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Abstract 

Knowing the timing behavior is essential when designing and inspecting real-time 

systems. Especially, the Worst Case Execution Time (WCET) of a program is of 

the utmost importance for schedulability and other timing analyses. The industrial 

deployment of critical systems presents an urgent need for WCET analysis methods 

and tools. 

This thesis represents how the Display documentation method, introduced by 

Parnas and his colleagues in [32), is extended and used to aid WCET analysis and 

WCET Tool development. The work is performed within a Reverse Engineering 

Project, which has to recover high-level requirements of IBM 1800 assembler appli-

cations. Specifically, the displays are (primarily) manually composed from code, and 

then used by timing analysts for program understanding and flow analysis, which are 

essential phases in timing analysis. The thesis combines the Display documentation 

method with the WCET analysis techniques to solve several general problems in de-
• termining the upper bound of program execution time. It also includes a detailed 

example of a WCET analysis tool based on the documentation method . .. ~ 
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Chapter 1 

Introduction 

This chapter provides an introduction of this thesis, including the motivation, project 

background, contributions and thesis outline. 

1.1 Motivation 

Industrial real-time systems impose timing requirements on functions implemented 

in the applications. The requirements imply lower/upper limits on the execution 

time of programs, i.e., it has to be guaranteed that the execution of a task does 

not take shorter /longer than the specified amount of time. Thus, extracting program 

execution timing properties is ~ery important for software design especially in schedu­

lability analysis and scheduling, and for testing and verification. In general, access to 

requirements specifi~ation and relevant design documents is desirable for performing 

the extraction task. However, in most cases, such documents are not complete nor 

accurate for inspectors to review the program. 

This thesi~ presents a method that can be used for software designers and im­

plementers to specify relevant program timing information precisely in their system 

documentation for further timing analysis, inspection and verification. The method 

is based on the Display Method, a form of precise documentation of well-structured 

programs introduced by Parnas, Madey and lglewski. In [32], the authors do not 

explicitly address timing behavior. However, timing analysis can be viewed as aver-

1 
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ification activity, and the analysts need to refer to such documents that can specify 

the programs' behavior precisely, systematically and readably. Thus, we plan to add 

a new variable T representing program execution time in the tabular expressions 

(function tables) [17][34] for timing analysis. The method has been used as the basis 

of a Timing Analysis Tool for a Reverse Engineering Project at McMaster University, 

discussed in the following sections. 

1.2 A Reverse Engineering Project Background 

Originally, our target was to recover timing information during the reverse engineering 

of legacy assembler control applications for which we have little or no requirements or 

design documentation. This work was motivated by the project, Reverse Engineering 

of High Level Requirements from Assembly Code, which is funded by Communica­

tions and Information Technology Ontario ( CITO) and Ontario Power Generation 

(OPG). Five teams within the Department of Computing and Software at McMaster 

~ - University, as well as engineers from OPG are involved in the project. 

1.2.1 The Goal of the Project 

The goal of the project is to create methods and tools to assist a developer in reverse 

engineering a legacy assembly language program to a high level requirements specifica­
• tion that is independent of arbitrary design decisions (but still captures the rationale 

of those decisions in terms of non-functional requirements). The methods will not 
·' just test the requirements against the original program for consistency, but will also 

provide additional assurances that the requirements have been consistently captured 

and documented. The entire process will be supported by tools that make the tasks 
~ . 

easier and produce more reliable results. The theoretical results from the project will 

have practical application to the problem of reverse engineering requirements from 

legacy assembler programs. 

In this project, like many, we have no software requirements and no software 

design documents. We want to recover program information, such as blocks of code 

that implement cohesive functionality, and to use this information to specify high-

2 
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level requirements. The target software is assembler code, and the program is not 

well structured and program variables as well as individual functions are not identified 

in any obvious way. The planned tool suite architecture of the reverse engineering 

project is shown in Figure 1.1. Note that the arrows in the figure represent data flow. 

A3q..irmms Verifk3kn'Validalia1 Tens 
(Sllraio Araysis, T estirg, etc. ) 

.· 

Figure 1.1: RevE!rse Engineering Tool Suite Architecture 

-~ 
In particular, tlie Timing Analysis Tool (TAT) is responsible for aiding timing 

analysts performing program flow analysis and determining the timing constraints 

in the assembly programs. Those constraints will be used to specify the timing re-
• 

quirements in the reverse engineered high-level requirements. The above architecture 

shows how the TAT fits into the suit. In our case, we focus on exploring the Worst 

Case Execution Time {WCET) Analysis Tool ( WAT), a specific TAT, which calcu-

. lates the worst (upper limit) possible execution time of a piece of code. Although the 

WCET can refer to both upper and lower bounds, we will be interested primarily in 

upper bounds. 

3 
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1.2.2 IBM 1800 Assembler Language 

The provided program, Boiler Pressure Control (BPC} code running on an emulator 

of the IBM 1800 Data Acquisition and Control System, is one of the modules which 

control the power generation plant. The application was written in a particular 

assembler language of the IBM 1800 machine introduced in the 1960s. The legacy 

machine was designed to handle a wide variety of real-time applications, including 

process control and high-speed data acquisition. 

The IBM 1800 assembler-language has more than 30 basic statements used to 

store/retrieve information, perform arithmetic and logic functions, control program 

and other operations. It also supports Macro assembler manipulations. Due to the 

small register space, most of the program instructions and data are stored in core 

storage and are manipulated through the registers such as Instruction Register (/), 

the Accumulator (Ace) and Accumulator Extension ( Q) registers, and three Index 

Registers (X R1, X R2, and X R3). All of the registers are 16 bits in length, and 

:-;.~ the instructions are either in 16-bit short form or in 32-bit long form. Furthermore, 

£orne instructions can perform multiple tasks. For example, the MDX (Modify Index 

and Skip) instruction can (1) modify the value of some storage unit and (2) perform 

alternative branch based on the result of the calcu!!ttion. 

The 1800 assembly programs were written in a strict format that includes six 
• fields: optional labels, opcodes, optional format bit, optional tag bit, operands, and 

optional comments. Each of the fields has its well-defined column number ranges. The 
... ~ 

programs can be assembled · by the 1800 assembler into either binary code for execu-

tion, or assembly list (LST) data files. In addition to the original assembly program, 

the LST file includes the memory address assigned to each instruction, hexadecimal 
' . object representation of instructions and data, and other valuable information. One 

of the groups in the Reverse-Engineering project is working on exploring automatic 

tools to generate control flow/ data flow graphs by extracting relevant information 

from the LST files. The tool offers control flow/data flow graphs as output in GXL 

(Graph eXchange Language) format . Such control flow/data flow information is 

required for further timing and functionality analysis in the project. 

4 
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1.2.3 Reverse Engineering and its Difficulties 

In [47][48][49], reverse engineering is defined as "analyzing a subject system to identify 

its current components and their dependencies, and to extract and create system 

abstractions and design information." Currently, most reverse engineering research 

involves program understanding, and focuses on code analysis including subsystem 

decomposition, concept synthesis, design and programming pattern matching, and 

dependence analysis. 

However, the code does not contain all the information that is needed for pro­

gram understanding. Also, abstractions extracted from the code generally miss the 

big picture behind the evolution of the software system. Typically, the software archi­

tecture, design and implementation patterns and physical/business constraints known 

by the forward engineers who design and implement the software, are not obvious or 

complete to the reengineers. Moreover, over time, other features, such as software up­

dates, staff migration, document decay, and an increase in complexity make it harder 

for program reviewers to figure out the program behavior. Thus, it is extremely im-

:-;- portant for both forward engineering and reverse engineering staff to document their 

work precisely and systematically for further inspection or verification. 

1.3 Contributions and Thesis.·Scope 

This thesis is addressed to ill~trate how we successfully applied a precise documen­

tation method to WCET analysis, and developed an associated tool in a reverse 

engineering project.•~The following is a list of specific contributions: 

• Extended the Display Method for Software Execution Time Analysis 

• Constructed a documentation-driven WCET Analysis Tool Architecture 

• Implemented several components of the WAT suite to aid analysts in solving 

several general timing analysis problems met in a reverse engineering project 

The remainder of this thesis is divided into four major parts. Firstly, chapters 2 and 

3 introduce the literature of WCET analysis and the Display documentation method. 

5 
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Next, chapter 4 introduces the difficulties met in the practical project. Then, chapters 

5 and 6 represent how the Display method is extended and applied in constructing 

precise documents to aid both WCET analysis and tool development. Note, some 

of the tools are explored for solving the problems in chapter 4. Further, chapter 7 

concludes solutions and suggests future work. Finally, other relevant information is 

attached in Appendixes. 

6 



Chapter 2 

Overview and Literature Survey of 

WCET Analysis 

This chapter briefly introduces concepts in WCET analysis, and references relevant 

literature. 

2.1 Overview of WCET Analysis 

The goal of WCET analysis is to generate a safe (no underestimation) and tight 

(small over-estimation) estimate of the longest ex~cution time (upper bound) of the 

program [27]. Note that generally, WCET can refer to both upper and lower bounds, 

but conventionally, these are referred to WCET and BCET (Best Case Execution 

Time) analyses, respectively. In this thesis, only the upper bound is considered 

because BCET analysis is similar to WCET analysis. 

2.1.1 Why analyze the WCET? 

The concept of a worst-case execution time for a program has been part of the real­

time community for many years, especially when doing schedulability analysis and 

scheduling [44]. In particular, many scheduling algorithms and all schedulability 

analysis assume some form of knowledge about the worst-case timing of an essential 

task. 

7 
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Generally, in any product development where timelines are important, WCET 

analysis is a natural tool to apply. This is because designing and verifying hard 

real-time systems can be simplified by using WCET analysis instead of extensive and 

expensive testing. For instance, WCET estimates can be used to verify that the 

response time of a critical piece of code is short enough, that interrupts handlers 

finish quick enough, or that the sample rate of a control loop can be maintained. 

Moreover, WCET estimates can be used to determine whether performance goals are 

met for periodic tasks, to check that interrupts have sufficiently short reaction times, 

to find performance bottlenecks, to assist in selecting appropriate hardware and for 

many other purposes [8]. 

2.1.2 What features should be analyzed? 

To determine the upper bound of execution time of a program, WCET analysis takes 

into account program flow information, hardware/low-level performance effects and 

appropriate calculation methods [8]. Correspondingly, the analysis phases are divided 

into flow analysis, low-level analysis and WCET calculation. Briefly, flow analysis 

extracts and represents program flow information that provides information about 

possible ways the program can execute, which functions get called, and how many 

times loops iterate. Low-level analysis determine&,-the execution time of each basic 

block, a piece of code that is executed in sequence (contains no jumps and branches, 

and there are no jumps into tfie sequence). Further, given the flow information and 

the execution time of each basic block, the WCET calculator is responsible for finding , 
the program path that takes the longest time in the entire target program. 

Moreover, program_execution time analysis generally is performed in specific cir­

cumstances and under particular conditions, and when performing the WCET esti-
• mation, normally, it is assumed that: 

• there are no interfering background activities 

• the program execution is finite 

• the program cannot be interrupted nor preempted by others 

8 
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2.2 Program Flow Analysis 

Program flow analysis extracts and identifies the possible ways a program can ex­

ecute. Conventionally, the program's executable paths are represented in directed 

(flow) graph form, in which nodes are executable instructions or basic blocks, and 

directed edges present the execution sequence. Thus, the task of the flow analysis 

can be divided into a set of subtasks such as: flow graph generation, path feasibility 

identification, and loop bound determination. 

2.2.1 Flow Graph Generation 

In general, the structurally possible flows of a program can be extracted from either 

the program source code or compiled code, and flow graphs constructed through the 

resources discussed below. 

• Compilers: Some computer language compilers not only can convert high-level 

language code into object code, but generate flow information during compiling. 

For example, in [9], the researchers introduced a flow analysis module which 

tightly coupled with their compiler to collect flow information and generate a 

control flow graph. 

• Assemblers: As well as interpreting assembler code into object code, some as­

semblers also can provide flow information. For instance, as mentioned in 1.2.2, 
• the IBM 1800 assembler can generate LST data files including instruction ad-

dressing information which indicates the execution flow. In the project intro-
•' 

duced in 1.2, a flow graph generation tool was developed to generate GXL 

format flow graphs [12]. 

• Libraries: The hardware/software vendors normally provide product libraries 

(and manuals), in which some hardware/software features are specified, and 

such knowledge is valuable in determining accurate flow information. 

• Implementer's annotations: So far, in some WCET analysis methods [10][11], 

the flow information is given by manual annotations from designers and imple­

menters rather than by fully automatic tools. This is because some program 

9 
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flow properties, e.g. the maximum iterations of a loop slice, are very hard for 

tools or program reviewers to figure out, but known by the designers and imple­

menters. Other research work tries to explore computer-aided tools to reduce 

the dependence on manual interventions, rather than attempt to fully automate 

the flow information extraction. In other words, automatic tools are designed 

for extracting some of the flow structure, and manual annotations are helpful 

in supplying and refining the solutions. 

However, these graphs may have a huge number of possible execution cases or may 

be unmanageable in size because infeasible paths may increase the graph complexity 

exponentially. Hence, analysts have to impose constraints on the graphs to decrease 

the complexity. 

2.2.2 Infeasible Path Identification 

Infeasible paths are program paths that cannot be executed. Normally, analysis of 

finding infeasible paths is important to decrease the complexity of a generated flow 

graph and makes the WCET analysis more efficient, but it is not necessary to find 

every infeasible path becl'!-use the path may be safe within the context of a WCET 

analysis. Moreover, feasible paths must not be noted as infeasible since it might lead 

to an underestimation. 
• In general, infeasible paths may be caused by either semantic or syntactic reasons. 

For instance, figure 2.1 shows an example program (8) containing a semantically in-.. ~ 
feasible path. In particular, in the loop body, the branch condition of the second 

if- then- else statement, x = 1, is never valid, i.e. statement (83), x := x + 2, 

will never be executed. A detailed explanation is given in 4.4. Moreover, in 4.4, an . . 

example of an infeasible path cased by syntactic interpretation of IBM 1800 machine 

statements is described. In [5] [10] a Flow Information Language was used to express 

flow constraints as arithmetic relation expressions for WCET analysis. In particular, 

the language can be used to model flow graphs as scopes where a scope is defined as a 

certain repeating or differentiating code segments in a program like a function call or 

iteration loop, annotated with flow constraints, named facts. Some of the constraints 

10 
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/** Input limits for x : 0 ~ x ~ 3 ** / 
readln(x); 

While (x < 4) Do { 

} 

if (x < 3) then x := x * 2; 
else x := x + 1; 

if (x = 1) then x := x + 2; 

else x := x + 1; 

(S1) 
(S2) 
(S3) 
(S4) 

Figure 2.1: An Example Program 

MSc. Thesis - Jian Sun 

can be generated automatically e.g. if -then-else exclusive branches, and some are 

annotated manually for items such as loop bounds and infeasible path identification. 

If given appropriate documentation, flow information such as feasibility knowledge 

can be obtained from both source code and relevant documents. However, if there is 

no relevant documentation, as in many reverse engineering projects, or only part of the 

-.; · documentation is provided, it is much harder for analysts to extract such information. 

In some cases, they depend on designers' and "implementers' annotations. 

2.2.3. Loop Identification and Loop Bound Determination 
~· 

Knowing the maximum number of loop iterations, called the loop (upper} bound, is 
• required for getting a tight WCET solution. In [5](10), the loop bound information 

is obtained from manual annotations, and in [22) [25) relevant research work is aimed 
·' at performing loop bound approximation automatically or semi-automatically. 

The difficulty of determining the loop bound is largely dependent on how complex 

the loops are. For example, nested loops and recursion structures make it much harder , . 

to analyze and understand iterative behavior. For high-level languages, it is not 

difficult to determine loop structure and iteration blocks, but for assembler language, 

the loop structure is not obvious and it is not easy to determine iteration blocks 

because arbitrary jumps may occur during the execution. Moreover, for analysts 

to determine the loop bound, detailed understanding of the program is required. 

However, this is normally hard for program reviewers when the applications are legacy, 

11 
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complex and poorly documented. 

In SQRL (Software Quality Research Laboratory), McMaster University, re­

searchers use tabular expressions (function tables) [51], to specify program behavior. 

Such specifications are not only precise, they are also usually easier to understand 

than the code. Some table tools also were explored to manipulate table operations. 

In the project, some loop assembly code slices were identified and function tables 

were manually constructed. Then, their loop bounds were determined by executing 

some automatic table tools. A detailed example of determining the loop bound of the 

program shown in figure 2.1 is illustrated in 4.4.2-3. 

2.3 Low-level Analysis 

The purpose of low-level analysis is to determine the execution time of atomic rna-· 

chine statements and basic blocks, to find out the timing effects caused by hardware 

architecture that can improve or delay a program's timing performance, and to model 

r,·· such timing information in a proper form. 

2.3.1 Hardware Feature Identification 

For modern computers, instruction execution time is commonly affected by advanced 

hardware features such as pipelined CPUs, caches and branch predictors. To deter­
• mine these hardware effects, specific analyses should be performed. For example, in 

[16], instruction cache, and in [7], global pipeline analysis methods are illustrated . .. ~ 
Further' it is common for analysts to get much of the above information from the 

hardware manual provided by the product vender. 

For some older machines and micro-controllers, like the IBM 1800, each instruction , 
(in same format) has a fixed execution time, and the execution time of basic blocks 

can be determined by simple addition. Moreover, the IBM 1800 system provides three 

"internal timers" that can supply real-time information for the program. They can be 

started or stopped under program control. Once started, they are automatically in­

cremented, one count at a time, by the cycle stealing facility of the process-controller. 

Thus, in the Reverse-Engineering project, both the instruction and basic block exe-

12 
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cution time can be obtained from the timers. Note, the instruction execution time is 

also specified in the hardware manual. 

2.3.2 Simulation 

Currently, simulation techniques are widely used to measure the execution time of 

program segments to help analysts determine average instruction execution time, 

and identify the performance effects caused by modern architectures [27). Some re­

searchers also apply static analysis to the above hardware features [16) [23) . 

The IBM 1800 also contains a Time-Sharing Executive System (TSX), a real-time, 

process-control programming system that affords user an easy means of generating, 

testing and executing a complete process control program. The user's process pro­

grams are built in the non-process monitor mode, tested by the TSX simulator, and 

executed in the on-line, process-control mode. Therefore, some program execution 

scenarios can be simulated to verify the timing analysis solutions. 

2.3.3 Timing Graph Generation 

To model the timing information for WCET analysis, it is efficient to cluster individual 

statements into basic blocks (atomic units) of the 9hject code. Then, timing graphs 

can be generated through assigning relevant timing information into the program flow 

graphs to represent the low-le1el analysis results. 

In the Reverse-Engineering project, the original GXL flow graph [12) is clustered 

first, in which the ~aph nodes are basic blocks. Next, the execution time of each 

block is determined. The timing information is assigned to edges rather than nodes 

in the graph see section 6.2.1. 

2.4 WCET Calculation 

WCET calculation is the last step for WCET analysis. It is responsible for combining 

results obtained from flow analysis and low-level analysis to generate the final solution. 

In the literature, WCET calculation methods can be divided into three categories: 1) 

13 
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tree-based [7] 2) path-based [40][44] and 3) the Implicit Path Enumeration Technique 

(IPET) [24]. 

2.4.1 Tree-based calculation method 

In the tree-based method, the final WCET is calculated by traversing a tree, rep­

resenting the flow of the program and assigned execution times for each node, in a 

bottom-up way. This method is good for estimating the WCET for well-structured 

programs that are not very complex, but not good for handling unstructured flows like 

assembler code. Note, although it is well known that any program can be rewritten 

so that it has a tree structure, it is not practical to reconstruct the legacy unstruc­

tured programs for their functionality and performance analysis. Thus, the tree-based 

method normally is used to calculate estimates for small parts that can be integrated 

in order to generate the WCET solution for large parts of the program. 

:-;-. 2.4.2 Path-based calculation method 

For the path-based category, the WCET solution is generated through searching for 

the path with the longest execution time in the timing graph of the target program. 

A number of theorems and algorithms were proposed in the literature. For instance, 

Figure 2.2 shows Dijkstra's longest path search algorithm [44] which is used to find 
• the worst execution case in the Timing Graph (TG). Nevertheless, another important 

problem for analysts is to determine whether the found path is feasible, and whether .. ~ 
the found path is a desired functional computation path (a typical nonfunctional path 

example is an error-handling program). If not, further searching and analysis has to 

be performed. 
' 

In the Reverse-Engineering project, the timing analysis group has chosen the path­

based method since the extended Display documentation method provides a good 

mechanism for this method, and also because the flow graph can be obtained from 

other groups in the project, graph analysis tool and functionality analysis information. 

The WCET calculation tool suite contains a set of sub-tools for clustering the original 

flow graph, searching for the longest path, detecting path feasibility, and tagging 

14 
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/** Initialization **I 
For each node v in TG Do 

predecessor[v] :=null; 

timeSum[v] := 0; 

endFor 

/** Breadth first search **I 

MSc. Thesis - Jian Sun 

For each node u in TG in breath- first order Do 

For each outgoing edge e = (u, v) in TG Do 

d := timeSum[u] + tu + c5e; 
I** Is u on the longest path to v **I 
if timeSum[v] < d then 

predecessor[v] :=u; 

timeSum[v] := d; 

endFor 

endFor 

return TG 

Figure 2.2: Dijkstra's longest path search algorithm 

nonfunctional paths. Detailed illustration will be presented in 6.2.1. 
.· 

2.4.3 IPET calculatiGn method 

A voiding a potential explosion in the number of examined paths, the Implicit Path 
.~ 

Enumeration Technique (IPET) method determines the WCET estimate by maxi-

mizing the goal functio_n [24] in Figure 2.3 (subject to specified constraints), where 

Blocks are basic program execution blocks decomposed by the flow analysis and Edges , 
are the edges connecting blocks corresponding to the flow relationships represented 

in the timing graph. 

This approach reduces the WCET problem to an optimization problem, and it can 

be solved either by constraint satisfaction methods ( CSM) or integer programming 

(IP) [9]. Note, existing tools can support such techniques very well, e.g. lp-solver [52] 

can be used to solve the IP problem. Compared with other approaches, the IPET 
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Goal Function : 

WCET =max [ L (X mock· tmock) + L (xEdge · tEdge)l , where 
"!Block "'Edge 

X stock is the number of times that the code Block has been executed; 
x Edge is the number of the times that the Edge has been passed; 
tmock is the execution time of the code Block for one iteration; 
tEdge is the time effect caused by the computer architecture when two 
continuous code Blocks connected by Edges are executed. 

Constraint Equation Group : 

canstraintExpressian_l; 

canstraintExpressian_2; 

canstraintExpressian_n. 

Figure 2.3: IPET Goal and Constraint Functions 

solution gives no information about the precise execution order (path) but simply , . 

delivers the worst-case count on each node. The method requires that we provide 

global constraints to construct the constraint function (group). Moreover, the IPET 

calculation is easy to integrate into new analysis methods. For instance, if analysts 

introduce new flow analysis methods, they just need to specify the new flow analysis 

solutions in proper constraint functions and do not need to change the calculator at 

all. 
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2.5 WCET Analysis Tool 

2.5.1 Interactive Tool 

As discussed in 2.2, at this stage, it seems too difficult to explore fully automated 

tools to perform WCET analysis. However, it is practical to design an interactive tool 

which requires intervention from people who know the program very well and have 

relevant domain knowledge of the system, to aid the timing analysts in determining 

the program's execution upper bound. It is also clear that user intervention occurs 

mainly during the flow analysis phase. 

However, annotations normally are error prone and should be reduced. Further­

more, over time, memory decay, people leave, and complexity increases make it harder 

for obtaining accurate annotations for program reviewers to figure out the program's 

behavior. All of these urge the need for constructing appropriate and precise docu­

ments to aid timing analysis. 

~- 2.5.2 WCET Tool Architecture 

Currently, it is widely accepted by WCET researchers that the WCET tool should 

contain three main modules to perform flow analysis, low-level analysis and WCET 

calculation. In [9] [22] [44], different WCET tool architectures are given, and some au­

tomatic or semi-automatic analysis tools were developed based on such architectures . 
• In 6.1, a particular WCET tool architecture based on the combination of precise doc-

umentation and WCET analysis techniques discussed in the literature is proposed _., 
and illustrated. 
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Chapter 3 

Literature Survey of Precise 

Documentation of Software 

This chapter presents the literature on a precise documentation approach introduced 

by Parnas and his colleagues. 

3.1 Overview of a precise documentation approach 

When constructing · computer systems, as when d~veloping other engineering prod­

ucts, engineers are required to provide precise documentation to describe how they 

use science, mathematics and 'echnology to build their products. Especially for soft­

ware engineers, their documentation is vital for software development, verification, 

inspection and maiRtenance. In software engineering, software engineers can benefit 

from using mathematical notations to make their documents consistent, precise and 

complete. 

3.1.1 Functional Documentation 

In [33], Parnas and Madey discussed documentation at a high level of abstraction, 

dealing uniformly with many types of systems and documents. They defined the 

content of documents that should be provided in computer systems, rather than 

specifying the format or notation used in the documents. In this approach, instead 
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of vague, inaccurate, and intuitive language, they applied a mix of standard engi­

neering and mathematical concepts to construct documentation. Particularly, all the 

essential properties of computer systems, and their components are seen as a set of 

mathematical relations. By describing these relations, software designers can con­

struct relational documentation, also named functional documentation, to document 

their designs systematically and precisely. Associated with industry and company 

standards, the documents may be divided into the following categories. 

• System Requirements Document, provides a black-box description of the 

system including descriptions of environmental quantities of concern to the sys­

tem, denoted as mathematical variables, and relationships between the values 

of the quantities that result from physical and other constraints. 

• System Design Document (SDD), describes the hardware structure and 

how the computers in the system communicate. It also determines the relation­

ship between the inputs and outputs, also denoted as mathematical variables, 

and the environmental variables identified in the system requirements docu­

ment. 

• Software Requirements Document (SRD), is extracted from a System Re­

quirements Document and System Design D6~um€nt to determine the software 

requirements. .. 
• Software Behavior Specification (SBS), specifies actual software behavior. .. ~ 
• Software Module Guide (SMG), describes the system module decomposi­

tion and the responsibilities of each module. 

• Module Interface Specification (MIS), provides a black-box description of 

access-programs for each module specified in the SMG and the effects of using 

them. 

• Module Internal Design Document (MIDD), provides a clear-box speci­

fication of implementations of the modules listed in the SMG. 
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• Data-flow Document, describes the "data flow" between variables or between 

communicating sequential processes. 

• other documents such as: Service Specification, Protocol Design Document, 

Chip Behavior Specification and User-relation Document are normally used in 

some particular cases and will not be disscussed in this thesis. 

Each kind of document represents one or more relations. For instance, as described 

in (17], a system requirements document should contain the representation of two 

relations. NAT describes the environment, and REQ describes the effect of the system 

when it is installed. It is important to note that "relation" means "binary relation", 

and, as defined in (28], a binary relation R on a given set U is a set of ordered pairs 

with both elements from U, i.e., R ~ U x U. The set U is called the universe of 

R. The set of pairs, R, can be described by its characteristic predicate, R(p, q), 

i.e., R = {(p, q) : U x U I R(p, q)}. The domain of R, denoted as Dom(R), is 

{p I 3q [R(p, q)]}, and the range of R, denoted as Range(R), is { q I 3p [R(p, q)]}. 

l';" Unlike some impractical approaches, the above documentation theories were suc-

cessfully applied in a variety of military and civilian applications. For example, (1) 

an early version of the relational requirements model was used to write a software 

requirements document for the Onboard Flight Program used in the U.S. Navy's A-7 

aircraft (14][15], and (2) the relational model and the program documentation model 

were used to inspect a safety-q·itical program for the Darlington Nuclear Power Gen­

eration Station in Ontario, Canada [20] [39] [50]. All of the industrial experience shows 

that the relational <Jocumentation theories are useful. 

3.1.2 LD-Relations and Program Description 

Based on the views that 

1. digital computers are finite state machines 

2. a program is a text description of a set of states in such machines 

3. a program execution is a sequence of states of a program 
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program executions can be described through a kind of mathematical relation, Limited 

Domain Relation (LD-Relation). As defined in [36], a Limited-Domain Relation Lon 

the universal set U is an ordered pair (RL, CL) where RL is a binary relation on U 

and CL, called the competence set of L, is a subset of the domain of RL. 

In detail, the relation component of a LD-relation describing a program is the set 

of states (x, y) such that when the program is executed starting in state x it may 

terminate in state y. The competence set of that LD-relation is the set of states in 

which the program is guaranteed to terminate. For example, a particular LD-relation 

can be represented as ((x, y), CL) where: x is one of the start states, y is one of the 

termination states, and CL is the state set in which termination is guaranteed. Note, 

in LD-Relation descriptions, only the start and termination states are documented 

and the intermediate states are ignored, and U is the universal set of machine states. 

Furthermore, considering our particular task, analyzing program execution time, 

in this thesis, we pay more attention to the documentation of program effects. This 

is because, as discussed in chapter 2, without knowing the behavior and effects of a 

,.,~ program, it is impossible to figure out its timing properties. In [32], Parnas, Madey 

and Iglewski introduced a precise documentation method, Display, to document soft­

ware products. This method uses LD-Relation representations, in tabular form, to 

specify and describe programs. The method has the advantage that it can be used to 

document the effects of large program precisely and understandably. The following 

sections will illustrate relevant theories and the application of the method . 
• 

3.2 Tabular Representation in Functional Docu­

mentation 
, 

Industrial software systems are developed for solving scientific and engineering prob-

lems. In practice, such problems are modeled using mathematical models (by experts 

in the system's subject area) first, then, mathematicians determine how to solve the 

models and software developers determine how to design and implement the software 

products. Parnas and other researchers who proposed a functional documentation 

approach found that using conventional mathematical expressions to represent the 
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relations is too complex and hard to parse, and instead, using tabular expressions 

(tables) (19] is much more practical. 

3.2.1 Why use tabular expressions? 

First of all, as stated in (17], functions implemented in digital computers have many 

discontinuities, which can occur at arbitrary points in the domain of the function, 

and tables are ideal for describing such functions. Further, it is very common that a 

function's domain and range have distinct types. Thus, it is sometimes difficult to use 

traditional mathematical notations to describe the functions in an understandable 

way. However, tabular representations can be used to describe the functions in a 

succinct and readable format (51]. 

Secondly, tables enable us to represent relations with multiple conditions com­

pletely and concisely. Especially, in computer programming, many conditional ex­

pressions are involved, and tables are good at representing them. 

Thirdly, tabular representations can simplify the process of the documentation. As 

discussed in (42], tables have the following advantages in making their representations 

simple. 

• The table parses the expression for readers. Many nested pairs of parentheses 

are eliminated, and the interned structure of the expression is revealed . 
• 

• The table eliminates repetitions of the sub-expressions that appear in column 

headings. ..• 

• Since each table entry only applies to a small part of the relation domain, the 

expressiQn in the entry can be simplified 

Furthermore, as discussed before, computer systems are often constructed by people 

who come from different fields. Although all may work in domains in which mathe­

matical models are relevant, the communication among these team members can be 

difficult because of their different backgrounds. However, tabular expressions based 

on predicate logic (31] (which is easy to learn, use and understand) can make the 
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descriptions of mathematical models clear and more readable to people with diverse 

backgrounds. 

Finally, tabular representation can help model designers and reviewers in thinking 

and inspection [17]. For example, tables can be used to examine the completeness of 

a model easily and efficiently. Note that, tables are really helpful in the WCET flow 

analysis, especially in feasibility analysis as shown in 4.4. 

3.2.2 Program Function Table 

Software can be described as a set of functions and associated output data items. 

Each function determines the values for one or more output data items, and each 

output item is given values by one or more functions. Correspondingly, the tabular 

expression for the function is called function table. 

In [18][21], tabular expression notation was defined precisely as a mathematical 

notation. Function tables also were categorized in a variety of forms such as normal 

1';" function table, inverted function table, vector function table, normal relation table and 

so on. They appear to be useful in specific circumstances. 

Examples of function tabular expressions ~· 

Following are three examples 4>f program function tables in three kind of forms. 

(1). As illustrated in [18], function f(x, y), where 

•' 
0 if X 2:: 0 1\ y = 10 

X if X < 0 1\ y = 10 

f(x, y) = 
y2 if X 2:: 0 1\ y > 10 

-y2 if X 2:: 0 1\ y < 10 

x+y if X < 0 1\ y > 10 

x-y if X < 0 1\ y < 10 

can be represented in the following normal function table, which is precise and more 

readable. 
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Hl 

H1AH2 y = 10 y > 10 y < 10 -----r; 

x>O 0 y2 -y2 

x<O X x+y x-y 

H2 G 

Note, Hl~H2 indicates that Headers Hl and H2 represent the predicate conditions, 

and Grid G represents the solutions of function f(x, y). 

(2). As shown below, a program, named maxvalue, finds the maximum of two 

input variables a and b, and saves the value in variable max. 

Procedure maxvalue() 

{ 
real a, b, max; 

readln (a, b); 

if (a>= b) then max:= a; 

else max:= b; 

return( max); 

} ~· 

The following vector table repfesents the behavior of the program. 

max= a 

1\NC(a,b) 

Notes, (1) NC(variable_list) represents that the variables in the variableJist are not 

changed after the program execution, and (2) in later chapters, tables in this form will 

omit operator "=" and take the first column as result column. (3). Using vertical bar, 

"I ", which means "such that" as explained in [32], the table in (2) can be rewritten 

as below. 
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max I 

a>b max=a 

n.<h mn.x- h 

1\NC(a, b) 

Note, when "I " is used, the entries in the column must be boolean expressions and 

the value of the variable must satisfy the predicate described in the relevant row. 

In later sections and chapters, the above form of function tables is used to represent 

function behaviors. 

1';" 3.2.3 Table Operations and Table Tools 

At McMaster University, a research group was engaged in a Table Tool System (TTS) 

project exploring prototype tools to assist people !JSing the above notations. Figure 

3.1 [42] shows an overview of how the TTS system works. The kernel of the system 

is a "table holder" that creat~s objects representing tables in the internal (storage) 

format, and other separate tools, as shown in figure 3.1, can use the kernel to store and 

communicate tabula:r expressions. These tools can assist users to perform a variety 

of table operations such as table creating, inverting, checking and so on.· Moreover, 

the researchers also proposed a variety of theorems and implementation algorithms 

for the TTS. For instance, in [17), transformations of tables of one kind to another 

and interrelations between transformations were stated, and in [42] [43], some table 

inversion algorithms and transformation tools were proposed. 

Currently, a table composition tool is being explored. It will be used in the Reverse­

Engineering project to compose unit tabular expressions identified code slices to in­

dividual functions. In 4.4.2, a composition example is illustrated. 
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'===::::!.1~ module (~ ___ ] tool data flow 

Figure 3.1: Overview of Table Tool System 

3.3 The Display Documentation Method 

:-;~ 3.3.1 What is Display? 

Introduced by Parnas, Madey, and Iglewski [32], Display is a form of program doc­

umentation which can be used by software engineers as a reference documentation 

during inspection and maintenance. Formally, a Di"Splay is a document that consists 

of the following three parts: 

1. Pl: a specification for the program presented in this Display, 

2. P2: the program itself. The names of other programs may appear in this text; 

we say that these· programs are invoked in this Display, 

3. P3: specifications of all programs (other than that specified in Pl) invoked in 

P2 that are not known. 

Note, in this approach, it is assumed that programs can be described by mathe­

matical functions, and function tables are used to specify those functions, relations, 

and sets. 
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Since containing the precise specifications of all invoked programs, each Display 

can be reviewed and its correctness can be verified without reference to other Displays. 

Furthermore, it is important to know the following definitions. 

• A Display is correct if the program in P2 will satisfy the specification in P1, 

provided that the programs invoked in P2 satisfy the specifications given in P3. 

• A set of Displays is complete, if for each specification of a program that is found 

in P3 of a Display, there exists another Display in which this specification is in 

Pl. 

• A set of Displays is correct if 1) the set of Display is complete, and 2) all Displays 

are correct. 

Display Documentation Method 

As defined in [32], Display Method is a precise, systematic and readable program doc­

umentation method. This documentation consists of a set of Displays, supplemented 

by a lexicon, a dictionary containing definitions of the terms used in the program 

being documented, and an index, a list of all the variables, programs, etc. indicating 

where those items appear in the Displays. 

3.3.2 A Display Example • 
Supplemental Table Notations 

... ~ 
Notation for tabular expressions is defined in [34]. The notation below has been de-

signed to be used in fu:Q.ction tables that describe the behavior of IBM 1800 assembler 

programs. 

• XXX[]: denotes a one dimensional array with the index starting from 0, and 

each element is a machine word containing 16 bits. 

• < Num >: denotes a bit value operation which returns the value at bit Num 

of a machine/memory word. Note, each word has bit 0 at the right, and bit 15 

at the left as shown below. 
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~ern-VVord:~l ----~--------~----~--~--~ 
Bit Index 15 2 1 0 

• .address : denotes the address operation which returns the core storage address 

of a word or a label. 

• "<< Num" and ">> Num": denote a shift left and a shift right Num bits, 

respectively. 

• "<<< Num" and">>> Num": denote a shift left and a shift right Num bits 

with extension register Q, respectively. 

Function table format 

All the function tables are formatted as follows. 

• N arne: the identifier of each function table. 

• External Variables: the list of variables that are defined and assigned by 

other programs and used inside the target program. 

• Internal Variables: the list of variables thai are defined and initialized inside 

the target program, or u~ed to save temporary values. 

• Preconditions. 

• The function table. 

• NC- not changed variables: the list of variables are used without changing 

their original va~ues during the execution of the target program. 

It is important to note that the modifications of Ace, accumulator register and its 

extension register, Q, in some cases, are specified in the function table. This is 

because it is very common for program segments to use them for passing parameters, 

and tracking the values in such registers is required when studying a given program. 
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An example of an IBM 1800 program Display 

Following is an example of using Display to represent an IBM 1800 assembly program 

segment, labelled TRBFF, which invokes a subroutine, labelled DI2F3. 

1. Display Specification 
Name: TRBFF 
External Variables: XR1, XR2, BPCD[ ], GST[], DIW2. 

Internal Variable: Ace. 

XR1 = GST.address 1\ XR2 = BPCD.address => 

BPCD[13] 
BPCD[13]< 15 >= 0 

< 15 >= 1 

(2:}!9 DIW2 < i >) > 1 
(2:t~9 DIW2 
< i >l < 1 

((BPCD[9]- GST[27]) x 

Ace= 0 GST[48]) < < 5 0 

((BPCD[9]- GST[27]) X 

GST[47} = 0 GST[48]) << 5 0 

1\ NC(XR1,XR2,BPCD[ ],DIW2,GST[] except GST[47]) . 
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2. Program 
Address Label Option TF Operands 

(35be) TRBFF LD 2 13 

(35bf) BSC L TRBFD,E 

(35cl) LD DIW2 

(35c2) SLA 9 

(35c3) BSI DI2F3 

(35c4) MDX 3 -1 

(35c5) MDX TRBFE 

(35c6) TRBFD SLA 16 

(35c7) STO 1 47 

(35c8) MDX TROUT 

(35d5) TRBFE LD 2 

(35d6) s 1 

(35d7) M 1 48 

(35d8) SLA 5 

(35d9) STO 1 

(35da) MDX TROUT 

3. Display Specification 
Name: DI2F3 
External Variables: Ace, JfR2, XR3, BPCD[ ]. 

XR2= 

MSc. 

true 

BPCD.address 

XR9= I:1a A . 
i=15 cc < ~ > 

Ace= Ace<< 3 

1\ NC(BPCD[]) 
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3.3.3 Display Documentation for Software Inspection 

Software Inspection 

As described in [35], software inspection is responsible for systematically examining 

a program in detail to determine whether or not the program is fit for its intended 

use. The goal of such an examination is to assess the quality of the software product 

in question. To make sure that it is precise and complete, the inspection process is 

systematically prescribed and documented. Complementing program testing, detect­

ing code errors, and formal verification, which determine mathematical correctness, 

the inspection method plays an important role of improving software quality. This is 

because in addition to finding errors in code and related documents, it can help inspec­

tors to find problems that are not directly related to theorem proving, model checking 

and automatic testing. For example, determining whether coding style guidelines are 

followed. 

~"' Why use Display to inspect software? 

When examining a lengthy program implemented by others, inspectors desire pre­

cise and well-structured documentation. This is because the combination of a large 

amount of detail with inaccurate or vague descriptions of the structure makes it 

quite common for serious errors to escape the reviewers' attention. Thus, the pro-
•· gram documents should be: (1) well organized in terms of structure, (2) readable, 

(3) consistent, (4) complete and (5) independent of other documents. The Display 
...... 

documentation method was introduced taking into account of above features. Several 

benefits of using Display to inspect software are now discussed. 

First of all, the heart of the Display Method is to precisely summarize the effects , ' 

of a program and its components, so that each Display can be examined and verified 

without looking at any other Displays. This applies a "divide and conquer" policy 

which is a key to inspection. Systematic program decomposition makes it practical 

for inspectors examine small parts of a long program in isolation, while making sure 

(1) nothing is overlooked and (2) the correctness of all inspected components implies 

the correctness of the whole. 
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Secondly, the Displays are the main method used to ensure the correctness and 

completeness of the code. As discussed in 3.2, tabular expressions used for program 

specifications in Display can represent the behavior of program segments completely 

and precisely. It is also easy for inspectors to understand the mathematical notations 

used in the tables. These are critical for software inspection because the success 

of the inspection is largely dependent on the understanding of the product and the 

underlying technologies. 

Furthermore, the well-structured and standard mathematical notations which are 

easy to understand make it possible for people of different backgrounds to be involved 

in the inspection work efficiently. 

3.4 Display Documentation for Program Execu­

tion Time Analysis 

3.4.1 The relationship between soft'Yare verification and tim­

ing analysis 

Program timing analysis is a kind of verification activity. If using one or more vari-
•' 

abies to represent program execution time, timing analysts can use program tabular 

expressions to specify program timing properties, and related verification techniques 

can be used in the analysis. Particularly, when a program is being executed, each 
' 

calculation (e.g. a multiplication) changes the value of a variable that is already 

there and also adds to the variable representing calculation time. The amount of 

time may be constrained rather than fully predictable so this makes the program a 

non-deterministic program. However, when applying the program function composi­

tion as outlined by Mills and those who follow him, the upper and lower bounds for 

the calculation time may be derived. 
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3.4.2 Why use Display to analyze WCET? 

The Display Method is helpful for representing code segments as functions which is 

valuable in solving the problems met in timing analysis described in 4.2. 

First of all, the tabular function specification used in each Display helps program 

reviewers understand the function assigned to the program easily and precisely. This 

is important, because to determine the execution time, analysts have to know the 

program's function in order to make some of the decisions for the WCET tool's 

calculation. Also, function tables can specify more information than flow graphs, 

e.g. initialization information for global variables that do not appear in the specified 

program segment. 

Secondly, the tables are also helpful for flow analysis such as function composition, 

loop identification, loop bound determination and feasibility analysis. Again, in 4.4.2-

3, an example of using a table tool to compose isolate functions, and to determine a 

loop bound for a program segment containing a while loop is described. 

Thirdly, we need to find the execution time of function segments in a long program, 

r.- i.e. if each segment was assigned one or more individual functions, rather than the 

execution time between arbitrary start and end statements. In this case we want, the 

~ boundaries of our timing analysis match the boundaries of the Displays. 

Further, to find the execution time of a particular segment, it is necessary to 
,)" 

include all invoked programs' functions. This is true of any verification, and the 

Display Method provides such•information in a precise and concise way that reviewers 

can use and easily understand. 
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Chapter 4 

General Difficulties in the WCET 

Analysis 

In this chapter, several typical timing analysis difficulties, and WCET analysis prob­

lems met in the Reverse-Engineering project are presented, and proposed. 

4.1 Overview of WECT analysis difficulties 

In modern life, more and more industrial, civiliall. and military computer systems 

present timing requirements in their software applications. Correspondingly, the need 
• for effective timing property verification methods and tools is extremely important. 

However, there is a conspicuous lack of such methods and tools because timing analy-
.~ 

sis has proved to be an extraordinarily complicated task. The main obstacles encoun-

tered in timing verification and inspection are the complexity of software, especially 

non-terminating concurrent software, like the target control program in the Reverse-, 
Engineering project, and the complexity of such software's possible timing behaviors. 

These difficulties come from both fundamental, theoretical limitations and practical 

mechanisms [45]. · 

Program verification is in general undecidable. Methods and tools for program 

verification are generally subject to the problem that the state space size grows ex­

ponentially with the size of the program description. Undecidability also causes the 
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verification methods to be partial or incomplete, and we are forced to use approxi­

mation techniques, which may take many different forms. Another difficulty is that 

timing correctness depends largely on logical correctness because it is clear that logical 

errors can cause timing errors. 

The following practical facts also make timing analysis a daunting task [45]: 

(1) Some environmental external/internal events affecting the computer system 

may happen nondeterministically at any time, and this may cause the the associated 

asynchronous response processes to execute nondeterministically. When processing 

nondeterministic behavior, the complexity of the logic and timing behaviors of the 

system increase significantly. 

(2) Unless we have sufficient information about the runtime resource, assertions 

about the timing properties will be inaccurate, and often overly pessimistic. For 

example, pipeline techniques are used to improve average performance, but they may 

cause the WCET to be less accurate (more pessimistic) than without pipelining. 

(3) To get precise estimation, it is necessary to perform timing analysis at ob-

1";-. jectfassembler code level because the high-level language compiler may optimize the 

program flow during compilation. Hence, for complex applications, the number of 

paths that needs to be examined may be increased to the extent that it becomes 

unmanageable. 

( 4) Current real-time system design unavoidably applies complex synchronization, 

priority preemption, interrupts and other mechanisms required to construct concur-• -. 

rent systems. All of them can affect an application's timing properties in subtle ways, 

and make the timinfl unpredictable. 

As explained by Xu in [45], considering the above difficulties, if the software 

and its timing behaviors are overly complex, the timing verification and inspection 

may be practically impossible. Therefore, imposing specific constraints in particular . 
environments to reduce the complexity is necessary. For example, the (early version 

of) WCET analysis tool that will be discussed in latter sections is restricted by: 

• Estimating the WCET of IBM 1800 assembly programs running in a single 

machine (CPU). 

• Estimating the WCET of decomposed program segments with assigned individ-
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ual functions and finite executions, rather than of the entire system. 

• There are no interfering background activities and the input/output operations 

e.g. reading a disk takes a fixed execution time. 

• The program segment cannot be preempted by other programs. 

Associated with the real project, the following sections illustrate several particular 

problems, met in the WCET analysis of IBM 1800 assembly programs from OPG, 

and the methods introduced to solve them. 

4.2 Decomposing Long Programs 

The aim of program decomposition is to decompose a long program into small parts 

and then, provisionally, associate a function with each part [32]. In this way, analyses 

can be performed individually such that (1) if each part implements its assigned 

:-;- function, the whole program will be correct, and (2) that each part implements its 

assigned function. 

4.2.1 Function Table and Display Qpnstruction 

In the Reverse-Engineering project, recovering decomposed modules and their inter-• •. 

face information from assembly code is time consuming and error prone. This is not 

only because the assembler language syntax, such as arbitrary jumps and invisible 
-~ 

variable types and names, make the program very long and its architecture not ob-

vious (functions are normally implemented by separated blocks), but also because it 

is hard to extract mathematical functions, which are associated through knowledge 
' 

from a variety fields, without referring to related specification documents. 

In such cases, function tables were found to be helpful in recovering functions from 

code. In practice, two groups worked individually to construct function tables from 

the program. One of them constructed tables from source code only, and another 

group's construction work was allowed to refer to program comments written by the 

programmers. Then, the two kinds of tables were compared to find differences, and 
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revised by the two groups working together. It is natural that table construction is 

started by extracting function units of small program slices, and then functionally 

composing these smaller functions until the required function is created. Further, 

the early draft of function tables present "low-level" function behavior, e.g. changes 

in core storage content and shifting of binary bits. There is no general template to 

define the function scope, and the scope is normally defined by annotations from 

the analysts. It requires an iterative process to extract functions that implementers 

intended. It is also common that comments are incorrect, incomplete or missing, but 

the point is we are trying to use all of the given valuable information to recover the 

functions assigned to the code. 

Constructed tables and their related code are composed into displays as discussed 

in chapter 3. For instance, in the (display) example in 3.3.2, the function table in 

the first part of the display is constructed from the code listed in the second part. 

The tabular expression is much easier for readers to understand the function than 

reading the code. Compared with other reverse engineering approaches, e.g. (47][48], 

Y,:.. which first extract assembler code to high-level language representation such as C, 

the tabular expressions are more concise and abstract. In another words, it is much 

easer for readers to get the big picture of the program accurately and clearly through 

reading function tables extracted from code, whether the code is written in assembler 

or a high level language. ~· 

To capture the intent of the original design, it is required to perform functional 
• 

recovery for all the elements of a given program. For example, again, the program 

labelled TRBFF in the display in 3.3.2 invokes a subroutine labelled DI2F3 and its 
.~ 

display specification is shown below. The function TRBFF can not be specified unless 

we know the function DI2F3. Thus, given a (long) program, we first do trials to find 

some segments which do not branch "far away" to construct unit tables, then combine . 
or nest them into "bigger" tables. For instance, the display of DI2F3, shown below, 

was first created. Then, its functionality was included in one of the header conditions 

in the function table of TRBFF. 
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1. Display Specification 
Name: DI2F3 

MSc. Thesis - Jian Sun 

External Variables: Ace, XR2, XR3, BPCD[ ]. 

true 

XR2= BPCD.address 

XR3= ~13 J1 . 
i=15 cc < 1, > 

Ace= J1cc << 3 

A NC(BPCD[]) 

2. Program 
Address Label Option TF Operands 

(35c9) DI2F3 DC 0 

(35ca) LDX 2 3 

(35cb) LDX 3 0 

(35cc) BSC 

(35cd) MDX 3 1 ~ 

(35ce) SLA 1 

(35cf) MDx• 2 -1 

(35d0) MDX *-5 

(35d1) .. ~ LDX L2 BPCD 

(35d3) BSC I DI2F3 

3. Specifications of Invoked Programs 
Null 

So far, the above work is manually performed, whiCh is time consuming and error 

prone. Thus tool aided table construction is desired. For example, the table opera­

tion tools discussed in 3.4 and automatic tools explored by other groups to extract 

arithmetic expressions and pre/postconditions for partial segments, will improve the 

efficiency and accuracy of the table construction. 
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4.2.2 Subroutine Invocation Identification 

During the program decomposition, subroutines should be identified and their invo­

cation properties, e.g. parameters and other interface information, should be deter­

mined. This is because they not only fulfill part of the functionality of the caller pro­

gram, but also may be called by different modules. Unlike most high-level languages 

that use specific invocation statements such as Call, subroutine calls in assembler 

sometimes must be implemented by branch or jump statements. Thus, identification 

of subroutine invocations should: 

• figure out the scope, related variables (e.g. parameters) and behavior of the 

subroutines, 

• specify identified subroutine call properties properly, 

• identify subroutine call templates used by programmers. 

!";-. For example, Figures 4.1 and 4.2 show two of the templates commonly used in the 

target application (BPC code) in the Reverse-Engineering project. The difference 

between the two templates is that the first one (BSI-DC-BSC) is used to call a sub­

program without arguments, while the second (BSI-DC-BSI) is typically used to call 

a program with arguments. In the latter case, the-parameters passed to the program 

are specified in the DC area that follows the call (the initial BSI) . • 

" 4.3 Determining Loop and Loop Properties 

4.3.1 Loop Identification 

Assembly programs use conditional and unconditional branches to achieve the desired 

control flow. This often makes the program structure artificially complex. Similarly, 

the loop as well as the subroutine invocation structures may not be as clear as in 

high-level language. For example, a FOR loop in the DI2F3 display in 4.2.1 is not 

obvious in the code. However, it is not difficult for readers to find a potential loop 

(between nodes 35cc and 35d0, and exits from 35d1) by viewing its flow graph shown in 
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Caller Program Called Program 

(35be) TRBFF LD 213 (35c9) DI2F3 DC 0 

(35ca) LOX 2 3 

(35c3) BSI DI2F3 

(35c4) MDX TRBED 

(35c8) MDX TROUT 

\\ ... , 
''-.._ (35d3) BSC I DI2F3 

Figure 4.1: BSI-DC-BSC Subprogram Invocation Example 

Caller Program Called Program 

(0308) CCOR DC 0 / (01 00) SPL DC 0 

: ( (010E) XIO L MSKO 

(03E2) BSI L SPL (0116) MDX L SPL 1 
(03E4) DC MK6 . ' 
(03E5) DC MSKL 
(03E6) DC 0 
(03E7) STX3 SV3\__ (0122) MDX LSPL, 1 

(0427) BSLI CCOR (0129) BSI I SPL 

Figure 4.2: BSI-IJC-BSI Subprogram Invocation Example 

Figure 4.3. In our work, the control flow graph (CFG), generated by graph generator 

(mentioned in 2.2.1) created by other colleagues in the Reverse-Engineering project, 

plays an important role in helping program reviewers to find loops in the program 

segments. It is intuitive to use "back" edges or "circle edges" in the flow graph to 

identify potential loops. It is also true that the visible directed graph is good for 

representing flow information. 

Another important method used to find loops is reading abstracted function spec­

ifications to look for the functions that normally are implemented by loop structures. 
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Figure 4.3: Original Control Flow Graph of DI2F3 

For instance, the function assigned to program Df2F3: 

• 13 

X R3 := LAce < i > 
i=15 

would be implemented· by a loop by most programmers. 

4.3.2 Loop Bound Determination 

In 2.2.3, the importance and difficulties of determining the loop bound for timing 

analysis was explained. The most essential fact of the determination is understanding 

the semantics of the program correctly and completely. Again, in the above example, 

if we know that the identified loop in DI2F3 computes XR3 := 2::~~ 15 Ace< i >, 
it is obvious that the loop will iterate a fixed number of times, i.e. ·· its loop bound 
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is 3. In general, this kind of problem is clear to programmers or implementors, and 

once it is abstracted to a mathematical form as above, it will not be difficult for 

program reviewers to get the solution. However, it is very hard and complex to 

develop automated tool to determine the number of times that loops iterate [10]. 
Thus, manual annotation is one way to determine loop bounds in programs. This 

work can be done either by program implementers or by program reviewers. 

Moreover, at McMaster University, researchers have introduced a new way to de­

termine loop bounds based on tabular expressions. Briefly, the programs are first 

transformed into function tables, and then tables are input into the TTS and loop 

bounds are calculated by a series of table compositions. Our example shows that 

some of the loop bounds of programs represented by tables can be determined auto­

matically. An example of using tabular expressions to determine loop bound is given 

in 4.4.3. 

4.3.3 Loop Type Classification 

In practice, loops can be used in some non-Junctional computations. A typical case 

is an error-handling process. For instance, as shown below, a Do/While loop is used 

to prevent illegal user input to a SQRT function which computes square roots for 

non-negative reals. 

Do {println( "Pl!ease input x 

readln(x); } 

While(x < 0); 

SQRT(x); 

.· 

>= 0 :"); 

It is clear that user inputs are unpredictable, and the task in timing analysis is to 
• 

determine the time of functional computation e.g. SQRT. Therefore, such loop can 

be assumed to execute once and only once but taking bounded time. In other words, 

loops in the programs should be categorized into different classes, such as functional, 

error-handling and other non-functional loops. The functional loops can be divided 

into FOR-Loop and WHILE-Loop further, and for such nonfunctional loops, specific 

constraints can be used to simplify the loop property analysis. 
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Furthermore, it is important to document those results for further analysis and 

verification, especially for programs that have complex loop structures. This is be­

cause determining loop properties normally is a complex and iterative process, and it 

largely depends on how well people understand the target program. 

4.4 Identifying Infeasible Paths 

4.4.1 Infeasible paths caused by MDX statements 

As mentioned in 2.2.1, in the Reverse-Engineering project, the program flow graphs 

can be generated automatically by syntactic interpretation. However, the graphs 

contain a number of infeasible paths. For example, in the IBM 1800, the MDX 

instruction is specified as "MDX can increase or decrease the contents of a register 

or memory unit. If the result is equal to 0 or has a different sign than the original, 

the next instruction is skipped." Based on this specification, MDX instructions are 

.;- interpreted as alternative branch instructions by the flow graph generation tool. But 

in some cases, programmers use MDX only to change the values of some variables 

rather than as branch statements because they are sure that the increase or decrease 

operations will not cause the results to be zero nor to change the sign of the variable. 

Such infeasible paths result in skipping some instf:uctions and so will not ·affect the 

WCET solution. However, w)lile analyzing example slices of the code, we found a 

number of MDX instructions that make the graphs much more complex than their 

real flow structure ... .,Thus, the effects cannot be ignored. 

Again, to identify the feasibility of program flows, program reviewers should un­

derstand the program behavior very well. For example, in the DI2F3 segment, there 

are three MDX statements used in three different forms as: 

1. assignment statement: (35cd) MDX 3 1, which can be interpreted as "vari­

able X R3 adds 1 to itself. Then, if its value neither becomes 0 nor changes 

sign, the next statement (35ce) will be executed, otherwise it will be skipped". 

However, in this slice, X R3's original value is 0, and it is in the loop whose 

loop bound is 3, which indicates the maximum value of X R3 is 3. Thus, the 
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above condition will always be true, i.e. the (35ce) will never be skipped. In 

other words, this MDX can not have an alternative execution, and it is used 

as an assignment statement only. Correspondingly the CFG of DI2F3 in Figure 

4.3 should be refined by removing the infeasible path from (35cd) to (35cf) as 

shown in Figure 4.4. 

Figure 4.4: Refined Control Flow Graph of DI2F3 

. 
2. alternative branch statement: (35cf) MDX 2 -1, which can be interpreted 

as "variable X R2 subtracts 1 from itself. Then, if its value becomes 0 or changes 

sign, jumps to the statement addressed (35d1), otherwise its next statement is 

executed". In this case, X R2 is used as a loop counter whose value is 3 originally, 

and decreases by 1 in each iteration. When its value is decreased to 0, the loop 

is terminated by jumping to {35d1). 
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3. unconditional branch statement: (35d0) MDX * -5, which can be in­

terpreted as "goto the statement whose memory address is current instruction 

address minus 5". Hence, this statement is used to implement a loop structure. 

Similar to the loop bound determination, it is too hard to develop an automated 

feasibility determination tool. Our WCET analysis tool helps analysts find the "sus­

pect" nodes e.g. MDX statements, which may cause infeasible paths, then, provides 

displays to aid analysts in determining whether the path is feasible or not. 

4.4.2 Use tables to determine flow feasibility 

Function tables can also be used to determine flow feasibility because they represent 

the related program's behavior precisely. For example, the loop body,· containing two 

sequential if-then-else statements, of the program segment shown in Figure 2.1 has 

the flow shown on the left in Figure 4.5. If we compose function expressions for each 

' 
Figure 4.5: Original/Refined Flow Graphs of the Program in Figure 2.1 

statement, we get the individual tabular expressions, Table 4.1 and Table 4.2 shown 

in Figure 4.6. These tables can be composed to form Table 4.3, which indicates the 

program has the flow shown on the right of Figure 4.5, and can be simplified into 

Table 4.4. 
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Table 4.1 x= Table 4,2 x= 
I x<3 2x I x=I x+2 
I 3 <x x+I I xi- I x+I 

Table 4.3 x= 

x<3 
2x =I false 
2xi-I 2x +I 

3 :=:x 
x+I =I false 
x+I i-I (x+I) +I 

Table4.4 X= 
I x<3 2x +I 

I 3<x x+I+I 

Figure 4.6: Function Tables of the Program in Figure 2.1 

4.4.3 Example of using tables to determine loop bound 

For the program in Figure 2.1, associated with the initial loop conditions and Table 
.;r 

4.4, the TTS tool can 

• 
• enumerate each case of the legal input iteratively until the termination state. 

Tables from 4.5-(1) to 4.5-(3) in Figure 4.7 show the results of each iteration 
·' 

step. 

• generate a tabular expression for the example program as shown in Table 4.6. 

Correspondingly, the loop bound can .be determined to be 3. 
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Table 4.5-(1) x= Terminated 
x=O 2x+1 False 
x=1 2x+1 False 
x=2 2x+1 True 
x=3 x+1+1 True 

Table 4.5-(2) x= Terminated 
x=O 2(2x+1) + 1 False 
x=1 (2x+l) + 1 + 1 True 
x=2 2x+1 True 
x=3 x+1+1 True 

Table 4.5-(3) x= Terminated 
x=O ((2(2x+1) + 1) + 1) + 1 True 
x=1 {{2x+l) +]) + 1 True 
x=2 2x+1 True 
x=3 (x+1)+1 True 

Table 4.6 x= Iteration Number 
x=O 4x+ 5 3 
x=1 2x+3 2 
x=2 2x+1 1 
x=3 x+2 1 

Figure 4.7: Use Tables to Determine Loop Bound of the Program in Figure 2.1 ... , 

4.5 Understanding Program Behaviors 

Without access to related documentation, it is very difficult to recover the program's 

behavior as intended by the original designers. Especially, when studying assem­

bler code, reviewers are almost "blind" to the abstract functions implemented in the 

program. In our example, we found that the function table is an effective tool for 

reviewers to collect related data and represent their analysis results. In particular 
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tables are good for 

• interpreting program statements, 

• presenting low-level functionalities of program such as variable or state changes 

caused by program execution, 

• presenting abstracted functionality of program in readable mathematical form, 

• collecting and supplementing information related to the program behavior's 

effect on the repository e.g. data dictionary 

The following section presents an example of analyzing the small code slice shown in 

Figure 4.8, from the BPC module. 

4.5.1 Program Statement Interpretation 

,-;- The main tasks of statement interpretation are to determine (1) the initial states 

or conditions of executing-a given program and (2) which variables' values will be 

~ changed, and how they will be changed. With reference to Figure 4.8, this phase 

results in the following descriptions. 

Address.Label Option TF Operands 
(3886) wuo LD 2 2 

(3887) SRA 1 ... 
(3888) BSC L WUl,E 

(388a) MDXL BPCD+2, 2 

(388c) LD WCMN+l 
(388d) BSI EMNI 
(388f) WUl LD 2 6 

Figure 4.8: Warm Up Example Segment 
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1. Initially, 

(!)register variable XR2 stores the address of data list named BPCD. 

(2) WCMN and SMT also are data lists used in the system. 

2. (3886) loads the content stored in the third word of BPCD table to Accumulator, 

through indirect addressing by X R2 . 

3. (3887) shifts Accumulator right with one bit. 

4. (3888) if Accumulator's value is not even, goto WU1(388f). 

5. (388a) adds 2 to the content stored in the third word of BPCD table, and if 

the value is 0 or there is a change in sign, goto (388d), otherwise goto next 

statement (388c). 

6. (388c) loads the content stored in the second word of WCMN to Accumulator. 

7. (388d) calls EMNI subroutine, which is responsible for modifying the values 

of SMT stack message list, with a function named EM N, based on the value 

saved in accumulator, 

8. (388f) the end of WUO section 

4.5.2 Function Extrctction 

Based on the above results, a function table can be constructed as shown in Figure _, 
4.9, in which some named variables and data structures, e.g. an array, are introduced. 

They are used to present changes in state and modification of core storage data. Note 

that, this kind of table is not sufficient to represent the real physical behavior of the 
' 

program without additional semantic knowledge. 
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Name: WUO 

External variables: Ace, XR2, BPCD[], WCMN[ ],SMT[ ]. 

XR2 = BPCD.address ===} 

BPCD[2] < 1 >= 0 BPCD[~l < 1 >= 1 

BPCD[2] = BPCD[2] +2 BPCD[2] 

Ace = Valueof Ace( EM N(WCM N[1l)) BPCD[2] 

SMT[] = EMN(WCMNO) SMT[] 

I\NC(XR2, WCMN[], BPCD[ J except BPCD[2]) 

Figure 4.9: Low-level Function Table of Warm Up Segment 

,.,-. 4.5.3 Collecting Supplementary Information 

After studying the program context in detail, we can deduce the following supple-

.. mentary facts. 

• the third (16 bit) word in the BPCD table, B.PCD[2], was used as a flag word, 

named Warm-up Flag word, in which its first six binary bits represent six flags 
• used in the plant warm up process respectively. 

• the bit indexed with 1 is used as a whether-warmed-up-flag in which : 

(a) the value 0 indicates the plant has not been warmed up. 

(b) ~he value 1 indicates the plant has been warmed up. 

• to determine the value of the whether-warmed-up-flag, the programmer used the 

following steps as shown in Figure 4.10: 

(a) load the Warm-up Flag word to Accumulator, 

(b) shift right the content in Accumulator one bit, which copies the value 

of the whether-warmed-up-flag in the bit 0 of Accumulator, 
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(c) test whether the value of Accumulator is even or not. Yes means that 

the whether-warmed-up-flag has a value of 0, otherwise it has the value of 1. 

Warm-up Flag Word 1011 1 
15 2 1 0 

Load -0-
Accumulator I0/1 1 

15 2 1 0 
Shift-right ~ 

Accumulator I I lo/1 J 

15 2 1 0 

Figure 4.10: Warm-up Flag and Accumulator 

• the MDX statement in (388a) is executed with the precondition specified in 

(3888) which implies that the value of whether-warmed-up-flag is 0. Figure 4.11 

shows that if whether-warmed-up-flag is 0, adding 2 to the Warm-up Flag word 

has the effect of changing the whether-warmed-up-flag to 1. It will not cause the 

word, BPCD[2], to equal zero or change sign. In other words, the MDX Works 

Accumulator 

• Warm-up flag word 

15 

Implies .J,J. 

15 

Implies .J,J. 

2 1 

0 
2 1 

Warm-up flag word := (Warm-up flag word)+2 

Implies .J,J. 

15 2 

Figure 4.11: Warm-up Flag Setting 

0 
0 

0 

0 

as an assignment statement to set whether-warmed-up-flag and not branch at 

this node. 
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• the second word of WCMN, W C M N[1], stores the initial information, warm­

up-turned-on-message, for invoking subroutine EMNI. 

4.5.4 Function Table Abstraction 

Knowing the above information, the implementer's intended program behavior now 

can be described as: "If the value of whether-warmed-up-flag in the Warm-up Flag 

word (stored in the third word of the BPCD data table) is 1, then skip to WU1 

directly without modifying any variable, otherwise, (1) set whether-warmed-up-flag 

to 1, (2)assign initial data to Accumulator, (3) call subroutine EMNI and (4) return 

to WU1 after executing the subroutine". Correspondingly, the previous table in 

Figure 4.9 can be reconstructed as shown in Figure 4.12. 

Name: WUO 

External variables: whether-warmed-up-flag, warm_up_turned_on_messgae. 

whether-warmed-up-fiaq=O 

whether-warmed-up-ftag=l 1\ 

EMN{warm-up-turned-on-mess_qae) 

• 

whether-warmed-up-flag= 1 

NULL 

Figure 4.12: Abstract Function Table of Warm Up Segment 

... ~ 
It is important to note that constructing function tables is also helpful for finding 

other specific features that exist in the applications. For example, we can use tables 

to help identify self modifying code which is possible in assembly programming. 
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Chapter 5 

Extended Display Method for 

WCET Analysis 

This chapter and the next illustrate how the conventional display documentation 

method is extended to support WCET analysis and related tool development. 

5.1 Display Documentation Extension 

In chapter 3, the advantages of using precise display documentation methods to an-
.: 

alyze program execution time properties were explained. However, when performing 

timing analysis, such documen1iation methods should be extended as described below. 

5.1.1 Timing-variable 

To aid timing analysis> one more variable, T representing the time for a function 

computation, can . be added into each function table in the displays. In particular, to . . . 
determine the execution time of a given program, T is originally defined as 0, and 

each calculation (e.g. multiplication) changes its value by adding the time taken by 

the calculation. The amount of time taken by the whole program is represented in 

the table, and it may be constrained rather than fully predictable, so this makes the 

program a non deterministic program with respect to its timing properties. However, 

when composing program functions, the upper and lower bound for the value of time 
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on completion will be determined. For example, Figure 5.1 shows the extended (added 

time variable T in the last row) tabular expression of the example program D I2F3 

discussed in 4.2.1. 

Notes: (1) N denotes the number of possible execution paths of the program (2) 

tp1 , ... , tpN denote the execution time for path1, ... , pathN respectively. 

Name: DI2F3 
External Variables: Ace, XR2, XR3, BPCD[ ]. 

true 

XR2= BPCD.address 

XR3= :L:l;j A . 
i=15 cc < 1. > 

Ace= Ace<< 3 

T {t I tpl,tp2,···,tpN} 

1\NC(BPCD[]) 

Figure 5.1: Timed function table example 

In particular, a loop is used to calculate 2;:;,15 Ace < i >. It iterates three 

times and contains an alternative branch statement in its loop body as shown in 
- . 

its refined CFG in Figure 4.4. Thus, N is equal to 8 since the program has 23 

possible execution l?aths. Correspondingly, the detailed specification of time vari-
• .. 

able T is shown in Figure 5.2, and the upper and lower bounds of execution time 

of the program are _max{ tp1 , ... , tps} and min{ tp1 , •.• , tpS} respectively. Note that 

len( subrouti~e) = 0 indicates the program does not invoke other programs, and 

len(loop) = 1 /\loopCount1 = 3 indicates that the program contains one and only one 

loop which iterates 3 times. It is clear that if more branches and loops are used, the 

number of the possible execution paths will increase exponentially. This makes the 

determination of the timing lower and upper bounds much more complex and diffi­

cult. Hence, it is desired that some execution paths can be ignored if their execution 

times are not limiting values. For instance, with reference to DI2F3's refined CFG in 
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Name: timeDI2F3. 
External Variables: Ace, loop, loopCountt, subroutine. 

len(subroutine) = 0 1\ len(loop) = 1/\ loopCount1 = 3 => 

MSc. Thesis - Jian Sun 

H1 

Hli\H2 
-G- II Acc<14>=0 I Acc<14>=1 I 

Ace < n > - 0 I Ace < 13 > - 1 Ace < 13 > - 0 I Ace < 13 > - 1 -

Ace< 15 > = 0 T = tvt T = tv2 T = tv3 T = tv4 

Ace< 15 > = 1 T = tv5 T= too T = tv7 T =tva 

H2 G 

Figure 5.2: Specification of time variable T 

Figure 4.4, if it is found that the alternative branch at (35cc) is valid in all iteration 

r,~ scenarios, removing the edge from (35cc) to (35ce) will not affect determining the ex­

ecution time upper bound, and ignoring edges from (35cc) to (35cd) and from (35cd) 

to (35ce) will not affect the lower bound result. Hence, after this adjustment, only one 

execution path is left. This indicates that it is poss1ble to analyze paths in the graph, 

in a systematic way, to remove paths that can not affect the minimum/maximum exe­

cution time. This practical apf>roach serves to decrease the complexity of the WCET 

analysis. 

5.1.2 Program Flow Graph . . . 
An important property of function tables is that they define a function that maps from 

old values of variables to new ones, without considering any intermediary status. In 

other words, they provide a high level, precise abstraction of the function. However, 

in timing analysis, some detailed information is required. For example, as discussed 

in chapter 2, program flow analysis is an essential phase of timing analysis. It takes 

program flow information as input, and outputs and then evaluates flow properties 
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and refined flow representations. In the Re-Engineering project, as in many other 

WCET analyses, program flow information is represented in a graphical form called 

a flow graph. Thus, in WCET analysis, the program flow graph as well as timing 

variables must be added to the Displays. 

However, the flow graphs may contain redundant flows or may miss some flows, 

i.e., their correctness and completeness needs to be verified and improved by either 

implementors or program reviewers. For example, as illustrated in 4.4.1, the original 

automatically generated flow graph contains an infeasible path, and after related 

analysis, it can be refined to the graph shown in Figure 4.4. 

To retain the original concept of the Display, the generated and refined flow graphs 

should be added into the fourth section of displays (32]. This section contains a 

demonstration of the correctness of the display and its components. As defined by 

the authors, this part could be either a description of the informal reasoning routinely 

done by a programmer, or a more formal argument. The existence of this additional 

section would make the reviewer's task simpler - one would not have to invent a 

"proof", only to check one. 

Another important reason for involving graphs in the WCET analysis is because 

existing graph theories, tools and other techniques can make the timing analysis more 

efficient. Some of the tasks can be performed autumatically or semi-automatically. 

In the Reverse-Engineering project, a fully automatic tool was developed for gener-
• ating a GXL format control flow graph. In the graph, ·each node corresponds to a 

statement in the program, and contains a set of attributes used to specify statement 
..... 

information such as: assigried memory location (address), operation code, operands, 

etc. Further, each edge. corresponds to an unique flow starting from a "source" node 

and ending at a "sink" node. Figure 5.3 shows the detailed GXL graph node and . . . 
edge formats. This kind of graph is used to store related information to support other 

applications. Examples include: (1) To make the assembly program more readable, 

an XML application was explored to display related information on web browsers 

and other popular applications. (2) An expression identification prototype tool was 

used to extract pre/post-conditions by analyzing the graph. (3) A prototype WCET 

calculator was used to search the longest (execution time) path in such graph. The 
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<node id = "program ID + statement.address"> 
< attr name= "label">< string> label Name< /string>< /attr > 
< attr name= "address">< string> memory address< /string>< /attr > 
< attr name= "opcode" ><string> operation code< /string>< /attr > 
< attr name= "binary">< string> machine code< /string>< /attr > 
< attr name= "rei">< string> XX< /string>< /attr > 
< attr name= "stno" ><string> line number< /string>< /attr > 
< attr name= "format">< string> format< /string>< /attr > 
< attr name= "tag">< string> tag< /string>< /attr > 
< attr name= "operands">< string> operands< /string>< /attr > 
< attr name= "comment">< string> comments< /string>< /attr > 

</node> 

<edge from= "source address" to= "sink address"> 
· < attr name= "indirect">< boo/> True/False< /boo/>< /attr > 

< attr name= "backedge" ><boo/> True/False< /bool >< /attr > 
< attr name = "backedge" >< real > time </boo/>< lattr > 
< attr name= "backedge" >< int >Execution Num </boo[>< /attr > 

<ledge> 

Figure 5.3: GXL flow graph node and edge format 

GXL graphs also can be generated in a conventional visible form (Figures 4.3 and 

4.4) by the tool developed in the Reverse-Engineering project. 

5.1.3 Program Flow l>roperty variable 

To estimate the execution time of a given program, detailed flow properties such as 
~ 

which subroutines get called, how many times loops iterate, and whether the graph 

contains infeasible paths, should be specified for flow analysis and further calculation. 

Considering the general difficulties of flow analysis discussed in chapter 4, and the fact .. 
that, in practice, some of the flow property determinations are dependent on manual 

annotations [10], we believe that it is necessary to include a variable, Ii.amed fp, which 

is used to specify detailed program flow properties in the Display. In particular, it 

is used to determine loop, subroutine, infeasibility properties and verification status. 

For example, the flow property variable, fp, contains an element, Loops, which is used 

to describe (1) the loop property analysis status by a sub-variable named lstatus and 
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(2) the flow information of all the loops in the program by a vector named loops. 

Each element of the vector corresponds to an identified loop in the target program, 

and it specifies the following information of the loop. 

• loop index, an ID or index number of the identified loop 

• loop scope, a list of core address pairs in form of (start_address, end_address) 

that are used to specify the scopes of the slices that constitute the loop. Note, 

in assembly programs, it is common that a loop or a subroutine is implemented 

in several separate slices 

• nested loops, a vector used to present the nested loops of the target loop 

• loop type, the type of the loop such as: WHILE, FOR and Error-Handling 

• loop execution number, the number of times that the loop executes in a specific 

analysis scenario 

• loop bound, the upper bound of the number of times the loop may execute. 

In Figure 5.4, detailed variables are illustrated. In our particular case, other than 

code, we do not have any documentation about the application, and we have no chance 

to obtain related information from designers or implementers. We have developed an 

interactive tool to aid progra:{ll reviewers to determine a,nd annotate flow properties 

such as loop bound, infeasible paths and so on, when relevant documentation is not 

available. It is an iterative phase in which the tool is responsible for providing "basic" 

information and concepts (such as function specifications and flow graphs) which can 

help people develop. appropriate analysis. 
' 

5.1.4 Using extended displays for WCET analysis 

Generally, in the WCET analysis, the extended displays are used to provide valuable 

information, including program behavior (tabular) specification, source code, flow 

graphs, and specifications of invoked programs during the flow analysis and WCET 

calculation phases. Related work includes: 
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Program Flow Variable: fp 
Element Variable Name Variable Type Reference 

Status String 
Represents the flow analysis status for a program, 
{"Unprocessed", "In process", "Confirmed"} 

/status String 
Represents the loop property analysis status, 
{"Undetermined", "Determined", "Confirmed"} 

Loops 
List of identified loops 

loops Loop Vector 

sstatus String 
Represents the subroutine property analysis status, 

Subs 
{"Undetermined", "Determined", "Confirmed"} 

subs Sub Vector 
List of identified subroutines 

istatus String 
Represents the infeasible path analysis status, 
{"Undetermined", "Determined", "Conf1rmed"} 

lnfPaths 
paths lnfPath Vector 

List of identified infeasible paths 

Loop Property Variable : Loop 
Element Variable Name Variable Type Reference 

index String ID or index of an identified loop. 
scope String Vector The scope of code slices that constitute the loop. 

nested loop Loop Vector The list of nested loops. 

type Sting 
Loop type: {"FOR", "WHILE", "Error Handling", 
"Undetermined" I 

iNurn Int 
The number of times the loop executes in a specific 
analysis scenario 

iBound lnt Upper loop execution bound 

Subroutine Property Variable : Sub 
Element Variable Name Variable Type Reference 

name String The name of an identified subroutine. 
scope Stri~ Vector The scope of code slices t}tat consist the subroutine. 

sub-subroourine Sub Vector 
The list of sub-subroutines invoked by the target 
subroutine. 

parameter Sting Vector Parameters for invoking the target subroutine. 

iNurn lnt 
The number of times the target subroutine executes in a 
specific analysis scenario 

iBound lnt Upper subroutine execution bound 

Feasibility Property Variable : In/Path 
Element Variable Name Variable Type Reference 

start String The start address of an identified infeasible path 

end String The end address of an identified infeasible path 
comments String Annotation of the analysis solution 

Figure 5.4: Program Flow Property Variables 
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1. Construct displays for given program from code. This includes a set of 

subtasks such as decompose long programs into short ones, identify function 

blocks, understand and extract functions assigned to the blocks, and compose 

function tables. In 5.2, these tables will be illustrated in detail. It is also im­

portant to note that the set of constructed displays will be saved in a knowledge 

reference library, repository, for WCET and other analyses. 

2. Explore display management tool. The tool is responsible for managing all 

of the constructed Displays, and making it easy for analysts or other software 

components to use and modify the related Displays. 

3. Determine flow property variables. In another point of view, the essential 

responsibility of a flow analysis tool is to determine or aid analysts to determine 

the values of the flow property variables as discussed in 5.1.3. These variables 

are added to the conventional Displays so as to present information required in 

the WCET calculation. In our case, before a semantic analysis tool is success­

fully explored to provide sufficient information automatically, part of the flow 

property variable determination work is performed manually using a flow anal­

ysis assistant tool, which provides interactive panels for analysts to determine 

the values of flow property variables, and pro~ides a Display Viewer for analysts 

to refer to Display documents to make appropriate decisions. 

4. Refine flow-kraphs. In this step, the tool facilitates CFG refinement, which 

includes clustering subroutine graph nodes, removing infeasible paths, adding 

missed edges and other manipulations. This refinement work is based on the 

flow prdperties specified in relevant Displays. 

5. Determine timing variables. For each timing variable added to the Displays, 

its value is calculated by summing up the block execution time in the related 

execution path. Then the maximum value of all timing variables is the WCET 

of the given program. 
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5.2 Constructing Displays from Code 

The main phases of constructing display documentation are: 

• Decomposing a program into a set of modules, where each module encapsulates 

a number of functions. 

• Extracting mathematical functions and representing them in tabular expressions 

for each module. 

• Determining interfaces between function invocations. 

Associated with an example from the Reverse-Engineering project, the following sec­

tions present the methods used to extract assigned functions and construct Displays 

for the IBM 1800 assembly programs, especially the construction of function tables 

from code segments. Note that this work is done manually so far, and related source 

code, LST files generated by IBM 1800 assembler, GXL flow graph files generated 

r.· by the flow graph generation tool and visible flow graphs were referred to during the 

construction of the Displays. 

5.2.1 Source Code of the Sample Segment 

When perform timing analysis, it is essential to kriow the behavior of a given pro­

gram. Especially reverse engiAeering assembly code, the functions are not obvious 

and invisible to analysts or program reviewers. To analyze the methods used in the 

construction work, in IBM ·1800 assembly program segment as shown in Figure 5.5 

was chosen as the example slice. It performs turbine output computation in the BPC 

(Boiler Pressure Coritrol) module. Our analysis found that this segment: 
' . 

• performs control variable computations which were assigned particular math­

ematical functions, and does not branch out to invoke other segments outside 

the BPC code. 

• contains typical program structures such as sequential execution, alternative 

branch, loop iteration and subroutine invocation. 
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• uses registers which were previously assigned specific values, which should be 

determined in other segments. 

• contains an infeasible path caused by the flow graph generator. 

Note, this segment is a combination ofT REF E (Thrbine Feedback) , and T REF F 

(Thrbine Feedforward) which with the nested DI2F3 slices mentioned before in chap­

ters 3 and 4. 
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Address Label Option TF Operands 

(35b6) TRBFB LD 1 41 

(35b7) M 1 42 

(35b8) SLT 2 

(35b9) s 1 43 

(35ba) M 1 44 

(35bb) SLT 15 

(35bc) D 1 45 

(35bd) STO 1 46 

(35be) TRBFF LD 2 13 

(35bf) BSC L TRBFD,E 

(35c1) LD DIW2 

(35c2) SLA 9 

(35c3) BSI DI2F3 

(35c4) MDX 3 -1 

(35c5) MDX TRBFE 

(35c6) TRBFD SLA 16 

(35c7) STO 1 47 
17- (35c8) MDX TROUT 

(35c9) DI2F3 DC 0 

(35ca) LDX 2 3 ... 
(35cb) LDX 3 0 

(35cc) BSC ~· 

(35cd) MDX 3 1 ·-

(35ce) • SLA 1 

(35cf) MDX 2 -1 

(35d0) MDX *-5 
.~ 

(35d1) LDX L2 BPCD 

(35d3) BSC I DI2F3 

('35d5) TRBFE LD 2 

'(35d6) s 1 
1 " -

(35d7) M 1 48 

(35d8) SLA 5 

(35d9) STO 1 

(35da) MDX TROUT 

Figure 5.5: TRBFB and TRBFF code slice 
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5.2.2 Tabular Expression of the Sample Segment 

Figure 5.6 shows the function table extracted from the program in Figure 5.5, and 

related notations were explained in 3.3.2. 

Name: TRBBF/FF. 
External Variables: XRl, XR2, BPCD[], GST[ ], DIW2. 

Internal Variables: Exp, Ace. 

XRl = GST.address 1\ XR2 = BPCD.address/\ 

Exp = ( ( ( ( ( GST[41] x GST[42]) < < 2)- GST[43]) x GST[44]) < < 15)-;-GST[45] =:;. 

BPCD[13] 
BPCD[13]< 15 >= 0 

< 15 >= 1 
(2:I!9 DIW2 < i >) > 1 (2:I!9 DIW2 < i >)::::; 1 

GST[46} = Exp Exp Exp 

((BPCD[9]- GST[27]) x 

Ace= 0 GST[48]) < < 5 0 

((BPCD[9]- GST[27]) x 

GST[47} = 0 GST[48]) < < 5 0 

T - - -

I\NC(XR1,XR2 , BPCD[ ],DIW2,GST[] except ~GST[46] and GST[47]) 

Figure 5.6: TRBFB and TRBFF slice function table 
_., 

5.2.3 Function Table Construction Methods 

The following illustrates the main steps we used in constructing program function 

tables. 

( 1) interpret program statements - to understand each statement in context 

and represent each statement in pseudo code (natural language) . These representa­

tions are much easier for program reviewers to understand and remember than the 
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assembly statements. For instance, the first two statements that have the memory 

addresses (35b6) labelled "TRBFB" and (35b7) in Figure 5.5 are interpreted below. 

(35b6): Ace:= mem(XR1 + 41); load the content of a memory word, 

whose address is the sum of the value stored in register X R1 and an 

offset value (41), to the register Accumulator. 

(35b7): Ace:= Accxmem(XR1+42); replace the Accumulator's value 

with the product of its original value multiplied by the content of the 

memory word whose address is the sum of the value stored in register 

XR1 and an offset value (42). 

(2) determine the initial conditions for program segment - from other 

program segments, using a guess/verify method. 

It is clear that knowing the initial conditions is essential to determine the behavior 

of each statement. As for the example in (1), it is impossible to determine the values 

of each operation without knowing the content saved in register X Rl. However, the 

\';"· initial value of X R1 for the example segment is assigned in another segment. This 

makes it very hard to determine its value because X R1 is one of the registers most 

.. frequently used in all segments, and its value can be changed in any segment. In 

principle, its value only can be determined by tracing back to find the last statement 
. ~~ 

which assigns its value, but it is not practical because of the complexity of control 

flow in assembly programs. • 

We applied a guess and verify approach to determine those initial conditions not 

specified in the given segment. For example, when determining the initial value of 

X Rl in the example segment, we guessed its value based on facts such as: 

• the most common value used in other segments 
1 . 

• implementers' annotations written in comments 

and then verified the assumption by studying its context in the program and by 

referring to comments. In particular, X R1 was assumed to have the value of the 

start address of the data table named GST, the label of the data table slice. It was 

verified based on: 
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• the address of GST was assigned to X Rl at the beginning of BPC module 

• some segments use X Rl to store some temporary values during their processing 

and restore its value to GST address before their termination 

• on the assumption, all of the variables specified by X Rl and its offsets are valid 

the descriptions of the comments. 

(3) determine used variables and their modifications- from comments, other 

program segments, and initial conditions. In particular, determine what variable 

memory locations are used in this segment, and how /if they are changed. 

To determine the used variables, program reviewers first should name and catego­

rize the variables. After studying a set of program segments, we classified variables 

into: 

• address label: used to represent a memory address for a memory unit which may 

store either data or a binary statement 

• general variable: assigned an individual address and a "label" which can be 

used as the variable name 

• data table: assigned a unique labelled start address and offsets for each element. 

Thus the data table can be described as an array, named by the start label and 

each of its elements can ~e specified by the "index", the value of the offset 

• registers: used to perform arithmetic and address manipulations. Note, such 

variables can be named as relevant register names 

; . 

Secondly, two kind of statements can indicate which variables are used: (a) load . . ' 

statements with the prefix of LD and (b) arithmetic manipulation statements such as 

A(add), S(subtract), M(multiply), etc. Normally, their operands specify the memory 

locations, variables, used for the manipulations. 

Thirdly, to determine which variable values are modified, program reviewers 

should pay attention to MDX and STO statements which are used to modify stor­

age unit values and save the content of the Accumulator to particular storage units 
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respectively. Similarly, their operands specify the variables whose value will be mod­

ified. Note, some of the determinations can be supported by the comments provided 

by the implementers. 

Moreover, identified variables are categorized into internal and external variables 

as shown in previous function tables. In particular, variables that (a) were used to 

process intermediate data during the program execution, and (b) do not affect the 

execution of other programs, and (c) were not defined by other programs are classified 

as internal variables. Otherwise, they are defined as external variables. Normally, the 

external variables are used as inputs, outputs and (subroutine) parameters that should 

have been identified. 

( 4) extract expressions assigned to a series of statements. Knowing 

which variables have been modified, the next step is to determine how they were 

modified. Thus, previous operations related to the variable can be collected to 

construct arithmetic expressions. For example; in Figure 5.5, the eighth statement 

(35bd) is used to store the value obtained by operations formed through its previous 

"'~ seven statements between (35b6) and (35bd). Associated with the initial condition, 

X Rl = address.GST, and related variables, the above eight statements can be rep­

resented by the following expressions: 

( )A 
'= ((((GST[41) x GST[42]) << 2)- qsT[43]) x GST[44]) << 15 

a cc . GST[45] 

(b)GST[46] :=Ace 

-~ 
These expressions are used as elements of functions in the program segment, and 

to compose related taht.Ilar expressions. For instance, the above expression is defined 

as Exp in the function!table shown in Figure 5.6. 
1 - . 

(5} determine subtasks or subroutines. To recover the decomposition struc-

ture defined by the implementors, it is important to identify the implementers' tem­

plates used to invoke subroutines that implement individual function as mentioned 

in 4.2.2. For slices that have those features, it is useful to regard each of them as 

an individual function, which may be accessed by one or more other segments, and 

to construct individual tables which may be used by other tables. For instance, the 

69 



MSc. Thesis - Jian Sun McMaster - Computing and Software 

subroutine named D I2F3 in the example segment can be represented as the function 

table in Figure 5.1. 

(6) determine the program flow structure. As well as subroutine determi­

nation, branch and loop structures should be determined. In the case study, program 

flow graph plays an important role to aid analysts in finding such structures, espe­

cially in identifying loops which are not obvious when reading the assembly code as 

explained in 4.3.1. 

Moreover, branches in the flow graph indicate the header conditions of the function 

tables. In practice, we construct function tables by both reading the code and referring 

to flow graphs. We also compare table and graph structures to determine infeasible 

paths in the graph. For instance, the infeasible path from (35cd) to (35cf) discussed 

in 4.4.1, also can be determined by comparing the structures of the table condition 

headers and the flow graph. 

(7) determine strategies used by implementers, and any programming 

templates they may have used. When implementing the software, programmers 

T."' typically applied some strategies and particular programming templates to make their 

products efficient and to deal with specific hardware features. This knowledge is not 

clear to others unless it is documented. For instance, several alternative flags used to 

describe plant status are represented in different bits in a machine word, named flag 

word shown below. .: 

BPCD(13] :f L-_ ___._ ____ ..___...____,__0/.__1_ 

15 2 1 0 
.~ 

The 1st bit in the word BPCD[13] is a flag used to specify whether the BPC has 

been initialized (flag value 1) or not (flag value 0) . To determine whether the plant 

has been initialized, instead of directly checking the value of the bit in the specific 
~ -

memory location, th~ flag word is loaded into the Accumulator first, and then the 

Accumulator is checked to see whether it is odd or even which indicates the least 

significant bit is 1 or 0 respectively. Note, in the example, statements (35be) and 

(35bf) implement the above operations, and for bits other than the least significant 

bit, after been loaded into Accumulator, they are shifted right into the least significant 

bit so that they can be tested to determine if they are odd or even. 
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The above strategies are influenced by the properties of the assembler and by 

efficiency considerations. For instance, as shown in Figure 4.11, if we know the 2nd 

bit in the Warm-up flag word is 0, adding 2 to the flag word using the MDX statement 

will set the bit to 1 without changing the value of any other bits. Note, in such cases, 

theM DX is used as an assignment statement without any possibility of an alternative 

branch. 

These templates were widely used in the applications, so program reviewers need 

to read context and comments to figure out the usage of the flags assigned in the 

word, otherwise, it is hard to recover the implementers's intended behavior of the 

program. 

(8) combine the expressions into functions assigned to programs, rep­

resent functions in tables. To share programs for different modules, in general, 

some functions were implemented as subroutines which have specific features as dis­

cussed in (5). They can be identified and separated from other programs. During the 

function table construction, firstly, all the subroutines are composed into individual 

tables. Then, they are used as "elements" to construct function tables for the caller 

programs. For instance, the table in Figure 5.1 represents the behavior of DI2F3, and 

one of its responsibilities is computing X R3 = 2::::15 Ace < i >. Associated with the 

caller program TRBFB/FF, it was found that -D/2f3 performs plant status checking 

and the above computation is used as a branch condition for further output calcu­

lation. The result can then b~ used as a header condition of TRBFB/FFs function 

table as shown in Figure 5.6 . .. ~ 
However, some functions are not easy to separate from other program segments be-

cause assembly programs allow "goto" statements to branch to arbitrary statements, 

which makes the structure complex and vague. In such cases, program reviewers can . - ' 

extract expressions for code blocks, separated by labels, and then, compose such ex-

pressions into "bigger" functions associated with comments provided by programmers. 

Correspondingly, small tables for each block are constructed and composed into big­

ger tables. For example, the function table of TRBFB/FF as shown in Figure 5.6 was 

composed from two individual blocks, TRBFB and TRBFF, which are used to com­

pute turbine feedback delta stored in GST[46j and turbine feedforward delta stored in 
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GST/47} respectively. They are combined into a function named TRBFB/FFbecause 

it is part of the "bigger" function, turbine output, separated from other segments by 

the programmer using distinct separation comments. 

(9) determine supplement table notations. Assuming conventional predicate 

logic and arithmetic operator notations, some assembler operator notations should be 

defined. This is because the function table extracted from code needs to represent 

detailed bit manipulations in order to represent the appropriate abstract function (as 

design specification). For example, a memory bit shift operation is widely used in 

assembly programs. They may be used as divide/multiply, clear memory or flag shift 

operations. As defined in 3.3.2, they can be used to represent related functions as 

shown in Figure 5.6. 

In assembly programs, variable names and types are not as obvious as in high-level 

languages. Hence, to make the program function table more readable, it is necessary 

to use some high-level structure to represent a program's variables and behavior. For 

instance, using an array to represent data table, and using V. address to denote the 

r,-: memory address of variable V. 

(10) determine function table construction rules. Parnas and his colleagues 

defined more than 10 forms of function tables such as normal tables and inverted 

tables. They are used to represent functions with different properties. In practice, we 

found that during different analysis and function extracting phases, different forms 

of tables may be appropriate~ For example, as shown in Figure 5.1 and Figure 5.6, 

to represent changes to variables, the variables concerned are listed in the left header 
1 

in the table. The 5ranch conditions are specified in the top header, and the related 

mathematical expressions are specified in the Grids. This structure is very clear 

for determining the' modifications of each target variable. Also, variables in the left 

header can b~listed ih the order of modification sequence (time), which indicates the 

data flow. Further, the predicate table, as illustrated in 4.5.4, is good at representing 

program invocation and other behavior. 

Intuitively, normal and inverted tables are good at representing functions with 

complex flow structures and multi-conditional branches. Thus, the above tables can 

be translated and composed into normal or inverted tables that may contain multi 
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headers and nested tables, using the principles and tools introduced by McMaster 

researchers. 

5.3 An example of extended timing analysis dis­

play 

The following is the extended display constructed from the example program segment 

in Figure 5.5. It is important to note that it is extended for WCET analysis, and it 

combines the results obtained through the above analysis. 

1. Program Specification 

Name: TRBBF/FF. 
External Variables: XRl, XR2, BPCD[ ], GST[], DIW2. 

r."' Internal Variables: Exp, Ace. 

XRl = GST.address A XR2 = BPCD.addressl\ 

Exp = (((((GST[41] x GST[42]) << 2) -GST[43]) x GST[44]) << 15)-;-GST[45] ==? 

.7 

BPCD[13] 
BPCD[13]< 15 >= 0 

< 15 >= 1 • (l:t!9 D IW2 < i >) > 1 (l:t!9 DIW2 < i >)::::; 1 

GST{46} = §xp Exp Exp 

((BPCD[9]- GST[27]) x 

Ace= ·0 GST[48]) < < 5 0 

. 
((BPCD[9]- GST[27]) x 

GST{47} = 0 GST[48]) << 5 0 

T tpl tp2 + time(DI2F3) tp3 + time(DI2F3) 

I\NC(XR1,XR2,BPCD[ ],DIW2,GST[] except GST[46] and GST[47]) 
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2. Program Source Code 

See complete source code in Figure 5.5. 

3. Specification of Invoked Program 

Name: DI2F3 
External Variables: Ace, XR2, XR3, BPCD[ ]. 

true 

XR2= BPCD.address 

XR3= 2:13 A . 
i=15 cc < 1, > 

Ace= Ace<< 3 

T { t I tpb tp2, . .. , tvs} 

1\NC(BPCD[]) 

·' 

74 



McMaster- Computing and Software MSc. Thesis - Jian Sun 

4. Supplemental Information 

• program flow property variable fp 

Program Flow variable : jp_TRBFB 

Element Variable Name Value Reference 

Status "Confirmed" 
Flow Analysis of program TRBFB is accomplished. 

/status "Confirmed" 
Loop property analysis is accomplished. 

Loops 
There is No loop structure in program TRBFB 

loops Null 

sstatus "Confirmed" 
Subroutine property analysis is accomplished. 

Subss 
There exists a subroutine presented in variable 

subs subs[O] 
subs[OJ. 

istatus "Confirmed" Feasibility property analysis is accomplished. 

InfPaths 
There is no infeasible path in program TRBFB. 

paths Null 

Subroutine Property Variable : subs[ OJ 
Element Variable Name Value Reference 

Name DI2F3 The name of the subroutine. 
Scope (35c9, 35d3) Subroutine DI2F3 starts from 35c9 and ends at 35d3 

sub-subroourine Null DI2F3 does not invoke anv other pro~ams. 
parameter Ace DI2F3 takes the .value in accumulator as parameter . 

iNurn 1 DI2F3 is called by TRBFB once. 
iBound • 1 DI2F3 is called by TRBFB once most. 
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• original flow graph 

' . 
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• refined flow graph 

' . . 

MSc. Thesis - Jian Sun 

manipulations: clustered "DI2F3" subroutine node. 

graph refinement: removed infeasible edge "from 35cd to 35cf" 
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Chapter 6 

The WCET Analysis Tool 

This chapter describes how a WCET Analysis Tool was developed to help program 

reviewers in the Reverse-Engineering project to estimate the upper execution time 

bound of IBM 1800 programs, based on precise prograrri· documentation, Displays, 

that aid users of the tool in performing WCET analysis. 

6.1 The WCET analysis tool overview 

The WCET Analysis Tool (WAT) is designed to oompute the worst case execution 

time of given programs written in IBM 1800 assembler language in the Reverse­
• Engineering project. The first version of the tool was developed for the program 

reviewers and timing analysts to determine timing constraints of the target programs 
-~ in the project. These constraints will be used to specify the timing requirements in 

the reverse engineered }:ligh-level requirements. 

' -
6.1.1 Overview of the WAT tool and WAT Architecture 

To support different activities in the complete reverse engineering process, a tool 

suite is planned and its architecture is shown in Figure 1.1. In particular, the Timing 

Analysis Tool (TAT) is responsible for determining the timing constraints in the 

assembler program, and the architecture shows how the TAT fits into the suite. 
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The WAT is one of the components of TAT, which is designed to determine the 

upper bound of the execution time of the target programs. Corresponding to the 

three main phases, flow analysis, low-level analysis and WCET calculation, of WCET 

analysis, the tool contains three main sub-tools: 

• flow analysis tool 

• timing graph generator 

• WCET calculator 

and each of them consists of a set of components that will be illustrated later. 

Considering the difficulties discussed in early chapters, the WAT is designed as 

an interactive (semiautomatic) tool, in which part of the information is obtained 

from use~s' interventions and some manipulation decisions are made by the user. For 

example, as discussed in 4.4.1, when it cannot determine whether a particular MDX 

is a branch or just an assignment statement, the flow analysis tool displays related 

information and prompts the user to decide the MDX's flow property. 

The WAT provides Display documentation in which program behavior, program 

decomposition, variable value modification/ changes and other valuable information 

are precisely specified. Hence, unlike other WCE-1' tools [8] (44] which ask the pro-
·-

gram designer or implementers to specify such information during the timing analysis 
• phases, our tool takes advantage of: (1) facts concluded systematically from group 

rather than from individual opinions, (2) detailed information extracted from the code 
.~ 

by tools, and (3) provides a mechanism for the system designer, implementer, inspec-

tor, program reviewer and others to integrate the timing analysis work effectively to 

obtain more accurate solutions. 
-.- -- . 

A Display Manager is added to the WAT to manage program Displays constructed 

by program designers or reviewers, and to make extended Displays for the timing 

analysis. It is also designed to make it easy for users to search and view Displays 

when they need reference information during their analysis phases. Figure 6.1 shows 

the architecture of the WAT. 
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Legend: - data flow C=::J processes 

~ data source c:::::::a tagged processes 

E3 intermediate data c:::::::::;ii tagged documents 

E 3 solutions 'C:J manual operations 

Figure 6.1: WCET Tool Architecture 

WAT inputs: 

•' 
1. program control flow [jraph (CFG) generated by Graph Generation and Analysis 

Tools; 

2. program•fiow information extracted by automatic tool or specified by analysts' 

intervention; 

3. atomic instruction timing and other timing data obtained from Assembly Rep­

resentation Library & Emulators; 

4. program behavior /function specifications documented as displays, which include 
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results extracted from Functionality Analysis & Design Recovery Tools, and 

program behavior tabular expressions; 

5. other information extracted from Semantic Analysis Tools or Semantic Analysis 

Library. 

WAT outputs: 

1. refined program control flow graph in which sub-graph of subroutines are sepa­

rated and infeasible paths are removed; 

2. program flow property specifications which describe identified subroutines, loops, 

infeasible paths and other flow properties used for WCET calculation; 

3. timing graphs which are assigned statement or basic block execution time infor­

mation; 

4. the WCET solution; 

5. report information including timing information appended to displays, records 

ofusers' annotations and etc. 

Detailed descriptions of the tool elements are illustrated in latter sections, and note 
~ 

that, so far, program displays are constructed manually. 

6.1.2 The WCET tool environment 
.~ 

The WAT is implemented in Java 2 Platform Standard Edition (J2SE), version 1.5, 

which can run under Unix/Linux/MS-Windows operating systems on either individual 

PCs or intranet terminals. The required information, listed in section 6.1.1, provided 
~ - . 

by other groups is stored in GXL(Graph eXchange Language), HTML or XML script 

formats, which have been provided proper interfaces in Java environments, as well as 

J2SE 1.5 contains XML parser applications which can be used to process the above 

script data. Moreover, the outputs of the WAT are also in the above formats, thus 

all the components in the tool suite shown in Figure 1.1 can communicate easily and 

efficiently. 
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6.2 WCET Analysis Tool Description 

6.2.1 Sub-tool Functional Overview 

In this section, the required functions for each sub-tool are described, and related 

Java classes are listed. Note that detailed class descriptions for each class including 

secrets, responsibilities, an assumption list and access function table are presented in 

the Appendix. 

Flow Analysis Tool 

Flow Analysis is responsible for determining the program's flow information, also 

called flow properties, such as information concerning possible ways the program can 

execute, which functions get called, and how many times a loop iterates. Thus, in 

the WAT, the flow analysis tool shall, 

• perform program flow graph manipulations including: 

(a) read provided CFG data, 

(b) generate a sub-graph for the identified program function block, 

(c) present graph items such as graph nodes and edges, 
~ 

(d) modify and refine the CFG based on identified flow properties . 

• 
• determine and present subroutine invocation properties including: 

(a) subrolJtine scope, 

(b) invocation conditions e.g. the value of parameters and the number of 

programs that ·call the subprogram, 

' . (c) nested sub-subroutines, i.e., other programs invoked by the called pro-

grams. 

• determine and present loop iteration properties including: 

(a) loop scope and type, e.g. FOR or WHILE loop, 

(b) loop bound, i.e., the upper bound of the number of loop iterations, 
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(c) nested loops, i.e., the loop contains more loop structures within its body. 

• determine and present execution path feasibility properties, e.g., identify the 

infeasible paths caused by MDX statement interpretations. 

• refine the original CFG based on the identified flow properties. 

FlowGraph, Sub, Loop, Path and MDX classes fulfill the above tasks. Moreover, the 

Flow Analysis Tool also shall: 

• combine identified individual flow properties, 

• record analysis status, save (intermediate) results and display appropriate 

prompts for related operations or events, 

• provide user interactive interfaces for user to make related decisions and anno­

tations, 

• output analysis results including refined CFG and flow property variables. 

Thus, SubAna, LoopAna, PathAna and FlowAnalysis classes are designed to achieve 

above tasks. They also play a role in controlling the communications between different 

components. For example, one of SubAna's respory;ibilities is to take the subroutine 

properties determined by Sub to call the method in Flow Graph that refines the CFG . 

• 
Timing Graph Generator 

,.1 

The Timing Graph Generator is designed to generate a timing graph by assigning 

timing information ~so cia ted with flow properties in the refined CFG. Related tim­

ing information, including atomic statement execution time, timing mechanisms used . . . 

in the program, and statement (sequence) emulation or simulation results, are stored 

in a Timing Library. Note that some of this information can be concluded from 

hardware manuals provided by vendors, and some can be obtained through dynamic 

simulations. In the first version of WAT, with the assumption that the program being 

analyzed can not be interrupted by others, only the average statement execution time 

specified in IBM 1800 manual as shown in Appendix A-4 is considered. However, the 
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timing graph generator should be extendable for processing other timing information. 

Moreover, program flow properties are mainly used to determine the specific state­

ments that are executed and how many times each is executed. Thus, in particular, 

the Generator shall 

• specify the atomic statement execution time for each statement in every see-

nano, 

• specify hardware features that affect program execution time, 

• cluster sequential statements into "basic blocks", in which only the "start node" 

has one or more incoming branches and only the "end node" has one or more 

outgoing branches, and all other nodes inside the block only have a single en­

trance and a single exit, 

• generate the timing graph through assigning the following information to each 

graph edge: 

(a) the (average) execution time of its source node/block, 

(b) the difference caused by any hardware effects, 

(c) the number of times the edge would "be passed. 

Related classes include TimeThble, HDFeature and TimingGraph. 

WCET Calculator 

Given the timing graph, the WCET Calculator searches for a path, called the longest 

path, that takes the longest execution time in the graph, and determines the worst . - ' 
case execution time of a program. Particularly, the Calculator shall 

• determine how to use the timing information of invoked subroutinejs, 

• create the graph data structure to facilitate searching for the longest path, 

• search for the longest path in the timing graph, 
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• determine the type, such as functional computation path, error-handling path 

or other types, of the longest path that was found, 

• present and store WCET analysis solutions including: 

(a) the worst case execution time, 

(b) the path that determines the WCET, 

(c) information that is missing for programs that we do not have sufficient 

flow /timing information. 

ProSub, Graph, LongestPath and wcet classes are designed to achieve the above func­

tions, and class Calculator controls the above modules. 

It is necessary to note that, firstly, to find the longest path of a program, it is 

necessary to know the timing information of each subroutine, and we also need to 

make correct decisions of how to use the timing information to calculate the WCET 

of the target program. This is because, normally, the execution time of a subroutine 

is not unique. The WCET calculator provides several methods for users to determine 

such timing information: 

1. assign the WCET of each subroutine to be the execution time of the subroutine 

node; 

2. replace subroutine nodes with their timing graphs in the target graph for the 

longest path search; • 

3. process some .parts of subroutines by method 1 (or assign other identified val­

ues), and process others by method 2; 

4. make assumptions that "remove" paths that will not affect the WCET solution . .. . 
5. use the simulation solutions for those subroutines do not have generated graphs. 

It is clear that using method 1 normally result in a pessimistic estimate, and using 

method 2 will increase the complexity exponentially when the analyzed program in­

vokes many subroutines or the subroutines have complex flow structure. In other 

words, these methods are useful in calculating the WCET for programs that have a 
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simple structure. Otherwise, method 3 is practical, but it requires that users make 

appropriate decisions for each subroutine. Method 4 is used to decrease the complex­

ity of a timing graph. For example, assume subroutine SUB has a WCET. If there 

exists a path that does not invoke SUB and it takes longer time than some paths 

that do, those paths can be ignored because they do not affect the WCET solution. 

Method 5 can be used in the case when the execution time of subroutines cannot be 

determined or analyzed. 

Secondly, it is possible that the longest path found is used to process some task, 

e.g. error-handling as discussed in 4.3.3, that is not the functional computation 

considered by the analyst. Then, the calculator should tag that path, look for the 

second longest path, and repeat such work until the longest path does perform the 

required functional computation. To simplify such work, the Calculator is designed to 

search for the longest path in the scope indicated by the function table in the display. 

Furthermore, the WCET calculator is not designed as a "one-click-tool", with 

which users can click a button to get the final results. On the contrary, users are 

required to make some decisions for the tool, e.g. choose the method/s to determine 

the timing of subroutines, to compare solutions obtained through different methods, 

and to adjust operations and operands to obtain the desired solution. Therefore, the 

WCET calculation manipulations such as subroutine timing determination, longest 

path search and other tasks may be performed iteFatively. 

Display Manager 

The Display Manager shall, 

• manage the constructed display information (data base). 

• invoke ''Display· Viewer" to show the requested displays. 

• generate extended Displays through supplementing the conventional display 

with the program flow graph, the flow property variable, and the timing vari­

able. 

• modify extended Displays. 
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Related classes in the WAT are Display and ExtDisplay. The former fulfills the first 

two tasks, and the later fulfills the remaining tasks associated with the access functions 

in classes Display and FlowGraph. 

6.2.2 Tool structure 

Our goal is to construct the WAT for ease of extension and contraction [38]. Thus, 

principles [37] such as design for change [1 J and information hiding [29] are applied 

in the tool implementation. To avoid having it process data in a Data-Transforming 

chain, the WAT sub-tools are decomposed into a set of components (Java classes) con­

sidering their responsibilities and changeability, which are organized in a hierarchical 

structure based on invocation relations as shown in Figure 6.2. 

L4: WCET Analysis 

,... L3: 

Figure 6.2: WAT Class Invocation Hierarchy 

First of all, classes are defined based on required "services" (see detailed examples 
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of requirements specifications in Appendix A), and categorized into five levels by the 

following rules: 

1. Level 0 is the set of classes that invoke no programs in other classes, 

2. Level i(O < i < 5) is the set of classes that invoke at least one program on level 

i - 1 and no program at a level higher than i - 1. 

For instance, ExtDisplay class in level 1 which is designed as a Display Manager calls 

methods in Display and FlowGarph classes in lower level, level 0, to make extended 

Displays. Also, its methods may be called by the programs in a SubAna class in 

higher level to provide some information. 

Secondly, class definition should take into account items that are likely to change. 

For example: 

• if the flow graph generator is improved and has the capability . to fix the MDX 

infeasible path problem, class MDX will be redundant, 

• flow graphs in GXL/XML format are replaced by a relational data base format, 

• program Displays are updated from static picture image into dynamic HTML 

for web viewing. 

Note that these changes may be caused by: a change in user's requirements, compat­

ibility with other modules, or other unanticipated reasons. To handle these changes, 

related services should be sep~rated from others. For instance, as shown in Figure 

6.2, MDX is an individual class. If the MDX infeasible path problem is solved by 
' another program, MDX can be removed without affecting other classes except for the 

PathAna class. 

Furthermore, we ·tried to define changeable aspects as "secrets" hidden from other 

programs, and · designed interfaces for them to make them usable by other programs. 

For example, the data structure of class FlowGraph in level 0 is defined as a secret, 

and a set of access functions were implemented to read the provided flow graph data 

from a disk file, to provide user programs in higher levels e.g. TimingGraph, the 

required information. In this way, a data format change, e.g. from GXL/MXL script 

to relational data base, of FlowGraph will not affect programs at all in higher levels. 
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Space and other considerations make it hard to present detailed design for all of 

the classes in Figure 6.2. Thus, in Appendix B, the main responsibilities of each class 

are introduced briefly and several classes are highlighted to illustrate the strategies 

used in the system design. 

6.3 Using the WCET Analysis Tool 

In this section, associated with a couple of examples, we illustrate how the WAT 

works and how it aids the user in performing WCET analysis. 

6.3.1 Start WCET Analysis 

As explained in earlier sections, the WAT is designed to process programs that have 

been analyzed and for which Displays have been constructed. These programs are 

categorized into "unprocessed" and "in process" groups. Their Displays and other 

data files are also categorized this way. The WAT provides a New operation to start 

analysis for programs in the former group, and Open operation to continue the analysis 

for those in the latter group. For instance, Figure 6.3 shows the panel of the WAT to 

open an analysis case for program TRBFB, in a set of provided programs. 

6.3.2 View Program Display 
• 

In the WAT, a Display Viewer is responsible for showing Display images to users. 

They can invoke the View.er either through the main File menu, or click Display 

Viewer buttons that appear in panels in the different analysis phases. Figure 6.4 

shows an example of the Display of program TRBFB using the Viewer. Note that 

current displays are represented in PNG image format, and later version of the WAT 

will provide HTML format displays so they can be viewed in web viewers. 
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"- WCET Analysis Tool ~[gjrg) 

1 . 

c Open rgj 
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File Harne: frRBF 8 
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Figure 6.3: Open a WCET Analysis Case 

November 26, 2004 

1 Display Spe•iftcation 

Name: TRBBF/FF. 

Extcnal Variablar: XRl, XR2, BPCD(!, GST(I. DIW2. 
Inter':,oj Variabl• : E...,, Aaa. 

X Rl = GST.addr-.ss /IX R2 = BPCD.address !I 
Eep= (((((GST(4ll x GST(421) << 2)- GST(-'31) x GST(""I) << llS) + GST("-'Sl * 

Ace 0 
((BPCD(9(- GST(2m • 

G5T.(8 <<lS 

((BPCD(9l- GSTI2~1)· 

2< •> !> 1 ., 
0 

GST[.47J o _ __ ---~~~~))~~- ___ ---·- _ L ---r 

Figure 6.4: Display Viewer 
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6.3.3 Program Flow Property Analysis 

As shown in Figure 6.5, the program flow analysis panel presents entire and individual 

analysis status information of a given program, e.g. TRBFB including subroutine, 

loop, and infeasible path analyses. It also provides a set of operation buttons to invoke 

the above analysis tasks, refine the provided CFG or start the next analysis phase, 

and determine low-level effects. Particularly, associated with the sample program 

TRBFB and its subroutine DI2F3, the following subsections illustrate how the WAT 

aids the user in fulfilling these subtasks of flow analysis. 

"- Program Flow Analysis [TRBFB] bJ[OJ~ 

Program Name: TRIIfB 

Flow Anall/SiS status: 

SUbroutine AnaljiSis status: 

lnprocess 

Confirmed 

Unprocess 

Unprocess 

Loop Anall/SiS status: 

lnreaslblePalh AnaljiSis status: 

Please choose folowtng --for futher ana¥51S 

l~ .. ~e~k&i.,J , 
l"''6ti=rtzl00!'~ • .. : ..,.:J 
I,., ,w~Pal!'~ ... I 
I· . " ~..,..~.Gr~ , ,, I 
j_ :., £> ·;,Law.~~-,?h-"'"~J . 

Figure 6.5: Program Flow Analysis Panel 

Determine ~ubroutine Properties 

Figure 6.6 shows an example of a subroutine analysis panel on the top, and a subrou­

tine data panel on the bottom applied to program TRBFB. The former panel shows 

that TRBFB contains a subroutine DI2F3, and provides a set of operations such as 

add, remove, view, modify and save subroutine items. Further, users can click the 

"View Display" button to invoke the Display Viewer to view related information, or 
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enter the next analysis phase through clicking "Low-level Analysis" button. The sec-

~ Subroutine Analysis [TRBFB] (:Jg~ 

jc View. Display II , ~ow-level Analysis . II Quit 

Proaram Name: TRBFB 

SUbroutine Analllsis status: Confirmed 
SUbroutine Number: 1 

Subroutine List----­

@ DI2F3 

: Subroutine Analysis Data Table ~ 
ootine Name : 

outine Scope : 

-SUbroutine lnwcation : 

routine Execution Bound: 

routine Execution Number: 

outine Analysis status: 

Confirmed, Determined, Undetermined, Timed) 

DI2F3 

((35c9 , 35d3)} 

Null 

Confirmed 

·Figure 6.6: Subroutine Analysis Panels 

ond panel shows the subroutine (DI2F3) invocation information for program TRBFB, 

including: name, scope, list of invoked sub-subroutines, the (maximum) number of 

the subroutine invoked and other data. It is important to note that the WAT is not 

responsible for identifying subroutines. Instead, it takes the subroutine decomposi­

tion from provided displays, and describes the scope of subroutines defined in the 

Displays. 
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Determine Loop Properties 

Figure 6. 7 shows a loop analysis solution panel, on the top, and a loop data panel, at 

the bottom, applied to program DI2F3. The former shows a loop indexed as No.1 in 

the program, and the latter is an interactive panel used by the user to specify loop 

properties including the index, scope, list of nested loop/s, loop type, upper execution 

bound and other information applicable to the identified loop. 

~ Loop Analysis [DI2F3] b][g]['&J 
View Display II . ~ow-~1 Analysis II. Quit 

Proqram Name: D12F3 

1 . 

loop AnalYsis status: 
loop Number: 

Confirmed 
1 

= Loop Analysis Data Table 

loop Index: 

loop Scope : • 

Nested Loops : 

loop Type: 

No.1 -

J< (35cc, 35cd) } 

JNull 

For 

' (F-Forloop, W-Whileloop, E-ErrorHandling, U-Undetermined) 

Loop Execution Upper Bound: 3 

Loop Execution Number: 3 

Loop Analysis status: Confirmed 

(C-Confirmed, D-Determined, T-Timed, U-Undetermined) 

1. . 01( .II . ~eel I 

Figure 6. 7: Loop Analysis Panels 
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Unlike subroutines, loop structures should be identified by the user of the tool. 

Normally the user can find loops by: 

• looking for "backward" edges, or flow "circles" in CFGs in extended displays, 

• looking for functions specified in function tables, which may be implemented 

in iteration structures, e.g. in DI2F3 the formula L::: Ace< i >{:3 indicates a 

FOR loop, 

• reading program source code in a Display to find loops implemented with con­

ditional or unconditional jumps. 

Determine Infeasible Paths 

As shown in the top panel of Figure 6.8, the current WAT fulfills infeasible path 

identification by: 

• processing MDX statements, 

• providing interactive panels for the user to annotate the infeasible path manu­

ally. 

For MDX statement processing, the tool first coll~cts all the MDX statements in a 

given program. Next, it sets the status of all the MDXes interpreted as "alternative 

branch" to suspect (infeasiblej source nodes as shown in the left bottom panel in 

Figure 6.8. Then, the user is required to determine the correctness of interpreting 

such suspect nodes aS branch nodes. It is clear that incorrect interpretations will cause 

infeasible paths. For instance, as shown in the right bottom panel in Figure 6.8, the 

first MDX statement is determined as a "sequential" statement, which indicates that, 

in the originaf CFG, one of the node's outgoing edges, from 35cd to 35cf, is infeasible. 
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~ Infeasible Path Analysis [DI2F3] ~[OJ~ 

-

~w Di~Piai Jl Low-lellel Analysis II Save II Quit 

Program Name: DI2FJ 

lnfe~sible Pmh An~lysis Stmus: Confirmed 

lnfaasibla Path Numbar: 

Determine MDX(es) II View MDX(es) II 

Infeasible Path Analysis Data Table rg] 

Infeasible Path us1-------1 
@;' No.1 ---from (J5cd) to (J5cf) 

Annotate other Infeasible Path 
,; ' . II _ RelliiM! 

MDX statement MDX Type Feasible status 

(J5cd) MDX J 1 Alternative Branc~ I suspect I (35cd) MDX 3 1 

(35cf) MDX 2 -1 Alternative Branch Suspect (35cf) MDX 2-1 

(35d0) MDX '-5 ~nconditional Jump Confirmed 

~~- Cancel I 

Figure 6.~: Infeasible Path Analysis Panels 

Furthermore, for infeasible paths caused by other reasons, the WAT provides 

interactive panels for users to annotate them including their positions and related 

analysis com:rpents. Figure 6.9 shows a panel for the user to annotate identified 

infeasible paths, and a panel to present information about an identified infeasible 

path caused by MDX interpretation. 
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::_ Infeasible Path Annotation Table ~ 
Index Source Node Sink Node lnfeasil*! Path Annotation Comments 

No.1 I _j 
No.2 

No.3 I I~ 
I .~~~ . II .. ~~L, I 

Infeasible Path Annotation Table [g) 
Index Source Node Sink Node Infeasible Path Annotation Comments 

No.1 35cd 35cf MDX operation, which can not make the sum be zero or change sign 

~~ <:an&el 

Figure 6.9: Infeasible Path Annotation Panels 

6.3.4 Generate Timing Graph 

To generate a timing graph, the WAT tool first reads the original CFG information 

of a target prbgram into memory variables. Figure 6.10 shows the CFG of program 

TRBFB loaded by a graph reader. 
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', E:\WINDOWS\System32\cmd .exe I!I~I:J 
C:\DataDriver\Java\OPGTOOL\Figurec>call java BPCSubgraph 
bpcSub35b6Con.gxl 
(35b6) TRBFB LD '11 (35b6)-- >( 35b7) 
( 35b7) M '12 (35b7)-->(35b8) 
(35b8) SLT 2 (35b8)-->(35b9) 
(35b9) s '13 (35b9)-->(35ba) 
(35ba) M 1 ljlj (35ba)-->(35bb) 
(35bb) SLT 15 (35bb)-->(35bc) 
( 3Sbc) D '15 (3Sbc)-->(35bd) 
( 3Sbd ) STO 1 '16 (35bd)-->(3Sbl?) 
( 35bl? ) TRBFF LD 2 13 (35bl?)-- >(35bf) 
(35bf) BSC L TRBFD . E (35bf)-->(35c6)(35bf)-->(35c1) 
(35c1) LD DI W2 ( 35c1)-- >(35c2) 
(35c2) SLA 9 (35c2)-->(35c3) 
(3Sc3) BSI DI2F3 (35c3)-->(35ca) 
(3Sc'!) MD X 3 -1 (35c'!)-->(3Sc5)(35c4)-->(35c6) 
( 35c5) MD X TRBFE (35c5)-->(35d5) 
(35c6) TRBFD SLA 16 (35c6)-->(35c7) 
(35c7) STO '17 (35c7)-- >( 35c8) 
(3Sc8) MD X TROUT (35c8)-->(35db) 
( 35ca) LDX 2 3 (35ca)-- >( 35cb) 
(3Scb) LOX 3 0 (35cb)-->(35cc) 
(3Scc) BSC (3Scc)-->(35cd)(35cc)-->(3Sc1?) 
(3Scd) MD X 3 (35cd)-->(35c1?)(35cd)-->(3Scf) 
(35cl?) SLA 1 (35cl?)-->(35cf) 
(3Scf) MDX 2 -1 (35cf)-->(35d0)(35cf)-->(35d1) 
( 35d0) MD X >< -5 (35d0)-->(35cc) 
( 35d1) LOX L2 BPCD (35d1)-->(35d3) 
(35d3) BSC I DI2F3 (35d3)-->(35c4) 
( 35d5) TRBFE LD 2 9 (35d5)-->(35d6) 
(3Sd6) s 1 27 (3Sd6)-->(35d7) 
( 35d7) M 1 '18 (35d7)-- >(35d8) 
( 35d8) SLA 5 (35d8)-->(35d9) 
(3Sd9) STO 1 '17 (35d9)-->(35da) 
(35dal MD X TROUT (35da)-- >(35db) 

Figure 6.10: TR~FB Original CFG Script Representation 

Note that the C.FG is in script format and includes: 

• graph node IDs (statement core addresses), which are represented as "(XXXX)", 

• statement, including label, operate code, format, tag and operands, 

• node outgoing edges, represented as "(source node)-- >(sink node)" . 

Figure 6.11 shows the timing graph of TRBFB generated by the WAT, in which 

the CFG was refined and the statement execution time was specified. Particularly, 

compared with Figure 6.10, 
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<, E:\WINDOWS\System32\cmd.exe I!!I!;!EJ 
bpcSub35b6Con gxl 
(35b6) TRBFB LD '11 (35b6)-->(35b7)[3 . 75] 
(35b7) H 1 '12 (35b7)-- >(35b8)[16.5] 
(35b8) SLT 2 (35b8)-- >(35b9) [2.5] 
(35b9) s '13 (35b9)-->(35ba)[5.25] 
(35ba) H LjLj (35ba)-- >(35bb)[16.5] 
(35bb) SLT 15 (35bb)-- >(35bc)[S . 75] 
(35bc) D 'IS (35bc)-- >(35bd)['l3 . 0] L (35bd) STO 1 '16 (35bd)-->(35be)[3.75] 
(35be) TRBFF LD 2 13 (35be)-- >(35b f)[3 . 75] 
(35bf) BSC L TRBFD . E (35bf)-->(35c6)['1.0] (35bf)-- >( 35c1)[2 . 0] 
( 35c1) LD DIW2 (35c1)-- >(35c2) [3 . 75] 
(35c2) SLA 9 (35c2 ) -- >(35c3) ['1 . 25] 
( 35c3) BS I DI2F3 (35c3 ) -- >(35ca) [3 . 75] 
35c'l) HDX 3 -1 (35c'l)-- >(35c 5)[1.5] (35c'l)-->(35c6)[1 . 5] 
35c5) HD X TRBFE (35c5)-- >(35d5) [1 . 5] 
35c6) TRBFD SLA 16 (35c6)-- >(35c7)[6.0] 
35c7) STO 1 '17 (35c7)-- >(3 5c8)[3.75] 
35c8) HD X TROUT (35c8)-->(35db)[1.5] 
35ca) LDX 2 3 (35ca)-->(35cb)[1 . 75] 
35cb) LDX 3 0 (35cb)-- >(35cc) [1 . 75] 
35cc) BS C (35cc)-->(35cd)[2.0] (35cc)-->(35ce)[2.0] 
35cd) HDX 3 1 (35cd)-- >(35ce) [1 .5] < ---~·~_J 
35ce) SLA 1 (35ce)-- >(35c f ) [2.25] 
35cf) HDX 2 -1 (35cf)-->(35d0)[1 . 5] (35cf)-->(35d1 )[1 .5] 
35d0) HDX ><-5 (35d0)-->(35cc)[1 . 5] 
35d1) LDX L2 BPCD (35d1)-->(35d3)[3.75] 
35d3) BSC I DI2F3 (35d3)-->(35c'l)[6.0] 
35d5) TRBFE LD 2 9 (35d5)-->(35dG)[3. 75] 
35d6) ~ 1 27 (35d6)-->(35d7)[5.25] ~ 

35d7) H 1 '18 (35d7)- - >(35d8)[ 1G 5] 
35d8) SL A 5 (35d8)-->(35d9)[3.25] 
35d9) STO '17 (35d9)-- >(35da) [3 75) 
35da) ~DX TROUT (35da)-->(35db)[1.5] 

.· 
Figure 6.11: TRijFB Timing Graph Script Representation 

• an infeasible path, from node 35cd to 35cf, indicated by the horizontal arrow, 

was removed, 

• statemeht execution time, represented as "[ts]", was appended to outgoing edges 

for each graph node as indicated by the vertical arrow. 

Note that, the generated timing graphs are still stored in GXL script data files, 

and they can be used to generate visible graphs by the graph process tools developed 

by other groups in the Reverse-Engineering project. 
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6.3.5 WCET Calculation 

Figure 6.12 shows a WCET output of program TRBFB. It was calculated based on 

the program flow property and timing results obtained through 6.3.3 and 6.3.4. In 

particular, in this example, as illustrated in the Figure: 

• a flow graph for TRBFB was combined with a sub-graph of its subroutine, 

DI2F3, 

• longest path search was performed within the combined flow graph, 

• the found longest path that was found contains a loop executed three times, 

• worst case execution time is 189.5 milliseconds. 

. -
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TRBFB < \ E:\WINDOWS\System32\cmd.exe I!II!JEJ 

• 

DI2F3 

WCET . 

Figure 6.12: WCET Output of TRBFB 
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Chapter 7 

Conclusions and Future Work 

The major contribution of this thesis is that it introduces a documentation driven 

worst-case execution time analysis method. It applies an extended precise Display 

documentation technique to aid WCET analysis, and makes the analysis more system­

atic and accurate. A tool to support this analysis is included in the thesis. The tool 

l'; uses a precise documentation approach as a way to overcome the general difficulties 

met in conventional WCET analysis. Advantages of this approach are: 

• Displays provide timing analysts precise and complete behavior specifications 

of the analyzed program for determining its flow properties, 

• tabular notations used ih Displays make the specifications more readable and 

make it possible for both program implementers and reviewers to describe the 

program in the same manner. In other words, the above WCET analysis method 

can be used in either software development or reverse engineering, 

• it is pr~tical tq ·develop tools to store and provide required information to aid 

program execution time analysis. 

Our conclusions are supported by experience gained when the above method was 

applied to develop tools to analyze the IBM 1800 applications. 

Future work may explore tools to automatically generate program function tables 

from the code. This is important because manually constructing function tables 
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for long programs is time consuming and error prone. Another interesting direction 

for future work would be to explore ways of developing tools to solve the problems 

discussed in chapter 4, e.g., developing tools to determine loop bound and infeasible 

path automatically. 
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Appendix A-1 

Requirements specification of W AT 

Input: 
operation 
program_name 
new_list 
analysis_list 

Output: 
pro 

pro.name 
pro.fp 
pro.fg 
pro.tg 
pro.wcet 

new_list 
analysis_list 

Table_WAT: 

Operation choice from users of the tool 
The name of the program to be analyzed 
The name list (set) of programs that have not been analyzed 
The name list (set) of programs that have been processed or in process 

Program variable containing the following elements: 
The name (ID) of a program 
Program's flow property variable as defined in 5 .I, 
Program's GXL flow graph as defined in 5 .I 
Program's timing graph 
Program's WCET solution 
The name list (set) of programs that have not been analyzed 
The name list (set) of programs that have been processed or in process 

new_listn analysis_list = ¢ 1\ new_listuanalysis_list *- ¢ 
"program_name E {new_listu analysis_list}" operation E {"Open", "New")::::> 

operation = "New" operation= "Open" 

pro= WCET-Analysis 
(lnitial(program_name)) 

program_name 1\ a'Jfllysis_list = analysis_list. 
Not defined 

Enew_list add(program_name) 
1\ new _list =new _list. 

de!ete(prol(ram name) 

program_nafhe 
Not defined 

pro= WCET-Analysis 
E analysis_list (Load(program_name)) 

Table Initial True - Table _Load True 
]JT'O.nanie = prol(ram name pro.name = prol(ram name 

.status= "Uill'l'ocessed" .statsus = Load. status 

.Loops 
./status= "Undetermined" 
.Loops= Null 

.Loops ./status= Load.lstatus 
.Loops= Load. Loop 

pro.fp 
.Subss 

.sstatus = "Undetermined" 
.Subs= Null 

profp .Subss .sstatus= Load.sstatus 
.Subs= Load. Sub 

.lnfPaths 
.istatus = "Undetermined" 
.Paths= Null 

.lnfPaths .istatus= Load .. istatus 
.Paths= Load .. lfPi~th 

profg = Graphreader 
(program name) 

profg = Loadfg 

pro.tg = Null pro.tg = Load.tg 
pro.wcet = Null _])1'0. wcet = Load.wcat 
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Appendix A-2: 

Requirements specification ofWCET -Analysis 

Input: 
operation 
pro 

Output: 
pro 

Operation choice from users of the tool 
Program variable as defined in Appendix A-1 

Program variable 

Table_ WCET-Analysis: 

operation E {"View Display", "Flow Analysis", "Low-level Analysis", "WCET Calculation", "Quit" } 
Apro.fp.status E {"Unprocessed", "Undetermined", "In process", "Confirmed"}=> 

operation= 

"View "Flow "Low-level "WCET "Quit" Display" Analysis" Analysis" Calculation" 

Display Viewer pro= Save(pro) 1\ 
pro.fp.status = "Unprocessed" Flow Analysis Not defined Not defined 

(pro.name) 
(pro) Return 

DisplayViewer 
pro= pro= 

Save(pro) 1\ 
pro.tg =Null Flow Analysis TimingGraph Not defined 

pro.fp.status (pro.name) (pro) (pro) Return 
7:: 

"Unprocessed" Display Viewer pro= pro= pro= Save(pro) 1\ 
pro.tg 7:: Null Flow Analysis .TimngGraph WCETCalculator 

(pro.name) 
(pro) . <Pro) (pro) 

Return 

. -
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Appendix A-3: 

Requirements specification of Flow-Analysis 

Input: 
operation 
pro 

Output: 
pro.fp 
pro.fg 

Operation choice from users of the tool 
Program variable as defined in Appendix A- I 

Program's flow property variable 
Program's flow graph 

Table_Flow-Analysis : 

operation e {"View Display", "Flow Analysis", "Low-level Analysis", "WCET Calculation", "Quit" } 
Apro.fp.status e {"Unprocessed", "Undetermined", "In process", "Confirmed"}~ 

operation= 

"Subroutine "Loop "Infeasible "Refine Flow 
"Quit" Analysis" Analysis" Path Analysis" Graph" 

pro.fp = pro.fp = pro.fp = Save(pro) A 
pro.fp.status = "Unprocessed" Sub Ana LoopAna PathAna Not defined 

(pro) (pro) (pro) Return 

pro.fp = pro.fp = pro.fp = pro.fg = Save(pro) A pro.fp.status :f. "Unprocessed" SubAna Loop Ana PathAna GraphRefine 
(pro) (pro) (pro) (pro) Return . 

Table_SubAna: 

• 
Num = pro.Subss.subs.size() ASubOperation e {"Add", "Remove", "View", "Modify/Annotate", "Save", 
"Low-level Analysis", "View Display", "Quit"} ~ · 

True 
"Add': pro.Subss = pro.Subss.subs.add(New(Sub)) 
"Remove" pro.Subss = 3i, 0 ~ i < Num , delete(pro.Subss.subs( i)) 

1 . 
"View" I N=i 3i, 0 ~ i < Num , print(pro.Subss.subs(i )) 

I N=all For i =0 to Num-I : print(pro.Subss.subs( i )) 

SubOperation = "Modify/ Annotate" pro.Subss = 3i, 0 ~ i < Num, annotate(pro.Subss.subs( i )) 
"Save" save(pro.Subss) 
"View Display" Display Viewer (pro. name} 
"Low-level 

TimingGraph(pro) Analysis" 
"Quit" save(pro.Subss) A return 
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Table_LoopAna: 

Num = pro.Loops.loops.size() " LoopOperation E {"Add", "Remove", "View", "Modify/Annotate", "Save", 
"Low-level Analysis", "View Display", "Quit"} ~ 

True 
"Add" vro.Loovs = vro.Loovs.loovs.add(New(Loov)) 
"Remove" pro.Loops = 3i, 0 $; i < Num, delete(pro.Loops.loops(i )) 

"View" I N=i 3i,O $; i < Num, print(pro.Loops.loops(i)) 

I N=a/1 For i =0 to Num-1 : print(pro.Loops.loops( i )) 
LoopOperation "Modify/ pro.Loops = 3i, 0 $; i < Num, annotate(pro.Loops.loops( i ) ) 

= Annotate" 
"Save" save(pro.LoopS) 
"View Disolav" DisolavViewer (oro. name) 
"Low-level TimingGraph(pro) Analysis" 
"Quit" save(pro.Loovs) 1\ return 

Table PathAna: 

:-;~ Num = pro.InfPaths.paths.size() " NumMDX = profg.MDXsize() " PathOperation E {"Detennine 
MDX", "Remove", "View MDX", "View Analysis Records" "Annotate other Infeasible Path", "Save", 
"Low-level Analysis", "View Display", "Quit"} ~ 

True 
For i =0 to Numlof/)X : findMDX( i) 1\ annotateMDX( i) 1\ 

"Determine MDX" 
pro.InjPaths = 

V },0 s; j < NumMDX" MDX(j).feasiblestatus.change =True 
• add (pro.InjPaths.paths.(MDX(j ))) 

"Remove" pro.lnjPath = 3i, 0 $; i < Num, delete(pro.lnjPaths.paths( i )) 

"VU:wMDX" For i =0 to NumMDX : print(pro.lnjPaths.paths.MDX( i )) 
PathOperation "View Analysis For i =0 to Num-1 : print(pro.lnjPaths.paths( i )) = Records" 

"Annotate other pro.Loops = 3i, 0 $; i < pro.Loops.Num, annotate(pro.InjPaths.paths( i )) 
lnfoasibie Path" 
"Save''" save(pro.In!Paths) 

• "View Display" DisplayViewer (pro. name) 
"Low-level TimingGraph(pro) 
Analysis" 
"Quit" save(vro.lnfPathS'! 1\ return 
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Appendix A -4 

Requirements specification of TimingGraph 

Input: 
operation 
pro 

Output: 
pro 

pro.fg 
pro.tg 

Operation choice from users of the tool 
Program variable as defined in Appendix A-1 

Program's GXL flow graph 
Program's timing graph 

Table_ TimingGraph: 

pro.fg :t t/J A pro.fp.Status :t "Unprocessed" A pro.tg= pro.fg A 

NumNode,i, NumEdge,NumSub, NumlnfPath E Int A 

NumNode = pro.fg.graphNodes.size( ) A 0:::;; i <NumNode A 

NumEdge[i] = pro.fg.graphNodes[i].edges.size( )A 
NumSub = pro.fg.Subss.subssize( ) A NumlnfPath = pro.fg.InfPaths.size( ) A 

operation E {"Refine Flow Graph", "Generate Timing Graph"} A 

refine-operatione {"Cluster Subroutine", "Remove Infeasible Paths"} A 

Coni = (pro.fp.Subss.sstatus ="Undetermined") A Con2 = (pro.fp.lnfPaths.istatus ="Undetermined") ~ 

operation = "Refine Flow Graph" 
operation= . 

refine-operation = refine-operation = "Remove "Generate Timing Graph" 
"Cluster Subroutine" Infeasible Paths" 

Con2 Not !efined Not defined 

Coni projg = pro.tg = 

-..Con2 Not defined For j=O to NumlnfPath-1 
Remove(pro.fx.In!Paths.paths[j)) Fori= 0 to NumNode-l 

projg = For j = 0 to NunEdge-1 

Con2 For j=O to NumSub-1 Not defined pro.tg.node[i].edge[j].exeTime 

Clsuter(pro.fx.Subss.subs[j]) =NodeTime 
-..Con] 

projg = projg = (projg.node[i].edgelj]). 

r>Con2 . Forj=OtoNumSub-1 For j=O to NumlnfPath-1 
Clsuter(pro.fx.Subss.subs[j]) Remove(pro.fx.In!Paths.paths[j)) 
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Table NodeTime : 

branch_node, shift_nodeejlowGrapgNode ANE Int Abranch_node.Opercode E {BSI, BSC, MDX, XIO} /1. 

shift_node.Opercode E {SLA, SLT,SLCA,SLC,SRA, SRT, RET} A 

Coni =branch_ node. Operand /1. Con2=(N=shift _node. Operand) ~ 

jlowgrapg.node.Format =Null jlowgrapg.node.Format :f. Null 
jlowgrapg.node. jlowgrapg.node. jlowgrapg.node. jlowgrapg.node. 

F/aJ! =Null F/aJ! :f. Null F/aJ! =Null Flag :f. Null 

LD time= 3.75 time=3.75 time= 6 time= 5.75 

STO time= 3.75 time=3.75 time = 6 time= 5.75 

LDD time= 5.75 time= 5.75 time= 8 time= 7.75 

STD time= 5.75 time= 5.75 time= 8 time= 7.75 

A time= 3.5 time=3.5 time= 5.75 time= 5.5 

s time= 3.5 time= 3.5 time= 5.75 time= 5.5 

AD time= 5.25 time= 5.25 time= 7.5 time= 7.25 

SD time= 5.25 time= 5.25 time= 7.5 time=7.25 

M time= 14.75 time= 14.75 time= 17 time= 16.75 

D time= 41 .25 time=41.25 time=44 time= 43.5 

AND time= 3.75 time= 3.75 time= 6 time= 5.75 

OR time=3.75 time= 3.75 time=6 time= 5.75 

SOR time=3.75 time=3.75 time=6 time= 5.75 

BSI Coni time= 1.75 time =1.75 time= 2 time= 1.75 
-,Con] time= 3.75 time=3.75 time= 6 time= 5.75 

BSC Coni time=2 time=2 time= 2 time= 1.75 

jlowgrapg.node. -,Con] time= 2 time=2 time=4 time=3.75 
Opcode= SLA Con2 time=2+N/4 tjme= 2+N/4 Not defined Not defined 

SLT Con2 time= 2+N/4 time= 2+N/4 Not defined Not defined 

SLCA Con2 time= 2+N/4 time = 1.5+N/4 Not defined Not defined 

SLC Con2 time= 2+N/4 time= 1.5+N/4 Not defined Not defined 

SRA Con2 time= 2+N/4 time= 2+N/4 Not defined Not defined 

SRT Con2 time= 2+N/4 time= 2+N/4 Not defined Not defined 

•RET Con2 time= 2+N/4 time=2+N/4 Not defined Not defined 

WAIT time=2 time= 2 time=2 time=2 

XIO Coni time= 5.75 time= 5.75 time= 8 time=7.75 
-,Con] time=7.75 time= 7.75 time= 10 time=9.75 

1 . LDX time= 1.75 time= 1.75 time= 3.75 time= 3.75 

STX time=3.75 time= 3.75 time=6 time= 6 

MDX time= 1.5 time= 1.5 time=9.75 time= 3.25 

LDS time=2 time= 2 Not defined Not defined 

STS time= 3.75 time= 3.75 time= 6 time= 6.75 

CMP time= 3.5 time=3.5 time= 5.75 time= 5.5 

DCM time= 7.25 time= 5.25 time= 7.5 time= 7.25 
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Appendix A-5 

Requirements specification of W CETCalculator 

Input: 
operation 
pro 
path_set 
path_time_set 
nonfun_path_set 

Output: 
pro 

pro.fg 
pro.tg 
pro.wcet 

/path 
/path. path 
/path. type 
/path. time 

Operation choice from users of the tool 
Program variable 
The possible execution path set of the given program 
The execution time set of the possible execution paths of the given program 
The non-functional execution path set of the given program 

Program variable and changed elements including 
Program's GXL flow graph 
Program's timing graph 
Program's wcet solution 
The longest execution path in the timing graph 
The path, node sequence representation 
The path type of the longest execution path in the timing graph 
The execution time the longest execution path in the timing graph 

Table_ WCETCalculator : 

operation E {"Process Subroutine", "Process Loop", "Search Longest Path", "Check Path Type", "Determine 
WCET', "WCET Report", "Quit"} "pro.tg :t: ¢" 
path_setn nonfun_path_set = ¢ 1\ path_setu nonfun_path_sp :1: ¢ 1\ 

path_setunonfun_path_set = { V p lpEPath 1\ pepro.tg} A 

pro.fp.Subss.sstatus :1: "Undetermined" 1\ pro.fp.Loops.lstatus :1: "Undetermined" => 
• 

True 
.~ pro.tg = 

"Process Subroutine" For i = 0 to pro.fp.Subss.subs.size( ) 
Combine(pmfp.Subss.subs[i]) v AnnoateTime(pro.fp.Subss.subs[i]) 

pro.tg = 
"Process Loop" For i = 0 to pro.fp.Loops.loops.size( ) 

1 - Bound(pro.fp.Loops.loops[i]) v AnnoateCount(pro.fp~Loqes. locps[ i 11 
"Search Longest 

lpath.path = LogestPath(pro.tg) 1\ lpath.time = max(path_time_set) Path" 

operation= [path. type= PathCheck (/path) 1\ [path. type E {"functional" ,"nonfunctional"} 1\ 
"Check Path Type" pro.tg = AdjustTG(lpath) 1\path_set=AdjustPS(lpath) 1\ 

nonfun _path set=AdjustNPS(lpathl_ 

"Determine WCET' pro. wcet =/path. time 1\ lpath.time = max(path_time_set) 1\ 
/path. type= "functional" 1\ lpath.path E pro.tg 1\ lpath.path E path_set 

"WCET Report" Print (pro. wcet) 

uQuit" Save (pro, /path) 1\ EXIT 
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Appendix A -6 

Requirements specification of ExtendedDisplay 

Input: 
operation 
pro 
new_list 
analysis _list 
display 

Output: 
display 

Operation choice from users of the tool 
Program variable 
The name list of programs that have not been analyzed 
The name list of programs that have been processed or in process 
The display of a given program 

The display of a given program 

Table_ExtendedDisplay : 

new_listnanalysis_list = ¢" new_listuanalysis_list * ¢ "pro*¢" display*¢" 

pro.name E { new_listu analysis_list}" operation E {"View Display", "Extend Display", "Update 
Display", "Specify Time", "Quit"}~ 

operation= 

View Display Extend Display Update Display Specify Time Quit 

pro.name Display Viewer 
display = display. 

Notrkfined Supplement Not defined Save( new _list, 
Enew_list (pro. name) 

(pro:fp, pro.fi!) analysis_list, 

Display Viewer • display = display. display = display. display) 
pro.name 

Not Defined Update AddTime A Return 
analysis_list (pro. name) 

(pro.fp, pro.fil) (pro.ti(, pro. wcet) 

ANC(pro, analysi$"_list, new_list) 
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Appendix B-1 W AT Flow Analysis Tool 

CLASS SECRETS RESPONSIBILITES 
I) data structure I) perfonn "master control" including subroutine, 

Flow Analysis 2) process sequences/algorithms of loop and infeasible path analysis 
access functions 2) manage data files used store original, intennediate 
3) other internal process functions, e.g. and final data in the analysis phases. 

(L3-0l) interactive panels 3) provide interactive panels for user to detennine 
and modify related infonnation. 

ASSUMPTION LIST 

I. FlowAnalysis has no constraints on the order of perfonning (I) subroutine (2) loop and (3) infeasible path analyses, 
and they also can be perfonned individually. However, any data update and status change caused by an individual 
component should be noticed to other ones, and proper decisions should be made for whether or not invoking 
further manipulations. 

2. Each flow analysis case is for a program provided a display. Its invocated programs are seen as specific nodes, 
subroutine nodes, and their behaviors are known. 

3. User program will be provided proper messages when WCET Analysis meets unexpected events or required 
infonnation is not available 

. Access function list 

Function Name 
Flow Analysis 

AnalyzeFlow 

ReadF!owData .. 
GetFlowGraph 

GetFiowProperty 

, . 
GetStatus 

Class Variables: 

String name 
String fp 
SubAna s 
LoopAnal 
Path p 

Parameter Type 
N : String: I 
[ S : SubAna, L:LoopAna, 

P : Path : I]; 
N: String: I 
[S : Sub, L : l-oop, P : Path, 
st : String 1 : 110 
P : Panel: 0 
G : FlowGraph : 0 
N: String: I 
N : String: I 
G : FlowGraph : 0 
N·: String : I 
[S : Sub, L : Loop, P : Path, 
st : String 1 : 0 
N: String : I 
S : String : 0 

Parameter Information 
The name of program to be analyzed 
OptiJnal flow property variables 

Program name 
Optional flow property variables 

Interactive panel used to perfonn control 
The returned flow graph 
The name of a flow __Qr~ data file 
Program name 
The returned flow_grllQ_h 
Program name 
Flow property variables 

The name of a program which is being processed 
Analysis status 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) Describe subroutine properties of a given 

Sub Ana 2) process sequences/algorithms of program; 
access functions 2) Create, modify subroutine properties for each 
3) other internal process functions, e.g. invoked programs. 

(L2-0l) interactive panels 3) Cluster "subroutine nodes" for flow graph. 
4) Update extended displays 

ASSUMPTION LIST 

I. SubAna class decomposes subroutines based on the decomposition solution specified in Display. To determine 
each subroutine variable, user can refer to function tables in the displays. 

Function Name 
Sub Ana 
DefienSub 

GetSubs 

ReadSubs 

GetStatus 

ModifySub 
ModifyExtDisplay 

ClusterGraph 

Class Variables: 

String name;· 
Sub []subs 

1 ' 
String status 

Parameter Type 
N: String: I 
D : Display : I 
S : Sub [ ] : 1/0 
P: Panel: 0 
N : String : I; 
S: Sub []:I 
N: String: I 
S: Sub [] : 0 
N: String: I 
S: string: 0 
S : Sub: 110 
D : ExtDisplay : 1/0 
G : FlowGra~ : I 
S : Sub []:I 
G : FlowGraph : 1/0 
S: Sub []:I 

Access function list 

Parameter Information 
Program name 
Program Display in which subroutine decomposition is specified. 
Subroutine list of a program 
Interactive panel for program control 
Program name. 
Subroutines invoked by the given program. 
The file name of a subroutine data file. 
Subroutine variable list. 
Program name; 
The analysis su.tus. 
A subroutine v<Uiable to be modified 
A extended display. 
Updated flow graph; 
Sub variable/s. 
The flow graph to be clustered; 
Subroutines; 
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CLASS SECRETS RESPONSIBILITES 

Loop Ana I) data structure I) Describe Loop properties of a given program 
2) process sequences/algorithms of 2) Create, modify Loop properties for each invoked 
access functions program 

(L2-01) 
3) other internal process functions, e.g. 3) Cluster "Loop nodes" for flow graph 
interactive panels 4) U_j)(l_ate extended di~~s 

ASSUMPTION LIST 

I. Each loop terminates in a finite number of iterations. 
2. Loops are identified by checking backward edges specified in the flow graph, and their properties are 

determined through function specifications. 

Function Name 
Loop Ana 
DefienLoop 

GetLoops 

ReadLoops 

GetStatus 

Modify Loop 
Modify ExtDisplay 

SliceLoopinGraph 

Class Variables 

String name; 
Loop [ ] loops 
String status 

' 1 

Parameter Type 
N: String: I 
D : Display : I 
L : Loop [] : 110 
P : Panel: 0 
N : String : I; 
L: Loop[]:I 
N: String: I 
L:Loop[]:O 
N: String: I 
L: string: 0 
L: Loop: 110 
D : ExtDisplay : 110 
G : FlowGraph : I 
L: Loop[] :.1 
G : FlowGraph : 110 
L:Loop[]:I 

Access function list 

Parameter Information 
Program name 
Program display in which Loop decomposition is specified 
Loop list of a program 
Interactive panel 
Program name 
Loops invoked by_ the given_l)l"<>g_ram 
The file name of a Loop data file 
Loop variable list 
Program name 
The analysis status 
A Loop variable to be modified 
A extended display 
Updated flow graph 
Loop variable/s 
A flow graph 
Loo__Q_s identified in the__Q_r~am 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) identify infeasible paths in flow graph. 

PathAna 2) process sequences/algorithms of 2) determine the feasibilities of MDX statements. 
access functions 3) find paths indicated by the function table 
3) other internal process functions, e.g. 4) check whether a path is indicated by the function 
interactive panels table. 

(Ll-03) 5) refine flow graph by removing identified infeasible 
paths 

ASSUMPTION LIST 

I. PathAna class is used to analysis feasibilities of program execution paths in a given flow graph. 
2. Condition Headers in Program function tables indicate execution paths that can be extracted. Statements used to 
implement conditions are seen as key clue to determine such paths. 

Function Name 
PathAna 
ReadlnfPaths 
GetlnfPaths 

FindMDX 

DetermineMDX 

FindPathlnTable 

InfeasiblePath 

CheckPathType 

CheckPathlnTable 

RefineGraph 

·­Class Variables 

String 
Path [ )[2] 
String 

. 

Parameter Type 
N : String :I 
N: String: I 
N: String : I 
P:Path[]:O 
C : String [ ] : I 
M:MDX[) :0 
M : MDX [ ] : l/0 
D : ExtDisplay : I 
P: Penal: 0 
D : ExtDisplay : I 
P : Path[] : O 
P : Path[]:O 
D : ExtDisplay : I 
M: MDX[]· I 
P : Path[]:I 
T : String : 0 
P: Path: I 
D : Display : I 
B : Boolean : 0 

P:Path[] : I 
G : FlowGraph : l/0 

name 
infpath; type 
status 

Access function list 

Parameter Information 
Program name 
The name of infeasible path data file name 
The name of infeasible path data file name 
The obtained path 
Program source code scope determined in Display 
MDX statements code address list 
MDX statement list to be determined 
Display for information reference 
Interactive panel 

Path listed extracted from function tables 
Infeasible path"'ist .. 

Identified infeasible paths caused by interpreted MD Xes 
Path list 
Type concluded from the path 
A path to be checked 
Display of the given program 
Returns "true" when the path is specified in the display function 
table, otherwise return "false" 
Identified infeasible paths 
The target flow graph/ 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) read original control flow graph data into program 

FlowGraph 2) process sequences/algorithms of variables 
access functions 2) provide graph, graph nodes/edges and their item 
3) other internal process functions information to other modules 

(L0--02) 3) Perform graph modifications on both graph 
structure and node context 

ASSUMPTION LIST 

(I) Original program control flow graph is generated by Graph Generation Module, and the graph is described in 
GXLorXML 

(2) Sub-graph tools are available for extracting the flow graph for the target program 
(3) Proper messages will be prompted when data is not available or other unexpected events occur 

Function Name Parameter Type 
FlowGraph n: String: I 
ReadGraph n: String : I 
GetGraph n : String: I 

g: Vector<Node> : 0 
GetStatus n : String: I 

s :String : 0 
SaveGraph n: String: I 
GetNode A : String: I, n : Node : 0 
SetNode A : String : I, n : Node : 0 
De!Node a: String: I 
AddEdge a I, a2: String: I 
RemoveEdge a I, a2: String: I 
GetEdge a I, a2: String: I 

e : Edge : 0. 
GetTime e : Edge : I, t : real : 0 
SetTime e : Edge : I, t l6reai : I 
GetNum n : Node : I, num : real : 0 
SetNum n : Node : I, num : real : 0 
ClusterNodes a!, a2 : String : I 

Class Variables: 

V~tor <Node:> nodes 
String · status 

Parameter Information 
Flow graph name 
The name of a flow graph data file 
Flow graph name 
A vector stores flow graph nodes 
Flow graph name 
Flow graph process status 
Flow-graph name 
Node core address, and the retumed_Nl!Q_h node 
Node core address, and the retumed_Nl!Q_h node 
Core address of the node 
The core addresses of source and sink nodes 
The core addresses of source and sink nodes 
The core aqdresses of source and sink nodes 
A flow graph edge 
~uested ed__g_e, and the ass_\g_ned timing data 
Graph edge, and the execution time of the source node 
Graph node, and the number of times the node executed 
Graph node, and the number of times the node executed 
Start and end addresses for a code block to be clustered. 
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CLASS SECRETS RESPONSffiiLITES 
I) data structure I) describe program's subroutine properties 

Subroutine 2) process sequences/algorithms of 2) provide subroutine property information 
access functions 3) provide interactive interfaces for users to determine 

(L0-03) 3) other internal process functions e.g. and annotate related information 
interactive panels 4) search and tag possible sub-subroutine/s 

ASSUMPTION LIST 

I. Subroutine decomposition is identical with decomposition solutions in provided program displays. 
2. A subroutine may invoke sub-subroutines and they may call other subprograms. 
3. A subroutine may consists more than one sequential code slices, and its code scope does NOT include the source 

code of its subroutines; 
4. Features will not be changed including: 

• data structure, and basic access functions specified below . 
5. Following features may been changed : 

• subroutine identify functions, such as: MDX, BSIIDC/BSI invocation identification and etc . 

• panel formats used for users to input/modify data . 

Access function list 

Function 
Parameter Type Parameter Information 

Name 
Subroutine N : String: I The name (label) of a subroutine 
ReadSub N: String : I The name of a subroutine data file 
GetSub N: String : I The name a subroutine 

S : Subroutine : 0 A subroutine variable 
GetScope S : Vector<String>: 0 The returned subroutine slice scopes 
GetsubSubs subs: Vector<Subroutines>: 0 The returned sub-subroutines 
GetExeB exeB: int: 0 • Upper bound of the number a subroutine been executed. 
GetExeN exeN : int : 0 The number of subroutine been executed 
GetTime time : real : 0 Execution time of a subroutine 
GetWCET WCC<,t : real : 0 WCET of a subroutine 
GetStatus s :"string: 0 The analysis status of a subroutine 
ModifySub N: String I The name of a subroutine to be modified 

subs: Vector<Subroutines>: 0 The returned sub-subroutines 
P:Panel : O Interactive panel for modifying data 

RemovSub n: String : 0 The name of a subroutine to be removed 
' subs :Vector<Subroutines>: 0 The returned sub-subroutines 

Class Variables : 

String name 
Vector <String> scope; ( (sl,el },(s2,e2}, .. .... ,(sn,en}} 
Vector <String> subsubs 
int exeBound, exeNum 
float timeBound, time 
String status 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) describe program's loop properties 

Loop 2) process sequences/algorithms of 2) provide loop property information 
access functions 3) provide interactive interfaces for users to determine 

(L0-04) 3) other internal process functions, e.g. and annotate related information 
interactive panels *4) search and tag possible loop/s 

ASSUMPTION LIST 

l. Loops are identified through tools in other modules, and their information is saved in loop data files 
2. A loop may be nested with subroutines or loops 
3. A loop may consists more than one sequential code slices, and its code scope does NOT include the source code of 

its subroutines 
4. Features will not be changed including: data structure, and basic access functions specified below 
5. Following features may been changed : panel formats used for users to input/modify data 

Function 
Parameter Type 

Name 
Loop N : String : I 
ReadLoop N : String: I 
GetLoop N: String : I 

L:Loop:O 
GetScope S: Vector<String>: 0 
Getloops loops : Vector<String>: 0 
GetLoop Ls: Vector<Loop>: 0 
GetExeB exeB: int: 0 
GetExeN exeN : int : 0 
GetTime time : real : 0 
GetWCET wcet : real : 0 
GetStatus s: String: 0 .. 
Modify Loop n : String : I 

P: Panel: 0 
RemoveLoop n :~String : I 

U: Vector<Loop> : 0 
SaveLoop n: String : I 

Class Variables: 

Strfng name 
String entrance 

Access function list 

Parameter Information 

The name (label) of a loop 
The name of a subroutine data file 
The name a subroutine 
A loop property variable 
The returned subroutine slice scopes 
A name list of subroutines nested in a loop 
A list of looj>_s nested in a looj>_ 
Looj>_ ~bound 
The number of loop_ bod_y_ been executed 
Execution tilne of a looj>_ 
WCET of a loop 
The analysis status of a loop 
The name of a loop 
The interactive panel for modifyill& data 
The name of a loop 
A list of loops nested in a loop 
The name of data file name 

Vector <String> loopbody ; { {sl,el },{s2,e2}, .... .. ,{sn,en}} 
String exit 
Vector <String> subs 
Vector <String> subloops 
int exeBound, exeNum 
float timeBound, time 
String status 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) describe execution path's properties 

Path 2) process sequences/algorithms of 2) provide information of identified path!s 
access functions 3) provide interactive interfaces for users to determine 

(L0-05) 3) other internal process functions, e.g. and annotate path related information 
interactive panels 4) compose a program execution path. 

ASSUMPTION LIST 

l. Class Path is to help user identify and determine infeasible paths exist in the generated flow graph, rather 
than analyze the program 

2. This class is also designed to analyze the flow paths indicated by the program function table 
3. Features will not be changed including: data structure, and basic access functions specified below 
4. Following features may been changed: panel formats used for users to input/modify data 

Access function list 

Function 
Parameter Type Parameter Infonnation 

Name 
Path A : String [ ] : I The core addresses of nodes to construct a path 

P : String [ ] : 0 The address sequence of a ...2_ath 
ReadPaths F: String: I The name of a infeasible_Qath data file 
GetPath Al, A2 : String: I The core addresses represent start and end nodes of a path 

P: String [ ][4] : 0 Information of an infeasible _Qath 
Modify Path Al, A2: String: I The start/end addresses of a_Qath 
AppendPath P 1 : String [ 1 : I, Two paths to be merged. 

P2 : String [ ] : I 
P : String [ ] : 0 Core addresses Qf a merged path 

RemovePath P : String [ 1 : I The core addresses of nodes in a_Qath. 
CheckPath P : String [ 1 : I A path. 

T : String : 0 • ~tied type of a given path. 
GetStatus S: String : 0 The path analysis status. 
SavePath N: String: 0 The name of data file 

Class Variables : 

Vector <String:> Path; { {sO,eO, tO, cO}, ... ... , {sn, en, tn, en}} 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) describes MDX statements' properties 

MDX 2) process sequences/algorithms of access 2) finds suspect branch MDXs in the slices consists the 
functions program 

(L0-06) 3) other internal process functions, e.g. 3) determine 
interactive panels 

ASSUMPTION LIST 

I. Class MDX is to help user identify and determine infeasible paths caused by MDX statement (IMB 1800 assembly 
language) in the generated flow graph, 

2. Guess-and-Verify method is used to determine the feasibility of MDX statements which were interpreted as 
alternative branch statements 

3. Function table specifies all of the variable value changes which can used for MDX analysis 
4. This class can be removed when the flow graph generator supplemented with MDX process module, and it will not 

affect other modules in the WCET tool 
5. Features will not be changed including: data structure, and basic access functions specified below 
6. Following features may been changed: panel formats used for users to input/modify data 
7. Proper interactive panels are provided for related methods 

Access function list 

Function 
Parameter Type Parameter Information 

Name 
MDX A: String: I The core address of a MDX statement. 
ReadMDXs F : String [ ] : I The name of a MDX data file. 
FindMDXs S: String [ ] : I Program scope (start/end core addresses of program slices). 

M : String [ ] : 0 MDX statement (core address) list. 
Modify MDX A: String : I Core addresses of a MDX statement. 
RemoveMDX A: String I The core address~of a MDX statement. 
CheckMDX A: String: I The core addresses of a MDX. 

F : Boolean : 0 • Returns "true" if the MDX is a conditional branch statement, 
otherwise returns "false". 

GetStatus S : String: 0 The MDX analysis status. 

Class Variables : •' 

Vector <Strinp MDX; { { aO, tO, sO, cO}, ... ... , {an, tn, sn, en} } II address, type, status, comments 
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Appendix B-2 W AT Low-level Analysis Tool 

CLASS SECRETS RESPONSIBILITES 
I) data structure I) Generate timing graph 

TimingGraph 2) process sequences/algorithms of 2) Present timing graph information. 
access functions 3) Provide interfaces for users to modify related 
3) other internal process functions, e.g. information. 

(Ll-02) 
interactive panels 4) Process nested relationships, such as loops in 

subroutines and subroutines in loops 
5) Process hardware effects 

ASSUMPTION LIST 

1. Timing graph (TG) class specifies a kind of graphs represented in GXUXML scripts 
2. TG can be refined if and only if at least one of its items is modified 

Access function list 

Function Name Parameter Type Parameter Information 
TimingGraph FG : FlowGraph : I A flow graph to be processed 

S : Subroutine [ ] : I All the Subroutine variables for a program 
L:Loop[]:l All the Loop variables for a program 
H : HDFeature : I Identified Hardware Features 
T : TimeTable : I The Statement execution time table 
TG : TimingGraph : 0 A timing graph to be generated 

ReadTG N : String: I The name of a timing graph data file 
TG : TimingGraph : 0 A timing graph 

GetTG N: String: I The name of a timing graph 
TG : TimingGraph : 0 The returned tl!lling graph 

HidePath P: Path: I A path to be hidden 
TG : TimingOraph : 0 The timing graph in which one or more path are hidden 

UnHidePath P: Path : I A path which was hidden before 
TG : TimingGraph : 0 The timing graph in which one or more path are unbidden 

SublnLoop L: Loop: I A loop in which one or more subroutines are invoked 
.~ S : Subroutine [ ] : I Subroutines nested in a loop 

TG : TimingGraph : 0 A timing graph 
LooplnSub S : Subroutine : I A subroutine contains one or more loops 

L!Loop[]:l Loops nested in a subroutine 
TG : TimingGraph : 0 A timing graph 

RefineTG • TG : TimingGraph : I A flow graph to be processed 
S : Subroutine [ ] : I All the Subroutine variables for a program 
L:Loop[]:l All the Loop variables for a program 
H : HDFeature : I Identified Hardware Features 
T : TimeTable : I The Statement execution time table 
TG : TimingGraph : 0 A timing graph to be generated 
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CLASS SECRETS RESPONSffiiLITES 
I) data structure I) describe hardware features affect program HDFeature 2) process sequences/algorithms of execution time 
access functions 

(L0-07) 
3) other internal process functions, e.g. 
interactive panels 

ASSUMPTION LIST 

I. HDFeature is designed to specify identified hardware features that may affect program execution time 
2. In this class, timing effects are represented as delay or speed up functions for related code slices 
3. This class is extensible, i.e., new identified features can be added, and be contracted with exist ones 

Function Name Parameter Type 
HWFeature N, T: String : I 

D: Float : I 
S : String [] : I 

LoadFeatures F: String: I 
GetFeatures N : String [ ] : I 

E: Vector <Effects>: 0 
AddFeature N, T: String : I 

D: Float: I 
S : String [ ] : I 

Modify Feature N : String : I 

Class Variables : 

String : name; 
String : type; 
Float : delay; 
String [ ] : scope. 

' -

Access function list 

Parameter Information 
The name and type of a hardware feature 
Delay or speed time value/function of a HW feature 
The scope that the HW feature affects 
Hardware feature file name 
The name a hardware feature 
A or a list of features 
The name and type of a hardware feature 
Delay or speed time value/function of a HW feature 
The scope that the HW feature affects 
The name of a hardware feature 

.· 
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CLASS SECRETS RESPONSIBILITES 

TimeTable 1) data structure 1) describe 1MB 1800 statement time data 
2) process sequences/algorithms of 2) provide statement timing information 
access functions 3) modify statement timing data 

(L0-08) 
3) other internal process functions, e.g. 
interactive panels 

ASSUMPTION LIST 

l. The basic statement average execution time information is obtained from the hardware manual provided 
through hardware vendors, and such information is collected in a statement timing table 

2. The execution time of a statement is represented as a sum of its average statement time with a known 
delay, or a subtraction with its speedup value. 

Function Name 
TimeTable 
AdjustTiming 

GetTime 

GetTimeTable 

Class Variables : 

String name; 
CharF; 
CharT; 
Float t; 

Parameter Type 
F: String: I 
S : String [ ][3] : I 
D : float [ ] : I 
S, F, T: String : I 
T: float :0 
T : float [ ][4] : 0 
S : String [ ] : 0 

//statement name 
//format • 
//tag 
II time 

Access function list 

Parameter lnfonnation 
The file name of the average statement timing data file 
A list of statement names, formats, tags 
A or a list of real number (delay/speedup data) 
A statement name, format and tag 
A real number (execution time) 
A complete time table of all statements 
A complete name list of all statements 
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Appendix B-3 WAT WCET Calculator 

CLASS SECRETS RESPONSffiiLITES 

Calculator I) data structure I) calculate the WCET for given timing graph and 
2) process sequences/algorithms of other information 
access functions 2) translate GXUXML graph to real graph data 

(L2-04) 
3) other internal process functions, e.g. structure for graph operations 
interactive panels 3) specify timil_!g_ solution in extended di~~s 

ASSUMPTION LIST 

I. Calculator is to compute the WCET for a program based on its given timing graph. How to use the timing 
information of its invoked programs should be determined and annotated 

2. Calculator will translate provided timing graph (stored in script or data bases formats) into math graph for further 
processing 

3. User program will be provided proper messages when WCETAnalysis meets unexpected evens or required 
information is not available 

Access function list 

Function Name Parameter Type Parameter Information 
Calculator N: String: I Name of the program 
Graph Generator TG : TimingGraph : I The timing graph generated from other components 

S: ProSub : I Subroutine invocation information 
G : Graph: 0 The math graph will be used for longest path searchillg 

GetWCET D : ExtDisplay : I The display CatJ be used as information reference 
TG : TimingGraph : I Timing graph to perform timing calculation and path search 
S : ProSub : I Subroutine process variable 
G:Graph:u Graph used to perform longest path search 
W:WCET:O WCET solution variable 

UpdateDisplay D : ExtDisplay : 1/0 Display of the program 
W:WCET:I WCET solution .. 

. . 
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CLASS SECRETS RESPONSIBILITES 

Pro Sub I ) data structure I) determine how to use subroutine's the timing 
2) process sequences/algorithms of information for WCET calculation. 
access functions 2) determine relationships of subroutinenoop nest 
3) other internal process functions, e.g. activities. 

(Ll-03) interactive _panels 3) process subroutine node in a given graph 

ASSUMPTION LIST 

I. An invoked subroutine may take different time in different invocation circumstances. To calculate the WCET of its 
caller program, each invocation has to be determined an unique time value. 

2. The number of loop iterations also needs to be determined when subroutines nested in loops. 

Function Name Parameter Type 
ProSub S : Subroutine : I 

Sub Time S : Subroutine : I 
T : float : 0 

SubinLoop S : Subroutine : I 
L : Loop : I 
T: float : 0 

GraphSubNode G:Graph:I 
S : Subroutine : I 
RG : Graph: 0 

Class Variables: 

Sting 
String [] 
Float [] 
Sting [] 

program_name 
sub_names • 
sub_time 
sub_use 

Access function list 

Parameter Information 
A subroutine to be specified execution time 

A subroutine variable 
The time estimate for a subroutine 
A subroutine which in a loop 
A loop 
The subroutine execution time considered loop iteration 
The graph for the longest path searching 
The subroutine node to be processed 
A graph in which subroutine node is processed 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) search the path takes the longest execution time in 

LongestPath 2) process sequences/algorithms of a timing graph. 
access functions 2) check the type of the longest path 
3) other internal process functions, e.g. 3) check whether a found path is indicated in the 

(Ll-04) interactive panels function table. 
4) compute the execution time for a given path 

ASSUMPTION LIST 

I. The longest path searching could be performed either in the timing graph, or in a scope of paths indicated in the 
function table or specified by the user 

2. The execution time is represented in real number for if provided sufficient information about program's flow 
properties and related timing data 

3. When the program contains one or more segments that their execution time cannot be determined, a path set is 
provided in which paths have been determined that can not be the longest path will not be included 

Function Name Parameter Type 
LongestPath-G G:Graph:I 

P: Path [ ]: 0 
LongestPath-T P : String [ ][ ]: I 

P:Path[]:O 
CheckPath P: Path: I 

T: String: 0 
GetTablePaths D : Display: I 

P : String [ ][ ] : 0 
Path Time P: Path: I; 

T: float: 0 

• 
Class Variables: 

,.1 

String longest_path_name 
String longest_path_type 
Float longest...:.path_time 

Access function list 

Parameter Information 
A graph for WCET calculation 
A core address list rl:J>resents an executionJ_>ath 
A path set for WCET calculation 
A core address list represents an execution_])_ath 
A execution path represented as a code address list 
The _ty_])e_ of the path belol!&_s to 
The extended display which provides the function table 
Path set indicated l>y_ a _given table 
The path for time estimation 
The execution time for a path 

String [ ]longest_path_unknownslices 
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CLASS SECRETS RESPONSIBILITES 

Graph 
1) data structure 1) present GXLIXML graph in graph data 
2) process sequences/algorithms of structure 
access functions 2) tag paths in a graph 

(L0-09) 
3) other internal process functions, 3) check properties of a given graph 
e.g. interactive panels 

ASSUMPTION LIST 

I. In the WCET tool, program control flow graph and timing graph are represented in GXL or XML 
formats. The Graph class is designed to store such data in real graph data structure for further graph 
operations 

2. It is extensible for this class to add other access functions to read and translate data base information into 
graph data structure 

Access function list 

Function Name Parameter Type Parameter Information 
Graph F: String: I A GXL or XML script file name 

r,. ··. CheckGraph N : String [ ] : I A name of a graph 
P : String [ ] : I A property name list for graph checking 
S : Boolean [ ] : 0 A list of checking Boolean solutions. Note, for each checking 

the solution is "true" if all required properties are satisfied, 
otherwise, is "false". 

GetGraph N : String: I Name of a graph 
G:Graph:O The returned graph 

GetStatus S: String: 0 The graph process status 
TagPath P : String [ ] : I The core addresses consist a execution path 

G: Graph: t> A Graph 

. • 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) calculate the WCET for a graph 

WCET 2) process sequences/algorithms of 2) calculate the WCET for a set of paths, e.g. 
access functions paths identified in the function table 

(L0-10) 
3) other internal process functions, 3) report WCET analysis solutions 
e.g. interactive panels 

ASSUMPTION LIST 

l. In the case of knowing the flow and timing information of all segments of a program, the WCET is 
calculated and reported 

2. When exist unknown segments, paths that can not be the longest path will be picked out, and remainder 
paths will be reported their timing solution including which segments are unknown and the execution 
time of known slices 

Function Name Parameter Type 
WCET_G G : Graph: I 

W: Float: 0 
WCET_P P : String [ ] [ ] : I 

W: Float: 0 
WCET_Reprot P : String [ ] [ ] : 0 

T : float [ ] : 0 

" 
Class Variables : 

.~ 

Float wcet 
String [ ] wcet_report 
String status 

Access function list 

Parameter Information 
A timing graph 
The WCET value 
A path set 
The WCET value 
The path set which contains unknown segment/s 
The execution time of known segments 

•· 
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Appendix B-4 W AT Display Manager 

CLASS SECRETS RESPONSIBILITES 
1) data structure 1) Describes extended displays 

ExtDisplay 2) process sequences/algorithms of 2) Supplement graph and other variables into 
access functions conventional displays 
3) other internal process functions, 3) Provide interfaces for users to modify related 

(Ll-01) e.g. interactive panels information 

ASSUMPTION LIST 

1. Extended-display class takes items (function table, source code, and invoked program function 
tables) from the conventional displays and is supplemented with (1) original and refined flow graph, 
(2) flow property variables and (3) timing variables 

2. Above supplemented items can be modified by the modules in WCET tool, but others can not 
3. All of the Information View Actions provide one or more visible pictures when required items are 

available 

Function Name Parameter Type 
ExtDisplay D : Display : I 
ViewExtDisplay N: String : I 
View Item N: String: I 

NI, T : String : I 
F : String : 0 

Add Graph N : String : I; 
G : FlowGraph : I 

AddV ariable N, V, T : S~ng: I 

Class Variables : 

Display display 
FlowGraph original_fg, refined_fg 
Strtng [ ] flow _property 
Float [ ] time 

Access function list 

Parameter Information 
A conventional disQlay to be extended 
Display (program) name 
The name of a extended display 
The name and type of the item to be viewed 
File name wh..ich is used to invoke a visible viewer 
Display name . 
The flow-graph to be supplemented into an extended display 
The name of an extended display, and the name and type of a 
variable to be supplemented into the display 
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CLASS SECRETS RESPONSIBILITES 
I) data structure I) represent a display of a given program, including its 

Display 2) process sequences/algorithms of function table, program source code, and tabular 
access functions specification of invoked prograrnls 

(L0-01) 3) other internal process functions 2) provide visible viewer for user to view program 
function table, and source code slices 

ASSUMPTION LIST 

(1) Display construction is performed first, and program Displays are NOT allowed to be modified 
during the WCET analysis 

(2) Features will not be changed including: 

• Class data structure, access functions' interfaces 
(3) Features may be changed: 

• Display data format, note, current Displays are in PNG image format, and future Displays may 
be presented in HTML format 

(4) Proper messages will be prompted when data is not available or other unexpected events occur 

Function 
Parameter Type 

Name 
Display name : String : I 
View Display name : String : I 
GetTable file : String : 0 
GetCode file : String : 0 
GetSubs subs: Vector <String>: 0 
ViewTable name: String: I • 
ViewCode name: Vector <String>: I 

Class Variables: 

String : table-ID 
String []:code-segments 
V~ctor <String> sub-tables 

Access Function Table 

Parameter Information 

Display (program) name 
Display (program) name 
The file name of a function HTMUX:ML table data file 
The file name of a source LST code data file 
The file names of a list of subroutine names 
The name of a function table 
The name list of a set of code slices 

should be either file name of HTML links 
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Appendix B-5 WAT master control class WCET-Analysis 

CLASS (L4-01) SECRETS RESPONSIBILITES 
I) data structure I) performs "master control" including program 
2) process sequences/algorithms of flow, low-level analysis, and WCET calculation. 
access functions 2) manage data files used store original, 

WCETAnalysis 3) other internal process functions, e.g. intermediate and final data in the analysis phases. 
interactive panels 3) provide interactive panels for user to determine 

and modify related information, or choose proper 
operations. 

ASSUMPTION LIST 

I. The first execution of WCET analysis of a given program should be performed in the order of (I) flow analysis (2) 
low-level analysis and (3) WCET calculation. Any data update and status change in early steps should be reported 
to later ones, and those information can be used to decide whether invoke further manipulations or not. 

2. Each WCET analysis case is focus on a program provided a display, in which the program and invocated 
programs' behavior specifications are correct/accurate. 

3. User program will be provided proper messages when WCETAnalysis meets unexpected evens or required 
information is not available. 

Access function list 

Function Name Parameter Type Parameter Information 
WCETAnalysis N : String : I[ The name of program to be analyzed. 
AnalyzeWCET N : String: I 

F: Flow Analysis : I/0 
T : TimingGraph : I/0 
C : Calculator: I/0 
P : Panel: 0 

ReadWCETData N: String: I 
GetWCET _, N : String: I 

W:WCET : O 
GetStatus N: String: I 

S: String : 0 

Class Vllf\ables: 

String name 
Flow Analysis fp 
TimingGraph 
WCETwcet 
ExtDispaly d 

Prog~mname 

Three optional components of the WCET analysis: 
program flow analysis, low-level analysis (timing graph 
generation) and WCET calculator. 
Interactive panel for WCET analysis 
The name of a WCET data file. 
Program name. 
The returned wcet for a program. 
The name of a program which is being processed 
Analysis status 
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