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Abstract

The r-out-of-n F-system and load-sharing system are very common in industrial

engineering. Statistical inference has been developed here for an equal-load sharing

r-out-of-n F-system on Birnbaum-Sauders (BS) lifetime distribution. A simulation

study is carried out with different parameter values and different censoring rates in

order to examine the performance of the proposed estimation method. Moreover, to

find maximum likelihood estimates numerically, three methods of finding initial val-

ues for the parameters - pseudo complete sample method, Type-II modified moment

estimators of BS distribution method and stochastic approximation method - are de-

veloped. These three methods are then compared based on the number of iterations

and simulation time. Two real data sets and one simulated data set are used for il-

lustrative purposes. Finally, some concluding comments are made including possible

future directions for investigation.
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Chapter 1

Introduction

1.1 Background

A system is called an r-out-of-n F-system if the system fails when at least r compo-

nents have failed. An r-out-of-n F-system was first applied in military and industrial

engineering. Since then, it has found other applications, such as the multiengine sys-

tem in a car, the multicylinder system in a power system, and the multipump system

in a hydraulic control system. Now, it is widely used in software engineering and

electrical engineering as well. The simplest cases are the one-out-of-n F-system and

n-out-of-n F-system. A one-out-of-n F-system is equivalent to a series system, which

fails if any one of the components fails. On the other hand, an n-out-of-n F-system

is equivalent to a parallel system with n components, which functions as long as any

one of the components function.

Of particular interest is a system wherein the reliability structure changes as com-

ponents fail. For instance, in an equal load-sharing system, if one component fails,

1
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the load is equally redistributed to all surviving components. The load sharing sys-

tem is commonly encountered in applications. For example, current load sharing in

DC-DC converters in power engineering and wood load sharing in civil engineering

are both common examples. Many inferential methods have been developed for load

sharing systems based on different distributions. Kim and Kvam (2004) considered

load-sharing systems in which the failure rate of a given component depends on the set

of working components at any given time. They applied such systems in biostatistics.

Also, they assumed the load share rule to be unknown and derived methods for sta-

tistical inference on load-sharing parameters using maximum likelihood method. The

failure rate of components was observed in two cases, namely, the equal load sharing

system and the system in which the load for each working component increases by an

unknown rule when other components fail. They also discussed hypothesis tests for

these special load-sharing models. A general likelihood structure for reliability based

on load sharing has been developed by Park (2010), who derived the closed-form Max-

imum Likelihood Estimator (MLE) and Best Unbiased Estimator (BUE) when the

lifetime distribution is exponential. The author also discussed estimation of model

parameters when the lifetime distribution is Weibull. Park (2013) subsequently used

the Expectation-Maximization (EM) algorithm to obtain the MLEs for load sharing

systems when the lifetime distribution of components is lognormal or Normal. Nu-

merical examples illustrating the EM algorithm have also been presented.

For an equal load-sharing model in r-out-of-n systems, many inferential methods

have been discussed in the literature. Based on the definition of such a system, we

can only observe the first r failures, which means that the sample generated is a

Type-II censored data and thus could be modelled using sequential order statistics

2
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(SOS). Cramer and Kamps (1996) introduced SOS as a flexible model to describe

‘sequential r-out-of-n systems’ in which the failure of any component possibly influ-

ences other components such that their corresponding failure rate is adjusted with

respect to the number of preceding failures. They then discussed some properties

of the MLEs of the model parameters and several tests to verify the appropriate-

ness of this model. Moreover, they discussed the MLEs of model parameters when

the lifetime distributions are exponential and Weibull. Various estimators, including

the MLE, Minimum-Variance Unbiased Estimator (UMVUE) and Best Linear Unbi-

ased Estimator (BLUE) of the location and scale parameters, based on exponential

distribution have also been presented by Cramer and Kamps (2001). Furthermore,

BLUEs and best linear estimators based on generalized order statistics from Gener-

alized Pareto distribution have been derived by Burkschat (2010). Kvam and Pena

(2011) discussed a semiparametric estimator for the load-share parameters in an equal

load-share model based on r-out-of-n F-systems. The asymptotic limit process of the

estimator was shown to be a Gaussian process. These results are applicable in ma-

terials testing, software reliability, and power plant safety assessment. Balakrishnan

et al. (2011) derived the likelihood function based on SOS, and modelled the param-

eters of an equal load-sharing system by using different link functions in SOS models.

They further discussed the MLEs of these parameters based on a simple proportional

link function and a linear link function, and established some properties of the esti-

mators through analytical methods as well as Monte Carlo simulations. Balakrishnan

et al. (2015) discussed statistical inference for composite dynamic systems based on

a Burr Type-XII distribution. They assumed the lifetimes of components of a r-out-

of-n F-system to have a Burr Type-XII distribution with a new hazard rate model

3
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called power trend conditionally proportional hazard model (PTCPHM). Point esti-

mates and interval estimates of parameters based on Burr Type-XII distribution have

then been developed and the MLEs of the three parameters in PTCPHM have been

derived. They also carried out a hypothesis test to test if the baseline hazard rate

changes upon each component failure.

In this thesis, we consider a SOS model with a Birnbaum-Saunders distribution

as baseline for a r-out-of-n F-system. Using a link function to capture the increase

in stress on surviving components due to the load caused by failures, the maximum

likelihood estimation of model parameters is discussed here. Three different methods

are proposed to provide initial values for the parameters required for the Newton-

Raphson iterative process for determining the MLEs. An extensive Monte Carlo

simulation study proposed estimation method as well as to compare the three meth-

ods for providing initial values. Finally, some examples are presented to illustrate the

usefulness of the proposed model as well as the inferential results developed here.

4



Chapter 2

The Model

2.1 Birnbaum-Saunders Distribution

The Birnbaum-Saunders(BS) distribution was first derived by Birnbaum and Saun-

ders (1969a) as a model for fatigue studies. They proposed this lifetime distribution

with two parameters and then discussed some properties of this distribution. Subse-

quently, Birnbaum and Saunders (1969b) derived the MLEs of the parameters of this

distribution. The BS distribution is a positively skewed distribution and is useful for

analyzing lifetime data, and has been widely used in reliability analysis. Let us denote

the Birnbaum-Saunders distribution by BS (α, β), where α is the shape parameter

and β is the scale parameter. The probability density function (PDF), cumulative
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density function (CDF) and hazard rate function are, respectively, as follows:

f(x;α, β) =
1

2
√

2παβ

[(
β

x

) 1
2

+

(
β

x

) 3
2

]
exp

[
− 1

2α2

(
x

β
+
β

x
− 2

)]
, (2.1)

F (x;α, β) = Φ

[
1

α

{(
x

β

) 1
2

−
(
β

x

) 1
2

}]
, (2.2)

and h(x;α, β) =

1
2
√
2παβ

[(
β
x

) 1
2 +

(
β
x

) 3
2

]
exp

[
− 1

2α2

(
x
β

+ β
x
− 2
)]

1− Φ

[
1
α

{(
x
β

) 1
2 −

(
β
x

) 1
2

}] , (2.3)

for 0 < x <∞, α, β > 0, and where Φ() denotes the standard normal CDF.

A plot of these three is presented in Figure 2.1 when α = 0.5 and β = 1.

Figure 2.1: Graphs of the PDF, CDF and hazard function of the BS distribution.

The BS distribution has been shown to have an increasing and decreasing hazard

function by Kundu et al. (2008).
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The hazard functions, plotted in Figure 2.2 for different values of the shape parameter

α support this characteristic.

Figure 2.2: Hazard functions of the BS distribution for different values of α, when
β = 1.

The BS distribution is closely related to the normal distribution. Specifically, when

X ∼ BS(α, β), consider the monotone transformation

X =
1

2

[(
T

β

)1/2

+

(
T

β

)−1/2]
, (2.4)

7
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or

T = β
(
1 + 2X2 + 2X(1 +X2)1/2

)
. (2.5)

Then, T is normally distributed with mean zero and variance 1
4
α2.

2.2 Model Assumptions

In this thesis, we assume the lifetimes of components in a r-out-of-n F-system

are identical and have the same distribution function. Let X1, X2, ..., Xn denote the

component lifetimes; then, the lifetime of a r-out-of-n F-system corresponds to the

rth order statistic, denoted by Xr:n. Since the system fails when the rth component

fails, we can only observe the first r failure times. If the ith failure is observed at time

x, the remaining components are assumed to have the same lifetime distribution. The

1st failure is denoted by X
(0)
1:n, 2nd failure is denoted by X

(1)
1:n−1..., and so on. Then,

X
(0)
1:n,X

(1)
1:n−1,X

(2)
1:n−2... are the so-called SOS of component lifetimes from a r-out-of-n

F-system.

As previously mentioned, in an equal load sharing model, when each component

fails, the resulting load is equally distributed to the surviving components in the

system. Thus, as more components fail, the remaining components will face more

stress, meaning that there is a higher likelihood of failure for surviving units to fail

after each failure. For this reason, if we let hj denote the hazard rate function of

components at the jth failure, it will be natural to assume that

h1(x) < h2(x) < ... < hn−1(x) < hn(x). (2.6)

8
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So, the lifetime distribution of the surviving components is modified due to the

increasing hazard form in (2.6). Barlow et al. (1963) related the properties of the

distribution function to properties of the corresponding hazard rate function. The

hazard rate could be either non-increasing or non-decreasing. Hollander and Pena

(1995) explored a stochastic approach to model complex systems with conditional

proportional hazards. Deshpande et al. (2010) developed a general semiparametric

multivariate family of distributions based on load sharing model through proportional

conditional hazards. Here, we assume that the survival function of each component

changes upon each failure and that the survival function of all surviving components

is assumed to be the same until the next failure due to the equal load-share rule.

We introduce a baseline hazard function, h0(x), which is the hazard function of

each component before any failure has occurred. Furthermore, we make the assump-

tion

hj(x) = ηjh0(x), j = 1, 2, .., n, (2.7)

where the ηjs are positive constants. Eq. (2.7) can also be stated equivalently as

Sj(t) = [S0(t)]
ηj . (2.8)

Then, according to (2.6), we must have the condition η1 < η2 < .... So, it is natural

to consider

ηj = ejη. (2.9)

9



M.Sc. Thesis - Yiliang Zhou McMaster - Mathematics & Statistics

With this choice of link function, ηj is an increasing function of j, and since hj(x) is

an increasing function of ηj, this readily implies that the hazard rate increases upon

each component failure, which is consistent with the definition of a load-sharing sys-

tem.

10



Chapter 3

Likelihood Inference

3.1 Notation

In this section, we derive the likelihood function based on an equal load sharing

system and under the assumptions provided in Section 2.2. For our purpose, we

let F0, S0, f0 denote the baseline distribution, baseline survival and baseline density

functions, respectively, of each component when no failures have occurred. After the

the ith failure occurs, each surviving component has the same distribution function,

survival and density functions, denoted by Fi, Si, fi.

Based on the assumptions made, we observe the following:

Pr(X
(0)
1:n ≤ x1) = 1− (1− F0(x1))

n

Pr(X
(1)
1:n−1 ≤ x2|X(0)

1:n = x1) = 1−
(

1−F1(x2)
1−F1(x1)

)n−1
, x2 > x1,

Pr(X
(2)
1:n−2 ≤ x3|X(1)

1:n−1 = x2) = 1−
(

1−F2(x3)
1−F2(x2)

)n−2
, x3 > x2,

......

......

11
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3.2 Joint PDF

We can readily express the joint PDF of the r component lifetimes as

f(x1, x2, ..., xr)

=f(xr | x1, .., xr−1)f(x1, x2, ..., xr−1)

=fr(xr | xr−1)f(x1, x2, ..., xr−1)

=fr(xr | xr−1)f(xr−1 | x1, x2, ..., xr−2)f(x1, x2, ..., xr−2)

...

...

...

=fr(xr | xr−1)fr−1(xr−1 | xr−2)...f2(x2 | x1)f1(x1) (3.1)

To obtain an expression from (3.1), let us look at each term individually.

First, from the conditional specification given above, we have

f(xr | xr−1) = (n− r + 1)fr(xr)
[1− Fr(xr)]n−r

[1− Fr(xr−1)]n−r+1
, xr > xr−1. (3.2)

Similarly,

f(xr−1 | xr−2) = (n− r + 2)fr−1(xr−1)
[1− Fr−1(xr−1)]n−r+1

[1− Fr−1(xr−2)]n−r+2
, xr−1 > xr−2, (3.3)

...

f(x2 | x1) = (n− 1)f2(x2)
[1− F2(x2)]

n−2

[1− F2(x1)]n−1
, x2 > x1,

12
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and finally,

f(x1) = nf1(x1)[1− F1(x1)]
n−1. (3.4)

Clearly then the joint PDF is the product of Eqns.(3.2)-(3.4). Now, to make the

derivation neat and clean, we look at similar terms.

First, write that the product of constants is given by

(n− r + 1)(n− r + 2)...(n− 1)n =
n!

(n− r)!
. (3.5)

Then, the product of fi(xi)’s is

fr(xr)fr−1(xr−1)...f2(x2)f1(x1)

= ηrf0(xr)[1− F0(xr)]
ηr−1ηr−1f0(xr−1)[1− F0(xr−1)]

ηr−1−1...

η2f0(x2)[1− F0(x2)]
η2−1η1f0(x1)[1− F0(x1)]

η1−1

= ηrηr−1...η2η1f0(xr)f0(xr−1)...f0(x2)f0(x1)[1− F0(xr)]
ηr−1)[1− F0(xr−1)]

ηr−1−1...

[1− F0(x2)]
η2−1[1− F0(x1)]

η1−1

=
r∏
j=1

ηj

r∏
j=1

f0(xj)
r∏
j=1

[1− F0(xj)]
ηj−1. (3.6)

13
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The terms of the form [1−Fi(xi)]n−i can be modified by the assumption in Eq.(2.8),

giving

[1− Fr(xr)]n−r = [1− (1− [1− F0(xr)]
ηr)]n−r = [1− F0(xr)]

ηr(n−r)

[1− Fr−1(xr−1)]n−r+1 = [1− F0(xr)]
ηr−1(n−r+1)

...

[1− F2(x2)]
n−2 = [1− F0(x2)]

η2(n−2)

[1− F1(x1)]
n−1 = [1− F0(x1)]

η1(n−1). (3.7)

The product of these terms can be written more compactly as

[[1− F0(xr)]
ηr(n−r)[1− F0(xr)]

ηr−1(n−r+1)...[1− F0(x2)]
η2(n−2)[1− F0(x1)]

η1(n−1)

=
r∏
j=1

[1− F0(xj)]
ηj(n−j). (3.8)

The terms [1 − Fi(xi−1)]
n−i+1 can also be modified by the assumption in Eq.(2.8),

giving

[1− Fr(xr−1)]n−r+1 = [1− F0(xr−1)]
ηr(n−r+1)

[1− Fr−1(xr−2)]n−r+2 = [1− F0(xr−2)]
ηr−1(n−r+2)

...

[1− F2(x1)]
n−1 = [1− F0(x1)]

η2(n−1). (3.9)

14
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The product of these terms [1− Fi(xi−1)]n−i+1 can be written as

[1− F0(xr−1)]
ηr(n−r+1)[1− F0(xr−2)]

ηr−1(n−r+2)...[1− F0(x1)]
η2(n−1)

=
r−1∏
j=1

[1− F0(xj)]
ηj+1(n−j). (3.10)

By combining Eqns.(3.5),(3.6),(3.8) and (3.10), the joint PDF is then

n!

(n− r)!
(
∏r

j=1 ηj)
∏r

j=1 f0(xj)
∏r

j=1[1− F0(xj)]
ηj−1

∏r
j=1[1− F0(xj)]

ηj(n−j)∏r−1
j=1[1− F0(xj)]ηj+1(n−j)

(3.11)

Under the model assumptions in Section 2.2, namely,

ηj = ejη, (3.12)

our likelihood function becomes

15
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L(x;α, β, η) =
n!

(n− r)!
(eη

r(r+1)
2 )f0(xr)[1− F0(xr)]

erη−1
r−1∏
j=1

f0(xj)
r−1∏
j=1

[1− F0(xj)]
ejη−1

[1− F0(xr)]
erη(n−r)

r−1∏
j=1

[1− F0(xj)]
ejη(n−j)

(
r−1∏
j=1

[1− F0(xj)]
e(j+1)η(n−j)

)−1
=

n!

(n− r)!
(eη

r(r+1)
2 )f0(xr)[1− F0(xr)]

erη−1[1− F0(xr)]
erη(n−r)(

r−1∏
j=1

f0(xj)[1− F0(xj)]
ejη−1[1− F0(xj)]

ejη(n−j)[1− F0(xj)]
−e(j+1)η(n−j)

)

=
n!

(n− r)!
(eη

r(r+1)
2 )f0(xr)[1− F0(xr)]

erη−1[1− F0(xr)]
erη(n−r)(

r−1∏
j=1

f0(xj)[1− F0(xj)]
ejη−1+ejη(n−j)−e(j+1)η(n−j)

)

=
n!

(n− r)!
(eη

r(r+1)
2 )f0(xr)[1− F0(xr)]

erη(n−r+1)−1(
r−1∏
j=1

f0(xj)[1− F0(xj)]
ejη(n−j+1)−e(j+1)η(n−j)−1

)

=
n!

(n− r)!
(eη

r(r+1)
2 )

(
r−1∏
j=1

f0(xj)[1− F0(xj)]
ejη(n−j+1)−e(j+1)η(n−j)−1

)

f0(xr)[1− F0(xr)]
erη(n−r+1)−1

=
n!

(n− r)!
e
r(1+r)

2
η

{
r−1∏
j=1

[1− F0(xj)]
mj−mj+1−1f0(xj)

}
[1− F0(xr)]

mr−1f0(xr),

(3.13)

where mj = (n− j + 1)ejη.
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3.3 Log-likelihood Function

Based on the likelihood derived in Section 3.2, we obtain the log-likelihood as

follows:

lnL(x;α, β, η)

= ln(n!)− ln((n− r)!) +
r(1 + r)

2
η +

r−1∑
j=1

{(mj −mj+1 − 1) ln(1− F0(xj)) + ln f0(xj)}

+ (mr − 1) ln(1− F0(xr)) + ln f0(xr)

= ln(n!)− ln((n− r)!) +
r(1 + r)

2
η

+
r−1∑
j=1

{
[(n− j + 1)ejη − (n− j)β0e(j+1)η − 1] ln(1− F0(xj)) + ln f0(xj)

}
+ [(n− r + 1)erη − 1] ln(1− F0(xr)) + ln f0(xr)

= ln(n!)− ln((n− r)!) +
r(1 + r)

2
η

+
r−1∑
j=1

{
(n− j + 1)ejη ln

1− F0(xj)

1− F0(xj−1)

}
−

r−1∑
j=1

ln(1− F0(xj)) +
r−1∑
j=1

ln f0(xj)

+ [(n− r + 1)erη − 1] ln(1− F0(xr)) + ln f0(xr)

= ln(n!)− ln((n− r)!) +
r(1 + r)

2
η

+
r∑
j=1

{
(n− j + 1)ejη ln

1− F0(xj)

1− F0(xj−1)

}
−

r∑
j=1

ln(1− F0(xj)) +
r∑
j=1

ln f0(xj)

= ln(n!)− ln((n− r)!) +
r(1 + r)

2
η

+
r∑
j=1

{
(n− j + 1)ejη ln

1− F0(xj)

1− F0(xj−1)

}
−

r∑
j=1

ln(1− F0(xj)) +
r∑
j=1

ln f0(xj),

(3.14)
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where we assume 1− F0(x0) = 1.

3.4 First Derivatives

We derive here the first derivatives of the log-likelihood function with respect to

our three model parameters.

First, we have

∂lnL

∂η
=
r(1 + r)

2
+

r∑
j=1

{
(n− j + 1)jejη ln

1− F0(xj)

1− F0(xj−1)

}

=
r(1 + r)

2
+

r∑
j=1

{
(n− j + 1)jejη ln

S0(xj)

S0(xj−1)

}
. (3.15)

Next, for the parameter β, we have

∂lnL

∂β
=

r∑
j=1

{
(n− j + 1)ejη

∂

∂β
ln(1− F0(xj))−

∂

∂β
ln(1− F0(xj−1))

}

−
r∑
j=1

∂

∂β
ln(1− F0(xj)) +

r∑
j=1

∂

∂β
ln f0(xj)

=
r∑
j=1

(n− j + 1)ejη
{
∂

∂β
lnS0(xj)−

∂

∂β
lnS0(xj−1)

}

−
r∑
j=1

∂

∂β
lnS0(xj) +

r∑
j=1

∂

∂β
ln f0(xj), (3.16)

where

∂

∂β
lnS0(xj) =

∂
∂β
S0(xj)

S0(xj)
, (3.17)
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∂

∂β
S0(xj) =− 1√

2π
exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

2α

(
−β−

3
2x

1
2
j − β−

1
2x
− 1

2
j

)
=− 1√

2π
exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

2αxj

(
−β−

3
2x

3
2
j − β−

1
2x

1
2
j

)
=

1√
2π

exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

2αxj

[(
xj
β

) 3
2

+

(
xj
β

) 1
2

]
, (3.18)

and

∂

∂β
ln f0(xj) = − 1

β
+

xj + 3β

2xjβ + 2β2
− 1

2α2

(
1

xj
− xj
β2

)
. (3.19)

Finally, for α, we have

∂lnL

∂α
=

r∑
j=1

(n− j + 1)ejη{ ∂
∂α

ln(1− F0(xj))−
∂

∂α
ln(1− F0(xj−1))}

−
r∑
j=1

∂

∂α
ln(1− F0(xj)) +

r∑
j=1

∂

∂α
ln f0(xj)

=
r∑
j=1

(n− j + 1)ejη{ ∂
∂α

lnS0(xj)−
∂

∂α
lnS0(xj−1)}

−
r∑
j=1

∂

∂α
lnS0(xj) +

r∑
j=1

∂

∂α
ln f0(xj), (3.20)

where

∂ lnS0(xj)

∂α
=

∂
∂α
S0(xj)

S0(xj)
, (3.21)

∂S0(xj)

∂α
=

1√
2π

exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

α2

{(
xj
β

) 1
2

−
(
β

xj

) 1
2

}
, (3.22)
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and

∂ ln f0(xj)

∂α
= − 1

α
+

1

α3

(
xj
β

+
β

xj
− 2

)
. (3.23)

3.5 Information Matrix

We obtain the information matrix through the second derivatives.

First, we have

∂2 lnL

∂η2
=

r∑
j=1

{
(n− j + 1)j2ejη ln

S0(xj)

S0(xj−1)

}
. (3.24)

Next,

∂2 lnL

∂β2
=

r∑
j=1

(n− j + 1)ejη
{
∂2

∂β2
lnS0(xj)−

∂2

∂β2
lnS0(xj−1)

}

−
r∑
j=1

∂2

∂β2
lnS0(xj) +

r∑
j=1

∂2

∂β2
ln f0(xj), (3.25)

where

∂2

∂β2
lnS0(xj−1) =

∂

∂β

∂
∂β
S0(xj)

S0(xj)
=

[ ∂
2

∂β2S0(xj)]S0(xj)− [
∂S0(xj)

∂β
]2

S0(xj)2
. (3.26)
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Here,

∂2S0(xj)

∂β2
=

1

2
√

2παxj
exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
{

[−3

2
x

3
2
j β
− 5

2 − 1

2
x

1
2
j β
− 3

2 ]− 1

2α

(
1

xj
− xj
β2

)[(
xj
β

) 3
2

+

(
xj
β

) 1
2

]}
,

(3.27)

where

∂ ln f0(xj)

∂β
= − 1

β
+

xj + 3β

2xjβ + 2β2
− 1

2α2

(
1

xj
− xj
β2

)
(3.28)

and

∂2 ln f0(xj)

∂β2
=

1

β2
+

(xj + 3β)′(2xjβ + 2β2)− (2xjβ + 2β2)′(xj + 3β)

(2xjβ + 2β2)2
− 1

2α2

(
2xj
β3

)
=

1

β2
+

(2xj + 4β)− (xj + 3β)(2xj + 4β)

(2xjβ + 2β2)2
− xj
α2β3

=
1

β2
+
−4xjβ − 6β2 − 2x2j

4(xjβ + β2)2
− xj
α2β3

=
1

β2
−

2xjβ + 3β2 + x2j
2(xjβ + β2)2

− xj
α2β3

. (3.29)

We also have

∂2lnL

∂α2
=

r∑
j=1

(n− j + 1)ejη
{
∂2

∂α2
lnS0(xj)−

∂2

∂α2
lnS0(xj−1)

}

−
r∑
j=1

∂2

∂α2
lnS0(xj) +

r∑
j=1

∂2

∂α2
ln f0(xj), (3.30)
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where

∂2

∂α2
lnS0(xj−1) =

∂

∂α

∂
∂α
S0(xj)

S0(xj)
=

[ ∂
2

∂α2S0(xj)]S0(xj)− [
∂S0(xj)

∂α
]2

S0(xj)2
, (3.31)

∂2S0(xj)

∂α2
=

1√
2π

exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

α3

(
β

xj
+
xj
β
− 2

)
1

α2

{(
xj
β

) 1
2

−
(
β

xj

) 1
2

}

− 1√
2π

exp

{
− 1

2α2

(
β

xj
− xj
β
− 2

)}
2

α3

{(
xj
β

) 1
2

−
(
β

xj

) 1
2

}

=
1√
2π

exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}{(
xj
β

) 1
2

−
(
β

xj

) 1
2

}
{

1

α5

(
β

xj
+
xj
β
− 2

)
− 2

α3

}
. (3.32)

Furthermore, we have

∂lnL

∂β∂η
=

r∑
j=1

(n− j + 1)jejη
{
∂

∂β
lnS0(xj)−

∂

∂β
lnS0(xj−1)

}
, (3.33)

where

∂

∂β
lnS0(xj) =

∂
∂β
S0(xj)

S0(xj)
. (3.34)

We furthermore have

∂2lnL

∂η∂α
=

r∑
j=1

(n− j + 1)jejη{ ∂
∂α

lnS0(xj)−
∂

∂α
lnS0(xj−1)},
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where

∂ lnS0(xj)

∂α
=

∂
∂α
S0(xj)

S0(xj)
(3.35)

and

∂S0(xj)

∂α
=

1√
2π

exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
1

α2

{(
xj
β

) 1
2

−
(
β

xj

) 1
2

}
.

(3.36)

Finally, we have

∂2lnL

∂α∂β
=

r∑
j=1

(n− j + 1)ejη
{
∂2 lnS0(xj)

∂α∂β
− ∂2 lnS0(xj−1)

∂α∂β

}

−
r∑
j=1

∂2 lnS0(xj)

∂α∂β
+

r∑
j=1

∂2 lnS0(xj)

∂α∂β
,

where

∂2 lnS0(xj)

∂α∂β
=

∂2S0(xj)

∂α∂β
S0(xj)− ∂ lnS0(xj)

∂β

∂ lnS0(xj)

∂α

[S0(xj)]2
(3.37)

and

∂2S0(xj)

∂α∂β
=

1

α2
√

2π
exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
− 1

2
√

2πα4

(
β

xj
− xj
β2

){(
xj
β

) 1
2

−
(
β

xj

) 1
2

}

− 1

2
√

2πα2
exp

{
− 1

2α2

(
β

xj
+
xj
β
− 2

)}
(x

1
2
j β
− 3

2 + x
− 1

2
j β−

3
2 ). (3.38)
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By using the above second derivatives, we obtain the information matrix as

I3×3= -


∂2 lnL
∂α2

∂2 lnL
∂α∂β

∂2 lnL
∂α∂η

∂2 lnL
∂α∂β

∂2 lnL
∂β2

∂2 lnL
∂β∂η

∂2 lnL
∂α∂η

∂2 lnL
∂β∂η

∂2 lnL
∂η2

.

With the use of the expression of the information matrix above, we can determine

the estimated variance-covariance matrix of the MLEs (α̂, β̂, η̂) as I|(α̂=α,β̂=β,η̂=η).

This can be used, along with the asymptotic normality of the MLEs, to construct

confidence intervals for the model parameters or to carry out hypotheses tests.

3.6 Inference for multiple r-out-of-n system

The inference of reliability of the singular r-out-of-n system can be extended

to the multiple r-out-of-n systems. Suppose there are m r-out-of-n systems work

independently, let each r-out-of-n system denote as rj-out-of-nj system, and the cor-

responding likelihood function denote as Lrj−out−of−nj where j = 1, 2...m. Let the

likelihood function of such a multiple r-out-of-n systems denote as Lmultiple, and it

can be written as:

Lmultiple =
m∏
j=1

Lrj−out−of−nj . (3.39)

Specifically, if m r-out-of-n systems are identical, let the likelihood function of these

singular identical rj-out-of-n−j system denote as Lr−out−of−n. Then, let the likelihood

function of the m multiple identical r-out-of-n systems denote as Lidentical can be
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simplified as

Lidentical =
m∏
j=1

Lr−out−of−n. (3.40)

Moreover, the multiple r-out-of-n system has more accurate estimation than the sin-

gular r-out-of-n system. Let the log-likelihood function, Fisher Information ma-

trix, Variance-Corvariance and standard error for such a multiple system denote

as lnLidentical, Iidentical, Σidentical and SEidentical, respectively. For a singular r-out-

of-n system, let the log-likelihood function, Fisher Information matrix, Variance-

Corvariance and standard error denote as lnL, I, Σ and SE, respectively.

Then, we have

lnL =
m∑
j=1

lnLidentical = m× lnLidentical, (3.41)

I = m× Iidentical, (3.42)

Σ =
1

m
Σidentical, (3.43)

SE =
1√
m
× SEidentical. (3.44)

25



Chapter 4

Numerical Computations

4.1 Data Generation Algorithm

To generate SOS data from the proposed r-out-of-n F-system with the baseline

BS distribution under our model, the following algorithm can be used:

Step 1: Generate X(1).

For this, we note

Pr(X
(0)
1:n ≤ x1) = 1− (1− F0(x1))

n. (4.1)

Generate u as a random variate from the uniform distribution on (0,1). Then, x1 is

obtained by solving for x in u = 1− (1− F0(x))n.

Step 2: Generate X(j), conditional on X(j−1) = xj−1.

To do this, we make use of the left-truncated distribution, since xj is always greater

26



M.Sc. Thesis - Yiliang Zhou McMaster - Mathematics & Statistics

than the left truncation point x(j−1). Then, we have

Pr(X
(j−1)
1:n ≤ x | X(j−1)

1:n ≥ xj−1)

=1− [S0(x)]ηj(n−j+1)

[S0(xj−1)]ηj(n−j+1)

=1−
{

[S0(x)]

[S0(xj−1)]

}ηj(n−j+1)

, x > xj−1.

Then, generate a random uniform variate u, with which xj is obtained by solving for

x in the equation u = 1−
{

[S0(x)]
[S0(xj−1)]

}ηj(n−j+1)

.

4.2 Methods for Initial Values

In order to use the Newton-Raphson method for finding the MLEs of the model

parameters, the initial values need to be chosen carefully to start the numerical iter-

ative process. The choice of initial values is critical to saving computational time as

well as to ensure convergence of the algorithm. Here, three different ways of provid-

ing initial values for the parameters α and β are discussed. For all three methods,

we chose the initial value of η to be zero. The performance of the three methods is

examined in this chapter through Monte Carlo simulations.

4.2.1 Pseudo Complete Sample Method

In this method, we “complete” our Type-II censored sample. To complete the

censored data, we first replace the last n-r missing observations with the rth ordered

failure time. Then, based on this complete sample, we find the Modified Moment

Estimators (MMEs) which were first derived by Ng et al. (2003). To be specific, let
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{x1, x2, ..., xn} be a random sample of size n from the Birnbaum-Saunders distribution

BS(α, β). Define

s =
1

n

n∑
i=1

xi and r =

[
1

n

n∑
i=1

x−1i

]−1
. (4.2)

Then, the MMEs, α̃ and β̃, of Ng et al. (2003) are given by

α̃ =

{
2

[(s
r

)1/2
− 1

]}1/2

and β̃ = (sr)1/2. (4.3)

These are provided as initial values in the Newton-Raphson method for determining

the MLEs. We refer to this as Method 1.

4.2.2 Type-II Right Censored Method

The estimation of parameters of BS distribution based on Type-II censored sam-

ples was first discussed by Ng et al. (2006). Upon equating the derivative of log-

likelihood with respect to β to 0, the estimate of β can be found numerically. Then,

since the MLE of α is a pure function of the MLE of β, the estimate of α can be

obtained directly from this relationship between the MLEs of these two parameters.

The derivative of log-likelihood with respect to β and the relationship between the

MLEs of the parameters α and β has been simplified by Balakrishnan and Zhu (2014).

Let us denote a Type-II right censored data of size k from the BS distribution by

(x1:n, ..., xk:n). Then, Balakrishnan and Zhu (2014) have shown that the derivative of
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log-likelihood with respect to β is given by

∂lnL

∂β
=− k

β
+

k∑
i=1

xi:n + 3β

2β(xi:n + β)
− 1

2α2

k∑
i=1

(
1

xi:n
− xi:n

β2

)

+
(n− k)A

2αxk:n

[(
xk:n
β

)1/2

+

(
xk:n
β

)3/2
]
, (4.4)

where A = φ(δ)/(1 − Φ(δ)), φ(·) is the PDF of the standard normal distribution

and δ = (1/α)(
√
xk:n/β −

√
β/xk:n), and the relationship between the MLEs of the

parameters α and β is given by

α̃ =

[∑k
i=1(xk:n−xi:n)((1/xi:n)− (1/β̃))∑k

i=1(xk:n + xi:n)/(xi:n + β̃)

]1/2
. (4.5)

Upon equating (4.4) to zero and then solving numerically by using Newton-Raphson

method, the estimate of β can be obtained. Then, α̃ can be obtained from (4.6). These

can be provided as initial values in the Newton-Raphson method for determining the

MLEs. We refer to this as Method 2.

4.2.3 Stochastic Approximation Method

The third method obtains initial values through a stochastic approximation. The

first step involves using the pseudo complete sample method described in Section

4.2 to obtain α̃0 and β̃0. From there, α̃0 and β̃0 are used to generate the remaining

n − r observations from the left-truncated BS distribution. Based on this complete

data, the estimates of α and β, denoted by α̃1 and β̃1, are obtained. With these new

estimates, the new missing data and the new estimates are once again obtained. This

process is repeated, say, k times. In the end, we find the mean of the generated MLEs,
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which are then used as initial values in the Newton-Raphson method for determining

the MLEs. We refer to this as Method 3.
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Chapter 5

Simulation Study

In this chapter, we present the simulation results on the numerical maximum

likelihood estimates of the model parameters of r-out-of-n F-system based on BS dis-

tribution. Tables 5.1-5.27 provide estimates of Bias, MSE, and coverage probabilities

of 95% confidence interval and 90% confidence interval for all three parameters, and

average number of iterations and average computational time, based on 10000 sim-

ulations, for r/n 100%, 80% and 60%. Here, we chose α as 0.25, 0.5 and 0.75; η as

0.005, 0.01 and 0.015; sample size as 60, 100 and 150. Also, β, as a scale parameter,

was chosen to be 1 without loss of generality.

Since the two parameters of the BS distribution have to be positive, to keep the

MLEs positive in the Newton-Raphson method, a logarithm transformation was im-

plemented in the simulation study. For this, we first exponentiated the parameters

in the log-likelihood, then, used logarithm of initial values in the Newton-Raphson

method, and finally, the estimates were exponentiated to get the MLEs. Further, for

Method 3, we used k=300.

For simplification and notation, we have used some shortened notation in the tables,
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which are as follows:

Bias =103×Bias, MSE = 103×MSE, Time = 10−4×Time(sec),

95% = coverage probability of 95% confidence interval,

90% = coverage probability of 90% confidence interval,

Iter MLE = the average number of iterations for the convergence to MLEs,

Iter Initial = the average number of iterations for the convergence to initial values,

r/n = the number of observations/ system size.

Generally, in these tables, negative bias is observed in the estimates of all three

parameters. With a larger sample size, smaller MSE and smaller bias is observed

and the coverage probability of 95% confidence interval and 90% confidence interval

get closer to the nominal levels. With a greater r, smaller MSE and smaller bias is

also observed and here again the coverage probabilities of the confidence intervals get

closer to the nominal levels.

Upon comparing the three methods for initial values, we observe that Bias, MSE

and coverage probabilities are all almost the same. Also, the estimates are also seen to

be quite close to the parameter setting. For most of the cases considered, the pseudo

complete sample method is seen to take the least time to get the MLEs. There are

two exceptions, when α is 0.75, and when sample sizes are 100 and 150, in which case

Type-II right censored method takes the least time to get MLEs. This suggests that

Type-II right censored method could be a good choice for initial values for large α.

Stochastic approximation method takes a long time to get initial values, and so the

number of iterations to approach MLEs is not small, and for this reason this method

is not recommended for use.
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Table 5.1: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 60 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -12.84 2.93 87.70 83.10 -7.27 4.42 89.49 85.22 -3.05 0.13 92.94 87.56 20.60 371
0.01 -13.32 3.00 87.44 82.83 -7.77 4.53 89.26 85.04 -3.12 0.13 92.86 87.50 20.54 373
0.015 -13.79 3.07 87.30 82.66 -8.29 4.64 89.06 84.88 -3.19 0.14 92.83 87.36 20.77 381

r/n=80%
0.005 -16.43 3.82 85.57 81.09 -11.55 6.60 86.81 82.55 -4.95 0.28 92.06 86.58 23.54 334
0.01 -16.82 3.89 85.46 80.98 -12.03 6.73 86.54 82.30 -5.01 0.28 92.06 86.59 23.55 326
0.015 -17.24 3.94 85.28 80.86 -12.61 6.82 86.27 82.14 -5.07 0.28 92.03 86.67 23.54 324

r/n=60%
0.005 -21.95 5.30 82.64 78.01 -18.33 10.91 83.32 79.06 -8.98 0.72 91.49 85.41 23.61 250
0.01 -22.31 5.37 82.47 77.77 -18.82 11.10 83.14 78.86 -9.05 0.72 91.50 85.42 23.75 250
0.015 -22.65 5.44 82.35 77.63 -19.29 11.29 83.00 78.68 -9.10 0.72 91.55 85.40 23.88 249

Table 5.2: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 60 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -12.84 2.93 87.71 83.10 -7.27 4.42 89.49 85.22 -3.04 0.13 92.94 87.56 6.14 20.55 409
0.01 -13.32 3.00 87.44 82.84 -7.77 4.53 89.26 85.03 -3.12 0.13 92.86 87.50 5.90 20.51 430
0.015 -13.79 3.07 87.30 82.67 -8.29 4.64 89.06 84.88 -3.19 0.14 92.83 87.36 5.79 20.75 426

r/n=80%
0.005 -16.42 3.82 85.58 81.09 -11.54 6.60 86.81 82.55 -4.95 0.28 92.07 86.58 5.05 29.47 400
0.01 -16.82 3.88 85.46 80.99 -12.03 6.73 86.54 82.30 -5.01 0.28 92.06 86.61 4.72 28.56 393
0.015 -17.19 3.95 85.28 80.87 -12.50 6.87 86.28 82.13 -5.06 0.28 92.00 86.64 4.51 27.65 385

r/n=60%
0.005 -21.93 5.29 82.66 78.02 -18.31 10.91 83.33 79.08 -8.97 0.72 91.50 85.42 6.04 26.77 295
0.01 -22.31 5.37 82.47 77.77 -18.82 11.10 83.14 78.86 -9.05 0.72 91.50 85.42 6.06 26.79 296
0.015 -22.65 5.44 82.35 77.63 -19.29 11.29 83.00 78.68 -9.10 0.72 91.55 85.40 6.10 26.76 295

Table 5.3: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 60 AND DIFFERENT CR BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -12.82 2.93 87.71 83.11 -7.24 4.42 89.51 85.24 -3.04 0.13 92.96 87.58 0 20.60 422
0.01 -13.33 3.00 87.43 82.82 -7.79 4.53 89.25 85.03 -3.12 0.14 92.85 87.49 0 20.54 420
0.015 -13.79 3.07 87.30 82.66 -8.29 4.64 89.06 84.88 -3.19 0.14 92.83 87.36 0 20.77 418

r/n=80%
0.005 -16.43 3.82 85.58 81.09 -11.54 6.60 86.81 82.55 -4.95 0.28 92.07 86.59 300 24.37 1573
0.01 -16.82 3.89 85.46 80.98 -12.03 6.73 86.54 82.29 -5.01 0.28 92.06 86.62 300 24.36 1588
0.015 -17.19 3.95 85.28 80.86 -12.50 6.87 86.26 82.12 -5.06 0.28 92.00 86.64 300 24.37 1609

r/n=60%
0.005 -21.95 5.30 82.65 78.01 -18.33 10.91 83.32 79.06 -8.98 0.72 91.49 85.41 300 24.51 1497
0.01 -22.31 5.37 82.47 77.77 -18.82 11.10 83.14 78.86 -9.05 0.72 91.49 85.42 300 24.51 1496
0.015 -22.65 5.44 82.35 77.64 -19.29 11.29 83.00 78.68 -9.10 0.72 91.55 85.40 300 24.51 1533
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Table 5.4: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 60 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -26.76 13.52 86.88 82.56 -11.06 20.97 87.55 83.99 -3.42 0.15 92.51 87.01 22.87 390
0.01 -27.67 13.89 86.68 82.27 -11.82 21.49 87.34 83.75 -3.49 0.16 92.39 86.90 22.91 391
0.015 -28.39 14.21 86.45 81.94 -12.42 22.00 87.09 83.43 -3.53 0.15 92.31 86.83 23.29 394

r/n=80%
0.005 -33.23 18.12 84.69 80.20 -15.85 32.50 84.68 80.63 -5.43 0.32 91.69 86.21 25.61 329
0.01 -33.82 18.46 84.51 80.03 -16.36 33.23 84.54 80.45 -5.46 0.32 91.70 86.19 25.56 350
0.015 -34.37 18.81 84.40 79.95 -16.83 33.98 84.41 80.30 -5.47 0.32 91.70 86.20 25.53 334

r/n=60%
0.005 -43.33 26.58 81.20 76.69 -22.04 65.06 80.72 76.73 -9.75 0.80 91.15 84.97 25.10 254
0.01 -43.80 27.08 81.10 76.50 -22.29 68.18 80.52 76.46 -9.78 0.80 91.14 85.00 25.19 257
0.015 -44.47 26.98 80.98 76.39 -23.45 62.01 80.39 76.31 -9.80 0.80 91.17 85.10 25.31 256

Table 5.5: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 60 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -26.79 13.54 86.86 82.54 -11.08 20.98 87.52 83.98 -3.43 0.16 92.49 86.99 7.21 22.88 481
0.01 -27.66 13.89 86.67 82.26 -11.81 21.49 87.32 83.74 -3.49 0.16 92.38 86.89 6.98 22.90 482
0.015 -28.39 14.21 86.44 81.94 -12.42 22.00 87.09 83.43 -3.53 0.15 92.32 86.83 6.75 23.28 487

r/n=80%
0.005 -33.22 18.12 84.69 80.20 -15.84 32.50 84.69 80.63 -5.43 0.32 91.69 86.21 6.55 21.58 343
0.01 -33.82 18.46 84.52 80.04 -16.36 33.23 84.54 80.45 -5.46 0.32 91.70 86.19 6.16 21.57 382
0.015 -34.37 18.81 84.40 79.95 -16.83 33.98 84.41 80.30 -5.47 0.32 91.70 86.21 5.69 21.80 381

r/n=60%
0.005 -43.34 26.59 81.20 76.69 -22.04 65.06 80.72 76.73 -9.76 0.80 91.15 84.97 6.15 22.17 296
0.01 -43.81 27.08 81.10 76.51 -22.29 68.18 80.53 76.46 -9.78 0.80 91.14 85.00 6.08 21.96 299
0.015 -44.47 26.98 80.98 76.39 -23.46 62.01 80.40 76.31 -9.80 0.80 91.16 85.10 6.03 21.83 294

Table 5.6: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 60 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -26.72 13.52 86.89 82.57 -11.02 20.97 87.56 84.00 -3.42 0.15 92.52 87.02 0 22.87 436
0.01 -27.67 13.89 86.68 82.27 -11.82 21.49 87.34 83.75 -3.49 0.16 92.39 86.90 0 22.91 441
0.015 -28.39 14.21 86.45 81.94 -12.42 22.00 87.09 83.43 -3.53 0.15 92.31 86.83 0 23.29 414

r/n=80%
0.005 -33.22 18.12 84.69 80.18 -15.84 32.50 84.69 80.63 -5.43 0.32 91.69 86.19 300 26.18 1455
0.01 -33.82 18.46 84.51 80.04 -16.35 33.23 84.54 80.44 -5.46 0.32 91.70 86.19 300 26.07 1447
0.015 -34.37 18.81 84.40 79.95 -16.82 33.98 84.41 80.30 -5.47 0.32 91.69 86.21 300 26.08 1459

r/n=60%
0.005 -43.33 26.58 81.20 76.69 -22.04 65.08 80.72 76.73 -9.75 0.80 91.15 84.97 300 26.48 1429
0.01 -43.80 27.08 81.10 76.50 -22.29 68.20 80.53 76.45 -9.78 0.80 91.14 85.00 300 26.39 1434
0.015 -44.47 26.98 80.98 76.39 -23.46 62.01 80.39 76.31 -9.80 0.80 91.16 85.10 300 26.31 1447
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Table 5.7: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 60 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -43.75 38.33 85.20 80.75 -11.26 63.24 84.87 81.09 -4.18 0.19 91.93 86.31 23.96 399
0.01 -44.66 39.58 85.07 80.51 -11.42 66.12 84.70 80.92 -4.21 0.19 91.83 86.21 23.78 397
0.015 -45.20 40.77 84.80 80.35 -11.24 69.42 84.63 80.76 -4.20 0.19 91.82 86.22 24.11 399

r/n=80%
0.005 -50.41 56.63 82.76 78.22 -6.37 133.50 81.76 77.75 -6.39 0.39 91.13 85.36 26.96 334
0.01 -50.31 58.77 82.65 78.02 -4.77 146.81 81.66 77.57 -6.35 0.38 91.18 85.40 26.98 333
0.015 -50.40 60.34 82.53 77.90 -3.89 155.14 81.50 77.55 -6.30 0.37 91.24 85.50 27.03 334

r/n=60%
0.005 -65.23 83.56 79.10 74.60 -4.31 259.62 77.43 73.44 -11.42 0.93 90.46 84.57 26.16 255
0.01 -65.51 84.76 78.99 74.45 -4.12 260.49 77.31 73.37 -11.36 0.92 90.55 84.66 26.28 259
0.015 -66.15 85.25 78.85 74.33 -4.93 253.94 77.19 73.27 -11.32 0.91 90.62 84.83 26.42 259

Table 5.8: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 60 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -43.76 38.35 85.20 80.75 -11.27 63.25 84.87 81.09 -4.19 0.19 91.92 86.31 8.00 23.69 443
0.01 -44.63 39.56 85.07 80.53 -11.42 66.11 84.73 80.92 -4.21 0.19 91.84 86.22 7.68 23.58 414
0.015 -45.20 40.77 84.81 80.35 -11.24 69.42 84.64 80.76 -4.20 0.19 91.82 86.22 7.40 24.00 412

r/n=80%
0.005 -50.40 56.62 82.76 78.21 -6.37 133.45 81.77 77.75 -6.39 0.39 91.13 85.37 7.12 22.65 395
0.01 -50.31 58.77 82.64 78.02 -4.77 146.81 81.67 77.58 -6.35 0.38 91.18 85.39 7.00 22.87 390
0.015 -50.41 60.34 82.55 77.91 -3.89 155.10 81.52 77.55 -6.30 0.37 91.23 85.51 6.79 23.32 390

r/n=60%
0.005 -65.23 83.56 79.11 74.60 -4.30 259.62 77.43 73.44 -11.42 0.93 90.46 84.57 6.51 23.31 306
0.01 -65.50 84.75 78.99 74.46 -4.12 260.43 77.31 73.37 -11.36 0.92 90.55 84.65 6.45 23.18 300
0.015 -66.14 85.25 78.85 74.33 -4.93 253.91 77.19 73.27 -11.32 0.91 90.61 84.83 6.36 23.08 304

Table 5.9: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 60 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -43.72 38.32 85.22 80.77 -11.24 63.23 84.89 81.11 -4.18 0.19 91.95 86.33 0 23.95 435
0.01 -44.69 39.58 85.07 80.51 -11.46 66.13 84.71 80.91 -4.22 0.19 91.83 86.21 0 23.78 443
0.015 -45.20 40.77 84.80 80.35 -11.24 69.42 84.63 80.76 -4.20 0.19 91.82 86.22 0 24.11 437

r/n=80%
0.005 -50.40 56.63 82.76 78.20 -6.36 133.46 81.76 77.75 -6.39 0.39 91.13 85.36 300 27.62 1290
0.01 -50.30 58.77 82.65 78.02 -4.76 146.79 81.67 77.57 -6.35 0.38 91.18 85.38 300 27.53 1362
0.015 -50.40 60.34 82.53 77.90 -3.88 155.14 81.52 77.55 -6.29 0.37 91.23 85.51 300 27.52 1405

r/n=60%
0.005 -65.22 83.56 79.10 74.60 -4.30 259.58 77.43 73.44 -11.41 0.93 90.46 84.57 300 27.97 1353
0.01 -65.50 84.76 79.00 74.48 -4.11 260.54 77.31 73.37 -11.36 0.92 90.56 84.65 300 27.95 1385
0.015 -66.14 85.24 78.85 74.33 -4.93 253.90 77.19 73.27 -11.32 0.91 90.61 84.83 300 27.93 1384
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Table 5.10: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 100 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -7.55 1.78 90.58 85.85 -3.97 2.66 91.89 87.19 -1.04 0.03 93.96 88.56 23.23 655
0.01 -8.01 1.85 90.39 85.60 -4.46 2.76 91.55 86.89 -1.08 0.03 93.81 88.54 24.56 655
0.015 -8.42 1.91 90.16 85.49 -4.92 2.86 91.29 86.70 -1.10 0.03 93.87 88.61 25.67 663

r/n=80%
0.005 -9.78 2.27 89.42 84.15 -6.74 3.86 90.18 85.82 -1.71 0.06 93.50 87.96 25.99 558
0.01 -10.16 2.34 89.32 83.92 -7.21 3.98 90.06 85.53 -1.74 0.06 93.54 87.95 26.02 561
0.015 -10.59 2.39 89.10 83.68 -7.77 4.08 89.90 85.28 -1.76 0.05 93.53 87.92 26.15 537

r/n=60%
0.005 -13.52 3.12 87.37 82.84 -11.59 6.20 88.03 83.71 -3.21 0.14 92.91 87.55 26.00 413
0.01 -13.87 3.18 87.24 82.69 -12.06 6.35 87.90 83.47 -3.23 0.14 92.95 87.56 26.34 416
0.015 -14.18 3.24 87.10 82.58 -12.49 6.51 87.71 83.27 -3.24 0.14 92.98 87.62 26.80 427

Table 5.11: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 100 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -7.54 1.78 90.58 85.86 -3.97 2.66 91.90 87.18 -1.04 0.03 93.96 88.55 6.02 23.24 740
0.01 -8.01 1.85 90.40 85.61 -4.46 2.76 91.55 86.90 -1.08 0.03 93.83 88.54 5.73 24.58 770
0.015 -8.42 1.91 90.14 85.49 -4.92 2.86 91.29 86.70 -1.10 0.03 93.87 88.61 5.70 25.68 786

r/n=80%
0.005 -9.78 2.27 89.43 84.15 -6.74 3.86 90.18 85.83 -1.71 0.06 93.51 87.96 4.71 23.13 608
0.01 -10.16 2.34 89.34 83.91 -7.20 3.98 90.07 85.52 -1.74 0.06 93.54 87.96 4.28 23.74 626
0.015 -10.49 2.40 89.11 83.68 -7.62 4.10 89.91 85.28 -1.75 0.05 93.47 87.84 4.31 24.46 637

r/n=60%
0.005 -13.52 3.12 87.39 82.84 -11.58 6.20 88.03 83.71 -3.21 0.14 92.92 87.56 6.01 20.12 444
0.01 -13.87 3.18 87.24 82.69 -12.06 6.35 87.89 83.47 -3.23 0.14 92.94 87.57 6.05 19.97 438
0.015 -14.18 3.24 87.11 82.58 -12.49 6.51 87.71 83.25 -3.24 0.14 92.98 87.62 6.10 20.16 445

Table 5.12: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 100 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -7.55 1.78 90.58 85.85 -3.97 2.66 91.89 87.19 -1.04 0.03 93.96 88.56 0 23.22 691
0.01 -8.01 1.85 90.39 85.60 -4.46 2.76 91.55 86.89 -1.08 0.03 93.81 88.54 0 24.56 712
0.015 -8.42 1.91 90.16 85.49 -4.92 2.86 91.29 86.70 -1.10 0.03 93.87 88.61 0 25.67 560

r/n=80%
0.005 -9.78 2.27 89.42 84.15 -6.74 3.86 90.17 85.82 -1.71 0.06 93.51 87.96 300 27.26 2186
0.01 -10.16 2.34 89.33 83.92 -7.20 3.98 90.06 85.54 -1.74 0.06 93.54 87.96 300 27.12 2200
0.015 -10.49 2.40 89.11 83.68 -7.62 4.10 89.91 85.28 -1.75 0.05 93.48 87.84 300 26.94 2144

r/n=60%
0.005 -13.52 3.12 87.40 82.84 -11.58 6.20 88.03 83.70 -3.21 0.14 92.92 87.56 300 27.40 2012
0.01 -13.87 3.18 87.24 82.69 -12.05 6.35 87.90 83.47 -3.23 0.14 92.94 87.57 300 27.22 2038
0.015 -14.18 3.24 87.11 82.58 -12.49 6.51 87.71 83.27 -3.24 0.14 92.98 87.62 300 26.77 2036
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Table 5.13: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 100 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -15.70 8.26 90.00 85.29 -5.80 12.34 90.47 86.40 -1.18 0.03 93.75 88.41 25.20 665
0.01 -16.45 8.55 89.79 85.12 -6.41 12.74 90.19 86.13 -1.20 0.03 93.78 88.44 27.24 686
0.015 -17.07 8.83 89.66 85.04 -6.95 13.14 90.04 85.94 -1.20 0.03 93.68 88.39 28.34 700

r/n=80%
0.005 -19.78 10.73 88.69 83.65 -9.33 18.13 88.81 84.29 -1.88 0.06 93.37 87.77 27.93 543
0.01 -20.35 11.02 88.49 83.50 -9.85 18.65 88.55 84.09 -1.88 0.06 93.33 87.79 28.08 550
0.015 -20.90 11.28 88.34 83.37 -10.37 19.14 88.40 83.82 -1.88 0.06 93.39 87.85 28.45 554

r/n=60%
0.005 -26.82 15.35 86.54 82.06 -15.19 31.83 85.82 81.67 -3.48 0.16 92.58 87.26 27.96 426
0.01 -27.31 15.70 86.44 81.99 -15.60 32.84 85.76 81.53 -3.48 0.15 92.64 87.29 28.06 432
0.015 -27.73 16.04 86.31 81.84 -15.94 33.91 85.67 81.36 -3.46 0.15 92.71 87.27 28.16 434

Table 5.14: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 100 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -15.70 8.26 90.00 85.29 -5.79 12.34 90.46 86.40 -1.18 0.03 93.75 88.41 7.24 25.21 728
0.01 -16.45 8.55 89.79 85.12 -6.42 12.74 90.19 86.13 -1.20 0.03 93.75 88.43 6.88 27.22 709
0.015 -17.07 8.83 89.66 85.04 -6.95 13.14 90.04 85.94 -1.20 0.03 93.68 88.40 6.44 28.33 711

r/n=80%
0.005 -19.76 10.72 88.68 83.64 -9.30 18.13 88.81 84.29 -1.88 0.06 93.37 87.77 6.53 25.02 637
0.01 -20.34 11.02 88.47 83.52 -9.83 18.65 88.55 84.09 -1.88 0.06 93.34 87.81 5.57 25.66 650
0.015 -20.82 11.30 88.35 83.36 -10.26 19.19 88.42 83.83 -1.87 0.06 93.38 87.82 4.69 26.43 658

r/n=60%
0.005 -26.83 15.35 86.54 82.07 -15.19 31.83 85.84 81.68 -3.48 0.16 92.58 87.27 6.12 22.66 465
0.01 -27.31 15.70 86.44 81.99 -15.61 32.84 85.75 81.54 -3.48 0.15 92.65 87.29 6.02 22.62 470
0.015 -27.73 16.04 86.31 81.84 -15.94 33.91 85.69 81.38 -3.46 0.15 92.71 87.27 6.00 22.89 467

Table 5.15: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 100 AND DIFFERENT r BY METHOD 3

True η α β η
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -15.70 8.26 90.00 85.29 -5.80 12.34 90.47 86.40 -1.18 0.03 93.75 88.41 0 25.20 725
0.01 -16.45 8.55 89.79 85.12 -6.41 12.74 90.19 86.13 -1.20 0.03 93.78 88.44 0 27.24 754
0.015 -17.07 8.83 89.66 85.04 -6.95 13.14 90.04 85.94 -1.20 0.03 93.68 88.39 0 28.34 763

r/n=80%
0.005 -19.77 10.73 88.68 83.64 -9.31 18.13 88.81 84.30 -1.88 0.06 93.37 87.77 300 28.90 2038
0.01 -20.34 11.02 88.49 83.50 -9.83 18.65 88.54 84.08 -1.88 0.06 93.34 87.79 300 28.87 2093
0.015 -20.83 11.30 88.35 83.36 -10.27 19.19 88.39 83.83 -1.87 0.06 93.38 87.84 300 28.81 2060

r/n=60%
0.005 -26.82 15.35 86.54 82.06 -15.18 31.83 85.84 81.69 -3.48 0.16 92.58 87.28 300 29.28 1819
0.01 -27.31 15.69 86.44 81.99 -15.61 32.83 85.76 81.53 -3.48 0.15 92.64 87.29 300 29.28 1950
0.015 -27.73 16.04 86.31 81.84 -15.95 33.90 85.67 81.36 -3.46 0.15 92.71 87.28 300 29.25 1964
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Table 5.16: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 100 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -25.26 23.98 88.86 84.20 -4.65 37.23 88.27 84.43 -1.44 0.04 93.29 88.04 25.91 662
0.01 -25.84 24.91 88.63 84.09 -4.68 39.18 88.14 84.24 -1.43 0.04 93.37 87.99 28.00 684
0.015 -26.14 25.78 88.64 84.05 -4.45 41.42 88.08 84.11 -1.40 0.04 93.48 88.10 30.13 714

r/n=80%
0.005 -29.94 32.29 87.01 82.45 -4.83 57.65 86.31 81.78 -2.21 0.08 92.85 87.48 28.98 560
0.01 -30.08 33.27 86.96 82.28 -4.37 59.80 86.20 81.70 -2.17 0.07 92.95 87.55 29.22 560
0.015 -30.07 34.24 86.87 82.29 -3.77 62.11 86.13 81.58 -2.12 0.07 93.08 87.64 29.21 560

r/n=60%
0.005 -38.51 49.89 84.74 80.17 -3.05 119.94 83.05 79.06 -4.03 0.19 92.25 86.78 29.31 432
0.01 -38.29 51.53 84.74 80.15 -1.68 127.71 83.01 78.99 -3.96 0.18 92.31 86.91 29.36 434
0.015 -37.99 53.23 84.69 80.12 -0.16 136.71 82.98 78.87 -3.88 0.18 92.31 86.96 29.48 431

Table 5.17: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 100 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -25.27 23.98 88.86 84.22 -4.67 37.23 88.27 84.44 -1.45 0.04 93.29 88.04 7.98 25.75 665
0.01 -25.84 24.90 88.64 84.09 -4.68 39.18 88.14 84.23 -1.43 0.04 93.37 88.03 7.45 28.00 691
0.015 -26.09 25.80 88.64 84.05 -4.39 41.46 88.08 84.11 -1.40 0.04 93.48 88.09 7.01 30.05 721

r/n=80%
0.005 -29.91 32.29 87.01 82.43 -4.79 57.64 86.27 81.77 -2.21 0.08 92.85 87.48 7.15 25.55 542
0.01 -30.07 33.27 86.95 82.32 -4.36 59.80 86.23 81.73 -2.17 0.07 92.93 87.55 6.87 26.57 556
0.015 -30.06 34.24 86.87 82.32 -3.76 62.10 86.14 81.59 -2.12 0.07 93.12 87.64 6.12 27.64 568

r/n=60%
0.005 -38.50 49.88 84.75 80.19 -3.04 119.90 83.06 79.06 -4.02 0.19 92.26 86.77 6.60 24.12 406
0.01 -38.29 51.52 84.74 80.18 -1.67 127.69 83.01 79.01 -3.96 0.18 92.31 86.91 6.42 24.16 407
0.015 -37.99 53.23 84.68 80.12 -0.15 136.73 82.97 78.86 -3.88 0.18 92.31 86.96 6.18 24.54 414

Table 5.18: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 100 AND DIFFERENT r BY METHOD 3

True η α β η
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -25.26 23.98 88.86 84.20 -4.65 37.23 88.27 84.43 -1.44 0.04 93.29 88.04 0 25.90 643
0.01 -25.84 24.91 88.63 84.09 -4.68 39.18 88.14 84.24 -1.43 0.04 93.37 87.99 0 28.00 667
0.015 -26.14 25.78 88.64 84.05 -4.45 41.42 88.08 84.11 -1.40 0.04 93.48 88.10 0 30.13 694

r/n=80%
0.005 -29.91 32.29 87.01 82.44 -4.78 57.64 86.32 81.78 -2.21 0.08 92.85 87.48 300 30.42 1859
0.01 -30.05 33.26 86.97 82.30 -4.33 59.80 86.21 81.71 -2.17 0.07 92.94 87.55 300 30.27 1777
0.015 -30.06 34.24 86.87 82.31 -3.76 62.10 86.13 81.58 -2.12 0.07 93.08 87.66 300 30.18 1825

r/n=60%
0.005 -38.50 49.88 84.75 80.20 -3.05 119.92 83.06 79.07 -4.02 0.19 92.26 86.79 300 30.89 1698
0.01 -38.29 51.52 84.74 80.16 -1.68 127.71 83.01 79.01 -3.96 0.18 92.31 86.92 300 30.86 1702
0.015 -37.99 53.23 84.69 80.12 -0.17 136.68 82.98 78.88 -3.88 0.18 92.31 86.96 300 30.67 1714
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Table 5.19: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 150 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -4.77 1.24 92.07 87.13 -2.08 1.82 92.70 87.89 -0.41 0.01 94.10 88.79 26.33 1007
0.01 -5.19 1.30 91.89 86.88 -2.53 1.92 92.50 87.62 -0.43 0.01 94.02 88.73 26.92 1007
0.015 -5.50 1.35 91.70 86.78 -2.90 2.01 92.32 87.42 -0.43 0.01 94.04 88.94 26.50 1003

r/n=80%
0.005 -6.09 1.54 91.01 86.48 -3.71 2.59 92.08 87.29 -0.67 0.02 94.23 88.60 27.80 856
0.01 -6.43 1.60 90.90 86.36 -4.11 2.70 91.82 87.31 -0.68 0.02 94.27 88.58 28.05 824
0.015 -6.74 1.65 90.80 86.19 -4.53 2.80 91.62 87.01 -0.68 0.01 94.33 88.63 26.43 808

r/n=60%
0.005 -8.88 2.09 89.87 84.87 -7.41 4.11 90.15 85.77 -1.37 0.04 93.84 88.47 28.04 643
0.01 -9.19 2.14 89.74 84.71 -7.83 4.25 90.01 85.50 -1.37 0.04 93.92 88.52 28.38 675
0.015 -9.51 2.20 89.66 84.58 -8.28 4.39 89.83 85.36 -1.37 0.04 93.99 88.56 28.42 646

Table 5.20: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 150 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -4.78 1.24 92.06 87.11 -2.09 1.82 92.73 87.89 -0.41 0.01 94.09 88.75 5.83 26.31 1158
0.01 -5.19 1.30 91.89 86.88 -2.53 1.92 92.50 87.62 -0.43 0.01 94.02 88.73 5.69 26.90 1165
0.015 -5.50 1.35 91.70 86.78 -2.90 2.01 92.32 87.42 -0.43 0.01 94.04 88.94 5.31 26.51 1151

r/n=80%
0.005 -6.08 1.54 91.01 86.54 -3.70 2.59 92.08 87.31 -0.67 0.02 94.23 88.63 4.31 23.72 896
0.01 -6.42 1.60 90.90 86.36 -4.11 2.70 91.82 87.30 -0.68 0.02 94.27 88.58 4.23 24.77 908
0.015 -6.68 1.65 90.80 86.19 -4.43 2.81 91.63 87.01 -0.67 0.01 94.31 88.59 4.82 25.21 919

r/n=60%
0.005 -8.87 2.09 89.87 84.86 -7.41 4.11 90.15 85.77 -1.37 0.04 93.84 88.47 6.01 22.73 665
0.01 -9.19 2.14 89.74 84.71 -7.83 4.25 90.01 85.50 -1.37 0.04 93.92 88.53 6.05 24.21 691
0.015 -9.45 2.20 89.66 84.60 -8.20 4.39 89.83 85.37 -1.36 0.04 93.99 88.54 6.13 24.84 698

Table 5.21: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.25, β = 1, n = 150 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -4.77 1.24 92.07 87.13 -2.08 1.82 92.70 87.89 -0.41 0.01 94.10 88.79 0 26.33 1043
0.01 -5.19 1.30 91.89 86.88 -2.53 1.92 92.50 87.62 -0.43 0.01 94.02 88.73 0 26.92 1055
0.015 -5.50 1.35 91.70 86.78 -2.90 2.01 92.32 87.42 -0.43 0.01 94.04 88.94 0 26.50 1047

r/n=80%
0.005 -6.08 1.54 91.03 86.48 -3.70 2.59 92.06 87.30 -0.67 0.02 94.23 88.61 300 28.92 2628
0.01 -6.42 1.60 90.90 86.36 -4.10 2.70 91.83 87.31 -0.68 0.02 94.27 88.58 300 28.74 2619
0.015 -6.71 1.65 90.81 86.21 -4.47 2.80 91.64 87.03 -0.68 0.01 94.33 88.61 300 28.59 2645

r/n=60%
0.005 -8.87 2.09 89.87 84.87 -7.41 4.11 90.15 85.78 -1.37 0.04 93.84 88.47 300 28.49 2450
0.01 -9.19 2.14 89.74 84.71 -7.84 4.25 90.01 85.50 -1.37 0.04 93.92 88.51 300 28.34 2462
0.015 -9.45 2.20 89.66 84.60 -8.20 4.39 89.83 85.37 -1.36 0.04 93.99 88.54 300 28.44 2614
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Table 5.22: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 150 AND DIFFERENT r BY METHOD 1

True η ˆalpha β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -9.81 5.76 91.49 86.68 -2.54 8.37 91.77 87.23 -0.47 0.01 94.05 87.84 28.00 1032
0.01 -10.41 6.02 91.51 86.76 -3.02 8.73 91.73 87.06 -0.47 0.01 93.92 88.70 30.05 1065
0.015 -10.83 6.25 91.38 86.74 -3.38 9.09 91.64 86.97 -0.46 0.01 94.01 88.80 30.32 1070

r/n=80%
0.005 -12.13 7.27 90.69 86.43 -4.45 11.97 90.87 86.65 -0.74 0.02 94.04 88.52 29.90 831
0.01 -12.63 7.53 90.57 86.37 -4.90 12.41 90.72 86.49 -0.73 0.02 94.15 88.40 30.75 848
0.015 -13.10 7.76 90.42 86.27 -5.36 12.86 90.60 86.38 -0.72 0.02 94.24 88.56 31.49 874

r/n=60%
0.005 -17.55 10.17 89.15 84.60 -9.59 19.68 88.55 84.50 -1.48 0.04 93.71 88.27 29.62 645
0.01 -17.98 10.46 89.06 84.48 -9.98 20.35 88.35 84.41 -1.47 0.04 93.81 88.29 29.94 645
0.015 -18.30 10.74 88.91 84.41 -10.24 21.03 88.24 84.24 -1.44 0.04 93.91 88.35 29.97 645

Table 5.23: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 150 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -9.82 5.77 91.48 86.66 -2.54 8.37 91.79 87.18 -0.47 0.01 94.03 87.82 7.18 28.03 1054
0.01 -10.40 6.02 91.51 86.76 -3.02 8.73 91.73 87.06 -0.47 0.01 93.92 88.70 6.59 30.05 1087
0.015 -10.83 6.25 91.38 86.74 -3.38 9.09 91.64 86.97 -0.46 0.01 94.01 88.80 6.01 30.32 1091

r/n=80%
0.005 -12.11 7.27 90.70 86.42 -4.43 11.97 90.88 86.65 -0.74 0.02 94.02 88.53 6.22 26.02 910
0.01 -12.60 7.53 90.56 86.39 -4.84 12.43 90.72 86.48 -0.73 0.02 94.14 88.38 4.54 27.59 856
0.015 -12.94 7.78 90.43 86.28 -5.12 12.90 90.60 86.38 -0.71 0.02 94.22 88.53 4.67 28.31 863

r/n=60%
0.005 -17.55 10.17 89.18 84.62 -9.59 19.69 88.56 84.51 -1.48 0.04 93.71 88.26 6.05 23.78 593
0.01 -17.97 10.46 89.03 84.49 -9.96 20.35 88.35 84.41 -1.47 0.04 93.79 88.31 6.00 25.72 520
0.015 -18.29 10.74 88.93 84.41 -10.23 21.03 88.23 84.25 -1.44 0.04 93.91 88.37 6.00 27.00 635

Table 5.24: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.5, β = 1, n = 150 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -9.81 5.76 91.49 86.68 -2.54 8.37 91.77 87.23 -0.47 0.01 94.05 87.84 0 28.00 1174
0.01 -10.41 6.02 91.51 86.76 -3.02 8.73 91.73 87.06 -0.47 0.01 93.92 88.70 0 30.05 1212
0.015 -10.83 6.25 91.38 86.74 -3.38 9.09 91.64 86.97 -0.46 0.01 94.01 88.80 0 30.32 1201

r/n=80%
0.005 -12.10 7.27 90.69 86.44 -4.41 11.96 90.87 86.65 -0.74 0.02 94.04 88.53 300 30.73 2915
0.01 -12.59 7.53 90.57 86.39 -4.84 12.43 90.72 86.48 -0.73 0.02 94.14 88.38 300 30.56 2922
0.015 -12.94 7.78 90.43 86.28 -5.13 12.90 90.60 86.38 -0.71 0.02 94.22 88.53 300 30.64 2868

r/n=60%
0.005 -17.53 10.16 89.16 84.61 -9.57 19.68 88.55 84.50 -1.48 0.04 93.71 88.27 300 31.53 2700
0.01 -17.97 10.45 89.06 84.48 -9.97 20.35 88.36 84.41 -1.47 0.04 93.81 88.29 300 31.54 2669
0.015 -18.30 10.74 88.93 84.41 -10.24 21.03 88.24 84.25 -1.44 0.04 93.91 88.37 300 31.52 2678
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Table 5.25: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 150 AND DIFFERENT r BY METHOD 1

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iterations Time

r/n=100%
0.005 -15.56 16.73 90.44 86.03 -0.75 24.34 89.74 85.69 -0.58 0.01 93.76 89.40 27.42 1010
0.01 -15.61 17.31 90.62 86.51 -0.39 25.09 90.12 86.21 -0.55 0.01 93.79 88.62 30.81 1082
0.015 -15.58 17.91 90.63 86.53 0.00 25.98 90.13 86.25 -0.52 0.01 93.90 88.72 32.16 1192

r/n=80%
0.005 -17.83 21.60 89.64 85.93 -0.25 35.39 88.94 85.00 -0.87 0.02 93.83 88.23 31.03 874
0.01 -17.87 22.34 89.62 85.88 0.17 36.64 88.89 84.94 -0.83 0.02 93.92 88.35 31.69 872
0.015 -17.74 23.09 89.64 85.92 0.76 38.07 88.89 84.90 -0.79 0.02 94.01 88.53 31.19 866

r/n=60%
0.005 -24.91 32.20 87.58 83.27 -1.66 65.88 86.22 82.21 -1.71 0.05 93.48 87.89 31.02 653
0.01 -24.75 33.28 87.59 83.21 -0.77 69.32 86.20 82.22 -1.65 0.05 93.58 88.03 31.25 661
0.015 -24.46 34.42 87.59 83.20 0.30 73.41 86.22 82.14 -1.59 0.05 93.64 88.12 31.35 666

Table 5.26: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 150 AND DIFFERENT r BY METHOD 2

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -15.54 16.72 90.48 86.07 -0.74 24.34 89.78 85.71 -0.58 0.01 93.76 89.38 7.84 27.41 1200
0.01 -15.61 17.31 90.62 86.51 -0.39 25.09 90.12 86.21 -0.55 0.01 93.79 88.62 7.13 30.81 1282
0.015 -15.61 17.90 90.63 86.53 -0.02 25.97 90.13 86.25 -0.52 0.01 93.90 88.72 6.44 32.12 1307

r/n=80%
0.005 -17.92 21.58 89.59 85.92 -0.35 35.36 88.97 85.10 -0.87 0.02 93.84 88.25 7.06 26.40 965
0.01 -17.94 22.30 89.62 85.90 0.08 36.58 88.89 84.95 -0.83 0.02 93.94 88.41 6.24 29.10 1016
0.015 -17.72 23.09 89.64 85.92 0.78 38.07 88.89 84.90 -0.79 0.02 94.01 88.53 4.49 30.02 1028

r/n=60%
0.005 -24.88 32.19 87.59 83.26 -1.62 65.87 86.24 82.20 -1.70 0.05 93.47 87.91 6.62 23.98 695
0.01 -24.74 33.28 87.58 83.21 -0.76 69.32 86.22 82.24 -1.65 0.05 93.58 88.09 6.20 26.09 727
0.015 -24.45 34.41 87.62 83.20 0.31 73.40 86.23 82.14 -1.59 0.05 93.65 88.12 6.01 28.21 757

Table 5.27: BIAS AND MSE OF MLES α̂, β̂ AND η̂ for α = 0.75, β = 1, n = 150 AND DIFFERENT r BY METHOD 3

True η α̂ β̂ η̂
Bias MSE 95% 90% Bias MSE 95% 90% Bias MSE 95% 90% Iter Initial Iter MLE Time

r/n=100%
0.005 -15.56 16.73 90.44 86.03 -0.75 24.34 89.74 85.69 -0.58 0.01 93.76 89.40 0 27.42 1136
0.01 -15.61 17.31 90.62 86.51 -0.39 25.09 90.12 86.21 -0.55 0.01 93.79 88.62 0 30.81 1212
0.015 -15.58 17.91 90.63 86.53 0.00 25.98 90.13 86.25 -0.52 0.01 93.90 88.72 0 32.16 1232

r/n=80%
0.005 -17.78 21.59 89.64 85.93 -0.19 35.39 88.94 85.01 -0.86 0.02 93.83 88.23 300 32.36 2771
0.01 -17.85 22.33 89.63 85.91 0.19 36.64 88.89 84.95 -0.83 0.02 93.92 88.39 300 31.97 2880
0.015 -17.72 23.09 89.64 85.91 0.78 38.07 88.89 84.90 -0.79 0.02 94.01 88.53 300 32.00 2840

r/n=60%
0.005 -24.89 32.20 87.59 83.28 -1.63 65.87 86.23 82.21 -1.70 0.05 93.49 87.92 300 32.88 2659
0.01 -24.74 33.27 87.59 83.21 -0.77 69.30 86.21 82.22 -1.65 0.05 93.58 88.04 300 32.82 2633
0.015 -24.47 34.41 87.61 83.20 0.28 73.40 86.23 82.14 -1.59 0.05 93.65 88.12 300 32.34 2625
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Chapter 6

Illustrative Examples

In this Chapter, we provide three examples to illustrate the model and the infer-

ential methods developed in the preceding chapters.

6.1 Lifetimes of small electric carts

Data on times (in months) to first failure of 20 small electric carts have been

presented by Zimmer et al. (1998), and these are presented in Table 6.1. These small

electric carts were used for internal transportation and delivery in a large manu-

facturing facility. This manufacturing company has 20 small electric carts for full

service and we assume that theses electric carts form a load sharing system, meaning

that, when an electric cart fails, the remaining carts have an increased shared load.

Moreover, the small electric carts system shuts down if 10 carts fail. So, this can be

considered as a 10-out-of-20 system.
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Table 6.1: Times to first failure of electric carts

0.9 1.5 2.3 3.2 3.9 5.0 6.2 7.5 8.3 10.4

11.1 12.6 15.0 16.3 19.3 22.6 24.8 31.5 38.1 53

Under this setup, based on the data in Table 6.1, we determined the MLEs,

standard errors and confidence intervals for α, β and η in Table 6.2. Here, the

estimate of η is negative, which means that there is no stress added when failures

occur in this data. Though this is not an example of a r-out-of-n system, we use it

here as an illustration.

Table 6.2: MLEs and standard error of the parameters and corresponding 95% and
90% CIs in electric carts example

α̂ β̂ η̂

MLE 0.815 4.481 -0.167

Standard Error 0.168 0.022 0.006

95% CI (0.486,1.144) (4.437,4.525) (-0.179,-0.154)

90% CI (0.539,1.091) (4.444,4.518) (-0.177,-0.156)

We then employed parametric bootstrap procedure using these MLEs’ (based on

10000 bootstrap runs) to construct a quantile-quantile plot (QQ plot), which is a plot

of the sample values versus the average values determined from the bootstrap runs.

This QQ plot is presented in Figure 6.1:
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Figure 6.1: QQ plot of first failures of electric carts data

We observe from Figure 6.1 that all of the points lie quite close to a straight

line to reveal that the BS r-out-of-n model is quite reasonable for these data. In

fact, the correlation coefficient between the simulated values and the sample values is

0.994. The P-value, (values of correlation falling determined from 10000 simulations

in [0,0.994]) turns out to be 0.983. This provides a strong evidence for the model

proposed in Section 2.2 for these data.

6.2 Lifetimes of 101 Strips of Aluminum Coupon

Birnbaum and Saunders (1958) reported the lifetime of aluminum strips, and these

are given in Table 6.3. In their study, periodic loading was applied to the strips with

a frequency of 18 hertz (cycles per second). Also, a stress of 21,000 psi (pounds per
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square inch) was continuously applied to the strips. Suppose we assume all these

strips to collectively form a system, and that it would function until 80 of the strips

fail.

Table 6.3: Lifetimes of 101 Strips of Aluminum Coupon

370 706 716 746 785 797 844 855 858 886

930 960 988 990 1000 1010 1010 1016 1018 1020

1055 1085 1102 1102 1108 1115 1120 1134 1140 1199

1200 1200 1203 1222 1235 1238 1252 1258 1262 1269

1270 1290 1293 1200 1310 1313 1318 1330 1355 1390

1416 1419 1420 1420 1450 1452 1457 1458 1481 1485

1502 1505 1513 1522 1522 1530 1540 1560 1567 1578

1594 1602 1604 1608 1630 1642 1647 1730 1750 1750

1763 1768 1781 1782 1792 1820 1868 1881 1890 1893

1895 1910 1923 1940 1945 2023 2100 2130 2215 2268

2240

We fitted the r-out-of-n system model based on the BS distribution for the MLEs,

standard error and confidence interval in Table 6.4:
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Table 6.4: MLEs and standard error of the parameters and corresponding 95% and
90% CIs in aluminum coupon example

α̂ β̂ η̂

MLE 0.4285 1534.991 0.0100851

Standard Error 0.0377 0.0008 4.906×10−7

95% CI (0.3546,0.5024) (1534.935,1535.047) (0.0100841,0.0100861)

90% CI (0.3664,0.4905) (1534.990,1534.992) (0.0100843,0.0100859)

Here again, we used these estimates to carry out a parametric bootstrap method

(based on 10000 bootstrap runs) to construct a QQ plot, which is presented in Figure

6.2 below:

Figure 6.2: QQ plot of lifetimes of aluminum strips data

All the points lie quite close to a straight line, except for one point at the left

end of the plot. The correlation coefficient is 0.994, and the corresponding P value
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determined from 10000 simulations is 0.957. This provides a strong evidence for the

suitability of the model in Section 2.2 for these data.

6.3 Type-II SOS data

Type-II SOSs of size 80 were generated from r-out-of-n F-system having a base-

line distribution function as BS(0.4,1) with η=0.03. For convenience, these data are

presented in Table 6.5.

Table 6.5: TYPE-II SOS data of n=100, r=80, generated from BS(0.4,1) at η=0.03

0.3114176 0.3577712 0.3684494 0.3961078 0.4346105 0.4379220 0.4835562 0.5199460

0.5219281 0.5258875 0.5760557 0.5812905 0.5848958 0.5944515 0.5962252 0.6114193

0.6201812 0.6236542 0.6384021 0.6415310 0.6488707 0.6550551 0.6767554 0.6990025

0.7040638 0.7062574 0.7095626 0.7205109 0.7257680 0.7265536 0.7285592 0.7291695

0.7294989 0.7348153 0.7375594 0.7379760 0.7478291 0.7492575 0.7507252 0.7509777

0.7543550 0.7543629 0.7689378 0.7727302 0.7729789 0.7794213 0.7893797 0.7932303

0.7959455 0.7990022 0.8007871 0.8043308 0.8049593 0.8076435 0.8095390 0.8113607

0.8132980 0.8178583 0.8199980 0.8204087 0.8217829 0.8222121 0.8242837 0.8253971

0.8272018 0.8307985 0.8325746 0.8351007 0.8364394 0.8372908 0.8375984 0.8430772

0.8437732 0.8439731 0.8440389 0.8448930 0.8506242 0.8507807 0.8508000 0.8514420

Here we use the proposed method to perform simulations and determine the MLEs,

standard error and confidence interval in Table 6.6.
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Table 6.6: MLEs and standard error of the parameters and corresponding 95% and
90% CIs in TYPE-II SOS data

α̂ β̂ η̂

MLE 0.669 1.389 0.048

Standard Error 0.068 0.004 0.0004

95% CI (0.537,0.802) (1.382,1.396) (0.0467,0.0483)

90% CI (0.558,0.780) (1.383,1.395) (0.0468,0.0482)

We carried out a parametric bootstrap method (based on 10000 bootstrap runs)

to construct the QQ plot:

Figure 6.3: QQ plot of TYPE-II SOS data from Balakrishnan et al. (2015)

We observe a reasonable fit for this data. The correlation coefficient is 0.990 and

the corresponding P value is 0.3882. This suggests that the model in Section 2.2 is
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very good to fit the data.
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Chapter 7

Conclusions and Remarks

In this thesis, inference has been developed for r-out-of-n F-system with equal

load-sharing based on BS lifetime distribution. The components of such a system

fail sequentially, and the system failure occurs when the rth component fails. Failure

of a component often induces a higher load on surviving components, and increases

the hazard rate. In developing a model, we have assumed the load to be equally

redistributed to all the surviving components, which is referred to as an equal load

sharing system.

With the increasing load due to each failure, the surviving components are more

likely to fail. By assuming the relationship between baseline hazard function and the

hazard function upon each failure as hj(x) = ηjh0(x) with positive ηj, we assumed a

link function of the form ηj = ejη. Thus, we get a model consisting of three param-

eters, with parameters α and β coming from the BS distribution and one additional

parameter η coming from the link function.

To determine the MLEs of the model parameters using the Newton-Raphson

method, we have discussed three different methods for providing initial values for
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α, β and η. The pseudo complete sample method replaces the censored data with

the rth value, then finds the MMEs to provide them based on the complete sample as

initial values. The Type-II right censored estimator is numerically obtained by equat-

ing the first derivative of the loglikelihood with respect to β, and then calculates the

initial value of α as a pure function of β̃. Stochastic approximation method, based

on the censored sample, uses pseudo complete sample method to obtain the first es-

timates, and then generates the remaining n− r observations from the left-truncated

BS distribution and finds new MLEs. This process is repeated many times, and then

the mean of the generated MLEs are given as the initial values.

Based on the extensive Monte Carlo simulation study carried out, the pseudo

complete sample method takes least time and least number of iterations to converge

to MLEs. However, Type-II right censored method is better in a few cases for large

values of α and large sample sizes. Thus, overall, we would recommend the use of

the pseudo complete sample method for providing the initial values for the numerical

iterative procedure to determine the MLEs.

Finally, though the BS distribution is a flexible lifetime distribution, there are

some generalizations of it that can be used in this context. For example, it would be

of great interest to extend the proposed method to the case of Generalized Birnbaum-

Sauders distributions discussed by Sanhueza et al. (2008). This is a possible future

research problem that one may consider.
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