets the last instruction of the fc segment and adds edges

to the "Condition" node from the output nodes of that instruction. In case of the

MDX instruction (one special branching instruction), it also adds the "Sign" nodes

which are used as input nodes to the "Condition" node (addSignNodes).

eiNodeToDfdGraph acts as a helping function of eonditionToiNodeEdges and

adds all the edges to the "Condition" node in the DFG.

eonditionToiNodeEdges :: DfdGraph ~ Int ~
ConditionStmt ~ Stmt ~ DfdGraph

eonditionToiNodeEdges dfg ei ef stm = dfg1

vhere end = eondToNodes ef ei

nodes = dfeToNodes stm (ei-2)

outnodes = thrd3 nodes

outnode~(ExpressionNode be1 oi) = head outnodes

innode = fromJust $ find (Ax~(ExpressionNode be i)

~ be = be1) (fst3 nodes)

dfgO addSignNodes dfg end innode outnode

dfg1 = eiNodeToDfdGraph dfgO end outnodes

eiNodeToDfdGraph DfdGraph ~ operatorNode ~

132 9. Generating Data Flow Graphs

[OperandNode] ~ DfdGraph

ciNodeToDfdGraph dfg end [] = dfg

ciNodeToDfdGraph dfg~(DfdGraph fmo fme) optr (opnd:opnds) =
ciNodeToDfdGraph (DfdGraph nfmo fme) optr opnds

vhere nfmo = addToFM_C (Ax y ~ x++y) fmo opnd [optr]

addSignNodes creates two special "Sign" nodes for the MDX branching instruc

tion which contains the sign of two values (before and after MDX instruction) of the

specified index register and also the OperatorNodes for those "Sign" nodes. It also

adds those nodes and edges from them to the "Condition" Node in the DFG. In case

of other branching instructions, it does nothing.

addSignNodes:: DfdGraph ~ OperatorNode ~ operandNode

~ OperandNode ~ DfdGraph

addSignNodes dfg~(DfdGraph fmo fme) cnd~(ConditionVal

ce~(BrCondition e cop be bt) i)

opnd1~(ExpressionNode be1~(VariableX tl) il)

opnd2~(ExpressionNode be2~(VariableX t2) i2) =
if bt = MDX then (DfdGraph nfmo nfme)

else dfg

vhere signN1 = Unary Sign (i1+2)

signN2 = Unary Sign (i2+2)

opnd11 = ExpressionNode (SignBit tl) 1

opnd12 = ExpressionNode (SignBit t2) 2

nfmo = addListToFM_C (Ax y ~ x++y) fmo

[(opnd1,[signN1]),(opnd2,[signN2]),

(opnd11,[cnd]),(opnd12,[cnd])]

nfme addListToFM fme [(signN1, OneEdge opnd11),

(signN2, OneEdge opnd12)]

conditionTooNodeEdges adds all the edges from the "Condition" node to the

branches in the DFG. It also adds different edge labels depending on the branch

condition of that branch. coNodeToDfdGraph is used to add those edges.

conditionTooNodeEdges :: DfdGraph ~ Int ~ Int ~

9. Generating Data Flow Graphs

ConditionStmt ~ Stmt ~ Stmt ~ DfdGraph

eonditionTooNodeEdges dfg~(DfdGraph fmo fme) dil di2

ef~(Check (ede,ed)) stml stm2 = dfg2

vhere end = eondToNodes ef (dil-l)

innodel = head·fst3 $ dfeToNodes stml dil

innode2 = head·fst3 $ dfeToNodes stm2 di2

oed = TwoEdge (ed,innodel) ((if ed = Tr

then FL else Tr) ,innode2)

dfg2 = eoNodeToDfdGraph dfg end oed

eoNodeToDfdGraph :: DfdGraph ~ OperatorNode

~ OEdge ~ DfdGraph

eoNodeToDfdGraph dfgl~(DfdGraph fmo fme) optr ies

= DfdGraph fmo (addToFM fme optr ies)

133

findLeafs finds all the leaf nodes in one segment of DFG. By leaf nodes, we mean

those nodes which do not have any outgoing edges.

findLeafs uses isLeaf to find whether a node is a leaf or not. isLeaf checks

the Int field of the OperandNode with the segment Int boundaries to find whether it

is a node of that segment. The nodes of the final instruction of the segment labeled

as StateComp (i.e. Ace, Q, AccQ) which do not have any outgoing edges will be leaf

nodes. All other nodes of that segment (except the StateComp labeled nodes) with

no outgoing edges will also be leaf nodes.

findLeafs : : DfdGraph ~ Int ~ Int ~ [OperandNode]

~ [OperandNode] ~ [OperandNode]

findLeafs dfgl si fi [] lopnds = lopnds

findLeafs dfgl si fi (opnd:opnds) lopnds

isLeaf

findLeafs dfgl si fi opnds

$ if (isLeaf opnd dfgl si fi)

then (lopnds++[opnd])

else lopnds

OperandNode ~ DfdGraph ~ Int ~ Int ~ BooL

134 9. Generating Data Flow Graphs

isLeaf opnd~(ExpressionNode e ci) (DfdGraph fmo fme) si fi

if (ci < si) v (ci > fi)

then FaLse

else case e of

(VariabLe _) ~ (ci = fi) A

((fromJust $ lookupFM fmo opnd) = [])
otherwise ~ ((fromJust $ lookupFM fmo opnd) = [])

After finding the leaf nodes for each code segments, zipOperandNodes makes a

list of pairs among those nodes where a pair contains similar nodes from two different

segments. By similar OperandNodes, we mean those nodes which have a similar data

label associated with them. For one OperandNode, if it can not find any similar node

in the other branch then it looks up the NodeMap to find another node entry of that

label. That node will be from the fc (First Common) segment as this NodeMap will

only contain the Nodeids from the fc segment.

zipOperandNodes :: [OperandNode] ~ [OperandNode]

~ NodeMap ~ [(OperandNode, OperandNode)]

~ [(OperandNode, OperandNode)]

zipOperandNodes [] [] nMap opndpairs = opndpairs
zipOperandNodes (opnd1~(ExpressionNode e1 ci1):opnds1)

opnds2 nMap opndpairs

= zipOperandNodes opnds1 newopnds2

nMap $ if opnd2 # Nothing

then opndpairs ++ [(opnd1, fromJust $ opnd2)]

else opndpairs ++ [(opnd1, elseopnd2)]
where opnd2 = find (A(ExpressionNode e2 ci2)

~ e1 = e2) opnds2
newopnds2 = if opnd2 ~ Nothing

then delete (fromJust $ opnd2)

opnds2

else opnds2

elseopnd2 = lookupEntry nMap e1

zipOperandNodes [] (opnd2~(EXpressionNode e2 ci2):opnds2)

9. Generating Data Flow Graphs

nMap opndpairs =
zipOperandNodes [] opnds2 nMap

(opndpairs ++ [(newopnd1, opnd2)])

vhere newopnd1 = lookupEntry nMap e2

135

addJoinNodes is a special function to add "Join" nodes between the similar

Operand.Nodes in the two branches. For each pair of OperandNodes, it creates a

"Join" node that includes the two Int field in the Operand.Nodes. In this way, we can

distinguish among different" Join" nodes. It also creates edges from the Operand.Node

pair to the" Join" node and a new data node which has an incoming edge from the

"Join" node.

addJoinNodes :: DfdGraph -+ Int -+ NodeMap -+ [(OperandNode,OperandNode)]

-+ (Int,DjdGraph, NodeMap)

addJoinNodes dfg1 i nMapsc [] = (i, dfg1, nMapsc)

addJoinNodes dfg1~(DfdGraph fmo fme) i nMapsc

((opnd1~(ExpressionNode e1 ci1),

opnd2~(ExpressionNode e2 ci2)):opndpairs)

= addJoinNodes (DfdGraph nfmo nfme) (i+1)

newnMapsc opndpairs

vhere newJoin = Join ci1 ci2

nfmo = addListToFM fmo [(opnd1, [newJoin]),

(opnd2, [newJoin])]

newopnd1 = ExpressionNode e1 i

nfme = addToFM fme newJoin (OneEdge newopnd1)

newnMapsc = addEntry nMapsc (e1, newopnd1)

9.5 Garbage Collection

Garbage means unwanted or useless material. By garbage collection we mean to

remove those unused materials from the final output. When generating Data Flow

Graph (DFG), for many instructions we have to generate some data and operator

nodes that might be used by other nodes of the following instructions. However after

the DFG is generated some of them might not be used at all. We may hence have

136 9. Generating Data Flow Graphs

some nodes that are not used in the code by other operations. Not all of the unused

data nodes are garbage. The output data nodes of the last instruction are not used

in the current code segment but they may still be useful in the next one. That is

why we can declare a node Garbage as the node which is not the latest of its kind

(i.e. after this node there is at least one occurrence of this data as output of other

instructions).

In this module we garbage collect all the nodes from a DFG which might have

redundant (garbage) data nodes.

module GarbageCo~~ect

(markNodes, garbageCollectOfDfdGraph)

where

import Dfg

import Exp (BasicExp (..))

import Stack

import Data.FiniteMap (keysFM, addListToFM, addToFM, delFromFM,

lookupFM)

import Data.Maybe (fromJust)

The strategy to clean the DFG is as follows: We use Used.Node data structure

with two finitemaps (one for operand nodes and the other for operator nodes) to

determine whether a node is used or not. First we mark all the operand nodes as

used or unused by taking a look at its successor list. We then use the finitemap for

the operand nodes in the Used.Node to mark the unused operators. After marking all

the nodes, we just remove them from the DFG data structure if they are unused and

also not the latest of their type.

markNodes marks all the nodes in the DFG with their UseType. As we mentioned

earlier, it first marks the Operand.Nodes using the markOpnds function and then the

OperatorNodes with the markOptrs function.

When marking an Operand.Node as Unused, we have to check three conditions:

(1) Whether its successor list is empty (2) It is not a part of the last instruction and

(3) It is not the latest value of its kind. retUseType verifies those conditions and

returns the UseType for each Operand.Node. By looking at the integer value in the

9. Generating Data Flow Graphs 137

Operand.Node and its successor list from the finitemap of DfdGraph, we can determine

the first two conditions. NodeMap in the retUseType is a mapping of a data value

to its most recent Nodeid. By searching the NodeMap, we can determine the last

condition and then mark the Operand.Node with its UseType.

markNodes: : DfdGraph -+ Int -+ UsedNode -+ NodeMap -+ Used.Node

markNodes dfg1~(DfdGraph fmon fmoe) i (Used.Node fmoun fmoue) nMap

(UsedNode fmNun fmNue)

= keysFM fmon

keysFM fmoe

vhere opnds

optrs

fmNun

fmNue

addListToFM fmoun $ markOpnds

dfg1 i nMap opnds []

addListToFM fmoue $ markOptrs
dfg1 (Used.Node fmNun fmoue) optrs []

markOpnds : : DfdGraph -+ Int -+ NodeMap -+ [Operand.Node]

-+ [(Operand.Node, UseType)] -+ [(Operand.Node, UseType)]

markOpnds dfg1 i nMap [] opus = opus

markOpnds dfg1 i nMap (opnd:opnds) opus =
markOpnds dfg1 i nMap opnds

(opus++[(opnd,uType)])

vhere uType = retUseType opnd i nMap dfg1

retUseType :: Operand.Node -+ Int -+ NodeMap

-+ DfdGraph -+ UseType

retUseType opnd~(ExpressionNode e ci) i nMap

(DfdGraph fmon fmoe)

= case e of
(Variable _) -+ if (ci + i) A

((fromJust $ lookupFM fmon opnd) = [])
then if boolUse then Used

else Unused

else Used

138 9. Generating Data Flow Graphs

otherwise -+ Used

where boolUse = (lookupEntry nMap e = opnd)

After marking the Operand.Nodes, we start marking the OperatorNode with

markOptrs. Without loss of generality, we can safely assume that all the

OperatorNodes (except the Unary node) are used in the DFG. So we only check

the Unary OperatorNodes to determine their UseType. One advantage of the Unary

nodes are that the OEdge from them will always be OneEdge (i.e. only one edge comes

out from those nodes). So we check the UseType of the successor Operand.Node. If
its used then the UseType of the OperatorNode is Used otherwise opposite.

markOptrs : : DfdGraph -+ Used.Node -+ [OperatorNode]

-+ [(OperatorNode, UseType)] -+ [(OperatorNode, UseType)]

markOptrs dfg1 used1 [] optus = optus

markOptrs dfg1~(DfdGraph fmon fmoe)

used1~(Used.Node fmoun fmoue)

(optr~(Unary tc i):optrs) optus

markOptrs dfg1 used1 optrs (optus++[(optr,uType)])

where opnd = if (lookupFM fmoe optr = Nothing)

then error "should not happen"

else fromJust $ lookupFM fmoe optr

on = case opnd of

(OneEdge on1) -+ on1

_ -+ ExpressionNode (Constant 0) 0

uType if on + (ExpressionNode (Constant 0) 0)

A ((fromJust $ lookupFM fmoun on) = Unused)

then Unused

else Used

markOptrs dfg1 used1 (optr:optrs) optus =
markOptrs dfg1 used1 optrs (optus++[(optr,Used)])

After marking all the nodes with their UseType in Used.Node, we garbage collect

the nodes in the DfdGraph.

garbageCollectOfDfdGraph is the main function to remove the garbage

nodes from the DFG. First it removes the garbage OperandNodes with

9. Generating Data Flow Graphs 139

garbageCollectOfOpnds and then removes the garbage OperatorNod.es with

garbageCollectOfOptrs to give the final garbage collected Data Flow Graph.

garbageCollectOfDfdGraph :: Dfd.Graph ~ Used.Nod.e ~ Dfd.Graph

garbageCollectOfDfdGraph dfdl~(Dfd.Graph fmo fme)
usedl~(Used.Nod.e fmuo fmue)

= (Dfd.Graph fmNn fmNe)

vhere opnds = keysFM fmuo

optrs = keysFM fmue

(Dfd.Graph fmNn fme) = garbageCollectOfOpnds dfd1

used1 opnds

(Dfd.Graph fmo fmNe) = garbageCollectOfOptrs dfd1
used1 optrs

In garbageCollectOfOpnds, it first finds the Use Type of each Operand.Nod.e. If it

is Unused. then it removes the Operand.Nod.e from the finitemap otherwise it updates

the successor OperatorNod.e list by garbageCollectOfLst.

garbageCollectOfOpnds : : Dfd.Graph ~ Used.Nod.e ~ [Operand.Nod.e] ~ Dfd.Graph

garbageCollectOfOpnds (Dfd.Graph fmo fme) used1 [] = (Dfd.Graph fmo fme)
garbageCollectOfOpnds (Dfd.Graph fmo fme)

usedl~(Used.Nod.e fmuo fmue) (opnd:opnds)

garbageCollectOfOpnds (Dfd.Graph fmNo2 fme)
(Used.Nod.e fmuo fmue) opnds

vhere optrLst = fromJust $ lookupFM fmo opnd

updatedLst = garbageCollectOfLst optrLst used1 []

fmNoO = delFromFM fmo opnd

fmNo1 = addToFM fmNoO opnd updatedLst
fmNo2 = if ((fromJust $ lookupFM fmuo opna) = Unused.)

then delFromFM fmo opnd

else fmNo1

garbageCollectOfLst:: [OperatorNod.e] ~ UsedNod.e

140 9. Generating Data Flow Graphs

-+ [OperatorNode] -+ [OperatorNode]

garbageCollectOfLst [] used1 optrss = optrss

garbageCollectOfLst (optr:optrs) used1~(UsedNode fmuo fmue) optrss

garbageCollectOfLst optrs used1

$ if (fromJust $ lookupFM fmue optr) = Unused

then optrss
else optrss++[optr]

In garbageCollectOfOptrs, it just removes the OperatorNodes with Unused

UseType.

garbageCollectOfOptrs :: DfdGraph-+ UsedNode-+ [OperatorNode]

-+ DfdGraph

garbageCollectOfOptrs dfd1 uNode [] = dfd1

garbageCollectOfOptrs (DfdGraph fmo fme) (UsedNode fmoe fmue)
(optr:optrs)

= garbageCollectOfOptrs (DfdGraph fmo fmNe)

(UsedNode fmoe fmue)

optrs

vhere fmNe = if ((fromJust $ lookupFM fmue optr) = Unused)

then delFromFM fme optr

else fnie

9.6 DFG Examples

The examples cited here are for the segments taken from the Boiler Pressure Control

(BPC) code of OPG.

9.6.1 SC Example (Before Garbage Collection)

This SC segment is adapted from Section 2.3.1:

OADDR REL OBJ. S.NO. LABEL OPCD FT OPRNDS

35B6 0 C129 0677 TRBFB LD 1 41

9. Generating Data Flow Graphs 141

35B7 0 A12A 0678 M 1 42

35B8 0 1082 0679 SLT 2

35B9 0 912B 0680 s 1 43

35BA 0 A12C 0681 M 1 44

35BB 0 108F 0682 SLT 15

35BC 0 A92D 0683 D 1 45

35BD 0 D12E 0684 STO 1 46

The Data Flow Graph (DFG) before garbage collection is in Figure 9.2:

9.6.2 SC Example (After Garbage Collection)

During garbage collection, we remove all the redundant entries from the DFG. In

Figure 9.3, we present the same DFG in the Subsection 9.6.1 after garbage collection.

The DFG gives us a clear indication of data dependency inside the function which is

not easily visible in the DFEs.

9.6.3 GSC Example

This following is the GSC segment from Section 8.6.2:

35C4 0 73FF 0695 MDX 3 -1

35C5 0 700F 0696 MDX TRBFE

0697

35C6 0 1010 0698 TRBFD SLA 16

35C7 0 D12F 0699 STO 1 47 0

35C8 0 7012 0700 MDX TROUT

0701

0702

35C9 0 0000 0703 DI2F3 DC 0

35CA 0 6203 0704 LOX 2 3

35CB 0 6300 0705 LDX 3 0

35CC 0 4810 0706 BSC

35CD 0 7301 0707 MDX 3 1

142 9. Generating Data Flow Graphs

35CE 0 1001 0708 SLA 1

35CF 0 72FF 0709 MDX 2 -1

3500 0 70FB 0710 MDX *-5

3501 00 66002099 0711 LOX L2 BPCO

3503 00 4C8035C9 0712 BSC I OI2F3

0713

0714

0715

3505 0 C209 0716 TRBFE LO 2 9

3506 0 9118 0717 s 1 27

3507 0 A130 0718 M 1 48

3508 0 1005 0719 SLA 5

3509 0 012F 0720 STO 1 47

350A 0 7000 0721 MDX TROUT

0722

0723

0724

0725

3508 0 C12E 0726 TROUT LD 1 46

350C 0 812F 0727 A 1 47

3500 0 A132 0728 M 1 50

350E 0 1089 0729 SLT 9

350F 0 0123 0730 STO 1 35

Figure 9.4 shows the DFG for this GSC segment. Data dependencies among the

segments in the GSC can be identified from this DFG.

9. Generating Data Flow Graphs 143

Figure 9.2: Data Flow Graph of the Segment Ox35B6-0x35BD (Before Garbage Col
lection)

144 9. Generating Data Flow Graphs

Figure 9.3: Data Flow Graph of the Segment Ox35B6-0x35BD (After Garbage Col
lection)

9. Generating Data Flow Graphs 145

Figure 9.4: Data Flow Graph of the Segment Ox35C4-0x35DF

Chapter 10

Solving Data Flow Equations

In this chapter, we present the method for solving the Data Flow Equations (DFE)

which are generated by the symbolic interpretation of assembler programs. Later, we

include some examples of solved DFEs for different patterns of program segments.

10.1 Introduction

In general, to solve an equation for a given variable, we need to "undo" whatever has

been done to the variable [Wic05]. In our Data Flow Equations (DFEs) generated

from the assembler code, we get a sequential set of statements which represents the

computation done in the given code. As we mentioned earlier, a statement assigns

a symbolic value (represented as an expression of symbolic variables) to a variable.

Each statement is a DFE which is comprised of some variables and an operator. It

shows the flow of data to and from the operator that is which variables are taken

as input in that operator and which variable is given as output. In solving DFEs

symbolically, we follow two steps to find the solved flow equations for each DFE:

• Evaluate the variables on the right hand side (expression part) of the statement.

By evaluation of variables, we mean to find a symbolic value (if any) represented

as an expression which has been assigned to that variable by the previous DFEs.

• Substitute that symbolic value in place of the variable with the operator of the

statement in place.

146

10. Solving Data Flow Equations 147

We can make this discussion more precise by citing a simple example. Let us

consider the ordered equations A = F(X, Y); B = G(A, X, Z). The first equation has

the variable on the right hand side which does not have any previous values assigned.

So first equation is automatically solved. The second equation has A, X, Z as input,

but since A is already assigned a value by the previous equation, it can be substituted.

So the second equation becomes B = G(F(X, Y), X, Z). Consequently the solved set

of equations will be A= F(X, Y); B = G(F(X, Y), X, Z).

Thus we will find a solved expression for the output variable of a statement with

all its input variables evaluated and replaced by the symbolic value.

After solving each of the DFEs, we start to find the system of equations that

summarizes the computation done in the code. The system of equations shows the

input and output relationship of the assembler code. So at this stage, we determine

the inputs and outputs of the code and find those solved equations where the outputs

are represented as the function of inputs.

We can again consider the previous example to show how to find the inputs and

outputs of a set of equations. Initially, the empty code sequence has neither input nor

output. By proceeding inductively, the first equation tells us that X, Y are part of the

"input", and A the output. The second equation has A, X, Z as input, but since A is

already known to be an output of the system, it can be eliminated. More precisely,

the inputs of equation n are the free variables of the right-hand side of equation n,

minus the outputs from stage n- 1, union the inputs from stage n- 1. The output

variables at stage n is the output of stage n - 1 union the variable on the left-hand

side of stage n. Working this through, the above has X, Y, Z as inputs and A, Bas

outputs.

10.2 Finding System of Equations

10.2.1 Solving Data Flow Equations

In this Module, from a list of symbolic interpretations of some instructions, we find

functional expressions of them. By function expression, we mean to represent the

outputs of the code as functions of the inputs symbolically. The functions in this

module are used to evaluate the expressions, find inputs and outputs in a code segment

148 10. Solving Data Flow Equations

and give the input output relationship (Data Flow Equations in functional expression

form) of the code segment.

module SoLveExpr (Input, Output, dividePathCondSym)

where

import MyPreLude (fst3, snd3, thrd3)

import MyGraph (MyGraph, MyNode)

import SymboLic (StateComp (..), operator(..), TypeCast(..))

import OpCode (Tag(. .))

import Stack

import FindExpr (findAnntOfGraph)

import Exp
import Data.List (nub, delete)

Next we define some useful types for the functions in this module.

We want to create a way to look up the definition of the current value of a

StateRef. It depends on the path of evaluation taken from the start of the CFG.

We keep the history of that path in a Stack. The result is a pair consisting of a

ConditionStmt that expresses the path condition and an actual Exp.

type ConditionaLVaLue = (ConditionStmt, Expression)

instance Stack StateRef ConditionaLVa~ue where

createStack (SC a) = (Check (NoCondition,NC?,
Expression $ Atomic $ Variab~e a)

createStack (SCX a) =(Check (NoCondition,NC?,

Expression $ Atomic $ VariabLeX a)

createStack (Mem a) = (Check (NoCondition,NC?,

Expression $ Atomic $ MemoryConstant a)

addEntry s (k,v) = Ad ~ if k=d then v else s d

addEntries s 1 = foldl addEntry s 1
lookupEntry s k = s k

10. Solving Data Flow Equations 149

CondAnd.Stmts gives a name to the pair of conditions and the list of statements

in one path of the control flow graph of an assembler code.

The second type EvatHistory is an evaluation environment which contains the

evaluation of the statements with the conditions to reach that statement in a path of

statements . This evaluation depends on the previous statements in the path of the

control flow graph.

type CondAnd.Stmts = ([ConaitionStmt], [Stmt])

type EvatHistory = StateRef 1 ConaitionatVatue

The types for inputs and outputs are also declared as a list of state references.

type Input = [StateRef]

type Output = [StateRef]

Now, we can find all the annotations of the execution paths in a Graph. We use

some other functions from modules like findExpr and Stack to evaluate the annota

tions of paths and find the symbolic interpretation and condition (on which the path

will be executed) of all the paths in the graph to find the functional representation

of the code.

Given a start node and a graph, solveAnntOfGraph finds path conditions and

symbolic interpretations of the instructions of all the paths in the graph. First it an

notates all the edges in the Graph using doAnnotation function of MyGraph module.

Then it finds all the paths in the graph. As we said earlier, according to number

of paths and their structures, we can divide the codes into Straight-line Code (SC),

Generalized Straight-line Code (GSC) and looping code (LC).

Straight line codes mean those codes that have a straight line control flow. Model

ing the control flow and finding the semantic context of straight line codes are easier.

As there are no branch or jump in these codes, so the path condition is always TRUE.

If we go through the control flow graph then we can find one execution path

only. For that path, we take each instruction from the starting node and find the

statement data structure for it using the abstract data type defined in Chapter 8.

Then we evaluate each statement sequentially using a stack environment and find the

appropriate expression for each state reference

150 10. Solving Data Flow Equations

For SC, sol veAnntOfGraph gets the list of edge annotations using

annotationOfPaths and transforms them to statements by transformToStmts.

Then it evaluates them by evalofStmts.

GSC (or branching codes) can be considered as a split and join structure. The

node where the two paths of GSC splits is called the "split" node and the node (if

there is any) where two paths again join is called the "join" node. We divide the two

paths into different segments using the "split" and "join" nodes and evaluate them

separately to find the functional representation of the whole code.

For GSC, the evaluation process is a little bit different. sol veAnntOfGraph uses

other functions like dividePathAnt, mergePathCond and eva10fPaths for the eval

uation. We leave the solving of looping code DFEs for future work.

getStmts and getLastStack are two small helping functions to split the state

ment list and the final evaluation environment from the output of evaluation process.

solveAnntOfGraph :: [[([ConditionStmt], [Stmt])]]

~ (ConditionStmt,[Recur_Stmt],EvaLHistory)
solveAnntOfGraph cstmts

= if (length $ concat cstmts) = 1

then (Check(NoCondition,N~,(init·showStmts) csList,

snd $ head csList)

else (fst cfList, getStmts cfList·, getLastStack cfList)

where csList = (evalOfStmts createStack)

([Check(NoConaition,N~],(concat $map snd

$ concat cstmts))

cfList = evalOfPaths $ concat cstmts

getStmts :: (ConaitionStmt,[[(Recur_Stmt,EvaLHistory)]])
~ [Recur _Stmt]

getStmts cstmts = concatMap (init · showStmts) $ snd cstmts

getLastStack (ConaitionStmt, [[(Recur_Stmt,EvaLHistory)]])
~ EvaLHistory

getLastStack cstmts = snd $ head·head $ snd cstmts

10. Solving Data Flow Equations 151

evalOfPaths evaluates all the segments (fc, pdl, pd2, sc) in two paths of the
GSC and finds the conditions of the paths with evaluated statements in those paths.

It completely depends on the ordering of the segments generated in di videPathAnt

and evaluates the segments according to the ordering. For example, if there is any
Second Common (sc) segment between those two paths, then the evaluation of the

statements in sc will depend on the conditional values generated from pdl and pd2.

Similarly the evaluation of statements in pdl and pd2 depends on the values from fc

(First Common) segment.

evalOfPaths :: [([ConditionStmt], [Stmt])]

~ (ConditionStmt,[[(Recur_Stmt,EvalHistory)]])

evalOfPaths [([Check(NoCondition, N~],stl),cst2,cst3]

(head (fst cst3),[sst3,sst2,sst1])

vhere sd = snd·head
sstl = evalOfStmts createStack

([Check(NoCondition,N~],st1)

sst2 = evalOfStmts (sd sstl) cst2

sst3 = evalOfStmts (sd sstl) cst3

evalOfPaths [cst4,cst5,([Check(NoCondition, N~],st6)]

=(Check (NoCondition, N~,[sst6,sst5,sst4])

vhere sd = snd·head
sst4 = evalOfStmts createStack cst4

sst5 = evalOfStmts createStack cst5

sst6 = evalOfStmtsl (sd sst4) (sd sst5)

([Check(NoCondition,N~],st6)

evalOfPaths [cst7,cst8,cst9,cst10]

(head (fst cst10),[sst10,sst9,sst8,sst7])

vhere sd = snd·head
sst7 evalOfStmts createStack cst7
sst8 = evalOfStmts (sd sst7) cst8
sst9 = evalOfStmts (sd sst7) cst9

sstlO = evalOfStmtsl (sd sst8) (sd sst9) cstlO

152 10. Solving Data Flow Equations

After performing the transformation of all the low level functions in the instruc

tions of the code into statements, our main task is to evaluate them to find the

functional expression of the outputs that is to represent the outputs as equations of

the inputs of that code.

evalOfStmts evaluates a list of statements of a Straight-line Code (SC) segment.

It takes an environment and CondAndStmts and gives us the evaluated statement and

the EvaLHistory after the evaluation of each statement in the list.

eval0fStmts1 also does the same thing but it works specially for the straight line

code after the "join" in the Generalized Straight-line Code (GSC). It also takes two

evaluation environments as arguments from the two different paths in the GSC code.

At the starting, Stmt is initialized as a fictitious value XRO = 0 which works as

the bottom of the evaluation environment. This is done intentionally so that we can

determine the bottom easily as no other instructions can generate XRO = 0.

evalOfStmts :: EvaLHistory -+ CondAndStmts
-+ [(Recur_Stmt,EvaLHistory)]

evalOfStmts stk (cf, stmts)

= foldl (interpret (head cf)) [((Assignt (SCX XRO,
eToE $Atomic$ Constant O)),stk)] stmts

evalOfStmts1 :: EvaLHistory-+ EvaLHistory-+ CondAndStmts
-+ [(Recur_Stmt,EvaLHistory)]

evalOfStmts1 stk1 stk2 (cf,stmts)

foldl (interpret1 stk1 stk2

(head cf)) [((Assignt (SCX XRO, eToE $ Atomic

$Constant 0)), createStack)] stmts

This simple helper function separates the evaluated statements for output purpose.

showStmts :: [(Recur_Stmt,EvaLHistory)] -+ [Recur_Stmt]

showStmts = map fst

The following functions are used to evaluate the expression and interpret the

statements in symbolic form. As defined earlier, each statement represents one func

tion of an instruction and right-hand side of a statement is an expression. We use

10. Solving Data Flow Equations 153

EvalHistory (a lookup environment which contains all the previously evaluated ex

pressions) to find the proper expression.

eval takes an Expr for evaluation and looks up in the evaluation environment to

find any previous evaluated entries for that Expr and returns that evaluated expres

sion. We use this function to evaluate expressions for SC segments.

eval :: Expr -+ EvalHistory -+ Expression

eval exp stk =
case exp of

Atomic (Variable st) -+ snd $ lookupEntry stk (SC st)

Atomic (VariableX st) -+ snd $ lookupEntry stk (SCX st)

Atomic (MemoryConstant st) -+ snd $ lookupEntry stk (Mem st)

(UnaryOperation (op,ex1)) -+

let a = eval (Atomic ex1) stk

in Expression $ UnaryOperation (op,a)

BinaryOperation (ex1,op,ex2) -+

let a = eval (Atomic ex1) stk

b = eval (Atomic ex2) stk

in Expression $ BinaryOperation (a,op,b)

otherwise -+ (eToE exp)

eval1 also takes an Expr and condition as argument and returns the evaluated

expression. This is a special function for evaluation and works only for the straight

line code segment after the "join" in the GSC. It takes three evaluation environments

(two for previous two paths in the GSC and one for current code segment after the

join) and returns the evaluated expression using three environments. It also returns

the new evaluation environment with the evaluated Expr included in it.

eval1 :: Expr-+ ConditionStmt-+ EvalHistory-+ EvalHistory
-+ EvalHistory -+ (EXpression,EvalHistory)

eval1 exp cf stk1 stk2 stk =
case exp of

Atomic (Variable st) -+ getPropExpr (Atomic $ Variable st)

(SC st) cf stk stk1 stk2

•

154 10. Solving Data Flow Equations

Atomic (Variab~eX st) ~ getPropExpr (Atomic $ Variab~eX st)

(SCX st) cf stk stkl stk2

Atomic (MemoryConstant st) ~ getPropExpr (Atomic

UnaryOperation (op,ex1) ~

$ MemoryConstant st)

(Hem st) cf stk stk1 stk2

let (a,b) = evall (Atomic exl) cf stkl stk2 stk

in (Expression (Unaryoperation (op,a)), b)

Binaryoperation (ex1,op,ex2) ~

let ex = evall (Atomic exl) cf stkl stk2 stk

a = fst ex

b = evall (Atomic ex2) cf stkl stk2 (snd ex)

in (Expression (Binaryoperation (a,op,(fst b))), (snd b))

Conditiona~Exp ((cf1,ex1),(cf2,ex2)) ~

let ex = evall (Atomic exl) cf stk1 stk2 stk

a = fst ex

b = evall (Atomic ex2) cf stkl stk2 (snd ex)

in (Expression (Conditiona~Exp ((cf1,a),(cf2,(fst b)))),

snd b)

otherwise ~ (eToE exp, stk)

To find the proper expressions for the terms of the statements after the "join" in

the GSC code is a little bit complex. Each time we get an expression to be evaluated,

we have to look up the current evaluation environment to find an entry for it. If

we can't find any, we take a look at two previous environments for the different

paths. A conditional expression is formed for the corresponding expression using

the expressions found in those two environments and is also added in the current

evaluation environment.

getPropExpr does this for evall and looks up all the three evaluation environ

ments to return the proper evaluated form (either conditional or unconditional) of

the expressions and a new evaluation environment with the new Expr in it.

getPropExpr :: Expr ~ StateRef ~ ConditionStmt ~ Eva~History ~
Eva~History ~ Eva~History ~ (Expression,Eva~History)

10. Solving Data Flow Equations

getPropExpr exp asb cf stk stk1 stk2 =
if condCheck (snd $ lookupEntry stk asb)

then (let cft1~(cf1, tf1) = lookupEntry stk1 asb

cft2~(cf2, tf2) = lookupEntry stk2 asb

ex1 = Expression $ ConditionaLExp (cft1,cft2)

in (if (condCheck tf1) A (condCheck tf2)

then (snd $ lookupEntry stk asb, stk)

else (ex1, addEntry stk (asb,(cf,ex1)))))

else (snd $ lookupEntry stk asb, stk)

vhere condCheck e = e = (eToE exp)

155

So far we have introduced functions to find the evaluation of expressions. Now,

we define functions to interpret the whole statement which may contain several ex

pressions in it.

interpret interprets each statement in the Stmt list using the eval to evalu

ate each expression in the statement and returns the new interpreted statement. It

also outputs a new evaluation environment which will be used to interpret the next

statements in the Stmt list. This function is for SC segments.

interpret ConditionStmt ~ [(Recur_Stmt,EvatHistory)]
~ Stmt ~ [(Recur_Stmt,EvaLHistory)]

interpret cf prev~((_,stck) : _) (Assign (name,e)) =
let v = eval e stck

in addProperEntry name v cf stck prev

interpret! does the same as interpret but it works for the straight line segment

after the "join" in the GSC. It takes the evaluation environment for previous two paths

and uses eval1 to evaluate the expressions.

interpret1 :: EvaLHistory ~ EvaLHistory ~ ConditionStmt
~ [(Recur_Stmt,EvalHistory)] ~ Stmt

~ [(Recur _Stmt, Eva tHis tory)]

interpret1 stk1 stk2 cf prev (Assign(name,e)) =
let stck = snd $ head prev

156 10. Solving Data Flow Equations

v = eval1 e cf stk1 stk2 stck

in addProperEntry name (fst v) cf (snd v) prev

addProperEntry is a helping function for interpret and interpret!. It is only

used to divide the combined A ceQ value expression to insert two entries for Ace and Q
in both of the evaluation environment and evaluated Stmt list. When the StateRef

to be assigned in the statement is AccQ, we may need distinct Ace and Q from the

combined AccQ value in the upcoming statements for evaluation. That is why, we

update the evaluation environment and the Stmt list by two new statements of Ace
and Q each time we face AccQ in the left-hand side of the Stmt.

addProperEntry:: StateRef ~Expression~ ConditionStmt
~ Eva.mistory ~ [(Recur_Stmt,Eva.~History)]

~ [(Recur _Stmt, Eva. ~History)]

addProperEntry name e cf stk prev = case name of

(SC AccQ) ~ (Assignt (name,e),(addEntries stk [(name,

(cf,propExprAQ)), ((SC Acc),(cf,Expression
$ Una.ryopera.tion (Upper16, propExprAQ))),

((SC Q),(cf,Expression $ Unaryopera.tion
(Lower16, propExprAQ)))])): prev

~ (Assignt (name,e),(addEntry stk (name,

(cf, e)))): prev

vhere propExprAQ = findProperExpr e stk

In binary operations where the value is to be stored in AccQ, we face two different

situations. For Shift operations, we normally shift the whole AccQ (first argument) by

the amount given in the second argument. But for the operations like multiply etc.

the first argument is always Ace and we store the value in the AccQ. findProperExpr

finds the proper expression for the AccQ in those cases.

findProperExpr ::Expression~ Eva~History ~Expression

findProperExpr (Expression (Bina.ryoperation(ex1,op,ex2))) stck

Expression $ Binaryoperation(exx,op,ex2)
vhere ex3 = snd $ lookupEntry stck (SC AccQ)

10. Solving Data Flow Equations

ex4 = snd $ lookupEntry stck (SC Ace)

exx = if op 'elem' [Shl,Shr] then ex3 else ex4

findProperExpr e _ = e

10.2.2 Finding Inputs and Outputs

157

Next, we define some functions to find the set of inputs and outputs of a list of

statements. Each basic expression (except the constants) on the right-hand side of

interpreted statements can be considered as inputs and all the state references on

the left-hand side of statements as outputs (some exceptions remain for Ace and Q),
given that all duplications are removed.

One important thing to remember is that the statement list from where we find

the inputs and outputs is in the reverse order that is the first statement we face in

the list corresponds to the last instruction of the code.

inputSet uses a recursive function called findinput to find all the inputs from a

list of Stmt and then to remove the duplicates. In each expression of the right-hand

side of the Stmt, find!nput recursively finds all the basic expressions (except the

constants) as inputs.

inputSet :: [Recur_Stmt] -+ Input -+ Input

inputSet [] iset = iset

inputSet ((Assignt (name,exp)):stmts) iset

= inputSet stmts ((findinput exp) ++ iset)

find!nput ::Expression-+ Input

find!nput exp = Gase exp of

Expression (Atomic (Constant a)) -+ []

Expression (Atomic (HemoryConstant a)) -+ [Hem a]

Expression (Atomic (Variable a)) -+ [SC a]

Expression (Atomic (VariableX a)) -+ [SCX a]

Expression (Unaryoperation (_,ex1)) -+ find!nput ex1

Expression (Binaryoperation (ex1,_,ex2))

-+ (findinput ex1)

++ (find!nput ex2)

158 10. Solving Data Flow Equations

Expression (ConditionaLEXp ((_,ex1),(_,ex2)))

~ (findlnput exl)

++ (findlnput ex2)

The right-hand side of each Stmt will be an output with some exceptions for Ace,

Q and AccQ. One exception is like the following: if the next state reference to be

included in the output list is AccQ and Ace is already in the output list then we

remove the previous entry of Ace from the output list and include AccQ and two new

entries of Ace and Q in the list.

appOutPut determines which ones of Ace, Q and AccQ should stay in the output

list.

outputSet : : [Recur_Stmt] ~ Output ~ Output

outputSet [] oSet = oSet

outputSet ((Assignt (name,e)):stmts) oSet = outputSet stmts $

if (appOutput name oSet) then

if name = (SC AccQ) A (SC Ace) 'elem' oSet then

(name: (SC Ace) : (SC Q) : (delete (SC Ace) oSet))

else (name:oSet)

else oSet

appOutput :: StateRef ~ Output ~ BooL

appOutput name os = case name of

SC AccQ ~ SC Ace 'notElem' os V SC Q 'notElem' os

SC Ace ~ SC AccQ 'notElem' os

SC Q ~ SC AccQ 'notElem' os
_ ~ True

10.2.3 Finding System of Equations

These functions are used to return the input output relationship from a list of state

ments and a list of inputs that is they return the Data Flow Equation (DFE)s. By

Data Flow Equation, we mean the representation of outputs in terms of input data

flow.

10. Solving Data Flow Equations 159

For each input that is StateRef, findFstStmt finds the first evaluated expression

of that StateRef from the evaluation environment and returns the interpreted Stmt.

listOfEqns :: [Recur_Stmt] ~ EvalHistory ~Output
~ [Recur_Stmt] ~ [Recur_Stmt]

listOfEqns stmts stk (] stmteq = reverse stmteq

listOfEqns stmts stk (os:oList) stmteq

= listOfEqns stmts stk oList

((findFstStmt os stk stmts):stmteq)

findFstStmt :: StateRef ~ EvalHistory ~ [Recur_Stmt]
~ Recur _Stmt

findFstStmt asb stk (st~(Assignt (name,e)):stmts)

= if (expOfStateRef asb = (snd $ lookupEntry stk asb))

then if asb = name then st

else findFstStmt asb stk stmts

else Assignt (asb, snd $ lookupEntry stk asb)

expOfStateRef :: StateRef ~Expression

expOfStateRef (SC a) = Expression $ Atomic $ Variable a

expOfStateRef (SCX a) = EXpression $ Ato~ic $ VariableX a

expOfStateRef (Mem a) = Expression $ Atomic $ MemoryConstant a

This function is mainly used to divide. the output of findAnntofGraph in the

conditions, execution sequence, inputs, outputs and system of equations (input output

relationship) of the code segment for the graph.

dividePathCondSym :: MyGraph ~ MyNode
~ (ConditionStmt,[Recur_Stmt],Input,Output,[Recur_Stmt])

dividePathCondSym mg start= ((fst3 cfStmt),scfStmt,input,

output,sysList)

vhere cfStmt = solveAnntOfGraph $ findAnntOfGraph mg start

scfStmt = reverse $ snd3 cfStmt

stk = thrd3 cfStmt

160 10. Solving Data Flow Equations

output =nub (outputSet scfStmt [])

input =nub (inputSet scfStmt [])

sysList = listOfEqns scfStmt stk output []

10.3 Example

10.3.1 Straight-line Code

The following code segment is a straight-line code already cited in section 2.3.1.

OADDR REL OBJ. S.NO. LABEL OPCD FT OPRNDS

35B6 0 C129 0677 TRBFB LD 1 41
35B7 0 A12A 0678 M 1 42
35B8 0 1082 0679 SLT 2
35B9 0 912B 0680 s 1 43

35BA 0 A12C 0681 M 1 44

35BB 0 108F 0682 SLT 15

35BC 0 A92D 0683 D 1 45

35BD 0 D12E 0684 STO 1 46

The symbolic interpretation for this code segment is given below. As this is a

sequential code segment, so the path condition is always TRUE.

PathCondition: True

Instruction Execution:

A= C(XR1 + 41),

AQ = C(XR1 + 41)*C(XR1 + 42),
e give an example of a straight line code and

AQ = ((C(XR1 + 41))*C(XR1 + 42))<<2,

A= (Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43),

10. Solving Data Flow Equations

AQ = ((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44),

AQ = (((Upper16(((C(XR1 + 41))*C(XR1 + 42))«2))-C(XR1 + 43))

*C(XR1 + 44))<<15,

A = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15)/C(XR1 + 45),

Q = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15)%C(XR1 + 45),

C(XR1 + 46) ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))
-C(XR1 + 43))*C(XR1 + 44))<<15)/C(XR1 + 45)

161

Different inputs, outputs and system of equations (relation among the inputs and

outputs) of this chunk of code is shown below:

Input: C(XR1 + 41),C(XR1 + 42),C(XR1 + 43),C(XR1 + 44),C(XR1 + 45)

Output: C(XR1 + 46),AQ,A,Q

System of Equations:

C(XR1 + 46) = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))
-C(XR1 + 43))*C(XR1 + 44))<<15)/C(XR1 + 45),

AQ = (((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))
*C(XR1 + 44))<<15,

A = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XRl + 43))
*C(XR1 + 44))<<15)/C(XRl + 45),

162 10. Solving Data Flow Equations

Q = ((((Upper16(((C(XR1 + 41))*C(XR1 + 42))<<2))-C(XR1 + 43))

*C(XR1 + 44))<<15)%C(XR1 + 45)

If we can give symbolic names of the inputs and outputs then the system of

equations will be more clear and easier to understand. Using symbolic names for the

input and output variables, the previous system of equations will be:

Input: C(XR1 + 41) ERR

C(XR1 + 42) 1.067

C(XR1 + 43) PREV_ERR

C(XR1 + 44) K

C(XR1 + 45) 5861

Output: C(XR1 + 46) DELX

System of Equations:

DELX = (((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)/5861

AQ = (((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)

Q = (((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)%5861

A = (((Upper16((ERR*1.067)<<2)- PREV_ERR)*K)<<15)/5861

These equations definitely identifies the computation done by the code. The block

comments of the functions inside the assembler program which describe the code show

similar equations. These equations can also be used to generate tabular specification

of the functions. In this way, we can proceed to find the specification documents of

the assembly code.

10. Solving Data Flow Equations 163

10.3.2 Generalized Straight-Line Code (GSC):

The modeling of non-sequential branch structure is more complex than sequential

codes. It involves finding that kind of structure from the execution paths of a program

and then finding data flow equations for that structure. While solving these data

flow equations, we have to realize the data dependency in all the segments. This code

segment is the same as in Section 8.6.2.

35C4 0 73FF 0695

35C5 0 700F 0696

0697

MDX 3 -1

MDX TRBFE

35C6 0 1010 0698 TRBFD SLA

35C7 0 D12F 0699 STO

35C8 0 7012 0700 MDX

0701

0702

35C9 0 0000 0703 DI2F3 DC

35CA 0 6203 0704 LOX

35CB 0 6300 0705 LOX

35CC 0 4810 0706 BSC

35CD 0 7301 0707 MDX

35CE 0 1001 0708 SLA

35CF 0 72FF 0709 MDX

3500 0 70FB 0710 MDX

3501 00 66002099 0711 LOX

3503 00 4C8035C9 0712 BSC

0713

0714

0715

3505 0 C209 0716 TRBFE LO

3506 0 911B 0717 s
3507 0 A130 0718 M

3508 0 1005 0719 SLA

3509 0 D12F 0720 STO

16

1 47 0

TROUT

0

2 3

3 0

3 1

1

2 -1

*-5
L2 BPCD

I DI2F3

2 9

1 27

1 48

5

1 47

164 10. Solving Data Flow Equations

35DA 0 7000 0721 MDX TROUT

0722

0723

0724
0725

35DB 0 C12E 0726 TROUT LD 1 46

35DC 0 812F 0727 A 1 47

35DD 0 A132 0728 M 1 50

35DE 0 1089 0729 SLT 9

35DF 0 0123 0730 STO 1 35

Inputs, Outputs, Path Condition and Solved system of equations of this segment

of code are shown below. This system of equations seems a little bit complex since

it uses big symbolic names of the variables. If we can use discrete values or small

representative symbolic names of the variables, these equations will be more easier to

understand. Again, these equations can be used to find tabular specification of the

functions which may lead us to find the final specification documents of the assembler

program.

PathCondition: True

Instruction Execution:

Input: 0, C(XR1 + 46),C(XR2 + 9),C(XR1 + 27),

C(XR1 + 48),A,C(XR1 + 50),XR3,(-1)

Output: XR3,A,Q,AQ,C(XR1 + 47),C(XR1 + 35)

System of Equations:

XR3 = 0,

A = Upper16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))

*C(XR1 + 48)))<<5((Sign1 <> Sign2 II XR3 == 0) ==False)

10. Solving Data Flow Equations 165

:(Acc)<<16((Sign1 <> Sign2 II XR3 == 0) ==True))*C(XR1 + 50))<<9),

Q = Lower16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))

*C(XR1 + 48)))<<5((Sign1 <> Sign2 I I XR3 == 0) ==False)

:(Acc)<<16((Sign1 <> Sign2 II XR3 == 0) ==True))*C(XR1 + 50))<<9),

AQ = (((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))*C(XR1 + 48)))<<5

((Sign! <> Sign2 I I XR3 == 0) ==False)

:(Acc)<<16((Sign1 <> Sign2 I I XR3 == 0) ==True))

*C(XR1 + 50))<<9,

C(XR1 + 47) = (Upper16(((C(XR2 + 9))-C(XR1 + 27))*C(XR1 + 48)))<<5

((Sign! <> Sign2 I I XR3 == 0) ==False)

:(Acc)<<16((Sign1 <> Sign2 I I XR3 == 0) ==True),

C(XR1 + 35) = Upper16((((C(XR1 + 46))+(Upper16(((C(XR2 + 9))-C(XR1 + 27))

*C(XR1 + 48)))<<5((Sign1 <> Sign2 I I XR3 == 0) ==False)

:(Acc)<<16((Sign!<> Sign2 II XR3 == 0) ==True))

*C(XR1 + 50))<<9)

Chapter 11

Discussion and Future Work

In this chapter, we discuss the contributions we made in the thesis, limitations faced

during the research process and future works that may be done depending on the

works presented in the thesis.

11.1 Contribution

Reverse engineering can be seen as an opposite process of compilation. In compila

tion, we create lower level representation of the program from higher level. In reverse

engineering, we follow the other way: from the lower level code to high level specifica

tions. That is why, we try to follow the process of reverse compilation by generating

flow graphs and incorporating symbolic computation techniques in the process to get

different views of the code. We see our main contribution as adapting the tools from

symbolic computation, compiler construction (data flow and control flow graphs) and

denotational semantics to the situation of understanding and reverse-engineering the

semantics of legacy assembler programs. An important contribution of our approach

is that we have made only a few simplifying assumptions, and yet managed to de

rive mathematical descriptions of subprograms. One of the important simplifying

assumptions is to ignore carry and overflow conditions during instruction execution.

In legacy assemblers, the control flow of the codes is a little bit awkward. Still we can

find a way to represent the control flow using mathematical equations; not by high

level procedural constructs.

166

11. Discussion and Future Work 167

Morris and Filman [MF96], Feldman and Friedman [FF95], Ward [WarOO] etc.

developed systems to translate assembler codes into a high-level language. In our

process, instead of finishing up at high-level programming language (which may only

"move" our realization up some levels instead of resolving it), we prefer mathemat

ical languages i.e. producing output suitable for both PVS [OSRSCOl J and Maple

[MGH+Ol]. As we said earlier, in our process we have integrated compiler techniques

with symbolic analysis; highly influenced by Watson and Fidge [WF03] and Fahringer

and Scholz[FS03]. Watson and Fidge [WF03] have described a technique for assem

bler semantics that is based on advanced compiler theory and technology, as well

as programming language semantics. Their work is close to ours, except that while

they are describing a theoretical framework, we have a working reverse-engineering

tool. As we do, they used execution paths to find the semantics of assembly language

programs. Fahringer and Scholz[FS03] developed an approach to find the symbolic

interpretation of imperative programs written in a high-level language. We applied

some of their constructs (path conditions, recurrence equations) in our approach to

interpret assembler programs. As assembler programs do not have any predefined

control structures, we used an explicit control flow graph to find execution paths,

and used them to guide our symbolic interpretation. In this way, we create a newer

blend of compiler technologies with symbolic interpretation techniques in our seman

tic analysis process.

The whole process shown in Figure 4.1 is fully automated. Interaction among

modules are without any human intervention making the process more robust and

easily verifiable. Still we can get intermediate representation of outputs at different

steps to get the inner look of the process. Control Flow Graph generation from the

assembler codes, symbolic analysis with Data Flow Graphs - all of these processes

are automated. This may inspire the researchers working in the upper layers of the

tool suite architecture in the reverse engineering project to make a fully automated

stream from the assembler code to high level specifications.

In this thesis, we only deal with three special control flow patterns of assembler

programs. More control flow structures can be incorporated in the process using the

same techniques followed. As we use execution paths to model control flow of the

program, other control flow patterns can also be detected with less effort. As such,

we believe that incorporating more control flow patterns will not effect the efficiency

168 11. Discussion and Future Work

of the tools.

The tools developed in this thesis are "proof of concept". These tools exhibit a

concept of symbolic analysis which may be implemented in a larger scale. They are not

designed as software products which need rigorous software engineering methodologies

to be practiced. We still try to follow important software engineering principles to

make those tools efficient.

Effective use of pure functional programming language like Haskell results in a set

of tools and modules which are precise, compact and interact well with each other.

Special modularization features (Section 3.4.1) of Haskell help us to create hierar

chical software architecture. Haskell provides us with good abstraction mechanism

and proper use of these abstraction techniques results in smaller, precise and easy

reading codes. The tools also interact well with the outside tools and are flexible

enough to incorporate new features in them. The codes included in the thesis are

easily comprehensible and we hope that any fellow student will be able to translate

them into different architecture within a limited time. The documentation style of

literate programming also increases the understandability of the code. In brief, we are

convinced that Haskell is a good programming language to produce well structured

software abiding by all software engineering principles.

Making some successful contribution in the tool suite architecture of the reverse

engineering process was not our only goal. We try to publish the outcome of the

research done in this thesis as some scholarly publications. In this regard, one of

our paper "Symbolic Interpretation of Legacy Assembly Language" is accepted and

will be published in the 12th Working Conference on Reverse Engineering (WCRE),

Pittsburgh PA(Carnegie Mellon),USA, November 8 to 11.

11.2 Limitations

When I was first introduced in the project, Dr. Jacques Carette told me to use

Haskell as an implementation language. He has described all the important features

of Haskell for good programming practice and inspired me to use Haskell. Haskell was

the first functional programming language that I have ever used. My programming

style was more of imperative genre and it was difficult for me to adapt the style of

functional programming. Although I always try to overcome this shortcoming, one

11. Discussion and Future Work 169

might find some imperative style of coding in some parts of my Haskell codes.

I always try to explain the terse functions where some convoluted and obtuse codes

appear in sufficient prose with literate Haskell programming style. Still the clarity of

the code might be improved by using the extended abstraction mechanisms of Haskell.

More refactoring can be done to make the code more clear and understandable and

redundant code can also be eliminated.

Since our goal is an automated process, less amount of work is done on producing

better displays for the outputs of intermediate steps. We always try to make the

intermediate step outputs more human readable. Still some further works can be

done to create better presentation of those outputs.

At the beginning of the project, we aimed to (automatically) identify functions in

a program, extract nice closed-form formulas and pre/post-conditions that express the

actual (or idealized) semantics of those functions. Automatically identifying functions

and finding pre/post-conditions are not covered in this thesis. The time limit of the

completion of Masters' degree is an obstacle in this process. Though I hope that

some future works will be done on this symbolic interpretation process to attain the

ultimate goal.

11.3 Future Works

The solution presented in this thesis is still prellminary. As indicated earlier, only

some special kinds of control flow are currently analyzed. Work can be done on

analyzing more complex control flow - quite a bit of weird control fiow can be recast

in our settings by a simple duplication of some of the code. As said in Section 11.2,

automatically identifying functions in an assembler program is another area where

further effort can be given.

Moreover, we have shown ways to generate the DFEs for all three kinds of control

flow graphs. We have produced the Data Flow Graphs (DFG) and solved the DFEs

for SC and GSC structures. These works can be given a final touch by implementing

the functions for producing DFG and solving DFEs for the looping codes. Duplication

of the codes implemented with some adjustment would work for looping codes.

As well, future work can be done on simplifying the output expressions. During

simplification, duplicate constructs can be eliminated in the DFEs and also we can

170 11. Discussion and Future Work

build new constructs for common parts in the DFEs and make reference to those

common parts to generate new DFEs which are clear and easily readable. New tools

can also be developed to push boolean conditions through systems of (more complex)

data flow equations.

Redundant descriptions of the semantics can also be explored; for example a left

shift instruction can be described either as a left-shift or as a multiplication by 2. The

"best" description usually depends on how that value is used in other contexts. If it

is used in a context of arithmetic operations, then multiplication by 2 is likely more

descriptive, whereas if used in a context of bit operations, a shift is likely better. The

work of [KAC04] is relevant here.

11.3.1 Graph Transformer

As the legacy assembly language codes were written long time ago, the control flow

structures are not in procedural constructs and not easy to interpret. A new step can

be included in the semantic analysis process to find the bad control flow structures

in the code and replace them by good control flow patterns. We have done some

work on this step and tried to find bad control flow patterns to replace them with

pre-defined good flow patterns.

Another important aspect is that any time we can find some paths as infeasible,

they may be eliminated. This simplifies the analysis t~emendously. So our current

analysis should be seen as one step in a fixed-point analysis, where each analysis pass

provides a better approximation to the complete semantics.

Right now, the control flow graph we are dealing with is an approximation of the

precise control flow graph. Some run time emulation of the codes can be done and

we can find the actual addresses for the indirect addressing. This can be helpful for

modifying the control flow graph by actual edges between nodes to get the accurate

control flow graph.

11.3.2 Finding Preconditions

Often we are interested about the partial correctness of programs. A program can be

defined as partially correct, with respect to a given precondition and a postcondition,

if the initial state satisfies the precondition and if the program terminates, the final

11. Discussion and Future Work 171

state satisfies the postconditions. Now if we are given postconditions for the program,

we can try to use the data flow equations to "push backwards" (as in backwards state

transformers) these predicates for obtaining preconditions.

Additionally, as no exceptions (in other words carry, overflow etc.) are handled

by the programs we reviewed, we can add these as post-conditions as well, and also

propagate them backwards through the data flow equations. Let us consider the

control flow graph in Figure 11.1. Suppose that a, b, c are all state variables in this

context. At node Q, the initial state is I = {a ~--+ a0 , b ~--+ b0 , c ~--+ eo}, and at node

P, assume that we have c = a + b. As we know that c must be a valid value (< 216

on the IBM-1800), we can conclude that a+ b < 216 is true at P. We can push this

backwards to (potentially) derive additional necessary conditions at Q, as well as

pushing it forward to (potentially) find a more precise description of the state at R,

by potentially removing some infeasible paths.

Q

p

R

Figure 11.1: Finding Preconditions

Appendix A

Semantic Model of Instructions

This appendix defines the semantic model of the operational semantics of IBM-1800

assembler instructions. We use this abstract model in the whole symbolic interpreta

tion process.

A.l Semantics of Instructions

We define our model as a state transformer where the effect of executing an instruction

is stated as a total function on states i.e. after execution of each instruction, the state

changes to one form to another. It can be defined as:

[Instruction] : (State ~ State)

A State (s) symbolizes a machine state where all the machine components are

represented as variable. We define the State to be the (partial) function which con

tains the full Memory, the Instruction Register (I), Accumulator (A), Accumulator

Extension Register (Q), all Index Registers (XR1, XR2,XR3) and the Overflow and

Carry bits in its domain, and the range is either a 16-bit value (most cases) or a

one-bit value (for Overflow and Carry).

We need to use some notations to represent the operational semantics of the

instructions of IBM-1800 assembly language:

172

A. Semantic Model of Instructions 173

Inst(I)

DB
FB
displ

addr

tag

cond

brtype

06-s(i, s)

X
loc(X)

locBS(i)

Os-9

Contents of core storage at the location specified by I (In-

struction Register). Later we use i as its short notation.

D (5th) bit of the instruction.

Format bit of the instruction.

Displacement associated to the instruction.

Address defined in the instruction.

Tag value associated with the instruction.

Condition defined in the instruction.

Branching instruction type such as BSC Short (BSCS), BSC

Long (BSCL) or BSI (BSI).

Checks bits 6-8 of the opcode, then according to bits 7&8,

returns the contents of I, XRl, XR2, XR3 if bit 6 is 0, oth-

erwise returns value of 0 ,XRl ,XR2 ,XR3.

06-s(i, s)
If i is indirect then A(X + addr) else X+ addr.

If i is indirect then A addr else addr.

returns different shift instruction operations according to bits

8-9 of the instruction.

defCond(cd, bt) With the two arguments, it decides the value by which the

instruction register (I) will be incremented in a branching in

struction. cd defines the types of cond in the instruction and

bt indicates the branching instruction type (brtype).

cmdx(mn, mp) Compares two values of one state component (specially in

dex registers) before (mp) and after (mn) modification and

returns 1 if the modified word changes sign or reaches zero

while being modified and 0 otherwise. Used mainly in MDX

instructions.

where DB, FB, and displ are implicitly functions of i and 0 denotes an abstract

location with constant value 0. All of these notations have states and Inst(I) or i

as implicit arguements unless explicitly defined.

174 A. Semantic Model of Instructions

"y Content of state component y.

8y(f)(x) Short for y ~ f("y, x).
O"z(f)(x, y) Short for z ~ f(x, y).
S(x, y) Short for x ~ y.

comp(x, y) Compares the contents of x with the contents of y and returns

instruction register modification value.

p : q A 32 bit value with p representing higher 16 bits and q as

lower I6 bits.
where f ranges over a few built-in operations (arithmetic and logical), y can be any

of the components of the domain of State.

Almost all the instructions are implemented in the abstract model except

LOAD/STORE STATUS (LDS/STS), WAIT, EXECUTE I/0 (XIO) as they are

not used in the IBM-1800 assembler code of OPG.

A.l.l LOAD/DOUBLE LOAD(LD/LDD)

If OpCode(i) E {LD, LDD},

[Inst]s =81(+)(I + FB)0

(S(A, (FB = 0? "(X+ displ) : "loc(X)))

0 (DB= 1? (S(Q, (FB = 0?

"(X+ displ +I) : "(loc(X) + 1)))) : JI)

A.1.2 STORE/DOUBLE STORE(STO/STD)

If OpCode(i) E {STD, STD},

[Inst]s =81(+)(I+ FB)0

S((FB = 0? "(X+ displ) : "loc(X)), A)

0 {DB= I ? (S((FB = 0?

"(X+ displ +I) : "(loc(X) +I)), Q)) : JI)

A. Semantic Model of Instructions

A.1.3 LOAD INDEX/STORE INDEX (LDX/STX)

If OpCode(i) E {LDX, STX},

[Inst]s =81 (+)(1 + FB)0

(DB= 1 ? (S((FB = 0?

"(I+ displ) : "(locBS(i))), X))

: (S(X, (FB = 0? displ : locBS(i)))))

A.1.4 ADD/DOUBLE ADD(A/AD)

If OpCode(i) E {A, AD},

[Inst]s =81(+)(1 + FB)0

(DB= 1? (oAQ(+)(FB = 0?

("(X+ displ) :"(X+ displ + 1))

: ("loc(X) : "(loc(X) + 1))))

: (oA(+)(FB=O?"(X+displ): "loc(X))))

A.1.5 SUBTRACT/DOUBLE SUBTRACT(S/SD)

If OpCode(i) E {S,SD},

[Inst]s =81(+)(1 + FB)0

(DB= 1? (8AQ(-)(FB = 0?

("(X+ displ) :"(X+ displ + 1))

("loc(X) : "(loc(X) + 1))))

: (oA(-)(FB = 0? "(X+ displ) : "loc(X))))

A.1.6 MULTIPLY/DIVIDE(M/D)

If OpCode(i) E {M, D},

175

176 A. Semantic Model of Instructions

[Inst]s =61(+)(1 + FB)0

(DB= 0? (oAQ(*)(A, (FB = 0?

("(X+ displ) : ("loc(X))))))

: (aA(DIV)(AQ, (FB = 0?

("(X+ displ) : ("loc(X))))),

aQ(MOD)(AQ, (FB = 0 ?

("(X+ displ): ("loc(X)))))))

[here DIV stands for quotient operation and MOD stands for remainder operation.]

A.1.7 LOGICAL AND/OR{AND/OR)

If OpCode(i) E {AND, OR},

[Inst]s =61(+)(1 + FB)0

(DB= 1 ? (6A(OR)(FB =.0?

"(X+ displ) : 11 loc(X)))

: (6A(AND)(FB = 0?

"(X+ displ) : 11 loc(X))))

A.1.8 LOGICAL XOR (XOR)

If OpCode(i) E {XOR},

[Inst]s =61 (+)(1 + FB)0

(DB= 0 ? (6A(XOR)(FB = 0?

"(X + displ) : 11 loc(X))) : JI)

A. Semantic Model of Instructions 177

A.1.9 SHIFT (SLA/SLT /SRA/SRT)

Shift instructions can be divided into two major classes: Shift Left and Shift Right.

These two major classes are defined by the operation code of the instruction. Each

of these major classes are divided into subclasses. We use 0 8_ 9 function to find the

different subclasses of the shift instructions. Although each class can be divided into

four classes, some of them are not used in the assembler code we examine. That is

why, in this model we only implement those shift operations which are practically

used in OPG code. Shift Left Logical A (SLA), Shift Left Logical A & Q (SLT) [from

Shift Left operations] , Shift Right Logical A (SRA), Shift Right A & Q (SRT) [from

Shift Right Operations] are implemented in the following model. Shift Left and Count

A (SLCA), Shift Left and Count A & Q (SLC) and Rotate Right A & Q (RTE) are

not implemented. Detection of correct shift instructions type by 0 8_ 9 is a part of

implementation details and will not be discussed here. For simplicity, here we can

only assume that 0 8_ 9 only returns 0, 1 for A and AQ operations respectively.

If OpCode(i) E {SLA,SLT,SRA,SRT},

[Inst]s =81 (+)(1)0

(DB= 0? (08_ 9 = 0? (8AQ(<<)(displ))

(8A(<<)(displ)))

: (Os-9 = 0? (8AQ(>>)(displ)) (8A(>>)(displ))))

A.l.lO BRANCH AND SKIP/ BRANCH

STORE(BSC /BSI)

If OpCode (i) E {BSC, BSI},

[lnst]s =(DB= 1? (81(+)

(defcond(cond, (FB = 0? BSCS : BSCL))))

(FB = 0? (S("((X + displ), /)), S(I, (1 +X+ displ)))

: (81 (+)(defcond(cond,BSI)))))

AND

178 A. Semantic Model of Instructions

A.l.ll MODIFY INDEX AND SKIP (MDX)

If OpCode(i) E {MDX},

[Inst]s =(FB = 1 ?

(tag= 00? (b'I(+)(2 + cmdx(("addr + displ),

"addr)), S("addr, ("addr + displ)))

(81 (+)(2 + cmdx((X + locBS(i)), X)), S(X, (X+ locBS(i)))))

(tag= 00? (b'I(+)(displ))

(81 (+)(1 + cmdx((X + displ), X)), S(X, (X+ displ)))))

A.1.12 COMPARE (CMP)/ DOUBLE COMPARE (DCM)

If OpCode(i) E {CMP, DCM},

[Inst]s =81 (+) (DB= 0?

(comp(A,(FB=O?"(X+displ): "loc(X))))

(comp(AQ, (FB = 0? ("(X+ displ) : "(X+ displ + 1))

: ("loc(X) : "(loc(X) + 1))))))

Appendix B

Common Codes

This appendix includes all the common codes needed for different module implemen

tation.

B.l IBM-1800

Here we define some of the auxiliary functions needed to carry out the semantic

operations of the IBM 1800 instructions.

module IBM1800

(BrTag(..), SftTag(..), State, o6to8

, regST,loadX, dXR, o8to9, sCount, addDisp

, loc, locBS, getMemRefA, getMemRefQ

, getContentOfMemRefA, getContentOfMemRefQ
, dA, dQ, dAQ, d!R, del!R, retDispAdd

, mergeAQ, returnA, returnQ, bool2Word

, retCondLong, retCondShort, changeiRinBr

, compA, compAQ, repeatShift16, repeatShift32

) vhere

import Mem

import OpCod.e

import Instruction

179

180

import Data. Word

import Data. Int

import Data.Bits

B. Common Codes

We start by defining some of the Tags required to represent the Branching, Com

pare and Shift conditions.

data BrTag = At Ne -- Always, Never

I n Npl -- Plus, Not Plus

Mn Nmn --Minus, Not Minus

Zr Nzr -- Zero, Not Zero

Ev Evp Evm -- Even, Even or Plus, Even or Minus

Od Odm Od.p -- Odd, Odd and Minus, Odd and Plus

deriving Show

data SftTag = Sa I Saq I Sea I Scaq deriving Show -- Shift Tag

IBM-1800 current state includes the state of the memory (mem), the Instruction

Register (ir), the Accumulator Register (ace), the Accumulator Extension Register

(q), the Index Registers (xrl-3), and the Overflow and Carry Flags (overflow and

carry).

type State = GenState Mem Word16 Word.16 Bit

data GenState mem addr val bit = State

{ mem mem

ir addr

ace val

q .. val

xr1 addr
xr2 addr
xr3 addr

overflow bit

carry bit
}

deriving Show

B. Common Codes 181

The following function checks bits 6-8 of the instruction and if bit 6 (Format Bit)

is 0 then returns the value of ir, xrl, xr2, xr3 or if bit 6 is 1 then returns the value of

0, xrl, xr2, xr3 according to tag bits. Here bit 6 is tested previously and according

to that bit tag is set to either I or XRO (which is always Zero).

reg1 :: Instruction~ (State~ Word16)

reg1 inst = case tag inst of
I ~ ir

XRO ~ const OxO

XR1 ~ xr1

XR2 ~ xr2

XR3 ~ xr3

o6to8 :: Instruction~ State~ Word16

o6to8 = reg1

A special function for the LOAD and STORE index instruction.

regST :: Instruction ~ (State ~ Word16)

regST inst = case tag inst of

XR1 ~ xr1

XR2 ~ xr2

XR3 ~ xr3
~ ir

If necessary, the following should be generalized to accept functions with monadic

result.

tagRegUpdate Tag ~ (addr ~ addr)

~ GenState mem addr val bit

~ GenState mem addr val bit

tagRegUpdate I f st = st {ir = f $ ir st}

tagRegUpdate XROf st = st

tagRegUpdate XR1 f st st {xr1 = f $ xr1 st}

tagRegUpdate XR2 f st st {xr2 = f $ xr2 st}

tagRegUpdate XR3 f st = st {xr3 f $ xr3 st}

182

loadX :: Tag -+ addr -+ GenState mem addr val bit

-+ GenState mem addr val bit

loadX t ex = tagRegUpdate t (eonst ex)

dXR (Num addr) => Tag -+ addr

-+ GenState mem addr val bit

-+ GenState mem addr val bit

dXR t ex = tagRegUpdate t (ex +)

B. Common Codes

o8to9 is used to return the Shift Tags to determine the kind of shift operation to

be executed depending on the 8th and 9th bit of the instruction.

o8to9 :: Instruction-+ SftTag

o8to9 inst = case from!ntegral $ shiftR ((from!ntegral

OxO -+ Sa
Ox1 -+ Sea

Ox2 -+ Saq
Ox3 -+ Scaq

$ disp inst::Word8) .&. OxCO) 6 of

We use sCount to return the no. of shift count as in Fig.3-13 of the IBM-1800

manual [IBM70]. The shift count should be the lower order 6 bits of either displace

ment or XR1/XR2/XR3 depending on the tag bits.

sCount :: (Numb)=> Instruction-+ GenState mem Word16 val bit-+ b

sCount inst s = from!ntegral $ x .&. Ox003F

vhere x = case tag inst of

I -+ from!ntegral $ (disp inst)::Word16

XR1 -+ (xr1 s)

XR2 -+ (xr2 s)

XR3 -+ (xr3 s)

The following functions are used to calculate the effective addresses of memory.

B. Common Codes 183

addDisp adds the displacement of the instruction to the defined index register

value to return the effective address. loc returns the effective address of memory for

long instructions. The effective address is calculated either by adding the address with

the corresponding index register value or the content of the address added with the

index register value of the instruction depending on the indirect bit of the instruction.

locBS function returns the effective address for the LOAD and STORE INDEX

instructions.

getMemRef and getContentOfMemRef are used to get the memory reference and

the content of the memory reference respectively. Both of them have two versions

for the current effective address (getMemRefA, getMemRefQ, getContentOfMemRefA,

getContentOfMemRefQ).

addDisp :: Instruction~ State~ Word16

addDisp inst s = fromintegral $ (x +

(fromintegral $ disp inst :: Int16))::Word16

vhere x = fromintegral $ o6to8 inst s::Int16

loc Instruction ~ State ~ Word16

loc inst s = if indAdd inst = One then getMem (mem s) x' else x'

vhere
x = fromintegral $ (o6to8 inst s)

x' = fromintegral $ x + address inst

locBS :: Instruction~ Bool ~State~ Word16

locBS inst ls s =
if isLong inst

then if indAdd inst = One

then getMem (mem s) (address inst)

else address inst

else if ls

then (irs)+ (fromintegral $ disp inst::Word16)

else fromintegral $ disp inst::Word16

getMemContent :: State ~ Word16 ~ Word.16

184 B. Common Codes

getMemContent s effadd = getMem (mem s) effadd

getContentOfMemRef:: Int ~Instruction~ State~ Word16
getContentOfMemRef ofs inst s =

getMemContent s $ if isLong inst

then fromlntegral $ (loc inst s)+ofs

else fromlntegral $ (addDisp inst s)+ofs

getMemRef:: Int ~Instruction~ State~ Word16
getMemRef ofs inst s = if isLong inst

then fromlntegral $ (loc inst s) + ofs

else fromlntegral $ (addDisp inst s) + ofs

getMemRefA, getMemRefQ,

getContentOfMemRefA,

getContentOfMemRefQ :: Instruction~ State~ Word16

getMemRefA = getMemRef 0
getMemRefQ = getMemRef 1

getContentOfMemRefA

getContentOfMemRefQ

getContentOfMemRef 0
getContentOfMemRef 1

Now we have to define functions to update the state components: Accumulator,

Q Register, Index Registers, Accumulator:Q Registers etc.

dA .. Word16 ~ State ~ State

dA a s = s {ace = a}

dQ .. Word16 ~ State ~ State

dQ q s = s {q = q}

dAQ (Word16, Word16) ~ State ~ State

dAQ (a,q) s = s {ace = a, q = q}

diR .. Word16~ State ~ State

B. Common Codes

diR a s = s {ir = irNew}
vhere irNew = (ir s) + a

deliR : : Word16 -+ State -+ State

deliR a s = s {ir = a}

185

This function returns True(l) if the modified factor changes sign or reaches zero

while being modified and False(O) otherwise.

retDispAdd Int16 -+ Int16 -+ Word16

retDispAdd eN cP = if (eN = 0) v ((cP > 0) A (eN < 0))

v ((cP < 0) A (eN > 0)) then 1 else 0

These functions are used for 32 bit operations.

mergeAQ :: State -+ Int32 --merges the A and Q register.

mergeAQ s = from!ntegral $ (shiftL (fromintegral $ q s :: Int32) 16)
.1. (from!ntegral $aces ::Int32)

mergeMem :: State -+ Word16 -+ Int32 --merges the contents of the memory

-- addresses.

mergeMem s add = from!ntegral $ (shiftL (from!ntegral $
getMem (mem s) (add+1) :: Int32) 16)

.1. (fromintegral $ getMem (mem s) add ::Int32)

returnA In t32 -+ Word16 -- gets the Accumulator register value

--from the AQ register.

returnA aq = from!ntegral $ aq .&. OxOOOOFFFF

returnQ : : In t32 -+ Word16 -- gets the Accumulator Extension Register

--value from the AQ register.

returnQ aq = from!ntegral $ shiftR (aq .&. OxFFFFOOOO) 16

bool2Word converts the boolean value to word16 value.

186

bool2Word:: bool ~ Word16

bool2Word True = 1
bool2Word Fa~se = 0

B. Common Codes

These functions are used to return the Condition Tags of the instructions.

retCondLong .. Instruction ~ BrTag

retCondLong inst = case cond inst of

Ox01 ~ Od

Ox02 ~ Np~

Ox03 ~ Odm
Ox04 ~ Nmn
Ox05 ~ Odp
Ox06 ~ Zr

Ox08 ~ Nzr

OxOA ~ Mn

OxOC ~ p~

OxOE ~ Ne

otherwise ~ A~

retCondShort :: Instruction~ BrTag

retCondShort inst = case fromlntegral

$ shiftR ((disp inst) .&. Ox3C) 2 of

Ox01 ~ Ev

Ox02 ~ P~

Ox03 ~ Evp

Ox04 ~ Mn
Ox05 ~ Evm

Ox06 ~ Nzr
Ox08 ~ Zr

OxOA ~ Nmn
OxOC ~ Np~
OxOE ~ A~

otherwise ~ Ne

B. Common Codes 187

changeiRinBr changes the instruction register value depending on the branch

conditions.

changeiRinBr:: BrTag -+ State -+ State

changeiRinBr bt s =
case bt of

Al -+ if dbit inst = Zero

then deliR (addL+1)

Pl
Npl
Mn

s {mem = (writeMem (mem s) locL $ 2+ir s)}

else if isLong inst

then deliR addL s

else diR 2 s

-+ deltaiR s inst (> 0)

-+ deltaiR s inst (~ 0)

-+ deltaiR s inst (< 0)

Nmn -+ deltaiR s inst {;?; 0)

Zr -+ deltaiR s inst <= 0)
Nzr -+ deltaiR s inst (:f 0)

Ev -+ deltaiR1 s inst $ ((ace s) .&. Ox0001) - 0

Evp -+ deltaiR1 s inst $ ((ace s) .&. Ox0001) - 0

V((acc s) .&. Ox8000) = 0
Evm-+ deltaiR1 s inst $ ((ace s) .&. Ox0001) - 0

V((acc s) .&. Ox8000) :f 0

Od -+ deltaiR1 s inst $ ((ace s) .&. Ox0001) :f 0

Odm -+ deltaiR1 s inst $ ((ace s) .&. Ox0001) :f 0

A ((ace s) .&. Ox8000) :f 0

Odp -+ deltaiR1 s inst $ ((ace s) .&. Ox0001) :f 0

A ((ace s) .&. Ox8000) = 0 A (ace s) :f 0

Ne -+ if isLong inst
then diR 2 s

else diR 1 s

vhere addL = getMemRefA inst s

deltaiR s inst cond = if dbit inst - Zero

188

then deltaiRBsi s cond

else if isLong inst

B. Common Codes

then deltaiRLong s cond

else deltaiRShort s cond

vhere deltaiRShort s cond if (cond $ ace s)

then diR 2 s

else diR 1 s

deltaiRLong s cond = if (cond $ ace s)

deltaiRBsi s cond

then deliR locL s

else diR 2 s

= if (cond $ ace s)

then deliR (locL+1)

s {mem = (writeMem (mem s) locL $ 2+ir s)}

else diR 2 s

deltaiR1 s inst cond = if dbit inst = Zero
then deltaiRBsi1 s cond

else if isLong inst

then deltaiRLong1 s cond

else deltaiRShort1 s cond

vhere deltaiRShort1 s cond if cond

then diR 2 s

else diR 1 s

deltaiRLong1 s cond = if cond

deltaiRBsi1 s cond

if cond

then deliR locL s

else diR 2 s

then deliR (locL+1)

s {mem = (writeMem (mem s) locL $ 2+ir s)}

else diR 2 s

B. Common Codes 189

compA and compAQ are used to compare two values in the Compare and Double
Compare instructions.

compA:: Int16 ~ Int16 ~ Word16

compA a b = case compare a b of

EQ ~ 3

LT ~ 2

GT ~ 1

compAQ:: Int32 ~ Int32 ~ Word16

compAQ a b = case compare a b of

EQ ~ 3

LT ~ 2

GT ~ 1

Here are some auxiliary functions to emulate Shift Instructions.

repeatShift16 a x f repeatShift16' (f a x) (x-1) f

repeatShift32 a x f = repeatShift32' (f a x) (x-1) f

repeatShift16' a x f
x = (a,x)

((a .&. Ox8000) - 0)

otherwise = (a,x)

repeatShift32' a x f

x = (a,x)

repeatShift16' (f a 1) (x-1) f

((a .&. Ox80000000) - 0) = repeatShift32' (f a 1) (x-1) f

otherwise = (a,x)

B.2 Stack

This module just defines a Stack class.

190 B. Common Codes

module Stack vhere

The following defines a Stack class, with stack of type a -+ b, and keys of type a,

values of type b.

class Stack a b vhere

createStack :: a-+ b
addEntry :: (a-+ b) -+ (a,b) -+ (a-+ b)

addEntries :: (a-+b)-+ [(a,b)] -+(a-+ b)

lookupEntry :: (a-+ b)-+ a-+ b

Appendix C

Emulator

This appendix presents the implementation of the emulator. This is a very direct

translation of abstract model of the instructions in Appendix A.

C.l Lst2String

Tool to convert a .1st file to a String - mostly an intermediate program to decouple

Lst2GxL.

module Main vhere

import IBM1800
import Instruction
import Lst
import System (getArgs)
import Numeric (show Hex)
import Mem
import Meminit
import GHC.Show
import Data.Array
import EmuLate
import Bits

main :: IO ()

191

192 C. Emulator

main = do [infile] e getArgs

myLst e readFile infile

putStrLn ((showState · emulate 8 · initState) myLst)

putStr "Done."

These are the initialization of the state and the State representation.

initState:: String~ State

initState 1 = State {mem = fillMem initMem $ parseLst 1,

ir Ox35B6,

ace Ox07,

q = 0,

xr1 = Ox3808,

xr2 = Ox3808,

xr3 = 0,

overflow = Zero,

carry = Zero
}

showState . . State ~ String

showState s =
"IR = Ox" ++ sh (ir s) ++ "\n"

++ "A = Ox" ++ sh (ace s) ++ "\n"
++ "Q Ox" ++ sh (q s) ++ "\n"
++ "XR1 Ox" ++ sh (xr1 s) ++ "\n"
++ "XR2 Ox" ++ sh (xr2 s) ++ "\n"
++ "XR3 Ox" ++ sh (xr3 s) ++ "\n"
++ "memory content <OIR = Ox" ++ sh ((mem s)!(ir s))
++ "memory content <O(Address Ox3815) = Ox"

++ sh ((mem s)!(Ox3815))
++ "memory content <Q(Address Ox3816) = Ox"

++ sh ((mem s)!(Ox3816))

where sh x showHex x ""

++ "\n"

++ "\n"

C. Emulator

C.2 Emulate

This is a bare bones emulator.

module EmuLate (emulate)

vhere

import OpCode

import Instruction

import IBM1800

import Hem

import Data. Word

import Data.Int

import Data. Bits

Our emulator takes a number of steps, a State and returns a State.

emulate :: Int -+ State -+ State

emulate 0 s = s
emulate n s = emulate (n-1) (step s)

step : : State -+ State

step s = semantics_ op inst s
vhere op = getOp (getMem (mem s) (ir s))

inst = wordsToinstruction (getMem (mem s)

(ir s)) (getMem (mem s) ((ir s)+1))

193

The followings are the implementation of the semantic definitions of all the in

structions.

semantics_ :: op-+ Instruction-+ State-+ State

semantics_ LD inst s = -- LOAD /DOUBLE LOAD

diR (1+fb) $ dA (getContentOfMemRefA inst s) s

$ if dbit inst = Zero
then s

else dQ (getContentOfMemRefQ inst s) s

vhere fb = bool2Word $ isLong inst

194

semantics_ ST inst s = -- STORE/DOUBLE STORE

diR (1+fb) $ s{ mem = (writeMem (mem s)

(getMemRefA inst s) $ ace s)}

$ if dbit inst = Zero
then s

else s {mem = (writeMem (mem s)

(getMemRefQ inst s) $ q s)}

vhere fb = bool2Word $ isLong inst

semantics_ LSX inst s =
diR(1+fb) $ if dbit inst = Zero

then loadX (tag inst)

C. Emulator

(locBS inst False s) s -LOAD INDEX
else s {mem = (writeMem (mem s)

(locBS inst True s) eX)} -- STORE INDEX
vhere fb = bool2Word $ isLong inst

eX = regST inst s

semantics_ ADD inst s =
diR (1+fb) $ if dbit inst = Zero

then dA (fromlntegral $ addNewL~:Vord16) s

else dAQ ((returnA addMemCont),(returnQ addMemCont)) s

vhere fb = bool2Word $ isLong inst

aq = mergeAQ s

addNewL = (fromlntegral $ace s::Int16) +
(fromlntegral $ getContentOfMemRefA inst s::Int16)

addMemCont = aq + (mergeMem s $ getMemRefA inst s)

semantics_ SUB inst s =
diR (1+fb) $ if dbit inst = Zero

then dA (fromlntegral $ subNewL::Vord16) s

else dAQ ((returnA subMemCont),(returnQ subMemCont)) s

C. Emulator

vhere fb = bool2Word $ isLong inst

aq = mergeAQ s
subNewL = (from!ntegral $ace s::Int16) -

195

(from!ntegral $ getContentOfMemRefA inst s::Int16)

subMemCont = aq - (mergeMem s $ getMemRefA inst s)

semantics MD inst s =
d!R (l+fb) $ if dbit inst = Zero

then dAQ ((returnA mulNewL),(returnQ mulNewL)) s

-- MULTIPLICATION

else dAQ (divD,modD) s --DIVISION

vhere fb = bool2Word $ isLong inst

aq = mergeAQ s
addL = from!ntegral $ getContentOfMemRefA inst s:: Int32

mulNewL = from!ntegral $ (from!ntegral $ace s::Int16)

* addL:: Int32

divD = from!ntegral $ aq 'div' addL::Word16

modD = from!ntegral $ aq 'mod' addL::Word16

semantics_ AR inst s =

d!R (l+fb) $ if dbit inst = Zero
then dAce andNewD s --AND

else dAce orNewD s -- OR

vhere fb = bool2Word $ isLong inst

addAR = getContentOfMemRefA inst s

andNewD = ace s . & • add.AR

orNewD = aces .1. addAR

semantics_ EOR inst s =
d!R (l+fb) $ if dbit inst = Zero

then dAce xorNewD s -- XOR

else s

vhere fb = bool2Word $ isLong inst

addAR = getContentOfMemRefA inst s

xorNewD = ace s 'xor' addAR

196 C. Emulator

semantics_ SFT inst s =

diR 1 $ case dbit inst of

Zero 1 case o8to9 inst of -- SHIFT LEFT
Sa 1 s {ace = sltNewA, carry = cfLA}
Saq 1 s {ace= (returnA sltNewAQ),

q = (returnQ sltNewAQ),

carry = cfLAQ}

Sea 1 s {ace = newA,

carry = if newX + 0 then One

else Zero}

Scaq 1 s {ace = (returnA newA1),

q = (returnQ newA1),
carry = if newX1 + 0 then One

else Zero}
One 1 case o8to9 inst of -SHIFT RIGHT

Sa 1 s {ace = srtNewA, carry = cfRA}

Saq 1 s {ace= (returnA srtNewAQ),

Sea 1 s

q = (returnQ srtNewAQ),

carry = cfRAQ}

Seaq 1 s {ace= (returnA newA2),

q (returnQ newA2),

carry = if newX2 + 0 then One

else Zero}

where x = sCount inst s

aq = mergeAQ s

sltNewA = shiftL (ace s) x

srtNewA = shiftR (ace s) x

sltNewAQ shiftL aq x
srtNewAQ shiftR aq x

(newA,newX) = repeatShift16 (ace s) x shiftL-- shift left Sea

(newA1,newX1) = repeatShift32 aq x rotateL-- shift left Scaq

(newA2,newX2) = repeatShift32 aq x rotateR-- rotate right Scaq

C. Emulator

cfLA =
cfRA

cfLAQ =
cfRAQ =

if (testBit

if (testBit

if (testBit

if (testBit

(ace s) (16-x)) then One else Zero
(ace s) (x-1)) then One else Zero

aq (16-x)) then One else Zero

aq (x-1)) then One else Zero

semantics_ BRANCH inst s =
if dbit inst = Zero -- BSI

then if isLong inst
then changeiRinBr (retCondLong inst) s

else deliR (addL+2) $ s {mem = vriteMem (mem s)

(dispL+1) $ 1+ir s}

else if isLong inst -- BRANCH/SKIP

then changeiRinBr (retCondLong inst) s

else changeiRinBr (retCondShort inst) s

vhere addL = getMemRefA inst s

semantics_ MDX inst s =
if isLong inst --MDX

then if tag inst = XRO

then diR (2+conAdd) $ s {mem = (writeMem (mem s)
(address inst) cMemNew)}

else diR (2+condAdd) $ dXR (tag inst) cXRNew s

else if tag inst = I
then s {ir = (fromintegral $ (ir s) +

(fromintegral $ addL::Word16) + 1)}

else diR (1+condAdd) $ dXR (tag inst) cXRNew s

vhere addL = fromintegral $ locBS inst Fa~se s:: Int16

cMemOld (fromlntegral $ getMem (mem s)
$ address inst: : Int16)

cMemNew = fromintegral $ cMemOld + addL::Word16

conAdd = retDispAdd (cMemOld+addL) cMemOld

-- This one is specifically for F = 1 Tag = 00 IA = X

cXROld = fromintegral $ (reg1 inst s):: Int16

cXRNew = fromintegral $ cXROld + addL::Word16

197

198

condAdd = retDispAdd (cXROld+addL) cXROld

--This one is for F = 0/1 Tag/= 00

semantics_ CMP inst s =
diR (if dbit inst = Zero

then compA (fromlntegral $aces:: Int16)
addCompC --COMPARE

else compAQ aq (mergeMem s addComp)) s

-- DOUBLE COMPARE

vhere addComp = getMemRefA inst s

C. Emulator

addCompC = fromlntegral $ getContentOfMemRefA inst s:: Int16

aq = mergeAQ s

semantics_ _ _ s = s

C.3 Other Modules

The other modules of the emulator, Mem.lhs and Meminit.lhs (See Section 6.3), are

already included in the thesis.

Appendix D

One Step Symbolic Emulator

Here we include the implementation of one step symbolic emulator. This is a direct

translation of the abstract model of instructions in Appendix A.

D.l OneStep

Here we implement semantic definition of all the instructions. All the implementations

of instructions use the same model used in the Emulator part.

module OneStep (sSemantics_)

vhere

import OpCod.e (Op(. .) , Tag(. .) , Address)

import Instruction (dbit, tag, Bit(..),

isLong, address, indAdd, disp, Instruction)

import IBM1800 (SftTag(..), o8to9, retCondLong, retCondShort)

import SymboLic

import Data. Word (WordB, Word16)

import Data. Int (Int16)

import Data.Bits ((.&.))

sSemantics_ takes an opcode and an instruction as input and finds the symbolic

interpretation of the functions of that instruction as Func and the condition associated

with that instruction as ConclFunc.

199

200 D. One Step Symbolic Emulator

The model of the operational semantics of instructions is described in Appendix

A.

sSemantics_ :: op ~Instruction~ [(CondFunc,[Func])]

sSemantics LD inst =
[(Tru, (dAssignSC16 Ace memRefA)

if dbit inst = Zero

then [] -- LOAD

else [dAssignSC16 Q memRefQ]) J -- DOUBLE LOAD

vhere memRefA = dMemRefA inst

memRefQ = dMemRefQ inst

sSemantics_ ST inst =

[(Tru, (dAssignMem16 memRefA Ace)

if dbit inst = Zero

then [] - STORE

else [dAssignMem16 memRefQ Q]) J - DOUBLE STORE

vhere memRefA = dMemRefA inst

memRefQ = dMemRefQ inst

sSemantics_ LSX inst =

[(Tru,

if (dbi t inst = Zero)
then [dAssignX (regX inst) (addX inst)] --LOAD INDEX

else [dAssignMemX (regX inst) (stX inst)])] --STORE INDEX

sSemantics_ ADD inst =
[(Tru,

if (dbit inst = Zero)

then [dUpdateSC16 Ace Ada

VaU6{val161 = Ace, val162 = memRefA}]-- ADD

else [dUpdateSC32 AccQ Ada

Val32{va1321 = AccQ, va1322 = memRefA}])]-- DOUBLE ADD

vhere memRefA = dMemRefA inst

D. One Step Symbolic Emulator

sSemantics_ SUB inst =
[(Tru,

if (dbit inst = Zero)

then [dUpdateSC16 Ace Sub

VaU6{val161 = Ace, val162 = memRefA}] --SUBTRACT

else [dUpdateSC32 AccQ Sub

201

Val3.2{val321 = AccQ, val322 = memRefA}])]-- DOUBLE SUBTRACT

vhere memRefA = dMemRefA inst

In Multiplication, although the operands are word16 but for the update operation,

we have to use dUpdateSC32 as we have to update ACCQ. So for consistency, we use

Val32 instead of Vall6.

Same thing happens for the division operation, although the first operand in the

division operation is word32 but the value to be updated is wordl6. So we used

dUpdateSC16 and Val16 is used instead of Val32.

sSemantics_ MD inst =
[(Tru,

if (dbit inst = Zero)

then [dUpdateSC32 AccQ Mul

Val3.2{va1321 = Ace, val322 = memRefA}] --MULTIPLICATION

else [(dUpdateSC16 Ace Div
VaU6{val161 = AccQ,val162 = memRefA}) --DIVISION

,(dUpdateSC16 Q Moa Val16{val161 = AccQ,

vhere memRefA = dMemRefA inst

sSemantics_ AR inst =
[(Tru,

if (dbit inst = Zero)
then [dUpdateSC16 Ace Ana

va1162 = memRefA})])]

VaU6{val161 = Ace, val162 = memRefA}] --AND

else [dUpdateSC16 Ace Or
VaU6{val161 = Acc,val162 = memRefA}])]-- OR

vhere memRefA = dMemRefA inst

202 D. One Step Symbolic Emulator

sSemantics_ EOR inst =
[(Tru,

if (dbit inst = Zero)

then [dUpdateSC16 Ace Xor

VaU6{val161 = Ace, val162 = memRefA}]-- XOR

else [])] -- TODO

vhere memRefA = dMemRefA inst

sSemantics_ SFT inst =

[(Tru,

if (dbit inst = Zero)

then case o8to9 inst of -- SHIFT LEFT

Sa -+ [dUpdateAS ShZ x]
Saq -+ [dUpdateAQS Sh Z x]

Sea -+ []

Seaq -+ []

else case o8to9 inst of -- SHIFT RIGHT

Sa -+ [dUpdateAS Shr x]

Saq -+ [dUpdateAQS Shr x]
Sea -+ []

Seaq -+ [])]

vhere x = fromlntegral $ (fromlntegral

sSemantics_ BRANCH inst

if (dbit inst = One)

$ (disp inst)::Word8) .&. Ox3F

then deltaiRS $ retCondOpSm

$ if isLong inst - SKIP /BSC /BOSC

then retCondLong inst

else retCondShort inst

else if isLong inst -- BSI

then deltaiRBsi $ retCondOpSm $ retCondLong inst
else [(Tru,(dAssignMemX I memRefA): [])]

vhere memRefA = dMemRefA inst

D. One Step Symbolic Emulator

deltaiRS condt =

if condt 'elem' [Phntl, Phnte]

then [(Tru, [])]

else ((dUpdateCond Ace condt True),[]):

[((dUpdateCond Ace condt False),[])]

deltaiRBsi condt =

if condt = Phn tl
then [(Tru, (dAssignMemX I memRefA) : [])]

else if condt = Phnte
then [(Tru, [])]

else ((dUpdateCond Ace condt True),

(dAssignMemX I memRefA):[]):

[((dUpdateCond Ace condt False),[])]

sSemantics_ MDX inst =

if isLong inst -- MDX

then if tag inst = XRO

203

then ((dCondDispAddM (CConst {valCC = address inst})

(Const{valC = fromlntegral $ disp inst}) True)

,[dCondDisp (CConst {valCC =address inst})

(Const{valC = fromlntegral $ disp inst})])

:[((dCondDispAddM (CConst {valCC =address inst})

(Const{valC = fromlntegral $ disp inst}) False)

,[dCondDisp (CConst {valCC =address inst })

(Const{valC = fromlntegral $ disp inst})])]

else ((dCondDispAddT (tag inst) dXMem True)

,[dUpdateX (tag inst) dXMem])
:[((dCondDispAddT (tag inst) dXMem False)

,[dUpdateX (tag inst) dXMem])]

else if tag inst = I
then [(Tru, [])]
else ((dCondDispAddT (tag inst) dXMem True)

,[dUpdateX (tag inst)
(Const{valC = fromlntegral $ disp inst::Int16})])

204 D. One Step Symbolic Emulator

:[((dCondDispAddT (tag inst) dXMem Fa~se)

,[dUpdateX (tag inst)

(Const{valC = fromintegral $ disp inst::Int16})])]

vhere dXMem = mdxMemRef inst

sSemantics_ CMP inst =
if (dbit inst = Zero)
then (UpdateComp Ace EqO memRefA,

(UpdateComp Ace LtO memRefA,

--COMPARE
[])

[])

[(UpdateComp Ace GrO memRefA, [])]

else (UpdateComp AccQ EqO memRefA, [])
(UpdateComp AccQ LtO memRefA, [])

[(UpdateComp AccQ GrO memRefA, [])] --DOUBLE COMPARE

vhere memRefA = dMemRefA inst

These are different helping functions used to assign values (symbolic) to different

data types declared for the functions of the IBM-1800 instructions.

dAssignSC16 StateComp ~ MemRef ~ Func

dAssignSC16 sc v = AssignSC16 {scA16 = sc,
va1AS16 = v}

dUpdateSC16 StateComp ~ Operator ~ Va~ ~ Func

dUpdateSC16 sc op v = UpdateSC16 {scU16 = sc,

op16 = op, va1US16 = v }

dAssignMem16 MemRef ~ StateComp ~ Func

dAssignMem16 v sc = AssignMem16 {locA16 = v, va1A16 = sc}

dUpdateSC32 StateComp ~ Operator ~ Val ~ Func

dUpdateSC32 sc op v = UpdateSC32 {scU32 = sc,

op32 = op, va1US32 = v }

dAssignX Tag ~ MemRef ~ Func

D. One Step Symbolic Emulator 205

dAssignX t v = AssignX {conX = t, valX v}

dUpdateX : : Tag -+ MemRef -+ Func

dUpdateX t v = UpdateX {conUX = t, valUX = v}

dAssignMemX Tag -+ MemRef -+ Func

dAssignMemX t v = AssignMemX {valAX t, locAX v}

dUpdateAS :: Operator -+ Word8 -+ Func

dUpdateAS op t = UpdateAS {opS16 = op, valS16 t}

dUpdateAQS :: Operator -+ Word8 -+ Func

dUpdateAQS op t = UpdateAQS {opS32 = op, valS32 = t}

dUpdateCond :: StateComp -+ CondOpSm -+ Bool -+ CondFunc

dUpdateCond s op st = Condition {seC = s,
ope = op, stat = st}

These are used to a.ssign values to different CondFunc structures.

dCondDispAddT : : Tag -+ MemRef -+ Boo l -+ CondFunc

dCondDispAddT t v b = Cond.DispAddT {seer· = t,
valCT = v, sgT = b}

dCondDispAddM MemRef -+ MemRef -+ Boo l -+ CondFunc

dCondDispAddM c v b = Cond.DispAddM {locCM = c,
valCM = v, sgM = b}

dCondDisp : : MemRef -+ MemRef -+ Func

dCondDisp c v = Cond.Disp {valD1 = c, valD2 = v}

Small helper functions to assign values to different types of memory references

depending on the instruction fields.

qa :: Bit -+ Tag -+ Instruction -+ Address -+ MemRef

206 D. One Step Symbolic Emulator

qa One s i o Indirect { reg = s, addr = address i + o }

qa Zero s i o = Direct { reg = s, addr = address i + o }

qbr :: Bit -+ Tag -+ Instruction -+ Word16 -+ MemRef

qbr One s i o BrDirect{reg s, addr = address i, offBD = o}
qbr Zero s i o = BrConst {reg s, addrBr = address i +

fromlntegral o}

Here we assign values to memory references depending on the instruction.

dMemRef :: Int-+ Instruction-+ MemRef

dMemRef offset inst = if isLong inst

then qa (indAdd inst) (tag inst) inst (fromlntegral offset)
else Dispmnt { reg = tag inst,

addrC = disp inst + fromlntegral offset}

brMemRef :: Int -+ Instruction -+ MemRef

brMemRef offset inst = if isLong inst

then qbr (indAdd inst) (tag inst) inst (fromlntegral offset)

else BrConst{reg = tag inst,

mdxMemRef

addrBr = (fromlntegral $ disp inst::Word16)
+ fromlntegral offset}

Instruction -+ MemRef

mdxMemRef inst = if isLong inst

then if indAdd inst = One

then CConst{valCC = address inst}

else Const{valC =
fromlntegral $address inst:: Int16}

else Const{valC = fromlntegral
$ disp inst::Int16}

dMemRefA, dMemRefQ, brMemRefA, brMemRefQ :: Instruction-+ MemRef

dMemRefA = dMemRef 0

D. One Step Symbolic Emulator

dMemRefQ = dMemRef 1

brMemRefA = brMemRef 0

brMemRefQ = brMemRef 1

207

Special functions for the LOAD and STORE index instructions. The purpose of

those functions are illustrated in the reference Manual page 2/70 3-10, 3-11 [IBM70].

regX : : Instruction -+ Tag

regX inst = if tag inst - XRO then I
else tag inst

addX : : Instruction -+ MemRef -- Reference Manual page 2/70 3-10

addX inst = if isLong inst

then if indAdd inst = One
then CConst {valCC = address inst}

else Const {valC = fromlntegral

$address inst::Int16}

else Const {valC = (fromlntegral

$ disp inst::Int16)}

stX Instruction -+ MemRef --Reference Manual page 2/70 3-11

stX inst = if isLong inst

D.2

then if indAdd inst = One
then Indirect {reg = XRO,

addr = address inst}

else CConst {valCC = address inst}

else Dispmnt{reg = I , addrC = disp inst}

Other Modules

The only other module to generate one step symbolic interpretation of the instructions

is Symbolic.lhs (See Section 7.2) which is already included in the thesis.

Appendix E

Marked-up Control Flow Graph

Generator

This appendix includes all the modules to generate the Marked-up Control Flow

Graph.

E.l Gxl2MyGraph

This is the main module to generate the internal data structure of Control Flow

Graph with all of its edges annotated.

This module takes a GXL graph and makes an internal data structure represen

tation of that GXL graph. This GXL graph is the control flow graph of an IBM-1800

assembler code segment. In the internal data structure of the graph we maintain only

those information needed to generate the symbolic interpretation of the code segment

related to the GXL graph.

module Main where

import qualified Gxl

import Text .XML.HaXml.Xml2Haskell

import System (getArgs)

import MyGraph

import Data.List

208

E. Marked-up Control Flow Graph Generator 209

import ControLHonad..Error

import IO

The main function of the program takes (possibly) two arguments: There are

one GXL file that is the Control Flow subgraph, and by reading it we make the our

internal representation of the subgraph.

main = (do

[infile, outfile] e getArgs
putStrLn ("Reading from "++infile)

value e fReadXml infile :: IO Gx~.Gx~

putStrLn ("Writing to "++outfile)

let sval =length$ takeWhile (~ '.') infile

putStrLn (show sval)

if (outfile = "-")
then putStr $ show $ doAnnotation

$ gxlToMyGraph value (sval+l)

else do writeFile outfile $ show

$ doAnnotation $ gxlToMyGraph value (sval+l)

putStrLn "Done."

) 'catchError' usage

usage : : IOError -+ IO 0
usage e = do

putStrLn "Usage: Gxl2MyGraph [input.gxl] [output]"

E.2 Other Modules

The other modules to produce the marked-up CFG, HyGraph.lhs (See Section 8.2.1),

OneStep.lhs (See Appendix D), are added previously in the thesis.

Appendix F

Data Flow Equations Generator

Here we include the implementation of Data Flow Equations (DFE) generator.

F.l Graph2Expr

This tool is used to find the symbolic interpretation of a given code segment i.e. for

each instruction in the code it produces one or more equivalent symbolic statements

which represent the semantics of the program.

module Main vhere

import qualified GxL

import Text.XML.HaXmL.XmL2HaskeLL

import System (getArgs)
import MyGraph (gxlToMyGraph)

import Exp (Stmt, ConditionStmt)

import FindExpr (findAnntOfGraph)
import ControL Monad. Error

import IO

The main function of the program takes three arguments: They are one GXL file

that is the Control Flow subgraph (of the code segment), start node, and the output

file to be generated. By reading the GXL file, we make the our internal representation

210

F. Data Flow Equations Generator 211

of the subgraph and then find the symbolic interpretation of the code in the output

file.

main = (do

usage

[infile, st, outfile] e getArgs

putStrLn ("Reading from "++infile)

value e fReadXml infile :: IO Gxl.Gxl
putStrLn ("Writing to "++outfile)

let sv =length$ takeWhile (¢ '.') infile

putStrLn (show sv)

if (outfile = "-")
then putStr $ show $ exprTuplePrint

$ findAnntOfGraph (gxlToMyGraph value (sv+l)) st

else do writeFile outfile $ show

$ exprTuplePrint $ findAnntOfGraph

putStrLn "Done."

) 'catchError' usage

IOError -+ IO ()

(gxlToMyGraph value (sv+l)) st

usage e = do

putStrLn "Usage: Graph2Expr [input.gxl] start [output]"

These functions are used for pretty printing. They just separate different outputs

and print them in a nice manner.

exprTuplePrint :: [[([ConditionStmt],[Stmt])]] -+ [String]

exprTuplePrint = map tuplePrintl

tuplePrintl [([ConditionStmt], [Stmt])]-+ String

tuplePrintl = (concat·(map tuplePrintO))

tuplePrintO (pCond,exec) =
II PathCondition: " ++ show pCond ++
II Instruction Execution: " ++ show exec

212 F. Data Flow Equations Generator

F .2 FindJ oin

Although the name suggests only to find "join", this module has some functions to

find the "split" and "join" node of the two paths of branching structure. The meaning

of "split" and "join" node are defined in Find.Expr module.

module FindJoin

(findSplitJoin, getCommonDiv

, findLoopPart

)

where

import MyGraph (MyGraph, MyNode)

import FindPath (PathType(..), Fina~Path, Path, nodesFromStart)

import Data.List (partition, n, (\\))
import Data.Maybe (fromJust, Maybe)

Without loss of generality, we can assume that the nodes of the paths before

the "split" node and the nodes after the "join" node (if any) are the same. So the

strategy to find the "split" is to compare the nodes of the paths from the starting

node of those paths and when different nodes are found in the paths, the node just

before the different nodes is the "split" node.

Similarly to find "join" node, we start with the rest of the paths after the "split"

node and compare the nodes of the paths to find one common node which will be the

"join" of the paths.

findSplitJoin finds the "split" and "join" of the two paths. It uses findSplit

to find the "split" node. Then it uses findJoin with the rest of the paths after the

"split" (we can get it from findSplit). In findJoin, it just compares the nodes in

one path with the node elements of other paths to find one common node, which will

be the "join" node of the paths.

findSplitJoin :: [Fina~Path] ~(Maybe MyNode, Maybe MyNode)

findSplitJoin fps = (splt, join)

where (ptl1,splt) = findSplit fps Nothing

·F. Data Flow Equations Generator 213

join = findJoin ptll (head ptll)

findSplit :: [FinalPath] ~Maybe MyNode ~ ([FinalPath], Maybe MyNode)

findSplit fps nds = if cond = True then findSplit fpsl ndsl

else (fps, nds)

vhere fsnd = (head·snd)

ndc = fsnd $ head fps

cond = and $ map (~ln ~ fsnd ln = ndc) fps

fpsl = map (~x ~ (fst x, (tail·snd) x)) fps

ndsl = Just ndc

findJoin [FinalPath] ~ FinalPath ~ Maybe MyNode

findJoin fps (_,[])=Nothing
findJoin fps fstp = if cond = True

then Just ndc

else findJoin fps (fst fstp, (tail·snd) fstp)

vhere ndc = (head·snd) fstp

cond = and $ map (~ln ~ ndc celemc (snd ln)) fps

As we mentioned in Find.Expr module, we have to divide the paths in the branch

ing structure into four different segments to find the symbolic expression of the code.

getCommonDi v is a helping function to divide the paths in segments using "split" and

"join" node with simple list functions like takeWhile and dropWhile and is used to

divide the paths in GSC structure.

Find.LoopPart also finds different segments of the paths in the Looping Code (LC)

structure and uses getLoopParts to find those segments.

type Split = MyNode
type Join = MyNode
type FirstComm = Path
type SecondComm = Path
type PtDiff = Path

type ComP = Path

214 F. Data Flow Equations Generator

type TermT = Path

type LoopX = [Path]

type LoopY = Path

type ComZ = Path

getCommonDiv :: [MyNode] ~ [MyNode] ~(Split, Join)

~ (FirstComm, PtDiff, PtDiff, SecondComm)

getCommonDiv pt1 pt2 (st, jn) = (fc, pd1, pd2, sc)

vhere fc = takeWhile (* st) pt1 ++ [st]

pd1 = dropWhile C* st) ((takeWhile C* jn) pt1) ++ [jn])

pd2 = dropWhile C* st) ((takeWhile (* jn) pt2) ++ [jn])

sc = dropWhile C* jn) pt1

getLoopParts :: [FinalPath] ~(Split, Join)

~ (ComP, TermT, LoopX, LoopY, ComZ)

getLoopParts fps (st, jn) = (cp++[st],tt, lx,ly,cz)

vhere cp = takeWhile C* st) $ (snd·head) fps

ppairs = partition (Ax ~ fst x = Term) fps

findTL = (dropWhile C*st))·snd
fpsT = map findTL (fst ppairs)
fpsL = map findTL (snd ppairs)

findLastC = (dropWhile C*jn))·head

cz = findLastC fpsT

findDiv = takeWhile (* jn)

fdT =map (++[jn]) $map findDiv fpsT

fdP =map (++[jn]) $map findDiv fpsL

lx = n fdT fdP

tt = concat $ lx \\ fdT
ly = findLastC fpsL

findLoopPart .. MyGraph ~ MyNode ~ (ComP, TermT, LoopX, LoopY, ComZ)

F. Data Flow Equations Generator

findLoopPart mg st =
if (sp + Nothing v jn + Nothing)

then getLoopParts paths (fromJust sp, fromJust jn)

else error "no join split"

vhere paths = nodesFromStart mg st

(sp,jn) = findSplitJoin paths

F.3 Other Modules

215

The other modules to generate data flow equations are Exp .lhs (See Section 8.4.1),

FindPath.lhs (See Section 8.5.1) and FindExpr.lhs (See Section 8.5.2) which are
already included in the thesis.

Appendix G

Data Flow Graph Generator

Here we include the implementation of Data Flow Graph generator.

G.l DFDGxl

The main module is called DFDGxl.

This tool converts Data Flow Equations for an assembler code to a GXL file of

Data Flow Graph (DFG). Before creating the GXL representation of the DFG, we

create our own internal DFG which is converted to GXL file for exchanging with next

standard tools like gxl2dot and dot.

module Main where

import qualified Gxl
import GxWraph (makeGxl, makeGraph, addOrdAttr, GxlGxl, GxWra.ph)

import MyGra.ph (gxlToMyGraph)

import FindExpr (findAnntOfGraph)

import Exp (Stmt, ConditionStmt)
import Dfe2Dfg (dfdGraphToGxlGraph)

import Text.XML.Ha.Xml.Xml2Ha.skell (fReadXml, fWriteXml)

import System (getArgs)

import Observe

main = do [infile, start, outfile] e getArgs

216

G. Data Flow Graph Generator

value e fReadXml infile :: IO Gxl.Gxl

let name= takeWhile ('.' *) infile
let gxl = dfeToGxl name $ findAnntOfGraph

(gxlToMyGraph value ((length name)+l)) start
fWriteXml outfile gxl
putStrLn "Done."

Here we convert the graph file into the GXL graph.

dfeToGxl :: String~ [[([ConditionStmt], [Stmt])]] ~ GxlGxl

dfeToGxl name cstmts = makeGxl $ dfeToGraph name cstmts

217

Converting Data Flow Equations to a graph file involves making a graph

which has default edgeid and hypergraph attributes and edges are directed.
dfdGraphToGxlGraph generates the GXL file from the DFG internal data structure
and then adds a graph attribute (in) to keep the original order of the operand nodes
i.e. order of expressions in the instructions.

dfeToGraph:: String~ [[([ConditionStmt], [Stmt])]] ~ GxlGraph

dfeToGraph name cstmts = addOrdAttr "in" $ dfdGraphToGxlGraph

(makeGraph name) name cstmts

G.2 Dfe2DfgCommon

This module contains some helper functions which are straight forward. It also in
cludes all the functions to convert the DFG into GXL format.

module Dfe2DfgConunon
(makeld, opnodeToid, optnodeToid, inEdgeToids, pairsToGxlEdges

, makeOpnOptPairs, outEdgeToGxlEdges, idToGxlEdge, idToGxlNode
, stringToNodeAttrs, condToNodes, makeBlankPairs, addToNodeMap
, conv2Expr

)

vhere

218 G. Data Flow Graph Generator

import MyPreLude (snd3)

import GxLGraph (GxLNode, GxLEdge, Nodeid, makeNode,

makeEdge, makeNodeid,

makeStringAttr, addNodeAttrib, addEdgeAttrib)
import Data.FiniteMap (addToFM)

import Stack

import Exp

import Dfg

Helper functions for removing redundant codes.

labelAndNode name e ci opnd s = (e, makeid (name ++ ci) opnd, s)

makeid name x = makeNodeid name $ show x

optToid name optn = snd3 $ optnodeToid name optn

opdToid name opdn = snd3 $ opnodeToid name opdn

opnodeToid creates the label, Nodeid and the shape for each Operand.Node.

opnodeToid :: String~ OperandNode ~(String, Nodeid, String)

opnodeToid name (opnd~(ExpressionNode e~(SignBit t) ci)) =
labelAndNode name (shou e++show ci) (show ci) opnd "ellipse"

opnodeToid name (opnd~(ExpressionNode e ci)) =
labelAndNode name (show e) (show ci) opnd "ellipse"

optnodeToid creates the label, Nodeid and the shape for each OperatorNode.

optnodeToid :: String~ OperatorNode ~(String, Nodeid, String)

optnodeToid name (optr~(Unary tc i))
= labelAndNode name (show tc) (show i) optr "box"

optnodeToid name (optr~(Binary op i))

= labelAndNode name (show op) (show i) optr "box"

optnodeToid name (optr~(ConditionVaL cf i))

= labelAndNode name (show cf) (show i) optr "diamond"

G. Data Flow Graph Generator

optnodeTo!d name (optr~(Join ci1 ci2))

= labelAndNode name "Join" (show ci1 ++ show ci2)

optr "doublecircle"

inEdgeTo!ds creates a list of Nodeid pairs for the InEdges.

inEdgeTo!ds :: String -+ [InEdges] -+ [(Nodeid, Nodeid)]

219

inEdgeTo!ds name ines = concat $map (makeOpnOptPairs name []) ines

pairsToGxlEdges creates GXL edges from pairs of Nodeids as source and desti

nation node.

pairsToGxlEdges :: [(Nodeid, Nodeid)]-+ [GxlEdge]

pairsToGxlEdges = map (uncurry makeEdge)

makeOpnoptPairs makes pairs of an OperandNode and its successor list of

OperatorNodes.

makeOpnOptPairs :: String-+ [(Nodeid, Nodeid)]

-+ InEdges -+ [(Nodeid, Nodeid)]

makeOpnOptPairs name opnds (opnd,[]) = opnds

makeOpnOptPairs name opnds (opnd,(optr:optrs))
= makeOpnOptPairs name (opnds++[(sn,fn)]) (opnd,optrs)

vhere sn = opdTo!d name opnd

fn = optTo!d name optr

OutEdgeToGxlEdges creates the GxlEdges for the OutEdges and uses

idToGxlEdge to make the GxlEdges.

outEdgeToGxlEdges :: String-+ [OutEdges] -+ [GxlEdge] -+ [GxlEdge]

outEdgeToGxlEdges name [] ndnds = ndnds
outEdgeToGxlEdges name ((ns,(OneEdge on)): ines) ndnds =

outEdgeToGxlEdges name ines (ndnds++[idToGxlEdge (sn, NC, fn)])

vhere sn = optTo!d name ns

fn = opdTo!d name on

outEdgeToGxlEdges name ((ns,(TWoEdge (nc1,on1)

220 G. Data Flow Graph Generator

(nc2,on2))): ines) ndnds =
outEdgeToGxlEdges name ines (ndnds++ (map idToGxlEdge

[(sn,nc1,fn1),(sn,nc2,fn2)]))

vhere sn = optToid name ns

fnl opdToid name onl

fn2 = opdToid name on2

outEdgeToGxlEdges name ((ns,(ThreeEdge (nc1,on1)

(nc2,on2) (nc3,on3))): ines) ndnds =
outEdgeToGxlEdges name ines (ndnds++(map idToGxlEdge

[(sn, ncl, fnl),(sn, nc2, fn2),(sn, nc3, fn3)]))

vhere sn = optToid name ns

fnl = opdToid name onl

fn2 = opdToid name on2

fn3 = opdToid name on3

idToGxlEdge creates GXL edge from triples of source and destination Nodeids
and Cond which are created from OutEdges.

idToGxlEdge :: (Nodeid, Cond, Nodeid) ~ GXtEdge

idToGxlEdge (ndl, cd, nd2) = addEdgeAttrib eattr (makeEdge ndl nd2)
vhere eattr = makeStringAttr "label" (shov cd)

This function makes a GXL node and also add its name and shape attributes.

idToGxlNode :: (String, Nodeid, String)~ GxtNode

idToGxlNode (name, nodeName, shape)

= stringToNodeAttrs "shape" shape node
vhere node = stringToNodeAttrs "label" name

$ makeNode nodeName

This Function adds the name attribute of the node.

stringToNodeAttrs String ~ String ~ GxtNode ~ GxtNode

stringToNodeAttrs nm v = addNodeAttrib (makeStringAttr nm v)

condToNodes is used to create the condition nodes.

G. Data Flow Graph Generator

eondToNodes :: ConditionStmt ~ Int ~ operatorNode

eondToNodes (Check (bre,ed)) i = ConditionVat bre i

221

makeBlankPairs adds the output OperandNodes of one instruction in the

DfdGraph with their successor list empty.

makeBlankPairs :: [OperandNode] ~ DfdGraph ~ DfdGraph

makeBlankPairs [] dfgl = dfgl

makeBlankPairs (opnd:opnds) dfg1~(DfdGraph fmo fme)

= makeBlankPairs opnds (DfdGraph nfmo fme)

vhere nfmo = addToFM fmo opnd []

addToNodeMap adds a list of OperandNodes in the NodeMap.

addToNodeMap : : NodeMap ~ [OperandNode] ~ NodeMap

addToNodeMap nMap [] = nMap

addToNodeMap nMap (opnd~(ExpressionNode e ei): opnds) =
addToNodeMap (addEntry nMap (e,opnd)) opnds

eonv2Expr does an important conversion from StateRef to OperandNode. When

we are adding output entries to the NodeMap, all of the output entries in the state

ments are StateRefs. Whereas when we are looking up for entries in the NodeMap,

OperandNode entries are being looked up. This function converts StateRef to

OperandNode which contains BasicExp entries so that they can be added in the

NodeMap for lookup.

eonv2Expr :: StateRef ~ Int ~ operand.Node

conv2Expr (SC sc) i = ExpressionNode (Variabte se) i

eonv2Expr (SCX sex) i = ExpressionNode (VariabteX sex) i

eonv2Expr (Mem mr) i = ExpressionNode (MemoryConstant mr) i

G.3 Other Modules

The other modules to generate data flow equations are Dfg.lhs (See Section 9.3),

Dfe2Dfg.lhs (See Section 9.4) and GarbageCottect.lhs (See Section 9.5) which

are already included in the thesis.

Appendix H

DFE Solver

Here we include the implementation of Data Flow Equation solver.

H.l FindPathAnt

The main module is called FindPathAnt.

This tool is used to find the symbolic interpretation of a given code segment i.e.

the solution of the functional expressions of inputs and outputs. It also finds the

execution sequence and system of equations of the given code segment. We take the

Control Flow Graph of that code as input.

module Main vhere

import qualified GxL

import Text.XML.HaXml.XmL2HaskeH

import System (getArgs)

import MyGraph

import SoLveExpr (Input, Output, dividePathCondSym)

import Exp

import Data.List (intersperse)

import Control. Monad.. Error

import IO

222

H. DFE Solver 223

The main function of the program takes three arguments: They are one GXL file

that is the Control Flow subgraph (of the code segment), start node, and the output

file to be generated. By reading the GXL file, we make the our internal representation

of the subgraph and then find the symbolic interpretation of the code in the output

file.

main (do

usage

[infile, start, outfile] E getArgs
putStrLn ("Reading from "++infile)

value E fReadXml infile :: IO Gxl.Gxl
putStrLn ("Writing to "++outfile)

let sval =length$ takeWhile C* '.') infile
putStrLn (show sval)

if (outfile = "-")
then putStr $ show $ prtyPrint value start sval

else do writeFile outfile $ show
$ prtyPrint value start sval

putStrLn "Done."

) 'catchError' usage

IOError -+ IO ()

usage e = do

putStrLn "Usage: FindPathAnt [input.gxl] start [output]"

These functions are used for pretty printing. They just separate different outputs

and print them in a nice manner.

prtyPrint :: Gxl. Gxl -+ String -+ Int -+ [String]

prtyPrint value st sv = tuplePrint tupleList

where tupleList = dividePathCondSym (gxlToMyGraph value (sv+1)) st

tuplePrint :: (ConditionStmt,[Recur_Stmt],Input,Output,[Recur_Stmt])
-+ [String]

tuplePrint (pCond,exec,input,output,systEq) =

224

H.2

intersperse " " (

"PathCondition:" : show pCond :

"Instruction Execution:" : show exec
"Input:" : show input :

"Output:" : show output

"System Of Equations: " :show systEq : [])

Other Modules

H. DFE Solver

The only other module to solve data flow equations is So LveExpr .lhs (See Section

10.2) which is already included in the thesis.

Bibliography

[ASU86]

[CC88]

[CG03]

Alfred V. Aho, Ravi Sheti, and Jeffery D. Ullman. Compilers: Principles,

Techniques and Tools. Addison Wesley, 1986.

D. L. Clutterbuck and B. A. Carre. The verification of low-level code.

Software Engineering Journal, 3{3):97-111, May 1988.

Dina Mandrioli Carlo Ghezzi, Mehedi Jazayeri. Fundamentals of Software

Engineering. Prentice Hall, 2nd edition, 2003.

[CKK+o4] J. Carette, W. Kahl, R. Khedri, M. Lawford, K. Sartipi, and A. Wassyng.

Procedure for reverse engineering of high-level requirements from assem

bly code. Technical Report Revision-0, Reverse Engineering Project,

Dept. of CAS, McMaster University, July 2004.

[DMW05] lvo Diintsch, Wendy MacCaullj and Michael Winter, editors. 8th Interna

tional Conference on Relational Methods in Computer Science (RelMiCS

8} and 3rd International Workshop on Applications of Kleene Algebra,

St. Catherines, Ontario, Canada, Feb. 22-26 2005, 2005. (participants'

proceedings, to appear).

[Eve04]

[FF95]

Kevin Everets. Assembly language representation and graph generation

in a pure functional programming language. Master's thesis, Dept. of

Computing and Software, McMaster University, December 2004.

Y.A. Feldman and D. A. Friedman. Portability by automatic transla

tion; a large scale case study. In Proc. 10th Knowledge-Based Software

Engineering Conference, 1995.

225

226

[FS03]

[Has]

[How05]

[Hug90]

[IBM70]

BIBLIOGRAPHY

Thomas Fahringer and Bernhard Scholz. Advanced Symbolic Analysis

for Compilers: New Techniques and Algorithms for Symbolic Program

Analysis and Optimization, volume 2628 of Lecture Notes in Computer

Science. Springer, 2003. DBLP, http:/ /dblp.uni-trier.de.

The Haskell Home Page.

http:/ /www.haskell.orgj.

Electronically available at

D. Howe, editor. The Free On-line Dictionary of Computing. June 2005.

Electronically available at http:/ /wombat.doc.ic.ac.ukj.

John Hughes. Why Functional Programming Matters, In D. Turner,

Editor, Research Topics in Functional Programming. Addison Wesley,

1990.

IBM Field Engineering Theory of Operation, 1800 Data Acquisition and

Control System, Processor-Controller. IBM Systems Development Divi

sion, Product Publications, Department G24, San Jose, California 95114,

1970.

[KAC04] Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette. Choices

in data flow for declarative assembly. In Diintsch et al. [DMW05]. (par

ticipants' proceedings, to appear).

[K.H95]

[Knu84]

[LB96]

[MF96]

K.H.Bennett. Legacy systems: Coping with success. In IEEE Software,

volume 12, No. 1, pages 19-23, January 1995.

Donald E. Knuth. Literate Programming, volume 27(2), pages 97-111.

The Computer Journal, 1984.

Tom Lake and Tim Blanchard. Reverse engineering of assembler pro

grams: A model-based approach and its logical basis. In Proceedings of

the 3rd Working Conference on Reverse Engineering (WCRE'96}. IEEE

Computer Society, 1996.

P. Morris and R. Filman. Mandrake: A tool for reverse-engineering ibm

assembly code. In Proceedings of the 3rd Working Conference on Reverse

Engineering (WCRE'96}, pages 58-65, November 1996.

BIBLIOGRAPHY 227

[MGH+01] Michael B. Monagan, Keith 0. Geddes, K. Michael Heal, George Labahn,

Stefan M. Vorkoetter, James McCarron, and Paul DeMarco. Maple 7

Programming Guide. Waterloo Maple Inc., 2001.

[NN99] Hanne Riis Nielson and Flemming Nielson. Semantics With Applications:

A Formal Introduction. John Wiley and Sons, July 1999.

[OCF+88] I. M. O'Neill, D. L. Clutterbuck, P. F. Farrow, P. G. Summers, and

W. C. Dolman. The formal verification of safety-critical assembly code.

In W. D. Ehrenberger, editor, Safety of Computer Control Systems 1988,

pages 115-120. International Federation of Automatic Control, Pergamon

Press, November 1988.

[OSRSC01] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS

System Guide, Language Reference and Prover Guide. Computer Science

Laboratory, SRI International, Menlo Park, CA, November 2001.

[Pro05]

[RPK96]

[Tur37]

[WarOO]

[WF03]

Program- Transformation. Org. June 2005. Electronically available at

http://www. program-transformation.org.

S. N. Roberts, R. L. Piazza, and D. G. Katz. A portable assembler re

verse engineering environment (PARE). In Proceedings of the 3rd Work

ing Conference on Reverse Engineerj,ng (WCRE'96). IEEE Computer

Society, 1996.

A.M. Turing. On computable numbers, with an application to the

entscheidungsproblem. In Proceedings of the London Mathematical Soci

ety, volume Series 2, 42, pages 23G-265, (1936-37). Electronically avail

able at http:/ jwww.abelard.org/turpap2/tp2-ie.asp.

Martin Ward. Reverse engineering from assembler to formal specifications

via program transformations. In Proceedings of the Seventh Working

Conference on Reverse Engineering (WCRE'OO}, NOV 2000.

Geoffrey Watson and Colin Fidge. Modelling assembler programs with

an application to compilation. Technical Report 03-GW-1, Software Ver

ification Research Centre, The University of Queensland, July 2003.

228

[Wic05]

[WinO I]

[Wu04]

BIBLIOGRAPHY

Wikipedia, The Free Encyclopedia. June 2005. Electronically available at

http:/ jen.wikipedia.org.

Andreas Winter. Exchanging graphs with GXL. Technical Report 9-2001,

Universitat Koblenz-Landau, Institut fiir Informatik, Rheinau l,Koblenz,

2001. D-56075.

Jun Wu. Formalization of GXL in Z notation. Master's thesis, Dept. of

Computing and Software, McMaster University, 2004.

2360 10

