DOCUMENTATION AND TOOLS TO SUPPORT WORST CASE EXECUTION TIME ANALY SIS



DOCUMENTATION AND TOOLS TO
SUPPORT WORST CASE EXECUTION
TIME ANALYSIS

By
JIAN SUN, B.S.

A Thesis v
Submitted to the School of Graduate Studies
in partial fulﬁlm‘ent of the requirements for the degree of

Master of Science
Department of Computing and Software
McMaster University

© Copyright by Jian Sun, April 2005



MASTER OF SCIENCE (2005) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
Documentation and Tools to Support Worst Case Execution Time Analysis

AUTHOR: Jian Sun, B.S.
(Shandong Normal University, China)

SUPERVISOR: Dr. Alan Wassyng

NUMBER OF PAGES: xii, 141

ii



Abstract

Knowing the timing behavior is essential when designing and inspecting real-time
systems. Especially, the Worst Case Execution Time (WCET) of a program is of
the utmost importance for schedulability and other timing analyses. The industrial
deployment of critical systems presents an urgent need for WCET analysis methods
and tools.

This thesis represents how the Display documentation method, introduced by
Parnas and his colleagues in [32], is extended and used to aid WCET analysis and
.. WCET Tool development. The work is performed within a Reverse Engineering
Project, which has to recover high-level requirements of IBM 1800 assembler appli-
cations. Specifically, the displays are (primarily) manually composed from code, and
then used by timing analysts for program understanding and flow analysis, which are
essential phases in timing analysis. The thesis combines the Display documentation
method with the WCET analysis techniques to solve several general problems in de-
termining the upper bound o% program execution time. It also includes a detailed
example of a WCE”I: analysis tool based on the documentation method.

iil



MSe.

Thesis - Jian Sun

iv

McMaster - Computing and Software



Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor Dr. Alan
Wassyng for his guidance, support, and faith throughout the research of this thesis,
and to Drs. David L. Parnas and Robert Baber who also helped to supervise my
research and provide direction and advice.

I wish to thank Dr. Mark Lawford, Dr. Wolfram Kahl, Dr. Ridha Khedri, Doris
Burns and all my colleagues in the Reverse Engineering Project for their help and
support during the research, and I would like to thank all the members of the Software
. Quality Research Laboratory. _

I also thank Ontario Power Generation Inc. for the examples on which I could
test my ideas and tools.

Special thanks to my wife, my son and my parents, for their endless love, encour-
agement and support. =

Last, but not least, I would‘like to acknowledge the financial support from Ontario
Graduate Scholarship of Science and Technology (OGSST) and the Natural Science
and Engineering Reigearch Council (NSERQ).



MSc. Thesis - Jian Sun McMaster - Computing and Software

vi



Contents

Tt O B N N = -

Abstract iii
Acknowledgements iii
List of Figures x
1 Introduction
1.1 Motivation . . . . . . . . . . e
1.2 A Reverse Engineering Project Background . . . . . . . ... ... ..
1.2.1 The Goal of the Project . . .. ... ... ...........
1.2.2 IBM 1800 Assembler Language . . . ... ... ........
1.2.3 Reverse Engineering and its Difficulties . . . . . ... ... ..
1.3 Contributions and Thesis Scope . . . . ... ... ... ... .....
4
2 Overview and Literature Survey of WCET Analysis 7
2.1 Overview of WCET Analysis . . . . . . . . . ..o oo v ... i
2.1.1 Why analyze the WCET? .. ... ............... 7
2.1.2 What _features should be analyzed? . ... .......:.. 8
2.2 Progtam Flow Analysis . . . . .. ..... ... ... ......... 9
2.2.1 Flow Graph Generation . ... .. ............... 9
2.2.2 Infeasible Path Identification . . . . . . ... ... ....... 10
2.2.3 Loop Identification and Loop Bound Determination . . . . . . 11
2.3 Low-level Analysis . . . ... ... ... ... ... ... ...... 12
2.3.1 Hardware Feature Identification . . . . .. ... ... ..... 12

vii



MSc. Thesis - Jian Sun McMaster - Computing and Software
232 BImation . . . . . .« o . b e e e e e m e e e e e 13

2.3.3 Timing Graph Generation . . . ... ... ... ........ 13

24 WCET Calculation . . . . ... .. ... ... ... ... ....... 13
2.4.1 Tree-based calculation method . . . . . . .. .. ... ..... 14

2.4.2 Path-based calculation method . ... .. ... .. ...... 14

2.4.3 IPET calculation method . . ... ... ... ......... 15

2.5 WCET Analysis Tool . . . . .. ... ... ... ... .. ....... 17
2.5.1 Interactive Tool . . . . . . .. ... ... .. ... ....... 17
2.5.2 WCET Tool Architecture . . ... ... .. ... ....... 17

3 Literature Survey of Precise Documentation of Software 19
3.1 Overview of a precise documentation approach . . . . . ... ... .. 19
3.1.1 Functional Documentation . . . . . .. ... ... ....... 19
3.1.2 LD-Relations and Program Description . . . . . ... ... .. 21

3.2 Tabular Representation in Functional Documentation . . . . .. . .. 22
3.2.1 Why use tabular expressions? . . . ... ... ......... 23
3.2.2 Program Function Table . . . ... ... .. ... ....... 24
3.2.3 Table Operations and Table Tools . . . . ... ... ...... 26

3.3 The Display Documentation Method . . . . ... ... .. ...... 27
3.3.1 What is Display? . .. .. .. .. Y e e e e e e 27
3.3.2 A Display Exa}mple ........ o 28
3.3.3 Display Documentation for Software Inspection . .. ... .. 32

3.4 Display Documentation for Program Execution Time Analysis . . .. 33
3.4.1 Th(:, relatiohship between software verification and timing analysis 33

3.4.2 Why use Display to analyze WCET? . . ... ... ...... 34

4 General Difficulties in the WCET Analysis 35
4.1 Overview of WECT analysis difficulties . . . . . ... ... ...... 35
4.2 Decomposing Long Programs . . . ... ... ... ... ....... 37
4.2.1 Function Table and Display Construction . . . . . . . ... .. 37
4.2.2 Subroutine Invocation Identification . . . . . . . ... ... .. 40

4.3 Determining Loop and Loop Properties . . . . . . .. ... ... ... 40

viil



McMaster - Computing and Software MSc. Thesis - Jian Sun

4.3.1 Loop Identification . . ... .. ... ... ........... 40
4.3.2 Loop Bound Determination . .. ... ............. 42
4.3.3 Loop Type Classification . . . . .. .. ... ... ....... 43

4.4 Identifying Infeasible Paths . . ... ... ... ... .. ....... 44
4.4.1 Infeasible paths caused by MDX statements . . ... ... .. 44
4.4.2 Use tables to determine flow feasibility . . . ... ... .. .. 46
4.4.3 Example of using tables to determine loop bound . . . . . .. 47

4.5 Understanding Program Behaviors . ... ... ... .. .... ... 48
4.5.1 Program Statement Interpretation. . . . ... ... ... ... 49
4.5.2 Function Extraction . .. ... .. ... ............ 50
4.5.3 Collecting Supplementary Information . . ... ... ... .. 51
4.5.4 Function Table Abstraction . ... ... ............ 53

5 Extended Display Method for WCET Analysis : 55
5.1 Display Documentation Extension . . . . . ... ... ... ...... 95
5.1.1 Timing variable . . . . . . . .. ... ... ... ... .. ... 55
5.1.2 Program Flow Graph . . . . . ... .. ... .. ........ 57
5.1.3 Program Flow Property variable . . . . . . ... ... ..... 59
5.1.4 Using extended displays for WCET analysis . . . .. ... .. 60

5.2 Constructing Displays from Code . . . .« .. .. ... ... ..... 63
5.2.1 Source Code of the Sample Segment . . . . . .. ... .. ... 63
5.2.2 Tabular Expre;ssion of the Sample Segment . . . . . . .. ... 66
5.2.3 Fungtion Table Construction Methods . . . . ... ... ... 66

53 An exampl.e of extended timing analysis display . . . ... ... ... 73
6 The WCET Analysis Tool 79
6.1 The WCET analysis tool overview . . . . . . ... . ... ....... 79
6.1.1 Overview of the WAT tool and WAT Architecture . . . . . . . 79
6.1.2 The WCET tool environment . . . . . ... ... ....... 82

6.2 WCET Analysis Tool Description . . . . . ... ... ......... 83
6.2.1 Sub-tool Functional Overview . . . ... .. ... ... .... 83
622 Toolstroshure : . < s 5+ + « s s s w5 a5 s 56 2 5 5 6 % 8 5 4 & & 88



MSc. Thesis - Jian Sun McMaster - Computing and Software

6.3 Using the WCET Analysis Tool . . . . .
6.3.1 Start WCET Analysis . . .. ..
6.3.2 View Program Display . . . . . .

6.3.3 Program Flow Property Analysis

6.3.4 Generate Timing Graph . . . . .
6.3.5 WCET Calculation . . . ... ..

7 Conclusions and Future Work
Bibliography
Appendix A: Example WAT Requirements

Appendix B: WAT Tool Specifications

103

105

111

121



List of Figures

1.1

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4

Reverse Engineering Tool Suite Architecture . . . . . . . ... .. .. 3
An Example Program . . . . ... ............. ... .... 11
Dijkstra’s longest path search algorithm . . ... ... ... ... .. 15
IPET Goal and Constraint Functions . . . . . ... ... ....... 16
Overview of Table Tool System . . ... ... ............. 27
BSI-DC-BSC Subprogram Invocation Example . . . . . ... ... .. 41
BSI-DC-BSI Subprogram Invocation Example . . . . ... ... ... 41
Original Control Flow Graph of DI2F3 . . . . . . ... ... ... .. 42
Refined Control Flow Graph of DI2F3 . . . . . ... ... ... ... 45
Original /Refined Flow Graphs of the Program in Figure 2.1 . . . . . 46
Function Tables of thg Program in Figure 2.1 . . . . ... ... ... 47
Use Tables to Determine Loop Bound of the Program in Figure 2.1 . 48
Werm Up Bxample Segment . . . « o« s o s s s s o w5 5 53 5 5 5 5 » 49
Low-level Function Table of Warm Up Segment . . . . ... ... .. 51
Warm-up Flag and Accumulator . . . . . . .. ... ... ....... 52
Warm-up Flag Setting . . . ... ... ... ... ... ..., 52
Abstract Function Table of Warm Up Segment . . . . . . .. ... .. 53
Timed function table example . . . . .. ... ... ... ....... 56
Specification of time variable T . . . . .. ... . . ¢+ .o eu 57
GXL flow graph node and edge format . . . .. ... .. ... .... 59
Program Flow Property Variables . . . . . .. .. ... ........ 61

xi



MSc. Thesis - Jian Sun McMaster - Computing and Software
5.5 TRBFB and TRBFF codeslice . ... ................. 65
5.6 TRBFB and TRBFF slice function table . . . . . ... ... ..... 66
6.1 WCET Tool Architecture. . . . . ... ... ... ... .. ...... 81
6.2 WAT Class Invocation Hierarchy . .. ... ... ... ........ 88
6.3 Open a WCET Analysis Case . . . . .. ... .. ........... 91
6.4 Display Viewer . .. .. ... ... . ... 91
6.5 Program Flow Analysis Panel . . . .. ... ... ........... 92
6.6 Subroutine Analysis Panels. . . . . .. ... ... ........... 93
6.7 Loop Analysis Panels . . . . .. ... ... ... ............ 94
6.8 Infeasible Path Analysis Panels . . . .. ... ... .......... 96
6.9 Infeasible Path Annotation Panels . . . . . . ... ... ........ 97
6.10 TRBFB Original CFG Script Representation . . . . . . ... .. ... 98
6.11 TRBFB Timing Graph Script Representation . . ... ... ... .. 99
6.12 WCET Output of TRBFB . . . . . .. ... ... ... ........ 101

4



Chapter 1
Introduction

This chapter provides an introduction of this thesis, including the motivation, project
background, contributions and thesis outline.

1.1 Motivation

Industrial real-time systems impose timing requirements on functions implemented
in the applications. The requirements imply lower/upper limits on the execution
time of programs, i.e., it has to be guaranteed that the execution of a task does
not take shorter/longer than the specified amount of time. Thus, extracting program
execution timing properties is very important for software design especially in schedu-
lability analysis and scheduling, and for testing and verification. In general, access to
requirements speciﬁ'éation and relevant design documents is desirable for performing
the extraction task. However, in most cases, such documents are not complete nor
accurate for inspectors to review the program.

This thesis presents a method that can be used for software designers and im-
plementers to specify relevant program timing information precisely in their system
documentation for further timing analysis, inspection and verification. The method
is based on the Display Method, a form of precise documentation of well-structured
programs introduced by Parnas, Madey and Iglewski. In [32], the authors do not

explicitly address timing behavior. However, timing analysis can be viewed as a ver-

1



MSc. Thesis - Jian Sun McMaster - Computing and Software

ification activity, and the analysts need to refer to such documents that can specify
the programs’ behavior precisely, systematically and readably. Thus, we plan to add
a new variable T' representing program execution time in the tabular expressions
(function tables) [17][34] for timing analysis. The method has been used as the basis
of a Timing Analysis Tool for a Reverse Engineering Project at McMaster University,

discussed in the following sections.

1.2 A Reverse Engineering Project Background

Originally, our target was to recover timing information during the reverse engineering
of legacy assembler control applications for which we have little or no requirements or
design documentation. This work was motivated by the project, Reverse Engineering
of High Level Requirements from Assembly Code, which is funded by Communica-
tions and Information Technology Ontario (CITO) and Ontario Power Generation
(OPG). Five teams within the Department of Computing and Software at McMaster

- University, as well as engineers from OPG are involved in the project.

1.2.1 The Goal of the Project

The goal of the project is to create methods and tools to assist a developer in reverse
engineering a legacy assembly language program to a high level requirements specifica-
tion that is independent of arb‘itrary design decisions (but still captures the rationale
of those decisions in terms of non-functional requirements). The methods will not
just test the requiré;nents against the original program for consistency, but will also
provide additional assurances that the requirements have been consistently captured
and documented. The entire process will be supported by tools that make the tasks
easier and pro‘duce more reliable results. The theoretical results from the project will
have practical application to the problem of reverse engineering requirements from
legacy assembler programs.

In this project, like many, we have no software requirements and no software
design documents. We want to recover program information, such as blocks of code

that implement cohesive functionality, and to use this information to specify high-

2



McMaster - Computing and Software MSc. Thesis - Jian Sun

level requirements. The target software is assembler code, and the program is not
well structured and program variables as well as individual functions are not identified
in any obvious way. The planned tool suite architecture of the reverse engineering

project is shown in Figure 1.1. Note that the arrows in the figure represent data flow.

[

I
Requirements Verification/Validation Tools Requirements Repository
(Scenario Analysis, Testing, etc. ) L

T

Timing Analysis Tool [«/|——
L

I Functionality Analysis & D
Design Recovery Tools

C C
Semantic Analysis Tools Graph Analysis Tool
Semantic Analysis Library ﬂA G@GenerdimTods&LibtayJJ

Assembly Representation Library and Emulators

Figure 1.1: Revérse Engineering Tool Suite Architecture

In particular, the Timing Analysis Tool (TAT) is responsible for aiding timing
analysts performing program flow analysis and determining the timing constraints
in the assembly programs. Those constraints will be used to specify the timing re-
quirements in 'the reverse engineered high-level requirements. The above architecture
shows how the TAT fits into the suit. In our case, we focus on exploring the Worst
Case Ezecution Time (WCET) Analysis Tool (WAT), a specific TAT, which calcu-

‘lates the worst (upper limit) possible execution time of a piece of code. Although the
WCET can refer to both upper and lower bounds, we will be interested primarily in

upper bounds.



MSc. Thesis - Jian Sun McMaster - Computing and Software

1.2.2 IBM 1800 Assembler Language

The provided program, Boiler Pressure Control (BPC) code running on an emulator
of the IBM 1800 Data Acquisition and Control System, is one of the modules which
control the power generation plant. The application was written in a particular
assembler language of the IBM 1800 machine introduced in the 1960s. The legacy
machine was designed to handle a wide variety of real-time applications, including

process control and high-speed data acquisition.

The IBM 1800 assembler-language has more than 30 basic statements used to
store/retrieve information, perform arithmetic and logic functions, control program
and other operations. It also supports Macro assembler manipulations. Due to the
small register space, most of the program instructions and data are stored in core
storage and are manipulated through the registers such as Instruction Register (I),
the Accumulator (Acc) and Accumulator Extension (Q) registers, and three Index
Registers (XR1, XR2, and XR3). All of the registers are 16 bits in length, and
the instructions are either in 16-bit short form or in 32-bit long form. Furthermore,
some instructions can perform multiple tasks. For example, the M DX (Modify Index
and Skip) instruction can (1) modify the value of some storage unit and (2) perform

alternative branch based on the result of the calculation.

The 1800 assembly programs were written in a strict format that includes six
fields: optional labels, opcodeg, optional format bit, optional tag bit, operands, and
optional comments. Each of the fields has its well-defined column number ranges. The
programs can be asgembled'by the 1800 assembler into either binary code for execu-
tion, or assembly list (LST) data files. In addition to the original assembly program,
the LST file includes the memory address assigned to each instruction, hexadecimal
object represe‘ntation of instructions and data, and other valuable information. One
of the groups in the Reverse-Engineering project is working on exploring automatic
tools to generate control flow/data flow graphs by extracting relevant information
from the LST files. The tool offers control flow/data flow graphs as output in GXL
(Graph eXchange Language) format . Such control flow/data flow information is

required for further timing and functionality analysis in the project.

4



McMaster - Computing and Software MSc. Thesis - Jian Sun

1.2.3 Reverse Engineering and its Difficulties

In [47][48][49], reverse engineering is defined as “analyzing a subject system to identify
its current components and their dependencies, and to extract and create system
abstractions and design information.” Currently, most reverse engineering research
involves program understanding, and focuses on code analysis including subsystem
decomposition, concept synthesis, design and programming pattern matching, and
dependence analysis.

However, the code does not contain all the information that is needed for pro-
gram understanding. Also, abstractions extracted from the code generally miss the
big picture behind the evolution of the software system. Typically, the software archi-
tecture, design and implementation patterns and physical /business constraints known
by the forward engineers who design and implement the software, are not obvious or
complete to the reengineers. Moreover, over time, other features, such as software up-
dates, staff migration, document decay, and an increase in complexity make it harder

for program reviewers to figure out the program behavior. Thus, it is extremely im-

~ portant for both forward engineering and reverse engineering staff to document their

work precisely and systematically for further inspection or verification.

1.3 Contributions and Thesis-Scope

This thesis is addressed to illustrate how we successfully applied a precise documen-
tation method to WCET analysis, and developed an associated tool in a reverse

engineering project="The following is a list of specific contributions:
e Extended the Display Method for Software Execution Time Analysis
e Constructed a documentation-driven WCET Analysis Tool Architecture

e Implemented several components of the WAT suite to aid analysts in solving

several general timing analysis problems met in a reverse engineering project

The remainder of this thesis is divided into four major parts. Firstly, chapters 2 and
3 introduce the literature of WCET analysis and the Display documentation method.

)



MSc. Thesis - Jian Sun McMaster - Computing and Software

Next, chapter 4 introduces the difficulties met in the practical project. Then, chapters
5 and 6 represent how the Display method is extended and applied in constructing
precise documents to aid both WCET analysis and tool development. Note, some
of the tools are explored for solving the problems in chapter 4. Further, chapter 7
concludes solutions and suggests future work. Finally, other relevant information is

attached in Appendixes.



Chapter 2

Overview and Literature Survey of
WCET Analysis

This chapter briefly introduces concepts in WCET analysis, and references relevant

literature.

2.1 Overview of WCET Analysis

The goal of WCET analysis is to generate a safe (no underestimation) and tight
(small over-estimation) estimate of the longest execution time (upper bound) of the
program [27]. Note that generally, WCET can refer to both upper and lower bounds,
but conventionally, these are referred to WCET and BCET (Best Case Execution
Time) analyses, respectively. In this thesis, only the upper bound is considered

because BCET analysis is similar to WCET analysis.

2.1.1 Why analyze the WCET?

The concept of a worst-case execution time for a program has been part of the real-
time community for many years, especially when doing schedulability analysis and
scheduling [44]. In particular, many scheduling algorithms and all schedulability
analysis assume some form of knowledge about the worst-case timing of an essential

task.



MSc. Thesis - Jian Sun McMaster - Computing and Software

Generally, in any product development where timelines are important, WCET
analysis is a natural tool to apply. This is because designing and verifying hard
real-time systems can be simplified by using WCET analysis instead of extensive and
expensive testing. For instance, WCET estimates can be used to verify that the
response time of a critical piece of code is short enough, that interrupts handlers
finish quick enough, or that the sample rate of a control loop can be maintained.
Moreover, WCET estimates can be used to determine whether performance goals are
met for periodic tasks, to check that interrupts have sufficiently short reaction times,
to find performance bottlenecks, to assist in selecting appropriate hardware and for

many other purposes [8].

2.1.2 What features should be analyzed?

To determine the upper bound of execution time of a program, WCET analysis takes
into account program flow information, hardware/low-level performance effects and
appropriate calculation methods [8]. Correspondingly, the analysis phases are divided
into flow analysis, low-level analysis and WCET calculation. Briefly, flow analysis
extracts and represents program flow information that provides information about
possible ways the program can execute, which functions get called, and how many
times loops iterate. Low-level analysis determines-the execution time of each basic
block, a piece of code that is executed in sequence (contains no jumps and branches,
and there are no jumps into the sequence). Further, given the flow information and
the execution time of each basic block, the WCET calculator is responsible for finding
the program path that takes the longest time in the entire target program.
Moreover, program execution time analysis generally is performed in specific cir-
cumstances and under particular conditions, and when performing the WCET esti-

mation, norm‘ally, it is assumed that:
e there are no interfering background activities
e the program execution is finite

e the program cannot be interrupted nor preempted by others

8



McMaster - Computing and Software MSc. Thesis - Jian Sun

2.2 Program Flow Analysis

Program flow analysis extracts and identifies the possible ways a program can ex-
ecute. Conventionally, the program’s executable paths are represented in directed
(flow) graph form, in which nodes are executable instructions or basic blocks, and
directed edges present the execution sequence. Thus, the task of the flow analysis
can be divided into a set of subtasks such as: flow graph generation, path feasibility

identification, and loop bound determination.

2.2.1 Flow Graph Generation

In general, the structurally possible flows of a program can be extracted from either
the program source code or compiled code, and flow graphs constructed through the

resources discussed below.

e Compilers: Some computer language compilers not only can convert high-level
language code into object code, but generate flow information during compiling.
For example, in [9], the researchers introduced a flow analysis module which
tightly coupled with their compiler to collect flow information and generate a

control flow graph.

e Assemblers: As well as interpreting assembler code into object code, some as-
semblers also can provide flow information. For instance, as mentioned in 1.2.2,
the IBM 1800 assembler‘can generate LST data files including instruction ad-
dressing inforrpation which indicates the execution flow. In the project intro-
duced in 1.2,.3, flow graph generation tool was developed to generate GXL

format flow graphs [12].

e Libraries: The hardware/software vendors normally provide product libraries
(and manuals), in which some hardware/software features are specified, and

such knowledge is valuable in determining accurate flow information.

e Implementer’s annotations: So far, in some WCET analysis methods [10][11],
the flow information is given by manual annotations from designers and imple-

menters rather than by fully automatic tools. This is because some program

9



MSc. Thesis - Jian Sun McMaster - Computing and Software

flow properties, e.g. the maximum iterations of a loop slice, are very hard for
tools or program reviewers to figure out, but known by the designers and imple-
menters. Other research work tries to explore computer-aided tools to reduce
the dependence on manual interventions, rather than attempt to fully automate
the flow information extraction. In other words, automatic tools are designed
for extracting some of the flow structure, and manual annotations are helpful

in supplying and refining the solutions.

However, these graphs may have a huge number of possible execution cases or may
be unmanageable in size because infeasible paths may increase the graph complexity
exponentially. Hence, analysts have to impose constraints on the graphs to decrease

the complexity.

2.2.2 Infeasible Path Identification

Infeasible paths are program paths that cannot be executed. Normally, analysis of
finding infeasible paths is important to decrease the complexity of a generated flow
graph and makes the WCET analysis more efficient, but it is not necessary to find
every infeasible path because the path may be safe within the context of a WCET
analysis. Moreover, feasible paths must not be noted as infeasible since it might lead
to an underestimation.

In general, infeasible paths‘may be caused by either semantic or syntactic reasons.
For instance, ﬁgure’Q.l shows an example program [8] containing a semantically in-
feasible path. In ﬁarticular, in the loop body, the branch condition of the second
if — then — else statement, z = 1, is never valid, i.e. statement (S3), z := = + 2,
will never be executed. A detailed explanation is given in 4.4. Moreover, in 4.4, an
example of a.I‘l infeasible path cased by syntactic interpretation of IBM 1800 machine
statements is described. In [5][10] a Flow Information Language was used to express
flow constraints as arithmetic relation expressions for WCET analysis. In particular,
the language can be used to model flow graphs as scopes where a scope is defined as a
certain repeating or differentiating code segments in a program like a function call or

iteration loop, annotated with flow constraints, named facts. Some of the constraints

10



McMaster - Computing and Software MSc. Thesis - Jian Sun

/** Input limits for z : 0 < z < 3 **/
readin(z);
While (x < 4) Do {
if (x<B) then w =2 *2; (S1)
else z:=z+1; (
if (x=1)thenz :=x+2; (S3)
else z .=z +1; (

Figure 2.1: An Example Program

can be generated automatically e.g. ¢ f —then —else exclusive branches, and some are
annotated manually for items such as loop bounds and infeasible path identification.

If given appropriate documentation, flow information such as feasibility knowledge
can be obtained from both source code and relevant documents. However, if there is
no relevant documentation, as in many reverse engineering projects, or only part of the
.~ documentation is provided, it is much harder for analysts to extract such information.

In some cases, they depend on designers’ and implementers’ annotations.

2.2.3 Loop Identification and Loop Bound Determination

Knowing the maximum number of loop iterations, called the loop (upper) bound, is
required for getting a tight WCET solution. In [5][10], the loop bound information
is obtained from manual annotations, and in [22][25] relevant research work is aimed
at performing loop bound approximation automatically or semi-automatically.

The difficulty of determining the loop bound is largely dependent on how complex
the loops are. For exé.mple, nested loops and recursion structures make it much harder
to analyze an:i understand iterative behavior. For high-level languages, it is not
difficult to determine loop structure and iteration blocks, but for assembler language,
the loop structure is not obvious and it is not easy to determine iteration blocks
because arbitrary jumps may occur during the execution. Moreover, for analysts
to determine the loop bound, detailed understanding of the program is required.

However, this is normally hard for program reviewers when the applications are legacy,

11



MSc. Thesis - Jian Sun McMaster - Computing and Software

complex and poorly documented.

In SQRL (Software Quality Research Laboratory), McMaster University, re-
searchers use tabular expressions (function tables) [51], to specify program behavior.
Such specifications are not only precise, they are also usually easier to understand
than the code. Some table tools also were explored to manipulate table operations.
In the project, some loop assembly code slices were identified and function tables
were manually constructed. Then, their loop bounds were determined by executing
some automatic table tools. A detailed example of determining the loop bound of the

program shown in figure 2.1 is illustrated in 4.4.2-3.

2.3 Low-level Analysis

The purpose of low-level analysis is to determine the execution time of atomic ma~
chine statements and basic blocks, to find out the timing effects caused by hardware
architecture that can improve or delay a program’s timing performance, and to model

= such timing information in a proper form.

2.3.1 Hardware Feature Identification

For modern computers, instruction execution time ¥s commonly affected by advanced
hardware features such as pipelined CPUs, caches and branch predictors. To deter-
mine these hardware effects, s;)eciﬁc analyses should be performed. For example, in
[16], instruction cache, and in [7], global pipeline analysis methods are illustrated.
Further, it is common for analysts to get much of the above information from the
hardware manual provided by the product vender.

For some o‘lder machines and micro-controllers, like the IBM 1800, each instruction
(in same format) has a fixed execution time, and the execution time of basic blocks
can be determined by simple addition. Moreover, the IBM 1800 system provides three
“internal timers” that can supply real-time information for the program. They can be
started or stopped under program control. Once started, they are automatically in-
cremented, one count at a time, by the cycle stealing facility of the process-controller.

Thus, in the Reverse-Engineering project, both the instruction and basic block exe-

12



McMaster - Computing and Software MSc. Thesis - Jian Sun

cution time can be obtained from the timers. Note, the instruction execution time is

also specified in the hardware manual.

2.3.2 Simulation

Currently, simulation techniques are widely used to measure the execution time of
program segments to help analysts determine average instruction execution time,
and identify the performance effects caused by modern architectures [27]. Some re-
searchers also apply static analysis to the above hardware features [16][23].

The IBM 1800 also contains a Time-Sharing Executive System (TSX), a real-time,
process-control programming system that affords user an easy means of generating,
testing and executing a complete process control program. The user’s process pro-
grams are built in the non-process monitor mode, tested by the TSX simulator, and
executed in the on-line, process-control mode. Therefore, some program execution

scenarios can be simulated to verify the timing analysis solutions.

2.3.3 Timing Graph Generation

To model the timing information for WCET analysis, it is efficient to cluster individual
statements into basic blocks (atomic units) of the gbject code. Then, timing graphs
can be generated through assigning relevant timing information into the program flow
graphs to represent the low-level analysis results.

In the Reverse-Engineering project, the original GXL flow graph [12] is clustered
first, in which the graph nodes are basic blocks. Next, the execution time of each
block is determined. The timing information is assigned to edges rather than nodes

in the graph see section 6.2.1.

Al

2.4 WCET Calculation

WCET calculation is the last step for WCET analysis. It is responsible for combining
results obtained from flow analysis and low-level analysis to generate the final solution.
In the literature, WCET calculation methods can be divided into three categories: 1)

13



MSc. Thesis - Jian Sun McMaster - Computing and Software

tree-based [7] 2) path-based [40][44] and 3) the Implicit Path Enumeration Technique
(IPET) [24].

2.4.1 Tree-based calculation method

In the tree-based method, the final WCET is calculated by traversing a tree, rep-
resenting the flow of the program and assigned execution times for each node, in a
bottom-up way. This method is good for estimating the WCET for well-structured
programs that are not very complex, but not good for handling unstructured flows like
assembler code. Note, although it is well known that any program can be rewritten
so that it has a tree structure, it is not practical to reconstruct the legacy unstruc-
tured programs for their functionality and performance analysis. Thus, the tree-based
method normally is used to calculate estimates for small parts that can be integrated
in order to generate the WCET solution for large parts of the program.

~ 2.4.2 Path-based calculation method

For the path-based category, the WCET solution is generated through searching for
the path with the longest execution time in the timing graph of the target program.
A number of theorems and algorithms were proposed in the literature. For instance,
Figure 2.2 shows Dijkstra’s longest path search algorithm [44] which is used to find
the worst execution case in the Timing Graph (TG). Nevertheless, another important
problem for analysts’ is to determine whether the found path is feasible, and whether
the found path is a desired functional computation path (a typical nonfunctional path
example is an error-handling program). If not, further searching and analysis has to
be performed.‘ -

In the Reverse-Engineering project, the timing analysis group has chosen the path-
based method since the extended Display documentation method provides a good
mechanism for this method, and also because the flow graph can be obtained from
other groups in the project, graph analysis tool and functionality analysis information.
The WCET calculation tool suite contains a set of sub-tools for clustering the original

flow graph, searching for the longest path, detecting path feasibility, and tagging

14



McMaster - Computing and Software MSc. Thesis - Jian Sun

/** Initialization **/

For each node v in TG Do
predecessor(v] := null;
timeSum[v] := 0;

endFor

/** Breadth first search **/
For each node u in TG in breath — first order Do
For each outgoing edge e = (u, v) in TG Do
d := timeSum[u] + t,, + J;
/** Is u on the longest path to v **/
if timeSum(v] < d then
predecessor|v] := u;
timeSum/[v] := d;
endFor
endFor
return TG

Figure 2.2: Dijkstra’s longest path search algorithm

nonfunctional paths. Detailed illustration will be presented in 6.2.1.

-

2.4.3 IPET calculatien method

Avoiding a potential explosion in the number of examined paths, the Implicit Path
Enumeration Technfque (IPET) method determines the WCET estimate by maxi-
mizing the goal function [24] in Figure 2.3 (subject to specified constraints), where
Blocks are basic program execution blocks decomposed by the flow analysis and Edges
are the edges ‘connecting blocks corresponding to the flow relationships represented
in the timing graph.

This approach reduces the WCET problem to an optimization problem, and it can
be solved either by constraint satisfaction methods (CSM) or integer programming
(IP) [9]. Note, existing tools can support such techniques very well, e.g. Ip-solver [52]
can be used to solve the IP problem. Compared with other approaches, the IPET

15



MSc. Thesis - Jian Sun McMaster - Computing and Software

Goal Function :

WCET = mazx Z (ZBiock * tBlock) + Z (ZEdge * tEdge) | , where

VBlock VEdge

ZBiock 1S the number of times that the code Block has been executed;
TEdge 1S the number of the times that the Edge has been passed;

tBiock 1S the execution time of the code Block for one iteration;

tEdge s the time effect caused by the computer architecture when two
continuous code Blocks connected by Edges are executed.

Constraint Equation Group :

constraint Expression_1;
constraint Expression_2;

.............

constraint Expression_n.

Figure 2.3: IPET Goal and Constraint Functions

o

solution gives‘ no information about the precise execution order (path) but simply
delivers the worst-case count on each node. The method requires that we provide
global constraints to construct the constraint function (group). Moreover, the IPET
calculation is easy to integrate into new analysis methods. For instance, if analysts
introduce new flow analysis methods, they just need to specify the new flow analysis
solutions in proper constraint functions and do not need to change the calculator at
all.

16



McMaster - Computing and Software MSc. Thesis - Jian Sun

2.5 WCET Analysis Tool

2.5.1 Interactive Tool

As discussed in 2.2, at this stage, it seems too difficult to explore fully automated
tools to perform WCET analysis. However, it is practical to design an interactive tool
which requires intervention from people who know the program very well and have
relevant domain knowledge of the system, to aid the timing analysts in determining
the program’s execution upper bound. It is also clear that user intervention occurs
mainly during the flow analysis phase.

However, annotations normally are error prone and should be reduced. Further-
more, over time, memory decay, people leave, and complexity increases make it harder
for obtaining accurate annotations for program reviewers to figure out the program’s
behavior. All of these urge the need for constructing appropriate and precise docu-

ments to aid timing analysis.

© 2.5.2 WCET Tool Architecture

Currently, it is widely accepted by WCET researchers that the WCET tool should
contain three main modules to perform flow analysis, low-level analysis and WCET
calculation. In [9][22][44], different WCET tool architectures are given, and some au-
tomatic or semi-automatic analysis tools were developed based on such architectures.
In 6.1, a particular WCET too‘l architecture based on the combination of precise doc-
umentation and WQET analysis techniques discussed in the literature is proposed

and illustrated.

17



MSc. Thesis - Jian Sun McMaster - Computing and Software

18



Chapter 3

Literature Survey of Precise

Documentation of Software

This chapter presents the literature on a precise documentation approach introduced

by Parnas and his colleagues.

3.1 Overview of a precise documentation approach

When constructing computer systems, as when developing other engineering prod-
ucts, engineers are required to provide precise documentation to describe how they
use science, mathematics and #echnology to build their products. Especially for soft-
ware engineers, their documentation is vital for software development, verification,
inspection and maintenance. In software engineering, software engineers can benefit
from using mathematical notations to make their documents consistent, precise and

complete.

Al

3.1.1 Functional Documentation

In [33], Parnas and Madey discussed documentation at a high level of abstraction,
dealing uniformly with many types of systems and documents. They defined the
content of documents that should be provided in computer systems, rather than
specifying the format or notation used in the documents. In this approach, instead

19



MSc. Thesis - Jian Sun McMaster - Computing and Software

of vague, inaccurate, and intuitive language, they applied a mix of standard engi-
neering and mathematical concepts to construct documentation. Particularly, all the
essential properties of computer systems, and their components are seen as a set of
mathematical relations. By describing these relations, software designers can con-
struct relational documentation, also named functional documentation, to document
their designs systematically and precisely. Associated with industry and company

standards, the documents may be divided into the following categories.

e System Requirements Document, provides a black-box description of the
system including descriptions of environmental quantities of concern to the sys-
tem, denoted as mathematical variables, and relationships between the values

of the quantities that result from physical and other constraints.

e System Design Document (SDD), describes the hardware structure and
how the computers in the system communicate. It also determines the relation-
ship between the inputs and outputs, also denoted as mathematical variables,
and the environmental variables identified in the system requirements docu-

ment.

e Software Requirements Document (SRD), is extracted from a System Re-
quirements Document and System Design Ddcument to determine the software

requirements. 2

e Software Behavior Specification (SBS), specifies actual software behavior.

e Software Module Guide (SMG), describes the system module decomposi-

tion and the resp.onsibilities of each module.

Al

e Module Interface Specification (MIS), provides a black-box description of
access-programs for each module specified in the SMG and the effects of using
them.

e Module Internal Design Document (MIDD), provides a clear-box speci-
fication of implementations of the modules listed in the SMG.

20



McMaster - Computing and Software MSc. Thesis - Jian Sun

e Data-flow Document, describes the “data flow” between variables or between

communicating sequential processes.

e other documents such as: Service Specification, Protocol Design Document,
Chip Behavior Specification and User-relation Document are normally used in

some particular cases and will not be disscussed in this thesis.

Each kind of document represents one or more relations. For instance, as described
in [17], a system requirements document should contain the representation of two
relations. NAT describes the environment, and REQ describes the effect of the system
when it is installed. It is important to note that “relation” means “binary relation”,
and, as defined in [28], a binary relation R on a given set U is a set of ordered pairs
with both elements from U, i.e., R C U x U. The set U is called the universe of
R. The set of pairs, R, can be described by its characteristic predicate, R(p,q),
ie, R = {(p,q) : UxU | R(p,q)}. The domain of R, denoted as Dom(R), is
{r | 3¢ [R(p, )]}, and the range of R, denoted as Range(R), is {q | Ip [R(p, q)]}

Unlike some impractical approaches, the above documentation theories were suc-
cessfully applied in a variety of military and civilian applications. For example, (1)
an early version of the relational requirements model was used to write a software
requirements document for the Onboard Flight Program used in the U.S. Navy’s A-7
aircraft [14][15], and (2) the relational model and the program documentation model
were used to inspect a safety-cyitical program for the Darlington Nuclear Power Gen-
eration Station in Ontario, Canada [20][39][50]. All of the industrial experience shows
that the relational documentation theories are useful.

3.1.2 LD-Relations and Program Description

Based on the views that
1. digital computers are finite state machines
2. a program is a text description of a set of states in such machines
3. a program ezecution is a sequence of states of a program

21



i

MSc. Thesis - Jian Sun McMaster - Computing and Software

program executions can be described through a kind of mathematical relation, Limited
Domain Relation (LD-Relation). As defined in [36], a Limited-Domain Relation L on
the universal set U is an ordered pair (R, Cy) where Ry, is a binary relation on U
and Cp, called the competence set of L, is a subset of the domain of Rj.

In detail, the relation component of a LD-relation describing a program is the set
of states (z,y) such that when the program is executed starting in state z it may
terminate in state y. The competence set of that LD-relation is the set of states in
which the program is guaranteed to terminate. For example, a particular LD-relation
can be represented as ((z,y),CL) where: z is one of the start states, y is one of the
termination states, and Cf, is the state set in which termination is guaranteed. Note,
in LD-Relation descriptions, only the start and termination states are documented
and the intermediate states are ignored, and U is the universal set of machine states.

Furthermore, considering our particular task, analyzing program execution time,
in this thesis, we pay more attention to the documentation of program effects. This
is because, as discussed in chapter 2, without knowing the behavior and effects of a
program, it is impossible to figure out its timing properties. In [32], Parnas, Madey
and Iglewski introduced a precise documentation method, Display, to document soft-
ware products. This method uses LD-Relation representations, in tabular form, to
specify and describe programs. The method has the advantage that it can be used to
document the effects of large program precisely ahd understandably. The following
sections will illustrate relevan:c theories and the apf)lication of the method.

3.2 Tabular Representation in Functional Docu-

mentation

Industrial sof‘tware systems are developed for solving scientific and engineering prob-
lems. In practice, such problems are modeled using mathematical models (by experts
in the system’s subject area) first, then, mathematicians determine how to solve the
models and software developers determine how to design and implement the software
products. Parnas and other researchers who proposed a functional documentation

approach found that using conventional mathematical expressions to represent the

22



McMaster - Computing and Software MSc. Thesis - Jian Sun

relations is too complex and hard to parse, and instead, using tabular expressions

(tables) [19] is much more practical.

3.2.1 Why use tabular expressions?

First of all, as stated in [17], functions implemented in digital computers have many
discontinuities, which can occur at arbitrary points in the domain of the function,
and tables are ideal for describing such functions. Further, it is very common that a
function’s domain and range have distinct types. Thus, it is sometimes difficult to use
traditional mathematical notations to describe the functions in an understandable
way. However, tabular representations can be used to describe the functions in a
succinct and readable format [51].

Secondly, tables enable us to represent relations with multiple conditions com-
pletely and concisely. Especially, in computer programming, many conditional ex-
pressions are involved, and tables are good at representing them.

Thirdly, tabular representations can simplify the process of the documentation. As
discussed in [42], tables have the following advantages in making their representations

simple.

e The table parses the expression for readers. Many nested pairs of parentheses

are eliminated, and the interned structure of the expression is revealed.
]

e The table eliminates repetitions of the sub-expressions that appear in column

headings. B

e Since each table entry only applies to a small part of the relation domain, the

expressiqn in the entry can be simplified

Furthermore, as discussed before, computer systems are often constructed by people
who come from different fields. Although all may work in domains in which mathe-
matical models are relevant, the communication among these team members can be
difficult because of their different backgrounds. However, tabular expressions based

on predicate logic [31] (which is easy to learn, use and understand) can make the

23



MSc. Thesis - Jian Sun McMaster - Computing and Software

descriptions of mathematical models clear and more readable to people with diverse
backgrounds.

Finally, tabular representation can help model designers and reviewers in thinking
and inspection [17]. For example, tables can be used to examine the completeness of
a model easily and efficiently. Note that, tables are really helpful in the WCET flow

analysis, especially in feasibility analysis as shown in 4.4.

3.2.2 Program Function Table

Software can be described as a set of functions and associated output data items.

Each function determines the values for one or more output data items, and each

output item is given values by one or more functions. Correspondingly, the tabular
expression for the function is called function table.

In [18][21], tabular expression notation was defined precisely as a mathematical

notation. Function tables also were categorized in a variety of forms such as normal

" function table, inverted function table, vector function table, normal relation table and

so on. They appear to be useful in specific circumstances.

Examples of function tabular expressions .

Following are three examples of program function tables in three kind of forms.

(1). As illustrated in [18], function f(z,y), where

"

0 ifz>20Ay=10
z ifr<0Ay=10
- fazg) = 4 y22 z:fa:ZO/\y>10

—y* ifr>20Ay<10
z+y ifz<0Ay>10
x—y ifr<0Ay<10

\

can be represented in the following normal function table, which is precise and more

readable.

24



McMaster - Computing and Software

MSec. Thesis - Jian Sun

H1
HIAH) y =10 y > 10 y <10
z>0 0 y? =&
x <0 T Tty zT—Yy
H2 G

Note, #1242 indicates that Headers H1 and H2 represent the predicate conditions,

and Grid G represents the solutions of function f(z,y).

(2). As shown below, a program, named mazvalue, finds the maximum of two

input variables a and b, and saves the value in variable mazx.

Procedure mazvalue()

{

real a,b, max;

readln (a,b);

if (a >=b) then maz := a;
else max :=b;

return(maz);

) P

The following vector table repfesents the behavior of the program.

a<b

maxr = a

b

AJ

ANC(a,b)

Notes, (1) NC(variable_list) represents that the variables in the variable_list are not

changed after the program execution, and (2) in later chapters, tables in this form will

omit operator “=" and take the first column as result column. (3). Using vertical bar,

“| 7, which means “such that” as explained in [32], the table in (2) can be rewritten

as below.

25



MSec. Thesis - Jian Sun McMaster - Computing and Software

maz |
a>b max = a
a<b mar =b

ANC(a,b)

Note, when “| ” is used, the entries in the column must be boolean expressions and

the value of the variable must satisfy the predicate described in the relevant row.

In later sections and chapters, the above form of function tables is used to represent

function behaviors.

+ 3.2.3 Table Operations and Table Tools

At McMaster University, a research group was engaged in a Table Tool System (TTS)
project exploring prototype tools to assist people using the above notations. Figure
3.1 [42] shows an overview of how the TTS system works. The kernel of the system
is a “table holder” that creatds objects representing tables in the internal (storage)
format, and other separate tools, as shown in figure 3.1, can use the kernel to store and
communicate tabular expressions. These tools can assist users to perform a variety
of table operations such as table creating, inverting, checking and so on." Moreover,
the researchers also ‘prbposed a variety of theorems and implementation algorithms
for the TTS. ¥or instance, in [17], transformations of tables of one kind to another
and interrelations between transformations were stated, and in [42][43], some table

inversion algorithms and transformation tools were proposed.

Currently, a table composition tool is being explored. It will be used in the Reverse-
Engineering project to compose unit tabular expressions identified code slices to in-

dividual functions. In 4.4.2, a composition example is illustrated.

26



McMaster - Computing and Software MSc. Thesis - Jian Sun

Check Test
Table I Program I

Table g |
Holder :

C
J Invert Table

[ Compute Table

module :] tool :} [D data flow

i

Figure 3.1: Overview of Table Tool System

3.3 The Display Documentation Method

* 3.3.1 What is Display?

Introduced by Parnas, Madey, and Iglewski [32], Display is a form of program doc-
umentation which can be used by software engineers as a reference documentation
during inspection and maintenance. Formally, a Dssplay is a document that consists

of the following three parts:

&

1. P1: a specification for the program presented in this Display,

a7

2. P2: the program itself. The names of other programs may appear in this text;

we say that these programs are invoked in this Display,

3. P3: specifications of all programs (other than that specified in P1) invoked in
P2 that are not known.

Note, in this approach, it is assumed that programs can be described by mathe-
matical functions, and function tables are used to specify those functions, relations,

and sets.

27



MSc. Thesis - Jian Sun McMaster - Computing and Software

Since containing the precise specifications of all invoked programs, each Display
can be reviewed and its correctness can be verified without reference to other Displays.

Furthermore, it is important to know the following definitions.

e A Display is correct if the program in P2 will satisfy the specification in P1,
provided that the programs invoked in P2 satisfy the specifications given in P3.

e A set of Displays is complete, if for each specification of a program that is found
in P3 of a Display, there exists another Display in which this specification is in
P1.

o A set of Displays is correct if 1) the set of Display is complete, and 2) all Displays

are correct.

Display Documentation Method

As defined in [32], Display Method is a precise, systematic and readable program doc-
o umentation method. This documentation consists of a set of Displays, supplemented
by a lericon, a dictionary containing definitions of the terms used in the program
being documented, and an indez, a list of all the variables, programs, etc. indicating

where those items appear in the Displays.

3.3.2 A Display Example
Supplemental Table Notations

Notation for tabular expressions is defined in [34]. The notation below has been de-
signed to be used in function tables that describe the behavior of IBM 1800 assembler

programs.

\]

e XXX]|]: denotes a one dimensional array with the index starting from 0, and

each element is a machine word containing 16 bits.

e < Num >: denotes a bit value operation which returns the value at bit Num
of a machine/memory word. Note, each word has bit 0 at the right, and bit 15

at the left as shown below. -

28



McMaster - Computing and Software MSc. Thesis - Jian Sun

Mem-Word:| | .
Bit Index 15 2 1 0

e .address : denotes the address operation which returns the core storage address

of a word or a label.

e “<< Num” and “>> Num”: denote a shift left and a shift right Num bits,
respectively.

o “<<< Num” and “>>> Num”: denote a shift left and a shift right Num bits

with extension register Q, respectively.

Function table format

All the function tables are formatted as follows.
e Name: the identifier of each function table.

e External Variables: the list of variables that are defined and assigned by
other programs and used inside the target program.

e Internal Variables: the list of variables that are defined and initialized inside
the target program, or uged to save temporary values.

e Preconditions.

&7

e The function table.

e NC - not changed variables: the list of variables are used without changing

their original values during the execution of the target program.

It is important to note that the modifications of Acc, accumulator register and its
extension register, ¢, in some cases, are specified in the function table. This is
because it is very common for program segments to use them for passing parameters,
and tracking the values in such registers is required when studying a given program.

29



MSc. Thesis - Jian Sun McMaster - Computing and Software

An example of an IBM 1800 program Display

Following is an example of using Display to represent an IBM 1800 assembly program
segment, labelled TRBFF, which invokes a subroutine, labelled DI2F3.

1. Display Specification
Name: TRBFF
External Variables: XR1, XR2, BPCDJ[ |, GST|[ ], DIW2.
Internal Variable: Acc.
XR1 = GST.address AN XR2 = BPCD.address =

B BPCD[13]< 15 >=0
( }igDIW2<'L.>)>1 (2i=o 2
<is)<1
((BPCD9] — GST[27]) x
(BPCD[9] — GST[27)) x

A NC(XR1,XR2,BPCD|],DIW2,GST| | except GST[47])

30



McMaster - Computing and Software MSc. Thesis - Jian Sun

2. Program
Address Label Option TF Operands
(35be) TRBFF LD 2 13

(35bf) BSC L TRBFD,E
(35c1) LD DIW2
(35¢c2) SLA 9
(35¢3) BSI DI2F3
(35c4) MDX 3 -1
(35¢5) MDX  TRBFE
(35¢c6) TRBFD SLA 16
(35¢7) STO 1 47
(35¢8) MDX  TROUT
(35d5) TRBFE LD 2

(35d6) S

(35d7) M 1 48
(35d8) SLA 5
(35d9) STO 1

(35da) MDX  TROUT

3. Display Specification
Name: DI2F3
External Variables: Acc, ¥R2, XR3, BPCD| |.

true
' " XR2 = BPCD.cddress
XR3 = B sAcc<i>
Acc = Acc << 3

A NC(BPCD|))

31



MSc. Thesis - Jian Sun McMaster - Computing and Software

3.3.3 Display Documentation for Software Inspection
Software Inspection

As described in [35], software inspection is responsible for systematically examining
a program in detail to determine whether or not the program is fit for its intended
use. The goal of such an examination is to assess the quality of the software product
in question. To make sure that it is precise and complete, the inspection process is
systematically prescribed and documented. Complementing program testing, detect-
ing code errors, and formal verification, which determine mathematical correctness,
the inspection method plays an important role of improving software quality. This is
because in addition to finding errors in code and related documents, it can help inspec-
tors to find problems that are not directly related to theorem proving, model checking
and automatic testing. For example, determining whether coding style guidelines are
followed.

" Why use Display to inspect software?

When examining a lengthy program implemented by others, inspectors desire pre-
cise and well-structured documentation. This is because the combination of a large
amount of detail with inaccurate or vague descr-'rptions of the structure makes it
quite common for serious errors to escape the reviewers’ attention. Thus, the pro-
gram documents should be: (1) well organized in terms of structure, (2) readable,
(3) consistent, (4) complete and (5) independent of other documents. The Display
documentation method was introduced taking into account of above features. Several
benefits of using Display to inspect software are now discussed.

First of al‘l, the heart of the Display Method is to precisely summarize the effects
of a program and its éomponents, so that each Display can be examined and verified
without looking at any other Displays. This applies a “divide and conquer” policy
which is a key to inspection. Systematic program decomposition makes it practical
for inspectors examine small parts of a long program in isolation, while making sure
(1) nothing is overlooked and (2) the correctness of all inspected components implies

the correctness of the whole.

32



McMaster - Computing and Software MSc. Thesis - Jian Sun

Secondly, the Displays are the main method used to ensure the correctness and
completeness of the code. As discussed in 3.2, tabular expressions used for program
specifications in Display can represent the behavior of program segments completely
and precisely. It is also easy for inspectors to understand the mathematical notations
used in the tables. These are critical for software inspection because the success
of the inspection is largely dependent on the understanding of the product and the

underlying technologies.

Furthermore, the well-structured and standard mathematical notations which are
easy to understand make it possible for people of different backgrounds to be involved
in the inspection work efficiently.

3.4 Display Documentation for Program Execu-

tion Time Analysis

3.4.1 Therelationship between software verification and tim-

ing analysis
é
Program timing analysis is a kind of verification activity. If using one or more vari-
ables to represent p.rogram execution time, timing analysts can use program tabular
expressions to specify program timing properties, and related verification techniques
can be used in the analysis. Particularly, when a program is being executed, each
calculation (e.g. a multiplication) changes the value of a variable that is already
there and also adds to the variable representing calculation time. The amount of
time may be constrained rather than fully predictable so this makes the program a
non-deterministic program. However, when applying the program function composi-
tion as outlined by Mills and those who follow him, the upper and lower bounds for

the calculation time may be derived.

33



MSc. Thesis - Jian Sun McMaster - Computing and Software

3.4.2 Why use Display to analyze WCET?

The Display Method is helpful for representing code segments as functions which is
valuable in solving the problems met in timing analysis described in 4.2.

First of all, the tabular function specification used in each Display helps program
reviewers understand the function assigned to the program easily and precisely. This
is important, because to determine the execution time, analysts have to know the
program’s function in order to make some of the decisions for the WCET tool’s
calculation. Also, function tables can specify more information than flow graphs,
e.g. initialization information for global variables that do not appear in the specified
program segment.

Secondly, the tables are also helpful for flow analysis such as function composition,
loop identification, loop bound determination and feasibility analysis. Again, in 4.4.2-
3, an example of using a table tool to compose isolate functions, and to determine a
loop bound for a program segment containing a while loop is described.

Thirdly, we need to find the execution time of function segments in a long program,
i.e. if each segment was assigned one or more individual functions, rather than the
execution time between arbitrary start and end statements. In this case we want, the
boundaries of our timing analysis match the boundaries of the Displays.

Further, to find the execution time of a particular segment, it is necessary to
include all invoked programs’ functions. This is'true of any verification, and the
Display Method provides suchsinformation in a precise and concise way that reviewers

can use and easily understand.

.7

34



Chapter 4

General Difficulties in the WCET
Analysis

In this chapter, several typical timing analysis difficulties, and WCET analysis prob-

lems met in the Reverse-Engineering project are presented, and proposed.

4.1 Overview of WECT analysis difficulties

In modern life, more and more industrial, civilian and military computer systems
present timing requirements in their software applications. Correspondingly, the need
for effective timing property v‘eriﬁcation methods and tools is extremely important.
However, there is a qonspicuous lack of such methods and tools because timing analy-
sis has proved to be an extraordinarily complicated task. The main obstacles encoun-
tered in timing verification and inspection are the complexity of software, especially
non-terminati‘ng concurrent software, like the target control program in the Reverse-
Engineering project, and the complexity of such software’s possible timing behaviors.
These difficulties come from both fundamental, theoretical limitations and practical
mechanisms [45].-

Program verification is in general undecidable. Methods and tools for program
verification are generally subject to the problem that the state space size grows ex-
ponentially with the size of the program description. Undecidability also causes the

35



MSc. Thesis - Jian Sun McMaster - Computing and Software

verification methods to be partial or incomplete, and we are forced to use approzi-
mation techniques, which may take many different forms. Another difficulty is that
timing correctness depends largely on logical correctness because it is clear that logical
errors can cause timing errors.

The following practical facts also make timing analysis a daunting task [45]:

(1) Some environmental external/internal events affecting the computer system
may happen nondeterministically at any time, and this may cause the the associated
asynchronous response processes to execute nondeterministically. When processing
nondeterministic behavior, the complexity of the logic and timing behaviors of the
system increase significantly.

(2) Unless we have sufficient information about the runtime resource, assertions
about the timing properties will be inaccurate, and often overly pessimistic. For
example, pipeline techniques are used to improve average performance, but they may
cause the WCET to be less accurate (more pessimistic) than without pipelining.

(3) To get precise estimation, it is necessary to perform timing analysis at ob-

. ject/assembler code level because the high-level language compiler may optimize the
program flow during compilation. Hence, for complex applications, the number of
paths that needs to be examined may be increased to the extent that it becomes
unmanageable.

(4) Current real-time system design unavoidably applies complex synchronization,
priority preemption, interrupt§ and other mechanisfns rgquired to construct concur-
rent systems. All of them can affect an application’s timing properties in subtle ways,
and make the timing unpredictable.

As explained b}; Xu in [45], considering the above difficulties, if the software
and its timing behaviors are overly complex, the timing verification and inspection
may be practically impossible. Therefore, imposing specific constraints in particular
environments to reduce the complexity is necessary. For example, the (early version
of) WCET analysis tool that will be discussed in latter sections is restricted by:

e Estimating the WCET of IBM 1800 assembly programs running in a single
machine (CPU).

e Estimating the WCET of decomposed program segments with assigned individ-

36



McMaster - Computing and Software MSc. Thesis - Jian Sun

ual functions and finite executions, rather than of the entire system.

e There are no interfering background activities and the input/output operations
e.g. reading a disk takes a fixed execution time.

e The program segment cannot be preempted by other programs.

Associated with the real project, the following sections illustrate several particular
problems, met in the WCET analysis of IBM 1800 assembly programs from OPG,
and the methods introduced to solve them.

4.2 Decomposing Long Programs

The aim of program decomposition is to decompose a long program into small parts
and then, provisionally, associate a function with each part [32]. In this way, analyses
can be performed individually such that (1) if each part implements its assigned

~ function, the whole program will be correct, and (2) that each part implements its

assigned function.

4.2.1 Function Table and Display Construction

In the Reverse-Engineering prgject, recovering decomposed modules and their inter-
face information from assembly code is time consuming and error prone. This is not
only because the assembler language syntax, such as arbitrary jumps and invisible
variable types and ;1ames, make the program very long and its architecture not ob-
vious (functions are normally implemented by separated blocks), but also because it
is hard to extract mathematical functions, which are associated through knowledge
from a variety fields, without referring to related specification documents.

In such cases, function tables were found to be helpful in recovering functions from
code. In practice, two groups worked individually to construct function tables from
the program. One of them constructed tables from source code only, and another
group’s construction work was allowed to refer to program comments written by the

programmers. Then, the two kinds of tables were compared to find differences, and

37



MSc. Thesis - Jian Sun McMaster - Computing and Software

revised by the two groups working together. It is natural that table construction is
started by extracting function units of small program slices, and then functionally
composing these smaller functions until the required function is created. Further,
the early draft of function tables present “low-level” function behavior, e.g. changes
in core storage content and shifting of binary bits. There is no general template to
define the function scope, and the scope is normally defined by annotations from
the analysts. It requires an iterative process to extract functions that implementers
intended. It is also common that comments are incorrect, incomplete or missing, but
the point is we are trying to use all of the given valuable information to recover the
functions assigned to the code.

Constructed tables and their related code are composed into displays as discussed
in chapter 3. For instance, in the (display) example in 3.3.2, the function table in
the first part of the display is constructed from the code listed in the second part.
The tabular expression is much casier for readers to understand the function than
reading the code. Compared with other reverse engineering approaches, e.g. [47][48],
which first extract assembler code to high-level language representation such as C,
the tabular expressions are more concise and abstract. In another words, it is much
easer for readers to get the big picture of the program accurately and clearly through
reading function tables extracted from code, whether the code is written in assembler
or a high level language. <

To capture the intent of t?e original design, it vis required to perform functional
recovery for all the elements of a given program. For example, again, the program
labelled TRBFF in the display in 3.3.2 invokes a subroutine labelled DI2F3 and its
display speciﬁcatior.l is shown below. The function TRBFF can not be specified unless
we know the function DI2F3. Thus, given a (long) program, we first do trials to find
some segments which do not branch “far away” to construct unit tables, then combine
or nest them into “bigger” tables. For instance, the display of DI2F3, shown below,
was first created. Then, its functionality was included in one of the header conditions
in the function table of TRBFF.

38



McMaster - Computing and Software MSc. Thesis - Jian Sun

1. Display Specification
Name: DI2F3
External Variables: Acc, XR2, XR3, BPCD[ ].

true
XR2 = BPCD.address
XR3 = S35 Ace < i >
Acc = Acc << 3

A NC(BPCD]))

2. Program
Address Label Option TF Operands

(35c9) DI2F3 DC 0

(35ca) LDX 2 3

(35¢b) LDX 0

(35¢cc) BSC =

(35cd) MDX 3 1 .
(35¢ce) SLA 1

(35¢f) MDX* 2 -1

(35d0) MDX %5

(35d1) - LDX L2 BPCD

(35d3) BSC 1 DI2F3

3. Specifications of Invoked Programs
Null °

So far, the above work is manually performed, which is time consuming and error
prone. Thus tool aided table construction is desired. For example, the table opera-
tion tools discussed in 3.4 and automatic tools explored by other groups to extract
arithmetic expressions and pre/postconditions for partial segments, will improve the

efficiency and accuracy of the table construction.

39



MSc. Thesis - Jian Sun McMaster - Computing and Software

4.2.2 Subroutine Invocation Identification

During the program decomposition, subroutines should be identified and their invo-
cation properties, e.g. parameters and other interface information, should be deter-
mined. This is because they not only fulfill part of the functionality of the caller pro-
gram, but also may be called by different modules. Unlike most high-level languages
that use specific invocation statements such as Call, subroutine calls in assembler
sometimes must be implemented by branch or jump statements. Thus, identification

of subroutine invocations should:

e figure out the scope, related variables (e.g. parameters) and behavior of the

subroutines,
e specify identified subroutine call properties properly,
e identify subroutine call templates used by programmers.

For example, Figures 4.1 and 4.2 show two of the templates commonly used in the
target application (BPC code) in the Reverse-Engineering project. The difference
between the two templates is that the first one (BSI-DC-BSC) is used to call a sub-
program without arguments, while the second (BSI-DC-BSI) is typically used to call
a program with arguments. In the latter case, the*parameters passed to the program
are specified in the DC area that follows the call (the initial BSI).

4.3 Determining Loop and Loop Properties

4.3.1 Loop Identification

Al

Assembly programs use conditional and unconditional branches to achieve the desired
control flow. This often makes the program structure artificially complex. Similarly,
the loop as well as the subroutine invocation structures may not be as clear as in
high-level language. For example, a FOR loop in the DI2F8 display in 4.2.1 is not
obvious in the code. However, it is not difficult for readers to find a potential loop

~ (between nodes 35cc and 35d0, and exits from 35d1) by viewing its flow graph shown in

40



McMaster - Computing and Software MSc. Thesis - Jian Sun

Caller Program Called Program

(35be) TRB.FF LD 213 _ (35¢9) DI2F3 DC 0
g ‘ (35ca) LDX 2 3
i }/

(35c3) BSI DI2F3

(35c4) MDX TRBED

! . (35d3) BSC |DI2F3

(35¢8) MDX TROUT

Figure 4.1: BSI-DC-BSC Subprogram Invocation Example

Caller Program Called Program

(03D8) CCOR DC 0 (010D) SPL DC 0
: (010E) XIO L MSKO

§8§E§§ B i (0116) MDX L SPL, 1

(03E5) DC MSKL

(03E6) DC 0 .
(03E7) STX3 SV3 (0122) MDX L SPL, 1
k.
\\*«»‘.
(0427) BSL | CCOR (0129) BSI | SPL

o*

Figure 4.2: BSI-I)C-BSI Subprogram Invocation Example

&

Figure 4.3. In our work, the control flow graph (CFG), generated by graph generator
(mentioned in 2.2.1) created by other colleagueé in the Reverse-Engineering project,
plays an impdrtant role in helping program reviewers to find loops in the program
segments. It is intuitive to use “back” edges or “circle edges” in the flow graph to
identify potential loops. It is also true that the visible directed graph is good for

representing flow information.

Another important method used to find loops is reading abstracted function spec-

ifications to look for the functions that normally are implemented by loop structures.

41



MSc. Thesis - Jian Sun McMaster - Computing and Software

Figure 4.3: Original Control Flow Graph of DI2F3

For instance, the function assigned to program Di2F'3:

'y 13
XR3:= ZAcc <i>

=15
3

would be implemented by a loop by most programmers.

4.3.2 Loop Bound Determination

In 2.2.3, the importance and difficulties of determining the loop bound for timing
analysis was explained. The most essential fact of the determination is understanding
the semantics of the program correctly and completely. Again, in the above example,
if we know that the identified loop in DI2F3 computes X R3 := ;2 . Acc < i >,

it is obvious that the loop will iterate a fixed number of times, i.e.- its loop bound

42



McMaster - Computing and Software MSc. Thesis - Jian Sun

is 3. In general, this kind of problem is clear to programmers or implementors, and
once it is abstracted to a mathematical form as above, it will not be difficult for
program reviewers to get the solution. However, it is very hard and complex to
develop automated tool to determine the number of times that loops iterate [10].
Thus, manual annotation is one way to determine loop bounds in programs. This
work can be done either by program implementers or by program reviewers.

Moreover, at McMaster University, researchers have introduced a new way to de-
termine loop bounds based on tabular expressions. Briefly, the programs are first
transformed into function tables, and then tables are input into the TTS and loop
bounds are calculated by a series of table compositions. Our example shows that
some of the loop bounds of programs represented by tables can be determined auto-
matically. An example of using tabular expressions to determine loop bound is given
in 4.4.3.

4.3.3 Loop Type Classification

In practice, loops can be used in some non-functional computations. A typical case
is an error-handling process. For instance, as shown below, a Do/W hile loop is used
to prevent illegal user input to a SQRT function which computes square roots for

non-negative reals. .

Do {printin(“Pkease input ¢ >= 0:");
readin(z); }

While{x < 0);

SQRT(z);

It is clear that'; user inputs are unpredictable, and the task in timing analysis is to
determine the time of functional computation e.g. SQRT. Therefore, such loop can
be assumed to execute once and only once but taking bounded time. In other words,
loops in the programs should be categorized into different classes, such as functional,
error-handling and other non-functional loops. The functional loops can be divided
into FOR-Loop and WHILE-Loop further, and for such nonfunctional loops, specific
constraints can be used to simplify the loop property analysis.

43



MSc. Thesis - Jian Sun McMaster - Computing and Software

Furthermore, it is important to document those results for further analysis and
verification, especially for programs that have complex loop structures. This is be-
cause determining loop properties normally is a complex and iterative process, and it

largely depends on how well people understand the target program.

4.4 Identifying Infeasible Paths

4.4.1 Infeasible paths caused by MDX statements

As mentioned in 2.2.1, in the Reverse-Engineering project, the program flow graphs
can be generated automatically by syntactic interpretation. However, the graphs
contain a number of infeasible paths. For example, in the IBM 1800, the MDX
instruction is specified as “MDX can increase or decrease the contents of a register
or memory unit. If the result is equal to 0 or has a different sign than the original,
the next instruction is skipped.” Based on this specification, MDX instructions are
interpreted as alternative branch instructions by the flow graph generation tool. But
in some cases, programmers use MDX only to change the values of some variables
rather than as branch statements because they are sure that the increase or decrease
operations will not cause the results to be zero nor to change the sign of the variable.
Such infeasible paths result in skipping some instructions and so will not affect the
WCET solution. Howevef, while analyzing example slices of the code, we found a
number of MDX instructions that make the graphs much more complex than their
real flow structure._;Thus, the effects cannot be ignored.

Again, to identify the feasibility of program flows, program reviewers should un-
derstand the program behavior very well. For example, in the DI2F'3 segment, there
are three M DX statements used in three different forms as:

1. assignment statement: (35cd) M DX 3 1, which can be interpreted as “vari-
able X R3 adds 1 to itself. Then, if its value neither becomes 0 nor changes
sign, the next statement (35ce) will be executed, otherwise it will be skipped”.
However, in this slice, X R3’s original value is 0, and it is in the loop whose
loop bound is 3, which indicates the maximum value of X R3 is 3. Thus, the

44



McMaster - Computing and Software MSc. Thesis - Jian Sun

above condition will always be true, i.e. the (35ce) will never be skipped. In
other words, this M DX can not have an alternative execution, and it is used
as an assignment statement only. Correspondingly the CFG of DI2F3 in Figure
4.3 should be refined by removing the infeasible path from (35cd) to (35cf) as

shown in Figure 4.4.

e

Figure 4.4: Refined Control Flow Graph of DI2F3

2. alternative branch statement: (35¢f) MDX 2 —1, which can be interpreted
as “variable X R2 subtracts 1 from itself. Then, if its value becomes 0 or changes
sign, jumps to the statement addressed (35d1), otherwise its next statement is
executed”. In this case, X R2 is used as a loop counter whose value is 3 originally,
and decreases by 1 in each iteration. When its value is decreased to 0, the loop

is terminated by jumping to (35d1).

45



MSc. Thesis - Jian Sun McMaster - Computing and Software

3. unconditional branch statement: (35d0) M DX # —5, which can be in-
terpreted as “goto the statement whose memory address is current instruction

address minus 5”. Hence, this statement is used to implement a loop structure.

Similar to the loop bound determination, it is too hard to develop an automated
feasibility determination tool. Our WCET analysis tool helps analysts find the “sus-
pect” nodes e.g. M DX statements, which may cause infeasible paths, then, provides
displays to aid analysts in determining whether the path is feasible or not.

4.4.2 Use tables to determine flow feasibility

Function tables can also be used to determine flow feasibility because they represent
the related program’s behavior precisely. For example, the loop body, containing two
sequential if-then-else statements, of the program segment shown in Figure 2.1 has

the flow shown on the left in Figure 4.5. If we compose function expressions for each

Figure ;1.5: Original/Refined Flow Graphs of the Program in Figﬁre 2.1

statement, we get the individual tabular expressions, Table 4.1 and Table 4.2 shown
in Figure 4.6. These tables can be composed to form Table 4.3, which indicates the
program has the flow shown on the right of Figure 4.5, and can be simplified into
Table 4.4.

46



McMaster - Computing and Software MSc. Thesis - Jian Sun

Table 4.1 k= Table 4,2 x=
x<3 2% x=1 x+2
3 =x x+1 x£ 1 x+ 1

Table 4.3 Xi=
2x = false
Bed 2xZ1 2x+1
xtl=1 false
3=x PR Y] Gtl) + 1
Table 4.4 xX=
x<3 2x+1
I<x x+1+1

Figure 4.6: Function Tables of the Program in Figure 2.1

4.4.3 Example of using tables to determine loop bound

For the program in Figure 2.1, associated with the initial loop conditions and Table
4.4, the TTS tool can

4
e enumerate each case of the legal input iteratively until the termination state.
Tables from 4.5-(1) to 4.5-(3) in Figure 4.7 show the results of each iteration
step.

e generate a tabular expression for the example program as shown in Table 4.6.

.

Correspondingly, the loop bound can be determined to be 3.

47



MSc. Thesis - Jian Sun McMaster - Computing and Software

Table 4.5-(1) X = ; Terminated
x=0 2x+1 False
x=1 2x+1 False
x=2 2x+1 True
x=23 x+1+1 True

Table 4.5-(2) X = Terminated
x=0 2(2x+1) + 1 False
x=1 (2x+1)+1+1 True
x=2 2x+1 True
x=3 x+1+1 True

Table 4.5-(3) x= Terminated
x=0 (2(2x+1)+ 1)+ 1)+ 1 True
X ] ((2x+1)+ 1)+ 1 True
x=2 2x+1 True
=9 (x+1)+1 True

Table 4.6 X = Iteration Number
x=.0 4x+5 3
x=d 2x+3 2
x=2 2x+ 1 y/
x=3 X+ 2 1

4

Figure 4.7: Use 'I"ables to Determine Loop Bound of the Program in Figure 2.1

4.5 Understanding Program Behaviors

Without access to related documentation, it is very difficult to recover the program’s
behavior as intended by the original designers. Especially, when studying assem-
bler code, reviewers are almost “blind” to the abstract functions implemented in the
program. In our example, we found that the function table is an effective tool for

reviewers to collect related data and represent their analysis results. In particular

48



McMaster - Computing and Software MSc. Thesis - Jian Sun
tables are good for
e interpreting program statements,

e presenting low-level functionalities of program such as variable or state changes

caused by program execution,
e presenting abstracted functionality of program in readable mathematical form,

e collecting and supplementing information related to the program behavior’s

effect on the repository e.g. data dictionary

The following section presents an example of analyzing the small code slice shown in
Figure 4.8, from the BPC module.

4.5.1 Program Statement Interpretation

“ The main tasks of statement interpretation are to determine (1) the initial states
or conditions of executing a given program and (2) which variables’ values will be
changed, and how they will be changed. With reference to Figure 4.8, this phase

results in the following descriptions.

o

Address,Label Option TF Operands
(3886) WUO LD 2 2

(3887) SRA 1

< (3888) 'BSC L WULE
(388a) MDX I, BPCD+2, 2
(388¢) LD WCMN-+1
(388d) BSI EMNI

(388f) WUL LD 26

Figure 4.8: Warm Up Example Segment

49



MSc. Thesis - Jian Sun McMaster - Computing and Software

1. Initially,
(1)register variable X R2 stores the address of data list named BPCD.
(2) WCMN and SMT also are data lists used in the system.

2. (3886) loads the content stored in the third word of BPCD table to Accumulator,
through indirect addressing by X R2 .

3. (3887) shifts Accumulator right with one bit.
4. (3888) if Accumulator’s value is not even, goto WU1(388f).

5. (388a) adds 2 to the content stored in the third word of BPCD table, and if
the value is 0 or there is a change in sign, goto (388d), otherwise goto next
statement (388c).

6. (388c) loads the content stored in the second word of WCMN to Accumulator.

7. (388d) calls EMNI subroutine, which is responsible for modifying the values
of SMT stack message list, with a function named FM N, based on the value

saved in accumulator,

8. (388f) the end of WUO section

4.5.2 Function Extraction

Based on the above results, a function table can be constructed as shown in Figure
4.9, in which some rIamed variables and data structures, e.g. an array, are introduced.
They are used to present changes in state and modification of core storage data. Note
that, this kind of table is not sufficient to represent the real physical behavior of the

program without additional semantic knowledge.

50



McMaster - Computing and Software MSc. Thesis - Jian Sun

Name: WUO
External variables: Acc, XR2, BPCD[]|,WCMN[],SMT[].

XR2 = BPCD.address —

BPCDP| <1 >=10 BPCDRl<1>=1
BPCD[2] = BPCD[2] + 2 BPCD]2]
Acc = Valueof Acc(EMN(WCMNI1])) BPCD[2]
SMT[] = EMN(WCMNTI) SMT]]

ANC(XR2, WCMN| ], BPCD|] except BPCD|2])

Figure 4.9: Low-level Function Table of Warm Up Segment

-~ 4.5.3 Collecting Supplementary Information

After studying the program context in detail, we can deduce the following supple-
mentary facts.

e the third (16 bit) word in the BPCD table, BPCD|2], was used as a flag word,
named Warm-up Flag word, in which its first six binary bits represent six flags
4
used in the plant warm up process respectively.
e the bit indexed with 1 is used as a whether-warmed-up-flag in which :
(a) the value 0 indicates the plant has not been warmed up.
(b) the value 1 indicates the plant has been warmed up.
e to determine the value of the whether-warmed-up-flag, the programmer used the
following steps as shown in Figure 4.10:
(a) load the Warm-up Flag word to Accumulator,

(b) shift right the content in Accumulator one bit, which copies the value

of the whether-warmed-up-flag in the bit 0 of Accumulator,

51



MSc. Thesis - Jian Sun McMaster - Computing and Software

(c) test whether the value of Accumulator is even or not. Yes means that

the whether-warmed-up-flag has a value of 0, otherwise it has the value of 1.

Warm-up Flag Word | | 0/1
15 2 1 0
Load |}

Accumulator | | 0/1
15 2 1 0

Shift-right ——

Accumulator | | 0/1

15 2 1 0

Figure 4.10: Warm-up Flag and Accumulator

e the MDX statement in (388a) is executed with the precondition specified in
(3888) which implies that the value of whether-warmed-up-flag is 0. Figure 4.11
shows that if whether-warmed-up-flag is 0, adding 2 to the Warm-up Flag word
has the effect of changing the whether-warmed-up-flag to 1. It will not cause the
word, BPCD|2], to equal zero or change sign. In other words, the M DX works

Accumulator | | 0
15 * 2 1 0
Implies |
Warm-up flag word [ | .. 0
15 2 1 0
> Implies |
Warm-up flag word := (Warm-up flag word)+2
Implies
‘Warm-up flag word | | 1
15 2 1 0

Figure 4.11: Warm-up Flag Setting

as an assignment statement to set whether-warmed-up-flag and not branch at
this node.

52



McMaster - Computing and Software MSc. Thesis - Jian Sun

e the second word of WCMN, WCM N|[1], stores the initial information, warm-

up-turned-on-message, for invoking subroutine EMNI.

4.5.4 Function Table Abstraction

Knowing the above information, the implementer’s intended program behavior now
can be described as: “If the value of whether-warmed-up-flag in the Warm-up Flag
word (stored in the third word of the BPCD data table) is 1, then skip to WU1
directly without modifying any variable, otherwise, (1) set whether-warmed-up-flag
to 1, (2)assign initial data to Accumulator, (3) call subroutine EM NI and (4) return
to WU1 after executing the subroutine”. Correspondingly, the previous table in

Figure 4.9 can be reconstructed as shown in Figure 4.12.

Name: WUO

External variables: whether-warmed-up-flag, warm_up_turned_on_messgae.

whether-warmed-up-flag=0 whether-warmed-up-flag=1

whether-warmed-up-flag=1 A

EMN (warm-up-turned-on-messgae) S

s
Figure 4.12: Abstract Function Table of Warm Up Segment

It is important to note that constructing function tables is also helpful for finding
other specific features that exist in the applications. For example, we can use tables

to help identify self modifying code which is possible in assembly programming.

33



MSc. Thesis - Jian Sun McMaster - Computing and Software

54



Chapter 5

Extended Display Method for
WCET Analysis

This chapter and the next illustrate how the conventional display documentation
method is extended to support WCET analysis and related tool development.

5.1 Display Documentation Extension

In chapter 3, the advantages of using precise display documentation methods to an-
alyze program execution time properties were explained. However, when performing

timing analysis, such documentation methods should be extended as described below.

5.1.1 Timing-variable

To aid timing analysis, one more variable, T representing the time for a function
computation, can be added into each function table in the displays. In particular, to
determine the'executibn time of a given program, T is originally defined as 0, and
each calculation (e.g. multiplication) changes its value by adding the time taken by
the calculation. The amount of time taken by the whole program is represented in
the table, and it may be constrained rather than fully predictable, so this makes the
program a non deterministic program with respect to its timing properties. However,

when composing program functions, the upper and lower bound for the value of time

99



MSc. Thesis - Jian Sun McMaster - Computing and Software

on completion will be determined. For example, Figure 5.1 shows the extended (added
time variable T in the last row) tabular expression of the example program DI2F3
discussed in 4.2.1.

Notes: (1) N denotes the number of possible execution paths of the program (2)

tp1,-..,tpn denote the execution time for pathl,... , pathN respectively.

Name: DI2F3
External Variables: Acc, XR2, XR3, BPCD| |.

true
XR2 = BPCD.address
Acc = Acec << 3
T {t | to1,tp2, - -, ton}

ANC(BPCD[))

Figure 5.1: Timed function table example

In particular, a loop is used to calculate Z':ils Acc <i>. It iterates three
times and contains an altern':xtive branch statement in its loop body as shown in
its refined CFG in Figure 4.4. Thus, N is equal to 8 since the program has 23
possible execution paths. Correspondingly, the detailed specification of time vari-
able T' is shown in. Figure 5.2, and the upper and lower bounds of execution time
of the program are max{tp,...,t,;s} and min{t,,...,t,s} respectively. Note that
len(subroutiQQ) = O"indicates the program does not invoke other programs, and
len(loop) = 1 AloopCount; = 3 indicates that the program contains one and only one
loop which iterates 3 times. It is clear that if more branches and loops are used, the
number of the possible execution paths will increase exponentially. This makes the
determination of the timing lower and upper bounds much more complex and diffi-
cult. Hence, it is desired that some execution paths can be ignored if their execution

times are not limiting values. For instance, with reference to DI2F3’s refined CFG in

56



5

McMaster - Computing and Software MSc. Thesis - Jian Sun
Name: timeDI2F3.
External Variables: Acc, loop, loopCounty, subroutine.
len(subroutine) =0 A len(loop) = 1A loopCount; =3 =
H1
-H—léﬂ Acc<14>=0 Acc< 14 >=1
Ace< 135> =0lAce<13>=114cc<183 5> =01A4cc <185 =1
Acc<15> =0 T:tpl T=tp2 T=tp3 T=tp4
Acc<15>=1 T =ty T =t T =t T =tg
H2 G

Figure 5.2: Specification of time variable T’

Figure 4.4, if it is found that the alternative branch at (35cc) is valid in all iteration
scenarios, removing the edge from (35cc) to (35ce) will not affect determining the ex-
ecution time upper bound, and ignoring edges from (35cc) to (35cd) and from (35cd)
to (35ce) will not affect the lower bound result. Hence, after this adjustment, only one
execution path is left. This indicates that it is possible to analyze paths in the graph,
in a systematic way, to remove paths that can not affect the minimum/maximum exe-
cution time. This practical approach serves to decrease the complexity of the WCET

analysis.

5.1.2 Program Flow Graph

An important‘f)ropertjr of function tables is that they define a function that maps from
old values of variables to new ones, without considering any intermediary status. In
other words, they provide a high level, precise abstraction of the function. However,
in timing analysis, some detailed information is required. For example, as discussed
in chapter 2, program flow analysis is an essential phase of timing analysis. It takes
program flow information as input, and outputs and then evaluates flow properties

o7



EAd

MSc. Thesis - Jian Sun McMaster - Computing and Software

and refined flow representations. In the Re-Engineering project, as in many other
WCET analyses, program flow information is represented in a graphical form called
a flow graph. Thus, in WCET analysis, the program flow graph as well as timing
variables must be added to the Displays.

However, the flow graphs may contain redundant flows or may miss some flows,
i.e., their correctness and completeness needs to be verified and improved by either
implementors or program reviewers. For example, as illustrated in 4.4.1, the original
automatically generated flow graph contains an infeasible path, and after related
analysis, it can be refined to the graph shown in Figure 4.4.

To retain the original concept of the Display, the generated and refined flow graphs
should be added into the fourth section of displays [32]. This section contains a
demonstration of the correctness of the display and its components. As defined by
the authors, this part could be either a description of the informal reasoning routinely
done by a programmer, or a more formal argument. The existence of this additional
section would make the reviewer’s task simpler — one would not have to invent a

“proof”, only to check one.

Another important reason for involving graphs in the WCET analysis is because
existing graph theories, tools and other techniques can make the timing analysis more
efficient. Some of the tasks can be performed automatically or semi-automatically.
In the Reverse-Engineering project, a fully automatic tool was developed for gener-
ating a GXL format control ﬁow graph. In the graph, each node corresponds to a
statement in the program and contains a set of attrib<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>